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Abstract 

Background: Life-sustaining treatment (LST) in the intensive care unit (ICU) is withheld or withdrawn when there 
is no reasonable expectation of beneficial outcome. This is especially relevant in old patients where further func-
tional decline might be detrimental for the self-perceived quality of life. However, there still is substantial uncertainty 
involved in decisions about LST. We used the framework of information theory to assess that uncertainty by measur-
ing information processed during decision-making.

Methods: Datasets from two multicentre studies (VIP1, VIP2) with a total of 7488 ICU patients aged 80 years or older 
were analysed concerning the contribution of information about the acute illness, age, gender, frailty and other 
geriatric characteristics to decisions about LST. The role of these characteristics in the decision-making process was 
quantified by the entropy of likelihood distributions and the Kullback–Leibler divergence with regard to withholding 
or withdrawing decisions.

Results: Decisions to withhold or withdraw LST were made in 2186 and 1110 patients, respectively. Both in VIP1 and 
VIP2, information about the acute illness had the lowest entropy and largest Kullback–Leibler divergence with respect 
to decisions about withdrawing LST. Age, gender and geriatric characteristics contributed to that decision only to a 
smaller degree.

Conclusions: Information about the severity of the acute illness and, thereby, short-term prognosis dominated 
decisions about LST in old ICU patients. The smaller contribution of geriatric features suggests persistent uncertainty 
about the importance of functional outcome. There still remains a gap to fully explain decision-making about LST and 
further research involving contextual information is required.

Trial registration: VIP1 study: NCT03134807 (1 May 2017), VIP2 study: NCT03370692 (12 December 2017).

Keywords: Decision-making, Information theory, Intensive care, Life-sustaining treatment, Uncertainty

Background
Life-sustaining treatment (LST) in critically ill patients is 
considered inappropriate and, thus, should be withheld 
or withdrawn, when there is no reasonable expectation of 
an outcome that will be beneficial to these patients [1]. 
This is especially relevant in old patients for whom both 
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baseline status and outcome are generally poorer than 
in younger cohorts [2, 3] and further functional decline 
might be detrimental for the self-perceived quality of 
life. Although prognostication in the intensive care unit 
(ICU) is notoriously difficult [4], it becomes pivotal when 
contemplating decisions about LST [5].

In old ICU patients, pre-existing geriatric characteris-
tics such as progressive loss of functional independence 
are known to be of greater prognostic value in the long 
term than the severity of the acute illness [6–8]. Moreo-
ver, frailty as a correlate of functional disability [9] was 
shown to be an independent prognosticator in this par-
ticular patient population [10]. Despite these findings, 
there still is no detailed understanding how these features 
are integrated into the decision-making about LST. In 
fact, the substantial variability of these decisions—even 
within the same ICU [11]—suggests considerable uncer-
tainty or missing information in this field [12] with sig-
nificant ethical and legal implications [13, 14]. Since the 
amount of uncertainty is inversely related to that of infor-
mation [15], measuring information involved in decision-
making can be an important step towards a solution for 
this problem.

This study investigated the differential contribution of 
information about age, gender, frailty and other geriat-
ric characteristics as well as severity of critical illness to 
decisions about LST in old patients admitted to ICU. We 
have analysed data from two multicentre studies (VIP1, 
VIP2) which recorded a variety of clinical characteristics, 
interventions and decisions about withholding or with-
drawing LST in very elderly intensive care patients (VIP) 
[10, 16]. The current investigation aimed to measure the 
actual information contributed by these patient charac-
teristics to get a detailed understanding of the decision-
making process itself (Fig.  1). We applied techniques 
from the field of information theory [17] to meet the 
challenge of quantifying information during that process 
and extracting generalizable measures to compare vari-
ables of heterogeneous types [15].

Methods
Datasets were obtained from two independent prospec-
tive observational studies (VIP1, VIP2) in ICU patients 
aged 80  years or older which documented decisions 
about withholding or withdrawing LST [10, 16]. The 
objectives of these multi-centre studies were to describe 
the prevalence of frailty (VIP1) and other geriatric con-
ditions (VIP2) in that patient population on admission 
to ICU (baseline) and to assess their influence on short-
term survival. The definitions used for the core baseline 
characteristics under investigation (age, gender, frailty, 
severity of the acute illness) were identical in both VIP1 

and VIP2. Frailty was assessed by the clinical frailty 
scale (CFS) [18]. The sequential organ failure assess-
ment (SOFA) score on admission to ICU was used to 
quantify the baseline severity of the acute illness [19]. 
Only patients with non-elective admissions and com-
plete data with respect to these core characteristics were 
considered for further analysis. To investigate the impact 
of additional geriatric characteristics, we extracted a 
sub-group of patients from the VIP2 dataset having less 
than 20% missing data regarding the number of chronic 
co-morbidities, the patients’ residence prior to hospital 
admission and the Katz index of independence in activi-
ties of daily living [10]. Note that these variables were 
only recorded in the VIP2 study.

