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Constructing founder sets under allelic 
and non-allelic homologous recombination
Konstantinn Bonnet1, Tobias Marschall1* and Daniel Doerr1* 

Abstract 

Homologous recombination between the maternal and paternal copies of a chromosome is a key mechanism 
for human inheritance and shapes population genetic properties of our species. However, a similar mechanism 
can also act between different copies of the same sequence, then called non-allelic homologous recombination 
(NAHR). This process can result in genomic rearrangements—including deletion, duplication, and inversion—and 
is underlying many genomic disorders. Despite its importance for genome evolution and disease, there is a lack 
of computational models to study genomic loci prone to NAHR. In this work, we propose such a computational 
model, providing a unified framework for both (allelic) homologous recombination and NAHR. Our model repre-
sents a set of genomes as a graph, where haplotypes correspond to walks through this graph. We formulate two 
founder set problems under our recombination model, provide flow-based algorithms for their solution, describe 
exact methods to characterize the number of recombinations, and demonstrate scalability to problem instances 
arising in practice.

Keywords Founder set reconstruction, Variation graph, Pangenomics, NAHR, Homologous recombination

Background
Twenty years ago, Esko Ukkonen introduced the problem 
of inferring founder sets from haplotyped single nucleo-
tide polymorphism (SNP) sequences under allelic recom-
bination [1]. Ukkonen’s work has since inspired a wealth 
of research addressing various aspects and applications of 
founder set reconstruction ranging from the reconstruc-
tion of ancestral recombinations and pangenomics to 
applications in phage evolution [2–4]. In its original set-
ting, the problem sets out from a given set of m sequences 
of equal length n, where characters across sequences 

residing at the same index position correspond to a SNP. 
It then asks for a smallest set of sequences, called founder 
set, such that each given sequence can be constructed 
through a series of crossovers between sequences of the 
founder set, where each segment between two successive 
recombinations must meet a minimum length threshold. 
The Minimum Founder Set problem is NP-complete in 
general [5], but is solvable in linear time for the special 
case of founder sets of size two [1, 6]. Since its introduc-
tion, various heuristics and approximations have been 
proposed [6–8]. A variant of this problem restricts cross-
overs to coincide at certain positions, thereby decom-
posing the input sequences into a universally shared 
succession of blocks. The resulting problem, known as 
Minimum Segmentation Problem is polynomial [9]. In 
his seminal paper, Ukkonen devised a O(n2m) algorithm 
for its solution which has been substantially improved by 
Norri  et al. [10] to linear time, i.e. O(nm) by exploiting 
the positional Burrows-Wheeler transform [11].

Just like the Minimum Founder Set Problem, the vast 
majority of population genetic analyses and genome-wide 
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association studies have been focused on SNPs in the past 
decades, neglecting more complex forms of variation—
mostly for technical difficulties in detecting them. In particu-
lar, structural variants (SVs), commonly defined as variants 
of at least 50bp, have posed substantial challenges and stud-
ies based on short sequencing reads typically detect less than 
half of all SVs present in a genome [12]. Recent technological 
and algorithmic advances help to overcome these limitations 
[13]. Long read technologies now enable haplotype-resolved 
de novo assembly of human genomes [14], which in turn 
enables a much more complete ascertainment of SVs [15]. In 
2022, the first complete telomere-to-telomere assembly of a 
human genome was announced [16], heralding a new era of 
genomics where high-quality, haplotype-resolved assemblies 
of complex repetitive genomic structures become broadly 
available. Presently, the Human Pangenome Reference 
Consortium (HPRC), is applying these techniques to gener-
ate a large panel of haplotype-resolved genome assemblies 
from samples of diverse ancestries [17, 18]. These emerg-
ing data sets enable studying genetic loci involving dupli-
cated sequence, called segmental duplications (SDs), which 
are amenable to NAHR, are therefore highly mutable, and 
show complicated evolutionary trajectories [19, 20]. The 
T2T-CHM13 study alone reports over 40 thousand segmen-
tal duplications that amount to 202Mb ( 6.6% of the human 
genome) [16].

Interestingly, at loci with highly similar segments 
arranged in opposite orientations, such as Segment 3 in 
Fig. 1, NAHR can lead to inversion, i.e. the reversal of the 
interior sequence (Segment 4 in Fig. 1). Because of being 
flanked by a pair of copies of the same sequence (cf. Seg-
ment 3) that often comprises tens of thousands of bases, 
such events have been largely undetectable by sequenc-
ing technologies with read lengths below the length of the 
duplicated sequence; in particular by conventional short 
read sequencing. Recent studies applying multiple tech-
nologies reveal that inversions affect tens of megabases 

of sequence in a typical human genome [21]. Unlike most 
other classes of genetic variation, inversions are often 
recurrent with high mutation rates, that is, the same events 
have happened multiple times in human history [22]. 
Depending on the structures of duplicated sequence at a 
particular locus, individual human haplotypes can differ in 
their potential for NAHR. This can have important impli-
cations for the risk for a range of genetic disorders caused 
by NAHR-mediated mutations [22].

In the past two decades, various mathematical mod-
els and algorithms to study genome rearrangements have 
been proposed. These range from the classic reversal [23, 
24] and transposition [25] model to composed models for 
two or more balanced rearrangements [26, 27], to general-
ized models such as the popular Double Cut and Join (DCJ) 
[28, 29]. As the research in this field continues, advanced 
models can additionally accommodate one or more types 
of unbalanced rearrangements, i.e., deletion, insertion, and 
duplication [30, 31]. Yet, none of these models adequately 
considers sequence similarity as a prerequisite for NAHR, 
which is a key molecular mechanism shaping many com-
plex loci in the human genome. In summary, there are 
now technological opportunities to study the population 
history of recalcitrant SD loci that are prone to genome 
rearrangements and relevant to disease, but computational 
models to facilitate this have so far been lacking.

This work addresses this deficit by proposing a rear-
rangement model that is based on the molecular mech-
anism of homologous recombination and by solving 
variants of Ukkonen’s Founder Set Problem that can pro-
vide insights into the evolution of complex loci driven by 
NAHR. The genome model underlying the approach at 
hand represents DNA sequences at a level of abstraction 
where they are already decomposed into genomic mark-
ers with assigned homologies. Here, our notion of homol-
ogy is a synonym for high DNA sequence similarity, as we 
adopt the terminology underlying the concept of homol-
ogous recombination. Our model permits recombination 
events to occur between homologous markers independ-
ent of their position within or between haplotypes, as 
long as the markers’ orientations are respected. In other 
words, a marker can only recombine with a homolo-
gous marker alongside the same direction, as illustrated 
by Fig. 1, because a recombination event can only occur 
between homologous markers if they are aligned to each 
other. By virtue of recapitulating the underlying NAHR, it 
implicitly allows for all the rearrangements this molecu-
lar mechanism can give rise to, including deletion, dupli-
cation, and inversion.

