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upper bounds are found.
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1. Introduction

Let D be an irreducible representation of a double cover S̃n of a symmetric group Sn. 
We say that D is a spin representation if D cannot be viewed also as a representation 
of Sn.

✩ During part of the work the author was supported by the DFG grant MO 3377/1-2. While working on 
the revised version the author was working at the Department of Mathematics of the University of York, 
supported by the Royal Society grant URF\R\221047.
* Correspondence to: Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, 

Germany.
E-mail address: lucia.morotti@uni-duesseldorf.de.
https://doi.org/10.1016/j.jalgebra.2024.04.031
0021-8693/© 2024 The Author. Published by Elsevier Inc. This is an open access article under the CC BY 
license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jalgebra.2024.04.031
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2024.04.031&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:lucia.morotti@uni-duesseldorf.de
https://doi.org/10.1016/j.jalgebra.2024.04.031
http://creativecommons.org/licenses/by/4.0/


110 L. Morotti / Journal of Algebra 657 (2024) 109–140
It is well known that in characteristic 0 (pairs of) irreducible spin representations of 
the symmetric groups are labeled by strict partitions, that is partitions in distinct parts, 
see [24,26]. Not much is known about decomposition matrices of spin representations 
of symmetric groups. For example in general not even the shape of the decomposition 
matrix is known.

When reducing characteristic 0 spin representations modulo an odd prime, the ob-
tained representations are still spin representations. In this case, which will not be 
considered in this paper, results on decomposition numbers consider maximal composi-
tion factors (that is, under a specified ordering of the columns, the last non-zero entry 
in each row of the decomposition matrix) [5,6], the shape of the decomposition matrix 
for small primes [1,3] and decomposition numbers in certain specific blocks or classes of 
modules or for small S̃n [9,18,19,23,27,28].

On the other hand reductions modulo 2 of spin representations may also be viewed 
as representations of symmetric groups. In this case maximal composition factors and 
their multiplicities have been found in [2,4]. This result can be used to rule out some 
characteristic 2 modules as been composition factors of a given spin representation. An 
improvement in this direction has been obtained in [20, Lemma 4.2]. Apart for the small 
n cases [10,16], the only other classes of modules for which decomposition numbers are 
known in this case are basic and second basic spin representations [27] or RoCK blocks 
[7, Section 5] and [8, Section 5].

One particular class of modules of symmetric groups for which decomposition num-
bers are known are Specht modules indexed by partitions with at most 2 parts. In this 
case decomposition numbers have been found by James in [12,13] (see also [14, Theorem 
24.15]). The corresponding question, studying composition factors of reductions modulo 
p of spin representations labeled by partitions with at most to parts, has been stud-
ied in [19] in odd characteristic. There irreducible characteristic p spin representations 
which are composition factors of some (though not one particular) such characteristic 0 
spin representation were explicitly described. Further it was shown that the correspond-
ing part of the decomposition matrix is block triangular (with blocks corresponding to 
representations indexed by the same partition).

In this paper we will consider the above problem in characteristic 2, describing modules 
which are composition factors of the reduction modulo 2 of some spin representation 
with at most 2 parts and finding formulas for computing most of the corresponding 
decomposition numbers.

For any 2-regular partition λ � n let Dλ be the corresponding characteristic 2 ir-
reducible representation of the symmetric group Sn and S(λ, ε) be the corresponding 
characteristic 0 irreducible spin representation(s) of the double cover S̃n, with ε = 0 or 
± depending on λ.

The first result we obtain is the following (see Section 2 for the definition of the double 
of a partition):



L. Morotti / Journal of Algebra 657 (2024) 109–140 111
Theorem 1.1. If 0 ≤ a ≤ �(n − 1)/2� and μ ∈ P2(n) is such that Dμ is a composition 
factor of S((n −a, a), ε) then μ has at most 2 parts or it is the double of a partition with 
at most 2 parts.

The above result leads us to study decomposition numbers of the forms

[S((n− a, a), ε) : D(n−b,b)] and [S((n− a, a), ε) : Ddbl(n−b,b)].

In the first case, provided b < (n − 1)/2, we will give exact formulas for decomposition 
numbers in Theorem 1.4. This result shows that any module of the form D(n−b,b) is 
indeed a composition factor of the reduction modulo 2 of some module of the form 
S((n − a, a), ε). Further Theorem 1.4 shows that at most 2 rows of the corresponding 
part of the decomposition matrix are non-zero. In the second case it is known by [2] that 
Ddbl(n−b,b) is a composition factor of S((n − b, b), ε) and that the corresponding part 
of the decomposition matrix is triangular. We will compute most of the corresponding 
decomposition numbers in Theorems 1.5 and 1.6 and find some upper bounds in many 
of the other cases. In particular we find formulas or upper bounds for all but one column 
of the corresponding part of the decomposition matrix.

Before being able to state Theorem 1.4, 1.5 and 1.6 we need some definitions.

Definition 1.2. Given m ≥ 0, if m = 2a1 + . . . + 2ak with a1 > . . . > ak ≥ 0, let 
dm := a1 + k − 3.

As in [14, Definition 24.12], for integers � and m with � ≥ 0 we say that � contains 
m to base 2 if there exists k with 0 ≤ m < 2k ≤ � and further, for � =

∑
i ai2i and 

m =
∑

i bi2i the 2-adic decompositions of � and m, bi ∈ {0, ai} for each i.

Definition 1.3. For �, m with � ≥ 0 let g�,m := 1 if � contains m to base 2 or g�,m := 0
else.

The next theorem gives exact formulas for the decomposition numbers of the form 
[S((n − a, a), ε) : D(n−b,b)] with b < (n − 1)/2.

Theorem 1.4. Let p = 2, 0 ≤ a ≤ �(n − 1)/2� and 0 ≤ b ≤ �(n − 3)/2�. Then

[S((n− a, a), ε) : D(n−b,b)] = 2dn−2b+1

if one of the following holds:

• n ≡ 0 (mod 2) and n − 2a = 2,
• n ≡ 0 (mod 8), 2 | b and n − 2a = 4,
• n ≡ 4 (mod 8), 2 � b and n − 2a = 4,
• n ≡ 1 or 3 (mod 8), 2 | b and n − 2a = 1,
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• n ≡ 1 or 3 (mod 8), 2 � b and n − 2a = 3,
• n ≡ 5 or 7 (mod 8), 2 � b and n − 2a = 1,
• n ≡ 5 or 7 (mod 8), 2 | b and n − 2a = 3.

In all other cases [S((n − a, a), ε) : D(n−b,b)] = 0.

In the next theorem we will describe most decomposition numbers of the form 
[S((n− a, a), ε) : Ddbl(n−b,b)].

Theorem 1.5. Let p = 2, 0 ≤ a ≤ �(n −1)/2� and 1 ≤ b < n/2 with dbl(n −b, b) ∈ P2(n). 
Then

• [S((n − a, a), ε) : Ddbl(n−b,b)] = gn−2b,a−b if one of the following holds:
– n ≡ 1 (mod 4) and b is even,
– n ≡ 2 (mod 4) and b is odd,
– n ≡ 3 (mod 4) and b is odd,

• [S((n − a, a), ε) : Ddbl(n−b,b)] = 2gn−2b,a−b if n ≡ 2 (mod 4) and b is even,
• [S((n − a, a), ε) : Ddbl(n−b,b)] = gn−2b,a−b − gn−2b−2,a−b−1 if one of the following 

holds:
– n ≡ 1 (mod 4) and b is odd,
– n ≡ 3 (mod 4) and b is even,

• [S((n − a, a), ε) : Ddbl(n−b,b)] = gn−2b,a−b + 2gn−2b−2,a−b−1 if n ≡ 0 (mod 4) and b
is odd.

The cases b = 0 or n ≡ 0 (mod 4) and b even are not covered by Theorem 1.5. In the 
second case, for b ≥ 2, though we are not able to compute all decomposition numbers 
exactly, we can still find upper bounds and in some cases exact decomposition numbers. 
In the next theorem ν2 is the 2-adic valuation.

Theorem 1.6. Let p = 2, n ≡ 0 (mod 4), 2 ≤ b ≤ (n − 6)/2 even and 0 ≤ a ≤ (n − 2)/2. 
Then

[S((n− a, a), ε) : Ddbl(n−b,b)] ≤ 2gn−2b−3,a−b + 2gn−2b−3,a−b−3

with equality holding if

gn−2b+1,c−b + gn−2b−1,c−b−1 − gn−2b−3,c−b−2

=
{

δc �=n/2gn−2b−4,c−b + (1 + δc �=n/2)gn−2b−4,c−b−4, c is even,
2gn−2b−4,c−b−1 + gn−2b−4,c−b−5, c is odd,

holds for some c ∈ {a, a + 1} with c − b ≡ 0 or 1 (mod 4).
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In particular if a − b ≡ 2 (mod 4) then [S((n − a, a), ε) : Ddbl(n−b,b)] = 0. If 
a − b 	≡ 2 (mod 4) then equality holds if ν2(�(a − b + 1)/4�) ≥ ν2((n − 2b)/4) or 
gn−2b−4,4�(a−b+1)/4�−4 = 0.

Note that if b ≡ n/2 − 2 (mod 4), then ν2(�(a − b + 1)/4�) ≥ ν2((n − 2b)/4) always 
holds. In particular about half of the columns covered in the above theorem can be 
completely computed through it.

