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Abstract

Research in bacterial pathogen genomics has witnessed significant advancements in sequencing
technologies. In the realm of bacterial genomics, our work addresses both bioinformatic chal-
lenges, as well as cost and labour constraints, associated with the use of novel long-read se-

quencing technologies within three different projects.

First, introducing Ultraplexing, we present a method that substantially reduces per-sample se-
quencing costs and hands-on time in Nanopore sequencing for hybrid assembly. Ultraplexing
eliminates the need for molecular barcoding bs bioinformatically determining which specific
sequenced isolate a long-read belongs to; this is done by comparing each long-read to the k-
mer spectrum of the sequenced isolates, measured using Illumina data. This method holds
promise for large-scale bacterial genome projects that utilize hybrid assembly strategies, ena-
bling considerable savings without compromising assembly quality. These advantages are en-
abled by the possibility to multiplex at least 100 isolates together, representing roughly fourfold
increase of isolates possible at the time of publication, thus also reducing hands-on time in the

lab by a factor of four.

Second, shifting focus to the hospital associated pathogen Acinetobacter baumannii, we inves-
tigate genome plasticity and horizontal gene transfer mechanisms in the context of transmission
of colistin resistance elements. Through short- and long-read sequencing and creation of hybrid
assemblies, we identify two probable recombination events in the pmrCAB operon, which con-
fers colistin resistance. Our findings highlight the role of homologous recombination and shed
light on the possible contribution of mobile genetic elements to this phenomenon in 4. bau-
mannii. This study contributes to the understanding of antibiotic resistance dynamics in clinical

isolates of A. baumannii, specifically those belonging to International Clone 7.

Third, expanding the scope to genomic pathogen surveillance in healthcare facilities, we intro-
duce NanoCore, a user-friendly method developed for Nanopore-based outbreak surveillance
and investigation. NanoCore enables the determination and visualization of cgMLST-like sam-
ple distances directly from raw Nanopore reads by mapping Nanopore data to a core genome
reference, variant-calling and calculating distances from the results, thus offering a fast and
flexible solution. Validated on methicillin-resistant Staphylococcus aureus (MRSA) and van-
comycin-resistant Enterococcus faecium (VRE) datasets, NanoCore demonstrates high accu-

racy, producing results quasi-identical to those of current gold-standard tools with an average
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difference of 0.75 alleles for MRSA and 0.81 alleles for VRE in Nanopore-only-mode and 3.44
and 1.95 alleles respectively in hybrid-mode (measured in closely related isolates). The com-
putational efficiency, open-source availability, and user-friendly installation via bioconda make

NanoCore a valuable tool for effective bacterial pathogen surveillance in healthcare settings.

In conclusion, the work presented in this thesis spans the development of methods for hybrid
genome assembly, long-read-based genomic surveillance and the investigation of the transmis-
sion of antibiotic resistance elements. The presented work demonstrates the potential of com-
bining data generated by different sequencing technologies for bacterial genomics, as well as

the potential of bioinformatics methods development for emerging sequencing technologies.
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Chapter 1: Introduction

Chapter 1: Introduction

DNA sequencing, the determination of genomic information, originated in 1977 with the introduction
of Sanger sequencing by Frederick Sanger and colleagues (1). Subsequently, diverse sequencing meth-
ods, such as Illumina (2), Pacific Bioscience (3) and Oxford Nanopore (4) have been developed and
refined up to the present day. Each method possesses unique advantages and disadvantages, encompass-
ing factors like speed, costs, fragment length, and method complexity (5). While at first sequencing was
limited by both sequencing costs and the length of the sequencable fragments, technological advance-
ments of methods and sequencers permitted the efficient sequencing of whole genomes and large num-
bers of isolates (6).

Precise knowledge of an organism's genome enables the classification of carried genes, identification of
other genomic motifs and pinpointing single nucleotide polymorphisms. Furthermore, the availability
of high-quality sequencing data or a resolved genome is an important requisite for many bioinformatical
applications such as algorithms for base-calling, mapping, assembling or variant-calling (7,8). Today, it
is common practice in research or hospital settings to search for resistance genes based on specific se-
quences or analyse potential outbreaks using genomic similarities (9,10), enabling for example applica-
tions like epidemiology characterizations and outbreak investigations (11). Progress in genomics also
established novel fields, like genome-based personalized healthcare (12).

Bacterial genomes, particularly significant in these contexts, are often carriers of clinically relevant dis-
cases affecting patient treatment, which become even more problematic, if said genomes also contain
resistance genes (13—15). Consequently, it is crucial to interrogate bacterial genomes to our fullest ca-
pacity.

Despite their apparent simplicity compared to eukaryotic DNA, bacterial genomes, clinically speaking,
have great potential to negatively influence patient treatment. They for example normally have shorter
genomes (1 to 10 mb compared to 3 to 5.000 mb), a smaller gene number (below 10.000 compared to
often above 10.000) and shorter intergenic regions (below 100 bp compared to often above 100 kb) (16).
However, despite seeming easier to analyse, bioinformatically speaking, the unravelling of bacterial
genomes can be fairly intricate, due to genomic complexities like repeats or gene duplications.

Within this dissertation two central topics tare addressed: First, the comprehensive cost-effective reso-
lution and assembly of large numbers of bacterial genomes; second, the application and development of
methods for analysing bacterial genome sequencing data with respect to tracking infection chains and
the spread of antibiotic resistance elements.

Given that both inquiries are profoundly influenced by high-throughput sequencing developments, the
scope of recent changes in sequencing technologies will be given particular consideration.

This dissertation makes significant contributions by enhancing existing methods or introducing novel
applications through the synergistic use of short-read and long-read sequencing methods (Illumina and

Oxford Nanopore Technologies) in diverse hybrid approaches:
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Chapter 1: Introduction

In the first publication titled “Ultraplexing: Increasing the efficiency of long-read sequencing for hybrid
assembly with k-mer-based multiplexing” (17), we aimed at a solution for cost-efficient sequencing
despite the constraints imposed by the limited number of barcodes available for Nanopore sequencing.
Thus, a novel method was developed to enable barcode-less pooling of isolates for Nanopore sequencing.
For the assignment of sequencing data to corresponding samples this method utilizes k-mer statistics
based on inter-sample genetic variability of the produced reads in comparison to barcoded Illumina
sequencing data. This increases the number of isolates that can be sequenced together on the Nanopore
platform at least by a factor of 4 of what would be possible with barcodes, thereby improving sequencing
speed and decreasing sequencing costs.

The second publication “pmrCAB Recombination Events among Colistin-Susceptible and -Resistant
Acinetobacter baumannii Clinical Isolates Belonging to International Clone 7 (18), elucidates the
genomic structure of A. baumannii isolates, particularly around the pmrCAB operon which plays an
important role in the acquisition of colistin resistance. This was achieved by combining Illumina short-
read and Oxford Nanopore Technologies long-read sequencing data in a hybrid assembly to create fully
resolved genomes instead of highly fragmented genomes on Illumina basis alone and by the calculation
of k-mer statistics for said assemblies, thus enabling the detailed analysis of said operon and the
surrounding genomic region to identify possible recombination events.

In a third yet unpublished manuscript titled “NanoCore: Core-genome-based bacterial genomic
surveillance and outbreak detection in healthcare facilities from Nanopore and Illumina data”, a novel
method is introduced to enable whole-genome Nanopore-based outbreak investigations and expedite
them in comparison to established whole genome cgMLST methods, which are solely Illumina-based.
Utilizing the speed and improved error rate of present-day Oxford Nanopore sequencing, this open-
source method provides a faster alternative to established Illumina-based gold-standard methods, while
retaining a similar level of accuracy, and a more accurate alternative to existing Nanopore-based

methods, which are limited to an analysis of small sets of housekeeping genes.

These projects were undertaken to address technical limitations of the Nanopore sequencing technology
and to enable and demonstrate the utilization of Nanopore sequencing for novel applications.

Initially, our focus was on addressing a significant and surmountable issue related to the limited availa-
bility of barcodes for standard Oxford Nanopore Technologies sequencing (19), thereby targeting a con-
cern inherent to the sequencing process itself. Given that multiplexing numerous samples with [1lumina
sequencing poses no challenges due to the availability of a sufficient number of barcodes (e.g. 386 bar-
codes for a standard NexteraXT library), we leveraged small sequence difference between isolates,
measured using the Illumina technology, to determine which sample a long-read belongs to.
Subsequently, our aim was to determine sequence homologies and potential recombination events. For
this purpose, we processed the generated sequencing data into fully resolved assemblies, which high-

lights the capabilities of Nanopore sequencing in a use-case situated in the initial phase following se-
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Chapter 1: Introduction

quencing. Assemblies based solely on Illumina data often suffer from pronounced fragmentation, mak-
ing it challenging to resolve repetitive regions or establish the gene order (20,21). To overcome this
limitation, we conducted comprehensive assemblies using both Illumina and Nanopore data. This ap-
proach demonstrated the feasibility of uncovering regions of horizontal gene transfer in crucial re-
sistance genes. These identified regions could potentially contribute to the transmission of resistances
to susceptible strains.

Our final objective centered on exploring the potential of Nanopore long-reads for conducting outbreak
investigations, in comparison to established Illumina-based methods, an application involving several
steps (or consecutively applied tools) beyond sequencing. This has been attempted in various approaches,
each with its own limitations. The inherent difficulty lied in the higher error rate of Nanopore compared
to Illumina sequencing (22,23). However, with the improved performance (for example read accuracy,
read length and number of InDels) of present-day Oxford Nanopore technology (24), we achieved results
on both Nanopore and [llumina basis that closely resemble those obtained using the established cgMLST
method Ridom SeqSphere+ (10), which compares Illumina data to a core genome, while reducing the

time required for that analysis.
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Chapter 2: Background

Chapter 2: Background

The upcoming chapter delves into various biological and bioinformatic subjects and mechanisms essen-

tial for comprehending the projects elucidated in this thesis.

2.1 The structure of bacterial genomes

DNA, the carrier of the genetic information in all living beings, consists of four nucleotide bases: ade-
nine, cytosine, guanine, and thymine (Figure 2.1 A). These bases form specific sequences known as
genes, translating into distinct amino acid chains crucial for the functioning of every organism (25). In
contrast to human DNA, comprising approximately 6.3 gigabases distributed across 23 pairs of chro-
mosomes in the form of diploid double-stranded helixes (Figure 2.1 B) (16,26), bacterial genomes are
normally characterized by a single chromosome. This haploid double-stranded helix is often arranged
in a circular structure, with sizes ranging from approximately 0.6 to 8.0 megabases (Figure 2.1 C). Ad-
ditionally, bacteria frequently harbour one or multiple plasmids — circular, extrachromosomal DNA mol-
ecules. These plasmids typically vary in size from a few kilobases to several hundred kilobases and often

carry genes providing a selective advantage to the organism, such as antibiotic resistances (27).

2.1.1 Small scale variation in bacterial genomes

Another important term in the field of bacterial genomes is nucleotide mutation: Errors that occur during
the DNA replication of organisms (40). Various types of mutations exist, including single nucleotide
polymorphisms (alteration of only one base), insertions and deletions of nucleotides, as well as the cop-
ying or relocation of sequence elements to alternative positions (41,42). Such variations can contribute
to diseases or enhance the genetic diversity of a species (43). In the context of this thesis “small varia-

tions” can also be used to investigate the relatedness of closely-related isolates of the same species.

2.1.2 Variation in gene content and mechanisms of gene transfer

The pangenome, encompassing the entirety of all genes in a bacterial organism, is divided into two
primary components: the core genome and the accessory genome. The core genome comprises genes
that are essential for metabolism and are present in all strains of a particular species. In contrast, the
accessory genome consists of genes that are absent in at least one of the known strains of that species.
(28,29). The composition of the core and accessory genomes exhibits considerable variation not only

between different species (Table 1) but also within a given species.
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Chapter 2: Background

Table 2.1: Variation in gene content in six clinically relevant bacteria.

Bacterial species Pangenome |Core genome | Accessory genome |Source
size (genes)* |size (genes)* |size (genes)*
Acinetobacter baumannii 4062 2390 1672 |(30,31)
Enterococcus faecium 3915 1423 2492 (30,32)
Escherichia coli 4401 2513 1888 | (30,33)
Klebsiella pneumoniae 5500 2358 31421(30,34)
Pseudomonas aeruginosa 9786 3867 59191(30,35)
Staphylococcus aureus 4360 1861 2499 | (30,36)

*Pan, core, and accessory genome values can also vary within the same species, depending on which
study is considered.

Those genes are often disseminated among bacteria through horizontal gene transfer (HGT), a non-
sexual exchange of genetic information originating from the chromosome or plasmids. HGT stands as
the primary mechanism for acquiring antibiotic resistances (37). Possible recombination events that can
lead to HGT are transformation (the uptake and incorporation of genetic material from the bacteria’s
surroundings), conjugation (the transfer of genetic material between bacterial cells through a direct con-
nection) and transduction (the introduction of foreign genetic material into a bacterium by viruses or
viral vectors). Typically, these events are facilitated by mobile genetic elements (MGE), for example
ICEs (which contain the conjugation machinery) or IS elements (the smallest autonomous unit). These
are small segments of DNA sequence inside the genome capable of movement within the genome or

transfer between genomes of different organisms (38,39).
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Figure 2.1: DNA in humans and bacteria. A. The structure of the DNA helix and the four bases. B.
A human cell and the genetic information as 23 chromosomes within the nucleus. C. A bacteria and the

genetic information as a chromosome and multinle plasmids within the cell.
Figure adapted from (44—46).

2.2 Sequencing bacterial genomes and the processing of the
produced data

The first sequencing technique, known as Sanger sequencing (1), was developed in 1977 by Frederick

Sanger and colleagues. Subsequent to this milestone, various methods for the determination of genomic
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Chapter 2: Background

information were developed, each exhibiting distinct advantages and areas of application (5). Generally,
sequencing methods aim to identify the sequence of nucleotide bases within DNA and transform it into
a machine-readable format, known as reads, which can be subjected to further processing through vari-
ous methodologies. Before the sequencing process commences, DNA must undergo preparatory steps
in the laboratory (47). This typically involves cultivating bacterial isolates overnight, extracting DNA
from the cultured isolates, and adjusting the DNA concentration to adhere to the specifications of the
desired sequencing protocol.

Sequencing can be conducted either on a single-isolate basis (48), where each isolate is individually
cultivated and then sequenced individually; using barcodes in combination with other isolates, which is
called multiplexing; or on a metagenomic basis (49), where a potentially diverse pool of organisms

present in a particular community is sequenced collectively without prior sorting.

2.2.1 Gold-standard sequencing methods

Currently applied sequencing methodologies include Illumina (2), Pacific Biosciences (3) and Oxford
Nanopore Technologies (4).

[llumina, developed in 1994 by Bruno Canard and Simon Sarfati (2) stands out as a leading short-read
sequencing technique that has rapidly become a dominant force in the field, exhibiting a wide range of
applications. Its primary strength lies in its high basecalling accuracy, exceeding 99.9% (50). This prop-
erty ensures tasks such as genotyping and variant-calling can be performed with a high degree of confi-
dence. However, the method's limitation arises from the short fragment length, often resulting in frag-
mented genome assemblies when carrying out de novo assembly (21).

Briefly, the Illumina sequencing process (Figure 2.2) involves fragmenting the DNA, attaching adapters
to the fragments, and loading the adapter-fragment pairs onto a flow cell. Subsequently, the fragments
undergo multiple rounds of duplication through bridge amplification PCR. Modified fluorescent nucle-
otides are then attached to the fragments by a DNA polymerase. Following each polymerase step, a

photograph is captured, with the added nucleotide identified by its unique wavelength.

®
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Figure 2.2: Illumina Sequencing. The basic steps of the Illumina sequencing workflow from the frag-
mentation of the DNA to the identification of the attached nucleotides.
Figure adapted from (51).

Oxford Nanopore Technologies (ONT) is a long-read sequencing technique conceptualized by David
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Deamer in 1989 (52). Its practical implementation came to fruition in 2005 when Gordon Sanghera,
Spike Willcocks, and Hagan Bayley founded Oxford Nanopore. Notable advantages of ONT include a
rapid data generation and the capability to sequence long fragments of DNA (53). These attributes make
tasks such as whole-genome assembly or the non-fragmented sequencing of larger sequences for
applications such as the resolution of repeat-rich regions more manageable or possible at all, compared
to short-read methods. However, an early challenge was the high error rate associated with Nanopore
sequencing, particularly affecting tasks like genotyping that are susceptible to sequencing errors.
Substantial progress has been achieved in this area in recent years. Although the current basecalling
accuracy exceeds 99%, it still falls slightly behind that of Illumina sequencing. Nevertheless, ONT can
now produce results comparable to [llumina-based methods (24,54).

In essence, the ONT sequencing process (Figure 2.3) involves fragmenting the DNA and attaching
adapters to the fragments. A motor protein is then affixed to a fragment, guiding it towards and through
a nanopore. As each nucleotide passes through the pore, the current within the pore undergoes changes,
and the passing nucleotide is identified by its unique current alteration.

