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ARTICLE

Scale-free dynamics in the core-periphery
topography and task alignment decline from
conscious to unconscious states
Philipp Klar 1✉, Yasir Çatal2, Robert Langner3,4, Zirui Huang 5,6 & Georg Northoff 2,7

Scale-free physiological processes are ubiquitous in the human organism. Resting-state

functional MRI studies observed the loss of scale-free dynamics under anesthesia. In con-

trast, the modulation of scale-free dynamics during task-related activity remains an open

question. We investigate scale-free dynamics in the cerebral cortex’s unimodal periphery and

transmodal core topography in rest and task states during three conscious levels (awake,

sedation, and anesthesia) complemented by computational modelling (Stuart-Landau model).

The empirical findings demonstrate that the loss of the brain’s intrinsic scale-free dynamics in

the core-periphery topography during anesthesia, where pink noise transforms into white

noise, disrupts the brain’s neuronal alignment with the task’s temporal structure. The com-

putational model shows that the stimuli’s scale-free dynamics, namely pink noise distin-

guishes from brown and white noise, also modulate task-related activity. Together, we

provide evidence for two mechanisms of consciousness, temporo-spatial nestedness and

alignment, suggested by the Temporo-Spatial Theory of Consciousness (TTC).
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Scale-free, fractal, or self-similar dynamics are ubiquitous in
nature1,2 and in the human organism, including its nervous
system3–5. Statistical self-similarity describes objects in

space or processes in time where smaller pieces resemble the
statistics of the whole instead of being an exact geometrical copy
as found in mathematically created fractals6. Paradigmatic
examples of scale-free physiological processes measured in time-
series are the voltage across the cell membrane of
T-lymphocytes7, currents through ion channels8, heart rate
variability9–11, blood flow12, volumes of breaths13, and functional
magnetic resonance (fMRI) recordings of human brain
activity14–19. The abundance of scale-free dynamics in various
natural phenomena raises the question of whether scale-free
dynamics modulate the brain’s neuronal activity concerning
consciousness and the neuronal activity’s alignment with envir-
onmental stimuli or inputs.

Scale-free physiological processes in time imply that no specific
timescale or frequency drives the biological system20. Rather than
showing dominant oscillations, events spread across a broadband
1/f pink noise power spectrum where power falls off as frequency
increases. Notably, a resting-state functional MRI study19

demonstrated that scale-free brain dynamics, assessed via the
power-law exponent (PLE) and corresponding to 1/f pink noise,
collapsed under propofol-induced anesthesia. The PLE calcula-
tion follows a linear least-square regression of a power-law in the
frequency domain’s log-power and log-frequency transformation.
This resting-state study observed that pink noise in the BOLD’s
infra-slow frequency band (0.01–0.1 Hz) under consciousness
transformed into a flat white noise power spectrum in anesthesia
where all frequencies approximately share the same power19.
However, one unsolved question is how the loss of the brain’s
intrinsic spontaneous activity’s (resting-state’s) pink noise during
the loss of consciousness affects the brain’s task-related activity.

Neuroimaging studies investigated scale-free dynamics in
conscious14–18,20 and unconscious states19. In contrast, it remains
unknown if and to what extent the brain’s intrinsic scale-free
dynamics undergo modulation by extrinsic stimuli, such as dur-
ing task-related activity under the loss of consciousness.
Regarding this question, the Temporo-Spatial Theory of Con-
sciousness (TTC) suggests a mechanism described as temporo-
spatial alignment9,21. Temporo-spatial alignment refers to the
brain’s neuronal activity’s adaptation to the temporal and spatial
structure of extrinsic stimuli or inputs during task-related activity.
One paradigmatic empirical manifestation of temporo-spatial
alignment is observable when the brain’s task-related activity
follows the task’s temporal structure18. Temporo-spatial align-
ment, in turn, requires a sufficient degree of scale-free dynamics
(or PLE level) of the brain’s ongoing spontaneous activity or
resting-state, labeled temporo-spatial nestedness21,22. Addressing
the empirical demonstration of the task-related temporo-spatial
alignment for consciousness, including its close relationship with
the resting-state’s temporo-spatial nestedness, sets the overall aim
for our fMRI analysis in three levels of consciousness (awake,
sedation, and anesthesia) displayed in Fig. 1.

Further neuroimaging studies highlighted the connection
between the brain’s temporal dynamics and the cerebral cortex’s
spatial topography under conscious wakefulness6,23–26. Para-
digmatically, the brain’s intrinsic neuronal timescales, measured
by the signal’s autocorrelation during the resting-state, followed a
topographic division into higher-order transmodal association
(core) and lower-order unimodal sensorimotor (periphery)
regions in both fMRI18,24–26 and magnetoencephalography23. In
this line of research, a recent fMRI analysis by our group18

provided evidence of how the resting-state’s scale-free dynamics
assessed in the same core-periphery topography undergo mod-
ulation by the task’s temporal structure under conscious

wakefulness, namely by the task’s inter-trial intervals. It remains
an open question wherever the modulation of the brain’s intrinsic
scale-free dynamics by the task’s temporal structure, reflecting an
example of temporo-spatial alignment and nestedness, preserves
in the core-periphery topography under the loss of consciousness.
We addressed this question via three aims.

Aim one investigated wherever a systematic relationship holds
between the brain’s intrinsic scale-free dynamics in the core-
periphery topography, operationalized by the PLE22,27, and the
level of consciousness across three conscious levels from awake,
over sedation, to anesthesia. Based on a previous fMRI study19

and the TTC hypothesis of nestedness, we predicted that scale-
free dynamics represent a potential predisposition or requirement
for consciousness that, in turn, is lost under propofol-induced
anesthesia.

Aim two tested the TTC alignment mechanism by investigating
if and to what extent scale-free dynamics, measured by the PLE,
show task-related modulations potentially based on the brain’s
alignment with the task’s infra-slow temporal structure
(0.039–0.064 Hz), across the three conscious states. Based on
previous fMRI studies that showed task-related PLE changes14,
and PLE increases in task designs comprising infra-slow inter-
trial intervals16, we hypothesized a significant task-related PLE
increase compared to the resting-state in the awake state. We
hypothesized the loss of task-related PLE increases in anesthesia
based on the brain’s substantially reduced reactivity to exter-
oceptive inputs or stimuli under deep anesthesia28–31 related to a
loss of scale-free dynamics hypothesized for aim one. The second
hypothesis (aim two), namely the relevance of scale-free
dynamics and pink noise for the brain’s alignment with stimuli,
is falsified if the PLE would still show significant task-related
increases following the task’s temporal structure under the pre-
sence of potential white noise in anesthesia.

Aim three focused on the impact of the extrinsic input’s
temporal structure. Aim three reached beyond aims one and two,
which investigated the brain’s intrinsic noise colors and task-
related activity but left unanswered the impact of the stimuli’s or
task’s noise colors, such as paradigmatically white, pink, or brown
noise. For that purpose, we employed the computational
Stuart–Landau model32–34 to investigate to what degree different
input strengths of white, pink, and brown noise affect a system of
coupled oscillators near criticality. We hypothesized that power
distributions of the extrinsic input, spanning from white noise to
scale-free inputs by pink and brown noise, individually affect the
model’s coupled oscillators. Support for this hypothesis can
provide evidence that the brain’s alignment with the environment
during conscious wakefulness does not solely depend on the
brain’s intrinsic scale-free dynamics, i.e., temporo-spatial nest-
edness, but, furthermore, on the extrinsic dynamics of environ-
mental inputs35,36.

