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  I 

Zusammenfassung 
Gesundes Altern geht mit strukturellen und funktionellen Veränderungen des Gehirns einher, die 

besonders bei komplexen kognitiven Leistungen, wie exekutiven Funktionen (EF), ausgeprägt 

sind. EF sind wichtig für Prozesse der Entscheidungsfindung und des Problemlösens sowie allge-

mein für adaptives Verhalten. Trotz Fortschritten in bildgebenden Verfahren sind die neuronalen 

Grundlagen von EF, insbesondere im Kontext kognitiver Alterungsprozesse, noch nicht vollständig 

verstanden. Angesichts des globalen demografischen Wandels hin zu einer älteren Bevölkerung 

gewinnt das Verständnis kognitiver Alterungsprozesse, insbesondere Veränderungen in EF, zuneh-

mend an Bedeutung. Diese Dissertation zielt darauf ab, die neuronalen Grundlagen und Dynamiken 

altersbedingter Veränderungen in EF mittels verschiedener Methoden zu untersuchen, darunter 

Metaanalysen, Analysen funktioneller Konnektivität und Prädiktionsanalysen. 

Die linke inferior frontale Übergangszone und der linke anteriore Cuneus/Precuneus wurden me-

taanalytisch als besonders alterssensitive Regionen identifiziert, deren Rekrutierungsmuster je 

nach Aufgabentyp und Alter variierten. Metaanalytisch wurde ein perzeptuo-motorisches Netz-

werk aus visuellen, auditorischen und motorischen Regionen identifiziert, was eine Untersuchung 

von Altersunterschieden auf Ein- und Ausgabe-Ebene des Gehirns ermöglichte, die möglicher-

weise die Performanz auf höherer kognitiver Ebene beeinflussen. Prädiktionsanalysen ergaben ins-

gesamt mäßig bis niedrige Vorhersagegenauigkeiten, wobei funktionelle intraindividuelle Varia-

bilitätsmaße eine überlegene Vorhersageleistung für jüngere und strukturelle Maße für ältere Er-

wachsene lieferten. Überraschenderweise übertrafen über das gesamte Gehirn verteilte sowie zu-

fällig generierte die EF-spezifischen Netzwerke bei der Vorhersage von EF-Fähigkeiten, was auf 

die Relevanz globalerer Netzwerkeigenschaften für individuelle Unterschiede in EF hindeutet. 

Insgesamt betonen die Ergebnisse das komplexe Zusammenspiel struktureller sowie funktioneller 

Gehirnveränderungen und kognitivem Altern und zeigen eine altersabhängige Modalitätsspezifität 

in den neuronalen Prädiktoren von EF-Leistung. Die unterschiedliche Relevanz von randomisier-

ten, globalen im Vergleich zu EF-spezifischen Netzwerken bei der Vorhersage von EF weist darauf 

hin, dass die Berücksichtigung globaler Gehirnmerkmale und die Kombination mehrerer Metriken 

die Vorhersagegenauigkeit verbessern könnten. Moderat bis niedrige Vorhersagegenauigkeiten un-

terstreichen die Notwendigkeit weiterer Forschung und Entwicklung effektiverer Biomarker für 

EF-Fähigkeiten, unter Berücksichtigung globaler Netzwerkdynamiken und der Anwendung adap-

tiver behavioraler Tests, die die Leistungsfähigkeit über das gesamte gesunde Altersspektrum sen-

sitiv erfassen.  
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Summary 
Healthy aging is associated with structural and functional changes in the brain. These changes are 

especially pronounced in complex cognitive tasks, like executive functioning (EF). EF is important 

for decision-making, problem-solving, and adaptive behavior. Advances in neuroimaging tech-

niques have enabled a more detailed exploration of the neural substrates of cognitive aging, yet the 

neural underpinnings of EF, especially in the context of cognitive aging, remain incompletely un-

derstood. The global demographic shift towards an older population underscores the importance of 

understanding cognitive aging, particularly changes in EF. 

This dissertation aimed to investigate the structural and functional neural substrates and dynamics 

of age-related differences in EF through a comprehensive methodological framework combining 

meta-analyses, functional connectivity analyses, and predictive modeling.  

Meta-analyses highlighted left inferior frontal junction and left anterior cuneus/precuneus as re-

gions significantly affected by aging, with recruitment patterns varying by task type and age. Sub-

sequently, a meta-analytic synthesis identified a common perceptuo-motor network, comprising 

visual, auditory, and motor-related brain regions. This allows for the investigation of age differ-

ences already at the in- and output levels of the brain, which in turn could influence performance 

at higher cognitive levels. Prediction studies revealed moderate to low overall prediction accura-

cies, with measures of functional within-subject variability showing superior predictive perfor-

mance for younger and structural measures for older adults. Surprisingly, whole-brain and random 

network approaches outperformed EF-specific networks in predicting EF abilities, suggesting that 

broader network properties may be more indicative of individual differences in EF than previously 

thought. 

The findings highlight the complex interplay between structural and functional brain changes and 

cognitive aging, emphasizing an age-dependent modality specificity in the neural predictors of EF 

performance. The differential effectiveness of global versus EF-specific networks in predicting EF 

underscores the potential value of considering global brain characteristics and combining multiple 

metrics to enhance predictive accuracy. The modest to low prediction accuracies call for further 

research into developing more effective biomarkers for EF abilities, considering broader network 

dynamics, and adopting adaptive behavioral testing approaches to capture the full performance 

spectrum of healthy aging.  



  III 

Abbreviations 
aC/PrC  anterior cuneus/precuneus 
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1. Introduction 
 According to the World Health Organization (WHO) and the United Nations (UN), 

the age group of individuals aged 65 and above is experiencing unprecedented growth glob-

ally. As of 2018, older adults surpassed children under the age of five in terms of population, 

marking a historic demographic shift. Trends indicate that by 2050, older adults will outnum-

ber adolescents and youth aged 15 to 24 (UN, 2023; WHO, 2023). In the context of this 

global demographic shift, understanding the dynamics of cognitive aging (i.e., age-related 

differences in cognitive processes) becomes increasingly important. Executive functioning 

(EF) plays a central role in various aspects of daily life, including decision-making, problem-

solving, and goal-directed behavior. As older adults form a growing portion of the popula-

tion, it becomes crucial to deepen our understanding of the multi-faceted changes in EF re-

lated to aging, focusing on declines in cognitive function. This understanding not only guides 

strategies to maintain cognitive functioning, reduce and/or slow down cognitive decline, and 

improve overall quality of live for older individuals but also guides the development of tar-

geted interventions. Therefore, the insights derived from cognitive aging research play a cen-

tral role in shaping healthcare practices and educational approaches tailored to meet the 

evolving needs of an aging society.  

 

1.1 Healthy Aging 
Healthy aging is associated with altered cognitive performance and brain activation 

patterns across various cognitive domains. Notably, these differences become especially pro-

nounced in challenging, non-routine tasks that emphasize executive processes (Park et al., 

2002; Drag and Bieliauskas, 2010; Stuss and Craik, 2019), while remaining relatively stable 

in other cognitive domains like vocabulary (Salthouse, 1996; Park et al., 2002), implicit 

memory, and knowledge storage (Park et al., 2002). Acquired knowledge, linked to crystal-

lized intelligence, tends to remain stable or even improve with age, whereas EF, especially 

updating, is associated with fluid intelligence, which exhibits a decline with frontal lobe dam-

age and age (Cattell, 1971; Friedman et al., 2006).  

 In recent decades, progress in neuroimaging techniques, including positron emission 

tomography (PET) and structural as well as functional magnetic resonance imaging (MRI), 

has substantially advanced our understanding of the neural correlates of cognitive aging. PET 
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enables the observation and quantification of biological processes, such as changes in blood 

flow, metabolism, and neurotransmitter activity, by measuring the distribution and concen-

tration of radiotracers. MRI employs strong magnetic fields and radiofrequency pulses to 

provide high-resolution images of brain structure. In addition, fMRI can detect changes in 

blood flow and oxygenation levels associated with neural activity, allowing for a real-time 

exploration of brain function. Despite these technological improvements, the underlying 

mechanisms of age-related differences remain incompletely understood (Cabeza et al., 2002; 

Davis et al., 2007). Certainly, the aging brain undergoes unfavorable changes, including a 

decline in dopaminergic receptors (Li, Lindenberger and Sikström, 2001; Yang et al., 2003), 

volumetric shrinkage of gray-matter structures (Resnick et al., 2003; Salat et al., 2004; Raz 

et al., 2005), and reduced white-matter density (Head et al., 2004; Wen and Sachdev, 2004). 

However, the brain also demonstrates a compensatory homeostatic response, indicating the 

dynamic and adaptive nature of neurobiological substrates of the cognitive system through-

out the lifespan (Greenwood, 2007; Park & Reuter-Lorenz, 2008). 

