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Summary
Background The clinical heterogeneity of myasthenia gravis (MG), an autoimmune disease defined by antibodies (Ab)
directed against the postsynaptic membrane, constitutes a challenge for patient stratification and treatment decision
making. Novel strategies are needed to classify patients based on their biological phenotypes aiming to improve
patient selection and treatment outcomes.

Methods For this purpose, we assessed the serum proteome of a cohort of 140 patients with anti-acetylcholine receptor-
Ab-positive MG and utilised consensus clustering as an unsupervised tool to assign patients to biological profiles. For
in-depth analysis, we used immunogenomic sequencing to study the B cell repertoire of a subgroup of patients and an
in vitro assay using primary human muscle cells to interrogate serum-induced complement formation.

Findings This strategy identified four distinct patient phenotypes based on their proteomic patterns in their serum.
Notably, one patient phenotype, here named PS3, was characterised by high disease severity and complement acti-
vation as defining features. Assessing a subgroup of patients, hyperexpanded antibody clones were present in the B
cell repertoire of the PS3 group and effectively activated complement as compared to other patients. In line with their
disease phenotype, PS3 patients were more likely to benefit from complement-inhibiting therapies. These findings
were validated in a prospective cohort of 18 patients using a cell-based assay.

Interpretation Collectively, this study suggests proteomics-based clustering as a gateway to assign patients to a biological
signature likely to benefit from complement inhibition and provides a stratification strategy for clinical practice.
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Introduction
Myasthenia gravis (MG) is a prototypical autoimmune
disease defined by antibodies (Ab) directed against
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structures of the postsynaptic membrane resulting in
impaired neuromuscular transmission and fatigable
muscle weakness.1 The largest serological subgroup is
ity Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
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Research in context

Evidence before this study
Myasthenia gravis (MG) is an autoimmune disease
characterised by antibodies (Ab) that attack structures of the
postsynaptic membrane. This results in impaired
neuromuscular transmission and fatigable muscle weakness.
Despite belonging to a single serological subgroup, such as
anti-acetylcholine receptor (AChR)-Ab-positive patients, MG is
subject to substantial heterogeneity. Therefore, a deeper
pathophysiologic understanding is needed to enable patient
stratification based on biological signatures. Novel
therapeutic strategies have transformed the treatment of MG.
The disease’s heterogeneity, the need for objective
assessment tools, and the challenge of optimising the use of
new treatments all emphasise the critical need for new
insights into MG’s disease patterns.

Added value of this study
We used consensus clustering as an unsupervised tool to
assign patients to disease phenotypes based on their

biological profiles. We included 140 patients with anti-AChR-
ab-positive MG from three centres and identified a distinct
phenotype. This phenotype is defined by high disease severity,
an increase of markers associated with complement
activation, and a distinct antibody profile. Stratification based
on this profile links disease severity to complement activation,
making it a biomarker for identifying patients who may
benefit from complement inhibition. The data suggests that
patients with the here named PS3 phenotype are more likely
to benefit from complement-inhibiting therapies. Evaluating
membrane attack complex (MAC) in a cell-based assay could
act as a surrogate marker for identifying these patients. This
would improve the precision of treatment allocation.

Implications of all the available evidence
This study shows a link between disease severity and
proteomic patterns of complement activation in MG. This
knowledge can improve our understanding of the disease and
help classify patients based on biological signatures.
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constituted by Abs against the acetylcholine receptor
(AChR) detected in 80–85% of patients.1

Across the spectrum of MG, patient stratification is
based on several classification factors including,
among others, age at onset (early and late onset),
presence (or absence) of a thymoma, and serological
status. However, even among a single serological
subgroup such as anti-AChR-Ab-positive patients, MG
is subject to substantial heterogeneity resulting in an
unmet need for a deeper pathophysiologic under-
standing enabling patient stratification based on bio-
logical signatures. This need is aggravated by several
factors: First, clinical presentation of MG is liable to
considerable variation across patients, ranging from
mild ocular symptoms to life-threatening myasthenic
crisis requiring intensive care.2 Second, therapeutic
decision making largely relies on clinical features.
Conversely, clinical presentation fluctuates due to fac-
tors such as time of day or effects of symptomatic
medication.3 Third, the development of novel thera-
peutic strategies, including complement inhibitors4 or
neonatal Fc receptor (FcRn) antagonists,5,6 transformed
the therapeutic landscape of MG. However, treatment
responses are divergent. As such, in a recent phase 3
randomised controlled trial investigating the comple-
ment inhibitor ravulizumab, 40% of patients in the
treatment group (as compared to 73% in the placebo
group) did not reach a clinically meaningful improve-
ment defined by a change of at least two points on the
MG activities of daily living (MG-ADL) scale. Given the
high number of treatment non-responders and poten-
tially treatment-related severe adverse events, factors
identifying patients that are likely to benefit from these
therapies represent a knowledge gap.
Taken together, the heterogeneity of the disease, the
requirement for objective assessment tools, and the
challenge of optimising the use of novel therapeutics all
highlight the critical need for novel insights into pat-
terns of disease in MG. To address this knowledge gap,
we chose mass spectrometry-based proteomics as an
established biomarker discovery tool in serum samples
and employed consensus clustering as an unsupervised
tool to assign patients to disease phenotypes based on
their biological profiles. Mass spectrometry-based pro-
teomics has evolved as a powerful tool allowing for the
identification of candidate biomarkers and exploration
of disease pathophysiology, as evidenced by the Human
Genome Project and the Human Protein Atlas.7 As
opposed to other technologies, mass spectrometry-based
proteomics enables the detection and concurrent quan-
tification of proteins across the dynamic spectrum
covering low-to highly-abundant proteins.8–12 Studying a
cohort of anti-AChR-Ab-positive patients, this approach
identified a MG phenotype defined by high disease
severity, an increase of markers associated with com-
plement activation and a distinct Ab profile. Stratifica-
tion based on this profile provides a link between
disease severity and complement activation, thereby
serving as a biomarker identifying patients likely to
benefit from complement inhibition.
Methods
Human participants
All patients were required to meet the national guide-
lines for the diagnosis of MG.13 At the time of serum
sampling, all patients showed no evidence for apparent
infections following clinical and serological
www.thelancet.com Vol 105 July, 2024
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investigations. We included 140 patients with anti-
AChR-ab-positive MG from three centres specialised
in the treatment of MG (University Hospital Düssel-
dorf, Charité—University Medicine Berlin and Uni-
versity Hospital Hannover). Patient management was
in accordance with the standards of the German
Myasthenia Society as previously reported.2,14 Patients
were scored according to the Quantitative Myasthenia
Gravis (QMG) and MG-ADL scores. The QMG score is
an established 13-item scale to measure disease
severity, while the MG-ADL score is an eight-question
survey of MG symptoms.15,16 Patients were either
treatment naïve or had been treated with one of the
following medications: steroids, azathioprine, metho-
trexate, mycophenolate-mofetil. Patients with add-on
therapies, such as rituximab, eculizumab or cyclo-
phosphamide were excluded from the study. Patients
with a known thymoma (n = 30) received thymectomy
at least 6 months before study inclusion. A total of 23
patients had no thymoma but received thymectomy at
least 6 months before study inclusion. The cutoff be-
tween early- (EOMG) and late-onset (LOMG) MG was
set at 50 years.17 Participants information on sex, age,
and race was self-reported. Information on socioeco-
nomic status was not collected.