In summary, the empirical results revealed a systematic rela-
tionship between scale-free dynamics and the level of conscious-
ness in rest and task states. Power spectra showed increasing
flattening towards white noise from sedation to anesthesia com-
pared to the pink noise under conscious wakefulness. The com-
putational results highlighted that the extrinsic input’s dynamics,
besides the brain’s intrinsic scale-free dynamics, affected the
model/brain-environment interaction. From the perspective of the
TTC, our findings demonstrated the importance of two mechan-
isms for the level of consciousness, namely temporo-spatial nest-
edness and alignment. The second mechanism of alignment with
the task’s temporal structure potentially depends on the kind of
noise color, such as pink noise, regarding both (1) the brain’s
intrinsic activity manifested by the first mechanism of nestedness
and (2) the dynamical structure of extrinsic inputs further affecting
the second mechanism of alignment.
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Results
Scale-free dynamics decreased from wakefulness over sedation
to anesthesia— loss of temporo-spatial nestedness. Aim one
investigated the brain’s resting-state scale-free dynamics oper-
ationalized by the power-law exponent (PLE) in three states of
consciousness: awake, sedation, and anesthesia/unconsciousness.
We tested if the presence of the BOLD’s ~1/f pink noise poten-
tially reflects a necessary neuronal predisposition of conscious-
ness (NPC), thus probing the need for temporo-spatial nestedness
as the first mechanism suggested by the TTC. The hypothesis is
falsified when scale-free dynamics or pink noise remain intact
and show topographic core-periphery differentiation in the
BOLD’s infra-slow frequency band during the loss of con-
sciousness in anesthesia.

Awake: We observed intact scale-free dynamics in the resting-
state under conscious wakefulness, where the core PLE= 0.63
was significantly higher (t= 6.17, p < 0.001) than the periphery
PLE= 0.518 displayed in Fig. 2a.

Sedation: The slope of the power-law distributions decreased
under the sedative propofol concentration of 1.3 µg/ml in both
core (PLE= 0.593) and periphery (PLE= 0.6) regions displayed
in Fig. 2b. Additionally, the core-periphery division lost its
statistical significance in sedation (t=−0.2, p= 5.066). The
standard deviation (SD) increased from awake (core SD= 0.171,
periphery SD= 0.157) to sedation (core SD= 0.181, periphery
SD= 0.21). The relatively high SD was mirrored in the subjects’
behavioral response, where the Ramsay scores for consciousness
likewise yielded substantial variability (mean/SD= 3.8/1.7).

Anesthesia: Subjects received a high propofol concentration of
4.0 µg/ml leading to unconsciousness in anesthesia which is also
reflected in the highest Ramsay score of 6 for all subjects,

indicating the loss of consciousness. Power spectra flattened to
white noise for the complete BOLD’s infra-slow frequency band
(0.01–0.1 Hz or 10−2 to 10−1 on the logarithmic scale) under
anesthesia displayed in Fig. 2c. The horizontal power spectra
caused a reduction of both the core PLE=−0.052 and periphery
PLE=−0.081, indicating an uncorrelated random process. Like
in the sedative state, the core-periphery division diminished in
anesthesia (t= 1.33, p= 1.249).

ANOVA: In addition to paired t-tests between core and
periphery, a one-way repeated measures ANOVA between the
three states of consciousness was applied for core and periphery,
respectively (see Fig. 2d and Supplementary Table 4). The three
conscious states yielded a significant PLE difference in the core
(F= 40.38, p < 0.001) and periphery region (F= 46.1, p < 0.001).
Table 1 summarizes and Fig. 2 displays the resting-state PLE
results in the core-periphery topography.

Scale-free dynamics no longer followed the task’s temporal
structure in anesthesia —loss of temporo-spatial alignment.
Aim two investigated the responsiveness of scale-free dynamics to
the task’s infra-slow temporal structure (0.039–0.064 Hz) in the
three conscious states, respectively. Aim two thus allowed testing
the TTC hypothesis of a brain-environment alignment, namely
temporo-spatial alignment, that, as we hypothesized, requires the
presence of scale-free dynamics in the infra-slow band
(0.01–0.1 Hz) during task states. We expected task PLE increases
in the core-periphery topography under conscious wakefulness as
previously observed in another dataset18, where the brain shifts
power away from faster towards slower frequencies following the
task’s infra-slow temporal structure (0.039–0.064 Hz).

Fig. 1 Overview of the investigated two mechanisms for consciousness in the core-periphery topography investigated in the fMRI infra-slow frequency
band (0.01–0.1 Hz). a Two investigated mechanisms for consciousness, namely temporo-spatial nestedness and alignment, suggested by the Temporo-
Spatial Theory of Consciousness (PLE power-law exponent, ITI inter-trial interval). b The assessed topography divided the human cerebral cortex into
higher-order association core (colored in pink) and lower-order sensorimotor periphery (colored in blue) regions. Seven networks constitute the core-
periphery topography. The core region comprises the limbic, frontoparietal, and default-mode networks, whereas the periphery region comprises the dorsal
attention, ventral attention, somatomotor, and visual networks (see methods section for details). (DMN default-mode network, FPN frontoparietal network,
DAN dorsal attention network, VAN ventral attention network, SMN somatomotor network.).
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Awake: In accordance with the task’s infra-slow temporal
structure, the power-law distributions’ slope of both the core and
periphery regions increased compared to the resting-state. The
division between core (PLE= 0.697) and periphery (PLE= 0.627)
diminished below statistical significance in the task state (t= 1.92,
p= 0.475).

Sedation: The task PLE still increased under sedation compared
to the resting-state in both core (PLE= 0.69) and periphery

(PLE= 0.642). As observed in the awake task state, the core-
periphery topography lacked statistical significance (t= 2.53,
p= 0.157).

Anesthesia: As observed in the resting-state, power spectra
flattened to white noise for the complete frequency band under
anesthesia. The statistical difference between the core (PLE=
−0.087) and periphery (PLE=−0.084) topography diminished
further in the task state under anesthesia (t=−0.154, p= 5.282).

Fig. 2 Resting-state inverse power-law distributions and PLE where each line represents one subject. The blue dashed line represents the mean linear
least-square regression across all subjects. a The core-periphery comparison yielded significant PLE differences under conscious wakefulness. b The PLE
significantly decreased and converged between the core and periphery regions in sedation. c The power spectra flattened to white noise under anesthesia/
unconsciousness (0.01–0.1 Hz or 10−2 to 10−1 on the logarithmic scale). d One-way repeated measures ANOVA between the three states of
consciousness. Error bars for the SD represent the standard error of the mean (SEM) based on 599 bootstrap samples and SD for the Ramsay score.
Boxplot center line represents the median, boxes the interquartile range (IQR), and whiskers 1.5x IQR; n= 13 subjects. (PLE power-law exponent, SD
standard deviation, Awa awake, Sed sedation, Ane anesthesia.).
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ANOVA: The three conscious states yielded a significant PLE
difference in the core (F= 62.79, p < 0.001) and periphery region
(F= 47.64, p < 0.001). Table 2 summarizes and Fig. 3 displays the
task PLE results in the core-periphery topography. Supplemen-
tary Table 3 summarizes the rest and task states ANOVA.

