
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use:

Constructing founder sets under allelic and non-allelic homologous recombination

Suggested Citation:
Bonnet, K., Marschall, T., & Dörr, D. (2023). Constructing founder sets under allelic and non-allelic
homologous recombination. Algorithms for molecular biology, 18, Article 15.
https://doi.org/10.1186/s13015-023-00241-3

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20241114-124801-9

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Konstantinn Bonnet, Tobias Marschall & Daniel Doerr

Article - Version of Record

Bonnet et al. Algorithms for Molecular Biology (2023) 18:15
https://doi.org/10.1186/s13015-023-00241-3

RESEARCH Open Access

© The Author(s) 2023, corrected publication 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver
(http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a
credit line to the data.

Algorithms for
Molecular Biology

Constructing founder sets under allelic
and non-allelic homologous recombination
Konstantinn Bonnet1, Tobias Marschall1* and Daniel Doerr1*

Abstract

Homologous recombination between the maternal and paternal copies of a chromosome is a key mechanism
for human inheritance and shapes population genetic properties of our species. However, a similar mechanism
can also act between different copies of the same sequence, then called non-allelic homologous recombination
(NAHR). This process can result in genomic rearrangements—including deletion, duplication, and inversion—and
is underlying many genomic disorders. Despite its importance for genome evolution and disease, there is a lack
of computational models to study genomic loci prone to NAHR. In this work, we propose such a computational
model, providing a unified framework for both (allelic) homologous recombination and NAHR. Our model repre-
sents a set of genomes as a graph, where haplotypes correspond to walks through this graph. We formulate two
founder set problems under our recombination model, provide flow-based algorithms for their solution, describe
exact methods to characterize the number of recombinations, and demonstrate scalability to problem instances
arising in practice.

Keywords Founder set reconstruction, Variation graph, Pangenomics, NAHR, Homologous recombination

Background
Twenty years ago, Esko Ukkonen introduced the problem
of inferring founder sets from haplotyped single nucleo-
tide polymorphism (SNP) sequences under allelic recom-
bination [1]. Ukkonen’s work has since inspired a wealth
of research addressing various aspects and applications of
founder set reconstruction ranging from the reconstruc-
tion of ancestral recombinations and pangenomics to
applications in phage evolution [2–4]. In its original set-
ting, the problem sets out from a given set of m sequences
of equal length n, where characters across sequences

residing at the same index position correspond to a SNP.
It then asks for a smallest set of sequences, called founder
set, such that each given sequence can be constructed
through a series of crossovers between sequences of the
founder set, where each segment between two successive
recombinations must meet a minimum length threshold.
The Minimum Founder Set problem is NP-complete in
general [5], but is solvable in linear time for the special
case of founder sets of size two [1, 6]. Since its introduc-
tion, various heuristics and approximations have been
proposed [6–8]. A variant of this problem restricts cross-
overs to coincide at certain positions, thereby decom-
posing the input sequences into a universally shared
succession of blocks. The resulting problem, known as
Minimum Segmentation Problem is polynomial [9]. In
his seminal paper, Ukkonen devised a O(n2m) algorithm
for its solution which has been substantially improved by
Norri et al. [10] to linear time, i.e. O(nm) by exploiting
the positional Burrows-Wheeler transform [11].

Just like the Minimum Founder Set Problem, the vast
majority of population genetic analyses and genome-wide

Tobias Marschall and Daniel Doerr are Joint last authors.

*Correspondence:
Tobias Marschall
tobias.marschall@hhu.de
Daniel Doerr
daniel.doerr@hhu.de
1 Institute for Medical Biometry and Bioinformatics, Medical Faculty,
and Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5,
40225 Düsseldorf, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00241-3&domain=pdf

Page 2 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

association studies have been focused on SNPs in the past
decades, neglecting more complex forms of variation—
mostly for technical difficulties in detecting them. In particu-
lar, structural variants (SVs), commonly defined as variants
of at least 50bp, have posed substantial challenges and stud-
ies based on short sequencing reads typically detect less than
half of all SVs present in a genome [12]. Recent technological
and algorithmic advances help to overcome these limitations
[13]. Long read technologies now enable haplotype-resolved
de novo assembly of human genomes [14], which in turn
enables a much more complete ascertainment of SVs [15]. In
2022, the first complete telomere-to-telomere assembly of a
human genome was announced [16], heralding a new era of
genomics where high-quality, haplotype-resolved assemblies
of complex repetitive genomic structures become broadly
available. Presently, the Human Pangenome Reference
Consortium (HPRC), is applying these techniques to gener-
ate a large panel of haplotype-resolved genome assemblies
from samples of diverse ancestries [17, 18]. These emerg-
ing data sets enable studying genetic loci involving dupli-
cated sequence, called segmental duplications (SDs), which
are amenable to NAHR, are therefore highly mutable, and
show complicated evolutionary trajectories [19, 20]. The
T2T-CHM13 study alone reports over 40 thousand segmen-
tal duplications that amount to 202Mb (6.6% of the human
genome) [16].

Interestingly, at loci with highly similar segments
arranged in opposite orientations, such as Segment 3 in
Fig. 1, NAHR can lead to inversion, i.e. the reversal of the
interior sequence (Segment 4 in Fig. 1). Because of being
flanked by a pair of copies of the same sequence (cf. Seg-
ment 3) that often comprises tens of thousands of bases,
such events have been largely undetectable by sequenc-
ing technologies with read lengths below the length of the
duplicated sequence; in particular by conventional short
read sequencing. Recent studies applying multiple tech-
nologies reveal that inversions affect tens of megabases

of sequence in a typical human genome [21]. Unlike most
other classes of genetic variation, inversions are often
recurrent with high mutation rates, that is, the same events
have happened multiple times in human history [22].
Depending on the structures of duplicated sequence at a
particular locus, individual human haplotypes can differ in
their potential for NAHR. This can have important impli-
cations for the risk for a range of genetic disorders caused
by NAHR-mediated mutations [22].

In the past two decades, various mathematical mod-
els and algorithms to study genome rearrangements have
been proposed. These range from the classic reversal [23,
24] and transposition [25] model to composed models for
two or more balanced rearrangements [26, 27], to general-
ized models such as the popular Double Cut and Join (DCJ)
[28, 29]. As the research in this field continues, advanced
models can additionally accommodate one or more types
of unbalanced rearrangements, i.e., deletion, insertion, and
duplication [30, 31]. Yet, none of these models adequately
considers sequence similarity as a prerequisite for NAHR,
which is a key molecular mechanism shaping many com-
plex loci in the human genome. In summary, there are
now technological opportunities to study the population
history of recalcitrant SD loci that are prone to genome
rearrangements and relevant to disease, but computational
models to facilitate this have so far been lacking.

This work addresses this deficit by proposing a rear-
rangement model that is based on the molecular mech-
anism of homologous recombination and by solving
variants of Ukkonen’s Founder Set Problem that can pro-
vide insights into the evolution of complex loci driven by
NAHR. The genome model underlying the approach at
hand represents DNA sequences at a level of abstraction
where they are already decomposed into genomic mark-
ers with assigned homologies. Here, our notion of homol-
ogy is a synonym for high DNA sequence similarity, as we
adopt the terminology underlying the concept of homol-
ogous recombination. Our model permits recombination
events to occur between homologous markers independ-
ent of their position within or between haplotypes, as
long as the markers’ orientations are respected. In other
words, a marker can only recombine with a homolo-
gous marker alongside the same direction, as illustrated
by Fig. 1, because a recombination event can only occur
between homologous markers if they are aligned to each
other. By virtue of recapitulating the underlying NAHR, it
implicitly allows for all the rearrangements this molecu-
lar mechanism can give rise to, including deletion, dupli-
cation, and inversion.

