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Lucas R. D. Freitas 1, Tim Bauer 2, Reinhold Egger 2 & Rodrigo G. Pereira 1

We formulate aMajorana mean-field theory for the extended JKΓ Kitaevmodel in amagnetic Zeeman
field of arbitrary direction, and apply it for studying spatially inhomogeneous states harboring vortices.
This mean-field theory is exact in the pure Kitaev limit and captures the essential physics throughout
the Kitaev spin liquid phase. We determine the charge profile around vortices and the corresponding
quadrupole tensor. The quadrupole-quadrupole interaction between distant vortices is shown to be
either repulsive or attractive, depending on parameters. We predict that electrically biased scanning
probe tips enable the creation of vortices at preselected positions. Our results paves the way for the
electric manipulation of Ising anyons in Kitaev spin liquids.

A hallmark of Kitaev spin liquids is the fractionalization of spin-1/2 local
moments into Majorana fermions and a Z2 gauge field1–9. When time
reversal symmetry is broken by an external magnetic field, both types of
excitations become gapped, and vortices of the Z2 gauge field bind
Majorana zeromodes that behave as non-Abelian anyons. These properties
can be demonstrated in the exactly solvable Kitaev honeycomb model1.
Since the observation that the bond-directional exchange interactions of the
pure Kitaev model are realized in quasi-two-dimensional Mott insulators
with strong spin-orbit coupling10, identifying signatures of fractional exci-
tations in Kitaev materials has become a major goal of condensed matter
physics11–14. Most notably, there is evidence for a half-quantized thermal
Hall conductance in the candidate material α-RuCl3 at intermediate tem-
peratures and magnetic fields, but its interpretation in terms of chiral
Majorana edge modes remains controversial15–18. This ambiguity calls for
alternative experimental probes that may help distinguish a Kitaev spin
liquid from a more conventional partially polarized phase with topological
magnons19,20.

A promising route to detect and manipulate the fractional excitations
of Kitaev spin liquids is to exploit their nontrivial responses to electrical
probes. Theoretical proposals in this direction include electric dipole con-
tributions to the subgap optical conductivity21,22, scanning tunneling
spectroscopy23–27, interferometry in electrical conductance28,29, and electric
polarization and orbital currents associated with localized excitations30,31. In
fact, the charge polarization in Mott insulators can be captured by an
effective density operator written in terms of spin correlations in the low-
energy sector32,33. The effective density operator for Kitaev materials was
derived in ref. 30 starting from themulti-orbitalHubbard–Kanamorimodel
in the ideal limit where the dominant exchange path only generates the pure
Kitaev interaction10. The electric field effects then work both ways. On the

one hand, the inhomogeneous spin correlations around aZ2 vortex imply
that vortices produce an intrinsic electric charge distribution. On the other
hand, vortices are attracted by electrostatic potentials that locally modify
exchange couplings, and this effect can be used to trap and move anyons
adiabatically30,34.

In this work we generalize the theory of the electric charge
response in ref. 30 to consider the generic spin model for Kitaev
materials35,36. Our starting point is the three-orbital Hubbard–Kanamori
model which takes into account sub-dominant hopping processes that, in
addition to Kitaev (K) interactions, also generate Heisenberg (J) and off-
diagonal (Γ) exchange interactions. Using perturbation theory to leading
order in the hopping parameters, we derive an expression for the effective
charge density operator in the Mott insulating phase that contains all two-
spin terms allowed by symmetry. Since the additional interactions spoil the
integrability of the pure Kitaevmodel, we compute spin correlations using a
Majorana mean-field theory. This type of approximation has been applied
to map out the ground state phase diagram and to compute response
functions of the extended Kitaev model37–46. Here we generalize the mean-
field approach to treat position-dependent order parameters in the case
where translation symmetry is broken by the presence of vortices in theZ2
flux configuration. Including a Zeeman coupling, we show that the spatial
anisotropy of the charge distribution around a vortex varies with the
direction of the magnetic field and can be quantified by the components of
the electric quadrupole moment. We also discuss how a local electrostatic
potential renormalizes the couplings in the extendedKitaevmodel and gives
rise to an effective attractive potential for vortices. Remarkably, the effect is
stronger in the presence of non-Kitaev interactions, and we find that it is
possible to close the vortex gap by means of electric modulation of the local
spin interactions.

1International Institute of Physics andDepartamento de Física Teórica e Experimental, Universidade Federal do Rio Grande doNorte, Natal, RN 59078-970, Brazil.
2Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany. e-mail: egger@hhu.de

npj Quantum Materials |            (2024) 9:33 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-024-00643-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-024-00643-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-024-00643-5&domain=pdf
http://orcid.org/0000-0002-4491-8492
http://orcid.org/0000-0002-4491-8492
http://orcid.org/0000-0002-4491-8492
http://orcid.org/0000-0002-4491-8492
http://orcid.org/0000-0002-4491-8492
http://orcid.org/0000-0002-6071-9696
http://orcid.org/0000-0002-6071-9696
http://orcid.org/0000-0002-6071-9696
http://orcid.org/0000-0002-6071-9696
http://orcid.org/0000-0002-6071-9696
http://orcid.org/0000-0001-5451-1883
http://orcid.org/0000-0001-5451-1883
http://orcid.org/0000-0001-5451-1883
http://orcid.org/0000-0001-5451-1883
http://orcid.org/0000-0001-5451-1883
http://orcid.org/0000-0003-2767-8535
http://orcid.org/0000-0003-2767-8535
http://orcid.org/0000-0003-2767-8535
http://orcid.org/0000-0003-2767-8535
http://orcid.org/0000-0003-2767-8535
mailto:egger@hhu.de


Results
Mean-field theory for the extended Kitaev model
The local degrees of freedom of Kitaev materials are transition metal ions
with 4d5 or 5d5 electronic configuration and strong spin-orbit coupling4,5. In
the presence of the crystal field of an octahedral ligand cage, this config-
uration is equivalent to a single hole in a t2g orbital. Starting from a three-
orbital Hubbard–Kanamori Hamiltonian on the honeycomb lattice, in the
presence of a Zeeman coupling to an externalmagnetic fieldh, we find from
a projection scheme that the low-energy effective spin Hamiltonian is given
by the extended Kitaev (aka JKΓ) model35:

H ¼ 1
2

X
ij

X
αβ

σαi J
αβ
ij σ

β
j �

X
i

h � σ i; ð1Þ

where σi denotes the vector of the pseudospin-1/2 Pauli operators at site i.
Moreover, i and j are nearest neighbors, Jij is the bond-dependent exchange
matrix, and the indices α, β, γ∈ {x, y, z} = {1, 2, 3} label both spin
components and bonds on the honeycomb lattice. We denote by 〈ij〉γ a
nearest-neighbor bond of type γwith site i belonging to sublattice A and j to

sublattice B. For bond 〈ij〉z, we have Jhijiz ¼
J Γ 0
Γ J 0
0 0 J þ K

0
@

1
A: The

exchangematrices for x and ybonds followby cyclic permutation of the spin
andbond indices.The idealKitaev casewith J = Γ = 0 corresponds to a single
hopping pathmediated by ligands on edge-sharing octahedra with ideal 90∘

bonds10.Numerical studies show that theKitaev spin liquidphase is stable in
the regime ∣Γ∣, ∣J∣ ≪ ∣K∣35,47–49. For estimates of the hopping and exchange
parameters forα-RuCl3, see for instance refs. 5,50. In thismaterial, onefinds
a ferromagnetic Kitaev coupling (K < 0) and the leading perturbation to the
idealized Kitaev model is given by 0 < Γ < ∣K∣.

We employ a mean-field approximation for calculating spin cor-
relations in the extended Kitaev model and to verify the stability of the
spin liquid phase against integrability-breaking perturbations. For J =
Γ = h = 0, the model can be solved exactly1 using the Kitaev repre-
sentation σγi ¼ ic0i c

γ
i in terms of four Majorana fermions which obey

ðcμi Þ
y ¼ cμi and fcμi ; cνj g ¼ 2δijδμν . Throughout, we use indices μ, ν, ρ∈

{0, 1, 2, 3} to denote all four fermion flavors, in contrast with α, β, γ∈
{1, 2, 3}. Physical states must respect the local constraint
Di ¼ c0i c

1
i c

2
i c

3
i ¼ þ1. The algebra of the spin operators can be satisfied

using different representations51. It is convenient to write the Kitaev
representation in terms of the vector ci ¼ ðc0i ; c1i ; c2i ; c3i ÞT and the anti-
symmetric matrices Nγ defined by:

σγi ¼
i
2
cTi N

γci �
i
2

c0i c
γ
i � cγi c

0
i

� �
: ð2Þ

Instead of imposing Di =+1, we use the equivalent constraint52:

cTi G
γci � c0i c

γ
i � cγi c

0
i þ

X
αβ

ϵαβγcαi c
β
i ¼ 0: ð3Þ

Note that the constraints cTi G
γci ¼ 0 for γ = x, y, z are redundant. If the

constraint is implemented exactly, it suffices to impose it for a single value of
γ. However, when treating the constraints (3) numerically through the
corresponding Lagrange multipliers λγi

42,44, it is advantageous to enforce
them in a symmetricmanner for all three values of γ.We thereby rewrite the
spin Hamiltonian as:

H ¼ 1
8

P
ij

P
αβ

icTi N
αci J

αβ
ij icTj N

βcj

�1
4

P
iγ

2hγicTi N
γci � λγi ic

T
i G

γci
� �

:

ð4Þ

We decouple the quartic terms using two types of real-valued mean-field
parameters:

Uμν
ij ¼ �

icμi c
ν
j

�
; Vμν

i ¼ �
icμi c

ν
i

�
; ð5Þ

which obey Uμν
ij ¼ �Uνμ

ji and Vμν
i ¼ 2iδμν � Vνμ

i . For the exactly solvable
Kitaev model, one finds that Uμν

ij is diagonal in the indices μ, ν. In particular,
the components Uγγ

ij are related to the staticZ2 gauge field and take values
Uγγ

ij ¼ ± 1when i, j formanearest-neighborγbond, andUγγ
ij ¼ 0 otherwise.

Thus, Uγγ
ij can be viewed as an “order parameter” for the Kitaev spin liquid

phase. For comparison with the exact solution, we also define
Wp ¼

Q
hijiγ2pU

γγ
ij , where p is a hexagonal plaquette. In the pure Kitaev

model,Wp is identifiedwith the gauge-invariantZ2 flux, and thegroundstate
lies in the sector with Wp =+1 for all plaquettes. States with Wp =−1 at
isolated plaquettes are associated with vortex excitations1. Besides the link
variables Uμν

ij , in the mean-field approach we also consider the on-site
fermion bilinears Vμν

i . It follows from the Kitaev representation that
V0γ
i ¼ hσγi i. Moreover, the constraint in Eq. (3) implies Vαβ

i ¼ �V0γ
i for

(αβγ) a cyclic permutation of (xyz). Thus, there are only three independent
componentsofVμν

i at each site, and theyare related to the localmagnetization
inducedby the externalmagneticfield. In the limit ∣h∣≫ ∣K∣, ∣J∣, ∣Γ∣, we expect
to encounter a partially polarized phase characterized byVμν

i ≠0 whileUμν
ij ¼

0 for all bonds. For further detail, see the “Methods” section.

Homogeneous case
We first describe the mean-field solution for the homogeneous case, i.e., in
the absence of vortices. If the ground state does not break spin rotation or
lattice symmetries, as in the Kitaev spin liquid phase, the matrices Uμν

ij
depend only on the bond type γ, and we set Uμν

ij ¼ Uμν
γ for bonds 〈ij〉γ.

Moreover, Vμν
i ¼ Vμν becomes a constant matrix. More generally, we can

allow these parameters to vary with the sublattice within larger unit cells to
describe magnetically ordered phases. We then solve the mean field self-
consistency equations using a Fourier transform of the Majorana modes in
the thermodynamic limit. As a first step, we have verified that our mean-
field approach recovers the exact results for the Kitaev model1 when we set
Γ = J = h = 0. The resulting dispersion relation of Majorana fermions is
depicted by dashed lines in Fig. 1. In this case, the only dispersive band is
associated with the fermion c0. This band is gapless with a Dirac spectrum
near the K point in the Brillouin zone (BZ). In addition, there are three
degenerate flat bands associated with the fermions cγ, which are related to
the static gauge variables Uγγ

γ (whose value is independent of γ).
Moving away from the exactly solvable point, we find that all bands

become dispersive. For h = 0 and K, J, Γ ≠ 0, our results are in quantitative
agreement with a previous mean-field calculation37. Our approach also
allows us to take into account themagnetic field nonperturbatively. Figure 1
shows the dispersion for amagneticfield pointing along the crystallographic
c direction (perpendicular to the honeycomb plane), with unit vector
ĉ ¼ 1ffiffi