Ethics
The study was conducted in accordance with the Decla-
ration of Helsinki and approved by the ethics committees
of the participating clinics (Heinrich-Heine University
Duesseldorf EA1/281/10, Charité Berlin EA1/144/21 and
University Hospital Hannover 9741_BO_S_2021). All
patients signed written informed consent before serum
samples were acquired.

Biomaterial
All serum samples were cryopreserved at −80 ◦C prior to
analysis according to the predefined standard operating
procedure at the local biobanks. For mass spectrometry-
based analysis, serum samples were transferred on dry
ice to the Core Unit Proteomics of the University of
Münster (Head: Prof. Dr. Simone König).

Lysate generation and processing for proteomic
analysis
200 μL of each serum sample were depleted using the
ProteoMiner kit (Bio-Rad Laboratories Inc., Hercules,
CA, USA). This subproteome was placed in Pall Nano-
sep® 10 K Omega filter units (10 kDa cut-off; Pall, New
York, USA) and centrifuged (12,500 g, room tempera-
ture). The analyte was washed adding 100 μL urea buffer
(8 M urea, 100 mM Tris Base) to the filter unit and
centrifuging. For reduction (45 min), 100 μL 50 mM
dithiothreitol in urea buffer were added to the filter unit.
Subsequently, the unit was centrifuged again, and the
sample was rinsed with 100 μL urea buffer. For alkyl-
ation, 50 mM iodoacetamide in urea buffer was placed
www.thelancet.com Vol 105 July, 2024
into the filter unit. Incubation proceeded in the dark for
30 min at room temperature. Following centrifugation
and rinsing twice with 300 μL 50 mM NH4HCO3 con-
taining 10% acetonitrile (ACN) in urea buffer, 200 μL
0.01 μg/μL trypsin in 50 mM NH4HCO3 containing
10% ACN were added to the filter unit. Incubation
proceeded at 37 ◦C overnight. Peptides were collected by
rinsing the filter thrice with 5% ACN/0.1% formic acid
(FA) followed by centrifugation. Samples were dried
using a Speedvac (Thermo Fisher Scientific, Waltham,
MA, USA) and redissolved in 10 μL 5% ACN/0.1%
formic acid.

Mass spectrometry-based proteomics
0.5 μL of peptide solutions were analysed by reversed-
phase chromatography coupled to ion mobility mass
spectrometry with Synapt G2 Si/M-Class nano-ultra
performance liquid chromatography (UPLC) (Waters
Corporation, Milford, MA, USA) using PharmaFluidics
C18 μPAC columns (trapping and 50 cm analytical;
PharmaFluidics, Ghent, Belgium), as previously
described.18

Data were analysed using Progenesis for Proteomics
(Waters) and the Uniprot human database. One missed
cleavage was allowed, carbamidomethylation was set as
the fixed and methionine oxidation as the variable
modification. A shortlist of the protein output was
created by demanding protein assignment by at least
two peptides, a fold value of at least 2 and analysis of
variance (ANOVA) P ≤ 0.05. Quality controls (profile
plots) were generated with Perseus v1.6.14.0.

Machine learning, consensus partitioning and
clustering
The aim of consensus partitioning was to identify robust
subgroups of patients based on biological information.
For this purpose, we transformed the full proteomic
dataset into a numerical matrix. Next, we performed
quality control and data cleansing using the adjust_matrix
function for the following steps:

1. Rows in which >25% of the samples have missing
values were removed;

2. Impute missing values using the impute.knn
function from the R package impute (v. 3.17);

3. In every matrix row, values larger than the 95th
percentile or less than the 5th percentile were
replaced by corresponding percentiles;

4. Zero variance rows were removed;
5. Rows with variance less than the 5th percentile of all

row variances were removed.

As top-value method, we employed the ATC (ability
to correlate to other rows) method as proposed by the
authors of the cola package.19 Partitioning was per-
formed to classify samples into k distinct subgroups
with a given k. We employed spherical k-means as a
3
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modification of classical k-means. Here, cosine simi-
larity was used as distance measurement as this distance
is more efficient for separating high-dimensional data-
sets and provides higher robustness to technical noise.
Clustering was performed by measuring the Euclidean
distance. The optimal number of subgroups was deter-
mined by a set of predefined rules as proposed by the
cola package.19 Application of the following set of rules
suggested that k = 4 yields the optimal number of
subgroups (Supplementary Fig. S1a):

1. All k with Jaccard index larger than 0.95 were
removed because increasing k does not provide
enough extra information.

2. For k with 1-PAC score larger than 0.9, the
maximum k was taken as the best k. Other k were
marked as optional best k.

3. If the second rule was not fulfilled, the k with the
majority vote among the highest 1-PAC score, the
highest mean silhouette, and the highest concor-
dance was taken as the best k.

With this approach, 139 of 140 samples were
assigned confidently to one of the PS (Supplementary
Fig. S1b).

Immunogenomics and B cell receptor (BCR)
repertoire analysis
Immunogenomic analysis of the BCR repertoire was
performed in cooperation with Azenta Life Sciences
(Leipzig, Germany). Peripheral blood mononuclear cells
(PBMCs) were shipped at −80◦ on dry ice for down-
stream processing. 10 × 106 cells were analysed per
sample. Total RNA was extracted from fresh frozen cell
pellet samples using the Qiagen RNeasy Plus mini kit
following the manufacturer’s instructions (Qiagen,
Hilden, Germany). For library generation, RNA samples
were quantified using the Qubit 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, USA) and RNA integrity
was controlled using the Agilent TapeStation 4200
(Agilent Technologies, Palo Alto, CA, USA).

Bulk immunoprofiling libraries were prepared as
following. Briefly, cDNA was generated from total RNA
using the Takara SMARTer RACE 5’/3’ kit. Primers
located in constant regions of IH/IL genes, combined
with primers with SMART oilgo, were used to enrich
full length IH/IL genes. Limited cycle PCR amplifica-
tion was used to add Illumina platform compatible
adapters. The sequencing libraries were validated on the
Agilent TapeStation (Agilent Technologies, Palo Alto,
CA, USA), and quantified by using a Qubit 2.0 Fluo-
rometer (Invitrogen, Carlsbad, CA) and qPCR. The
sequencing libraries were clustered and loaded on the
Illumina MiSeq instrument according to manufac-
turer’s instructions. The sample were sequenced using a
2 × 300 paired-end (PE) configuration. Image analysis
and base calling were conducted by the MiSeq Control
Software (MCS) on the MiSeq instrument. Raw
sequencing data (.bcl files) generated from Illumina
MiSeq was converted into fastq files and de-multiplexed
using Illumina’s bcl2fastq software. One mismatch was
allowed for index sequence identification. After investi-
gating the quality of the raw data, sequence reads were
trimmed to remove adapter sequences. The trimmed
reads were mapped against IMGT database to find the
best germline V(D)J gene matches, and CDR1, CDR2,
CDR3 variable region sequences. To analyse CDR3
amino acid usage frequency, CDR3 sequences were
clustered according to similarity (threshold: 0.8).