Marker decomposition and homology assignment
can be done in practice with genome graph building
tools such as MBG [32], minigraph [33], or pggb [34].
Our algorithms can work with any variation graph or

Fig. 1 Illustration of an NAHR-mediated inversion. Haplotype A
(black line) represents the original configuration, while haplotype
B (red line) can be derived from A by two recombination events
between inverted repeats of genomic marker 3 as indicated
by the red stars

Page 3 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

pangenome graph with nodes corresponding to homol-
ogous DNA segments and edges between segments
corresponding to observed adjacencies in a given set of
haplotypes.

Methods
Preliminaries
A (genomic) marker m is an element of the finite uni-
verse of markers denoted by M , and is associated
with a fragment of a double-stranded DNA molecule.
Each marker can be traversed in forward and reverse
direction. A marker in forward orientation (which is
the default orientation) is traversed from left to right.
Overline notation m indicates the reversal of a marker
m, which is carried out relative to its orientation, i.e.,
m = m . Similarly, M represents the set of all reversed
markers. We designate two forward markers {s, S} ⊆ M
as terminal markers. In what follows, we study terminal
sequences, that is, sequences drawn from the alphabet
of oriented markers M ∪M that start with s or S , end
in S or s and do not contain any further terminal mark-
ers in between. A terminal sequence can be traversed in
forward and reverse direction. A haplotype is a termi-
nal sequence that starts with s (source) and ends with S
(sink).

Example 1 Consider in the following two sequences
of genomic markers A and X drawn from the universe
of markers M = {s,1,2,3,4,S} , where A = s12343S
and X = s1234321s . Sequence A starts and ends with
terminal markers s and S , respectively, thus constitut-
ing a haplotype over M . Conversely, X starts with s and
ends in s and therefore is a terminal sequence, but not a
haplotype.

Given a sequence A, |A| indicates the length of A which
corresponds to the number of A’s constituting elements.
A defines the reverse complementation of sequence A,
i.e., the simultaneous reversal of the sequence and its
constituting elements. The element at the ith position
in sequence A is denoted by A[i]. A segment of sequence
A starting at position i and ending at and including
position j is denoted by A[i..j]. Then, A[..i] := A[1..i]
and A[i..] := A[i..|A|] denote the prefix and suffix of A,
respectively. Given two sequences A and B, then B⊳ A
indicates that B is a segment of A, i.e., |B| ≤ |A| and there
exists some i ∈ [1, |A| − |B|] with B = A[i..i + |B| − 1] .
Finally, the operator “ + ” indicates the concatenation of
two sequences.

Example 1 (cont’d) The length of A is |A| = 7 ; its reverse
complement is A = S34321s ; A[4..6] is a segment of
A and corresponds to sequence 343 , and consequently
343 ⊆ A holds true; The segments X[..6] = s12343 and
A[7..] = S are a prefix and a suffix of X and A, respec-
tively; The concatenation of prefix X[..6] and suffix A[7..]
results in haplotype X[..6] + A[7..] = s12343S.

A recombination is an operation that acts on a shared
oriented marker m of any two terminal sequences A and
B: let A[i] = B[j] = m ; recombination χ(A,B, i, j) pro-
duces terminal sequence C = A[..i] + B[j + 1..] . For a
given set of haplotypes H , span (H) denotes the span,
i.e., the set of all haplotypes generated by applying χ on
haplotypes H and the resulting terminal sequences.
More precisely, let � be the universe of terminal
sequences, defined recursively by H ∪H ⊆ � such that
for any A,B ∈ � with some A[i] = B[j] the recombinant
C = A[..i] + B[j + 1..] and its reverse complement C is
also in � . Then span (H) := {A ∈ � | A is a haplotype} .
Accordingly, we also say that “ H is a generating set of
span (H)”. Conversely, given any (possibly infinite) set of
haplotypes S and some H ⊆ S , H is a generating set of S
if and only if span (H) = S.

Example 1 (cont’d) Recombination χ(A,A, 4, 2) pro-
duces terminal sequence X = s1234321s . Subse-
quent recombination χ(X ,A, 6, 6) produces haplotype
B = s12343S . If {A} is a given set of haplotypes, then
span ({A}) = {A,B}.

In this paper, we study the following three problems:

Problem 1 (Founder Set) Given a set of haplotypes H ,
find a generating set F such that span (F) = span (H)
and

∑

A∈F |A| is minimized.

We minimize total length because current knowledge
on the evolution of complex genomic loci indicates their
contained segmental duplications often causes them to
expand over time [35]. Consequently we expect ances-
tral loci to be more compact and contain fewer duplica-
tions. We prefer this formulation over minimizing the
founder set’s cardinality, because the latter would allow
for solutions with founder sequences of unbounded
length, which is biologically irrelevant. We call a solu-
tion to Problem 1 a founder set and its members founder
sequences. The following problem is related to Ukkonen’s
Minimum Segmentation Problem [1]:

Problem 2 (Recombination Count) Given a set of
terminal sequences T and a terminal sequence Q,

Page 4 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

count the number of recombinations r of the form
Ak+1 = χ(Ak ,Tk , ·, ·) , with 0 ≤ k ≤ r and T0, ..,Tr ∈ T ,
that are necessary to generate Q from T , i.e., A0 ∈ T and
Q = Ar , if feasible and report its infeasibility otherwise.

At last, the combination of Problems 1 and 2 motivates
the following:

Problem 3 (Parsimonious Founder Set) Given a set of
haplotypes H , find a founder set F that minimizes the
total number of recombinations to generate all founder
sequences from H.

Constructing founder sets
In this section, we present a three-step solution to Prob-
lem 1 that is based on a network flow analysis of the vari-
ation graph over the input set of haplotypes. To this end,
we introduce the notion of variation graphs and describe
their construction for our specific setting. Subsequently,
we define network flow and detail how a founder set
can be derived. Our proposed network flow problem is
subordinate to the Chinese Postman Problem on edge-
colored multigraphs for which Gutin et al. proposed
a polynomial algorithm [36]. Consequently, all other
steps of our solution being polynomial, Problem 1 can
be solved in polynomial time. However, we propose an
integer linear program in lieu of Gutin et al’s impractical
algorithm. Then, in Section Results we show feasibility
of our approach in experiments on simulated variation
graphs and an exemplar biological data set.

Variation graph construction. We now address the con-
struction of variation graph GH = (V ,E ∪

−→
E) from a

given set of haplotypes H . Graph GH is an undirected
edge-colored multigraph where each edge can have one
of two colors corresponding to their membership in edge
sets E and −→E . In constructing GH , each marker m of the
universe of forward-oriented markers M is represented
by a tuple of its extremities (mt,mh) also called “tail” and
“head” of m, respectively, and its reverse-oriented coun-
terpart m is represented as (mh,mt) . (Note that our nota-
tion is based on common practice of illustrating markers
as arrows, that, in natural reading direction, face from
left, i.e., tail of the arrow, to right, i.e., head of the arrow.)
Node set V of graph GH corresponds to the set of all
marker extremities, and each marker m ∈ M gives rise
to one marker edge {mt,mh} ∈

−→
E . Further, any two (not

necessarily distinct) nodes mb
1,m

c
2 ∈ V are connected

by one adjacency edge {mb
1,m

c
2} ∈ E if they occur in one

of the haplotypes either in forward or reverse order.
More formally, there is an adjacency edge {mb

1,m
c
2} ∈ E

if and only if there exists a sequence A ∈ H ∪H with
A = ..m1m2.. such that m1 = (ma

1,m
b
1) , m2 = (mc

2,m
d
2)

and {a, b} = {c, d} = {t, h}.

Example 2 Let H1 = s12343S , H2 = s1112343S ,
H3 = s123432343S , and H4 = s12S , then the varia-
tion graph GH of H = {H1,H2,H3,H4} is as illustrated
in Fig. 2, with marker edges drawn in gray and adjacency
edges in black.

Proposition 1 Let GH be the variation graph of hap-
lotypes H , and X the set of all walks between terminal
markers st and Sh in GH with edges alternating between E
and −→E , then span (H) = X .