3
p ð1; 1; 1Þ. Here the coordinates are specified in terms of the crystal-

lographic axes x̂, ŷ and ẑ of the ligand octahedra. For later reference, the in-
plane unit vectors are â ¼ 1ffiffi

6
p ð1; 1;�2Þ and b̂ ¼ 1ffiffi

2
p ð�1; 1; 0Þ. As shown in

Fig. 2, the magnetic field opens up a gap in the fermion spectrum, as
expected for the non-Abelian Kitaev spin liquid phase. As we increase the
magnetic field, the gap at the K point increases, but the gap at the Γ point
decreases. The fermion gap Δf is given by the minimum between the
energies at the K and Γ points in the BZ. If these energies cross,Δf exhibits a
kink at the corresponding value of h (e.g., for Γ = 0 in Fig. 2). As we increase
the magnetic field, we encounter a critical value hc at which the gap either
changes discontinuously, as in a first-order transition (e.g., for Γ =−0.1∣K∣
in Fig. 2), or it vanishes and varies continuously across the phase transition
(e.g., for Γ = 0.1∣K∣ in Fig. 2). For h ¼ hĉ and h≪ hc, the fermion gap
increases with the magnetic field as Δf∝ h3, as expected from perturbation
theory1; see the inset in Fig. 2. For general field directions, the fermion gap
behaves as Δf∝ hxhyhz, closing when one component of h vanishes.
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We further assess the stability of the Kitaev spin liquid phase by
evaluating the Z2 flux parameter. In a homogeneous ground state, we
have Wp ¼ ðUγγ

γ Þ6. The result for the extended Kitaev model with J = 0
and Γ, h ≠ 0 is shown in Fig. 3 for a magnetic field along the ĉ direction
and for an in-plane field along the â direction (perpendicular to the z
bonds). As expected, Uγγ

γ decreases as we increase h or Γ. The dots in this
figure mark the transition where the gap Δf vanishes continuously. Note
that Uγγ

γ varies smoothly across the continuous transition for h k ĉ
and Γ > 0.

The results in Figs. 2 and 3 allow us to determine the parameter regime
where bothUγγ

γ andΔf vary smoothly and take values comparable to those at
the exactly solvable point. In this regime,we expect themean-field approach
to yieldqualitatively correct results for the charge response of theKitaev spin
liquid phase. By contrast, the regime of strong magnetic fields should be
identified with the partially polarized phase, whereas the regime of large ∣Γ∣
or ∣J∣ harbors magnetically ordered phases35,44,48,53. Here we do not explore
the various phases of the extended Kitaev model, whose nature is not
completely settled36. Nevertheless, our mean-field results reproduce quali-
tative features of phase diagrams reported in the literature. For instance, we
find that adding Γ > 0 increases the critical magnetic field along the ĉ
direction, but the Kitaev spin liquid phase shrinks as we tilt the field toward
the plane, in agreement with exact diagonalization results48. However, in
general the mean-field approach overestimates the value of the critical

Fig. 1 | Majorana fermion dispersion. The dis-
persion relation of Majorana fermions calculated
within the mean-field approach for the homo-
geneous system with K =−1, J = 0, Γ = 0.2, and
h ¼ 0:4ĉ, along the indicated BZ path. For com-
parison, the dashed lines show the dispersion in the
pure Kitaev limit (Γ = J = h = 0).
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Fig. 2 | Field dependence of fermion gap. Fermion gap as a function of magnetic
field for h ¼ hĉ along the ĉ axis, withK =−1, J = 0, and for three values of Γ: Γ =−0.1
(green circles), Γ = 0 (blue triangles) and Γ = 0.1 (red diamonds). The inset shows
that for weak fields the fermion gap agrees with the perturbative result to leading
order in h, Δf∝ h3.
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with the Kitaev spin liquid phase.
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magneticfield for a ferromagneticKitaevcoupling in comparisonwithmore
accurate numerical methods48,54–56.

Vortex charge density profile
Inhomogeneous spin correlations can bring on a charge redistribution in
Mott insulators32,33. We here discuss the charge density profile induced by
the presence ofZ2 vortices in aKitaev spin liquid. In the “Methods” section,
we derive the effective charge imbalance operator in terms of two-spin
operators and showhowtocompute its expectationvalue 〈δnl〉 at lattice site l
using the Majorana mean-field approach.

We consider an inhomogeneous state inwhich translation symmetry is
broken by the presence of vortices. In this case, we analyze the mean-field
Hamiltonian on a finite systemwith linear size L along the directions of the
primitive lattice vectors ê1 ¼ 1

2 âþ
ffiffi
3

p
2 b̂ and ê2 ¼ � 1

2 âþ
ffiffi
3

p
2 b̂, imposing

periodic boundary conditions. To create vortices, we initialize the mean-
field parameters in a configuration where we flip the sign of Uμν

ij on bonds
crossed by open strings. In the pure Kitaev model, this procedure generates
exact eigenstates with two localized vortices at the ends of the string. In the
extended Kitaev model, vortices become mobile excitations with effective
bandwidths governed by the integrability-breaking perturbations57,58. In
fact, for sufficiently large values of these perturbations, near the borderof the
Kitaev spin liquidphase inFig. 3,weobserve that the vortexpositions vary as
we iterate the self-consistency equations. When this happens, the string
length decreases and the vortices move closer to each other until they
annihilate, and themean-field solution converges to the vortex-free ground-
state configuration. However, for ∣Γ∣, ∣J∣, ∣h∣ ≪ ∣K∣ and well separated vor-
tices, we find a self-consistent solution with (metastable) localized vortices
which corresponds to a local energy minimum in this sector of the Hilbert
space. These results seem consistent with the real-time dynamics described
by time-dependent mean-field theory, which show that only when the
perturbations are strong enough do vortices become mobile as signaled by
the time decay of the fermion Green’s function46. In reality, the lifetime of a
vortex is limited by processes in which two vortices meet and annihilate58,
and can become arbitrarily long at low temperatures due to the low vortex
density; see Supplementary Note 1. Focusing on the regime of small per-
turbations, we can then compute static spin correlations near vortices using
position-dependent mean-field parameters Uμν

ij and Vμν
i . We consider a

configuration with four equally spaced vortices, see inset of Fig. 5b, which
preserves rotational symmetries and minimizes finite-size effects as com-
pared to a two-vortex configuration. Unless stated otherwise, we use L = 40,
so the distance between vortices is 20 unit cells. The charge imbalancenear a
vortex is then effectively the property of a single vortex and finite-size effects
only appear in long-distance tails (see Supplementary Note 2).

