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Abstract
An essential step in exploratory factor analysis is to determine the optimal number of factors. The Next Eigenvalue Sufficiency 
Test (NEST; Achim, 2017) is a recent proposal to determine the number of factors based on significance tests of the statistical 
contributions of candidate factors indicated by eigenvalues of sample correlation matrices. Previous simulation studies have 
shown NEST to recover the optimal number of factors in simulated datasets with high accuracy. However, these studies have 
focused on continuous variables. The present work addresses the performance of NEST for ordinal data. It has been debated 
whether factor models – and thus also the optimal number of factors – for ordinal variables should be computed for Pearson 
correlation matrices, which are known to underestimate correlations for ordinal datasets, or for polychoric correlation matrices, 
which are known to be instable. The central research question is to what extent the problems associated with Pearson correla-
tions and polychoric correlations deteriorate NEST for ordinal datasets. Implementations of NEST tailored to ordinal datasets 
by utilizing polychoric correlations are proposed. In a simulation, the proposed implementations were compared to the original 
implementation of NEST which computes Pearson correlations even for ordinal datasets. The simulation shows that substitut-
ing polychoric correlations for Pearson correlations improves the accuracy of NEST for binary variables and large sample 
sizes (N = 500). However, the simulation also shows that the original implementation using Pearson correlations was the most 
accurate implementation for Likert-type variables with four response categories when item difficulties were homogeneous.

Keywords Exploratory factor analysis · Factor retention · Next Eigenvalue Sufficiency Test · Ordinal variables · Polychoric 
correlations

Introduction

Factor analysis is a common method to model correlations 
among a set of variables as functions of a smaller number 
of common factors. Historically, factor analysis has played 
a central role in scale development as it provides assessment 
to what extent sets of items collectively measure a common 
construct (i.e., common factors; Conway & Huffcutt, 2003; 
Henson & Roberts, 2006; O’Leary-Kelly & Vokurka, 1998; 
Ziegler & Hagemann, 2015). Technically, factor analysis is 
used to estimate a model of the population correlation matrix 
for a set of variables. For a brief introduction, let p be the 

number of analyzed variables and Σ be the p × p population 
correlation matrix and m be the number of common factors 
in the factor model of Σ . The linear factor model of Σ is 
given in the following equation:

In Eq. (1), Λ is the p × m matrix that denotes regression 
weights (i.e., factor loadings) of common factors on the vari-
ables, Ψ is the m × m matrix of correlations among common 
factors, and Θ is a p × p matrix that increments ΛΨΛT by 
contributions of components that are dissociated from com-
mon factors in that they are unique to each variable. In the 
following sections, ‘common factors’ are referred to simply 
as factors and ‘factor loadings’ are referred to as loadings.

A special case of factor analysis is exploratory factor 
analysis which has been designed specifically to explore 
links between factors and variables when no factors can be 
specified on theoretical grounds (Achim, 2020; Widaman, 
2018). To this end, exploratory factor analysis estimates 

(1)Σ = ΛΨΛT + Θ
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factor models without constraining loading parameters to 0 
(i.e., no association between a factor and a variable is ruled 
out a priori). When it cannot be specified which factors 
inform which variable, it is likely also unknown how many 
factors can be assumed to underlie the dataset to begin with. 
Hence, exploratory factor analysis typically includes some 
formal determination of the number of factors prior to the 
parameter estimation for the actual factor model (Fabrigar 
et al., 1999; Fava & Velicer, 1992; Goretzko et al., 2021). 
It is key to determine the optimal number of factors so that 
the factor model retains all factors of substantive importance 
while none of the identified factors is spurious (Auerswald 
& Moshagen, 2019; Braeken & van Assen, 2017; Fabrigar 
et  al., 1999; Fava & Velicer, 1992; Henson & Roberts, 
2006; Preacher et al., 2013; Schmitt, 2011). The problem of 
determining the optimal number of factors is referred to as 
the number-of-factors problem.

Consensus on how to approach the number-of-factors 
problem in empirical research has yet to be reached. In fact, 
numerous methods to determine the number of factors have 
been proposed in the past decade (Achim, 2017; Braeken 
& van Assen, 2017; Golino & Epskamp, 2017; Goretzko & 
Bühner, 2020; Green et al., 2012; Ruscio & Roche, 2012). One 
of the recent proposals is a method coined Next Eigenvalue 
Sufficiency Test (NEST; Achim, 2017). The objective of 
the present work is to contribute to the validation and the 
development of NEST. Previous simulation studies (Achim, 
2017; Brandenburg & Papenberg, 2022) have shown that 
NEST determines the number of factors more accurately 
than other methods like parallel analysis (Horn, 1965) and 
Exploratory Graph Analysis (Golino & Epskamp, 2017; 
Golino et al., 2020), but so far evidence from simulations 
has been limited to continuous variables. Here, datasets with 
ordinal variables were simulated in order to test whether 
NEST also determines the number of factors accurately for 
ordinal variables. It was tested whether there is a preferred 
implementation of NEST for ordinal variables out of a set of 
candidate implementations. In the following sections, it is 
introduced how NEST determines the number of factors for 
correlations among analyzed variables. Then, it is outlined how 
ordinal variables challenge NEST and how its performance 
can be expected to depend on the computation of correlations. 
Subsequently, implementations of NEST tailored to ordinal 
variables are proposed. Finally, a simulation study is reported 
in which the proposed implementations and the original 
implementation are compared for simulated ordinal variables.

Next Eigenvalue Sufficiency Test

In general, NEST determines the number of factors in a 
dataset through examination of the eigenvalues of the sam-
ple correlation matrix. Eigenvalues of sample correlation 

matrices are also central to other methods to determine the 
number of factors, such as the eigenvalue-greater-than-1 rule 
(Guttman, 1954), the scree test (Cattell, 1966), and paral-
lel analysis (Horn, 1965). To understand the importance of 
eigenvalues in the context of factor analysis, consider the 
term ΛΨΛT from Eq. (1). This term accounts for all com-
mon-factor related parameters; it constitutes a p × p matrix 
that lists model-implied pairwise correlation coefficients as 
off-diagonal elements and nonunique variances in variables 
on the main diagonal. The model-implied nonunique vari-
ance in a variable is commonly referred to as the variable’s 
communality. Crucially, the kth largest eigenvalue obtained 
from eigenvalue-decomposition of ΛΨΛT is equal to the 
increment of communality across all variables that would be 
observed with retention of the kth factor. Individual eigenval-
ues do not necessarily indicate the variance that is explained 
across all variables by individual factors in the final fac-
tor model since factor rotation (see Fabrigar et al., 1999) 
changes the degree to which latent dimensions are associ-
ated with manifest variables, thereby altering the regression 
weights of each dimension that would be observed without 
rotation. Rotation does not change the total amount of vari-
ance explained by all factors together, hence the sum of kth 
largest eigenvalues of ΛΨΛT indicates the sum of variance 
explained by all k factors. Individual eigenvalues indicate 
thus the amount of variance that each factor contributes to 
the total amount of variance explained factor model, which 
provides useful information concerning the number of fac-
tors to be retained.

Of course, in empirical applications, there is no true 
model ΛΨΛT that could be examined prior to factor analysis. 
Therefore, eigenvalue-based methods like NEST are com-
monly based on the eigenvalues of sample correlation matri-
ces. Unlike the eigenvalues of ΛΨΛT , eigenvalues of a sam-
ple correlation matrix do not indicate the exact amount of 
variance that factors contribute to a factor model. The reason 
is that a sample correlation matrix accounts for some amount 
of unique variance (indicated by the main diagonal) whereas 
ΛΨΛT only contains common variance. Still, eigenvalues of 
sample correlation matrices provide a useful approximation 
of variance explained by factors, especially when there is lit-
tle unique variance present in the data. The widely accepted 
reasoning of methods to determine the number of factors in 
factor analysis based on eigenvalues of sample correlation 
matrices can be summarized as follows: If the data-gener-
ating process of p observed variables consists of m distinct 
constructs (i.e., common factors informing multiple vari-
ables or singleton variables without common variance), the 
sample correlation matrix has m large eigenvalues that are 
significantly larger than the p − m remaining eigenvalues. 
When there are no common factors and all p variables are 
independent of each other, the p eigenvalues are expected 
equally large and differ only due to random correlations in 
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the sample. What separates eigenvalue-based methods from 
each other is how they distinguish eigenvalues that indicate 
the presence of a factor from eigenvalues that do not.

NEST is an iterative testing procedure of the null hypoth-
esis that k factors are sufficient to estimate a factor model 
that fits the analyzed dataset, starting with k = 0. The rel-
evant test statistic that indicates the presence of at least k + 1 
factors – as an alternative to the null hypothesis of k-factor 
sufficiency – is the eigenvalue from the sample correlation 
matrix at index k + 1, with index 1 pointing at the largest of 
all sample eigenvalues ordered by descending magnitude. 
To test the null hypothesis, NEST first computes a refer-
ence model with k factors for the sample correlation matrix. 
Computation of adequate factor models for reference in 
NEST is not straightforward since factor models for sample 
correlation matrices require a method to separate common 
variance from unique variance. This separation is sometimes 
referred to as reduction of the sample correlation matrix (see 
Achim, 2017). Achim (2017) compared several reduction 
approaches in NEST through simulation and concluded that 
the preferred approach in NEST is iterative reduction until 
convergence on one solution for the separation of common 
and unique variance.

With the k-factor reference model computed, NEST then 
simulates j surrogate datasets under this k-factor model1 with 
the same sample size and number of variables as the data-
set in question. For k = 0, surrogate datasets are sampled 
from a population of independent variables. For all of the j 
simulated surrogate dataset, a sample correlation matrix and 
its respective eigenvalues are computed. The eigenvalues at 
index k + 1 from these synthetically created sample correla-
tion matrices thus form a sampling distribution of eigenval-
ues under the null hypothesis: This sampling distribution 
describes how the tested eigenvalue can be expected to look 
like if there are, in fact, no more factors than the k factors 
that have already been identified given that the surrogate 
datasets were simulated under the k-factor reference model.