Raw sequence reads were processed using built-in
preset (Generic BCR amplicon) of the MiXCR software
pipeline (https://mixcr.com/). In house custom python
codes were used to separate MiXCR pre-processed reads
by matching them to the sequences of different
immunoglobulin heavy chains (IgA, IgD, IgE, IgG and
IgM) and light chains (Igκ and Igλ). Each pre-processed
sequences are post-analysed using in house custom
python and R codes, VDJtools (https://vdjtools-doc.
readthedocs.io/en/master/), and immunarch (https://
immunarch.com/index.html) to evaluate Ig distribu-
tion across the BCR repertoire, Ig heavy chain variable
(IGHV) gene arrangement, Ig heavy chain joining
(IGHJ) gene arrangement, V-J arrangement of the
IGHV and IGHJ genes, clonality, and hyperexpanded
clonal composition.

Cell-based assay
Primary human muscle cells (PHMCs) were collected
and purified from patients receiving anterior cruciate
ligament reconstruction after obtaining written consent
at the University Hospital Düsseldorf. Patients were
required to have no autoimmune disorders or infec-
tious diseases at the time of operation. Muscle attached
to the semitendinosus tendon was used for purification
of PHMCs. Briefly, we used a CD56 Ab (clone N901,
Beckman Coulter, RRID: AB_130791) combined with
magnetic separation (Miltenyi) for PHMC purification
as previously described.20,21 CD56 is expressed by
myogenic cells as surface marker, allowing their isola-
tion.20,21 Cells were cultivated on 6-well plates coated
with laminin 521 (PELO Biotech). For all experiments,
we used differentiated PHMCs by growing cells to full
confluence. Formation of myotubes was confirmed by
light microscopy. For the cell-based assay, 10 × 106 cells
were incubated with monoclonal Abs at a concentration
of 10 μg/mL. For the treatment with serum,
10 × 106 cells were incubated with NHS containing 25%
v/v of the corresponding serum of either MG or HC.
MAC formation was allowed to proceed for 6 h at 37 ◦C.
Cells were fixed with 2% paraformaldehyde at room
temperature for 10 min. Cells were stained with an
anti-C9 neoantigen Ab (Hycult, Cat# HM2264) for
30 min at room temperature, followed by washing and
secondary staining. The number of PHMCs binding
www.thelancet.com Vol 105 July, 2024
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the anti-C9 neoantigen Ab was quantified by gating for
PHMCs as percentage of all cells using flow cytometry
(CytoFLEX, Beckman Coulter). The C9 neoantigen is
the C9 portion of the membrane attack complex (MAC)
allowing for the identification of this structure. This
antibody was validated by comparing positive and
negative biological samples and by omitting the pri-
mary antibody.

Visualisation
Figures were created using Adobe Illustrator (version
2023) and Servier Medical Art. Heatmaps were created
using the R package Complex Heatmaps.22

Statistics
Statistical Analysis was performed using R 3.5.3 and
Graphpad Prism 10.2.3. Data was presented as median
with IQR, mean ± SD, as absolute (n) or relative fre-
quencies (%). We used the unpaired Student’s t test to
compare two groups and the ordinary one-way ANOVA
test to compare more than two groups. In cases where
either the assumption of a normal distribution or ho-
mogeneity of variance were not met, we used the Mann–
Whitney U test to compare two groups and the Kruskal–
Wallis test to compare more than two groups. The
normality assumption for quantitative data was assessed
by Q–Q plots. The homogeneity of variance was tested
using the F test in when comparing two groups and the
Bartlett’s test when comparing more than two groups.
Categorial data was compared using the Fisher’s exact
test. The 95% confidence interval (CI) for the median
was calculated using Graphpad Prism 10.2.3 based on
the binomial distribution method, with the lower and
upper bounds determined by the ranks n

2−1.96
̅̅

n
4

√
and

n
2+1.96

̅̅

n
4

√
. These ranks correspond to the positions in

the ordered data giving the interval within which the
true median lies with 95% confidence. The area under
the curve (AUC) was determined for receiver operating
characteristic curve (ROC) analysis. The specific test
used is indicated in each section. Analysis was per-
formed in an exploratory setting without a prior calcu-
lation of statistical power. The study design was
exploratory with no prior statistical power calculation to
determine the sample size. Patients were not rando-
mised and the treating physicians were not blinded. We
also computed the time-weighted average steroid dose,
as previously reported.23 The denominator for this
calculation was the daily steroid dose in mg. We
screened the six months prior blood sampling at study
baseline for all patients treated with steroids. Given the
retrospective design, the time-weighted average steroid
dose was only computed for patients with information
on steroid usage on at least 80% of days during the
assed period of time. 36 out of 79 patients had sufficient
data for this analysis.

To identify differentially regulated proteins, gene
enrichment analysis (GSEA) was performed using the R
www.thelancet.com Vol 105 July, 2024
package clusterProfiler (v.4.3.1) with the gene ontology
biological processes (GO-BP) database.24

Role of funders
The funders had no influence on the study design, data
collection, data analyses, interpretation, or writing of
manuscript.
Results
Unsupervised clustering identifies protein
signatures across MG
First, our goal was to determine whether MG can be
grouped based on biological signatures. For this pur-
pose, we recruited a cohort of 140 patients diagnosed
with anti-AChR-Ab positive MG from three specialised
centres for MG (University Hospital Düsseldorf, Ger-
many, Charité—University Medicine Berlin, Germany
and University Hospital Hannover, Germany) from
2016 to 2023. We acquired clinical metadata as well as
serum samples from each patient. The time point of
blood sampling was defined as baseline. For down-
stream analysis, we chose proteomics due to its scal-
ability and high-throughput capabilities. Briefly, clinical
data was recorded according to the standard procedures
of the German Myasthenia Register as previously
described.2,14 Here, standardised assessment forms
including clinical, demographic and longitudinal data
are completed at each patient visit and stored centrally.
We chose this cohort as it reflects the spectrum of anti-
AChR-Ab-positive MG including patients with ocular
disease as well as patients experiencing severe, gener-
alised symptoms. The clinical and demographic data of
our cohort are given in Table 1. The mean age was 61.5
years (standard deviation (SD) 24) with 76 female and 64
male patients. 30 patients had a confirmed thymoma
and received thymectomy at least 12 months prior to
blood sampling. 58 patients were treatment naïve in
respect to immunosuppressive or immunomodulatory
treatments. Out of 58 treatment naïve patients, 27
(46.5%) received acetylcholinesterase inhibitors. 82 pa-
tients received immunosuppressive therapy (IST),
including azathioprine, methotrexate (MTX) and myco-
phenolate mofetil (MMF). 79 patients (56.4%) were
treated with steroids with a median dose per day of 6 mg
(interquartile range (IQR) 3–9). Out of the 82 patients
treated with ISTs, 75 (91.5%) also received steroids,
while 7 patients (8.5%) were only treated with an IST. 4
patients (2.8%) from the total cohort were treated with
steroids without an IST with a median dose per day of
10 mg (IQR 8 to 12). Patients receiving add-on thera-
pies, such as eculizumab, ravulizumab or efgartigimod,
were excluded from this cohort at baseline as the in-
fluence on the serum proteome is potentially under-
studied and may introduce a confounder into the
dataset, given the influence of complement inhibition
on the serum proteome.25 Two patients received
5
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Clinical characteristics Prevalence