PLE rest-task differences. Besides investigating the core-
periphery regions individually in rest and task states, we calcu-
lated two further comparisons to assess the PLE change from rest-
to-task states in all conscious levels (see the method section
“Calculations of PLE rest-task differences” for details on the
calculation).

(1) Intra-region rest-task difference: We compared the rest
against task PLE within both core and periphery. This
difference shows the statistical PLE increase within each
region, i.e., the statistical significance of the core and
periphery rest-to-task PLE increases. Awake: Scale-free
dynamics in the task state under conscious wakefulness
significantly increased compared to the awake resting-state
for both core (t=−2.93, p= 0.038) and periphery
(t=−3.31, p= 0.019) regions. Sedation: The task PLE still
increased under sedation compared to the resting-state in
both the core and periphery regions. However, the rest-to-
task PLE increase was below statistical significance for both
the core (t=−1.39, p= 0.566) and periphery (t=−0.5,
p= 1.888). Anesthesia: Compared to the resting-state, the
task state PLE no longer increased in both core (t=−0.83,
p= 1.273) and periphery (t= 0.08, p= 2.817). In summary,
diminished scale-free dynamics observed under 1.3 µg/ml
of propofol in sedation led to non-significant PLE changes
in task states. The same observation holds for higher
propofol concentrations of 4.0 µg/ml in anesthesia.

(2) Inter-region rest-task difference: We subtracted task from
rest PLE levels individually for the core and periphery
regions. This calculation highlights the absolute PLE
increases from rest-to-task states. Subsequently, we com-
pared the rest-task difference results between the core and
periphery regions, testing whether the rest-task difference
was higher in the core or periphery region. Awake: The rest
minus task PLE lacked statistical significance (t= 1.21,
p= 0.747) between the core and periphery regions.
Sedation: The rest minus task PLE difference between the
core and periphery regions turned out non-significant

(t=−1.39, p= 0.565). Anesthesia: Like in awake and
sedation, the rest minus task PLE difference between the
core and periphery regions was far from statistical
significance (t= 1.84, p= 0.27). In summary, the rest
minus task PLE difference between core and periphery
lacked statistical significance in all conscious states. Figure 4
and Table 3 display the rest-task calculations.

Seven networks PLE analysis. In addition to PLE analyses for the
core-periphery topography, we analyzed the PLE in all seven
networks that constituted the core-periphery topography. First,
the seven network PLE analysis allowed validation that PLE dif-
ferences between core and periphery regions also occur on the
single network level. Second, we aimed to control that different
PLE levels across the three conscious states are manifest on the
single network level. Third, we computed a hierarchy via a linear
least-square regression across the seven networks’ PLE levels. We
analyzed this hierarchy for the three conscious levels in rest and
task states, respectively. This analysis allowed us to highlight a
potentially diminishing hierarchy in sedation or its absence in
anesthesia compared to conscious wakefulness.

Awake: The resting-state PLE level increased from peripheral,
e.g., limbic and SMN, to core networks, e.g., FPN and DMN.
Additionally, the mean PLE increased in all networks from the
rest to the task state.

Sedation: Following the core-periphery results, the mean PLE
remained stable across most of the seven networks under sedative
propofol levels, matching the seven networks PLE levels observed
under conscious wakefulness. On average, as observed for the
core-periphery topography, the PLE still increased in the task
state, albeit to a lesser extent than under conscious wakefulness.

Anesthesia: The mean PLE levels in all networks drastically
diminished under the high propofol dosage and the loss of
consciousness in anesthesia, reaching levels of ~ 0 as observed for
the core-periphery topography. The rest vs. task PLE difference
remained non-significant results for all seven networks
(p ≥ 3.165).

In summary, the seven network hierarchy showed the highest
mean slopes under conscious wakefulness for rest (slope= 0.044)
and task (slope= 0.039) states. As anticipated, the mean slopes
decreased under sedation for rest (slope= 0.037) and task
(slope= 0.031) states. Finally, the hierarchy dissolved into
horizontal planes under anesthesia for rest (slope= 0.009) and

Table 1 Resting-state power-law exponent (PLE) core-periphery comparison.

Conscious state Ramsay score Run Core Periphery t value p value

Awake (Propofol 0 µg/ml) 1.0 ± 0 Rest 0.63 (0.171) 0.518 (0.157) 6.17 p < 0.001 ***
Sedation (Propofol 1.3 µg/ml) 3.8 ± 1.7 Rest 0.593 (0.181) 0.6 (0.21) −0.2 5.066
Anesthesia (Propofol 4.0 µg/ml) 6.0 ± 0 Rest −0.052 (0.254) −0.081 (0.252) 1.33 1.249

Data represents region-based mean values across subjects including the standard deviation (SD) in brackets. The conscious state column includes the propofol concentrations. Statistics, Student’s paired
t-test where p values are multiplied by six (Bonferroni correction); significance asterisks, p < 0.05 *, p < 0.01 **, p < 0.001 ***; n= 13 subjects.

Table 2 Task state power-law exponent (PLE) core-periphery comparison.

Conscious state Ramsay score Run Core Periphery t value p value

Awake (Propofol 0 µg/ml) 1.0 ± 0 Task 0.697 (0.166) 0.627 (0.213) 1.92 0.475
Sedation (Propofol 1.3 µg/ml) 3.8 ± 1.7 Task 0.69 (0.212) 0.642 (0.224) 2.53 0.157
Anesthesia (Propofol 4.0 µg/ml) 6.0 ± 0 Task −0.087 (0.235) −0.084 (0.249) −0.154 5.282

Data represents region-based mean values across subjects, including the standard deviation (SD) brackets. The conscious state column includes the propofol concentrations. Statistics, Student’s paired t-
test where p values are multiplied by six (Bonferroni correction); significance asterisks, p < 0.05 *, p < 0.01 **, p < 0.001 ***; n= 13 subjects.
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task (slope= 0.007) states. Overall, the seven network rest vs. task
PLE results mirrored the previous observations of the core-
periphery topography across all conscious states. The results are
shown in Fig. 5 and summarized in Supplementary Tables 5, 6.

Computational modeling: impact of the extrinsic input’s dif-
ferent noise colors. The presented empirical findings showed that
the loss of the brain’s scale-free dynamics, namely temporo-spatial

nestedness, from pink noise under conscious wakefulness to white
noise under unconsciousness, corresponded to degrees of the
brain’s task-related activity or reactivity to extrinsic inputs, namely
temporo-spatial alignment. While these results demonstrated a role
of the brain’s intrinsic scale-free dynamics, they did not probe the
impact of the extrinsic inputs’ dynamics on the brain’s temporo-
spatial alignment. To assess this question, we employed the com-
putational Stuart–Landau coupled oscillator model. We simulated

Fig. 3 Task state inverse power-law distributions and PLE where each line represents one subject. The blue dashed line represents the mean linear least-
square regression across all subjects. The blue shaded area represents the task’s frequency range (0.039–0.064 Hz). a The core-periphery comparison
lacked significant PLE differences under conscious wakefulness. b The PLE significantly decreased and further converged between the core and periphery
regions in sedation. c The power spectra flattened to white noise under anesthesia/unconsciousness (0.01–0.1 Hz or 10−2 to 10−1 on the logarithmic
scale). d One-way repeated measures ANOVA between the three states of consciousness. Error bars for the SD represent the standard error of the mean
(SEM) based on 599 bootstrap samples and SD for the Ramsay score. Boxplot center line represents the median, boxes the interquartile range (IQR), and
whiskers 1.5x IQR; n= 13 subjects. (PLE power-law exponent, SD standard deviation, Awa awake, Sed sedation, Ane anesthesia).
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inputs in three strength levels and noise colors, spanning from
white over pink to brown noise, assessing their impact on a coupled
oscillator system near criticality shown in Fig. 6a, b.

