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Abstract
The Active Flux method is a third order accurate finite volume method for hyperbolic con-
servation laws, which is based on the use of point values as well as cell average values of
the conserved quantities. The resulting method is fully discrete and has a compact stencil in
space and time. An important component of Active Flux methods is the evolution formula for
the update of the point values. A previously proposed exact evolution formula for acoustics
is reviewed and used to construct an Active Flux method for the two-dimensional Maxwell’s
equation. Furthermore, the method of bicharacteristics is discussed as a methodology for the
derivation of truly multidimensional approximative evolution operators that can be used for
the evolution of point values in Active Flux methods. We study accuracy and stability of
the resulting methods for acoustics and compare with the Active Flux method that uses the
exact evolution operator. Finally, we used the method of bicharacteristics to derive Cartesian
grid Active Flux methods for the linearised and nonlinear Euler equations. Numerous test
computations illustrate the performance of these new Active Flux methods.
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1 Introduction

The Active Flux method is an evolving finite volume method for hyperbolic conservation
laws that was previously introduced by Eymann and Roe [10–12] and Roe et al. [14, 27,
29]. Much earlier, in 1977, van Leer [33] already proposed a third order accurate method for
the one-dimensional advection equation which is equivalent with the Active Flux method.
In its original form the method is third order accurate, but higher order versions of the
Active Flux method have recently also been proposed, see [2, 30] for details. Classical finite
volumemethods, which only use cell average values of the conserved quantities as degrees of
freedom, increase the stencil in order to achieve high order accuracy in space. Higher order
accuracy in time can either be obtained by using the Lax–Wendroff procedure or by using
a method of lines approach, which further increases the stencil. In contrast, the Active Flux
method enriches the stencil by adding point values as degrees of freedom. This leads to fully
discrete methods with a compact stencil in space and time. While the enrichment is similar
to discontinuous Galerkin methods, the evolution of the point values in Active Flux methods
is computed differently. It uses truly multi-dimensional evolution formulas directly derived
from the partial differential equations.

The point value degrees of freedom are located along the grid cell boundary. Together with
the cell average values they are used to compute a globally continuous, piecewise quadratic
reconstruction. The evolution of the cell average values is computed using a finite volume
approach. A quadrature rule, typically Simpson’s rule, is used to approximate the fluxes over
a grid cell interface. This requires values of the flux function at all nodes of the quadrature
formula, i.e. not only at the previous time level but also at the new and an intermediate time
level. Thus, the update of point values plays a crucial role in the definition of Active Flux
methods. For scalar conservation laws characteristics can be used to compute the evolution
of the point values, see, e.g., [7, 12]. One-dimensional nonlinear systems were studied in
[4]. For the acoustic equations, i.e. the standard example of a linear hyperbolic system, exact
evolution formulas are available, which can be evaluated for the Active Flux reconstruction
and which have been used to construct truly multi-dimensional Active Flux methods. Details
can be found in [5, 12, 14]. The solution of the acoustic equations is also an important substep
in an operator splitting approach for the Euler equations, see for example [12, 13].

In the present paperwewill use themethod of bicharacteristics in order to derive trulymul-
tidimensional evolution formulas for the update of the point values in Active Flux methods.
Bicharacteristics-based multi-dimensional evolution operators for hyperbolic conservation
laws were extensively studied, e.g., in [21–23, 25, 26]. This approach will in particular allow
us to derive new unsplit Active Flux methods for the linearised Euler equations. We will also
compare the new approach with previously proposed Active Flux methods for the acous-
tic equations and show that the accuracy is comparable. Furthermore, we will extend this
approach to the nonlinear Euler equations by using local linearisations around each point
value degree of freedom. Our method for the Euler equations updates cell average values
of the conserved quantities using a finite volume approach and point values of primitive
variables using the method of bicharacteristics.

It has been argued, see [28, 30], that explicit, fully-discrete methods with compact stencil
lead to more accurate approximations on coarser grids than classical high order accurate
methods with larger stencils. Furthermore, they have better stability properties. This makes
Active Flux methods an interesting candidate for the simulation of complex flow problems
modeled by the Euler or Navier–Stokes equations.
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This paper is organised as follows. In Sect. 2 we briefly review the Active Flux method for
one and two-dimensional Cartesian grids. In Sect. 3 we propose an Active Flux method for
Maxwell’s equations by exploring the relation to acoustics. In Sect. 4we present themethod of
bicharacteristics. This allows us to derive newActive Fluxmethods for the acoustic equations
and to study their accuracy and stability in Sect. 5. In Sect. 6 we consider Active Fluxmethods
for the linearised Euler equations using the method of bicharacteristics. Finally, in Sect. 7
we present our new Active Flux method for the two-dimensional Euler equations. While we
restrict our considerations to Cartesian grid versions of the Active Flux method, the method
of bicharacteristics could also be used for the update of point values on unstructured grids.

2 The Active FluxMethod for Hyperbolic Problems

Now we will briefly describe the basic components of the Active Flux method for the simple
situation of a one-dimensional scalar conservation law ∂t q(x, t) + ∂x f (q(x, t)) = 0, where
q : R × R

+ → R is the conserved quantity and f : R → R is a flux function. We use the
notation

Qn
i ≈ 1

�x

∫ x
i+ 1

2

x
i− 1

2

q(x, tn)dx, Qn
i± 1

2
≈ q

(
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2
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)

for the cell average and the point values of the conserved quantities. In order to describe
a time step of the method, we assume that Qn

i and Qn
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2
are at least third order accurate

approximations. The cell average at the new time level is computed using the finite volume
approach
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The crucial step is the computation of the point values Q
n+ 1

2

i± 1
2
and Qn+1

i± 1
2
at the grid cell

interfaces. In the simplest case of scalar advection, i.e. for f (q) = aq , a ∈ R, the exact
evolution formula is well known and suggests an update of the form

Q
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)
.

To use this evolution formula the unknown solution q(·, tn) needs to be approximated by a
reconstruction qrec(·, tn). In the Active Flux method the reconstructed function is continuous
and piecewise quadratic. In grid cell i the uniquely defined reconstruction interpolates the
two point values Qn

i− 1
2
and Qn

i+ 1
2
and preserves the cell average value Qn

i . Figure1 shows a

schematic description of the one-dimensional Active Fluxmethod for the advection equation.
More details can be found in [12].

Two-dimensional Active Flux methods on triangular grids were first presented in [12].
Cartesian grid Active Flux methods were proposed in [5, 17]. In both cases the two-
dimensional version of Simpson’s rule is used to compute the numerical fluxes. For each
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Fig. 1 Schematic description of the Active Flux method for the one-dimensional advection equation. In order

to use Simpson’s rule we need to compute point values Q
n+ 1

2
i+ 1

2
and Qn+1

i+ 1
2
of the conserved quantity. These

values are obtained by tracing back the characteristics (marked as red curves)

Fig. 2 Degrees of freedom of the
two-dimensional Cartesian grid
Active Flux method

grid cell the point values and the cell average value at the old time level are used to compute
a quadratic reconstruction. Since the point values are located along the grid cell boundaries,
as indicated in Fig. 2, this reconstruction is globally continuous.

A crucial step is again the update of the point values. For advection it is straight forward
to use the exact evolution formula. This has for example been done in [12, 17]. Appropriate
evolution formulas for the one- and two-dimensional Burgers’ equation were given in [8].
Advective transport in spatially and temporally varying velocity fields was considered in [7]
and one-dimensional nonlinear systems were studied in [4]. For the two-dimensional linear
acoustic equations, Eymann and Roe [12] originally used an evolution formula that is exact
for initial values with constant vorticity (i.e., for irrotational flows). In this case the solution of
the acoustic equations can be obtained by solving wave equations for pressure and velocity.
For the acoustic equations with general initial values, exact evolution formulas have been
derived by Fan and Roe [14] as well as by Barsukow et al. [5]

In Calhoun et al. [7], a two-dimensional Cartesian grid Active Flux method with adaptive
mesh refinement and sub-cycling was presented. The local stencil in space and time and the
choice of the degrees of freedom allow a very efficient implementation on adaptively refined
grids.
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2.1 Previously Used Evolution Formulas for Acoustics

The two-dimensional acoustic equations are given by

∂t p + c∇ · u = 0

∂tu + c∇ p = 0,
(1)

where u : R2 × R
+ → R

2 is the velocity, p : R2 × R
+ → R is the pressure and c ∈ R

+ is
the speed of sound. The evolution formula for the point values of p and u used by Eymann
and Roe [12] is based on the observation that (1) can be rewritten as

∂t t p − c2�p = 0

∂t tu − c2�u = c2∇ × w,
(2)

wherew = ∇ ×u is the vorticity and� the Laplacian operator. Thus, in a flow with constant
vorticity (i.e. irrotational flow) pressure and velocity satisfy a wave equation. Moreover, it
can easily be verified that the vorticity is stationary, i.e. ∂t (∇ × u) = 0. Using an exact
representation for the solution of the wave equation ∂t tφ = c2�φ in the form

φ(x, t) = tMct {∂tφ(x, 0)} + ∂t (tMct {φ(x, 0)}) , (3)

that can be found, e.g., in Courant andHilbert [9], Eymann andRoe [12] derived the evolution
formulas

p(x, t) = MR{p(x, 0)} + R (∂RMR{p(x, 0)} − MR{∇ · u(x, 0)})
u(x, t) = MR{u(x, 0)} + R (∂RMR{u(x, 0)} − MR{∇ p(x, 0)}) ,

(4)

where R = c·t andMR{ f } is the sphericalmean. In the two-dimensional case, i.e. x = (x, y),
the spherical mean of a scalar function f over a disc with radius R can be computed via

MR{ f (x)} := 1

2πR

∫ 2π

0

∫ R

0
f (x + r cos(θ), y + r sin(θ))

r√
R2 − r2

dr dθ.

