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L. Caprini 1,2 , B. Liebchen 3 & H. Löwen 1

There is currently a strong interest in the collective behavior of chiral active particles that can propel
and rotate themselves. In the presence of alignment interactions for many chiral particles, chiral self-
propulsion can induce vortex patterns in the velocity fields. However, these emerging patterns are
non-permanent, and do not induce global vorticity. Here we combine theoretical arguments and
computer simulations to predict a so-far unknown class of collective behavior.We show that, for chiral
active particles, vortices with significant dynamical coherence emerge spontaneously. They originate
from the interplay between attraction interactions and chirality in the absence of alignment
interactions. Dependingonparameters, the vortices can either feature a constant vorticity or a vorticity
that oscillates periodically in time, resulting in self-reverting vortices. Our results may guide future
experiments to realize customized collective phenomena such as spontaneously rotating gears and
patterns with a self-reverting order.

Chirality refers to the property of objects to be non-superimposable on their
mirror images. The concept originated in the mid-19th century and it is
attributed to the chemist LouisPasteur,whoobserved that crystals of tartaric
acid exist in twodistinct, non-superimposable forms,whichhe referred to as
“right-handed" and “left-handed." Also more than a century ago, Bronn,
Jennings, and others realized that shape-asymmetric motile microorgan-
isms generically follow chiral trajectories1,2, i.e. they do not only self-propel
but they also self-rotate, showing circular trajectories. Recently, the dis-
covery of synthetic colloidal microswimmers in the 21st century3–5 has
stimulated a significant interest in chiral self-propelled particles6,7: Like their
biological counterparts, these particles also generically follow circular tra-
jectories if they feature a shape-anisotropy8–14 or are torqued by an external
field15. In addition, it is now known that chirality can emerge due to
hydrodynamic interactionswithwalls or interfaces, as in bacteria16–18, or due
to memory effects in viscoelastic environments and droplet swimmers19–21.

At the many-particle level in the presence of alignment interactions,
chiral self-propulsion can induce a rich panorama of collective phenomena
such as pattern formation22–32, which includes rotating micro-flock
patterns22, chiral self-recognition33, traveling waves34, and even chimera
states25. By contrast, in the absence of alignment, circular motion does not
generally show exciting collective effects. Indeed, in repulsively interacting
chiral active particles, it primarily contributes to reducing obstacle
accumulation35–37. Consequently, it suppresses the clustering typical of
repulsive active particles38–42, by contrast, leading to a hyperuniform
phase43–46 anddemixing47,48. Indeed, chirality only affects theparticle’s ability

to continuously explore space, reducing the effective persistence of the
activity. However, recently, Debets et al. have discovered a peculiar oscil-
latory caging effect in chiral active glasses49 while Liao and Klapp have
observed intriguing vortex patterns in the velocity fields for significant
chirality levels38.Despite the relevance of the latter study, these structures are
non-permanent and do not induce global vorticity as also observed in chiral
rollers50.

In the present work, we combine theoretical arguments and particle-
based simulations to predict the existence of a so-far unknown class of
structures in chiral active matter. First, and perhaps least surprisingly, for
low chirality (low self-rotation frequency) we find that attractive chiral
active particles (Fig. 1a) without alignment interactions form moving rigid
clusters that feature full velocity-alignment of the contained particles51 and
spatial velocity correlations52,53 but vanishing vorticity. However, for high
chirality,weobserve a transition to a rotationpattern that is characterized by
a persistent and time-independent vorticity (Fig. 1b) and is termed per-
manent vortex state. This state can be viewed as the superposition of the
translational motion characterizing the previous state and an additional
collective rotation due to chirality, which transfers from the single particle to
the collective level. For even higher chirality the rotation pattern again
changes and the vortex starts to dynamically revert itself, exhibiting periodic
transitions between vortex and antivortex configurations (Fig. 1c).We refer
to these structures as self-reverting vortices. The occurrence of this state is a
consequence of the competition between chirality and isotropic interac-
tions, which suppresses the tendency of a cluster to collectively rotate.
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Results
Model for chiral particles
To concretely investigate these states, we consider a system of N inter-
acting active chiral particles with mass m, where each particle is gov-
erned by underdamped equations of motion for their positions, xi, and
velocities, vi ¼ _xi. Every particle is in contact with a thermal bath at
temperature T and experiences a frictional force, γvi, with friction
coefficient γ. Activity is incorporated in the dynamics as a stochastic
force, which imparts to each particle a constant swim velocity, v0, along
with an orientation vector, ni ¼ ðcos θi; sin θiÞ. Here, θi are the orien-
tational angles and, in accordance with the active Brownian particle
(ABP) model54 describing circular swimmers55–61, evolves as Brownian
noise with a constant drift angular velocity,ω. The latter is also known as
particle chirality and is responsible for circular trajectories55. Thus, the
system’s dynamics can be expressed as