Further, by [21, Theorem 1.4],

[S((n− a, a), ε) : Ddbl(n−b,b)] = [S((n− a + 2, a + 2), ε) : Ddbl(n−b+2,b+2)]

whenever a, b > 0 and all of the above modules are defined (in many cases this follows 
also from Theorems 1.5 and 1.6). In particular decomposition numbers [S((n − a, a), ε) :
Ddbl(n−b,b)] with n ≡ 0 (mod 4) and b ≥ 2 even (that is those covered in Theorem 1.6) 
only depend on n − 2b and a − b.

The assumption a > 0 in the previous paragraph could be dropped (using slightly more 
complicated formulas), but not the assumption b > 0. For example, from decomposition 
matrices in GAP it can be recovered that [S((7, 1), 0) : D(5,3)] = 1 but [S((9, 3), 0) :
D(6,4,2)] = 2 and that [S((5, 4), ±) : D(5,4)] = 1 but [S((7, 6), ±) : D(6,5,2)] = 0.

In Section 2 we will recall some basic definitions and results and prove Theorem 1.1. 
In Section 3 we will prove some results on projective modules. Theorems 1.4, 1.5 and 
1.6 will then be proved in Sections 4, 5 and 6 respectively. Some (partial) decomposition 
matrices, computed using the above results, are given in Appendix A.

Looking at Theorems 1.1 and 1.4 one may ask whether all composition factors of 
S(λ, ε) are of the form Ddbl(μ) for some partition μ for all strict partitions λ with 
dbl(λ) 2-regular. This is in general false. For example, looking at known decomposition 
matrices and comparing characters, it can be checked that

[S((10, 5, 1),±)] = [D(7,6,3)] + [D(6,4,3,2,1)]

and

[S((11, 5, 1), 0)] = 8[D(17)] + 2[D(9,8)] + 4[D(9,7,1)] + 3[D(9,5,3)] + 2[D(8,6,3)]

+ 2[D(7,6,4)] + [D(7,6,3,1)] + 2[D(7,5,3,2)] + [D(6,5,3,2,1)].

2. Notation and basic results

Let n ≥ 0 and S̃n be a double cover of Sn. Then there exists z central in S̃n of 
order 2 with Sn

∼= S̃n/〈z〉. Representations of S̃n on which z acts trivially can also 
be viewed as Sn-representations, while those on which z acts as −1 are called spin 
representations. Note that reductions modulo 2 of spin representations can always be 
viewed as representations of the corresponding symmetric group Sn. In particular all 
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their composition factors are irreducible characteristic 2 representations of Sn (viewed 
as S̃n-representations).

Let P(n) be the set of partitions of n. Further let P2(n) be the set of 2-regular 
partitions of n, that is partitions in distinct parts or strict partitions. For any partition 
λ, let h(λ) be the number of parts of λ and h2(λ) be the number of even parts of λ.

Identifying partitions and their Young diagrams, if λ ∈ P(n) and A = (i, j) is a 
node, we say that A is a removable (resp. addable) node of λ if A ∈ λ (resp. A 	∈ λ) and 
λ \ {A} (resp. λ ∪{A}) is the Young diagram of a partition. If λ ∈ P2(n) we say that A
is a bar-removable (resp. bar-addable) node of λ if A is removable (resp. addable) and 
λ \ {A} (resp. λ ∪ {A}) is a strict partition.

It is well known, see for example [14,15,24,26], that P(n) labels irreducible represen-
tations of Sn in characteristic 0, while P2(n) labels both the irreducible representations 
of Sn in characteristic 2 and (pairs) of irreducible spin representations. For λ ∈ P(n) we 
denote by Sλ the irreducible characteristic 0 representation of Sn labeled by λ. As in the 
introduction, for λ ∈ P2(n) define Dλ to be the irreducible characteristic 2 representa-
tion and S(λ, ε) the irreducible spin representation(s) indexed by λ. Here ε = 0 if n −h(λ)
is even and ε ∈ {±} if n − h(λ) is odd. In the following we will also work with modules 
S(λ): for λ ∈ P2(n) we define S(λ) to be either S(λ, 0) or S(λ, +) ⊕ S(λ, −) depending 
on the parity of n − h(λ). Further, for any λ ∈ P2(n), let Pλ be the indecomposable 
projective module of S̃n with socle Dλ.

For a partition λ = (λ1, . . . , λh) with h = h(λ), let

dbl(λ) = (�(λ1 + 1)/2�, �(λ1 − 1)/2�), . . . , �(λh + 1)/2�, �(λh − 1)/2�)),
dbl(λ) = (�λ1/2�, �λ1/2�), . . . , �λh/2�, �λh/2�)).

Further let λR be the regularisation of λ as defined in [15, 6.3.48] for p = 2.
It is easy to check that dbl(λ) is always a partition for any λ ∈ P2(n), so that in this 

case (dbl(λ))R is well defined.
Further if dbl(λ) ∈ P2(n) then dbl(λ) = (dbl(λ))R. This can be checked by showing 

that dbl(a) = (dbl(a))R for any a ≥ 1. So

dbl(λ) = ((dbl(λ1))R, . . . , (dbl(λh))R)

and dbl(λ) have the same number of nodes on each ladder. Since dbl(λ) is a 2-regular 
partition it follows that dbl(λ) = (dbl(λ))R.

The following lemma, which is an analog of James’ regularisation result, has been 
proved in [2, Theorem 1.2] and [4, Theorem 5.1].

Lemma 2.1. Let λ, μ ∈ P2(n). If [S(λ, ε) : Dμ] > 0 then μ � (dbl(λ))R. Further

[S(λ, ε) : D(dbl(λ))R ] = 2�h2(λ)/2�.

This result was improved in [20, Lemma 4.2] to obtain the following:
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Lemma 2.2. Let λ, μ ∈ P2(n). If [S(λ, ε) : Dμ] > 0 and μ is not the double of any 
partition then h(μ) ≤ 2h(λ) − 2.

Theorem 1.1 then easily follows:

Proof of Theorem 1.1. If [S((n −a, a), ε) : Dμ] > 0 and μ is not the double of a partition 
then by Lemma 2.2 h(μ) ≤ 2. If instead μ = dbl(ν) then μ � (dbl((n − a, a)))R by 
Lemma 2.1, so that

2h(ν) − 1 ≤ h(μ) ≤ h(dbl(n− a, a)) ≤ 4

and then h(ν) ≤ 2. �
Given any node (i, j), let res(i, j) := j − i (mod 2) be the residue of (i, j). Further 

define the bar-residue of (i, j) to be res(i, j) = 0 if j ≡ 0 or 3 (mod 4) or res(i, j) = 1 if 
j ≡ 1 or 2 (mod 4). When considering res(i, j) we will in the following identify Z/2Z with 
{0, 1} in the obvious way. For λ any partition let the content of λ be cont(λ) := (c0, c1)
with c0 (resp. c1) the number of nodes of residue 0 (resp. 1) of λ. Similarly let the bar-
content of λ be cont(λ) := (d0, d1) with d0 (resp. d1) the number of nodes of bar-residue 
0 (resp. 1) of λ.

By [15, 2.7.41, 6.1.21 and 6.3.50] we have that Sλ and Dμ are in the same block if 
and only if cont(λ) = cont(μ). Further by [4, 3.9 and 4.1] S(λ, ε) and Sμ are in the same 
block if and only if cont(λ) = cont(μ).

For a given block B we may thus define the content of B as the content cont(λ) of 
any module Sλ or Dλ contained in B or equivalently as the bar-content cont(λ) of any 
module S(λ, ε) contained in B.

If B is a block of S̃n with content (c0, c1) and V is any module contained in B, let e0V

and e1V (resp. f0V and f1V ) be the block components of ResS̃n

S̃n−1
V (resp. IndS̃n+1

S̃n
V ) 

with contents (c0 − 1, c1) and (c0, c1 − 1) (resp. (c0 + 1, c1) and (c0, c1 + 1)). These 
blocks components should be thought as 0 if no block with the corresponding content 
exists. The definitions of e0V , e1V , f0V and f1V can then be extended to any module 

by linearity. Then ResS̃n

S̃n−1
V ∼= e0V ⊕ e1V and IndS̃n+1

S̃n
V ∼= f0 ⊕ f1V by [17, Theorems 

11.2.7, 11.2.8].
By [14, Theorem 9.2] and block decomposition we have that:

Lemma 2.3. Let λ be a partition and i ∈ {0, 1}. Then, in the Grothendieck group,

[eiSλ] =
∑
A

[Sλ\{A}],

where the sum is over all removable nodes A of λ of residue i.
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Lemma 2.4. Let λ be a partition and i ∈ {0, 1}. Then, in the Grothendieck group,

[fiSλ] =
∑
A

[Sλ∪{A}],

where the sum is over all addable nodes A of λ of residue i.

Similarly by [22, Theorem 2] or [26, Theorem 8.1], Frobenius reciprocity and block 
decomposition:

Lemma 2.5. Let λ ∈ P2(n) and i ∈ {0, 1}. Then, in the Grothendieck group,

[eiS(λ)] =
∑
A

2xA [S(λ \ {A})],

where the sum is over all bar-removable nodes A of λ of residue i and xA = 1 if A 	=
(h(λ), 1) and n − h(λ) is odd, while xA = 0 in all other cases.

Lemma 2.6. Let λ ∈ P2(n) and i ∈ {0, 1}. Then, in the Grothendieck group,

[fiS(λ)] =
∑
A

2xA [S(λ ∪ {A})],

where the sum is over all bar-addable nodes A of λ of residue i and xA = 1 if A 	=
(h(λ) + 1, 1) and n − h(λ) is odd, while xA = 0 in all other cases.

These 4 lemmas will be used without further reference in the following when computing 
block components of induced or restricted projective modules.

