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Zusammenfassung 

Der Stoffwechsel eines Organismus umfasst physikochemische Prozesse, bei denen 

Substrate in metabolische Zwischenprodukte, sogenannte Metabolite, konvertiert 

werden, die wiederum in essenzielle zelluläre Bestandteile oder Energie 

umgewandelt werden. Die Ressourcenallokation bei vielzelligen Organismen 

bestimmt die Verteilung von Substraten auf kritische Stoffwechselprozesse. Diese 

Stoffwechselprozesse stehen in ständiger Konkurrenz untereinander, wodurch nicht 

alle Prozesse gleichzeitig optimiert werden können. Das Verständnis der 

Ressourcenallokation bei vielzelligen Organismen ermöglicht es uns, 

Überlebensstrategien und die Auswirkungen von Stoffwechselerkrankungen zu 

verstehen. Noch sind aber sogar grundlegende Design Prinzipien unklar.  

Ziel dieser Arbeit war es, die Einflussfaktoren auf die Ressourcenallokation bei 

vielzelligen Organismen zu untersuchen. Hierfür wurden biochemische Messungen 

und metabolische Flussanalysen mittels Flux Balance Analysis durchgeführt. 

Insbesondere wurde das Wachstum und die Entwicklung von Drosophila 

melanogaster Larven untersucht, um ein besseres Verständnis für die 

Ressourcenallokation zu erlangen. Diese Untersuchungen zeigten die Auswirkungen 

unterschiedlicher Wachstumsbedingungen auf die Entwicklung und 

Ressourcenallokation. Die larvale Entwicklung kann durch die Zugabe verschiedener 

Metabolite, wie bestimmter Aminosäuren, beschleunigt werden. Diese zusätzlichen 

Metabolite beeinflussen zugrunde liegende Stoffwechselprozesse und ihre 

Priorisierung. Die Auswirkung zusätzlicher Ressourcen auf die Entwicklung und den 

Stoffwechsel wurden durch Wechselwirkungsstudien des Larvenmikrobioms weiter 

untersucht. Es zeigte sich, dass ausgeschiedene Metabolite Einfluss auf den 

Metabolismus einzelner Mitglieder des Mikrobioms hatten. Dies kann durch 

ausgeschiedene Metabolite der Mikrobioms potenziell auch den Stoffwechsel des 

vielzelligen Wirtsorganismus beeinflussen. Darüber hinaus haben physiologische 

Studien gezeigt, dass Larvenorgane, wie der Darm, Auswirkungen auf die 

Ressourcenallokation von sich entwickelnden Larven haben. Diese Studien zeigten, 

dass der Darm und wahrscheinlich auch andere Organe eine wichtige Rolle bei der 

Einleitung kritischer Entwicklungsstadien, wie der Verpuppung, spielen und 

Stoffwechselprozesse bei vielzelligen Organismen regulieren. In dieser Arbeit war es 

möglich, Ergebnisse vorzustellen, die das Verständnis der Ressourcenallokation und 

der Auswirkungen physiologischer Eigenschaften auf den Stoffwechsel eines 

vielzelligen Organismus vertiefen.  
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Abstract 

The metabolism of an organism contains physico-chemical processes in which 

substrates are converted into metabolic intermediates, known as metabolites, and 

turned into essential cellular components or energy. Resource allocation in 

multicellular organisms determines the distribution of substrates to critical metabolic 

processes. These metabolic processes stand in constant competition with each 

other, resulting in the inability to optimize all metabolic processes simultaneously. 

Understanding resource allocation in multicellular organisms enables us to 

understand survival strategies and the impacts of metabolic diseases. Yet, even 

fundamental design principles remain unclear. 

The aim of this work was to investigate the influencing factors on resource allocation 

in multicellular organisms. For this purpose, biochemical measurements and 

metabolic flux analyses using Flux Balance Analysis were performed. Specifically, 

the growth and development of Drosophila melanogaster larvae were investigated to 

achieve a better understanding of resource allocation. These studies revealed the 

effects of different growth conditions on development and resource allocation. The 

larval development can be accelerated by the addition of different metabolites, such 

as certain amino acids. These additional metabolites directly affect underlying 

metabolic processes and their prioritization. This effect of additional resources on 

development and metabolism were further investigated through larval microbiome 

interaction studies. It was observed that secreted metabolites influenced the 

metabolism of individual members of the microbiome. This can potentially affect the 

metabolism of the multicellular host organism through secreted metabolites of the 

microbiome. 

Furthermore, physiological studies of larval organs, such as the gut, have an impact 

on the resource allocation of developing larvae. These studies revealed that the gut, 

and more likely other organs, play an important role in determining critical 

developmental stages, such as the pupation, and regulate metabolic processes in 

multicellular organisms.  

In this thesis, it was possible to present findings that advances the understanding of 

resource allocation and the impact of physiological properties on the metabolism of 

a multicellular organism.  
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1. Introduction  

The development and growth of multicellular organisms is orchestrated by 

complex regulatory processes which are tightly linked to the metabolism. For 

example, growth is regulated by the quality and quantity of nutrients that an 

organism absorbs from the environment. These nutrients are resources, which 

an organism utilizes to fuel its metabolism, enabling it to perform different 

survival-critical tasks. The process that describes the distribution of nutrients in 

an organism is called resource allocation. Resource allocation is an adaptive 

process in response to both external and internal signals. In consideration of the 

prevailing influences on the organism, resource allocation defines a metabolic 

strategy aimed at optimizing the fitness of the organism. The optimization of 

conflicting processes is described in engineering and economy through the 

concept of Pareto optimality. Here, a set of parameters is optimized toward a 

specific objective, and improving one parameter leads to a decrease of another, 

and vice versa. This concept can be applied in the context of resource allocation, 

a utilization demonstrated in the study of microorganisms (Schuetz et al., 2012). 

How resource allocation in multicellular organism9s work remains unanswered. 

Disruptions in the organization of the resource allocation network result in 

possible metabolism-related diseases. Thus, understanding the complex 

processes that lead to metabolic diseases in multicellular organism is of clinical 

interest. 

 

1.1. Metabolism 

An organism9s metabolism is the entirety of physico-chemical processes 

occurring within cells that convert substrates to metabolites. Substrates are the 

available resources for metabolic processes that are absorbed from the 

environment. These metabolites are essential components for cellular structures 

or serve as an energy source for the organism. Two major groups of reactions 

dominate the metabolism, anabolic and catabolic reactions (Fig. 1).  

Anabolic reactions synthesize complex biomolecules under energy consumption 

from convertible metabolites (Lehninger et al., 2013). Catabolic reactions on the 

other hand are reactions that convert available metabolites into energy for the 
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organism (Lehninger et al., 2013). One prominent metabolic pathway, for 

example, is Glycolysis, where glucose is converted through other intermediates 

to pyruvate, which can be used further in other metabolic pathways or channeled 

to energy production (Lehninger et al., 2013). The coordination of resource 

allocation among different conflicting metabolic processes of multicellular 

organisms is complex and determines the survival strategy of the organism 

(Lambers et al., 1981; van Ankeren and Wheeler, 1985; Roszak and Colwell, 

1987). 

 

Figure 1: Simplified representation of the core metabolism. Reproduced from Stephanopoulos et al. 
(1998). Sugars are transported into the cell and enter the hexose phosphate pool. The hexose phosphates 
are utilized in the glycolysis and/or pentose phosphate pathway to be converted into pyruvate and/or other 
carbohydrates. Pyruvate can be further utilized to generate energy metabolites through the tricarboxylic acid 
cycle (TCA-Cycle) or can be used in the production of metabolic products through fermentative metabolism. 
Intermediates of the glycolysis, TCA-Cycle, and pyruvate can be used to synthesis building blocks. 
Ultimately, the building blocks can be used to build macromolecules for different cellular structures through 
polymerization. 

 

The chosen metabolic strategy of an organism plays a determining role for its 

fitness and appearance (Fux et al., 2005) while the most important aspect of 

resource allocation form survival-critical processes. As multicellular organisms 

consist of diverse cell types with distinct functions, they show different patterns 

of metabolite assimilation (Lehninger et al., 2013). Furthermore, organisms have 

different behavior patterns depending on their developmental stage and this 

results in different metabolic patterns. For example, the primary objective of 
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juvenile organisms is growth, while adult organisms prioritize to maximize their 

metabolism towards reproduction (Sláma, 1964). 

How resource allocation in multicellular organisms' works is to this day an active 

field of research (Goelzer and Fromion, 2017; Basan, 2018; Russo et al., 2022). 

The investigation of metabolism and resource allocation becomes crucial, as a 

compromised metabolism results in different diseases such as obesity, diabetes 

or organ failures (Baue, 1991; Lumeng and Saltiel, 2011). A better understanding 

of the metabolism potentially supports the treatment and cure of metabolism 

related diseases. 

 

1.2. Drosophila melanogaster 

Drosophila melanogaster, as a holometabolic insect, is a widely utilized model 

organism in scientific research for investigation of various questions, including 

those related to metabolism (Baker and Thummel, 2007). The popularity among 

scientist is explained by several reasons. The fly genome is completely 

sequenced (Adams et al., 2000), supporting intensive genomic analysis and 

characterization. Additionally, the fly allows studies of human diseases, as more 

than 75 % of human disease genes are conserved (Reiter et al., 2001; Chien et 

al., 2002). Many organs in Drosophila melanogaster have analogs in humans. 

For example, the fly9s oenocytes and fat body have similar functions to the human 

liver and white adipose tissue (Baker and Thummel, 2007; Li et al., 2019).  

The development of Drosophila involves different stages. It begins with an 

embryonic stage, followed by three instar larval stages and ends with pupation, 

where metamorphosis results in the adult fly (Bate and Martinez Arias, 1993). 

Completing metamorphosis is the desired objective of the developing larva, which 

requires reaching the so-called critical weight threshold (Robertson, 1963; 

Shingleton et al., 2007). If this threshold is not reached, the larvae are not able to 

survive the metamorphosis. Larvae are able to adjust their developmental 

program to increase the chance to reach this threshold as larvae can prolong 

their developmental time under poor nutrient availability (Robertson, 1963). 

Therefore, the availability of resources has a direct impact on developmental 

timing, as low amounts of available resources prolong the overall developmental 
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time (Nunney, 1996). The precise mechanisms how the critical weight threshold 

function9s is not fully understood (Mirth et al., 2005; Mirth and Shingleton, 2012). 

The larval stages are especially well suited for the investigation of metabolism 

and resource allocation as larvae show a constant dietary intake (Aguila et al., 

2007), which limits confounding effects of varying meal sizes and nutrient uptake. 

The larval movement is constant throughout the development (Troncoso et al., 

1987) which allows to make assumptions about the energy drain over the course 

of the larval development. The aim of the larva is to maximize the amount of 

storage metabolites while growing as fast as possible (Aguila et al., 2007). This 

is due to the fact that the metamorphosis of larvae to pupae and the following 

emergence into adulthood is an energetically intensive process (Merkey et al., 

2011). In addition to their use in metamorphosis, energy storage metabolites are 

important for the fertility of adult flies, as low energy storage of metabolites leads 

to reduced fertility (Robertson, 1963; Nunney, 1996). In contrast, equivalent 

findings are present in higher organisms such as humans. For example, 

malnourished men tend to have lower fertility (Sharma et al., 2013; Luque et al., 

2017; Leisegang, 2019). 

 

1.3. Microbiome 

All higher organisms live in a symbiosis with a high number of different 

microorganisms, known as the microbiome. In some cases, the number of 

microorganisms inhabiting the host can be as high as the number of host cells, 

for example in humans (Sender et al., 2016). The human microbiome shows a 

high diversity, with studies revealing that it consists of 300 to 1000 different 

bacteria species (Claesson et al., 2009; Bäckhed, 2012). The microbiome is in 

many ways useful, as it can increase the nutrient availability (Krajmalnik-Brown, 

2012), synthesize important metabolites for the host (Lin et al., 2017; Liu et al., 

2020), or interact through secreted metabolites with the host9s signaling pathways 

(Shin et al., 2011; Martin et al., 2019). Dysregulation of the microbiome can lead 

to various diseases, some of which can be severe. A dysregulated microbiome in 

humans can cause obesity (Turnbaugh and Gordon, 2009; Tilg and Kaser, 2011), 

inflammatory bowel disease (Halfvarson et al., 2017) and more. The microbiome 
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presents a field for research and therapeutic exploration, given its potential 

benefits, while a dysregulated microbiome can give rise to health issues. 

The complexity of the mammalian microbiome, characterized by a broad 

spectrum of diverse microorganisms, is exceptionally high. Not all 

microorganisms within the microbiome can be cultured, further complicating the 

analytical process. Exploring the microbiome of simpler model organisms can 

help minimize these limitations. In the case of Drosophila melanogaster, its 

microbiome is relatively simple, comprising only 5 to 20 different species 

(Douglas, 2019; Ludington and Ja, 2020). The microbiome has also a substantial 

impact on the life quality for Drosophila. Laboratory-reared Drosophila are not 

necessarily reliant on the microbiome. Organisms lacking an active microbiome 

are referred to as axenic (Dougherty, 1959). Research indicates that axenic 

larvae are still able to fully develop, but the development is prolonged in 

comparison to non-axenic larva and under malnourishment axenic larvae are 

unable to survive (Brummel et al., 2004; Shin et al., 2011; Storelli et al., 2011; 

Ridley et al., 2012). Additionally, the microbiome impacts the expression of host 

genes, such as metabolism-related genes in Drosophila (Erkosar et al., 2014).  

These insights reveal that the host-microbiome interactions play an important role 

in analyzing the metabolism of the host organism, the microorganisms in the 

microbiome, and their interactions within the microbiome and the host-

microbiome system. 

 

1.4. Growth media 

The organisms9 development is dependent on many different factors, such as the 

genetic background, its physiology, metabolism, and available resources. Among 

all factors, available resources are rated one of the most important. Under non 

laboratory conditions, organisms usually absorb nutrients of varying composition, 

quantity, and quality. The analysis of an organisms9 metabolism and resource 

allocation depends on the composition of the available resources for digestion 

(Boggs, 1981).  
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To investigate the nutritional needs of organisms, three large groups of different 

growth media are used. First, complex media, where most of the ingredients are 

undefined (Dougherty, 1959; Jayme and Smith, 2000). Such media consist of 

complex nutrients, such as yeast (Piper et al., 2014). Studying an organisms 

metabolism with a complex medium presents challenges, as the majority of 

components are not fully characterized. This can lead to unknown side effects on 

the metabolism caused by unidentified ingredients. Second, one can use semi-

defined media where nearly all ingredients are defined (Dougherty, 1959). 

Utilizing a semi-defined medium for metabolic analyses is suitable, as potential 

side effects caused by the ill-defined dietary components are less complicated to 

identify. Third, chemically defined media known as holidic diets can be used. 

These media consist of precisely defined elementary ingredients and quantities, 

making a holidic diet ideal for investigating an organisms metabolism and 

resource allocation. This is particularly valuable for techniques that heavily rely 

on the accuracy of the parameterized growth medium, such as in silico modeling. 

Holidic diets are often classified as a minimal medium, which offers all necessary 

ingredients for development at a sub-optimal growth rate.  

Also for Drosophila melanogaster a chemically defined holidic diet could be 

identified (Piper et al., 2014; Piper et al., 2017). For the investigation of resource 

allocation, defining the amount of individual nutrients is a crucial point as the 

medium composition is determining the growth of the organism (Waldbauer and 

Friedman, 1991). Additionally, it offers the systematic alteration of the dietary 

composition to investigate the developmental impact through different metabolite 

concentrations. The holidic diet offers an excellent base for experimental setups 

that require the knowledge of the used growth medium for in vitro and in silico 

experiments alike. 

However, even after changing the amounts of individual or combined holidic diet 

components, the natural growth rate could not be restored. Thus, semi-defined 

complex media are required to mimic the impact of dietary alterations on the 

global physiology and developmental timing. For Drosophila, a high sugar diet 

(HSD; Musselman et al., 2011) or low sugar diet (LSD; Millington et al., 2022), 

are often used. These semi-defined complex media represent extreme diets that 

are also present in human nutrition. High caloric diets, referred as western diets 
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(Hariharan et al., 2015), are consisting of food that has a high fat and/or sugar 

amount, similar to the HSD. Diets with a low amount of sugar are known to 

support the treatment of different diseases, such as cancer (Agarwal and Maurya, 

2018). The understanding of the impact of high or low metabolite concentrations 

potentially opens ways to establish or support therapies for various diseases.  

The microbiome investigation and their host-microbiome are also relying on 

knowledge of the growth medium (Sommer, 2015). With the use of a defined 

growth medium, it is possible to draw conclusions about the impact on the growth 

of the microbiome and the subsequent host-microbiome interactions. To 

understand the growth of the microbiome within the host, using the hosts growth 

medium, such as HD medium, is beneficial (Schönborn et al., 2021). Additionally, 

medium that is designed to optimize the growth of gut bacteria, such as 

Acetobacter-selective medium (ACE medium) for Acetobacter strains growth and 

Lactobacillus-promoting  medium (MRS medium) for Lactobacillus strains (Blum 

et al., 2013), are beneficial.  

It is evident that the choice of growth medium has a significant impact on the 

outcome of developmental experiments. The selected growth medium can 

influence the course of development, alter the metabolism of an organism and its 

microbiome, and determine its fitness. 

 

1.5. Metabolic network 

Metabolic networks formalize a set of metabolic processes to model isolated 

pathways, a single cell, tissue or even an entire organism. Constructing a 

metabolic network consists of incorporating biochemical reactions, their 

corresponding educts and products (the metabolites), the required enzymes, and 

the genes which encode them to model regulatory layers (Lacroix et al., 2008). 

The entire network is translated into a mathematical model that consists of 

stoichiometrically balanced biochemical reactions and their associated 

information (Orth et al., 2010b; Baart and Martens, 2012). This network forms a 

matrix (�) where each row represents a metabolite, and the columns represent 

reactions (Orth et al., 2010b). The overarching goal is to solve this network by 

optimization of an objective function, which describes the target of the modeled 
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network. For many cases, formulating this objective function is a non-trivial task, 

as for example for a given organ or a complex organism such as an adult mouse 

due to the sheer number of degrees of freedom available and the varying 

environmental conditions. In the most intuitive representation, the objective 

function can be the maximization of biomass production, which is valid for many 

bacteria reared under constant nutritional conditions. In this case, the objective 

function equals the biomass function, which summarizes the relative metabolite 

amounts that are needed to build up mass (Orth et al., 2010b). Other objective 

functions, for example, used to identify the metabolic conditions needed to 

maximize the synthesis of a metabolite of interest (García Sánchez and Torres 

Sáez, 2014). To represent the flow of metabolites that can enter or leave the 

metabolic network, exchange reactions are used (Orth et al., 2010b).  

Thiele and Palsson (2010) created a protocol how metabolic networks can be 

constructed. To create such a metabolic network a draft model of metabolic 

reactions is created through genome annotation data of the organism of interest 

available in biochemical databases. In the following, the draft model is further 

refined and manually curated. The resulting metabolic model is translated into the 

mathematical formulation with the addition of constraints, such as flux constrains 

on the underlying metabolic reactions. This metabolic model is further utilized for 

network verification, evaluation, and validation. 

 

1.6. Flux Balance Analysis 

Flux Balance Analysis (FBA) is an in silico method which utilizes metabolic 

networks in a steady-state  (Savinell and Palsson, 1992; Varma and Palsson, 

1994; Orth et al., 2010b; Orth et al., 2010a). FBA calculates metabolic fluxes 

through the metabolic network where all metabolic fluxes are in balance between 

metabolite formation and degradation. 

FBA is formulated as the flux balance equation: 

��
�� =  � 7 � = 0 

(1) 
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where � is the metabolite concentration vector, � is the time, � is the 

stoichiometric matrix of the metabolic network and � is the reaction fluxes vector 

under steady-state conditions. This equation represents an under-determined 

linear equations system. In a steady-state situation, where metabolite 

concentrations remain constant, this implies that information of enzyme kinetics 

is not required for predictions of metabolic processes. 

FBA places further restrictions on metabolic flows. Each reactions flux (
�) is 

constrained by a flux range to work in a biologically reasonable range. This is 

defined by: 

�� f 
� f  �� (2) 

where �� and �� are the lower and upper bound, respectively, of each flux 
�. 

Different classes of reaction flux constraints can be used to narrow the solution 

space (Covert et al., 2003; Lee et al., 2006). First, the absorption of nutrients is 

limited by the physiology of the organism which imposes physiochemical 

constraints and limits the amount of absorption and excretion. Second, enzymes 

in cells or organisms have different quantities depending on their associated cell 

compartment that add spatial and topological constraints. Third, the growth 

medium determines the constitution and quantity of metabolites that are available 

to enter the organism or metabolic network. Fourth, thermodynamic constraints 

determine the reversibility of reactions, resulting in reactions having a defined 

direction within the context of the defined cellular environment.  

The flux balance equation with the applied flux constraints forms an enclosed 

solution space from the nearly infinite available solutions. This solution space is 

called the null space that contains all possible flux distributions of the available 

phenotypes (Varma and Palsson, 1994). 

Organisms or cells follow a wide range of biological objectives depending on the 

prevailing conditions and developmental stage. Typical objectives are, for 

example, growth, energy storage or use, or reproduction. In FBA, these biological 

objectives can be transformed into a mathematical formulation called the 

objective function. The objective function is defined as followed: 
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� =  � �� 7 � (3) 

where � represents the objective function, � is a vector of weights on the fluxes 

of the vector �. The vector � determines which reactions are involved in the 

objective functions. This objective function is optimized to find the best solution 

from the feasible solution space by maximizing or minimizing it. The formulation 

of this optimization problem is: 

�������� �� ��������: � =  � �� 7 � (4) 

�� !�"� �� � 7 � = 0 (5) 

��� �� f 
� f  �� (6) 

The solution is a flux distribution optimized for an objective function. This optimal 

solution can be achieved by different distributions of the metabolic fluxes. 

FBA was used in many different investigations regarding an organisms 

metabolism. Organisms such as Escherichia coli (Ow et al., 2009) or 

Saccharomyces cerevisiae (Hjersted and Henson, 2006) were used to 

investigate growth by maximizing biomass production (Pramanik and Keasling, 

1997; Knorr et al., 2007; Schuetz et al., 2007; Thiele and Palsson, 2010). Not 

only were investigations regarding growth performed, but also the synthesis of 

cellular structures (Ow et al., 2009), absorption of substrates (Pramanik and 

Keasling, 1997; Knorr et al., 2007), and the ATP production (Pramanik and 

Keasling, 1997; Knorr et al., 2007; Schuetz et al., 2007; Ow et al., 2009) in 

organisms were analyzed.  

The formulation of an objective function depends on the knowledge about the 

targeted organism or cell type, its energy requirements, and the objectives that 

the organism pursues. By employing FBA, meaningful statements about the 

metabolism of organisms and cells can be obtained. 
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1.7. Aim of this thesis 

The metabolism of an organism depends severely on the environmental 

conditions and the available resources. The fitness and phenotype of an 

organism is determined by the employed metabolic strategy (Fux et al., 2005). 

How the resource allocation of the available resources in a multicellular organism 

works is mostly unknown.  

The goal of this study was to investigate and expand the knowledge about 

resource allocation of multicellular organisms. The following questions were 

raised: 

What information is needed to develop a theoretical modeling framework to 

investigate the resource allocation of a multicellular organism?  

Is the accuracy of in silico methods high enough to make meaningful statements 

about the metabolism and resource allocation of multicellular organisms? 

What are the principles that the metabolism follows when distributing the 

resources? What impact does changing environmental conditions have on the 

metabolism? 

Does the microbiome community of a host have a considerable influence among 

themselves and on the host9s resource allocation?  

Is the metabolism and therefore the resource allocation influenced by the 

physiology? 

Is the resource allocation in multicellular organisms (Pareto-)optimal? 

To address these questions, a combination of in vivo and in silico studies was 

performed using the larval stage of Drosophila melanogaster as a model system. 

Ultimately, this work aims to deepen the understanding of the metabolism and to 

reveal underlying principles of resource allocation in multicellular organisms. 
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2.1. FlySilico: Flux balance modeling of Drosophila larval growth 

and resource allocation 
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Schönborn, J. W., Jehrke, L., Mettler-Altmann, T., & Beller, M. (2019). FlySilico: 

Flux balance modeling of Drosophila larval growth and resource allocation. 

Scientific Reports, 9(1), 17156. Reproduced with permission from Springer 

Nature.
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Abstract 

Organisms depend on a highly connected and regulated network of biochemical 

reactions fueling life sustaining and growth promoting functions. While details of 

this metabolic network are well established, knowledge of the superordinate 

regulatory design principles is limited. Here, we investigated by iterative wet lab 

and modeling experiments the resource allocation process during the larval 

development of Drosophila melanogaster. We chose this system, as survival of 

the animals depends on the successful allocation of their available resources to 

the conflicting processes of growth and storage metabolite deposition. First, we 

generated <FlySilico=, a curated metabolic network of Drosophila, and performed 

time-resolved growth and metabolite measurements with larvae raised on a 

Holidic diet. Subsequently, we performed flux balance analysis simulations and 

tested the predictive power of our model by simulating the impact of diet 

alterations on growth and metabolism. Our predictions correctly identified the 

essential amino acids as growth limiting factor, and metabolic flux differences in 

agreement with our experimental data. Thus, we present a framework to study 

important questions of resource allocation in a multicellular organism including 

process priorization and optimality principles. 
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Introduction 

Balancing limited resources to concurrent processes is an essential task in all 

areas of life. Every organism, for example, needs to allocate its available 

resources 3 mostly in the form of diet-derived nutrients 3 to concurrent processes 

such as live sustaining functions, reproduction, or storage metabolite synthesis. 

While the metabolic pathways involved in these processes, as well as some 

regulatory signaling pathways, are well established, the overarching design 

principles governing resource allocation and prioritization are elusive (Dmitriew, 

2011; Davison et al., 2014). This is especially true for multicellular heterotrophic 

organisms, which often have an almost unlimited amount of destinations for 

channeling their available resources. On top of a plethora of energy consuming 

processes available to the whole organism (physical movement, growth and 

reproduction, energy storage metabolite deposition), higher order multicellular 

organisms are composed of a multitude of organs. This results in an even higher 

complexity, given that many organs have distinct and different metabolic 

preferences, which is important during health and disease states (Hood and 

Terjung, 1990; Votruba and Jensen, 2007; Dashty, 2013). The mammalian brain, 

for example, depends on sugars for energy production, whereas most other body 

cells can additionally utilize other energy liberating pathways such as fatty acid 

beta-oxidation. To this end, a bottom-up understanding of the resource allocation 

regulation therefore appears close-to impossible based on this complexity and 

lack of detailed information. Thus, an abstraction in the form of a top-down 

modeling paradigm has the potential to reveal design principles, which serve as 

a starting point to investigate resource allocation principles. Yet, the various 

degrees of freedom available to complex organisms complicate the modeling 

procedures, as model solving usually targets the optimization (maximizing or 

minimizing) of a distinct objective function such as e.g. biomass production or 

growth (Feist and Palsson, 2010). Given that multicellular organisms can have 

multiple and often conflicting objective functions (e.g. reproduction, longevity), or 

objective functions without the aim of maximization or minimization (e.g. 

metabolic processes to sustain survival, growth in terms of sustaining healthy cell 

turnover, deposition of energy depots), the identification of a single and clear-cut 

objective function is difficult. 
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Development, however, appears to represent an exception. The development of 

most organisms follows a stereotyped program, which involves hard constraints 

e.g. in terms of the timing or metabolic thresholds. Holometabolous insects, for 

instance, need to deposit sufficient energy storage amounts to allow 

metamorphosis into an adult organism, which is often associated with a minimal 

weight, which is also termed critical weight in insects such as Drosophila 

melanogaster (Moed et al., 1999). Given the variations many organisms face 

during development 3 based on e.g. fluctuation in temperature or food supply and 

quality 3 developmental programs are at the same time also flexible (Fig. 1A,B).  

 

Figure 1: Plasticity of resource allocation and experimental design of the study. (A) Development 
involves growth and weight gain (in part due to the deposition of storage metabolites) over time. Altered 
environmental conditions, such as a rich (green) or poor (orange) nutrition results in an altered timing and/or 
(B) altered energy storage compound levels (compounds A3C show a different relative abundance under 
rich (green) and poor (orange) nutritional conditions). (C) Nutrients fuel conflicting processes. Drosophila 
larvae need to channel available nutrients to sustain either growth or the formation of storage metabolites. 
Following nutrient uptake in the gut (shown in grey) copious amounts of triglyceride and glycogen stores are 
built in the fat body (yellow), which largely fills the body cavity of developing larvae. (D) Our experimental 
design involved in silico and in vivo (wet lab) experiments. For the in silico studies, we first reconstructed 
main parts of the Drosophila metabolic network. For the parameter estimation, we performed metabolic 
profiling experiments during the Drosophila larval development. Subsequently, the metabolic network served 
the constraint-based flux balance modeling (FBA). With the FBA models, we predicted the consequences of 
alterations of the dietary composition and validated the modeling results using targeted experiments. High 
resolution versions of the metabolic network shown in (D) are provided in Fig. 2 as well as an interactive 
version of the metabolic network as supplemental data. 
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The time needed to reach a certain weight or storage threshold necessary to 

complete development thus can be extended under poor nutritional conditions, 

for example (Fig. 1A). Besides adjusting the developmental timing, organisms 

can also alter the relative amounts of their energy storage compounds (Fig. 1B). 