Anti-AChR-Ab-positive, n (%) 140 (100%)

Gendera, n (%)

Female 76 (54.3%)

Male 64 (45.7%)

Age at baseline (years), mean (SD) 61.5 (24)

Age at disease onset (years), mean (SD) 51 (26)

Ethnicitya, n (%) White 121 (86.4%), Black 2 (1.4%),
Asian 8 (5.1%), Prefer not to
disclose 9 (6.4%)

Thymoma, n (%)

No thymoma 110 (78.6%)

Thymoma 30 (21.4%)

QMG score, median (IQR, Q1–Q3)

Baselineb 4 (2–7)

MG-ADL score, median (IQR, Q1 to Q3)

Baselineb 5 (2–9)

Treatment, n (%)

Treatment naïve 58 (41.4%)

Standard IST 82 (58.5%)

Azathioprine 57 (40.1%)

Methotrexate 8 (5.7%)

Mycophenolate-mofetil 17 (12.1%)

Steroid-treated patients 79 (56.4%)

Steroid dose at sampling, median (IQR, Q1–Q3) 6 (3–9)

Time-weighted average steroid dose per day, median (IQR,
Q1–Q3)

6 (2.4–6)

Reported a previous history of COVID19c 37 (26.4%)

Ab, antibody; AChR, acetylcholine receptor; IST, immunosuppressive therapy; IQR, interquartile range; MG-ADL,
myasthenia gravis activities of daily living; SD, standard deviation; Q1, first quartile; Q3, third quartile; QMG,
quantitative myasthenia gravis. aEthnicity and gender were self-reported by the participants. bBaseline is defined
as the time of blood sampling. cNo patients had signs of a COVID19 infection at the time of blood sampling.

Table 1: Overview of the main cohort.
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intravenous immunoglobulins one and two months
before baseline, respectively. No patients received plas-
mapheresis three months prior study inclusion. Serum
samples from ten healthy controls (HCs) were used for
comparison. HCs were required to have no known
disease. The HCs had a mean age of 53.5 years (SD 24).
Gender was balanced with five male and five female
participants.

For downstream analysis, all serum samples were
stored centrally and processed concurrently for mass-
spectrometry based proteomics. Proteins were
enriched using ProteoMiner to dilute high-abundance
proteins while concentrating medium- and low-
abundance proteins on their specific affinity ligands.26

After quality control, the entire dataset consisted of
60,480 individual datapoints comprising 432 proteins
per patient across 140 patients. To identify patient
subgroups based on their proteomic patterns, we
applied consensus clustering to the full dataset. Briefly,
consensus clustering summarises a consensus classifi-
cation from a list of individual classifications by
repeatably performing clustering on random subsets of
data, hence offering increased stability compared to
standard clustering.27 As computational framework for
consensus clustering, we employed the recently devel-
oped cola package.19 It is important to note that the
consensus clustering algorithm does not have access to
any clinical data or metadata and clusters patients based
only on their individual protein patterns. The number of
partitions (in our study: number of patient phenotypes)
is determined based on the stability of the final
consensus cluster (Supplementary Fig. S1).

This approach determined four distinct patient
phenotypes as optimal clustering based on model sta-
bility. We termed these subgroups as protein signature
(PS) 1 to PS4 (Fig. 1, the full heatmap can be viewed
interactively at https://masanneck.shinyapps.io/Cola-
Heatmap). Each protein signature was defined by a
cluster of proteins or a combination thereof. Protein
clusters were defined by their spherical k-means as
groups of proteins that are highly intercorrelated, e.g.,
protein cluster 1 is shared across PS3 and PS4 while
protein cluster 2 is only present in PS2. Notably, none
of the protein clusters observed in MG were found in
HC. PS1 contained 47 patients (33.5%), PS2 contained
34 (24.2%), PS3 contained 33 (23.6%) and PS4 con-
tained 26 (18.6%). Next, we superimposed clinical data
onto the clustered data.