Marker decomposition and homology assignment 
can be done in practice with genome graph building 
tools such as MBG [32], minigraph [33], or pggb [34]. 
Our algorithms can work with any variation graph or 

Fig. 1 Illustration of an NAHR-mediated inversion. Haplotype A 
(black line) represents the original configuration, while haplotype 
B (red line) can be derived from A by two recombination events 
between inverted repeats of genomic marker 3 as indicated 
by the red stars
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pangenome graph with nodes corresponding to homol-
ogous DNA segments and edges between segments 
corresponding to observed adjacencies in a given set of 
haplotypes.

Methods
Preliminaries
A (genomic) marker m is an element of the finite uni-
verse of markers denoted by M , and is associated 
with a fragment of a double-stranded DNA molecule. 
Each marker can be traversed in forward and reverse 
direction. A marker in forward orientation (which is 
the default orientation) is traversed from left to right. 
Overline notation m indicates the reversal of a marker 
m, which is carried out relative to its orientation, i.e., 
m = m . Similarly, M represents the set of all reversed 
markers. We designate two forward markers {s, S} ⊆ M 
as terminal markers. In what follows, we study terminal 
sequences, that is, sequences drawn from the alphabet 
of oriented markers M ∪M that start with s or S , end 
in S or s and do not contain any further terminal mark-
ers in between. A terminal sequence can be traversed in 
forward and reverse direction. A haplotype is a termi-
nal sequence that starts with s (source) and ends with S 
(sink).

Example 1 Consider in the following two sequences 
of genomic markers A and X drawn from the universe 
of markers M = {s,1,2,3,4,S} , where A = s12343S 
and X = s1234321s . Sequence A starts and ends with 
terminal markers s and S , respectively, thus constitut-
ing a haplotype over M . Conversely, X starts with s and 
ends in s and therefore is a terminal sequence, but not a 
haplotype.

Given a sequence A, |A| indicates the length of A which 
corresponds to the number of A’s constituting elements. 
A defines the reverse complementation of sequence A, 
i.e., the simultaneous reversal of the sequence and its 
constituting elements. The element at the ith position 
in sequence A is denoted by A[i]. A segment of sequence 
A starting at position i and ending at and including 
position j is denoted by A[i..j]. Then, A[..i] := A[1..i] 
and A[i..] := A[i..|A|] denote the prefix and suffix of A, 
respectively. Given two sequences A and B, then B⊳ A 
indicates that B is a segment of A, i.e., |B| ≤ |A| and there 
exists some i ∈ [1, |A| − |B|] with B = A[i..i + |B| − 1] . 
Finally, the operator “ + ” indicates the concatenation of 
two sequences.

Example 1 (cont’d) The length of A is |A| = 7 ; its reverse 
complement is A = S34321s ; A[4..6] is a segment of 
A and corresponds to sequence 343 , and consequently 
343 ⊆ A holds true; The segments X[..6] = s12343 and 
A[7..] = S are a prefix and a suffix of X and A, respec-
tively; The concatenation of prefix X[..6] and suffix A[7..] 
results in haplotype X[..6] + A[7..] = s12343S.

A recombination is an operation that acts on a shared 
oriented marker m of any two terminal sequences A and 
B: let A[i] = B[j] = m ; recombination χ(A,B, i, j) pro-
duces terminal sequence C = A[..i] + B[j + 1..] . For a 
given set of haplotypes H , span (H) denotes the span, 
i.e., the set of all haplotypes generated by applying χ on 
haplotypes H and the resulting terminal sequences. 
More precisely, let � be the universe of terminal 
sequences, defined recursively by H ∪H ⊆ � such that 
for any A,B ∈ � with some A[i] = B[j] the recombinant 
C = A[..i] + B[j + 1..] and its reverse complement C  is 
also in � . Then span (H) := {A ∈ � | A is a haplotype} . 
Accordingly, we also say that “ H is a generating set of 
span (H)”. Conversely, given any (possibly infinite) set of 
haplotypes S and some H ⊆ S , H is a generating set of S 
if and only if span (H) = S.

Example 1 (cont’d) Recombination χ(A,A, 4, 2) pro-
duces terminal sequence X = s1234321s . Subse-
quent recombination χ(X ,A, 6, 6) produces haplotype 
B = s12343S . If {A} is a given set of haplotypes, then 
span ({A}) = {A,B}.

In this paper, we study the following three problems:

Problem 1 (Founder Set) Given a set of haplotypes H , 
find a generating set F  such that span (F) = span (H) 
and 

∑

A∈F |A| is minimized.

We minimize total length because current knowledge 
on the evolution of complex genomic loci indicates their 
contained segmental duplications often causes them to 
expand over time [35]. Consequently we expect ances-
tral loci to be more compact and contain fewer duplica-
tions. We prefer this formulation over minimizing the 
founder set’s cardinality, because the latter would allow 
for solutions with founder sequences of unbounded 
length, which is biologically irrelevant. We call a solu-
tion to Problem 1 a founder set and its members founder 
sequences. The following problem is related to Ukkonen’s 
Minimum Segmentation Problem [1]:

Problem  2 (Recombination Count) Given a set of 
terminal sequences T  and a terminal sequence Q, 
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count the number of recombinations r of the form 
Ak+1 = χ(Ak ,Tk , ·, ·) , with 0 ≤ k ≤ r and T0, ..,Tr ∈ T  , 
that are necessary to generate Q from T  , i.e., A0 ∈ T  and 
Q = Ar , if feasible and report its infeasibility otherwise.

At last, the combination of Problems 1 and 2 motivates 
the following:

Problem 3 (Parsimonious Founder Set) Given a set of 
haplotypes H , find a founder set F  that minimizes the 
total number of recombinations to generate all founder 
sequences from H.

Constructing founder sets
In this section, we present a three-step solution to Prob-
lem 1 that is based on a network flow analysis of the vari-
ation graph over the input set of haplotypes. To this end, 
we introduce the notion of variation graphs and describe 
their construction for our specific setting. Subsequently, 
we define network flow and detail how a founder set 
can be derived. Our proposed network flow problem is 
subordinate to the Chinese Postman Problem on edge-
colored multigraphs for which Gutin et  al.  proposed 
a polynomial algorithm [36]. Consequently, all other 
steps of our solution being polynomial, Problem  1 can 
be solved in polynomial time. However, we propose an 
integer linear program in lieu of Gutin et al’s impractical 
algorithm. Then, in Section  Results we show feasibility 
of our approach in experiments on simulated variation 
graphs and an exemplar biological data set.