Thus, development of multicellular organisms should be accessible to modeling 

campaigns, as there is a clear-cut objective function (growth) and sufficient 

plasticity (timing and metabolic fine-tuning) to test modeling predictions. A better 

knowledge of the resource allocation principles potentially answers the question 

whether the developmental growth and resource allocation are in multicellular 

organisms also (pareto-)optimal. A pareto-optimality was previously reported for 

bacterial growth and metabolism (Schuetz et al., 2012). Pareto-optimality was 

also proposed for certain phenotypic traits of multicellular organisms (Shoval et 

al., 2012; Szekely et al., 2015), yet this is still under discussion (Edelaar, 2013; 

Shoval et al., 2013). 

Here, we use the larval development of Drosophila melanogaster as a model 

system for the analysis of the resource allocation of a multicellular organism using 

in silico and wet lab experiments (Fig. 1C,D). This system is particularly well 

suited for this endeavor based on the following key-points: (i) Larval development 

of Drosophila involves a massive increase in size and weight coupled to the 

deposition of copious energy stores necessary to fuel metamorphosis (Fig. 1C) 

(Merkey et al., 2011). In order to allow this massive size increase, larvae are 

constantly eating (Zinke et al., 1999), which facilitates the estimation of energy 

expenditure and metabolite intake. (ii) Drosophila larval development and 

resource allocation shows an inherent plasticity. Poor nutritional conditions, for 

example, result in a prolonged developmental timing based on a lowered rate of 

development (Fig. 1A) (Beadle et al., 1938). This change of developmental timing 

is often paralleled by an altered metabolite composition of the organism (Levin, 

2006; Vijendravarma et al., 2012; Koyama et al., 2014; Martínez et al., 2014). 

Intriguingly, also e.g. mammals adapt their metabolism to in utero nutritional 

alterations (Gluckman et al., 2007) and the impact of the nutritional status during 

development and early life on the later stages is well described in terms of the life 

history theory (Kuzawa, 2007; Aktipis et al., 2013) and the process of metabolic 

programming (Bischoff et al., 2018; Limones et al., 2019; Tarry-Adkins et al., 
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2019). (iii) For the modeling procedures, we benefitted from a previously 

published chemically defined, fully synthetic minimal Drosophila food (Holidic 

diet; HD) (Piper et al., 2014), which allowed us to clearly define the input of our 

model. On top of the general advantages of working with small animals, such as 

the large number of progeny and accessibility of the developmental stages, these 

characteristics clearly facilitated our investigations. 

To target resource allocation in Drosophila larval development, we generated the 

3 to the best of our knowledge 3 to date largest curated metabolic network for 

fruit flies and subjected it to flux balance analyses. To validate and optimize our 

metabolic network, we used targeted metabolite quantifications and GC-coupled 

mass spectrometry metabolomics measurements of larvae grown on the HD. We 

built the model capturing previously known requirements of Drosophila 

metabolism, such as sterol auxotrophy (Carvalho et al., 2010), and tailored it to 

incorporate all prominent ingredients of the HD. Our model predictions allowed 

us to correctly identify the amount of essential amino acids as growth limiting 

factor. Further, the model predictions resulted in flux differences, which are in line 

with the measured metabolite alterations associated with growth of the larvae in 

food with elevated amounts of sucrose or essential amino acids. These proof-of-

principle experiments provide a starting point to investigate the optimality 

principles of multicellular resource allocation. 

 

Results 

Drosophila metabolic network reconstruction 

In order to model Drosophila larval growth and resource allocation, we first 

constructed a flux balance capable metabolic network covering the biochemical 

pathways necessary to metabolize the major constituents of the minimal, 

synthetic medium (Holidic diet; HD) (Piper et al., 2014), which we used to grow 

the fruit flies during the wet lab procedures. On top of the central carbon 

metabolism, we therefore included e.g. amino acid, lipid, and carbohydrate 

metabolism (Fig. 2, Table S1, and Interactive Supplementary Fig. 1).  
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Figure 2: Map of the FlySilico V1.0 metabolic model of Drosophila melanogaster. On top of the central 
carbon metabolism, we included reaction complexes such as the lipid or amino acid metabolic pathways. A 
main goal was to include the pathways necessary for metabolizing the main constituents of the Holidic diet 
and the pathways covering our experimentally quantified metabolites. For details, please see main text, 
Table S1 and Interactive Supplementary Fig. 1. 

In total, our model 3 termed FlySilico 3 covers 363 reactions and 293 metabolites. 

To date, there are surprisingly only two other Drosophila metabolic networks 

available. The first one focuses on the effects of hypoxia on ATP production 

(Feala et al., 2007; Coquin et al., 2008; Feala et al., 2009). The other one is a 

whole-genome computer generated model, which lacks curation 

(BMID000000141998; https://www.ebi.ac.uk/biomodels-

main/BMID000000141998). 

For our model reconstruction, we started from scratch and emphasized on 

avoiding biologically unfeasible reactions (dead-end, blocked, and unbalanced 

reactions) as well as on minimizing the number of exchange reactions (see 

methods section). Figure 3 shows a comparison between different aspects of our 

FlySilico and a selection of previously published other FBA-models of different 

organisms including the whole genome Drosophila model.  
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Figure 3: Comparison of FlySilico V1.0 to other publically available metabolic networks. Dead-end 
reactions result in the production of metabolites, which are not further utilized in the network. Blocked-
reactions are not accessible during the solving of the network. Unbalanced reactions are violating the 
conservation of mass and/or charge. Exchange reactions represent either biologically necessary 
transporters (such as for the import of nutrients into the system, or naturally occurring transporters for the 
export of end products), or transport reactions necessary for the modeling, to e.g. eliminate metabolites 
which are not further processed as the necessary biochemical reactions were omitted from the model. The 
values marked by an asterisk were calculated using non-loopless conditions. All other values are determined 
using loopless computations. 

While of course still limited in size, our model has a low amount of biologically 

unfeasible reactions. The importance of this became evident when we performed 

simulations with the whole genome, in silico generated Drosophila metabolic 

network. Here, simulations resulted in a positive Biomass production (Fig. S1) 

even without any inputs entering the model; i.e. that this model allows perpetual 

motion. For FlySilico, we did not detect such an artificial and erroneous behavior 

(data not shown). 

 

Development of a Drosophila biomass function based on experimental data 

Given our aim to investigate growth and resource allocation, we established the 

parameters of our model by incorporating experimental data. For this, we grew 

wildtype Oregon-R Drosophila animals on the HD. The complete larval 

development (until prepupae emerge) appears quasi linear and takes on the HD 

about 170)hours. In order to follow the development and metabolite profile over 

time, we collected larvae at three equally spaced time points during development 

(96, 132 and 168)hours after egg laying; AEL). To determine growth progression 

over time, we measured the wet and dry weight (Fig. 4A) as well as different size 

parameters (Fig. S2) of the larvae at the different time points.  
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Figure 4: Growth and metabolic profiling of the larval developmental of Drosophila melanogaster 96, 
132, and 168)hours after egg laying. (A) Wet weight (left plot) and dry weight (right plot) measurements of 
larvae at the indicated developmental time points. (B3G) Absolute quantification of protein, glycogen, 
glucose, triglyceride (TAG), lactate, and glycerol levels. The data represent mean values)±)standard 
deviation normalized to the amount of animals per sample of at least triplicate measurements. (H,I) GC-MS 
metabolomics measurements of proteinogenic amino acids (H) and different metabolites (I) of Drosophila 
larval extracts from the indicated time points. Insets in (H,I) provide a zoom-in view on the low-abundant 
metabolite data. Metabolites were quantified using five point calibration curves (see methods, Fig. S3, and 
Table S2) and sorted for increasing abundance during the 168)hours time point. 

Larval weight increased almost linear over time (Fig. 4A). The water content was 

stable with values between 85 and 89 % (Fig. 5A) and unaffected by alterations 

of the food composition (data not shown).  
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Figure 5: Drosophila body composition and biomass function. (A) Water content of Drosophila larvae 
raised on the HD during the three investigated time points. The black part of the stacked bar plots shows the 
dry mass of the larvae. (B) Our combined targeted and GC-MS metabolite measurements explain on 
average about 79 % of the dry mass. Triglycerides and protein are the main contributors to dry mass. (C) 
Drosophila melanogaster biomass function based on our experimental data and literature. Green values 
indicate indices based on the GC-MS measurements and on the absolute biochemical metabolite 
quantifications, blue indices are based on the absolute biochemical metabolite quantifications. Red indices 
are based on information from the yeast whole-genome FBA model iMM904 (Mo et al., 2009). 

For all time points, we performed absolute quantifications of free protein, 

glycogen, glucose, triacylglycerol (TAG), lactate, and glycerol (Fig. 4B3G) levels 

according to established protocols (Jehrke et al., 2018) (see Table S2). Further, 

we quantified various metabolites of the central carbon metabolism as well as 

free amino acids by GC-MS metabolomics measurements and external standard 

curves (Figs 4H,I, S3 and Table S2). Most per animal normalized measurements 

increased over time, as expected (Fig. 4). Only lactate levels reached a plateau 

after 132)hours of development. All in all, our measurements explained on 

average 79 % (for 96)h AEL: ~81 %, for 132)h AEL: ~96 % and for 168)h AEL: 

~60 %) of the total dry weight with proteins and TAGs being the major contributors 

(Fig. 5B). Of course, we can not rule out that the larval midgut contained 

metabolites from the HD, which we also included in our measurements. Yet, while 

none of our targeted metabolite measurements covered compounds present in 

the HD, those represented the most abundant constituents of the larval biomass. 

The metabolites quantified by the GC-MS metabolomics strategy 3 which 

covered also metabolites present in the HD as e.g. the singular amino acids 3 

were only present in minute amounts. Thus, our measurements covered a large 
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part of the body composition and should provide a sufficient approximation to 

model larval growth. 

In order to perform growth rate simulations, we formulated a biomass function 

based on the previously reported yeast biomass function of the model iMM904 

(Mo et al., 2009). Yet, from the original yeast biomass function, we only utilized 

the value for the growth associated maintenance (GAM) costs, as this measure 

is difficult if not impossible to obtain for a multicellular organism. The other 

coefficients of the biomass function are based on our own measurements (Fig. 

5C and methods section). Next, we used the HD food ingredients as constraints 

for the model solution procedure. Although we already knew the exact 

composition of the food, we still needed to approximate the amount of food 

consumed by a single larva over time. Given that the measurement of the amount 

of internalized solid food is difficult, we decided to follow a theoretical approach 

(for details see methods section). For this purpose, we used data available for 

the average number of mouth hook movements (<bites=) per minute of larvae. The 

bites per minute only show low variability across different food compositions 

(Musselman et al., 2011; Ryuda et al., 2011), suggesting that this assumption is 

reasonable. Further, we approximated the volume of the mouth of the larva based 

on previous (Alpatov, 1929) and own measurements (Fig. S2; approximated 

volume of the mouth)=)0.011)mm3). Calculations based on both parameters 

resulted in an amount of 0.064)g/h food consumed per hour. We used this 

approximated food intake amount to calculate for each food ingredient the 

maximum amount consumed per hour. Of course, the calculated amount of 

consumed food is likely a prominent overestimation. For example, the larvae will 

most likely not fill their mouth completely with every bite. Further, not all food 

ingredients passage the gut barrier with 100 % efficiency and at this point, we do 

not know the resorption rate for the different nutrients. Thus, we sought to identify 

a correction factor to limit the nutrient influxes to a reasonable level. For this 

purpose, we solved the FBA-model with a wide range of diminishing correction 

factors (Fig. S4) and compared the resulting calculated growth rates with our 

experimentally determined growth rate of approximately 8.8 % dry weight 

increase per hour (see methods section). In this way, we identified a correction 

factor of the calculated food and thus nutritional uptake of about 12.2 %. So far, 
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little data concerning the food conversion and uptake rates of insects are 

available. Yet, Waldbauer et al. measured the efficiency of conversion of ingested 

food to body substance for various Lepidoptera species and found conversion 

rates ranging from 2 to 38 % (Waldbauer, 1968). Our theory-derived value of 12.2 

% thus is in the range of the experimentally determined values of other insects. 

 

Model verification 

The first step in our model verification procedure was to test whether it operates 

in a reasonable manner and whether it recapitulates known behaviors of the fly 

system, in contrast to e.g. the computer-generated model mentioned above. 

Drosophila, for example, is sterol auxotroph (Carvalho et al., 2010). We built our 

model to recapitulate this behavior and indeed a steep increase in the growth rate 

for positive, non-zero sterol uptake rates is visible (Fig. 6A). In contrast, the 

amount of the non-essential amino acid aspartic acid had no effect on the growth 

rate, as expected (Fig. 6B). 

As a next step, we performed more complex simulations. First, we investigated 

growth in response to varying oxygen levels. Here, a certain minimal oxygen 

influx was needed to support suboptimal growth before increasing oxygen levels 

resulted in a plateau of the growth rate (Fig. 6C). As a test for the predictive power 

of our system, we decided to test next whether we could predict the impact of diet 

alterations on the growth and metabolism. While a reduction of certain nutrients 

would have been possible, we decided to rather test for a possible limitation of 

certain nutrients given that the growth of the larvae was on the HD much slower 

as compared to a complex and rich diet. Based on the growth properties of the 

animals, the HD in fact is classified as a minimal medium, which was designed to 

mirror dietary restriction characteristics (Piper et al., 2014). Thus, we increased 

either the amount of dietary sugar or essential amino acids that was possible to 

enter the model. A doubling of the sucrose input limit had no effect on the 

calculated growth rate (Fig. 6C). However, when we doubled the amount of 

essential amino acids (EAA) potentially entering the system, the predicted growth 

rate prominently increased (Fig. 6D). We subsequently tested our modeling 

predictions by performing corresponding experiments. Larvae reared on a HD 
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containing the double amount of sucrose (<2x sucrose food=) indeed did not show 

an increased growth-associated weight gain as compared to larvae raised on the 

standard HD (Fig. 6E). Protein levels were even lower than the ones of the control 

animals at the middle time point (Fig. 6F). Doubling the amount of EAA (<2x EAA 

food=), however, indeed resulted in a higher growth rate (Fig. 6E) as well as 

higher amounts of protein (Fig. 6F). Thus, our modeling data are consistent with 

the experimental results, which suggests a high predictive power of the model. 

 

Figure 6: Model verification, predicted growth and comparison to real life. (A3D) Modeled growth rate 
in response to different input parameter variations. Negative uptake rates correspond to an excretion. (A) A 
certain level of cholesterol is needed for optimal growth while less result in a suboptimal growth phase. The 
zoom-in represents a larger cholesterol uptake flux range. (B) Levels of the non-essential aspartic amino 
acid do not affect biomass production. The zoom-in represents a larger aspartic acid uptake flux range. (C) 
Oxygen levels need to surpass a threshold to allow biomass production. In the following, the biomass 
production increases until it reaches a plateau. Increased sucrose levels (blue color) do not alter biomass 
production as compared to the standard HD (green color). (D) A doubling of the amount of essential amino 
acids (EAA) increases the biomass production (red color) as compared to the standard HD (green color). 
(E,F) Experimental testing of our model-based predictions. Animals were either reared on HD (green), HD 
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containing the double amount of sucrose (blue) or the double amount of EAA (red). The wet weight (E) and 
protein (F) content of the larvae was measured 96, 132, and 168)hours after egg laying. While the altered 
sugar content did not affect the growth rate, the addition of more EAA resulted in a higher growth rate (E). 
The protein measurements show similar results (F). Measurements in (E,F) represent the mean values of 
three biologically independent experiments. Each experiment consisted of quadruplicate samples. Whiskers 
represent the standard error of the mean (SEM). Please note that the wet weight data for the HD is identical 
with the one shown in Fig. 4A. Statistical significance was tested by an unpaired two-sample T-Test for each 
time point. Significance levels are: *p)<)0.05, **p)<)0.01, ***p)<)0.001. 

Modeling resource allocation 

As a next step, we investigated whether the model could recapitulate resource 

allocation differences driven by the increase of sucrose or EAA in the HD. 

Therefore, we performed a flux variability analysis for our model with the given 

elevated maximum input limits (Table S3). Subsequently, we percent normalized 

the maximum and minimum flux values obtained for the 2x sucrose or 2x EAA 

food, respectively, based on the flux variability values of the standard HD (Table 

S4). Further, we split the metabolic reactions into functional groups and plotted 

selected reactions with altered fluxes (Fig. 7).  

 

Figure 7: Modeling Drosophila larval resource allocation. The figure shows the results of the percent 
normalized flux variability analysis results for the simulations based on the HD with 2x sucrose (blue) and 
HD with 2x EAA (red), respectively. In brief, we percent normalized the values of the minimal (open circles) 
and maximal (filled circles) fluxes on the basis of the results for the standard HD. The sign of the flux 
percentage indicates the reaction direction, where a positive sign indicates the forward reaction, a negative 
sign indicates the backwards reaction and values spanning both signs represent reversible reactions. (A) 
Barplot of the central carbon metabolism flux change of the model solutions for the comparisons HD and HD 
with 2x sucrose (blue) or HD and HD with 2x EAA (red), respectively. (B) Flux change for the sucrose 
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metabolism (description as in (A)). (C) Flux change for the lipid metabolism (description as in (A)). Each 
reaction description can be found in Table S1. Flux variability analysis results are given in Table S3 and the 
normalized flux data are presented in Table S4. 

On the simulated 2x sucrose diet, most reactions of the central carbon 

metabolism (Fig. 7A) showed a prominently increased maximum flux rate (e.g. 

FBA)=)fructose-bisphosphate aldolase, GAPD)=)glyceraldehye-3-P 

dehydrogenase, PFK)=)phosphofructokinase, PGI)=)glucose-6-P isomerase). On 

the simulated 2x EAA diet, however, most maximum flux rates did not change, 

and only the lower flux rate bounds were increased, thus resulting in a more 

narrow range of possible flux variations (Fig. 7A). For few reactions, the diet 

alterations resulted in opposite flux changes (HEX1)=)hexokinase 1, LDH_L)=)l-

lactate dehydrogenase, PPPH)=)diphosphate phosphohydrolase, 

PRPPS)=)ribose-phosphate diphosphokinase, PhnN)=)ribose 1,5-bisphosphate 

phosphokinase, R1Pk)=)Ribose 1-phosphokinase). The diphosphate 

phosphohydrolase (PPPH) flux showed a largely increased minimal flux on the 

simulated 2x EAA diet (Fig. 7A). Diphosphate phosphohydrolase activity takes 

place very early in the lipid degradation, as it acts as the force to activate fatty 

acids for the beta-oxidation (Carman and Han, 2006). The higher minimal flux 

following the elevated EAA input, suggested an enhanced rate of lipid activation, 

which potentially fuels the elevated growth. Further, the increased flux of the 

lactate dehydrogenase suggested increased lactate levels of animals reared on 

the diet with 2x EAA. 

As expected, fluxes of reactions involved in sucrose metabolism (AF6P)=)ATP:D-

fructose 6-phosphotransferase, AGMH1)=)1,4-alpha-D-Glucan maltohydrolase 

AMYTRA)=)1,4-alpha-D-Glucan:1,4-alpha-D-glucan 6-alpha-D-(1,4-alpha-D-

glucano)-transferase, MGH)=)maltose glucohydrolase SGH)=)sucrose 

glucohydrolase, UDPGTRA)=)UDP-glucose:glycogen 4-alpha-D-

glucosyltransferase) increased prominently if the sucrose input was increased 

(Fig. 7B). The simulation of elevated EAA levels resulted in increased minimal 

fluxes of enzymes involved in lipid metabolism (ACS3)=)acyl coenzyme A 

synthetase, DGA)=)1,2-diacylglycerol acyltransferase, GK)=)glycerol kinase, 

GPPA)=)alpha-glycerophosphate acyltransferase), as well as situations where 

both the lower and upper flux limits were elevated (FASN)=)fatty-acid synthase), 

which suggest elevated lipid storage levels as a result (Fig. 7C). 



2.1. FlySilico: Flux balance modeling of Drosophila larval growth and resource allocation 

 

27 
  

When we performed corresponding metabolite measurements with animals 

raised under the different growth conditions, TAG levels indeed showed a 

modest, but significant, increase following growth on the 2x EAA diet (Fig. 8A).  

 

Figure 8: Metabolic profiling of the larval developmental of Drosophila melanogaster 96, 132, and 
168)hours after egg laying. (A3E) Absolute quantification of triglyceride (TAG), glycerol, glucose, glycogen, 
and lactate levels. Measurements in (A3E) represent the mean values of three biologically independent 
experiments. Each experiment consisted of quadruplicate samples. Whiskers represent the standard error 
of the mean (SEM). Statistical significance was tested by an unpaired two-sample T-Test for each time point. 
Significance levels are: *p)<)0.05, **p)<)0.01, ***p)<)0.001. 

Free glycerol levels showed a larger amount of variation (Fig. 8B). Yet, the trends 

clearly differed in response to the varying diet compositions. Increased dietary 

sugar levels resulted in lower levels of free glycerol, whereas increased amounts 

of EAA resulted in an on average increased free glycerol levels indicative of 

elevated lipolytic and/or lipogenic activity. Intuitively, we expected an altered 

sugar content of the animals raised on the 2x sucrose diet. Yet, we did not detect 

any prominent differences (Fig. 8C), which seems to be in line with the modeling 

results, which indicate a larger flux of the glycolysis reactions with a simultaneous 

activation of the complete TCA cycle or the reactions involved in oxidative 

phosphorylation (Fig. 7A). This increase of flux values suggest that the 

metabolism of Drosophila activates a metabolic program for an overflow 

metabolism perhaps associated with a larger burning or excretion of sugars. The 

2x EAA diet, however, resulted in a significantly higher glucose content of the 

animals (Fig. 8C), which appears to be in line as the higher flux rate of 

diphosphate phosphohydrolase or fatty-acid synthase suggest a higher beta-
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oxidation besides an increased lipid storage predicted by the model. Glycogen 

levels were mostly unaffected by the altered nutritional conditions (Fig. 8D). 

Lactate showed under basal HD growth conditions a plateau 132)hours after egg 

laying (Figs 4F, 8E). If additional sucrose was present, lactate levels even 

decreased 132)hours after egg laying (Fig. 8E). The 2x EAA diet yet resulted in 

statistically increased lactate levels (Fig. 8E), which again is in line with our 

modeling results, which suggested an increased lactate dehydrogenase flux (Fig. 

7A). Thus, we also could largely align our modeled flux values with the 

corresponding experimental data. 

 

Discussion 

Flux balance analyses (FBA) with metabolic networks of heterotrophic 

multicellular organisms usually appears complicated due to the difficulty of 

identifying a clear-cut objective function. Further, the various cell types of 

complex organisms, with their signature gene expression profiles and distinct 

metabolic and functional tasks, complicate modeling approaches even more. To 

tackle these difficulties, methods and strategies were designed (Martins Conde, 

Patricia do Rosario et al., 2016), as for example, to model the metabolic flow in 

the context of gene regulation or other advanced constraints such as dynamic 

changes. Here, we decided to use a top-down modeling approach focusing on a 

generalized and averaged simple model of the growing larva, which we identified 

as a suitable system for FBA given its clear-cut objective function. We used this 

simplified model given that many details of the overall organismic physiology are 

still unclear. Therefore, we rationalized that adding uncertain information might 

rather act detrimental as compared to a simplified model, which could better catch 

the more general schemes. A benefit from starting our model mostly from scratch 

was that we could pay special attention on avoiding dead-end and blocked-

reactions (Fig. 3), as well as to assure the biological feasibility of the subsequent 

FBA modeling results. Our resulting model is to the best of our knowledge the 

currently most advanced metabolic network of Drosophila metabolism and we 

provide it together with the code to perform FBA analyses in different ready-to-

use formats to the community (see methods section). Our initial rationale that a 
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simple model might be already useful appears valid, given that it is already able 

to recapitulate basic biology (Fig. 6) and successfully predicted the impact of 

dietary alterations on the larval growth and metabolism (Figs 638). In the future, 

the refinement of the model by e.g. incorporating gene regulation or a dynamic 

modeling (Martins Conde, Patricia do Rosario et al., 2016), potentially further 

enhances the predictive power of the model. While these enhancements will be 

likely less important for the modeling of a general behavior of the system 3 and 

thus general resource allocation questions as there are still many uncertainties 

resulting in a high number of degrees of freedom 3, they will facilitate the studying 

of new questions. For example, it will be interesting to investigate the interplay 

between different organs, as well as to study inter-organismal metabolic 

connections such as between the host and its gut microbiome constituents or 

host-symbiont/host-parasite mutualism. Drosophila is an exquisite model for such 

kind of studies given its well characterized and relatively simple gut microbiome 

(Douglas, 2019). Further, the mutualism between insects and the endosymbiont 

Wolbachia, which can also act as pathogen, is well described (Pietri et al., 2016; 

Landmann, 2019). In Aedes aegypti, an impact of an infection with the pathogenic 

Wolbachia strain wMelPop, for example, was recently shown to affect the TAG 

and cholesterol metabolism of the host (Geoghegan et al., 2017). Further, the 

time-resolved analysis of metabolite amounts as well as the consequences of 

gene dosage and protein activity alterations, will be interesting avenues to follow. 

Our lack of knowledge concerning the energy costs associated with growth and 

non-growth associated processes (often referred to as GAM 3 growth associated 

maintenance, and NGAM 3 non-growth associated maintenance costs) might 

appear as a weak spot of our approach. So far, we determined the NGAM values 

in an iterative process based on the oxygen consumption rate of Drosophila S2R+ 

cells (Da-Ré et al., 2014) (methods section and Fig. S5) and used the GAM 

values from a yeast model (Mo et al., 2009), as an experimental estimation of the 

values for Drosophila is difficult. Our approach appears legitimate, at least at the 

current point of time, as simulations testing a wide array of different GAM and 

NGAM values with our model demonstrated only a limited impact on the biomass 

production (Fig. S6 and Interactive Supplementary Fig. 2). The impact of GAM 

and NGAM uncertainties on the resource allocation problem might be bigger. The 
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size of the linear programming solution space decreases with increasing GAM 

and/or NGAM values, as fluxes have to compensate for the increased energy 

requirements as for example the rate of oxygen consumption. Thus, the future 

estimation of the real GAM and NGAM values for larvae under different 

physiological conditions is a challenging, yet valuable goal. 

We parameterized our model using absolute enzyme-based biochemical 

quantifications as well as via GC-MS based metabolomics measurements (Figs 

436 and Table S2). Overall, our measurements explained a large portion of the 

dry weight of the animals (Fig. 5B). The prominent drop of explained dry weight 

at 168)hours after egg laying (60 % explained dry mass versus 81 or 95 % (96 or 

132)hours after egg laying, respectively)) is intriguing. Given that despite of 

lactate all metabolites measured by us increased over time (Figs 4 and 8), this 

result suggests that the production of another metabolite not measured by us is 

increasing dramatically during this growth phase. Candidates are, for example, 

nucleic acids or components of the cuticle. In support of this notion, we noted an 

elevated slope of the larval weight gain from the second to the last time point (Fig. 

4A), whereas size increase on the HD rather stalled during this phase (Fig. S2B3

D). 

The use of the chemically defined HD significantly facilitated the connection of 

the biological data to the modeling both under basal (Figs 438) as well as dietary 

altered (Figs 4, 6 and 8) conditions. The presence of the chemically defined food 

is a big advantage as compared to complex and ill-defined food compositions, as 

uncertainties in terms of the diet obfuscates defining the real inputs entering the 

system in the experiment as well as the model. An obvious point for optimization 

is our lack of knowledge concerning the exact amounts of food consumed and 

metabolite resorption rates. The mouth hook contraction values used by us, for 

example, could in theory vary in response to different diets. Several reports, 

however, suggested only a limited impact of the diet on the mouth hook 

contraction frequencies (Musselman et al., 2011; Ryuda et al., 2011). 