Hairpin adapters

n Sequence reads
§ lonic Current * A C G Ay
a e~
>
2
B ‘
= .
a - ] -
Motor Protein
Transposase + +
adapters . Nanopore

lonic Current blockades

Figure 2.3: Nanopore Sequencing. The basic steps of the Nanopore sequencing workflow from the
fragmentation of the DNA to the identification of the nucleotide sequence.
Figure adapted from (51).

Pacific Biosciences, commonly known as PacBio, stands as another long-read sequencing technique that
was introduced for commercial use in 2010 by the biotechnology company bearing the same name.
PacBio has both advantages and disadvantages similar to those of ONT (55). However, this method is

not further described here, as it was not employed in any of the projects detailed in this dissertation.

2.2.1.1 Multiplexing

For cost-effective sequencing and efficient utilization of sequencing throughput, a procedure called
multiplexing is normally applied to each of the above describes sequencing methods.

For this purpose, a barcode, a sample-specific identifiable fragment of DNA, is attached to the DNA
molecules of each prepared sample before the sequencing process to later identify which read belongs
to which sample. This is comparably cost-efficient for [llumina sequencing, with e.g. 386 available
barcodes for a standard NexteraXT library and potentially more barcodes depending on the used
workflow and sequencing kit, but less efficient for Nanopore sequencing with its currently limited

number of 24 to 96 barcodes.
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The standardized output format generated by sequencing methods is the FASTQ format. A FASTQ file
comprises four lines for each read. The first line starts with the "@" symbol, followed by a sequence
identifier and optional descriptions. The second line presents the raw sequence. The third line features
the "+" symbol, optionally followed by the sequence identifier from the first line. Lastly, the fourth line
provides quality values corresponding to the sequence in the second line, with one quality character per

sequence letter. The structure of a single read entry might resemble the following:

@Sequence Identifier
CAACTGTATAATATGGTCAAAATATATGAGATG
+
111>AFFFFFBF3FGGGFGGGGFDGBGF311FG

Regardless of the sequencing method employed, but depending on how this sequencing data should be
processed, different methods of genome inference can be utilized in deducing the genomic content
within the genome or even reconstructing the original genome structure. Common algorithms of genome

inference employed for such purposes include assemblers, mappers, and variant-callers.

2.2.2 Assembly

Assembly is the process of combining sequence fragments, known as reads, into larger sequences called
contigs. These reads are derived from quasi-random positions along a sequenced genome. When suffi-
cient coverage is achieved, these reads overlap, allowing the merging of multiple reads into larger frag-
ments, potentially reconstructing the entire genome. The ease of the assembly process is influenced by
factors such as the length of the reads and their error rate. There are two primary assembly strategies:
de novo assembly (Figure 2.4 A) and reference-guided assemblies (Figure 2.4 B) (56,57). De novo as-
sembly relies solely on the overlaps of different reads, making the process more challenging but elimi-
nating reference-based errors. In contrast, reference-guided assemblies align reads not only to each other
but also to a reference genome closely related to the sequenced organism. While potentially easier, this
method may introduce biases if the chosen reference does not align well with certain areas of the organ-

ism's genome.
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Figure 2.4: Assembly strategies. Simplified workflows of a de-novo and a reference guided assembly
method. A. Sequenced reads are overlapped with each other and merged into one or multiple consensus
contigs. B. Sequenced reads are mapped onto a reference genome and merged into one or multiple con-
sensus contigs.

Figure adapted from (58,59).
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2.2.3 De Bruijn graphs and overlap graphs

A De Bruijn graph is a directed graph that represents the relative order of sequence sub-fragments of
length k (k-mers) as found in an input-set of sequencing reads. These graphs find applications in diverse
tasks, including the assembly of sequencing data into genomes (60) or the assignment of reads to a
specific dataset (17).

Briefly, De Bruijn graphs are constructed by segmenting sequencing data or a genome into overlapping
sequence fragments of a specific length, termed k-mers. These k-mers are then represented as nodes. An
edge between the nodes representing k-mers x and y is added if and only if, in the input sequence, x
starts at position j and y at j+1. When two otherwise identical sequences exhibit a polymorphism, this
introduces a so-called bubble into the graph structure (Figure 2.5). Adding new sequences to the graph
involves identifying identical k-mers within the existing graph and introducing new branches where the
k-mers do not align. Assembling a genome from such a graph entails navigating the longest possible
route through the graph along branches with the most support (61,62). Such navigation is termed an
eulerian walk, which is defined as a walk through a connected (so called “eulerian™) graph that visits
each edge exactly once (63). However, due to the fact that sequencing normally is imperfect, not every
constructed de Bruijn graph is also an eulerian graph, e.g. when the graph is split into multiple parts du
to sequencing errors or coverage issues. Thus, for the purpose of assembly the eulerian walk was
changed into the de Bruijn superwalk (64), which contains each read as a subwalk, but is not dependent
on fully connected graphs anymore.

An overlap graph operates similarly, with the distinction that sequencing data is not divided into k-mers.
Instead, each read is represented in its entirety as one node, and the edges depict overlaps between these
nodes (61,62). In comparison to the de Bruijn graph, this method is better at resolving repeats, since it
does not split reads into shorter k-mers, which also removes read coherency from the graph. On the other

hand, an overlap graph takes longer to construct and needs more space.

CGATTCTAAGT
CGATTGTAAGT

Figure 2.5: De Bruijn graph. A short depiction of a De Bruijn graph. Reads are displayed through an
overlapping succession of k-mers. Here for “k” the length 3 is chosen. Disagreeing positions are
presented by a forking in the succession.

Figure adapted from (65).

The standard output format typically generated by these sequencing data processing methods is the

FASTA format. A FASTA file consists of two lines for each sequence, whether it represents an entire

genome or a fraction of a genome, known as a contig. The format comprises the following: First, the “>”
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symbol, followed by a description of the sequence; second, the raw sequence, either as nucleotides or
amino acids. For enhanced readability, long sequences originally include line breaks after a fixed num-
ber of positions, dividing the raw sequence into more than one line. The structure of two sequence entries

might appear as follows:

>Sequence Identifier 1
CAACTGTATAATATGGTCAAAATATATGAGATG
>Sequence Identifier 2
TTTTGAGTTAGTTTTAAGCGCATTAGTAGCGGGCGCTA

2.2.4 Mapping

Mapping is the process of identifying the best sequence alignment, subject to a scoring function, between
a query sequence (a read) and a larger reference (a genome)(66). This enables the assignment of the
query to a specific location within the reference. Typically, the reference is obtained beforehand by
assembling high-quality and high-coverage sequencing data into a comprehensive genome or by down-
loading a similarly processed reference genome from a database. Mapping processes use the so called
“Seed and Extend” method (67). “Seeding” is the determination of a preferably exact match between a
substring of the read and the genome. Different algorithms either use fixed length seeds or maximal
exact matching seeds. “Extension” is the process of prolonging the mapped seeds on 5’ and 3’ side (and
ideally linking multiple seeds) by finding matches between the genome and a read that contains the
corresponding seed. In this process, mismatches and InDels are potentially accepted and assessed de-
pending on the used scoring function. Different techniques that are applied are global alignment algo-
rithms, local alignment algorithms and BLAST-like seed extension (67).

Given that mapping tools must be able to handle a large number of nucleotide strings with varying
lengths, efficient techniques for finding seeds have become crucial. Two common mechanisms em-
ployed for this purpose are the Burrows-Wheeler transformation and the Minimizer. The Burrows-
Wheeler transformation rearranges the bases of a read in a reversible manner, enhancing text compres-
sion efficiency and the effective search for exact matches (68). Conversely, the Minimizer transforms
the reads and the reference into subsets of short k-mers and searches for overlaps between them, while
preserving information about sequence contiguity, resulting in an efficient technique for finding subse-
quent exact matches (69).

Mapping applications include scenarios such as mapping single reads onto reference genomes or core
genes for e.g. variant calling (Figure 2.6). Various algorithms exist for diverse purposes, each handling

nucleotide differences in its own way.
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Figure 2.6: Mapping. A simple presentation of the mapping of reads to a reference genome. A perfect

match is not always required for a read to be mapped.

Figure adapted from (70).

In general, the output formats generated by such mappings are the "Binary Alignment Map" (BAM)
format and the "Sequence Alignment Map" (SAM) format (62). A BAM file comprises a header section
that includes the names of the used files and/or samples, along with overall mapping process details
such as the length of the reference or the used method. Additionally, the format involves an alignment
section containing information about the corresponding mapped read, including its name, sequence, read
quality, position within the reference, and more. While the BAM file is compressed and not directly
human-readable, it can be reformatted into a SAM file, which contains the same information in an

uncompressed and human-readable format.

2.2.5 Variant calling

The process of identifying differing positions, known as genetic variations or variants, from mappings
of sequencing data to a reference genome is termed variant-calling. In this context, nucleotide discrep-
ancies between sequences are assessed based on the ratio of reads carrying these variations, the base
quality and potentially sequence context. Differences between reads and the utilized reference genome
in regions with low coverage for example (e.g., only one mapped read) could be sequencing errors.
Differences that are found in only one read in a region with adequate coverage, as well.

For variant-calling, two primary families of algorithms have been developed: likelihood-based callers
and machine-learning-based callers.

Likelihood-based variant callers (71) estimate the likelihood of observed sequencing data under differ-
ent statistical models. These models often rely on specific distributions, such as the binomial or Poisson

distribution, and estimate parameters like sequencing error rates. One of their advantages is accuracy,
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particularly when the assumptions of the statistical models align well with the data. However, they may
encounter challenges when handling complex patterns or complex base contexts.

Machine learning-based variant callers (72) employ algorithms that learn patterns from annotated train-
ing data. Consequently, these methods require a set of training data with known variant status to train
the model. The flexibility of machine learning models enables them to adapt to a broader range of data
patterns, which is advantageous in complex scenarios. While the accuracy of these methods heavily
depends on the quality and representativeness of the training dataset, algorithms that use machine learn-

ing, like DeepVariant (73), currently belong to the state-of-the-art techniques of variant-calling.

The file format generated by variant-calling methods is known as the "variant call format" (VCF). A
VCEF file comprises different sections: A meta-information part, each line beginning with "##", including
general information about the utilized variant caller, versions, parameters, and abbreviations used within
the file; a header line, beginning with “#”, containing the column titles for the following data; and a
variant section, listing information about the chromosome and the exact position where the variant was
found (one variant per line). It also details how the reference and alternative alleles appear, the quality
of the variant call, and various values relevant for potential filtering or statistical analysis. The structure

of two variant entries might resemble the following:

##fileformat=VCFvl.1l
##fileDate=20240704
##reference=file/path/to/ref/file.fasta

#CHROM POS REF ALT QUAL FILTER INFO FORMAT SAMPLE
Cont 1 550 A G 30.23 PASS F GT:AF 1/1:0.9718
Cont 6 729 C T 27.65 PASS P GT:AF 1/1:0.9597

2.3 Selected analyses of clinical interest regarding bacterial
genomes

The bioinformatic analysis of bacterial genomes encompasses various aspects, including the already
introduced sequencing methods and processing of sequencing data into assemblies. In this dissertation,
two additional aspects will be addressed: the exploration of acquisition mechanisms of antibiotic

resistances and the investigation of potential outbreaks in a clinical context.

2.3.1 Acquisition of antibiotic resistances

Resistance genes play a pivotal role in the survivability of bacteria, particularly within healthcare set-
tings (74). Understanding different mechanisms of antibiotic resistances and their acquisition is thus
crucial for human health. Illustrative examples include the vancomycin resistance of Enterococcus fae-
cium (75) and the methicillin resistance of Staphylococcus aureus (76), both notorious and challenging
hospital pathogens (77). Such resistance genes can be located in the chromosome or plasmids, and their

functional mechanisms exhibit considerable variability (78).
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The acquisition and dissemination of resistances are often facilitated by mobile genetic elements
(MGESs), which transfer genes via horizontal gene transfer (HGT) to other organisms (refer to back-
ground 2.1). An example relevant in the context of this thesis is the pmrCAB operon of Acinetobacter
baumannii. This operon comprises three genes, pmrC, pmrA, and pmrB, which, in colistin-resistant 4.
baumannii, underwent specific mutations. These modifications result in a higher colistin resistance. In
brief, specific mutations in pmrA and pmrB lead to a constitutive activation of the pmrAB system, fol-
lowed by an upregulation of the entire pmrCAB operon and other operons, ultimately enhancing colistin
resistance (79,80).

Normally, the pmrCAB genotype is linked to the international clone group of the corresponding isolate
(81). However, during the examination of an isolate belonging to international clone group 7(81), the
identification of certain single nucleotide polymorphisms (SNPs) within the pmrB gene strongly sug-
gested a relatedness to a reference genome of international clone group 4. This observation led to the
hypothesis of horizontal gene transfer, and to the questions, if recombination boundaries could be

mapped exactly and if certain MGEs are involved in this, initiating publication number two.

2.3.2 Detection and investigation of outbreaks

An outbreak investigation involves identifying links between pathogens, potential transmission path-
ways, and assessing the relatedness of pathogens among hosts. In the modern context, where pathogens
may become more pathogenic due to factors like accumulated resistances, a rapid and accurate analysis
of transmission chains is of paramount importance, also for infection prevention and control measures
(82,83). Examples are the implementation of SARS-CoV-2 sequencing to investigate health-care asso-
ciated cases (84), which helped to detect cryptic transmission events and identify opportunities to further
reduce health-care associated infections, or the analysis of methicillin resistant Staphylococcus aureus
on a special care baby unit (85), which uncovered transmission links within the baby unit, between
mothers on a postnatal ward and to a staff member during periods without known infection, thus making
it possible to prevent further infections through these pathways. Independent of the exact use-case, the
faster an outbreak analysis is completed (while retaining high accuracy), the faster infection prevention
measures can be implemented, resulting in reduced spread, and reducing patient harm. Important re-
quirements are thus a high quality of the processed sequencing data, leading to more accurate genetic
distances; as well as a rapid sequencing and analysis pipeline, leading to faster results.

With the advent of sequencing, outbreak investigations can be successfully conducted using genomic
data, by sequencing isolates of interest and comparing their genomes, either based on raw sequencing
data or assemblies. This involves quantification and interpretation of the similarity between isolates; one
approach for quantifying the similarity is a phylogenetic tree, and interpretation of the tree may be based
on a threshold of distances expected for closely related isolates. Phylogenetic trees or minimum-span-
ning-trees with clusters of closely related isolates can then be linked to information about potential
transmission pathways, like patients on the same ward (86). Multiple methods have been developed for

measuring the similarity of isolates in an outbreak.
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Three established methods for this purpose are multi-locus-sequence-typing (MLST), core genome
multi-locus-sequence-typing (cgMLST) and whole genome single-nucleotide-polymorphism (SNP)
genotyping.

In an MLST scheme (87) the housekeeping genes (typically around 7) of a species are compared to a
database, and a sequence type is assigned to each analysed isolate, based on the genotype of these genes.
Here, each gene is treated as a unit and no distinctions are made if a gene has one ore multiple SNPs.
The advantages of this method are its speed and cost-efficiency, since only a small amount of specific
DNA is needed. However, this method has limitations in accuracy, comparing only a small subset of
potentially multiple thousands of genes, and requires a curated MLST database.

A cgMLST scheme (88) on the other hand utilizes the entire core genome (usually few thousand genes)
while treating each gene as a single unit, regardless of the number of variants found within. This ap-
proach is potentially less time- and resource-efficient than MLST, but offers a higher accuracy with
good sensitivity, as core genes are expected to be present in all isolates of a species. Traditionally
cgMLST analysis pipelines require a curated database, however, it is possible to construct cgMLST-like
pipelines without a database, by skipping the assignment of specific genotypes, and instead comparing
the pattern of detected variants.

Lastly, a whole-genome SNP genotyping scheme (89) completely abandons the distinction between
genic and intergenic sequences when computing pairwise sample distances, focusing solely on the pres-
ence or absence of single-nucleotide polymorphisms and their differences between compared isolates.
While this potentially adds a higher discriminatory power, the comparison of SNP positions itself, as
well as the analysis of the accessory genome or non-coding regions (90), without necessarily increasing
time- or resource-consumption in comparison to the cgMLST (both need whole genome sequencing
data), it does not consider gene boundaries, possibly leading to decreased comparability, due to the fact,
that not all isolates, per definition, contain all accessory genes or even intergenic regions (91).

This underscores the preference for an analysis centered on core genes to enhance comparability. There-
fore, for publication number three a cgMLST-like approach was deemed the appropriate system for
outbreak investigations.

Of note, genes, particularly those in the core genome, are subject to a consistent evolutionary pressure,
so called purifying selection (92), unlike non-coding regions, where the likelihood of mutations emerg-

ing is higher.
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Abstract

Hybrid genome assembly has emerged as an important technique in bacterial genomics, but cost and labor
requirements limit large-scale application. We present Ultraplexing, a method to improve per-sample sequencing
cost and hands-on time of Nanopore sequencing for hybrid assembly by at least 50% compared to molecular
barcoding while maintaining high assembly quality. Ultraplexing requires the availability of lllumina data and uses
inter-sample genetic variability to assign reads to isolates, which obviates the need for molecular barcoding. Thus,
Ultraplexing can enable significant sequencing and labor cost reductions in large-scale bacterial genome projects.