Partial branching results for projective modules will be given at the end of the next 
section. In these branching rules normal and conormal nodes appear. As in [17, Section 
11.1], for a given residue i and a partition λ, let the i-signature consist of a − (resp. 
+) for each removable (resp. addable) i-node of λ, read from left to right. The reduced 
i-signature is the obtained by recursively removing any +− adjacent pair from the i-
signature. Nodes corresponding to − (resp. +) in the reduced i-signature are called 
normal (resp. conormal). We let εi(λ) (resp. ϕi(λ)) be the number of i-normal (resp. 
i-conormal) nodes of λ. If εi(λ) > 0 (resp. ϕi(λ) > 0) we further define ẽiλ (resp. f̃iλ) 
to be the partition obtained by removing the leftmost i-normal node of λ (resp. adding 
the rightmost i-conormal node of λ).

If λ ∈ P2(n) indexes 2 spin representations, then by [24, p. 235] (see also [26, Theorem 
7.1]) the 2-Brauer characters of S(λ, +) and S(λ, −) are equal. Thus [Pμ : S(λ, +)] =
[Pμ : S(λ, −)] for any μ ∈ P2(n). Thus, in the Grothendieck group, any projective 
module P is a sum (with multiplicities) of some modules Sγ with γ ∈ P(n) and some 
modules S(λ) with λ ∈ P2(n), so that the multiplicity [P : S(λ)] is well defined. Sim-
ilarly, for any G = g1 . . . gh with gi ∈ {e0, e1, f0, f1}, the multiplicity [GS(ν) : S(λ)] is 
well defined in view of Lemmas 2.5 and 2.6.
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3. Projective modules

Throughout the following let Mn := �n/2� and mn := �(n − 1)/2�. Further let mn :=
�(n − 4)/2� if n 	≡ 0 (mod 4) or mn := (n − 6)/2 if n ≡ 0 (mod 4). Thus Mn is maximal 
such that (n −Mn, Mn) is a partition and mn and mn are maximal such that (n −mn, mn)
and dbl(n −mn, mn) are 2-regular partitions.

We will now state some basic results which will allow us to compute decomposition 
numbers.

Lemma 3.1. [14, Theorem 24.15] Let 0 ≤ a ≤ Mn. Any composition factor of S(n−a,a) is 
of the form D(n−b,b) for some 0 ≤ b ≤ mn. Further

[S(n−a,a) : D(n−b,b)] = gn−2b+1,a−b.

Lemma 3.2. Let P ∼= ⊕λ(Pλ)⊕cλ be a projective module and 0 ≤ a ≤ Mn. Then

[P : S(n−a,a)] =
mn∑
b=0

c(n−b,b)[P (n−b,b) : S(n−a,a)]

=
h∑

b=0

c(n−b,b)[P (n−b,b) : S(n−a,a)]

for any min{a, mn} ≤ h ≤ mn.

Proof. This follows from Lemma 3.1. �
Lemma 3.3. Let P ∼= ⊕λ(Pλ)⊕cλ be a projective module and 0 ≤ a ≤ mn. Then

[P : S((n− a, a), ε)] =
mn−1∑
b=0

c(n−b,b)[P (n−b,b) : S((n− a, a), ε)]

+
mn∑
c=0

cdbl(n−c,c)[Pdbl(n−c,c) : S((n− a, a), ε)].

Proof. In view of Lemmas 2.1 and 2.2, composition factors of S((n −a, a), ε) are of one of 
the forms D(n−b,b) or Ddbl(n−c,c). The lemma follows since (n −mn, mn) = dbl(n). �

Define Xn to be the set of 2-regular partitions which are not of the forms (n − c, c) or 
dbl(n −c, c) for some c. In view of Lemmas 3.2 and 3.3 we define the following subgroups 
of the Grothendieck group which will be used throughout the paper:
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Definition 3.4. For n ≥ 0 define:

• T sym
n := 〈[Sλ] : λ ∈ P(n), h(λ) ≥ 3〉,

• T spin
n := 〈[S(λ)] : λ ∈ P2(n), h(λ) ≥ 3〉,

• Tn := 〈T sym
n , T spin

n 〉,
• Rn := 〈[Pλ] : λ ∈ Xn〉.

This set, which is used in the next lemma, will also appear later in the paper.

Lemma 3.5. Let P be a projective module with

[P ] ≡
Mn∑
a=y

�a[S(n−a,a)] +
mn∑
b=0

kb[S((n− b, b))] (mod Tn)

for some 0 ≤ y ≤ mn − 1. Then

[P ] ≡ �y[P (n−y,y)] +
mn−1∑
a=y+1

�a[P (n−a,a)] +
mn∑
b=0

kb[Pdbl(n−b,b)] (mod Rn) ,

for some �a, kb with �a ≤ �a, kb ≤ kb/2�h2((n−b,b))/2�. In particular we have that kb = 0
whenever kb = 0.

Proof. Let P ∼= ⊕λ(Pλ)cλ . We have to check that

c(n−a,a) =

⎧⎪⎨⎪⎩
0, 0 ≤ a < y,

�y, a = y,

≤ �a, y < a ≤ mn − 1

and cdbl(n−b,b) ≤ kb/2�h2((n−b,b))/2� for any 0 ≤ b ≤ mn.
By Lemma 2.1 we have that [Pdbl(n−b,b) : Ddbl(n−b,b)] = 2�h2((n−b,b))/2� for any 

0 ≤ b ≤ mn. So the assertion on cdbl(n−b,b) holds.
For a < y we have that [P : S(n−a,a)] = 0, so that c(n−a,a) = 0 in view of Lemma 3.1. 

For y ≤ a ≤ mn − 1 it then follows from Lemmas 3.1 and 3.2 that

�a = [P : S(n−a,a)] =
a∑

x=0
c(n−x,x)[P (n−x,x) : S(n−a,a)]

= c(n−a,a) +
a−1∑
x=y

c(n−x,x)[P (n−x,x) : S(n−a,a)],

so that c(n−a,a) ≤ �a with equality holding if a = y. �
We will also need the following two lemmas.
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Lemma 3.6. If r ≥ 1, μ ∈ Pp(n − r), λ ∈ Pp(n) and i, i1, . . . , ir ∈ Z/pZ. Then

[fi1 . . . firPμ : Pλ] = [eir . . . ei1Dλ : Dμ].

In particular if εi(λ) ≤ εi(μ) + r and [fr
i P

μ : Pλ] > 0 then λ = f̃r
i μ, in which case

[fr
i P

μ : P f̃r
i μ] = r!

(
εi(μ) + r

r

)
.

Proof. Since

[fi1 . . . firPμ : Pλ] =
∑
ν

[fi1Pμ : P ν ][fi2 . . . firP ν : Pλ],

[eir . . . ei1Dλ : Dμ] =
∑
ν

[eir . . . ei2Dλ : Dν ][ei1Dν : Dμ],

in the first statement we may assume r = 1, in which case it holds by Frobenius reci-
procity and block decomposition. The second statement then follows from [17, Theorem 
11.2.10]. �
Lemma 3.7. If r ≥ 1, μ ∈ P2(n + r), λ ∈ P2(n) and i, i1, . . . , ir ∈ Z/pZ. Then

[ei1 . . . eirPμ : Pλ] = [fir . . . fi1Dλ : Dμ].

In particular if ϕi(λ) ≤ ϕi(μ) + r and [eriPμ : Pλ] > 0 then λ = ẽriμ, in which case

[eriPμ : P ẽriμ] = r!
(
ϕi(μ) + r

r

)
.

Proof. Similar to the previous lemma, using [17, Theorem 11.2.11] instead. �
4. Proof of Theorem 1.4

In this section we will now prove Theorem 1.4. The cases n ≤ 13 can be checked using 
known decomposition matrices [10,16] (using block decomposition, dimension and type 
of modules to identify characteristic 0 modules and using Lemma 3.1 to identify the 
corresponding columns of the decomposition matrix). We will first prove Theorem 1.4
for n odd by induction and then use this to prove it when n is even.

Case 1: n is odd. We may assume that n ≥ 15 is odd and that Theorem 1.4 holds for 
n − 2.

Case 1.1: b > 0. Let i be the residue of the addable nodes in the first 2 rows of 
(n − b − 1, b − 1) (these 2 nodes have the same residue since n is odd). If S(n−a−2,a)

is in the same block as D(n−b−1,b−1) then the addable nodes in the first two rows of 
(n − a − 2, a) both have residue i. Further by induction and Lemma 3.1 we have that
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[P (n−b−1,b−1)] ≡[S(n−b−1,b−1)] +
(n−3)/2∑

a=b

gn−2a−1,a−b+1[S(n−a−2,a)]

+ 2dn−2b+1 [S((n− c− 2, c))] (mod Tn)

with c equal to (n − 3)/2 or (n − 5)/2 (depending on n and b). So

[f2
i P

(n−b−1,b−1)] ≡2[S(n−b,b)] +
(n−3)/2∑

a=b

2gn−2a−1,a−b+1[S(n−a−1,a+1)] (4.1)

+ 2dn−2b+1 [f2
i S((n− c− 2, c))] (mod Tn) .

Since

[S(n−a−1,a+1) : D(n−b,b)] = [S(n−a−2,a) : D(n−b−1,b−1)]

we then have by Lemma 3.5 that

[f2
i P

(n−b−1,b−1)] ≡ 2[P (n−b,b)] +
mn∑
a=0

ka[Pdbl(n−a,a)] (mod Rn) (4.2)

where, for any 0 ≤ a ≤ mn, if xa the multiplicity of S((n −a, a), ε) then f2
i S((n −c −2, c))

ka ≤ 2dn−2b+1xa. In particular if

[f2
i S((n− c− 2, c))] ≡x(n−1)/2[S(((n + 1)/2, (n− 1)/2))]

+ x(n−3)/3[S((n + 3)/2, (n− 3)/2))] (mod T spin
n )

then

[f2
i P

(n−b−1,b−1)] ≡ 2[P (n−b,b)] (mod Rn)

and so by Lemma 3.3, (4.1) and (4.2)

[S((n− a, a), ε) : D(n−b,b)] = [f2
i P

(n−b−1,b−1) : S((n− a, a), ε)]

= [f2
i P

(n−b−1,b−1) : S((n− a, a), ε)]/2

= 2dn−2b+1 [f2
i S((n− c− 2, c)) : S((n− a, a), ε)]/2.