Variation graph construction. We now address the con-
struction of variation graph GH = (V ,E ∪

−→
E ) from a 

given set of haplotypes H . Graph GH is an undirected 
edge-colored multigraph where each edge can have one 
of two colors corresponding to their membership in edge 
sets E and −→E  . In constructing GH , each marker m of the 
universe of forward-oriented markers M is represented 
by a tuple of its extremities (mt,mh) also called “tail” and 
“head” of m, respectively, and its reverse-oriented coun-
terpart m is represented as (mh,mt) . (Note that our nota-
tion is based on common practice of illustrating markers 
as arrows, that, in natural reading direction, face from 
left, i.e., tail of the arrow, to right, i.e., head of the arrow.) 
Node set V of graph GH corresponds to the set of all 
marker extremities, and each marker m ∈ M gives rise 
to one marker edge {mt,mh} ∈

−→
E  . Further, any two (not 

necessarily distinct) nodes mb
1,m

c
2 ∈ V  are connected 

by one adjacency edge {mb
1,m

c
2} ∈ E if they occur in one 

of the haplotypes either in forward or reverse order. 
More formally, there is an adjacency edge {mb

1,m
c
2} ∈ E 

if and only if there exists a sequence A ∈ H ∪H with 
A = ..m1m2.. such that m1 = (ma

1,m
b
1) , m2 = (mc

2,m
d
2 ) 

and {a, b} = {c, d} = {t, h}.

Example 2 Let H1 = s12343S , H2 = s1112343S , 
H3 = s123432343S , and H4 = s12S , then the varia-
tion graph GH of H = {H1,H2,H3,H4} is as illustrated 
in Fig. 2, with marker edges drawn in gray and adjacency 
edges in black.

Proposition 1 Let GH be the variation graph of hap-
lotypes H , and X  the set of all walks between terminal 
markers st and Sh in GH with edges alternating between E 
and −→E  , then span (H) = X .

Proof  ⊆ Observe that no recombination can create a 
new pair of consecutive markers m1m2 that is not con-
tained in any sequence A ∈ H ∪H . Therefore, each 
haplotype B ∈ span (H) is a succession of consecutive 
markers drawn from sequences in H ∪H , i.e., B can be 
delineated in GH by following adjacency edges corre-
sponding to its succession of consecutive markers.

⊇ Given an alternating walk X = (st, sh, . . . , St, Sh) ∈ X  , 
we show how to express X as a series of recombination 
events: 

(a) Pick some haplotype A ∈ H and initialize i ← 2;
(b) Let B ∈ H ∪H be a sequence such that for some 

position j, B[j..j + 1] = m1m2 with m1 = X[i − 1..i] 
and m2 = X[i + 1..i + 2] . Then A ← χ(A,B, i/2, j).

(c) Increase i by 2 and repeat step b unless i = |X | − 2.

 Observe that by construction of the variation graph GH , 
a suitable sequence B ∈ H ∪H must exist in each itera-
tion of step b. �

Defining flows on variation graphs. We determine a mini-
mum set of founder sequences by solving a network flow 

Fig. 2 Illustration of variation graph from Example 2
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problem in variation graph GH where flow is allowed to 
travel along adjacency edges in either direction. Algo-
rithm 1 describes the network flow problem. Each node is 
associated with two capacities corresponding to incom-
ing and outgoing flow

time and which we describe below, adapted to our cir-
cumstances. The idea is to perform a random walk in 
the graph from source to sink or within a cycle, thereby 
consuming flow along adjacency edges until all flow is 

Fig. 3 Network flow solution on variation graph GH of Example 2

Algorithm 1 A network flow solution to Problem 1.

Objective:

Minimize
∑

u,v∈V

φ(u, v)
Flow capacities:

(F.01) i(v) :=
∑

u∈V φ(u, v) ∀ v ∈ V \ {st, Sh} (incoming flow)

(F.02) o(v) :=
∑

u∈V φ(v, u) (outgoing flow)

(F.03) o(st) := i(Sh) := 0 (flow direction st → Sh)

i(st), o(Sh) ≥ 0
Constraints:

(C.01) φ(u, v) ∈ N ∀ u, v ∈ V (constrain flow to integer)

(C.02) φ(u, v) = φ(v, u) = 0 ∀ {u, v ∈�} E (constrain travel of flow)

(C.03) φ(u, v) + φ(v, u) ≥ 1 ∀ {u, v} ∈ E (flow coverage)

(C.04) i(mt) = o(mh) ∀ m ∈ M (flow conservation)

i(mh) = o(mt)

We then find a non-negative flow φ : V × V → N such 
that the total flow 

∑

u,v∈V φ(u, v) of graph GH is mini-
mized and satisfies constraints. Note that the flow can 
travel in both directions of an edge {u, v} ∈ E and that 
φ(u, v) = φ(v,u) does not hold true in general.

Example 2 (cont’d) The drawing in Fig.  3 illustrates a 
flow solution on variation graph GH , with the direction 
and amount of flow along adjacency edges indicated by 
labeled arrowed arcs.

Deriving haplotypes from flows.  By applying the Flow 
Decomposition Theorem [37, p. 80f ], any flow, i.e., solu-
tion to the above-specified constraints, is decomposable 
into a set of alternating paths going from source st to sink 
Sh and a set of alternating cycles. Ahuja et al. [37] give a 
simple and efficient algorithm that does so in polynomial 

depleted. The proof of the algorithm remains unchanged 
to that given by Ahuja et al., thus is not repeated here. 

1 Set u ← st.
2 Each node is adjacent to exactly one other node 

through a marker edge. Setting out from cur-
rent node u, traverse this incident marker edge to 
some node v, choose any neighbor w of v for which 
φ(v,w) > 1 . Follow the adjacency edge to v and 
decrease the flow φ(v,w) by 1. Set u ← w.

3 As long as u  = St do as follows: if u has been visited 
in the traversal before, then extract the correspond-
ing alternating cycle from the recorded sequence and 
report it. Proceed with the traversal by repeating Step 
2.

4 However, if u = St , follow the marker edge to Sh and 
report the recorded sequence as a path.

5 If sh is incident with edges with positive flow, proceed 
with Step 1. Otherwise, there still might be strictly 
positive flow remaining in the graph correspond-
ing to unreported cycles. In that case, pick any node 
u ← ma such that for some node w, φ(mb,w) > 0 , 
{a, b} = {t, h} and m ∈ M , and proceed with Step 2 
in order to report the next cycle.
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Example 2 (cont’d) The components of the flow solu-
tion on variation graph GH comprise two cycles C1 and 
C2, and two (st , Sh)-paths P1 and P2 are illustrated in 
Fig. 5.