Keywords: Bacterial genomics, Genome assembly, Assembly graph, Multiplexing, k-mer, Hybrid assembly, Barcoding

Background

Accurate characterization of large numbers of microbial
genomes is becoming increasingly important in micro-
biology. For example, bacterial genome-wide association
studies (bGWAS) rely on the sequencing of large
numbers of samples to correlate genetic variants to phe-
notypes such as antibiotic resistance or virulence [1-3].
Further examples are phylogenetic analyses and quality
assurance in industrial microbiology [4-7].

A variety of sequencing technologies with different
technological trade-offs have emerged for the sequen-
cing of microbial genomes. Short-read sequencing tech-
nologies (such as Illumina [8] have low error rates
(<0.1%) but provide only limited resolution of complex
and repetitive genomic regions. Examples are the genes
encoding S. aureus protein A (spa) and fibronectin
binding-protein (fubpA), which play key roles in the
pathogenesis of S. awureus [9] and which cannot be
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reliably assembled from short-read data [10]. Long-read
sequencing technologies (Pacific Biosciences [11], Oxford
Nanopore [12]) generate sequencing reads of tens or even
hundreds of kilobases in length, enabling the correct
structural resolution of complex regions; their higher error
rates (5—15%), however, can negatively impact consensus
and small-variant genotyping accuracy [13-15].

Combining short- and long-read data has therefore
emerged as a standard approach for the resolution of bac-
terial genomes [16]. Long-read sequence information can
be used to deconvolute short-read-based assembly graphs
(hybrid de novo assembly [17-20]). Alternatively, de novo
assemblies from long reads [21] can be polished with
short-read data to improve consensus accuracy [22]. By ei-
ther approach, the coverage requirements to arrive at a
high-quality assembly of a microbial genome are typically
modest (50—100x for each data type [23, 24]).

Molecular barcoding approaches enable the cost-
effective sequencing of multiple samples in one run (“mul-
tiplexing”). Molecular barcoding involves the labeling of
each DNA sample with a unique barcode sequence, pool-
ing and joint sequencing of the samples, and determining
the source sample for each sequencing read, based on its
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barcode sequences. Highly efficient, automated implemen-
tations of molecular barcoding exist for the Illumina plat-
form, enabling the sequencing of hundreds of microbial
isolates to sufficient coverage with a single flow cell. Mo-
lecular barcoding approaches for long-read platforms,
however, are less effective. A maximum of 24 samples can
currently be multiplexed on an Oxford Nanopore Min-
ION flow cell using the manufacturer’s kits for “native”
(PCR-free) barcoding. In addition, the preparation of
multiplex libraries requires significant hands-on time
(>12h compared to 3h for a non-multiplexed library)
and comes with significant losses of input material, and
presumably, the pipetting steps reduce attainable read
lengths by shearing. These factors make barcoded
long-read sequencing costly and labor-intensive, and the
availability of a more scalable approach to multiplexed
long-read sequencing would be highly desirable.

Here, we present Ultraplexing, a new method that al-
lows the pooling of multiple samples in long-read se-
quencing without relying on molecular barcodes.
Ultraplexing uses inter-sample genetic variability, as
measured by Illumina sequencing, to assign long reads
to individual isolates (Fig. 1). Specifically, each isolate
genome is represented by its de Bruijn graph, con-
structed from sample-specific short-read data, and each
long read is assigned to the sample de Bruijn graph it is
most compatible with (or randomly in cases of a draw).
A similar approach enables haplotype-aware assembly in
eukaryotic genomes [25].

The intuition behind Ultraplexing is that there will
typically be a high-quality alignment between a read and
the assembly graph of the source genome it emanates
from. Importantly, the assignment of reads completely
contained in genomic regions shared among multiple
samples (e.g., due to mobile genetic elements or inter-
sample genetic homology) may remain ambiguous. This,
however, will typically have no or only a small effect on
the accuracy of the hybrid assembly process, for the af-
fected reads will spell equally valid assembly graph tra-
versals in all compatible samples.

Ultraplexing requires the availability of Illumina data.
It is applicable to studies that either incorporate the gen-
eration of these from the beginning, or it can serve as a
cost-effective method to generate additional long-read
data for samples that have already been short-read se-
quenced. In the following, we demonstrate that Ultra-
plexing can match or even outperform classical
molecular long-read barcoding approaches in terms of
assembly quality while enabling significant reductions in
cost and hands-on time.

Results
We used simulated and real Nanopore and Illumina se-
quencing data to evaluate the performance of Ultraplexing
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in the context of bacterial hybrid de novo assembly. In all
experiments, we relied on Unicycler as an established
method for hybrid assembly [17]. We primarily focused
on the quality of the generated assemblies, i.e., structural
accuracy (number of contigs, reference recall, assembly
precision) and consensus accuracy (single nucleotide poly-
morphisms; SNPs), measured against the utilized refer-
ence genomes (in simulations) or barcoding-based
assemblies (for real data). To distinguish between
Ultraplexing-mediated effects and intrinsic assembly com-
plexity for the selected isolates, we reported assembly ac-
curacy for random (in all experiments) and perfect (in
simulations) assignment of long reads. Additionally, we
assessed the proportion of correctly assigned reads. Of
note, all simulation experiments were based on conserva-
tive assumptions (e.g., 5 Gb throughput per long-read flow
cell; see the “Methods” section for further details), and no
mis-assemblies were identified through visual inspection
in any of the Ultraplexing-based sets.

Simulation experiment I: Multi-species Ultraplexing

In a first step, we evaluated Ultraplexing on a sample of
10 different clinically important bacterial species (Add-
itional file 1), covering a wide range of genome sizes
(2.0-6.3 Mb), GC contents (32—-60%), and between-
species mash [26] distances (0.02—0.20; Additional file 2).
The Ultraplexing algorithm assigned all but 2 of 477,890
simulated long reads to the correct bacterial isolate
(close to 100% classification accuracy, Additional file 12:
Figure S1). Ultraplexing-based assemblies were highly
concordant (Additional file 12: Figure S1 and Add-
itional file 3) with the underlying reference genomes,
achieving near-perfect structural agreement (average ref-
erence recall and assembly precision >99.999%) and low
divergence (average number of SNPs against the refer-
ence genome, 57). Furthermore, assembly accuracy met-
rics for Ultraplexing and perfect read assignment were
virtually identical (for example, an average of 57 SNPs
for Ultraplexing compared to 56 SNPs for perfect assign-
ment; Additional file 12: Figure S2). To assess how the
performance of multi-species Ultraplexing was affected
when combining more than one strain per species, we
repeated the experiment for 5 clinically important spe-
cies, each represented by 2 strains (Additional file 2)
with mash distance <0.01 (Additional file 2) [23].
Ultraplexing-based assemblies were virtually identical to
assemblies based on perfect read assignment (for ex-
ample, identical SNP count observed for 6/10 genomes)
and of generally very high quality (Additional file 12:
Figure S3 and Additional file 4), except for two E. coli
genomes; in these, large repeat structures (Add-
itional file 1) led two assembly fragmentation (> 100
contigs) for both Ultraplexing and perfect read
assignment.
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Simulation experiment II: Single-species Ultraplexing with
10-50 isolates

To assess Ultraplexing performance on closely related iso-
lates and with increasing sample numbers, we randomly
selected sets of 10, 20, 30, 40, and 50 genomes from 181

publicly available complete assemblies of the human
pathogen Staphylococcus aureus (Additional file 1). Of
note, as simulated long-read flow cell capacity was held
constant, sets with more genomes contained less long-
read data per isolate. Across experiments, the proportion
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of correctly assigned reads decreased as sample numbers
increased and varied between 35 and 95% (Fig. 2a). To test
whether reduced read assignment accuracies were due to
inter-sample sequence homologies, we computed the
metric Aedit distance for random samples of mis-assigned
reads and found an average Aedit distance of 0.3%, with
more than 50% of mis-assigned reads exhibiting a Aedit
distance of 0 (Fig. 2b). At the read alignment level, the ge-
nomes that the mis-assigned reads were assigned to are
thus indistinguishable or very similar to the true source
genomes. Consistent with this, the generated
Ultraplexing-based assemblies were highly concordant
with the utilized reference genomes (average reference re-
call 299.96% and assembly precision > 99.99% across sets;
average number of SNPs 46; Fig. 2c—f). Furthermore, as-
sembly accuracy metrics for Ultraplexing and perfect read
assignment were comparable even with increasing number
of bacterial isolates; for example, the average number of
SNPs per genome in the run with 50 bacterial isolates was
59 for Ultraplexing (QV 47) and 32 for perfect read as-
signment (QV 49). Complete results for this experiment
are presented in Additional file 5 and visualized in Fig. 2.
Finally, to evaluate to which extent assembly accuracy was
influenced by genome complexity [23, 27], we repeated
the experiment for 30 S. aureus isolates of class I com-
plexity and for 30 S. aureus isolates of class III genome
complexity (Additional file 1). Individual outliers in the
set of class Il genomes notwithstanding (Additional file 12:
Figure S4), overall assembly quality remained high even
for class III genomes (average reference recall, 99.98% for
class compared to 99.86% for class III; average assembly
precision, 100.00% for class I and III; average number of
SNPs, 34 for class I and 77 for class III; Additional file 4).
What is more, the quality of Ultraplexing-based assem-
blies remained comparable to that of assemblies based on
perfect read assignment for class III genomes (for ex-
ample, 77 SNPs on average for Ultraplexing, correspond-
ing to QV 46, compared to 52 SNPs on average for perfect
read assignment, corresponding to QV 47).

Simulation experiment Ill: Impact of plasmids

In addition to the chromosomal genome, many bacterial
cells harbor plasmids. Plasmids are extrachromosomal
circular strings of DNA that are generally much smaller
than the chromosomal DNA. Plasmids can vary in copy
number within each cell, and they often exhibit complex
and repetitive sequence structures. Since plasmid se-
quences could reduce the performance of the Ultraplex-
ing algorithm, we repeated the previous simulation
experiments with sets of 10-50 S. aureus genomes that
all harbored plasmids (Additional file 1; Additional file 12:
Figure S5). We found that the accuracy of chromosomal
genome assemblies was not affected by the presence of
plasmids. Additionally, the plasmid recovery rate was
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comparable to assemblies based on reads assigned to
their true source; complete recovery was achieved in 135
of 150 total isolate genomes with Ultraplexing, and in
137 with perfect read assignments. Identified reasons for
incompletely recovered plasmids included high sequence
homology to other plasmids or the genomic DNA (Add-
itional file 6). Complete results for this experiment are
presented in Additional file 7 and visualized in Add-
itional file 12: Figure S6 (chromosomal genome) and
Additional file 12: Figure S7 (plasmids). Finally, we fur-
ther explored the impact of repeats between the
chromosomal and plasmid genomes on a set of 10 com-
plex (class III) Pseudomonas isolates, 9 of which harbor
chromosome-plasmid repeats ranging from 669 bp to 69
kb in size (Additional file 1; Additional file 12: Figure S8).
Assembly accuracy remained high at slightly reduced
levels (reference recall >97% and assembly precision >
99% for all 10 genomes), and Ultraplexing- and truth-
based assemblies are almost identical in terms of accur-
acy metrics (identical reference recall for 10/10 isolates
and identical assembly precision for 9/10 at very similar
SNP levels; Additional file 4).

Real-data experiment I: Nanopore-based Ultraplexing of
10 S. aureus clinical samples

To assess the performance of Ultraplexing on real data,
we randomly selected ten bacterial isolates of the species
Staphylococcus aureus from our collection of clinical iso-
lates. To generate a reference genome for each isolate,
we sequenced each sample on an Illumina system, per-
formed barcoded Oxford Nanopore sequencing with the
12-sample barcoding kit (~214x coverage per isolate;
mean read length 8.3 kb), and carried out hybrid de novo
assembly. The generated reference genomes consist of
1-3 circular contigs per isolate, representing the
chromosomal genome (~ 2.8 Mb in length) and plasmids
(2.3-34.9 kb in length, all circular; BLAST [28] classifica-
tion results are shown in Additional file 8).

To test Ultraplexing on these isolates, we demulti-
plexed the barcoded Nanopore sequencing data with the
Ultraplexing algorithm and carried out hybrid de novo
assembly. The Ultraplexing-based assemblies showed a
high degree of concordance (Fig. 3) with the generated
reference genomes in terms of contig number, assembly
length, genome structure (average reference recall and
assembly precision >99.9%), and consensus accuracy (4
SNPs per isolate on average and 6 of 10 isolates with no
detected SNPs). In contrast, assemblies based on random
read assignment yielded lower-quality assemblies across
all considered metrics (for example, 136 SNPs per gen-
ome; Fig. 3d). Complete results for all genomes are pre-
sented in Additional file 9 and visualized in Fig. 3.
Summary statistics of the Illumina and Nanopore se-
quencing runs can be found in Additional file 10.
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(See figure on previous page.)

Fig. 2 Simulated Ultraplexing runs with 10-50 S. aureus genomes, in comparison to perfect (True) and random (Random) assignment of long
reads. a The proportion of correctly assigned long reads. b The Aedit distance for random samples of falsely classified long reads. ¢ The
distribution of contigs per assembly. d The distribution of assembly lengths. e The distribution of SNPs per assembly. f The distribution of
reference recall. SNPs and reference recall were calculated relative to the utilized reference genomes, and all metrics within the same set of

genomes are based on the same simulated short-read data

Read-data experiment |l: Nanopore-based Ultraplexing of
48 clinical isolates

To assess the feasibility of applying Ultraplexing to a lar-
ger number of samples, we repeated the previous experi-
ment with 48 samples. As in the previous experiment,
barcoded Nanopore (~446x coverage per isolate; aver-
age read length 10.4kb) and Illumina (~44x coverage
per isolate; 2 x 250 bp reads with MiSeq v2 chemistry)
sequencing was carried out to generate reference ge-
nomes for the 48 samples.

For Ultraplexing, long-read sequencing data (~ 87x
coverage per isolate; average read length 11.7 kb) was
generated in a single MinION run by pooling DNA from
the 48 isolates. Reads were demultiplexed with the Ultra-
plexing algorithm, and hybrid de novo assembly was car-
ried out.

The generated assemblies exhibited a plausible profile in
terms of assembly length, and for 29/48 assemblies, the
Ultraplexing-based assembly had the same number of
contigs as the generated reference genomes (Fig. 4). Fur-
ther investigation showed a high degree of concordance
between the Ultraplexing-based assemblies and the refer-
ence genomes both in terms of genome structure (average
reference recall and assembly precision >99.8%) and the
number of SNPs per genome (126 on average, equivalent
to QV 43). Complete results for the comparison of the 48
Ultraplexing-based assemblies against the reference ge-
nomes are presented in Additional file 9 and visualized in
Fig. 4. Read length and coverage statistics for all sequen-
cing runs can be found in Additional file 10; the read
length distribution of all generated Nanopore sequencing
runs is visualized in Additional file 12: Figure S9.

Discussion

We have presented Ultraplexing, a method that resolves
pooled long-read sequencing data in the context of hy-
brid de novo assembly without the use of barcoding.
Ultraplexing leverages inter-sample genetic variation to
assign pooled long reads to individual isolates and bene-
fits from the fact that Illumina sequencing enables the
reliable characterization of the k-mer spectra of individ-
ual genomes.

Using simulated sequencing data, we demonstrated that
Ultraplexing enables the generation of highly accurate hy-
brid assemblies and reliably detects plasmids, even in data-
sets that contain multiple isolates of the same bacterial
species, complex plasmid-chromosome repeat structures,

or genomes of high complexity. We have also validated the
method on two real Nanopore sequencing datasets and
shown that Ultraplexing-based assemblies are virtually
identical to barcoding-based assemblies when comparing
multiplexed runs with the same number of isolates;
remaining errors in the assemblies based on both Ultra-
plexing and perfect read assignment may represent residual
errors introduced by the hybrid assembly approach. When
using Ultraplexing to increase the number of samples over
the current maximum of PCR-free molecular barcoding
approaches on the Nanopore platform, Ultraplexing-based
assemblies generally maintain high accuracy.

A key advantage of Ultraplexing in comparison to mo-
lecular barcoding is decreased cost and hands-on time.
The number of samples sequenced per flow cell can at
least be doubled, and barcoding reagents are not neces-
sary. Hands-on time was reduced eightfold in our 48-
sample experiment (~ 5 h per flow cell with 10 barcoded
samples compared to 3h for one Ultraplexing run with
48 samples). Taking into account potential differences in
sample handling operator performance, we conserva-
tively estimate that the hands-on time benefit conferred
by Ultraplexing is at least 50%.