In ref. 30, the charge imbalance profile in the vicinity of a vortex was
investigated within the exactly solvable Kitaev model1:

HK ¼
X
hijiγ

Kγσ
γ
i σ

γ
j �

X
hijiαhjkiβ

κ σαi σ
γ
j σ

β
k ; ð6Þ

setting Kγ =K for isotropic Kitaev interactions. The three-spin interaction
breaks time-reversal symmetry while preserving integrability. The coupling
constant derived from perturbation theory in the magnetic field is1:

κ ¼ 0:338
hxhyhz
Δ2
2v

; ð7Þ

whereΔ2v ≈ 0.263∣K∣59 is the energy gap for creating two adjacent vortices at
zero magnetic field. The prefactor in Eq. (7) was obtained by fitting the
fermion gapΔf ¼ 6

ffiffiffi
3

p
κ at low fields; see the inset of Fig. 2. Ourmean-field

results for the extended Kitaev model confirm the qualitative behavior
obtained for the exactly solvable model; see Fig. 4. The charge imbalance
oscillates between positive and negative values as we vary the distance from
the center of the vortex, identified with the plaquette where Wp < 0.
Moreover, as shown in Fig. 5, the magnitude of 〈δnl〉 decays exponentially
with the distance from the vortex. The comparison with the result for Γ = 0

(dashed lines in Fig. 5) reveals thatweakΓ and/or J interactions have an only
minor effect on the ideal charge imbalance profile found in the pure Kitaev
limit30. However, changing the magnetic field direction away from the ĉ
direction can induce more pronounced charge oscillations, cf. Fig. 5b, and
thus has a more substantial effect. The value of ∣δnl∣ on sites around the
vortex is of the order of 10−6, producing local electric fields near the
detection limit of state-of-the-art atomic force microscopy30,60–62. Impor-
tantly, here we use estimates for the hopping and interaction parameters for
bulk α-RuCl3, but the charge fluctuations can be greatly enhanced if the on-
site repulsion U is screened in a monolayer by the interaction with a
substrate.

Since the mean-field approach allows us to treat the Zeeman term
nonperturbatively, we can go beyond the results of ref. 30 and analyze the
dependence of the charge redistribution on the field direction. For a field
along the ĉ direction, the charge imbalance profile is isotropic around the
position of the vortex, up to small variations due to the finite distance
between vortices in thefinite-size system.Aswe tilt themagneticfield on the
acplane (perpendicular to the zbonds), a small anisotropydevelops in away
that the charge imbalance is enhanced in the direction perpendicular to the
field. This effect can be seen in Fig. 5b as the difference between 〈δnl〉 for the
sites that belong to the hexagon that contains the vortex (three blue dots in
the center, cf. Fig. 4).

We next quantify the anisotropy in the charge distribution by com-
puting the electricmultipolemoments.Wenote that the electric quadrupole
moment has also been studied in the context of the spin nematic transition
in the vortex-free ground state of a perturbed Kitaevmodel63. In the limit of
very large distance between vortices, the electric dipole moment vanishes
because the system is invariant under spatial inversion about the vortex
center. The first nontrivial multipole moment is the traceless quadrupole
tensor, with components:

Qαβ ¼
X
l

hδnlið3RlαRlβ � jRlj2δαβÞ: ð8Þ

Here α, β∈ {1, 2, 3} and Rl ¼ Rl1âþ Rl2b̂ (with Rl3 = 0) is the position of
site l, setting the lattice spacing to unity. Due to the finite system size, we
calculate the quadrupole moment by summing over all sites within a finite
radius around the vortex. This radius is taken to be slightly smaller than half
the distance between vortices, but due to the exponential decay of 〈δnl〉with
the distance from the vortex center, changing this radius causes only
exponentially small changes in the quadrupole tensor. For a magnetic field

Fig. 4 | Charge imbalance around a vortex.Charge imbalance 〈δnl〉 in a state with a
vortex located in the central hexagon. As parameters of the Hubbard–Kanamori
model, we use t1 = 13 meV, t2 = 160 meV, t3 =−33meV, t02 ¼ �60 meV,U = 2.6 eV,
and JH = 300 meV. The values of δnl are in units of jt22t02=U3j≈ 8:739× 10�5. The
ratio between the exchange couplings calculated using Eq. (22) are Γ/∣K∣ = 0.20 and J/
∣K∣ =−0.02. We set the magnetic field h=jKj ¼ 0:2ĉ. The solid line marks the zigzag
path considered in Fig. 5.
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along the ĉ direction, the rotational symmetry implies that the quadrupole
tensor is diagonal and Q11 =Q22 =−Q33/2. As we vary the field direction,
the anisotropy is manifested in the difference between Q11 and Q22 and in
the off-diagonal element Q12. Note that Q13 vanishes identically
because Rl3 = 0.

In a first approximation, let us discuss the dependence of the quad-
rupole tensor on the magnetic field direction by treating the field pertur-
batively in the pure Kitaev model. For magnetic field directions not
perpendicular to the lattice plane, the (often discarded) contribution from
second-order perturbation theory generates an anisotropic renormalization
of theKitaev couplings. This effect is captured by theHamiltonian in Eq. (6)
with:

Kγ ¼ K � ðhγÞ2
Δ2v

: ð9Þ

In Fig. 6, we show the angular dependence of the quadrupole components
Q33,Q11−Q22 andQ12 calculated from the spin correlations for the model
in Eq. (6). The component Q33 does not change sign, but varies slightly
around an average valuewith an angular dependencequalitatively similar to
∣hxhyhz∣. In particular, Q33 is maximum for a field along the ĉ direction,

whichmay be interesting tomaximize the intrinsic electricfield produced at
positions right above the vortex. On the other hand, the difference
Q11−Q22 vanishes for h k ĉ, but is maximum when the field points along
the ẑ axis; this is the direction in which the anisotropy in the effective Kitaev
couplings ismaximized,withKz <Kx =Ky. Finally,Q12 vanishes if we tilt the
field along the high-symmetry ac plane, but becomes nonzero for more
general field directions.

The spin correlations calculatedwithin themean-field approach for the
extended Kitaevmodel lead to the same qualitative dependence on the field
direction as in Fig. 6. Tomaximize the anisotropy in the quadrupole tensor,
we focus on the directionh ¼ hẑ, inwhich case all off-diagonal components
vanish, and analyze how the diagonal components vary with the strength of
the magnetic field. Here it is convenient to introduce the dimensionless
anisotropy parameter ΔQ = (Q11−Q22)/∣Q33∣. As shown in Fig. 7, ΔQ
increases with h, and the effect is more pronounced in the presence of the Γ
interaction.Wehave also studied the caseΓ < 0 andfindqualitatively similar
results (see Supplementary Note 3).