NEST makes no distributional assumptions concerning the 
distribution of eigenvalues. Instead, NEST evaluates evidence 
against the null hypothesis by ranking the tested eigenvalue and 
all of the j eigenvalues from its simulated sampling distribution 
ordered by descending magnitude (i.e., the greatest eigenvalue 

is assigned rank 1, ranging from 1 to j + 1 with decreasing mag-
nitude). For a given α level, the null hypothesis is rejected if 
the rank of the tested eigenvalue is less than α(j + 1) , indicat-
ing that the tested eigenvalue exceeds its sampling distribution 
under the null hypothesis given that lower ranks correspond to 
larger eigenvalues. If the tested eigenvalue exceeds the simu-
lated sampling distribution, it is considered evidence for the 
presence of an additional factor besides the k factors from the 
k-factor reference model. Then, k is incremented by 1 and the 
next eigenvalue is tested with surrogate datasets under a new 
k-factor model that accounts for factor that has been confirmed 
in the previous step. If the tested eigenvalue does not exceed 
the simulated sampling distribution, NEST stops and returns k 
as the suggested number of factors.

By updating the sampling distribution of tested eigenvalues 
conditional on the factors for which retention has already 
been confirmed, NEST differs from the well-studied parallel 
analysis (PA), which also ranks eigenvalues of the analyzed 
dataset among eigenvalues of surrogate datasets. The main 
difference between NEST and PA is that PA samples all 
surrogate datasets from a reference model with independent 
variables. The latter has been criticized based on the argument 
that retaining at least one factor implies that the analyzed 
variables share more common variance than implied by the 
surrogate datasets in PA (Braeken & van Assen, 2017; Green 
et al., 2012; Ruscio & Roche, 2012; Saccenti & Timmerman, 
2017; Turner, 1998). NEST is based on work by Green et al. 
(2012) who have proposed a ‘revised parallel analysis’ (RPA) 
with which sequential conditioning of simulated sampling 
distributions on every retained factor was introduced. The 
differences in design between NEST and RPA mainly concern 
the computation of the k-factor models to simulate surrogate 
datasets (for a detailed contrast between NEST and RPA, see 
Achim, 2017).

Previous simulation studies showed that NEST is as accu-
rate as, or more accurate than, several PA variants for simu-
lated datasets under a wide range of factor models (Achim, 
2017; Brandenburg & Papenberg, 2022). However, in these 
studies NEST was tested only with continuous variables 
sampled from multivariate normal distributions. As will be 
derived in the following sections, the performance of NEST 
for ordinal variables instead of continuous variables requires 
dedicated research. The main problem at hand is that the com-
putation of sample correlation matrices, which necessarily 
occurs in several steps of NEST (see above), is not as straight-
forward for ordinal datasets than it is for continuous datasets.

Problems with ordinal variables

A widely regarded problem with ordinal variables is that 
sample product-moment correlations – hereafter referred 
to as Pearson correlations  –  underestimate the true 

1 The computation of the k-factor models does not involve any form 
of factor rotation. The goal in NEST is to compute a model with k 
latent dimensions that explain as much variance in sum as k rotated 
factors would. This does not require rotation of the k dimensions 
since rotation does not change the sum of variance that is explained 
by the model. Nor does rotation change the eigenvalues of the model-
implied correlation matrix or – by extension –  the eigenvalues from 
sample correlation matrices under the model. The models for the dif-
ferent values of k that are computed in NEST are hence referred to as 
k-factor models to highlight their goal of carrying over the total vari-
ance explained by the first k factors into the surrogate datasets.
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correlations among ordinal variables if these ordinal vari-
ables are mere discretized representations of latent con-
tinuous variables (not to be confused with latent factors; 
Garrido et al., 2013; Green et al., 2016; Lubbe, 2019).

Building on the idea of ordinal variables as discretized 
variants of latent continuous variables, sample polychoric 
correlations do not compute the correlation among observed 
ordinal variables directly but the correlation among the 
assumed latent continuous variables underlying the ordinal 
variables (Flora & Curran, 2004; Jin & Yang-Wallentin, 
2017; Muthén, 1978; Olsson, 1979a). Assuming that the 
latent variables are normally distributed, it can be shown that 
maximum-likelihood estimation of polychoric correlations is 
asymptotically unbiased, which is an advantage over biased 
Pearson correlations (Lubbe, 2019). However, even if distri-
butional assumptions are met, computing polychoric correla-
tions instead of Pearson correlations comes at the cost of an 
increased standard error (i.e., instable sample correlations 
in repeated sampling from the population; Garrido et al., 
2013, 2016; Roznowski et al., 1991; Tran & Formann, 2009; 
Weng & Cheng, 2017). Concerning factor analysis for ordinal 
variables, it has been debated whether there are substantial 
benefits to the estimation of factor models for polychoric 
correlation matrices instead of Pearson correlation matrices 
(Flora & Curran, 2004; Garrido et al., 2016; Goretzko et al., 
2021). In the present work, the focus is not on the general use 
of polychoric correlations in factor analysis but on the use of 
polychoric correlations specifically to determine the number 
of factors through eigenvalues of sample correlation matri-
ces. It was assumed that there is an optimal number of factors 
on population-level and the aim was to investigate whether 
this number is more easily recovered in sample correlation 
matrices with Pearson correlations or polychoric correlations. 
No guidance is provided here regarding the choice of correla-
tion type in the subsequent parameter estimation for a factor 
model following the recovery of the number of factors (see 
Flora & Curran, 2004, for a more in-depth discussion on 
polychoric correlations in factor analysis for ordinal data).

The original implementation of NEST, published by 
Achim (2017), had been developed to test NEST for con-
tinuous variables using Pearson correlations. In the original 
implementation continuous surrogate datasets are simulated 
from a multivariate normal distribution implied by the tested 
k-factor model of Pearson correlations in the observed data. 
Pearson correlations are also computed for the simulated 
surrogate datasets. Central research questions in the present 
work concern how accurately NEST determines the optimal 
number of factors for ordinal datasets when Pearson correla-
tions are computed and whether accuracy improves when 
polychoric correlations are computed instead. The following 
sections explain different proposals at which steps in NEST 
the computation of Pearson correlations can be changed 
to polychoric correlations. For the moment, imagine that 

wherever the original implementation computes Pearson cor-
relation matrices (i.e., for the analyzed sample and all simu-
lated surrogate samples at every iteration of k), polychoric 
correlation matrices are computed instead. The well-known 
bias of Pearson correlations on the one hand and the inflated 
standard error of polychoric correlations on the other suggest 
that one should be careful before adopting a preference for 
one approach over the other. Similar work in which PA with 
Pearson correlations was contrasted to PA with polychoric 
correlations has yielded mixed results (Cho et al., 2009; 
Garrido et al., 2013; Lubbe, 2019; Timmerman & Lorenzo-
Seva, 2011; Tran & Formann, 2009; Weng & Cheng, 2005).

The differences in eigenvalues from Pearson correlation 
matrices and polychoric correlation matrices have implica-
tions for NEST. Simulations by Lubbe (2019) have shown 
these differences remarkably clearly. First, biased Pearson 
correlations for ordinal variables result in lower signal eigen-
values (i.e., eigenvalues corresponding to factors that should 
be retained) compared to unbiased Pearson correlations for 
continuous variables. This is relevant to NEST because a 
factor corresponding to a large signal eigenvalue is more 
likely to be retained than a factor corresponding to a small 
signal eigenvalue. Simply put: the greater the smallest signal 
eigenvalue to be detected, the greater the statistical power of 
NEST. Second, the increased standard error of polychoric 
correlations increases the variance of signal eigenvalues and 
noise eigenvalues (i.e., eigenvalues not corresponding to fac-
tors) compared to Pearson correlations for ordinal variables. 
This, in turn, is relevant to NEST because greater disper-
sion of signal eigenvalues implies that the smallest signal 
eigenvalue is lower and therefore less likely to be retained 
by NEST than with Pearson correlations for continuous vari-
ables. In conclusion, the danger of reduced statistical power 
that can be derived with Pearson correlations also occurs 
with polychoric correlations, albeit for reasons linked to 
standard error rather than bias.

What is more, Lubbe (2019) has shown that both the bias 
of Pearson correlations and the standard errors of polychoric 
correlations increase for ordinal variables when category 
probabilities within variables – which correspond to item 
difficulties – are asymmetric and increase even further when 
category probabilities vary among variables in a dataset. In 
contrast, the standard error of Pearson correlations and the 
unbiasedness of polychoric correlations were mostly insensi-
tive to manipulated category probabilities.

From these observations it can be anticipated that NEST 
is generally more likely to underestimate the number of 
factors for ordinal variables due to decremented statisti-
cal power compared to applications of NEST with Pearson 
correlations for continuous datasets. Decremented power 
for ordinal variables can be anticipated with Pearson cor-
relations due to bias and with polychoric correlations due 
to standard error. The investigations reported here also 
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took varying category probabilities in ordinal datasets into 
account. This was done due to the effects on eigenvalues 
reported by Lubbe (2019) from which it may be inferred that 
the performance of NEST for ordinal datasets may depend 
not only on the computation of correlations but also on the 
interaction between the computation of correlations and cat-
egory probabilities.

Additionally, in instances where NEST has identified 
every signal dimension, varying category probabilities in a 
dataset also may promote overestimation of the number of 
factors. This potential problem can be anticipated to affect 
NEST when Pearson correlations are computed for ordinal 
variables and continuous surrogate datasets as it is done 
in the original implementation of NEST (Achim, 2017). 
Recalling the aforementioned idea of ordinal variables as 
discretized variants of continuous constructs, Pearson cor-
relations between discretized values that are similar in the 
continuous domain are sensitive to cut-off values in the 
continuous domain which govern the category probabilities 
in the discrete domain. When two ordinal indicators of the 
same common factor (i.e., two correlated ordinal variables) 
have different sets of category probabilities due to different 
cut-off values in their respective continuous representations, 
pairs that are similar in value in the continuous domain may 
fall into different response categories. This would affect the 
observed Pearson correlation between the pair of ordinal 
variables in a manner that is not related to the common factor 
(Garrido et al., 2013; Green et al., 2016; Lim & Jahng, 2019; 
Olsson, 1979b; Tran & Formann, 2009; Yang & Xia, 2015). 
In consequence, in a sample correlation matrix of variables 
with heterogeneous category probabilities, other eigenvalues 
besides to the ones associated with whatever factors inform 
the variables can be observed elevated above the rest of the 
eigenvalues to account for the additional determinant of cor-
relations (Garrido et al., 2013; Lim & Jahng, 2019). These 
additional determinants based on category probabilities (i.e., 
item difficulties) are hence sometimes referred to as difficulty 
factors.2 These are not to be confused with the common 
factors whose number is to be determined in the number-
of-factors problem since difficulty factors are not viewed 
as distinct constructs measured through indicator variables 
but as mere results of item difficulties (Lim & Jahng, 2019; 
Lubbe, 2019; Tran & Formann, 2009).