For vector valued quantities the spherical mean is computed component wise. Details on
how these formulas can be evaluated for the Active Flux reconstruction on triangular grids,
can be found in the Appendix of [12].

In [14], Fan and Roe derived an exact evolution formula for general initial values based
on the observation, see [13] for details, that (3) can be expressed in the form

φ(x, t) = φ(x, 0) + tMct {∂tφ(x, 0)} +
∫ ct

0
tMct {�φ(x, 0)}dt . (5)

The application of (5) to the acoustic equations (1) leads to an evolution formula of the
form

p(x, t) = p(x, 0) − ctMct {∇ · u(x, 0)} +
∫ ct

0
tMct {�p(x, 0)}dt

u(x, t) = u(x, 0) − ctMct {∇ p(x, 0))} +
∫ ct

0
tMct {�u(x, 0)}dt .

(6)

Using Helmholtz decomposition, Fan and Roe argued that this is indeed an exact evolution
formula for the acoustic equations. The pressure and the curl free component of the velocity
satisfy a wave equation and thus (6). The divergence free component is constant in time and
therefore correctly contained in the term u(x, 0).
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Fig. 3 Illustration of the update of point values for the acoustic equations on a Cartesian mesh

From (6) it can be seen that changes in pressure are driven by the divergence of the
velocity, rather than by velocity gradients, as implied by using dimensional splitting and
one-dimensional Riemann solvers. This has been pointed out as a strong argument for using
Active Flux methods, see for example [30].

While the derivation of Fan and Roe assumed sufficiently smooth data such that all deriva-
tives can be computed in the classical sense, Barsukow [3] showed that the evolution formula
is also valid more generally if interpreted in the distributional sense. Furthermore, a trans-
formation can be used such that (6) is expressed using derivatives in radial direction r . The
resulting formulas, which can be found in [5], have the form

p(x, t) = ∂r (rMr {p(x, 0)}) |r=ct − 1

ct
∂r

(
r2Mr {n · u(x, 0)}) |r=ct

u(x, t) = u(x, 0) − 1

ct
∂r

(
r2Mr {np(x, 0)}

) |r=ct

+
∫ ct

0

1

r
∂r

(
1

r
∂r

(
r3Mr {(n · u(x, 0))n

) − rMr {u(x, 0)}
)

dr .

(7)

If applied to the Active Flux reconstruction, differentiation across grid cell interfaces is
avoided and all terms can be evaluated in the classical sense. Moreover, Barsukow et al. [5]
showed that on regular Cartesian grids the resulting Active Flux method preserves all steady
states.

Each time step of the explicit Active Flux method is restricted so that the circle around the
edge midpoint over which the integration takes place remains inside the two adjacent grid
cells, as indicated in Fig. 3. This leads to a time step restriction of the form

max

(
c�t

�x
,
c�t

�y

)
≤ 1

2
.

In [8] we showed that this necessary condition is sufficient for linear stability.

3 Maxwell’s Equations

In this section we derive an Active Flux method for Maxwell’s equations which makes use
of the acoustic solver.

LetE=(E1(x, y, t), E2(x, y, t), E3(x, y, t))T,H=(H1(x, y, t), H2(x, y, t), H3(x, y, t))T

be the electric respectively magnetic field and let D = εE, B = μH be the electric respec-
tively magnetic field density, where ε is the permittivity andμ is the permeability. The source
free Maxwell equations are

∂tB + ∇ × E = 0,

− ∂tD + ∇ × H = 0.
(8)
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The electric and magnetic fields satisfy the constraints ∇ · E = 0 and ∇ · B = 0 if this
condition is satisfied initially. Since E = E(x, y, t), we have

∇ × E = ∂E3

∂ y
x̂ − ∂E3

∂x
ŷ +

(
∂E2

∂x
− ∂E1

∂ y

)
ẑ, (9)

the same holds for H = H(x, y, t), hence (8) is equivalent to

∂t E3 − 1

ε
(∂x H2 − ∂y H1) = 0

∂t H1 + 1

μ
∂y E3 = 0

∂t H2 − 1

μ
∂x E3 = 0 (10)

∂t H3 + 1

μ
(∂x E2 − ∂y E1) = 0

∂t E1 − 1

ε
∂y H3 = 0

∂t E2 + 1

ε
∂x H3 = 0 (11)

This means, we can solve (8) by solving the two sets of Eqs. (10) and (11). Furthermore let
c = 1√

εμ
and define

φ := E3√
μ

, u := − H2√
ε
, v := H1√

ε

and φ̃ := H3√
ε
, ũ := E2√

μ
, ṽ := − E1√

μ
.

(12)

Then by these transformations, (10) and (11) are equivalent to

∂tφ + c(∂xu + ∂yv) = 0

∂t u + c∂xφ = 0

∂tv + c∂yφ = 0 (13)

∂t φ̃ + c(∂x ũ + ∂y ṽ) = 0

∂t ũ + c∂x φ̃ = 0

∂t ṽ + c∂y φ̃ = 0. (14)

We obtain the following result.

Theorem 3.1 An Active Flux method for the source free two-dimensional Maxwell equations
(8) is obtained by solving two sets of two-dimensional acoustic equations. By using the exact
acoustic solver (7), the resulting method is third order accurate and the numerical solutions
satisfy the constraints ∇ · E = 0, ∇ · B = 0.

Proof The above derivation reveals that one can solve Maxell’s equations (8) by solving the
two sets of acoustic equations (13) and (14). Third order accuracy follows from third order
accuracy of the Active Flux method for acoustics.
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For the divergence of the electric field we obtain

∇ · E = ∂x E1 + ∂y E2

= −√
μ∂x ṽ + √

μ∂y ũ

= √
μ

(
∂y ũ − ∂x ṽ

)
.

Analogously, the divergence of the magnetic field can be expressed in the form

∇ · B = ∂x B1 + ∂y B2

= ∂xμH1 + ∂yμH2

= ∂xμ
√

εv − ∂yμ
√

εu

= −√
εμ

(
∂yu − ∂xv

)
.

An acoustic solver, which exactly preserves the curl of the velocity field leads to an approx-
imation of Maxwell’s equation which satisfies the divergence constraints ∇ · E = 0 and
∇ · B = 0. Barsukow et al. [5] showed that Cartesian grid Active Flux methods for the
acoustic equations with exact evolution operators preserve all steady states. �	

3.1 Convergence Study

For our convergence study we consider a solution of the form described in [15, Chapter 20,
Equation (20.25)] but with three components of E and H instead of two.

Example 3.2 We consider numerical solutions of (8) with initial values of the form

E1(x, y, 0) = α1(y) + α2(y)

E2(x, y, 0) = γ1(x) + γ2(x)

E3(x, y, 0) = β1(y) + β2(y) + δ1(x) + δ2(x)

H1(x, y, 0) = 1

μc
(−β1(y) + β2(y))

H2(x, y, 0) = 1

μc
(−δ1(x) + δ2(x))

H3(x, y, 0) = 1

μc
(−α1(y) + α2(y)) + 1

μc
(−γ1(x) + γ2(x)) ,

(15)

with αi , βi , γi , δi : R → R. The exact solution is then given by

E1(x, y, t) = α1(y + ct) + α2(y − ct)

E2(x, y, t) = γ1(x − ct) + γ2(x + ct)

E3(x, y, t) = β1(y + ct) + β2(y − ct) + δ1(x − ct) + δ2(x + ct)

H1(x, y, t) = 1

μc
(−β1(y + ct) + β2(y − ct))

H2(x, y, t) = 1

μc
(−δ1(x − ct) + δ2(x + ct))

H3(x, y, t) = 1

μc
(−α1(y + ct) + α2(y − ct)) + 1

μc
(−γ1(x − ct) + γ2(x + ct)) .

(16)

We set every initial wave to be exp(− 40x2) respectively exp(− 40y2) and impose periodic
boundary conditions.
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Table 1 Error measured in the L1-norm and EOC for Example 3.2 using the exact update formula (7) with
CFL = 0.457 at time t = 0.1

Res. Error EOC
Ex Ey Ez Ex Ey Ez

64 6.85 × 10−5 6.85 × 10−5 7.97 × 10−5 – – –

128 1.15 × 10−5 1.15 × 10−5 1.02 × 10−5 2.5720 2.5720 2.9607

256 2.21 × 10−6 2.21 × 10−6 1.29 × 10−6 2.3797 2.3797 2.9862

Hx Hy Hz Hx Hy Hz

64 8.74 × 10−5 8.74 × 10−5 1.47 × 10−4 – – –

128 1.18 × 10−5 1.18 × 10−5 1.85 × 10−5 2.8878 2.8878 2.9816

256 1.73 × 10−6 1.73 × 10−6 2.33 × 10−6 2.7694 2.7694 2.9927

The results of a convergency study using the exact acoustic solver (7) are shown in Table 1,
where we compare solutions with 642, 1282 and 2562 grid cells at an early time t = 0.1,
using time steps which satisfy CFL = 0.457.

4 TheMethod of Bicharacteristics for Linear Hyperbolic Systems

Since exact evolution operators are only available for selected linear hyperbolic systems,
we will review an approximative approach for obtaining truly multi-dimensional evolution
formulas for the update of point values.