Even with low noise strength, the brown noise input, indexing
a high degree of scale-free dynamics, already desynchronized the
system. On the other hand, white noise, indexing the loss of scale-
free dynamics or temporo-spatial nestedness, required very high
input strengths to induce changes in the model’s degree of
synchronization. Pink noise inputs yielded desynchronization
effects in the model’s activity that stood between the extremes of
those observed during white and brown noise inputs. In sum,
these modeling results demonstrated the importance of the
extrinsic input dynamics for the brain’s task-related responses,
namely temporo-spatial alignment. Based on the model’s results
together with the empirical findings, we assume that the brain’s
task-related activity, namely the degree of temporo-spatial
alignment, depends upon the degree of scale-free dynamics
reflected in noise color (white, pink, or brown noise) of both the
brain’s intrinsic activity and the extrinsic input’s dynamics.

PLE control and replication analyses. PLE control analysis I: the
distinction between fractal and oscillatory components (IRASA):
The IRASA method37 was applied to separate oscillatory and
fractal components of the power spectrum, previously success-
fully measured in electroencephalography (EEG) and magne-
toencephalography (MEG) recordings20,37,38. Supplementary
Fig. 1 displays the comparison between the conventionally
computed PLE presented above, including both fractal and
oscillatory components in the power spectrum, and the IRASA
method obtained fractal-based PLE levels (exclusion of oscillatory
components) in rest and task states. The comparison between
both analysis methods yielded no significant differences. The

results indicate that our PLE results were not driven by oscillatory
components, but reflected a genuine change in the power spec-
tras’ fractal component, that is, in scale-free dynamics.

PLE control analysis II: Comparison with surrogate data: We
tested wherever the measured power spectra were scale-free by
comparing the goodness of fit of the power-law to the PSDs of
real data and simulated fractional Gaussian noise (fGn)14,39–41.
The core and periphery regions had ρ-values, that is, the fraction
of synthetic time-series that had a worse fit than real data,
exceeded 0.05, except for the awake task in the periphery region
(0.021) and anesthesia task in the core region (0.045). The results
provided further evidence for genuine scale-free dynamics in the
awake state and are displayed in supplementary Table 1.

Replication analyses results: We computed two additional
control analyses to back up our PLE observations. In the
following, we only present a brief overview of the results.

(1) The computed task time windows (volumes 90–325 and
329–564), matched to the resting-state length (236 volumes),
showed the same rest-to-task PLE increase in the awake and
sedative states and the loss of task-related PLE changes in
anesthesia that we observed for the full-length task runs.
Additionally, mirroring the full-length task run results, the
PLE levels between the core and periphery regions converged
below statistical significance in both task time windows for all
conscious states. Supplementary Figs. 2, 3 and Supplemen-
tary Table 2 display the results.

(2) The mean frequency (MF) analysis followed the PLE results
in the awake state’s core vs. periphery comparison by
showing a significant difference (t=−4.64, p= 0.003)
between both regions in the resting-state that disappeared
in the task state (t=−1.75, p= 0.636). The MF results in
sedation also followed the PLE findings, lacking a

Fig. 4 Intra-region and inter-region PLE calculations. The individual line plot colors represent single subjects (n= 13). a Intra-region rest-task difference
for the core region statistically compared the rest-to-task PLE changes. b Same as in (a) but for the periphery region. c Inter-region rest-task difference
calculated the rest-to-task PLE changes within the core and periphery region, respectively.

Table 3 Power-law exponent (PLE) rest-task differences.

Conscious state Region Rest Task t value p value

Awake (Propofol 0 µg/ml; Ramsay 1.0 ± 0) Core 0.63 (0.171) 0.697 (0.166) 2.93 0.038 *
Periphery 0.518 (0.157) 0.627 (0.213) 3.31 0.019 *

Sedation (Propofol 1.3 µg/ml; Ramsay 3.8 ± 1.7) Core 0.593 (0.181) 0.69 (0.212) 1.39 0.566
Periphery 0.6 (0.21) 0.642 (0.224) 0.5 1.888

Anesthesia (Propofol 4.0 µg/ml; Ramsay
6.0 ± 0)

Core −0.052 (0.254) −0.087 (0.235) −0.83 1.273
Periphery −0.081 (0.252) −0.084 (0.249) −0.08 2.812

Data represents region-based mean values across subjects, including the standard deviation (SD) in brackets. Statistics, Student’s paired t-test; significance asterisks, p < 0.05 *, p < 0.01 **, p < 0.001 ***;
n= 13 subjects.
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significant difference between the core and periphery
regions in rest (t= 1.09, p= 1.772) and task (t=−0.02,
p= 5.915) states. Finally, the anesthetic state showed no
significant difference between the core and periphery
regions in the resting-state (t=−2.06, p= 0.373) and in
the task (t=−1.69, p= 0.702) state. Consequently, MF
patterns for the resting-state and task state matched the
PLE results. Supplementary Figs. 4, 5 and Supplementary
Table 3 display the results.

Discussion
The empirical fMRI and computational analyses yielded three main
results. (1) The brain’s resting-state comprised different degrees of
scale-free dynamics ranging from pink noise under conscious
wakefulness to the loss of scale-free dynamics and white noise in
anesthesia. (2) The brain’s scale-free dynamics showed significant
task-related PLE increases potentially related to the task’s temporal
structure only under conscious wakefulness18. Conversely, these
task-related PLE changes diminished in sedation and vanished

Fig. 5 Seven networks PLE levels and PLE hierarchy across the seven networks. The PLE hierarchies (right) display the mean slope and regression across
all subjects. a PLE in rest and task states under consciousness. b PLE in rest and task states under sedation. c PLE in rest and task states under anesthesia.
d One-way repeated measures ANOVA between the three states of consciousness in rest and task. The blue dashed lines in the hierarchies (right)
represent the least-square linear regression across the seven networks. Boxplot center line represents the median, boxes the interquartile range (IQR), and
whiskers 1.5x IQR; n= 13 subjects. (DMN default-mode network, FPN frontoparietal network, DAN dorsal attention network, VAN ventral attention
network, SMN somatomotor network.).
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Fig. 6 The effect of different inputs on the Stuart–Landau model of two coupled oscillators. aWe provided the model with three different noise colors of
white, pink, and brown noise, including three logarithmically increasing noise strengths from 0.1 to 100 in 20 simulations for each noise color. As can be
seen in the phase diagrams, inputs with a scale-free temporal structure can easily perturb a system even with low input strength, whereas white noise
inputs require very high input strength to affect the system. Lines show the mean across trials, and shadings show the standard deviations. b The effect of
the PLE of noise and noise strength on perturbation which was defined as the absolute value of the difference in the area of the circle in the phase space
between perturbed and not perturbed states. Lines show the mean, and the shadings show the standard error.
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under the loss of consciousness in anesthesia. (3) The external
input’s dynamics of white, pink, or brown noise, representing sti-
muli, yielded different degrees of task-related changes demonstrated
by the computational model. Findings one to three provide evi-
dence for the suggested mechanisms of temporo-spatial nestedness
and alignment, including their interactive relationship, suggested by
the Temporo-Spatial Theory of Consciousness (TTC).