Nevertheless, in the future, methods that are more sophisticated should be used 

to eliminate this shortcoming using e.g. radiolabeled tracer experiments, which 

will also allow the direct estimation of metabolite flux rates. These in turn will allow 

a much better comparison to the predicted flux rates as our endpoint 
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measurements. Another point to consider is that the HD represents a minimal 

medium, which results in a slowed down growth. Here, we started to investigate 

which nutrients might act as growth limiting factors and our strategy appears to 

be successful in predicting nutrients allowing a faster growth. For the investigation 

of resource allocation and optimality principles, the slowed-down growth appears 

less problematic, given that optimality of resource allocation is situation 

dependent, and thus an inadequate diet can also be utilized in an optimal manner. 

Investigations concerning the minimal nutritional requirements of an organism, as 

well as concerning the impact of nutritional alterations on the physiology of an 

organism, is an active field of research (Garcia Caraballo et al., 2014; Besson et 

al., 2016; Reis, 2016). Our early results with the predictions of the impact of 

altering sucrose or EAA levels in the food are particularly promising. They 

suggest that simulations with FlySilico should facilitate the identification of 

suitable parameter ranges for experiments targeting e.g. the nutritional 

requirements of larvae and flies or the impact of diet alterations on the metabolic 

and/or growth phenotype. The future FlySilico-based investigations concerning 

the impact of varying amounts of essential and branched chain amino acids on 

growth processes, life history traits such as fecundity, ageing related diseases 

and cancer will be exciting as these aspects gained a lot of attention recently 

(Piper et al., 2017; Chen et al., 2018; Knott et al., 2018; Shao et al., 2018). 

Drosophila larval growth is marked by an impressive increase in size and mass. 

This expansion is necessary for a successful completion of metamorphosis, 

which involves a drastic remodeling of body structures and a food intake 

cessation. Therefore, the larval development is subject to hard biological 

constraints. Still, the organism can react to fluctuations in the quality or quantity 

of food by adjusting the rate of development and resource allocation, e.g. by 

channeling less nutrients into storage forms (Beadle et al., 1938). Our 

experiments, where we raised animals on either standard HD or HD 

supplemented with additional sucrose or EAA (Figs 4, 6 and 8), demonstrate this 

plasticity. Further, our model predictions correctly identified the growth limiting 

nutritional parameters and revealed flux differences, which relate to the observed 

metabolic changes based on the diet alterations. The precision of the model 

predictions will increase with further improvements as outlined above. 
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Intriguingly, the metabolic adaptation to altered nutritional conditions are not 

limited to insects, but have also been described e.g. for mammals (Gluckman et 

al., 2007). Thus, future investigations targeting other species are possible to test 

for a possible generalization of our findings. 

An important aspect is that solving the flux balance model is by definition following 

optimality principles. Given that our relatively simple model already was able to 

result in correct predictions suggests that Drosophila resource allocation is 

operating in a quasi-optimal state. Future studies with additional parameter 

variations (e.g. cost functions for protein and DNA synthesis and distinguishing 

different type of organs or tissues (Martins Conde, Patricia do Rosario et al., 

2016)) and incorporation of additional fly genotypes and perhaps single gene 

mutations will help to further elucidate this intriguing possibility. 

 

Materials and Methods 

Drosophila fly stocks and rearing 

For all our experiments, we used the wild type Oregon-R fly strain reared under 

standard culture conditions (25)°C, 12)h light-dark rhythm and 60370 % humidity). 

 

Chemically defined fly medium 

The chemically defined (holidic) medium (Holidic diet; HD) was introduced in 

(Piper et al., 2014). Animals developing on HD are viable, fertile, and have no 

aberrant phenotypes, although the development is slowed-down and the HD is 

thus classified a minimal medium. Food was prepared according to the 

instructions of the Piper et al. publication with use of the Yeast-like amino acid 

composition (<Yaa=). For our perturbation experiments we either added the 

double amount of sucrose (2x sucrose) or the double amount of essential amino 

acids (2x EAA). 
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Larvae collection procedure 

In order to minimize a possible impact of environmental effects, we kept the 

parental density constant with 15 male flies and 30 female flies per vial. These 

adult flies were kept on a standard complex cornmeal diet (per 100)mL: 0.5)g agar 

(Becton Dickinson, 214010), 7.1)g polenta (Verival, Pronurel Bio, 265250), 0.95)g 

soy flour (Bauck Hof, Amazon.de, B004RG3C0I), 1.68)g yeast (Bruggeman, 

lieferello.de, 14874413), 4)g treacle (Original Grafschafer Goldsaf, lieferello.de, 

10231869), 4.5)g malt extract (Demeter, Amazon.de, B00GU029LW), 0.45)mL 

propionic acid (Acros Organics, 220130010, CAS 79094) and 1.5)mL nipagin 

(Sigma-Aldrich, H3647-100G) (1:10 stock solution in 70 % Ethanol; Riedel-de 

Haën, 16202S-1L, CAS 64-17-5) before we transferred them to the chemically 

defined medium to allow oviposition. After six hours we discarded the parental 

flies to have a defined time period for the egg-laying. As the maximum time point 

for collecting larvae we used 168)h after egg laying as afterwards the larvae start 

to pupariate on the HD. Based on this terminal point, we added two equally 

spaced time points earlier in development (132)h and 96)h after egg laying, 

respectively) as growth is quasi linear. 

The possibility that larval growth and metabolism is showing a sexual dimorphism 

appeared intriguing. Pilot experiments using animals reared on the holidic or a 

standard diet, however, showed that at the latest timepoint used by us female 

and male larvae do not significantly differ in terms of the size, the triglyceride, 

glucose or glycogen levels (data not shown). Thus, we did not consider the sex 

of the animals during our experimental timeframe a prominent factor and 

therefore collected unsexed larvae 96)h, 132)h and 168)h after egg laying and 

washed them in PBS with 0.1 % Tween-20 (PBT) for the weight measurements 

and metabolic assays or in HPLC-graded water for the GC-MS analytics. We 

used quadruplicates for every condition and collected 25 larvae (96)h) or eight 

larvae (132)h, 168)h) for the GC-MS and the metabolic assays. For the dry and 

wet weight measurements, we collected 100 animals from the 96)h time point and 

40 animals from the 132)h and 168)h time points, respectively. 
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Wet and dry weight measurements 

For the determination of the wet weight, we transferred the washed larvae into 

pre-weighed 1.5)mL tubes and weighed them on an analytical scale. The animals 

were then snap-frozen in liquid nitrogen and dried in an oven at 60)°C with the 

tube lids open. After 24)h we measured again the weight ()=)dry weight) and 

calculated the water content by subtraction of the dry weight from the wet weight. 

 

Larval size measurements 

For the larval size measurements, we collected at the indicated time points the 

animals in ice cold PBS to minimize their movements and to ensure their 

elongation. Subsequently, we recorded images with a Zeiss SteREO 

Discovery.V8 dissection microscope, which were analyzed with the Zeiss Zen 

Software (Zen 2.3 lite 3 blue edition). For each larva, we measured the area, the 

length and its width. In total, we performed three biologically independent 

experiments and measured 20 to 30 animals per repetition. 

 

Biochemical measurements 

All targeted biochemical measurements were essentially carried out as described 

in (Jehrke et al., 2018). We collected the larvae from three different time points 

and snap-froze the animals in liquid nitrogen before storage at 280)°C. For the 

homogenization, we used 1)mL 0.05 % Tween 20 in water in 2)mL screw-cap 

tubes and a Fast Prep FP120 machine (Bio101 Savant). After homogenization 

and heat-inactivation for 5)minutes at 70)°C, the supernatant was transferred to 

1.5)mL tubes as a reservoir for the metabolic assays, which were performed in 

96-well plates. We normalized each measurement to the amount of animals per 

sample. 

Protein 

The free protein content was measured using the Pierce BCA assay kit (Life 

Technologies) according to the manufacturer9s instructions. We used bovine 
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serum albumin (BSA) as a standard to determine the protein content of the 

samples. The 0.05 % Tween-20 used by us in the homogenization procedure 

most likely was not sufficient to solubilize also integral membrane proteins. Thus, 

the protein amounts per animal might represent an underestimation of the real 

total protein content. 

Triglycerides (TAG) 

For the determination of the triglyceride levels in the samples, we used the 

Triglycerides Reagent (Thermo Scientific). We transferred 50)µL of the samples 

and a serial dilution (1:2 in 0.05 % Tween 20 in water) of the glycerol standard 

(Sigma Aldrich) to a 96-well plate and added 200)µL of the Triglycerides reagent. 

The samples and the standard were incubated 45)minutes at 37)°C and the 

absorbance was read at 510)nm. 

Glycerol 

The glycerol content of the samples was determined using the Glycerol Assay Kit 

(Sigma-Aldrich). We followed the manufacturer9s instruction for fluorometric 

measurements. 

Glucose and Glycogen 

For the determination of glucose and glycogen, we used the GO Assay Reagent 

(Sigma-Aldrich) and a modified form of a protocol described in Tennessen et al. 

(2014). For both measurements, we transferred 30)µL of the undiluted samples 

and the standards to a 96-well plate. We added 100)µL GO reagent to measure 

free glucose and 100)µL GO reagent with amyloglucosidase (1)µL per 1)mL GO 

reagent) to measure the total glucose content (free glucose plus glucose liberated 

from the glycogen). After 60)minutes incubation by 37)°C we stopped the 

reactions by adding 100)µL 12)N H2SO4 and measured the absorbance at 

540)nm. We calculated the glycogen content by subtraction of the free glucose 

from the total glucose content. 
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Lactate 

For the quantification of lactate, we used the Lactate Assay Kit (Biovision). We 

transferred 50)µL of the pre-diluted samples (1:50) to a 96 well plate and followed 

then the manufacturer9s instruction for fluorometric measurements. 

Cholesterol 

Measurements were performed as described in Werthebach et al. (2019). 

 

GC-MS measurements 

Metabolites were extracted using 105)µL chloroform and 245)µL methanol. After 

incubation for 1)h at 220)°C we added 560)µL HPLC grade water twice. The 

samples were centrifuged for two minutes at high speed in a table top centrifuge 

at 4)°C and the aqueous phases were collected for the GC-MS measurements (in 

total about 1.3)mL). 

For the metabolite analysis a gas chromatography 3 mass spectrometry (GC-MS) 

system (7200 GC-QTOF from Agilent) was used as described in Fiehn et al. 

(2000). The data were analyzed with the Mass Hunter Software (Agilent). For 

absolute quantifications, we used five different dilutions of the standard mix 

(resulting in effective metabolite concentrations: 1)µM, 5)µM, 10)µM, 15)µM and 

20)µM; Fig. S3) and calculated for each metabolite a standard curve which we 

used to determine the amount of the respective metabolite in our samples. 

 

Network reconstruction 

For the in silico reconstruction of Drosophila melanogaster growth and 

metabolism we focused on core metabolic pathways required to metabolize the 

HD ingredients, and used the cameo package for the Python programming 

language (Cardoso et al., 2018). The Yeast iMM904 model from the BiGG data 

base (Mo et al., 2009) and a previously published Drosophila model for hypoxia 

investigations (Feala et al., 2009) served as starting points for our network 

reconstruction. First, we incorporated major metabolic pathways of the 
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carbohydrate metabolism (including glycolysis, gluconeogenesis, tricarboxylic 

acid (TCA) cycle and pyruvate metabolism), the lipid metabolism (with a focus on 

the glycerolipid metabolism), the energy liberating metabolic reactions (e.g. 

oxidative phosphorylation) and anaplerotic reactions. Subsequently, we 

successively integrated metabolic reactions necessary to metabolize the HD 

ingredients, such as amino acid metabolic pathways (including e.g. glycine, 

threonine, cysteine, and phenylalanine metabolism), pathways of vitamin 

synthesis (e.g. folate and riboflavin) and various pathways needed for the 

transport and synthesis of cofactors. For the initial version of FlySilico we only 

focused on three different compartments (extracellular, cellular and 

mitochondrial) and adapted the transport reactions accordingly. We manually 

curated all reactions by cross-validation with multiple resources (BioCyc - 

https://biocyc.org/ (Caspi et al., 2016), BRENDA - https://www.brenda-

enzymes.org/ (Chang et al., 2009), ChEBI - http://www.ebi.ac.uk/chebi/init.do 

(Hastings et al., 2016), KEGG - http://www.genome.jp/kegg/ (Kanehisa et al., 

2017), PubChem - https://pubchem.ncbi.nlm.nih.gov/ (Wheeler et al., 2008), 

BiGG - http://bigg.ucsd.edu/  (King et al., 2016), and FlyBase - http://flybase.org/ 

(Gramates et al., 2017)) and paid special attention on the biochemical pathways 

and the genetics of Drosophila melanogaster. We attached to each reaction a 

confidence score based on evidence of sequence, physiological, genetic or 

biochemical data (as previously suggested by e.g. Thiele and Palsson (2010)). 

Reactions required for the modeling, but without any evidence of correctness, 

received the lowest confidence scores. FlySilico version 1.0 covers 293 

metabolites and 363 reactions. Supplemental Table S1 summarizes all pathways, 

reactions and metabolites present in the model. 

 

Constraint-based modeling 

After the reconstruction process, the coefficients of the mass-balanced reactions 

form a mathematical representation as stoichiometric matrix S. The constraint-

based modeling approach follows equation: 



2.1. FlySilico: Flux balance modeling of Drosophila larval growth and resource allocation 

 

38 
  

��
�� =  � 7 � = 0 

(1) 

with 


� f � f  �� (2) 

where x is a vector with all metabolites, S is the stoichiometric matrix and v is a 

vector with all fluxes under steady state conditions. The lower (³i) and upper (³i) 

bounds to each flux vi impose additional constraints to the system. The null space 

of S includes any v that satisfies the solution under this steady state assumption 

with the given constraints. The model is solved by optimizing the system for a 

given objective function, i.e. the primary goal of an organism (such as biomass 

production for fast growing unicellular organisms as for example E. coli), using 

linear programming. A detailed explanation of constraint-based modeling, flux 

balance analysis and linear programming is provided e.g. in: Orth et al. (2010) or 

Kauffman et al. (2003). For our model solutions we compared solutions allowing 

loops as well as loopless (Price et al., 2002; Schellenberger et al., 2011) variants 

(Fig. S7). The loopless solution reflects the biology better, and thus we used this 

method throughout the study unless otherwise noted. 

 

Flux variability analysis 

Flux variability analysis (FVA (Gudmundsson and Thiele, 2010)) is a 

computational method to identify the maximum and minimum fluxes of reactions 

from a given network while it preserves a certain network state (e.g. maximum 

biomass production rate). FVA solves two optimization problems for each 

reaction vi after solving a given objective function. 

����/���� � 

������� �� � 7 � = 0 

�� 7 � g � 7  ! 


� f 0 f  �� 

(3) 
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where  ! = ) ��# is an optimal solution for the objective function, ³ is a parameter 

which controls the optimality of the solution (suboptimal: 0) f )³) <  1 ; optimal: 

³)=)1), c is the vector which represents the linear objective function. 

 

Calculation of biomass and uptake rates 

In order to identify an appropriate biomass function, we estimated the body 

composition of differently aged larvae by targeted absolute biochemical 

quantifications as well as GC-MS based metabolomics measurements. We 

reasoned that the main larval constituents are water, proteins, carbohydrates and 

storage lipids given that the latter two are the main storage forms fueling 

metamorphosis and that the larvae are filled up with the adipose-tissue like 

storage organ 3 called the fat body 3 which is the main storage site for storage 

lipids and glycogen. The water content could be easily measured by gravimetrics 

(see above) and on top of free protein, glucose, triglyceride and glycogen 

amounts, we also determined the levels of lactate and free glycerol by targeted 

biochemical assays (see above). Our GC-MS measurements further covered 

metabolites from the central carbon metabolism as well as almost all free amino 

acids. 

Biomass functions usually cover each amino acid separately. Yet, our free protein 

measurements did not provide such fine-grained information. The GC-MS based 

metabolomics measurements resulted in the identification of free amino acid 

amounts; yet three amino acids (arginine, glutamine and histidine) were missing 

in our measurements. In order to approximate the levels of the different amino 

acids, we followed a bioinformatics strategy with the reasoning that the amino 

acid fractions would relate to the respective amino acid frequency across the 

Drosophila proteome. Thus, we first calculated the frequency of each of the 

twenty classical amino acids in the complete proteome of Drosophila 

melanogaster (http://www.uniprot.org/uniprot/?query=proteome:UP000000803). 

Figure S8 provides the calculated amino acid frequencies. We based the 

coefficients on the differences between the first and last time points investigated. 

Thus, for each measurement we calculated: 
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�'()*,,-./0#1�.- 2 �3(*,,-./0#1�.- = �4,,-./0#1�.- (4) 

 

Where �4,,-./0#1�.-5 represents the weight difference of a metabolite � between 

168)h and 96)h in 67��, �'()*,,-./0#1�.-5 is the weight of the metabolite � at 168)h 

in 67��, and �3(*,,-./0#1�.-5 is the weight of the metabolite � at 96)h in 67��. For 

the amino acids, we could now calculate the individual amino acid weights with 

the help of the calculated amino acid frequencies: 

�4,,-./0#1�.-5 =8 �995 = �4,:;#.-�< ) 7 )) =995 (5) 

 

where �995 shall be equivalent to �4,,-./0#1�.-5 and represents the weight of 

amino acid � in 67��, �4,:;#.-�< is the difference of weight of the protein in 67�� 

which was calculated based on equation Eq. 4, and =99� which represents the 

frequency of amino acid � from Fig. S8. Metabolite weights from equations Eqs 4 

and 5 enable the calculation of an assay-based coefficient for each metabolite for 

the biomass objective function: 

�9>>/?,,-./0#1�.-5 =

�4,,-./0#1�.-5
@,-./0#1�.-5

�4,A;?
= ) �,-./0#1�.-5

�4,A;?
 (6) 

 

where �9>>/?,,-./0#1�.-5 represents the coefficient of the metabolite based on 

assay data in 
BB#1

C , @,-./0#1�.-5 is the molar mass of metabolite � in 
C

BB#1, �4,A;? 

is the larval dry weight difference from 96)h till 168)h in 67��, and �,-./0#1�.-5 is 

the amount of metabolite � in ���D. 

The GC-MS analysis quantified free metabolite amounts. In order to calculate a 

GC-MS coefficient, we calculated the difference of metabolite amounts between 

168)h and 96)h by the following equation: 

�4,,-./0#1�.-5 = �'()*,,-./0#1�.-5 2 �3(*,,-./0#1�.-5 (7) 
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where �&,,-./0#1�.-5 represents the difference of amount between 168)h and 96)h 

from metabolite � in ���D, �'()*,,-./0#1�.-5 is the amount of the metabolite � at 

168)h in ���D, and �3(*,,-./0#1�.-5 is the amount of the metabolite � at 96)h in 

���D. We used the resulting metabolite amounts from equation Eq. 7 to calculate 

a GC-MS coefficient with the equation: 

�FG,H,,-./0#1�.-5 = ) �,-./0#1�.-5
�4,A;?

 (8) 

 

where �FG,H,,-./0#1�.-5 as the GC-MS coefficient of the metabolite � in 
BB#1

C , �4,A;? 

is the difference of dry weight between 168)h and 96)h in 67��, and �,-./0#1�.-5 

is the amount of metabolite � in ���D. 

Through equation Eqs 6 and 8 the biomass function coefficient can be calculated 

for all metabolites with the following equation: 

�,-./0#1�.-5 = �9>>/?,,-./0#1�.-5 + �FG,H,,-./0#1�.-5 (9) 

 

where �,-./0#1�.-5 is the biomass function coefficient of metabolite �, 
�9>>/?,,-./0#1�.-5 as the assay-based coefficient of metabolite �, �FG,H,,-./0#1�.-5 

and as the GC-MS-based coefficient of metabolite �. All coefficients of Eq. 9 are 

in 
BB#1

C . Drosophila melanogaster is cholesterol auxotroph (Sang and King, 1961; 

Carvalho et al., 2010). To simulate the cholesterol auxotrophy of Drosophila, we 

included cholesterol in the biomass function based on measurements of 

cholesterol levels from larvae reared on HD (Fig. S9). The biomass coefficient of 

cholesterol was calculated according to the equation: 

�G*#1->.-;#1 = )
�G*#1->.-;#1,:;#.-�< ) 7 ) �4,:;#.-�<

@G*#1->.-;#1
�4,A;?

 (10) 
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where �G*#1->.-;#1 is the biomass coefficient for cholesterol in 
BB#1

C , 

�G*#1->.-;#1,:;#.-�< is the cholesterol mass per protein mass in 
C

C):;#.-�<, �4,A;? is 

the difference of weight of protein between 168)h and 96)h in 67��, @G*#1->.-;#1 

is the molar mass of cholesterol in 
C

BB#1, �4,A;? is the difference of dry weight 

between 168)h and 96)h in 67��. The mean value of the cholesterol mass per 

protein mass of all 3 time points (96)h, 132)h and 168)h) is �G*#1->.-;#1,:;#.-�< j
5.46) <C

OC):;#.-�<. 

 

Approximation of food intake 

Given that the absolute quantification of the uptake of solid food by larvae is 

difficult, and that the measurement of the absorption rate and organismic 

distribution for each nutrient is close to impossible, we used a theoretical 

approximation of the food intake as a starting point for our modeling experiments. 

First, we calculated the maximum volume of the mouth cavity by approximating 

a cylindrical shape and taking length and diameter measurements of the 

differently aged larvae into account. We calculated the oral cavity volume 

according to equation: 

PB#Q.* = Ã) 7 )7S ) 7 )/ (11) 

 

where Vmouth is the volume of the oral cavity in mm3, U is the mathematical 

constant, 7 is the radius of the oral cavity in mm, and h is the height of the oral 

cavity in mm. 

Because the larva grows over time, we estimated the diameter of the larva as the 

mean of the width of time points 96)h and 168)h and assumed that the diameter 

of the oral cavity is about half of the larva diameter (the radius of the oral cavity 

thus is 7 = 0.118)��). We took the height of the oral cavity from a publication 

from Alpatov (1929). Here, the height of the oral cavity is the average of the mean 

length from larval stages II and III with a value of / = 0.25)��. Thus, the resulting 

oral cavity volume according to equation Eq. 11 is vMouth)=)0.011)mm2. 
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We approximated the feeding rate using measures of the sclerite reactions per 

minute from Fellowes et al. (1999) X=Y--A = ''!
B�<Z, with the assumptions that each 

sclerite reaction completely fills the oral cavity and that all food ingredients are 

homogeneously distributed. The dietary intake can thus be calculated using the 

following equation: 

�[�-./;? = ,#Q.* ) 7 ) =Y--A ) 7 ) Ã*#1�A�] (12) 

 

where mDietary is the dietary intake in 
C
*, vMouth is the oral cavity volume in mm3, 

fFeed is the sclerite reactions per h, and Ã*#1�A�] is the sum of the mass 

concentrations of the holdic diet ingredients in 
C

O^. Our calculated dietary intake is 

�[�-./;? = 0.064 C
*. 

Our calculation is of course an overestimation given that each sclerite reaction 

most likely does not fill the mouth volume completely and that the uptake from 

the gut is not 100 % efficient. To account for this limitation, we introduced a 

correction factor _ based on our experimental data and simulations by an iterative 

process. In brief, we calculated all uptake rates with increasing values for the 

correction factor _ (from 0 to 0.20 in 0.001 steps) and used the different uptake 

rates to calculate the corresponding growth rate. We selected for _ the value 

where the calculated growth rate fitted the experimentally determined growth rate 

best (Fig. S4). We determined the experimental growth rate based on the dry 

weight measurements during the three time points. We calculated the growth rate 

between the first and last time point as: 

¿abc,9HH,def =
�g.S 2 �g.'

��
�g.'

 (13) 

 

As a result we obtained the experimental growth rate ¿abc,9HH,def = !.!))S
*  and for 

Ç = 0.122 the predicted growth rate ¿abc,9HH,:;-A = !.!))
* . Thus, the corrected 

dietary intake calculation is: 
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�[�-./;?,,-./0#1�.-5 = �[�-./;? ) 7 )Ç) 7 ) j,-./0#1�.-5 (14) 

 

where �[�-./;?,,-./0#1�.-5 is the dietary intake of metabolite � in 
C
*, �[�-./;? is the 

dietary intake in 
C
*, Ç is the correction factor, and j,-./0#1�.-5 is the proportion of 

each metabolite � in the holidic medium. 

For the network modelling, all dietary internalizations have to be flux rates or 

uptake rates, which we calculated as follows: 

Qf./k-,� = �[�-./;?,,-./0#1�.-5
@,-./0#1�.-5 ) 7 ) �4,A;?

 (15) 

 

where Qf./k-,� is the uptake rate of metabolite � in 
BB#1
C)7)* , �[�-./;?,,-./0#1�.-5 is the 

dietary intake of metabolite � in 
C
*, @,-./0#1�.-5 is the molar mass of metabolite � in 

C
BB#1, and �4,A;? is the difference of dry weight between 168)h and 96)h in 67��. 

 

Summary statement 

FlySilico, a flux balance analysis suitable metabolic network of Drosophila 

melanogaster is presented, and its use for the investigation of larval growth and 

metabolism is demonstrated. 

 

Data availability 

The supplementary material consists of the metabolic network reconstruction 

(Table S1), the raw data of all measurements (Table S2), the result of the flux 

variability analysis for the different diet simulations (Table S3) and the 

corresponding flux changes in relation to the standard HD (Table S4). 

Additionally, we added interactive versions of the metabolic network map 

(Interactive Supplementary Fig. 1) and the GAM/NGAM plot (Interactive 
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Supplementary Fig. 2), which corresponds Fig. S6. Further, we provide all raw 

data, the custom python scripts used for the calculation of the weights of the 

biomass function and the uptake rates, the model comparison and the main 

scripts for the model reconstruction and analysis in a zip file for use with the 

Anaconda Project function (https://anaconda-project.readthedocs.io/en/latest/). 

Once unzipped, the folder contains all information to create an Anaconda Python 

environment with the required packages in the appropriate version to run our 

code and all necessary information to rerun or modify our analyses. A readme file 

within the folder should guide users through the procedure to get the environment 

operational. We additionally provide all scripts via GitLab: 

https://gitlab.com/Beller-Lab/flysilico. 
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Supplementary Information 

FlySilico: Flux balance modeling of Drosophila larval growth and resource 

allocation 

Jürgen Wilhelm Schönborn, Lisa Jehrke, Tabea Mettler-Altmann, Mathias 

Beller 

We provide all primary data as well as the metabolic network in supplemental 

tables (please see below). The Python scripts for the flux balance modeling and 

parameter estimations are provided via GitLab (https://gitlab.com/Beller-

Lab/flysilico/) and an Anaconda Project folder to allow reproducible research 

thanks to a snapshot of a Python working environment with the adequate 

package versions. 