The spatial anisotropy of the charge density profile affects the electric
quadrupole interaction between vortices. Suppose the first vortex is located
at the origin and the second one at r ¼ x1âþ x2b̂, with r = ∣r∣much larger
than the length scale in the decay of δnl. The interaction is given by the

Fig. 6 | Quadrupole moment for different field directions. Quadrupole compo-
nents as a function of magnetic field direction, calculated using the exactly solvable
Hamiltonian in Eq. (6), i.e., for J = Γ = 0. The coupling constants Kγ and κ were

calculated using Eqs. (7) and (9) with ∣h∣ = 0.2∣K∣ and Δ2v = 0.263∣K∣. The scale is in
units of t22t

0
2=U

3 and we set the lattice spacing to unity. Here we use L = 42.
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10- 5

10- 4

0.001

0.010

- 9 - 5 0 5 9

Fig. 5 | Spatial and magnetic field dependence of the charge imbalance profile.
Magnitude of the charge imbalance as a function of the position R1 along the zigzag
path represented by the black line in Fig. 4. The dots (connected by solid lines to
guide the eye) correspond to the extended Kitaev model with exchange couplings Γ/
∣K∣ = 0.2 and J/∣K∣ =−0.02. Blue and red represent positive and negative charges,
respectively. We set ∣h∣ = 0.3∣K∣ and consider two field directions: a h k ĉ, and

b h k ẑ. For comparison, dashed lines represent the corresponding mean-field
results for Γ = 0 and otherwise identical parameters. The inset in (a) shows the
corresponding case with Γ/∣K∣ = 0.35 and J/∣K∣ =−0.05 for h k ĉ (filled circles),
comparing with the results for Γ/∣K∣ = 0.2 and J/∣K∣ =−0.02 in the main plot (empty
circles). The values of δnl are in units of jt22t02=U3j. The inset in (b) shows the
geometry with four equally spaced vortices on the torus with a smaller system size.
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energy E of the quadrupole tensor Q(2) of the second vortex in the electro-
static potential V(1) generated by the first vortex:

E ¼ 1
6

X
αβ

Qð2Þ
αβ ∂α∂βV

ð1ÞðrÞ; ð10Þ

where V ð1ÞðrÞ ¼ 1
2r5

P
αβxαxβQ

ð1Þ
αβ . Since well-separated vortices generate

the same charge distribution, we now assumeQ(1) =Q(2) =Q. As a result, the
quadrupolar interaction can be written as:

E ¼ 1
12

35
r9

r � Q � rð Þ2 � 20
r7

r � Q2 � r� �þ 2
r5
tr Q2
� �� �

: ð11Þ

When the magnetic field varies along the ac plane, the quadrupole tensor is
diagonal andwe obtain E ¼ Q2

33
r5 FðΔQ; θÞ. Here θ is the angle between r and

â, and we use:

FðΔQ; θÞ ¼ 9
8 þ 5

4 cosð2θÞΔQ
þ 35

24 cos
2ð2θÞ � 2

3

	 

ΔQ2;

ð12Þ

with the property F(−ΔQ, θ) = F(ΔQ, π/2− θ). In particular, ΔQ = 0 for a
magneticfield along the ĉ direction; in this case, the quadrupolar interaction
becomes strictly repulsive and independent of θ. However, as illustrated in
Fig. 8, the interaction can change sign for some particular directions of r if
the anisotropy is strong enough. The attractive regime appears for
jΔQj >

ffiffiffiffiffiffiffi
9=7

p
≈ 1:13. According to the result in Fig. 7, this regime becomes

accessible for sufficiently large h and Γwith h along the ẑ direction.We note
that already in the pure Kitaev model, vortices have an effective interaction
that depends on the vortex separation64. The charge redistributiondiscussed
here provides amechanism tomake this interaction spatially anisotropic. In
the extended Kitaev model, where vortices acquire a small mobility58, the
charge density profile must be carried along with the slow vortex motion,
and the anisotropic interaction may cause some nontrivial dynamics in a
system of dilute vortices. Importantly, the quadrupole interaction decays
algebraically with the distance between vortices; thus, at large distances it
dominates over other sources of vortex-vortex interactions that are expected
to decay exponentially64.

Electrical manipulation of vortices
We now consider the effect of a local electrostatic potential on vortices.
Going back to theHubbard–Kanamorimodel, we couple the hole density to
a potential V0 on the six sites surrounding a hexagonal plaquette p where a
vortex is located. This local potential can be generated by the electric field of
a scanning tunneling microscope (STM) tip. Redoing the derivation of the

effective spin Hamiltonian by second-order perturbation theory, we find
that the local potential modifies the couplings on bonds between sites in p
and their nearest neighbors outside p; see Eq. (23). In addition, the local
electric potential breaks inversion symmetry and generates a
Dzyaloshinskii-Moriya (DM) interaction34. Microscopically, the DM
interaction stems fromcrystalfield splittings in the atomicHamiltonian and
asymmetries in the hopping matrix due to lattice distortions5. We investi-
gate this effect phenomenologically by adding to the effective spin Hamil-
tonian (1) the term:

HDM ¼
X
γ

X
hijiγ

Dij σαi σ
β
j � σβi σ

α
j

� �
; ð13Þ

where (αβγ) is a cyclic permutation of (xyz). The coupling Dij =D(V0) is
taken to be independent of the bond type γ but restricted to the bonds
exterior to the plaquette with the local potential. For the DM coupling, we
assume (see Supplementary Note 4):

DðV0Þ ¼ ξ1D1jKð0Þj; ξ1 ¼
eV0

U � 3JH
; ð14Þ

such that D(V0)∝V0 with a dimensionless free parameter D1. In fact, for
V0 = 0, the DM coupling is absent since it will be generated by the tip
potential.