The Temporo-Spatial Theory of Consciousness (TTC) hypo-
thesizes that scale-free brain dynamics, namely temporo-spatial
nestedness, are potentially a necessary albeit non-sufficient neu-
ronal predisposition of consciousness21. More precisely, the
hypothesis of temporo-spatial nestedness suggests that a scaling
relationship between frequency and power, where faster but less
powerful frequencies are nested into slower yet more powerful
frequencies, is needed for consciousness.

Following the first TTC mechanism, our findings demonstrated a
systematic relationship between scale-free dynamics of the brain’s
ongoing spontaneous activity, assessed via the resting-state, and the
state or level of consciousness. Inverse power-law distributions
showing pink noise (PLE= 0.5 to 1.5) were present under conscious
wakefulness across the core-periphery topography. The intensity of
pink noise diminished under sedation, and pink noise completely
vanished in exchange for white noise for the complete power spec-
trum under anesthesia (0.01–0.1 Hz or 10−2 to 10−1 on the loga-
rithmic scale). The presence of pink noise suggests that a mixture
between variability and regularity that characterizes pink noise with
its ubiquitous presence in both the body3,4,42 and the brain’s
physiology43,44 could present a predisposition for consciousness.
Conversely, white noise comprises high variability and lack of reg-
ularity which, as observed in the BOLD’s infra-slow frequency band
during anesthesia, dominated during the loss of consciousness.

Interestingly, under sedation and anesthesia the subjects showed a
higher standard deviation, compared to the awake state, for the PLE
andMF in resting-state and task and a high standard deviation in the
Ramsay scores (mean/SD= 3.8/1.7). Different subjects may exhibit
various degrees of reactivity to the low-level propofol concentration
(1.3 µg/ml) used for sedation. Propofol is a c-aminobutyric acid
(GABA) receptor agonist that exerts its hypnotic effect through the
potentiation of the inhibitory GABA neurotransmitter45. Propofol in
low concentration potentiates inward chloride currents, while at
higher concentrations, propofol directly causes channel opening46.
Low propofol concentrations potentially best revealed higher degrees
of inter-subject variability of the brain’s reactivity under sedative and
anesthetic propofol concentrations. This well-known inter-subject
variability to anesthetic drugs is further rooted in gene polymorph-
isms. Polymorphisms then influence the pharmacokinetics and
pharmacodynamics of propofol47–49.

One reason why various PLE levels across the cerebral cortex’s
topography are relevant for consciousness might lie in what we
conceptualize as (1) temporal nestedness and (2) functional-
topographic nestedness, which both converge as a potential
requirement for consciousness. The nested structure manifests itself
in the brain’s ongoing spontaneous activity and the alignment of the
former to environmental inputs observed in power spectra, namely
temporal nestedness, and additionally in a quasi-nested functional
topography observed across brain regions and networks. More pre-
cisely and regarding the core-periphery topography, we observed
lower PLE levels in the periphery and higher in the core (see Figs. 2
and 3), while in the seven networks, the lowest PLE levels accordingly
occurred in the limbic and somatomotor and highest in the DMN
and FPN networks under conscious wakefulness (see Fig. 5). Con-
versely, the PLE levels not only reduced to approximately zero under
the loss of consciousness in anesthesia, reflecting a loss of temporal
nestedness, but the core-periphery difference and the seven network
hierarchies vanished as well, reflecting an additional loss of

functional-topographic nestedness. We suggest that the cerebral
cortex requires a repertoire of scale-free dynamics, where the
dynamics of lower-order unimodal networks are functionally (vir-
tually) nested in the dynamics of transmodal association cortices or
networks. The loss of the convergence between temporal and
functional-topographic nestedness might result in the loss of inte-
gration into a functional temporal-spatial space for brain dynamics,
whose disruption leads to the loss of consciousness.

In addition to scale-free dynamics, namely temporo-spatial
nestedness, the TTC suggests that a temporo-spatial alignment of
the brain’s neuronal activity to its respective environmental
context represents another mechanism for consciousness21.
Consciousness requires the brain’s intrinsic activity to align with
the extrinsic interoceptive bodily and exteroceptive environ-
mental inputs. This interaction may prove central for the level or
state of consciousness while yielding what we empirically observe
as stimulus- or task-evoked activity on the neuronal level.

The core-periphery topography showed a significant PLE
increase that followed the task’s temporal structure only under
conscious wakefulness (core: t= 2.93, p= 0.038; periphery: t= 3.31,
p= 0.019). Already in sedation, the rest-to-task PLE increase
diminished below statistical significance under a low-level propofol
concentration of 1.3 µg/ml, corresponding to an initial departure
from scale-free dynamics. Propofol-induced unconsciousness in
anesthesia (4.0 µg/ml) resulted in white noise power spectra, i.e., a
loss of scale-free dynamics where rest-to-task PLE changes van-
ished. These findings hint towards a systematic relationship
between scale-free dynamics of the brain’s ongoing spontaneous
activity and the former’s reactivity to environmental stimuli, as
operationalized by task states across the three conscious levels.
Hence, the brain’s intrinsic 1/f pink noise seemed important for the
brain’s PLE’s reactivity and its neuronal following of the task’s infra-
slow temporal structure. A hypothesis regarding the functional
implication of the brain’s scale-free dynamics is that the former may
require the complexity inherent to pink noise, where variability and
regularity are intertwined, to entrain or encode environmental sti-
muli that, in turn, are often pink-colored as well1,2,6,50–55.

Simultaneously and in addition to the brain’s intrinsic and
ongoing spontaneous activity, the extrinsic input’s dynamics
during the task state potentially likewise carry importance for
consciousness, supported by our computational findings. The
Stuart–Landau model further demonstrated that pink and brown
noise (scale-free) inputs easily perturbed the system even at low
input strengths. Conversely, white noise and its lack of scaling
required very high input strengths to affect the system.

Yu, Romero, and Lee35 demonstrated that pink noise stimuli are
best transmitted by sensory neurons in the visual cortex (V1)
compared to stimuli comprising either extensive long-range cor-
relations, i.e., brown noise (1/f 2), or no temporal correlation, i.e.,
white noise (1/f 0). Qu and colleagues36 showed that neurons
exhibited the highest firing rate, spike timing reliability, and
encoding intensity to pink noise stimuli. In the same line, Soma and
colleagues56 showed that pink noise better sensitizes the baroreflex
centers in the brain compared to white noise, implying a better
information transfer for pink noise compared to brown or white
noise. The empirical results of our fMRI analysis extend these
findings. We demonstrated that it is not only the extrinsic stimuli’s
noise color that determines the environment’s impact on brain
activity shown by our application of the Stuart–Landau model.

Our analysis suggests the necessity of considering both the
brain’s intrinsic and the environment’s extrinsic noise colors to
understand the brain-environment interaction, including its
relevance for consciousness. The idea that a system comprising
complex dynamics, such as pink noise in the human brain,
responds best to other systems that approximately share the same
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dynamics describes complexity matching43,57,58. Many empirical
findings shed light on complexity matching between systems,
such as the human body, and environmental stimuli57,59–62.
Accordingly, in our computational model, scale-free pink and
brown noise dynamics elicited far superior impacts even when
using low input strengths on the two coupled oscillators com-
pared to white noise with its lack of scaling. We, therefore, sug-
gest that the brain’s scale-free dynamics potentially nest or
integrate themselves within environmental dynamics to establish
task-related PLE changes following the task’s temporal structure.
Hence, the two mechanisms of temporo-spatial nestedness and
alignment are potentially required to constitute the awake state’s
high level of consciousness, including adaption to environmental
stimuli or tasks displayed in Fig. 7.