 

1.1.1 Theories of Cognitive Aging 

 In the pursuit of unraveling the neural dynamics underlying cognitive aging, promi-

nent theories have emerged, offering partially comparable, complementary, but also conflict-

ing perspectives on how the aging brain undergoes structural, functional, and adaptive trans-

formations across different cognitive domains. Theories of cognitive aging highlight reduced 

lateralization or anteriorization of brain activation in older adults, often attributed to com-

pensatory functions correlated with better performance. This includes HAROLD 

(Hemispheric Asymmetry Reduction in Older Adults; Cabeza, 2002) and PASA (Posterior 

to Anterior Shift in Cognitive Aging; Davis et al., 2007). The latter further suggests that well-

practiced cognitive operations become less automatic with age, resulting in reduced activa-

tion of posterior regions and an increased reliance on frontal control regions (Grady et al. 

1994; Madden et al. 1997; Madden et al. 2002; Madden et al. 2010; Schulte et al. 2011). 

Similarly, CRUNCH (Compensation-Related Utilization of Neural Circuits Hypothesis) pro-

poses that increased modulation by the prefrontal cortex (PFC) compensates for less efficient 

neural circuits in older adults (Park and Reuter-Lorenz, 2008). STAC (Scaffolding Theory of 

Aging and Cognition), in turn, suggests that age-related structural and functional changes 
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result in inefficient and/or noisy processing, leading to the development of scaffolds, or sup-

portive frameworks, that maintain behavioral performance. These scaffolds involve strength-

ening of existing connections, developing new ones, and disusing fragile or deficient con-

nections, resulting in increased bilateral activation and frontal hyperactivation in older adults 

(Park and Reuter-Lorenz, 2008). In 2002, Stern postulated two distinct mechanisms un-

derlying cerebral reorganization in aging that closely align with STAC: neural reserve, where 

older adults exhibit increased recruitment of a specific brain region or network, and neural 

compensation, where older adults recruit alternative networks to compensate for the lost effi-

ciency of specific brain regions. In contrast to Stern’s proposal, STAC asserts that neural 

scaffolding is not exclusive to aging but is a normative process persisting throughout the 

lifespan. 

 

1.2 Executive Functions 
EF, also referred to as executive control, cognitive control, or higher-order cognitive 

abilities, is essential for a variety of daily activities. EF involves the management of attention, 

actions, and emotions to achieve overarching goals. Furthermore, these functions encompass 

the retention and manipulation of information, such as incorporating new knowledge into 

plans or considering alternatives as well as changing one’s perspective. Although a formal 

definition remains elusive, EF can be conceptualized as a set of cognitive skills crucial for 

orchestrating goal-directed, complex thoughts, and behavior. While consensus exists on three 

core subcomponents – namely inhibitory control, working memory, and cognitive flexibility 

– (e.g., Lehto, 1996; Miyake et al., 2000; for reviews see: Alvarez & Emory, 2006; Diamond, 

2013), debates persist regarding their distinctiveness (Baddeley & Hitch, 1974; Engle & 

Kane, 2004; Norman & Shallice, 1986; Stuss, 2006). 

 

1.2.1 Neural Representation 

Historically, EF were primarily associated with the frontal cortex, stemming from 

observations of patients with frontal lesions exhibiting deficits in EF (Shallice, Broadbent 

and Weiskrantz, 1982; Duncan, 1986; Owen et al., 1990). This association originated in the 

famous case of the 25-year-old construction worker Phineas Gage, who in 1848 survived an 

injury from a massive iron bar that passed through his left frontal lobe. After that, his behavior 
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and personality changed, and he became irritable, aggressive, irresponsible, and distance re-

duced (Ratiu et al. 2004; Harlow, 1848). However, subsequent research challenged this ex-

clusive frontal association, revealing that frontal lesions did not consistently impair EF (e.g., 

Eslinger and Damasio 1985; Shallice and Burgess 1991), and non-frontal lesions could lead 

to similar deficits (e.g., Anderson et al. 1991; Mountain and Snow 1993; Axelrod et al. 1996). 

This observation led to the recognition that EF relies on a widespread network, with no con-

sensus of its precise neural substrate, due to its elusive nature (Collette et al., 2006). 

While the PFC is widely acknowledged as a key area for EF (e.g., Buchsbaum et al. 

2005; Alvarez and Emory 2006), posterior regions also contribute significantly (D’Esposito 

and Grossman, 1996; Duncan and Owen, 2000; Stuss and Levine, 2002; Langner et al., 2018). 

Some prefrontal areas, such as the dorsolateral prefrontal cortex (DLPFC), frontopolar PFC, 

and anterior middle cingulate cortex (aMCC), are consistently activated across diverse exec-

utive tasks, while other frontal and posterior areas are only activated in some tasks, empha-

sizing their task-specific function (Collette and Van der Linden, 2002; Wager and Smith, 

2003).  

 Duncan’s Multiple-Demand Network (MDN), proposed in 2010, highlighted a core 

network consistently recruited across tasks with varying cognitive demands (intraparietal sul-

cus [IPS], inferior frontal sulcus [IFS], DLPFC, anterior insula [aINS]/frontal operculum, 

pre-supplementary motor area [pre-SMA], aMCC). Building on this, Müller and colleagues 

(2015) integrated findings from meta-analyses on working memory (Rottschy et al., 2012), 

attention (Langner and Eickhoff, 2013), and inhibition (Cieslik et al., 2015), the most dis-

cussed subcomponents of EF (Miyake et al., 2000; Alvarez and Emory, 2006), to identify a 

common core network. They resulted in a network of seven regions (MCC/SMA, bilateral 

inferior frontal junction [IFJ] extending into inferior frontal gyrus [IFG], right middle frontal 

gyrus [MFG], bilateral aINS, right inferior parietal cortex [IPC], and IPS), which was very 

similar to Duncan’s MDN. Camilleri and colleagues (2018) further expanded this and pro-

posed an extended (e)MDN which is based on task-dependent and -independent functional 

connectivity analyses seeded from the regions of the meta-analytically defined MDN by Mül-

ler and colleagues. They found 17 regions (bilateral IFJ, aINS, SMA, pre-SMA, IPS, Puta-

men, Thalamus, right MFG extending into IFS, left dorsal pre-motor cortex, and inferior 

temporal gyrus) which they characterized, based on functional profiles, as the 
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neurobiological substrate of EF. Based on consistent activation in executive control tasks and 

strong interconnectivity, they proposed a core network of the eMDN, consisting of bilateral 

IFJ extending into IFG, bilateral aIns, and bilateral pre-SMA extending into aMCC. 

In light of these findings, the neural implementation of EF is considered distributed 

across the brain, relying on a core network, the so-called MDN, and additional task- and 

demand-dependent brain regions (Teuber, 1972; Duncan and Owen, 2000; Duncan, 2010; 

Miyake and Friedman, 2012; Camilleri et al., 2018). This distributed network model empha-

sizes the flexibility and adaptability of EF processes across various cognitive demands. 

 

1.2.2 Assessment of Executive Functions 

 In both research and clinical settings, the assessment of EF often involves the use of 

comprehensive test batteries designed to measure various aspects of cognitive control. Ex-

amples of such test batteries include the Delis-Kaplan Executive Function System (Delis et 

al., 2004) and the Computerized Neurocognitive Battery (Gur et al., 2010). These tools pro-

vide a systematic and standardized approach to evaluating EF and its subcomponents in in-

dividuals. 

 An individual’s ability to monitor and update information in working memory is com-

monly assessed using the n-back test. Here, participants are presented with a sequence of 

stimuli, often letters or numbers, and are required to respond when the current stimulus 

matches the one that appeared “n” steps back in the sequence. The level of difficulty can be 

adjusted by varying the value “n”. 

 Inhibitory control is often measured through tests like Color-Word Interference. In 

this test, participants are presented with words written in colored ink and are required to name 

the ink color while inhibiting the automatic response to read the word itself. It includes con-

ditions with congruent (i.e., matching color and word) and incongruent (i.e., mismatching 

color and word) stimuli, placing demands on the individual’s ability to suppress interference 

from conflicting information. Another frequently used task is the flanker task or Attention 

Network Task (Fan et al., 2002). It typically involves the presentation of a central target 

stimulus (e.g., an arrow) flanked by distracting stimuli. For assessing sustained attention, 

Penn Continuous Performance Task can be used. Here, red vertical and horizontal lines flash 
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within a digital numeric frame, resembling a digital clock. Participants are required to press 

the spacebar when these lines form complete numbers or letters. 

 Cognitive flexibility can be assessed with the Trail Making Test (TMT). The test 

consists of two parts. In the first part, participants are required to connect numbers in ascend-

ing order as quickly as possible. It primarily measures visual attention and processing speed. 