Values for age, CFS (9 categories), SOFA score and 
the number of co-morbidities were binned into 8 cat-
egories each (2 years of age per bin, e.g. 80 and 81, with 
patients older than 95 years assigned to bin 8; 1 category 
of CFS per bin with CFS of 9 assigned to bin 8; 2 points 
of SOFA score per bin with SOFA scores greater than 15 
assigned to bin 8; 1 count of co-morbidity per bin with 
counts greater than 7 assigned to bin 8). The Katz index 
ranges from 0 to 6 resulting in 7 bins for this variable. 
The patients’ residence prior to hospital admission was 
classified into 4 categories: home, home with caregivers, 
nursing home or hospital, other.

Using the framework of information theory, the quan-
tity of information within a probability distribution P of 
a discrete variable X with N mutually distinct states (cat-
egories) xi can be described by Shannon’s entropy H(X) 
[15]:

Note that the base of the logarithm is usually set to 2 
so that the unit of information is 1 bit. In this case, H(X) 
represents the minimum number of bits necessary to 
encode all information contained in P. The minimum 
entropy of P is 0 if p(xi) = 1 and p(xj ≠ i) = 0. Minimum 
entropy defines a state of maximum information about X. 
In contrast, maximum entropy is equal to  log2(N) when 
xi = N−1 for all N states of X (uniform distribution). This 
represents a state of minimum information. Shannon’s 
entropy is a global characteristic of P. In contrast to other 
information measures, it does not take local properties, 
e.g. the neighbourhood of local extrema, into account. 
Thus, there is no requirement to consider a specific 
relationship between different states xi of X, e.g. being 
equidistant.

(1)

H(X) =−

i

p(xi) log2 p(xi) with i = 1 . . .N , 0 ≤ p(xi)

≤ 1 and

i

p(xi) = 1
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Reduction of entropy H(X), i.e. increase of informa-
tion, can be linked to gain in predictability Π which is 
bounded above by [20]:

This equation describes the upper limit of predict-
ability and is not related to a particular algorithm. By 
mapping the entropy H(X) onto a standardised scale, 
this equation provides a measure that can be used to 

(2)

H(X) =� log2�− (1−�) log2 (1−�)+ (1−�)

log2 (N − 1) with 0 < � < 1

compare information contained in distributions of dif-
ferent types of variables.

The (dis)similarity between two distributions P and Q 
of the same variable X (e.g. patient characteristic before 
and after decision-making) was measured by the Kull-
back–Leibler divergence:

When the base of the logarithm is set to 2, the diver-
gence of P from Q is measured in bits (see above). 

(3)DKL(P||Q) =
∑

i

p(xi) log2 (p(xi)q(xi))

Fig. 1 Analysis of information processing during decision-making. Methods from the framework of information theory are applied to quantify 
the differential contribution of patient characteristics to binary decision-making (yes/no). Shannon’s entropy [15] of the likelihood distribution 
with regard to a specific decision is considered a measure of information used for that decision. Zero entropy indicates maximum information and 
minimum uncertainty. Note that the concept of entropy is related to that of variance for some types of distributions. In scenario A, the distribution 
of a continuous patient characteristic (e.g. age) does not change in response to the decision. Thus, the likelihood distribution is constant (uniform) 
and this characteristic is considered uninformative for that decision. Scenario B depicts a characteristic that partially contributes to decision-making. 
The extent of this contribution is measured by the entropy of the (non-uniform) likelihood distribution. In scenario C, the discrete patient 
characteristic is decisive, i.e. uncertainty is resolved by maximum information about categories
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Identity of P and Q is expressed by DKL = 0. Furthermore, 
divergence of P and Q can be characterised by the area 
under the receiver operating characteristic (AUROC). 
An AUROC value of 0.5 indicates a lack of divergence 
between P and Q.

Bootstrapping (n = 100) was applied to estimate the 
accuracy of H(X) and DKL by the standard deviation of 
random samples from the study populations.