Proof ⊆ Observe that no recombination can create a
new pair of consecutive markers m1m2 that is not con-
tained in any sequence A ∈ H ∪H . Therefore, each
haplotype B ∈ span (H) is a succession of consecutive
markers drawn from sequences in H ∪H , i.e., B can be
delineated in GH by following adjacency edges corre-
sponding to its succession of consecutive markers.

⊇ Given an alternating walk X = (st, sh, . . . , St, Sh) ∈ X ,
we show how to express X as a series of recombination
events:

(a) Pick some haplotype A ∈ H and initialize i ← 2;
(b) Let B ∈ H ∪H be a sequence such that for some

position j, B[j..j + 1] = m1m2 with m1 = X[i − 1..i]
and m2 = X[i + 1..i + 2] . Then A ← χ(A,B, i/2, j).

(c) Increase i by 2 and repeat step b unless i = |X | − 2.

 Observe that by construction of the variation graph GH ,
a suitable sequence B ∈ H ∪H must exist in each itera-
tion of step b. �

Defining flows on variation graphs. We determine a mini-
mum set of founder sequences by solving a network flow

Fig. 2 Illustration of variation graph from Example 2

Page 5 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

problem in variation graph GH where flow is allowed to
travel along adjacency edges in either direction. Algo-
rithm 1 describes the network flow problem. Each node is
associated with two capacities corresponding to incom-
ing and outgoing flow

time and which we describe below, adapted to our cir-
cumstances. The idea is to perform a random walk in
the graph from source to sink or within a cycle, thereby
consuming flow along adjacency edges until all flow is

Fig. 3 Network flow solution on variation graph GH of Example 2

Algorithm 1 A network flow solution to Problem 1.

Objective:

Minimize
∑

u,v∈V

φ(u, v)
Flow capacities:

(F.01) i(v) :=
∑

u∈V φ(u, v) ∀ v ∈ V \ {st, Sh} (incoming flow)

(F.02) o(v) :=
∑

u∈V φ(v, u) (outgoing flow)

(F.03) o(st) := i(Sh) := 0 (flow direction st → Sh)

i(st), o(Sh) ≥ 0
Constraints:

(C.01) φ(u, v) ∈ N ∀ u, v ∈ V (constrain flow to integer)

(C.02) φ(u, v) = φ(v, u) = 0 ∀ {u, v ∈�} E (constrain travel of flow)

(C.03) φ(u, v) + φ(v, u) ≥ 1 ∀ {u, v} ∈ E (flow coverage)

(C.04) i(mt) = o(mh) ∀ m ∈ M (flow conservation)

i(mh) = o(mt)

We then find a non-negative flow φ : V × V → N such
that the total flow

∑

u,v∈V φ(u, v) of graph GH is mini-
mized and satisfies constraints. Note that the flow can
travel in both directions of an edge {u, v} ∈ E and that
φ(u, v) = φ(v,u) does not hold true in general.

Example 2 (cont’d) The drawing in Fig. 3 illustrates a
flow solution on variation graph GH , with the direction
and amount of flow along adjacency edges indicated by
labeled arrowed arcs.

Deriving haplotypes from flows. By applying the Flow
Decomposition Theorem [37, p. 80f], any flow, i.e., solu-
tion to the above-specified constraints, is decomposable
into a set of alternating paths going from source st to sink
Sh and a set of alternating cycles. Ahuja et al. [37] give a
simple and efficient algorithm that does so in polynomial

depleted. The proof of the algorithm remains unchanged
to that given by Ahuja et al., thus is not repeated here.

1 Set u ← st.
2 Each node is adjacent to exactly one other node

through a marker edge. Setting out from cur-
rent node u, traverse this incident marker edge to
some node v, choose any neighbor w of v for which
φ(v,w) > 1 . Follow the adjacency edge to v and
decrease the flow φ(v,w) by 1. Set u ← w.

3 As long as u = St do as follows: if u has been visited
in the traversal before, then extract the correspond-
ing alternating cycle from the recorded sequence and
report it. Proceed with the traversal by repeating Step
2.

4 However, if u = St , follow the marker edge to Sh and
report the recorded sequence as a path.

5 If sh is incident with edges with positive flow, proceed
with Step 1. Otherwise, there still might be strictly
positive flow remaining in the graph correspond-
ing to unreported cycles. In that case, pick any node
u ← ma such that for some node w, φ(mb,w) > 0 ,
{a, b} = {t, h} and m ∈ M , and proceed with Step 2
in order to report the next cycle.

Page 6 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

Example 2 (cont’d) The components of the flow solu-
tion on variation graph GH comprise two cycles C1 and
C2, and two (st , Sh)-paths P1 and P2 are illustrated in
Fig. 5.

What remains is the integration of cycles into walks
that then correspond to the haplotypes of the founder
set. The integration is facilitated by a graph structure, the
component graph. The component graph G′ = (V ′,E′, l)
is an edge-labeled, directed multigraph, where, in its ini-
tial construction, each alternating (st, Sh)-path and each
cycle reported during flow decomposition is represented
by a distinct node of V ′ . In the component graph G′ , each
cycle c of the flow decomposition sharing one or more
markers with another component c′ is connected by one
or more directed edges (c, c′) to that component, with
each edge’s label l(c, c′) corresponding to one distinct
shared marker, oriented according to the their succession
in c (which may not be the same as in c′). The component
graph is then successively deconstructed until empty as
follows:

1 Remove and report all (st, Sh)-walks with in-degree 0
from node set V ′ . Note that by construction, (st, Sh)
-walks have out-degree 0, i.e., those with in-degree 0
are singleton in G′.

2 Pick a cycle c ∈ V ′ with in-degree 0, or, if none such
exists, any arbitrary cycle c ∈ V ′.

3 Pick an outgoing edge (c, c′) ∈ E′ such that c′ is a
(st, Sh)-walk. If no such c′ exists, c is only adjacent
to cycles, out of which one c′ is picked arbitrarily.
Let (ma,mb) ← l(c, c′) , {a, b} = {t, h} . If marker m is
embedded in c′ in same orientation, i.e. c′ = ..mamb.. ,
then linearize c in m, i.e., c = mbc1..ck−1m

a , and inte-
grate it into c′ such that c′ ← ..mambc1..ck−1m

amb.. .
Otherwise, integrate the reversed linearization of c,
i.e, c′ ← ..mbmack−1..c1m

bma.. . Remove cycle c and
its outgoing edges from component graph G′.

4 Proceed with step 1 until no more components
remain and all (st, Sh)-walks are reported.

The search for components with in-degree 0 can be effi-
ciently implemented through preorder traversal of G′ .
Note that each cycle must have at least one outgoing
edge and that ultimately all cycles must be integrable
into a (st, Sh)-walk, otherwise this would imply that GH
contains a disconnected, circular component that is not
reachable by an alternating path from source st to sink Sh ,
thus contradicting the correctness of GH ’s construction.
The reported (st, Sh)-walks represent the wanted haplo-
types of a founder set.

Example 2 (cont’d) The plots in Fig. 4 depict the com-
ponent graph of components C1, C2, P1, and P2 (left)
and the final two (st , Sh)-walks that collectively represent
a founder set of H (right).

We define the multiplicity of a consecutive marker pair
m1m2 , for any m1,m2 ∈ M ∪M , as the number of times
it appears as segment in forward or reverse order in a set
of sequences X and introduce the following function for
its retrieval:

Theorem 1 Let F ⊆ span (H) , F is a solution to Prob-
lem 1 if and only if µF corresponds to a minimum net-
work flow in GH.