In the following simulation-based assessment of methods 
to determine the number of factors, it is therefore assumed 
that difficulty factors are spurious (Cho et al., 2009; Olsson, 
1979b; Yang & Xia, 2015) and retention of difficulty factors 
is considered erroneous with respect to the optimal number of 
factors (parallel to Garrido et al., 2013; Lim & Jahng, 2019; 

Tran & Formann, 2009). This assumption will be revisited in 
the discussion below.

Returning to the issue of NEST, given that continuous 
surrogate datasets in the original implementation of NEST 
do not account for the presence of difficulty factors in the 
analyzed dataset, tested eigenvalues corresponding to diffi-
culty factors may exceed their simulated sampling distribu-
tion. This would likely cause NEST to reject the null hypoth-
esis of k-factor sufficiency erroneously due to ill-behaved 
simulations of sampling distributions for tested eigenvalues.

Simulation of ordinal variables

To investigate whether Pearson correlations or polychoric 
correlations result in more accurate performance by NEST 
for ordinal variables, a simulation method for ordinal vari-
ables under factor models designed by Yang and Xia (2015) 
was adopted. Specifically, their simulation method was 
adopted as it includes instructions to manipulate category 
probabilities. The three levels of category probabilities in 
the design by Yang and Xia can be described as symmet-
ric, invariant asymmetric, and varying asymmetric. These 
levels distinctly impact the bias of Pearson correlations and 
the standard errors of polychoric correlations according to 
Lubbe (2019) and account for difficulty factors through vary-
ing asymmetric category probabilities.

The method by Yang and Xia (2015) starts by sampling 
a continuous dataset from a multivariate normal distribu-
tion with a covariance matrix that is determined by a factor 
model. At the population-level, the marginal distribution of 
each variable is a standard normal distribution. Each normal 
value is then transformed into an ordinal value depending on 
whether the normal value exceeds a predetermined thresh-
old corresponding to intervals under the normal distribu-
tion curve, yielding specific category probabilities. Using 
threshold values in accordance to the normal distribution is 
common practice in simulations of ordinal variables (Cho 
et al., 2009; Garrido et al., 2013; Green et al., 2016). Yang 
and Xia reported separate thresholds that transform normal 
variables into ordinal variables with two response categories 
(i.e., binary variables) and variables with four response cat-
egories. The thresholds for symmetric category probabilities 
were {0.00} for two categories and {– 1.00, 0.00, 1.00} for 
four categories. For invariant asymmetric category prob-
abilities, the thresholds were {1.00} for two categories and 
{0.00, 0.75, 1.50} for four categories. The invariant asym-
metric thresholds were used for all variables in a dataset, 
resulting in equally skewed category probability distribu-
tions in all variables. For varying asymmetric category prob-
abilities, the same thresholds from the invariant asymmetric 
condition were used, albeit in sign-reversed form for every 
second variable. Following this method, symmetric category 

2 This explanation for difficulty factors was adopted from an anony-
mous reviewer to a previous submission of this work.
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probabilities and invariant asymmetric category probabilities 
imply homogeneous item difficulties while varying asymmetric 
category probabilities imply heterogeneous item difficulties.

The sections above already established that Pearson cor-
relations for ordinal datasets simulated in such fashion suffer 
from bias while polychoric correlations suffer from increased 
standard error. To illustrate how the method by Yang and Xia 
(2015) affects eigenvalues of Pearson correlation matrices and 
polychoric correlation matrices respectively, datasets with two 
response categories and datasets with four response categories 
were simulated under a factor model. The eigenvalues of the 
sample correlation matrices were then compared to the eigen-
values of the model-implied correlation matrix as population-
level reference in Fig. 1. Additional technical details of this 
simulation – and of the simulations reported in the following 
sections – are explained in Appendix A. With Pearson cor-
relations, underestimations of population-level correlations 
in samples caused signal eigenvalues to be lower than their 
population-level reference. Conversely, noise eigenvalues of 
Pearson correlation matrices exceeded population-level noise 
eigenvalues. With polychoric correlations,3 the eigenvalues 

in Fig. 1 reflect the increased standard error in two aspects. 
First, the dispersion of signal eigenvalues within each index 
was greater compared to Pearson correlations. Second, the 
dispersion of all signal eigenvalues and all noise eigenval-
ues around their population-level reference was greater 
than with Pearson correlations. Figure 1 also shows that 
the effects of bias and standard error on sample eigenval-
ues were stronger (a) for asymmetric category probabilities 
(both invariant and varying) than for symmetric probabili-
ties and (b) for binary variables than for variables with four 
response categories.

Of course, Fig. 1 has mainly illustrative purposes and 
does not allow firm conclusions about whether Pearson cor-
relations or polychoric correlations are superior in NEST 
for ordinal variables. Such firm conclusions may be derived 
from large-scale simulations in which different implementa-
tions of NEST with both types of correlations are applied to 
simulated datasets under an array of conditions.

NEST with polychoric correlations

In this section, two candidate implementations of NEST 
making use of polychoric correlations are proposed. There 
are two possible approaches to counteract expected problems 
with the original NEST implementation for ordinal datasets. 

Fig. 1  Sample eigenvalues as a function of correlation measure, 
response categories, and category probabilities. Note. The datasets in 
this figure were simulated under a factor model with four orthogo-
nal factors, indicated by four variables each with loadings of 0.75 and 
without cross-loadings. Population eigenvalues are the eigenvalues 

of the model-implied correlation matrix. The sample size was set to 
N = 500 in all simulated datasets. All cells summarize an independ-
ent set of datasets, accounting for the respective correlation measure, 
number of response categories, and category probabilities. A total of 
100 datasets were sampled per cell

3 Polychoric correlations for binary variables may also be referred to 
as tetrachoric correlations. Here, the term polychoric correlations is 
used for consistency with the naming for variables with four response 
categories.
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The first one that comes to mind is to compute a sample cor-
relation matrix of polychoric correlations instead of Pearson 
correlations and to test its eigenvalues in turn. Implement-
ing a NEST variant that tests eigenvalues from polychoric 
correlation matrices is not trivial due to the requirement to 
simulate sampling distributions of eigenvalues under the 
null hypothesis of k-factor sufficiency. This sampling dis-
tribution must be based also on polychoric correlations to 
accommodate the polychoric correlations from the analyzed 
dataset. Figure 1 shows that eigenvalues from datasets under 
factor models are sensitive to the standard errors of sample 
correlations. Hence, computing polychoric correlations in 
a dataset, then computing a k-factor reference model from 
this sample polychoric correlation matrix, and then adher-
ing the original implementation by simulating continuous 
surrogate datasets and computing Pearson correlations for 
the surrogate datasets would simulate sampling distributions 
of tested eigenvalues that are less dispersed than the actual 
sampling distributions of eigenvalues of polychoric correla-
tion matrices. Consequently, using polychoric correlations 
for a dataset and Pearson correlations for continuous sur-
rogate datasets in NEST would frequently suggest rejecting 
the null hypothesis when the null hypothesis is actually true. 
This is so because the largest noise eigenvalues of polychoric 
correlation matrices can be expected to exceed the largest 
noise eigenvalues of Pearson correlation matrices due to 
the increased standard error of polychoric correlations (see 
Fig. 1).4

To provide adequate sampling distributions of eigenval-
ues of polychoric correlation matrices, the first proposed 
implementation of NEST built on polychoric correlations 
computes polychoric correlations for the analyzed dataset 
as well as the surrogate datasets. Computation of polychoric 
correlations for surrogate datasets requires simulation of 
ordinal variables in these surrogate datasets. Furthermore, 
to achieve compatible standard errors of polychoric correla-
tions between the analyzed dataset and its surrogate data-
sets, ordinal surrogate datasets need to be simulated with 
category probabilities that match the probabilities of the 
corresponding variables from the analyzed dataset (Lubbe, 
2019). In the proposed implementation of NEST, the simu-
lation of ordinal surrogate datasets was done similar to the 
aforementioned simulation routine for ordinal datasets by 
Lim and Jahng (2015): In a first step, category probabilities 
are calculated for each ordinal variable in the analyzed data-
set. Then, continuous surrogate datasets are simulated under 

the multivariate normal distribution implied by the k-factor 
model of the analyzed sample correlation matrix. Next, for 
each variable in each surrogate dataset, the quantiles of the 
variables’ simulated values are computed according to the 
category probabilities observed in the corresponding vari-
able. Quantiles are used as thresholds to transform continu-
ous surrogate datasets into ordinal datasets. This approach 
has been suggested by A. Achim – the author of the original 
implementation of NEST (personal communication, June 28, 
2021). Specifying thresholds for each variable in each surro-
gate dataset separately using its individual quantiles guaran-
tees that all variables in surrogate datasets include the same 
number of response categories as the variables from which 
the surrogate datasets were derived. Otherwise, computation 
of polychoric correlations may fail in surrogate datasets due 
to inconsistent numbers of categories. Appendix A includes 
technical details of the handling of the computational costs 
of computing polychoric correlations for each surrogate 
dataset and the handling of nondefinite correlation matrices.

In summary, the first proposed implementation of NEST 
tailored to ordinal variables first computes a polychoric 
sample correlation matrix. The k-factor reference models 
are then computed from this polychoric sample correlation 
matrix. Surrogate datasets are then artificially discretized 
with respect to the observed category probabilities in each 
variable. Finally, polychoric correlations are computed for 
each surrogate datasets in order to provide an adequate 
sampling distribution for the tested eigenvalues which also 
stem from polychoric correlations. Mind that this proposal 
should not be considered an improvement over the original 
implementation without thorough simulation-based inves-
tigation due to the concerns related to the large standard 
error of polychoric correlations. It is therefore worthwhile 
to consider also another possible implementation of NEST 
that tackles the issues of the original implementation for 
ordinal datasets.