We will now consider different cases, starting with those where this argument allows to 
prove the theorem.

Case 1.1.1: n ≡ 1 (mod 8) and b is even. Then i = 0 and c = (n − 3)/2. So

[f2
i S((n− c− 2, c))] = 2[S(((n + 1)/2, (n− 1)/2))] + 4[S(((n + 1)/2, (n− 3)/2, 1))].
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Case 1.1.2: n ≡ 3 (mod 8) and b is even. Then i = 0 and c = (n − 5)/2. So

[f2
i S((n− c− 2, c))] = 2[S(((n + 1)/2, (n− 1)/2))] + 4[S(((n + 1)/2, (n− 3)/2, 1))].

Case 1.1.3: n ≡ 3 (mod 8) and b is odd. Then i = 1 and c = (n − 3)/2. So

[f2
i S((n− c− 2, c))] = 2[S(((n + 3)/2, (n− 3)/2))].

Case 1.1.4: n ≡ 5 (mod 8) and b is odd. Then i = 1 and c = (n − 3)/2. So

[f2
i S((n− c− 2, c))] = 2[S(((n + 1)/2, (n− 1)/2))].

Case 1.1.5: n ≡ 7 (mod 8) and b is even. Then i = 0 and c = (n − 3)/2. So

[f2
i S((n− c− 2, c))] = 2[S(((n + 3)/2, (n− 3)/2))] + 4[S(((n + 1)/2, (n− 3)/2, 1))].

Case 1.1.6: n ≡ 7 (mod 8) and b is odd. Then i = 1 and c = (n − 5)/2. So

[f2
i S((n− c− 2, c))] = 2[S(((n + 1)/2, (n− 1)/2))].

Case 1.1.7: n ≡ 1 (mod 8) and b is odd. Then i = 1 and c = (n − 1)/2. So

[f2
i S((n− c− 2, c))] = 4[S(((n + 3)/2, (n− 3)/2))] + 2[S(((n + 5)/2, (n− 5)/2))]

and then

[f2
i P

(n−b−1,b−1) : S((n− a, a), ε)] =

⎧⎪⎨⎪⎩
2dn−2b+1+2 a = (n− 3)/2,
2dn−2b+1+1 a = (n− 5)/2,
0, else.

So we only need to check the multiplicity of D(n−b,b) as a composition factor of the 
modules S(((n + 3)/2, (n − 3)/2), ±) and S(((n + 5)/2, (n − 5)/2), ±).

Case 1.1.7.1: b ≤ (n − 7)/2. Considering P (n−b−2,b) we have that

[P (n−b−2,b)] ≡[S(n−b−2,b)] +
(n−3)/2∑
a=b+1

gn−2b−1,a−b[S(n−a−2,a)]

+ 2dn−2b−1 [S(((n− 1)/2, (n− 3)/2))] (mod Tn−2) .

So

[f1f0P
(n−b−2,b)] ≡[S(n−b,b)] +

(n−1)/2∑
a=b+1

H ′
a[S(n−a,a)]

+ 2dn−2b−1+1[S(((n + 3)/2, (n− 3)/2))] (mod Tn) .



122 L. Morotti / Journal of Algebra 657 (2024) 109–140
So P (n−b,b) is a direct summand of f1f0P
(n−b−2,b) by Lemma 3.5. Since f1f0P

(n−b−2,b)

has no composition factor S(((n + 5)/2, (n − 5)/2), ±) the same holds also for P (n−b,b)

(and then D(n−b,b) is not a composition factor of S(((n + 5)/2, (n − 5)/2), ±)).
By Lemma 2.1

[S(((n + 5)/2, (n− 5)/2),±) : Ddbl((n+5)/2,(n−5)/2)] = 1,

[S(((n + 3)/2, (n− 3)/2),±) : Ddbl((n+5)/2,(n−5)/2)] = 1.

So by Lemma 3.5

[f2
i P

(n−b−1,b−1)] ≡ 2[P (n−b,b)] + 2dn−2b+1+1[Pdbl((n+5)/2,(n−5)/2)] (mod Rn) ,

and then by Lemma 3.2

[S(((n + 3)/2, (n− 3)/2),±) : D(n−b,b)]

= 1/2[f2
i P

(n−b−1,b−1) : S(((n + 3)/2, (n− 3)/2),±)]

− 2dn−2b+1 [Pdbl((n+5)/2,(n−5)/2) : S(((n + 3)/2, (n− 3)/2),±)]

= 2dn−2b+1+1 − 2dn−2b+1

= 2dn−2b+1 .

Case 1.1.7.2: b = (n − 3)/2. By Lemma 3.1 and induction

[P ((n+3)/2,(n−7)/2)] ≡ [S((n+3)/2,(n−7)/2)] + [S((n−1)/2,(n−3)/2)]

+ 2[S(((n− 1)/2, (n− 3)/2))] (mod Tn−2)

and then

[f1f0P
((n+3)/2,(n−7)/2)] ≡ [S((n+7)/2,(n−7)/2)] + 2[S((n+3)/2,(n−3)/2)]

+ 4[S(((n + 3)/2, (n− 3)/2))] (mod Tn) .

By Lemmas 3.1 and 3.2 we then have that P ((n+3)/2,(n−3)/2) is a direct summand of 
f1f0P

((n+3)/2,(n−7)/2). Since

[f1f0P
((n+3)/2,(n−7)/2) : S(((n + 5)/2, (n− 5)/2),±)] = 0

we can then conclude as in the previous case.
Case 1.1.8: n ≡ 5 (mod 8) and b is even. Then i = 0 and c = (n − 5)/2. So

[f2
i S((n− c− 2, c))]

= 4[S(((n + 3)/2, (n− 3)/2))] + 2[S(((n + 5)/2, (n− 5)/2))]

+ 4[S(((n + 1)/2, (n− 3)/2, 1))] + 4[S(((n + 3)/2, (n− 5)/2, 1))],
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and then

[f2
i P

n−b−1,b−1) : S((n− a, a), ε)] =

⎧⎪⎨⎪⎩
2dn−2b+1+2 a = (n− 3)/2,
2dn−2b+1+1 a = (n− 5)/2,
0, else.

Again we only need to check the multiplicity of D(n−b,b) as a composition factor of 
S(((n + 3)/2, (n − 3)/2), ±) and S(((n + 5)/2, (n − 5)/2), ±).

Note that b ≤ (n −5)/2 since b ≤ (n −3)/2 is even. This case can be checked similarly 
to Case 1.1.7.1 using f0f1P

(n−b−2,b).
Case 1.2: b = 0. In this case we will study f0f1P

(n−2). Let c = (n − 3)/2 if n ≡
±3 (mod 8) or c = (n − 5)/2 if n ≡ ±1 (mod 8). Then

[P (n−2)] ≡
(n−3)/2∑

a=0
gn−1,a[S(n−a−2,a)] + 2dn−1 [S((n− c− 2, c))] (mod Tn−2) .

Note that (by definition of gn−1,a or by block decomposition) gn−1,a = 0 if a is odd. For 
a even we have that

[f0f1S
(n−a−2,a)] ≡ [S(n−a,a)] + δa<(n−3)/2[S(n−a−2,a+2)] (mod T sym

n ) .

For c′ = (n − 1)/2 if n ≡ 1 or 3 (mod 8) or c′ = (n − 3)/2 if n ≡ 5 or 7 (mod 8) it 
can be checked that

[f0f1S((n− c− 2, c))] ≡ 2[S((n− c′, c′))] (mod T spin
n ) .

So, by Lemma 3.5,

[f0f1P
(n−2)] ≡

(n−1)/2∑
a=0

La[P (n−a,a)] +
∑

λ∈Xn

Lλ[Pλ]

for some La. Let k ≥ 1 maximal with n + 1 = h2k for some h > 1 (so that h = 2 or 
h ≥ 3 is odd).

We will first show that

[f0f1P
(n−2)] ≡ [P (n)] + 2

k−1∑
i=1

[P (n−2i,2i)] (mod Rn) (4.3)

and then use this to show that [P (n) : S((n − c′, c′))] = 2dn+1 .
To prove (4.3) it is enough to check the multiplicities of P (n−a,a) in f0f1P

(n−2) for 
0 ≤ a ≤ mn. In view of Lemma 3.6 this is equivalent to showing that
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[e1e0D
(n−a,a) : D(n−2)] =

⎧⎪⎨⎪⎩
1, a = 0,
2, a = 2i with 1 ≤ i ≤ k − 1,
0, else.

Since any composition factor of e0D
(n−a,a) is of the form D(n−b−1,b) for some b and 

by [17, Theorem 11.2.7] [e1D
(n−b−1,b) : D(n−2)] = δb,0 (using that n is odd, so that 

(n − b − 1, b) has only one normal node), it follows that [e1e0D
(n−a,a) : D(n−2)] =

[e0D
(n−a,a) : D(n−1)]. We will use the main theorem (on p.3304) of [25] without further 

reference until the end of Case 1.2. By block decomposition we have that

[e0D
(n−a,a) : D(n−1)] =

{
1, a = 0,
0, a > 0 with a 	= 2i for some i ≥ 1.