Proof ⇒ Any flow of variation graph GH = (V ,E)
is decomposable into a set of haplotypes X , as dem-
onstrated above. Observe that the above-listed flow
constraints enforce the derived haplotypes X to cover
the entire graph GH and consequently GX = GH .
This implies that span (X) = span (H) . Further, the
total number of consecutive markers in a haplotype
sequence A equals |A| − 1 and therefore solutions to
the specified network flow problem minimize quantity
∑

u,v∈V φ(u, v) =
∑

A∈X |A| − |X | . This is equivalent
to minimizing

∑

A∈X |A| , because it is not possible to
reduce the founder set size by concatenating two or more
founder sequences without increasing the number of
consecutive markers by an equal amount. Conversely, in
the network flow specification, the sink node has no out-
going flow to the source node and therefore any founder

µX (m1,m2) = |{(A, i) | A[i..i + 1]

= m1m2 or A[i..i + 1]

= m2m1 : A ∈ X }|

Fig. 4 Component graph of components C1, C2, P1, and P2 (left)
and a founder set of H (right) from Example 2

Fig. 5 Components of flow solution on variation graph GH
of Example 2

Page 7 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

set derived by a flow solution cannot be reduced by
concatenation.

⇐ We show that every founder set is also a solu-
tion to the specified minimum network flow problem.
Assume that F is a founder set of haplotypes H and
observe that multiplicities µF correspond to a valid
flow φ in GH . Now assume that there exists another
flow φ′ such that

∑

u,v∈V φ′(u, v) <
∑

u,v∈V φ(u, v)

=
∑

A∈F |A| − |F | . Then, following the algorithm above,
φ′ can be decomposed into haplotype set F ′ such that
∑

A∈F ′ |A| − |F ′| <
∑

A∈F |A| − |F | , contradicting the
premise that F is a solution to Problem 1. �

Counting recombinations in founder sequences
We now provide a general algorithm for solving Prob-
lem 2. We show how this algorithm can be implemented
to scale linearly with the input set of terminal sequences
T and query sequence Q in time and space by utilizing
generalized suffix trees. Supplementary Note N2 further
describes a solution based on suffix arrays that has the
same asymptotic runtime and space guarantees, but is
considered more practical. Our approach builds on the
concept that each terminal sequence Q that can be gener-
ated from set T is segmentable into a set of overlapping
segments, where each such segment corresponds to a
segment in a terminal sequence of T . We call these seg-
ments T -blocks for the remainder of this manuscript.

Lemma 2 Q can be generated from terminal sequences
T if and only if Q is segmentable into a sequence of over-
lapping T -blocks D = {Q[..i1],Q[i1..i2], ..,Q[in..]} , with
1 < i1 < .. < in < |Q| , i.e., for each D ∈ D , ∃ A ∈ T ∪ T
with D ⊳ A.

Proof ⇒ If Q can be generated from T then there
exists a series of recombinations Q1 ← χ(A1,A2, i1, k1) ,
Q2 ← χ(Q1,A3, i2, k2),.., Qm ← χ(Qm−2,Am, im, km)
such that A1, ..,Am ∈ T ∪ T and Qm = Q . Conse-
quently, Q can be segmented into the set of overlapping
T -blocks D = {A1[..i1],A2[k1..k1 + i2 − i1], ..,Am[km..]} .
⇐ For a given segmentation D = {D1, ..,Dn} , Q is gen-
erated by a series of recombinations from T as fol-
lows: Let Q1[..i1] = D1 , Q1 ∈ T ∪ T ; For each x in 2..n,
Qx ← χ(Qx−1,Ax, ix, k) where Ax[k ..k + ix − ix−1] = Dx ,
Ax ∈ T ; Observe that Qn = Q. �

Finding a minimum T -block segmentation is equiva-
lent to computing the minimum number of recom-
binations—the former differs in size from the lat-
ter only by an increment of 1. The recursive function
RT : � → N defined below calculates the number of

recombinations to generate query sequence Q from ter-
minal sequences T by moving from one maximal T -
block of Q to the next. To this end, we define LT (Q) as
the length of the longest prefix of Q that is a T -block, i.e.,
LT (Q) := arg maxk

{

Q[..k]⊳ A | A ∈ T ∪ T
}

.

RT (Q) = ∞ indicates that Q cannot be generated from
T . We prove that the algorithm is optimal, i.e., computes
the minimum number of recombinations:

Proof We prove this by induction over the number of
recombinations identified by Eq. 1. Note that the total
number of recombinations is bounded by the length of
query Q. We show that for every k with 0 ≤ k < |Q| that
RT (Q[..ik]) reports the minimum number of recombina-
tions for sequence Q[..ik] .

 (IB) In iteration k = 0 , R(·) receives the full-length
query sequence Q and chooses the longest prefix of
query Q that is a T -block. It is clear that this is an
optimal choice, since choosing a smaller prefix can
only increase the number of recombinations. Note
that if l ≤ 1 , Q cannot be generated from T and
R(Q) returns ∞.

 (IS) Let Q[ik−1..ik] be the T -block identified in the k-th
recurrence of RT with the current query sequence
being Q[ik ..] . In step k + 1 , RT will again identify
the segment D = Q[ik ..ik + l] of maximal length l
that is a T -block.

 Let us now claim that there is an shorter sequence
of T -blocks Q[j1..j2],Q[j2, j3], . . .Q[jk−1, jk] and
ik + l = jk , as illustrated in Fig. 6. Then there
must be some 0 ≤ k⋆ ≤ k for which jk⋆ > ik⋆ . But
if there were indeed a T -block Q[jk⋆−1..jk⋆] , then
Q[ik⋆−1..jk⋆] is a suffix of Q[jk⋆−1..jk⋆] and that
would be the longest common prefix chosen by
R(·) in iteration ik⋆−1 , contradicting the definition
of R(·) . Therefore, a shorter sequences of T -blocks
cannot exist. �

The algorithm can efficiently count recombinations by
utilizing the suffix tree data structure [38]. To this end,
the suffix tree is constructed on sequence T$ correspond-
ing to a concatenation of terminal sequences T ∪ T of
any given order, terminated by sentinel “ $ ”. In doing so,
we assume that terminal markers s, s, S , and S abide lexi-
cographic order $ < {S, s} < {s, S} < m ∀m ∈ M ∪M .
Suffix trees can be constructed in linear time and space
[39], and matching substrings in T$ can be performed in

(1)

RT (Q) =







0 if |Q| = LT (Q)

∞ else if LT (Q) ≤ 1
1+ RT (Q[LT (Q)..]) otherwise

Page 8 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

time linear to the length of the matching. To assess the
time complexity of the recursion, observe that RT (Q) is
recursed at most |Q| − 1 times, if all T -blocks have length
2. We conclude:

Theorem 3 Problem 2 is solvable in O(|T | + |Q|) time
and space.

Minimizing recombinations in founder sequences
We now present an algorithm towards solving Problem 3,
i.e., the problem of finding a founder set that minimizes
the number of recombinations needed for its construc-
tion from a given set of haplotypes H . Solving this problem
requires the simultaneous computation of solutions to both
the Founder Set and the Recombination Count problem
and constitutes in combing through an exponentially large
search space. We simplify the problem by presuming that
the multiplicities of consecutive marker pairs in a solution
to the Parsimonious Founder Set Problem are also opti-
mal under the Founder Set problem. In other words, our
approach is exact under the assumption that the overall
multiplicity of each pair of consecutive markers in a founder
set that is a solution to Problem 3 is known, yet the pair’s
particular orientation and location in the founder sequences
are not. To this end, we presume a function µ̂F (m1,m2)
acting as oracle for the overall multiplicity of any given pair
of consecutive oriented markers m1,m2 ∈ M ∪M in a
solution F to Problem 3. More specifically, µ̂F (m1,m2)
reports the total number of occurrences of m1m2 and m2m1
in founder set F . Note that our experiments directly use the
results of Problem 1 as input for Problem 3, i.e., µ̂F (m1,m2)
reports the number of occurrences of (m1,m2) in a solu-
tion to Problem 1. This makes our experimental solutions
to Problem 3 heuristic. In addition, we make use of func-
tion γ̂F (m) :=

∑

m′∈M∪M µ̂F (m,m′) to retrieve the mul-
tiplicity of any marker m ∈ M ∪M . Note that µ̂F and γ̂F
are symmetric with respect to the relative orientation of

markers, µ̂F (m1,m2) = µ̂F (m2,m1) and γ̂F (m) = γ̂F (m) .
Our solution makes use of the flow graph that is defined in
the subsequent paragraph. We calculate a matching in the
flow graph that describes a set of founder sequences, each
corresponding to a succession of segments of haplotypes H .
The objective of the matching is to minimize the total num-
ber of H-blocks across all founder sequences which is equiv-
alent to minimizing the number of recombinations for their
construction from haplotype set H.