The second part involves alternating between numbers and letters in ascending order (1-A-

2-B-3-C, and so on). Another commonly applied task is Wisconsin Card Sorting or Penn 

Conditional Exclusion Task. Participants are presented with four objects and must determine 

which one does not belong based on changing principles or criteria (e.g., line thickness, 

shape, and size). The participant receives feedback after each response, and the ruling prin-

ciple changes after achieving ten consecutive correct answers for each criterion.  

 

1.3 Healthy Aging and Executive Functioning 
1.3.1 Neural Correlates 

Findings from neuroimaging studies examining age-related differences in EF and its 

subcomponents – inhibitory control, working memory, cognitive flexibility – present a multi-

faceted and sometimes conflicting picture. A commonly observed pattern is an age-related 

increase in bilateral prefrontal activity (e.g., Madden et al., 1999; Morcom et al., 2003; Emery 

et al., 2008; Piefke, Onur and Fink, 2012), and a decrease in occipital activity (e.g., Madden 

et al., 2002, 2010; Schulte et al., 2011; Ansado et al., 2012). However, other studies (e.g., 

Zysset et al., 2007; Van Impe et al., 2011; Chmielewski, Yildiz and Beste, 2014; Bloemen-

daal et al., 2016), suggest an increase in occipital activity and a decline in frontal activity in 

older adults. Moreover, the age-related reduction in hemispheric asymmetry appears incon-

sistent across studies (e.g., Madden et al., 2002; Carp, Gmeindl and Reuter-Lorenz, 2010; 

Toepper et al., 2014). These diverse and sometimes contradictory findings underscore the 

need for quantitative data aggregation. 

As of the time of this study, three meta-analyses have explored cognitive aging in 

association with EF. The initial meta-analysis by Spreng and colleagues (Spreng, Wojtowicz 

and Grady, 2010) comprehensively assessed all available experiments probing EF in aging, 

encompassing facets like working memory, task switching, and inhibitory control. Their find-

ings unveiled a convergence of heightened age-related activation in bilateral DLPFC, right 
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MFG, left SMA, and left rostrolateral PFC. Notably, younger adults exhibited greater acti-

vation convergence in right ventrolateral PFC compared to older adults. Subsequently, 

Turner and Spreng (2012) conducted separate meta-analyses for working memory and inhib-

itory control, revealing distinct patterns of significantly convergent activation. The analysis 

on working memory resulted in convergence in lateral PFC regions in both hemispheres for 

both age groups, with older adults displaying increased convergence in anterior regions and 

younger adults in posterior regions of DLPFC. Additionally, an age-related increase in con-

vergence was found in the bilateral SMA. Meanwhile, inhibition exhibited a “young-plus 

pattern”, indicating shared recruitment of brain regions in both age groups, but with height-

ened activation in older adults in these regions (bilateral IFG, SMA, DLPFC, and right aINS). 

Contrary to the notion of a general compensatory increase in PFC activity, the authors argued 

that cognitive aging involves specific modifications in the neural networks engaged in the 

processing of a certain task or task component. In 2014, Di and colleagues conducted activa-

tion likelihood estimation (ALE) and voxel-based morphometry (VBM) meta-analyses, iden-

tifying increased age-related activation convergence in bilateral DLPFC, anterior cerebellum, 

and left IFG. Further conjunction analyses revealed an intriguing overlap between functional 

hyperactivation and gray-matter reduction in DLPFC, with these alterations correlating with 

task performance and suggesting that increased DLPFC activation is linked to better perfor-

mance in older adults. While each meta-analysis demonstrated convergence in age-related 

lateral PFC activation, discrepancies emerged in additionally activated regions and activation 

patterns of EF subcomponents. Therefore, several open questions persist, including the con-

sistency of findings across EF tasks, the specificity of subdomain-related activation patters, 

and the relationship between brain activation and performance. Furthermore, previous meta-

analyses comprise methodological short-comings such as the inclusion of region of interest 

(ROI) experiments, the selection of tasks included, a small number of experiments (n < 17) 

as well as false discovery rate (FDR)-based correction for multiple comparisons. Meta-anal-

yses with n < 17 experiments are prone to yield clusters of “convergence” driven by very few 

or even single experiments (Eickhoff et al., 2016). Applying voxel-level FDR-based correc-

tion has been shown to feature low sensitivity and a high susceptibility for false-positive 

findings in ALE meta-analysis (Eickhoff et al., 2016). To address these open questions and 

limitations, we conducted additional and more robust meta-analyses. 
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1.3.2 Brain Networks 

 To comprehend these age-related transformations, it is essential to consider the or-

ganizational structure of the human brain. The brain can be conceptualized as a complex and 

non-random network, referred to as the human connectome. Within this network, distinct 

subnetworks serve specialized mental functions, fostering both the segregation and integra-

tion of cognitive processes. Identifying these brain networks often involves studying their 

intrinsic functional connectivity, a method that has consistently identified resting-state net-

works aligning closely with task-related co-activation patterns (Damoiseaux et al. 2006; 

Smith et al. 2009). Notable among these networks is the Default-Mode Network (DMN; 

precuneus (PrC), posterior cingulate cortex (PCC), anterior medial PFC, lateral IPC), typi-

cally active during periods of rest as well as self-referential thinking and decreased in activity 

when engaging in externally focused tasks (Shulman et al., 1997; Raichle et al., 2001; for 

reviews see: Anticevic et al., 2012; Raichle, 2015). Concurrently, the executive control net-

work (ECN) is associated with tasks demanding top-down cognitive control (bilateral 

DLPFC, ventrolateral (VL)PFC, DLPFC/frontal eye field (FEF), dorsomedial PFC, lateral 

parietal cortex, dorsal and ventromedial caudate, anterior thalamus, right frontal operculum, 

inferior temporal lobe, left aIns) (Seeley et al., 2007), while the salience network is involved 

in integrating sensory with visceral, autonomic, and hedonic signals (bilateral aIns, temporal 

pole, dorsal aMCC, SMA/pre-SMA, superior temporal lobe, parietal operculum, frontal pole, 

DLPFC, ventral striato-pallidum, dorsomedial thalamus, hypothalamus, sublenticular ex-

tended amygdala/paraolfactory, substantia nigra/ventral tegmental area, right VLPFC, left 

periaqueductal grey) (Seeley et al., 2007). Additionally, networks such as the dorsal attention 

network (DAN; bilateral FEF, IPS) and the ventral attention network (right temporoparietal 

junction, VLPFC) are important for top-down and bottom-up attentional processes, respec-

tively (Corbetta and Shulman, 2002). Research has demonstrated that DMN deactivation 

tends to decrease with age, correlating with poorer performance in EF-related tasks (Persson 

et al., 2007; Prakash et al., 2012; Brown et al., 2019). Additionally, studies have proposed 

that the activation of the ECN and deactivation of the DMN may be more closely linked to 

EF performance than chronological age (Satterthwaite et al., 2013). Specifically, the Default-

Executive Coupling Hypothesis of Aging proposes that the connectivity between the ECN 
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and the DMN increases with age, a phenomenon associated with diminished performance in 

tasks that tax cognitive flexibility (Turner and Spreng, 2015; Kupis et al., 2021) and pro-

cessing speed (Ng et al., 2016). Hence, healthy aging is accompanied not only by a decline 

in the performance of cognitively challenging tasks but also alterations in brain activity and 

connectivity patterns during both task and resting states (Park and Reuter-Lorenz, 2008).  

 

1.3.3 Brain Metrics 

 In the exploration of the human brain, a variety of metrics have been developed to 

quantify its complex structure, function, and connectivity. These brain metrics, here derived 

from structural and functional MRI, serve as tools for investigating neural correlates and 

processes.  

 Resting-state functional connectivity (RSFC) has emerged as a pivotal metric in cog-

nitive neuroscience, offering insights into the brain’s intrinsic functional architecture by re-

flecting the temporal correlation of spontaneous blood-oxygen-level-dependent (BOLD) sig-

nal fluctuations between different brain regions at rest. It can be analyzed on a whole-brain 

scale to explore the global functional architecture or focused on specific, pre-defined net-

works or ROIs to understand their roles in cognitive processes and behaviors. Previous re-

search has linked age-related differences in EF performance to alterations in RSFC within 

relevant networks (Steffener et al., 2009; Langner et al., 2015; Hausman et al., 2020). How-

ever, the significance of RSFC within EF-related networks as a reliable marker for individual 

EF performance remains an area of ongoing research. Additionally, the role of RSFC in age-

related cognitive decline or improvement requires further exploration. 