What remains is the integration of cycles into walks 
that then correspond to the haplotypes of the founder 
set. The integration is facilitated by a graph structure, the 
component graph. The component graph G′ = (V ′,E′, l) 
is an edge-labeled, directed multigraph, where, in its ini-
tial construction, each alternating (st, Sh)-path and each 
cycle reported during flow decomposition is represented 
by a distinct node of V ′ . In the component graph G′ , each 
cycle c of the flow decomposition sharing one or more 
markers with another component c′ is connected by one 
or more directed edges (c, c′) to that component, with 
each edge’s label l(c, c′) corresponding to one distinct 
shared marker, oriented according to the their succession 
in c (which may not be the same as in c′ ). The component 
graph is then successively deconstructed until empty as 
follows: 

1 Remove and report all (st, Sh)-walks with in-degree 0 
from node set V ′ . Note that by construction, (st, Sh)
-walks have out-degree 0, i.e., those with in-degree 0 
are singleton in G′.

2 Pick a cycle c ∈ V ′ with in-degree 0, or, if none such 
exists, any arbitrary cycle c ∈ V ′.

3 Pick an outgoing edge (c, c′) ∈ E′ such that c′ is a 
(st, Sh)-walk. If no such c′ exists, c is only adjacent 
to cycles, out of which one c′ is picked arbitrarily. 
Let (ma,mb) ← l(c, c′) , {a, b} = {t, h} . If marker m is 
embedded in c′ in same orientation, i.e. c′ = ..mamb.. , 
then linearize c in m, i.e., c = mbc1..ck−1m

a , and inte-
grate it into c′ such that c′ ← ..mambc1..ck−1m

amb.. . 
Otherwise, integrate the reversed linearization of c, 
i.e, c′ ← ..mbmack−1..c1m

bma.. . Remove cycle c and 
its outgoing edges from component graph G′.

4 Proceed with step 1 until no more components 
remain and all (st, Sh)-walks are reported.

The search for components with in-degree 0 can be effi-
ciently implemented through preorder traversal of G′ . 
Note that each cycle must have at least one outgoing 
edge and that ultimately all cycles must be integrable 
into a (st, Sh)-walk, otherwise this would imply that GH 
contains a disconnected, circular component that is not 
reachable by an alternating path from source st to sink Sh , 
thus contradicting the correctness of GH ’s construction. 
The reported (st, Sh)-walks represent the wanted haplo-
types of a founder set.

Example 2 (cont’d) The plots in Fig. 4 depict the com-
ponent graph of components C1, C2, P1, and P2 (left) 
and the final two (st , Sh)-walks that collectively represent 
a founder set of H (right).

We define the multiplicity of a consecutive marker pair 
m1m2 , for any m1,m2 ∈ M ∪M , as the number of times 
it appears as segment in forward or reverse order in a set 
of sequences X  and introduce the following function for 
its retrieval:

Theorem 1 Let F ⊆ span (H) , F  is a solution to Prob-
lem  1 if and only if µF  corresponds to a minimum net-
work flow in GH.

Proof ⇒ Any flow of variation graph GH = (V ,E) 
is decomposable into a set of haplotypes X  , as dem-
onstrated above. Observe that the above-listed flow 
constraints enforce the derived haplotypes X  to cover 
the entire graph GH and consequently GX = GH . 
This implies that span (X ) = span (H) . Further, the 
total number of consecutive markers in a haplotype 
sequence A equals |A| − 1 and therefore solutions to 
the specified network flow problem minimize quantity 
∑

u,v∈V φ(u, v) =
∑

A∈X |A| − |X | . This is equivalent 
to minimizing 

∑

A∈X |A| , because it is not possible to 
reduce the founder set size by concatenating two or more 
founder sequences without increasing the number of 
consecutive markers by an equal amount. Conversely, in 
the network flow specification, the sink node has no out-
going flow to the source node and therefore any founder 

µX (m1,m2) = |{(A, i) | A[i..i + 1]

= m1m2 or A[i..i + 1]

= m2m1 : A ∈ X }|

Fig. 4 Component graph of components C1, C2, P1, and P2 (left) 
and a founder set of H (right) from Example 2

Fig. 5 Components of flow solution on variation graph GH 
of Example 2
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set derived by a flow solution cannot be reduced by 
concatenation.

⇐ We show that every founder set is also a solu-
tion to the specified minimum network flow problem. 
Assume that F  is a founder set of haplotypes H and 
observe that multiplicities µF  correspond to a valid 
flow φ in GH . Now assume that there exists another 
flow φ′ such that 

∑

u,v∈V φ′(u, v) <
∑

u,v∈V φ(u, v)

=
∑

A∈F |A| − |F | . Then, following the algorithm above, 
φ′ can be decomposed into haplotype set F ′ such that 
∑

A∈F ′ |A| − |F ′| <
∑

A∈F |A| − |F | , contradicting the 
premise that F  is a solution to Problem 1. �

Counting recombinations in founder sequences
We now provide a general algorithm for solving Prob-
lem 2. We show how this algorithm can be implemented 
to scale linearly with the input set of terminal sequences 
T  and query sequence Q in time and space by utilizing 
generalized suffix trees. Supplementary Note N2 further 
describes a solution based on suffix arrays that has the 
same asymptotic runtime and space guarantees, but is 
considered more practical. Our approach builds on the 
concept that each terminal sequence Q that can be gener-
ated from set T  is segmentable into a set of overlapping 
segments, where each such segment corresponds to a 
segment in a terminal sequence of T  . We call these seg-
ments T -blocks for the remainder of this manuscript.

Lemma 2 Q can be generated from terminal sequences 
T  if and only if Q is segmentable into a sequence of over-
lapping T -blocks D = {Q[..i1],Q[i1..i2], ..,Q[in..]} , with 
1 < i1 < .. < in < |Q| , i.e., for each D ∈ D , ∃ A ∈ T ∪ T  
with D ⊳ A.