Flow graph construction. The flow graph
GH,µ̂F

= (Vµ̂F
,Eµ̂F

∪
−−→
Eµ̂F

) is a directed edge-colored
multigraph with adjacency edges Eµ̂F

 and marker edges
−−→
Eµ̂F

 ,
where each marker extremity ma with m ∈ M and a ∈ {t, h} ,
gives rise to 2 · γ̂F (m) elements in node set Vµ̂F

 , represent-
ing γ̂F (m) many in (i) and γ̂F (m) many out (o) nodes. Hence,
each node in the flow graph is represented by a triple of the
form {i, o} ×Mt ∪Mh × N with the complete vertex set
being Vµ̂F

= {(i,ma, x) | m ∈ M, a ∈ {t, h}, x ∈ 1..γ̂F (m)}∪

{(o,ma, x) | m ∈ M, a ∈ {t, h}, x ∈ 1..γ̂F (m)} . Each out
node u ∈ Vµ̂F

\({(i, Sh, x) | 1..γ̂F (S)} ∪ {(o, st, x) | 1..γ̂F (s)})
is incident with one and only one directed adjacency edge
(u, v) connecting u to some in node v thereby realizing one
occurrence of its representing pair of consecutive oriented
markers in a founder sequence. Conversely, each forward-
oriented marker m ∈ M contributes γ̂F (m)2 many directed
marker edges that connect in/tail nodes with out/head
nodes, i.e., {((i,mt, x), (o,mh, y)) | x, y ∈ 1..γ̂F (m)} . Analo-
gously, each reverse-oriented marker m ∈ M contributes
γ̂F (m)2 many in/head-to-out/tail-directed marker edges
{((i,mh, x), (o,mt, y)) | x, y ∈ 1..γ̂F (m)}.

Example 2 (cont’d) Fig. 7 visualizes the flow graph
GH,µ̂F

 for the given set of haplotypes H = {s12343S ,
s1112343S , s123432343S , s12S} and a given µ̂F .

Graph decomposition. A perfect matching of marker
edges in flow graph GH,µ̂F

 produces a set of alternating
walks and alternating cycles through GH,µ̂F

 , yet only half
of the graph is eligible to form a solution to Problem 3.
More precisely, for each marker m ∈ M , exactly half of
the number of its associated nodes in Vµ̂F

 must be satu-
rated, i.e., incident with a matching edge. The other half
as well as their incident edges must remain unsaturated.
Further, we aim to admit only matchings that consist
entirely of alternating ((i, st, x), (o, Sh, y))-walks, because
only those correspond to valid haplotypes of span (H).

Fig. 6 Illustration of the contradictory claim a shorter sequence
of T -blocks can be constructed than found by Eq. 1. The red dashed
line indicates the contradictory situation that ik⋆ < jk⋆ . In that case
Q[ik⋆−1..jk⋆] would have been chosen as longest T -block in recursion
step k⋆ − 1

Page 9 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

At last, we aim to assign to each saturated node v ∈ Vµ̂F

a position in some haplotype A of given haplotype set H .
That way, we are able to determine whether the incident
adjacency edge serves as continuation of the associated hap-
loblock of A, or whether the incident saturated marker edge
implies a recombination between two distinct H-blocks.

The Integer Linear Program shown in Algorithm 2
implements the above-stated constraints.

Example 2 (cont’d) Fig. 8 illustrates a matching that
is solution to Algorithm 2 for GH,µ̂F

 . The founder
sequences are spelled out on the bottom, colored by
haplotype (red, blue and green for haplotypes 2, 3 and
4 respectively). Unsaturated nodes and edges are grayed
out, haplotype assignments implied by colored paths.
The solution features two recombinations, marked by “ ⋆ ”
along their associated marker edges.

Objective. The ILP maximizes the sum over all t vari-
ables, which corresponds to finding a set of founder
sequences that has a maximum number of marker pairs
m1m2 associated with consecutive positions in any of
the haplotypes H . Conversely, any marker pair that is
not linked to a position in a haplotype of H represents a
recombination event.

Matching constraints. Each edge (u, v) ∈ Eµ̂F
∪
−−→
Eµ̂F

and node w ∈ Vµ̂F

 of flow graph GH,µ̂F
 is associated with

binary variables of x(u, v) and y(w) , respectively, that deter-
mine their saturation in a solution (cf. domains D.1 and D.2).
Constraint C.01 ensures that each saturated marker edge is
incident with saturated nodes. Perfect matching constraints,
i.e., constraints that impose each saturated node being
incident with exactly one marker edge, are implemented
by constraint C.02. Similarly, constraint C.03 ensures that
an adjacency edge is saturated if and only if its incident
nodes are saturated. In other words, constraints C.01-C.03
together ensure that each component of the saturated graph
corresponds to an alternating path or cycle component (the

latter being prohibited by further constraints). The follow-
ing two constraints C.04 and C.05 control the overall size of
the saturated graph. In doing so, they ensure that, in a solu-
tion to Problem 3, the number of saturated nodes and adja-
cency edges matches the postulated multiplicity of markers
γ̂F (m) , m ∈ M ∪M , and pairs of consecutive markers
µ̂F (m1,m2) , m1,m2 ∈ M ∪M , respectively.

Path constraints. Constraints C.05-C.08 force each
component of the saturated graph to start and end in
nodes associated with source st and sink Sh , respec-
tively, thereby ruling out any cycles. To this end, they
make use of a set of integer variables f(v) over all verti-
ces v ∈ Vµ̂F

 (cf. Domain D.03) that define an increasing
flow within each saturated component that is bounded by
constant T corresponding to the total flow of the graph,
i.e., T :=

∑

m∈M γ̂F (m) . In each saturated marker edge,
the flow is increased by 1 while along each adjacency
edge, flow is kept constant. This prevents the formation
of saturated cycles, because their flow would be infinite.
Lastly, constraint C.08 preclude paths from starting in Sh
or ending in st , leaving only one option for any saturated
component open, that is, the formation of a (st, Sh)-path.

Haplotype assignment. Each node v ∈ Vµ̂F
 in a solution to

the ILP is associated with exactly one position j ∈ 1..|A| in a
haplotype A of H , recorded by binary variables c(A[j], v) .Q
Moreover, any marker edge whose incident pair of nodes
is associated with the same position of the same haplotype
corresponds to a H-block, i.e, no recombination within this
marker has taken place. Each marker edge (u, v) ∈

−−→
Eµ̂F

that is linked by the ILP solver to a position j in a haplo-
type A ∈ H contributes a score unit to the objective func-
tion. These score units are encoded by binary variables
t(A[j],u, v) (cf. domain D.05). Constraint C.09 ensures
that each marker is associated with exactly one position j
in a haplotype A of set H ∪H , while C.10 confines incident
nodes of adjacency edges to represent a consecutive marker
pair A[j..j + 1] . At last, constraint C.11 allows t variables
of marker edges to take on value 1 only if that marker edge
is saturated and its incident nodes are associated with the
same haplotype position.

Fig. 7 Flow graph GH,µ̂F
 of Example 2. In nodes and out nodes are

highlighted in red and blue, respectively. For clarity, the direction
of marker edges (gray edges; directed from in to out node) is omitted
in the illustration

Fig. 8 Solution to Algorithm 2 for GH,µ̂F
 for Example 2

Page 10 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

2

Page 11 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

Results
We implemented our methods in the programming lan-
guage Rust [40] and used Gurobi [41] as the solver. Our
software is open source and publicly available online [42].
To run Algorithm 2 on a given set of haplotypes H , we
estimated the overall multiplicity µ̂F (m1,m2) of pairs of
consecutive markers m1m2 from a network flow solu-
tion to Problem 1 on H . Note that, because there is no
guarantee that an optimal solution to Problem 3 exists
that has also optimal flow under Problem 1, our approach
does not guarantee exact solutions.