Logistic regression using all available patient charac-
teristics was employed as an alternative method to deter-
mine the relative impact (odds ratios) of variables on 
outcome, i.e. decisions about LST.

All analyses were performed using the R software pack-
age (version 4.0.4, www.r- proje ct. org).

Results
This study involved a total of 7488 patients from two 
independent studies (VIP1, VIP2) who were acutely 
admitted to ICU. Size and characteristics of patient 
groups are listed in Table 1. First, we examined if the dis-
tribution of patient characteristics were similar in both 
studies. Although the distribution of age was not differ-
ent between VIP1 and VIP2, the distribution of frailty 
and SOFA score differed significantly in the Kolmogo-
rov–Smirnov test (p < 0.01).

The likelihood of decisions about LST was deter-
mined for each category of discrete patient characteris-
tics (Fig. 2). The information contained in the likelihood 
distribution is measured as entropy H(X) (Table  2). 
Additional file  1: Fig. S1 illustrates the relationship 
between that distribution and H(X). The lowest value 
for H(X), i.e. the largest amount of information and 
smallest uncertainty of the likelihood distribution, was 

consistently found for the SOFA score in case LST was 
withdrawn (Table 2). Entropy values of 2.78 (VIP1) and 
2.80 (VIP2) translate into upper bounds of predictabil-
ity Π of 0.34 and 0.33, respectively. This means that at 
best 34% and 33% of patients can be accurately linked 
to specific SOFA scores in case of withdrawing deci-
sions. Other patient characteristics showed a smaller 
influence on decision-making (Table  2). The entropy 
values of frailty correspond to a best possible predict-
ability of 0.26 and 0.22 for withholding decisions in 
VIP1 and VIP2, respectively. Note that for maximum 
entropy Hmax(X) indicating a uniform likelihood distri-
bution, predictability reaches a minimum, e.g. 0.125 for 
8 categories. Entropy values close or equal to Hmax(X) 
suggest that a particular patient characteristic was 
considered minimally or uninformative during deci-
sion-making. Several of the scenarios listed in Table  2 
approached that situation. We also examined the rela-
tive impact of patient characteristics on LST decisions 
by logistic regression based on all available variables. 
Although the results provided by information theory 
cannot be translated directly into odds ratios, there is 
a consistent trend with higher odds ratios being associ-
ated with larger decreases of H(X) for specific variables, 
i.e. amount of information used for decision-making 
(Table 2).

Although the number of patients per country was not 
large enough to obtain sufficiently robust results for sys-
tematic comparisons, two countries contributed more 
than 500 patients in one study and this pair was used as 
an example to assess effects by potentially variable pref-
erences. H(X) was found to be similar between these 
two countries for all core characteristics with regard to 

Table 1 Patient characteristics (median and interquartile range within group)

VIP1 study VIP2 study

All patients (n = 3727) Withholding 
decision 
(n = 1070)

Withdrawing 
decision 
(n = 578)

All 
patients 
(n = 3761)

Withholding 
decision 
(n = 1116)

Withdrawing 
decision 
(n = 532)

Age (years) 84 (81–87) 84 (82–87) 84 (82–87) 84 (81–87) 84 (82–88) 84 (81–86)

Gender (% female) 48.2% 49.2% 43.6% 46.7% 47.7% 44.4%

Frailty (CFS) 4 (3–6) 5 (4–6) 5 (3–6) 4 (3–6) 4 (3–6) 4 (3–6)

SOFA score 7 (4–11) 8 (5–11) 10 (7–13) 6 (4–9) 7 (4–10) 8 (6–11)

Other geriatric features: Not available Not available Not available (n = 3358) (n = 961) (n = 405)

 Functional impairment (Katz 
index)

6 (4–6) 6 (4–6) 6 (5–6)

 Co-morbidities (number) 4 (3–5) 4 (3–6) 4 (3–5)

 Residence (number)

   Home 2510 683 301

   Home with caregiver 357 109 37

   Nursing home/hospital 451 157 66

http://www.r-project.org
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withholding decisions (age: 2.95 ± 0.02 vs 2.95 ± 0.02, 
gender: 0.99 ± 0.007 vs 1.0 ± 0.001, CFS: 2.88 ± 0.03 vs 
2.85 ± 0.03, SOFA: 2.88 ± 0.02 vs 2.88 ± 0.03), but dif-
fered substantially for frailty regarding withdrawing deci-
sions (age: 2.91 ± 0.04 vs 2.87 ± 0.09, gender: 0.99 ± 0.004 
vs 0.99 ± 0.007, CFS: 2.97 ± 0.02 vs 2.72 ± 0.02, SOFA: 
2.70 ± 0.03 vs. 2.75 ± 0.06).