m _vi ¼ �γvi þ Fi þ γv0ni þ
ffiffiffiffiffiffiffiffi
2Tγ

p
ηi ð1aÞ

_θi ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ξi þ ω: ð1bÞ

Here, Dr represents the rotational diffusion coefficient, and ξi and ηi
denote white noises with zero average and unit variance. The particle
chirality ω determines the characteristic radius of the circular trajectory
displayed by a single active chiral particle, specifically v0/ω. In this sys-
tem, the absence of torques between particles results in their sole
interaction through the forceFi =−∇iUtot, whereUtot =∑i<jU(∣rij∣), and
rij = xi− xj. The shape of the interaction potential U(r) is obtained by
truncating and shifting an attractive Lennard-Jones potential,
ULJ ðrÞ ¼ 4ϵ½ σ

r

� �12 � σ
r

� �6�. The potential U(r) is therefore defined as
U(r) =ULJ(r)−ULJ(3σ) for r ≤ 3σ, and zero otherwise. Here, σ signifies
the nominal particle diameter, while ϵ stands for the energy scale of the
interactions. The interparticle attraction is sufficiently large to guarantee
that the cluster structure remains stable. The system is characterized by
three primary time scales: the inertial time, τI =m/γ, determining the
velocity relaxation; the persistence time, τ = 1/Dr, which dictates the
duration required for active particles to randomize their orientations;
and the time 1/ω necessary for the orientation to complete a full rotation
due to chirality. We remark that our model considers self-propulsion
and chirality, i.e. self-rotations, as two independent mechanisms.
Indeed, even if these two propulsions are often related in chiral active
colloids, this is not the case in other physical systems, for instance active
granular particles with an intrinsic chirality and spinners where the self-
propulsion is even absent.

Theoretical prediction for vortex states
To understand the collective behavior of attractive chiral active particles, we
first develop a mapping showing that the overall dynamics are governed by
the competition of velocity alignment and an effective Lorentz force. Spe-
cifically, Eqs. (1) can be mapped to alternative dynamics using an exact
change of variables and a lattice approximation, applicable to strongly
attractive active particles in the large persistence time regime (seeMethods).
The evolution of the particle velocity vi is effectively described by:

_vi ¼
1
γ

X
j

Jj � ðvi � vjÞ þ ωvi × z: ð2Þ

Here, ∑j encompasses neighboring particles to the i-th one, z represents
theunit vector normal to theplaneofmotion, and the elements of thematrix
Jj are reported in the Methods. Equation (2) holds in the large persistence
regime and reveals that the system’s behavior is primarily governed by two
distinct forces. The first one, independent of chirality, manifests as an
effective alignment force emerging from the interplay between interactions
and activity. It accounts for the observed velocity alignment and, indeed, is
minimized in three particle configurations: i) full alignment; ii) vortex; iii)
antivortex (see Methods). In the absence of chirality, there is no preference
among these configurations. The second term in Eq. (2) is solely induced by
chirality, being∝ω, andoperates as an effective Lorentz force.This indicates
that chirality influences the dynamics of an active particle, akin to an
effective magnetic field, responsible for particle rotations. When ω is
comparable to Jj, the effective magnetic field selectively promotes vortex or
antivortex states for negative andpositiveω, respectively. Consequently, this
analytical argument predicts the spontaneous emergence of substantial
vorticity in the system.

Simulations unveil self-reverting vortices
Toobserve the predicted vortex-states, we perform simulationswithin a box
of size L under periodic boundary conditions, ensuring that the particle
packing fraction ϕ = (N/L2)σ2 π/4 = 0.3 remains constant. It is crucial to
emphasize that our findings pertain to the large persistence regime
(τ/τI≫ 1), resulting in effectively overdamped dynamics (see Methods).
Given this choice, the same results can be obtained by considering an
overdamped dynamics if the thermal noise is sufficiently small. The con-
dition τ/τI≫ 1 signifies that the persistence length v0τ is the dominant
length scale in the system, notably larger than the cluster size Lc ≈ σ

ffiffiffiffi
N

p
c,

where Nc is the number of particles in the cluster. We remark that in the
opposite small persistence time regime τ/τI≪ 1, the system is close to
equilibrium and the active force behaves as thermal noise (see Methods).

Fig. 1 | Chirality-induced collectivemotion. a Illustrations of chiral active particles.
The particle orientation is indicated by a dark blue cap with L-shape responsible for
the particle chirality. The black and blue arrows serve as a schematic representation
of particle velocity and chirality. We sketch the typical rotating trajectory of a chiral
active particle and illustrate a chiral active cluster maintained by attractive inter-
actions. b Time series of snapshot configurations showing the permanent vorticity
state, as revealed by the vorticity field (colors). The cluster exhibits collective