Proof ⇒  If Q can be generated from T  then there 
exists a series of recombinations Q1 ← χ(A1,A2, i1, k1) , 
Q2 ← χ(Q1,A3, i2, k2),.., Qm ← χ(Qm−2,Am, im, km) 
such that A1, ..,Am ∈ T ∪ T  and Qm = Q . Conse-
quently, Q can be segmented into the set of overlapping 
T -blocks D = {A1[..i1],A2[k1..k1 + i2 − i1], ..,Am[km..]} . 
⇐ For a given segmentation D = {D1, ..,Dn} , Q is gen-
erated by a series of recombinations from T  as fol-
lows: Let Q1[..i1] = D1 , Q1 ∈ T ∪ T  ; For each x in 2..n, 
Qx ← χ(Qx−1,Ax, ix, k) where Ax[k ..k + ix − ix−1] = Dx , 
Ax ∈ T  ; Observe that Qn = Q. �

Finding a minimum T -block segmentation is equiva-
lent to computing the minimum number of recom-
binations—the former differs in size from the lat-
ter only by an increment of 1. The recursive function 
RT : � → N defined below calculates the number of 

recombinations to generate query sequence Q from ter-
minal sequences T  by moving from one maximal T -
block of Q to the next. To this end, we define LT (Q) as 
the length of the longest prefix of Q that is a T -block, i.e., 
LT (Q) := arg maxk

{

Q[..k]⊳ A | A ∈ T ∪ T
}

.

RT (Q) = ∞ indicates that Q cannot be generated from 
T  . We prove that the algorithm is optimal, i.e., computes 
the minimum number of recombinations:

Proof We prove this by induction over the number of 
recombinations identified by Eq.  1. Note that the total 
number of recombinations is bounded by the length of 
query Q. We show that for every k with 0 ≤ k < |Q| that 
RT (Q[..ik ]) reports the minimum number of recombina-
tions for sequence Q[..ik ] . 

 (IB) In iteration k = 0 , R(·) receives the full-length 
query sequence Q and chooses the longest prefix of 
query Q that is a T -block. It is clear that this is an 
optimal choice, since choosing a smaller prefix can 
only increase the number of recombinations. Note 
that if l ≤ 1 , Q cannot be generated from T  and 
R(Q) returns ∞.

 (IS) Let Q[ik−1..ik ] be the T -block identified in the k-th 
recurrence of RT  with the current query sequence 
being Q[ik ..] . In step k + 1 , RT  will again identify 
the segment D = Q[ik ..ik + l] of maximal length l 
that is a T -block.

 Let us now claim that there is an shorter sequence 
of T -blocks Q[j1..j2],Q[j2, j3], . . .Q[jk−1, jk ] and 
ik + l = jk , as illustrated in Fig.  6. Then there 
must be some 0 ≤ k⋆ ≤ k for which jk⋆ > ik⋆ . But 
if there were indeed a T -block Q[jk⋆−1..jk⋆ ] , then 
Q[ik⋆−1..jk⋆ ] is a suffix of Q[jk⋆−1..jk⋆ ] and that 
would be the longest common prefix chosen by 
R(·) in iteration ik⋆−1 , contradicting the definition 
of R(·) . Therefore, a shorter sequences of T -blocks 
cannot exist. �

The algorithm can efficiently count recombinations by 
utilizing the suffix tree data structure [38]. To this end, 
the suffix tree is constructed on sequence T$ correspond-
ing to a concatenation of terminal sequences T ∪ T  of 
any given order, terminated by sentinel “ $ ”. In doing so, 
we assume that terminal markers s, s, S , and S abide lexi-
cographic order $ < {S, s} < {s, S} < m ∀m ∈ M ∪M . 
Suffix trees can be constructed in linear time and space 
[39], and matching substrings in T$ can be performed in 

(1)

RT (Q) =







0 if |Q| = LT (Q)

∞ else if LT (Q) ≤ 1
1+ RT (Q[LT (Q)..]) otherwise
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time linear to the length of the matching. To assess the 
time complexity of the recursion, observe that RT (Q) is 
recursed at most |Q| − 1 times, if all T -blocks have length 
2. We conclude:

Theorem 3 Problem 2 is solvable in O(|T | + |Q|) time 
and space.

Minimizing recombinations in founder sequences
We now present an algorithm towards solving Problem 3, 
i.e., the problem of finding a founder set that minimizes 
the number of recombinations needed for its construc-
tion from a given set of haplotypes H . Solving this problem 
requires the simultaneous computation of solutions to both 
the Founder Set and the Recombination Count problem 
and constitutes in combing through an exponentially large 
search space. We simplify the problem by presuming that 
the multiplicities of consecutive marker pairs in a solution 
to the Parsimonious Founder Set Problem are also opti-
mal under the Founder Set problem. In other words, our 
approach is exact under the assumption that the overall 
multiplicity of each pair of consecutive markers in a founder 
set that is a solution to Problem 3 is known, yet the pair’s 
particular orientation and location in the founder sequences 
are not. To this end, we presume a function µ̂F (m1,m2) 
acting as oracle for the overall multiplicity of any given pair 
of consecutive oriented markers m1,m2 ∈ M ∪M in a 
solution F  to Problem  3. More specifically, µ̂F (m1,m2) 
reports the total number of occurrences of m1m2 and m2m1 
in founder set F  . Note that our experiments directly use the 
results of Problem 1 as input for Problem 3, i.e., µ̂F (m1,m2) 
reports the number of occurrences of (m1,m2) in a solu-
tion to Problem  1. This makes our experimental solutions 
to Problem  3 heuristic. In addition, we make use of func-
tion γ̂F (m) :=

∑

m′∈M∪M µ̂F (m,m′) to retrieve the mul-
tiplicity of any marker m ∈ M ∪M . Note that µ̂F and γ̂F  
are symmetric with respect to the relative orientation of 

markers, µ̂F (m1,m2) = µ̂F (m2,m1) and γ̂F (m) = γ̂F (m) . 
Our solution makes use of the flow graph that is defined in 
the subsequent paragraph. We calculate a matching in the 
flow graph that describes a set of founder sequences, each 
corresponding to a succession of segments of haplotypes H . 
The objective of the matching is to minimize the total num-
ber of H-blocks across all founder sequences which is equiv-
alent to minimizing the number of recombinations for their 
construction from haplotype set H.