For benchmarking purposes, we ran Gurobi single-
threaded and recorded wall clock time (in seconds)
and Proportional Set Size (PSS) (in Megabytes (MB))
for memory usage. The choice of using PSS rather than
measures such as Resident Set Size (RSS) or Unit Set
Size (USS) is largely arbitrary, however all three meas-
ures were highly similar in all experiments and within
100 MB of each other at the extreme. Optimization time
was capped at 30 min, beyond which the solver stops and
returns its best-effort solution found thus far.

Experimental data
We benchmarked the performance of our algorithms
by conducting experiments on both simulated data and
a real-world data set. The former presumed a simulator,
capable of generating haplotypes with duplicated and
inverted markers that can produce intricate homolo-
gous recombinations while providing control over the
degree of complexity. To this end, we implemented our

own simulation tool that constructs a single haplotype
sequence sampled at random to serve as seed. This seed
sequence is adjustable by the following parameters: (i)
number of distinct markers, i.e., the size of its variation
graph, (ii) ratio of duplications, i.e., the number of addi-
tional edges inducing duplications in a walk of the graph,
(iii) ratio of inversions, i.e., the proportion of inverted
orientations within the set of duplications, and lastly (iv)
the number of haplotypes that are input to subsequent
founder set reconstruction. The latter are generated by
performing random walks in the seed sequence’s varia-
tion graph and retaining only those leading from source
to sink. In doing so, our simulator does not report nor
have knowledge of a true founder set. Our simulator, dis-
cussed in more detail in Supplementary Note N1, enables
us to explore various parameterizations that match dif-
ferent situations in biological data.

One important point concerns co-optimality. Prob-
lems 1 and 3 do not guarantee a unique solution. In
fact, the pool of co-optimal solutions is often large for
both problems. One contributing factor to co-optimality
are cycles that are shared across multiple haplotypes,
because they can be integrated in different orders. Fur-
ther, the solution does not provide any information that
could enable one to generate all co-optimal solutions nor
discern between them, making a measure of accuracy
challenging, since there is no guarantee that the “correct”
founder sequence(s) will be seen in any number of trials.

In addition to simulated data, we applied our methods
on a biological data set from the human 1p36.13 locus
described by Porubsky et al. [22] to demonstrate the
computational performance on realistic instances.

Simulation experiments
To assess the impact of parameter configurations on
the results, we ran a number of different experiments
wherein all but one parameters are fixed. A reasonable
choice of constants seemed to be 100 distinct markers,
10% of duplications, 10% of inversions and 10 haplotypes,
motivated by our data on the 1p36.13 locus (8 markers,
68 haplotypes, 57% of duplications) and statistics com-
piled by Porubsky et al. [22] (6− 7% duplications in the
whole genome, < 1% inversions).

Reduction in number of recombinations. To evaluate the
efficacy of our solution to Problem 3, we compared the
number of recombinations returned by Algorithm 2 to
that in a solution obtained by our network flow algorithm
for Problem 1. To this end, we set the output of Algo-
rithm 1 against an implementation of a solution to Prob-
lem 2, described in further detail in Supplementary Note
N2. Figure 9 summarizes the outcome of this experiment.

Fig. 9 Mean number of recombinations by the size of the graph.
Experiments were ran with values ranging from 10 to 200 in for the
number of markers, in increments of 10. The ratio of duplications
and of inversions was fixed to 10%, and number of haplotypes to 10.
Each colored dot represents the mean number of recombinations
over 50 replicates for one parameter set, after random assignment
trials (blue) and after optimization (red)

Page 12 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

Overall, Algorithm 2 found a solution with fewer recom-
binations in all instances but a few where Gurobi returned
barely best-effort solutions after reaching the time limit of
30 min, all of which exhibited a gap of at least 100%. The
parameter settings in those cases were extremal.

Across all experiments, the mean estimated number of
recombinations increased linearly by approximately 1.7
per 100 markers after minimization, compared to 4.5 per
100 without it. The values reached respectively 3.8 and
9.1 at 200 markers. The simulations here were carried out
with a fixed number of haplotypes and ratios of dupli-
cations and of inversions. Results for experiments with
other variable parameters are shown in Additional file 1:
Figure S1.

Flow solution benchmark. Computing solutions with
our network flow algorithm proved to be in almost all
of our experiments near-instantaneous. By varying
the number of distinct markers, the algorithm’s per-
formance begins to deteriorate only with very large
instances beyond 100k distinct markers and becomes
excruciating for instances above 1M markers. When

varying other parameters, we fixed the number of dis-
tinct markers to 100k rather than 100. Under 100k
markers, execution completed after a mean wall clock
time of 3.4 ± 2.0 seconds. In 95% of all experiments,
the solver’s runtime was too short to make sufficient
measurements for benchmarking memory usage; the
maximum PSS for the remaining ones measured at
78 MB. Over the 100k mark, both the graph size and
duplication ratio began to reduce performance, with an
average runtime of 19.7± 8.7 s. The ratio of inversions
on the other hand did not affect performance (Suppl.
Figure S3). We measured peak memory consumption
at 758 MB across all conditions, which also occurred
only at the very extremes of 100k distinct markers and a
100% ratio of duplications (Fig. 10).

Recombination minimization benchmark. As shown
previously, Algorithm 2 successfully reduces the num-
ber of recombinations in solutions to Problem 1. How-
ever, its runtime increased dramatically with only
moderate increments of any but one parameter of our
simulator, the ratio of inversions, which did not play

Fig. 10 Problem 1, flow computational performance benchmarks. Runtime in seconds (upper panels) and peak PSS in MB (lower panels), as a function
of the number of markers (left) and of the ratio of duplications (right). For each experiment, the remaining parameters are fixed as indicated above.
The abbreviations read as follows: Nm number of markers; Rd ratio of duplications; and Ri, ratio of inverted duplications

Page 13 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

any role in performance (Additional file 1: Figure S2).
For the remaining three, going beyond instances of 200
distinct markers, 20% of duplications, or 40 haplotypes
typically did not allow for the optimization to finish in
a reasonable amount of time (Fig. 11, Additional file 1:
Figure S2). A similar but much less pronounced trend
was seen with memory usage, which still remained rel-
atively low. Peak memory usage was again observed at
extreme parameter values with a PSS of 1072 MB with
50 haplotypes.

Application: locus 1p36.13
We obtained data from 68 human haplotypes (two per
34 individuals) at the 1p36.13 locus from Porubsky et
al. [22] and the T2T-CHM13 human reference sequence
[16]. The sequences comprise only eight distinct markers,
terminal markers included. The sequences are attributed
to five super populations, out of which 18 are of African
origin (AFR), 16 of Eastern Asian (EAS), 12 of Admixed
American (AMR), 12 of European (EUR), and 10 are South
Asian (SAS). Their variation graph is densely connected
with 26 edges (Fig. 12). The 68 haplotypes display a high
degree of genetic diversity, with haplotype sequences
differing in order, orientation, and copy number of the

marker (Suppl. Table T1). Haplotype lengths in terms of
the number of markers vary from 15 to 26, with a median
of 19.