We consider a multi-dimensional linear hyperbolic system of the form

∂tq(x, t) +
d∑

k=1

Ak∂xkq(x, t) = 0, (17)

with q : R
d × R

+ → R
m , Ak ∈ R

m×m for k = 1, . . . , d , where d = 2, 3 denotes the
spatial dimension. Let us denote by Sd−1 the unit sphere embedded in R

d . Hyperbolicity
implies that for the linear combination A(n) := ∑d

k=1 nk Ak , n ∈ Sd−1 of the coefficient
matrices in direction n, there exists a corresponding matrix R(n), whose columns are the
linearly independent right eigenvectors of A(n). If we apply the similarity transformation to
the individual matrices A1, . . . , Ad , they will in general not be diagonalised individually. We
define Bk := Bk(n) = R(n)−1Ak R(n), k = 1, . . . , d and decompose each matrix Bk into
its diagonal part and the remaining part, i.e. Bk = �k + B ′

k with �k := �k(n) = diag(Bk)

and B ′
k := B ′

k(n) = Bk − �k .
Multiplication of (17) from the left with R−1 provides the quasidiagonalised system in

characteristic variables w := w(x,n, t) = R−1(n)q(x, t), i.e.

∂tw +
d∑

k=1

�k∂xkw = −
d∑

k=1

B ′
k∂xkw =: S. (18)

Let λk� for k = 1, . . . , d and � = 1, . . . ,m denote the eigenvalues of �k . Equation (18) can
be integrated component-wise along the bicharacteristics
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dx�(t,n)

dt
=

(
λ1�(n), . . . , λd� (n)

)T
for � = 1, . . . ,m

from its footpoint Q�(n) = (x1−λ1��t, . . . , xd −λd��t, t) to the point P = (x1, . . . , xd , t+
�t) at the new time level.

For each equation we obtain

w�(P,n) = w�(Q�(n),n) +
∫ tn+1

tn
S�(x�(t,n), t,n)dt, � = 1, . . . ,m. (19)

The solution q(P) is obtained by integrating R(n)w(P,n) over all possible directions n ∈
Sd−1. This can be expressed in the form

q(P) = 1

|Sd−1|
∫
Sd−1

m∑
�=1

w�(Q�(n),n)r�(n) dn + 1

|Sd−1|
∫ t+�t

t

∫
Sd−1

R(n)S(t̃, n)dndt̃ .

(20)

4.1 Linear Acoustics

Applying the procedure presented above, we obtain for the two-dimensional acoustic equa-
tions the following exact representation of the solution,

p(P) = 1

2π

∫ 2π

0
(p(Q1(θ)) − u(Q1(θ)) cos(θ) − v(Q1(θ)) sin(θ)) dθ

− 1

2π

∫ t+�t

t

∫ 2π

0
S(t̃, θ) dθdt̃

u(P) = 1

2π

∫ 2π

0

(−p(Q1(θ)) cos(θ) + u(Q1(θ)) cos2(θ) + v(Q1(θ)) sin(θ) cos(θ)
)
dθ

+ 1

2
u(Q2) + 1

2π

∫ t+�t

t

∫ 2π

0
S(t̃, θ) cos(θ) dθdt̃

− 1

2
c
∫ t+�t

t
px (Q̃2(t̃))dt̃

v(P) = 1

2π

∫ 2π

0

(−p(Q1(θ)) sin(θ) + u(Q1(θ)) sin(θ) cos(θ) + v(Q1(θ)) sin2(θ)
)
dθ

+ 1

2
v(Q2) + 1

2π

∫ t+�t

t

∫ 2π

0
S(t̃, θ) sin(θ) dθdt̃

− 1

2
c
∫ t+�t

t
py(Q̃2(t̃))dt̃,

(21)

where

S(t̃, θ) = c
(
ux (x̃, ỹ, t̃) sin

2(θ) − (uy(x̃, ỹ, t̃) + vx (x̃, ỹ, t̃)) sin(θ) cos(θ) + vy(x̃, ỹ, t̃) cos
2(θ)

)

with

(x̃, ỹ) = (x + c(t + �t − t̃) cos(θ), y + c(t + �t − t̃) sin(θ)), t̃ ∈ [t, t + �t],
Q1(θ) = (x + c�t cos(θ), y + c�t sin(θ), t), Q2 = (x, y, t) and Q̃2 = (x, y, t̃) for
t̃ ∈ [t, t+�t]. Note that due to symmetry terms depending on Q3(θ) = (x−c�t cos(θ), y−
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c�t sin(θ), t) have been expressed using Q1(θ). Details of the derivation can be found in
[21].

By integrating the second equation of (1) from P ′ := Q̃2(x, y, t) = Q2 to P :=
Q̃2(x, y, t + �t), we obtain

u(P) = u(P ′) − c
∫ t+�t

t
px (x, y, t̃)dt̃ .

Thus, the second and fourth term on the right hand side of the second equation of (21) can
be eliminated and we obtain the alternative exact evolution formula

u(P) = 1

π

∫ 2π

0

(−p(Q1(θ)) cos(θ) + u(Q1(θ)) cos2(θ) + v(Q1(θ)) sin(θ) cos(θ)
)
dθ

+ 1

π

∫ t+�t

t

∫ 2π

0
S(t̃, θ) cos(θ) dθdt̃ .

(22)

Analogously, the evolution equation for v can be expressed in the form

v(P) = 1

π

∫ 2π

0

(−p(Q1(θ)) sin(θ) + u(Q1(θ)) sin(θ) cos(θ) + v(Q1(θ)) sin2(θ)
)
dθ

+ 1

π

∫ t+�t

t

∫ 2π

0
S(t̃, θ) sin(θ) dθdt̃ .

(23)

Furthermore, it can be shown, compare with [21], that

1

2π

∫ t+�t

t

∫ 2π

0
S(t̃, θ) dθdt̃ = c

2

∫ �t

0
〈∇ · (u, v)〉c(�t−τ) dτ,

where 〈·〉R represents an average over the disk of radius R. As pointed out earlier, this shows
that the time evolution of p depends on the divergence of the velocity field.

Here, the time integrals are computed numerically. In order to obtain third order accurate
Active Flux methods, the point values need to be computed with third order accuracy. This
is possible by using the trapezoidal rule. We obtain

1

2π

∫ t+�t

t

∫ 2π

0
S(t̃, θ) dθdt̃

= 1

2
�t

(
1

2π

∫ 2π

0
S(t + �t, θ) dθ + 1

2π

∫ 2π

0
S(t, θ) dθ

)
+ O(�t3)

= 1

2
�t

(
1

2
c(ux (P) + vy(P)) + 1

2π

∫ 2π

0
S(t, θ) dθ

)
+ O(�t3).

(24)

The unknown quantities ux (P) + vy(P) can be eliminated by integrating the first equation
of (1) from P ′ = (x, y, t) to P = (x, y, t + �t) but now using also the trapezoidal rule.
This approach was introduced by Butler [6]. We obtain

p(P) − p(P ′) = − c
�t

2

(
ux (P) + vy(P) + ux (P

′) + vy(P
′)
) + O(�t3). (25)

Using (24) and (25) in the first equation of (21) provides an explicit representation of p(P) =
p(x, y, t + �t) using only data at time t . It has the form
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p(P) = 1

π

∫ 2π

0
(p(Q1(θ)) − u(Q1(θ)) cos(θ) − v(Q1(θ)) sin(θ)) dθ − p(P ′)

+ c
�t

2
(ux (P

′) + vy(P
′)) − �t

2π

∫ 2π

0
S(t, θ) dθ + O(�t3).

(26)

Similarly, the evolution of u and v can be expressed in the form

u(P) = 1

π

∫ 2π

0

(−p(Q1(θ)) cos(θ) + u(Q1(θ)) cos2(θ) + v(Q1(θ)) sin(θ) cos(θ)
)
dθ

+ �t

2π

∫ 2π

0
S(t, θ) cos(θ) dθ + O(�t3)

v(P) = 1

π

∫ 2π

0

(−p(Q1(θ)) sin(θ) + u(Q1(θ)) sin(θ) cos(θ) + v(Q1(θ) sin2(θ)
)
dθ

+ �t

2π

∫ 2π

0
S(t, θ) sin(θ) dθ + O(�t3).

(27)

The computations can be simplified by introducing further third order accurate approxi-
mations in the evolution formulas. These approximations are justified by Lemma 2.1 from
[21], which is cited here for completeness.

Lemma 4.1 (see [21]) Consider 2π -periodic, continuously differentiable functions w : R ×
R → R and p : R → R. For the integration around a circle of radius R, with a general
point Q(θ) = (R cos(θ), R sin(θ)), the following relation holds

∫ 2π

0
p′(θ)w(Q(θ))dθ = R

∫ 2π

0
p(θ)

(
wx (Q(θ)) sin(θ) − wy(Q(θ)) cos(θ)

)
dθ.

Now we observe

�t

2π

∫ 2π

0
S(t, θ) dθ = c�t

2π

∫ 2π

0
sin(θ)

[
ux (Q1(θ)) sin(θ) − uy(Q1(θ)) cos(θ)

]
dθ

− c�t

2π

∫ 2π

0
cos(θ)

[
vx (Q1(θ)) sin(θ) − vy(Q1(θ)) cos(θ)

]
dθ

= c�t

2π

1

c�t

∫ 2π

0
[cos(θ)u(Q1(θ)) + sin(θ)v(Q1(θ))] dθ

= 1

2π

1

c�t

∫
Dc�t

∇ · (u, v) dxdy

= 1

2πc�t

[
πc2�t2

(
ux (P

′) + vy(P
′) + O(�t2)

)]

= c�t

2

(
ux (P

′) + vy(P
′)
) + O(�t3).

