
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use: 

Turnover number predictions for kinetically uncharacterized enzymes using machine and
deep learning

Suggested Citation:
Kroll, A., Rousset, Y., Hu, X.-P., Liebrand, N. A., & Lercher, M. (2023). Turnover number predictions for
kinetically uncharacterized enzymes using machine and deep learning [OnlineRessource]. Nature
Communications, 14, Article 4139. https://doi.org/10.1038/s41467-023-39840-4

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20241113-112017-4

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Alexander Kroll, Yvan Rousset, Xiao-Pan Hu, Nina A. Liebrand & Martin J. Lercher

Article - Version of Record



Article https://doi.org/10.1038/s41467-023-39840-4

Turnover number predictions for kinetically
uncharacterized enzymes usingmachine and
deep learning

Alexander Kroll1, Yvan Rousset1, Xiao-Pan Hu1, Nina A. Liebrand1 &
Martin J. Lercher 1

The turnover number kcat, a measure of enzyme efficiency, is central to
understanding cellular physiology and resource allocation. As experimental
kcat estimates are unavailable for the vast majority of enzymatic reactions, the
development of accurate computational prediction methods is highly desir-
able. However, existing machine learning models are limited to a single, well-
studied organism, or they provide inaccurate predictions except for enzymes
that are highly similar to proteins in the training set. Here, we present TurNuP,
a general and organism-independent model that successfully predicts turn-
over numbers for natural reactions of wild-type enzymes. We constructed
model inputs by representing complete chemical reactions through differ-
ential reaction fingerprints and by representing enzymes through a modified
and re-trained Transformer Network model for protein sequences. TurNuP
outperforms previous models and generalizes well even to enzymes that are
not similar to proteins in the training set. Parameterizing metabolic models
with TurNuP-predicted kcat values leads to improved proteome allocation
predictions. To provide a powerful and convenient tool for the study of
molecular biochemistry and physiology, we implemented a TurNuP web
server.

The turnover number kcat is themaximal rate atwhichone active site of
an enzyme converts molecular substrates into products. kcat is a cen-
tral parameter for quantitative studies of enzymatic activities, and is of
key importance for understanding cellular metabolism, physiology,
and resource allocation. In particular, comprehensive sets of kcat
values are essential for metabolic models that consider the cost of
producing or maintaining enzymes1–9, a prerequisite for accurate
simulations of cellular physiology and growth10. Currently, no high-
throughput experimental assays exist for kcat, and experiments are
both time consuming and expensive. Thus, kcat estimates are unavail-
able for most reactions; even for Escherichia coli, arguably the bio-
chemically best-characterized organism, in vitro kcat is known for only
~10% of all enzyme-catalyzed reactions11. In genome-scale kinetic
models of cellular metabolism, this issue is typically addressed by
either sampling missing kcat values or fitting them to large

datasets7,8,12,13. However, these techniques typically result in inaccurate
results, and fitted kcat values bear little relationship to known in vitro
estimates7,12,13.

Davidi et al.11 estimated kcat values for enzymes in Escherichia coli
using computationally calculated reaction fluxes and proteomic
measurements across 31 different growth conditions. Their approach
leads to kcat estimates that are highly correlated with experimentally
measured values (r2 = 0.62 on log10-scale). However, this approach is
limited to very-well studied organisms, and even for E. coli, kcat values
for only 436 enzymes could be estimated in this way. Recent
advances in artificial intelligence have put the computational pre-
diction of unknown kcat values from in vitro training data into reach,
and two recent publications have explored this possibility. Heck-
mann et al.14 developed a kcat predictionmodel for enzymes in E. coli.
The model relies on detailed, expert-crafted input features such as
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enzyme active site properties, metabolite concentrations, experi-
mental conditions, and reaction fluxes calculated through flux bal-
ance analysis (FBA)15. It achieved a coefficient of determination
R2 ≈0.34 on an independent test set. However, the complete, detailed
input information is only available for a small subset of enzymatic
reactions even in E. coli, limiting the applicability of this approach. A
deep learning model that requires less detailed input features,
DLKcat, was recently developed by Li et al.16. DLKcat predicts kcat
using information about the enzyme’s amino acid sequence and
about one of the reaction’s substrates, ignoringother reactiondetails
such as products and co-substrates. In practical applications, kcat
predictions are most important when no experimental measure-
ments for closely related enzymes are available, and hence general
prediction models should generalize well to such cases. However,
while DLKcat can in principle be applied to any enzymatic reaction,
its predictions become poor for enzymes not similar to those in the
training set (see below).

Here, we present a general machine and deep learning approach
for predicting in vitro kcat values for natural reactions of wild-type
enzymes. In contrast to previous approaches, we represent chemical
reactions through numerical fingerprints that consider the complete
set of substrates and products of a reaction. To capture the enzyme
properties, we use fine-tuned state-of-the-art protein representations
as additional model inputs (Fig. 1). We created these enzyme repre-
sentations using Transformer Networks, deep neural networks for
sequence processing, which were trained with millions of protein
sequences17. It has been shown for various prediction tasks that
Transformer Networks outperform protein representations created
with convolutional neural networks (CNNs)18,19, which were used in
previous models for predicting enzyme turnover numbers16.

Our resulting Turnover Number Prediction model— TurNuP—
outperforms a simple similarity-based approach and both previous
methods for predicting kcat14,16. We show that TurNuP generalizes well
even to enzymes with <40% sequence identity to proteins in the

Fig. 1 | Machine learning model to predict kcat from numerical enzyme repre-
sentations and reaction fingerprints. Experimentally measured kcat values are
downloaded from three different databases. Enzyme information is represented
with numerical vectors obtained from natural language processing (NLP) models

that use the linear amino acid sequence as their input. Chemical reactions are
represented using integer vectors. Concatenated enzyme-reaction representations
are used to train a gradient boostingmodel to predict kcat. After training, the fitted
model can be used to parameterize metabolic networks with kcat values.
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training set. Using genome-scale, enzyme-constrained metabolic
models for different yeast species16, we demonstrate that para-
meterizations with TurNuP kcat predictions lead to improved pro-
teome allocation predictions. To facilitate widespread use of the
TurNuP model, we not only provide a Python function for large-scale
kcat calculations by bioinformaticians, but we also built an easy-to-use
web server that requires no specialized software, available at https://
turnup.cs.hhu.de.

Results
Obtaining training and test data
We compiled a dataset that connects kcat measurements with the
corresponding enzyme sequences, reactant IDs, and reaction equa-
tions. The underlying data is derived from the three databases
BRENDA20, UniProt21, and Sabio-RK22. Our aim was to build a turnover
number prediction model for natural reactions of wild-type enzymes.
We hypothesized that we do not have enough data to train a model to
predict the catalytic effect of enzyme mutations or to predict the kcat
value of non-natural enzyme-reaction pairs, which have not been
shaped by natural selection. Hence, we removed all data points with
non-wild-type enzymes and all non-natural reactions (see Methods,
“Data preprocessing"). We removed redundancy by deleting data that
was identical to other data points in the set, and we excluded data
points with incomplete reaction or enzyme information. We also
removed 55outlierswith unrealistically lowor highmeasurements, i.e.,
reported kcat values that are either very close to zero (<10−2.5/s) or that
areunreasonablyhigh (>105/s)23. Ifmultiple different kcat values existed
for the same enzyme-reactionpair, we took the geometricmeanacross
these values.

This resulted in a final dataset with 4271 data points, comprising
2977 unique reactions and 2827 unique enzymes (for more details on
data preprocessing, seeMethods). We log10-transformed all kcat values
to obtain a target variable with an approximate Gaussian distribution
(Supplementary Fig. 1). We split the dataset into 80% training data and
20% test data in such a way that enzymes with the same amino acid
sequence would not occur both in the training and in the test set. This
splitting procedure does not prevent the inclusion of enzymes in the
test set with close homologs in the training set. However, we found
that only very few enzymes in the test set are highly similar to enzymes
in the training set, i.e., only 70 out of 850 enzymes in the test set show
≥90% sequence identity to enzymes in the training set, and only 26
enzymes show ≥98% identity. Moreover, to evaluate model perfor-
mance for different levels of enzyme similarities (see below), we divi-
ded the test set further into subsets with different levels of maximal
sequence identities between training and test enzymes (Supplemen-
tary Fig. 2). To perform fivefold cross validations (CVs) for hyper-
parameter optimization of our machine learning models, we further
split the training set into five disjoint subsets. The cross validation sets
were constructed such that no two subsets contained enzymes with
identical amino acid sequences,mirroringour strategy to split the total
data into training and test sets.