Limitations. Due to our empirical fMRI dataset constraints,
testing different noise color inputs was empirically impossible.
Therefore, we applied a computational model to simulate and test
the impact of three noise colors and different strengths on
synchronization-based oscillators. The modeling of the brain as
coupled oscillators has been used extensively in the literature,
thus providing validity to the Stuart–Landau model61–69. We
confined the model to two oscillators for tractability of the results
regarding the perturbation of the limit cycle. The simulation
results confirmed our hypothesis by demonstrating that scale-free
dynamics of pink and brown noise inputs yielded the highest
degree of activity change, whereas white noise inputs lacked a

high impact on the model’s coupled oscillators. Future analyses
require systematic designs that allow testing the brain-
environment interaction based on real instead of simulated sti-
muli by recording the stimulis’ time-series allowing the analysis
in conjunction with brain dynamics from neuroimaging.

The recorded fMRI BOLD signal captures the hemodynamic
deoxy-to-oxy rate inside the infra-slow frequency band (0.01–0.1Hz).
Comparing scale-free dynamics recorded via fMRI BOLD with
electrophysiological signals by electroencephalography (EEG) and
magnetoencephalography (MEG) is problematic. Paradigmatically
and in opposition to fMRI findings, several EEG studies observed
PLE increases instead of decreases under the loss of consciousness in
anesthesia31,70–72. One possible theoretical inference for fMRI BOLD
and electrophysiological recordings is that scale-free dynamics,
measured by the PLE, must operate within a balanced scaling range:
substantially changed PLE levels, either too high or low, may lead to
the loss of consciousness. It remains unknown why pink noise or
inverse power-law distributions of the BOLD signal corresponded
with consciousness in this and other fMRI analyses19 since there is
not one possible mechanistic explanation for scale-free dynamics or
power-law scaling of physiological time-series recordings, but likely
many3. We are still far from developing models grounded in a
mechanistic and systematic understanding of why scale-free
dynamics of hemodynamic and electrophysiological brain recordings
are probably necessary for consciousness.

Furthermore, we interpreted our findings in light of the Temporo-
Spatial Theory of Consciousness (TTC) while neglecting other

Fig. 7 Two suggested mechanisms for consciousness by the Temporo-Spatial Theory of Consciousness. a Temporo-spatial nestedness. Scale-free
dynamics in the vicinity of pink noise (PLE=−1) were observed under conscious wakefulness in the resting-state, whereas a partial flattening of power to
white noise under propofol-induced anesthesia. b Temporo-spatial alignment. A significant rest-to-task PLE increase in response to the infra-slow inter-trial
interval (0.039–0.064 Hz) only occurred under pink noise in the brain’s ongoing activity. Conversely, under the loss scale-free dynamics in anesthesia, the
power distribution’s adaption or alignment in response to the task vanished.
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neuroscientific theories of consciousness that potentially draw
different theoretical inferences for the obtained results. A feature of
the TTC is that it integrates the brain’s spontaneous activity with
task-evoked activity73, coined rest-stimulus or rest-task
interaction21,22. The observations in this analysis demonstrated that
the spontaneous activity’s scale-free dynamics, namely temporo-
spatial nestedness, modulated the degree of task-evoked activity,
namely temporo-spatial alignment. The interaction between rest and
task states represents a requirement for consciousness suggested by
the TTC. Neuroscientific theories of consciousness often focus on
either the resting-state74,75 or task-evoked activity76,77. (See
refs. 73,78–80 for a detailed comparison between neuroscientific
theories of consciousness.) This rest-task integration distinguishes the
TTC from other neuroscientific theories of consciousness, such as
paradigmatically the Integrated Information Theory (IIT)77 and
Global Neuronal Workspace Theory (GNWT)76, where the focus is
primarily on task-evoked activity81.

Methods
Subjects. For the fMRI analysis, we re-used data from 20 right-handed adults (male/
female: 8/12; age 32–64 years) from a previous clinical study82. Subjects were under-
going an elective transsphenoidal approach for a resection of a pituitary microadenoma.
The pituitary microadenomas diagnoses relied on their size (<10mm in diameter
without growing out of the sella). The diagnosis included radiological examinations and
plasma endocrinal parameters. The subjects received physical status grades I or II
(American Society of Anesthesiologists) with no history of craniotomy, cerebral neu-
ropathy, vital organ dysfunction, or administration of neuropsychiatric drugs. Seven out
of twenty subjects had to be excluded from the fMRI analysis due to excessive head
motion during scanning, leaving thirteen subjects for our analysis. See the section
“Functional MRI data preprocessing” for exclusion criteria.

Anesthesia protocol. The original study82 includes the complete anesthesia protocol.
We only present the propofol concentrations for the reduced conscious level under
sedation and the loss of consciousness in anesthesia. A target-controlled infusion (TCI)
pump allowed a constant effect-site concentration of propofol, estimated by the
pharmacokinetic model83. The stable effect-site concentration of TCI propofol was
1.3 µg/ml for sedation and 4.0 µg/ml for anesthesia, where the 4.0 µg/ml concentration
reliably induces the loss of consciousness84,85. Additionally, the conscious state was
evaluated throughout the study using the Ramsay scale83. The subjects were asked to
strongly squeeze the investigator’s hand. The subject was rated fully awake if the
response to verbal command (“squeeze strongly my hand!”) was strong (Ramsay 1-2),
in mild sedation if the response to the verbal command was clear but slow (Ramsay 3-
4), and in anesthesia, if there was no response to the verbal command (Ramsay 5-6).
The sedative state (1.3 µg/ml) yielded Ramsay scores (mean/SD) of 3.8 ± 1.7 and in the
anesthetic state (4.0 µg/ml), all subjects showed the maximum Ramsay score of 6.0 ± 0.
The Ramsay scores in anesthesia suggest that all subjects lost consciousness.

Data acquisition. A Siemens 3T Magnetom scanner with a standard head coil
acquired scans of the whole brain via gradient-echo echo-planar imaging (EPI)
(33 slices, slice thickness= 5 mm, time repetition= 2000 ms, time echo= 30 ms,
flip angle= 90°, field of view= 210 mm2, image matrix= 64 mm2). The original
study35 acquired resting-state and task runs for the three conscious states of awake
(wakefulness), sedation, and propofol-induced anesthesia. The subjects’ heads were
fixed in the scan frame and padded with spongy cushions to reduce head motion.
The eyes closed resting-state runs each comprised 236 volumes (7:52 min), and the
task runs comprised 565 volumes (18:50 min). The study included high-resolution
T1-weighted anatomical images.