The second proposed NEST implementation was also 
originally suggested by the original author of NEST (A. 
Achim, personal communication, June 28, 2021). It is 
mainly targeted at the issue that the original implementa-
tion fails to account for difficulty factors and can thus be 
expected to overestimate the number of factors in their 
presence. Remember that this problem can be expected to 
occur whenever the sample Pearson correlation matrix for an 
analyzed dataset with ordinal variables is influenced by dif-
ficulty factors but the Pearson correlation matrices for con-
tinuous surrogate datasets are not (see above). The second 
proposed implementation hinges on the idea that failure to 
account for difficulty factors may be solved even when stick-
ing to Pearson correlations through the simulation of ordinal 
surrogate datasets instead of continuous surrogate datasets. 
When ordinal variables in surrogate datasets replicate the 
observed category probabilities from the corresponding 

4 An implementation of NEST that used polychoric correlations for 
analyzed datasets and Pearson correlations for continuous surrogate 
datasets was tested in an unpublished simulation. The results con-
firmed that this implementation vastly overestimates the number of 
factors, disqualifying it from further consideration.
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variables from the analyzed dataset – just as explained above 
for adequate sampling distributions in the first proposal –, 
the difficulty factors that affect the analyzed sample Pearson 
correlations also affect Pearson correlations for the surrogate 
datasets. Therefore, applying the same routine to reproduce 
category probabilities in surrogate datasets that was sug-
gested in the previous sections can be expected to prevent 
NEST from overestimating the number of factors in the pres-
ence of difficulty factors even when Pearson correlations are 
used to obtain eigenvalues.

While the second proposed implementation of NEST con-
tinues to test eigenvalues from Pearson correlation matri-
ces for ordinal variables, adequate surrogate datasets can 
only be achieved when the k-factor reference models are 
computed for a polychoric sample correlation matrix of the 
analyzed dataset. The reason for this lies in the underesti-
mation of Pearson correlations for ordinal variables. If a 
reference model were to be computed for underestimated 
Pearson correlations, ordinal surrogate datasets under the 
model would not reproduce the model-implied correlations. 
Instead, Pearson correlations for the ordinal surrogate data-
sets would again underestimate population-level correlations 
(i.e., the correlations implied by k-factor reference model), 
thereby misrepresenting the amount of variance explained 
by the k factors which is meant to be reproduced in the sur-
rogate datasets, thus causing all eigenvalues from surrogate 
datasets to be distributed differently than the tested eigen-
values. Repeated underestimation is not a problem for the 
original NEST implementation which uses continuous sur-
rogate datasets for which Pearson correlations are unbiased. 
Using polychoric correlations to compute a k-factor refer-
ence model allows the eigenvalues corresponding to the first 
k factors for the surrogate datasets under the model to align 
with the eigenvalues from the Pearson correlation matrix 
for the analyzed dataset: When Pearson correlations for an 
analyzed ordinal dataset underestimate population-level cor-
relations to some extent, polychoric correlations provide an 
unbiased estimate of the same population-level correlations 
that can be used to build a model for the simulation of ordi-
nal surrogate datasets. Then, Pearson correlations for the 
ordinal surrogate datasets under the model of the polychoric 
correlations underestimate the population-level correlations 
to the same extent as in the analyzed dataset.

In summary, the second proposed implementation of 
NEST tests eigenvalues from Pearson correlations when 
applied to ordinal datasets. Sampling distributions for the 
tested eigenvalues are provided by first computing an auxil-
iary polychoric correlation matrix of the same analyzed data-
set and then simulating ordinal surrogate datasets – which 
reproduce observed category probabilities – under reference 
models of the polychoric correlation matrix. Again, with-
out extensive testing simulations, it is yet unknown how 

the second proposal compares to the original NEST imple-
mentation and the prior proposal that exclusively relies on 
polychoric correlations. While the replication of observed 
category probabilities promises protection against overes-
timation due to difficulty factors in contrast to the original 
implementation, the problem of decremented power due 
to reduced signal eigenvalues from Pearson correlations 
remains. What is more, the mix of Pearson correlations and 
polychoric correlations in the second proposal make it dif-
ficult to predict if the simulated sampling distributions for 
signal eigenvalues provide greater power than in the other 
two NEST variants and to what extent the second proposal 
suffers from both the issues related to Pearson correlations 
and polychoric correlations.

Simulation study

A simulation study was conducted to compare the per-
formance of the original implementation of NEST when 
applied to ordinal datasets to the two proposed alterna-
tive implementations. The goal was to test (a) whether the 
anticipated problems could indeed be observed for ordinal 
datasets, (b) how severely the performance of the variants 
of NEST would deteriorate, and (c) how the three vari-
ants performed in direct comparison to investigate whether 
polychoric correlations offer benefits to the performance of 
NEST for ordinal variables.

Simulated data structures

In the present simulation study, seven independent variables 
were manipulated in a fully crossed design: the true number 
of factors (2, 4), the number of variables per factor (4, 7), the 
distribution of loading parameters (𝒰(0.40, 0.50), 𝒰(0.70,
0.80)), the inter-factor correlation parameters (0.20, 0.70), 
the sample size (N) of datasets (100, 500), the number of 
response categories (two categories, four categories), and 
category probabilities in variables (symmetric, invariant 
asymmetric, varying asymmetric). Combined, the design 
implied 192 conditions. For each condition 100 datasets 
were simulated, resulting in 19.200 simulated datasets in 
total.

Each condition implied a family of factor models accord-
ing to Eq. (1). The number of variables was the product of 
the number of factors and the number of variables per fac-
tor. Each factor was indicated through nonzero loadings by 
the number of variables per factor. Each nonzero loading 
parameter was independently sampled from the according 
uniform distribution to simulate heterogeneity of loadings on 
population level. Consequently, each variable only had one 
nonzero loading parameter, implying perfect simple-structure 
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models (Revelle & Rocklin, 1979). All off-diagonal elements 
of the inter-factor correlation matrix were set to the inter-
factor correlation parameter according to the simulation’s 
design (see above). Together, these manipulations implied 
the term ΛΨΛT from Eq. (1), which was transformed into the 
model-implied correlation matrix by incrementing its main-
diagonal elements to 1. It follows that only common factors 
determined the population correlation matrix. There was no 
source of correlation at the population level other than that 
implied by ΛΨΛT . Given that the manipulation of the loading 
parameters involved random number sampling, 100 factor 
models per condition were generated and one dataset per fac-
tor model was simulated to achieve 100 datasets per condi-
tion (parallel to Brandenburg & Papenberg, 2022). Response 
categories and category probabilities were manipulated as 
suggested by Yang and Xia (2015). The levels of response 
categories and category probabilities in the simulation study 
were the same as those illustrated in Fig. 1. All simulated 
variables were originally sampled from a multivariate normal 
distribution implied by the respective factor model and were 
transformed into ordinal datasets according to the method 
by Yang and Xia.

Due to the computational costs of polychoric correlations 
(which mainly affected the first proposed implementation of 
NEST given its use of polychoric correlations for surrogate 
datasets), the present simulation study was designed with a 
smaller range of conditions than previous simulations that 
had applied NEST to continuous variables (Brandenburg & 
Papenberg, 2022). The levels of the independent variables 
that were unrelated to the categorization method by Yang 
and Xia (2015) were specified with the intention to avoid 
bottom and ceiling effects in the performance of NEST vari-
ants. Specifically, the statistical power of NEST diminishes 
(a) as the number of factors and the inter-factor correla-
tions increase, and (b) as the number of variables per factor, 
loading parameters, and sample size decrease (Auerswald 
& Moshagen, 2019; Braeken & van Assen, 2017; Branden-
burg & Papenberg, 2022; Lim & Jahng, 2019; Lubbe, 2019). 
Hence, two levels were selected for each of these independent 
variables to include an ‘easy’ and a’difficult’ level combined 
in a fully crossed design.

Investigated methods

The three competing NEST variants were applied to all 
19,200 simulated datasets to investigate how accurately 
they recovered the number of factors of the factor models 
under which the datasets had been simulated. In the follow-
ing sections, the original implementation that relies entirely 
on Pearson correlations is referred to as  NESTPearson, the 
first proposed implementation that relies entirely on poly-
choric correlations is referred to as  NESTpoly, and the second 

proposal that combined Pearson correlations for eigenvalue 
testing and polychoric correlations for data simulation is 
referred to as  NESThybrid. For all three variants the null 
hypothesis of k-factor sufficiency was tested with 200 sur-
rogate datasets for each test and α = 0.05. The computation 
of k-factor models from which to simulate surrogate datasets 
was done through iterative reduction of sample correlation 
matrices in all NEST implementations in accordance to 
Achim (2017).

Additionally, a variant of PA was applied to all simu-
lated datasets to provide a benchmark for the performance 
of NEST. PA is frequently used to add some benchmark 
in comparative simulations (Achim, 2017; Braeken & van 
Assen, 2017; Golino et al., 2020; Goretzko & Bühner, 2020; 
Lorenzo-Seva et al., 2011; Ruscio & Roche, 2012). Here 
the implementation of PA published by Lubbe (2019) was 
adopted. Lubbe’s implementation is tailored specifically to 
ordinal datasets: Polychoric correlations are computed for 
the analyzed dataset and surrogate datasets while all vari-
ables in surrogate datasets reproduce the observed category 
probabilities (as in the proposed  NESTpoly implementation). 
This PA implementation involves no reduction of sample 
correlation matrices (see Auerswald & Moshagen, 2019). 
Lubbe conducted a simulation study and concluded that 
polychoric correlations and reproduced category probabili-
ties in surrogate datasets in PA are key to optimal perfor-
mance for ordinal datasets. Therefore, their implementation 
was used in the present simulation to explore how it com-
pares to  NESTPearson,  NESTpoly, and  NESThybrid. To high-
light that this implementation of PA computes polychoric 
correlations in every step, it is referred to as  PApoly. The 
software solutions to compute polychoric correlations were 
the same in  NESTpoly,  NESThybrid, and  PApoly (see Appendix 
A). The number of surrogate datasets in  PApoly was set to 
200 for consistency with the NEST variants. As suggested 
by Lubbe, the threshold of reference eigenvalues which the 
tested eigenvalues had to exceed in order to retain the cor-
responding factor was the 50th percentile.

Analysis

The number of factors suggested by  NESTPearson,  NESTpoly, 
 NESThybrid, and  PApoly was recorded for all simulated datasets. 
As in a previous simulation study on NEST (Brandenburg 
& Papenberg, 2022), each solution was labeled according to 
one of four (exhaustive) outcomes: a solution was ‘accurate’ 
if the number of recovered factors was equal to the ground-
truth number of factors form the factor model under which 
the analyzed dataset had been simulated. The accuracy of a 
method was defined as the proportion of its accurate solu-
tions in all four possible outcomes. A solution was labeled 
‘overestimated’ if the number of recovered factors exceeded 
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the ground-truth number of factors and ‘underestimated’ if the 
number of recovered factors was lower than the ground-truth 
number of factors. An overestimated solution can be regarded 
a type 1 error (i.e., the null hypothesis is rejected while test-
ing a noise eigenvalue) and an underestimated solution can 
be regarded a type 2 error (i.e., the null hypothesis was not 
rejected while testing a signal eigenvalue). Finally, a solution 
was ‘undefined’ if the implementation failed to return any 
solution.