Numerical reaction fingerprints alone lead to reasonable kcat
predictions
The kcat value of an enzyme-catalyzed reaction depends strongly on
the catalyzing enzyme, but also on the chemical reaction itself. To
integrate reaction information into our machine learning model, we
used numerical reaction fingerprints. We compared the performance

Fig. 2 | Calculation of reaction fingerprints for an exemplary reaction.
a Structural reaction fingerprints. Binary molecular fingerprints are calculated for
each substrate and each product. The bitwise OR-function is applied to all sub-
strates and also to all products. The resulting substrate and the resulting product
vector are then concatenated. b Difference reaction fingerprints. Binary molecular

fingerprints are calculated for each substrate and each product. All substrate fin-
gerprint vectors are summed, and the same is done for all product fingerprint
vectors. To create the difference fingerprint, the resulting product vector is sub-
tracted from the substrate vector.
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of three different types of such representations: structural, difference,
and differential reaction fingerprints.

To create structural reaction fingerprints, one first calculates a
1638-dimensional binary molecular fingerprint for each substrate and
each product, designed to encode structural information of small
molecules; e.g., entries of these fingerprints can encode if a certain
substructure is present in a molecule. The bitwise OR-function is then
applied to all substrate fingerprints and separately to all product fin-
gerprints, resulting in two 1638-dimensional binary vectors with
molecular information about the substrates and about the products,
respectively. These two vectors are concatenated, providing a 3276-
dimensional binary vector with structural information about the
reaction24 (Fig. 2a).

The calculation of difference reaction fingerprints starts with a
different, 2048-dimensional binary fingerprint for each substrate and
each product. All substrate fingerprint vectors are summed to provide
a single substrate vector, and all product fingerprint vectors are
summed to provide a single product vector. This productfingerprint is
then subtracted from the substrate fingerprint, resulting in a 2 048-
dimensional reaction fingerprint with positive and negative
integers25 (Fig. 2b).

The differential reaction fingerprints (DRFPs) are calculated in a
similar fashion compared to the two fingerprints described above.
However, instead of first calculating fingerprints for each reactant and
then combining these into a single reaction vector, afingerprint for the
whole reaction is directly created. To achieve this, substructures of all
substrates and products are identified. All substructures that are only
present either in the substrates or the products are then mapped to a
2048-dimensional binary fingerprint using hash-functions26.

Creating the three reaction fingerprints described above can
result in information loss. For example, if multiple substrates or pro-
ducts are present, it is not possible to distinguish between properties
of different reactants. However, the fingerprints allow to store infor-
mation about reactions in a fixed-length vector even for varying
numbers of reactants. Storing every reactant in a separate fingerprint
would result in much larger input vectors for reactions with multiple
substrates and products.Moreover, the resulting vectors would not be
invariant to the order of the substrates and products andwould vary in
length for varying numbers of reactants.

To test how well the reaction fingerprints alone can predict the
turnover numbers of enzyme-catalyzed reactions, we trained two
gradient-boosting models to predict kcat, each with one of the reaction

fingerprints as the only input. Gradient boosting models consist of
manydecision trees that are built iteratively during the trainingprocess.
In thefirst iteration, a single decision tree is built that tries to predict the
correct kcat for all data points in the training set. In all following itera-
tions, a new decision tree is built in order to reduce the errors that have
been made by the already existing trees. After training, many different
decision trees exist that ideally focus on different aspects of the input
features and that try to predict the correct outcome as an ensemble27.

We performed a fivefold CV with a random grid search for
hyperparameter optimization for all three models. After hyperpara-
meter optimization, we chose the set of hyperparameters with the
highest coefficient of determination R2 across CV sets, and we re-
trained each model with its best hyperparameters on the whole
training set. On the test set, the resulting model with structural reac-
tion fingerprints as its inputs achieves a coefficient of determination
R2 = 0.31, a mean squared error MSE =0.99, and a Pearson correlation
coefficient r = 0.56 on the test set. The model with difference reaction
fingerprints achieves slightly improved results, with R2 = 0.34, MSE =
0.95, and r =0.60 on the test set. The best model performance is
achieved using DRFPs, with R2 = 0.38, MSE =0.89, and r = 0.62 on the
test set (Fig. 3). Thus, a model based on chemical reaction information
alone can already predict about a third of the variation in kcat across
enzyme-catalyzed reactions.

As the DRFPs led to improved performance on the test set and
duringCV (Fig. 3), we choseDRFPs to represent the catalyzed chemical
reactions in the further analyses. To test if the better performance of
the DRFPs is statistically significant, we used a two-sided Wilcoxon
signed-rank test that compared the absolute errors of the models on
the test set, resulting in p = 0.064 (DRFP vs. difference fingerprints)
and p = 2.61 × 10−4 (DRFP vs. structural fingerprint). Thus, while the
difference in absolute errors between DRFPs and difference reaction
fingerprints is not statistically significant at the commonly used 5%
level, a value close to 0.05 indicates that the DRFPs indeed likely lead
to improved model performance.

Numerical enzyme representations alone lead to reasonable kcat
predictions
The turnover number kcat of an enzyme-catalyzed reaction is highly
dependent on the catalyzing enzyme. It can vary byorders ofmagnitude
even between isoenzymes that catalyze the same reaction but differ in
aminoacid sequence28. Toaccount for this dependencewhenpredicting
kcat, it is crucial to create meaningful enzyme representations as inputs

Fig. 3 | Using enzyme and reaction information combined leads to improved
kcat predictions. a Coefficients of determination R2 for models with different
inputs.bMeansquared errors (MSE) on log10-scale. Boxplots summarize the results
of the CVwith n = 5 folds on the training set with the best sets of hyperparameters;
bluedots show the results on the test set using theoptimizedmodels trainedon the
whole training set. We used a 2× interquartile range for the whiskers, the boxes

extend from the lower to upper quartile values, and the red horizontal lines are
displaying the median of the data points. Model performances are plotted for the
models with structural reaction fingerprints (str. FP), difference reaction finger-
prints (diff. FP), differential reaction fingerprints (DRFP), ESM-1b vectors (ESM-1b),
task-specific ESM-1b vectors (ESM-1bESP), and with enzyme and reaction informa-
tion (ESM-1bESP + DRFP). Source data are provided as a Source Data file.
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tomachine learningmodels. In recent years, deep learning architectures
that were originally developed for natural language processing (NLP)
tasks, such as translating a sentence from one language into another,
have been applied successfully to the creation of numerical protein
representations fromamino acid sequences17,29.When applied to natural
languages, NLP models typically represent all words in a sentence
through numerical vectors that encode information about the words’
contents and positions. When applying NLP models to protein sequen-
ces, proteins replace sentences and amino acids replace words.

The current state-of-the-art architecture for NLP tasks is a Trans-
formerNetwork30, which can, in contrast to previousmethods, process
all words of a sequence with arbitrary length simultaneously. The
Facebook AI Research team trained such a Transformer Network,
called ESM-1b, with a dataset of ~27million protein sequences from the
UniRef50 dataset31 to create 1280-dimensional numerical protein vec-
tors. The ESM-1b model was trained in a self-supervised fashion, i.e.,
10–15% of the amino acids in a sequence were masked at random, and
the model was trained to predict the identity of the masked amino
acids (Supplementary Fig. 3a). It has been shown that the resulting
representations contain rich information about the structure and the
function of the proteins17,32,33. Using the pre-trained ESM-1bmodel17, we
calculated these 1280-dimensional representations for all enzymes in
our dataset, in the following referred to as ESM-1b vectors.