Flow graph construction. The flow graph 
GH,µ̂F

= (Vµ̂F
,Eµ̂F

∪
−−→
Eµ̂F

) is a directed edge-colored 
multigraph with adjacency edges Eµ̂F

 and marker edges 
−−→
Eµ̂F

 , 
where each marker extremity ma with m ∈ M and a ∈ {t, h} , 
gives rise to 2 · γ̂F (m) elements in node set Vµ̂F

 , represent-
ing γ̂F (m) many in (i) and γ̂F (m) many out (o) nodes. Hence, 
each node in the flow graph is represented by a triple of the 
form {i, o} ×Mt ∪Mh × N with the complete vertex set 
being Vµ̂F

= {(i,ma, x) | m ∈ M, a ∈ {t, h}, x ∈ 1..γ̂F (m)}∪

{(o,ma, x) | m ∈ M, a ∈ {t, h}, x ∈ 1..γ̂F (m)} . Each out 
node u ∈ Vµ̂F

\({(i, Sh, x) | 1..γ̂F (S)} ∪ {(o, st, x) | 1..γ̂F (s)}) 
is incident with one and only one directed adjacency edge 
(u, v) connecting u to some in node v thereby realizing one 
occurrence of its representing pair of consecutive oriented 
markers in a founder sequence. Conversely, each forward-
oriented marker m ∈ M contributes γ̂F (m)2 many directed 
marker edges that connect in/tail nodes with out/head 
nodes, i.e., {((i,mt, x), (o,mh, y)) | x, y ∈ 1..γ̂F (m)} . Analo-
gously, each reverse-oriented marker m ∈ M contributes 
γ̂F (m)2 many in/head-to-out/tail-directed marker edges 
{((i,mh, x), (o,mt, y)) | x, y ∈ 1..γ̂F (m)}.

Example 2 (cont’d) Fig.  7 visualizes the flow graph 
GH,µ̂F

 for the given set of haplotypes H = {s12343S , 
s1112343S , s123432343S , s12S} and a given µ̂F .

Graph decomposition. A perfect matching of marker 
edges in flow graph GH,µ̂F

 produces a set of alternating 
walks and alternating cycles through GH,µ̂F

 , yet only half 
of the graph is eligible to form a solution to Problem 3. 
More precisely, for each marker m ∈ M , exactly half of 
the number of its associated nodes in Vµ̂F

 must be satu-
rated, i.e., incident with a matching edge. The other half 
as well as their incident edges must remain unsaturated. 
Further, we aim to admit only matchings that consist 
entirely of alternating ((i, st, x), (o, Sh, y))-walks, because 
only those correspond to valid haplotypes of span (H).

Fig. 6 Illustration of the contradictory claim a shorter sequence 
of T -blocks can be constructed than found by Eq. 1. The red dashed 
line indicates the contradictory situation that ik⋆ < jk⋆ . In that case 
Q[ik⋆−1..jk⋆ ] would have been chosen as longest T -block in recursion 
step k⋆ − 1
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At last, we aim to assign to each saturated node v ∈ Vµ̂F
 

a position in some haplotype A of given haplotype set H . 
That way, we are able to determine whether the incident 
adjacency edge serves as continuation of the associated hap-
loblock of A, or whether the incident saturated marker edge 
implies a recombination between two distinct H-blocks.

The Integer Linear Program shown in Algorithm  2 
implements the above-stated constraints.

Example 2 (cont’d) Fig.  8 illustrates a matching that 
is solution to Algorithm  2 for GH,µ̂F

 . The founder 
sequences are spelled out on the bottom, colored by 
haplotype (red, blue and green for haplotypes 2, 3 and 
4 respectively). Unsaturated nodes and edges are grayed 
out, haplotype assignments implied by colored paths. 
The solution features two recombinations, marked by “ ⋆ ” 
along their associated marker edges.

Objective. The ILP maximizes the sum over all t vari-
ables, which corresponds to finding a set of founder 
sequences that has a maximum number of marker pairs 
m1m2 associated with consecutive positions in any of 
the haplotypes H . Conversely, any marker pair that is 
not linked to a position in a haplotype of H represents a 
recombination event.

Matching constraints. Each edge (u, v) ∈ Eµ̂F
∪
−−→
Eµ̂F

 
and node w ∈ Vµ̂F

 of flow graph GH,µ̂F
 is associated with 

binary variables of x(u, v) and y(w) , respectively, that deter-
mine their saturation in a solution (cf. domains D.1 and D.2). 
Constraint C.01 ensures that each saturated marker edge is 
incident with saturated nodes. Perfect matching constraints, 
i.e., constraints that impose each saturated node being 
incident with exactly one marker edge, are implemented 
by constraint C.02. Similarly, constraint C.03 ensures that 
an adjacency edge is saturated if and only if its incident 
nodes are saturated. In other words, constraints C.01-C.03 
together ensure that each component of the saturated graph 
corresponds to an alternating path or cycle component (the 

latter being prohibited by further constraints). The follow-
ing two constraints C.04 and C.05 control the overall size of 
the saturated graph. In doing so, they ensure that, in a solu-
tion to Problem 3, the number of saturated nodes and adja-
cency edges matches the postulated multiplicity of markers 
γ̂F (m) , m ∈ M ∪M , and pairs of consecutive markers 
µ̂F (m1,m2) , m1,m2 ∈ M ∪M , respectively.

Path constraints. Constraints C.05-C.08 force each 
component of the saturated graph to start and end in 
nodes associated with source st and sink Sh , respec-
tively, thereby ruling out any cycles. To this end, they 
make use of a set of integer variables f(v) over all verti-
ces v ∈ Vµ̂F

 (cf. Domain D.03) that define an increasing 
flow within each saturated component that is bounded by 
constant T corresponding to the total flow of the graph, 
i.e., T :=

∑

m∈M γ̂F (m) . In each saturated marker edge, 
the flow is increased by 1 while along each adjacency 
edge, flow is kept constant. This prevents the formation 
of saturated cycles, because their flow would be infinite. 
Lastly, constraint C.08 preclude paths from starting in Sh 
or ending in st , leaving only one option for any saturated 
component open, that is, the formation of a (st, Sh)-path.

Haplotype assignment. Each node v ∈ Vµ̂F
 in a solution to 

the ILP is associated with exactly one position j ∈ 1..|A| in a 
haplotype A of H , recorded by binary variables c(A[j], v) .Q 
Moreover, any marker edge whose incident pair of nodes 
is associated with the same position of the same haplotype 
corresponds to a H-block, i.e, no recombination within this 
marker has taken place. Each marker edge (u, v) ∈

−−→
Eµ̂F

 
that is linked by the ILP solver to a position j in a haplo-
type A ∈ H contributes a score unit to the objective func-
tion. These score units are encoded by binary variables 
t(A[j],u, v) (cf. domain D.05). Constraint C.09 ensures 
that each marker is associated with exactly one position j 
in a haplotype A of set H ∪H , while C.10 confines incident 
nodes of adjacency edges to represent a consecutive marker 
pair A[j..j + 1] . At last, constraint C.11 allows t variables 
of marker edges to take on value 1 only if that marker edge 
is saturated and its incident nodes are associated with the 
same haplotype position.