Pilot simulation

The power of  NESTPearson,  NESTpoly,  NESThybrid was antici-
pated to be decremented for ordinal datasets compared to 
 NESTPearson for continuous datasets. Also, the potential 
presence of difficulty factors in Pearson correlation matri-
ces for ordinal datasets was anticipated to increase the risk 
of overestimation by  NESTPearson compared to applications 
of  NESTPearson for continuous datasets. Therefore, a pilot 
simulation was conducted in which  NESTPearson was applied 
to continuous datasets in order to obtain a baseline perfor-
mance of  NESTPearson. The pilot simulation included the 
same manipulations of the number of factors, the number of 
variables per factor, loading parameters, inter-factor correla-
tion parameters, and sample size as the design introduced 
above. Consistent with main simulation, 100 datasets per 
condition were sampled from the model-implied multivari-
ate normal distributions. The marginal probability distribu-
tion of all variables was approximately symmetric.

Availability

The source code of all reported simulations can be retrieved 
from the Open Science Repository (see https:// osf. io/ wb2ys/) 
that accompanies this manuscript. This repository also con-
tains the raw data from the present simulation study, scripts 
to replicate the analyses of the raw data, and the implemen-
tations of  NESTPearson,  NESTpoly,  NESThybrid, and  PApoly. 
Furthermore, the repository includes instructions on how to 
replicate the present simulation, either by re-simulating the 
same datasets that had been simulated in the present work or 
by simulating new datasets under the same conditions. The 
implementation of the present simulation can be adjusted to 
account for different sets of conditions. Also, instructions are 
provided to run simulations with different methods to deter-
mine the number of factors than those discussed here.

Results

The simulation indicated that the performance of  NESTPearson, 
 NESTpoly,  NESThybrid, and  PApoly were sensitive to the number 
of response categories, the level of category probabilities, and 
sample size (indicated by their respective accuracy listed in the 

following tables). These effects are particularly interesting for 
empirical research as these conditions were unrelated to factor 
models. Hence, in practice, these conditions can be assessed 
prior to applications of NEST. Performance is reported sepa-
rately for the numbers of response categories, the levels of 
category probabilities, and sample sizes.

Two response categories Table 1 lists the proportions of 
outcomes for binary datasets depending on sample size 
and category probabilities.  NESTpoly was the most accurate 
method for binary datasets with N = 500 averaged across all 
category probabilities (67.2% accurate, 30.5% underestima-
tion, 2.3% overestimation). With N = 100,  PApoly was the 
most accurate method averaged across all category probabil-
ities (36.1% accurate, 53.6% underestimation, 10.3% over-
estimation) while  NESTpoly was the least accurate method 
(28.3% accurate, 70.8% underestimation, 0.7% overestima-
tion, 0.3% undefined).

In general, all methods performed best with N = 500 
and symmetric category probabilities. As for the sample 
size, all methods underestimated the number of factors less 
frequently with N = 500 than with N = 100. The decreased 
type 2 error rate with increased sample size illustrates how 
the power of NEST increases with sample size. With respect 
to category probabilities, all methods were most accurate 
with symmetric category probabilities, less accurate with 
invariant asymmetric category probabilities, and least accu-
rate with varying asymmetric category probabilities.

Table 1 indicates that reduced accuracy with the asymmet-
ric category probability levels in  NESTpoly and  NESThybrid can 
be attributed to underestimations and not to overestimations. 
 NESTpoly and  NESThybrid rarely overestimated the number of 
factors and did not exceed the normative type 1 error rate of 
5% (implied by their α level). In contrast, asymmetric category 
probabilities simultaneously caused more underestimations 
and overestimations by  NESTPearson. The only exception was 
that  NESTPearson showed less underestimations with invariant 
asymmetric category probabilities than with symmetric prob-
abilities with N = 100. Overall, this indicates that  NESTPearson 
likely suffered from reduced power as well as sensitivity to 
difficulty factors. A striking problem with  NESTPearson was 
that it overestimated the number of factors more frequently 
with N = 500 than with N = 100. Table 1 shows that over-
estimations by  NESTPearson were particularly frequent with 
N = 500 and varying asymmetric category probabilities.

In comparison,  NESTpoly underestimated the number 
of factors more frequently than  NESTPearson with all sam-
ple sizes and category probabilities. Hence, the power 
of  NESTpoly was considerably lower than the power of 
 NESTPearson for binary datasets in the present simulation. In 
most conditions,  NESTpoly was also more prone to under-
estimation than  NESThybrid. Notably, however,  NESThybrid 

https://osf.io/wb2ys/
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showed by far the most underestimations out of any method 
for binary datasets with N = 500 and varying asymmetric 
category probabilities (i.e., in the presence of difficulty fac-
tors). Therefore, while  NESThybrid was more accurate in the 
presence of difficulty factors than its  NESTPearson counterpart 
given that the latter was severely prone to overestimation, 
 NESThybrid was ultimately less fit to handle difficulty factors 
in binary datasets in comparison to  NESTpoly.

Four response categories. Table 2 lists the propor-
tions of outcomes for datasets with four response catego-
ries.  NESTPearson was the most accurate method on aver-
age across all category probabilities with N = 500 (70.7% 
accurate, 15.0% underestimation, 14.2% overestimation) 
and with N = 100 (53.1% accurate, 43.7% underestimation, 
3.1% overestimation).

Compared to binary datasets,  NESTPearson and  PApoly 
improved  (NESTPearson: 41.6% accurate for all binary datasets, 
61.9% accurate for all datasets with four categories;  PApoly: 
45.6% accurate for all binary datasets, 58.1% accurate for 
all datasets with four categories) while  NESThybrid remained 
constant (46.6% accurate for all binary datasets, again 46.6% 
for all datasets with four categories) and  NESTpoly became 
less accurate (47.8% accurate for all binary datasets, 41.0% 
accurate for all datasets with four categories). In summary, 
 NESTpoly was the least accurate method for datasets with four 
categories.

The effects of sample size and category probabilities evi-
dent in Table 2 are similar to the effects of sample size and 
category probabilities from binary datasets in that methods 
mostly benefitted from increased sample size and symmet-
ric category probabilities. An exception is that  NESTpoly 
achieved its highest accuracy with N = 500 and invariant 
asymmetric category probabilities and was most likely to 
underestimate the number of factors with symmetric cat-
egory probabilities. The low proportions of overestimations 
and the high proportions of underestimations by  NESTpoly 
for four categories suggest that the inaccuracy of  NESTpoly 
can be attributed to a severe lack of power. The inflation of 
the type 1 error rate in  NESTPearson substantially exceeded 
its normative type 1 error rate of 5% only with N = 500 
and varying asymmetric category probabilities. Crucially, 
as with binary datasets, results indicate that  NESTPearson 
was more prone to overestimation with N = 500 than with 
N = 100 – particularly with varying asymmetric category 
probabilities.  NESThybrid showed no inflated type 1 error rate 
for asymmetric category probabilities. However,  NESThybrid 
notably showed frequent underestimation with varying 
asymmetric category probabilities unlike any other method, 
again hinting at a particularly strong decrement in power for 
 NESThybrid in the presence of difficulty factors. In the end, 
no NEST variant outperformed  PApoly for datasets with four 
categories with varying asymmetric category probabilities.

Table 1  Outcomes for binary datasets as a function of sample size and category probabilities

Percentage of outcomes in all simulated binary datasets.

Method Outcome N = 100 N = 500

Symmetric Invariant asym-
metric

Varying asym-
metric

Symmetric Invariant asym-
metric

Varying 
asymmet-
ric

NESTPearson Overestimation 2.8 16.1 11.5 3.7 17.1 44.1
Accurate 42.6 32.5 18.4 75.9 58.9 21.1
Underestimation 54.6 51.4 70.1 20.4 24.0 34.8
Undefined 0 0 0 0 0 0

NESTpoly Overestimation 1.0 0.5 0.6 2.2 1.6 3.0
Accurate 39.7 26.4 18.8 77.1 64.7 59.9
Underestimation 59.3 72.3 80.7 20.6 33.7 37.1
Undefined 0 0.8 0 0 0 0

NESThybrid Overestimation 1.0 1.2 3.2 2.3 2.7 2.0
Accurate 41.9 32.4 18.2 77.2 68.3 41.9
Underestimation 57.1 66.4 78.5 20.5 29.0 56.1
Undefined 0 0 0 0 0 0

PApoly Overestimation 9.4 12.1 9.4 2.2 7.7 8.9
Accurate 41.9 36.4 30.0 63.5 52.1 49.7
Underestimation 48.6 51.5 60.6 34.3 40.2 41.4
Undefined 0 0 0 0 0 0
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Pilot simulation All results for ordinal datasets can be put 
into perspective by comparing them to the performance of 
 NESTPearson for continuous datasets in the pilot simulation. 
For continuous datasets,  NESTPearson performed better with 
N = 500 (88.8% accurate, 10.0% underestimation, 1.2% 
overestimation) than with N = 100 (63.1% accurate, 35.0% 
underestimation, 1.9% overestimation).

The proportions of outcomes in Table 1 indicate that 
all methods performed worse for binary datasets than 
 NESTPearson for continuous datasets. For binary datasets, 
 NESTPearson,  NESThybrid, and  NESTpoly underestimated the 
number of factors more frequently across all category prob-
abilities with N = 500 and N = 100. This indicates all NEST 
variants indeed suffered from decremented power compared 
to  NESTPearson for continuous datasets, albeit  NESTpoly and 
 NESThybrid more so than  NESTPearson. However, overestima-
tions by  NESTPearson with asymmetric category probabilities 
further contributed to its decrement in accuracy for binary 
datasets compared to continuous datasets.