Intriguingly, there were no differences between in-
dividual PS groups in respect to the age at baseline
(blood sampling), the age at MG onset or the disease
duration (Fig. 2a–c). In line, the frequencies of EOMG
and LOMG were comparable between groups (EOMG/
LOMG (n, %), PS1: 20/27 (42/58%), PS2: 18/16
(53/47%), PS3: 19/14 (57/43%), PS4: 12/14 (47/53%)).
There were no differences in regard to sex or the
number of patients with a confirmed thymoma (Fig. 2d
and e, Supplementary Fig. S2). Conversely, PS3 was
defined by high disease severity as measured by the
QMG score (difference between medians of the PS3 and
non-PS3 groups (95% confidence interval (CI)): 5.0
(4.0–8.0), P < 0.0001, Mann–Whitney U test) and the
MG-ADL (difference between medians of the PS3 and
non-PS3 groups (95% CI): 5.0 (3.0–6.0), P < 0.0001,
Mann–Whitney U test) score (Fig. 2f and g). At the time
of blood sampling, 34 patients (72.3%) in PS1, 6 patients
(17.6%) in PS2, 29 patients (87.8%) in PS3 and 10 pa-
tients (38.5%) in PS4 were treated with steroids. The
steroid dose was higher for PS3 at the time of blood
sampling compared to the other PS groups (difference
between medians of the PS3 and non-PS3 groups (95%
CI): 7.5 (4.0–7.0), P < 0.0001, Mann–Whitney U test,
Fig. 2h). This effect was promoted by a number of pa-
tients in PS3 with particularly high steroid doses.
Concurrently, we assessed the time-weighted average
steroid dose during the six months’ period before
sampling at study baseline for patients with available
data (the number of available patients for analysis is
indicated in Fig. 2i). The time-weighted average steroid
www.thelancet.com Vol 105 July, 2024
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Fig. 1: Consensus clustering of mass spectrometry-based proteomics. Heatmap displaying the serum proteome of 140 patients with anti-AChR-Ab
MG and 10 HC. All detected proteins that passed quality control are shown for each patient. The normalised protein intensity is indicated by colour
code. Consensus clustering was applied to group patients based on their protein signature (PS). PS1 contained 47 patients (33.5%), PS2 contained
34 (24.2%), PS3 contained 33 (23.6%) and PS4 contained 26 (18.6%). Consensus clustering determined four PS as optimal partitioning. Proteins
were clustered based on correlation. These clusters were termed protein cluster. Clinical data for each patient is indicated in the top rows.
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Fig. 2: Clinical characteristics of the cohort. (a) Age in years for each group of patients stratified by their protein signature (PS) at the time of
blood sampling for this study. (b) Age in years for each group of patients at the time of their individual onset of disease. (c) Disease duration in
years for each group of patients defined as the time between disease onset and the time of blood sampling for this study. (d) Patient sex
indicated by stacked bar plots. (e) Number of patients with or without a histologically confirmed thymoma. (f–i) Box plots indicating the QMG
score, MG-ADL score, the steroid dose per day and the time-weighted average steroid dose per day. (j) The number of patients receiving the
indicated immunosuppressive therapy. (k and l) Box plots indicating the QMG score and MG-ADL score for patients receiving steroids at the
time of blood sampling or one month prior. (m and n) Box plots indicating the QMG score and MG-ADL score for patients receiving
azathioprine at the time of blood sampling or three months prior. (o and p) Box plots indicating the QMG score and MG-ADL score for patients
with a histologically confirmed thymoma. Patients received thymectomy at least 6 months before study inclusion. Groups were compared by
the ordinary one-way ANOVA test, except for (d), (e) and (j). Clinical data is presented for the full cohort of n = 140 patients. Whiskers extend
from the box to the minimum and maximum values within 1.5 × IQR from Q1 and Q3, respectively. These groups were compared by the Fisher’s
exat test.
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dose was higher for the PS3 group compared to the
other PS groups (difference between medians of the PS3
and non-PS3 groups (95% CI): 3.9 (0.6–7.8), P = 0.014,
Mann–Whitney U test). Consistent with this, patients
clustered as PS3 more frequently required ISTs
compared to PS2 and PS4, while PS1 was between these
patient groups (Fig. 2j). Acknowledging that the impact
of different treatment strategies likely influenced the
proteomic data and subgroup assignment, we matched
patients based on treatments. We specifically analysed
patients receiving steroids and excluded those who did
not receive steroids at the time of sampling or one
month prior (Fig. 2k and l). Among steroid-treated pa-
tients, those in PS3 demonstrated higher QMG and
MG-ADL scores compared to other patient groups.
Similarly, we repeated this analysis for patients treated
with azathioprine, retaining only those who received the
medication at the time of sampling or three months
prior (Fig. 2m and n). Notably, patients in PS3 exhibited
higher QMG and MG-ADL scores compared to coun-
terparts in the other PS groups. Lastly, we investigated
whether the presence of a thymoma influenced disease
severity based on cluster assignment (Fig. 2o and p).
Patients with thymoma-associated myasthenia gravis
belonging to PS3 showed increased QMG and MG-ADL
scores compared to those in the other PS groups. In this
cohort, the QMG and MG-ADL were highly correlated
(Supplementary Fig. S3).

Consequently, consensus clustering enabled the
identification of MG phenotypes based on differences in
their serum proteome. Notably, PS3 emerged as a
phenotype characterised by a distinct clinical profile
and, given the high burden of disease despite treatment,
these patients might represent a treatment-refractory
subgroup.

Complement activation defines a protein signature
with high disease severity
Next, we asked whether the observed protein signatures
may reflect meaningful biological pathways. To this end,
we performed enrichment analysis for each protein
cluster (Fig. 3a). Each patient phenotype was defined by
protein clusters with different gene ontology (GO)
terms. For example, protein cluster 1 was shared be-
tween the PS3 and PS4 group and was associated with
negative regulation of peptidase activity. Protein cluster
2, which defined PS2, comprised elements of the hu-
moral immune response and classical complement
activation, among others. Interestingly, while the group
of PS3 patients shared protein cluster 1 with group PS4,
engagement of protein cluster 4 was only observed in
PS3 patients and therefore specific for these patients.
This PS3-specific protein cluster was defined by pro-
nounced complement activation and the humoral im-
mune response. Given the high disease severity and
concurrent enrichment for complement activation in
PS3, we focused on this patient subtype. First, we
www.thelancet.com Vol 105 July, 2024
manually screened the 20 most strongly enriched pro-
teins for the PS3 group to better understand their pro-
tein pattern. In line, complement proteins, such as
complement component 6 (C6), complement factor H
related 3 (CFHR3) or complement factor H related 4
(CFHR4), were more abundant in PS3 patients than in
the other groups (Fig. 3b). Concurrently, these patients
also demonstrated high levels of complement-associated
proteins, such as thrombospondin 1 (THBS1), inter-
alpha-trypsin inhibitor heavy chain H3 (ITIH3), inter-
feron regulatory factor 7 (IRF7) and vitronectin (VTN).

Succinctly, consensus clustering identified a distinct
subtype of MG characterised by markers of complement
activation in the serum. While all patients shared Abs
against the AChR, we hypothesise that these Abs may
differ in their potency for complement induction, and,
thus, inducing the observed pattern in the peripheral
blood.

Protein signature 3 is characterised by an
hyperexpanded antibody repertoire
Following this line of argumentation, we sought to
further characterie each PS based on their Ab architec-
ture. For this purpose, we selected three patients from
each PS for in-depth immunogenomic analysis. To
exclude the impact of differences in treatments, we
sampled three patients from each PS that were treat-
ment naïve at the time of sampling. In PS2 and PS4,
only three patients received azathioprine and were thus
selected. In PS1 and PS3, three patients were randomly
selected from all azathioprine-treated patients. Previ-
ously, PBMCs had been collected at baseline (together
with the serum samples) and stored for BCR analysis.