To validate the findings in Table 2, we determined the 
Kullback–Leibler divergence DKL for the distributions 
of patient characteristics before and after decisions 
about LST (Table  3). Larger shifts indicate a greater 
contribution of a particular characteristic to the deci-
sion-making. For both VIP1 and VIP2, the largest shifts 
were found for the SOFA score with respect to with-
drawing decisions. Very small values of DKL for gender 
indicate the absence of biases for that patient charac-
teristics in line with the data in Table  2. These find-
ings were further corroborated by estimates from ROC 
curve statistics used to assess discrimination between 
distributions of patient characteristics after binary 
decisions (Table 3).

Finally, we investigated if the information processed 
for decision-making changes the longer vulnerable (frail) 
patients stay in ICU. Figure 3 depicts the entropy H(X) of 
the likelihood distributions for age, frailty and SOFA for 
these patients according to the type of decision and the 
length of stay. These data demonstrate that age becomes 
an important factor for the decision to withdraw LST 
after approximately 1  week in ICU. The SOFA score 
taken on admission predictably loses its importance for 
these decisions over time.

Discussion
This study investigated the specific contribution of acute 
and geriatric patient characteristics to decisions about 
withholding or withdrawing LST in very old patients 
admitted to ICU with acute illnesses. Although some 
authors argue that there is no ethically relevant differ-
ence between withdrawing and withholding LST, there 
might be legal concerns about decisions to intentionally 
withdraw LST which may hasten death [21]. We analysed 
information with regard to the type of decision as an 

Fig. 2 Likelihood of decisions to withdraw LST in the VIP1 (a) and VIP2 study (b). Likelihood ratios are shown for core patient characteristics: age 
(years) in light grey, frailty (CFS) in dark grey, SOFA score in black
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outcome in itself and did not examine the ethical or legal 
appropriateness or accuracy of these decisions.

Information about the severity of the acute illness 
on admission to ICU influenced decisions about with-
drawing LST in old patients to a larger degree than age, 
gender and pre-existing frailty or other geriatric charac-
teristics did. This can be interpreted as a lower degree 
of uncertainty felt in the decision-making with respect 
to the disease severity. That result was largely consistent 
in its extent for two independent datasets (VIP1, VIP2). 

Moreover, it confirms a pattern previously described in 
an observational study involving adult patients of all age 
groups [22]. These findings were, in principle, further 
validated by logistic regression, which demonstrated 
a correlation between the extent of odds ratios and the 
amount of information about specific characteristics 
used during decision-making. In contrast to logistic 
regression, however, information theory can also provide 
valid insights for non-monotonic relationships between 
variables and outcome (decisions). Moreover, that 

Table 2 Quantity of information of likelihood distributions for decisions about LST as measured by its entropy H(X) (mean ± standard 
deviation for multiple samples obtained by bootstrapping)

Note that the maximum entropy Hmax varies according to the number of bins for each variable. Odds ratios (per 1-point increase) and 95% confidence intervals from 
logistic regression are depicted in brackets to show the influence of specific variables in these decisions
* Note that H(X) describes the distribution of probabilities for all residence categories, whereas the odds ratios are determined for comparisons between two specific 
types of residence

Hmax Withholding decision Withdrawing decision

VIP1 VIP2 VIP1 VIP2

Age 3.0 2.98 ± 0.003 (1.04, 
1.02–1.06)

2.97 ± 0.004 (1.06, 
1.04–1.08)

2.99 ± 0.005 (1.03, 
1.0–1.05)

2.98 ± 0.009 (0.99, 
0.82–1.02)

Gender (female vs male) 1.0 1.0 ± 0.0004 (0.98, 
0.84–1.13)

1.0 ± 0.0004 (1.02,0.88–
1.18)

0.99 ± 0.002 (0.79, 
0.66–0.95)

1.0 ± 0.001 (0.99, 0.82–1.2)

Frailty (CFS) 3.0 2.91 ± 0.009 (1.22, 
1.17–1.27)

2.95 ± 0.006 (1.15, 
1.1–1.20)

2.96 ± 0.01 (1.08, 
1.03–1.14)