So we may assume that a = 2i with i ≥ 1. Note that

n− 2a = h2k − 2i+1 − 1 = (h− 1)2k − 2i+1 +
k−1∑
j=0

2j .

If i ≥ k then h ≥ 3 is odd (since 2i < n/2 as (n − 2i, 2i) is 2-regular). It follows 
that 2k is the smallest power of 2 missing in the 2-adic decomposition of n − 2a and so 
[e0D

(n−2i,2i) : D(n−1)] = 0.
If i = k−1 then n −2a = (h −2)2k +

∑k−1
j=0 2j = (h −2)2i+1 +

∑i
j=0 2j . Since 

∑i
j=0 2j

appears in the 2-adic decomposition of n −2a, it follows that [e0D
(n−2i,2i) : D(n−1)] = 2.

If i ≤ k − 2 then n − 2a = (h − 1)2k +
∑k−1

j=i+2 2j +
∑i

j=0 2j , so that again 

[e0D
(n−2i,2i) : D(n−1)] = 2.

We will now use (4.3) to show that [P (n) : S((n − c′, c′))] = 2dn+1 . To see this, note 
that dn+1 = dh + k. Further for 0 ≤ i ≤ k − 1 we have

n− 2i+1 + 1 = (h− 1)2k +
k−1∑

j=i+1
2j .

Since h ≥ 2 we then have that

dn−2i+1+1 = dh−1 + 2k − i− 1 = dh + 2k − i− 2,

where the last equality holds since h = 2 or h ≥ 3 is odd. So

2dn−1+1 −
k−1∑
i=1

2dn−2i+1+1+1 = 2dh+2k−1 −
k−1∑
i=1

2dh+2k−i−1

= 2dh+2k−1 − 2dh+2k−1 + 2dh+k = 2dh+k = 2dn+1 .
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Case 2: n is even. In this case n − 2b ≥ 4, so n − 2b − 1 ≥ 3. By case 1 we have that

[P (n−b−1,b)] ≡
Mn−1∑
a=b

gn−2b,a−b[S(n−a−1,a)]

+ 2dn−2b [S((n− c− 1, c))] (mod Tn−1)

with c = n/2 − 1 or n/2 − 2 depending on n and b. Let i be the residue of the two top 
addable nodes of (n − b − 1, b). If gn−2b,a−b = 1 then S(n−a−1,a) is in the same block of 
D(n−b−1,b) and so the two top addable nodes of (n − a + 1, a) have residue i. Then

[fiP (n−b−1,b)] ≡
Mn−1∑
a=b+1

gn−2b,a−b([S(n−a,a)] + [S(n−a−1,a+1)])

+ 2dn−2b [fiS((n− c− 1, c))] (mod Tn) .

Set S(x,y) := 0 if x < y. For a > n/2 = Mn−1 + 1 we have that

[S(n−a,a)] + [S(n−a−1,a+1)] = 0,

while for a = n/2 we have that gn−2b,a−b = 0 since n − 2b = 2(a − b) > 0. So

[fiP (n−b−1,b)] ≡
∑
a≥b

gn−2b,a−b([S(n−a,a)] + [S(n−a−1,a+1)])

+ 2dn−2b [fiS((n− c− 1, c))] (mod Tn) .

Note that if gn−2b,a−b = 1 then a − b is even. For a ≤ n/2 we have that a < n − b as 
n − 2b ≥ 4, so that a − b < n − 2b. Thus if a ≤ n/2 with a − b even then gn−2b,a−b =
gn−2b+1,a−b = gn−2b+1,a+1−b. Again using that [S(n−a,a)] + [S(n−a−1,a+1)] = 0 for a >
n/2 it follows that

[fiP (n−b−1,b)] ≡
∑
a≥b

gn−2b+1,a−b[S(n−a,a)] + 2dn−2b [fiS((n− c− 1, c))]

≡
Mn∑
a=b

gn−2b+1,a−b[S(n−a,a)] + 2dn−2b [fiS((n− c− 1, c))] (mod Tn) .

Considering the values of i and c in each case, it can be checked that if n ≡ 0 (mod 8)
and b is even or if n ≡ 4 (mod 8) and b is odd then

[fiS((n− c− 1, c))] ≡ 2[S((n/2 + 1, n/2 − 1))]

+ 2[S((n/2 + 2, n/2 − 2))] (mod T spin
n )

while in all other cases
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[fiS((n− c− 1, c))] ≡ 2[S((n/2 + 1, n/2 − 1))] (mod T spin
n ) .

In view of Lemmas 3.1 and 3.5 it follows that

[fiP (n−b−1,b)] ≡ [P (n−b,b)] (mod Rn) .

Since dn−2b+1 = dn−2b + 1 (by definition), the theorem then follows from Lemma 3.3.

5. Proof of Theorem 1.5

In this section we will prove Theorem 1.5. We start with the case n ≡ 2 (mod 4) and 
b odd (this is equivalent to dbl(n − b, b) having 2-core (4, 3, 2, 1) or (3, 2, 1)).

Lemma 5.1. Let p = 2, n ≡ 2 (mod 4), 0 ≤ a ≤ mn and 1 ≤ b ≤ mn with b odd. Then

[S((n− a, a), 0) : Ddbl(n−b,b)] = gn−2b,a−b.

Proof. If a is even then S((n − a, a), 0) and Ddbl(n−b,b) are in different blocks. Since 
n − 2b is even while a − b is odd, the theorem holds in this case. So we may assume that 
a is odd.

By Lemma 3.1 we have that for any 0 ≤ x ≤ Mn and 0 ≤ y ≤ mn

[S(n−x,x) : D(n−y,y)] = gn−2y+1,x−y.

By [26, Theorem 9.3], in the Grothendieck group,

[S(n−x,x) ⊗ S((n))] = (1 + δx�=0)[S((n− x, x))] + (1 + δx�=1)[S((n− x + 1, x− 1))],

where S((n/2, n/2)) and S((n + 1, −1)) are both defined to be 0. It follows that for 
1 ≤ a ≤ n/2 − 2 odd

[S((n− a, a), 0)] = 1/2
(a−1)/2∑

c=0
([S(n−2c−1,2c+1) ⊗ S((n))] − [S(n−2c,2c) ⊗ S((n))].

If y > 2c + 1 then D(n−y,y) is not a composition factor of S(n−2c−1,2c+1) or S(n−2c,2c). If 
y ≤ 2c + 1 is even then

[S(n−2c−1,2c+1) : D(n−y,y)] = gn−2y+1,2c−y+1 = gn−2y+1,2c−y

= [S(n−2c,2c) : D(n−y,y)]

as both n − 2y and 2c − y are even. Thus
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[S((n− a, a), 0)]

= 1/2
(a−1)/2∑

c=0

c∑
z=0

(gn−4z−1,2c−2z − gn−4z−1,2c−2z−1)[D(n−2z−1,2z+1) ⊗ S((n))]

=
(a−1)/2∑

c=0

c∑
z=0

(gn−4z−1,2c−2z − gn−4z−1,2c−2z−1)[Ddbl(n−2z−1,2z+1)]

=
(a−1)/2∑

z=0

(a−1)/2∑
c=z

(gn−4z−1,2c−2z − gn−4z−1,2c−2z−1)[Ddbl(n−2z−1,2z+1)]

with the second equality holding by [11, Corollary 3.21]. All partitions appearing are 
2-regular, since 2c + 1 ≤ a ≤ mn < mn and 0 ≤ z ≤ c.

Since n − 4z and 2c − 2z are even

(a−1)/2∑
c=z

(gn−4z−1,2c−2z − gn−4z−1,2c−2z−1)

=
(a−1)/2∑

c=z

(gn−4z−2,2c−2z − gn−4z−2,2c−2z−2)

= gn−4z−2,a−2z−1 − gn−4z−2,−2

= gn−4z−2,a−2z−1

and so the theorem holds. �
In order to prove Theorem 1.5 in general, we will use some block components of 

inductions/restrictions of the modules Pdbl(a,b) with a ≡ b ≡ ±1 (mod 4). We point out 
that the cases b odd if n ≡ 0 (mod 4) or b even if n ≡ 2 (mod 4) are not covered in the 
following lemma.

Lemma 5.2. Let 1 ≤ b ≤ mn. Let i = 0 if b ≡ 0 or 3 (mod 4) or i = 1 if 
b ≡ 1 or 2 (mod 4). Define F , C and x and y through:

• if n ≡ 0 (mod 4) and b is odd then x = 2, y = 0, F = f2
i and C = 2,

• if n ≡ 1 (mod 4) and b is even then x = 2, y = 1, F = f3
i and C = 6,

• if n ≡ 1 (mod 4) and b is odd then x = 3, y = 0, F = eif1−if
3
i and C = 6(2 + δi=0),

• if n ≡ 2 (mod 4) and b is even then x = 3, y = 1, F = f1−if
3
i and C = 6,

• if n ≡ 3 (mod 4) and b is even then x = 4, y = 1, F = f2
1−if

3
i and C = 12,

• if n ≡ 3 (mod 4) and b is odd then x = 1, y = 0, F = fi and C = 1.

Then

[FPdbl(n−b−x,b−y)] ≡ C[Pdbl(n−b,b)] (mod Rn) .
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Proof. This can be seen by (repeated) application of the following argument and by 
comparing numbers of (co)normal nodes of all 2-regular partitions of the forms (A, B), 
dbl(A, B) and in the last case also (A, B, D) or dbl(A, B, 1) with the right content.