rotations, following circular trajectories and displaying counterclockwise vorticity.
cTime series of snapshots for the cluster exhibiting spinning dynamics and revealing
the self-reverting vorticity state, i.e. a periodic alternation between vortex and
antivortex configurations. Arrows indicate the velocity field while colors denote the
vorticity value. b and c are obtained with cluster size square L2c ¼ 904 and reduced
chiralityωτ = 10, 102, respectively. The remaining parameters of the simulations are:
τI/τ = 10−6, Pe = τv0/σ = 50, τ2ϵ/(σ2m) = 5 × 103, τ2T/(mσ2) = 10−5.
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Thus, no collective motion can be observed in this regime. Therefore, we
conduct a numerical study by keeping fixed τ/τI≫ 1. In addition, the
dynamical states shown here are obtained only in the regime of large
attractions compared to thermal noise strength and activity, i.e. when the
typical potential energy due to the interparticle interactions is large com-
pared to the thermal energy and the kinetic energy associated with self-
propulsion ≈mv20=2. Indeed, without this condition, the cluster is not stable
because particles are able to leave it and therefore it is not possible to observe
collective motion. Here, to investigate the influence of chirality, we vary the
associated dimensionless parameter, the reduced chirality ωτ, and examine
different cluster sizes Lc.

We discover phenomena in active systems uniquely induced by cir-
cular motion and attractive forces. Reduced chirality ωτ fosters collective
rotational motion, with the entire cluster tracing persistent circular trajec-
tories (see SupplementaryMovie 1). For further increasing values ofωτ, the
cluster displays spinning dynamics rather than a circular trajectory. Indeed,
the center of mass of the cluster undergoes rotations with a characteristic
radius smaller than the cluster size Lc (see Supplementary Movie 2). To
characterize rotational motion, we monitor the evolution of the spatial
average of the vorticity field 〈Ω〉, defined as

hΩi ¼
Z

dr ∂xvy � ∂yvx
� �

; ð3Þ

which reads zero for particle velocities aligned in the same direction but
assumes positive and negative values for antivortex and vortex config-
urations, respectively. In the limit of vanishing chirality ωτ (black curve
in Fig. 2b), the time-trajectory of 〈Ω(t)〉 fluctuates around zero,
signifying the absence of a preferred vorticity. By contrast, as ωτ
increases, 〈Ω(t)〉 exhibitsminor time-fluctuations around a value greater
than zero, indicating a positive spatial average vorticity aligned with the
single-particle chirality (Fig. 2b). The breaking of rotational symmetry of
a single chiral particle propagates to the collective level, resulting in a
non-zero global vorticity: These configurations are identified as
permanent vorticity states. Conversely, when the cluster exhibits
spinning dynamics, 〈Ω(t)〉 displays periodic-time oscillations (Fig. 2c).

This implies that particle velocities periodically switch between vortex
and antivortex configurations, i.e. the cluster exhibits a self-reverting
vorticity. This phenomenon is a consequence of the additional time scale
introduced by chirality, as confirmed by the oscillation period which
scales as ~1/ω.

Mechanism behind self-reverting vorticity
Permanent vorticity and self-reverting vorticity states can be intuitively
explained by considering a chiral particle anchored to a fixed point with size
determined by the strong attraction, σ. Chirality enables the self-propulsion
force to persistently rotate at a frequency of 1/ω and, consequently, induces
circular motion in the particle around the fixed point. If the radius of the
circular trajectory is larger than the distance with the fixed point, v0/ω > σ
(low chirality), the particle performs complete, persistent rotations, in the
direction promoted by chirality (Fig. 2d). This simplemechanism generates
the permanent vorticity state at the collective level. By contrast, in the
opposite regimeof large chirality (v0/ω < σ), chirality completely reverses the
direction of the active force before the particle completes a rotation of π
radians around the immobile particle. Consequently, the particle moves
backward and forward, effectively alternating between clockwise and
counterclockwise rotations (Fig. 2e). This explains the observed self-
reverting vorticity state at the collective level. This idea can be further
supported by calculating the total torqueM acting on the cluster, which is
dominated by the outer particle layer at distance R from the middle of the
cluster (see Methods)

M≈ γv0
XNc

i¼1

ðri ×niÞδðjrij � RÞ: ð4Þ

Here ri is a vector pointing from the center of the cluster to the i-particle
position. After timeπ/ω, eachni rotates byπ and thus also its spatial average.
However, if ni rotates with a period π/ω smaller than the period of r,M is
continuously subject to sign changes before a full cluster rotation: the cluster
displays self-reverting vorticity. By contrast, in the opposite regime,Mnever
changes sign and the system displays a permanent vorticity state.