While  NESTPearson improved for datasets with four cat-
egories, its performance was still worse than for continu-
ous datasets. Compared to its performance for continuous 
datasets with N = 500 and N = 100, respectively,  NESTPearson 
showed more underestimations across all category probabili-
ties. With varying asymmetric category probabilities, over-
estimations by  NESTPearson were also more frequent than for 

continuous variables. This pattern is similar to the results for 
binary datasets. It follows that, overall, reduced accuracy 
of  NESTPearson for ordinal datasets compared to continuous 
datasets can be attributed to more frequent underestimation 
with all category probabilities and – simultaneously – more 
frequent overestimation with varying asymmetric category 
probabilities.

Discussion

A key motivation to investigate  NESTPearson,  NESTpoly, and 
 NESThybrid in a simulation was to test whether the anticipated 
problems for ordinal datasets would deteriorate their per-
formance compared to the level of performance NEST has 
shown for continuous variables (Achim, 2017; Brandenburg 
& Papenberg, 2022). The results from the present simulated 
confirm the expected deterioration in that all three NEST vari-
ants performed worse for ordinal datasets than  NESTPearson 
for continuous datasets. Concerning preference for one par-
ticular variant for application to ordinal datasets in applied 
research, implications in light of the current data are mixed. 
The general trends were that  NESTpoly was superior for binary 
datasets with large sample sizes, that  NESTPearson was superior 
for Likert-type datasets with homogeneous distributions of 
response categories among their variables, and that  NESThybrid 
never emerged as superior over the other variants.

Table 2  Outcomes for datasets with four response categories as a function of sample size and category probabilities

Percentage of outcomes in all simulated datasets with four response categories.

Method Outcome N = 100 N = 500

Symmetric Invariant asym-
metric

Varying asym-
metric

Symmetric Invariant asym-
metric

Varying 
asymmet-
ric

NESTPearson Overestimation 1.3 3.1 5.1 1.7 4.1 37.0
Accurate 59.1 53.7 46.7 85.1 80.7 46.2
Underestimation 39.7 43.2 48.2 13.2 15.2 16.8
Undefined 0 0 0 0 0 0

NESTpoly Overestimation 0 0 0.1 0 0 0
Accurate 25.6 30.0 29.4 45.1 70.4 45.2
Underestimation 74.4 70.0 70.5 54.9 29.6 54.8
Undefined 0 0 0 0 0 0

NESThybrid Overestimation 1.0 1.2 3.2 2.3 2.7 2.0
Accurate 41.9 32.4 18.2 77.2 68.3 41.9
Underestimation 57.1 66.4 78.5 20.5 29.0 56.1
Undefined 0 0 0 0 0 0

PApoly Overestimation 5.8 7.0 8.3 0 0.4 0.2
Accurate 48.9 46.3 46.2 70.4 68.1 68.6
Underestimation 45.3 46.7 45.5 29.6 31.5 31.2
Undefined 0 0 0 0 0 0
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Statistical power of NEST

There was reason to anticipate that the underestimation of 
model-implied correlations through sample Pearson corre-
lations and the large standard error of sample polychoric 
correlations would result in deflated signal eigenvalues 
(see Fig. 1). The frequent underestimation of the optimal 
number of factors by  NESTPearson and  NESTpoly in the pre-
sent simulation study implies that signal eigenvalues were 
indeed often too small to exceed their simulated sampling 
distribution when the null hypothesis of k-factor sufficiency 
was incorrect. Which NEST variant suffers from a stronger 
decrement in power was an open question that could not 
be answered without simulations. Interestingly, the stronger 
tendency toward underestimation by  NESTpoly compared to 
 NESTPearson for ordinal datasets suggests that polychoric cor-
relations reduced the statistical power of NEST more than 
Pearson correlations despite the unbiasedness of polychoric 
correlations. At first, it may seem obvious to add the perfor-
mance of  NESThybrid to the discussion concerning power as 
a function of the type of correlation – after all,  NESThybrid 
combines Pearson correlations and polychoric correlations 
and showed frequent underestimation of the number of fac-
tors itself. However, as will be discussed below, the rea-
sons for underestimations of  NESThybrid are best linked to 
its account for difficulty factors rather than properties of 
Pearson correlations and polychoric correlations.

Following reports that asymmetry in category probabili-
ties increases bias of Pearson correlations and standard error 
of polychoric correlations (Lubbe, 2019), it was anticipated 
that the power of  NESTPearson and  NESTpoly depends on 
category probabilities.  NESTPearson and  NESTpoly mostly 
underestimated the number of factors more frequently with 
invariant or varying asymmetric category probabilities than 
with symmetric category probabilities. This trend is in line 
with reports from Lubbe (2019).

Inconsistent with this trend,  NESTPearson underestimated 
the number of factors more often for binary datasets with 
N = 100 and symmetric category probabilities than with 
invariant asymmetric category probabilities. Also inconsist-
ent with this trend,  NESTpoly underestimated the number 
of factors for datasets with four categories most frequently 
with symmetric category probabilities. The observation of 
increased bias of Pearson correlations and standard error 
of polychoric correlations with asymmetric category prob-
abilities, which can also be seen in Fig. 1, does not predict 
these notable underestimations with symmetric category 
probabilities. In total, this indicates that the dependence of 
NEST variants on the number of response categories and 
category probabilities is more complex than anticipated and 
requires further research. Still, in general, the present results 
add support to the notion that asymmetric category prob-
abilities in ordinal datasets obstruct factor retention.

Difficulty factors

Another problem with  NESTPearson related to category prob-
abilities was its alarming tendency to overestimate the num-
ber of factors for datasets with varying asymmetric category 
probabilities. This result fits the premise that difficulty fac-
tors occur in datasets when the correlation of item pairs not 
only depends on common factors but also on the distribution 
of response categories (Garrido et al., 2013; Green et al., 
2016; Lim & Jahng, 2019; Tran & Formann, 2009; Yang & 
Xia, 2015) and that the continuous surrogate datasets simu-
lated in  NESTPearson fail to account for category probabilities 
as a confounded source of correlation. Thus, the tendency 
toward overestimation by  NESTPearson provides evidence that 
the original implementation – which was not designed for 
application to ordinal variables – indeed fails to safeguard 
against retention of difficulty factors.

The overestimations by  NESTPearson in the presence of 
difficulty factors occurred more frequently with N = 500 than 
with N = 100. The reason for this was the sample Pearson 
correlations were less noisy with N = 500 than with N = 100. 
Tested eigenvalues corresponding to a difficulty factor more 
often exceeded their simulated sampling distribution that did 
not account for a difficulty factor since this difference was 
not attributed to noise.

Throughout the present work, it was assumed that diffi-
culties do not add to the optimal number of factors and that 
their retention can be considered as overestimation, which 
is common practice in simulation studies on the number-of-
factors problem in ordinal datasets (see Garrido et al., 2013; 
Lim & Jahng, 2019; Tran & Formann, 2009). This assump-
tion may be challenged on the ground that difficulty factors 
in Pearson correlation matrices are no product of noise but 
are in fact necessary components to model observed cor-
relations whenever item difficulty varies within a set of 
ordinal variables (Olsson, 1979b). However, given that dif-
ficulty factors do not reflect psychological constructs (Lim 
& Jahng, 2019; Lubbe, 2019; Tran & Formann, 2009), dif-
ficulty factors should be separated from substantive factors 
(i.e., factors that do reflect psychological constructs) in the 
interpretation of factor models that retain difficulty factors. 
Consequently, when the motivation to do exploratory factor 
analysis is to explore common constructs in an observed 
dataset, a method to determine the number of factors that is 
more likely to retain difficulty factors (e.g.,  NESTPearson) than 
other methods but not more accurate with respect to substan-
tive factors serves no benefit.  NESTPearson is therefore not 
recommended for ordinal datasets with varying asymmetric 
category probabilities.

The adapted implementation  NESThybrid was proposed to 
counteract the expected tendency toward overestimation of 
 NESTPearson in the presence of difficulty factors. This was 
done by simulating ordinal surrogate datasets instead of 
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continuous datasets, replicating the influence of difficulty 
factors in surrogate datasets by reproducing the observed 
category probabilities in the surrogate datasets. Overall, in 
the present simulation,  NESThybrid unlike  NESTPearson did 
not exceed 5% probability of overestimation of the num-
ber of factors, including datasets with varying asymmetric 
category probabilities. This verifies that  NESThybrid was 
indeed successful to counteract the issue of overestimation 
by  NESTPearson in the presence of difficulty factors.

On the other hand, it must be noted that  NESThybrid showed 
the highest probability of underestimations of all methods in 
most conditions with varying asymmetric category probabili-
ties (see Tables 1 and 2). This shows that  NESThybrid lacked 
statistical power compared to  NESTPearson and  NESTpoly in the 
presence of difficulty factors. To understand the lack of power, 
recall that the ordinal surrogate datasets in  NESThybrid repro-
duced observed category probabilities. Hence, the influence 
of difficulty factors was replicated in the surrogate datasets 
for the test of every eigenvalue from the analyzed sample cor-
relation matrix, starting with the first eigenvalue at k = 0. Also, 
recall that difficulties are assumed to manifest in elevated noise 
eigenvalues that do not belong to the set of signal eigenvalues 
corresponding to factors from the population-model (Gar-
rido et al., 2013; Lim & Jahng, 2019). When testing signal 
eigenvalues in the conditions with varying asymmetric cat-
egory probabilities in present simulation, Pearson correlation 
matrices in  NESThybrid accounted for difficulty factors and 
thus included the corresponding elevated noise eigenvalues. 
The Pearson correlation matrices for continuous surrogate 
datasets in  NESTPearson did not include these elevated noise 
eigenvalues. Therefore, in the presence of difficulty factors, the 
simulated sampling distribution for tested signal eigenvalues 
included in  NESThybrid consisted of greater eigenvalues than in 
 NESTPearson, thereby increasing the threshold for significance 
in  NESThybrid.

In the end, the account for difficulty factors in  NESThybrid 
which protected against overestimation in their presence 
also reduced its power in the prior tests of signal eigenval-
ues. Overall,  NESThybrid was less accurate on average than 
 NESTpoly across all conditions with binary datasets, less 
accurate on average than  NESTPearson across all conditions 
with four response categories, and its supposed theoretical 
advantage in the account for difficulty factors ultimately 
caused  NESThybrid to underperform compared to  NESTpoly 
or  NESTPearson with varying asymmetric category probabili-
ties. Therefore,  NESThybrid cannot be recommended as the 
preferred implementation of NEST in light of the current 
data and is dropped from further discussion.