In a previous project32, we created a fine-tuned and task-specific
version of the ESM-1b model that led to improved predictions for the
substrate scope of enzymes, a problem for which abundant training
data exists (Supplementary Fig. 3b). Such comprehensive data is
required to re-train the ESM-1b model, but is not available for kcat, and
we were thus unable to create a version specific to the task of pre-
dicting kcat. However, we speculated that the ESM-1b vectors fine-
tuned previously for the prediction of enzyme-substrate pairs might
also improve kcat predictions. To test this hypothesis, we used our
previously published model, ESP32, to calculate fine-tuned repre-
sentations for all enzymes in our dataset. In the following, wewill refer
to these representations as ESM-1bESP vectors.

We tested how well models that use enzyme information alone
canpredict turnover numbers.We trained a gradient boostingmodel34

that used either the ESM-1b or ESM-1bESP vectors to predict the kcat
value of enzyme-catalyzed reactions, without using any additional
information on the reaction or on substrates or products.

To optimize the hyperparameters of the gradient boosting mod-
els, we again performed fivefold cross validations (CV) with a random
grid search on the training set. Afterwards, we re-trained each model
with its best hyperparameters on thewhole training set. On the test set,
the model with ESM-1b vectors as its input achieves a coefficient of
determination R2 = 0.36, a mean squared error MSE =0.92, and a
Pearson correlation coefficient r = 0.60 (Fig. 3). The model with ESM-
1bESP vectors achieves slightly improved performance, with R2 = 0.37,
MSE =0.91, and r =0.61 on the test set (Fig. 3). Since the ESM-1bESP
vectors lead to improved performance on the test set and during CV,
we chose to represent enzymes through ESM-1bESP vectors in the fol-
lowing. However, as model performance is quite similar for both
enzyme representations, we tested if the difference in model perfor-
mance is statistically significant.Weused a one-sidedWilcoxon signed-
rank test that compared the absolute errors made by both models on
the test set, resulting in p =0.41. Thus, the difference in absolute errors
is not statistically significant at the commonly used 5% level. This
finding indicates that the observed performance improvement with
ESM-1bESP vectorsmight be due to random effects, and that we cannot
be sure that the model with ESM-1bESP vectors is indeed superior.

A joint model with enzyme and reaction information leads to
improved kcat predictions
To train a Turnover Number Prediction model (TurNuP) with enzyme
and reaction information, we concatenated the ESM-1bESP vector and

the DRFPs for every data point in our dataset. We used this resulting
vector as the input for a gradient-boosting model. As before, we per-
formed a fivefold CV with a random grid search for hyperparameter
optimization, trained the model with the best set of hyperparameters
on the whole training set, and validated it on the test set. This model
achieves a coefficient of determinationR2 = 0.40, amean squared error
MSE =0.86, and a Pearson correlation coefficient r =0.64 on the
test set.

We found that calculating the mean of the predictions provided
by the models that only use ESM-1bESP vectors and DRFPs as their
model input leads to increased model performance during CV and on
the test set. This final TurNuP model achieves a coefficient of deter-
mination R2 = 0.44, a mean squared error MSE =0.81, and a Pearson
correlation coefficient r =0.67 on the test set (Figs. 3 and 4). We
hypothesize that the mean of two separate models leads to improved
performance, because the information contained in the ESM-1bESP
vectors and the DRFPs is partly redundant. Training a joint model
allows the model to focus only on one of the input vectors when
extracting redundant information. However, when this information is
provided into separate models through separate input representa-
tions, the information is extracted from both representations, which
can lead to more robust predictions.

Using enzyme and reaction information improves performance
compared to using only enzyme or only reaction information (Fig. 3).
To compare these differences statistically, we used a one-sided Wil-
coxon signed-rank test, testing if the absolute errors on the test set for
the joint model are lower than for the models with either only enzyme
or only reaction information. These tests showed that the differences
are statistically significant at the 5% level, with p =0.0049 (DRFP) and
p = 1.2 × 10−7 (ESM-1bESP). However, the improvement for the joint
model is relatively small, indicating that the information stored in the
reaction fingerprints and in the enzyme representations are over-
lapping. This overlap is not surprising, as the enzyme sequence con-
tains information about the catalyzed reaction32; conversely, given that
enzymes evolve on fitness landscapes shaped by the catalyzed reac-
tions, the chemical reaction likely also contains information about the
type of catalyzing enzyme.

TurNuP achieves a mean absolute deviation of predicted from
experimental kcat values of 0.69 on a log10-scale, which means that
predictions and measured values deviate on average by 4.8-fold.
Plotting the correlation between different experimental measure-
ments for the same enzyme-reaction pair (Supplementary Fig. 4)
shows that there is substantial variance even between measurements
for the same kcat value. This noise in the training and test data indicates

Fig. 4 | Comparison of predicted and experimentally measured kcat values. kcat
values predicted with the complete TurNuP model, plotted against the corre-
sponding experimentalmeasurements. Each dot is one data point from the test set.
The gray dashed line is a diagonal line that indicates perfect correlation. The red
dashed line displays the true correlation between predicted and measured values.
Source data are provided as a Source Data file.
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that it is difficult to develop a predictionmodel achievingmuch better
accuracy unless less noisy data becomes available.

Figure 4 shows that TurNuP tends to systematically overestimate
extremely low and underestimate very high kcat values. This phe-
nomenon likely arises due to a common statistical effect known as
regression dilution: noise present in the input features leads to a
flattening of the slope of the line that describes the correlation
between the predicted and true values for the target variable35. While
the chosen input features in TurNuP can account for ~44% of the
variance in kcat, they only approximately capture the true, unknown
determinants of kcat. The input features can thus be considered noisy
representations of those true determinants, leading to regression
dilution. We further hypothesize that non-optimal experimental
conditions (such as pH, temperature, missing metal ions) play an
important factor in cases where very low kcat values were observed
but higher kcat values were predicted. Supplementary Fig. 4, which
displays the similarity between different measurements for the same
enzyme-reaction pairs, supports this hypothesis: a large variance is
present especially for very low kcat measurements. Unfortunately, we
could not include reaction conditions as input features to overcome
this issue, since experimental conditions are not available for most
data points in the enzyme databases used.

To compare the gradient boosting model to alternative machine
learning models, we also trained a linear regression model, a random
forest model, and a fully connected neural network for the task of
predicting kcat values from the combined ESM-1bESP and DRFP vectors.
However, these models performed worse compared to the gradient
boosting model (Supplementary Table 1). To test if the better perfor-
mance of the gradient boosting model is statistically significant, we
used a one-sided Wilcoxon signed-rank test that compared the abso-
lute errors of the models on the test set, resulting in p = 4.29 × 10−11

(gradient boosting vs. linear regression), p = 3.38 × 10−7 (gradient
boosting vs. random forest), and p = 8.97 × 10−4 (gradient boosting vs.
neural network). Thus, the additional machine learningmodels indeed
lead to statistically significant worse results compared to the gradient
boosting model.

It is noteworthy that the accuracies on the test set are partly
higher than the accuracies achieved during CV (Fig. 3a). To calculate
the results of the CV, the model is validated on data that is originally
part of our training data set and has been used for hyperparameter
optimization, but it has not been used to train the model during this

round of CV. The improved performance on the test set may result
from the fact that before validation on the test set, models are trained
with approximately 700 more samples than before each cross-valida-
tion; the number of training samples likely has a substantial influence
on model performance.

TurNuP provides meaningful predictions even if no close
homologs with known kcat exist
In our study on predicting the substrate scope of enzymes32, we found
that prediction performance depends strongly on the sequence simi-
larity between a target enzyme and enzymes in the training set, con-
sistent with the widely held belief that enzymes are more likely to be
functionally similar if they have more similar sequences36. We hence
examined the performance of TurNuP for enzyme sets that differed in
their maximal similarity to proteins in the training set. We partitioned
the enzymes in the test set based on their maximal sequence identity
to enzymes in the test set, resulting in four subsets with 0–40%,
40–80%, 80–99%, and 99–100% maximal sequence identity, respec-
tively. We calculated TurNuP’s coefficient of determination for all four
categories (Fig. 5a, black points). As expected, predictionperformance
decreases with increasing distance of the enzyme’s amino acid
sequence to proteins in the training set. While TurNuP’s coefficient of
determination is R2 = 0.67 for 99–100% sequence identity, it decreases
to R2 = 0.33 for enzymes with a maximal sequence identity below 40%.