Fig. 2 | Vorticity states. a State diagram for chiral active particles in the plane of
reduced chirality ωτ and cluster size square L2c . Black, orange, and purple colors
denote negligible vorticity, permanent vorticity, and self-reverting vorticity states,
respectively. b, c Spatial average chirality, 〈Ω〉τ, as a function of the rescaled time t/τ.
The three time-trajectories in b and c correspond to the stars in a: Specifically, the
black, orange, and purple curves are obtained for ωτ = 5 × 10−1, 10, 102 with
L2c ¼ 452. The remaining parameters of the simulations are: τI/τ = 10−6, Pe = τv0/
σ = 50, τ2ϵ/(σ2m) = 5 × 103, and τ2T/(mσ2) = 10−5. d, e Illustrations of a chiral active

dumbbell, anchored to one of the particles. The permanent vorticity state occurs
when the chiral radius v0/ω (gray line centered on a diamond) is larger than the
dumbbell size (black line centered on a circle), allowing the mobile particle to
complete a full rotation around the other (orange star). The self-reverting vorticity
state occurs in the opposite regime, such that the mobile particle cannot complete a
full rotation around the other. Indeed, its self-propulsion is reversed before com-
pletion resulting in partial clockwise and counterclockwise rotations (purple star).
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State diagram
Our findings are systematically explored by varying the cluster size Lc and
the reduced chirality ωτ on a state diagram (Fig. 2a). We identify different
states with different colors: non-permanent vorticity states (black dots)
when the average vorticity is smaller than its time fluctuations; permanent
vorticity states (orange dots), when the previous condition is fulfilled; self-
reverting vorticity state (purple dots) when vorticity displays periodic
oscillations. Consistent with our intuitive explanation, the transition line
betweenpermanent and self-reverting vorticity state occurswhen the cluster
sizeLc ¼ σ

ffiffiffiffi
N

p
c approaches the typical radius of the chiral trajectory ~ v0/ω.

This argument suggests the following scaling law

Nc ∼
v20

σ2ω2
; ð5Þ

which fairly reproduces our numerical results (Fig. 2a). This scaling law
suggests that a larger cluster size favors the self-reverting vorticity state over
the permanent vorticity state. Additionally, it is worth noting that an
increase in cluster size promotes permanent vorticity states over states
without vorticity. This is because the time fluctuations of the vorticity field
decreasewith increasingNc.We remark that the crossover betweendifferent
states is not a sharp transition but occurs smoothly. Indeed, the regions in
Fig. 2a are obtained by following the threshold criterion defined in the
methods section.

To quantitatively characterize the different states, we consider the time
average of the spatial average vorticity as a order parameter

�hΩi ¼ lim
t!1

1
t

Z
dthΩðtÞi: ð6Þ

This observable showsanon-monotonic behaviorwith the reduced chirality
ωτ for different values of the cluster size Lc (Fig. 3a). For vanishing ωτ, the
absence of permanent vortices (black state in Fig. 2a) induces rather small
values of �hΩi. The increase ofωτ enhances the value of �hΩi until it becomes
larger than its typical time fluctuations and the system approaches the
permanent vorticity state. In this regime, �hΩimonotonically increases until
a maximum is achieved. This maximum occurs before the system
approaches the self-reverting vorticity state, for which the periodic
oscillations sharply lead to vanishing values of �hΩi. The amplitude of these
oscillations is investigated by evaluating the time average of the modulus of
the spatial average vorticity, �hjΩji (Fig. 3b). This observable monotonically
increases with ωτ until the self-reverting vorticity state is approached when
�hjΩji saturates to a constant value. This implies that the amplitude of the

vorticity oscillations remains constant with ωτ and does not significantly
changewith the cluster size. Finally, the oscillation period (Fig. 3c) decreases
with the reduced chirality as 1/(ωτ). This scaling confirms our intuitive
explanation of this phenomenon: Before completing a full rotation, the
orientation of chiral active particles is reversed after a time period ~ 2π/ω.
This implies that these periodic oscillations are uniquely induced by
chirality.

Conclusions
The central insight of this work is that the presence of attractions in chiral
activematterwithout alignment interactions induces self-organizedvortices
involving coherent dynamics of adjacent particles. These vortices can either
be persistent or show a periodically oscillating vorticity, leading to patterns
that self-revert their order.

The theoretical arguments developed here (for instance Eq. (4)) could
shed light on the link between chiral active systems and materials with odd
properties62–65, such as crystals characterized by odd elasticity66 and liquid
governed by odd viscosity67–69. Indeed, living chiral crystals exhibit self-
sustained chiral oscillations as well as various unconventional deformation
response behaviors recently predicted for odd elastic materials62. Our
argument rationalizes these findings, suggesting that self-propulsion plays
the role of the transverse neighbor forces typical of odd materials.

Even if here collective phenomena spontaneously emerge without
alignment interactions, it could be interesting to evaluate the effects of
explicit alignment mechanisms on chiral active particles at high density, in
cluster configurations. This is a rather common scenario in self-propelled
colloids that can behave as chiral microswimmers by simply introducing a
rotational asymmetry in their body8.

This finding opens the door to the observation of customizable col-
lective phenomena. They have the potential to inform the design and
optimization of particle-basedmicromotors. Instead of creating asymmetric
gears powered by active particles70–72, spontaneous gear rotation can be
achieved by harnessing chirality in active matter73. Our study could inspire
experiments across a wide range of chiral activematter experiments, such as
high-density chiral active colloids8 attracting by means of Van-der-Waals
interactions, or chiral active granular particles74–76 which can be connected
by springs to create crystal-like configurations77.