Briefly, the V(D)J sequence of the BCR was amplified
by short-read amplicon sequencing. Heavy and light
chains (kappa (κ) and lambda (λ)) were amplified sepa-
rately and sequenced (Fig. 4a). For downstream analysis,
we focused on the immunoglobulin (Ig) G subtype as
pathogenic anti-AChR-Abs are most likely derived from
this type of Ig.1,4 We first computed the clonality of each
patient’s repertoire stratified by the corresponding PS
phenotype. Here, the number of heavy and light chain
clonotypes were lower for the PS3 group compared to
other groups (Fig. 4b). A lower number of clonotypes
may be due to the expansion of specific BCR clonotypes
occupying a large portion of the repertoire. Indeed,
while hyperexpanded clones occupied between 0 and
5% of the heavy chain repertoire in PS1, PS2 and PS4,
patients in PS3 demonstrated hyperexpansion in
10–20% of their clonal repertoire (Fig. 4c and d). For the
κ-light chain, one PS3 patient displayed marked hyper-
expansion, while all other patients had comparable fre-
quencies of hyperexpanded κ-light chains (Fig. 4e and f).
Analysis of the λ-light chain revealed that the BCR
repertoire of PS3 patients harboured around 10% of
hyperexpanded clonotypes, while other groups of PS
had lower frequencies (Fig. 4g and h).
9
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Fig. 3: Functional enrichment analysis of protein signatures. (a) Heatmap as shown in Fig. 1. Each protein cluster is indicated by a black box. All
proteins constituting a cluster were analysed for enrichment for the biological processes (BP) gene ontology with each cluster analysed
separately. Negative decadic logarithms of corresponding P-values are depicted on the x-axis. Counts of associated proteins are illustrated by
circle sizes. (b) Individual proteins constituting protein cluster 4 shown as box plots. Whiskers extend from the box to the minimum and
maximum values within 1.5 × IQR from Q1 and Q3, respectively. Groups were compared by the ordinary one-way ANOVA test. CFHR, com-
plement factor H related protein; IRF7, interferon regulatory factor 7; THBS1, thrombospondin-1; VTN, vitronectin.
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Fig. 4: Immunogenomic analysis of the B cell receptor repertoire. (a) Overview of the immunogenomic analysis. The V-D-J segment was
amplified using NGS adaptors. The BCR repertoire was analysed for 12 patients with n = 3 per group. (b) Number of clonotypes for the heavy
chain and the kappa and lambda light chains of the IgG isotype. (c) Relative frequency of specific clones occupying the indicated proportion of
the total BCR repertoire for the IgG heavy chain. Each stacked bar refers to one patient. (d) Comparison of relative frequencies of the indicated
clonotypes between groups for the IgG heavy chain. (e) Relative frequency of specific clones for the κ light chain. (f) Comparison of relative
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Further, we analysed the Ig distribution across the
BCR repertoire (Supplementary Fig. S4a). Here, Ig us-
age was comparable across PS groups with the heavy
chains IgA and IgM being most frequent. To study the
V(D)J rearrangement of the BCR, we compared the gene
usage across PS groups. Usage of the Ig heavy chain
variable region (IGHV) demonstrated no differences
between PS groups (Supplementary Fig. S4b).
IGHV4.39, IGHV3.23 and IGHV4.59 were the three
most frequently used IGHV genes. For the Ig heavy
chain joining (IGHJ) gene, the BCR repertoire of all
patients was mostly composed of the IGHJ4 gene
(Supplementary Fig. S4c), as previously reported.28

Finally, we computed the V-J arrangement of the
IGHV and IGHJ genes for each patient and group.
Interestingly, only PS3 had the IGHV3.7/IGHJ4 pair as
top V-J frequency, while all PS shared IGH3.23/IGHJ4
as frequent pairing (Supplementary Fig. S5). Taken
together, PS3 is characterised by hyperexpanded BCR
clones and a skewed usage of the IGHV genes. After
recognition of its cognate antigen, B cells undergo
clonal expansion, thereby increasing the Ab-binding
affinity of their BCR clone to its respective antigen.29

High affinity binding of the AChR could provide a
link between the skewed Ab repertoire of PS3 patients
and their increased disease severity.

Complement induction is amplified in protein
signature (PS) 3 in vitro
To understand whether the PS3 phenotype harbours
anti-AChR-Abs with higher affinity for its antigen and,
consequently, the potency for complement activation,
we aimed to study Ab-mediated complement MAC for-
mation in vitro. Briefly, we modified a previously re-
ported cell-based assay for the measurement of MAC
formation. Here, AChR-expressing cells are incubated
with patient sera and MAC formation is quantified by
flow cytometry.30 For the current study, we aimed to
provide a closer approximation to the human system. To
overcome limitations of immortalised cell lines, we
chose PHMCs as source of AChR. These cells differ-
entiate in vitro and form neuromuscular junctions
(NMJs) resembling the complex topography of skeletal
muscle in vivo.31,32 To test the integrity of this platform,
differentiated PHMCs were incubated with
complement-competent normal human serum (NHS)
and serum from MG or that of HCs (Fig. 5a). These
were the same serum samples as previously used for the
proteomics analysis. We used NHS to ensure that
complement factors are present in each experiment. As
readout, we measured the levels of a complement
frequencies of the clonotypes between groups. (g) Relative frequency of
quencies of the clonotypes between groups. Differences between groups
median with 95% confidence intervals.
component 9 (C9) neo-epitope indicating MAC forma-
tion by flow cytometry. Incubation with MG serum
resulted in MAC formation, but not incubation with HC
serum. Further, we validated this setup by treating the
cells with an AChR-specific human recombinant IgG1
subclass monoclonal Ab (mAb-637)30 and an isotype
control (Fig. 5b). The mAb-637 resulted in MAC for-
mation while the isotype control did not, suggesting that
this platform enables measurement of anti-AChR-Ab-
mediated complement activation.

Next, we tested MAC formation for all 140 MG
serum samples analysed in this study in the afore-
mentioned setup. Samples were measured concurrently
to prevent a batch effect. Here, serum samples from the
PS3 subtype of patients resulted in higher levels of MAC
formation as compared to other patients (difference
between means of the PS3 and non-PS3 groups (95%
CI): 31.4 (25.1–37.6), P < 0.0001, t-test) (Fig. 5c and d).
We dichotomised patients into PS3 and non-PS3 to test
if MAC formation allows to classify patients into these
groups (AUC (95% CI)): 0.9 (0.8–1.0) Fig. 5e). The
sensitivity (95% CI) was 87.8% (72.7–95.1%) with a
specificity (95% CI) of 73.8% (64.8–81.2%). In line with
previous reports,30 the potency for MAC formation was
highly heterogenous across patients. In addition, we
sought to determine whether observed differences be-
tween groups were influenced by variations in treatment
regimens. To this end, we screened for patients with
available serum samples obtained prior to the study’s
baseline. Specifically, we identified individuals who
were recently diagnosed and had not yet received any
immunosuppressive therapy or steroids at the time of
blood collection or prior. A total of 17 serum samples
met these criteria, comprising 11 patients categorised
later as non-PS3 and six as PS3 based on proteomic
analysis. The median duration between the initial blood
sampling, when patients were treatment-naïve, and the
study baseline was three months (IQR 1 to 6) for the
non-PS3 group and five months (IQR 2.5 to 9) for the
PS3 group, demonstrating no differences (P = 0.32,
Mann–Whitney U test). At the baseline assessment,
seven out of 11 patients in the non-PS3 category and five
out of 6 in the PS3 category were receiving azathioprine.
The seven azathioprine-treated patients in the non-PS3
group also received steroids (median dose per day
5 mg (IQR 3 to 8)), while all six patients from the PS3
group were treated with steroids (median dose per day
8 mg (IQR 5 to 11.5). Analysis of these serum samples
in our cell-based assay demonstrated an elevation in
MAC formation in PS3 patients compared to non-PS3
patients, even at a treatment-naïve stage, and, as such,
specific clones for the λ light chain. (h) Comparison of relative fre-
were determined by the Kruskal–Wallis test. Error bars indicate the
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Fig. 5: Cell-based assay for membrane attack complex formation. (a) Representative flow cytometry gating for live PHMC treated with serum
from patients diagnosed with MG or HC. The percentage of PHMC positive for the C9-neoantigen is indicated. (b) Representative flow
cytometry gating for live PHMC treated with an isotype control or mAb-637. (c) Representative flow cytometry gating for live PHMC treated
with serum from different PS groups. (d) Flow cytometric analysis of C9-neoantigen formation on PHMC treated with serum from each PS
group. Differences between groups were determined by the ordinary one-way ANOVA test. Bar plots indicating the median with 95% CI. (e)
Receiver operating characteristic curve (ROC) for classification of PS3 and non-PS3 patients based on levels of MAC formation. The AUC,
specificity and sensitivity are indicated with their 95% confidence intervals in brackets. (f) Flow cytometric analysis of C9-neoantigen formation
on PHMC treated with serum from patients at study baseline and from a treatment naïve timepoint earlier later stratified as PS3 (n = 11) and
non-PS3 (n = 17). Error bars indicate the median and the 95% confidence intervals.
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early in their disease courses and before the initiation of
therapies (Fig. 5f).