A simple, straight-forward, and often used alternative method to
predict approximate kcat values is to simply averageover the kcat values
of the most similar enzymes. Such simple averages are expected to
work well in cases where kinetically characterized homologs with
highly similar amino acid sequences exist; in contrast, they are unlikely
to provide good estimates if no close homologs with known kcat exist.
As expected, for enzymes in the test set with close homologs in the
training set (99–100% max. identity), the geometric mean across the
three most similar enzymes in the test set leads to reasonable esti-
mates, with R2 = 0.21 (N = 22). In contrast, averaging over the three
most similar enzymes leads to a dismal R2 = 0.02 if no close homologs
exist in the training data (0–40%max. identity, N = 474). These results
demonstrate that any sophisticated prediction model for turnover
numbers will be most relevant for enzymes for which no close
homologs with known kcat exist. As expected, TurNuP predictions are
statistically significantly better than those provided by simple avera-
ges, across the complete test set (R2 = 0.44 vs. R2 = 0.24, N = 851,

Fig. 5 | TurNuPpredictions aremore accurate for enzymessimilar toproteins in
the training set and outperform anexisting deep learningmodel. aCoefficients
of determination R2 for the test sets for our TurNuP model (black) and the pre-
viouslypublishedDLKcatmodel16 (magenta) for different levels ofmaximal enzyme
sequence identity compared to enzymes in the training set. Numbers next to points
show how many data points of this category are in the test set. The horizontal
dashed line corresponds to a model that predicts the same mean kcat value for all
test data points. b Mean squared errors (MSE) for the prediction of absolute

proteome data compared to experimental data. Proteome predictions were
achieved with enzyme-constrained genome-scale models, parameterized with kcat
values predicted with TurNuP (black) or with the DLKcat model (magenta). Pro-
teome data was predicted for four different yeast species (Sce, Saccharomyces
cerevisiae; Kla, Kluyveromyces lactis; Kmx, Kluyveromyces marxianus; Yli, Yarrowia
lipolytica) in 21 different culture conditions (see Methods for details). Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-39840-4

Nature Communications |         (2023) 14:4139 6



p =0.013 from one-sided Wilcoxon signed-rank test) as well as for the
similarity classes (0–40% max. identity: p = 3.4 × 10−9; 99–100% max.
identity: p = 0.0023).

Good predictions even for unseen reactions
In the previous subsection, we showed that model performance is
highest for enzymes that are similar to proteins in the training set.
Similarly, it appears likely that themodel performsbetterwhenmaking
predictions for chemical reactions that are also in the training set. To
test this hypothesis, we divided the test set into data points with
reactions that occurred in the training set (N = 354) and those with
reactions that did not occur in the training set (N = 496).

Unsurprisingly, TurNuPperformsbetter for thosedata pointswith
reactions that occurred in the training set, achieving a coefficient of
determination R2 = 0.57, a mean squared error MSE =0.51, and a
Pearson correlation coefficient r =0.78 (Fig. 6). However, for those test
data points with reactions that TurNuP has not seen during training,
model performance is still good, resulting in a coefficient of determi-
nation R2 = 0.35, mean squared error MSE = 1.02, and Pearson correla-
tion coefficient r = 0.60.

For those test data points with reactions not present in the
training set, we wondered if a high similarity of the reaction compared
to at least one reaction in the training set leads to improved predic-
tions, analogous to what we observed for enzymes with higher
sequence identities. For each reaction not present in the training set,
we calculated a maximal pairwise similarity score compared to all
reactions in the training set based on their structural reaction finger-
prints. We indeed found that prediction performance is higher for
those data points with reactions more related to training reactions
(Fig. 6). Even for reactions that are not highly similar to training
reactions, i.e., reactions with a similarity score between 0.4 and 0.8,
prediction accuracy is still moderate with a coefficient of determina-
tion R2 = 0.20, a mean squared error MSE = 1.30, and a Pearson corre-
lation coefficient r =0.47. Only for those 17 test data points with
reactions that share almost no similarity compared to training reac-
tions, model performance is low, achieving a coefficient of determi-
nation R2 = 0.06, a mean squared error MSE = 1.26, and a Pearson
correlation coefficient r =0.29. We conclude that TurNuP can provide
useful predictions for most unseen reactions even if these are not
highly similar to previously seen reactions.

TurNuP outperforms previous models for predicting kcat
Heckmann et al.14 trained and validated a machine learning model for
the prediction of kcat values for E. coli. As enzyme-related input fea-
tures, theirmodel used enzymemolecularweight and global structural
disorder, as well as several molecular details of the active site: number
of residues, solvent access, depth, hydrophobicity, secondary struc-
ture, and exposure. Additional input features were reaction flux,

number of substrates, the dissociation constant KM, EC number, sub-
strate and product concentration, thermodynamic efficiency, and the
pH value and temperature at which kcat was measured in vitro. Out of
this large set of features, themost important input was found to be the
reaction flux, which was calculated by performing parsimonious flux
balance analyses (pFBA)37,38. The total number of training and valida-
tion data points was limited to 215, as Heckmann et al.14 only con-
sidered reactions from E. coli, and as many input features are not
available for most enzymes—the least widely available features were
information about the enzymes’ active site, and the pH and tempera-
ture of the in vitro experiment. The model achieved a coefficient of
determination R2 ≈0.34 on a test set. Since Heckmann et al.’s test
dataset is small and only contains measurements for a subset of
reactions from a single organism, it is not possible to directly compare
the performance of their model to TurNuP’s performance, which was
evaluated on a much more extensive and general test dataset.

The DLKcat model by Li et al.16 examined the same problem
addressed here, the prediction of kcat values across the space of all
possible enzymatic reactions. Therefore, we undertook a more in-
depth comparison to DLKcat. To predict kcat values, DLKcat uses
information extracted from the amino acid sequence and from one of
the substrates of the reaction. Instead of using state-of-the-art meth-
ods for encoding protein information, i.e., transformer networks
applied to protein amino acid sequences, convolutional neural net-
works (CNNs) were applied. Moreover, since DLKcat only uses infor-
mation about one of the substrates, important information about
additional substrates and the products can bemissing. TheDLKcat test
set was constructed as a random subset of the full data. In comparison,
our own test set was constructed such that it contained no enzymes
with sequences that are identical to those of the training set, i.e., it is
biased towards enzymes that are distinct from those used for training.
This intentional bias, which was introduced to assess the ability of
TurNuP to extrapolate to new enzymes, means that a direct perfor-
mance comparison between DLKcat and TurNuP on their respective
test sets is not meaningful. To account for this bias, we divided both
test sets—those of TurNuP and of DLKcat—into different splits
according to the maximal enzyme sequence identity compared to the
respective training enzymes (Fig. S2). Given that both models were
developed for the same purpose— predicting kcat for the reactions
catalyzed by arbitrary enzymes—and were evaluated on large and
diverse test data, a performance comparison on these sequence
identity splits is meaningful.

Figure 5a shows that TurNuP (black) achieves substantially higher
coefficients of determination than DLKcat (magenta) for all categories
of enzyme sequence identity. Comparing the distributions of absolute
errors of the two models, we find that the superior performance of
TurNuP is statistically significant for all subsets (p = 4.3 × 10−11 (0-40%),
p =0.0017 (40–80%), p =0.00037 (80–99%), and p =0.048
(99–100%); one-sided Wilcoxon-Mann-Whitney tests). Although
TurNuP performs better than DLKcat in each of the four categories of
enzyme sequence identities (Fig. 5a), DLKcat achieves the same R2

value (R2 = 0.44) on its overall test set, compared to the TurNuPmodel
on its overall test set (R2 = 0.44). This counter-intuitive observation is
an example of Simpson’s paradox. It is caused by the differential dis-
tribution of data points across categories in the DLKcat and TurNuP
test sets. 91% of the data points in the DLKcat test set fall into the
99–100% identity class (see the numbers in Fig. 5a), while the majority
of data points in the TurNuP test set (56%) have <40% sequence
identity to any enzymes in the corresponding training set and are
hence much harder to predict. In contrast to TurNuP, DLKcat was not
challenged during its training to predict kcat values for enzymes with
dissimilar amino acid sequences, likely explaining its poor perfor-
mance for enzymes without close homologs in the training set.