The supplemental information comprises: 

- 9 figures (found below) 

- Four Supplemental Tables: 

o Table S1: Information for the Drosophila metabolic network 

>FlySilico< 

o Table S2: Wet lab experimental data file 

o Table S3: Flux variability analysis results 

o Table S4: Normalized flux variability results 

- Two Supplementary Interactive figures: 

o Supplementary Interactive Figure 1: Interactive Metabolic Network 

Map 

o Supplementary Interactive Figure 2: Interactive 

GAM/NGAM/Growth rate plot 

- Supplemental Zip File with the code and data necessary to use the 

FlySilico metabolic network for flux balance analyses and to generate the 

plots shown in the figures 
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Figure S1: Modeling growth with the computer generated Drosophila metabolic network 
(BMID000000141998; https://www.ebi.ac.uk/biomodels-main/BMID000000141998). (A) Computational 
biomass function as provided from the ebi website. (B) FBA solution with no substrate incorporation (missing 
<in fluxes=). The model predicts a biomass production (column <objectives= shows a value of 500 for the 
biomass reaction). bm 3 biomass | i - intra cellular | MNXM18_bm - glutamate(1-) | MNXM876_bm - glycogen 
| bigg_ala_L_bm - L-alanine zwitterion | bigg_amp_bm - AMP | bigg_arg_L_bm - L-argininium(1+) | 
bigg_asn_L_bm - L-asparagine zwitterion | bigg_asp_L_bm - L-aspartate(1-) | bigg_atp_bm - ATP | 
bigg_cmp_bm - CMP | bigg_cys_L_bm - L-cysteine zwitterion | bigg_damp_bm - dAMP | bigg_dcmp_bm - 
dCMP(2-) | bigg_dgmp_bm - dGMP(2-) | bigg_dtmp_bm - dTMP | bigg_gln_L_bm - L- glutamine zwitterion | 
bigg_gly_bm - glycine | bigg_gmp_bm - GMP(3-) | bigg_his_L_bm - L-histidine zwitterion | bigg_ile_L_bm - 
L-isoleucine zwitterion | bigg_leu_L_bm - L-leucine zwitterion | bigg_lys_L_bm - L-lysinium(1+) | 
bigg_met_L_bm - L-methionine zwitterion | bigg_phe_L_bm - L-phenylalanine | bigg_pro_L_bm - L-proline | 
bigg_ser_L_bm - L-serine | bigg_thr_L_bm - L-threonine zwitterion | bigg_trp_L_bm - L-tryptophan zwitterion 
| bigg_tyr_L_bm - L-tyrosine zwitterion | bigg_ump_bm - UMP(2-) | bigg_val_L_bm - L-valine zwitterion | 
bigg_adp_bm - ADP | bigg_pi_bm - phosphate | MNXM10815_i - beta- methylenecyclopropyl pyruvate | 
MNXM1158_i - sn-glycerol 1-phosphate(2-) | MNXM12528_i - an \xc5\x93\xc3\xa2-oxo fatty acid | 
MNXM2426_i - ribonucleoside | MNXM305_i - 2-methyl-3-oxopropanoate | MNXM369_i - 1L-myo-inositol 
1,2,3,4,6- pentakisphosphate(10-) | MNXM5127_i - diethylphosphate | MNXM53135_i 3 fatty aldehyde | 
MNXM7206_i - a debranched limit dextrin | MNXM7559_i - N-acetyl-D- galactosaminyl-polypeptide | 
MNXM7713_i - a [protein]-L-tyrosine | MNXM92184_i - CMP-N-glycoloylneuraminate | MNXM9857_i - 2-
methylamine-furan phosphate | bigg_5aop_i - 5-aminolevulinate | bigg_ade_i - adenine | bigg_arachd_i 3 
arachidonate | bigg_but_i - butyrate | bigg_co2_i - CO(2) | bigg_co_i - carbon monoxide(1+) | bigg_cysam_i 
- cysteaminium | bigg_dtdpglu_i - dTDP-alpha-D-glucose | bigg_gcald_i - glycolaldehyde | bigg_glyc_i - 
alditol | bigg_h2_i - H2 | bigg_no3_i - nitrate | bigg_uamag_i - UDP-N-acetylmuramoyl-L-alanyl-D-
glutamate(4-) | bigg_no2_i 3 nitrite | bigg_hpyr_i - 3-hydroxypyruvate | MNXM1128_i - 1-
aminocyclopropanecarboxylic acid zwitterion | MNXM539_i - 1-acyl-sn-glycero-3-phosphoglycerol | 
bigg_aicar_i - 5- amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide(2-) | MNXM4091_i 3 psoralen | 
MNXM977_i - ethene | bigg_n2_i - dinitrogen | MNXM59_i - 1,2-diacyl-sn-glycerol | bigg_gam1p_i - alpha-
D-glucosamine 1-phosphate(1-) | bigg_maltttr_i - alpha- maltotetraose | bigg_ins_i - inosine | MNXM56_i - 
formaldehyde | bigg_ascb_L_i - ascorbate | MNXM96041_i - 1-acylglycerophosphocholine | bigg_meoh_i - 
methanol | MNXM18606_i - hyperforin | MNXM1289_i - oxalatosuccinate(3-) | bigg_alaala_i - D-alanyl-D-
alanine 
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Figure S2: Larval size measurements. (A) Larvae were raised on HD, HD with 2xsucrose or HD with 2x 
EAA and images were recorded at the indicated time points under a dissecting microscope. The images 
served the subsequent quantification of the area (B), length (C) and width (D) of the animals across 
development. Color code in (B-D) is: HD = green, HD with 2x sucrose = blue, and HD with 2x EAA = red. 
Scalebars in (A) represent 1 mm. 
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Figure S3: GC-MS calibration curves. Five-point calibration curves for the GC-MS metabolomics 
measurements (data provided in Table S2). 
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Figure S4: Larval food intake correction factor. Determination of a correction factor for the calculation of 
the larval food intake rate (for details see main text and methods section). 

 

 

Figure S5: NGAM value determination. Iterative determination of the NGAM value by fixing the oxygen 

uptake rate to the oxygen consumption rate of S2R+ cells Xl. mnoo ppqr
s tuv wxysz{7zZ. The last ATPM flux value 

where growth was still possible was used as the NGAM value Xo. || ppqr
s tuv wxysz{7zZ. 
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Figure S6: Impact of different GAM and NGAM coefficients on growth rate. Over a large range of values, 
GAM and NGAM do not prominently affect the maximal growth rate. Only very large values for GAM and 
NGAM result in a decreased growth rate or the complete cessation of biomass production. The black dot 
indicates the value set used for NGAM and GAM in our simulations. An interactive version of the figure is 
provided as Interactive Supplementary Figure 2. 
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Figure S7: Growth rate solution comparison of loopless and with loop computations. Comparison 
between solving the FBA with loops (blue color) and loopless (red color). The solution with loops allows 
growth in the absence of oxygen, which is a biologically infeasible solution. All modeling steps were thus 
performed using loopless computations. 
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Figure S8: Frequency of amino acids in the Drosophila proteome. As we were missing amino acid 
measurements in the GC-MS/MS experiments, we sought to identify the remaining coefficients by 
bioinformatics. For details, see methods section. 
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Figure S9: Free cholesterol measurements. We quantified the cholesterol content of larvae reared on the 
Holidic diet (between 96 h and 168 h after egg laying). The determined levels were almost constant. 

 

Interactive Supplementary Figure 1: Interactive version of the FlySilico metabolic 

network (relates to Fig. 2). For download of the figure, please follow the link to 

the GitLab repository of the project: 

https://gitlab.com/Beller-Lab/flysilico/tree/master/Supplementary_Data  

The downloaded html figure file opens in the standard web browser of the system. 

Please mouse over the different elements of the network to obtain more 

information, as e.g. the nodes (metabolite details), the edges (reaction details) or 

the dots in the upper right corners of the colored boxes (reaction block details). 

 

Interactive Supplementary Figure 2 (relates to Fig. S6): Interactive version of the 

GAM / NGAM simulation plot. For download of the figure, please follow the link 

to the GitLab repository of the project: 

https://gitlab.com/Beller-Lab/flysilico/tree/master/Supplementary_Data  
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The downloaded html figure file opens in the standard web browser of the system. 

It can be rotated in all three axis and zoomed / repositioned with the mouse 

pointer. 
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Summary 

We know a lot about varying gut microbiome compositions. Yet, how the bacteria 

affect each other remains elusive. In mammals, this is largely based on the sheer 

complexity of the microbiome with at least hundreds of different species. Thus, 

model organisms such as Drosophila melanogaster are commonly used to 

investigate mechanistic questions as the microbiome consists of only about 10 

leading bacterial species. Here, we isolated gut bacteria from laboratory-reared 

Drosophila, sequenced their respective genomes, and used this information to 

reconstruct genome-scale metabolic models. With these, we simulated growth in 

mono- and co-culture conditions and different media including a synthetic diet 

designed to grow Drosophila melanogaster. Our simulations reveal a synergistic 

growth of some but not all gut microbiome members, which stems on the 

exchange of distinct metabolites including tricarboxylic acid cycle intermediates. 

Culturing experiments confirmed our predictions. Our study thus demonstrates 

the possibility to predict microbiome-derived growth-promoting cross-feeding. 

 

Introduction 

Multicellular organisms are inhabited by a vast number of microorganisms, which 

is generally termed the microbiome. In humans, the number of associated 

bacteria is in the same range as the cells of the host (Sender et al. 2016) . As an 

entity, the bacteria encode an overwhelming number of genes and thus expand 

the metabolic capabilities of the host enormously. We are still at the beginning of 

understanding this metabolic interplay. Yet, first reports demonstrated an 

importance of the microbes present in the gut, the so-called gut microbiome, in 

humans and model organisms for increasing nutrient availability and energy 

harvest (Krajmalnik-Brown 2012), the production of important bioactive 

metabolites including branched-chain amino acids (Lin et al. 2017; Liu et al. 

2020), the metabolism of pharmaceuticals applied to the host (Clayton et al. 2009; 

Haiser et al. 2013), or the release of metabolites which affect signaling pathways 

of the host (Shin et al. 2011; Martin et al. 2019). Thus, the microbiome affects the 

host far beyond nutrient access. The importance of the gut microbiome can be 
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seen most prominently in times of a perturbation or altered microbiome 

composition, which has been linked to many human diseases such as diabetes 

(Hartstra et al. 2014; Komaroff 2016), obesity (Turnbaugh and Gordon 2009; Tilg 

and Kaser 2011), autism (Vuong and Hsiao 2017) or inflammatory bowel disease 

(Halfvarson et al. 2017). Based on the observation that a perturbed microbiome 

is linked to pathologies, microbiome-focused therapies appear possible. Indeed, 

microbiome transfer therapies proved effective for the treatment of infections with 

the pathogen Clostridium difficile (Weingarden et al. 2014) and many pro- and 

prebiotic dietary regimens are already used (Arora et al. 2013). 

The microbiome of mammals with hundreds to thousands of different bacterial 

species is extremely complex. In addition, many of these species cannot be 

cultured ex vivo, which hinders detailed functional analyses. Simpler model 

organisms can help to overcome these limitations and thus provide access to 

targeted functional analyses. The microbiome of Drosophila melanogaster, for 

example, only consists of 5320 different species (Douglas 2019; Ludington and 

Ja 2020), which makes it much easier to analyze. Still, the gut microbiome of 

Drosophila has a significant impact on many aspects of the hosts' life such as the 

survival under nutrient limiting conditions, the lifespan of the flies, or the 

locomotor behavior (Consuegra et al. 2020a; Keebaugh et al. 2018; Ridley et al. 

2012; Schretter et al. 2018; Shin et al. 2011; Silva et al. 2020; Storelli et al. 2011; 

Storelli et al. 2018) The most abundant Drosophila gut bacteria belong to the 

Lactobacilli, Acetobacter, and Enterococci genera. Key species of these bacteria 

are culturable under standard laboratory conditions (Adair et al. 2018; Broderick 

and Lemaitre 2012; Erkosar et al. 2013). 

The prominent Drosophila gut microbiome members Lactobacillus plantarum and 

Lactobacillus brevis are Gram-positive rod-shaped lactic acid-producing 

microaerophilic bacteria from the Firmicutes phylum, which promote the systemic 

growth of fly larvae under nutrient-limiting conditions (Storelli et al. 2011). In 

humans, several lactobacilli strains have been shown to confer host health 

benefits (Marco et al. 2010), and a decline in their abundance is commonly 

associated with diseases (Aron-Wisnewsky et al. 2020; Heeney et al. 2018; Lee 

2020; Schwarzer et al. 2016). Acetobacter in contrast are Gram-negative, acetic 

acid-producing bacteria within the class of alpha-proteobacteria. They can be 
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isolated from a variety of sources such as fruits and flowers and are often used 

to generate fermented food, e.g., vinegar (Azuma et al. 2009). Acetobacter 

species are major constituents of the Drosophila gut microbiome. Like lactobacilli 

(Storelli et al. 2011), they contribute to a successful larval development under 

nutrient-limiting conditions (Shin et al. 2011). This growth-promoting effect was 

demonstrated to stem on the secretion of acetic acid, which interferes with the 

insulin signaling pathway of the fly (Shin et al. 2011). This observation underpins 

the importance of secreted metabolites in terms of an interaction not only with the 

host but also likely with other members of the gut microbiome. At this point, the 

beneficial as well as detrimental (e.g., in terms of competition for nutrients) 

interactions between the microbiome members are not clear. First analyses, 

however, detected a complex interplay between combinations of the bacterial 

species and the host, which shapes host fitness through life history trade-offs 

(Gould et al. 2018). Similarly, also studies with isolated bacteria using growth on 

agar-based solid media (Sommer and Newell 2018) or chemically defined media 

(Aumiller 2021) support growth-promoting effects among the bacterial species of 

the Drosophila gut microbiome. 

In order to investigate such metabolic interactions, we isolated bacteria from 

laboratory-reared Drosophila and investigated their isolated growth in different 

media such as Lactobacillus-promoting MRS and Acetobacter-selective ACE 

media. Furthermore, we used a synthetic diet suitable to grow D. melanogaster 

(holidic Drosophila diet; HD) (Piper et al. 2014). Six bacterial strains were 

analyzed in total and we resequenced their respective genomes to reconstruct 

genome-scale metabolic networks. These were used in single and co-culture 

growth simulations using the BacArena software package (Bauer et al. 2017). 

Our results reveal co-operative growth of certain bacteria based on the exchange 

of distinct metabolites including tricarboxylic acid cycle (TCA) intermediates, 

certain sugars, as well as amino acids in the D- and L-form. In analogous growth 

experiments, we could confirm the growth-promoting effect of several identified 

metabolites. Thus, the simulations open the door to systematically investigate the 

metabolic interplay of gut microbiome constituents and to reveal beneficial 

metabolites, which can promote the growth of selected gut microbiome 

constituents. 
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Results 

Bacterial isolation, species identification, and in vitro growth 

characteristics 

We started our analysis with the isolation of bacteria from the intestine of white[-

] and Oregon-R adult flies (see material and methods). First, we isolated in total 

six morphologically distinct colonies on either Lactobacillus growth-promoting 

MRS- or Acetobacter-enriching ACE-agar plates and subsequently extracted the 

respective genomic DNA of our pure cultures. The 16S rRNA gene region of all 

clones was amplified by PCR, subcloned, and sequenced to allow species 

identification by BLAST searches. In total, we isolated two L. plantarum, one L. 

brevis, two Acetobacter indonesiensis, and one Acetobacter pasteurianus strains 

(see Table 1). 

We tested next the growth of the different bacteria in three different growth media 

(Figures 1 and 2). On top of the commonly used semi-defined MRS (Lactobacillus 

enriching medium; see materials and methods) and ACE (promoting Acetobacter 

growth; see materials and methods) liquid culturing media, we also tested for 

growth in a chemically defined (holidic diet [HD]) growth medium sufficient to 

culture D. melanogaster (Piper et al. 2014). All isolated lactobacilli were able to 

grow on the MRS medium (Figure 1A). L. brevis, however, showed a lower total 

growth than the two L. plantarum isolates (Figure 1A). On the ACE medium, all 

lactobacilli only showed low growth (Figure 1B) demonstrating the selectivity of 

the growth medium. In line with previous results (Consuegra et al. 2020a), L. 

plantarum grew relatively well on the HD, whereas L. brevis again only showed a 

low growth (Figure 1C). To our surprise, growth of the Acetobacter isolates did 

not differ much on the MRS and ACE media (Figures 2A and 2B). A. 

indonesiensis isolates showed prominent growth on the HD (Figure 2C). A. 

pasteurianus, in contrast only showed a relatively poor growth on the HD (Figure 

2C). An overview of the experimentally determined growth rates is provided as 

Figure S1. 
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Table 1: Sequencing results, genome reassembly, and generated genome-scale model summaries. 
The upper part of the table summarizes the sequencing results in terms of the number of reads obtained for 
the six bacterial resequencing reactions. These sequencing results were mapped with the ASA³P software 
(Schwengers et al. 2020) to the respective reference genomes whose ID as well as NCBI accession is 
provided. The details of the mapping results in terms of the number and percent of used (as well as 
unmapped) reads, the number of detected genes, and the genome sequence length are provided. The 
resequenced genome sequences were subsequently used to build the genome-scale metabolic models (see 
materials and methods). The lower part of Table 1 provides the details of the six genome-scale models in 
terms of the number of reactions, metabolites, mapped genes, blocked and unbalanced, as well as exchange 
reactions. All sequencing, ASA3P, and model data are available at https://doi.org/10.17632/2tgjd6y4zb.1. 

 

 

 

Figure 1: Wet-lab and in silico growth of Lactobacillus on different media. (A3C) Growth of the 
Lactobacillus isolates L. plantarum (A2, light green, dot), L. plantarum (B2, medium green, check), and L. 
brevis (B6, dark green, cross) on MRS (A), ACE (B), and HD (C) media. Growth of all bacteria was monitored 
for at least 45 h in a plate reader without shaking. All cultures were inoculated with a 1:1,000 dilution for 
MRS and ACE media and with a 1:100 dilution for the HD medium. All cultures had an optically dense pre-
culture. Representative growth curves of at least three biologically independent experiments are shown. 
Growth curves show mean values of triplicate measurements. (D3F) Simulated growth of the same bacteria 
in the same media as shown in (A3C). For the isolated bacteria, the genomes were resequenced and used 
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to reconstruct genome-scale metabolic networks. These were used for growth simulations using the 
BacArena software package (Bauer et al. 2017) in combination with MRS (D), ACE (E), and HD (F) media. 
L. plantarum (A2, light green, dot), L. plantarum (B2, medium green, check), and L. brevis (B6, dark green, 
cross) on MRS (D), ACE (E), and HD (F) media. The simulations for each bacterium were run at least 12 
times, and the computed growth curves represent the mean values. Detailed model data are available at 
https://doi.org/10.17632/2tgjd6y4zb.1. Wet-lab (A3C; small reaction tube) and in silico data (D3F; computer) 
are also indicated by the pictograms and labels on the right side of the figure. 

 

 

Figure 2: Wet-lab and in silico growth of Acetobacter on different media. (A3C) Growth of the 
Acetobacter isolates A. indonesiensis (A4, light orange, pentagon), A. indonesiensis (A5, medium orange, 
triangle), and A. pasteurianus (B5, dark orange, star) on MRS (A), ACE (B), and HD (C) media. Growth of 
all bacteria was monitored for at least 45 h in a plate reader with shaking. All cultures were inoculated with 
a 1:1,000 dilution for MRS and ACE media and with a 1:100 dilution for the HD medium. All cultures had an 
optically dense pre-culture. Representative growth curves of at least three biologically independent 
experiments are shown. Growth curves show mean values of triplicate measurements. For the isolated 
bacteria, the genomes were resequenced and used to reconstruct genome-scale metabolic networks. These 
were used for growth simulations using the BacArena software package (Bauer et al. 2017) in combination 
with MRS (D), ACE (E), and HD (F) media. (D3F) A. indonesiensis (A4, light orange, pentagon), A. 
indonesiensis (A5, medium orange, triangle), and A. pasteurianus (B5, dark orange, star) on MRS (D), ACE 
(E), and HD (F) media. The simulations for each bacterium were run at least 12 times, and the computed 
growth curves represent the mean values. Detailed model data are available at 
https://doi.org/10.17632/2tgjd6y4zb.1. Wet-lab (A-C; small reaction tube) and in silico data (D-F; computer) 
are also indicated by the pictograms and labels on the right side of the figure. 

The determination of growth of single species cultures is trivial, whereas the 

determination of the individual contribution of distinct species to the biomass 

production of a consortium is difficult. Yet, a better understanding of the mutual 

effect on the growth of bacterial consortia is an intriguing and important question. 

Modeling experiments are a possibility to overcome this obstacle. For the 

modeling, an exact knowledge of the nutritional content of the growth medium is 

very important. Thus, growth of the bacteria on HD was particularly important, as 

this diet allows the exact description of the input for the modeling experiments. In 

the past, we already benefitted from this for modeling the growth and metabolism 

of Drosophila larvae (Schönborn et al. 2019). In order to reconstruct the genome-
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scale metabolic networks of the isolated bacteria, our next step was to sequence 

their respective genomes using the Illumina MiSeq platform (see material and 

methods). In the following, the genomes were assembled using whole-genome 

information as a scaffold, which we obtained from the NCBI database. 

Sequencing of the isolate genomes and model reconstruction 

The sequencing runs resulted in 3.233.6 Mio reads per genome (see Table 1). 

The reads were mapped to the whole-genome sequences of L. plantarum 

BDGP2, L. brevis ATCC367, A. indonesiensis NBRC16471, and A. pasteurianus 

BDGP5, respectively, and further analyzed using the ASA³P software 

(Schwengers et al. 2020) (the complete dataset is available in the supplement). 

Between 60% and 90% of the total reads mapped to the respective reference 

strains (see Table 1). 

We reconstructed the genome-scale metabolic models (for a summary cf. Table 

1) of our isolated Drosophila gut bacteria using the gapseq pipeline (Zimmermann 

et al. 2021). As a last step in the model generation, we used gapseq's in-built gap 

filling algorithm to enable in silico growth of the models on the one hand for the 

ACE/MRS media and on the other hand for the HD medium (see material and 

methods and Data S1). This additional step takes composition differences of the 

varying media into consideration. The ACE and MRS media are semi-defined 

owing to chemically complex components, which makes the in silico 

representation of the growth environment more difficult. We could explain 

between 73% and 92% of the unknown complex ingredients (yeast extract, 

peptone, and meat extract) by the help of information from the literature or the 

respective manufacturer. For HD such problems do not exist, as this medium is 

chemically completely defined (Piper et al. 2014). The overview of the diet 

parametrization is provided in Figure S2 as well as Data S2. In the course of 

generating the models, we took great care to correct for stochiometric 

inconsistencies, mass and charge imbalances, as well as metabolite connectivity 

(see materials and methods section and Table 1). All models were tested for 

model quality using the MEMOTE tool (Lieven et al. 2020) and resulted in at least 

77% model scores (see Data S3 and materials and methods). 
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In silico biomass and signature metabolite production by the different 

genome-scale metabolic network models 

In order to model growth of the different isolated gut bacteria alone as well as in 

combination, we performed dynamic and agent-based simulations of bacterial 

population growth and metabolic fluxes using the BacArena software package 

(Bauer et al. 2017). In brief, BacArena allows growth simulation of single-species 

population and multi-species microbial communities in a spatially limited 

compartment, including the calculations of the changing medium composition due 

to the metabolite utilization and production by individual bacterial cells. Thus, the 

metabolism of the organisms is calculated in a time-resolved manner with the 

biomass production as the objective function (for information concerning the 

biomass production and objective function, please see material and methods as 

well as Data S1). BacArena provides the metabolic fluxes, growth pattern, and 

concentrations of the medium for each time point of each individual species 

present in the in silico experiment. This allows the determination of possible 

cross-feeding and/or physiological interactions in a multi-species in silico culture 

experiment. 

As a starting point, we performed single bacteria growth simulations in the three 

different media MRS, ACE, and HD. An uncertain parameter was the amount of 

oxygen entering the system. Acetobacteraceae are aerophilic, whereas 

lactobacilli are microaerophilic and tolerate only a small amount of oxygen. 

Furthermore, it is still unknown how much oxygen is present in the larval and 

adult Drosophila gut. Given that our goal was to model the situation within the 

Drosophila gut where the two genera would meet each other, we performed all 

simulations in the presence of 0.1 mM oxygen, which represents a microaerobic 

situation (Ito et al. 2002). 

Of the lactobacilli, the two L. plantarum models showed good growth on all media 

(Figures 1D31F). L. brevis, in contrast, showed only limited biomass production 

in the MRS, ACE, and HD simulations (Figures 1D31F). The A. indonesiensis 

and A. pasteurianus models all result in strong biomass production in simulations 

utilizing the ACE and MRS media (Figures 2D and 2E). On the HD, however, all 

Acetobacter strain model simulations only showed low biomass production 
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(Figure 2F). When we compared our in silico growth simulation results to the 

actual wet-lab data (Figure S1), our lactobacilli simulations fitted the experimental 

data overall better. So far, the reasons for the discrepancies of the Acetobacter 

simulations are not clear. Yet, the appropriate simulation of growth magnitudes 

is inherently difficult using FBA (see discussion) and might depend on many 

parameters. For our experiments, however, we focused on the identification of 

growth dependencies and metabolite exchanges, which are only considering 

relative changes and are thus unaffected by these shortcomings. 

Next, we investigated the production of certain signature metabolites by the 

different models. Several Lactobacillus species are able to use the 

phosphoketolase pathway and are thus heterolactic (Spector 2009). On top of 

the lactobacilli signature metabolite lactate, heterolactic bacteria also produce 

acetate. Here, we thus tested for a possible heterolactic behavior of our L. 

plantarum and L. brevis models. For the Acetobacter models, we did not expect 

such a behavior and only a prominent production of acetate. 

As flux-balance simulations can vary to some extent in terms of individual flux 

predictions due to stochastic effects, we performed the simulations 100 times to 

identify the most likely metabolite production behavior (Figure S3). Figures 3 and 

S4 show representative simulation results (Data S4 is an interactive version of 

Figure 3, which provides all predicted metabolite productions). Lactate production 

was mostly limited to L. plantarum (B2) on the MRS and ACE diets, L. plantarum 

(A2) on the ACE diet, and L. brevis (B6) on the HD (Figures 3 and S3). None of 

the Acetobacter models produced lactate (Figures S3 and S4). 
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Figure 3: In silico production of signature metabolites by the different genome-scale metabolic 
network models. (A3C) Production of lactate by the L. plantarum (A2, light green, dot), L. plantarum (B2, 
medium green, check), and L. brevis (B6, dark green, cross) genome-scale models on MRS (A), ACE (B), 
and HD (C) media, respectively. (D3F) Production of acetate by the A. indonesiensis (A4, light orange, 
pentagon), A. indonesiensis (A5, medium orange, triangle), and A. pasteurianus (B5, dark orange, star) 
genome-scale models on MRS (D), ACE (E), and HD (F) media, respectively. Please note that not all models 
produced the respective signature metabolite on the given medium. Metabolite production curves represent 
mean values of at least 12 simulation runs. An interactive version of the figure is available as Data S4 and 
detailed model data are available at https://doi.org/10.17632/2tgjd6y4zb.1. 

All Acetobacter model simulations resulted in prominent acetate production on 

the ACE and MRS growth media (Figures 3D, 3E and S3). Yet, on the HD only 

A. pasteurianus (B5) was producing acetate (Figures 3F and S3). For the 

Lactobacilli, only the two L. plantarum models showed prominent acetate 

production on the MRS and ACE media (Figures S3 and S4). On the HD, all 

Lactobacilli showed acetate production (Figures S3 and S4). Altogether, our 

simulations thus reveal a heterolactic behavior of the isolated lactobacilli as well 

as demonstrate the expected metabolite production for the Acetobacter models. 

Next, we investigated the co-culturing behavior in silico. 

 

Simulating the co-culturing of Lactobacillus and Acetobacter 

Our key question was whether bacteria present in the gut could affect each 

other's growth. For other gut microbiome members of the fly such beneficial 

metabolite exchange behavior could be recently demonstrated (Consuegra et al. 

2020a; Henriques et al. 2020). For the species isolated in this study, we detected 

prominent growth differences in the different growth media in vitro (Figures 1 and 

2) as well as in silico (Figures 1 and 2). Our hypothesis was that the growth of 
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co-cultures could be different from the growth of pure cultures based on the 

exchange of metabolites. If one is able to predict the impact of an exchange of 

metabolites between the different species of a gut microbiome as well as the 

impact of the metabolite exchange, one could design prebiotics, which means 

metabolites promoting the growth of a certain beneficial gut microbiome 

constituent. In order to test for such potential growth-promoting effects, we 

performed simulations comparing the mono-inoculations to all pair-wise 

combinations of Acetobacter and lactobacilli. In order to quantify potential growth 

effects, we first estimated the predicted biomass production after 45 h for the 

individual or co-cultured growth. Figures 4A34C show the color-coded results for 

all individual and combined growth conditions on the MRS (A), ACE (B), and HD 

(C) media (all simulation data are available in the supplement). In Figures 4D34F 

we highlight three detailed representative modeling outcomes from the overview 

representation in Figures 4A34C (orange box in B relates to D, green box in B 

relates to E, and red box in C relates to F). 

 

Figure 4: In silico co-culturing of Lactobacillus and Acetobacter. (A3C) We simulated the growth of all 
individual as well as pair-wise combinations of the Lactobacilli and Acetobacter models on the MRS (A), 
ACE (B), and HD (C) media. The plots summarize the color-coded biomass produced after 45 h of simulated 
growth. Total amount of produced biomass from 03250 pg: beige, equals no or weak growth; 2503500 pg of 
predicted biomass: light blue; equals intermediate growth, and 5003750 pg of predicted biomass: dark blue; 
equals strong growth. (D3F) Detailed time-resolved data for three different examples of single organism 
growth simulations as well as the simulated growth of the combination of the bacteria. D (refers to orange 
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box in B) shows an example of the most trivial growth behavior, where the combination of L. plantarum (A2, 
light green, dot) and A. pasteurianus (B5, dark orange, star) on the ACE medium limits the growth of each 
other based on the impact of space and resource competition. E (relates to green box in B) shows an 
example of a detrimental outcome of the combination of bacteria. L. plantarum (B2, medium green, check) 
and A. indonesiensis (A5, medium orange, triangle) grow individually well on the ACE medium. The 
combination, however, results in a prominent block of the Lactobacillus growth, perhaps due to resource 
competition effects. F (relates to red box in C) shows a probiotic activity of L. brevis (B6, dark green, cross) 
on the growth of A. indonesiensis (A4, light orange, pentagon) on the HD. Both bacteria individually only 
show minute biomass production on the HD, whereas the combination results in a prominent growth of A. 
indonesiensis (A4, light orange, pentagon). 