2.99 ± 0.003 (1.0, 0.95–1.05)

SOFA 3.0 2.97 ± 0.005 (1.03, 
1.01–1.05)

2.94 ± 0.007 (1.07, 
1.05–1.09)

2.78 ± 0.02 (1.12, 
1.10–1.15)

2.80 ± 0.02 (1.14, 1.12–1.17)

Other geriatric features: Not available Not available

 Co-morbidities (num-
ber)

3.0 2.98 ± 0.003 (1.02, 
0.99–1.06)

2.97 ± 0.01 (0.98, 0.93–1.02)

 Functional impairment 
(Katz index)

2.8 2.78 ± 0.004 (1.01, 
0.96–1.07)

2.79 ± 0.007(1.05, 0.97–1.14)

 Residence (home - 
baseline)*

2.0 1.99 ± 0.004 1.97 ± 0.02

   Home with caregiver (0.8, 0.61–1.03) (0.68, 0.46–0.99)

   Nursing home/hos-
pital

(1.05, 0.83–1.32) (1.15, 0.84–1.56)

Table 3 Kullback–Leibler divergence DKL between distributions of patient characteristics before and after decisions about LST 
(mean ± standard deviation for multiple samples obtained by bootstrapping)

Discrimination between these distributions was also assessed by ROC curve analysis (AUROC in brackets)

Withholding decision Withdrawing decision

VIP1 VIP2 VIP1 VIP2

Age 0.02 ± 0.003 (0.55) 0.02 ± 0.003 (0.56) 0.01 ± 0.003 (0.53) 0.01 ± 0.004 (0.51)

Gender (female vs male) 0.0004 ± 0 (0.51) 0.0003 ± 0 (0.51) 0.006 ± 0.003 (0.53) 0.002 ± 0.001 (0.51)

Frailty 0.07 ± 0.006 (0.61) 0.04 ± 0.005 (0.59) 0.02 ± 0.005 (0.55) 0.007 ± 0.002 (0.51)

SOFA 0.02 ± 0.003 (0.55) 0.05 ± 0.005 (0.59) 0.2 ± 0.02 (0.66) 0.2 ± 0.02 (0.66)

Other geriatric features: Not available Not available

 Co-morbidities (number) 0.02 ± 0.002 (0.55) 0.01 ± 0.004 (0.51)

 Functional impairment (Katz) 0.07 ± 0.007 (0.57) 0.02 ± 0.01 (0.51)

 Residence 0.002 ± 0.001 (0.52) 0.01 ± 0.004 (0.50)
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approach summarises the contribution of information by 
multi-categorical variables, such as type of residence, in a 
single number.

Small differences of entropy values for likelihood distri-
butions to maximum entropy might suggest small effect 
sizes. However, the underlying deviations from the uni-
form and uninformative distribution can be substantial 
and indicate some degree of informed decisions about 
LST (Additional file 1: Fig. S1). Of note, a fully informed 
decision, in which any uncertainty about the specific role 
of a patient characteristic is (unrealistically) removed, 
would result in a single peak of the distribution and, thus, 
entropy would approach zero.

Although our findings show a maximum of uncertainty 
for some characteristics, such as gender, others were 
found to be informative for decision-making to a variable 
extent which can be ranked by entropy. The large effect 
size for the SOFA score emphasises its prominent role in 
withdrawing decisions. This result was surprising, espe-
cially regarding previous studies about the substantial 
impact of pre-existing (geriatric) disabilities on outcome 
in these patients [6, 7]. Of note, there was a difference 
between two countries with respect to the specific role of 
frailty. This pre-liminary finding suggests some variabil-
ity of opinions about the prognostic importance of frailty, 
which should be further investigated in future studies. 
In general though, triage prior to ICU admission might 
have selected a particular population of old patients for 
intensive care where frailty and other geriatric conditions 
were considered less important for prognostication than 
other, acute and seemingly reversible problems. A similar 
selection process could have happened in regard to age 
that apparently turned this characteristic into an almost 
uninformative parameter for decisions about LST in old 
patients. However, a sub-group analysis revealed that 

age becomes an important factor for withdrawing deci-
sions in the specific cohort of frail patients being more 
than a week in ICU. Of note, the more pronounced find-
ings with respect to withdrawing decisions are not unex-
pected since this particular decision is considered more 
distinctive and legally demanding than withholding deci-
sions which are defined and implemented in variable 
ways [11].