Li et al.16 designed a pipeline to use predicted kcat values for the
parameterization of enzyme-constrained genome-scale metabolic

Fig. 6 | TurNuPmakes good predictions even for unseen reactions. Coefficients
of determinationR2, calculated separately on different splits of the test set. The test
set was split according to the maximal reaction similarities compared to reactions
in the training set. Source data are provided as a Source Data file.
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models, with the goal of predicting the proteome allocation patterns
of yeast species. They compared the resulting proteomepredictions to
absolute proteomics measurements for four yeast species in 21 dif-
ferent environments. We employed this pipeline to test if kcat values
calculated with the TurNuP model lead to improved proteome pre-
dictions. In 19 out of 21 environment-species combinations, our kcat
values led to improved predictions (p =0.00010, one-sided binomial
test). The mean squared errors between measured and predicted
protein abundances improved on average by ~18% when using
TurNuP (Fig. 5b).

Using additional input features does not improve model
performance
TurNuP employs very general input features, using only the enzyme’s
linear amino acid sequence and information on the reaction’s sub-
strates and products. However, it is unclear if these features cover all
important aspects for predicting kcat. To test if we can improve pre-
diction quality, we examined three potential additional input features:
Michaelis constants KM, Codon Adaptation Indices (CAIs), and reac-
tion fluxes.

The Michaelis constant KM is defined as the substrate concentra-
tion at which an enzyme works at half of its maximal catalytic rate;
hence, KM quantifies the affinity of an enzyme for its substrate. It has
been shown that kcat is correlated with the enzyme’s Michaelis con-
stant(s) of the reaction’s substrate(s)23. To utilize this correlation for
the prediction of kcat, we determined KM values for all enzyme-
substrate combinations in our dataset. Where available, we extracted
suitable KM values from the BRENDA database20 (~7% of the enzyme-
substrate pairs in our dataset); for all other cases we applied amachine
learning model that uses numerical representations of the substrate
and the enzyme as its input to predictKM

39. For reactions withmultiple
substrates, we took the geometric mean of all KM values to obtain a
singleKMvalue for everydata point. Tocalculate howmuch varianceof
kcat can be explained by KM, we fitted a linear regression model to the
training set, with the log10-transformed KM value as the only input. The
linear regression model achieves a coefficient of determination
R2 = 0.11, a mean squared error MSE = 1.28, and a Pearson correlation
coefficient r = 0.34 on the test set (Supplementary Fig. 5). We thus
considered KM a promising candidate for improving the TurNuP
predictions.

The second additional input feature, the Codon Adaptation Index
(CAI), quantifies the synonymous codon usage bias of protein-coding
genes. It is widely used as an indicator of gene expression and protein
levels, with highly expressed genes typically using more ‘preferred’
codons than less highly expressed genes40. The CAI is a value between
0 and 1 that describes the similarity of synonymous codons fre-
quencies between a given gene and a set of highly expressed genes,
where values close to 1 indicate nearly optimal codon usage, typically
associated with a high expression level in evolutionarily relevant
environments. We calculated the CAI for all enzymes in our dataset
originating from E. coli. We fitted a linear regression model to the
corresponding 237 data points in the training set, with CAI as the only
input feature. We validated the model on 66 test data points (Sup-
plementary Fig. 6). The model achieved a coefficient of determination
R2 = 0.012, a MSE = 1.31, and a Pearson correlation coefficient r =0.12
on the test set, indicating that CAI cannot explainmuch of the variance
of kcat values. Hence, we did not consider CAI a promising candidate
for improving the TurNuPpredictions, andwedid not calculate CAI for
other organisms beyond E. coli.

The most important input feature in the kcat prediction model
established by Heckmann et al. for reactions in E. coli14 was an estimate
of the reaction flux, calculated using parsimonious flux balance ana-
lysis (pFBA)37,38 across a broad range of nutrient conditions. For 108
metabolic genome scale models from the BiGG database41, we calcu-
lated fluxes in a similar way as Heckmann et al. (Methods). For further

analyses, we selected the six BiGG models of distinct species that
showed the highest Pearson correlation between predicted fluxes and
measured kcat values in the training set. We mapped the calculated
fluxes to kcat values from our dataset. In cases where no metabolic
genome scale model was available for an organism, we mapped the
flux of an identical reaction but from a different organism to the data
point. If we were not able to find the identical reaction in the BiGG
database, we selected themost similar one using a similarity score (see
Methods). To calculate how much variance of the kcat values can be
explained by the calculated fluxes, we fitted a linear regression model
to the training set, with the log10-transformed fluxes as the only input.
The fitted model achieves a coefficient of determination R2 = 0.021, a
MSE = 1.40, and a Pearson correlation coefficient r =0.15 on the test set
(Supplementary Fig. 7). Thus, we found no evidence for a high pre-
dictive power offluxes beyond E. coli; however, asfluxeswere themost
important predictor for kcat in ref. 14, we still retained them as a
potential additional input feature for TurNuP.

To test if adding KM and reaction flux as input features improves
model performance, we trained a new model. As the model input, we
created a concatenated vector comprised of the enzyme ESM-1bESP
vector, the differential reaction fingerprint, the reaction flux, and the
Michaelis constant KM for every data point. For a gradient boosting
model, we then performed a fivefold CV with a random grid search for
hyperparameter optimization. Afterwards, we trained the model with
the best set of hyperparameters on the complete training set. On the
test set, this model achieves a coefficient of determination R2 = 0.39, a
MSE =0.87, and a Pearson correlation coefficient r =0.63. Thus, model
performance did not improve compared to the model without the
additional input features flux and KM.

This finding does not preclude the usefulness of flux and KM for
predicting kcat. On the one hand, the result suggests that the enzyme
and reaction representations already contain the relevant information
offered by the additional input features used here. On the other hand,
it is possible that accuratemeasurements of flux andKM, asopposed to
the approximate predictions employed here, could enhance the pre-
dictive power of these variables for kcat.

The TurNuP web server provides an easy access to the predic-
tion model
We implemented aweb server that facilitates aneasyuseof theTurNuP
model without requiring programming skills or the installation of
specialized software. It is available at https://turnup.cs.hhu.de. As
input, the web server requires an enzyme amino acid sequence and
representations of all substrates and all products; the latter can be
provided either as SMILES strings, KEGG Compound IDs, or InChI
strings. Users can enter a single enzymatic reaction into an online
form, or upload a CSV file with multiple reactions. Since TurNuP was
trained only with natural reactions of wild-type enzymes, we recom-
mend to use the web server only for such enzyme-reaction pairs.
Additionally to a kcat prediction, the web server outputs the maximal
enzyme sequence identity compared to all training enzymes and a
maximal reaction similarity score compared to all training reactions.
As discussed above, higher scores indicate higher prediction perfor-
mance, and thus, these scores can be used to estimate the accuracy of
the kcat prediction.

Discussion
Predicting the turnover number of enzyme-catalyzed reactions is a
complex task, and the available datasets for model training are small
and noisy. For example, Bar-Even et al.23 found that up to 20% of the
entries in BRENDA differ from the entries in the reference papers,
probably caused by copying errors and erroneous replacements of
units. Even aside from such obvious errors, the variance of kcat mea-
surements for the same enzyme-reaction pairs between different stu-
dies can be high. We found an average deviation of 5.7-fold (mean
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deviationon log10-scale = 0.75) between two kcatmeasurements for the
same enzyme-reaction pair (Supplementary Fig. 4). This variance is
likely not only due to errors in the databases, but also to different
experimental procedures or varying assay conditions, such as tem-
perature and pH value. When comparing a single measurement to the
geometric mean of all other measurements for the same enzyme-
reaction pair, we found an average deviation of 3.3-fold (mean devia-
tion on log10-scale = 0.52). This compares to an average deviation of
4.8-fold (mean deviation on log10-scale = 0.69) of TurNuP kcat predic-
tions compared to the geometric mean of all available measurements
for this enzyme-reaction pair. These numbers indicate that in practice,
using predictions calculated with the TurNuP model may lead to
similar deviations and error rates compared to performing experi-
mental measurements. Better predictions will become possible in the
future if experimental variation will be reduced through improved
technologies.