Methods
Derivation of the theoretical prediction, Eq. (2)
To derive Eq. (2), in the followingwe employ a similar idea as has been used
in ref. 78 for straight active particles. As we will see, accounting for chirality,
leads to an additional term in the resulting equation that competes with the
effective alignment that has been found in ref. 51. This competition is at the
heart of the phenomenology which we predict and observe in the present
article, as discussed in the main text.

Mapping on the dynamics to an effective description. Before pro-
ceeding to the exact mapping, it is convenient to express the dynamics of
the activity in Cartesian coordinates. By applying Ito calculus rules, Eq.
(1b) can be expressed in Ito’s convention as

τ _ni ¼ �ni þ ωτni × zþ
ffiffiffiffiffi
2τ

p
ξi ×ni: ð7Þ

Here, the vector ξi = (0, 0, ξi) consists only of the third component ortho-
gonal to the plane where the particle motion takes place, namely the xy
plane. In this way, the noise vector can be expressed in a compact form as
ξi = zξi, where z is the unit vector normal to the xy plane.

Fig. 3 | Characterization of the vorticity states. aTime-averaged value of the spatial
average vorticity �hΩiτ, as a function of the reduced chirality ωτ. b Time-average of
the modulus of the rescaled spatial average vorticity, �hjΩjiτ, as a function of ωτ.
c Time-period of the vorticity oscillations in the self-reverting vorticity state as a

function of ωτ. The dashed black line plots the function 2π/(ωτ). The analysis in
a–c is performed for different values of the cluster size square, L2c ¼ σ2Nc , with
specific values provided in the external legend. The remaining parameters of the
simulations are: τI/τ = 10−6, Pe = τv0/σ = 50, τ2ϵ/(σ2m) = 5 × 103, τ2T/(mσ2) = 10−5.
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Even if the dynamics (1) is underdamped, the extremely small value of
the reduced inertia (i.e. of the inertial time compared to thepersistence time)
allows us to take the overdamped regime, _vi ≈ 0, so that the equation of
motion for chiral active particles is effectively given by

γ _xi ¼ Fi þ γv0ni þ
ffiffiffiffiffiffiffiffi
2Tγ

p
ηi ð8aÞ

τ _ni ¼ �ni þ τωni × zþ
ffiffiffiffiffi
2τ

p
ξi ×ni: ð8bÞ

In addition, the small value of the reduced temperature (i.e. the small value
of T compared to the self-propulsion velocity square), allows us to drop the
passive Brownian motion term. By applying the time-derivative to Eq. (8a)
with T = 0, and by defining the velocity variable, vi ¼ _xi, we obtain

γ _vi ¼ �∇2
xixj

Utot � vj þ γv0 _ni; ð9Þ

where we have assumed Einstein’s convention on repeated indices. By
replacing _ni by Eq. (8b) immediately we have

γ _vi ¼ �∇2
xixj

Utot � vj þ γv0 �ni

τ
þ ωni × zþ

ffiffiffi
2

pffiffiffi
τ

p ξi ×ni

� �
: ð10Þ

Now,we proceed by replacingnby theEq. (8a) (againwithT = 0), obtaining

_vi ¼ � 1
τ
vi �

∇2
xixj

Utot

γ
� vj þ v0

ffiffiffi
2

pffiffiffi
τ

p ξi ×ni

� 1
τ

∇xi
Utot

γ
þ ωvi × zþ

ω

γ
∇xi

Utot × z:

ð11Þ

Dynamics (11) is mathematically equivalent to Eq. (1). In order to proceed
analytically, we consider further approximations described in the next
subsections.

Lattice approximation for solid-like configurations. The strong
interparticle attractive interactions induce almost-perfect solid-like
configurations with an almost-perfect hexagonal order. This allows us to
consider the lattice approximation by fixing the particle positions on the
vertices of a triangular lattice. In this way, every particle is characterized
by six neighbors. This implies that we consider systems sufficiently large
to neglect the contribution of the outer layer of particles, whose number
scales as ≈

ffiffiffiffiffiffi
Nc

p
. In this approximation, interparticle forces are perfectly

balanced because of the lattice translational invariance. As a con-
sequence, we need only to evaluate the second derivative of the total
potential in Eq. (11),

∇xixj
Utot � vj ¼

XN
l<m

∇xixj
Uðjxl � xmjÞ � vj

¼
X�
j

vi � ∇i∇iUðrijÞ þ
X�
j

vj � ∇i∇jUðrijÞ:
ð12Þ

Here, rij is the distance between particle i-th and particle j-th, and the sum,
∑* is restricted over the six neighbors of the target particle i. The truncation
at first neighbors works if the potential is short-range, as in the Lennard-
Jones potential numerically considered in the numerical simulations. To
proceed further, we can calculate the spatial components of the Hessian
matrix, which is a 2 × 2 matrix, in two dimensions. In particular, we have