In the solvable Kitaev model, the local electric potential lowers the
energyof an isolatedvortexwith respect to the vortex-free configuration, but
never closes the vortex gap in the absence of the DM interaction30. In that
case, this effect can be used to attract and bind vortices that have been
created by some other mechanism, such as thermal fluctuations, but it does
not induce vortices in the ground state of the system. Using the mean-field
approach, we can now analyze how the vortex gap varies with the electric
potential in the extendedKitaevmodel.Weconsider again the configuration
with four equally spaced vortices, see the inset in Fig. 5b, and apply the
electric potential on the four corresponding plaquettes. The difference
between the energy E4v of this four-vortex configuration and the energy E0v
of the vortex-free state is equal to four times the vison gap. As shown in
Fig. 9, the vison gap monotonically decreases with the applied electric
potential, and it is further reduced for nonzero Γ andfiniteDMcouplingD1.
When the gap becomes too small, we encounter difficulties in the con-
vergence of the mean-field equations. However, the extrapolation of the

Fig. 8 | Quadrupolar interaction. Function F(ΔQ, θ) that governs the sign of the
quadrupolar interaction for ΔQ > 0. For ΔQ < 0, see the relation below Eq. (12). The
dashed line marks the critical value jΔQj ¼

ffiffiffiffiffiffiffiffi
9=7

p
, below which the interaction is

always repulsive. The black solid line corresponds to F(ΔQ, θ) = 0.
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Fig. 7 | Dependence of the quadrupole anisotropy on themagnetic field strength.
Symbols represent themean-field results forΔQ = (Q11−Q22)/∣Q33∣ in the extended
Kitaev model with Γ/∣K∣ = 0.3, J = 0, and h ¼ hẑ. Dashed lines follow from the
solvable Hamiltonian in Eq. (6) withK =−1. Inset: quadrupole componentsQ33 and
Q11−Q22 (in units of jt22t02=U3j and setting the lattice spacing to unity).
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results indicates that the gap vanishes for sufficiently large V0. As a con-
sequence, we predict that it is possible to create (or remove) vortices by
modulating the local interactions, in agreement with the results of ref. 34.
We emphasize that this remarkable functionality arises due to the interplay
between Γ interactions and the local DM terms induced by an STM tip.
FromFig. 9, we observe that ξ1 ~ 0.5 is sufficient to create vortices. Using the
parameters listed in Fig. 4, we find that this corresponds to realistic tip
voltages of the order of V0 < 1 V.

Discussion
Wehave studiedhowvortices inKitaev spin liquids generate and respond to
nonuniform electric fields. While Kitaev materials are Mott insulators,
chargefluctuations canbe generatedat low energies by inhomogeneous spin
correlations that carry signatures of localized excitations. To describe this
effect, we started from the three-orbital Hubbard–Kanamori model for
Kitaev materials. Using a canonical transformation, we obtain effective
operators in the low-energy sector in terms of spin operators that act on the
pseudospin-1/2 states.The effective spinHamiltonian is the extendedKitaev
model in a magnetic field, in which the exact solvability is broken by the
Heisenberg andΓ interactions aswell as by aZeeman coupling to amagnetic
field. We generalized the effective density operator beyond the results of
ref. 30 to includeoff-diagonal terms that are absent in thepureKitaevmodel.

We have developed and applied a Majorana mean-field approach
which allows us to consider inhomogeneous parameters. While this
approach is exact for the pure Kitaev model, we have demonstrated that it
captures qualitative features of the Kitaev spin liquid phase in the extended
JKΓ model, where additional spin interactions are present. This model is
believed to describe the candidate material α-RuCl3. The electric charge
distribution follows by computing the spin correlations around vortices in
the mean-field approach. Importantly, vortices remain localized on suffi-
ciently long time scales even in the presence of small perturbations around
the Kitaev limit, as long as the system remains deep in the Kitaev spin liquid
phase. We find that the charge profile decays with the distance from the
vortex in an oscillatory fashion.

Our results allowus to calculate the intrinsic electric quadrupole tensor
of a vortex which is far away from all other vortices. The anisotropy of the
quadrupole tensor can here be controlled by the magnetic field, and
depending on the parameter regime, the interaction between different
vortices is either repulsive or attractive. The interaction is generally
enhanced by the Γ interaction.

Finally, in the presence of local STM tips near vortices, wefind that one
can close the vortex gap by applying a local electric potential to the tips. We

thus predict that one can create vortices in a Kitaev spin liquid by means of
STM tips in a controlled way. Given the recent advances in STM
technology60–62, our work paves the way for the electrical detection and
manipulation in Kitaev materials. In particular, the successful control of
Ising anyons in such materials would constitute a key step toward imple-
menting a platform for topological quantum computation.

Methods
Extended Kitaev model
The JKΓ model in Eq. (1) follows by projecting the three-orbital
Hubbard–Kanamori Hamiltonian on the honeycomb lattice,
HHK =V+Hso+ T, to the low-energy sector spanned by a single hole per
site. On-site interactions are encoded by:

V ¼
X
i

U � 3JH
2

ð�Ni � 1Þ2 � 2JHS
2
i �

JH
2
L2i

� �
; ð15Þ

whereU is the repulsive interaction strength, JH is Hund’s coupling, and the
operators �Ni, Si and Li are the total number, spin and orbital angular
momentum of holes at site i. The operator hyiασ creates a hole at site i with
spin σ∈ {↑, ↓} and orbitalα∈ {x, y, z} for yz, xz, and xy orbitals, respectively.
Defining the spinor hyi ¼ ðhyix"; hyiy"; hyiz"; hyix#; hyiy#; hyiz#Þ, we write:

�Ni ¼ hyi hi; Si ¼
1
2
hyi ðσ � 13Þhi; Li ¼ hyi ð12 � lÞhi; ð16Þ

where σ is the vector of Paulimatrices acting in spin space and l = (lx, ly, lz) is
a vector of 3 × 3 matrices that represent the effective l = 1 angular
momentum of the t2g states30. The spin-orbit coupling term Hso ¼
λ
P

iαh
y
i ðσα � lαÞhi splits thedegeneracyof the t2gmanifold.At each site, the

low-energy subspace is spanned by the states:

∣þi ¼ 1ffiffi
3

p �∣z;"�� i∣y;#�� ∣x;#�� �
;

∣�i ¼ 1ffiffi
3

p ∣z;#�þ i∣y;"�� ∣x;"�� �
;

ð17Þ

which are associated with total angular momentum jeff ¼ 1
2. Finally, the

hopping term inHK has the formT ¼ �P
ijh

y
i 12 � Tij

� �
hj: The hopping

matrix Tij in orbital space depends on the orientation of the bond between
sites i and j. We label the bonds on the honeycomb lattice by γ∈ {x, y,

z}≡ {1, 2, 3} corresponding to nearest-neighbor vectors δx ¼ 1
2 âþ 1

2
ffiffi
3

p b̂,

δy ¼ � 1
2 âþ 1

2
ffiffi
3

p b̂, and δz ¼ � 1ffiffi
3

p b̂, respectively. We parametrize

the hopping matrix for a nearest-neighbor z bond as35

Thijiz ¼
t1 t2 t4
t2 t1 t4
t4 t4 t3

0
@

1
A:The hopping matrix for x and y bonds follows

by cyclic permutation of the orbital indices. Microscopically, the hopping
parameters are associated with direct hopping between d orbitals or
hoppings mediated by the ligand ions. Neglecting trigonal distortions for
simplicity, we set t4 = 05,35.