Let j be a residue, r ≥ 1 and α = dbl(N −B, B). If

[Q] ≡ d[Pα] (mod RN )

and that εj(α) ≥ εj(β) − r for all 2-regular partitions β of N + r which are 2-parts 
partitions or doubles of 2-parts partitions with P β in the same block as fr

j P
α. By 

Lemmas 2.2 and 3.1 we have that no composition factor of 
∑

μ∈XN
dγ [P γ ] is of the 

forms S(N−e,e) or S((N − e, e), . . .), so no composition factor of 
∑

μ∈XN
dγ [fr

j P
γ ] is of 

the forms S(N+r−e,e) or S((N + r − e, e), . . .) and then by Lemma 3.6

[fr
j Q] ≡ dr!

(
εj(α) + r

r

)
[P f̃r

j α] (mod RN+r) .

Similarly by Lemma 3.7 if ϕ1(α) ≥ ϕ1(β) − r for all 2-regular partitions β of N − r

which are 2-parts partitions or doubles of 2-parts partitions with P β in the same block 
as er1Pα, then

[er1Q] ≡ dr!
(
ϕ1(α) + r

r

)
[P ẽr1α] (mod RN−r)

(as we are removing nodes of residue 1).
When taking e0f1f

3
0P

dbl(e,f) a more careful analysis is needed. In this case n ≡
1 (mod 4) and b ≡ 3 (mod 4), so that e ≡ f ≡ 3 (mod 4). It can be checked that

[f3
0P

dbl(e,f)] = 6[Pdbl(e+2,f+1)] + [P ]

[f1f
3
0P

dbl(e,f)] = 6[Pdbl(e+3,f+1)] + [Q]

with no projective module indexed by a partition with at most 3 rows or of the form 
dbl(E, F ) or dbl(E, F, 1) appearing in either P or Q. So no module of the form S(g,h)

or S((g, h), . . .) appears in e0Q, which allows to show that

[e0f1f
3
0P

dbl(e,f)] ≡ 12[Pdbl(e+3,f)] (mod Re+f+3) . �
We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. If n ≡ 2 (mod 4) and b is odd the theorem has been proved in 
Lemma 5.1. Let i = 0 if b ≡ 0 or 3 (mod 4) while i = 1 if b ≡ 1 or 2 (mod 4). By 
Lemma 5.2 we have that

[FPdbl(n−b−x,b−y)] ≡ C[Pdbl(n−b,b)] (mod Rn)

for F , C and x and y given by:
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• if n ≡ 0 (mod 4) and b is odd then x = 2, y = 0, F = f2
i and C = 2,

• if n ≡ 1 (mod 4) and b is even then x = 2, y = 1, F = f3
i and C = 6,

• if n ≡ 1 (mod 4) and b is odd then x = 3, y = 0, F = eif1−if
3
i and C = 6(2 + δi=0),

• if n ≡ 2 (mod 4) and b is even then x = 3, y = 1, F = f1−if
3
i and C = 6,

• if n ≡ 3 (mod 4) and b is even then x = 4, y = 1, F = f2
1−if

3
i and C = 12,

• if n ≡ 3 (mod 4) and b is odd then x = 1, y = 0, F = fi and C = 1.

In view of Lemmas 3.6 and 3.7 we then have that in each case

[S((n− a, a), ε) : Ddbl(n−b,b)]

= [Pdbl(n−b,b) : S((n− a, a), ε)]

= 1/C[FPdbl(n−b−x,b−y) : S((n− a, a), ε)]

= 1/C
∑
ν

[Pdbl(n−b−x,b−y) : S(ν)][FS(ν) : S((n− a, a), ε)]

= 1/C
∑
ν

[Pdbl(n−b−x,b−y) : S(ν)][FS(ν) : S((n− a, a))].

Apart from the case n ≡ 1 (mod 4) and b odd, F = fi1 . . . fir for some r and i1, . . . , ir. 
So we may limit the sum to partitions ν with at most 2-parts.

If n ≡ 1 (mod 4) and b ≡ 1 (mod 4) then [Pdbl(n−b,b) : S((n − a, a), ε)] is obtained 
considering e1f0f

3
1P

dbl(n−b−3,b). Since removing 1-nodes from bar-partitions does not 
change their length, we may again restrict the sum to ν with at most 2-parts.

If n ≡ 1 (mod 4) and b ≡ 3 (mod 4) and S((r, s, t), ε′′) is any module appearing in 
Pdbl(n−b−3,b) with t ≥ 1 then t > 1 by block decomposition (comparing bar-contents it 
can be checked that 2 of r, s, t are ≡ 3 (mod 4) and the third is ≡ 0 (mod 4)), so these 
modules do not give rise to modules of the form S((n − a, a), ε) in e0f1f

3
0P

dbl(n−b−3,b). 
So also in this case we only need to consider partitions ν with at most 2 parts.

Note that in each case n − b − x − y ≡ 2 (mod 4) and b − y is odd. Thus

[Pdbl(n−b−x,b−y) : S((n− x− y − z, z))]

= [Pdbl(n−b−x,b−y) : S((n− x− y − z, z), ε′)]

= gn−2b−x+y,z−b+y

by Lemma 5.1. Since n −2b −x +y is even, if gn−2b−x+y,z−b+y 	= 0 then z ≡ b −y (mod 2)
is odd. So [S((n − a, a), ε) : Ddbl(n−b,b)] is given by

(n−x−y−6)/4∑
z=0

gn−2b−x+y,2z−b+y+1

C
[FS((n− x− y − 2z − 1, 2z + 1)) : S((n− a, a))]

(since mn−x−y = (n − x − y − 6)/4). If we set S(λ) := 0 whenever λ is not a 2-regular 
partition then [S((n − a, a), ε) : Ddbl(n−b,b)] is given by
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∑
z∈Z

gn−2b−x+y,2z−b+y+1

C
[FS((n− x− y − 2z − 1, 2z + 1)) : S((n− a, a))].

If z < 0 then 2z − b + y − 1 < 0, while if z = (n − x − y − 2)/4 then 2z − b + y + 1 =
(n − 2b − x + y)/2. In either of these two cases gn−2b−x+y,2z−b+y+1 = 0.

If z ≥ (n −x −y+2)/4 then n −x −y−2z−1 ≥ 2z+5 and so (n −x −y−2z+k−1, 2z+� +1)
is not a 2-regular partition for any k ≤ 4 and � ≥ 0.

Further, since n −2b −x +y ≡ 0 (mod 4), if gn−2b−x+y,2z−b+y+1 = 1 then the partition 
(n −x −y−2z−1, 2z+1) has 2 (recursively) bar-addable nodes of residue i on each of the 
first and second row (this could also be seen using block decomposition and comparing 
bar-contents) and that n − x − y − 2z − 1 ≥ 2z + 5 since z ≤ (n − x − y − 6)/4.

These facts can be used to check that

gn−2b−x+y,2z−b+y+1[FS((n− x− y − 2z − 1, 2z + 1))] = 0

whenever S(λ) = 0.
We will now in each of the 6 cases compute∑

z∈Z

gn−2b−x+y,2z−b+y+1

C
[FS((n− x− y − 2z − 1, 2z + 1))]

and study the coefficient of S((n − a, a)) to prove the theorem.
Since b ≤ mn, we always have that n − 2b − 1 ≥ 4 if n ≡ 1 (mod 4) and b is even 

or n ≡ 3 (mod 4) and b is odd, n − 2b − 2 ≥ 4 if n ≡ 0 (mod 4) and b is odd or 
n ≡ 2 (mod 4) and b is even and n − 2b − 3 ≥ 4 if n ≡ 1 (mod 4) and b is odd or 
n ≡ 3 (mod 4) and b is even. This will be used without further reference in the following 
case analysis to compare the existence of some h with r ≤ 2h ≤ s whenever comparing 
distinct coefficients gr,s. Comparing the 2-adic decompositions (or at least the last two 
summands in each of them) of the corresponding r and s can be done by writing each 
appearing number as 4t + u with 0 ≤ u ≤ 3.

Case 1: n ≡ 0 (mod 4) and b is odd. Then∑
z∈Z

gn−2b−2,2z−b+1

2 [f2
i S((n− 2z − 3, 2z + 1))]

≡
∑
z∈Z

gn−2b−2,2z−b+1([S((n− 2z − 1, 2z + 1))] + 2[S((n− 2z − 2, 2z + 2))]

+ [S((n− 2z − 3, 2z + 3))]) (mod T spin
n ) .

So

[S((n− a, a), ε) : Ddbl(n−b,b)] =
{

2gn−2b−2,a−b−1 a is even,
gn−2b−2,a−b + gn−2b−2,a−b−2 a is odd.

We have to show that this is equal to gn−2b,a−b + 2gn−2b−2,a−b−1.
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Write n −2b = 4r+2 and a −b = 4s +t with 0 ≤ t ≤ 3. If a is even then gn−2b,a−b = 0, so 
the theorem holds. If a is odd then gn−2b−2,a−b−1 = 0. Further gn−2b,a−b = g4r+2,4s+t =
g4r,4s. If t = 0 then

gn−2b−2,a−b + gn−2b−2,a−b−2 = g4r,4s + g4r,4(s−1)+2 = g4r,4s,

while if t = 2 then

gn−2b−2,a−b + gn−2b−2,a−b−2 = g4r,4s+2 + g4r,4s = g4r,4s.

Case 2: n ≡ 1 (mod 4) and b is even. Then∑
z∈Z

gn−2b−1,2z−b+2

6 [f3
i S((n− 2z − 4, 2z + 1))]

≡
∑
z∈Z

gn−2b−1,2z−b+2([S((n− 2z − 2, 2z + 2))] + [S((n− 2z − 3, 2z + 3))])

(mod T spin
n ) .