Task design. The dataset’s task paradigm82 offered a temporally sparse event-
related design comprising 60 trials. These trials included 30 own and 30 other (an
unknown person’s name) names delivered in a pseudo-random order. These names
were recorded by a familiar voice from one of the subjects’ family members with an
audio clip lasting for 0.5 s. See refs. 86,87 for details of this previously applied
paradigm. The unknown names were individually matched to each patient’s name
by gender and number of syllables. Inter-trial intervals (ITI) ranged from 15.5 to
25.5 s (frequency range= 0.039–0.064 Hz), jittered in 2-s steps. The long ITI
provides sufficient time for the BOLD undershoot and the return to the baseline
level of ongoing brain activity88–90. The long ITI avoids potential nonlinearities
caused by overlapping hemodynamic responses between succeeding trials (see
Fig. 1 in ref. 22). Stimuli were programmed using E-Prime (Psychology Software
Tools, Pittsburgh, PA) and delivered via an audiovisual stimulus presentation
system designed for an MRI environment. The headphone’s volume was adjusted
to the comfort level of each subject. Subjects were required to pay attention and
listen to the names without behavioral response or judgment.

Functional MRI data preprocessing. Preprocessing was performed using AFNI
(https://afni.nimh.nih.gov)91 applying the following steps: (1) removing the first
four volumes of each functional run; (2) despiking and slice timing correction; (3)
co-registration with high-resolution T1-weighted anatomical images; (4) nonlinear
spatial normalization of the anatomical scans into MNI152 2009c space and sub-
sequent nonlinear functional to anatomical alignment (normalization); (5) func-
tional resampling to 3 × 3 × 3 mm3 voxels; (6) regression of linear and nonlinear
drift (equivalent to high-pass filtering of 0.0067 Hz) plus averaging of eroded white
matter (WM) and cerebrospinal fluid (CSF) signals to reduce non-neuronal
noise92; (7) spatial smoothing using an 8 mm full-width at half-maximum isotropic
Gaussian kernel. Volumes with head motion displacements >0.35 mm or rotation
>3.5° were censored in both rest and task runs. We excluded subjects exhibiting
more than 10% censored volumes from further data analysis.

Statistics and reproducibility. We applied paired t-tests between the core and
periphery regions as well as between rest and task states where, in both cases, we
specified the alternative hypothesis as two-sided. Additionally, we applied one-way
repeated measures ANOVAs between the three states of consciousness for rest and
task states, respectively. The t-Test and ANOVA share the assumptions of para-
metric statistics, meaning that both tests make certain assumptions about the
population’s distribution from which the sample was drawn (see, for instance
ref. 93). We tested two assumptions of parametric tests. First, we controlled the
data’s approximate normality within each group, i.e., in core and periphery for rest
and task states, via the Shapiro–Wilk test. Second, we tested the assumption of the
data’s approximate homogeneity of variance via the Levene test. Results: All
samples passed the Shapiro–Wilk and Levene tests, meaning that the samples’
significance always showed p > 0.05. Consequently, we did not reject the null
hypotheses of normality and homogeneity.

We used the Bonferroni correction to counterbalance the problem of multiple
comparisons encountered in our analyses94,95. The Bonferroni correction
counterbalances the multiple comparisons problem, namely the increased chance
of obtaining false-positive comparisons. Instead of dividing the p-thresholds by the
number of comparisons, paradigmatically p < 0.05/n where n is the number of
comparisons, we multiplied the observed p values by n. The multiplication
preserves the commonly used p thresholds for statistical significance of p < 0.05,
p < 0.01, and p < 0.001 instead of lowering the p thresholds. Our analyses included
different numbers of t-tests across the three conscious states, including their rest
and task runs. We accordingly applied multiplication factors depending on the
number of comparisons as follows.

(1) The comparison of the core vs. periphery regions by t-tests in three
conscious states, including their rest and task runs, results in six t-tests. We
applied the Bonferroni correction using a multiplication of six for all core vs.
periphery comparisons or t-tests, respectively for the power-law exponent
and mean frequency (see Supplementary Figs. 4, 5).

(2) We also applied the Bonferroni correction using multiplication of three for
the “Intra-region rest-task difference” of the core and periphery region,
respectively, as well as for the “Inter-region rest-task difference” (see below
for a detailed explanation of these computations). The Bonferroni correction
with a multiplication of three results due to the three compared conscious
states (three t-tests) in each computation.

(3) The rest vs. task single region PLE analysis included seven t-tests for each
conscious state (see below for a detailed explanation of the single region PLE
analysis). We accordingly multiplied the p-values by a factor of seven.

(4) Finally, we applied the Bonferroni correction with a multiplication factor of six
for the computed task time windows (see Supplementary Figs. 2, 3) based on
the six comparisons (two task time windows times the three conscious states).

Core-periphery topography and seven networks. We assessed the brain’s
topography via a template that divided the cerebral cortex into higher-order
transmodal core and sensorimotor unimodal periphery regions. Two neuroimaging
studies23,24 established this division based on the first principal gradient presented
by refs. 25,96,97. The latter studies demonstrated a moderate relationship between
the similarity of the gradient’s properties between two or more regions and the
region’s position along the cortical surface. Paradigmatic examples of these cortical
features along a gradient are functional and structural connectivity, cytoarchi-
tecture, myeloarchitecture, gene expression, and the length of the brain’s intrinsic
neuronal timescales25,97,98. Based on this principal gradient, the following seven
networks were divided into either the core or periphery region23,24: default-mode
(DMN), frontoparietal (FPN), dorsal attention (DAN), ventral attention (VAN),
somatomotor (SMN), visual, and limbic networks18. The limbic, FPN, and DMN
networks constitute the core region, while the visual network, SMN, DAN, and
VAN constitute the periphery region18,23,24. It is noteworthy that the dorsal
attention network (DAN) belongs to the periphery instead of the core region.
While the regions’ attribution to either core or periphery is dependent on the first
principal gradient in ref. 25, the same article shows the DAN region’s extension
across unimodal sensory, such as the visual and somatomotor cortices, and across
transmodal association regions, such as the frontoparietal and salience networks in
Fig. 3b in ref. 25. We followed a previous fMRI analysis16 that attributed the DAN
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to the periphery region of the same core-periphery topography, consequently
providing comparability between the findings in ref. 18 and our analysis.

Power-law exponent (PLE) analysis. Increasing frequencies go along with
decreasing power following a power-law function of P ¼ 1

f β
where f is frequency, P is

power, and the β is the power-law exponent (PLE)1,2,18. Applying the logarithm on
data in the frequency domain, i.e., log(f) and log(P), displays the power-law dis-
tribution. The slope determined by a linear regression using least-square estimation
between log(f) and log(P) corresponds to the PLE. The computation of the PLE was
performed as follows18. First, AFNI’s 3dPeriodogram transformed the time-series
(time-domain) into the frequency domain on a voxel-based level. We cut the resulting
power spectra to the frequency band of 0.01–0.1 Hz. We chose the lower frequency
limit to avoid signal contributions from scanner drift99, whereas the higher limit was
constrained due to possible impacts from respiratory and cardiac noise. Finally, using
the region-based (average) log-log transformed power spectra, we applied a linear
least-square regression to estimate the PLE for each subject18.

PLE control analysis I: IRASA method. To discard the possibility of the oscilla-
tory component of the power spectrum driving our results, we applied the
irregular-resampling auto-spectral analysis (IRASA) method to separate the fractal
from the oscillatory component18,20,37,100. Briefly, the IRASA method resamples
the signal with a factor h ranging from 1.1 to 1.9 with steps of 0.05; and 1

h.
Geometric means for up and downsampled PSDs were computed, then the power’s
median of the geometric means across different h values was defined as the scale-
free component. The intuition behind the method is that the scale-free component
is resilient against resampling, whereas the oscillatory component is not37. We
computed PLE levels via the slope of the linear regression fit to log-power and log
frequency, but in the frequency band of 0.01–0.1 Hz. We then compared the
IRASA method’s PLE levels with the conventional (empirical) PLE results using
Wilcoxon tests18. Wilcoxon was chosen instead of t-tests due to the non-normality
of the IRASA results tested with Kolmogorov–Smirnov tests.