On the other hand, Ultraplexing has a number of limi-
tations. First, Ultraplexing can consume significant com-
putational resources (70 CPU hours and 175 Gb of
memory for the demultiplexing step in the experiment
with 48 samples). Improvements in hands-on time do
therefore not necessarily translate into decreased time-
to-result. Second, Ultraplexing relies on Illumina data
for read assignment and hybrid assembly; systematic
biases in Illumina sequencing, as observed for certain
bacterial genomes with high or low GC content [29],
may affect the accuracy of Ultraplexing. Third, the appli-
cation of Ultraplexing requires high molecular weight
DNA, the extraction of which may be challenging for
certain bacterial species. Fourth, while we have shown
that Ultraplexing is generally robust against the presence
of complex repeat structures, assembly accuracy was
slightly reduced for class III genomes. For these reasons,
the method is best suited to applications in which large
numbers of genomes need to be resolved to very high,
but not perfect, accuracy, and in which turnaround
times on the order of 3-5 days are acceptable. Examples
of this include bacterial genome-wide association studies
and retrospective outbreak sequencing. For other appli-
cations, such as the generation of a small number of
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reference-grade assemblies or time-critical diagnostic ap- Although our primary focus was on assembly accuracy,
plications, conventional barcoding approaches may re- we also evaluated the accuracy of individual read assign-
main preferable. ments in the simulation experiments. One important



Dilthey et al. Genome Biology

(2020) 21:68

Page 8 of 12

(A)
25 -
20

ke

£

8 154

s

I3

§ 10 -
5_
0_

o [}
o
o o
=]
—_— o]
'
'
'
'
'
'
'

Barcoded -

Ultraplexing
Random -

Read assignment method

1200

1000

800 -

600

Number of SNPs

400

200 -

Ultraplexing
Random -

Read assignment method

2950000 e .
2900000 - |
e : i
© 2850000 ‘ ;
o
ey
o]
& 2800000 -
3
<
2750000 ‘ ;
2700000 - i :
T T T
° =] £
L5} £ 5]
8 3 B
5 3 &
m =
=]
Read assignment method
(D) 100.0 -
99.5 - . :
= !
5] |
CIhJ . - E—
o 99.0
o
=
o
o 8
[0)
o
98.5 - &
98.0 -
T I
o £
=
3 g
& 4
=

Read assignment method

Fig. 4 Ultraplexing and classical molecular barcoding on a set of 48 S. aureus isolates. a The distribution of contigs per assembly. b The
distribution of assembly lengths. € The distribution of SNPs per assembly. d The distribution of reference recall. SNPs and reference recall are
calculated relative to assemblies based on molecular barcoding, and the same Illumina sequencing data were used throughout, Barcoded,
molecularly barcoded Nanopore data, 5 flow cells with < 10 samples each; Ultraplexing, reads assigned by the Ultraplexing algorithm, 1 flow cell
with 48 samples; Random, reads from the Ultraplexing run, assigned randomly




Dilthey et al. Genome Biology (2020) 21:68

factor driving read assignment accuracy was the extent
of genetic variability between the pooled samples. Con-
sistent with this, Ultraplexing achieved near-perfect read
assignment in the first multi-species experiment but
reduced assignment accuracy when species were repre-
sented by more than one strain. We hypothesized that
mis-assignments driven by inter-sample sequence hom-
ology would have a negligible effect on assembly accur-
acy. Consistent with this, assembly accuracy was
relatively insensitive to increasing numbers of mis-
assigned reads in the single-species experiment, and we
could confirm that inter-sample sequence homology
accounts for the majority of mis-assigned reads using
edit distance metrics. Furthermore, assembly accuracy
was significantly reduced for random read assignment,
reflecting higher proportions of falsely assigned reads in
the absence of underlying sequence homologies. In
addition, Ultraplexing may be less well suited for appli-
cations that depend on accurate assignments of individ-
ual reads, such as read-based methylation calling.

Our study has a number of limitations. First, we have
only validated Ultraplexing on a single long-read tech-
nology, Oxford Nanopore. However, based on prior
work demonstrating successful k-mer-based classifica-
tion of eukaryotic PacBio reads [30, 31], we expect that
Ultraplexing could also be applied to PacBio data,
though the shorter subread distribution of the technol-
ogy may negatively impact accuracy [32]. Second, al-
though Ultraplexing was validated on a number of
clinically important bacterial species covering a wide
array of genome sizes and genome complexities, we
cannot exclude the possibility that performance may de-
grade for genome or repeat configurations not included
in the test set. Third, we have not rigorously tested the
technical limits of Ultraplexing, including the maximum
number of isolates and the necessary properties of the
short-read sequencing data. Given that flow cell output
has been increasing steadily, extraction of high molecu-
lar weight DNA for long-read sequencing may plausibly
become the most significant limiting factor. Fourth, in
terms of bioinformatics methods development, Ultra-
plexing relies on simple k-mer statistics instead of
proper graph alignment [33-35], and we have not ex-
plored methods for the optimization of intra-batch gen-
etic diversity in large sequencing projects. These points
could be addressed in future work.

Conclusion

Ultraplexing is a new method for multiplexed long-read
sequencing in the context of hybrid de novo assembly.
Ultraplexing-based assemblies are highly accurate in
terms of genome structure and consensus accuracy and
exhibit quality characteristics comparable to assemblies
based on molecular barcoding. Through increasing the
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number of samples per flow cell and simplified library
preparation, Ultraplexing enables significant reductions
of long-read sequencing costs and hands-on time. Thus,
Ultraplexing enables the cost-effective complete reso-
lution of large numbers of bacterial genomes.

Methods

The Ultraplexing read assignment algorithm

Let # denote the number of sequenced bacterial samples.
We assume the availability of high-coverage Illumina se-
quencing data for each of the » individual isolates and
that a pool of high molecular weight DNA, representing
a mixture of the genomes of the # isolates, has been se-
quenced with a long-read sequencing technology like
Oxford Nanopore or Pacific Biosciences. For each sam-
ple, a de Bruijn graph (k =19) is constructed from the
sample-specific [llumina short-read data and the graph
is cleaned (removal of low-coverage supernodes) with
Cortex [16]. Each long read from the pooled run is
assigned to the sample for which the number of read -
mers present in the cleaned sample de Bruijn graph is
maximal (or randomly in cases of a draw). We note that
our approach can be understood as a heuristic approach
to read-to-graph alignment. After the long-read assign-
ment process is complete (i.e., after each long read has
been assigned to one of the # isolates), the Cortex graph
is discarded for the subsequent assembly steps. Of note,
the choice of a k is a trade-off between the number of
isolate-specific k-mers at a given k and the expected k-
mer survival rate in the long-read data, calculated as (1
- e)"k, where e is the long-read sequencing error rate.
k =19 was chosen based on published work [25] on k-
mer-based binning of long reads and based on prelimin-
ary simulation experiments.

Hybrid assembly and assembly evaluation criteria
Unicycler (version 0.4.4) [17] was used for all hybrid as-
sembly experiments in this publication. Unicycler re-
ceives, for each sample, (I) the sample-specific Illumina
reads and (II) the long reads assigned to the sample.
Long reads are assigned according to the Ultraplexing
long-read assignment algorithm, the molecular barcodes,
or the underlying ground truth, depending on the evalu-
ation scenario.

The performance of Ultraplexing was assessed (I) by
assessing the proportion of reads assigned to the correct
sample (in simulations), (II) by comparing the generated
Ultraplexing-based hybrid de novo assemblies to refer-
ence genomes (downloaded from RefSeq for simulations
and based on barcoding-based hybrid assembly for real
data, see below), and (III) by comparing the accuracy of
Ultraplexing-based assemblies to that of assemblies
based on random (all experiments) or perfect (in simula-
tions) assignment of long reads.
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To assess the accuracy of an assembly, we compared
the assembly to the corresponding reference genome. As
baseline characteristics, we considered the total number
of contigs and the combined assembly length. Further-
more, nucmer v3.1 [36] was used to generate an align-
ment between the assembly and the reference genome,
globally filtering identified diagonals with “delta-filter
-1” We used the filtered diagonals to compute three
quality metrics: “SNPs,” measuring consensus accur-
acy; “reference recall,” the fraction of the reference
covered by the assembly; and “assembly precision,”
the fraction of the assembly covered by the
reference. When reported, QV scores are calculated
as round(~10 x loglQ(2rerage # SNPs per genomey) (phyed scale),

average mference genorie size

Of note, assembly precision was close to 100% in all experi-
ments, and we do not separately report on this metric.

For the simulation experiment with plasmids, we sep-
arately evaluated the sets of chromosomal and plasmid
contigs for each assembly. We relied on RefSeq annota-
tions for determining the status (chromosomal or plas-
mid) of each contig in the reference and assigned the
status of each assembly contig according to the status of
its highest-scoring nucmer hit in the reference.

Read assignment accuracy and edit distance

In simulated datasets, we calculated the proportion of
correctly assigned long reads. A read was counted as
correctly assigned if, and only if, it was assigned to the
genome it was simulated from. For mis-assigned reads,
we additionally defined a metric referred to as “Aedit
distance,” using edlib (version 1.2.6) [37]. Let d; be the
ends-free edit distance between a read and the genome
it was simulated from, and let d, be the edit distance be-
tween a read and the genome it was assigned to. Aedit
distance is defined as d,—d», divided by the length of the
read. A negative value indicates a better alignment to
the source genome than to the predicted genome. To as-
sess the distributional properties of Aedit distance, the
metric was calculated for random samples of 100 mis-
assigned reads per method.

Simulation experiments

For the multi-species simulation experiments, chromo-
somal sequences of 10 clinically important species were
downloaded from RefSeq [38]. For the single-species ex-
periments without plasmids, chromosomal sequences of
181 complete S. aureus genomes were downloaded from
RefSeq [38]. For the single-species simulation experi-
ment with plasmids, 169 complete genomes were down-
loaded that contained between 2 and 11 annotated
plasmids. The accessions of all downloaded genomes are
listed in Additional file 1, and the selected genome
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subsets are listed in the corresponding results tables
(Additional files 4 and 5).

For each genome, 300 Mb of short-read data was sim-
ulated with wgsim (version 0.3.1-r13) [39], using the pa-
rameters base error rate (-e 0.005), length of first read
(-1 150), length of second read (-2 150), outer distance
between the read ends (-d 278), standard deviation (-s
128), mutation rate (-r 0), and fraction of indels (-R 0).
Long-read data were simulated with pbsim (version 1.0.3
)[40], using the parameters prefix of the output (--prefix
[prefix]), coverage (--depth 200), mean read length
(--length-mean  8370), standard deviation of the
read length (--length-sd 6389), maximum read length
(--length-max 61011), minimum read length (--length-
min 230), mean sequencing accuracy (--accuracy-mean
0.88), and model of quality code (--model_qc model_qc_
clr). Mean read length was adjusted to match that of our
first Nanopore sequencing run, and maximum read
length was set to approximately 85% of that observed on
the first run (Additional file 10). For all experiments, we
assumed a constant long-read flow cell capacity of 5 Gb,
and per-isolate coverage was adjusted accordingly (ie.,
5 Gb total output divided by the number of simulated
isolates). Simulated long-read data were pooled and
demultiplexed with the Ultraplexing algorithm. Hybrid
de novo assembly was carried out, and the generated
assemblies were benchmarked against the utilized refer-
ence genomes.

DNA extraction and long-read sequencing

DNA was extracted from overnight bacterial cultures in
3ml LB broth. For short-read sequencing, the “DNeasy
UltraClean Microbial” Kit was used according to the
manufacturer’s instruction. One nanogram of DNA per
isolate was used for the library preparation with the
TruePrep DNA Library Prep Kit. Short-read sequencing
was conducted on a MiSeq instrument (Illumina) using
250 bp paired end sequencing using v2 chemistry. DNA
extraction for long-read sequencing was performed with
the MagAttract HMW DNA Kit (QIAGEN). Wide bore
pipette tips were used to avoid shearing. Long-read
sequencing was carried out on a MinION device with
FLO-MIN106 flow cells and the SQK-LSK108 ligation
sequencing kit (real-data experiment I) and SQK-
LSK109 ligation sequencing kit (real-data experiment II).
Of note, SQK-LSK109 involves reduced pipetting, pos-
sibly decreasing shearing. For barcoded long-read se-
quencing, samples were labeled with barcodes using the
Oxford Nanopore ligation sequencing kit (EXP-NBD103
kit for 12 samples per run), and reads were demulti-
plexed with Albacore (version 2.1.3). For Ultraplexing,
DNA from individual samples was pooled based on
equal weight to yield a total of 700 ng of DNA, and
demultiplexing was carried out with the Ultraplexing
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algorithm. Summary statistics of all sequencing runs are
presented in Additional file 10.

Real-data validation experiments

For all experiments with real data, we used hybrid as-
sembly with Unicycler [17] to generate high-quality ref-
erence genomes for all isolates, combining molecularly
barcoded short- and long-read data.

Molecular long-read barcoding was carried out using
the 12-sample barcoding kit (EXP-NBD103) for the first
real-data experiment (1 flow cell) and for the second
real-data experiment (5 flow cells with < 10 samples per
run). Barcoded Illumina sequencing runs were carried
out for all samples in the real-data experiments. All se-
quencing runs are summarized in Additional file 10.
Read mappability was determined with BWA MEM (ver-
sion 0.7.17-r1188) (with standard settings and read map-
ping mode -x ont2d) [41].

Plasmid identification

To check if smaller contigs in barcoded assemblies of the
real-data experiments represented plasmids, we used the
online version of BLAST [28]. All non-chromosomal con-
tigs (assumed to be all contigs but the longest in each as-
sembly) were blasted against the nucleotide (nt) database,
restricted to sequences that correspond to bacteria (taxid:
2), and if the best hit was characterized as plasmid and
had a high identity (> 90%) and a low e value (0 or close to
0), we assumed that the contig represented a correctly as-
sembled plasmid (Additional file 8). Three plasmids that
generated hits to human BAC constructs were removed
from the corresponding assemblies.
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3.2 Supplementary material to publication 1

Due to their size, the supplementary tables could not be inserted here. They can be accessed from the
original publication source (https://doi.org/10.1186/s13059-020-01974-9), or via the enclosed CD in-

stead. The supplementary figures mentioned in the publication are listed on the following pages.
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Figure S1: Read classification in a simulation experiment with ten different human
pathogens. The figure shows the percentage of correctly classified simulated long reads
(A) and Aedit distance for falsely classified reads (B). Reads were assigned according to
the Ultraplexing algorithm (Ultraplexing) and randomly (Random).
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Figure S2: Assembly accuracy in a simulation experiment with ten different human
pathogens. The figure shows the distribution of contigs per assembly (A); the distribution
of assembly lengths (B); the distribution of SNPs per assembly (C); and thedistribution of
reference recall (D). Long reads were assigned to their true origin (True); by the
Ultraplexing algorithm (Ultraplexing); and randomly (Random).

Independent of long-read assignment method, the same simulated short-read data areused
for all hybrid assemblies of the same species. SNPs and reference recall were calculated

relative to the utilized reference genomes.
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Figure S3: Assembly accuracy in a simulation experiment with five different human
pathogens, each represented by two closely related strains. The figure shows the
distribution of contigs per assembly (A); the distribution of assembly lengths (B); the
distribution of SNPs per assembly (C); and the distribution of reference recall (D). Long
reads were assigned to their true origin (True); by the Ultraplexing algorithm
(Ultraplexing); and randomly (Random). Independent of long-read assignment method,
the same simulated short-read data are used for all hybrid assemblies of the same species.
SNPs and reference recall were calculated relative to the utilized reference genomes.
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Figure S4: Assembly accuracy in three simulation experiments with 30 S. aureus
genomes of different genome complexity each, based on 30 genomes with mixed
complexity randomly drawn from the set used for the main part of Simulation experiment
II (Mixed); 30 class I complexity (I) genomes; and 30 class III complexity (III) genomes.
The figure shows the distribution of contigs per assembly (A); the distribution of assembly
lengths (B); the distribution of SNPs per assembly (C); and the distribution of reference
recall (D).

Long reads were assigned to their true origin (True); by the Ultraplexing algorithm
(Ultraplexing); and randomly (Random). Independent of long-read assignment method, the
same simulated short-read data arcused for all hybrid assemblies of the same isolate.
SNPs and reference recall were calculated relative to the utilized reference genomes.
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Figure S6: Chromosomal assembly accuracy in five simulation experiments with 10 —
50 different plasmid-containing S. aureus genomes. Reference and assembly contigs were
classified as ‘chromosomal’ or ‘plasmid’ and evaluated separately (see Methods); shown
here are results for the ‘chromosomal’ compartment. The figure shows the distribution of
contigs per assembly (A); the distribution of assembly lengths (B); the distribution of
SNPs per assembly (C); and the distribution of referencerecall (D).

Long reads were assigned to their true origin (True); by the Ultraplexing algorithm
(Ultraplexing); and randomly (Random). Independent of long-read assignment method,
the same simulated short-read data are used for all hybrid assemblies of the same isolate.
SNPs and reference recall were calculated relative to the utilized reference genomes.
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Figure S7: Plasmid assembly accuracy in five simulation experiments with 10 — 50
different plasmid-containing S. aureus genomes. Reference and assembly contigs were
classified as ‘chromosomal’ or ‘plasmid’ and evaluated separately (see Methods); shown
here are results for the ‘plasmid’ compartment. The figure shows thedistribution of contigs
per assembly (A); the distribution of assembly lengths (B); the distribution of SNPs per
assembly (C); and the distribution of reference recall (D).
Longreads were assigned to their true origin (True); by the Ultraplexing algorithm
(Ultraplexing); and randomly (Random). Independent of long-read assignment method,
the same simulated short-read data are used for all hybrid assemblies of the same isolate.
SNPs and reference recall were calculated relative to the utilized reference genomes.