Consistent with our previous findings, patients
belonging to the PS3 group appear to harbour high-
affinity anti-AChR-Abs that are potent complement
inductors.

Protein signature 3 identifies responders to
complement inhibition
The subgroup of PS3 patients was characterised by
excessive complement activation. Consequently, we
www.thelancet.com Vol 105 July, 2024
suspected that these patients may be prone to respond to
complement inhibition than patients without detectable
complement activity. To test this assumption, we
continued to observe the clinical course of patients
included at baseline for a follow-up period of 24 months.
From the original cohort of 140 patients, 26 were lost to
follow-up. Out of the remaining patients, 16 patients
were switched to a C5 complement inhibition therapy
(C5IT) based on clinical indication. These therapies
included eculizumab (n = 9) and ravulizumab (n = 7).
The indication for the treatment switch was made by the
13
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treating physician who was independent from the study
enrolment. The time between baseline and switch to
C5IT was on average 8 months (standard deviation [SD]
4 months) without differences between PS groups.
Clinical characteristics of this cohort are given in
Table 2. We collected clinical data for three months after
the treatment switch including the QMG and MG-ADL
scores. Scoring was performed by the treating physician,
who was blinded to the study inclusion and the PS label
of each patient. Clinical data was stored centrally and
assessed after completion of the three months observa-
tion period. The concurrent IST was stable for all
included patients.

We visualised the individual trajectory of the MG-
ADL score for each patient stratified by the PS group
label (Fig. 6a). Comparing the response to C5IT between
patients belonging to the PS3 group and those who did
not, the change to the MG-ADL score after two months
of treatment was higher for PS3 patients (difference
between medians of the PS3 and non-PS3 groups (95%
CI): 4 (0–14), P = 0.024, Mann–Whitney u test) (Fig. 6b).
Similarly, QMG reduction in response to C5IT was
more pronounced in the PS3 group compared to other
patient subgroups (difference between medians of the
PS3 and non-PS3 groups (95% CI): 7 (4–10), P < 0.0001,
Mann–Whitney u test) (Fig. 6c and d). As previously
employed in the REGAIN trial,33 a ≥3 point improve-
ment on the MG-ADL scale was used to define treat-
ment responder and non-responder. Patients were
assigned as treatment responder and non-responder
after the three-month follow-up period. Patients
belonging to the PS3 phenotype were more frequently
defined as treatment responder than patients not
Clinical characteristics PS1

Number of patients 6

Gender

Female 3

Male 3

Age (years), median (IQR, Q1–Q3) 42 (38–53)

QMG score, median (IQR, Q1–Q3)

Baselinea 9 (3–7)

MG-ADL score, median (IQR, Q1–Q3)

Baselinea 10 (8–12)

Treatment

Azathioprine 5

Methotrexate 1

Mycophenolate-mofetil 0

Number of patients treated with steroids 4

Steroid dose/day, median (IQR, Q1–Q3) 5 (2–7)

IQR, interquartile range; MG-ADL, myasthenia gravis activities of daily living; PS, protein s
aBaseline is defined as the time of switch to a complement inhibitor.

Table 2: Overview of the follow-up cohort.
belonging to this phenotype, however, without reaching
statistical significance (percentage of responder for PS3
vs non-PS3: 85.7% vs 33.3%, P = 0.061, Fisher’s exact
test, Fig. 6e).

Finally, we aimed to validate these observations in an
independent, prospective cohort of patients. For this
purpose, we screened patients requiring a treatment
switch to a C5IT in the participating centres. As before,
the indication for the treatment switch was made by the
treating physician independently from the study enrol-
ment. These patients were required to not have been
included in the initial cohort and to provide informed
written consent before study inclusion. In total, we
recruited 18 patients for this cohort (Fig. 7a). Clinical
data was collected, and the individual treatment re-
sponses were recorded (Table 3). In respect to treatment
at baseline, 16 patients were treated with an IST with the
majority receiving azathioprine (13 patients), and two
patients on methotrexate and one on mycophenolate-
mofetil. The two patients without IST were on steroid
treatment at baseline, as well as 9 out of 16 IST-treated
patients. The individual treatment strategies and steroid
doses per group at baseline are detailed in Table 3. The
observation period was three months in total. At base-
line (time of treatment switch), serum was collected
from all patients and stored for the duration of the
follow-up period. After completion, we employed our
cell-based assay, as described above, to determine
whether the patient’s serum induces complement acti-
vation on PHMCs. This choice was motivated by the
ability of the cell-based assay to effectively identify pa-
tients belonging to the PS3 phenotype and because we
believe that the assessment of complement activation in
PS2 PS3 PS4

2 7 1

2 3 0

0 4 1

40 (38–40) 52 (31–70) 55

7 (6–8) 10 (6–12) 5 (0)

8 (6–10) 14 (8–16) 6

2 5 1

0 1 0

0 1 0

2 4 1

2 5 (3–7) 2 (0)

ignature; QMG, quantitative myasthenia gravis; Q1, first quartile; Q3, third quartile.
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determined by the Mann–Whitney U test. (e) Number of patients defined as treatment responder or non-responder stratified by their PS
phenotype. Differences between groups were determined by the Fisher’s exact test.
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a primary muscle cell culture is a close approximation to
the biological system. In this design, treatment re-
sponders demonstrated more profound MAC formation
www.thelancet.com Vol 105 July, 2024
than treatment non-responders in the cell-based assay
(difference between medians of the PS3 and non-PS3
groups (95% CI): 4.3 (0.9–7.7), P = 0.016, Mann–
15
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intervals in brackets. Differences between groups were determined by the two-sided Student’s T-test.
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Whitney U test, Fig. 7b and c). Consistently, MAC for-
mation was able to classify treatment responders and
non-responders at baseline (AUC (95% CI): 0.9
(0.7–1.00), Fig. 7d). Here, the sensitivity (95% CI) was
83.3% (55.2–97.0%) with a specificity (95% CI) of 83.3%
(43.6–99.2%).