Here we have used Lemma 4.1 to get the third line, the divergence theorem to get the fourth
line and the midpoint rule to get the fifth line. Thus, in the approximation of the pressure
the two terms in the second line of (26) cancel up to a third order term and can therefore be
ignored. A similar approximation can be used for the velocity components to obtain the third
order accurate approximations, the so-called EG2 approximate evolution operator,
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Fig. 4 Illustration of the update of point values for the acoustic equations on a Cartesian mesh using the EG2
operator

p(P) ≈ 1

π

∫ 2π

0
(p(Q1(θ)) − u(Q1(θ)) cos(θ) − v(Q1(θ)) sin(θ)) dθ − p(P ′)

u(P) ≈ 1

π

∫ 2π

0

(
−p(Q1(θ)) cos(θ) + u(Q1(θ))

(
2 cos2(θ) − 1

2

)
+ 2v(Q1(θ)) sin(θ) cos(θ)

)
dθ

v(P) ≈ 1

π

∫ 2π

0

(
−p(Q1(θ)) sin(θ) + 2u(Q1(θ)) sin(θ) cos(θ) + v(Q1(θ))

(
2 sin2(θ) − 1

2

))
dθ.

(28)

For the Active Flux reconstruction on Cartesian grids, Eq. (28) can be evaluated exactly. In
Fig. 4 we show an illustration of the EG2 update of the point values used in the Active Flux
scheme. The approximative evolution operator (28) integrates over a circle while the exact
evolution operator (21) also includes the integration over the mantle of the bicharacteristic
cone from t to t + �t . Note that in (21) the approximation of the mantle integral is included
by means of additional terms that are integrated over the base circle at time t . By using the
exact evolution operator in the form proposed by Barsukow et al., i.e. (7), integration takes
place over a disk at time t .

Theorem 4.1 We consider an Active Flux method for the two-dimensional acoustic equations
which updates the point values via (28). For sufficiently smooth initial values the method is
third order accurate in space and time.

Proof By construction, the formulas (28) are third order accurate in time. Furthermore, for
sufficiently smooth data the Active Flux reconstruction is third order accurate in space. The
integrals in (28) can be evaluated exactly for the Active Flux reconstruction and therefore all
point values are computed with third order accuracy. Consequently, the nodes of Simpson’s
rule, used for the flux computation, are third order accurate in space and time and thus the
cell average values are computed with third order accuracy. �	
Remark 4.2 Instead of using the trapezoidal rule, the double integrals could be approximated
with the rectangle rule. Two different second order accurate evolution formulas were derived
in [21], the so-called EG1 and EG3 formulas, see Eqs. (2.17)–(2.19) and (4.13)–(4.15) of
[21].

In the context of Active Flux methods we found that both of these update formulas led to
unstable approximations. If used in a finite volume method with piecewise constant recon-
struction, Lukáčová-Medvid’ová et al. [21] found that one of the second order accurate update
formulas, namely EG3, outperformed all other methods and in particular also the third order
accurate EG2 approach used here.

Another second order accurate evolution formula for acoustics, the so-calledEG4operator,
was presented in [25]. When used to update the point values in an Active Flux method, we
observed stability for time steps satisfying CFL ≤ 0.154 and second order accuracy.
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Physically relevant systems of hyperbolic balance laws consist of two important differen-
tial operators: the convection operator and the operator modelling acoustic or gravity waves.
These operators arise in many different systems, such as the Euler equations of gas dynamics,
shallow water equations or the equations of magnetohydrodynamics. The steps used in the
derivation of the approximative evolution operator for acoustics, which were reviewed in
this section, can thus be mimicked in the derivation of evolution operators for other systems.
This has been done for the linearised Euler equations in [23] and for the shallow water MHD
equations in [19].

5 Stability and Accuracy Studies for the Acoustic Equations

5.1 Linear Stability Analysis

In order to perform a linear stability analysis of the Active Flux method with different evo-
lution operators for the update of the point values, we consider discretisations on a quadratic
domain with double periodic boundary conditions. The domain is discretised using m × m
grid cells. We write the linear method in the form Qn+1 = AQn , where Q ∈ R

12m2
consists

of all degrees of freedom at the current time level n and the matrix A ∈ R
12m2×12m2

repre-
sents the update of the two-dimensional numerical method during one time step. Recall that
we have three unknowns p, u and v and four degrees of freedom per grid cell.

We say that a method is Lax–Richtmyer stable if and only if ‖An‖ is bounded indepen-
dently of n. It can be shown, see [32] for details, that stability is equivalent to the condition
|λ| ≤ 1 for all eigenvalues λ of A and if |λ| = 1, then the geometric and algebraic multiplicity
need to match. We explore the stability of the different evolution operators by computing
the eigenvalues of the matrices A for a fixed grid using a method from the Python NumPy
package. The results are shown in Table 2.

Our numerical simulation and the linear stability analysis indicate that the Active Flux
methods based on the EG1 and EG3 approximate operators are unstable. When we use the
EG2 approximate evolution operator the eigenvalues are within the unit circle as long as the
condition CFL ≤ 0.279 is satisfied and for the EG4 approximate evolution operator this is
the case as long as CFL ≤ 0.154.

Thus, among the previously known approximate evolution operators constructed bymeans
of the bicharacteristics, the EG2 operator is the best candidate when used in an Active Flux
method. We will now compare the resulting Active Flux method with the other previously
usedmethods described inSect. 2.1. In Fig. 5we show the eigenvalues of the differentmatrices
using CFL = 0.279. Figure6 shows n versus ||An ||, n = 1, . . . , 100 for the three different
methods using againCFL = 0.279. In all cases ||An || is bounded, indicating that the algebraic
and geometric multiplicity of the eigenvalues of A with absolute value 1 do match.

Furthermore, the Active Flux method with the evolution formula that is exact for irrota-
tional flows, compare with (4), as well as the method which uses the exact evolution that is
exact for general data, compare with (7), are both stable for time steps satisfying CFL ≤ 0.5.
For the exact evolution formula this was first shown in [8].

5.2 Convergence Studies for Acoustics

Now we propose a new test case for studying the accuracy of methods for the acoustic
equations. It is motivated by a test case from [21]. While the previous test case considered
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Fig. 5 Location of the eigenvalues of the matrix A describing different versions of the Active Flux method for
linear acoustics. (Left) using the method (4), which is exact for irrotational flows, (middle) using the method
(7), which is exact for general data and (right) using (28), i.e. the third order accurate approximation derived
from the method of bicharacteristics

Fig. 6 ‖An‖ versus n for the different versions of the Active Flux method. (Left) using the method (4), which
is exact for irrotational flows, (middle) using the method (7), which is exact for general data and (right) using
(28), the third order accurate approximation derived from the method of bicharacteristics

time- and space-periodic solutions with smooth irrotational initial values, we here propose a
test problem with non-irrotational initial data.

Example 5.1 On the domain [−1, 1] × [−1, 1] we solve the acoustic equations with initial
values

p(x, y, 0) = 0

u(x, y, 0) = − 1

c
(sin(2πx) + sin(2π y))

v(x, y, 0) = 1

c
(sin(2πx) + sin(2π y)) .

(29)

The speed of sound is set to c = 1 and periodic boundary conditions are imposed. It can
easily be verified that the exact solution has the form

p(x, y, t) = 1

c
(cos(2πx) − cos(2π y)) sin(2πct)

u(x, y, t) = − 1

c
(sin(2πx) cos(2πct) + sin(2π y))

v(x, y, t) = 1

c
(sin(2πx) + sin(2π y) cos(2πct)) .

(30)

The solution structure for Example 5.1 is depicted in Fig. 7. We compute the error at
time t = 0.1 measured in the L1-norm and the experimental order of convergence (EOC)
comparing grids with resolutions 64, 128 and 256. For the results shown in Table 3, the third
order accurate approximative evolution operator (28), which was derived using the method
of bicharacteristics, was used. In Table 4 we show results using the evolution operator (4),

123



Journal of Scientific Computing (2024) 99 :16 Page 17 of 39 16

Fig. 7 Solution of Example 5.1 at times t = 0, 0.25, 0.5, 0.75: p (top), u (middle) and v (bottom)

Table 3 Error and EOC for the acoustic equations with initial data described in Example 5.1 measured in the
L1-norm using the EG2 evolution operator (28) with CFL = 0.267 at time t = 0.1

Res. Error EOC
p u v p u v

64 3.65 × 10−5 2.76 × 10−5 2.76 × 10−5 – – –

128 3.84 × 10−6 3.58 × 10−6 3.58 × 10−6 3.2492 2.9474 2.9489

256 5.07 × 10−7 4.58 × 10−7 4.58 × 10−7 2.9189 2.9685 2.9667

which is exact for irrotational flows as well as the operator (7), which is exact for general
data, to update the point values in the Active Flux method.

For all three methods we have used time steps close to the stability limit, since this
typically leads to the most accurate results. All three methods provide third order accurate
approximations of the pressure. By using the approach of Eymann and Roe, which is only
exact for irrotational flows, the approximation of the velocity field is less accurate. The
experimentally observed order of convergence is reduced to two.