47




Chapter 3: Publications

True
Ultraplexing
Random

(A) 40 - - (B) T
Sk :
7e+06 - \ E
30 - = e
& £ 60406 -
b= (=]
E 5
- =
5 20 == £ 5e+06
£ g
3 £
4e+06
10 H I
jo— — 3e+06 - S i
[===N ] e == =
T T T T
£ o £ o
[« o Q o
g = § ﬂ =]
n 2 (7] &
N o N o
Species Species
L (D) 1001 —— —— g — 15
-
< 98 =5
g 600 j::
» 8 97
5 o
5 — 3 .
_E 400 + 5 96 -
3 X [
z ' : ©
: j @ g5
200 m
= 94 -
0 — B 93 -
T T T T
&= (=] = o
o o [=% ©
Q = _.Kg =
n - n @
) a ) o
Species Species

Figure S8: Assembly accuracy in two simulation experiments with 10 plasmid-
containing genomes each, based on 10 S. aureus genomes randomly drawn from the set
used for the main part of Simulation experiment II (Staph) and 10 Pseudomonas genomes
with high repeat richness (Pseudo). The figure shows the distribution of contigs per
assembly (A); the distribution of assembly lengths (B); the distribution of SNPs per
assembly (C); and the distribution of reference recall (D).

Long reads were assigned to their true origin (True); by the Ultraplexing algorithm
(Ultraplexing); and randomly (Random). Independent of long-read assignment method,
the same simulated short-read data are used for all hybrid assemblies of the same isolate.
SNPsand reference recall were calculated relative to the utilized reference genomes.
Metrics for the S. aureus isolates were calculated for the chromosomal genome as
described in the Methods section, metrics for the Pseudomonas isolates for the complete
genome, not distinguishing between chromosomal and plasmid contigs.
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pmrCAB Recombination Events among Colistin-Susceptible and
-Resistant Acinetobacter baumannii Clinical Isolates Belonging
to International Clone 7

Carolina Silva Nodari,** Sebastian Alexander Fuchs, ' Kyriaki Xanthopoulou,” Rodrigo Cayé,*¢ Harald Seifert,?
Ana Cristina Gales,® Alexander Dilthey,* ” Paul G. Higgins®*

alUniversidade Federal de Sao Paulo-UNIFESP, Laboratério Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Sao
Paulo, Brazil

bInstitute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
“Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Disseldorf, Disseldorf, Germany
dGerman Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany

eUniversidade Federal de Sao Paulo (UNIFESP), Laboratério de Bacteriologia e Imunologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento
de Ciéncias Biologicas (DCB), Instituto de Ciéncias Ambientais, Quimicas e Farmacéuticas (ICAQF), Diadema, Brazil

Carolina Silva Nodari and Sebastian Alexander Fuchs contributed equally to the study. The order of first authors was determined based on the initial date of enrollment in the study.

ABSTRACT Acinetobacter baumannii is a successful nosocomial pathogen due to its
genomic plasticity. Homologous recombination allows genetic exchange and allelic vari-
ation among different clonal lineages and is one of the mechanisms associated with
horizontal gene transfer (HGT) of resistance determinants. The main mechanism of coli-
stin resistance in A. baumannii is mediated through mutations in the pmrCAB operon.
Here, we describe two A. baumannii clinical isolates belonging to International Clone 7
(IC7) that have undergone recombination in the pmrCAB operon and evaluate the con-
tribution of mobile genetic elements (MGE) to this phenomenon. Isolates 67569 and
72554 were colistin susceptible and resistant, respectively, and were submitted for
short- and long-read genome sequencing using lllumina MiSeq and MinlON platforms.
Hybrid assemblies were built with Unicycler, and the assembled genomes were com-
pared to reference genomes using NUCmer, Cortex, and SplitsTree. Genomes were
annotated using Prokka, and MGEs were identified with ISfinder and repeat match.
Both isolates presented a 21.5-kb recombining region encompassing pmrCAB. In isolate
67659, this region originated from IC5, while in isolate 72554 multiple recombination
events might have happened, with the 5-kb recombining region encompassing pmrCAB
associated with an isolate representing 1C4. We could not identify MGEs involved in the
mobilization of pmrCAB in these isolates. In summary, A. baumannii belonging to IC7

can present additional sequence divergence due to homologous recombination across Editor/Patricic AlBradrord Antimicrom el

clonal lineages. Such variation does not seem to be driven by antibiotic pressure but Development Specialists, LLC

could contribute to HGT mediating colistin resistance. Copyright © 2021 Nodari et al. This is an open-
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isolates, it has the potential to contribute to the spread of resistance-conferring al-
leles, leading to reduced susceptibility to this last-resort antimicrobial agent.

KEYWORDS polymyxins, colistin resistance, mobile genetic elements, insertion
sequences, Gram-negative bacilli

cinetobacter baumannii is an opportunistic pathogen causing a variety of difficult-

to-treat infections owing to their high incidence of antimicrobial resistance. One
of the reasons for this is its high genomic plasticity and its ability to acquire resistance
determinants (1, 2). The A. baumannii population can be grouped into nine interna-
tional clonal lineages (3), which differ from each other in at least 1,800 alleles, as shown
by core genome multilocus sequence typing (cgMLST) (4). Furthermore, each lineage
has distinct alleles associated with them, such as the intrinsic blagy,s;-like (5).

Homologous recombination allows foreign DNA to be integrated into the chromo-
some, and in A. baumannii it has already been associated with the acquisition of resist-
ance determinants to aminoglycosides (6, 7). Additionally, other studies have shown
that homologous recombination contributes to the allelic variation of intrinsic resist-
ance determinants, such as the outer membrane protein CarO (8) and the chromo-
some-encoded Acinetobacter-derived cephalosporinase (ADC) (9).

Mutations in the pmrCAB operon are the main mechanism causing reduced suscep-
tibility to colistin among A. baumannii strains (10). We have recently demonstrated the
allelic variation of pmrCAB between distinct International Clones (ICs) and that colistin-
susceptible isolates belonging to the same clonal lineage should be used as reference
strains when investigating point mutations potentially associated with colistin resist-
ance (11, 12). Interestingly, some of the IC2 isolates described in the study by Gerson
and colleagues (11) presented pmrCAB sequences that are associated with IC4, sug-
gesting homologous recombination between these clonal lineages. Kim and Ko (13)
have also suggested that pmrCAB genetic variation between distinct species belonging
to the A. baumannii-A. calcoaceticus complex was due to recombination.

Here, we describe two A. baumannii clinical isolates belonging to IC7 with distinct
colistin susceptibility profiles and presenting recombined pmrCAB operons and evalu-
ate the contribution of mobile genetic elements (MGE) to this phenomenon.

(This work was presented in part at the 12th International Symposium on the
Biology of Acinetobacter in Frankfurt, Germany, 2019)

RESULTS AND DISCUSSION

Some divergence was observed when the PmrCAB protein sequences of the IC7 iso-
lates 67659 and 72554 were aligned against MC1 (IC7 reference genome). The colistin-
susceptible isolate 67659 showed one amino acid substitution in both PmrA and PmrB as
well as five in PmrC. In contrast, isolate 72554 presented 4, 18, and 71 amino acid substi-
tutions in PmrA, PmrB, and PmrC, respectively (Fig. 1A to C). The k-mer sharing analysis of
pmrCAB and its flanking regions demonstrated that sequence similarities were increased
when isolates 67659 and 72554 were compared to those belonging to IC5 and 1C4,
respectively (Fig. 2). Furthermore, no amino acid substitutions were observed in PmrC or
PmrA when isolates 67659 and 72554 were compared against isolate 67098 (IC5) and iso-
late 71813 (IC4), respectively. Higher sequence similarity was also cbserved in PmrB, with
only a single substitution (Arg,,,GIn) identified when isolates 71813 and 72554 were com-
pared, as well as two substitutions (Pro,;Thr and Asn,slle) in the comparison between
isolates 67098 and 67659 (Fig. 1A to C). The representativeness of the included reference
genomes was also explored in an additional set of isolates as well as in a larger genomic
region (see Fig. S1 to S5 in the supplemental material).

The presence of regions with such high polymorphism rates suggests that horizon-
tal transfer through recombination, rather than the accumulation of multiple point
mutations over time, is involved in the variability of these specific DNA fragments. This
is particularly important and more frequent in naturally transformable species, such as
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FIG 1 (A to D) Protein sequence alignment of PmrC (A), PmrA (B), and PmrB (C) and SplitsTree-based neighbor-net of a 23.6-kb genomic region
encompassing pmrCAB (D) between isolates MC1 (IC7), 72554 (IC7), 71813 (I1C4), 67659 (IC7), 67098 (IC5), AYE (IC1), and ACICU (IC2). Sequences

belonging to isolate MC1 were used as references for sequence alignment. Amino acid differences are highlighted in colors (panels A to C).
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FIG 1 (Continued)

A. baumannii (1, 2). Based on the large number of nonsynonymous mutations observed
in pmrCAB, with PmrC protein sequences presenting up to 13% divergence from what is
expected for their lineage, we can infer that this operon has been transferred across clo-
nal lineages through homologous recombination. The likely presence of recombination
around the pmrCAB operon was confirmed by a SplitsTree analysis, also including refer-
ence genomes for IC1 and IC2 (Fig. 1D; phi test for recombination, P = 0.0). Considering
that IC4 and IC5, together with IC7, are the most frequent lineages observed in South
America (3) and were already described in the same hospital (12, 14), it comes as no sur-
prise that horizontal gene transfer occurred among those lineages.

Using a k-mer-based analysis, it was noticed that the length of the region present-
ing high sequence divergence surrounding pmrCAB was similar between the two eval-
uated isolates and extended to at least 8 kb up- and downstream of pmrCAB (Fig. 2A
and B, top). However, when using the same approach to compare those isolates to the
reference genomes belonging to IC4 and IC5, which presumably acted as donors of
the recombining regions, some differences were observed. While k-mer sharing pro-
portion between isolates 67659 and 67098 was close to 1 through the whole extension
of the recombining region (Fig. 2A, bottom), the similarities between isolates 72554
and 71813 were restricted to only 700 bp upstream of pmrC as well as 1,000 bp down-
stream of pmrB (Fig. 2B, bottom). This finding suggests that additional recombination
events have taken place and that the pmrCAB allele belonging to IC4 went through
some other intermediary host before making it into 72554, consistent with SplitsTree
results. Boinett and colleagues (15) have previcusly suggested that a 700-kb genomic
region that included pmrCAB had undergone homologous recombination in labora-
tory-induced colistin-resistant isolates. Those isolates, however, belonged to IC2, sug-
gesting that recombining regions vary depending on their genetic background. This
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FIG 1 (Continued)

observation would be in agreement to the phenomenon described by Kim and Ko (13),
where the authors reported that recombination could happen within pmrC, generating
mosaic alleles. Such variation, however, was not observed in either of the two isolates
evaluated in this study.
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MGEs are often involved in horizontal gene transfer and, in A. baumannii, are fre-
quently related to insertion sequences (ISs) and/or composite transposons (7, 16).
Despite multiple copies of distinct IS elements being identified in the genomes of iso-
lates 67659 and 72554 (data not shown), nane of them was observed within or flanking
the recombining region encompassing pmrCAB. In fact, the nearest IS detected was a
copy of ISAbai125 that was ~14 kb upstream of pmrC in both isolates, while in the
other direction the closest IS element identified (a copy of 1S77) was located >120 kb
downstream of pmrB, suggesting that recombination was not mediated by DNA mobi-
lization either through an IS or a composite transposon. Phage-related structures were
also observed through the genome of both isolates. However, similar to the IS ele-
ments, none of them was found flanking the recombining regions, and the closest
intact phage was observed >300 kb downstream of pmrB.

Considering that IS elements are self-transposable structures (17), we investigated
the presence of inverted repeats flanking the recombining region, since they indicate
that MGEs were lost postrecombination. A large number of repeats was observed
within and flanking the recombining region in both isolates, with an average of 44
repeats per 1,000 bp. However, sequence analysis revealed that none of them were
part of or constituted an insertion site for known IS elements. Moreover, they were
also found at the same position in isolates 67098 and 71813, suggesting that they
were translocated from IC5 and IC4 to IC7 during recombination, respectively, rather
than being responsible for the DNA mobilization. Therefore, the mechanisms involved
in the mobilization of pmrCAB into IC7 isolates remain to be elucidated.

Allelic variation in the pmrCAB operon is associated with natural polymorphisms
within each A. baumannii IC. In our study, we demonstrated that IC7 isolates can pres-
ent additional sequence divergence as a consequence of homologous recombination
of regions with variable lengths across distinct clonal lineages. Interestingly, the
recombination appears not to be driven by antibiotic pressure, since it was observed
in both colistin-susceptible and -resistant isolates, and a variety of clonal lineages can
act as donors of the recombining region. Additionally, we observed that MGEs were
not required for the transfer of pmrCAB in our isolates, since neither IS elements nor
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FIG 2 (A and B) Spatial k-mer sharing plots of a 23.6-kb genomic region encompassing pmrCAB and flanking genes of isolate 67659 against isolates MC1
(IC7, top) and 67098 (IC5, bottom) (A) and 72554 against MC1 (IC7, top) and 71813 (IC4, bottom) (B). The plots show spatial variations in the proportion of
k-mers present in the genomes described on the x axis also present in the genome of the different references described on the y axis, calculated in sliding
windows of 40 bases along the genome of the first isolate and for k = 19. Plots are based on k-mer counts computed with Cortex and a custom R
visualization script. pmrCAB coding regions are highlighted in red, and flanking genes are indicated in green.

other MGEs were detected flanking the recombining region. Further studies are
required to determine the mechanisms driving the mobilization of pmrCAB and to eval-
uate the presence of this phenomenon in other ICs as well as its frequency in the A.
baumannii population.
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MATERIALS AND METHODS

Bacterial isolates. A. baumannii clinical isolates 67659 and 72554 were recovered from the same ter-
tiary hospital in the city of Sdo Paulo, Brazil, 2 years apart (2015 and 2017, respectively). Their antimicro-
bial susceptibility profile was previously determined (14), and they were found to be colistin susceptible
(MIC, 1 mg/liter) and resistant (MIC, >128 mg/liter), respectively. Their genomes were previously
sequenced using the lllumina MiSeq platform, and cgMLST analysis revealed that the isolates had 28 al-
lele differences and were grouped under IC7 (14). Additionally, previously described colistin-susceptible
isolates belonging to 1C4 (71813), IC5 (67098), and IC7 (MC1) were included as reference genomes for
each IC (14, 18).

Long-read WGS using MinlON platform. Genomic DNA of isolates 67659 and 72554 was extracted
using the Genomic-Tips 100/G kit and genomic DNA buffers kit (Qiagen, Hilden, Germany). Libraries
were prepared using the ligation sequencing kit (SQK-LSK109), combined with a native barcoding kit
(EXP-NBD104) and the rapid barcoding kit (SQK-RBK004) (Oxford Nanopore Technologies, Oxford,
United Kingdom), and were loaded onto an R9.4 flow cell (Oxford Nanopore Technologies). Genomes
were assembled with a hybrid approach using Unicycler version 0.4.4 (19) with default parameters.

Genome alignment and identification of the recombining region including pmrCAB. The exact
position of the pmrCAB operon was identified by aligning the pmrCAB sequence from A. baumannii
ATCC 19606 (GenBank accession number NZ_CP045110.1) against the hybrid assemblies using the
NUCmer tool of the MUMmer package, version 4.0.0beta2 (20), with default parameters. K-mer sharing
plots were used for the robust identification of sequence homologies and recombination boundaries
between lineages by visualizing spatial variation in the proportion of k-mers from one isolate (X) also
present in another isolate (Y), calculated in sliding windows of 40 bases along the genome of X. In con-
trast to other alignment approaches, k-mer sharing plots do not require full assembly of genome Y but
can be created based on short-read-derived k-mer counts. For a given region in isolate X, k-mer sharing
values close to 1 indicate the likely presence of a homologous region in Y, whereas lower values indicate
reduced similarity or the absence of the corresponding region from Y. The k-mer sharing plots were
used to determine sequence homology patterns between different isolates around the pmrCAB operon
and were created with a custom R script executed in RStudio (version 1.3.1093) (21). k-mer presence or
absence was determined with Cortex (version 1.0.5.21; options “-mem_height 25," “~mem_width 100,
and “~kmer_size 19") (22), employing a minimum k-mer coverage threshold of 10 for the analysis of
short-read data. A neighbor-net analysis of the pmrCAB region was carried out with SplitsTree (23) with
default settings, based on a MUSCLE (24) multiple-sequence alignment of identified pmrCAB sequences
plus 10 kb of adjacent sequence from either side of pmrCAB. The phi test implemented in SplitsTree
(null hypothesis: no recombination) was used to test for recombination.