First, we consider the predicted growth curves of singular (upper two panels) or 

combined (lowest panel) L. plantarum (A2) and A. pasteurianus (B5) on ACE 

medium (Figure 4D) as an example of a trivial growth behavior. Both bacteria 

individually grow very well on the ACE medium. When combined, however, the 

available space gets limiting and thus both bacteria just reach half of the arbitrarily 

set maximum possible biomass production of 750 pg. Thus, the two bacteria only 

affected their mutual growth in terms of a limitation of the available resources. 

The combination of bacteria, however, can also result in non-trivial growth effects. 

Simulations with the L. plantarum (B2) and A. indonesiensis (A5) models on the 

ACE medium, for example, result individually in very high biomass production 

(Figure 4E). Yet in combination, the Acetobacter model results in higher biomass 

production, whereas the Lactobacillus model results in much lower biomass 

production (Figure 4E). Thus, the presence of Acetobacter apparently limits the 

biomass production of the Lactobacillus model, perhaps by winning the 

competition about the available resources. 

Most striking, however, the combination of L. brevis B6 and A. indonesiensis A4, 

which individually produce on the HD only very little biomass in simulations 

(Figure 4F), results in a surprisingly prominent biomass production of Acetobacter 

(Figure 4F). In fact, the combination of L. brevis (B6) and all Acetobacter models 

resulted in such a growth behavior (Figure 4C). Thus, only a small amount of 

Lactobacillus was necessary to allow prominent biomass production of the 

Acetobacter model and Lactobacillus serves as a probiotic for Acetobacter in our 

simulations. 
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Analysis for metabolites exchanged between Acetobacter and 

Lactobacillus 

The results of our co-occurrence simulations suggest that growth 

interdependencies between the different gut bacteria exist. Ultimately, the 

simulations should result in predictions ready to test in in vivo experiments. Thus, 

we concentrated on the following on the growth simulations performed with the 

HD, as with this defined diet, we can control and fine-tune its constituents. In 

addition, this diet can also be used in the future to monitor the growth of the 

bacteria in combination with their natural host D. melanogaster. In terms of a 

probiotic activity of L. brevis for A. indonesiensis we envisioned that the 

Lactobacillus either removed a growth-inhibiting or secreted a growth-promoting 

factor thus enabling Acetobacter to produce biomass in our simulations. Thus, 

we monitored the excretion and uptake rates of both bacteria over time within the 

simulations. For an easier detection of a net efflux or uptake, we formed a 

quotient between the individual uptake rates and normalized the values (see 

materials and methods). This allowed us to plot the exchange reactions in a 

heatmap (Figure 5) where a positive value means that both bacteria take up or 

excrete the given metabolite and a negative value means that the bacteria show 

a reciprocal metabolite transport behavior. Thus, a negative value is consistent 

with the excretion of a given metabolite from one bacterium and the uptake of the 

same metabolite by the other species. Figure 5 shows the situation after 32 h of 

growth (see Data S5 for an interactive version of the figure providing the data for 

all time points). Many transport reactions had a positive sign, and thus the 

direction of the transport pointed in the same direction in both bacteria. Few 

reactions, however, consistently showed a negative sign, which is in line with an 

exchange of the given metabolite. Among those, D-Alanine, L-Arginine, D-

Ribose, Acetaldehyde, Fumarate, and Butane-2,3-diol (BDOH) showed the most 

prominent exchange behavior. 
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Figure 5: Flux of exchange reactions during the co-culturing of Acetobacter and Lactobacillus on 
the HD. We simulated the combined growth of Acetobacter and Lactobacillus on the HD and monitored the 
respective fluxes of the exchange reactions (thus, the fluxes representing an uptake or excretion of a given 
metabolite) over time. Exchange reactions are defined as reactions (or passages) where metabolites can 
flow in and out of the metabolic network and therefore the organism or cell. They can be subjected to different 
constraints such as diffusion or Michaelis-Menten kinetics of metabolite transporters, but for most reactions, 
only boundary thresholds can be set as the real-world flux rates are unknown. Further information on 
exchange reaction is found in Cotten and Reed 2013; Orth et al. 2010. For the sake of simplicity, we 
combined the individual fluxes into a normalized quotient, where a positive sign represents the same 
directionality (e.g., both bacteria secrete a given metabolite) of the individual fluxes and a negative sign 
represents opposite directionalities (e.g., one bacterium secretes a given metabolite and the other consumes 
it). The heatmap represents the flux ratios at 32 h of growth (an interactive version of the plot for all time 
points is provided as Data S5). Gray color represents that the respective metabolite is either not present or 
only transported by one of the two bacteria (not shown in color scale on the right); green color opposite and 
lilac color same flux directionalities. Multiple metabolites consistently show opposite flux directionalities 
across bacterial species combinations and across the time line. 

Growth-promoting effect of singular metabolites added to Acetobacter 

cultures 

We tested next whether the addition of any of the metabolites shown in Figure 5 

to the HD growth medium simulations is sufficient to improve the growth of A. 

indonesiensis, which alone showed only poor biomass production on the HD 

medium (Figure 6A ). Of the 43 metabolites tested (Figure S5), only 10 

metabolites showed a growth-promoting effect in silico. Those were indeed 

enriched for the metabolites, which showed a predicted exchange from one 

bacterial species to the other (negative sign in Figure 5). The in silico addition of 

the TCA intermediate fumarate, for example, resulted in prominently increased 

predicted biomass production (Figure 6B). The same growth-promoting effect is 

visible in the in silico prediction of D-Ribose added to the HD medium (Figure 

6C). No growth-promoting effect was visible when D-Alanine was added to the 

HD medium in the in silico prediction of A. pasteurianus B5 (Figure 6D), whereas 

biomass production of A. indonesiensis A4 and A5 was promoted (Figure S5). 
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Thus, the simulations suggested that already the exchange of a singular 

metabolite between the bacterial species could result in a growth-promoting 

effect. 

 

Figure 6: Growth-promoting effect of singular added metabolites. (A3D) In silico biomass production of 
A. pasteurianus (B5) on the standard HD. In silico biomass production of A. pasteurianus (B5) on HD with 
10 mM (B) Fumarate, (C) Ribose, and (D) D-Alanine. (E3G) Actual growth measurements of A. pasteurianus 
(B5) on HD (dark orange) with Fumarate (E), Ribose (F), or D-Alanine (G) (10 nM, 0.1 ¿M, 0.1 mM, 1 mM, 
and 100 mM; black color and different dashed lines). In silico experiments (A, B, C, and D) are represented 
by the computer, whereas the wet-lab experiments (E, F, and G) are represented by the small reaction tube 
pictograms. 

Finally, we tested for the experimental validation of the predicted growth-

promoting effects. For this purpose, we recorded growth curves of A. 

pasteurianus (B5) in HD containing varying concentrations of fumarate (Figure 

6E), D-Ribose (Figure 6F), and D-Alanine (Figure 6G). With fumarate and D-

Ribose, we selected metabolites that showed in silico a prominent growth-

promoting effect on all Acetobacter species (Figure S5), whereas D-Alanine did 

not result in a full growth rescue of A. pasteurianus (B5), but only the other two 

Acetobacter species (Figure S5). D-Ribose alone was not sufficient to improve 

the growth of A. pasteurianus (B5) prominently (Figure 6F). Yet, the addition of 

fumarate and D-Alanine in different concentrations showed a prominent positive 

effect on the growth of the bacteria (Figures 6E and 6G). 

Altogether, our results suggest that microbiome members are metabolically 

connected, thus affecting the growth of individual microbiome members. The 

strategy presented herein consisting of the isolation of distinct bacteria, their 

genome sequencing, and subsequent in silico modeling of growth and 
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metabolism thus proved successful to identify metabolite exchange and growth-

promoting metabolites. Future experiments targeted to investigate combinatorial 

effects of metabolite additions as well as the contribution of the hosts' metabolism 

will further extend our understanding of the complex interplay among the gut 

microbiome members. 

 

Discussion 

In this study, we analyzed multiple members of the Drosophila gut microbiome 

by a combination of in vitro and in silico experiments. In total, we isolated six 

bacterial strains from laboratory-reared Drosophila flies followed by in vitro 

growth experiments, resequencing, and genome assembly and in silico growth 

and metabolism modeling analyses. 

First, we tested for a biomass production of the singular bacteria models on ACE, 

MRS, and HD. L. plantarum was able to generate high amounts of biomass on 

the ACE medium, whereas L. brevis was not (Figures 1D31F). Similar growth 

was detected on the MRS medium and on HD. All Acetobacter models resulted 

in high biomass production on the ACE and MRS media and only very low 

biomass production on the HD (Figures 2D32F). Our models mostly recapitulated 

the corresponding actual growth experiments (Figures 1, 2, and S1). Especially 

the poor growth of the L. brevis isolate was detected in vitro and in silico (Figures 

1, 2, and S1). The reason for this growth deficit is to date not clear. For some of 

the organisms, such as A. indonesiensis on the ACE medium, the modeling 

results deviate from the actual measurements in terms of the magnitude of the 

effect (Figure S1). This is a problem seen in many modeling approaches, which 

might be based on a variety and most likely a combination of many parameters, 

including gaps in the model, confounding factors, and the lack of certain 

environmental conditions in the modeling procedure. Furthermore, the modeling 

procedure depends on the requirement to define <exchange reactions,= which are 

thresholds setting the boundaries for metabolic fluxes going into and out of the 

model. Although these thresholds can be controlled by different constraints such 

as diffusion or Michaelis-Menten kinetics of metabolite transporters (Cotten and 

Reed 2013; Orth et al. 2010), for most of the reactions, these boundaries are not 
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experimentally validated and thus the model itself is largely underdetermined. 

Furthermore, also the biology of the given bacterium might be a cause for 

deviations between the experimental and modeling data. A prerequisite of the 

FBA procedure is the assumption that an objective function is optimized in terms 

of a maximization. Often as well as in our study the optimized objective function 

is biomass production. Previous studies, however, demonstrated that several 

microorganisms operate at a sub-maximal growth rate (Fischer and Sauer 2005; 

Schuetz et al. 2007; Schuetz et al. 2012). The reasons for this behavior are not 

yet always clear. 

Altogether, these parameter variations and modeling uncertainties will result not 

only in deviations of the magnitude of, e.g., biomass production, but also in kinetic 

differences, e.g., in terms of the growth rate. With variations in the build-up of 

biomass, also the mass transfer will vary, thus potentially resulting in more 

prominent differences between the computed and wet-lab results. Important, 

these confounding characteristics of the modeling procedure apply to the single 

and the multiple species growth simulations. The latter, however, will of course 

be even more severely affected by differences in the growth rates of the individual 

species that make up the consortium as the mass ratios between the species will 

also affect the mass transfer of metabolites. Furthermore, also the details 

concerning the juxtaposition (directly neighbored versus located in, e.g., different 

compartments of the gut) as well as variations in the initial mass ratio, thus the 

relative abundance of each species, will prominently affect the individual growth 

rates and mass transfer. Further experimental data including, e.g., localization 

studies, measurements of the individual abundance of bacterial species, and 

metabolic labeling experiments to determine flux rates as well as refinements of 

the models will help to improve the modeling outcome in the future. 

Future iterations and refinements of the models will also need to target the 

optimization of the growth condition parameterization. Our simulations using the 

HD medium is a first step in the direction of modeling the actual growth conditions 

within the fly gut, as all bacteria as well as the host can thrive on this medium. 

The standard diet most often used to rear Drosophila is complex and undefined, 

often containing live or dry yeast, molasses, or treacle, which makes the 

parameterization and modeling very complex. Also, the exact conditions within 
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the gut are still not clear as, e.g., metabolite concentrations might vary along the 

anterior-posterior axis of the gut as well as across the diameter of the gut. Thus, 

further experimental and modeling work will be needed to decipher these details 

in the future. 

On top of testing the biomass production, model validation also included the 

analysis of expected signature metabolite production. Acetobacter, for example, 

is known to oxidize sugars or ethanol to acetic acid (Raspor and Goranovic 2008), 

whereas lactobacilli produce glucose-derived lactic acid as the main product 

(Hatti-Kaul et al. 2018). Both metabolic models were able to recapitulate this 

behavior (Figure 3). It is intriguing that the previously described heterolactic 

metabolism of lactobacilli (Spector 2009) could also be recapitulated for our 

isolated bacteria (Figure S3) suggesting that our models result in realistic 

metabolic behavior predictions. Of note, however, some of the predictions need 

to be considered with care. Our simulations, for example, also revealed the 

production of H2O2 and also H2S. Both substances can act as inhibitors of 

bacterial growth, especially in higher concentrations (Alt et al. 1999; Reis et al. 

1992). Nevertheless, some Acetobacter species were demonstrated to produce 

H2S under certain conditions (Ahmad et al. 2004). Thus, so far it is not clear 

whether the neutral or even positive effect of the presence of these substances 

on the growth (Figure S5) is real or based on the limitation of FBA to predict 

correctly growth-inhibiting and detrimental effects of certain metabolites. 

The main goal of our study was to test whether we can predict metabolic growth-

promoting inter-species interactions. If possible, this could open up the door to 

design tailored prebiotics to promote or hinder the growth of certain gut 

microbiome members. For our simulations, we tested all pair-wise combinations 

of Acetobacter and Lactobacillus on the three different media ACE, MRS, and 

HD. Many combinations were neutral in a way that the growth of the singular 

bacteria was similar or identical in the singular and combination situation (Figures 

4A34C; the complete dataset is provided in the supplement). In case both 

bacteria showed high growth in single growth simulations, the combination 

resulted in a competitive situation, which caused both bacteria to grow less (e.g., 

Figure 4D). On top of these trivial situations, however, we also observed inhibitory 

and stimulatory interactions. The L. plantarum strain B2 and A. indonesiensis 
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strain A5 result in comparable and high biomass production in the ACE medium 

when grown independently (Figure 4E). The combination, however, does not 

result in an equal reduction of the biomass to an intermediate level, but in contrast 

to a much stronger reduction of the Lactobacillus biomass production, whereas 

Acetobacter production got increased (Figure 4E). Likely, this effect is based on 

resource competition, which might also play a role within the gut of the Drosophila 

host. Even more astonishing was the stimulatory effect of combining the 

individually poor biomass producers L. brevis and either of the Acetobacter 

models, which we were able to track down to the exchange of selected 

metabolites (Figures 4F and S5). For fumarate and D-Alanine, we already were 

able to confirm the growth-promoting effect by simply adding these metabolites 

to the HD medium (Figure 6). Ribose, however, did not result in the expected 

growth rescue. At this point, the reasons for this discrepancy are unclear. 

Whether additional metabolites could also rescue the growth deficit to a similar 

extent is at this point unknown. Similarly, it is also not clear how the co-culturing 

of the organisms in the end affects each other as beneficial and competition 

effects most likely will play a role and thus a more complex growth effect will arise. 

Fumarate and D-Alanine could affect the growth of the bacteria by different 

means. Thus, we considered different possibilities and cross-validated these 

using our modeling data. Formally, the metabolites could complement 

auxotrophies. Based on our modeling and experimental data, however, we 

exclude this possibility, as the bacteria also grow without the supplementation in 

the MRS or ACE media (Figures 1 and 2). Furthermore, the compounds could 

function as additional C- or N-source and enter the metabolism. Fumarate indeed 

is a central metabolite of the TCA. Thus, its uptake could enhance the overall 

capacity of the TCA. Various TCA intermediates further serve the biosynthesis of 

different amino acids, which potentially could also benefit biomass production. 

For Acetobacter pomorum a potential use of fumarate by the enzyme succinate 

dehydrogenase (EC1.3.5.1, present in TCA) was discussed where fumarate 

serves as an O-donor for the production of NAD+ and NADP+ from Aspartate 

(Consuegra et al. 2020b). D-Alanine, in contrast, could be converted first to L-

Alanine and subsequently to pyruvate, which serves as a carbon and energy 

source. When we analyzed the corresponding flux differences of the modeling 
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performed in the presence or absence of the metabolites in the HD (Figure S6 

and Data S6 and S7), we indeed detected a number of corresponding flux 

changes. First, we consider the situation where D-Alanine was added to the HD. 

Here, we see an increase in the flux associated with the conversion of D-Alanine 

to Pyruvate, as expected (Figure S6A). Pyruvate production is further enhanced 

coming from oxaloglutarate (Figure S6B). Other prominent changes include the 

change of direction of the fluxes from fumarate to malate and oxaloacetate 

(Figures S6C and S6D), the production of isocitrate from citrate (Figure S6E), the 

production of S-Succinyl-dihydrolipoamide from oxaloglutarate (Figure S6F), or 

the enhanced production of glutamate-derived amino acids such as glutamine 

(Figure S6G). Many of these enzymatic reactions are also affected by adding 

fumarate to the HD. Overall, the fumarate-induced flux changes of the TCA 

reactions are, however, bigger as from D-Alanine. Fumarate also resulted in a 

third possibility to enhance the pyruvate production coming from oxaloacetate 

(Figure S6H). The fumarate addition induced higher flux changes, which might 

provide an explanation for the overall bigger growth rescue phenotype detected 

in the actual growth experiments (Figure 6E). A recent report also targeted the 

prediction of Drosophila gut microbiome metabolite interactions using in silico 

models (Ankrah et al. 2021). The authors independently also revealed that TCA 

intermediate metabolites appear to be prominently exchanged between gut 

microbiome members. In their simulations, the authors used different media than 

we did, but still found a similar range of exchanged metabolites. Reassuringly, 

many of the exchanged metabolites are shared by our and the published study. 

In our extended studies, however, we did not detect a prominent growth-

promoting effect for some of these in our simulations (e.g., acetate, succinate, 

different individual amino acids). Yet, several metabolites detected in both studies 

(e.g., acetoin, acetaldehyde) clearly resulted in an individual growth-promoting 

activity (c.f. Figure S5 and Ankrah et al. 2021). 

Our results support the possibility to use genome-scale models in combination 

with agent-based growth simulations to predict meaningful microbiome 

cooperativity. In the future, extending this approach to additional microbiome 

constituents and/or the metabolism of the host D. melanogaster will be exciting 
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and perhaps pave the way to analyze also the much more complex microbiomes 

of higher organisms. 

 

Limitations of the study 

There are limitations in the modeling of growth-promoting bacterial metabolic 

interactions. On the one hand, this is true for the modeling side as outlined above. 

For example, FBA assumes optimization and maximization of a given parameter 

such as biomass production, yet organisms sometimes operate at a sub-optimal 

level. Furthermore, our knowledge of many parameters required for the modeling 

such as nutrient distribution along the gut, nutrient uptake rates, and transport 

reaction efficacies are unknown, which results in the necessity to make 

assumptions that are in the best case imprecise and in the worst case wrong. 

Further iterations and improvements on the modeling and experimental side 

might solve some of these shortcomings using, e.g., isotope labeling 

experiments. On the other hand, uncertainties concerning the biology exist. For 

example, we used laboratory-reared flies and detected the most prominent 

microbiome growth interactions on a minimal diet used for the growth of 

Drosophila. In the future, bacteria from wild-reared animals grown under natural 

conditions should be used, which, however, will be experimentally very 

challenging. Finally, our analyses were performed with simple consortia. 

Ultimately, complex mixtures with varying relative microbial species abundancies 

and consisting of more species will be required to estimate the true importance 

of metabolic cross-feeding phenomena among gut microbiota. 

 

STAR'Methods 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Bacterial and virus strains 

Acetobacter pasteurianus This paper B5 

Acetobacter indonesiensis This paper A4 
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Acetobacter indonesiensis This paper A5 

Lactobacillus plantarum This paper A2 

Lactobacillus plantarum This paper B2 

Lactobacillus brevis This paper B6 

Chemicals, peptides, and recombinant proteins 

L-arginine HCl Sigma-Aldrich Cat#A5131 

L-alanine Sigma-Aldrich Cat#A7627 

L-asparagine Sigma-Aldrich Cat#A0884 

L-aspartic acid Sigma-Aldrich Cat#A6683 

L-cysteine Sigma-Aldrich Cat#C1276 

L-glutamic acid monosodium salt 

monohydrate 

Sigma-Aldrich Cat#G5889 

L-glutamine Sigma-Aldrich Cat#G3126 

Glycine Sigma-Aldrich Cat#G7126 

L-histidine Sigma-Aldrich Cat#H8000 

L-isoleucine Carbolution Cat#CC10025 

L-leucine Sigma-Aldrich Cat#L8912 

L-lysine HCl Sigma-Aldrich Cat#L5626 

L-methionine Sigma-Aldrich Cat#M9625 

L-phenylalanine Sigma-Aldrich Cat#P2126 

L-proline Sigma-Aldrich Cat#P0380 

L-serine Sigma-Aldrich Cat#S4500 

L-threonine Carl Roth Cat#T206 

L-tryptophan Sigma-Aldrich Cat#T0254 

L-tyrosine Sigma-Aldrich Cat#T3754 

L-valine Sigma-Aldrich Cat#V0500 

Sucrose Carl Roth Cat#4661 

Cholesterol Sigma-Aldrich Cat#C8667 

choline chloride Sigma-Aldrich Cat#C1879 

myo-inositol Sigma-Aldrich Cat#I7508 

Inosine Sigma-Aldrich Cat#I4125 

Uridine Sigma-Aldrich Cat#U3750 

Tween20 Sigma-Aldrich Cat#P7949 

KH2PO4 Grüssing Gmbh Cat#120171000 

NaHCO3 AppliChem Cat#AP131638 

CaCl2.6H2O Sigma-Aldrich Cat#442909 

CuSO4.5H2O AcrosOrganics Cat#A0302205 

FeSO4.7H2O Sigma-Aldrich Cat#F7002 

MgSO4.7H2O AppliChem Cat#A6287 

MnCl2.4H2O Sigma-Aldrich Cat#M3634 
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ZnSO4.7H2O Sigma-Aldrich Cat#Z0251 

thiamine (aneurin) Sigma-Aldrich Cat#T4625 

Riboflavin Sigma-Aldrich Cat#R4500 

nicotinic acid Sigma-Aldrich Cat#N4126 

Ca pantothenate Sigma-Aldrich Cat#P21210 

pyridoxine-HCL Sigma-Aldrich Cat#P9755 

Biotin Sigma-Aldrich Cat#B4501 

folic acid Sigma-Aldrich Cat#F7876 

HPLC Fisher Scientific Cat#231-791-2 

Fumarate BLD Pharmatech Gmbh Cat#BD131629 

D(-)-Ribose AcrosOrganics Cat#10320164 

D-Alanine Carbolution Cat#CC10041 

Acetic acid glacial VWR Chemicals Cat#KRAF20104 

Glucose Fisher Scientific Cat#10529190 

Sodium acetate Grüssing Gmbh Cat#121111000 

Cycloheximide AppliChem Cat#A0879 

Peptone Carl Roth Cat#8986.2 

Yeast Extract BD Company Cat#212750 

Beef Extract Carl Roth Cat#X975 

Triammonium citrate Sigma-Aldrich Cat#A1332 

Tween20 Sigma-Aldrich Cat#P7949 

Ethanol Honeywell Cat#32221 

MRS agar plates Thermo Scientific Cat#CM0361B 

Proteinase K Thermo Scientific Cat#AM2546 

Lysozyme Sigma-Aldrich Cat#34046 

Phusion HF Polymerase New England Biolabs Cat#M0530 

Tris-HCL Roche Cat#10812846001 

EDTA AppliChem Cat#1.08452 

Triton# X-100 Sigma-Aldrich Cat#X100 

Bleach DanKlorix Hygiene Reiniger N/A 

Agar Becton Dickinson Cat# 10455513 

Polenta Verival; Pronurel Bio N/A 

Soy flour Bauck Hof N/A 

Yeast Bruggeman N/A 

Treacle Original Grafschafter Goldsaft N/A 

Malt extract Demeter N/A 

Nipagin Sigma-Aldrich Cat# H3647 

Propionic acid Acros Organics Cat#AC149300010 

Tween80 Sigma-Aldrich Cat#P1754 

Critical commercial assays 
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TOPO TA Cloning Kit for Sequencing Invitrogen Cat#K4575J10 

QIAamp DNA Mini Kit Qiagen Cat#51304 

Deposited data 

Raw and analyzed data This paper DOI: 10.17632/2tgjd6y4zb.1 

Experimental models: Organisms/strains  

D. melanogaster wildtype strain 

Oregon-R 

Bloomington Drosophila Stock 

Center 

BDSC: 5; FlyBase: 

FBsn0000276 

D. melanogaster white[1118] Vienna Drosophila Resource 

Center 

VDRC:60000 

Oligonucleotides 

GM3F: AGAGTTTGATCMTGGC Klindworth et al. 2013 N/A 

GM4R: TACCTTGTTACGACTT Klindworth et al. 2013 N/A 

Software and algorithms 

Python 3.8 Python Software Foundation https://www.python.org 

R Studio 1.2.5042 RStudio, Inc. https://www.rstudio.com  

R 3.6.1 R Foundation for Statistical 

Computing 

https://www.R-project.org  

BacArena 1.8 Bauer et al. 2017 https://bacarena.github.io  

gapseq 1.1 Zimmermann et al. 2021 https://github.com/jotech/gapseq  

Plotly 4.14.3 Plotly Technologies Inc. https://plot.ly  

 

Resource availability 

Lead contact 

Further requests for resources should be directed to and will be fulfilled by the 

lead contact, Mathias Beller (mathias.beller@hhu.de). 

 

Materials availability 

This study did not generate new materials. 
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Experimental model and subject details 

Fly strains and rearing 

The fly lines that were used in this study are w1118 (white[-]) and Oregon-R. Flies 

were maintained at 25°C with 60370% humidity and a 12 h light/dark cycle. 

Standard diet contains 0.5% agar (Becton Dickinson), 7.1% polenta (Verival, 

Pronurel Bio), 0.95% soy flour (Bauck Hof), 1.68% yeast (Bruggeman), 4% 

treacle (Original Grafschafter Goldsaft), 4.5% malt extract (Demeter). All diets 

contained 0.15% nipagin (Sigma-Aldrich) and 0.45% propionic acid (Acros 

Organics). 

 

Isolation of bacterial species from Drosophila 

In order to analyze different bacterial species from the gut microbiome of 

Drosophila, both white[-] and Oregon-R male flies (9 individuals) were surface 

sterilized by washing with 10% bleach, 70% ethanol and PBS before 

homogenization and plating on MRS and ACE agar plates. MRS agar plates 

(Oxoid, Thermo Scientific) contain (in 1000 mL dH2O): Agar (15 g), casein 

peptone, tryptic digest (10 g), meat extract (10 g), yeast extract (5 g), glucose (20 

g), Tween 80 (1 g), K2HPO4 (2 g), Na-acetate (5 g), (NH4)2 citrate (2 g), MgSO4 x 

7 H2O (0.2 g), MnSO4 x H2O (0.05 g), pH 6.236.5. ACE agar plates (Blum et al. 

2013) contain: (in 1000 mL dH2O): Agar (15 g), yeast extract (8 g), casein peptone 

(15 g), glucose (10 g), after autoclaving: acetic acid (3 mL), ethanol (p.a.) (5 mL) 

and Cycloheximid (100 mg). The plates were incubated at 28°C for three to five 

days and single colonies were picked and isolated on new agar plates for three 

rounds to obtain pure cultures. These were then stored in glycerol stocks for later 

DNA extraction and analysis. 
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Method details 

Single colony PCR and analysis of 16S rRNA genes 

Of the different pure cultures single colonies were picked and transferred into 

PBS buffer containing 200 ¿g/ml Proteinase K and 10 mg/ml Lysozyme and 

incubated for 30 min at 37°C and 2 min at 95°C. The samples were centrifuged 

for 2 min at 13.000 rpm and the supernatant transferred to a new vial. The 16S 

rRNA Gen was amplified using the GM3F and GM4R primers (Klindworth et al. 

2013) using the Phusion Polymerase (New England Biolabs) which produced a 

product of about 1500 bp. These PCR products were then ligated into the TOP 

TA Vector (TOPO TA Cloning Kit for Sequencing, Invitrogen) and transformed 

into chemocompetent E. coli DH5alpha according to the manufacturer's 

instructions. The vector including the insert was extracted from E. coli and the 

insert analyzed by Sanger sequencing (MWG Biotech). The DNA sequence was 

afterwards subjected to BLAST analysis to identify the isolated bacterial species. 

 

DNA extraction from bacterial species for genome sequencing 

The DNA extraction was performed using the Qiagen QiaAmp DNA Mini kit 

according to the manufacturer's recommendation, with the following 

modifications. Briefly, an inoculation loop was used to pick bacterial colonies from 

the pure cultures grown on ACE or MRS agar plates and the bacteria were 

resuspended in gram-positive lysis buffer (20 mg/ml lysozyme; 20 mM Tris·HCl, 

pH 8.0; 2 mM EDTA; 1.2% Triton®). The following lysis and purification steps 

were performed according to the kit's protocol for DNA extraction from gram-

positive bacteria. 

 

Liquid media bacteria growth experiments 

For the bacterial growth experiment, we prepared pre-cultures in the respective 

semi-selective medium (MRS for Lactobacillus sp. and ACE for Acetobacter sp. 