While the exact evolution operator provides accurate results, the experimental order of
convergence in the velocity components is slightly reduced. Note that such an effect was
also mentioned in a recent paper by Samani and Roe [30]. We have observed that for this
time-periodic solution the loss in convergence rate is only seen for certain times. This is
documented in Table 5. For the other two methods the observed order of convergence did

123



16 Page 18 of 39 Journal of Scientific Computing (2024) 99 :16

Table 4 Error and EOC for the
acoustic equations with initial
data described in Example 5.1
measured in the L1-norm using
the evolution operator (4), which
is exact for initial data with
constant vorticity (top) and using
the exact evolution operator (7)
(bottom) at time t = 0.1 with
CFL = 0.457

Res. Error EOC
p u, v p u, v

64 1.48 × 10−5 2.23 × 10−3 – –

128 1.75 × 10−6 5.57 × 10−4 3.0756 2.0030

256 2.21 × 10−7 1.39 × 10−4 2.9859 2.0000

p u, v p u, v

64 1.49 × 10−5 2.11 × 10−5 – –

128 1.76 × 10−6 3.46 × 10−6 3.0800 2.6034

256 2.22 × 10−7 6.40 × 10−7 2.9871 2.4377

Table 5 Error and EOC for the acoustic equations with initial data (29) measured in the L1-norm using the
exact evolution operator (7) with CFL = 0.457 on grids with resolutions 64 and 128

Time Error64 Error128 EOC
p u, v p u, v p u, v

0.1 1.49 × 10−5 2.11 × 10−5 1.76 × 10−6 3.46 × 10−6 3.0800 2.6034

0.2 4.21 × 10−5 4.24 × 10−5 5.28 × 10−6 8.34 × 10−6 2.9950 2.3470

0.3 6.30 × 10−5 5.35 × 10−5 7.90 × 10−6 1.24 × 10−5 2.9955 2.1055

0.4 5.22 × 10−5 5.66 × 10−5 6.55 × 10−6 1.42 × 10−5 2.9953 1.9997

0.5 5.38 × 10−6 8.72 × 10−5 6.74 × 10−7 1.32 × 10−5 2.9971 2.7271

0.6 7.93 × 10−5 8.44 × 10−5 9.94 × 10−6 1.06 × 10−5 2.9961 2.9960

0.7 1.48 × 10−4 3.73 × 10−5 1.86 × 10−5 7.17 × 10−6 2.9958 2.3801

0.8 1.69 × 10−4 4.35 × 10−5 2.12 × 10−5 5.72 × 10−6 2.9955 2.9270

0.9 1.17 × 10−4 1.27 × 10−4 1.48 × 10−5 1.59 × 10−5 2.9945 2.9969

1.0 5.08 × 10−6 1.74 × 10−4 6.29 × 10−7 2.19 × 10−5 3.0151 2.9964

not change with time. In particular, the Active Flux method with the EG2 approximative
evolution operator leads to third order accurate approximations in all three components.

5.3 The Stationary Vortex

The approximation of a stationary vortex as proposed by Barsukow et al. [5] will now be used
to illustrate the ability of different versions of the Active Flux method to preserve stationary
states.

Example 5.2 Weapproximate solutions of the two-dimensional acoustic equationswith initial
values of the form

p(r , 0) = 0, u(r , 0) = n

⎧⎨
⎩
5r : 0 ≤ r ≤ 0.2
2 − 5r : 0.2 < r ≤ 0.4
0 : r > 0.4,

with r = √
x2 + y2, n = (− sin(θ), cos(θ))T , θ ∈ [0, 2π) and u = (u, v)T . The compu-

tational domain is [− 0.75, 0.75] × [− 0.75, 0.75], double periodic boundary conditions are
imposed.
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Fig. 8 Approximations of the vortex at time t = 100 using Active Flux methods with evolution operators
(left) exact for irrotational flows, (middle) EG2, (right) exact for general flows

Fig. 9 Scatter plots of vorticity for Example 5.2 for the Active Flux approximations with EG2 evolution
operator on a grid with 64 × 64 grid cells, (left) at time t = 10, (middle) t = 50, (right) t = 100. The solid
line represents the exact vorticity as a function of r

Barsukow et al. [5] showed that the third order accurate Cartesian grid Active Fluxmethod
with exact evolution operator, c.f. (7), is stationary preserving, i.e. it exactly preserves a
discrete representation of all stationary states. In order to test how well other Active Flux
methods approximate the steady state, we compute the solution at time t = 100 on a grid
with 128 × 128 grid cells. In Fig. 8 we show scatter plots of |u| versus r . Since the flow is
not irrotational, the evolution operator proposed by Eymann and Roe (4) is not exact and
the numerical approximation (left plot) deviates from the exact solution structure shown
as a solid line. The EG2 operator (28) also does not exactly preserve the steady state but
leads to a more accurate approximation (middle). Numerical results obtained with the exact
evolution operator (7) (right plot) confirm the exact preservation of the discrete representation
of the steady state. In Figs. 9 and 10 we show scatter plots of the vorticity, i.e. of vx − uy at
three different times, obtained with the new Active Flux method that uses the EG2 evolution
operator. These computations were carried out on a grid with 64 × 64 as well as 128 × 128
grid cells. For each grid cell the vorticity was computed using a centered finite difference
approximation, which agrees with the analytical vorticity of the Active Flux reconstruction
evaluated at the center of the grid cell. Although vorticity is not exactly preserved by the
Active Flux method with EG2 evolution operator, this quantity is approximated quite well
for a long time even on these relatively coarse grids.

5.4 Discontinuous Solutions

Next we consider an example with discontinuous initial values which was also studied in
[21].
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Fig. 10 Same as Fig. 9 but for a grid with 128 × 128 cells

Example 5.3 We consider the two-dimensional acoustic equations with initial values

u0(x, y) = v0(x, y) =
{

1√
2

: |y| < |x |
− 1√

2
: |y| ≥ |x |

p0(x, y) = 1.

The speed of sound is set to c = 1 and the computational domain is [−1, 1] × [−1, 1]. We
use zero-order extrapolation at the boundaries which takes the wave propagation in diagonal
direction into account, e.g., ghost cells at the left boundary C0, j are filled with cells C1, j−1 if
they are not close to the bottom left corner, otherwise they are filled with cells C1, j+1.

In Figs. 11 and 12 we show the solution structure obtained with the Active Flux method
on a grid with 256 × 256 grid cells using again the three different evolution operators for
the update of the point values. The solution consists of a stationary contact at x = y and an
expanding acoustic wave starting from the main diagonal. The solution structure agrees with
those observed in [21] but the discontinuities are represented much sharper with the Active
Flux method. The radial symmetry in pressure is approximated well. Small differences can
be observed in the velocity components along the diagonal, where the pressure is continuous
but the velocity components are discontinuous. The Active Flux method with exact evolution
operator appears to produce a slightly sharper discontinuity.All computationswere performed
without any limiting.

Our numerical results for smooth solutions of the acoustic equations confirm that the EG2
evolution operator leads to third order accurate results when used in a Cartesian grid Active
Flux method. Furthermore, the method leads to accurate approximations of solutions with
discontinuities. The discontinuities are represented much sharper than in the first and second
order accuratemethods considered byLukáčová-Medvid’ová et al. [21]. The stationary vortex
problem is not preserved exactly by the new Active Flux method but the Active Flux method
with EG2 evolution operator still performs well and outperforms the method from [12]. Since
the EG2 evolution operator was derived from a general theory, the approach can also be used
for other linear hyperbolic systems in particular in situations, where no exact evolution
operator is available.

6 Linearised Euler Equations

The linearised Euler equations with frozen coefficients ρ′, u′, v′ and p′ are given by

U t + A1U x + A2U y = 0, (31)
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Fig. 11 Solutions of the acoustic equations with initial values as described in Example 5.3 at time t = 0.5
using Active Flux methods with evolution operators (left) exact for irrotational flows, (middle) EG2, (right)
exact for general flows on a grid with 256 × 256 grid cells; (top) p, (middle) u, (bottom) v

where U = (ρ, u, v, p)T and

A1 =

⎛
⎜⎜⎝
u′ ρ′ 0 0
0 u′ 0 1

ρ′
0 0 u′ 0
0 ρ′c′2 0 u′

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

v′ 0 ρ′ 0
0 v′ 0 0
0 0 v′ 1

ρ′
0 0 ρ′c′2 v′

⎞
⎟⎟⎠ . (32)

Here u = (u, v) : R2 ×R
+ → R

2 is the velocity vector, p : R2 ×R
+ → R is the pressure,

ρ : R2 × R
+ → R is the density and c′ =

√
γ

p′
ρ′ is the local speed of sound with isotropic

exponent γ = 1.4. Similarly to the acoustic equations one can obtain an approximative
evolution operator (EG2) using the theory of bicharacteristics. The update of point values
has the form (compare with [24]):
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Fig. 12 Same as Fig. 11 but at time t = 1

ρ(P) = ρ(P ′) − 2
p(P ′)
c′2 + 1

π

∫ 2π

0

p(Q(θ))

c′2 − ρ′

c′ u(Q(θ)) cos(θ)

− ρ′

c′ v(Q(θ)) sin(θ) dθ + O(�t3)

u(P) = 1

π

∫ 2π

0
− p(Q(θ))

ρ′c′ cos(θ) + u(Q(θ))

(
2 cos2(θ) − 1

2

)

+ 2v(Q(θ)) sin(θ) cos(θ) dθ + O(�t3)

v(P) = 1

π

∫ 2π

0
− p(Q(θ))

ρ′c′ sin(θ) + 2u(Q(θ)) sin(θ) cos(θ)

+ v(Q(θ))

(
2 sin2(θ) − 1

2

)
dθ + O(�t3)

p(P) = −p(P ′) + 1

π

∫ 2π

0
p(Q(θ)) − ρ′c′u(Q(θ)) cos(θ) − ρ′c′v(Q(θ)) sin(θ) dθ

+ O(�t3),

(33)
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Fig. 13 Update of a corner point
value using evolution operator
(33)

Fig. 14 Illustration of the update of point values for the linearised Euler equations on Cartesian grids using
the EG2 operator

where P = (x, y, tn+1) is a point at which we want to compute the solution, P ′ =(
x − u′�t, y − v′�t, tn

)
and Q(θ) = (

x − (u′ − c′ cos(θ))�t, y − (v′ − c′ sin(θ))�t, tn
)
.