Although the accuracy of TurNuP’s predictions is not very differ-
ent from that of experimental estimates, model accuracy can still be
improved. On the one hand, we trained and validated themodel with a
total of only 4271 data points, which is rather small for a machine
learning model with high-dimensional input vectors. Once more high-
quality training data becomes available, model performance will most
likely improve. On the other hand, kcat values can differ widely if
measured under different experimental conditions such as varying pH
and temperature. However, as information about the experimental
conditions is mostly unavailable in databases for enzyme kinetic
parameters,wewere not able to include these conditions as an input to
our prediction model. Manually extracting this information from
research papers has the potential to further improve the accuracy of
the prediction models.

TurNuP achieves superior performance compared to previous
methods for predicting kcat. Its coefficient of determination (R2 = 0.44)
is higher than that of Heckmann et al. (R2 ≈0.34)14, who trained an
organism-specific prediction model with very detailed and expert-
crafted input features, including enzyme active site properties, meta-
bolite concentrations, reaction fluxes, and experimental conditions.
TurNuP also outperforms the most recent method for predicting kcat,
the DLKcat model16 (Fig. 5). One reason for TurNuP’s superior perfor-
mance might be the use of state-of-the-art enzyme representations
compared to convolutional neural networks (CNNs) and the use of
representations for the whole chemical reactions instead of using only
information on one of the substrates. Importantly, 91% of the enzymes
in theDLKcat test set have amaximal sequence identity between99 and
100% compared to the enzymes in the training set. It is likely that the
same issue arose in the validation set used for hyperparameter opti-
mization; such a structure of training and validation sets makes it dif-
ficult to train amodel that generalizeswell to enzymesnot highly similar
to those in the training set. Indeed, we showed that DLKcat does not
produce meaningful predictions for enzymes with a maximal sequence
identity lower than 40% compared to the enzymes in the training set.

In contrast, TurNuP generalizes well even to enzymes that are not
highly similar to enzymes in the training set and to reactions that have
not been part of the training set. To achieve these results, we used
general input features: the ESM-1bESP vector17, a fine-tuned, state-of-
the-art numerical representation of the enzyme, calculated from its
amino acid sequence; and a reaction fingerprint that integrates
structural information about all substrates and products24, which
allowed us to create input vectors of fixed length even for varying
numbers of reactants.

To assess potential limitations of our methodology, we investi-
gated the predictive capacity of TurNuP for predicting kcat values for
membrane-bound enzymes. To this end, we analyzed prediction per-
formance for 63 membrane proteins that are included in our test
dataset, the majority of which are peripheral membrane proteins, i.e.,
soluble proteins that bind transiently to the surface of cellmembranes.

TurNuP performs only slightly worse in predicting kcat for this subset
of proteins compared to other proteins, achieving a coefficient of
determination R2 = 0.36, a mean squared error MSE =0.68, and a
Pearson correlation coefficient r = 0.64. This compares to a coefficient
of determination R2 = 0.44, a mean squared error MSE = 0.82, and a
Pearson correlation coefficient r =0.67 for non-membrane-associated
proteins. That predictions formembrane-associated proteins combine
a lower coefficient of determinationwith a lowermean squared error is
likely related to the lower variance of kcat values for membrane-
associated enzymes, 1.07, compared to the variance of non-
membrane-associated enzymes, 1.46.

Perhaps surprisingly, kcat predictions that are solely based on
reaction information—without information on the catalyzing enzyme—
already lead to a high coefficient of determination, R2 = 0.38 (Fig. 3).
This result suggests that properties of the reaction have a strong
influence on the turnover number achievable by natural selection on
the catalyzing enzyme. Adding enzyme information additionally to the
reaction information as model input had only a moderate effect on
model performance, indicating that the information for predicting kcat
that is stored in the enzyme and in the chemical reaction are strongly
overlapping. It would be desirable to analyze which properties of the
chemical reactions and of the enzymes are most relevant for predict-
ing kcat. Unfortunately, because of how we encoded the input infor-
mation, it is difficult to draw conclusions about the importance of
certain properties of the reactions and enzymes from analyzing the
importance of the input features. For example, we could extract which
input features from the ESM-1b vectors are most relevant for predict-
ing kcat, but we cannot easily relate entries in the ESM-1b vectors to
properties of the proteins, as the ESM-1b vectors were created in a
previous step by iteratively extracting information from the amino
acid sequence using a deep neural network with 33 layers. However, to
analyze if TurNuP learnsmeaningful patterns such as predicting higher
kcat values for faster enzyme classes, we divided our dataset into dif-
ferent splits according to the first digit of the enzymes’ EC numbers,
and we compared the average measured kcat value with the average
predicted kcat value for each class. Indeed, TurNuP learns to predict on
average higher kcat values for faster EC classes and lower kcat values for
slower enzyme classes (Supplementary Fig. 8).

It appears initially surprising that the reactionfluxes estimatedwith
pFBA do not explainmuch of the variance of kcat, while they were found
to be the best predictor in the model developed by Heckmann et al.14.
When calculating genome-scale reaction fluxes for different organisms,
we obtained fluxes that were zero or close to zero formany data points.
In contrast, Heckmann et al. focused on a small dataset that mostly
consisted of well-studied, central reactions in E. coli. Those reactions
typically have fluxes substantially different from zero at least in some of
the simulated conditions. It appears likely that this biased construction
of a small dataset in ref. 14 is responsible for the high correlation
observed between reaction fluxes and kcat by Heckmann et al.

Computational estimates of kcat values are highly relevant for the
functional and kinetic study of individual enzymes42, and TurNuP can
provide a first estimate of kcat before performing labor-intensive
experiments. Another major use case of TurNuP is the prediction of
kcat values for genome-scale metabolic models. We found that our
predictions can be used successfully to improve proteome allocation
predictions (Fig. 5b). In future work, kcat predictions with TurNuP can
be combined with an existing approach for predicting Michaelis con-
stants (KM)

39. This would facilitate full parameterizations of non-linear
enzyme kinetics in genome-scale metabolic models, a powerful tool
for gaining fundamental insights into cellular physiology9,43.

Methods
Software and code availability
All software was coded in Python44. We created the enzyme repre-
sentations using the deep learning library PyTorch45. We fitted the
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gradient boosting models using the library XGBoost34. We used the
web framework Django46 to implement the TurNuP web server. The
code used to generate the results of this paper, in the form of Jupyter
notebooks, are available from https://github.com/AlexanderKroll/
Kcat_prediction47. All datasets used to create the results of this
manuscript are available from https://doi.org/10.5281/zenodo.
784934748.

Downloading kcat data
We used data from three different databases, Sabio-RK, UniProt, and
BRENDA, to create a kcat dataset for model training and validation.
We downloaded 3971 kcat values for wild-type enzymes together with
UniProt IDs and reaction information from Sabio-RK22. We tried to
map all metabolites involved in the reactions to unique identifiers
using either a KEGG reaction ID49, if available, or using themetabolite
names and the PubChem synonym database50. We removed all data
points for which we could not map all substrates and all products to
an ID. This resulted in a dataset with 2830 data points for 289 dif-
ferent enzymes.

We downloaded 5664 kcat values for wild-type enzymes together
with UniProt IDs and CHEBI reaction IDs from UniProt via the UniProt
mapping service21. We mapped the metabolites of all reactions to
unique IDs using CHEBI reaction IDs51. We removed data points, if we
could not map all metabolites of a reaction to an ID. This resulted in a
dataset with 1738 kcat values for 1017 different enzymes.

We downloaded 14,165 turnover numbers for wild-type enzymes
withprotein information and substrate names fromBRENDA20.Mostof
the kcat values in BRENDA are not assigned with a unique reaction
equation and the entered kcat values are known to be prone to errors23.
To overcome these issues, we manually checked for more than half of
all points if the stated kcat value is identical to the value from the
original paper and we assigned a unique reaction equation to all
manually checked data points. After removing those data points with
incomplete reaction information and non unique enzyme IDs, 8267
data points were left for 3149 different enzymes.