Another metric derived from resting-state fMRI, regional homogeneity (ReHo), has 

demonstrated sensitivity in detecting age differences during rest (Wu et al., 2007) and exhib-

ited superior prediction accuracy for crystallized intelligence compared to RSFC (Larabi et 

al., 2021). ReHo assesses the local similarity of a voxel’s time series to its neighboring 

voxels, based on the assumption that meaningful brain activity manifests in clusters of neigh-

boring voxels rather than individual ones (Zang et al., 2004). It has been discussed as a meas-

ure of local connectivity, which is necessary for inducing global connectivity (Jiang and Zuo, 

2016). Similarly, fractional amplitude of low-frequency fluctuations (fALFF), derived from 

resting-state fMRI, reflecting the relative contribution of low-frequency fluctuations within 
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a specified frequency band to the entire frequency range (Zou et al., 2008), has shown a 

negative association with age and inhibitory control decline, suggesting its potential as an 

indicator of functional within-subject brain variability. These changes were linked to cortical 

atrophy, measured through cortical thickness or gray-matter volume (GMV), and a decline 

in inhibitory control (Hu et al., 2014; Vieira, Rondinoni and Garrido Salmon, 2020). GMV, 

a well-established and widely employed method for quantifying regional brain morphology, 

has been associated with cognitive aging, atrophy, and performance in tasks taxing EF (Good 

et al., 2001; Gunning-Dixon and Raz, 2003; Oh et al., 2014).  

Several questions persist regarding the degree to which RSFC can predict individual 

differences in EF abilities, the specificity of these predictions across different EF compo-

nents, and how changes in RSFC relate to age-related cognitive decline or improvement. And 

the application of ReHo and fALFF in predicting EF abilities is so far relatively underex-

plored compared to RSFC. Therefore, a multimodal approach, integrating these metrics, may 

offer a more comprehensive understanding of the neural correlates of EF and its changes 

throughout the lifespan, enhancing prediction accuracies and elucidating underlying mecha-

nisms. 

 

1.4 Aims of Thesis 
This dissertation integrates findings from four publications, each contributing a unique 

perspective to our understanding of EF, through diverse neuroscientific methodologies. The 

overarching goal was to advance a comprehensive understanding of EF, its neural underpin-

nings, network interactions, and changes with age. 

In Study 1, we examined age-related differences in EF-related brain activity through 

within- and between-group meta-analyses. This included identifying consistent EF-related 

brain regions sensitive to aging, investigating their connectivity profiles, and assessing the 

association between whole-brain functional connectivity, age, and EF scores.  

As age-related differences in EF performance may extend beyond exclusive involvement 

in EF-related or higher-order cognitive brain regions, Study 2 aimed to establish a robust 

functional definition of brain correlates of in- and output-related processing, in particular 

perceptuo-motor processes. This involved conducting coordinate-based meta-analyses on 

basic visual, auditory, and motor-related processing, creating separate as well as a combined 
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perceptuo-motor network. Additionally, we compared our meta-analytically derived task-

based networks to three RSFC-based data-driven network definitions from the literature. 

Lastly, we computed the minimum z-statistic of our three meta-analytically derived brain 

networks to investigate common, domain-general brain regions across these networks. 

In Study 3, we investigated the predictability of EF abilities in young and old adults based 

on network type and EF demand level (high-demand vs. low-demand). An EF network was 

defined from large-scale neuroimaging meta-analyses capturing diverse EF facets. We ex-

plored whether and how RSFC within this network predicts individual abilities in three major 

EF subcomponents (i.e., inhibitory control, cognitive flexibility, working memory), compar-

ing its predictive power with EF-unspecific networks (i.e., perceptuo-motor, whole-brain, 

and ten randomly sampled networks).While we focused on the linear regression algorithm 

partial least squares, for conceptual replication and robustness, we additionally applied a non-

linear prediction algorithm (random forest) as well as a data-driven feature selection ap-

proach (Finn et al., 2015; Shen et al., 2017). 

Finally, Study 4 explored the predictive capacities of structural and functional metrics 

(GMV, RSFC, ReHo, fALFF) on EF across age groups and task-demand levels. Utilizing a 

linear regression approach, we assessed the degree to which these metrics within an EF-re-

lated, a perceptuo-motor, and a whole-brain network predicted individual EF subcomponents, 

examining potential variations based on network, metric, task-demand level, and age group. 

 

1.5 Methodological Framework 
To thoroughly investigate the multi-faceted neural basis of EF and its changes 

throughout the lifespan, we employed a range of methodological approaches. This strategy 

allowed us to explore EF’s age-related dynamics and brain correlates from multiple perspec-

tives, aiming to achieve a more comprehensive understanding.  

 

1.5.1 Activation Likelihood Estimation Meta-Analysis 

Employing coordinate-based ALE meta-analyses (Turkeltaub et al., 2002, 2012; 

Eickhoff et al., 2009, 2012) offers several advantages when aggregating and interpreting data 

from neuroimaging studies on EF across different age groups. This method is particularly 

beneficial as it overcomes the common obstacles of individual neuroimaging experiments, 
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such as reduced reliability from small sample sizes (Button et al., 2013) and the variability 

in experimental design, data processing, and analysis criteria (Carp, 2012). Furthermore, 

ALE meta-analyses counteract the effects of publication bias (i.e., adjusting data analysis, 

inference, and thresholds until desired or significant result is found), a major issue in neu-

roimaging studies due to its analytical flexibility, by converging findings across studies to 

identify consistent patterns of brain activity (Carp, 2012; Müller et al., 2017). By synthesizing 

data across different experiments, ALE meta-analyses provide a statistically robust and ob-

jective assessment of the brain regions consistently associated with EF across the lifespan. 

Given the not fully understood neural correlates and mechanisms of EF, this approach not 

only enhances the reliability of findings by pooling data, but also offers a comprehensive 

synthesis of age-sensitive neural correlates of EF, establishing a solid foundation for further 

exploring the neural mechanisms underlying cognitive aging. 

 

1.5.2 Exploration of Resting-State Networks Involving Age-Sensitive Regions 

To deepen our understanding about the intrinsic functional architecture that supports 

EF in young and old individuals, we analyzed the task-independent whole-brain functional 

connectivity patterns of the identified age-sensitive brain regions. Such analyses may offer 

insights into the intrinsic brain networks relevant for individual differences in EF perfor-

mance, their within- and between-network dynamics as well as their changes with age.  

 

1.5.3 Prediction Analyses 

Finally, multivariate analysis, particularly machine learning, enabled us to further in-

vestigate connectivity patterns and interindividual differences in EF performance. In contrast 

to traditional univariate (or rather bivariate) approaches, which typically involve correlations 

between a single brain metric and EF performance, multivariate analysis allows for the de-

tection of complex patterns indicative of EF performance. Therefore, these models increase 

the sensitivity to detect interindividual differences in cognitive performance (Marek et al. 

2022; Pat et al. 2022). Furthermore, multivariate analysis enhances validity by resulting in 

patterns of connectivity (vs. individual connections), reducing the likelihood of spurious as-

sociations. Additionally, multivariate prediction models demonstrated superior test-retest re-

liability compared to single imaging features (Taxali et al., 2021), overcoming concerns 
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about the reliability of edge-level RSFC (Noble, Scheinost and Constable, 2019). Multivari-

ate models should therefore offer robust analyses of brain–behavior associations. 

Machine learning, in particular, has shown great promise in identifying trait markers 

of EF performance by analyzing RSFC patterns (Reineberg et al., 2015; He et al., 2021). 

Therefore, adding this approach to our analysis framework allows us to analyze interindivid-

ual differences in brain–behavior associations. 

 

1.6 Ethics Vote 
Data were obtained from the publicly available enhanced Nathan Kline Institute - 

Rockland Sample (Nooner et al., 2012). Analysis of the data was approved by the local ethics 

committee of the Medical Faculty of the Heinrich Heine University Düsseldorf (study num-

ber: 4039).  
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6. Discussion 
This dissertation aimed to investigate the structural as well as functional neural sub-

strates and dynamics of age-related differences in EF performance. Initially, meta-analyses 

were employed to examine age-related alterations in EF-related brain activity, highlighting 

age-dependent activation patterns in left IFJ and left anterior cuneus/precuneus (aC/PrC). 

Subsequently, a meta-analytic synthesis identified a common perceptuo-motor network, en-

abling the exploration of potential age-related differences in brain input and output regions. 

The investigation extended to RSFC within EF-specific and EF-unspecific networks (i.e., 

perceptuo-motor, whole-brain, random networks), with surprising findings revealing the su-

perior predictive capability of EF-unspecific networks over EF-specific ones. Overall low 

prediction accuracies challenged RSFC’s biomarker potential for individual EF abilities. We 

next explored whether different structural (i.e., GMV) as well as functional (i.e., ReHo, 

fALFF) metrics might offer better predictions. Although overall prediction accuracies re-

mained modest, intriguingly, fALFF showed superior predictive performance for younger 

adults, while GMV was most accurate when predicting performance for older adults. Collec-

tively, our findings provide multi-faceted insights into age-related alterations in EF-related 

brain activity and its organizational patterns. They show modality- as well as age-specificity 

of brain–behavior associations, but also obstacles in association with prediction results as 

well as measurement uncertainties associated with RSFC. 