Figure13 illustrates the update of an edge and a corner point value.
The approximative evolution operator integrates over a circle with radius c′�t . For the

linearised Euler equations these circles are centered around the point (x − u′�t, y − v′�t).
We want to restrict the time step such that these circles lie in the neighbouring grid cells
of the considered point value degree of freedom. For the evolution of a point value at the
midpoint of a vertical grid cell interface five different constellations, as indicated in Fig. 14
(top), might arise for u′, v′ ≥ 0. For the update of a corner point value the different situations
for u′, v′ ≥ 0 are shown in the bottom row of Fig. 14. Analogously for all the other point
value degrees of freedom and other values of u′ and v′.

In all of our test computations for the linearised Euler equations we observed that the time
step restriction for stability is the same as for linear acoustics, i.e. CFL≤ 0.279, where the
Courant number now has the form

CFL := max
(|u′| + c′, |v′| + c′) �t

h
, h = �x = �y.
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Due to this stability condition, only the constellations indicated in the first and the third
picture of the top row of Fig. 14 will arise for the update of the edge centered point values
of a vertical grid cell interface when u′, v′ ≥ 0. For the update of a corner point value all
configurations shown in the bottom row of the figure might arise.

In our implementation, the approximative evolution operatorwas implemented using exact
integration of the Active Flux reconstruction over the circle segments.

Remark 6.1 The update of p, u and v in the linearised Euler equations is described by a lin-
ear superposition of advection and acoustics. This observation could be used to derive exact
evolution formulas similar to those presented in Sect. 2.1. However, the evaluation of exact
evolution operators on the circular discs arising for the linearised Euler equations would
be more difficult. In particular, it would require to compute derivatives of the reconstructed
functions across grid cell interfaces. The evaluation of the approximate EG2 evolution oper-
ator is for the linearised Euler equations more sophisticated than for acoustics but much
simpler than the evaluation of an exact evolution operator. It requires the integration along a
circle that intersects with the underlying Cartesian grid. Our accuracy studies for acoustics
showed that the accuracy obtained with the approximative EG2 operator is comparable with
the accuracy obtained by the exact evolution operator.

6.1 Convergence Study for Linearised Euler

We start with a test case where a density profile is simply advected with constant speed, such
that a convergence study can easily be performed by comparing a sequence of numerical
solutions with the exact solution.

Example 6.2 We consider numerical solutions of (31), (32) with initial values of the form

ρ(x, y, 0) = 5

2
exp

(− 40
(
(x − xa)

2 + (y − ya)
2)) + 1

10
u(x, y, 0) = v(x, y, 0) = p(x, y, 0) = 1

on the domain [−1, 1] × [−1, 1] with double-periodic boundary conditions. Two sets of
parameter values in the linearised Euler equations have been considered, namely ρ′ = 1,
u′ = v′ = 0.5 and c′ = 1 as well as ρ′ = 1, u′ = v′ = 1 and c′ = 1. These two cases
correspond to supersonic flow and subsonic flow. In the description of the initial values we
used xa = ya = − 0.31.

Table 6 shows the error in density measured in the L1-norm as well as the EOC at time
t = 4 and t = 2, respectively, i.e. after one full rotation, using time steps which satisfy
CFL = 0.275 on grids with 322, 642, 1282 and 2562 grid cells. We observe the expected
third order convergence rate of the method. Note that p, u and v remain constant up to
machine precision.

In our next example we consider a test problem with a more interesting smooth solution
structure.
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Table 6 Error in the L1-norm
and EOC after one rotation for
the density advection problem
described in Example 6.2

Res. u′ = v′ = 0.5 u′ = v′ = 1
Error EOC Error EOC

32 5.98 × 10−3 – 5.54 × 10−3 –

64 9.15 × 10−4 2.7087 8.35 × 10−4 2.7283

128 1.19 × 10−4 2.9394 1.09 × 10−4 2.9441

256 1.50 × 10−5 2.9884 1.37 × 10−5 2.9908

Fig. 15 Solution structure of ρ for Example 6.3 at times t = 0, 0.332, 0.664 along the diagonal from the
lower left to the upper right corner using the EG2 evolution operator with CFL = 0.267. The black line shows
the solution obtained on a grid with 512 × 512 grid cells, the red dots show the solution obtained on a grid
with 64 × 64 cells

Example 6.3 We consider the linearised Euler equations (31), (32) with initial values of the
form

ρ(x, y, 0) = 2.5 exp(− 40((x − xa)
2 + (y − ya)

2)) + 0.5 exp(− 40((x − xb)
2 + (y − yb)

2))

u(x, y, 0) = 0.05 exp(− 40((x − xb)
2 + (y − yb)

2))

v(x, y, 0) = − 0.05 exp(− 40((x − xb)
2 + (y − yb)

2))

p(x, y, 0) = 2.5 exp(− 40((x − xa)
2 + (y − ya)

2))

(34)

with xa = ya = −0.31, xb = yb = 0.39, u′ = v′ = 0.5 sin(π/4) and ρ′ = c′ = 1 on the
domain [−1, 1] × [−1, 1].

The solution structure of ρ along the diagonal from the lower left to the upper right corner
at times t = 0, 0.332, 0.664 is shown in Fig. 15. In Fig. 16 we show numerical results using
the Active Flux method with adaptive mesh refinement that was recently presented in [7].

To perform a numerical convergence study we compute the error at time t = 0.166
measured in the L1-norm and the EOC comparing equidistant grids with resolutions 64×64,
128 × 128 and 256 × 256 to a reference solution with resolution 1024 × 1024 using CFL
= 0.275. The results are shown in Table 7 and confirm third order accuracy and high accuracy
even on coarse grids.

6.2 Stationary andMovingVortex

We now consider the approximation of vortex structures for the linearised Euler equations.
The first test problem is a stationary vortex analogously to Example 5.2 but now approximated
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Fig. 16 Solution structure of ρ for Example 6.3 using the EG2 evolution operator with CFL = 0.267

Table 7 Error at time t = 0.166 measured in L1-norm and EOC for Example 6.3 using the evolution operator
(33)

Res. Error EOC
ρ u v p ρ u v p

64 6.78 × 10−5 3.28 × 10−5 3.29 × 10−5 6.38 × 10−5 – – – –

128 9.06 × 10−6 4.38 × 10−6 4.39 × 10−6 8.52 × 10−6 2.90 2.90 2.90 2.90

256 1.15 × 10−6 5.56 × 10−7 5.58 × 10−7 1.08 × 10−6 2.98 2.97 2.97 2.98

Fig. 17 Scatter plots of |u| for the stationary vortex, described in Example 6.4, at time t = 1 (left) and t = 100
(middle) as well as for the moving vortex problem, described in Example 6.5, at time t = 1 (right). All
computations use 128 × 128 grid cells

using the Active Flux method for the linearised Euler equations. The second test problem is
a moving vortex.

Example 6.4 We consider (31), (32) with ρ′ = 1, u′ = v′ = 0, c′ = 1 on the domain
[− 0.75, 0.75] × [− 0.75, 0.75] with double periodic boundary conditions. Initial values for
p, u and v are the same as inExample 5.2. In addition, the density is initially set toρ(r , 0) = 0.
The exact solution coincides with the initial values for all times.

In Fig. 17 we show scatter plots of |u| at times t = 1 (left plot) and t = 100 (middle)
computed on a grids with 128 × 128 grid cells. The result at time t = 100 compares well
with the result for acoustics shown in Sect. 5.3.

In contrast to the acoustic equations, the linearised Euler equations allow to also approx-
imate a moving vortex structure. Such a problem is considered in the next test problem.
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Fig. 18 Solution structure of |u| for the moving vortex problem, described in Example 6.5, combuted on a
grid with 128 × 128 grid cells at times t = 0.25, 5, 0.75, 1

Example 6.5 We consider (31), (32) with ρ′ = 1, u′ = v′ = 1.5, c′ = 1 on the domain
[− 0.75, 0.75]× [− 0.75, 0.75] with double periodic boundary conditions. The initial values
are the same as in Example 6.4. At all times t = n, n ∈ N, the exact solution coincides with
the initial values.

In Fig. 18 we show the solution structure of |u| for the moving vortex problem at different
times. In Fig. 17 (right) we show a scatter plot at time t = 1 which can be compared with
Fig. 17 (left) to see the influence of the transport on the accuracy of the vortex structure.

6.3 Discontinuous Solutions

Next we consider a test problem with discontinuous solution structure in analogy to Exam-
ple 5.3.

Example 6.6 We consider numerical solutions of (31), (32) with ρ′ = 1, u′ = v′ = 0, c′ = 1
on the domain [−1, 1] × [−1, 1]. The initial values for p, u, v agree with those of Example
5.3. The initial values for density are set to ρ(x, y, 0) = 1. Our numerical boundary treatment
takes the solution structure into account as described in Example 5.3.

In Fig. 19 (left) and (middle), we shownumerical solutions of Example 6.6 at times t = 0.5
and t = 1, computed on a grid with 256 × 256 grid cells, using time steps which satisfy
CFL < 0.275. We observe a sharp approximation of discontinuities and a spherical solution
structure in analogy to the results for acoustics shown in Figs. 11 and 12. In addition (right) we
also show the solution structure computed on a coarser grid with 128× 128 grid cells which
again illustrates the ability of the Active Flux method to provide accurate approximations
even on relatively coarse grids.