So

[S((n− a, a), ε) : Ddbl(n−b,b)] =
{

gn−2b−1,a−b a is even,
gn−2b−1,a−b−1 a is odd.

We have to show that this is equal to gn−2b,a−b.
Write n − 2b = 4r + 1 and a − b = 4s + t with 0 ≤ t ≤ 3. If a is even then t = 0

or 2, so gn−2b−1,a−b = g4r,4s+t = g4r+1,4s+t = gn−2b,a−b. If a is odd then t = 1 or 3, so 
gn−2b−1,a−b−1 = g4r,4s+t−1 = g4r+1,4s+t = gn−2b,a−b.

Case 3: n ≡ 1 (mod 4) and b is odd. Then∑
z∈Z

gn−2b−3,2z−b+1

6(2 + δi=0)
[eif1−if

3
i S((n− 2z − 4, 2z + 1))]

≡
∑
z∈Z

gn−2b−3,2z−b+1([S((n− 2z − 1, 2z + 1))] + [S((n− 2z − 4, 2z + 4))])

(mod T spin
n )

(if i = 0 we can also add and remove a node to the third row). So

[S((n− a, a), ε) : Ddbl(n−b,b)] =
{

gn−2b−3,a−b−3 a is even,
gn−2b−3,a−b a is odd.

We have to show that this is equal to gn−2b,a−b − gn−2b−2,a−b−1.
Write n −2b = 4r+3 and a −b = 4s +t with 0 ≤ t ≤ 3. If t = 0 then gn−2b−3,a−b = g4r,4s

and
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gn−2b,a−b − gn−2c−2,a−b−1 = g4r+3,4s − g4r+1,4(s−1)+3 = g4r,4s + 0 = g4r,4s.

If t = 1 then gn−2b−3,a−b−3 = g4r,4(s−1)+2 = 0 and

gn−2b,a−b − gn−2c−2,a−b−1 = g4r+3,4s+1 − g4r+1,4s = 0.

If t = 2 then gn−2b−3,a−b = g4r,4s+2 = 0 and

gn−2b,a−b − gn−2c−2,a−b−1 = g4r+3,4s+2 − g4r+1,4s+1 = 0.

If t = 3 then gn−2b−3,a−b−3 = g4r,4s and

gn−2b,a−b − gn−2c−2,a−b−1 = g4r+3,4s+3 − g4r+1,4s+2 = g4r,4s.

Case 4: n ≡ 2 (mod 4) and b is even. Then∑
z∈Z

gn−2b−2,2z−b+2

6 [f1−if
3
i S((n− 2z − 5, 2z + 1))]

≡
∑
z∈Z

gn−2b−2,2z−b+2(2[S((n− 2z − 2, 2z + 2))] + 2[S((n− 2z − 4, 2z + 4))])

(mod T spin
n ) .

So

[S((n− a, a), ε) : Ddbl(n−b,b)] =
{

2gn−2b−2,a−b + 2gn−2b−2,a−b−2 a is even,
0 a is odd.

We have to show that this is equal to 2gn−2b,a−b.
Write n − 2b = 4r + 2 and a − b = 4s + t with 0 ≤ t ≤ 3. If a is odd then a − b is also 

odd and so gn−2b,a−b = 0. If a is even then t = 0 or 2 and we can conclude similarly to 
the a odd case in Case 1.

Case 5: n ≡ 3 (mod 4) and b is even. Then∑
z∈Z

gn−2b−3,2z−b+2

12 [f2
1−if

3
i S((n− 2z − 6, 2z + 1))]

≡
∑
z∈Z

gn−2b−3,2z−b+2([S((n− 2z − 2, 2z + 2))] + [S((n− 2z − 5, 2z + 5))])

(mod T spin
n ) .

So

[S((n− a, a), ε) : Ddbl(n−b,b)] =
{

gn−2b−3,a−b a is even,
gn−2b−3,a−b−3 a is odd.
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We can show similarly to Case 3 that this equals gn−2b,a−b − gn−2b−2,a−b−1.
Case 6: n ≡ 3 (mod 4) and b is odd. Then∑

z∈Z
gn−2b−1,2z−b+1[fiS((n− 2z − 2, 2z + 1))]

≡
∑
z∈Z

gn−2b−1,2z−b+1([S((n− 2z − 1, 2z + 1))] + [S((n− 2z − 2, 2z + 2))])

(mod T spin
n ) .

So

[S((n− a, a), ε) : Ddbl(n−b,b)] =
{

gn−2b−1,a−b−1 a is even,
gn−2b−1,a−b a is odd.

It can be proved similarly to Case 2 that this equals gn−2b,a−b. �
6. Proof of Theorem 1.6

In this section we will prove Theorem 1.6.
Let n ≡ 0 (mod 4) and 2 ≤ b ≤ mn be even. Further let i = 0 if b ≡ 0 (mod 4) and 

i = 1 if b ≡ 2 (mod 4).
By Lemmas 1.5 and 5.2 and by [17, Remark 11.2.9] we have that

[fif2
1−if

3
i P

dbl(n−b−5,b−1) : Pdbl(n−b,b)] = 12,

[fiPdbl(n−b,b) : Pdbl(n−b+1,b)] = 2,

[fiPdbl(n−b,b) : Pdbl(n−b,b+1)] = 2.

By Theorem 1.5

[Pdbl(n−b−5,b−1) : S((n− 6 − c, c))] = gn−2b−4,c−b+1,

[Pdbl(n−b+1,b) : S((n− c + 1, c))] = gn−2b+1,c−b,

[Pdbl(n−b,b+1) : S((n + 1 − c, c))] = gn−2b−1,c−b−1 − gn−2b−3,c−b−2

for 0 ≤ c ≤ mn−6 or 0 ≤ c ≤ mn+1 respectively.
We will use this to compute upper bounds on the decomposition numbers. In some 

cases we will also show that these upper bounds actually give the actual decomposition 
numbers. Note that by the above

[fif2
1−if

3
i P

dbl(n−b−5,b−1)] ≡ 12[Pdbl(n−b,b)] (mod Rn) ,

[fiPdbl(n−b,b)] ≡ 2[Pdbl(n−b+1,b)] + 2[Pdbl(n−b,b+1)] (mod Rn+1) .
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Similar to the proof of Theorem 1.5,

[S((n− a, a), ε) : Ddbl(n−b,b)] = [Pdbl(n−b,b) : S((n− a, a))]

≤ 1
12 [fif2

1−if
3
i P

dbl(n−b−5,b−1) : S((n− a, a))]

=
∑
ν

1
24 [Pdbl(n−b−5,b−1) : S(ν)][fif2

1−if
3
i S(ν) : S((n− a, a))]

=
∑
z∈Z

gn−2b−4,2z−b+2

24 [fif2
1−if

3
i S((n− 2z − 7, 2z + 1)) : S((n− a, a))],

and

[Pdbl(n−b+1,b) : S((n− c + 1, c))] + [Pdbl(n−b,b+1) : S((n− c + 1, c))]

≤ 1
24 [f2

i f
2
1−if

3
i P

dbl(n−b−5,b−1) : S((n− a, a))]

=
∑
ν

1
24 [Pdbl(n−b−5,b−1) : S(ν)][f2

i f
2
1−if

3
i S(ν) : S((n− a, a))]

=
∑
z∈Z

gn−2b−4,2z−b+2

24 [f2
i f

2
1−if

3
i S((n− 2z − 7, 2z + 1)) : S((n− a, a))].

Again let S((c, d)) := 0 whenever (c, d) is not a 2-regular partition. If 2z + 1 	≡
b − 1 (mod 4) then gn−2b−4,2z−b+2 = 0 since n − 2b ≡ 0 (mod 4). If n − 4z − 8 = 0 then 
2z − b + 2 = (n − 2b − 4)/2 and so gn−2b−4,2z−b+2 = 0. If 2z + 1 ≡ b − 1 (mod 4) and 
n − 4z − 8 	= 0 then

1
12 [fif2

1−if
3
i S((n− 2z − 7, 2z + 1))]

≡ 2[S((n− 2z − 2, 2z + 2))] + 2[S((n− 2z − 3, 2z + 3))]

+ 2[S((n− 2z − 5, 2z + 5))] + 2[S((n− 2z − 6, 2z + 6))] (mod T spin
n )

and

1
24 [f2

i f
2
1−if

3
i S((n− 2z − 7, 2z + 1))]

≡ δz �=(n−4)/4[S((n− 2z − 1, 2z + 2))] + 2[S((n− 2z − 2, 2z + 3))]

+ (1 + δz �=(n−12)/4)[S((n− 2z − 5, 2z + 6))]

+ [S((n− 2z − 6, 2z + 7))] (mod T spin
n+1) .

It follows that

[S((n− a, a), ε) : Ddbl(n−b,b)] (6.1)
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≤ 1
12 [fif2

1−if
3
i P

dbl(n−b−5,b−1) : S((n− a, a))]

=
{

2gn−2b−4,a−b + 2gn−2b−4,a−b−4, a is even,
2gn−2b−4,a−b−1 + 2gn−2b−4,a−b−3, a is odd

and

gn−2b+1,c−b + gn−2b−1,c−b−1 − gn−2b−3,c−b−2 (6.2)

= [Pdbl(n−b+1,b) : S((n− c + 1, c))] + [Pdbl(n−b,b+1) : S((n− c + 1, c))]

≤ 1
24 [f2

i f
2
1−if

3
i P

dbl(n−b−5,b−1) : S((n− c + 1, c))]

=
{

δc �=n/2gn−2b−4,c−b + (1 + δc �=n/2)gn−2b−4,c−b−4, c is even,
2gn−2b−4,c−b−1 + gn−2b−4,c−b−5, c is odd.