Data preprocessing
We merged all three kcat datasets from BRENDA, Sabio-RK, and Uni-
Prot, which resulted in a dataset with 12,835 data points. We removed
1050 duplicated data points from this dataset. To obtain protein
sequences for all enzymes, we used the UniProt mapping service21 to
map all UniProt IDs to amino acid sequences. We used the Python
package Bioservices52 to map all metabolites to InChI strings53. If
multiple kcat values existed for the same enzyme-reaction combina-
tion, we took the geometric mean across these values. For the calcu-
lation of the geometric mean, we wanted to ignore those values that
were likely obtained under non-optimal conditions. Thus, we excluded
kcat values smaller than 1% compared to the maximal kcat value for the
same enzyme-reaction combination. Calculating the geometric mean
resulted in a dataset with 7496 entries.

The BRENDA, UniProt, and Sabio-RK databases contain many kcat
values that were measured for secondary, non-natural reactions of
enzymes. As we are only interested in measurements for the natural
reaction of an enzyme, we excluded kcat values if another measure-
ment existed for the same enzyme but for a different reaction with a
kcat value thatwasmore than ten times higher. To further exclude data
points that were measured under non-optimal conditions or for non-
natural reactions of the enzyme, we excluded data points if we could
find ameasurement for the same reaction or the same EC number that
was more than 100 times higher. The described procedures led to the
removal of 3092 data points.

We calculated reaction fingerprints and enzyme representations
for all enzyme-reaction pairs (see below) and removed all 26 data
points, where either the reaction fingerprint or the enzyme repre-
sentation could not be calculated.

To exclude data points with possibly wrongly assigned reaction
equations, we removed those 52 data points where the sum of mole-
cular weights of substrates did not match the sum of molecular
weights of the products. We removed another 55 data points because
their kcat values are outliers (i.e., values below 10−2.5/s or higher than
105/s). This resulted in a final dataset with 4271 data points.

Splitting the dataset into training and test set
We randomly split the dataset into 80% training data and 20% test data.
We made sure that the same enzyme would not occur in the training
and the test set. We further split the training set into five disjoint
subsets for a fivefold cross-validation (CV) to perform hyperparameter
optimizations of the machine learning models. In order to achieve a
model that generalizes well during CV, we created these five subsets
also in such a way that the same enzyme did not occur in two different
subsets.

Calculating enzyme representations
To create the ESM-1b model17, the Facebook AI research (FAIR) team
trained a Transformer Network30 with 33 hidden layers and a hidden
layer size of 1280 using ~27 million protein amino acid sequences
from the UniRef50 dataset31. To process a protein sequence, the type
and position of every amino acid in a sequence is encoded in a 1280-
dimensional numerical vector. All amino acid representations of a
sequence are simultaneously applied to the ESM-1b model and
updated for 33 time steps using the attention mechanism30. The
attention mechanism allows to use all representations as an input
when updating a single amino acid representation. The attention
mechanism selectively chooses only relevant input when calculating
an update of a representation. To train the ESM-1b model, randomly
10–15% of the amino acids in a sequence are masked. The model is
then trained to predict the type of the masked amino acids. After
training, a single representation for the whole model can be created
by calculating the element-wise mean of all amino acid representa-
tions after they were updated for 33 times (Supplementary Fig. 3a).
We used the trained ESM-1b model and the code provided on the
GitHub repository of the FAIR team17, to calculate a 1280-dimensional
numerical representation for every enzyme in our dataset. As the
ESM-1b model can only process amino acid sequences up to 1024
amino acids, we only used the first 1024 amino acids for those
sequences that were too long.

Calculating fine-tuned enzyme representations
As an alternative to the original ESM-1b enzyme representations17, we
employed fine-tuned enzyme representations that we created pre-
viously for the task of predicting the substrate scope of enzymes32.
These ESM-1bESP vectors were constructed using code and models
provided on the following GitHub repository: https://github.com/
AlexanderKroll/ESP.

We here provide a short summary of the construction. First, the
original ESM-1b model was slightly modified, i.e., additionally to the
input tokens for every amino acid in a protein sequence, an extra token
for the whole enzyme was added. This token does not add any addi-
tional input information to the model. Instead, this token is used to
store information about the whole input sequence that is salient to the
downstream task. During training, all tokens, including the extra
enzyme token, are first updated iteratively for 33 times, as described
above for the original ESM-1b model. Next, the updated additional
enzyme token was concatenated with a 1024 dimensional expert-
crafted binary representation of a small molecule, the extended-
connectivity fingerprint (ECFP)54. This concatenated vector was used
as the input for a fully connected neural network that was trained to
predict if the small molecule is a substrate for the given enzyme. The
whole model, the ESM-1b and the fully connected layers, were trained
end-to-end for the task of identifying substrates for enzymes
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(Supplementary Fig. 3b). The training set consisted of 287,386 positive
enzyme-substrate pairs with either phylogenetically inferred or
experimental evidence extracted from the GO Annotation database55

and with randomly sampled negative enzyme-small molecule pairs.
During the training process, the model was forced to extract all rele-
vant information for the prediction task from the amino acid sequence
and store it in the updated enzyme token. This trainedmodel was used
to create the fine-tuned enzyme ESM-1bESP vectors for every enzyme in
our dataset by extracting the updated enzyme representation from
the model.

Calculating reaction fingerprints
To calculate difference and structural reaction fingerprints, we used
functions from the RDKit24 package. As input, this package requires
reactions described in the language SMARTS56, which describes pat-
terns of small molecules and of chemical reactions.

Structural reaction fingerprints are created by first calculating
1638-dimensional binarymolecularfingerprints (ExplicitBitVect) for all
substrates and products. Then, the bitwise OR-function is separately
applied to all substrate fingerprints and to all product fingerprints,
which results in two 1638-dimensional binary vectors with information
about the substrates and about the products, respectively. Finally,
both vectors are concatenated, which results in a 3276-dimensional
binary vector with structural information about the reaction. We used
the RDKit function Chem.rdChemReactions.CreateStructur-
alFingerprintForReaction to calculate the fingerprints.

To calculate difference reaction fingerprints, first, a 2048-
dimensional binary atom-pair fingerprint (AtompairFP) for each
substrate and each product is calculated. Then, the fingerprints for
all substrates and also for all products are element-wise summed.
The resulting fingerprint for the products is then subtracted from
the fingerprint for the substrates, which results in a 2048-
dimensional reaction fingerprint with positive and negative inte-
gers. To calculate these fingerprints, we used the RDKit function
Chem.rdChemReactions.CreateDifferenceFingerprintForReaction.

We calculated differential reaction fingerprints (DRFPs) as
described in ref. 26, using the Python package drfp. Briefly, we
represented all reactions in our dataset using the language SMILES.
DRFPs are then calculated by identifying all substructures among all
reactants up to a certain size. All substructures that are only present in
either the substrates or the products are then mapped to a 2048-
dimensional binary fingerprint using hash-functions.

Calculating reaction similarity
Weuse the Jaccard distance to calculate the pairwise distance between
two structural reaction fingerprints. The Jaccard distance is defined as
the proportion of elements that disagree while considering only those
entries where at least one entry is non-zero. This results in a value
between 0 and 1, where lower values indicate higher similarity. To
convert this distance into a similarity score, we subtracted the distance
value from1 andnormalized all scores such that theywould range from
0 and 1. This resulted in a similarity score where higher values indicate
higher similarity between two reactions.

Hyperparameter optimization for gradient boosting models
To perform hyperparameter optimizations for all gradient boosting
models, we split the training set into five disjoint subsets with
approximately equal sizes to perform fivefold cross-validations (CVs).
We performed a random grid search for the hyperparameters learning
rate, regularization coefficientsα and λ,maximal tree depth,maximum
delta step, number of training iterations, and minimum child weight
using the Python package hyperopt57. Afterwards, we chose the set of
hyperparameters that led to the highest mean coefficient of determi-
nation R2 during CV.