Our network flow algorithm determined that the data set
can be generated from a single founder sequence. Our ran-
domized algorithm for calculation of the minimum number
of recombinations in a solution to Problem 1 asserted 15

Fig. 11 Problem 3, recombinations minimization performance benchmarks. Plots analogous to Fig. 10. Runtime in seconds (upper panels) and peak
PSS in MB (lower panels), as a function of the number of markers (left) and of the ratio of duplications (right). For each experiment, the remaining
parameters are fixed as indicated above. The abbreviations read as follows: Nh number of haplotypes; Nm, number of markers; Rd ratio
of duplications; and Ri, ratio of inverted duplications

AFR-NA19036-h1

Source

Sink

Source

Sink

Fig. 12 Graphical representation of the variation graph for the 1p36.13
locus data. On the left, a 2D plot rendered by Bandage [43]. Markers
are represented as numbered colored rectangles, and the undirected
edges connecting them as black curves. Markers 1 and 8 correspond
respectively to the source and the sink of the graph. The right plot
shows the walk through the graph from source (blue) to sink (red)
corresponding to the sequence of haplotype AFR-NA19036-h1,
a sample of African origin from our experimental data. The
sample’s sequence in the previously established notation is:
123456543273243278

Page 14 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

recombinations after 1M trials, while Algorithm 1 obtained
an optimal solution that revealed only 9 recombinations.
Minimization completed in 60.3 s with a peak PSS of 225
MB. Note that there exists multiple other co-optimal solu-
tions; Suppl. Figure S4 is an illustration of one.

Discussion
The advent of sequencing technology and genome assem-
bly methodology to reconstruct full human genomes
enables research into previously inaccessible segmen-
tal duplication loci. This exciting opportunity entails a
demand for explanatory models that can infer evolu-
tionary relationships and histories of complex repeti-
tive genomic regions. In this work, we propose a model
capable of explaining a broad range of balanced and
unbalanced genome rearrangements. Our experiments
on simulated data and on the 1p36.13 locus demonstrate
that our algorithmic solutions to the founder set prob-
lem and the problem of minimizing recombinations in
founder sets are capable of processing realistic instances.
While the complexity of Problem 3 remains undeter-
mined, we conjecture it to be NP hard.

Importantly, the model we are proposing is based on a
molecular mechanism with a well-established role in shap-
ing segmental duplication architecture. In our view, many
past models of genome rearrangements have not suffi-
ciently captured biological reality and there is an important
need for further research aiming to incorporate knowledge
of molecular mechanisms into such models. For instance,
we envision future models that additionally include mech-
anisms like non-homologous end joining (NHEJ) and
mobile element insertions. Furthermore, actual rates at
which NAHR occurs depend on factors like the length of
the duplicated sequence, the sequence similarity, as well
as the presence of specific sequence motifs. In our current
approach, these aspects are only partially and indirectly
captured through the graph construction process. We aim
to address and model these factors explicitly in future work.

Abbreviations
DCJ Double cut and join
HPRC Human pangenome reference consortium
ILP Integer linear program
LCA Least common ancestor
MB Megabytes
NAHR Non-allelic homologous recombination
NHEJ Non-homologous end joining
PSS Proportional set size
RMQ Range minimum query
RSS Resident set size
SD Segmental duplication
SNP Single nucleotide polymorphism
SV Structural variant
USS Unit set size

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13015- 023- 00241-3.

 Additional file 1: Figure S1. Reduction in the number of recombinations
following minimization. The plots show the total number of recombina-
tions before (blue dots) and after (red dots) minimization, as a function
of each simulation parameter. Figure S2. Number of recombinations
minimization benchmarks. Runtime (upper panels) and peak PSS (lower
panels) as a function of the number of haplotypes (left) and the ratio of
inverted duplications (right). Figure S3. Flow computation performance
with a variable ratio of inversions. Runtime (left) and memory usage
(right) as a function of this parameter. Figure S4. Visualization of a solu-
tion to the minimization problem on the 1p36.13 locus. The gray bars
correspond to the graph’s nodes, labeled 1 to 8. The founder sequence
(>1>2>3<7>5>2>3<4>5>5<6<4<3>7<3<2 <4>5>6<5>4<5<4<3
<2>7<3>6>7<3<4<3<2>6<4>3>2>7>8) is traced from top to bottom.
A slanted line indicates the underlying node being traversed; if slanted
rightwards, traversal is in forward direction, and if slanted leftwards,
traversal is in reverse direction. Colors correspond to different haplo-
types. The haplotype sequence is: EUR-HG00171-h2, AFR-NA19036-h1,
SAS-GM20847-h2, AFR-HG03065-h2, AFR-NA19036-h1, AFR-NA19036-h1,
AMR-HG01573-h2, AFR-HG02011-h2, AFR-HG03371-h2, SAS-HG03683-
h2. Recombinations are marked with a star. Figure S5. Reduction in the
number of recombinations following minimization. The plots show the
total number of recombinations before (blue dots) and after (red dots)
minimization, as a function of each simulation parameter. Table S1.
Sorted haplotype marker sequences used for analyzing the 1p36.13 locus.

Acknowledgements
The authors kindly thank Dr. Feyza Yilmaz of the Lee Lab (JAX) for providing
the haplotype data of the 1p36.13 locus.

Author contributions
TM initiated, TM and DD directed the research project. DD proposed solu-
tions for Problems 1 and 3, and DD and KB implemented the algorithms. DD
proposed the suffix tree-based algorithm, KB proposed and implemented the
suffix array-based algorithm solving Problem 2. KB developed a method to
simulate (N-)AHR, devised and implemented workflows, evaluation tools, and
visualizations, and performed the experimental analysis. All authors wrote the
manuscript, and read and approved its final version.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was
supported in part by the National Institutes of Health grant 1U01HG010973
to T.M., by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie Grant agreement No 956229,
by the BMBF-funded de.NBI Cloud within the German Network for Bioinfor-
matics Infrastructure (de.NBI) (031A532B, 031A533A, 031A533B, 031A534A,
031A535A, 031A537A, 031A537B, 031A537C, 031A537D, 031A538A), and by
the MODS project funded from the programme “Profilbildung 2020” (grant no.
PROFILNRW-2020-107-A), an initiative of the Ministry of Culture and Science of
the State of Northrhine Westphalia.

Availibility of data and materials
All data used for the analysis of the 1p36.13 locus is included in Additional
file 1: Table T1. The simulation experiments are solely based on data generated
by a program named hapsim, available in source code form in the public
repository [42].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

https://doi.org/10.1186/s13015-023-00241-3
https://doi.org/10.1186/s13015-023-00241-3

Page 15 of 15Bonnet et al. Algorithms for Molecular Biology (2023) 18:15

Competing interests
The authors declare that they have no competing interests.

Received: 31 March 2023 Accepted: 23 August 2023
Published online: 29 September 2023

References
 1. Ukkonen E. Finding Founder Sequences from a Set of Recombinants. In:

2nd International Workshop on algorithms in bioinformatics (WABI 2002).
Algorithms in bioinformatics. Berlin, Heidelberg: Springer Berlin Heidelberg;
2002:277-86.

 2. Norri T, Cazaux B, Dönges S, Valenzuela D, Mäkinen V. Founder reconstruc-
tion enables scalable and seamless pangenomic analysis. Bioinformatics.
2021;37(24):4611–9.

 3. Parida L, Melé M, Calafell F, Bertranpetit J, Consortium G. Estimating the
ancestral recombinations graph (ARG) as compatible networks of SNP pat-
terns. J Comput Biol. 2008;15(9):1133–53.

 4. Swenson KM, Guertin P, Deschênes H, Bergeron A. Reconstructing the
modular recombination history of Staphylococcus aureus phages. BMC
Bioinform. 2013;14(15):1–9.

 5. Rastas P, Ukkonen E. Haplotype Inference Via Hierarchical Genotype Pars-
ing. In: Giancarlo R, Hannenhalli S, editors. 7th International Workshop on
Algorithms in Bioinformatics (WABI 2007). Algorithms in Bioinformatics.
Berlin, Heidelberg: Springer Berlin Heidelberg; 2007:85-97.

 6. Wu Y, Gusfield D. Improved algorithms for inferring the minimum mosaic
of a set of recombinants. In: Ma B, Zhang K, editors. Combinatorial Pattern
Matching. Springer, Berlin Heidelberg: Berlin, Heidelberg; 2007. p. 150–61.

 7. Roli A, Benedettini S, Stützle T, Blum C. Large neighbourhood search algo-
rithms for the founder sequence reconstruction problem. Comput Oper
Res. 2012;39(2):213–24.