Collectively, this data suggests that patients
belonging to the PS3 phenotype are more likely to
benefit from complement inhibiting therapies. More-
over, evaluating MAC in a cell-based assay could act as a
surrogate marker for identifying these patients conse-
quently improving the precision of treatment allocation.
Discussion
In this study, we provide a proteomic classification of
MG that employs consensus clustering to identify
meaningful patient phenotypes based on protein pat-
terns. The advantage of consensus clustering lies in its
ability to overcome the limitations of individual clus-
tering algorithms. By combining multiple algorithms
and assessing their level of agreement, consensus
clustering can reduce the impact of algorithmic biases
and provide more robust and reliable subgroup identi-
fication.19 This approach has proven successful for the
identification of proteomics-based cancer patient
www.thelancet.com Vol 105 July, 2024
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Clinical characteristics Prevalence

Anti-AChR-Ab-positive, n (%) 18 (100%)

Gender

Female 12

Male 6

Age (years), median (IQR Q1–Q3) 64 (38–70)

Thymoma, n

No thymoma 17

Thymoma 1

QMG score, median (IQR, Q1–Q3)

Baselinea 9 (6–12)

MG-ADL score, median (IQR, Q1–Q3)

Baselinea 10 (5–13)

Treatment

Treatment naïve 1

Standard IST 17

Azathioprine 9

Methotrexate 1

Mycophenolate-mofetil 2

Number of patients treated with steroids, n (%) 14

Steroid dose/day, median (IQR, Q1–Q3) 17 (8–25)

IQR, interquartile range; MG-ADL, myasthenia gravis activities of daily living; PS,
protein signature; SD, standard deviation; QMG, quantitative myasthenia gravis;
Q1, first quartile; Q3, third quartile. aBaseline is defined as the time of switch to
a complement inhibitor.

Table 3: Overview of the validation cohort.
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subgroups, among others.34 Here, we extend this strat-
egy to the study of MG as prototypical autoimmune
disease. Analysis of the serum proteome delineates a
distinct patient subgroup characterised by severe dis-
ease, a hyperexpanded BCR repertoire and preferable
response to complement inhibition. In this specific
study cohort, it’s noteworthy that the MG-ADL and
QMG scores exhibited a strong correlation, a finding
consistent with prior research indicating varying de-
grees of association between these scales35,36 with pa-
tients responsive to treatment demonstrating the
highest level of correlation.37

We suspect that if complement-mediated damage to
the NMJ is severe enough, this damage is reflected in
the peripheral blood. Given the clinical implications, a
number of studies have addressed this link in the
past.30,38–40 However, most studies did not observe a
correlation between complement factors and disease
activity.30,38–40 Complement is a complex serum-
effective system with high inter-individual vari-
ability.41 While the interaction between Abs and their
cognate antigens constitutes the focus point of Ab-
mediated complement activation, various context fac-
tors including epitope specificity, Ab-affinity, IgG
subclass usage and post-translational modifications
alter the efficacy and trajectory of downstream com-
plement induction.30,41,42 Following this line of argu-
mentation, individual anti-AChR-Abs that recognise a
www.thelancet.com Vol 105 July, 2024
single subunit of the AChR are often unable to effec-
tively induce complement-mediated tissue damage.43

In contrast, the synergy between Abs recognising
different AChR epitopes triggers profound comple-
ment activation in vitro and in vivo.43 This may provide
an explanation why measuring a single complement
factor or cleavage product is unlikely to capture the
degree of complement activation at the target structure.
The current study may overcome this caveat as the key
advantage of proteomics-based clustering is its ability
to recognise patterns. These patterns allow to assign
patients to a biological signature defined by a protein
network reflecting complement activity, instead of
relying on single protein markers. The proposed clas-
sification also confers pathophysiological insights. The
recognition of their cognate antigens results in the
clonal expansion of the corresponding B cells.44 During
this expansion, the insertion of random mutations
drives the accumulation of high-affinity B cell clones
and the diversification of the Ab repertoire. In this
study, we observed that a subtype of patients harboured
a clonally hyperexpanded BCR repertoire capable of
effectively inducing MAC formation. We suspect that
the degree of clonal hyperexpansion is linked to the
formation of high-affinity B cell clones capable of
effectively engaging the AChR. This may provide an
explanation why Ab titers do not correlate with disease
severity39,45 as the current data suggests that the degree
of clonal hyperexpansion and the affinity between the
anti-AChR-Ab and its antigen may define complement-
mediated tissue damage. Indeed, besides assessing
complement activation markers, studies have increas-
ingly turned to cell-based assays to understand the
functional consequences of Ab binding in MG. These
assays leverage cell lines, such as HEK293T engineered
to express AChR,30 to measure MAC formation in vitro.
Consistent with findings from these investigations,30

we have also observed a substantial variability among
individual patients regarding MAC formation. These
cell-based assays might provide readouts that more
closely mimic the in vivo situation of individual pa-
tients, potentially identifying those with highly patho-
genic Abs that trigger MAC formation. Such patients
could potentially benefit from complement inhibition,
thus conferring clinical utility to these assays. Howev-
er, the choice of the cellular target for these assays is
important. While our study opted for primary cells,
offering the advantage of NMJs resembling the com-
plex topography of human muscle, there are draw-
backs. Primary cells entail greater sample-to-sample
heterogeneity and raise concerns regarding result
reproducibility and handling. Despite the technical and
logistical challenges, cell-based assays hold promise for
improving the stratification of patients with MG by
providing a more comprehensive assessment of com-
plement activation and functional Ab activity. Howev-
er, comparative studies are required to identify the
17
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optimal cellular target for assays measuring comple-
ment activation.

The clinical relevance of this strategy is supported by
the prediction of treatment responses to complement
inhibition. While further standardisation is needed, the
implementation of cell-based complement assessments
might provide clinical value for the management of MG
by identifying patients likely to benefit from comple-
ment inhibition. Going forward, combining functional
Ab-assays with a standardised set of complement-related
readouts could further improve patient stratification
and, thereby, patient management. Concurrently, there
is a need to explore whether varying methodological
approaches yield comparable results in patient stratifi-
cation based on complement profiles, or if they offer
distinct outcomes and biological insights. Alternative
high-throughput strategies, such as (bulk)-tran-
scriptomics, could be leveraged to address this question.

The study is subject to limitations, notably the rela-
tively small sample size of patients undergoing C5IT
during the follow-up period, as well as the restricted
number of patients accessible for immunogenomic
analysis. Additionally, differences in treatment strate-
gies among patient groups, inherent to the cross-
sectional design, pose a potential confounder. Patients
with more severe disease may receive higher doses of
steroids, ISTs, or a combination thereof. These varia-
tions could influence proteomic profiles within specific
patient groups or subgroups. Despite our efforts to align
patients based on treatment strategies, it’s important to
consider this potential confounder when interpreting
the data. Prospective studies focusing on a treatment-
naïve or recently diagnosed group of patients are
required to exclude this confounder. Finally, our study is
limited to the anti-AChR-Ab serological group. We
acknowledge that distinct proteomic patterns are ex-
pected in other serological groups, including seronega-
tive patients or those with anti-MuSK-Abs. Further
investigations are needed to study how the proteome of
these patients differs and to derive meaningful biolog-
ical insights. However, due to the rarity of these sub-
groups, substantial collaborative efforts across multiple
centres will be essential to conduct such studies
effectively.

Nonetheless, our study supports a link between dis-
ease severity and proteomic patterns of complement
activation in MG. This knowledge may improve our
molecular understanding of the disease and inform
patient classification based on biological signatures.
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