Training of additional machine learning models
To compare the performance of the gradient boosting model to
additionalmachine learningmodels, we also trained a linear regression
model, a random forest model, and a fully connected neural network
for the same prediction task. To find the best hyperparameters for the
models, we again performed 5-fold CVs on the training set. For the
random forest model, the optimized hyperparameters were the
number of estimators, maximal depth of trees, and minimum samples
per leaf. For the linear regression model, we searched for the best L1
and L2 regularization coefficients. We used the Python package scikit-
learn58 for training both models. For the fully connected neural net-
work, the optimized hyperparameters were learning rate, learning rate
decay and momentum, dimension of hidden layers, batch size, L2
regularization coefficient, and number of epochs. We used the deep
learning library TensorFlow to train the fully connected neural
networks59.

Comparison of kcat predictions between the DLKcat model and
TurNuP
We used code provided on a GitHub repository by Li et al.16 to repro-
duce the DLKcat model and to make predictions for their test set. We
divided both, the DLKcat test set and our test set, into four different
subsets according to the protein sequence identity compared to the
amino acid sequences in the training sets (Fig. S2). To achieve this, we
calculated for every test sequence the maximal pairwise sequence
identity compared to all sequences in the training set, using the
Needleman-Wunsch algorithm from the software package EMBOSS60.
We then grouped the data points in each of the two test sets according
to this maximal sequence identity: <40%; ≥40% and <80%; ≥80% and
<99%; and ≥99%. For each of the two methods, we then calculated the
coefficient of determination R2 separately in each of the sequence
identity groups. For each level of sequence identity, we compared the
R2 values of TurNuP (evaluatedon its corresponding subset of test data
points) andDLKcat (evaluated on its corresponding subset of test data
points).

Predicting protein abundances using predicted kcat values
Li et al.16 developed a Bayesian pipeline to use predicted kcat values for
enzyme-constrained genome-scale metabolic models to predict the
proteomeof yeast species.We usedMatlab code provided on aGitHub
repository by Li et al.16 to follow the same pipeline for kcat values
predicted with TurNuP. The predicted proteome allocations were
compared to measured proteome data for four different species in 21
different cultural conditions. The measured proteome data was taken
from six different publications61–66.

Statistical tests for model comparison
To test if the difference in model performance between the TurNuP
model with enzyme and reaction information compared to themodels
with either only enzyme or reaction information is statistically sig-
nificant, we applied a one-sided Wilcoxon signed-rank test imple-
mented in the Python package SciPy67. We tested the null hypothesis
that the median of the absolute errors on the test set for predictions
madewith TurNuP, �e1, is greater or equal to the correspondingmedian
for predictions made with a model with only reaction or only enzyme
information, �e2 (H0 : �e1 ≥ �e2 vs. H1 : �e2 > �e1). We could reject H0 with
p-values of p = 0.0049 (DRFP) and p = 1.2 × 10−7 (ESM-1bESP)), accepting
the alternative hypothesis H1.

We also tested if the differences in model performance between
TurNuP and theDLKcatmodel are statistically significant for all subsets
of the test set with different enzyme sequence identity levels. We used
the non-parametric one-sided Wilcoxon-Mann-Whitney test imple-
mented in the Python package SciPy67 to test the null hypothesis that
the prediction errors for the two models are equally distributed. We
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could reject the null hypothesis for all four subsets at the 5% level with
p-values of p = 4.3 × 10−11 (0–40%), p =0.0017 (40–80%), p = 0.00037
(80–99%), and p =0.048 (99–100%).

Calculating reaction fluxes
We calculated reaction fluxes for all 108 genome-scale metabolic
models (GEMs) from the BiGG database41. We selected those six GEMs
for different organisms that showed the highest correlation between
calculated fluxes through parsimonious flux balance analyses (pFBA)
and kcat values in our dataset. We selected the following six models:
iECO111_1330 (Escherichia coli), iEK1008 (Mycobacterium tuberculosis),
iHN637 (Clostridium ljungdahlii), iIT341 (Helicobacter pylori),
iSbBS512_1146 (Shigella boydii), and iJN1463 (Pseudomonas putida).

We calculated the reaction fluxes similar to the approach by
Heckmann et al.14 for E. coli. For each of the six GEMs, we simulated 10
000 minimal growth sustaining environments through pFBA38 using
the Python package COBRApy68. Afterwards, we calculated for every
reaction themean of all non-zero fluxes among all simulations. In all of
the 10 000 simulations, first a growth sustaining environment was
createdwith a growth rate higher than0.1 ½h�1� and oxygen uptakewas
allowed with a probability of 50% for aerobic organisms. To convert
themedium into aminimalmedia, eachmetabolite of themediumwas
removed if growth was sustained without it. If we could not obtain a
non-zero flux for a reaction in all simulations, we repeated the
described procedurewith a flux variability analysis (FVA)69 instead of a
pFBA. If we could not obtain a non-zero-flux for a reaction either via
pFBAor via FVA,we replaced the reactionfluxwith themeanof all non-
zero fluxes. Python code for calculating the fluxes is available on the
following GitHub repository: https://github.com/Nina181/kcat_flux_
relationship.

Mapping data points to BiGG reaction IDs
We created a list with reactions from six different metabolic genome-
scale models from the BiGG database41 (iECO111_1330, iEK1008,
iHN637, iIT341, iSbBS512_1146, iJN1463). To create this list, we down-
loaded a JSON-files for each model and we extracted all substrate
names and IDs (MetaNetX or KEGG), product names and IDs, and BiGG
reaction IDs. We discarded all reactions with an incomplete list of
substrate or product IDs. If only a MetaNetX ID and no KEGG ID was
available for a metabolite, we downloaded an InChI string53 for the
metabolite using the MetaNetX database70. Next, we calculated struc-
tural reaction fingerprints for all extracted BiGG reactions using the
KEGG IDs and InChI strings of the substrates and products (for details
see above, “Calculating reaction fingerprints").

To map data points from our dataset to BiGG reaction IDs, we
calculated a pairwise similarity score between all reactions in our
dataset and all reactions from the 6 extracted BiGG models. To cal-
culate the similarity score, we used the Python function TanimotoSi-
milarity from the RDKit package DataStructs24 with structural reaction
fingerprints as the input. This resulted in a similarity score between 0
(no similarity) and 1 (very high similarity) for all pairs of reactions. We
mapped every data point in our dataset to the BiGG reaction with the
highest similarity score.

Calculating Michaelis constants
To calculate the Michaelis constants KM for all enzyme-catalyzed
reactions in our dataset, we created a list with all enzyme-substrate
pairs. We used the BRENDA database20 to map enzyme-substrate pairs
to KM values via the enzymes’ amino acid sequences and via a mole-
cularfingerprint of the substrate, called ECFP vector54. Wewere able to
map a KM value to ~7% of 8984 enzyme-substrate pairs.

If we could not find a value for an enzyme-substrate pair in the
BRENDA database, we predicted KM using a machine learningmodel39.
The KM prediction model uses a graph neural network (GNN)71,72 to
create a 50-dimensional task-specific fingerprint of the substrate.

These fingerprints are used together with a 1900-dimensioanl enzyme
representation, called UniRep vector29, as the input for a gradient
boosted decision tree model34 to predict the KM value for an enzyme-
substrate pair. For reactions with multiple substrates, we took the
geometric mean of KM values to create a single KM value for every
data point.

Calculating the codon adaptation index
The codonadaptation index (CAI) for E. coliwas calculated considering
ribosomal protein genes as the highly expressed genes40. The
sequences of ribosomal protein genes were retrieved from genome
annotation of E. coli (NC_000913.3 from RefSeq73).

Computational resources
To perform hyperparameter optimization for all gradient boosting
models, we used the High Performance Computing Cluster at the
University of Düsseldorf (Germany). Each hyperparameter optimiza-
tion was executed for 48 hours on an Nvidia Quadro RTX 8000, which
resulted in testing ~5000 different hyperparameter settings for
each model.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Weused the BRENDA20, UniProt21, and Sabio-RK22 databases to create a
kcat dataset. All data downloaded and generated in this study and all
processed data used to produce the results of this study have been
deposited in a Zenodo repository available at https://doi.org/10.5281/
zenodo.784934748. Source data for all figures are provided with this
paper. Source data are provided with this paper.

Code availability
The Python code used to generate all results is publicly available only
at https://github.com/AlexanderKroll/kcat_prediction47.
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