 

6.1 Age-Related Differences in Executive Functioning: Insights from Meta-

Analyses and Functional Connectivity 
We meta-analytically identified two brain regions, left IFJ and left aC/PrC, being par-

ticularly sensitive to cognitive aging. By examining their meta-analytical contributions, in-

cluding the experiments shaping their clusters of convergence, along with analyzing their 

RSFC profiles and the association of these profiles with age and EF, we gained valuable 

insights into the neural substrates and dynamics of EF and cognitive aging. 

 

6.1.1 Left Inferior Frontal Junction 

The pooled meta-analysis of age differences in EF-related brain activity yielded con-

vergence in left IFJ. Furthermore, our results indicate varying recruitment patterns in left IFJ 
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between younger and older adults depending on the type of task. Task-dependent findings 

suggest an age-related decrease in IFJ activation for working memory tasks (e.g., Bäckman 

et al., 2011; Podell et al., 2012; Prakash et al., 2012). This is in line with the dedifferentiation 

hypothesis of cognitive aging, stating that brain regions showing specialized responses to 

specific cognitive tasks become less specialized with increasing age (Baltes and Linden-

berger, 1997; Park et al., 2001, 2004; Li and Sikström, 2002; Goh, 2011). Conversely, inhib-

itory control and attention shifting tasks suggest an age-related increase in left IFJ activity 

(e.g., Townsend, Adamo and Haist, 2006; Zysset et al., 2007; Korsch, Frühholz and 

Herrmann, 2014), possibly due to compensatory neural recruitment caused by the attempt to 

increase relevant and decrease irrelevant information processing (Townsend, Adamo and 

Haist, 2006; Korsch, Frühholz and Herrmann, 2014). Looking at individual study contribu-

tions of our analysis, the convergence in left IFJ for experiments on inhibitory control and 

cognitive flexibility was mainly driven by the activation contrast old > young (rather than 

young > old). Conversely, for experiments on working memory, convergence was mainly 

driven by the contrast young > old (rather than old > young). These findings, although purely 

descriptive, suggest a common cognitive mechanism underlying inhibitory control and cog-

nitive flexibility, as reflected in the convergent activation of IFJ activity. 

Research frequently associates left IFJ with cognitive flexibility processes (Brass and 

Cramon, 2004; Derrfuss et al., 2005; Worringer et al., 2019). This notion is also supported 

by repetitive transcranial magnetic stimulation studies (Higo et al., 2011; Zanto et al., 2011), 

indicating IFJ’s causal involvement in updating task representations and regulating neural 

excitability in visual areas according to the task goal. Derrfuss et al. (2004) found significant 

overlap in IFJ activity across experiments probing working memory, task switching, and in-

hibitory control, suggesting its broad role in EF. Additional indirect support comes from the 

anatomical position of left IFJ, situated at the junction of the inferior frontal and inferior 

precentral sulci, and thus at the intersection of three functional neuroanatomical domains: 

premotor, language, and working memory. While our study cannot clarify the precise func-

tional role of left IFJ, existing literature suggests that this region may integrate information 

from these three domains (Brass et al., 2005). In particular, it is proposed to (re)activate and 

implement relevant stimulus–response mappings, connecting stimulus information with 
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motor output aligned with behavioral goals (Hartstra, Waszak and Brass, 2012; Worringer et 

al., 2019).  

 Our findings from RSFC underscore the significant role of left IFJ in EF. The RSFC 

map of left IFJ strongly aligns with Camilleri et al.’s (2018) proposed neural correlate of EF, 

known as the eMDN, and the ECN. The observed negative association between the RSFC of 

left IFJ and age indicates that age-related connectivity changes are not regionally specific 

(e.g., prefrontal) but rather widespread, including the DAN, the ECN, and the eMDN. Prior 

research has documented an age-related decline in RSFC within these networks (Campbell 

et al., 2012; He et al., 2014). This decline may be linked to the frequently reported age-related 

deterioration in EF performance, indicating reduced FC between regions and networks cru-

cial for EF. With its pivotal functional role in stimulus–response mapping and its importance 

for all EF subcomponents, left IFJ appears to function as a key node for EF. This role involves 

both broad domain-general recruitment as well as intrinsic correlations with multiple task-

positive networks. 

In summary, our combined meta-analytic and connectivity results highlight the piv-

otal role of left IFJ in EF. While its involvement in EF tends to be mostly domain-general, 

its recruitment appears to shift with age, depending on the specific cognitive task. Notably, 

older adults exhibit a heightened reliance on left IFJ during tasks taxing cognitive flexibility 

and inhibition, whereas younger adults demonstrate a stronger recruitment during working 

memory tasks. The age-related decline in RSFC of left IFJ and its connections to diverse 

task-positive networks suggest (i) generalized changes throughout the brain rather than iso-

lated degradation in a specific region as well as (ii) a potential neural correlate underlying 

the decline in EF performance with age.  

 

6.1.2 Left anterior Cuneus/Precuneus 

Convergence in left aC/PrC was found by the meta-analyses EF pooled and EF old > 

young. Convergence in the pooled meta-analysis was mainly driven by the contrast old > 

young, indicating increased activation in older compared to younger adults. The aC/PrC has 

been linked to initiating shifts of attentional focus (Langner and Eickhoff, 2013; Bzdok et al., 

2015; Worringer et al., 2019). This is in accordance with our finding of activity convergence 

in left aC/PrC being driven by tasks taxing inhibition and cognitive flexibility, where shifting 
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the attentional focus and thus inhibiting irrelevant input plays a key role. Previous studies 

(DiGirolamo et al., 2001; Townsend, Adamo and Haist, 2006; Kuptsova et al., 2016) explor-

ing age-related differences in attention shifting indicate that both younger and older adults 

utilize the same regions, namely frontoparietal regions including PrC, during shift conditions. 

Notably, older adults additionally recruited these regions during the control condition (i.e., 

attentional focusing). The authors suggested that older adults depend more on executive net-

works, even in non-shift task conditions, to compensate for reduced efficiency of sensory and 

cognitive processing. An alternative explanation could be that older adults have difficulties 

inhibiting the alternate task even during the non-shift condition. Upon inspecting the study 

contributions to the left aC/PrC cluster in the pooled EF meta-analysis, 92% of the studies 

contributing to the convergence in left aC/PrC result from the contrast old > young. 83% of 

these studies did not report inclusive masking with a task-positive effect, and 68% compared 

against an active control condition rather than rest. Although we did not directly investigate 

deactivations due to a lack of studies meeting our inclusion criteria, one could argue, based 

on these statistics, that the convergence in left aC/PrC might be predominantly driven by 

consistently greater aC/PrC deactivation in older adults during the control (vs. task) condition 

and/or consistently greater deactivation in younger adults during the experimental (vs. con-

trol) task, rather than a higher task-induced aC/PrC activation in older adults. This potential 

age-related deactivation during control (vs. task) and deactivation difficulties (compared to 

younger adults) in task (vs. control) could contribute to inefficiencies in attentional switching 

in older adults. Together with PCC, PrC is considered one of the central and specialized hubs 

of the DMN, intrinsically connected to the DMN and attentional networks, in line with our 

RSFC findings. Its role may involve controlling the dynamic interaction between these net-

works for an efficient distribution of attention (Leech et al., 2011). Furthermore, PrC occu-

pies a special position within the DMN, being coupled with the DMN at rest and with task-

positive networks during task performance (Leech et al., 2011; Utevsky, Smith and Huettel, 

2014). Its widespread FC pattern, encompassing higher association regions, supports its cru-

cial role in integrating internally and externally driven stimulus processing (Cavanna and 

Trimble, 2006). 

 The RSFC of PrC with sensorimotor regions decreased in older adults, while its RSFC 

with regions linked to the DMN and DAN increased with age. Previous studies have found 
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that older adults failed to deactivate the DMN during various cognitive tasks (Lustig et al., 

2003; Grady et al., 2006; Persson et al., 2007; Park et al., 2010). Spreng and Schacter (2011) 

suggested that this difficulty arises from a decrease in large-scale network flexibility in re-

sponse to changing task demands. These differences might also be attributed to variations 

during fixation, as older adults exhibit reduced susceptibility to mind wandering (Giambra, 

1989; Jackson and Balota, 2012). Furthermore, older adults may find it more challenging to 

maintain fixation on the cross, potentially explaining the age-related RSFC increase of left 

PrC with the DAN. Additionally, it has been proposed that functional networks become less 

specific with age (Geerligs, Maurits, et al., 2014; Geerligs, Renken, et al., 2014). Conse-

quently, there could be a dedifferentiation in activation patterns, aligning with the dediffer-

entiation hypothesis of neural aging, and a compensatory recruitment of additional brain re-

gions. This idea is also supported by the cognitive aging theories CRUNCH (Reuter-Lorenz 

and Cappell, 2008) and STAC (Park and Reuter-Lorenz, 2008), which posit that, in older 

adults, maintaining cognitive and behavioral performance involves weakening connections 

that have become fragile or deficient, strengthening existing connections, and developing 

new connections. 