(Blum et al. 2013)). Subsequently, we either directly used the optical dense 

overnight culture or adjusted it to an OD600 of 0.8. Next, we performed a 1:1000 
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(MRS and ACE) or 1:100 (HD) dilution and distributed the bacteria to transparent 

96-well flat bottom plates (Sarstedt). The medium was covered with mineral oil 

and incubated in a BioTek Synergy Mx Plate Reader with (Acetobacter) or without 

(Lactobacillus) shaking for at least 48 hours. Optical density was measured every 

five minutes. Per experiment, all growth curves were measured in at least 

triplicate and the figures provide mean values. 

 

Whole genome sequencing of isolated bacterial species 

The isolated genomic DNA samples from the gut microbiota species were 

sequenced using the Illumina MiSeq platform following standard procedures. The 

library preparations and sequencing were performed by the Genomics and 

Transcriptomics Lab at the HHU. 

 

Genome reassembly 

For the genome reassembly the tool ASA³P (Schwengers et al. 2020) was used. 

ASA³P is an automatic, scalable assembly, annotation, and analysis pipeline for 

genomes of bacterial origin. The pipeline consists of four steps: Processing, 

characterization, comparative genomics, and reporting. Each step provides 

different analysis information about the used sequenced genome through 

different software tools and databases. While processing and reporting is 

mandatory, the steps of characterization and comparative genomics is optional 

and can be skipped by the user. The first step processing includes the task of 

quality control, genome assembly, scaffolding and annotation. The second step 

of characterization determines the taxonomy, performs a multi locus sequence 

typing (MLST) analysis, tries to detect antibiotic resistances (ABRs), a detection 

of virulence factors (VFs), performs a mapping by using quality clipped reads onto 

reference genomes provided by the user, and annotates single-nucleotide 

polymorphisms (SNPs). The third step of comparative genomics consists of the 

calculation of a phylogenetic tree and of a core, accessory and pan-genome while 

detecting isolate genes. The last step is a graphical presentation of the pipeline 

results. All ASA³P results are provided in the supplement. 
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Reconstruction of bacterial metabolic models 

The sequenced genomes were used to reconstruct their genome-scale metabolic 

models using the gapseq analysis pipeline (Zimmermann et al. 2021). We used 

for the reconstruction and gap-filling step the MRS, ACE and HD as the growth 

medium. All metabolic models were created combining each genome sequence 

and every single medium. During the model generation process, we considered 

in particular stochiometric consistency, mass and charge balance as well as 

metabolite connectivity and introduced necessary changes following manual 

curation. In order to test for the quality of our models, we used the MEMOTE 

analysis pipeline (Lieven et al. 2020). All analysis results are provided as 

supplemental data. In brief, the models resulted in at least 77% model quality 

scores. Most importantly, the key requirements for the models all reached at least 

99%. The score was only decreased by e.g. missing gene or metabolite 

annotation cross-references, which we do not focus on in the present manuscript 

and have no influence on flux predictions in constraint-based modeling. A central 

part of genome-scale metabolic models is the biomass reaction, which represents 

the metabolite consumption for the formation of all cell constituents. The biomass 

reaction is commonly, and also in this study, used as objective function for flux 

balance analysis (FBA) or FBA-derived simulation techniques. The gapseq 

software automatically adds a biomass reaction to the models based on the 

organism's Gram-staining phenotype in order to account for biomass composition 

differences due to differences in the structural characteristics of the cell wall. The 

exact biomass reaction stoichiometries in gapseq are directly derived from 

ModelSEED (Henry et al. 2010), which in turn derived the biomass reaction 

definitions from curated genome-scale metabolic models from Escherichia coli 

(Orth et al. 2010) as a proxy for Gram-negative bacteria and Bacillus subtilis (Oh 

et al. 2007) as a proxy for Gram-positive bacteria. The biomass compositions for 

all Lactobacilli models (Gram-positive) and Acetobacter models (Gram-negative) 

are provided in Data S1. 
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Constraint-based modeling 

Flux balance analysis (FBA; (Orth et al. 2010)) was used to perform the growth 

and metabolic flux analysis. The mono- and co-culturing in silico experiments 

were performed using the BacArena tool (Bauer et al. 2017), which is also based 

on FBA. 

 

In silico growth media 

In silico experiments used parametrized versions of the experimentally used 

MRS, ACE and HD media (Supp. Table 1). MRS and ACE medium are semi-

defined as the contain complex ingredients such as yeast extract. Therefore, we 

obtained compositional information from the suppliers of the respective media 

ingredients (see Data S2). For some media components, which are required to 

run the simulations, no quantitative information could be obtained. Those 

compounds were manually curated and added. We limited the number of such 

manually added compounds to the absolute minimum and provide all media 

information as supplemental data. The parametrized HD medium is based on the 

protocol of (Piper et al. 2014), which is completely synthetic and thus did not 

require any modifications. 

 

Calculation of predicted relative flux ratios 

To identify reactions with a higher flux and reactions corresponding to a crosstalk 

between Lactobacillus brevis B6 and the Acetobacter sp. we calculated a 

predicted relative flux ratio for each reaction and time point. 

We calculated the predicted relative flux ratio as followed: 

������,   �	�
���� �,� = ��
����
����� ��,�	�
���� �,� 
��
	����
�	�,�	�
���� �,� 

 (1) 
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where ��
����
����� ��,�	�
���� �,�  is the flux of the reaction� of Lactobacillus B6 at 

time point � in 
����

 !"7$, ��
	����
�	�,�	�
���� �,�  is the flux of the reaction� of 

Acetobacter sp. at time point � in 
����

 !"7$.  

If the predicted relative flux ratio value is between 1 and -1 we calculated the 

values as followed: 

������,�	�
���� �,� = 1
������,�	�
���� �,�

 ; 1 >  ������,�	�
���� �,� >  21 (2) 

 

where ������,�	�
���� �,� is the unitless predicted relative flux ratio. We choose this 

representation of the value range between 1 and -1 to highlight the higher flux 

value between Lactobacillus B6 and the Acetobacter sp.. 

 

Calculation of cumulative flux values 

In order to analyse the metabolic impact of an additional metabolite in the holidic 

diet towards the bacteria grown on the media we calculated the cumulative flux 

for each time point. 

First, we calculated the sum of flux values: 

�)��,*,�	�
���� � = + �*,�	�
���� � 
�

�,-
 (3) 

  

where �)��,*,�	�
���� � is the sum of flux values over the time � with medium . in 

����
 !"7$, �*,�	�
���� � is the flux value at a time point with medium . in 

����
 !"7$.  

Next, we calculated the difference of the sum flux values between the standard 

holidic diet HD and the medium .: 

�&,�	�
���� � = �)��,0!,�	�
���� � 2  �)��,*,�	�
���� � (4) 
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where �&,�	�
���� � is the difference between the summed flux values of HD and 

medium . over the time �.  

Finally, we calculated the cumulative flux as followed: 

�
1��2,�	�
��� � = 34567�&,�	�
���� �7 + 19 (5) 

 

where �
1��2,�	�
���� � is the cumulative flux value between HD and the medium . 

for a reaction in 345 : ����
 !"7$;. The cumulative flux value can also be calculated for 

a group of reactions. 

 

Quantification and statistical analysis 

Figures represent averaged or representative results of multiple independent 

experiments or simulations. The figure legends provide details concerning the N 

of experiments or simulations. Analyses and Plots were performed with custom 

Python scripts. 

 

Additional resources 

All data is available at data.mendeley.com under the URL 

https://doi.org/10.17632/2tgjd6y4zb.1.  

Data and code availability 

÷ Genome resequencing data, the genome-scale metabolic networks and 

bacterial growth data, as well as all data required to reproduce the figures 

are deposited at Mendeley Data and is available as of the date of 

publication at https://doi.org/10.17632/2tgjd6y4zb.1. 

÷ All original code was additionally deposited at our GitLab account and can 

be accessed via https://gitlab.com/Beller-Lab. 

÷ For any additional questions or information please contact the lead 

contact. 
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Modeling Drosophila gut microbe interactions reveals metabolic 

interconnectivity  

Jürgen W. Schönborn, Fiona A. Stewart, Kerstin Maas Enriquez, Irfan 

Akhtar, Andrea Droste, Silvio Waschina, and Mathias Beller 

 

 

Figure S1: Growth estimate determination and comparison between wet-lab and in silico results, 
Related to Fig. 1 and Fig. 2. (A) The growth rate of the six isolated bacteria was estimated on the three 
different media (MRS, ACE and HD) by wet-lab experiments (left part of the table) and using the computed 
biomass production amounts to calculate in silico derived growth rates (right side of the table). The formulas 
used are provided in (B). (C) We subtracted from the experimentally determined growth rate the in silico 
derived one to get a similarity measure (difference is <delta=). The color-coded delta values obtained are 
provided in the table. 
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Figure S2: Parametrization of the media contents used in this study, Related to Table 1, STAR 
Methods, and Supplemental File 2. The <CPD= ID refers to the compound descriptor used in the modeling 
simulations. 
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Figure S3: Robustness analysis of the signature metabolite production of Lactobacilli and 
Acetobacter bacteria on the three different media, Related to Fig. 3. Simulations were run 100 times 
and the production of lactate and acetate, respectively, was recorded. As a threshold, metabolite production 
had to surpass a flux rate of 0.1 nmol / h to count as <flux present=. The plots show the color-coded results 
with red color representing a high fraction of simulation runs with metabolite production and orange shades 
represent a low fraction of metabolite producing simulation runs. 

 

 

Figure S4: Test for heterolactic behavior of Acetobacter and Lactobacillus models, Related to Fig. 3. 
While all Lactobacilli were able to produce also acetate (upper row), the Acetobacter models failed to 
produce lactate exceeding our 0.1 nmol / h flux threshold. 
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Figure S5: Rescue of the Acetobacter sp. growth deficit in the HD by adding singular metabolites, 
Related to Fig. 5 and Fig. 6. All metabolites which showed an exchange behavior in the combined growth 
simulations (cf. Figure 5A and supplemental file 2) were added individually to the HD simulations. The 
simulations were evaluated for a rescue of the growth deficit which is represented by red color in the table. 
The majority of added metabolites did not alter the biomass production of the model (represented by black 
color). 

 



2.2. Modeling Drosophila gut microbe interactions reveals metabolic interconnectivity 

 

101 
  

 

Figure S6: Focused metabolic network with flux differences of A. pasteurianus (B5) growth modeled 
on HD or HD with D-Alanine or HD with fumarate, respectively, Related to Fig. 6. Flux changes were 
calculated by subtracting the flux present on the HD from the value present in the HD with additive. The 
result was log normalized. Highlighted reactions are (if multiple reactions are provided, the individual flux 
values were combined to produce one summarizing value): a) L-Alanine racemase and L-alanine:glyoxylate 
aminotransferase, b) L-Alanine:2-oxoglutarate aminotransferase, c) Malate-dehydrogenase, d) Fumarase, 
e) Aconitase, f) 2-oxoglutarate dehydrogenase g) glutamate to isoleucine: L-Isoleucine:2-oxoglutarate 
aminotransferase; glutamate to phenylalanine: L-Phenylalanine:2-oxoglutarate aminotransferase; glutamate 
to tyrosine: L-tyrosine:2-oxoglutarate aminotransferase; glutamate to glutamine: L-Glutamate:ammonia 
ligase (ADP-forming) and L-glutamine:D-fructose-6-phosphate isomerase (deaminating); glutamate to 
histidine: L-Histidinol-phosphate phosphohydrolase and L-Histidinol:NAD+ oxidoreductase; glutamate to 
proline: ATP:L-glutamate 5-phosphotransferase and L-glutamate-5-semialdehyde:NADP+ 5-oxidoreductase 
(phosphorylating) and L-glutamate 5-semialdehyde dehydratase and L-Proline:NADP+ 5-oxidoreductase, h) 
oxaloacetate carboxy-lyase (pyruvate-forming). 
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Abstract 

The phenotype of organisms is the result of complex interactions between 

physiology, developmental conditions, and intra-organismic processes, such as 

metabolism and genetic adaptation. Organisms pursue various developmental 

strategies that depend on factors such as available resources. How organisms 

regulate and control critical developmental principles is not fully understood. In 

this study, we investigated the dynamic development of Drosophila melanogaster 

larvae through in vitro and in silico experiments. First, we enhanced the larval 

metabolic network FlySilico and its parameters using growth and metabolite 

measurements. Subsequently, we established a dynamic flux balance analysis 

approach and incorporated spatial physiological information from the larval gut to 

improve the prediction results. We successfully predicted larval growth on 

different media and developmental critical processes, such as the emergence of 

larval metamorphosis. This expands the ability to investigate and understand the 

process of the larval critical weight and, furthermore, the influence of critical 

developmental processes of multicellular organisms on metabolism. Thus, we 

present an approach to understand the development, metabolism, and the role 

of physiology in the development of multicellular organisms. 

 

Introduction 

Physiology plays a pivotal role in determining the capabilities and developmental 

outcomes of all organisms. Influences like environmental conditions affect the 

physiology of organisms. In the progress of organism9s growth, malnourished 

higher organisms often manifest smaller overall sizes, leading to reduced organ 

or tissue proportions when compared to well-fed counterparts (McCance, 1960). 

The physiology of all living beings is an expression of their phenotypic traits 

influenced by diverse genetic responses to the varying environmental conditions 

experienced by the organism (Mitchell-Olds et al., 2007). Even small organisms 

like Drosophila melanogaster exhibit similar behavioral responses to changes in 

their environment. Throughout the larval growth stage, Drosophila undergoes a 

quick process of cellular division and specialization, during which numerous 
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essential genes involved in development are expressed. The progression of this 

growth phase can be affected by several factors, such as nutrient availability and 

temperature, which may alter the timing and pace of developmental events. Given 

its complexity, the growth of Drosophila larvae has been a popular model for 

comprehending the genetic and molecular mechanisms behind growth and 

development across various higher organisms (Roberts, 2006; Baker and 

Thummel, 2007; Melcher et al., 2007). Adult flies that developed from larvae 

raised at 18 °C show decreased mass and size, but exhibit a higher maximum 

walking speed compared to those developed at 25 °C on the same growth 

medium (Crill et al., 1996).  

Physiology can be altered through genes and signals, although many of the 

complex interactions between them are still not fully understood as of today. 

These interactions, often involving a multitude of biological components and 

pathways, contribute to the distinctive characteristics and behaviors observed in 

organisms. While understanding these interactions demands a substantial 

investment of knowledge of the biological components and resources for 

investigation (Ginzinger, 2002; Tkaik and Walczak, 2011), the outcome is the 

emergence of a phenotype uniquely specific to the interactions themselves 

(Wright, 1941; Shingleton, 2010). These phenotypes are possibly easier to 

quantify as to measure the underlying gene-signal interaction network that led to 

the phenotype. 

Under conditions of unrestricted feeding and stable environmental conditions, the 

duration of the larval stages, particularly the third instar larval stage, remain 

constant. This duration is sufficiently long to accumulate a large reservoir of 

resources, which is essential for beginning and surviving the metamorphosis 

(Aguila et al., 2007; Merkey et al., 2011). Larvae need to reach the so called 

<critical weight= (or <critical size=) (Moed et al., 1999). The critical weight is defined 

as the minimal weight needed to enter and survive the pupation to become an 

adult fly (Shingleton et al., 2007). Depending on how nutritious the growth 

medium is, the larvae can grow larger beyond the critical weight. It is known that 

growth of larvae and their tissue is dependent on the interaction of signal 

hormones (Riddiford and Ashburner, 1991). In addition, more known and 

unknown signals, along with genes, interact in various ways towards a complex 
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gene-signal network that enables the growth in a specific environment. Despite 

the complexity of the mechanics behind growing in different environments all 

organisms show distinct phenotypical and morphological features. Those 

features can be used to derivate the progress of growth to pin down growth 

phases and their underlying features. 

The understanding of the underlying mechanisms of larval growth can be 

examined in different ways. Wet lab experiments can be conducted to investigate 

larval growth in terms of size and weight or to explain the genetic factors 

underlying larval development. The identification of such genetic factors offers 

valuable insights into the understanding of development but requires extensive 

labor and complex analysis to obtain meaningful conclusions (Anholt and 

Mackay, 2004). Furthermore, in silico experiments offer a valuable approach to 

gaining insights into the progression of larval growth during development. For this 

reason, different approaches can be used. One way to perform meaningful in 

silico experiments is the use of flux balance analysis (hereafter referred to as 

FBA) in combination with wet-lab experiments. In silico experiments with FBA 

were already successfully used with various organisms: (i) Escherichia coli was 

used to investigate growth, overflow metabolism, and energy consumption 

(Kauffman et al., 2003; Orth et al., 2010; Zeng and Yang, 2019) (ii) The growth 

and ethanol production of yeast cultures (Förster et al., 2003; Hjersted and 

Henson, 2009). (iii) The ATP yield of different carbon sources for human 

(Swainston et al., 2016). Moreover, FBA was already successfully used to 

understand the development and environmental impacts on Drosophila 

melanogaster larvae and flies by examining resource allocation, impact of altered 

growth conditions and the resulting impact on metabolic fluxes (Coquin et al., 

2008; Feala et al., 2009; Schönborn et al., 2019; Cesur et al., 2023).  

Investigations were made concerning the dynamics of organism9s growth, 

changes in metabolism, nutrient uptake, and metabolite excretion over time using 

more advanced techniques involving FBA. Dynamic flux balance analysis 

(hereafter referred to as <dFBA=) is one extended version of FBA that allows the 

investigation of dynamic changes in the simulation conditions, including 

extracellular concentration changes (Hjersted and Henson, 2006; Meadows et 

al., 2010; Henson and Hanly, 2014). dFBA enables the prediction of changes in 
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metabolite concentrations and fluxes both intra- and extracellularly over time. 

This was enabled through incorporating constraints that change the flux rates 

over time. This approach has found extensive use in predicting dynamic growth 

in cell culture dynamics making it suitable for studying cellular metabolism in 

batch cultures, for example for E. coli (Varma and Palsson, 1994) or Yeast 

(Hjersted and Henson, 2006).  

This method illustrates that predicting the growth dynamics of cell batch cultures 

is feasible, although not all organisms share the same growth conditions as those 

found in batch cultures. For instance, laboratory-reared Drosophila melanogaster 

grow in an environment that closely resembles a continuous culture growth, 

where they receive a constant and steady supply of nutrients throughout their 

entire development with no changing extracellular metabolite concentrations. 

Therefore, the dFBA approach must be adjusted to effectively predict and 

describe the growth of organisms like Drosophila larvae. This can be achieved 

by integrating growth-related attributes to the simulations, such as the 

physiological properties of organisms. 

We previously published the curated metabolic network FlySilico (Schönborn et 

al., 2019) of D. melanogaster based on time-resolved growth and metabolite 

measurements from larvae grown on holidic diet (Piper et al., 2014) (hereafter 

referred to as "HD"). The metabolic network consists of the core metabolism of 

Drosophila. To comprehensively explore larval metabolism across various 

environmental conditions a biomass function to simulate larval growth was 

formulated based on experimental metabolite measurements. However, 

FlySilico, predominantly characterizes the phase of larval growth marked by 

exponential expansion and potentially overlooking critical insights at the onset 

and conclusion of larval development. 

Considering these limitations, we present an enhanced version of FlySilico. Our 

goal was to refine predictive accuracy by incorporating the initial and final stage 

of larval development, with a focus on the larva-to-pupa transition. Additionally, 

we aimed to identify factors that impose constraints on growth during these 

crucial developmental phases. First, we improved and expanded the underlying 

data that are used to determine growth parameters based on experimental 
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results. Secondly, we constructed a dFBA approach that fits the prediction of 

larval growth over the time. Thirdly, we show that phenotypes such as 

morphological attributes can be used to explain the growth through the larval 

stage of wild-type Drosophila melanogaster. We investigated the growth and 

pupation timing in dependence of their growth environment by using physiological 

information (such as size and weight) with a dFBA approach. For that we 

examined the larval gastrointestinal tract (hereafter referred to as "gut") and the 

larva itself on chemically defined and undefined growth media. Our data provide 

confirmation that the interplay between physiological characteristics and 

metabolic processes can effectively be used to estimate both the timing of 

pupation in larvae and their metabolic patterns during growth. 

 

Results 

Detailed analysis of larval growth and development 

Our decision to acquire a more extensive dataset was motivated by the 

observation that the previously published FlySilico dataset lacked coverage of 

both the initial and final stage of the larval development. It had the potential to 

overlook significant developmental phases, such as the critical pupation timing. 

The pupation timing marks the completion of larval development. The inclusion 

of data about crucial developmental phases assures to improve the precision and 

quality of insights into larval development. 

Under typical conditions, characterized by sufficient nutrient availability, stable 

temperature, and a wild-type genetic background, the weight increase of 

developing Drosophila melanogaster larvae follows an S-shaped exponential 

growth pattern, commonly referred to as sigmoidal growth. This growth pattern is 

evident in our dataset (Fig. 1).  
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Figure 1: Metabolic profiling of the larval developmental of Drosophila melanogaster with growth 
from 48 to 192)hours after egg laying on holidic diet (HD). Wet weight (A) and dry weight (B) 
measurements of larvae from 48 hours every 24 hours to 192 hours. (C3H) Absolute quantification of TAG, 
glycerol, glycogen, glucose, lactate, and triglyceride (TAG) levels. The data is presented as mean 
values)±)standard deviation normalized to the number of animals per sample (triplicate measurements). On 
average the pupation started around the 192 hours mark. 

The data reveal a proportional relationship between the larval growth and the 

metabolite content, presenting three distinct phases. Initially, the growth 

progresses moderately, resulting in a lag-like phase. Subsequently, an 

exponential growth phase occurs, which leads to a third phase where the growth 

reaches a plateau which ultimately leads to pupation. We measured different 

larval growth parameters (e. g. larval weight and larval size dimensions) and the 

metabolic composition in a much more fine-grained and time-resolved manner in 

comparison to the first data set that we used in the first published FlySilico version 

(Schönborn et al., 2019).  
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In-depth enhanced larval Drosophila metabolic model 

We expanded the previously published metabolic model FlySilico (Schönborn et 

al., 2019) by incorporating different pathways in greater detail such as the fatty 

acid biosynthesis and purine and pyrimidine metabolic pathways (Supplementary 

Table 1). These additional reactions cover the synthesis of macromolecules and 

polypeptides used to build up important tissues and structures. The current 

version of FlySilico contains 584 reactions and 326 unique metabolites (Table 1). 

Table 1: Comparison of the previously published FlySilico and the FlySilico version from this study. 
The number of compartments lists the number of cellular compartments present in the respective metabolic 
network. The count of biomass components denotes the individual metabolite components form the biomass 
equation of the respective metabolic network. 

 

The more detailed  fatty acid biosynthesis pathway representation was designed 

to allow us to make more precise statements on how the fatty acids are utilized 

in the metabolism and in terms of their impact on larval growth, as the fat body of 

larvae is one of the most important organs for growth and survival for the 

organism (Zheng et al., 2016). The fat body enables to store as much fatty acids 

as needed to survive the larval metamorphosis. 

Drosophila larvae show a sigmoid weight gain over the course of the development 

(Fig. 1A, B). This comes with the problem that the growth rate and therefore the 

biomass function changes over the course of developmental timing. To address 

this issue while maintaining the use of flux balance analysis to predict the growth 

we chose to calculate a weighted mean metabolite coefficient for defining the 

demand of each metabolite essential for growth (view method section). This 

allows us to use a single coefficient for each metabolite contained in the biomass 

function over the time of development. Besides the improved single coefficient 
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for each metabolite in the biomass function we incorporate different important 

macromolecules into the biomass formulation. 

Important structures for larval survival are the mouth-hooks and cuticle which 

both are made of a protein-chitin-matrix. The mouth-hook functions as the tool to 

take up nutrients into the organism while the cuticula functions as a stabilizer and 

protection for the larval body (Chihara et al., 1982; Ashburner, 1989). We include 

the metabolite chitin into the biomass function based on data from literature. The 

chitin content of an adult fly is around 7.85 % (Kaya et al., 2016) which we used 

as an approximation for the content of chitin in a larva.  

RNA and DNA play an important role in the growth of every organism by applying 

significant influence on various aspects of an organism9s development (Church 

and Robertson, 1966; Chícharo and Chícharo, 2008). For instance, anomaly in 

nucleic acids can contribute to the growth of tumors or other genetic mutations 

(Loeb et al., 2003). Since the previously published version of FlySilico does not 

contain any sufficient representation of nucleic acids, this absence limits the 

ability to make more precise observations. Therefore, meaningful conclusions 

about the impact and alterations of genetic information during development 

cannot be made without implementation. Thus, the inclusion of nucleic acids in 

our modeling is of importance to enhance the precision of the simulation results. 

We included nucleic acids to the metabolic network in a simplified form. The 

underlying building blocks of nucleic acids are incorporated into the biomass 

function. The building blocks are dAMP, dCMP, dGMP and dTMP for DNA and 

AMP, CMP, GMP and UMP for RNA. All mentioned building blocks received a 

biomass coefficient based on literature values from the yeast model of Förster et 

al. (2003). This should sufficiently enhance the predictive power of the larval 

metabolic network. 

Modeling dynamic Drosophila larval growth 

Flux balance analysis is usually used to predict a flux distribution that minimizes 

or maximizes a defined objective function (Varma and Palsson, 1994). This 

objective function can be a biomass function which describes the needed 

metabolites to synthesis biomass of an organism or a flux that synthesis a 

metabolite of interest (Kauffman et al., 2003). These predictions are performed 
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by FBA for a steady-state system. To predict the whole development of an 

organism like a Drosophila larva, the FBA approach needs to be calculated 

through developmental time which represents a non-typical steady-state system. 

This can be achieved using dynamic flux balance analysis (dFBA) modeling, 

where the prediction is performed in a time dependent manner with changing 

conditions. This technique has been previously demonstrated to successfully 

predict the growth of E. coli within a batch culture (Varma and Palsson, 1994). In 

a batch culture, E. coli relies on initial metabolite concentrations, which gradually 

evolve over time until all growth-supporting metabolites are consumed.  

Drosophila larvae usually do not grow in a batch culture. The larval growth in a 

laboratory culture occurs usually under constant/overflow metabolite 

concentrations. The growth of larvae is different to a batch culture growth and 

has three important key setups: Firstly, the growth medium is usually a 

homogenous mixed system. Secondly, the metabolites used to grow do not 

deplete through the development from larva to an adult fly. Thirdly, no significant 

amounts of metabolic end products accumulate. This growth resembles rather 

the attributes of a continuous growth culture. The continuous culture growth is 

described as growth in an environment with steady stream of nutrients which 

allow growth at a continuous rate over an indefinite time (Novick and Szilard, 

1950).  

As a result, dFBA that models the growth and changing metabolite concentrations 

in larval metabolism throughout development, indicates unrestricted growth for a 

Drosophila larva (Supplementary Fig. 1). 

Our hypothesis was that a fundamental mechanism limits the unrestricted growth 

of wild-type Drosophila larvae and contributes to the checkpoint regulating the 

entry into pupation. Therefore, we conducted an analysis of larvae and their 

various tissues, as the physiological characteristics could manifest the 

fundamental mechanism in a phenotypic manner (Fig. 2).  
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Figure 2: Growth of larvae reared on chemically defined medium. (A) Larvae growing on HD medium 
at 168 hours AEL. The photo was taken with a Stereomicroscope from Zeiss (SteREO Discovery.V8). The 
length, width and area were set manually by using the software Zeiss Zen 2.3 lite (blue edition).  (B) Example 
of a dissected larval gut from an individual raised on HD at the 192 hours timepoint AEL. Sample was imaged 
with an Operetta CLS high content screening microscope (Perkin Elmer) and were recorded with a 20x air 
objective. 

Upon analyzing the larval gut, we observed that the spatial parameters governing 

gut growth on HD growth medium halt before the larva transition into the 

wandering L3 stage, marking the onset of pupation (Fig. 3). The termination of 

gut growth prior to the wandering phase and pupation, presents an opportunity to 

establish a constraining parameter. This parameter endorses the simulation of 

larval growth to mimic the natural development observed in the real world. 

Modeling the gut as a constraining parameter in growth simulations 

To address the previously mentioned issue of unlimited growth in larvae, we 

implemented a penalty function based on morphological and physiological 

attributes of the larval gut. The design of this penalty function was inspired by the 

sigmoidal growth patterns observed in both larval weight (Fig. 1A and B) and gut 

development (Fig. 2A-C). 
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Figure 3: Growth dynamics of Drosophila melanogaster larvae and gut.  (A-C) Gradual growth in the 
area, length, and width of developing larvae. The area is calculated based on the length and width of a 
larvae. Each timepoint consist of at least 20 larvae (triplicate measurements). The data are presented as 
mean values)±)standard deviation normalized to the number of animals per sample. (D-F) Increase of area, 
length, and width of the gut from developing larvae. The area is calculated based on the length and width 
for each gut. Each timepoint consist of at least 8 guts (triplicate measurements). The unsmoothed data 
(shown in green) and smoothed data (shown in yellow) illustrate the sigmoid progression of larval gut growth. 
Initially, a rapid growth from 96 hours to 168 hours is present which is followed by a nearly plateau from 168 
to 192 hours. The data is presented as mean values)±)standard deviation normalized to the number of guts 
per sample (green). On average the pupation started around the 192 hours mark. 