7 Euler Equations

Now we use the approximative evolution operator for the linearised Euler equations to con-
struct an Active Flux method for the two-dimensional Euler equations, i.e. for the nonlinear
system

∂tq + ∂x f (q) + ∂yg(q) = 0, (35)
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Fig. 19 Numerical results for Example 6.6: ρ, u, v, p (top to bottom) at times t = 0.5 (left) and t = 1 (middle)
using a grid with 256 × 256 grid cells. The right column shows the solution at time t = 1 using a grid with
128 × 128 cells

with q = (ρ, ρu, ρv, E)T ,

f (q) =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv

u(E + p)

⎞
⎟⎟⎠ , g(q) =

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p
v(E + p)

⎞
⎟⎟⎠ (36)
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and the ideal gas equation of state

E = p

γ − 1
+ 1

2
ρ(u2 + v2). (37)

OurActive Fluxmethod for the Euler equations uses the conservative form (35) for the update
of the cell average values of the conserved variables and local linearisations of the form (31),
(32), to compute the evolution of the point values of the primitive variables using the method
of bicharacteristics. This is in analogy to the lower order finite volume methods proposed by
Lukáčová-Medvid’ová et al. [23]. In [1], Abgrall proposed a method for the one-dimensional
Euler equations which also combines the evolution of conservative and primitive variables.
It is a semi-discrete method and the use of a higher order accurate ode solver increases the
stencil. Our method instead is fully discrete and thus uses a local stencil in space and time.

In our description of the method we denote with Q approximations of the conservative
variables (ρ, ρu, ρv, E)T andwithU approximations of the primitive variables (ρ, u, v, p)T .
The conservative variables are updated using a finite volume approach

Qn+1
i j = Qn

i j − �t

�x

(
Fi+ 1

2 , j − Fi− 1
2 , j

)
− �t

�y

(
Gi, j+ 1

2
− Gi, j− 1

2

)
,

where the numerical fluxes are calculated using Simpson’s rule. The horizontal flux, for
example, is computed using

Fi+ 1
2 , j = 1

36

(
f

(
Un
i+ 1

2 , j− 1
2

)
+ 4 f

(
Un
i+ 1

2 , j

)
+ f

(
Un
i+ 1

2 , j+ 1
2

)

+ 4 f

(
U

n+ 1
2

i+ 1
2 , j− 1

2

)
+ 16 f

(
U

n+ 1
2

i+ 1
2 , j

)
+ 4 f

(
U

n+ 1
2

i+ 1
2 , j+ 1

2

)

+ f

(
Un+1
i+ 1

2 , j− 1
2

)
+ 4 f

(
Un+1
i+ 1

2 , j

)
+ f

(
Un+1
i+ 1

2 , j+ 1
2

))
.

(38)

To compute these numerical fluxes, we use point values of ρ, u, v and p along the grid cell
boundary at times tn , tn+ 1

2
and tn+1. We assume that the point values of the primitive and

conservative variables at time tn are known. Point values of ρ, u, v and p at the intermediate
and the new time level are computed using the approximative evolution formula for the
linearised Euler equations (33). Using these point values we then compute

f

(
U

n+ 1
2

i+ 1
2 , j

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
n+ 1

2

i+ 1
2 , j

ρ
n+ 1

2

i+ 1
2 , j

u
n+ 1

2

i+ 1
2 , j

ρ
n+ 1

2

i+ 1
2 , j

v
n+ 1

2

i+ 1
2 , j

1
γ−1 p

n+ 1
2

i+ 1
2 , j

+ 1
2ρ

n+ 1
2

i+ 1
2 , j

((
u
n+ 1

2

i+ 1
2 , j

)2

+
(

v
n+ 1

2

i+ 1
2 , j

)2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and analogously all the other terms on the right hand side of (38).
A piecewise quadratic reconstruction in primitive variables is required in order to evaluate

(33) for the linearised Euler equations with third order accuracy. The Active Flux reconstruc-
tion for two-dimensional Cartesian grids, which is described in [5, 17], requires point values
along the grid cell boundary as well as cell average values for each grid cell. While it is trivial
to compute point values of the primitive variables U from point values of the conservative
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variables Q and vice versa, this is not the case for cell average values, since products of
averages are not equal to averages of products.

To get third order accurate approximations of the cell averages in primitive variables, we
first compute anActiveFlux reconstruction in conservative variables. This reconstruction uses
the cell averages Qn

i j of the conserved quantities, computed by the finite volume approach,
and point values of the conserved quantities along the grid cell boundary that are easily
obtained from point values in primitive variables. Point values for E can be computed via
the equation of state (37). The reconstruction in conservative variables can be evaluated at
the center of the grid cell, i.e. at (xi , y j ), leading to third order accurate approximations of
point values in conservative variables qrec(xi , y j ). From these point values in conservative
variables we can compute point values of the primitive variables at the center of the grid
cell. Finally, we use these point values at the center of the grid cell together with the point
values along the grid cell boundary to compute cell average values by using Simpson’s rule.
These cell average values of the primitive variables finally allow us to compute the third order
accurate Active Flux reconstructions in primitive variables.

For the nonlinear Euler equations the linearisation (31), (32) is performed locally for
each point value. An important aspect which arises in the nonlinear case is the choice of
the state around which the linearisation should be performed. Previous results for the two-
dimensional Burgers’ equation [4, 8] indicate that the linearisation should be performed
around the solution we wish to approximate. This can be realised iteratively as described in
Algorithm 1. The derivation and analysis of third order accurate Active Flux methods for
the one-dimensional Euler equations presented by Barsukow [4] show that characteristics for
nonlinear systems are in general curved lines and that the evolution operator needs to take
the curvature of characteristics into account in order to obtain third order accurate Active
Flux methods. In our current Active Flux method for the two-dimensional Euler equations
we use the characteristic cone from the linear problem and ignore the influence of nonlinear
effects on the geometry of the characteristic cones. The currently used update of the point
values located at (xi+ 1

2
, y j ) is described in Algorithm 1.

Algorithm 1 Update of point values in the Active Flux method for the Euler equations

Use the point value from previous full time as initial guess U
n+ 1

2 ,0

i+ 1
2 , j

:= Un
i+ 1

2 , j
for � = 0, 1, . . . , L do

Compute U
n+ 1

2 ,(�+1)

i+ 1
2 , j

by solving (31), (32) for a time step of length �t/2 using

Ak = Ak (U
n+ 1

2 ,�

i+ 1
2 , j

), k = 1, 2.

end for

Set Un+1,0
i+ 1

2 , j
:= U

n+ 1
2 ,L

i+ 1
2 , j

for � = 0, 1, . . . , L do
Compute Un+1,(�+1)

i+ 1
2 , j

by solving (31), (32) for a time step of length �t using

Ak = Ak (U
n+1,�
i+ 1

2 , j
), k = 1, 2.

end for
The same approach can be used for all the other point values.
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Table 8 Error of density
measured in the L1-norm and
EOC after one rotation for
Example 7.1

Res. u′ = v′ = 0.5 u′ = v′ = 1
Error EOC Error EOC

32 6.58 × 10−3 – 6.28 × 10−3 –

64 1.02 × 10−3 2.6909 9.63 × 10−4 2.7041

128 1.33 × 10−4 2.9341 1.26 × 10−4 2.9377

256 1.68 × 10−5 2.9874 1.59 × 10−5 2.9880

Fig. 20 Solution structure of the Gresho problem computed at time t = 3 on a grid with 64 × 64 grid cells,
(left) density, (middle) pressure, (right) angular velocity

Example 7.1 We consider approximations of the Euler equations with initial values as
described in Example 6.2. The exact solution again agrees with the initial values propagated
with constant speed. Numerical simulations are performed on the domain [−1, 1] × [−1, 1]
with periodicity imposed in both directions.

Table 8 shows results of a numerical convergence study for Example 7.1. For this simple
problem the nonlinearity of the equations does not lead to geometric changes of the character-
istic cones and we observe the expected third order convergence rate by using the described
method with only one iteration, i.e. L = 0, for the computation of the point values.

While we use a completely different method than in the case of the linearised Euler
equations, the accuracy obtained for the nonlinear Euler equations compares well with the
accuracy observed in Table 6 for the linearised Euler equations.

Example 7.2 The Gresho problem [16, 20] is a stationary rotating vortex problem. The veloc-
ity field agrees with those of Example 5.2. The pressure is prescribed in such a way that the
centrifugal force is balanced by the pressure gradient:

p(r) =
⎧⎨
⎩
5 + 25

2 r
2 : 0 ≤ r < 0.2

9 − 4 ln 0.2 + 25
2 r

2 − 20r + 4 ln r : 0.2 ≤ r < 0.4
3 + 4 ln 2 : r ≥ 0.4.

(39)

The density is set to one, the computational domain is [− 0.75, 0.75] × [− 0.75, 0.75] and
periodic boundary conditions have been used.

In Figs. 20 and 21 we show numerical results obtained by running the Active Flux method
for the Euler equations on a grid with 64 × 64 cells until time t = 3 using time steps which
satisfy CFL ≤ 0.275. The density does not stay constant. Instead we observe values between
0.999275 and 1.001377. The circular geometry in p and |u| is well preserved.
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Fig. 21 Scatter plot of the numerical solution at time t = 3 for the Gresho problem computed on a grid with
64 × 64 cells, (left) pressure, (middle) angular velocity and (right) vorticity

Our next test problem considers a smooth moving vortex problem, which will also be used
for a numerical convergence study.

Example 7.3 We consider a smooth traveling vortex for the Euler equations as introduced in
[18]. A rotating vortex is initially located at (0.5, 0.5) and propagates with constant speed
(uc, vc). The initial values have the form

ρ(x, y, t) =
{

ρc + 1
2 (1 − r2)6 : r < 1

ρc : otherwise
u(x, y, z) =

{
uc − 1024 sin(θ)(1 − r)6r6 : r < 1
uc : otherwise

v(x, y, t) =
{

vc + 1024 cos(θ)(1 − r)6r6 : r < 1
vc : otherwise

p(x, y, t) =
{
pc + (p(r) − p(1)) : r < 1
pc : otherwise.