Characterization of the mobile structures involved in pmrCAB recombination. To fully annotate
the hybrid assemblies and to search for MGEs, Prokka version 1.14.5 (25) was used with default parame-
ters. Putative IS elements and phage-related structures were further identified with the blast tools of IS-
finder (https://isfinder.biotoul.fr/) and Phaster (https://phaster.ca/), respectively, using default parame-
ters. Inverted repeats (IR) were identified using the repeat-match tool of the MUMmer package version
4.0.0beta2 (20) with a minimum repeat length of 10 bases.

Data availability. Short and long raw reads generated for IC7 isolates 67659 and 72554, as well as
the reference isolates 67098 and 71813, were submitted to the Sequence Read Archive (https://www
.ncbi.nlm.nih.gov/sra/) of the National Center for Biotechnology Information (NCBI) under BioProject
number PRINA632943. Genome data from isolate MC1 are available under GenBank accession number
NZ_QXPV00000000.1. Additional isolates presented in the supplemental material had their short raw
reads submitted to the European Nucleotide Archive (http://www.ebi.ac.uk/ena/) of EMBL European
Bioinformatics Institute (EBI) under the study accession numbers PRJEB12082 and PRJEB27899.
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3.4 Supplementary material to publication 2

All supplementary figures and tables mentioned in the publication are listed on the following pages.

They can also be accessed from the original publication source (https://doi.org/10.1128/msphere.00746-

21), or via the enclosed CD.
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Figure S1: Spatial k-mer sharing plots of pmrCAB and flanking regions of isolates belonging to IC7
against MC1. The plots show spatial variations in the proportion of k-mers present in MC1 also observed
in the genome of the different isolates described in the y axis, calculated in sliding windows of 40 bases
along the genome of the MC1 and for £=19. Plots are based on k-mer counts computed with Cortex
and a custom R visualization script. pmrCAB coding regions are highlighted in red, and flanking genes
are indicated in green.
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Figure S2: Spatial k-mer sharing plots of pmrCAB and flanking regions of isolates belonging to IC4
against 71813. The plots show spatial variations in the proportion of k-mers present in 71813 also
observed in the genome of the different isolates described on the y axis, calculated in sliding windows
of 40 bases along the genome of the 71813 and for £=19. Plots are based on k-mer counts computed
with Cortex and a custom R visualization script. pmrCAB coding regions are highlighted in red, and
flanking genes are indicated in green.
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Figure S3: Spatial k-mer sharing plots of pmrCAB and flanking regions of isolates belonging to IC5
against 67098. The plots show spatial variations in the proportion of k-mers present in 67098 also
observed in the genome of the different isolates described on the y axis, calculated in sliding windows
of 40 bases along the genome of the 67098 and for k= 19. Plots are based on k-mer counts computed
with Cortex and a custom R visualization script. pmrCAB coding regions are highlighted in red, and
flanking genes are indicated in green.
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Figure S4: Spatial k-mer sharing plots of a 500-kb genomic region encompassing pmrCAB and
flanking genes of isolate 67659 against isolates MC1 (IC7, top) and 67098 (ICS5, bottom). The plots
show spatial variations in the proportion of k-mers present in the genomes described on the x axis also
present in the genome of the different references described on the y axis, calculated in sliding windows
of 40 bases along the genome of the first isolate and for £=19. Plots are based on k-mer counts
computed with Cortex and a custom R visualization script. pmrCAB coding regions are highlighted in
red. The shaded grey area highlights the genomic region depicted in Fig. 1A.
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Figure S5: Spatial k-mer sharing plots of a 500-kb genomic region encompassing pmrCAB and
flanking genes of isolate 72554 against isolates MC1 (IC7, top) and 71813 (IC4, bottom). The plots
show spatial variations in the proportion of k-mers present in the genomes described on the x axis also
present in the genome of the different references described in the y axis, calculated in sliding windows
of 40 bases along the genome of the first isolate and for £=19. Plots are based on k-mer counts
computed with Cortex and a custom R visualization script. pmrCAB coding regions are highlighted in
red. The shaded grey areas highlight the genomic region depicted in Fig. 1B.
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Table S1: Genome assembly statistics and inferred location of pmrCAB in A. baumannii clinical

isolates included in the study.

Number Length of

Number of Length of of plasmid-
Short- Long- Number chromosome- chromosome- plasmid- associated Inferred
reads reads of associated associated associated contigs Undefined Genome localization
Isolate coverage coverage contigs® N50°(bp) contigs® contigs (bp) contigs” (bp) contigs® closed of pmrCAB
120,650%
40,936%
67659 116.096  70.689 6 4,174,758 1 4,174,758 3 16,673¢ 2 yes chromosome
156,00%;
2,988,108; 8,970%;
72554 107.564 42227 11 2,988,108 2 1,171,702 3 7,703¢ 6 yes chromosome
3,902,837,
71813 125569 311.889 6 3902,837 2 34,129 1 14,782 3 yes chromosome
67098 121.990 129.754 2 4,073,402 1 4,073,402 1 16,673 0 yes chromosome
184.748;
MC1 84.566 278578 3 4,026,212 1 4,026,212 2 8,731 0 yes chromosome

2 Based on hybrid assembly using Unicycler.

Y Based on the gene content identified with genome annotation.

¢ All undefined contigs are <5 kbp.

4>90% sequence similarity and coverage with the 184 kbp plasmid from MC1.

¢ >09% sequence similarity and coverage with the 16 kbp plasmid from 67098.
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Abstract

Genomic surveillance can enable the early detection of pathogen transmission in healthcare facilities and contribute to
the reduction of substantial patient harms. Fast turnaround times, flexible multiplexing schemes, and low capital
requirements make Nanopore sequencing well-suited for genomic surveillance purposes; the analysis of Nanopore
sequencing data, however, can be challenging. We present NanoCore, a user-friendly method for Nanopore-based
genomic surveillance in healthcare facilities, which enables the calculation and visualization of cgMLST-like sample
distances directly from raw Nanopore sequencing reads. NanoCote implements a mapping, variant calling and multi-level
filtering strategy and also supports the analysis of Illumina-sequenced isolates. We validated NanoCore on two 24-isolate
datasets of methicillin-resistant Staphylococcus aurcus (MRSA) and vancomycin-resistant Enterococcus faccium (VRE).
In Nanopore-only mode, NanoCore-based pairwise distances between closely related isolates were near-identical to
distances calculated with SeqSphere+t, a gold-standard commercial method (average differences of 0.75 alleles for MRSA
and of 0.81 alleles for VRE), and gave an identical clustering into closely related and non-closely-related isolates. In
“hybrid” mode, in which only Nanopore data is used for some isolates and only Illumina data for others, increased average
pairwise isolate distance differences were observed (average differences of 3.44 and 1.95 for MRSA and VRE,
respectively), while clustering results remained identical. NanoCore is computationally efficient (<15 hours of wall time
for the analysis of a 24-isolate datasct on a modern workstation), available as free software, and supports user-friendly
installation via bioconda. In conclusion, NanoCore enables the effective use of the Nanopore technology for bacterial

pathogen surveillance in healthcare facilities.

Importance

Genomic surveillance involves sequencing the genomes and measuring the relatedness of bacteria from different patients
or locations in the same healthcare facility, enabling an improved understanding of pathogen transmission pathways and
the detection of “silent” outbreaks that would otherwise go undetected. It has become an indispensable tool for the
detection and prevention of healthcare-associated infections and is routinely applied by many healthcare institutions. The
earlier an outbreak or transmission chain is detected, the better; in this context, the Oxford Nanopore sequencing
technology has important potential advantages over traditionally used short-read sequencing technologies, because it
supports “real-time” data generation and the cost-effective “on demand” sequencing of small numbers of bacterial
isolates. The analysis of Nanopore sequencing data, however, can be challenging. We present NanoCore, a user-friendly
software for genomic surveillance that works directly based on raw Nanopore sequencing reads and demonstrate that its

accuracy is equivalent to traditional gold-standard short-read-based analyses.
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Introduction

Genomic pathogen surveillance has become an essential tool for the detection, characterization and prevention of
healthcare-associated infections (1,2) and for improved infection control (3—5). Genomic surveillance can be applied
retrospectively to investigate epidemiologically indicated potential outbreaks or prospectively as part of “sequence first”
regimes (6), involving the routine sequencing of indicator organisms of nosocomial importance (i.e. those spreading
quickly, exhibiting multidrug-resistance and/or virulence factors) and enabling the detection of cryptic transmissions and
silent outbreaks. Key factors for the successful implementation of genomic surveillance include linking epidemiological
data to genomic analyses, the speed at which sequencing data is generated and analyzed (7,8), and the accuracy of

calculated genetic distances between samples.

While most sequencing for genomic pathogen surveillance purposes in healthcare facilities has traditionally relied on the
Illumina technology (9), the Oxford Nanopore technology (10) has become increasingly attractive. Advantages of
Nanopore sequencing include rapid turnaround times, “real-time” data generation and output, the ability to sequence long
fragments of DNA, and low capital costs; for healthcare facility pathogen surveillance, these may translate into reduced
outbreak investigation times or the ability to implement genomic surveillance in resource-limited settings. In addition,
throughput and error rates, previously limitations of the Nanopore technology (11,12), have improved rapidly (13,14),
and Nanopore sequencing is widely used for the assembly of bacterial genomes (13,15). During the COVID-19 pandemic,
tens of thousands of viral genomes were sequenced with the Nanopore technology (16—18), demonstrating the potential

of the technology for large-scale surveillance.

Challenges for the introduction of Nanopore sequencing in the healthcare pathogen surveillance context, however, include
1) the sensitivity of important established bacterial strain typing methods, such as MLST (19,20), cgMLST, or cgSNP (21)
to sequencing errors, which may, despite recent progress, remain a concern for Nanopore sequencing data; and ii) the
potential requirement that newly gencrated isolate sequencing data should remain comparable to that of existing, typically
Ilumina-based, isolate sequencing data, for example to enable the detection of low-intensity unrecognized outbreaks that

may span several years.

Multiple studies on the use of Nanopore sequencing for the determination of bacterial sequence types and bacterial
genomic epidemiology have shown encouraging results (22,23). Larger-scale studies include Oh et al. (24), who reported
mostly consistent, but non-identical, results between Nanopore- and Illumina-based analyses of 23 isolates of
vancomycin-resistant Fnterococcus (VRE); Hall et al. (25), who reported largely consistent results between Nanopore
and Illumina for Mycobacterium fuberculosis; Liou et al. (26) and Liao et al. (27), who presented a Nanopore-based
MLST typing approach for Staphylococcus aureus; Ferreira et al. (28), who demonstrated Nanopore-based sequence
typing and phylogenetic analysis of methicillin-resistant Staphylococcus aureus (MRSA), obtaining results generally
consistent with an [llumina-based analysis; and a number of studies on the successful application of Nanopore sequencing
to sequence typing in Salmonella (29-32). Xian et al. (29), in particular, presented a homopolymer error reduction
approach and explicitly considered the case of combining Illumina and Nanopore data in the same analysis. These results

are complemented by a number of smaller-scale studies: Linde et al. (33) found consistent results between Illumina and
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Nanopore sequencing for two out of three evaluated species of highly pathogenic bacteria, represented by two isolates
each; Greig et al. (34) compared the two technologies on two isolates of Escherichia coli and found largely concordant
results; Tarumoto et al. (35) found that I1lumina- and Nanopore-based sequence of two VRE isolates produced concordant
results; Both et al. (36) applied Nanopore sequencing to improve the resolution of hospital VRE isolates; and Duc Cao et

al. (37) reported successful strain typing for three Klebsiella pneumoniae isolates.

With the exception of nanoMLST (26,27), however, no tools have been presented for the user-friendly, integrated analysis
of putative bacterial outbreaks directly from raw Oxford Nanopore sequencing reads. NanoMLST was designed for the
analysis of multiplex PCR data and implements a classical 7-gene MLST scheme, the resolution of which is often not
sufficient for the fine-scale analysis of bacterial transmission chains (38). In addition, the important “hybrid” use case, in
which only Nanopore data is used for some isolates and only Illumina data for others, and which enables, for example,
the fast investigation of urgent cases with Nanopore sequencing against a background of Illumina-sequenced other

isolates, was only considered in Hall et al. (25) and Xian et al. (29).

Here, we present NanoCore, a user-friendly tool developed specifically to enable the effective use of the Oxford Nanopore
technology for the genomic surveillance of bacteria and outbreak detection in healthcare facilities. NanoCore works
directly based on raw (i.e. unassembled) Nanopore sequencing reads, while also supporting the analysis of Illumina-
sequenced isolates. We demonstrate the accuracy of NanoCore on two datasets of MRSA and VRE, comprising two
species that are highly relevant in the hospital infection control and genomic epidemiology context (39,40) and which
exhibit a medium (MRSA) as well as high degree of genome plasticity (VRE) (41,42). For validation, we compared
NanoCore against [llumina-based analyses of the same samples with Ridom SeqSphere+ (43), a commercial “gold

standard” software used by many hospital hygiene and infection control departments.

Results

Overview of NanoCore
NanoCore enables the investigation of putative bacterial outbreaks from Nanopore sequencing data, while also supporting

the integrated analysis of [llumina-sequenced isolates (Figure 1).

In NanoCore, input reads are mapped to a species-specific core genome reference, followed by variant calling, the
calculation of pairwise isolate distances, and the visualization of the analyzed sample using a Minimum Spanning Tree
(MST). The robust computation of isolate distances from Nanopore data alone as well as in “hybrid” analysis mode is
enabled by a tailored multi-level filtering strategy, accounting for e.g. copy number variation in the utilized core genome

reference in individual isolates.

The pairwise isolate distance metric employed by NanoCore is similar, but not identical, to cgMLST: Isolate distances in
NanoCore are based on the number of species-specific core genome genes for which a difference in allelic state can
confidently be asserted; however, no attempt is made to assign a fixed allele identifier to each analyzed gene in each

isolate.

NanoCore, which is implemented in R and Perl, is freely available from bioconda (44) or GitHub.
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Figure 1: Overview of the NanoCore method (right), in comparison to a well-established method for the computation of
cgMLST-based distances (SeqSphere+ (43), left).

Validation experiment 1: S. aureus in Nanopore-only mode

In the first experiment, we benchmarked the Nanopore-only analysis mode of NanoCore on MRSA, representing a species
of key relevance in the hospital outbreak context. Briefly, we assembled a 24-isolate benchmark dataset from the biobank
of University Hospital Diisseldorf’s Institute of Medical Microbiology and Hospital Hygiene, consisting of isolates
collected between April 2017 and February 2022 and comprising three clusters of closely related isolates as determined
by cgMLST analysis before. Per-sample Nanopore sequencing data were generated in a single multiplexed MinION R10
flow cell run (see Methods) and coverages ranged from 74x to 246x with an average of 120x (Supplementary Figure 1).
NanoCore was benchmarked against an [1lumina-based analysis of the same isolates with SeqSphere+, with per-sample

coverages ranging from 33x to 187x (average: 101x).

Pairwise isolate distances computed by NanoCore (Supplementary Table 1) were based on an average number of 1856
compared genes per isolate pair, out of 1864 genes present in the utilized S. aureus core genome dataset (45). The gene-
level filters affecting the largest number of genes were the “coverage and mapping quality” and “low coverage” filters,
leading to the exclusion of 66 and 29 genes over all isolates, respectively (see Supplementary Table 2 and Supplementary
Figure 2). Furthermore, 629 genomic positions were globally excluded from all pairwise distance calculations (most often
due to the global positional heterozygosity filter; Supplementary Table 3), and an additional 1537 genomic positions were
removed {rom individual pairwise comparisons (identified by the individual-variant filter; Supplementary Table 4). By
comparison, SeqSphere-computed distances were based on an average number of 1832 analyzed genes per isolate and on

an average number of 1799 analyzed genes per isolate pair (Supplementary Table 5 and Supplementary Table 6).

NanoCore-computed pairwise distances (Supplementary Table 1) were highly concordant with SeqSphere+
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(Supplementary Table 5; Pearson’s r = 1.000); for 47 out of 276 isolate pairs, the computed pairwise distances were
identical. For the 19 pairs of closely related isolates with SeqSphere+ distances of < 15 (i.e. covering the important use
case of identifying pairs of isolates potentially related due to an infection chain context), NanoCore -computed pairwise

distances were identical in 4 cases, and the average difference in pairwise distances was 0.75 (Figure 2 panel A).