The penalty function was implemented to regulate nutrient uptake through the gut 

and subsequently limit larval growth (see Method section). During the early 

stages of larval development, the penalty function did not impose any limitations 

on growth, as the gut efficiently absorb nutrients from the growth medium and 

allocate the resources fully to larval growth (Fig. 4; Supplementary Fig. 3).  As 

the development further progresses a change in the growth pace is visible which 

is the result in a decrease of growth rate due to the limitation of the gut function 

on nutrient uptake (Fig. 4).   

This transition is evident during the phase when larvae enter the critical weight 

range, leading to a stage of minimal to no growth. Simultaneously, growth of the 

gut declines and its expansion halts (Fig. 3). The penalty function mimics this 

process as it reduces the nutrient uptake specifically for growth in the simulation. 

This reduction in nutrient uptake resulted in a decrease in growth rate. As the 

growth rate continued to decrease, it reaches a point where no further growth 

was possible. Upon reaching this point, the critical weight is already achieved 
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and, along with the halting of gut growth, it serves as a signal of the larva9s 

transition towards eventual pupation.  

 

Figure 4: Comparison of in vitro and in-silico larval growth on chemically defined growth medium. 
We simulated the in silico growth of a larva (green; dry weight) on HD by using the dFBA approach (see 
method section). The growth of the larva resembles a sigmoidal growth curve till it reaches a plateau starting 
around 192 hours. The growth of larvae reared in vitro (red; dry weight) on HD, starts at 48 hours till 192 
hours AEL. The growth in vitro shows a small variance in comparison to the in silico growth based on the 
relative dry weight values. On average the pupation started around the 192 hours mark. 

The penalty function is mathematically described as a negative sigmoidal function 

(Supplementary Fig. 3) which runs between 1 and 0. This function is based on 

different attributes of the larval development which enables the successful 

integration into the dFBA simulation. The penalty function describes the timing 

where the larval gut from larvae grown on HD stopped growing. This is roughly 

around 180 hours after egg laying (AEL) on HD with a function value of 0.5. This 

is represented by the largest change in the gradient of the function on the 

timepoint 180 hours AEL which is the turning point of the function (Supplementary 

Fig. 3). This important time point in the development of larvae under standard 

conditions grown on HD show a correlation to the critical weight and the end of 

the development of the gut. Around the turning point of the function a phase is 

visible which overlaps with the range where the critical weight is reached. This 

phase of the function starts around 128 hours with a function value of around 1 

and ends around 218 hours with a function value of nearly 0. The most crucial 

impact on the simulation becomes apparent when we observe a particular 

gradient value, approximately 0.6. This occurs during the time period between 
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168 hours and nearly 192 hours (Supplementary Fig. 3). Notably, this specific 

time interval corresponds to the critical weight range, a phase where larvae are 

capable of initiating pupation. This gradient change results in a sharp decline of 

the gut function and consequently flattening of the larval growth curve (Fig. 4). 

This flattening signifies a critical transition point in the larval development process 

due to the reduced nutrient absorption of the gut. 

In summary, the introduction of a negative sigmoidal penalty function based on 

physiological attributes effectively limits nutrient uptake and controls the growth 

rate in larvae. This regulation played a crucial role in determining the larva's entry 

into the wandering L3 phase and subsequent pupation based on the simulation 

results (Fig. 4). Having successfully run the dFBA simulation of larval growth on 

HD under standard conditions by incorporating the penalty function (Fig. 4), it is 

now intriguing to explore whether the current dFBA simulation can accurately 

predict outcomes in unfamiliar scenarios. 

Dynamic growth model verification 

The first step in our model verification procedure was to select an unfamiliar 

scenario for the simulation. We chose to test our simulations on a complex 

medium called low sugar diet as this diet prominently alters the developmental 

timing (see method section; hereafter referred to as "LSD"). We defined the 

underlying growth medium parameters by defining the mediums components and 

their corresponding amounts (Supplementary Table 2). As LSD is a complex 

medium, the amount and composition of nutrients available for intake into the 

metabolic network can vary depending on the complex medium defined for the 

simulation. This variation in the case of growth, can lead to differences of growth 

rate in the simulation. Next, we performed growth simulations that were promising 

as the growth timing was predicted to be much shorter (120 hours for larval grown 

on LSD in comparison to 192 hours for larval grown on HD).  

In the case of the complex LSD medium, the penalty function revealed a shift in 

the turning point to approximately 100 hours AEL (Supplementary Fig. 4). This is 

due to the accelerated growth rate in comparison to HD medium. The time point 

of 100 hours shows a function value of 0.5. The gradient is changing in a range 

which starts around 76 hours till the end of around 128 hours. This is a smaller 
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phase where the gradient changes in comparison to the penalty function for the 

HD and results from the much faster growth of the larva on LSD. 

Subsequently, we performed corresponding in vitro growth experiments following 

the initial simulations carried out. We grew larvae on LSD under the same 

standard conditions as they were grown on HD (see Method section). We 

measured necessary parameters like weight for larvae reared on LSD (Fig. 5). 

 

Figure 5: Growth of larvae reared on complex medium. (A) Growing larvae on LSD medium at the 
timepoint of 72 hours AEL. The photo was taken with a Stereomicroscope from Zeiss (SteREO 
Discovery.V8). The length, width and area were set manually by using the software Zeiss Zen 2.3 lite (blue 
edition). Wet weight (B) and dry weight (C) measurements of larvae from 48 hours every 24 hours to 120 
hours grown on LSD. Each timepoint consist of at least 50 larvae (duplicate measurements) up to 75 larvae 
(triplicate measurements). On average the pupation started around the 120 hours mark. 

We compared our in silico simulations to the experimentally assessed data and 

found both were in accordance with each other proving the robustness of our in 

silico simulations (Fig. 6). The growth simulation indicated that larvae raised on 

the LSD medium reveal a developmental period of around 120 hours AEL, 

mirroring the in vitro findings, which also report a 120-hour developmental 

duration for the larvae. 
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Figure 6: Comparison of in vitro and in-silico larval growth on complex growth medium. We simulated 
the in silico growth of a larva (purple; dry weight) on HD by using the dFBA approach (see method section). 
The growth of the larva follows a sigmoidal growth curve till it reaches a plateau starting around 120 hours. 
Larval growth observed in vitro (dark cyan; dry weight) on HD medium, starts from 48 hours till 120 hours 
AEL. The growth in vitro shows a small variance in comparison to the in silico growth based on the relative 
dry weight values. 

These results demonstrate the consistency between our modelling data and 

experimental observations, affirming the validity of employing physiological data 

in combination with dFBA to predict larval development, even in complex 

environmental conditions. 

 

Discussion 

In this study, we investigated the physiological aspects of Drosophila 

melanogaster larval growth through a combination of in vitro experiments and in 

silico simulations. Laboratory-reared wild-type Oregon-R larvae were raised on 

chemically defined and complex growth medium. Subsequently, we collected 

physiological and metabolic data, which served as the basis for our in silico 

growth and metabolism modelling analyses. 

We translated a fine-grained metabolic profile of growing larvae on HD (Fig. 1) 

into single coefficients for each metabolite in the biomass function. The growth 

behavior of Drosophila larvae is evidently complex, and a simplistic approach of 

employing single coefficients for each metabolite in the biomass function falls 

short of providing a comprehensive explanation for their growth and 
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metamorphosis dynamics. Nevertheless, streamlined models such as FlySilico, 

with simplified parameters, offer the advantage to understand fundamental 

principles and mechanisms of metabolic processes and their consequences. 

These models are useful for identifying larger metabolic pathways to answer 

specific biological questions. In the context of larval growth, FlySilico 

demonstrated which metabolic pathways are essentially required for simulating 

growth (Schönborn et al., 2019). These models can assist in identifying critical 

factors and interactions within an organism's metabolism, such as the influence 

of different nutrients and their quantities on metabolism and growth, as 

demonstrated in FlySilico (Schönborn et al., 2019). Additionally, in cases where 

information and data are limited, such models can still provide meaningful 

insights, whereas large-scale complex models might require additional data. The 

development of a Drosophila larva has different distinct stages (Bate and 

Martinez Arias, 1993). The developmental process begins with the embryonic 

stage and progresses through the first, second, and third instar larval stages. 

Each of these stages show distinct growth patterns and timelines. At the end of 

the larval development, the larva undergoes a pupation and emerges as an adult 

fly. The various stages of larval development are expected to have diverse 

metabolic patterns, much like what is observed during larval embryogenesis (An 

et al., 2014). The variability in larval growth within a population is noticeable, with 

some individuals show lower or higher growth rates than others. This variance 

can be attributed to various factors, such as environmental conditions or genetic 

backgrounds. To ensure the robustness of conclusions the results are based on 

the average growth pattern observed in the larval population. Therefore, as 

distinct metabolic profiles and growth trajectories are expected during different 

developmental stages, it remains feasible to employ singular coefficients within 

the biomass function. This approach yields an averaged growth rate over the 

entire developmental period as these result from the utilization of weighted-

average metabolic coefficients. This simplified modelling approach enables the 

investigation and analysis of larval growth throughout the entire development in 

simulations with minimal variation to the real world (Fig. 4 and Fig. 1). 

Organ growth is influenced by various factors, such as environmental conditions, 

different signaling pathways, and communication between organs (Andersen et 
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al., 2013). For that reason, an addition of the FBA simulations is needed to 

simulate these complex signaling pathways. The incorporation of signaling 

pathways within FBA models help to understand how signals affect metabolic 

fluxes, as signaling pathways often regulate metabolic processes (Ward and 

Thompson, 2012). Incorporating these results could significantly impact the 

accuracy of FBA simulations, leading to predictions that better mirror real-world 

scenarios in the best case. Although there are established methods that 

combining (d)FBA with signaling networks (Papin and Palsson, 2004; Price et al., 

2004; Covert et al., 2008), these approaches often face challenges due to the 

requirement for extensive data. These data are not always readily available or 

sufficiently detailed for use with FBA (Covert et al., 2001; McKechnie et al., 2010; 

Hiruma and Kaneko, 2013; Nijhout et al., 2014). The approach we used in this 

study therefore does not delve into complex signaling pathways. To address 

these challenges, we have chosen a simpler approach: we assume that the 

signals and interactions governing organ growth led to specific, defined 

phenotypes. In other investigations, it has been demonstrated that the 

physiological functions of various organs contribute to the attainment of 

developmental stages. For instance, Mirth et al. (2005) observed that the larval 

organ, the prothoracic gland, plays an important role in determining the critical 

weight required for the metamorphosis of D. melanogaster and secretes growth-

related hormones. These characteristics can be effectively translated and 

integrated into our dFBA approach, making it a more practical and accessible 

method. It is known that (d)FBA is sensitive to the chosen parameters to a certain 

degree (Varma and Palsson, 1995). Considering these observations, it becomes 

evident that the introduction of additional parameters, such as a complex 

signaling pathway, could significantly alter the predictive outcomes. The 

prediction of larval growth becomes challenging under such conditions. 

The in silico approach FBA was improved further into a variation of dFBA. The 

dFBA approach allows simulations were the larval growth and their metabolic 

content itself can be analyzed during larval development. The dFBA approach is 

already established and successfully used for different organisms, such as E. coli 

(Varma and Palsson, 1994). It is an established algorithm that is also 

implemented in different tools such like the COBRA Toolbox (Heirendt et al., 
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2019). The reason why we created an altered version of dFBA is, that the growth 

of larvae is not possible to be predicted by the unaltered algorithm. The growth 

of larvae has fundamentally different conditions to a growth scenario for a 

bacterial culture. The larval growth medium is homogenous mixed and the used 

metabolites from the medium usually do not deplete through the larval 

development. Therefore, the metabolite concentration in the medium does not 

change which is the fundamental condition that the established dFBA algorithms 

uses as the metabolite concentration changes over the developmental time are 

calculated (Varma and Palsson, 1994). This results in the case of the larval 

development into an unlimited growth (Supplementary Fig. 1) which needed to 

be addressed. To address this issue for dFBA we analyzed different tissues as 

we hypothesized that physiological properties can be found to solve this unlimited 

growth issue. We found that the larval gut is a promising candidate to solve the 

unlimited larval growth.  

The larval gut plays a major role in systemic growth. If larvae sense conditions of 

poor nutrient concentration of the growth medium, the gut crosstalks through 

signals with the fat body which signals the reduction of larval growth rate (Shin et 

al., 2011; Storelli et al., 2011; Andersen et al., 2013). Conversely, this signaling 

activity is not fully understood. In developing larvae, we observed that the larval 

gut stops to increase in size earlier than the onset of pupation (Fig. 3). As the 

larval gut plays an important role in larval growth, it provides an entry point for 

integration into the modelling of the larval growth. The growth of the larval gut 

and its premature stop were consequently translated into a growth-determining 

parameter (see Result section) within the in silico simulation. This made the 

prediction of larval growth over the time, including its termination and the correct 

pupation timing prediction possible (Fig. 4). 

Our early results regarding the predictions of Drosophila larvae growth on HD 

through additional physiological and metabolic data are promising. They suggest 

that simulations with the enhanced model should be able to correctly predict 

different conditional scenarios.  

To ensure the reliability of the growth-determining parameter, additional in silico 

simulations were performed. In these simulations, the growth for larvae raised on 
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the complex medium LSD were predicted. We reasoned that the successful 

prediction of the HD growth situation should also elevate the simulations to be 

able to predict different growth situations of experimentally different conditions. If 

this is the case, this shows that our approach, to use physiological information for 

prediction, is valid to be used in changing growth conditions and successful 

predict those. Based on the previous in silico simulations we performed 

equivalent in vitro wet lab experiments on LSD medium (Fig. 5). The simulations 

revealed that the growth of larvae could be accurately predicted as they align well 

with the experimental data (Fig. 6). This confirms our assumption that the 

combination of physiological and metabolic attributes can be used to successfully 

predict the growth of Drosophila larvae on defined and complex growth media.  

Shortcomings of predictions based on phenotypical attributes 

The presented results show promising findings to understand the larval growth. 

The performed experiments and simulations show valid results for wild-type 

OregonR larvae. It is evident that the case of non wild-type larvae is not precisely 

predictable as the metabolism of the non wild-type can heavily change in 

comparison to the metabolism of wild-type larvae. Predicting larval growth from 

mutation-harboring Drosophila lines is especially challenging, as these mutations 

can induce growth-affecting phenotypes (Migeon et al., 1999). Further iterations 

and improvements on the used dFBA and experimental setup might solve some 

of these shortcomings by integrating additional genetic information. This could be 

used to create a simulation that mimics the situation with a mutation background. 

Ultimately, the introduction of genetic information with rules that constrain the 

simulation set even more difficulties to interpret the results. The simulation is 

required to use highly curated genetic information about growth changing 

mutations if it should be used for dFBA. Addressing the prior mentioned issues 

will yield valuable insights into growth, physiology, and metabolism.  

In conclusion, our findings support the potential of integrating physiological data 

into metabolic models enabling the generation of valuable growth-related 

predictions. This study demonstrated that the physiology of complex multicellular 

organisms stands in relationship with metabolic processes. We could present that 

gut growth play a role as a regulatory factor for overall organismic growth, a 
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phenomenon observed in wild-type D. melanogaster larvae. The enhanced 

metabolic model of FlySilico enabled the successful prediction of larval growth 

over the entire development for various conditions. The incorporation of 

physiological data from the larval gut enhanced the prediction power of FlySilico, 

allowing the accurate estimation of developmental critical milestones, including 

the reach of the critical weight and further the pupation. This enables further in-

depth investigations into the mechanisms of critical weight. The extension of this 

approach to incorporate additional physiological data, potentially involving 

multiple organs concurrently, holds great promise. These extensions empower 

the possibility of predicting more favorable growth scenarios. 

Ultimately, this approach has the potential to facilitate the translation of these 

findings to predict even the growth of more complex organisms. Furthermore, this 

could lead to the possibility to formulate a hypothesis that gut growth and 

physiology is not only limiting factors for complex organisms like D. melanogaster 

but may also play a crucial role in regulating development and health of 

extrauterine growing organisms, including humans. We propose that variations in 

gut physiology, nutrient absorption, and growth in stages, like infants, have a 

lasting impact on the fitness of individuals and could restrict growth. This 

hypothesis, along with potentially others, supports future research studies.  

 

Materials and Methods 

Fly strains and rearing 

The fly lines that were used in this study are Oregon-R. Flies were maintained at 

25 °C with 60-70 % humidity and a 12 h light/dark cycle.  

 

Chemically defined fly medium holidic diet (HD) 

The chemically defined fly medium HD was used based on the instructions of 

Piper et al. (2014). The parametrization was performed according to Schönborn 

et al. (2019). 
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Complex fly medium low sugar diet (LSD) 

The complex fly medium LSD was used based on the complex medium from 

Backhaus B. et al. (1984) and altered according to Musselman et al. (2011). The 

parametrization was performed according to Schönborn et al. (2019) and based 

on the available data of the used ingredients (see Supplementary Table 2). As 

not all information were unambiguously, we used approximated values. 

 

Metabolic profiling 

All data were measured according to the protocols by Schönborn et al. (2019) 

and under standard conditions on the growth medium holidic diet (Piper et al., 

2014; Piper et al., 2017) or low sugar diet. 

 

Fixation, histological staining, and mounting 

The larval guts were dissected in ice-cold PBS and fixed in RNA-fix (10 % 10x 

PBS, 10 % 0.5 M EGTA pH 8.0, 10 % Paraformaldehyde, dH20 70 % - 1:1 dilution 

before use with dH20) for 40 minutes. The RNA-fix solution was removed, and 

the guts were washed with PBS (1x) for 5 minutes.  

Alexa Fluor® 488 Phalloidin (300 U dissolved in 1.5 ml methanol) was used as 

the staining agent and diluted 1:500 in PBS before direct usage. 1 ml of the diluted 

Alexa Fluor® 488 Phalloidin solution were used to stain the guts for 30 minutes. 

After staining the guts were washed with PBS (1x) for 5 minutes. 

The guts were mounted on microscope slides in 30 ¿l Prolong Gold Antifade 

reagent. 

 

Constraint-based modeling 

Flux balance analysis (FBA; Orth et al., 2010) was used to perform the underlying 

growth simulations and metabolic flux analysis.  
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Biomass coefficients 

We measured the same metabolites in this publication and according to the 

previously published FlySilico (Schönborn et al., 2019) version. The reason is 

that the measured metabolites are the most abundant metabolites present in a 

Drosophila larva which should sufficiently represent the growth of the larva. We 

extended the range where we measured the metabolite contents in comparison 

to the previously published FlySilico version. Here, we calculated a weighted 

mean metabolite coefficient (WMMC) for the biomass function. The WMMC 

should realistically represent a single value of the changing quantity of 

metabolites to make up the biomass through the larval development. The WMMC 

is calculated as followed by starting to calculate a polynomial fit ����� of the 

measured data, where � represents the metabolite and � the timepoint. Next, we 

used the values of the derivation �2���� at the timepoints where we measured our 

data of the metabolites and normalized them between 0 and 1 as followed: 

�		� = �2���� 7 ��,� (1) 

where �		� is the weighted mean of metabolite � in either µ� or ���� and ��,� 

is the measured weight of metabolite � at timepoint �. With the WMM from 

Equation 1 we can calculate the WMMC: 

�		�� =

�		�
	�,�

�&���
 (2) 

where �		�� represents the weighted mean metabolite coefficient of 

metabolite � in 
����

�
, 	�,� is the molecular weight of metabolite � and �&��� is the 

mean weight gain in �. The mean weight gain is calculated as followed: 

�&��� =
3 ���,��� 2 ��!",���#$

�%"  
�

 (3) 

where ��,��� is the dry weight of the larva at timepoint � and ��!",��� is the dry 

weight of the larva at the previous timepoint � 2 1. 

Additionally, we calculated a chitin biomass coefficient based on data present in 

the literature. The literature regarding the chitin content of larval Drosophila was 

not clear how large it is. Therefore, we used the chitin content of adult flies to 
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approximate the content of larval chitin in combination with our data. Kaya et al. 

(2016) determined the content of chitin in adult fly is 7.85 %. 

The chitin biomass coefficient was calculated with the following equation: 

�()*�*$ =  

����,"+,) 7 0.0785

203.19 �
���

����,"+,)
 

(5) 

where �()*�*$ is the biomass coefficient of chitin represented in the biomass 

function, ����,"+,) is the dry weight in gram dry weight (gDW) of a larva at 192 

hours AEL on HD, 0.0785 represents the chitin content from literature (Kaya et 

al., 2016) and 203.19 �

���
 is the molar mass of chitin. 

The resulting chitin biomass coefficient is �()*�*$ = 0.3863 ����

�67
. 

 

Growth model equations 

The larval growth of Drosophila is described by literature as an exponential 

growth. The growth in our model according to the literature modeled with a basic 

exponential growth function: 

� = ��!" 7 8µ7&� (4) 

where � describe the biomass of the larval at the timepoint � in ��9�, ��!" 

describes the biomass of the larval at the previous timepoint � 2 1, µ describes 

the growth rate derived from the FBA solution and &� describes the timestep size 

for which the calculation is. 

The uptake rates :�,�; of each most abundant metabolite � in the growth medium 

HD at the initial timepoint �0 where calculated based on the new experimental 

data according to Schönborn et al. (2019).   

The uptake rate at each timepoint in the dynamic FBA (dFBA) approach is 

calculated as followed: 

:�,� = :�,�; 7 �����<� (5) 

where :�,� describes the uptake rate of metabolite � at the timepoint � in 
����

�677)
, 

:�,�; describes the uptake rate of metabolite � at the initial timepoint �0 and 

�����<� describes the dimensionless gut resorption penalty function. 
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The gut resorption penalty function is defined as following sigmoidal function: 

�����<� =
1

1 + �
�µ,�>�

,? 
(6) 

where � describes the current timepoint in the dFBA simulation in hours and �µ,�>� 

describes the timepoint where the growth of the larvae should be at maximum in 

hours. Therefore, �µ,�>� is defined as followed: 

�µ,�>� =
µ@6

µ�>�
7 180 (7) 

where µ@6 describes the growth rate for larvae on HD growth medium in /!", 

µ�>� describes the maximum growth rate of the current simulation time range 

and 180 hours describes marks the timepoint where the larval gut of larva grown 

on HD medium enters the plateau-like state (Fig.3 D-F). Furthermore, this 

timepoint lies within the range when the larvae attain the critical weight threshold 

while fed on HD medium. 

 

All calculations and predictions are available in the supplementary information 

presented in a user-friendly way. 

 

Competing interests 

The authors declare that they have no competing interests. 

 

Funding 

The project was financed through the German <Bundesministerium für Bildung 

und Forschung (BMBF)= grant 031A 306 (to M. Beller) and in part by a scholarship 

of the Jürgen Manchot Foundation (to J.W. Schönborn). The funders had no role 

in the study design, analysis, interpretation of the results or the writing of the 

manuscript.  

 

 

 



2.3. Physiological constraints limiting the growth of Drosophila larvae 

 

134 
  

Acknowledgements 

We would like to thank all members of the laboratory for their helpful comments 

and support, and Oliver Ebenhöh for his discussions during the initial phase of 

the project. 

 

Contributions 

J.S. and M.B. designed the study. J.S. established the metabolic network and 

performed the modeling experiments. J.S., A. D., I. A., and S. W. performed the 

Drosophila experiments and wet lab procedures. J.S. and M.B. analyzed the data 

and prepared graphs. J.S. and M.B. wrote the manuscript.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.3. Physiological constraints limiting the growth of Drosophila larvae 

 

135 
  

Supplementary Information 

Physiological constraints limiting the growth of Drosophila larvae 
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Mathias Beller 

 

 

Supplementary Figure 1: Comparison of in vitro and in-silico larval growth on chemically defined 
growth medium. Comparison of in vitro and in silico larval growth on chemically defined growth medium. 
We simulated the in silico growth of a larva (green; dry weight) on HD by using the dFBA approach (see 
method section) with the addition of the penalty function. The growth of the larva resembles an exponential 
growth curve with unlimited growth. The growth of larvae reared in vitro (red; dry weight) on HD, starts at 48 
hours till 192 hours AEL. The growth in vitro shows a small variance in comparison to the in silico growth till 
it reaches 168 hours AEL. On average the pupation started around the 192 hours mark. 
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Supplementary Figure 2: Comparison of in vitro and in-silico larval growth on chemically defined 
growth medium and complex medium. (A) We simulated the in silico growth of a larva (green; dry weight) 
on HD by using the dFBA approach (see method section). The growth of the larva resembles a sigmoidal 
growth curve till it reaches a plateau starting around 192 hours. The growth of larvae reared in vitro (red; dry 
weight) on HD, starts at 48 hours till 192 hours AEL. The growth in vitro shows a small variance in 
comparison to the in silico growth based on the absolute dry weight values per animal. On average the 
pupation started around the 192 hours mark. (B) We simulated the in silico growth of a larva (purple; dry 
weight) on HD by using the dFBA approach (see method section). The growth of the larva follows a sigmoidal 
growth curve till it reaches a plateau starting around 120 hours. Larval growth observed in vitro (dark cyan; 
dry weight) on HD medium, starts from 48 hours till 120 hours AEL. The in vitro growth shows a greater 
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variance when compared to the in silico growth data based on the absolute dry weight values per animal. 
While the in silico results do not match the absolute values observed in vitro, they do show a similar growth 
trajectory as they are aligning with the correct timing for the conclusion of growth. 

 

 

Supplementary Figure 3: Penalty function of the in silico simulation based on HD. The penalty function 
or <gut function= (blue) was formulated as described in the method section. From 0 hours till 128 hours the 
function value is 1. The gradient starts to change from 128 hours till 218 hours till the function value of nearly 
0. The turning point of the function is at 180 hours with a function value of 0.5. The <gut function derivation= 
(red) is the derivation of the gut function (blue). It shows a function value change in the phase of the gut 
function where the gradient starts to change. The maximum function value is 1 at 180 hours which is the 
turning point of the gut function. For better representation the <gut function derivation= values are normalized 
absolute values. 
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Supplementary Figure 4: Penalty function of the in silico simulation based on LSD. The penalty 
function or <gut function= (blue) was formulated as described in the method section. From 0 hours till 76 
hours the function value is 1. The gradient starts to change from 76 hours till 128 hours till the function value 
of nearly 0. The turning point of the function is at 100 hours with a function value of 0.5. The <gut function 
derivation= (red) is the derivation of the gut function (blue). It shows a function value change in the phase of 
the gut function where the gradient starts to change. The maximum function value is 1 at 100 hours which 
is the turning point of the gut function. For better representation the <gut function derivation= values are 
normalized absolute values. 

 

Supplementary Table 1: Metabolic reactions added to the present version 

of FlySilico in comparison to the previously published version. 

Supplementary Table 2: Parameterization of the LSD growth medium. 
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3. Additional Experimental Data 

While the previous manuscripts have covered the reconstruction, predictive 

capabilities, and improvements of the metabolic network of Drosophila 

melanogaster and its associated microbiome, they do not offer a comprehensive 

in-depth view of other crucial segments of the metabolism. To acquire a deeper 

understanding of D. melanogaster's metabolism, additional experiments were 

conducted, and theoretical refinements to the metabolic model were investigated. 

 

3.1. Metabolic fluxes  

FBA is used to study metabolic fluxes through a steady-state metabolic network. 

It simulates the metabolic flow through the network and gives resulting metabolic 

flux patterns that are optimized for a previously defined objective. Metabolic 

fluxes can be measured and used in combination with metabolic networks to 

validate results and constrain the metabolic fluxes which enhances the quality 

and precision of the results from e.g. FBA.  

To measure metabolic fluxes in cells or organisms, the use of metabolic tracers 

is essential. These tracers can be labeled by incorporating radioactive (14C, 3H) 

or stable isotopes (13C, 15N, 2H) (Crown and Antoniewicz, 2013). The metabolic 

tracer needs to be introduced to the system of interest which can be single cells 

(e.g. E. coli) or complex organisms (e.g. humans). The metabolic tracer needs 

considerable time to be incorporated into the metabolism. When enough 

metabolic tracers are accumulated in the metabolism, the labeled metabolites 

can be isolated (e.g. through extraction out of microorganisms (Garcia et al., 

2008)) and measured. Different techniques can be applied to measure the 

incorporation of metabolic tracers (Crown and Antoniewicz, 2013), such as 

nuclear magnetic resonance (NMR; Schleucher et al., 1998), mass spectrometry 

(MS; Antoniewicz et al., 2007), or tandem mass spectrometry (MS/MS; 

Antoniewicz, 2013). In the case of radioactive metabolic tracers, the total 

radioactivity of a metabolite or element is measured (Wolfe and Chinkes, 2005; 

Crown and Antoniewicz, 2013). 
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The use of measured metabolic fluxes promises to enhance used parameters for 

metabolic networks and the prediction quality of in silico simulations. The 

obtained metabolic fluxes can be used with isotopic steady-state metabolic flux 

analysis (MFA or 13CMFA; Zamboni, 2011).  Here, the internal fluxes are fitted to 

the metabolic labeling measurements and the fitted fluxes describe the flow 

through metabolism, for example represented in a flux map (Chen et al., 2011).  