We observed a positive correlation of RSFC between left aC/PrC and bilateral visual 

cortices with the total EF and cognitive flexibility score. Conversely, negative associations 

with cognitive flexibility were observed for RSFC between left aC/PrC and both bilateral 

inferior parietal lobe and right middle temporal gyrus. While enhanced RSFC of PrC with 

visual areas seems supportive of cognitive flexibility, the connectivity of PrC with regions 

linked to the DMN and DAN is associated with poorer performance in tasks taxing cognitive 

flexibility. Taking our previous findings into account, a similar RSFC map was positively 

linked to age, possibly indicating dedifferentiation in activation patterns as proposed in the 

dedifferentiation theory of neural aging (Baltes and Lindenberger, 1997; Park et al., 2001, 

2004; Li and Sikström, 2002; Goh, 2011), or compensatory activations as postulated in 

CRUNCH (Reuter-Lorenz and Cappell, 2008) and STAC (Park and Reuter-Lorenz, 2008). 

However, the limitations of the available data and methods employed do not allow for more 

definitive and theory-specific conclusions. 

In summary, our findings suggest that older adults specifically recruit left aC/PrC, 

potentially to compensate for attentional and focus-shifting difficulties. Conversely, our 
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results suggest an age-related increase in relative aC/PrC deactivation during the control task 

and/or an age-related activation decrease during the experimental task, proposing an alterna-

tive hypothesis for higher task-induced aC/PrC activation in older adults. The intrinsic cou-

pling of left aC/PrC’s with the DMN and DAN supports its proposed role as a specialized 

hub in both internal and external information processing. The age-related decrease in RSFC 

between aC/PrC and sensorimotor networks suggests some decoupling issues detrimental to 

action-related, externally oriented processing. Simultaneously, the increase in RSFC between 

DMN and DAN suggests age-related difficulties in decoupling aC/PrC from the DMN during 

task states and from DAN-related regions during rest. Considering left aC/PrC’s often re-

ported covariation with left IFJ during rest, which was, however, not found in the current 

study, our findings may reflect a dedifferentiation in functional network patterns in older 

adults, potentially undermining the special role this region plays in shifting between inter-

nally and externally directed attention.  

 

6.1.3 Perceptuo-Motor Networks 

Age-related differences in EF performance might occur at a brain-wide level, 

extending beyond exclusive involvement in EF-related or higher-order cognitive brain 

regions. Brain regions associated with in- and output-related processing, particularly those 

linked to visual, auditory, and motor functions, could already be influenced by aging 

(Barsalou, 2003; Ionescu, 2012). Consequently, we meta-analytically defined a perceptuo-

motor network to ensure a comprehensive examination of the neural correlates of age-related 

differences in EF.  

Comparing our meta-analytic findings with data-driven RSFC-based network 

definitions, we observed a large degree of overlap in expected areas associated with basic 

visual, auditory, or motor processing. This alignment supports the idea that brain networks 

are rather consistently organized across both task and resting states (Smith et al., 2009; James, 

Hazaroglu and Bush, 2016; Tavor et al., 2016; Parker Jones et al., 2017). However, in contrast 

to RSFC-derived networks, our task-based results display a higher specificity, including 

additional, domain-unspecific regions (e.g., IFJ, preSMA, aIns) associated with higher-order 

cognitive functions. This suggests that, during tasks, perceptuo-motor networks are recruited 

alongside supramodal, integrative regions linked to cognitive control. One potential 
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explanation is an adaptive functional brain organization that adjusts network topology 

depending on task demands.  

For instance, Di et al. (2013) reported more between-network than within-network 

connections during task performance (vs. resting-state), along with a hub shift (i.e., 

redistribution of activity within key brain regions) during task states. Similar to our results 

and the comparison with RSFC-based network definitions, these authors specifically 

identified the thalamus as having a stronger coactivation profile throughout the brain (i.e., a 

higher number of coactivations with other brain regions) during task than during rest. The 

authors concluded that the thalamus mediates cortico-cortical communication during tasks, 

but that this mediation is weakened at rest. Left aIns and preSMA, consistently implicated in 

our perceptuo-motor networks, may play a similar role in mediating cortico-cortical 

communication during task states. aIns is thought to have a pivotal role in monitoring and 

implementing relevant task sets (Dosenbach et al., 2006, 2007; Sridharan, Levitin and 

Menon, 2008; Cieslik et al., 2015), while preSMA has been linked to cognitive action control 

and motor preparation (Mostofsky and Simmonds, 2008; Sharp et al., 2010; Barber et al., 

2013). These regions are part the MDN (Duncan and Owen, 2000; Duncan, 2010; Fedorenko, 

Duncan and Kanwisher, 2013), consistently recruited during various cognitively demanding 

tasks. Additionally, task context effects, such as the way how instructions are presented, must 

be considered. Collectively, these findings support the view of brain networks as entities that 

are not strictly separate but can be (partly) combined, disconnected, and recombined to 

generate the neural circuitry that subserves specific cognitive functions. 

 

6.2 Prediction of EF Abilities 
6.2.1 Methodological Considerations 

Pearson’s correlation coefficient (r) is a common measure in neuroscience for evalu-

ating predictive analyses, providing information about the strength and direction of linear 

relationships between observed and predicted scores. While useful, it does not directly meas-

ure the accuracy of a model (Li, 2017) or magnitude of errors. In contrast, root mean square 

error (RMSE) and mean absolute error (MAE) quantify prediction accuracy by assessing the 

magnitude of errors. RMSE calculates the average squared differences between observed and 

predicted scores, amplifying large errors and thus being more sensitive towards outliers, 
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while MAE computes the average absolute differences between observed and predicted 

scores. While Pearson's r is influenced by the variance of the outcome variable, meaning its 

value can be affected by the spread of data points around the regression line, both RMSE and 

MAE are independent of outcome variable variance, allowing for meaningful comparisons 

across different datasets. However, it is important to note that RMSE and MAE are scale-

dependent, meaning comparisons across datasets require identical scaling of the outcome 

variable. Another measure for evaluating predictive analyses is prediction R2. It is calculated 

by comparing the MSE of the predicted values to the MSE of the observed values and sub-

tracting it from 1. This yields a value that ranges from negative to positive, where a negative 

value indicates that the predictive model performs worse than simply guessing the mean of 

the observed data, while a positive value indicates the model’s ability to outperform this 

baseline (Scheinost et al., 2019). 

Consequently, Pearson’s r, RMSE, MAE, and prediction R2 offer distinct yet com-

plementary information. Poldrack et al. (2020) discuss best practices for evaluating predic-

tion and advocate for the inclusion of multiple accuracy measures, particularly RMSE, MAE, 

and R2, since high correlation coefficients may mask significant discrepancies between pre-

dicted and observed data, such as those resulting from outliers or highly heterogeneous 

groups. Therefore, we chose to calculate multiple measures to ensure a thorough assessment 

of prediction accuracy.  

 

6.2.2 Prediction Accuracies  

 Primarily, we assessed the accuracy of predicting EF abilities from within-network 

GMV, RSFC, ReHo, and fALFF using RMSE (< .8) and the respective correlation coefficient 

(r; performance was z-scored). Consequently, the interpretation focuses on the correlation 

coefficient of successful/meaningful predictions. Prediction accuracies were generally rela-

tively low across different modalities, networks, and age groups. In both of our studies, the 

explained variance (R2) (Scheinost et al., 2019) did not exceed 6%, suggesting that while 

RSFC, GMV, ReHo, and fALFF are somewhat associated with EF abilities, their capacity to 

predict individual performance is limited. From a translational perspective, when aiming to 

discover biomarkers for individual-level prediction, these results are rather unsatisfactory. 
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It is surprising to note that, while prediction from within-network fALFF resulted in 

the best overall prediction accuracy (i.e., RMSE), the correlation coefficient was quite low 

and only very little variance in EF performance could be eventually explained (R2). GMV 

resulted in greater associations and was able to explain variance in more tasks and conditions. 

This raises the question of how to reconcile the discrepancy between enhanced prediction 

accuracies (i.e., RMSE) and the relatively weak brain–behavior associations (i.e., Pearson’s 

r) observed in fALFF-derived features. It is possible that variability in brain function within 

individuals is highly important, even necessary, for EF, but that interindividual differences 

in this variability, as reflected by fALFF, might not correspond effectively with individual 

EF abilities, at least not within the typical performance range. Further research is needed to 

understand the neural mechanisms and the functional meaning of fALFF. 