 8. Roli A, Blum C, et al. Tabu search for the founder sequence reconstruction
problem: a preliminary study. In: Omatu S, Rocha MP, Bravo J, Fernández
F, Corchado E, Bustillo A, et al., editors. Distributed computing, artificial
intelligence, bioinformatics, soft computing, and ambient assisted living.
Springer, Berlin Heidelberg: Berlin, Heidelberg; 2009. p. 1035–42.

 9. Schwartz R, Clark AG, Istrail S. Methods for inferring block-wise ancestral
history from haploid sequences. In: 2nd International Workshop on Algo-
rithms in Bioinformatics (WABI 2002). Algorithms in Bioinformatics. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2002:44-59.

 10. Norri T, Cazaux B, Kosolobov D, Mäkinen V. Minimum Segmentation for
Pan-genomic Founder Reconstruction in Linear Time. In: 18th International
Workshop on Algorithms in Bioinformatics (WABI 2018). vol. 113 of Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik; 2018:15:1-15:15.

 11. Durbin R. Efficient haplotype matching and storage using the positional
burrows-wheeler transform (PBWT). Bioinformatics. 2014;30(9):1266–72.

 12. Zhao X, Collins RL, Lee WP, Weber AM, Jun Y, Zhu Q, et al. Expectations and
blind spots for structural variation detection from long-read assemblies
and short-read genome sequencing technologies. Am J Hum Genet.
2021;108:919.

 13. Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter:
bioinformatics of long-range sequencing and mapping. Nat Rev Genet.
2018;19:329.

 14. Porubsky D, Ebert P, Audano PA, Vollger MR, Harvey WT, Marijon P, et al. Fully
phased human genome assembly without parental data using single-cell
strand sequencing and long reads. Nat Biotechnol. 2020;39:302.

 15. Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ,
et al. Haplotype-resolved diverse human genomes and integrated analysis
of structural variation. Science. 2021. https:// doi. org/ 10. 1126/ scien ce. abf71
17.

 16. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The
complete sequence of a human genome. Science. 2022;376(6588):44–53.

 17. Wang T, Antonacci-Fulton L, Howe K, Lawson HA, Lucas JK, Phillippy AM,
et al. The human pangenome project: a global resource to map genomic
diversity. Nature. 2022;604(7906):437–46.

 18. Liao WW, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, et al. A Draft
Human Pangenome Reference. bioRxiv. 2022. https:// www. biorx iv. org/
conte nt/ early/ 2022/ 07/ 09/ 2022. 07. 09. 499321.

 19. Marques-Bonet T, Girirajan S, Eichler EE. The origins and impact of primate
segmental duplications. Trends Genet. 2009;25(10):443–54.

 20. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, et al.
Segmental duplications and their variation in a complete human genome.
Science. 2022;376(6588):eabj6965.

 21. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al.
Multi-platform discovery of haplotype-resolved structural variation in
human genomes. Nat Commun. 2019;10(1):1784.

 22. Porubsky D, Höps W, Ashraf H, Hsieh P, Rodriguez-Martin B, Yilmaz F, et al.
Recurrent inversion polymorphisms in humans associate with genetic
instability and genomic disorders. Cell. 2022;185:1986.

 23. Bafna V, Pevzner PA. Genome rearrangements and sorting by reversals.
SIAM J Comput. 1996;25(2):272–89.

 24. Bader DA, Moret BM, Yan M. A linear-time algorithm for computing inver-
sion distance between signed permutations with an experimental study.
In: 1st International Workshop on Algorithms in Bioinformatics (WABI 2001).
Algorithms in Bioinformatics. Berlin, Heidelberg: Springer Berlin Heidelberg;
2001:365-76.

 25. Bafna V, Pevzner PA. Sorting by transpositions. SIAM J Discret Math.
1998;11(2):224–40.

 26. Walter MEM, Dias Z, Meidanis J. Reversal and transposition distance of
linear chromosomes. In: Proceedings. String Processing and Informa-
tion Retrieval: A South American Symposium (Cat. No. 98EX207). IEEE;
1998:96-102.

 27. Dias Z, Meidanis J. Genome Rearrangements Distance by Fusion, Fission,
and Transposition is Easy. In: spire. Citeseer; 2001:250-3.

 28. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permuta-
tions by translocation, inversion and block interchange. Bioinformatics.
2005;21(16):3340–6.

 29. Bergeron A, Mixtacki J, Stoye J. A Unifying View of Genome Rearrange-
ments. In: Bucher P, Moret BME, editors. 6th International Workshop on
Algorithms in Bioinformatics (WABI 2006). vol. 4175 of Algorithms in
Bioinformatics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006:163-73.

 30. Shao M, Lin Y, Moret BME. An exact algorithm to compute the double-
cut-and-join distance for genomes with duplicate genes. J Comput Biol.
2015;22(5):425–35.

 31. Bohnenkämper L, Braga MD, Doerr D, Stoye J. Computing the rearrange-
ment distance of natural genomes. J Comput Biol. 2021;28(4):410–31.

 32. Rautiainen M, Marschall T. MBG: minimizer-based sparse de Bruijn graph
construction. Bioinformatics. 2021;37(16):2476–8.

 33. Li H, Feng X, Chu C. The design and construction of reference pangenome
graphs with minigraph. Genome Biol. 2020;21(1):1–19.

 34. Garrison E, Guarracino A, Heumos S, Villani F, Bao Z, Tattini L, et al.. pggb:
the PanGenome Graph Builder; 2023. [Paper submission pending; Online,
accessed 27-January-2023]. https:// github. com/ pange nome/ pggb.

 35. Höps W, Rausch T, Ebert P, Human Genome Structural Variation Consortium
(HGSVC), Korbel JO, Sedlazeck FJ. Impact and characterization of serial
structural variations across humans and great apes; 2023.

 36. Gutin G, Jones M, Sheng B, Wahlström M, Yeo A. Chinese postman problem
on edge-colored multigraphs. Discrete Appl Math. 2017;217:196–202.

 37. Ahuja RK, Magnanti TL, Orlin JB. Network Flows: Theory, Algorithms, and
Applications. 1st ed.; 1993.

 38. Gusfield D. Algorithms on stings, trees, and sequences: computer science
and computational biology. Acm Sigact News. 1997;28(4):41–60.

 39. Ukkonen E. On-line construction of suffix trees. Algorithmica.
1995;14(3):249–60.

 40. Matsakis ND, Klock II FS. The rust language. In: ACM SIGAda Ada Letters. vol.
34(3). ACM; 2014. p. 103-4.

 41. Gurobi Optimization L. Gurobi Optimizer Reference Manual; 2019. http://
www. gurobi. com.

 42. Bonnet K, Doerr D. Analysis of the set of founder sequences under a
homologous recombination model; 2023. https:// github. com/ marsc hall-
lab/ hrfs.

 43. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of
de novo genome assemblies. Bioinformatics. 2015;31(20):3350–2. https://
doi. org/ 10. 1093/ bioin forma tics/ btv383.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1126/science.abf7117
https://doi.org/10.1126/science.abf7117
https://www.biorxiv.org/content/early/2022/07/09/2022.07.09.499321
https://www.biorxiv.org/content/early/2022/07/09/2022.07.09.499321
https://github.com/pangenome/pggb
http://www.gurobi.com
http://www.gurobi.com
https://github.com/marschall-lab/hrfs
https://github.com/marschall-lab/hrfs
https://doi.org/10.1093/bioinformatics/btv383
https://doi.org/10.1093/bioinformatics/btv383

	Titelblatt_Doerr_final
	Doerr_Constructing
	Constructing founder sets under allelic and non-allelic homologous recombination
	Abstract
	Background
	Methods
	Preliminaries
	Constructing founder sets
	Counting recombinations in founder sequences
	Minimizing recombinations in founder sequences

	Results
	Experimental data
	Simulation experiments
	Application: locus 1p36.13

	Discussion
	Anchor 14
	Acknowledgements
	References