Fig. 7 Flow graph GH,µ̂F
 of Example 2. In nodes and out nodes are 

highlighted in red and blue, respectively. For clarity, the direction 
of marker edges (gray edges; directed from in to out node) is omitted 
in the illustration

Fig. 8 Solution to Algorithm 2 for GH,µ̂F
 for Example 2
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Results
We implemented our methods in the programming lan-
guage Rust [40] and used Gurobi [41] as the solver. Our 
software is open source and publicly available online [42]. 
To run Algorithm 2 on a given set of haplotypes H , we 
estimated the overall multiplicity µ̂F (m1,m2) of pairs of 
consecutive markers m1m2 from a network flow solu-
tion to Problem  1 on H . Note that, because there is no 
guarantee that an optimal solution to Problem  3 exists 
that has also optimal flow under Problem 1, our approach 
does not guarantee exact solutions.

For benchmarking purposes, we ran Gurobi single-
threaded and recorded wall clock time (in seconds) 
and Proportional Set Size (PSS) (in Megabytes (MB)) 
for memory usage. The choice of using PSS rather than 
measures such as Resident Set Size (RSS) or Unit Set 
Size (USS) is largely arbitrary, however all three meas-
ures were highly similar in all experiments and within 
100 MB of each other at the extreme. Optimization time 
was capped at 30 min, beyond which the solver stops and 
returns its best-effort solution found thus far.

Experimental data
We benchmarked the performance of our algorithms 
by conducting experiments on both simulated data and 
a real-world data set. The former presumed a simulator, 
capable of generating haplotypes with duplicated and 
inverted markers that can produce intricate homolo-
gous recombinations while providing control over the 
degree of complexity. To this end, we implemented our 

own simulation tool that constructs a single haplotype 
sequence sampled at random to serve as seed. This seed 
sequence is adjustable by the following parameters: (i) 
number of distinct markers, i.e., the size of its variation 
graph, (ii) ratio of duplications, i.e., the number of addi-
tional edges inducing duplications in a walk of the graph, 
(iii) ratio of inversions, i.e., the proportion of inverted 
orientations within the set of duplications, and lastly (iv) 
the number of haplotypes that are input to subsequent 
founder set reconstruction. The latter are generated by 
performing random walks in the seed sequence’s varia-
tion graph and retaining only those leading from source 
to sink. In doing so, our simulator does not report nor 
have knowledge of a true founder set. Our simulator, dis-
cussed in more detail in Supplementary Note N1, enables 
us to explore various parameterizations that match dif-
ferent situations in biological data.

One important point concerns co-optimality. Prob-
lems  1 and  3 do not guarantee a unique solution. In 
fact, the pool of co-optimal solutions is often large for 
both problems. One contributing factor to co-optimality 
are cycles that are shared across multiple haplotypes, 
because they can be integrated in different orders. Fur-
ther, the solution does not provide any information that 
could enable one to generate all co-optimal solutions nor 
discern between them, making a measure of accuracy 
challenging, since there is no guarantee that the “correct” 
founder sequence(s) will be seen in any number of trials.

In addition to simulated data, we applied our methods 
on a biological data set from the human 1p36.13 locus 
described by Porubsky  et al. [22] to demonstrate the 
computational performance on realistic instances.

Simulation experiments
To assess the impact of parameter configurations on 
the results, we ran a number of different experiments 
wherein all but one parameters are fixed. A reasonable 
choice of constants seemed to be 100 distinct markers, 
10% of duplications, 10% of inversions and 10 haplotypes, 
motivated by our data on the 1p36.13 locus (8 markers, 
68 haplotypes, 57% of duplications) and statistics com-
piled by Porubsky et al. [22] ( 6− 7% duplications in the 
whole genome, < 1% inversions).

Reduction in number of recombinations. To evaluate the 
efficacy of our solution to Problem  3, we compared the 
number of recombinations returned by Algorithm  2 to 
that in a solution obtained by our network flow algorithm 
for Problem  1. To this end, we set the output of Algo-
rithm 1 against an implementation of a solution to Prob-
lem 2, described in further detail in Supplementary Note 
N2. Figure 9 summarizes the outcome of this experiment. 

Fig. 9 Mean number of recombinations by the size of the graph. 
Experiments were ran with values ranging from 10 to 200 in for the 
number of markers, in increments of 10. The ratio of duplications 
and of inversions was fixed to 10%, and number of haplotypes to 10. 
Each colored dot represents the mean number of recombinations 
over 50 replicates for one parameter set, after random assignment 
trials (blue) and after optimization (red)
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Overall, Algorithm 2 found a solution with fewer recom-
binations in all instances but a few where Gurobi returned 
barely best-effort solutions after reaching the time limit of 
30 min, all of which exhibited a gap of at least 100%. The 
parameter settings in those cases were extremal.

Across all experiments, the mean estimated number of 
recombinations increased linearly by approximately 1.7 
per 100 markers after minimization, compared to 4.5 per 
100 without it. The values reached respectively 3.8 and 
9.1 at 200 markers. The simulations here were carried out 
with a fixed number of haplotypes and ratios of dupli-
cations and of inversions. Results for experiments with 
other variable parameters are shown in Additional file 1: 
Figure S1.

Flow solution benchmark. Computing solutions with 
our network flow algorithm proved to be in almost all 
of our experiments near-instantaneous. By varying 
the number of distinct markers, the algorithm’s per-
formance begins to deteriorate only with very large 
instances beyond 100k distinct markers and becomes 
excruciating for instances above 1M markers. When 

varying other parameters, we fixed the number of dis-
tinct markers to 100k rather than 100. Under 100k 
markers, execution completed after a mean wall clock 
time of 3.4 ± 2.0 seconds. In 95% of all experiments, 
the solver’s runtime was too short to make sufficient 
measurements for benchmarking memory usage; the 
maximum PSS for the remaining ones measured at 
78 MB. Over the 100k mark, both the graph size and 
duplication ratio began to reduce performance, with an 
average runtime of 19.7± 8.7 s. The ratio of inversions 
on the other hand did not affect performance (Suppl. 
Figure S3). We measured peak memory consumption 
at 758 MB across all conditions, which also occurred 
only at the very extremes of 100k distinct markers and a 
100% ratio of duplications (Fig. 10).

Recombination minimization benchmark. As shown 
previously, Algorithm  2 successfully reduces the num-
ber of recombinations in solutions to Problem 1. How-
ever, its runtime increased dramatically with only 
moderate increments of any but one parameter of our 
simulator, the ratio of inversions, which did not play 

Fig. 10 Problem 1, flow computational performance benchmarks. Runtime in seconds (upper panels) and peak PSS in MB (lower panels), as a function 
of the number of markers (left) and of the ratio of duplications (right). For each experiment, the remaining parameters are fixed as indicated above. 
The abbreviations read as follows: Nm number of markers; Rd ratio of duplications; and Ri, ratio of inverted duplications
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any role in performance (Additional file  1: Figure S2). 
For the remaining three, going beyond instances of 200 
distinct markers, 20% of duplications, or 40 haplotypes 
typically did not allow for the optimization to finish in 
a reasonable amount of time (Fig. 11, Additional file 1: 
Figure S2). A similar but much less pronounced trend 
was seen with memory usage, which still remained rel-
atively low. Peak memory usage was again observed at 
extreme parameter values with a PSS of 1072 MB with 
50 haplotypes.