The effective spin Hamiltonian for the Mott insulating phase can now
be derived by applying perturbation theory in the regime
U, JH≫ λ≫ t1, t2, t3. We use the canonical transformation:

~HHK ¼ eSHHKe
�S

¼ HHK þ ½S;HHK� þ 1
2 ½S; ½S;HHK�� þ � � � : ð18Þ

The anti-Hermitian operator S ¼ P1
k¼1 Sk is chosen so that Sk eliminates

the terms that change the hole occupation numbers �Ni at k-th order in the
hopping parameters. We can write Sk ¼ Sþk � S�k , where Sþk creates
excitations with �Ni ≠ 1 and S

�
k ¼ ðSþk Þ

y. For the calculation of the effective
spinHamiltonian, it suffices to consider the first-order term S1 ¼ Sþ1 � S�1 ,
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Fig. 9 | Energy of four-vortex state. Energy of the four-vortex state vs. applied
electrostatic potential V0, with the dimensionless quantity ξ1 = eV0/(U− 3JH), for
different values of Γ and of the DM coupling D1; see Eq. (14). Symbols represent
mean-field results for the extendedKitaevmodel withK =−1, J = 0 and themagnetic
field h ¼ 0:2 ĉ. The linear system size is L = 28, and solid lines are a guide to the eye
only. They were obtained by a fit to the function aþ b tanh½cðξ1 � dÞ�.
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with:

Sþ1 ¼
X
ij

X2
‘¼0

1
ΔE‘

Pð2Þ
i;‘ h

y
i ð1� TijÞhj Pð1Þ

j : ð19Þ

Here Pð1Þ
j is a projector onto the subspace of a single hole at site j and Pð2Þ

j;‘
projects onto the subspace of two holes with total angular momentum
ℓ∈ {0, 1, 2}. The excited states have energies ΔEℓ given by:

ΔE0 ¼ U þ 2JH; ΔE1 ¼ U � 3JH; ΔE2 ¼ U � JH; ð20Þ

with JH <U/3 in the Mott insulating phase. We then take
H ¼ P low

~HHKP low, where P low ¼ Q
i ∣þi

� þi

�
∣þ ∣�i

� �i

�
∣

� �
is the pro-

jector onto the low-energy subspace restricted to jeff ¼ 1
2 states at every site.

We thereby arrive at the JKΓmodel35:

H ¼
X
hijiγ

Jσi � σ j þ Kσγi σ
γ
j þ Γ σαi σ

β
j þ σβi σ

α
j

� �h i
; ð21Þ

with an implicit sum over bond type γ, and α, β chosen so that (αβγ) is a
cyclic permutation of (xyz). The couplings are:

J ¼ 1
27

ð2t1 þ t3Þ2
ΔE0

þ 6t1ðt1 þ 2t3Þ
ΔE1

þ 2ðt1 � t3Þ2
ΔE2

h i
;

K ¼ 2JH
9

ðt1 � t3Þ2�3t22
ΔE1ΔE2

; Γ ¼ 4JH
9

t2ðt1 � t3Þ
ΔE1ΔE2

:

ð22Þ

In the limit t1, t3→ 0 and t2 ≠ 0, Eq. (21) reduces to the exactly solvable
Kitaevmodel1with a ferromagneticKitaev interaction (K < 0). Finally, in the
presence of a potential V0, the respective couplings are renormalized
according to:

JðV0Þ ¼ 1
27

ð2t1 þ t3Þ2
ð1�ξ20ÞΔE0

þ 6t1ðt1 þ 2t3Þ
ð1�ξ21ÞΔE1

h

þ 2ðt1 � t3Þ2
ð1�ξ22ÞΔE2

i
;

KðV0Þ
Kð0Þ ¼ ΓðV0Þ

Γð0Þ ¼ 1þ ξ1ξ2
ð1�ξ21Þð1�ξ22Þ

;

ð23Þ

where ξℓ = eV0/ΔEℓ.

Mean-field Hamiltonian
Using the mean-field parameters in Eq. (5), the Majorana mean-field
Hamiltonian for Eq. (4) is given by:

HMF ¼
X
ij

i
4
cTi Aijcj þ

X
i

i
4
cTi Bici � C: ð24Þ

Thefirst termon the right-hand side couplesMajorana fermionsonnearest-
neighbor bonds 〈ij〉γ via the 4 × 4 bond-dependent matrix:

Aij ¼ 2
X
αβ

Jαβij N
αUijN

β: ð25Þ

The on-site term involves the matrix:

Bi ¼
X
j2V i

X
αβ

Jαβij N
αtr VT

j N
β

� �
þ

X
γ

ðλγiGγ � 2hγNγÞ; ð26Þ

where V i denotes the set of nearest neighbors of site i. Finally, the constant
term is:

C ¼ 1
8

X
ij

X
αβ

Jαβij tr VT
i N

α
� �

tr VT
j N

β
� �

þ 2tr UT
ijN

αUijN
β

� �h i
: ð27Þ

We diagonalize Eq. (24) for N unit cells of the honeycomb lattice with
periodic boundary conditions by using:

c ¼
ffiffiffi
2

p
U

d

dy


 �
; U ¼ U< U >

� �
; ð28Þ

where c is a vector defined from 8N Majorana fermions, U is a unitary
transformation, and d is a 4N-component vector of annihilation operators
of complex fermions. The columns ofU<ð > Þ correspond to the eigenvectors
of the mean-field Hamiltonian with negative (positive) energy. The mean-
field ground state is the state annihilated by all d operators, from which we
obtain the self-consistency conditions:

h icI cJ i ¼ i U<U
y
<

� �
IJ; ð29Þ

where I = (i, μ) and J = (j, ν) combine site and fermion flavor indices. We
obtain the mean-field parameters in Eq. (5) by setting i and j to be either
nearest neighbors or the same site. Together with the mean-field
Hamiltonian, Eq. (29) defines a set of self-consistent equations which we
then solve numerically.

In our approach, we require that the constraint in Eq. (3) is satisfied by
the mean-field solution as accurately as possible. Since icTi G

γci are linear
combinations of operators with eigenvalues ±1, we define the quantities
Gγ
i � 1

4 jhcTi Gγciij for the mean-field ground state average, with 0≤Gγ
i ≤ 1.