Empirical example

Lubbe (2019) applied  PApoly to an empirical dataset with 
binary variables to test whether polychoric correlations 

and reproduced category probabilities in surrogate datasets 
prevent sensitivity to difficulty factors in PA. Here, their 
analysis was replicated with  NESTPearson,  NESTpoly, and 
 NESThybrid. The dataset is a sample (N = 150) of Bond’s 
Logical Operations Test, which includes 35 binary variables 
(Bond & Fox, 2007, as cited by Revelle, 2022a, 2022b); 
it is available in the R package psychTools (Version 2.2.5; 
Revelle, 2022a, 2022b; retrievable as psychTools::blot) as a 
toy dataset in the context of item response theory. As such, 
the items can be assumed to reflect a single common factor. 
The items’ mean difficulty – quantified as the proportion of 
correct answers per item – is 0.75 (SD = 0.13) with two item 
difficulties below 0.50 (i.e., 0.36, 0.49). Hence, the dataset 
can be considered in between the category probability lev-
els ‘invariant asymmetric’ and ‘varying asymmetric’ of the 
present simulation.  NESTpoly and  NESThybrid suggested one 
factor while  NESTPearson suggested three. This example is in 
line the finding from the present simulation that  NESTPearson 
is a more liberal method to determine the number of factors 
compared to other methods for ordinal datasets with asym-
metric category probabilities, which should be kept in mind 
in empirical applications.

Recommendations

One goal of the research reported here was to compare 
 NESTPearson,  NESTpoly, and  NESThybrid to explore poten-
tial guidelines about which variant should be preferred for 
ordinal datasets. The present simulation was deliberately 
designed to simulate situations in which the anticipated 
problems of these methods should be easily observed, facil-
itating an assessment of their relative differences. More 
importantly, however, the low accuracies obvious from 
Tables 1 and 2 indicate that neither method achieved sat-
isfactory performance under several conditions in the pre-
sent simulation and that preference should be adopted with 
respect to features of the dataset at hand. The following sec-
tions summarize the present results with the intent to point 
out explicitly which implementation of NEST, if any, can be 
recommended for applied research depending on features of 
the data. As mentioned, since  NESThybrid was always outper-
formed by either  NESTPearson or  NESTpoly,  NESThybrid is not 
considered in this section.

Note that recommendations of  NESTPearson and  NESTpoly 
only apply to the choice between Pearson correlations and 
polychoric correlations in NEST. Given that NEST only 
serves the determination of the optimal number of factors, 
which is considered the same for sample correlation matrices 
with Pearson correlation and polychoric correlations from 
the same population, preference for either type of correlation 
in NEST does not imply preference for the same type in the 
subsequent parameter estimation for a factor model with the 
respective number of factors (see Flora & Curran, 2004).
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With N = 100, no method reached 50% accuracy for 
binary datasets and no method reached 60% accuracy for 
datasets with four response categories. Based on the pre-
sent results, N = 500 is recommended as the minimum sam-
ple size to tackle the number-of-factors problem in ordinal 
datasets with four or fewer response categories. The levels 
of sample size (100; 500) in the present simulation do not 
justify recommendation of a lower minimum sample size.

With N = 500, in relative terms,  NESTpoly outperformed 
 NESTPearson for binary datasets:  NESTpoly was more accu-
rate than  NESTPearson and it remained within its normative 
type 1 error rate while the type 1 error rate of  NESTPearson 
was strongly inflated with asymmetric category probabili-
ties. Hence,  NESTpoly seems to be the preferable NEST vari-
ant for binary datasets with N = 500. However, given that 
 NESTPearson was substantially more accurate than  NESTpoly 
for datasets with four categories, the benefits of polychoric 
correlations to NEST outweigh their costs only for binary 
datasets.

For ordinal datasets with more than two response catego-
ries,  NESTPearson seems to be the preferred NEST variant. As 
the bias of Pearson correlations decreases with an increas-
ing number of response categories (see Fig. 1; Green et al., 
2016), it can be assumed that  NESTPearson further improves 
with more than four response categories. This assumption 
was verified in an additional simulation that included the 
same conditions as the simulation reported above but with 
five response categories per variable (category probabili-
ties for symmetric, invariant asymmetric, and varying asym-
metric distributions were adopted from Goretzko & Bühner, 
2022). The results of this additional simulation are reported 
in Appendix B. Consistent with the present results on four 
response categories,  NESTPearson overall outperformed 
 NESTpoly,  NESThybrid, and  PApoly for datasets with five 
response categories, and was outperformed only by  PApoly 
with N = 500 and varying asymmetric category probabilities 
due to frequent overestimation in the presence of difficulty 
factors. Since  NESTPearson failed to outperform  PApoly for 
datasets with more than two response categories and vary-
ing asymmetric category probabilities, a recommendation of 
 NESTPearson for ordinal datasets with more than two response 
categories should be limited to homogeneous item difficul-
ties in light of its sensitivity to difficulty factors. For datasets 
with more than two categories, more research is required to 
develop a method that is as robust against varying item dif-
ficulties as  PApoly while also improving on theorical flaws 
of PA (see Braeken & van Assen, 2017; Green et al., 2012; 
Ruscio & Roche, 2012; Saccenti & Timmerman, 2017; 
Turner, 1998).

The observed errors by all methods investigated in the 
present simulation highlight the need for guidelines to 
qualify a suggested number of factors as optimal in applied 
research where – unlike in simulations – no ground-truth 

typically exists. Such guidelines are particularly important 
for ordinal datasets given that ordinal datasets promoted 
underestimations and overestimations by NEST, depending 
on the implementation. In general, the optimal solution to 
the number-of-factors problem does not miss factors of sub-
stantive importance and does not retain factors than suit no 
sound interpretation (Braeken & van Assen, 2017; Preacher 
et al., 2013).

Underestimations by NEST indicate that failure to reject 
the null hypothesis of k-factor sufficiency for a tested eigen-
value does not imply that the eigenvalue corresponds to 
a negligible factor. A guideline to avoid missing a factor 
with NEST is to employ large samples to increase its sta-
tistical power, which is supported by the present simulation 
(N ≥ 500 for ordinal datasets). When large samples are infea-
sible, the number of factors in exploratory factor analysis 
may be increased as long as the added factors provide con-
tributions to the factor model that are deemed substantial 
according to the interpretation of model parameters in light 
of domain-specific theory.

What is more, overestimations by NEST indicate that 
statistical significance of an eigenvalue in NEST does not 
imply that the eigenvalue corresponds to substantive con-
tribution by a distinct factor (Brandenburg & Papenberg, 
2022). Known alternative explanations for significance in 
NEST are mere sampling variance (i.e., a type 1 error), 
the unaccounted presence of a difficulty factor, or cumu-
lative contributions of minor sources of correlations that 
do not correspond to a factor (Achim, 2021; Auerswald 
& Moshagen, 2019; Cosemans et al., 2022; Lim & Jahng, 
2019). These alternative explanations may also lead one to 
consider numbers of factors below the solution of NEST 
when not all factors accepted by NEST are interpretable post 
rotation (see Fabrigar et al., 1999).

A strategy to avoid relying on potentially erroneous solu-
tions suggested in multiple recent publications is to consider 
solutions of different methods (Auerswald & Moshagen, 
2019; Goretzko et al., 2021; Preacher et al., 2013). Combin-
ing different solutions requires that the relative performance 
of the respective methods is well-understood (Li et al., 2020) 
in order to interpret conflicting solutions of different meth-
ods. In the present simulation, heterogeneous item difficul-
ties in ordinal datasets caused frequent overestimations by 
 NESTPearson and frequent underestimations by  NESTpoly. 
Following this observation, it was tested whether a com-
bination rule of  NESTPearson and  NESTpoly would improve 
accuracy with heterogeneous item difficulties by treating 
the solution by  NESTpoly as the lower bound for the num-
ber of factors and the solution by  NESTPearson as the upper 
bound. To this end, only datasets from the present simulation 
with varying asymmetric category probabilities and identi-
fied solutions (i.e., not unidentified solutions as in Tables 1 
and 2) by  NESTPearson and  NESTpoly were considered. The 
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boundaries covered the true number of factors in 29.4% of 
binary datasets with N = 100, in 62.5% of binary datasets 
with N = 500, in 51.7% of datasets with four categories with 
N = 100, and in 83.3% of datasets with four categories and 
N = 500. Compared to the accuracies listed in Tables 1 and 
2, the boundaries covered the true number of factors more 
often than it had been hit by  NESTPearson and  NESTpoly 
individually. When this combination rule is applied to the 
35 binary variables from the empirical example of Bond’s 
Logical Operations Test (Bond & Fox, 2007, as cited by 
Revelle, 2022a, 2022b),  NESTpoly indicates one factor as 
the lower bound and  NESTPearson indicates 3 factors as the 
upper bound. A thorough examination of the factor loadings 
patters in the three factor models – with one, two, and three 
factors respectively – could then guide toward the preferred 
solution based on their respective theoretical interpretability.

An obvious problem with this combination rule is that 
varying asymmetric category probabilities not only pro-
moted overestimations by  NESTPearson but also underes-
timations. Hence,  NESTPearson should not be expected to 
provide a reliable upper bound for the optimal number of 
factors. Still, given that factor retention for ordinal variables 
with heterogeneous item difficulties remains challenging for 
NEST and PA alike, this combination rule may be a useful 
heuristic that exploits shortcomings of the individual meth-
ods. This combination rule hence offers potential prospect 
for further research.

The current comparison of  NESTPearson and  NESTpoly 
also has implications for simulation studies aimed at inves-
tigating methods to determine the number of factors similar 
to the present study. For instance, Lim and Jahng (2019) 
compared traditional PA to RPA – which is highly similar 
to NEST – in a simulation that included datasets with four 
response categories. Their tested implementation of RPA 
computed polychoric correlations for the analyzed dataset 
and for categorized surrogate datasets, similar to the pre-
sent implementation of  NESTpoly. In light of the present 
simulation, which limits benefits of polychoric correlations 
for NEST to binary datasets, Lim and Jahng likely tested 
a suboptimal implementation of RPA. The present results 
suggest that further simulation studies which include NEST 
or RPA as well as ordinal datasets should include a variant 
that computes Pearson correlations even for ordinal datasets.