Application: locus 1p36.13
We obtained data from 68 human haplotypes (two per 
34 individuals) at the 1p36.13 locus from  Porubsky  et 
al. [22] and the T2T-CHM13 human reference sequence 
[16]. The sequences comprise only eight distinct markers, 
terminal markers included. The sequences are attributed 
to five super populations, out of which 18 are of African 
origin (AFR), 16 of Eastern Asian (EAS), 12 of Admixed 
American (AMR), 12 of European (EUR), and 10 are South 
Asian (SAS). Their variation graph is densely connected 
with 26 edges (Fig. 12). The 68 haplotypes display a high 
degree of genetic diversity, with haplotype sequences 
differing in order, orientation, and copy number of the 

marker (Suppl. Table T1). Haplotype lengths in terms of 
the number of markers vary from 15 to 26, with a median 
of 19.

Our network flow algorithm determined that the data set 
can be generated from a single founder sequence. Our ran-
domized algorithm for calculation of the minimum number 
of recombinations in a solution to Problem 1 asserted 15 

Fig. 11 Problem 3, recombinations minimization performance benchmarks. Plots analogous to Fig. 10. Runtime in seconds (upper panels) and peak 
PSS in MB (lower panels), as a function of the number of markers (left) and of the ratio of duplications (right). For each experiment, the remaining 
parameters are fixed as indicated above. The abbreviations read as follows: Nh number of haplotypes; Nm, number of markers; Rd ratio 
of duplications; and Ri, ratio of inverted duplications

AFR-NA19036-h1

Source

Sink

Source

Sink

Fig. 12 Graphical representation of the variation graph for the 1p36.13 
locus data. On the left, a 2D plot rendered by Bandage [43]. Markers 
are represented as numbered colored rectangles, and the undirected 
edges connecting them as black curves. Markers 1 and 8 correspond 
respectively to the source and the sink of the graph. The right plot 
shows the walk through the graph from source (blue) to sink (red) 
corresponding to the sequence of haplotype AFR-NA19036-h1, 
a sample of African origin from our experimental data. The 
sample’s sequence in the previously established notation is: 
123456543273243278
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recombinations after 1M trials, while Algorithm 1 obtained 
an optimal solution that revealed only 9 recombinations. 
Minimization completed in 60.3 s with a peak PSS of 225 
MB. Note that there exists multiple other co-optimal solu-
tions; Suppl. Figure S4 is an illustration of one.

Discussion
The advent of sequencing technology and genome assem-
bly methodology to reconstruct full human genomes 
enables research into previously inaccessible segmen-
tal duplication loci. This exciting opportunity entails a 
demand for explanatory models that can infer evolu-
tionary relationships and histories of complex repeti-
tive genomic regions. In this work, we propose a model 
capable of explaining a broad range of balanced and 
unbalanced genome rearrangements. Our experiments 
on simulated data and on the 1p36.13 locus demonstrate 
that our algorithmic solutions to the founder set prob-
lem and the problem of minimizing recombinations in 
founder sets are capable of processing realistic instances. 
While the complexity of Problem  3 remains undeter-
mined, we conjecture it to be NP hard.

Importantly, the model we are proposing is based on a 
molecular mechanism with a well-established role in shap-
ing segmental duplication architecture. In our view, many 
past models of genome rearrangements have not suffi-
ciently captured biological reality and there is an important 
need for further research aiming to incorporate knowledge 
of molecular mechanisms into such models. For instance, 
we envision future models that additionally include mech-
anisms like non-homologous end joining (NHEJ) and 
mobile element insertions. Furthermore, actual rates at 
which NAHR occurs depend on factors like the length of 
the duplicated sequence, the sequence similarity, as well 
as the presence of specific sequence motifs. In our current 
approach, these aspects are only partially and indirectly 
captured through the graph construction process. We aim 
to address and model these factors explicitly in future work.

Abbreviations
DCJ  Double cut and join
HPRC  Human pangenome reference consortium
ILP  Integer linear program
LCA  Least common ancestor
MB  Megabytes
NAHR  Non-allelic homologous recombination
NHEJ  Non-homologous end joining
PSS  Proportional set size
RMQ  Range minimum query
RSS  Resident set size
SD  Segmental duplication
SNP  Single nucleotide polymorphism
SV  Structural variant
USS  Unit set size
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 Additional file 1: Figure S1. Reduction in the number of recombinations 
following minimization. The plots show the total number of recombina-
tions before (blue dots) and after (red dots) minimization, as a function 
of each simulation parameter. Figure S2. Number of recombinations 
minimization benchmarks. Runtime (upper panels) and peak PSS (lower 
panels) as a function of the number of haplotypes (left) and the ratio of 
inverted duplications (right). Figure S3.  Flow computation performance 
with a variable ratio of inversions. Runtime (left) and memory usage 
(right) as a function of this parameter. Figure S4.  Visualization of a solu-
tion to the minimization problem on the 1p36.13 locus. The gray bars 
correspond to the graph’s nodes, labeled 1 to 8. The founder sequence 
(>1>2>3<7>5>2>3<4>5>5<6<4<3>7<3<2 <4>5>6<5>4<5<4<3 
<2>7<3>6>7<3<4<3<2>6<4>3>2>7>8) is traced from top to bottom. 
A slanted line indicates the underlying node being traversed; if slanted 
rightwards, traversal is in forward direction, and if slanted leftwards, 
traversal is in reverse direction. Colors correspond to different haplo-
types. The haplotype sequence is: EUR-HG00171-h2, AFR-NA19036-h1, 
SAS-GM20847-h2, AFR-HG03065-h2, AFR-NA19036-h1, AFR-NA19036-h1, 
AMR-HG01573-h2, AFR-HG02011-h2, AFR-HG03371-h2, SAS-HG03683-
h2. Recombinations are marked with a star. Figure S5.  Reduction in the 
number of recombinations following minimization. The plots show the 
total number of recombinations before (blue dots) and after (red dots) 
minimization, as a function of each simulation parameter. Table S1.  
Sorted haplotype marker sequences used for analyzing the 1p36.13 locus.
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