Here r is the scaled distance from the initial center of the vortex, i.e.

r =
√

(x − 0.5)2 + (y − 0.5)2/R,

where R is the radius of the vortex. The function p(r) is described in [18] as a polynomial
of degree 36. One of the coefficients however is incorrect and should be

(− 269
15 r

30
)
instead

of
(
− 259

15 r
30

)
. In our computation we use R = 0.4, ρc = 0.5, uc = vc = 1 and pc = 0.1.

We simulate the vortex on the domain [0, 1] × [0, 1] using periodic boundary conditions. At
time t = 1 the exact solution agrees with the initial values.

In Table 9 we show results of a numerical convergence study. The computation was per-
formed using time steps which satisfy CFL ≤ 0.275. The error was measured by comparing
the numerical solution of the current grid with the solution on the next finer mesh. We show
the results for a computation with one and two iterations, i.e. using L = 0 and L = 1
in Algorithm 1. As previously observed for scalar problems, the iterative process improves
the accuracy. Since our method does not take changes of the characteristic cone due to the
nonlinearity into account, we can not expect full third order. However, the experimentally
observed order of convergence is still close to three if two iterations are used for the update of
the point values. Figures22 and 23 show the solution structure of the smooth moving vortex
problem. At time t = 10, shown in the right column of Fig. 22, perturbations of the spherical
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Table 9 Error in the L1-norm
and EOC for the density at time
t = 1 with 1 and 2 iterations for
the smooth vortex problem
described in Example 7.3

Res. 1 Iteration (L = 0) 2 Iterations (L = 1)
Error EOC Error EOC

32 6.91 × 10−4 – 6.84 × 10−4 –

64 1.12 × 10−4 2.6202 1.09 × 10−4 2.6454

128 1.58 × 10−5 2.8293 1.47 × 10−5 2.8899

256 2.33 × 10−6 2.7652 1.93 × 10−6 2.9320

512 4.30 × 10−7 2.4349 2.73 × 10−7 2.8234

Fig. 22 Solution structure of Example 7.3 at time t = 0 (left column), t = 1 (middle column) and t = 10
(right column) computed on a grid with 64 × 64 grid cells; (top) ρ, (middle) p, (bottom) |u|

geometry are clearly visable. This can also be seen in the scatter plot of |u| (Fig. 23 (middle)).
If the same computation is performed on a grid with 128 × 128 cells, the spherical solution
structure is preserved much better as can be seen in Fig. 23 (right).

Example 7.4 We consider a classical two-dimensional Riemann problem for the Euler equa-
tions, as described in [31], consisting of two forward moving shocks and two stationary
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Fig. 23 Scatter plot of |u| versus r for Example 7.3, (left) t = 1, 64× 64 grid, (middle) t = 10, 64× 64 grid,
(right) t = 10, 128 × 128 grid

contact discontinuities. On the interval [0, 1] × [0, 1] the initial values have the form

(ρ, u, v, p) =

⎧⎪⎪⎨
⎪⎪⎩

(0.5313, 0, 0, 0.4) : x > 0.5, y > 0.5
(1, 0.7276, 0, 1) : x < 0.5, y > 0.5
(0.8, 0, 0, 1) : x < 0.5, y < 0.5
(1, 0, 0.7276, 1) : x > 0.5, y < 0.5.

In Fig. 24 we show results for the density at different times. In the first row we used a grid
with 128 × 128 grid cells, in the second row with 512 × 512 cells. The solution structure is
well resolved even on the relatively coarse mesh.

Note that all simulations shown in this paper were performed without the use of limiters.

Conclusions

We have derived and analysed new third order accurate Active Flux methods for two-dimen-
sional linear and nonlinear hyperbolic systems. For the update of the point values we used
truly multidimensional approximate evolution formulas, which have been derived using the
method of bicharacteristics. For the acoustic equations we compared the resulting Active
Flux method with previously proposed Active Flux methods using exact evolution formulas.
The accuracy compares well but the newly proposed Active Flux methods have a reduced
stability. However, the method of bicharacteristics is a general approach that can be used
to derive evolution formulas for other linear hyperbolic systems. With this approach we
obtained the first unsplit Active Flux method for the linearised Euler equations. Using a local
linearisation for each point value degree of freedom, we furthermore obtained a new Active
Flux method for the two-dimensional nonlinear Euler equations. The performance of the new
Active Flux methods for linear and nonlinear hyperbolic systems is illustrated for a number
of test problems.

In addition we proposed a third order accurate Active Fluxmethod forMaxwell’s equation
that explores the relation between Maxwell’s equations and acoustics.

All Active Flux methods presented in this paper are fully discrete, use a continuous piece-
wise quadratic reconstruction, a truly multi-dimensional evolution operator and a compact
stencil in space and time. We implemented the new Active Flux methods in ForestClaw
using patches of Cartesian grids that also allow adaptive mesh refinement and sub-cycling as
described in [7].

Acknowledgements This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through SPP 2410, project number 525800857.
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A Details on the Implementation

Exemplarily we describe for the acoustic equation the update of the pressure corner value of
some cell using the EG2 evolution formula. We have

p(P) = 1

π

∫ 2π

0
p(Q(θ)) − u(Q(θ)) cos(θ) − v(Q(θ)) sin(θ) dθ − p(P ′)

= 1

π

∫ π
2

0
p0,0(Q0,0(θ)) − u0,0(Q0,0(θ)) cos(θ) − v0,0(Q0,0(θ)) sin(θ) dθ

+ 1

π

∫ π

π
2

p−1,0(Q−1,0(θ)) − u−1,0(Q−1,0(θ)) cos(θ) − v−1,0(Q−1,0(θ)) sin(θ) dθ

+ 1

π

∫ 3π
2

π

p−1,−1(Q−1,−1(θ)) − u−1,−1(Q−1,−1(θ)) cos(θ)

− v−1,−1(Q−1,−1(θ)) sin(θ) dθ

+ 1

π

∫ 2π

3π
2

p0,−1(Q0,−1(θ)) − u0,−1(Q0,−1(θ)) cos(θ)

− v0,−1(Q0,−1(θ)) sin(θ) dθ − p(P ′),

(40)

where ps,t , us,t and vs,t are the reconstructions in cells with index (s, t) relative to our cell
and

Q0,0(θ) :=
(

−1 + 2
c�t

�x
cos(θ),−1 + 2

c�t

�y
sin(θ)

)

Q−1,0(θ) :=
(
1 + 2

c�t

�x
cos(θ),−1 + 2

c�t

�y
sin(θ)

)

Q−1,−1(θ) :=
(
1 + 2

c�t

�x
cos(θ), 1 + 2

c�t

�y
sin(θ)

)

Q0,−1(θ) :=
(

−1 + 2
c�t

�x
cos(θ), 1 + 2

c�t

�y
sin(θ)

)
,

(41)
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Fig. 25 Domain of dependency for the update of a corner (left), a face (middle) and a cell averaged value
(right)

since every cell is mapped to the reference cell [−1, 1]× [−1, 1]. The reconstruction in each
cell is quadratic in x and y. On a Cartesian grid, the occurring integrals can be written as,
e.g.,

1

π

∫ π
2

0
p0,0(Q0,0(θ)) − u0,0(Q0,0(θ)) cos(θ) − v0,0(Q0,0(θ)) sin(θ) dθ

= 1

π

∫ π
2

0

2∑
n,m=0

pn,m sinn(θ) cosm(θ)

(
c�t

�x

)n+m

−
2∑

n,m=0

un,m sinn(θ) cosm+1(θ)

(
c�t

�x

)n+m

−
2∑

n,m=0

vn,m sinn+1(θ) cosm(θ)

(
c�t

�x

)n+m

dθ

=
2∑

n,m=0

(
p̃n,m + ũn,m + ṽn,m) (

c�t

�x

)n+m

,

(42)

where pn,m, p̃n,m, un,m, ũn,m, vn,m, ṽn,m are linear combinations of the eight point values
and the cell averaged value of our cell. Doing the same for the other three integrals lying
in the cells with indices (−1, 0), (−1,−1), (0,−1) and extracting the coefficients gives the
corresponding entries in the update matrix A, which now only depends on the CFL number.
Similarly one gets the coefficients for the update of a face point value, where the integration
takes place in only two cells. The update of the cell averaged value depends on all point
values on the boundary of our cell at the current time but also at the intermediate and the next
time step, giving the domain of dependency illustrated in Fig. 25.

To organise A, the degrees of freedom (DoFs) of our cells are ordered as

C =
[
p− 1

2 ,0, u− 1
2 ,0, v− 1

2 ,0, p− 1
2 ,− 1

2
, u− 1

2 ,− 1
2
, v− 1

2 ,− 1
2
, p0,− 1

2
, u0,− 1

2
, v0,− 1

2
, p0,0, u0,0, v0,0

]

(43)

and all cells concatenated row by row give the vector of all DoFs

Qn = [C1,1, C2,1, . . . , Cm,1, C1,2, C2,2, . . . , Cm−1,m, Cm,m
]
. (44)

Since only four DoFs are associated with each cell, the update of our cell depends on the
DoFs of 16 cells whose coefficients are stored in matrices Zs,t ∈ R

12×12, s, t = − 1, 0, 1, 2,
where (s, t) indicates the index relative to our cell. We define Pm(δ) ∈ R

m×m as the identity
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matrix shifted by δ columns to the right, then A is given by

A =
2∑

s,t=− 1

Pm(s) ⊗ Pm(t) ⊗ Zs,t . (45)

A more detailed description of how A is organised can be found in [8].
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