Although information about the SOFA score played a 
prominent role in the decision-making, it does not fully 
explain withdrawing decisions. This is not surprising and 
underlines that other variables such as contextual and 
organisational factors influenced decision-making. These 
include personal preferences of medical professionals as 
well as those of patients or surrogate decision-makers 
[23]. Preferences evolve during ICU admission when 
both the response to interventions and their burden for 
the individual patient become visible. These changes may 
also explain the growing importance of age for withdraw-
ing decisions in frail patients after a week in ICU.

The above findings illustrate how methods from infor-
mation theory help to identify specific patient groups, 
such as very old individuals, which had been managed 
differently by implementing preference-based or biased 
decisions about LST. These techniques can also help to 
design audits and monitor changes of clinical behaviour. 
Furthermore, by measuring the amount of information 
contributed to decision-making by known variables, 
i.e. effect size, we can also estimate the relative impact 
of additional factors on specific decisions. Trade-offs 
between conflicting interests concerning a particu-
lar outcome as expressed by different variables can be 
characterised by measuring the relative impact of these 
variables [12]. For example, our results suggest that most 
intensivists participating in VIP1 and VIP2 were more 

Fig. 3 Decision-making about LST and length of stay in ICU. Relative contribution of age (light grey), frailty (CFS, dark grey) and SOFA score (black) 
to decisions of withholding (panel A) or withdrawing (panel B) LST for frail patients (CFS ≥ 4) and different minimal lengths of stay (mLOS) in ICU. 
Note that the smaller the entropy H(X) is, the larger is the contribution of a specific patient characteristic to decision-making
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focused on short-term outcome than functional capacity 
in the long term which might have been considered more 
uncertain.

The implications of this study for clinical practice are:
 (i) Frailty constituted a new concept in ICU at the 

time of VIP1 and VIP2 and showed a less than 
expected role in decision-making about LST. This 
implies that its use in clinical practice may benefit 
from further research and educational efforts.

 (ii) More contextual information about patients might 
be required to further reduce uncertainty in deci-
sions about LST. Although this comes at a cost, the 
benefit of uncertainty reduction from an ethical as 
well as legal point of view could provide sufficient 
justification for additional expenses as emphasised 
by events during the COVID-19 pandemic [14, 
24]. In general, quantification of information and 
uncertainty improves the transparency of decision-
making processes and supports standardisation of 
decisions [25, 26].

 (iii) The contribution of chronological age to decision-
making within the examined cohorts in ICU was 
very small, except for frail patients being in ICU 
for more than a week. In general, monitoring for 
potentially inappropriate preferences (biases) can 
help to ensure non-discriminatory access to health-
care resources [27, 28].

Major limitations of this study were:
 (i) The VIP1 and VIP2 studies were not primarily 

designed to analyse decision-making about LST. 
The set of variables recorded in these studies did 
not provide highly granular contextual features 
known to contribute to that process, notably per-
sonal preferences of physicians, patients and surro-
gate decision-makers which may reflect social and 
geographic variations [29].

 (ii) The knowledge about frailty and other geriatric 
characteristics and their impact on the prognosis of 
critical conditions is evolving. So is its transfer into 
clinical practice [24]. Thus, a larger contribution of 
frailty and probably other functional characteristics 
to decision-making can be expected in due time.

 (iii) This study focused on the role of individual patient 
characteristics in the decision-making. Future 
studies may examine the impact of combinations of 
clinical variables on decisions about LST.

Conclusions
For old ICU patients recruited to the VIP1 and VIP2 
study, the severity of the acute illness contributed to 
decision-making about LST withdrawal to a larger extent 

than age, frailty or other geriatric characteristics. In this 
particular patient group, however, frailty is known to 
substantially influence functional outcome in the long 
term and, thus, should be considered for LST decisions 
to a greater degree. Further research involving more 
contextual information will have to elucidate underlying 
reasons.

To the best of our knowledge, this is the first investi-
gation of decisions about LST in ICU based on methods 
from the field of information theory. This framework 
provides techniques to quantitatively assess decision-
making [17] and complements methods based on clas-
sical statistics, such as logistic regression [30]. However, 
the absence of major constraints concerning data distri-
butions as well as the availability of a standardised scale 
for information from different types of variables provides 
a considerable benefit for comparative data analysis. In 
the future, this might especially benefit ’big data’ tech-
niques and high-dimensional modelling approaches from 
artificial intelligence [31].
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