The idea was to enhance the parametrization of the FlySilico model through the 

measurement of metabolite fluxes (Chen et al., 2011). On one hand, such 

measurements offer a means to estimate the rate of nutrient absorption per unit 

of time. On the other hand, these data can be utilized to determine the minimum 

and maximum values of fluxes for individual metabolic reactions. Unlike adult 

flies, the intake of nutrients of larvae is relatively unexplored. Studies on adult fly 

dietary intake show promising results, particularly through radiolabeling or 

isotope labeling methods (Deshpande et al., 2014). The prediction accuracy 

relies, although not exclusively, on the knowledge of the quantity of ingested 

nutrients. In FlySilico (Schönborn et al., 2019), a theoretical approach was 

adopted as the information on larval nutrient intake and food utilization is limited. 

Here, in order to validate these calculated nutrient absorptions or to 

experimentally determine the larval nutrient absorption, measurements with 

larvae were conducted using isotope labeling based on established protocols (Li 

et al., 2018).  

Metabolic tracer accumulation  

Standard HD medium (Piper et al., 2014) was used for the labeling experiments 

where sucrose was substituted with glucose. The used glucose was a mixture of 

50 % unlabeled and 50 % labeled glucose (13C6-Glucose; Sigma-Aldrich CAS 

110187-42-3). Larvae were transferred prior to the sample collection time point 

to the labeled HD medium. The larvae were reared on the labeled HD medium 

for 12 hours to ensure enough of the labeled tracer glucose is accumulated for 

measurements.  
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Sample collection 

The larvae were reared and collected according to established protocols from 

Schönborn et al. (2019). Larvae developed on HD (Piper et al., 2014), collected 

from the vials with labeled HD, washed with PBS, dried and frozen in liquid 

nitrogen. The larvae were four to 8 days old when collected. Each collection time 

point consists of one sample of larvae from unlabeled HD (40 or 12 larvae) and 

quadruplicate samples of larvae from labeled HD (40 or 12 larvae). 

Tissues (gut and fat body, respectively) were dissected out of the animals in cold 

PBS and directly transferred to 245 µL methanol before frozen in liquid nitrogen. 

Each collection time point consists of one sample tissues from unlabeled HD (40 

tissues) and quadruplicate sample tissues from labeled HD (40 tissues). 

The fresh weight for each sample was measured on an analytical scale before 

freezing in liquid nitrogen. 

Sample preparation 

The sample preparation was performed by methanol-chloroform extraction. All 

samples were kept on ice during extraction. First, 245 µL methanol was added to 

each larvae sample and followed by homogenization using a mini handheld 

homogenizer. 105 µL chloroform was added to all samples and carefully 

vortexed. After the samples were vortexed, the samples were incubated for 1 

hour at -20°C. 

When the incubation was finished, 560 µL ice cold HPLC water with 15 µL ISTD 

(internal standard; ribitol) was added to each sample and centrifuged at 14800 

rounds per minute (RPM) at 4°C for 2 minutes. 800 µL of each sample were 

transferred off the top aqueous layer into a new 2 mL centrifuge tube. Additional 

560 µL HPLC water were added to the samples and centrifuged again at 14800 

RPM for 2 minutes at 4°C. 400 µL were again transferred from each sample off 

the top aqueous layer into the same 2 mL centrifuge tube. The final extracted 

samples were stored at -80°C. 
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Measurements 

The samples were measured by Dr. Philipp Westhoff (CEPLAS Metabolomics 

and Metabolism Laboratory, Heinrich-Heine-Universität Düsseldorf) by Gas 

chromatography3mass spectrometry (GC-MS; Sparkman et al., 2011). The 

results were normalized to the ISTD and the fresh weight. Additionally, a 

correction for the natural abundance of each single isotope was performed. All 

with the help of IsoCorrectoR (Heinrich et al., 2018). 

Results and Discussion 

Important metabolites from the core metabolism of Drosophila melanogaster 

were measured (Table 1).  

Table 1: Targets of the metabolic labeling measurements. The label <SiX= in <MS ion or MS/MS product 
ion= describes the derivation of the metabolite through a trimethylsilyl group and the label <LabCX= describes 

the number of labeled carbons found in the metabolite. 

Name Molecule MS ion or MS/MS product ion Pathway 

Alanine Ala1 C5H14N1Si1LabC2 Amino Acid Biosynthesis 

Aspertate Asp1 C9H22N1O2Si2LabC3 Amino Acid Biosynthesis 

Citric acid Cit1 C11H21O4Si2LabC5 TCA-Cycle 

Citric acid Cit2 C14H27O6Si3LabC5 TCA-Cycle 

Fumaric acid Fum1 C9H17O4Si2LabC4 TCA-Cycle 

Glycine Gly1 C9H29N1O2Si3LabC2 Amino Acid Biosynthesis 

Malate Mal1 C9H21O3Si2LabC3 TCA-Cycle 

Pyruvic acid Pyr1 C6H12N1O3LabC3 Glycolysis/Gluconeogenesis 

Serine Ser1 C8H22N1O1Si2LabC2 Amino Acid Biosynthesis 

Serine Ser2 C8H20N1O2Si2LabC2 Amino Acid Biosynthesis 

Glutamic acid Glu1 C10H24N1O2Si2LabC4 Amino Acid Biosynthesis 

Lactate Lac1 C5H13O1Si1LabC2 Glycolysis/Gluconeogenesis 

Glucose Glc1 C8H21O2Si2LabC2 Glycolysis/Gluconeogenesis 

Glucose Glc2 C13H31O3Si3LabC4 Glycolysis/Gluconeogenesis 

 

The results allowed to create a heatmap where the relative abundance of the 

labeled metabolites is visible (Fig. 2). The heatmap illustrates the flow of the 13C-

labeling into metabolites of the core metabolism. Higher relative amounts of 

labeled metabolites indicate a higher usage of related reactions and therefore a 

higher activity of the associated metabolic pathways. The label propagated well 

through the core metabolism as higher amounts of label can be found in nearly 

all metabolites in the whole larva and in the fat body. A high activity in the TCA-
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Cycle is present as core metabolites (Citric acid, Fumaric acid, and Malate) show 

a higher amount of label, which was expected. It has a high activity throughout 

the development and additionally higher label amounts of aspartate support this. 

Oxaloacetate is an important metabolite of the TCA-cycle but its labeling cannot 

be measured directly. Oxaloacetate9s labeling can be inferred through the 

labeling of aspartate (Antoniewicz, 2018).  
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Figure 2: Relative abundance of labeled metabolites during the development of Drosophila 
melanogaster and their organs. The heat map shows the relative abundance of labeled metabolites 
measured at different developmental time points of the larva or the larval tissues. The index labels are 
described in Table 1 were the suffix <_X= describes the number of labeled carbons found in the metabolite 
and not the absolute position of the labeled carbon. 
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Metabolites, such as pyruvic acid and lactate, have a higher abundance in label 

throughout the development of the larva which indicates that the glycolysis is 

active through a large part of the development. On the other hand, the labeled 

amount of lactate in the larval tissues such as gut and fat body is lower. This 

suggest that the metabolic utilization of lactate and probably the activity of the 

glycolysis/gluconeogenesis in those tissues is lower but still present in the 

organs. 

Taken together, the results of the metabolic labeling experiments of developing 

larvae should permit precise quantifications of fluxes in the core metabolism by 

using 13CMFA. 

The metabolic fluxes can be calculated through different available programs that 

are based on 13CMFA (Shupletsov et al., 2014; Foguet et al., 2019). 13CMFA 

utilizes the formulation of so-called propagation rules. These propagation rules 

describe how the label, that enters the organism, moves through the metabolic 

network. Based on the propagation rules, 13CMFA can simulate different flux 

patterns which results in a metabolic label pattern that explain the experimental 

label pattern. Through further simulation iterations the error between the 

simulated label pattern and experimental label pattern is minimized.  

As a first step, published propagation rules for E. coli (Foguet et al., 2019) were 

used in combination with FlySilico and the measured experimental label pattern. 

First iterations to calculate a flux pattern that describes the experimental label 

pattern were not successful (data not shown). Different reasons can be the cause 

for not being able to successfully calculate a flux pattern. One reason can be that 

the used propagation rules are not compatible with the larval metabolism. The 

metabolism of a single cell differs significantly from that of multicellular organisms 

due to the prominent compartmentalization apparent at multiple levels, including 

distinct membrane-bound cell organelles and organs. Another reason can be the 

structure of the metabolic network, which is used as possible dead-ends in the 

metabolic model, preventing 13CMFA from calculating a flux pattern that can 

represent the experimental label pattern. The objective that 13CMFA tries to solve 

and optimize is to predict a metabolic pattern that represent the experimental 

pattern (Shupletsov et al., 2014) and in FBA, different objectives are optimized, 



3. Additional Experimental Data 

 

151 
  

such as the maximization of growth (Pramanik and Keasling, 1997). This can 

result in such different flux patterns that prevent the optimization of one method 

depending on the metabolic network structure.  

Solving this problem further analysis of the metabolic network structure need to 

be done. Nevertheless, it remains to be determined if the applied propagation 

rules are compatible to be used with FlySilico and therefore the metabolism of a 

larva. Together, the above data indicate that the determination of metabolic fluxes 

can be used to optimize the metabolic network of a larva and their parameters 

should be possible with further optimization of the modeling approach.  

 

3.2. Multi-organ communication network 

Multicellular organisms consist of different types of subcellular compartments, 

cell-types, tissues, and organs. The presence of compartments within organisms 

establishes a system in which each compartment plays a vital role in generating 

the energy or metabolites required for the organism to fulfill specific metabolic 

functions (Li et al., 2022).  

Complex organisms, like D. melanogaster, show a variety of different organs or 

tissue-types.  The fat body, for example, is the primary energy storage organ and 

thus accumulates plenty of fat and glycogen during the development of the larva. 

The stored energy is released during the metamorphosis or during phases within 

development where the animal lacks sufficient nutrients (transient starvation) to 

ensure the survival of the larva (Arrese and Soulages, 2010). The metabolism of 

D. melanogaster can experience misregulations reminiscent of human metabolic 

diseases such as obesity or diabetes e.g. by rearing the animals on a high caloric 

diet. Many genes that are associated with such diseases are conserved between 

humans and Drosophila (Reiter et al., 2001). This enables the study of metabolic 

diseases in flies (Musselman and Kühnlein, 2018). Understanding the metabolic 

impact on the level of organs or tissues-specific level provides a more detailed 

picture on how metabolic diseases work in organisms. In long term, results 

regarding the metabolic state of an organ or tissue should lead to more effective 

and new therapies on how to relieve the symptoms of such metabolic diseases. 
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Detailed experimental investigations of the metabolism across various organs or 

tissues has proven to be a challenge, as observed in previous studies (Plauth et 

al., 1993; van de Kerkhof et al., 2007; Basler et al., 2018). This indicates that 

detailed experimental investigations need to consider various factors, such as the 

constant control of the experimental environment, to provide meaningful results. 

In contrast, metabolic network analysis offers a powerful method to uncover the 

metabolic profiles of multiple organs, tissues, or cells across different organisms 

under guaranteed constant conditions (Grafahrend-Belau et al., 2013; Shaw and 

Cheung, 2018; Thiele et al., 2020; Li et al., 2022).  

The modelling of an multi-organ communication network requires the connection 

of two or more tissues or organs by the exchange of metabolites. Lewis et al. 

(2010) constructed such a network by connecting an astrocyte metabolic network 

with the metabolic network of neurons to enable crosstalk. The two networks were 

able to exchange metabolites with each other and their environment. Following 

that, multi-tissue networks were reconstructed that allow crosstalk between 

tissues such as skeletal muscle, liver, and fat tissues of humans (Bordbar et al., 

2011; Cordes et al., 2018; Martins Conde et al., 2021). Through these networks, 

it could be demonstrated that, personalized nutritional compositions could be 

designed to potentially enhance athletic performance or simulate drug-induced 

metabolic perturbations safely in patients. 

Similar works have also been done for unicellular organisms in the context of the 

microbiome such as the study performed within this thesis (Schönborn et al., 

2021). Diverse bacteria are organized in biofilms or related structures forming 

communities. This enables the communication and exchange of nutrients 

between bacteria in proximity. Instead of having metabolic networks of single 

organs that can communicate in a multi-organ communication network, metabolic 

models of single unicellular organisms are communicating in an overarching 

network through metabolic fluxes. This approach of multi-scale modelling was 

demonstrated by e.g. Bauer et al. (2017). Such an approach was successfully 

utilized to investigate the host-microbiome interaction between humans and their 

microbiome (Heinken and Thiele, 2015; Magnúsdóttir and Thiele, 2018). 
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As far as the available data suggest, metabolic networks of various tissues or 

organs do not appear to be present for D. melanogaster. The reconstruction of a 

metabolic network for D. melanogaster including various organs or tissues would 

undeniably be beneficial. 

 

Results and Discussion 

Reconstruction of a D. melanogaster multi-organ communication network 

The reconstruction of a multi-organ communication network for D. melanogaster 

was carried out based on the FlySilico metabolic network. Here, the metabolic 

processes of the entire larva, the larval gut, and the larval fat body were 

incorporated. The larval gut serves as the primary site for metabolite entry into 

the metabolism, as its primary function is substrate or metabolite uptake. 

Metabolites can either be utilized within the gut or transported further into the 

larva's circulatory system, known as the hemolymph. Within the hemolymph, 

metabolites can access various parts of the larval body. For an illustrative 

presentation of the network's structure, please refer to Figure 3.  

The reconstruction of the multi-organ communication network used the 

information about genes present in the different organs. In the metabolic network 

most reactions are associated with a gene that is present in D. melanogaster.  
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Figure 3: Schematic representation of the multi-organ communication network of D. melanogaster. 
(A) The dotted lines represent the compartment borders where dark blue color represents organ borders or 
the organism itself. Light grey describes the cell compartment border, such as mitochondria or cytosol. The 
intra-organism compartment represents the larval hemolymph. The nutrients from the growth medium are 
found in the extra-organismic environment. The nutrients enter the network through the larval gut, where 
they are utilized, or they may be further transported into the interior of the organism, known as the 
hemolymph. Here, the metabolites have access to various parts of the larval body. (B) The metabolic 
reactions (EC 3 enzyme commission numbers) associated with genes are matched to gene expression   data 
(FlyAtlas 2; Krause et al., 2022) present in different organs of the larva. The metabolic reactions are then 
inserted in the associated organ sub-models and necessary reactions (like transport reactions to allow 

communication between the metabolic networks) were manually added.  

 

The gene expression related to a given metabolic reaction was backed-up by 

public expression data (FlyAtlas 2; Krause et al., 2022) to identify the most likely 

gene products carrying out the reactions in the different organs. The matched 

metabolic reactions are left inside the organ-specific metabolic network and 

metabolic reactions that could not be matched are deleted. Transport reactions 

between the different compartments of the multi-organ communication network 

were added manually to allow the communication through metabolic fluxes.  

The resulting multi-organ network consists of 1384 metabolic reactions and 1441 

metabolites. The established communication between the single metabolic 

networks allows metabolic flux through all compartments. The optimization for the 

original objective function of FlySilico is possible.  

With the addition of organs in a whole organism metabolic model, more additions 

are needed as the initial objective function cannot be used. In FlySilico, the 

objective function was the biomass function, which describes the building blocks 
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that make up the overall larval biomass. With the addition of organs, such as the 

larval fat body, the objective function changes. The fat body9s biological purpose 

is to store as many metabolites as possible for life stages of starvation and to 

survive the metamorphosis from a larva to an adult fly (Arrese and Soulages, 

2010).  

As the initial biomass function also describes the storage of lipid metabolites like 

triacylglycerol (TAG) and glycogen, the biomass function needs to be 

reformulated. For that purpose, the storage of lipid metabolites needs to be 

addressed in a new biomass function of the fat body. This biomass function 

should consist of building blocks that build up the lipid tissue of the fat body and 

to a large part of TAG and glycogen (DiAngelo and Birnbaum, 2009). The 

resulting mass from the fat body biomass function then needs to be added to the 

overall biomass generated from the whole-body biomass function. Additionally, a 

biomass function for gut growth needs to be formulated to address the growth of 

the larval gut as it is present as an own organ in the metabolic network. Therefore, 

each organ that is added to such a network need an own objective function or 

even multiple objective functions. In the case of larvae, each organ needs a 

biomass function to describe its growth. The solution of the objective function of 

each organ needs to be added up to describe the overall larval growth. Each 

solution of the organ-specific objective function can be analyzed further how the 

metabolism works in the network and what impact each organ has on the different 

organs and the overall metabolism. For instance, in the case of a growing gut 

within an organism, employing a gut biomass growth function as the primary 

objective may not be justified. 

The formulation of such an organic-specific objective function needs extensive 

metabolic data of each organ. The isolation of the most prominent organs in 

Drosophila larvae are possible which eases the acquiring of such data. Important 

data that need to be acquired for such a network would be the weight of each 

organ to determine the contribution to the overall growth. To get further inside to 

the metabolism and the resource allocation of each organ the metabolic state of 

each organ should be measured by determining its metabolic content for different 

developmental timepoints. This should be performed in a similar way as 

previously done for FlySilico (Schönborn et al., 2019). Furthermore, the data 
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about the metabolic state can be used to finetune the metabolic fluxes of the 

organ-specific metabolic networks. This is possible by measuring extensive 

metabolic flux data for each organ, like the previously measured metabolic fluxes 

(see 3.1. Metabolic fluxes). The integration of additional multi-omics data into the 

modelling approach enhances the prediction power and accuracy, which was 

successfully demonstrated for unicellular organisms (Yoon et al., 2012), plants 

(Gomes de Oliveira Dal'Molin and Nielsen, 2018) and other higher organisms 

(Coquin et al., 2008; Magazzù et al., 2021).  

For the fat body we treat the storage of metabolites equal to growth. The main 

purpose of the gut of Drosophila is the intake of nutrients but it contributes with 

his weight-gain also to the overall biomass. Organs, like the brain for example, 

can be described with a biomass function but also include a sink of energy as the 

larval brain uses extensive amounts of energy metabolites to function properly. 

The same is true for the muscles of the larva. This reveals the importance of 

possible usage of multiple objective functions for each organ. 

Altogether, such a multi-organ communication network needs extensive data and 

investigation of each organ that contribute significantly to growth. This can be 

carried out by extensive labor but should provide important knowledge of the 

metabolism of a developing larva. The multi-organ communication network 

should allow an even more detailed look on how the resource allocation in 

Drosophila larva works, such as the identification of the most active metabolic 

pathway in each organ and the resulting distribution of the nutrients. This could 

open the possibility to alter the nutrient composition of the food to enhance 

specific organ-growth or support the function of a specific organ to a point were 

eventually a disease state in an organ can be treated or even cured.   

 

4. Discussion and Conclusion 

Our understanding of resource allocation in multicellular organisms and the 

underlying mechanisms driving it is limited. Investigating the metabolic processes 

that govern resource allocation is an active and evolving field of research (Boggs, 

1981; Goelzer and Fromion, 2017; Basan, 2018), but a detailed understanding 
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remains elusive. However, metabolic networks and approaches such as Flux 

Balance Analysis have made it practicable to investigate the details of 

metabolism (Kauffman et al., 2003; Orth et al., 2010b; Basler et al., 2018).  

Prior to this work, metabolic networks were used in understanding different 

questions regarding the metabolism of D. melanogaster. Flux balance analysis, 

combined with extensive metabolomics, enabled the investigation of hypoxia 

adaptation in hypoxic environments (Coquin et al., 2008; Feala et al., 2009). 

Further, the energy metabolism and the impact of hypoxic environmental 

conditions were investigated by analyzing the ATP production (Feala et al., 2007). 

All these studies were performed in adult flies and provide a more detailed 

understanding of how the metabolism operates under varying conditions and 

revealing their consequences. However, these studies were unable to address 

how resource allocation impacts the development and physiology of Drosophila. 

The understanding of the metabolism and resource allocation of a developing D. 

melanogaster larva is rather limited. The presented work reveals that the use of 

data-driven in vivo and in silico methods provide a viable approach to investigate 

the metabolism and resource allocation of developing multicellular organisms in 

detail. The reconstruction of a metabolic model guiding larval metabolism 

(Manuscript 2.1: Fig. 2) in combination with extensive experimental data to obtain 

feasible parameters suitable for FBA (Manuscript 2.1: Fig. 4 and 5), allow for 

successful and detailed predictions of the metabolic state during larval 

development (Manuscript 2.1: Fig. 6). This allowed to generate a metabolic model 

of a developing larva and functions as the theoretical modeling framework for 

future studies of the metabolism and resource allocation. Further in silico and in 

vivo investigations, regarding the impact of different growth conditions on the 

resource allocation (Manuscript 2.1: Fig. 7 and 8), allowed to understand how the 

metabolic rewiring occurs and why the destination of metabolites changes under 

different growth conditions. These studies revealed conflicting processes, 

revealing the optimality of resource distribution and prioritization of certain 

metabolic processes. The assumption that the predictions are optimal is based 

on the fact, that flux balance analysis of metabolic networks relies on the 

principles of optimality. These investigations revealed metabolic principles when 

distributing resources and how the metabolism changes under changing 
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environmental conditions. Although the metabolic model primarily covers the core 

metabolism, it has been demonstrated that accurate predictions can be 

generated. This capability enables the expression of meaningful insights into the 

functioning of metabolism and resource allocation in multicellular organisms. In 

total, in silico methods, like FBA, demonstrate the accuracy to correctly predict 

the metabolic state of a multicellular organism, even under changing growth 

conditions and how the resource allocation responses to changing environmental 

conditions. The microbiome of a multicellular organism has a significant impact 

on both development and fitness. This holds true for Drosophila as well. It was 

possible to demonstrate that isolated most prominent strains of the gut 

microbiome in Drosophila can grow under lab conditions (Manuscript 2.2: Fig. 1 

and 2). These bacteria were able to produce strain-typical metabolites in silico 

(Manuscript 2.2: Fig. 3) which suggest a metabolic behavior comparable to the 

conditions in a Drosophila gut. Furthermore, in silico co-culturing experiments of 

different bacterial strains from the microbiome (Manuscript 2.2: Fig. 4 and 5) 

reveal an expected inter-organism communication through the exchange of 

metabolites. Depending on the growth medium, different metabolites were 

produced and secreted from one bacterial strain. These metabolites can be used 

by other bacterial strains present in the co-culturing. This revealed secreted 

metabolites promote growth of other bacterial strains (Manuscript 2.2: Fig. 6). 

Ultimately, these findings emphasize that the co-growth of different bacterial 

strains could have a positive effect on growth and fitness of bacterial strains, 

depending on the available resources. Considering that the different bacterial 

strains of the microbiome secrete various metabolites, it is reasonable to expect 

that these secretions may have an influence on the host, Drosophila. This 

influence was shown in earlier studies (Storelli et al., 2011) but can be further 

developed to generate tailored probiotics to enhance the fitness and growth of an 

organism. The larval and adult microbiome differ slightly in the composition of the 

bacterial species (Shin et al., 2011). Nevertheless, the data presented support a 

robust entry point for studies into host-microbiome interactions. Additional supply 

of metabolites through the microbiome could have a significant impact on the 

resource allocation under various conditions. This raises new questions on how 

the metabolism and resource allocation operates and how these processes are 
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influenced by the resource supply from the microbiome. These questions include 

for example: 

Is there a resource competition between the host and its microbiome, especially 

the resources acquired by the host? Does the competition result in a long-term 

impact on the host9s metabolism? 

Is there an ideal microbiome composition that maximizes a possible growth-

promoting effect? 

Addressing these and additional questions will be important, as the microbiome 

in multicellular organisms seem to be factors of significant influence on the host. 

Various elements that influence the metabolism of a multicellular organism have 

been previously discussed, it is reasonable to consider the relationship between 

physiology, metabolism, and resource allocation. Further investigations were 

conducted by measuring a detailed time-resolved metabolic profile (Manuscript 

2.3: Fig. 1) of developing larvae. Through this metabolic profile the modeling 

parameters were improved and allowed the investigation of the larval 

development over the complete larval development. Insights from studies on the 

physiology of developing larvae revealed differences in growth behavior in 

organs, like the larval gut, and the whole larval growth (Manuscript 2.3: Fig. 2 and 

3). The ability to predict larval growth throughout the entire developmental 

process was achieved by translating the early halt of larval gut growth into an 

intake-constraining penalty function. This function was integrated through a dFBA 

approach (Manuscript 2.3: Fig. 4). For example, the successful prediction of the 

larval pupation time was possible. Furthermore, we conducted additional in silico 

predictions and in vivo growth experiments to confirm that the utilized approach 

successfully predicted growth patterns and the timing of critical developmental 

stages under complex environmental conditions (Manuscript 2.3: Fig. 5 and 6). 

These results highlight the interaction between physiology and resource 

allocation, where gut growth is dependent on the resources directed towards it. 

Simultaneously, the larval gut controls the influx of available resources for the 

entire larva. Various characteristics of an organism9s physiology can be used as 

a useful approximation for supporting investigations of resource allocation and 

metabolism. Studies by Mirth et al. (2005) and this study show that physiology 
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has an impact on the resource allocation and development of multicellular 

organisms. This emerges additional questions such as the following:  

How impactful are other organs on the metabolism and resource allocation (e.g. 

the fat body)? 

How is the developmental metabolic strategy of organs under starvation and 

other not optimal conditions? 

What is the impact of genetic alterations on the physiology of multicellular 

organisms and consequently on the metabolism? 

By addressing these questions, the importance of physiology for a developing 

multicellular organism will be further revealed. Possibly, the first approach to 

investigate the raised questions is by enhancing the prediction accuracy and 

precision of the used parameters through metabolic flux measurements (see 3.1. 

Metabolic fluxes). The interaction between organs in a multicellular organism and 

their impact on metabolism and resource allocation remains elusive. The 

investigation of such interactions can be performed by extensive additions to 

metabolic networks by reconstructing multi-organ communication networks (see 

3.2. Multi-organ communication networks). These metabolic networks should 

provide detailed insights to the mechanics governing the metabolic interactions 

and their impact on resource allocation. 

An important question to address was whether if the resource allocation in 

multicellular organisms operates according to Pareto optimality. Pareto optimality 

describes the selection of parameters in a system where the available resources 

are optimized to a degree that one parameter cannot be improved without 

worsening another parameter. The Pareto optimality is also used in biology, as 

studies propose that bacterial growth and metabolism (Schuetz et al., 2012), as 

well as some phenotypic attributes of multicellular organisms, follow Pareto 

optimality (Shoval et al., 2012; Szekely et al., 2015). Gaining a deeper 

understanding of whether resource allocation follows Pareto optimality is the 

potential usage of 13C metabolic flux analysis (13CMFA). 13CMFA was used to 

show that bacterial growth and metabolism is working Pareto optimally (Schuetz 
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et al., 2012), and first steps toward a deeper investigation were performed in this 

thesis (see 3.1. Metabolic fluxes).  

The accurate simulation of growth behavior and metabolic fluxes in various 

environmental scenarios through FBA suggests that resource allocation in 

multicellular organisms operates optimally. Whether the simulation strictly obeys 

to Pareto optimality is difficult to prove, as the principle of Pareto optimality in 

nature has not been fully demonstrated (Edelaar, 2013; Shoval et al., 2013). 

Furthermore, it is not completely understood whether a Pareto optimal solution is 

also a biologically optimal solution. Additional studies need to be performed to 

determine if the optimal solution from FBA is both a Pareto and biologically 

optimal solution, through additional experiments such as 13CMFA and the 

additional statistical testing suggested by Edelaar (2013). The usage of advanced 

FBA methods, like <Resource Balance Analysis= (RBA; Goelzer et al., 2011), can 

contribute to answer the question of Pareto optimality and biological optimal 

solutions. This approach predicts in more detail how available resources are 

distributed to different defined cellular systems.  

Future studies need to tackle these previously raised and more questions to 

deepen the understanding of the complex interplay of the resource allocation in 

multicellular organisms. Summarized, the presented studies show that the 

resource allocation strategy of choice has a remarkable impact on the physiology 

and development of multicellular organisms.  
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