If equality holds in (6.2) for some c with c − b ≡ 0 or 1 (mod 4), then equality must hold 
in (6.1) for a ∈ {c − 1, c}, since S((n − c + 1, c)) appears in both fiS((n − c + 1, c − 1))
and fiS((n − c, c)) (the first one provided c ≥ 1).

Since b ≤ n/2 − 4 we have that n − 2b − 4 ≥ 4. It can thus be checked (considering 
all possibilities for a − b (mod 4) and writing all appearing numbers in the form 4r + s

with 0 ≤ s ≤ 3) that

2gn−2b−3,a−b + 2gn−2b−3,a−b−3

=
{

2gn−2b−4,a−b + 2gn−2b−4,a−b−4, a is even,
2gn−2b−4,a−b−1 + 2gn−2b−4,a−b−3, a is odd,

so that

[S((n− a, a), ε) : Ddbl(n−b,b)] ≤ 2gn−2b−3,a−b + 2gn−2b−3,a−b−3.

If a − b ≡ 2 (mod 4) then from n − 2b − 3 ≡ 1 (mod 4) (as n ≡ 0 (mod 4) and b is 
even), we have that

[S((n− a, a), ε) : Ddbl(n−b,b)] ≤ 2gn−2b−3,a−b + 2gn−2b−3,a−b−3 = 0,

so that equality holds.
Thus we may now assume that a − b 	≡ 2 (mod 4) and that at least one of 

ν2((�(a− b + 1)/4�)) ≥ ν2((n − 2b)/4) or gn−2b−4,4�(a−b+1)/4�−4 = 0 holds. In this 
case we will show that equality holds in (6.2) with c = a + 1 if a − b ≡ 3 (mod 4), 
c = a or a − 1 if a − b ≡ 0 (mod 4) or c = a if a − b ≡ 1 (mod 4). The assumptions 
ν2((�(a − b + 1)/4�)) ≥ ν2((n − 2b)/4) and gn−2b−4,4�(a−b+1)/4�−4 = 0 then become 
ν2((�(c − b)/4�)) ≥ ν2((n − 2b)/4) and gn−2b−4,4�(c−b)/4�−4 = 0 respectively.
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If c = n/2 and c − b ≡ 0 or 1 (mod 4) then c ≡ 0 (mod 4), since b and n/2 = c are 
both even. In this case

ν2((�(c− b)/4�)) = ν2((n− 2b)/8) < ν2((n− 2b)/4).

Further the right-hand side of (6.2) is gn−2b−4,c−b−4 = gn−2b−4,4�(c−b)/4�−4. If this is 0 
then equality holds, since the right-hand side is non-negative.

We may now assume that c < n/2. Write n − 2b = 4k and c − b = 4� + x with 
x ∈ {0, 1}. If x = 0 then

gn−2b+1,c−b + gn−2b−1,c−b−1 − gn−2b−3,c−b−2

= g4k+1,4� + g4(k−1)+3,4(�−1)+3 − g4(k−1)+1,4(�−1)+2

= g4k+1,4� + g4(k−1)+3,4(�−1)+3

and

gn−2b−4,c−b + 2gn−2b−4,c−b−4 = g4(k−1),4� + 2g4(k−1),4(�−1).

If x = 1 then

gn−2b+1,c−b + gn−2b−1,c−b−1 − gn−2b−3,c−b−2

= g4k+1,4�+1 + g4(k−1)+3,4� − g4(k−1)+1,4(�−1)+3

= g4k+1,4�+1 + g4(k−1)+3,4�

and

2gn−2b−4,c−b−1 + gn−2b−4,c−b−5 = 2g4(k−1),4� + g4(k−1),4(�−1).

Since again n − 2b − 4 ≥ 4, it follows that in either of the two cases equality in (6.2)
holds if and only if

gk,� = gk−1,� + gk−1,�−1. (6.3)

We will show that this holds whenever

ν2(�) = ν2((�(c− b)/4�)) ≥ ν2((n− 2b)/4) = ν2(k)

or

gk−1,�−1 = g4(k−1),4(�−1) = gn−2b−4,4�(c−b)/4�−4 = 0

hold.
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If c = b then � = 0. As n − 2b ≥ 8 we have that k ≥ 2 and then (6.3) holds.
We may now assume that � > 0 and write k = 2y(2k + 1) and � = 2z(2� + 1) with k

and � non-negative integers.
Case 1: ν2(�) > ν2(k). Then z > y, so that � = 2y+1�′ with �′ integer, and

gk,� = g2y+1k+2y,2y+1�′ = gk,�′

gk−1,� = g2y+1k+2y−1+...+1,2y+1�′ = gk,�′

gk−1,�−1 = g2y+1k+2y−1+...+1,2z+1�+2z−1+...+2y+2y−1+...+1) = 0.

So (6.3) holds.
Case 2: ν2(�) = ν2(k). In this case z = y so

gk,� = g2y+1k+2y,2y+1�+2y = gk,�

gk−1,� = g2y+1k+2y−1+...+1,2y+1�+2y = 0

gk−1,�−1 = g2y+1k+2y−1+...+1,2y+1�+2y−1+...+1 = gk,�

and then (6.3) holds.
Case 3: ν2(�) < ν2(k). We may assume that gk−1,�−1 = 0. Since ν2(�) < ν2(k) we have 

that gk,� = 0. Further z ≤ y − 1, so

gk−1,� = g2y+1k+2y−1+...+1,2z+1�+2z

≤ g2y+1k+2y−1+...+1,2z+1�+2z−1+...+1

= gk−1,�−1 = 0.

In particular (6.3) holds also in this case.
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Appendix A. Examples

We show through some small decomposition matrices which parts of the decomposition 
matrices can be computed using Theorems 1.4, 1.5 and 1.6. Since if n 	≡ 0 (mod 4) or 
if n ≤ 8 and n ≡ 0 (mod 4) only the column corresponding to (dbl(n))R cannot be 
computed through the first two of these results, we consider only cases n ≥ 12 and 
n ≡ 0 (mod 4) here and cover the first few such cases.
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We color the columns labeling as follows: red if the corresponding column is cov-
ered by Theorem 1.4, blue if covered by Theorem 1.5 and green if (partly) covered by 
Theorem 1.6.

In general, for the columns of D(dbl(n))R , [27, Tables III, IV] can be used to find the 
first two entries, but no further information is known (apart for small n).

For n = 12 the decomposition matrix can be recovered from [10] (and some compu-
tations to identify rows and columns), which we use to give the missing decomposition 
numbers (all in the column of D(7,5)).

We add =? for known decomposition numbers that are not computed using Theo-
rems 1.4, 1.5 and 1.6

As usual, missing numbers should be interpreted as 0.

D
(1

2)

D
(1

1,
1)

D
(1

0,
2)

D
(9

,3
)

D
(8

,4
)

D
(7

,5
)

D
(6

,5
,1

)

D
(6

,4
,2

)

D
(5

,4
,2
,1

)

S((12),±) 1=?
S((11, 1), 0) 1=? 1
S((10, 2), 0) 0=? 2 2
S((9, 3), 0) 1=? 1 2 1
S((8, 4), 0) 8 4 2=? 2
S((7, 5), 0) 8 8 4 4 2 1=? 2 1

D
(1

6)

D
(1

5,
1)

D
(1

4,
2)

D
(1

3,
3)

D
(1

2,
4)

D
(1

1,
5)

D
(1

0,
6)

D
(9

,7
)

D
(8

,7
,1

)

D
(8

,6
,2

)

D
(7

,6
,2
,1

)

D
(7

,5
,3
,1

)

D
(6

,5
,3
,2

)

S((16),±) 1=?
S((15, 1), 0) 1=? 1
S((14, 2), 0) ? 2 2
S((13, 3), 0) ? 1 2 1
S((12, 4), 0) ? 2 2
S((11, 5), 0) ? 1 2 1 2 1
S((10, 6), 0) 16 8 4 ? 2 2 2
S((9, 7), 0) 8 16 8 8 4 4 2 ? 1 2 1

D
(2

0)

D
(1

9,
1)

D
(1

8,
2)

D
(1

7,
3)

D
(1

6,
4)

D
(1

5,
5)

D
(1

4,
6)

D
(1

3,
7)

D
(1

2,
8)

D
(1

1,
9)

D
(1

0,
9,

1)

D
(1

0,
8,

2)

D
(9

,8
,2

,1
)

D
(9

,7
,3

,1
)

D
(8

,7
,3

,2
)

D
(8

,6
,4

,2
)

D
(7

,6
,4

,3
)

S((20),±) 1=?
S((19, 1), 0) 1=? 1
S((18, 2), 0) ? 2 2
S((17, 3), 0) ? 1 2 1
S((16, 4), 0) ? 2 2
S((15, 5), 0) ? ≤ 2 1 2 1
S((14, 6), 0) ? ≤ 4 2 2
S((13, 7), 0) ? ≤ 2 1 2 1 2 1
S((12, 8), 0) 16 16 8 4 ? 2 2 2

S((11, 9), 0) 16 16 8 16 8 8 4 4 2 ? 2 1 2 1
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In particular, for n ≤ 23, the only decomposition numbers which cannot be recovered 
are [S((20 − a, a), 0) : D(10,8,2)] for 5 ≤ a ≤ 7 and those in the column of D(dbl(n))R .

Boxes in the above decomposition matrices point out parts of the different matrices 
where corresponding decomposition numbers are equal. Similar regions always exist when 
comparing decomposition matrices for n and n − 4 (due to formulas for decomposition 
numbers in the results in the introduction and [21, Theorem 1.4]).
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