In summary, brain–behavior associations were overall rather modest to weak, yet they 

were more pronounced when derived from structural rather than functional brain features. 

This raises doubts about the practicality of using functional brain metrics at rest for predicting 

individual EF abilities. Although the brain–behavior associations in our study are rather low, 

they align with findings from other research in the field (e.g., Ferguson et al. 2017; Greene 

et al. 2018; He et al. 2021). This consistency calls for the development of more informative 

measures or methods and a critical re-evaluation of the predictive and explanatory value of 

the examined models. 

 

6.2.3 Network Specificity 

The analysis of variance (ANOVA) revealed a main effect of network on prediction 

accuracy. Post-hoc pairwise comparisons showed significant differences among all networks. 

Surprisingly, the highest prediction accuracy was achieved using the whole-brain connec-

tome, surpassing random networks, the perceptuo-motor network, and, unexpectedly, the ex-

ecutive function-related network. Power et al.’s (2011) connectome version might excel due 

to its larger feature space, offering 34,716 connections compared to only 1,225 in the execu-

tive function-related network. However, control analyses with randomly selected networks 

of the same size as the executive function-related network still significantly outperformed 

the latter as well as the perceptuo-motor network, indicating that the number of features alone 

does not drive the prediction outcomes. This raises questions about what variance is being 
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explained, especially when whole-brain or random networks outperform those specifically 

linked to EF.  

Moreover, our findings suggest that inter-individual differences in EF might be more 

related to global brain organization rather than specific networks (also see Pläschke et al., 

2020). Brain regions important but not specific to EF, possibly modulating between-network 

communication, might be absent in meta-analytically derived networks but included in 

whole-brain approaches. For instance, our prediction analysis using the data-driven approach 

for feature selection Connectome-based Predictive Modeling (CPM; i.e., RSFC edges that 

were significantly associated with the EF target variables) (Finn et al., 2015; Shen et al., 

2017) revealed that predictive connections were spread across various brain regions and mul-

tiple intrinsic networks. This pattern supports the notion that inter-network connectivity 

could offer more insights into individual EF performance than intra-network connectivity. 

Research has consistently demonstrated that the ability to dynamically reconfigure connec-

tions between frontoparietal and frontotemporal networks (i.e., network flexibility) can pre-

dict individual performance levels in working memory tasks (Braun et al., 2015). 

Furthermore, our replication analyses using a data-driven feature selection (CPM) 

and a non-linear prediction algorithm (random forest) indicate that neither selected, relevant 

features from the whole brain nor the assumption of non-linear relationships meaningfully 

improve prediction accuracy over a linear algorithm and pre-defined networks. Importantly, 

these results speak against the idea that between-network connectivity contained more infor-

mation than within-network connectivity, as prediction accuracy of the data-driven feature-

selection approach across the whole-brain did not outperform predictions limited to pre-de-

fined functional networks.  

The lack of visible interindividual differences in EF performance when predicting 

from meta-analytically defined brain networks might stem from the fact that meta-analyses 

are based on consistent activation across subjects, potentially overlooking brain regions more 

strongly associated with individual differences. This limitation could similarly affect RSFC 

derived from within these networks. However, RSFC, whether derived from the whole-brain 

or random network approaches, also fails to accurately predict performance, suggesting a 

weak overall association with individual performance levels. 
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Moreover, high variability in brain anatomy and functional organization among indi-

viduals could cause individual differences to not be visible when predicting from pre-defined 

brain networks derived from group-average maps (Wang and Liu, 2014). Thus, predictions 

based on individualized brain networks, recognizing differences in region size, location, and 

connectivity, could be more effective. For example, a study demonstrated that RSFC among 

individualized regions better predicted fluid intelligence than connectivity from group-level 

brain atlases (Li et al., 2019). This points to the potential of tailored approaches in under-

standing and predicting EF performance. 

In conclusion, our findings show that a well-defined executive function-related net-

work does not outperform a perceptuo-motor network, random networks, or the full connec-

tome in predicting EF abilities. Surprisingly, the latter did – irrespective of task demand level, 

age, or modality. This indicates that the whole-brain connectome and even random networks, 

which are structurally akin to the executive function-related network, proved to be more in-

formative about individual EF abilities. This suggests that broader network approaches, as 

well as individualized brain networks, could potentially yield more accurate EF predictions. 

Importantly, replicating these findings across modalities in Study 4 highlights the critical 

need for using brain measures that go beyond mere association with EF, but rather possess 

the capability to meaningfully explain variance in individual EF abilities. 

 

6.2.4 Modality Specificity and Age Effects 

Our ANOVA results revealed significant differences in prediction accuracy across 

modalities, with notable distinctions between age groups. For younger adults, the highest 

prediction accuracy was found with fALFF, followed by GMV, RSFC, and ReHo. Con-

versely, older adults showed the best results with GMV, then RSFC, fALFF, and ReHo. This 

pattern suggests an age-dependent modality specificity, with GMV and fALFF being partic-

ularly informative for older and younger adults, respectively.  

 RSFC’s better prediction accuracies can be explained by the modality × network in-

teraction, with the whole-brain approach showing the best results. However, Study 3’s find-

ing that random networks significantly exceeded the predictiveness of the EF-specific and 

perceptuo-motor networks, counters the idea that a larger feature space inherently leads to 

better predictions. 
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 Task demand levels also played a role, with all metrics better predicting high-demand 

conditions, especially for features extracted from GMV and fALFF. Age-related effects fur-

ther qualified these results, with older adults showing better accuracy in low-demand condi-

tions and younger adults in high-demand ones. This suggests that the cognitive demands of 

a task interact with age-related neural changes, impacting predictive accuracy. 

 GMV’s relevance in older adults aligns with previous research linking regional GMV 

to global atrophy, particularly in EF-associated fronto-parietal areas (Taki et al., 2004; Chee 

et al., 2006; Hu et al., 2014). In contrast, in younger adults, fALFF achieved the highest 

prediction accuracy for EF performance. fALFF, indicating spontaneous low-frequency fluc-

tuations in the BOLD signal, has been suggested to reflect the brain’s intrinsic connectivity 

(Biswal et al., 1995; Fox and Raichle, 2007) and is considered a measure of functional vari-

ability within subjects. This variability is thought to represent cognitive adaptability, partic-

ularly in adjusting mental states to meet task demands (Bolt, Anderson and Uddin, 2018; 

Uddin, 2020). In young adults, fALFF patterns are more closely associated with behavior 

compared to older adults, where fALFF seems less informative for individual EF perfor-

mance. 

 Research indicates an age-related decrease in fALFF and GMV in key prefrontal re-

gions such as the pre-SMA, SMA, and DLPFC, which are vital for EF (Hu et al., 2014). 

These findings suggest that prefrontal brain areas undergo simultaneous age-related struc-

tural and functional changes. Younger (and faster) adults typically exhibit higher variability 

in brain activity across different tasks and greater regional dedifferentiation in signal varia-

bility compared to older (slower) adults (Garrett et al., 2011). This greater variability might 

enable younger brains to more flexibly and efficiently configure optimal neural networks for 

processing inputs and achieving behavioral objectives, as variability is believed to fuel the 

exploration of potential functional architectures in brain networks (Garrett et al., 2011, 

McIntosh et al., 2010; Deco et al., 2011). 

  The modest association between brain activity and behavior observed with within-

network RSFC may stem from its unregulated nature. Recent studies suggest that predicting 

behavior based on brain connectivity during tasks (or movie watching) may be more effective 

than during rest (Greene et al., 2018; Sripada et al., 2020; Finn and Bandettini, 2021; 

Kraljević et al., 2023). Tasks influence the brain’s functional state, potentially offering 



  30 

valuable insights into individual differences in functional brain organization and their behav-

ioral implications (Greene et al., 2018). In contrast, resting-state lacks specific influences, 

leading to high interindividual variability (Buckner, Krienen and Yeo, 2013; Tailby et al., 

2015) and providing no certainty about the recorded mental state or control over participants’ 

mental processes (Finn and Bandettini, 2021). Measurement conditions involving movie 

watching, on the other hand, have been associated with the selection of specific pathways, 

including higher-level brain regions integrating sensory information and increased inter-

hemispheric exchange through global reorganization of functional communities (Gilson et 

al., 2018). In this context, a recent paper titled “Is it time to put rest to rest?” questioned 

whether cognitive neuroscience using resting-state fMRI data has plateaued and suggested 

transitioning to integrated designs that combine the advantages of both rest (i.e., self-gener-

ated activity) and task (i.e., control and interpretability) (Finn, 2021).  