∇α
i ∇

β
i UðrijÞ ¼ U 00ðrijÞ þ

U 0ðrijÞ
jrijj

" #
rαijr

β
ij

jrijj2
� δαβ

U 0ðrijÞ
jrijj

; ð13Þ

wherewe have denoted the spatial components byGreek upper indices, and
rαij ¼ rαi � rαj , with α = x, y. Here, each prime on the potential U means a

spatial derivative. We remark that the potential depends only on the inter-
particle distance and, thus the following property holds:

∇α
i ∇

β
j U ¼ �∇α

i ∇
β
i U: ð14Þ

To switch to a more suitable description accounting for the lattice sym-
metry, it is convenient to express the Cartesian components in polar
coordinates, such that rxij=jrijj ¼ cosðδjÞ and α = x, y of ryij=jrijj ¼ sinðδjÞ.
Here, δj the angle between the rij vector and the x-axis.

The triangular lattice structure implies the target particle i has 6 first
neighbors, uniquely identified by δj = δ0+ jπ/3 with j = 0, 1, . . . , 5. The
phase δ0 represents the orientation of the hexagon with respect to the
reference frame that can be set to zerowithout loss of generality. In this way,
by denoting ∣rij∣ = r (the lattice constant), we can rewrite the components of
the Hessian matrix as

∇x
i∇

x
i UðrijÞ ¼ JxxðrÞ ¼ U 00ðσÞcos2 j

π

3

� �
þ U 0ðσÞ

σ
sin2 j

π

3

� �
ð15Þ

∇y
i∇

y
i UðrijÞ ¼ JyyðrÞ ¼ U 00ðσÞsin2 j

π

3

� �
þ U 0ðσÞ

σ
cos2 j

π

3

� �
ð16Þ

∇x
i∇

y
i UðrijÞ ¼ JxyðrÞ ¼ U 00ðσÞ � U 0ðσÞ

σ

� �
cos j

π

3

� �
sin j

π

3

� �
¼ JyxðσÞ:

ð17Þ

By summarizing, the left-hand-side of Eq. (12) can be expressed as

∇xixj
U tot � vj ¼

X�
j

Jjðvi � vjÞ; ð18Þ

where the matrix Jj has elements

Jj ¼
JxxðσÞ JxyðσÞ
JyxðσÞ JyyðσÞ

 !
ð19Þ

Because of the following properties:

X�
j

JxxðσÞ ¼
X�
j

JyyðσÞ

¼ 3 U 00ðσÞ þ U 0ðσÞ
σ

� �
� K

ð20Þ

X�
j

JxyðσÞ ¼ 0 ð21Þ

X�
j

Jj ¼ KI ; ð22Þ

we can conclude that the force (18) has the shape of an effective alignment
interaction between the particle i and its 6 first neighbors.

We remark that to apply our theory the potential has to be differ-
entiable: in particular first and second derivatives of the potential should be
defined. Our choice of Lennard Jones potential, truncated at 3σ as usual in
numerical studies, does not represent a problem for the applicability of the
theory. Indeed, we resorted to the first-neighbors approximation, which
allows us simply to select the interactions between the six-neighboring
particles, which are at distance ≈ σ < 3σwhere the first two derivatives of the
potential are well-defined.
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Effect of chirality. By summarizing the results of previous sections, the
behavior of chiral active particles is well-described by the following
dynamics obtained after performing the lattice approximation

_vi ¼ � 1
τ
vi þ v0

ffiffiffi
2

pffiffiffi
τ

p ξi ×ni �
1
γ

X�
j

Jjðvi � vjÞ þ ωvi × z: ð23Þ

Equation (23) corresponds to the dynamics (2). The first term is an effective
friction force, whose friction coefficient is determined by the inverse of the
persistence time τ, this term here dissipates the energy injected by the
thermal bath, whose amplitude is determined by v0=

ffiffiffi
τ

p
. The unconven-

tional shapeof this noise term isdue to the choice of activeBrownianparticle
dynamicswhich conserves themodulus of the active force and here involves
the cross product with ni. It is worth noting that by excluding chirality and
interactions, the velocity scale is purely determined by v0 while τ plays a
negligible role, as expected. Both terms are vanishing in the large persistence
limit τγ→∞, becoming subleading in the dynamics. The third term in
the dynamics � 1

γ

P�
j Jjðvi � vjÞ accounts for particle interactions and has

the shape of an effective alignment interaction term spontaneously emerge
from this analytical calculation. Indeed, the particle i feels a force propor-
tional to the difference between the velocities of neighboring
particles,− (vi− vj), i.e. particle i tends to align its velocity to those of
neighboring particles. As stated in the results, this effective alignment force
is minimized in three different configurations: i) aligned velocities; ii)
vortex-distributed velocities; and iii) antivortex-distributed velocities. The
three configurations are illustrated in Fig. 4. In i), the tagged particle velocity
vi = v is equal to any neighboring particle velocity (Fig. 4a). Consequently,
each term of the alignment force

P�
j Jj � ðvj � viÞ independently vanishes.