Limitations

A limitation of the present work is that the simulation was 
designed with a restricted set of conditions that did not target 
optimal conditions for NEST and PA. Given that both NEST 
and PA are eigenvalue-based methods, their performance 
can be expected to improve for ordinal datasets when fac-
tors explain more variance across all variables. For Pearson 
correlation matrices and polychoric correlation matrices, 

signal eigenvalues are larger, for instance, in datasets with 
more variables per factor (Auerswald & Moshagen, 2019). 
However, it requires further simulations to test whether 
there are conditions that nullify the identified problems with 
 NESTPearson,  NESTpoly, and  NESThybrid for ordinal datasets.

The present simulation may be considered idealistic in that 
it did not account for cross-loadings of simulated variables on 
multiple factors (Brandenburg & Papenberg, 2022; Li et al., 
2020). Given that the number-of-factors problem implies that 
it is unknown how many factors inform the variables, it should 
not be assumed in exploratory factor analysis that variables 
are informed by one common factor each (Achim, 2020). 
Model-implied correlation matrices of factor models with 
substantial cross-loadings in the majority of variables can 
yield lower signal eigenvalues (excluding the largest signal 
eigenvalue) than correlation matrices of factor models with-
out cross-loadings, mimicking the effect of inter-factor cor-
relations (see Brandenburg & Papenberg, 2022, for a detailed 
explanation of this effect). The effects of inter-factor correla-
tions and cross-loadings may add up and thus provide more 
challenging conditions than the ones included in the present 
simulation. The results from the present work already indicate 
that, even when cross-loadings can be assumed absent, there 
are conditions that challenge the power of NEST to such a 
high extent that all variants (as well as PA) failed to achieve 
satisfactory accuracy (i.e., binary datasets with small sample 
sizes). Conditions in which the reduction of signal eigenval-
ues due to inter-factor correlations and cross-loadings add 
up would further increase the risk of underestimation of the 
optimal number of factors. Therefore, future research targeting 
ordinal datasets should assess to what extent ordinal variables 
with cross-loadings deteriorate the performance of NEST 
when neither inter-factor correlations nor cross-loadings can 
be assumed absent.

Furthermore, the present work only accounts for ordi-
nal datasets in which all variables have the same number of 
response categories. The present results do not generalize 
to datasets with mixed scales. Further research is needed 
to address optimal estimation of correlation in NEST for 
mixed datasets.

Another technical limitation concerns the computation 
of the k-factor models in NEST. In all tested NEST imple-
mentations from the current work, iterative reduction of the 
sample correlation matrix was used in accordance to Achim 
(2017). Achim (2017) provides an in-depth explanation of 
this method to compute the k-factor models and a compar-
ison to other approaches in which the iterative reduction 
resulted in the highest accuracy of NEST. However, these 
results only apply to k-factor models of Pearson correla-
tion matrices for continuous variables. It requires additional 
dedicated research to investigate if the iterative reduction 
that was used in all present implementations of NEST is 
optimal when k-factor models are computed for polychoric 



7257Behavior Research Methods (2024) 56:7241–7260 

correlation matrices or if other approaches would yield bet-
ter performance of NEST.

Finally, another limitation concerns the assumption of 
normally distributed latent variables by the maximum-like-
lihood estimator of polychoric correlations (Olsson, 1979a). 
Whenever polychoric correlations were computed (i.e., 
Fig. 1,  NESTpoly,  NESThybrid,  PApoly), ordinal variables had 
been simulated by transforming normally distributed vari-
ables using predetermined thresholds (Yang & Xia, 2015). 
Therefore, the distributional assumptions of the estimator 
of polychoric correlations were never violated. However, 
assuming that ordinal variables are discrete indicators spe-
cifically of normally distributed continuous variables may 
not hold in empirical applications. As an example, Jin and 
Yang-Wallentin (2017) pointed out that income as an indica-
tor of socio-economic status may not be normally distributed 
due to its natural lower bound but still may be measured 
in ordered categories. In the present implementation of 
 NESTpoly, the simulated ordinal surrogate datasets always 
met distributional assumptions of polychoric correlations 
by design. This raises the question if  NESTpoly does pro-
vide adequate sampling distributions of tested eigenvalues 
when the analyzed dataset unilaterally violates distributional 
assumptions. The present work provides no indication of the 
performance of  NESTpoly,  NESThybrid or  PApoly when distri-
butional assumptions of polychoric correlations are violated. 
Therefore, further research is required to test the benefits and 
costs of polychoric correlations for factor retention in the 
presence of violated distributional assumptions.

Conclusion

All in all, the present work shows that the performance of 
NEST for ordinal variables depends on properties of com-
puted correlations (i.e., bias, standard error). The present 
simulation provides evidence that polychoric correlations 
for analyzed datasets and ordinal surrogate datasets benefit 
the performance of NEST in retaining the optimal number 
of factors for binary datasets. However, the tested imple-
mentation of NEST using polychoric correlations required 
large samples to achieve satisfactory performance (N ≥ 500) 
and the benefits of polychoric correlations did not extend 
to ordinal datasets with more than two response categories 
per variable. For datasets with four response categories, the 
problems of polychoric correlations were more severe than 
the problems of Pearson correlations. In general, the pre-
sent simulation suggests that factor retention is more error-
prone for ordinal datasets than for continuous datasets. More 
research addressing ordinal variables is required to investi-
gate which method is optimal under which condition and 
how potentially suboptimal solutions are handled in empiri-
cal applications of exploratory factor analysis.

Appendix A

Implementation details

All simulations and analyses in the present work were 
conducted in the statistical programming environment R 
(Version 4.1.0; R Core Team, 2021). Ordinal datasets were 
simulated by transforming normally distributed continuous 
variables into ordered categories. To simulate p variables in 
accordance to a factor model, random variables were sam-
pled from the multivariate normal distribution 𝒩(0p , Σ ), 
with 0p denoting the vector of p variable means (all set to 0) 
and Σ denoting the p × p model-implied correlation matrix 
using the rmvnorm function from the R package mvtnorm 
(Version 1.1–3; Genz et al., 2021).

As for the computation of polychoric correlations, two 
different functions were used for binary datasets and data-
sets with four response categories. For binary datasets, poly-
choric correlations – which could also be referred to as tetra-
choric correlations in the binary case – were computed with 
the tetrachoric2 function from the R package sirt (Version 
3.12–66; Robitzsch, 2022). For datasets with four categories, 
polychoric correlations were computed with the polychoric 
function from the R package psych (Version 2.2.5; Rev-
elle, 2022a, 2022b). The psych implementation would have 
worked also for binary datasets, but the sirt implementation 
was preferred because it was significantly faster than the 
psych implementation, which greatly facilitates applications 
of  NESTpoly in large-scale simulations.

A common problem with the estimation of polychoric 
correlations are nonpositive definite correlation matrices 
(Garrido et al., 2013; Green et al., 2016; Timmerman & 
Lorenzo-Seva, 2011; Weng & Cheng, 2017). This implies 
that some eigenvalues of the sample correlation matrix 
may be negative, which contradicts their interpretation in 
the present context as indicators of variance explained by 
factors. The default setting to handle nonpositive definite 
correlation matrices for polychoric correlations in sirt 
and psych – as of their respective versions in the present 
work – is to apply the smoothing procedure from the psych 
package, which rescales estimated polychoric correlation 
matrices in a way that all eigenvalues are nonnegative. The 
default smoothing procedure was retained in all estima-
tions of polychoric correlations in the present work.

Appendix B

Additional simulation

An additional simulation was carried out to verify further 
that  NESTPearson outperforms  NESTpoly,  NESThybrid, and 
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 PApoly for ordinal datasets with more than two response cat-
egories per variable. The main simulation from the current 
work only included ordinal variables with four response 
categories in this regard. Goretzko and Bühner (2022) 
conducted similar simulations with ordinal variables and 
proposed a method to simulate datasets with five response 
categories. Like the method from Yang and Xia (2015) that 
was used in the present work, the method from Goretzko 
and Bühner (2022) used intervals under the standard nor-
mal distribution corresponding to predetermined threshold 
values to manipulate expected category probabilities. Their 
method was suitable for the present work as it provides 
threshold values for symmetric ({– 0.84, – 0.25, 0.25, 0.84}) 
and asymmetric ({– 0.08, 0.25, 0.62, 1.11}) category prob-
abilities. For the additional simulation here, these thresholds 
were used to simulate symmetric, invariant asymmetric (i.e., 
applying the according thresholds for every variable) and 
varying asymmetric (i.e., applying the asymmetric thresh-
olds, but in sign-reversed form for every second variable) 
category probabilities just as in the main simulation from 
the present work. In addition, the additional simulation also 
included the same manipulations of the true number of fac-
tors (2, 4), the number of variables per factor (4, 7), the 
distribution of loading parameters (𝒰(0.40, 0.50), 𝒰(0.70, 
0.80)), the inter-factor correlation parameters (0.20, 0.70), 
the sample size of datasets (100, 500) as the main simula-
tion in a fully crossed design. In total, 100 datasets were 

simulated per condition, yielding 9600 datasets with five 
response categories per variable.

Table 3 lists the performances of all methods in the same 
fashion as above. Averaged across all simulated datasets, 
 NESTPearson was the most accurate method (66.4%), followed 
by  PApoly (58.3%),  NESThybrid (49.1%), and finally  NESTpoly 
(41.9%).
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Table 3  Outcomes for datasets with five response categories as a function of sample size and category probabilities

Percentage of outcomes in all simulated datasets with five response categories.

Method Outcome N = 100 N = 500

Symmetric Invariant asym-
metric

Varying asym-
metric

Symmetric Invariant asym-
metric

Varying 
asymmet-
ric

NESTPearson Overestimation 1.7 3.4 2.2 1.8 3.1 17.4
Accurate 58.6 54.1 52.0 85.4 82.4 66.0
Underestimation 39.8 42.4 45.8 12.8 14.4 16.6
Undefined 0 0 0 0 0 0

NESTpoly Overestimation 0 0 0 0 0 0
Accurate 26.7 30.4 28.9 46.5 69.8 49.0
Underestimation 73.3 69.6 71.1 53.5 30.2 51.0
Undefined 0 0 0 0 0 0

NESThybrid Overestimation 0 0 0.1 0 0.1 0
Accurate 30.9 37.2 30.5 66.9 78.7 50.2
Underestimation 69.1 62.7 69.4 33.1 21.2 49.8
Undefined 0 0 0 0 0 0

PApoly Overestimation 5.8 7.7 7.9 0 0.4 0.2
Accurate 49.5 45.2 46.6 69.6 69.8 69.0
Underestimation 44.7 47.1 45.6 30.4 29.9 30.8
Undefined 0 0 0 0 0 0
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