We carried out an in-depth investigation of the observed differences between NanoCore and SeqSphere+ in the set of 19
pairs of closely related isolates with SeqSphere+ distances < 15. First, we focused, across all included isolate pairs, on
the 34,729 instances of pairwise gene comparisons present in both the NanoCore and SeqSphere+ analyses; of those,
NanoCore and SeqSphere+ disagreed on only 23 instances (Figure 2 panel B). Manual investigation showed that the
SeqSphere+ calls were likely correct in 8 of these 23 cases; 5 cases were classified as SeqSphere+ false-positive calls;
and 10 cases remained ambiguous. The 8 false-negative calls by NanoCore were exclusively due to the positions of the
missed variants being close to the 5" or 3 "ends of a gene (Supplementary Table 7)., However, the detection of such variants

is a known issue with the Clair3 variant caller used within NanoCore (GitHub issue: htips:/github.com/HKU-

BAL/Clair3/issues/135). Next, we investigated the 15 out of 19 closely related isolate pairs for which a difference between

the NanoCore- and SeqSphere+-computed distances was observed, independent of whether the gene pairs responsible for
the observed differences were analyzed by both NanoCore and SeqSphere. In 6 cases, the observed differences in pairwise
isolate distances could be attributed to a failure to detect true-positive allelic differences by NanoCore (usually driven by
false-negative calls of variants close to the 5" or 3’end of a gene); in 3 cases to likely false-positive variant calls by
SeqSphere+; and in 6 instances the manual investigation showed that the distances calculated by neither approach were

likely fully correct (see Supplementary Table 8 for a full list of investigated pairwise differences).
Finally, clustering the isolates using a genetic distance threshold of 10 (consistent with recommendations by Schiirch et

al. (21)) produced the same sets of related isolates for NanoCore and SeqSphere' (Figure 2 panel C), further demonstrating

the high degree of concordance between NanoCore and SeqSphere+.
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Figure 2: Analysis of 24 MRSA isolates. A. Comparison of NanoCore- and SeqSphere+-based pairwise isolate distances
for pairs of closely related isolates (SeqSphere+ distance < 15), with Pearson correlation shown in the inset. B.
Comparison of individual-gene NanoCore- and SeqSphere+ results across closely related isolate pairs (SeqSphere+
distance < 15). Shown are results from genes that were analyzed by both NanoCore and SeqSphere+. C. Minimum
spanning trees (MSTs) of the analyzed isolates based on SeqSphere+ (left) and NanoCore (right); clusters of closely
related isolates, computed independently based on the output of SeqSphere+ and NanoCore, are shown as red, blue and
yellow circles.

Validation experiment 2: E. faecium in Nanopore-only mode
In the second experiment, we benchmarked the Nanopore-only mode of NanoCore on VRE, which may, due to a higher

degree of genome plasticity, represent a challenge for the variant calling and filtering strategics employed by NanoCore.
The selected 24 VRE isolates were taken from the biobank of University Hospital Diisseldorf’s Institute of Medical
Microbiology and Hospital Hygiene, comprising two clusters of closely related isolates, and were collected between

August and October 2021. Nanopore sequencing data were generated in two multiplexed MinlON runs and genome
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coverages ranged from 96x to 563x (mean: 273x; Supplementary Figure 3), compared to 51x to 108x (mean: 87x) for the

Illumina data that were used for the comparative SeqSphere+ analysis.

In the case of VRE, we observed an increased number of genes removed by NanoCore’s default filters; pairwise distances
(Supplementary Table 9) were based on an average number of 1397 compared genes, out of 1423 genes present in the
core genome (46). Consistent with an assumed effect of genome plasticity, the filter affecting the highest number of genes
was the gene-level “heterozygosity” filter (607 genes removed in individual isolates; Supplementary Table 2 and
Supplementary Figure 4), which is sensitive to variations in genome structure. Furthermore, 877 genomic positions were
globally excluded from all pairwise distance calculations (most often due to the global positional “heterozygosity” filter;
Supplementary Table 3) and 468 genomic positions were removed from individual pairwise comparisons (identified by
the individual-variant filter; Supplementary Table 4). By comparison, SeqSphere+-computed distances were based on an
average number of 1404 analyzed genes per isolate and on an average number of 1385 analyzed genes per isolate pair

(Supplementary Table 10 and Supplementary Table 11).

As was the case for MRSA, the NanoCore-computed pairwise distances for VRE (Supplementary Table 9) exhibited a
high degree of concordance with SeqSphere+ (Supplementary Table 10; Pearson’s r = 0.998 for all isolate pairs); for the
39 pairs of closely related isolates (SeqSphere+ distances < 15), the degree of concordance for computed distances was

higher (r = 1.000) and exhibited an average difference of 0.81 (Figure 3 panel A).

Furthermore, within the set of pairwise gene comparisons conducted by both SeqSphere+ and NanoCore in the set of
closely related isolates, the two methods disagreed on only 31 out of 55,497 instances of pairwise gene comparisons
(Figure 3 panel B), driven by differences in allelic state called by SeqSphere+. Manual investigation showed that
SeqSphere+ was likely correct in 24 of these 31 cases; 5 cases were classified as SeqSphere false-positive calls and 2
cases remained ambiguous. False-negative calls by NanoCore were either due to low coverage (9 cases) or the positions
of the missed variants being close to the 5" or 3" end of a gene (15 cases; Supplementary Table 7). Finally, manual
adjudication of the 25 out of 39 closely related isolate pairs for which a difference between the NanoCore- and
SeqSphere+-computed distances was observed showed that 11 of these instances were due to false-negative calls by
NanoCore (typically driven by exclusion of the variant-containing genes by the gene-level heterozygosity filter); 4 were
due to likely false-positive calls by SeqSphere; and in 10 instances, the manual investigation showed that the distances

calculated by neither approach were likely fully correct (Supplementary Table 8).
Finally, isolate clusters computed using a genetic distance threshold of 15 (consistent with recommendations by Schiirch

et al. (21)) were identical between NanoCore and SeqSphere+ (Figure 3 panel C), demonstrating the high degree of

consistency between the two methods.
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Figure 3: Analysis of 24 VRE isolates. A. Comparison of NanoCore- and SeqSphere+-based pairwise isolate distances
for pairs of closely related isolates (SeqSphere+ distance < 15), with Pearson correlation shown in the inset. B.
Comparison of NanoCore- and SeqSphere+-based results on the level of individual genes across closely related isolates
(SeqSphere+ distance < 15). Shown are results from genes that were analyzed by both NanoCore and SeqSphere+. C.
Minimum spanning trees of the analyzed isolates based on SeqSphere+ (left) and NanoCore (right); clusters of closely
related isolates, computed independently from the output of SeqSphere+ and NanoCore, are shown as red and blue circles.

Validation experiment 3: Evaluation of the “hybrid” mode of NanoCore on MRSA and VRE

To evaluate the “hybrid” analysis mode of NanoCore, we first assembled synthetic hybrid MRSA and VRE datasets for
benchmarking purposes based on the sequencing data analyzed in the first two experiments; to assemble the hybrid
datasets, the Nanopore and Illumina data from each isolate were not combined but treated as if they emanated from

biologically different isolates, yielding two MRSA and VRE datasets with 48 isolates each.
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We first evaluated the impact of NanoCore’s multi-level filtering strategy. For the “Nanopore” component of the hybrid
datasets, gene-level filtering, which is applied to each isolate independently, produced the same results as in the first two
experiments; for the “Illumina” component, gene-level filtering led to the exclusion of a median number of 374 and 79
genes for MRSA and VRE, respectively (Supplementary Table 12) and Supplementary Table 13). The filters leading to
the largest numbers of genes for the “Illumina’ component were the gene-level “low coverage” filter (approximately 4000
genes over all isolates in both datasets, Supplementary Table 2) and the gene-level “coverage and mapping quality” filter,
which had a particularly large effect in the MRSA dataset (almost 6500 genes over all isolates in both datasets,
Supplementary Table 2); correlations between the different filters are visualized in Supplementary Figure 5 and
Supplementary Figure 6. Furthermore, 11442 and 3048 genomic positions were excluded by global positional filters for
MRSA and VRE, respectively (Supplementary Table 3), as well as 3533 (MRSA) and 1272 (VRE) positions from

individual pairwise isolate distance calculations (identified by the individual-variant filter; Supplementary Table 4).

Within the two benchmarking datasets, we compared, for each pair of biological isolates (276 pairs in total per species),
hybrid with single-technology pairwise isolate distances (Supplementary Table 14 and Supplementary Table 15).
Specifically, for two isolates X and Y, we compared distancenanocore(Xnanopore, Yillumina)  and
distancenanoCore(Xnilumina, Y Nanopore) (the  “hybrid”  distances) with  distancenanocore(XNanopore, ¥ Nanopore) ~ and
distanceseqsphere(Xnlumina, Y Numina) (the “single-technology™ distances); the first subscript indicates the utilized pairwise
distance computation method and the subscripts of X and Y indicate the sequencing technology data type. We found that
hybrid isolate distances were generally highly concordant with single-technology isolate distances; specifically, over 552
evaluated hybrid distances for each species, hybrid distances and the Nanopore-based distances exhibited a correlation
(Pearson’s r) of 1.000 (MRSA) and 0.985 (VRE); hybrid distances and [llumina-based SeqSphere+ distances exhibited a
correlation of 0.981 (MRSA) and 0.985 (VRE). When considering only pairs of closely related isolates (SeqSphere+
distance < 15), we observed an average difference between NanoCore- and SeqSphere+-based distances of 3.44 and a
correlation of 0.866 for MRSA (19 isolate pairs; Figure 4 panel A and Supplementary Table 14), and an average difference
of 1.95 and a correlation of 0.997 for VRE (39 isolate pairs; Figure 4 panel C and Supplementary Table 15).

Next, to investigate the accuracy of isolate clustering in “hybrid” mode, we created three “hybrid” scenarios for both
MRSA and VRE, which all comprised the full set of 24 biological isolates of the corresponding species, and in which
only Nanopore data was used for one randomly assigned half of the biological isolates and only Illumina data for the
other half. Each “hybrid” scenario was analyzed as an independent NanoCore run, and clustering was carried out using
the same distance thresholds as in the first two validation experiments. Within each “hybrid” scenario and for both species,
we found perfect agreement between the computed clusters and the single-technology clustering results from the first two

experiments (Figure 4 panels B and D).

To further characterize potential error modes of the “hybrid” analysis mode of NanoCore, we carried out an in-depth
analysis of the first “hybrid” scenario for each species, focusing on the 18 out of 19 (MRSA) and on the 30 out of 39
(VRE) closcly related isolate pairs (SeqSphere+ distance < 15) for which a difference between SeqSphere+ and NanoCore
(in “hybrid” mode) distances was observed within the respective first “hybrid” scenario. For MRSA, 12 of the 18
differences were accounted for by “hybrid” distances; for VRE, 22 of 30. Further manual investigation showed that 5 of
the 18 differences for MRSA were due 1o false-positive or false-negative calls by NanoCore, 2 were errors by SeqSpheret,
and in 11 cases neither distance was likely fully correct (Supplementary Table 7). For VRE, 11 of the observed 30

discrepancies were likely driven by false-positive or false-negative calls by NanoCore; 2, by errors by SeqSphere+; and
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in 17 cases neither distance was likely fully correct. Across both species, false calls by NanoCore were often due to
exclusion of the variant-containing genes by the gene-level “low coverage” filter, due to the corresponding variants being
close to the 5 or 3" borders of a gene, or due to variant calling artifacts in low-coverage regions that were not removed

by any of the coverage-related filters (Supplementary Table 7 and Supplementary Table 8).
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Figure 4: Evaluation of the “hybrid” mode of NanoCore on MRSA and VRE. A. Comparison of “hybrid” NanoCore
and SeqSphere+ pairwise isolate distances for pairs of closely related MRSA isolates (SeqSphere+ distance < 15), with
Pearson correlation shown in the inset. B. NanoCore “hybrid” mode minimum spanning tree of the analyzed MRSA
1solates, based on the first “hybrid” MRSA scenario (comprising 12 isolates for which only Nanopore data was used and
12 isolates for which only Illumina data was used; see Results); clusters of closely related isolates are shown as red, blue
and yellow circles. C. Comparison of “hybrid” NanoCore- and SeqSphere+-based pairwise isolate distances for pairs of
closely related VRE isolates (SeqSphere+ distance < 15), with Pearson correlation shown in the inset. D. NanoCore
“hybrid” mode minimum spanning tree of the analyzed VRE isolates, based on the first “hybrid” VRE scenario
(comprising 12 isolates for which only Nanopore data was used and 12 isolates for which only Illumina data was used;
see Results); clusters of closely related isolates are shown as red and blue circles.
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Computational performance
Analysis of the 24-isolate datasets described above with NanoCore (8 threads) took <15 hours of wall time and <5 Gb of

RAM per experiment on an AMD Ryzen Threadripper 3970X system with 3.7Ghz. Detailed runtime and computational

requirements statistics are reported in Supplementary Table 16.

Discussion

We have presented NanoCore, a user-friendly method for Nanopore-based genomic surveillance of bacteria and outbreak
detection in healthcare facilities. NanoCore does not require any preprocessing of the Nanopore read data, accepting raw
sequencing reads as input. In addition to Nanopore sequencing, NanoCore also supports the analysis of Illumina-
sequenced isolates. Important use cases of this include the selective application of Nanopore sequencing to urgent cases,
leveraging the technology’s rapid data generation capabilities, as well as the complete transition of a hospital's
surveillance platform from Illumina to Nanopore sequencing without having to exclude or re-sequence older isolates for

which only Illumina data are available.

We validated NanoCore on two independent 24-isolate datasets of MRSA and VRE, species highly relevant to the field
of hospital hygiene and infection control. The validation experiments demonstrated identical clustering results between
NanoCore in both evaluated modes (Nanopore-only and “hybrid”) and SeqSphere+, a commercial gold standard method,
for both species. Pairwise isolate distances for closely related isolates based on NanoCore in Nanopore-only mode were
near-identical to those of SeqSphere+ (average differences of 0.75 for MRSA and of 0.81 for VRE); for NanoCore in
“hybrid” mode, the average difference in pairwise isolate distances between NanoCore and SeqSphere+ was found to be
increased (average differences of 3.44 and 1.95 for MRSA and VRE, respectively), but remained at a low level. Hospital
outbreak investigations typically focus on distinguishing between related and non-related isolates and on the fine-scale
structure of relatedness within the set of related isolates. By contrast, the determination of accurate pairwise isolate
distances for more distantly related isolates can be relevant in the context of phylogenetics, but typically not in the context
of outbreak investigations. The validation experiments thus demonstrated the near-equivalence between NanoCore and

SeqSphere+ for the use case of bacterial genomic surveillance and outbreak detection in healthcare facilities.

NanoCore employs a multi-level filtering strategy to heuristically reduce the potential impact of false variant calls on
computed pairwise sample distances. First, gene-level filters are applied at a per-isolate level to detect read mapping
ambiguities as well as duplications or deletions of individual genes, which are associated with variant calling artifacts and
which were occasionally observed in the analyzed isolates (Supplementary Figure 7), the classification of the analyzed
genes as “core” notwithstanding. Consistent with the higher genomic plasticity of E. faecium, gene-level filters and the
“heterozygosity” filter in particular had a substantially larger effect in VRE than in MRSA (Supplementary Table 2).
Second, positional filters capture technical artifacts of the variant calling process and base contexts that pose challenges
for Nanopore-based variant calling, as well as drops in coverage. Positional filtering is implemented in a way that initially
identifies potentially problematic positions on a per-sample basis, which are subsequently propagated across the complete
dataset (i.e., excluded from all distance calculations); this is based on the rationale that the properties that render individual
positions challenging are typically shared between isolates, even if the heuristics employed to detect these positions are
not activated in every individual isolate. Last, individual isolate-distinguishing variant calls are filtered based on the allele

frequency of the called variant in the involved isolates; this step reduces the impact of false-negative variant calls. Because
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of the increased rate of homopolymer errors in Nanopore sequencing, INDEL calls are generally ignored by NanoCore;

of note, Xian et al. similarly proposed a heuristic approach for homopolymer correction (29).

Our in-depth investigation of differences between NanoCore and SeqSphere+ for pairs of closely related isolate pairs
showed that these were almost exclusively driven by false-negatives (i.c., NanoCore failing to detect a true isolate-
distinguishing variant), which were often caused by a known variant calling issue of the Clair3 variant caller in the case
of MRSA, and often related to the gene-level “heterozygosity” filter in the case of VRE. Improvements to the Clair3
variant caller, or integration of another variant calling algorithm, may reduce these errors in the future. In "hybrid" mode,
we also observed false-positive calls by NanoCore (i.e., NanoCore erroneously calling an isolate-distinguishing variant
that is not really present); these could be addressed by integration of an Illumina-optimized variant calling approach (47)
in future releases of NanoCore. In addition, the filtering strategy of NanoCore could be optimized for short-read data, for
example with respect to the increased coverage fluctuations (Supplementary Figure 6,) and lower mapping qualities
(Supplementary Figure 6) observed in short-read data; such potential for optimization was particularly apparent for the
MRSA dataset, in which increased coverage fluctuations in the short-read data led fo the exclusion of a comparably high
number of genes (Supplementary Table 2), contributing to increased discrepancies between “hybrid” NanoCore and
SeqSphere+ for this species. Importantly, while most observed differences between SeqSphere+ and NanoCore were due

to NanoCore, we also observed false-positive calls by SeqSphere+ in all experiments.