In ii) and iii), the tagged particle velocity is zero while the six neighboring
particle velocities are distributed on a vortex (Fig. 4b) and an antivortex
configuration (Fig. 4c), respectively. Thus, particles on opposite vertices of
the hexagon have equal velocities with opposite directions which perfectly
balance. This implies that

X�
j
Jj � ðvj � viÞ ¼

X�
j

Jj � vj ¼ 0; ð24Þ

or, in other words, the effective alignment interaction is not onlyminimized
byalignedvelocities but alsobyvortex andantivortex configurations. Finally,
the last term ωvi × z accounts for the role of chirality. Such a force term has
the shape of an effectivemagneticfieldwith amplitudeω and it is responsible
at the single particle level for particle rotations. Intuitively, this term selects
vortex or antivortex configurations depending on the sign of the chiralityω.

We also remark that in our theory we resort to a linearization of the
force between different particles. This is possible because of the solid
structure. In principle, perturbation theory can be applied to mass defects79

or non-linear potentials with a weak non-linearity, such that the force

F ≈− k0x− k1∣x∣2x, with k1/k2≪ 1. In this case, we expect that the theory
could quantitativelyprovide a correction to our resultswithout changing the
observation of the three dynamical states.

Small persistence time regime
In the small persistence time regime τ≪ τI, the cluster does not show any
coherent motion and simply diffuses. Indeed, in this case, the active force
γv0n changes fast in its direction, and it can be approximated by an effective
Brownianmotion. Therefore, in this regime, chirality plays a negligible role
and consequently, the three states we have identified, i.e. non-permanent
vorticity state, permanent vorticity state, and self-reverting vorticity state,
cannot be observed.

This conclusion can be analytically derived by considering the
dynamics (1a) with active force evolving in Cartesian coordinates (7). In
particular, it is convenient to express the activity dynamics by resorting to a
matrix formalism

_n ¼ �B
τ
� nþ

ffiffiffi
2

pffiffiffi
τ

p ξ ð25Þ

where B is a matrix with components

B ¼ 1 τω

�τω 1:

	 

ð26Þ

In the small persistence time regime, τ≪ τI, τ is the faster time scale and we
can take the overdamped limit in the equation for n, by setting _n ¼ 0:

n ¼ τB�1 �
ffiffiffi
2

pffiffiffi
τ

p ξ ð27Þ

where B−1 is the inverse of B with components

B�1 ¼ 1
1þ τ2ω2

1 �τω

τω 1:

	 

ð28Þ

By substituting Eq. (27) in the dynamics (1a), we obtain

mv ¼ �γv þ
ffiffiffiffiffiffiffiffi
2Tγ

p
ηþ Fþ γv0

ffiffiffiffiffi
2τ

p
B�1 � ξ: ð29Þ

As a consequence, the active force simply behaves as a white noise which
cannot induce the non-equilibrium collective motion observed in the
regime of large persistence time.

Numerical methods
Dimensionless dynamics and dimensional parameters. Simulations
are performed by considering Eqs. (1) with rescaled variables. Particle
positions are rescaled with the particle diameter σ, so that x0 ¼ xi=σ,
while time is rescaled with the persistence time τ = 1/Dr, such that

Fig. 4 | Illustrations of configurations thatminimize the effective alignment interactions.The tagged particle is in themiddle while neighboring particles are placed on the
vertices of a hexagon. Velocities are represented by black arrows. a Aligned velocities; b Vortex-distributed velocities; c Antivortex-distributed velocities.
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t0 ¼ t=τ. With this choice, Eqs. (1) can be integrated using the Euler
method with time-step dt0 ¼ dt=τ ¼ 10�6=τ and reduces to

δx0iðt0Þ ¼ v0iðt0Þdt0 ð30aÞ

δv0iðt0Þ ¼
τ3=2

mσ

ffiffiffiffiffiffiffiffi
2γT

p ffiffiffiffiffiffi
dt0

p
dη0iðt0Þ

þ � τ

τI
v0iðt0Þ þ

τ

τI

τv0
σ

niðt0Þ þ
τ2

σ2
ϵ

m
∇0

iUðσx0ðt0ÞÞ
� �

dt0

ð30bÞ

δθiðt0Þ ¼
ffiffiffi
2

p ffiffiffiffiffiffi
dt0

p
dξiðt0Þ þ τωdt0; ð30cÞ

where δx0iðtÞ ¼ x0iðt þ dtÞ � x0iðtÞ and δv0iðtÞ ¼ v0iðt þ dtÞ � v0iðtÞ are the
increment of particle position and velocity after a time-step dt0, while
δθ0iðtÞ ¼ θ0iðt þ dtÞ � θ0iðtÞ represents the time integral of the orientational
angle of the particle i. In addition, dη0iðt0Þ and dξiðt0Þ are two dimensionless
Wiener processes with zero average that can be numerically generated by
Gaussian numberswith unit variance andwe have used the definition of the
inertial time τI =m/γ. The dynamics (30) is governed by five dimensionless
parameters that are listed and commented on below:
(i) Reduced inertial time τI/τ =m/(γτ) = 10−6 which determines the

velocity relaxation in units of persistence time.
(ii) Péclet number Pe = τv0/σ = 50, which quantifies the power of the

active force.
(iii) Reduced energy scale τ2ϵ/(σ2m) = 5 × 103, which determines the

strength of the attractive force.
(iv) Reduced temperature τ2T/(mσ2) = 10−5, which quantifies the effect of

the thermal noise on the system.
(v) Reduced chirality ωτ, which governs the time-scale associated with

chirality and it is varied in the simulations to address its effect.