PLE control analysis II: comparison with surrogate data. To test the goodness of
fit for scale-invariance, we adapted goodness of fit test for power-law distributions39

previously applied in fMRI studies14,18,40,41. For each region in rest and task states, we
simulated 1000 time-series of fractional Gaussian noise (fGN) with the same length,
standard deviation, and Hurst exponent as averaged time-series of real data101. fGN is
a model of stationary scale-free dynamics102,103. We fitted the power-laws to each of
the PSDs of synthetic time-series and real data using the maximum-likelihood esti-
mation method39. Furthermore, we used Kolmogorov–Smirnov distance D to mea-
sure the goodness of fit: the larger the D, the worse the fit. ρ-value was defined as the
fraction of synthetic time-series with Ds larger than the D of the real data. The
hypothesis that the fMRI signal is scale-free was ruled out if ρ < 0.05. Supplementary
Table 1 summarizes the surrogate data results.

Seven networks PLE analysis. In addition to the core-periphery topography, we
analyzed the PLE in all seven networks that constituted the core and periphery
regions. The reason for performing the seven networks PLE computation was
twofold. First, comparing the PLE in all seven networks across the three conscious
states of conscious wakefulness, sedation, and anesthesia, allows controlling that
the PLE systematically varied between the three conscious states on the single
network level irrespective of networks’ combination into core and periphery
regions. We aimed to exclude the possibility that observed PLE changes in the core
and periphery regions resulted based on specific networks, e.g., by the default-mode
or visual regions. Instead, we aimed to ensure that the PLE generally decreased
across all or most networks in sedation and anesthesia compared to conscious
wakefulness. Second, besides comparing the PLE in the seven networks across the
three conscious states, the seven network PLE analysis allowed us to control that
the observed PLE increases in task states in the core and periphery regions,
especially under conscious wakefulness, also hold across the seven single networks.

Beyond computing the PLE in all seven networks, we aimed to control whether
a hierarchy of the seven network PLE levels manifests itself under conscious
wakefulness and if that hierarchy potentially diminishes in sedation and especially
anesthesia. To measure this hierarchy, we computed a linear least-square regression
slope across the seven networks. More precisely, we applied a one-way repeated
measures ANOVA across the three conscious states in rest and task states,
respectively. Beyond the statistics, we plotted the rest and task hierarchies of the
seven networks for the three conscious states.

PLE additional control analyses. Besides the IRASA (PLE control analysis I) and the
comparison with surrogate data (PLE control analysis II), we investigated two additional
control analyses presented in the supplement. The two control analyses include:

(1) Task window analysis: We matched two time windows (volumes 90–325
and 329–564) of the task time-series to the resting-state length of 236
volumes. We subsequently computed the PLE for both windows to control
that higher task-related PLE levels were not a result of the task run’s longer

length (compared to the resting-state run). Supplementary Figs. 2, 3,
including Supplementary Table 2, display the results.

(2) Mean frequency (MF) analysis: We analyzed the power spectra’s mean
frequency for all three conscious states in resting-state and task. Reporting the
MF can seem contradictory, given that a fractal or scale-free process comprises
no typical scale. However, systematic MF changes across the three conscious
levels in rest vs. task states can back up the PLE observations. The reason for
computing theMF is that it measures the balance of power between slower and
faster frequencies, i.e., longer and shorter wavelengths or timescales. Hence,
the PLE increase from resting-state to task under conscious wakefulness,
where the brain shifts power away from faster towards slower frequencies,
should be mirrored in an MF decrease. Supplementary Figs. 4, 5, including
Supplementary Table 3, display the results.

Calculations of PLE rest-task differences. We calculated two additional com-
parisons to statistically compare rest vs. task states and core vs. periphery regions in
each conscious state. Following our other computations, these calculations used the
subjects’ region-based mean values. We consequently explain the exact calculations.

(1) Intra-region rest-task difference: The first calculation assessed the statistical
significance of the rest-to-task PLE change individually within the core and
periphery regions, hence labeled intra-region rest-task difference. Paired t-
tests between rest vs. task PLE levels tested for intra-region statistical
significance. The first calculation allowed us to check if the intra-region rest-
to-task PLE change remains significant in sedation and anesthesia.

(2) Inter-region rest-task difference: The second calculation assessed the
absolute rest-to-task PLE change in the core and periphery regions,
respectively. First, we subtracted the task from the rest PLE levels,
individually for the core and periphery regions. Second and contrary to
the first step no longer within only one region, we statistically compared the
absolute PLE change between core and periphery regions using paired t-
tests, hence labeling this calculation inter-region rest-task difference. The
second calculation controlled if the periphery region exhibits significantly
higher task-related PLE changes than the core region.

Computational Stuart–Landau model. To investigate the effects of different
inputs on a system of coupled oscillators, we used the Stuart–Landau model (Eqs. 1
and 2)32–34:

dx
dt

¼ λx � ωy � ðx2 þ y2Þx þ IðtÞ ð1Þ

dy
dt

¼ λx � ωy � ðx2 þ y2Þy ð2Þ

where x and y are the two oscillators near Hopf–Andronov bifurcation31 and λ is
the coupling parameter. For λ>0, the two oscillators oscillate synchronously with
frequency ω whereas for λ<0, the system decays to a stable equilibrium. For all
simulations, we set λ to 0.1 and ω to 0.05 and changed the I which is the input to
the system. We provided white, pink, and brown noises (see below) scaled between
input strengths 0.1, 1, and 10 to see their effect on synchronization. The differential
equations were integrated with the Euler method with 0.1 milisecond steps for
100 s. The first 50 s were discarded to get the steady state. We used MATLAB’s
dsp.ColoredNoise function from DSP System Toolbox to generate different inputs
based on ref. 101. Gaussian white noise is colored by multiplication with an
autoregressive model of order 63 in the frequency domain to filter its power
spectrum according to the power law P ¼ f β . Three different input scenarios were
simulated: white noise (β ¼ 0) corresponding to no temporal correlations, pink
noise (β ¼ �1) corresponding to intermediate temporal correlations, and brown
noise (β ¼ �2) corresponding to high temporal correlations. Simulations were
repeated 50 times.

Quantification of Perturbation: In the absence of any external stimulus, the two
oscillators form a circle in the phase space. To compare the disturbance caused by
noise, we took the absolute value of the difference in the surface area in the phase
space after external stimulation. The surface area was calculated with the MATLAB
function polyarea. In Fig. 6b top, we provided white, pink, and brown noises to the
system with linearly increasing noise strengths from 0.1 to 100 in 20 simulations.
On the bottom, we provided three different inputs strengths of 10, 30, and 50 with
different noise colors from 0 (white noise) to 2 (brown noise).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The functional MRI dataset assessed in this analysis is available from the corresponding
author upon reasonable request.
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Code availability
The code to replicate the Stuart–Landau model analysis is publicly available at https://
github.com/duodenum96/anesthesia_SL.
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