NanoCore has a number of limitations. First, NanoCore requires a core genome reference; while these are available

(https://www.cgmlst.org/ncs) for the large majority of clinically important species, there are still microbial species for

which a core genome dataset has not been defined yet. Second, by design, NanoCore will only detect isolate-
distinguishing variants in the core genome; in some instances, whole-genome based approaches also accounting for
extrachromosomal genome information (i.e., from plasmids) may offer increased resolution for the fine-scale analysis of
otherwise closely related isolates (38). Third, NanoCore does not assign a standardized allele identifier to the analyzed
genes; NanoCore docs thus not cnable the comparison of isolates based on allele identifiers alone (48), which can be
important ¢.g. in the context of inter-institutional outbreak investigations in which the sharing of raw sequencing data is
not possible. Fourth, in the current implementation, NanoCore may not scale to the analysis of very large datasets; in
future releases, this could be addressed by limiting the computation of full pairwise distances to closely related isolates
while relying on an approximate distance metric, e.g. based on Mash (49), otherwise. Fifth, NanoCore does not support
the analysis of isolates based on de novo assembly. While limiting, as discussed above, the resolution of NanoCore to the
core genome, the advantage of this approach is that NanoCore can also be applied to lower-coverage datasets. For
example, we obtained virtually identical results for the MRSA dataset after downsampling the Nanopore input data to
50% of its original size (data not shown); in addition to demonstrating robustness, this result indicates that NanoCore may

also support Nanopore multiplexing schemes with more than 24 isolates per flow cell.

Conclusion

NanoCore is a user-friendly method for genomic surveillance and outbreak detection in healthcare facilities based on the
Oxford Nanopore sequencing technology. In two independent validation experiments based on MRSA and VRE, we
demonstrated consistency between NanoCore and SeqSphere+, a gold-standard commercial method. NanoCore also
supports the analysis of Illumina-sequenced samples. In conclusion, NanoCore enables the effective use of the Nanopore
technology for bacterial pathogen surveillance in healthcare facilities, the potential advantages of which include low

capital costs and reduced sample-to-result turnaround times.
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Material and Methods

Analyzed bacterial isolates and core genome references
24 VRE and 24 MRSA isolates were selected from the isolate collection of the Institute of Medical Microbiology and

Hospital Hygiene of Diisseldorf University Hospital. All isolates had been previously sequenced with Illumina and
analyzed with SeqSphere+ as part of the Institute’s routine surveillance activities; the analyzed isolates were selected to
represent different degrees of genetic relatedness (see Results). For the generation of the Nanopore data, DNA was

obtained from cryostocks of the sclected isolates that were thawed and re-cultured.

For the analysis of these samples with NanoCore, we selected well-established core genome references for Staphylococcus
aureus, comprising 1864 core genes and 1.70 Mbp of sequence (45), as well as for Enterococcus faecium, comprising

1423 core genes and 1.35 Mbp of sequence (46) .

Bacterial culture and DNA extraction

Bacterial isolates were cultured employing routine overnight LB culture protocols at 37°C. DNA was extracted using the
Qiagen DNeasy UltraClean Microbial Kit according to the manufacturer’s instructions. DNA concentrations and quality

were checked with NanoDrop and 100ng of DNA were diluted to fit the desired concentration of 5ng/ul.

Nanopore sequencing and demultiplexing

Nanopore sequencing was carried out on the Oxford Nanopore MinION device. DNA concentrations were measured
using Qubit. Sequencing libraries for MRSA were prepared using the Oxford Nanopore ligation sequencing gDNA native
barcoding kit SQK-NBD112-24 and sequenced on “FLO-MIN112" R10 flow cell, multiplexing 24 isolates per flow cell.
Sequencing data for VRE were generated in two separate MinION runs, multiplexing 13 and 11 isolates per flow cell,
based on the SQK-NBD112-24 kit with a “FLO-MIN112” R10 flow cell and based on the SQK-NBD114-24 kit with a
"FLO-MIN114" R10.4 flow cell, respectively. Reads were basecalled and demultiplexed using Guppy (version 6.1.5).

Per-isolate sequencing data statistics are shown in Supplementary Table 17.

lllumina sequencing and demultiplexing

Ilumina sequencing data were generated for routine surveillance purposes and over multiple sequencing runs. DNA
quality control was carried out using the Fragment Analyzer and NanoDrop instruments. Sequencing libraries were
prepared using the [llumina Nextera XT DNA Library Preparation Kit “FC-131-1096" for 96 samples. Post-library-prep
QC was carried out using the Fragment Analyzer and NanoDrop instruments as well as using Fluorometric Assay for
concentration checks. Samples were prepared by equimolar pooling (including additional quality control) and sequenced
with the MiSeq v2 500 cycle kit (251 - 8 - 8 —251). Post-sequencing processing, quality control and demultiplexing were

carried out on the instrument. Per-isolate sequencing data statistics are shown in Supplementary Table 17.

NanoCore

NanoCore is based on the following key steps: (i) For each isolate, mapping of the generated sequencing reads using
minimap?2 (50) to a species-specific core genome reference (using flags ,,-x map-ont™ or “-x sr”” depending on the type of
sequencing reads); (ii) for each isolate, detection of variants in core genome genes using the Clair3 variant caller (51)

(with flags ,,~-include all ctgs® and ,,-m /path/to/model* set according to the type of input data); (ii1) computation of
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pairwise sample distances (see below); (iv) generation of a minimum spanning tree (MST), visualizing of the genetic
structure of analyzed isolates, and of various results and quality control tables.
NanoCore is implemented in Perl; the MST step is implemented in R (52). BAM files are manipulated using samtools

(53). NanoCore is available under the MIT license and can be installed via bioconda.

Input sequencing data are specified using a simple sample sheet in tab-separated format; in addition, the user specifies a
species-specific core genome reference file. Reference files for 8 bacterial species (Supplementary Table 18) are included
in the NanoCore package. In addition, the user may specify a minimum coverage threshold (default 20) and the number

of threads used for components of the pipeline that support multithreading.

The genetic distance between two isolates in NanoCore is computed based on the number of genes that confidently, i.e.,
after application of gene-level, positional and individual-variant filters (see below), differ in allelic state. Formally, for a
pair of isolates X and Y, the set of candidate pair-distinguishing variants is defined as the set of non-shared variant calls
from the Clair3-generated VCF files for X and Y, where a candidate variant is defined by its location (gene and position)
and the called variant allele. The set of candidate variants is filtered by (i) removing all INDEL variants; (ii) removing all
variants located in genes flagged by gene-level filters as suspicious in isolates X or Y; (iii) removing all variants at
positions flagged by global positional filters; and (iv) removing all variants flagged by the individual-variant filter. The
genetic distance between X and Y is then defined as the number of core genome genes for which one or more variants
remain in the set of candidate variant pairs post-filtering. We note that the NanoCore approach to computing genetic
distances is similar, but not identical, to cgMLST, as no attempt is made by NanoCore to explicitly determine and label

with an allele identifier the allelic state of individual genes.

Gene-level, positional and individual-variant filters

Gene-level filtering is carried out independently for each isolate by NanoCore; the aim of gene-level filtering is to identify
specific genes in individual isolates that exhibit an increased probability of unreliable variant calling results. Gene-level
filters comprise i) the gene-level “heterozygosity” filter, which marks genes in which more than 50% of Clair3 variant
calls are heterozygous; (ii) the gene-level “coverage and mapping quality™ filter, which flags genes that exhibit average
per-read mapping qualities of <55 and average coverages that deviate by more than 25% from the average coverage of
the isolate (both conditions need to be satisfied for this filter to be activated); and (iii) the gene-level “low coverage”

filter, which marks genes in which more than 10% of positions exhibit a coverage below the minimum coverage threshold.

Global positional filters flag individual positions with potentially problematic variant calling results; these are ignored
across the entire analyzed dataset. Global positional filters comprise (i) the positional “heterozygosity” filter, which flags
positions with a heterozygous call in at least one isolate; (ii) the positional “low allele frequency” filter, which marks
variant positions at which the called variant allele has <50% allele frequency in the raw sequencing reads in at least one
isolate (determined using the “allele frequency” tag in the VCF produced by the variant caller); (iii) the positional “low
quality” filter, which marks all positions at which a Clair3 variant call was annotated with the “LowQual” tag in at least
one isolate; and (iv) the positional “low coverage” filter, which flags all positions with a coverage below the specified

minimum coverage in at least one isolate.

Last, the individual-variant filter is applied to all candidate variants potentially distinguishing two isolates X and Y

remaining after application of the other filters; the aim of the individual-variant filter is to remove false-positive pair-
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distinguishing variants that arise from false-negative variant calls in either X or Y. Let a be the variant allele of the
candidate pair-distinguishing variant and assume without loss of generality that « was called in X, but not in Y a variant
passes the individual-variant filter if and only if the allele frequency of @ in the raw reads of Y is less than 20% (determined

with the “mpileup” function of samtools).

SeqSphere+ comparison

Illumina sequencing data were analyzed with Ridom SeqSphere+ (43) using default settings for the analyzed species;
pairwise genetic isolate distances based on ¢gMLST and the sets of analyzed genes per isolate were extracted from
SeqSphere+ default output using custom scripts. For the presented analyses, the cgMLST-based distance metric of

SeqSphere+ was compared to the cgMLST-like distance metric of NanoCore.

Manual adjudication of differences between SeqSphere+ and NanoCore

Manual adjudication of differences between SeqSphere+ and NanoCore was based on visual inspection of the aligned

Illumina and/or Nanopore sequencing reads using the Integrative Genomics Viewer (IGV) tool (version 2.11.0)(54).

Clustering of closely related isolates
For a given maximum genetic distance d, clusters of closely related isolates are defined as the connected components of

the graph G = (V, E), where V are the analyzed isolates and an edge ¢ connecting two isolates X and Y exists if and only
if the pairwise genetic distance between X and Y is < d. For analysis of the VRE isolates, d was set to 15; for the analysis

of the MRSA isolates, d was set to 10, in line with recommendations by Schiirch et al. (21).
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Supplementary Figure 1: Basic statistics of the Nanopore-only validation experiment 1 on
MRSA data. Shown are the number of total bases, the number of mapped bases, the number
of total reads, the number of mapped reads and the average coverage, each per sample, as well
as frequency histograms of the average coverage and the read length.
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Supplementary Figure 3: Basic statistics of the Nanopore-only validation experiment 2 on
VRE data. Shown are the number of total bases, the number of mapped bases, the number of
total reads, the number of mapped reads and the average coverage, each per sample, as well as
frequency histograms of the average coverage and the read length.
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than 50% of heterozygous variant-calls,
genes with below 55 mapping quality and
genes with a coverage that differs more
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that shows, that all reads exhibit one of two possible variant patterns.
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Chapter 4: Integrated Discussion

In this thesis, I have demonstrated three applications aimed at [1] optimizing hybrid genome assembly,
[2] advancing the understanding of genomic plasticity in the context of antibiotic resistance and [3]
enhancing methods for outbreak investigations.

These applications are designed to improve our capabilities in bacterial genomics, antibiotic research,

and real-time genomic surveillance in healthcare.

The results of all three projects underscore the pivotal role of ongoing developments in sequencing
technologies for the improvement of various analyses and downstream processes. Whether it is the clas-
sification of sequencing data, the assembly of reads into unfragmented genomes, the localization of
resistance genes, the identification of potential (horizontal) gene transfers, or the detection of outbreaks
and tracking of their transmission pathways — technological advancements, particularly in Oxford Na-
nopore sequencing, have been instrumental.

The improvements in technologies, like developments of new flowcells and basecalling technologies
within the 10.4.1 high-accuracy sequencing of Nanopore, or the new HiFi sequencing of PacBio, have
opened up possibilities that were previously inconceivable. Cost-efficient sequencing and the creation
of nearly perfect assemblies, without the need for additional high-quality [1lumina sequencing data, are

now feasible (24).

These advancements have potential implications for the future of the shown analysis and the tools de-
veloped, and some projects could have been approached differently, had the improved versions of these
technologies already been available at the time of working on the projects.

Ultraplexing, a method to classify Nanopore long-reads with the help of [llumina short-reads in projects
that need both datatypes could become obsolete for certain areas of application, as current Nanopore
data alone is often sufficient for fully resolved assembly and Illumina data is not needed to begin with.
However, it still has use-cases, like low-coverage long-read sequencing of large numbers of already
Illumina-sequenced isolates.

For the identification of recombination events and potential transmission of resistance genes,the quality
of the assembled genomes plays a crucial role. The process becomes even more cost-efficient if [llumina
data is not needed. In addition, instead of using k-mers, a direct comparison between Nanopore assem-
blies and references could provide faster and more accurate results. Next to this, methods of algorithmic
bioinformatics could be applied to pinpoint recombination event borders explicitly.

Regarding the third project, the accurate calculation of inter-sample genetic distances, which the appli-
cation of sequencing for the characterization of transmission chains depends upon, strongly benefits
from the availability of higher-accuracy sequencing chemistries. On a high level, the development of
the R10.4 chemistry thus improves the applicability of Nanopore sequencing for outbreak investigation

and underscores the need for specialized tools. Moreover, enhanced Nanopore read quality could have
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facilitated (and may continue to do so in the future) the evolution of this tool toward assembly calcula-
tions and direct alignment, rather than read mapping. A shift to a SNP-based comparison, as opposed to
cgMLST-based, could have been implemented, allowing the flexibility to incorporate gene-based dis-
tance calculations through the annotation of the generated assemblies. This approach might also involve
constructing a pan-genomic graph as a reference (93), encompassing reference genomes for multiple
strains within a species rather than focusing on individual genes. Such an approach would enable a more
comprehensive analysis that also includes the accessory genome and offers even higher-resolution in-

sights into potential strain affiliations of an isolate.

In general, the concept of pan-genomics, considering the entire genome with its core and accessory
components as one unit, is a major development din current bioinformatics and closely intertwined with
the three projects discussed in this thesis.

The availability of fully resolved genomes (project one) benefits pangenomics applications, for example
by accurately defining distinct components.

The unravelling of horizontal gene transfers around resistance genes (project two), directly addresses
pan-genomic questions by characterising the exchange of genetic material between different members
of the same species. It attempts to discern the precise locations of recombination breakpoints, elucidate
the characteristics of surrounding genes, and explore the potential mechanisms through which these
genes could be transferred among different isolates.

The analysis of outbreaks (project three) relies on pan-genomic concepts, such as the categorization into
core and accessory genomes. NanoCore, like all other cgMLST-like schemes, relies intrinsically on the
ability to define the essential genes common to all strains within a species, known as core genes. Addi-
tionally, as mentioned in the preceding paragraph, there is potential for future enhancements to Nano-

Core through the incorporation of a pan-genomic approach to references.

The utilization of these technological advancements is not solely dependent on improved methods but
also hinges on the mindset with which these developments are approached and, on the questions, (future)
users aim to address. For instance, the decision to establish a ,,prospective routine sample collection
and analysis scheme, instead of only sequencing samples that have already been implicated in an epide-
miologically detected outbreak.

Due to the increasing spread of antibiotic resistances among clinically relevant pathogens, there will be
an increasing pressure on healthcare systems, leading to the need to better comprehend antimicrobial
resistances and their dissemination. Therefore, there is a need to develop tools that facilitate the faster
identification of newly emerging resistances. Moreover, the implementation of effective measures also
depends on knowledge of and compliance with methods to prevent the spread of antimicrobial re-
sistances, such as hand hygiene.

The use of genomically informed outbreak investigations and disease prevention measures has already

become a gold standard in many hospitals and some areas of public health. With ongoing improvements
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in availability and cost-efficiency, these practices are likely to extend gradually to healthcare institutions
outside of large hospitals, such as general practitioners. Noteworthy examples of such developments
include the widespread adoption of testing and vaccination procedures by medically-informed physi-
cians and the establishment of specialized test centres during the COVID-19 pandemic (94-96). Conse-
quently, corresponding tools must be designed to be as user-friendly and versatile as possible.

Currently, a few hundred isolates can be sequenced in a time-efficient manner using gold-standard meth-
ods. With further advancements in cost-efficiency and throughput, it will become feasible to sequence
not only hundreds or thousands but possibly hundreds of thousands of isolates. These advancements
underscore the imperative for scalable bioinformatic methods that process sequencing data to evolve

further or the development of new ones capable of handling such amounts of data.

What do these developments mean for the two main questions I aimed to address within this dissertation
(refer to Introduction)?

Firstly, fully resolving bacterial genomes has become significantly more straightforward and will con-
tinue to do so. The common sufficiency of Nanopore sequencing data alone for downstream processes,
without the need to produce Illumina sequencing data for quality reasons, means that sequencing more
isolates concurrently within a short timeframe will progressively become more cost-efficient.
Secondly, the analysis of bacterial genome sequencing data, whether for clinical questions such as out-
break investigations or resistance tracking, or for basic research such as enhancing the database quality
of available genomes, has become more efficient. This is primarily due to the fact that all tools rely on
a certain level of sequencing data quality, and their performance improves dramatically with less erro-

neous data.
In conclusion, these advancements encourage the further utilization of high-throughput long-read se-

quencing and the development of new tools and methods explicitly tailored for the utilization of Na-

nopore data and perfectly resolved genomes derived from this data.
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