With this choice of parameters in particular τI/τ = 10−6, the dynamics
(1) (or the dimensionless Eqs. (30)) are effectively in the overdamped
regime. However, since Eqs. (30) is an underdamped equation of motion,
velocities vi are well-defined. The underdamped choice is particularly
convenient to calculate velocity and vorticity fields because they remain
well-defined even in the presence of thermal noise. However, the numerical
results reported in this paper can be also observed with an overdamped
active model if the thermal noise is sufficiently small. In addition, in
numerical simulations, we explore different cluster size square
σ2N = 113, 226, 452, 904, 1809 and packing fractionϕ =N/L2πσ2 = 0.35. The
size of the boxL is chosen accordingly. The systemspontaneously evolves to
a state characterized by a unique cluster because of attractive interactions.
However, depending on the total number of particles in simulations, the
system could take a long transient time to reach the steady state. Thus, when
needed, simulations were directly initialized in the cluster configuration.

Details on the distinction beween the different states. In Fig. 2a, we
have distinguished between three states:

i. Non-permanent states (blackdots inFig. 2a). This state is characterized
by fluctuating vorticity, from negative to positive values, which is
compatible with configurations with negligible chirality.

ii. Permanent vorticity states (orange dots in Fig. 2a). In this state, the
cluster is characterized by a permanent vorticity and displays a per-
manent rotating trajectory aligned to the particle chirality.

iii. Vortex-antivortex state (violet dots inFig. 2a). This state shows the self-
reverting vorticity observed and the cluster spinning dynamics.

States i), ii), and iii) are characterized by a continuous crossover rather
than a sharp phase transition. This feature is already evident by evaluating
the time-averagedvalueof the spatial average vorticity �hΩiτ (Fig. 3a) and the
time-average of the modulus of the rescaled spatial average vorticity �hjΩjiτ
(Fig. 3b. In particular, the first two states are distinguished by comparing the

time fluctuations and time average of the total vorticity field 〈Ω(t)〉. In
particular, configurations that belong to state i) are characterized by a time-
standard deviation of 〈Ω(t)〉 larger than its average, i.e. by the following
relation:

1
t

Z
dthΩðtÞi< 1

t

Z
dthΩðtÞi2

� �1=2

; ð31Þ

holding for t→∞. By contrast, configurations that belong to state ii)
satisfies

1
t

Z
dthΩðtÞi> 1

t

Z
dthΩðtÞi2

� �1=2

; ð32Þ

for t→∞. Finally, configurations belonging to state iii) again satisfy the
condition Eq. (31). However, at variance with state 1, 〈Ω(t)〉 switches from
negative to positive values periodically in time.

Derivation of the theoretical argument (4)
To calculate the total torque on the cluster, let us consider the total force
exerted by each microscopic active particle, F i, given by the sum of
attractive interactions and active forces

F i ¼ �
X�
j

∇iUðjxi � xjjÞ þ γv0ni: ð33Þ

where the sum
P�

j runs over the six neighbors of the i-th particle. To
calculate the torque due to the particle i-th, we have to apply the vector
product of the relative particle position calculated from the center of the
cluster ri

Ti ¼ ri ×F i: ð34Þ

By summing over i, the contribution of the internal force vanishes by
symmetry and the total torque reads

M ¼
XNc

i¼0

Ti ¼ γv0
XNc

i¼0

ri ×ni: ð35Þ

By assuming that clusters have spherical shapes, the torque can be
decomposed as

M ¼
Z R

0
dr0mðr0Þ ð36Þ

where r0 is the radial coordinate with respect to the center of the cluster and
R is the cluster radius. As a consequence, mðr0Þ is the torque due to the
particles at distance r0 from the cluster center and can be expressed as

mðr0Þ ¼
XNc

i¼0

Ti δðjrij � r0Þ ¼ γv0
XNc

i¼0

ri ×ni δðjrij � r0Þ: ð37Þ

This expression corresponds to Eq. (4) after recognizing that, as a first
approximation,M ≈m(R), since the particles in the outer layer provide the
larger contribution to the torque being those at the larger distance from the
center.

Data availability
The data that support the plots within this paper and other findings of this
study are available from the corresponding author upon request, while
Supplementary Movie 1 and Supplementary Movie 2 are uploaded as
Supplemental Material.
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