Examples for integrated designs include task-signature echoes, where task paradigms 

are used to learn signatures of brain activity that correspond to particular task conditions, 

followed by searching for these signatures (an echo) in resting-state data; annotated rest, 

where introspection data is acquired about the subjective mental experience during or after 

the scan; state-informed approaches, where the brain state is monitored, for example through 

real-time neuroimaging, and tasks are given at certain intervals to causally test the influence 

of ongoing activity; or naturalistic designs such as movie watching. It has been shown that 

between-network communication increases during movie watching compared to within-net-

work communication (i.e., network integration), while within-network communication in-

creases during rest compared to between-network communication (i.e., network segregation) 

(Betzel et al., 2020). Higher network integration has been associated with the transfer of inter-

modular information, while higher network segregation has been linked to processing local, 

specialized information (Shine et al., 2016; Fukushima et al., 2018). In the context of EF, 

higher network integration might explain why the whole-brain approach and even random 

networks outperformed the specific executive function-related network in the current study, 

as these approaches may include important hubs of other relevant brain networks. 

 High expression of ReHo, a measure of local brain connectivity, is thought to be in-

dicative of global connectivity (i.e., RSFC; Jiang and Zuo, 2016). Therefore, it would not be 

surprising if both local and global connectivity measures are affected by variations caused 
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by mental states such as task-focused thinking or mind wandering during rest periods (Greg-

ory et al., 2016). This susceptibility to state effects could explain their lower predictive ac-

curacies in resting-state studies. 

 fALFF, in contrast, primarily captures the local variability reflecting spontaneous, 

intrinsic brain connectivity and might therefore be less susceptible to these transient mental 

states during rest making it a more stable predictor of brain function, particularly in contexts 

lacking external tasks. 

 In the context of age-related differences, GMV emerged as a key predictor for older 

adults, and it also showed decent prediction accuracies for younger adults. The structural 

nature of GMV, as opposed to the more dynamic functional measures like RSFC and ReHo, 

lends it greater reliability for capturing consistent, trait-level brain activity. However, it is 

crucial to note that RSFC and ReHo should not be prematurely labeled as weak indicators of 

individual performance differences. Their dynamic nature inherently poses challenges in re-

liably measuring them as trait markers, which may impact their qualification as stable pre-

dictors. Their lower prediction accuracies should be understood more as a reflection of the 

complex interplay between state (transient conditions) and trait (enduring characteristics) in-

teractions, rather than a straightforward measure of cognitive abilities. 

 Our results align with previous research (Pläschke et al., 2020) indicating tighter 

brain–behavior associations in older adults – across all structural and functional modalities – 

possibly due to age-related global neural changes such as brain atrophy or white-matter de-

generation, influencing network integrity (Cabeza, Nyberg and Park, 2016) and segregation 

(Chan et al., 2017; Varangis et al., 2019) that is linked to EF performance. These associations, 

however, vary depending on the cognitive demand of tasks. Prediction for younger adults 

was better for high-demand conditions, while for older adults it was more accurate for low-

demand conditions. These observed age-related differences might be explained by how aging 

affects neural networks. In low-demand conditions, older adults can often compensate for 

age-related decline using alternative neural mechanisms such as the additional recruitment 

of domain-general resources (Carp, Gmeindl and Reuter-Lorenz, 2010). This aligns with 

CRUNCH (Reuter-Lorenz and Cappell, 2008), which postulates that the aging brain adapts 

by engaging additional neural resources or networks to support declining cognitive functions. 

These compensatory mechanisms, however, may have limitations, particularly in high-
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demand conditions that challenge EF more intensely. Beyond a certain level of task com-

plexity, the ability of older adults to increase neural activation or recruit extra resources may 

not suffice, leading to diminished cognitive performance despite compensatory efforts.  

Alterations in BOLD responsivity during tasks, which reflect changes in neural activity, can 

influence the brain's ability to respond effectively to higher cognitive demands (Nagel et al., 

2011). These alterations may manifest as shifts in activation patterns or efficiency in neural 

processing, impacting cognitive performance, particularly in tasks requiring more complex 

EF. Such findings underscore the importance of adaptive behavioral testing methods. To ef-

fectively capture the range of cognitive abilities and account for the extent of compensatory 

strategies employed by different age groups, tests need to be sensitive to variations in task 

difficulty and individuals' adaptive responses. Adaptive testing approaches should primarily 

involve adjusting the difficulty level to match individual ability levels, especially considering 

dimensions beyond the target construct that may affect task performance. For example, per-

ceptual demands may require adjustments to account for impaired perception and its impact 

on cognitive resource recruitment. This nuanced approach to adaptive testing is crucial for a 

comprehensive understanding of cognitive aging and for developing interventions tailored to 

the needs of older adults. Furthermore, it should be noted that in all behavioral tasks except 

the n-back, older adults exhibited greater variability in performance. This increased variabil-

ity could potentially contribute to enhanced prediction accuracies. 

 Interestingly, our analyses indicate that the TMT demonstrates better prediction ac-

curacies as well as brain–behavior associations across different demand levels, networks, and 

age groups. This suggests that the TMT is particularly sensitive in detecting variations in EF 

performance. The likely reason for this heightened sensitivity is that the TMT assesses mul-

tiple facets and stages of cognitive processing, making it responsive to a wide range of cog-

nitive changes. This aspect becomes particularly relevant when examining low-demand and 

high-demand conditions independently, rather than as a subtractive measure (i.e., high-de-

mand - low-demand). By separately analyzing these conditions, the TMT can provide nu-

anced insights into how individuals manage and adapt to varying levels of cognitive chal-

lenge, thereby offering a more detailed understanding of their EF performance. 

In summary, our results highlight the distinct advantages of GMV and fALFF in pre-

dicting EF, with these effects being notably age-dependent. GMV's predictive strength is 
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more evident in older adults, likely due to broader neural changes such as atrophy, while 

fALFF appears to be a key predictor in younger adults, reflecting their brain's adaptive capa-

bilities. Moreover, our findings emphasize the importance of selecting appropriate tests and 

utilizing adaptive testing methods to uncover meaningful associations between brain function 

and behavior. 

 

6.3 Conclusion 
 The meta-analytic approach highlighted left IFJ’s and left aC/PrC’s important roles 

in age-related differences in EF. Although RSFC analyses point towards a domain-general 

role of left IFJ in EF, the pattern of contributions to the meta-analytic results also suggests 

process-specific modulations by age. In particular, older adults appear to rely more on left 

IFJ in the context of cognitive flexibility and inhibition, whereas younger adults recruit it 

more strongly in the context of working memory. Our findings further suggest that older 

adults specifically recruit left aC/PrC during EF tasks to compensate for attentional difficul-

ties, while also experiencing age-related changes in deactivation patterns during cognitive 

tasks. Furthermore, alterations in RSFC involving aC/PrC, DMN, and DAN indicate poten-

tial challenges in decoupling between internal and external attentional processes, potentially 

leading to a dedifferentiation of functional patterns in older adults. 

 Our prediction studies revealed overall moderate to low prediction accuracies and 

brain–behavior associations with the explained variance in target variables not exceeding 6%, 

which is in line with findings from other research in the field. These outcomes raise important 

questions about the utility of the brain metrics examined for predicting individual differences 

in EF abilities. While GMV and fALFF showed superiority over ReHo and RSFC in predict-

ing individual EF performance, the results overall challenge the potential of these single met-

rics to serve as useful biomarkers for individual EF levels. It appears that individual differ-

ences in EF abilities may be more significantly influenced by global brain characteristics, 

such as overall atrophy or neural variability, which are better captured by structural and func-

tional measures, respectively.  

 Interestingly, we observed an age-related modality specificity, suggesting that struc-

tural measures like GMV, indicative of overall atrophy, provide more meaningful insights 

for older adults, whereas functional measures like fALFF, reflecting brain variability, are 
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more informative for younger adults. This underscores the need for considering age-specific 

neural changes in EF prediction models. Additionally, the lack of network specificity and the 

overall moderate prediction accuracies emphasize the importance of exploring more global 

properties of the brain, potentially by combining different structural and functional metrics, 

to enhance the sensitivity of predictors for both young and older adults. 

 Our findings also highlight the necessity of adaptive behavioral testing, particularly 

given the better prediction accuracies in low-demand task conditions for older adults and 

high-demand conditions for younger adults. Future research could benefit from replication 

with larger and more diverse samples, various cognitive states such as task performance or 

movie watching, and continuous age distributions, to enable deeper insights into the brain's 

capacity to predict individual mental abilities. 

Moreover, given the increasing reliance on machine learning in behavioral neurosci-

ence, there is a pressing need for developing robust methods to compare outcomes of differ-

ent models, taking into account cross-validation schemes. This would enable a more accurate 

interpretation and application of machine learning outputs in understanding and predicting 

cognitive abilities across the lifespan. 
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