For zeromagneticfield and in the absence ofmagnetic order, the constraints
are automatically satisfied, Gγ

i ¼ 0, since V0γ
i ¼ Vαβ

i ¼ 0. To describe the
Kitaev spin liquid phase at finite magnetic field, we tune the Lagrange
multipliers λγi contained in Bi in order to minimize the violation of the
constraint measured by Gγ

i . For all results shown below, we guarantee
Gγ
i < 0:05 for all values of (γ, i). In the homogeneous case (cf. Figs. 1–3), the

largest violations occur in the vicinity of phase transitions. Away from
transitions, we instead find Gγ

i <10
�3. Similarly, in the presence of vortices,

the largest violations occur near a vortex but they are always bounded as
specified.

Charge density coefficients
Consider the hole density operator �Nl at site l in the Hubbard–Kanamori
model. Using the canonical transformation in Eq. (18), we can write the
effective charge imbalance operator in the low-energy sector as:

δnl ¼ P lowe
Sð�Nl � 1Þe�SP low: ð30Þ

We calculate δnl using perturbation theory to leading order in the hopping
matrix Tij. In systems with bond-inversion symmetry like the
Hubbard–Kanamori model, the first non-vanishing contribution appears
at third order and is associatedwith virtual processes inwhich an electron or
hole moves around a triangle30,32,33. To obtain this leading contribution, we
generalize the hopping matrix to include hopping between next-nearest-
neighbor sites on the honeycomb lattice. We denote by 〈〈ij〉〉γ a second-
neighbor bond perpendicular to nearest-neighbor γ bonds, see Fig. 10a.
Sizeable second- and third-neighbor hopping parameters have been
calculated for Kitaev materials using ab initio methods5,50. For simplicity,
we consider only thedominant second-neighborhopping,whichon zbonds

is described by the matrix Thhijiiz ¼
0 t02 0
t02 0 0
0 0 0

0
@

1
A. The corresponding

matrices for x and y bonds follow by cyclic permutation of the indices.
Assuming jt02j≪ jt1j; jt2j; jt3j, we calculate the charge density response to
first order in t02. In this approximation, we neglect the second-neighbor
exchange interaction generated by perturbation theory at order ðt02Þ2,
keeping only the nearest-neighbor exchange couplings as in Eq. (21).

Following ref. 30, we write the effective charge imbalance operator as
δnl =∑(jk)δnl,(jk), where the sumover (jk) runs overpairs of sites such that jkl
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forms a triangle, and each triangle is counted once. These triangles contain
two nearest-neighbor bonds and one next-nearest-neighbor bond, see the
examples in Fig. 10b. The calculation of δnl requires the generator of the
canonical transformation up to second order in the hopping matrices,
S ≈ S1+ S2. After the projection onto the jeff ¼ 1

2 subspace, we write the end
result in the form:

δnl;ðjkÞ ¼
X
αβ

Cα0βjkl σ
α
j σ

β
l þ C0αβjkl σ

α
kσ

β
l þ Cαβ0jkl σ

α
j σ

β
k

� �
: ð31Þ

Note that the effective density operator involves only two-spin operators
because itmust be invariant under time reversal. The coefficientsCμνρjkl canbe
calculated as explained below.We find closed-form but lengthy expressions
for general values of the hopping parameters. For t1 = t3 = 0 and t2; t

0
2 ≠ 0,

we recover the result of ref. 30, inwhich thenonzero coefficients arediagonal
in spin indices, e.g., Cαβ0jkl ∼ δαβt

2
2t

0
2=U

3. Similarly to the derivation of the
effectiveHamiltonian, the addition of the subleading hopping parameters t1
and t3 generates off-diagonal terms in δnl,(jk) which are reminiscent of the Γ
interaction. Equation (31) implies that the charge density profile of a given
state is determined by its spin correlations. Charge neutrality of the Mott
insulator, ∑l〈δnl〉 = 0, implies that there is no charge polarization in a
homogeneous statewhere 〈δnl〉 is uniform.This condition is indeed satisfied
when we impose that the spin correlations on different bonds respect
translation and rotation symmetries, which provides a nontrivial check for
the coefficients Cμνρjkl .

Let us outline some steps in the calculation of the coefficients Cμνρjkl in
Eq. (31).At thirdorder in thehopping term, the canonical transformation in
Eq. (30) gives δnð3Þl ¼ �S�2 ½�Nl; S

þ
1 � þ h.c. , where we organize the con-

tributions in terms of triangles with site l at one vertex. In this notation, the
contribution from each triangle with two other sites (jk)≡ (kj) contains two
terms, δnð3Þl;ðjkÞ ¼ δnð3Þl;jk þ δnð3Þl;kj. Explicit expressions for the matrix elements
of δnð3Þl;ðjkÞ can be found in ref. 30. The last step is to project these matrices
onto the low-energy subspace spanned by the states in Eq. (17). The
coefficients in Eq. (31) are given by:

Cμνρjkl ¼ 1
8
Tr P lowδn

ð3Þ
l;ðjkÞP lowσ

μ
j σ

ν
kσ

ρ
l

� �
; ð32Þ

where σ0 ¼ 1. Since the charge density operator is evenunder time reversal,
terms that act nontrivially on an odd number of spins vanish identically:

Cαβγjkl ¼ Cα00jkl ¼ C0α0jkl ¼ C00αjkl ¼ 0; ð33Þ

with α, β, γ∈ {1, 2, 3}. The nonzero terms can be written as in Eq. (31) and
depend on the specific triangle. The simplest coefficients are the ones that
are already present in the solvable Kitaev model30. For instance, for the top
triangle in Fig. 10b, we obtain:

C110jkl ¼ C220jkl ¼ t22t
0
2

U3

η2ð1� 2ηÞ
9ð1� ηÞ3ð1� 3ηÞ3 ; ð34Þ

where η = JH/U < 1/3. Note that this term is sensitive to the sign of the
second-neighbor hopping t02. In ref. 30, the charge imbalancewas calculated
assuming a positive value of t02, but in this work we use t

0
2 < 0 as obtained in

ref. 50 for α-RuCl3. As an example for a coefficient associated with off-
diagonal terms in δnl, which are generated by the hoppings t1 and t3, we
have:

C120jkl ¼ � t02
U3

ηðt1 � t3Þ 276η4 � 94η2 � 6ηþ 22
� �

t1 þ 26η4 � 20η3 � 7η2 � 4ηþ 5
� �

t3
	 


54ð1� ηÞ3ð1þ 2ηÞ2ð1� 3ηÞ3 :

ð35Þ
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