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Abstract: Human lice, Pediculus humanus, can transmit various pathogens, including Bartonella quintana,
Borrelia recurrentis, and Rickettsia prowazekii. Xenosurveillance is an epidemiological approach to
assessing human infection risks performed by screening vectors of infectious disease agents. In the
proof-of-principle study reported herein, the DNA of 23 human lice was collected from the clothes
of 30 homeless Ethiopian individuals. These samples were assessed using 16S rRNA gene-specific
pan-eubacterial PCR for screening, followed by Bartonella genus 16S-23S internal transcribed spacer
(ITS) sequence-specific PCR, Bartonella genus gltA gene-specific PCR, and 16S rRNA gene PCR with
specificity for relapsing-fever-associated Borrelia spp. with subsequent sequencing of the amplicons.
In one sample, the pan-eubacterial 16S rRNA gene-specific screening PCR, the Bartonella genus
16S-23S ITS sequence-specific PCR, and the Bartonella genus gltA gene-specific PCR allowed for the
sequencing of B. quintana-specific amplicons. In two additional samples, Bartonella genus gltA gene-
specific PCR also provided sequences showing 100% sequence identity with B. quintana. In total, 3/23
(13.0%) of the assessed lice were found to be positive for B. quintana. Correlating clinical data were not
available; however, the assessment confirmed the presence of B. quintana in the local louse population
and thus an associated infection pressure. Larger-sized cross-sectional studies seem advisable to
more reliably quantify the infection risk of lice-infested local individuals. The need for prevention by
providing opportunities to maintain standard hygiene for Ethiopian homeless individuals is stressed
by the reported findings, especially in light of the ongoing migration of refugees.

Keywords: Ethiopia; xenosurveillance; Pediculus humanus; Bartonella quintana; infection risk; vector

1. Introduction

If standard hygiene precautions cannot be maintained in cases of war, crisis, or dis-
placement, there is an increased risk of the spread of human ectoparasites. Next to causing
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mechanically induced discomfort, several human ectoparasites have also been associated
with the transmission of agents causing infectious diseases. For human lice, their role as
vectors for harmful pathogens like Borrelia recurrentis, Rickettsia prowazekii, and Bartonella
quintana is considered well established [1–8]. Regarding Yersinia pestis, the causative agent
of bubonic plague, the possibility of human lice playing a vector role is still controversial
but considered likely based on epidemiological and laboratory-based evidence [1]. Even
bacteria primarily linked to nosocomial spread like Acinetobacter baumannii have recently
been associated with louse transmission among humans [9,10].

The human louse, Pediculus humanus, comprises the ecotypes head louse and body
louse. The molecular discrimination of the subtypes of this louse based on mitochondrial
clades A-F is feasible [11]. While it had formerly been assumed that pathogen transmission
was basically restricted to body lice, this potential has recently been shown to apply to head
lice as well. The effectiveness of preventive medical approaches is hampered by complex
epigenetic control of gene expression, which causes a considerable level of flexibility of
reaction towards altered environmental conditions, including the acquisition of ivermectin
resistance [11,12]. In biting events, a potent vasodilator is known to be injected into the
human host [13]. Cold weather and lack of hygiene, e.g., factors applicable to homeless
individuals, facilitate the spread of human lice [14,15].

The occasional importation of B. recurrentis, the causative agent of louse-borne relaps-
ing fever [16–18], to Europe in the course of recent migration movements has increased the
awareness of this otherwise poorly known pathogen in European health centers [19,20].
The frequently reported symptoms comprise fever, headache, jaundice, epistaxis, and
hepatosplenomegaly [21]. Recent reports have shown that epidemiological data published
on louse-borne relapsing fever are highly variable; in particular, severe outcomes like death
either due to the disease itself or a therapy-associated Jarisch–Herxheimer reaction are
affected by contextual variance [2]. While B. recurrentis infections were still common in
European countries in the 19th century, including in the form of outbreaks in England,
Scotland, and Ireland, Afro-Middle Eastern pandemics in the 20th century were followed
by a residual area of endemicity in Ethiopia and its neighboring countries within the Horn
of Africa [22–26].

Bartonella quintana, the causative agent of trench fever, has been associated with dis-
ease activity that largely depends on the immune status and the socio-economic status
of the patients. Next to individuals infected with the human immunodeficiency virus
(HIV), homeless poor people, alcohol, and drug addicts as well as warfighters dwelling
in unfavorable front conditions (as witnessed in World War I) are particularly associated
with clinical disease. B. quintana infections can comprise a wide spectrum of asymptomatic
courses, but also relapsing fever (caused by a periodic bacteremia), endocarditis in HIV-
seronegative individuals, and bacillary angiomatosis in immunosuppressed (e.g., AIDS)
patients have been described [27–32]. Relapses are known to occur after short-course
antibiotic therapy [28]. Bactericidal effects on B. quintana have been described for amino-
glycosides [28]. In addition, tetracyclines, macrolides, and third-generation cephalosporins
have been reported as therapeutically active [29]. An animal reservoir is unknown [33], but
transmission of B. quintana via both head and body lice is considered a well-established
route [34].

Rickettsia prowazekii, the causative agent of epidemic typhus, can also be spread if louse
populations proliferate under poor sanitary conditions. The persistence of this agent is
facilitated by delayed disease relapses, called Brill–Zinsser disease, and its natural reservoir
host, the flying squirrel (Glaucomys volans) [35,36]. The failure of doxycycline prophylaxis
for infection prevention has been reported, in spite of the fact that this antimicrobial
serves as the therapy of choice in case of infections [37]. Lately, typhus outbreaks have
predominantly been reported to occur in jails and refugee camps, particularly in resource-
limited countries [4].

As reviewed in detail elsewhere [38], xenosurveillance in line with the “flying biologi-
cal syringe” hypothesis constitutes a cost-efficient mode of surveillance for biological agents
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with relevance for human infections within their natural vectors. In the study presented
here, we demonstrated this concept by screening Pediculus humanus lice collected from the
clothes of Ethiopian homeless individuals for Bartonella species and Borrelia species.

2. Materials and Methods
2.1. Sample Collection

The sample collection was organized by the Hirsch Institute of Tropical Medicine,
which is part of the University Hospital Düsseldorf and located in the Asella referral and
teaching hospital compound in Ethiopia. We conducted a program in which new clothes
were provided to 30 local homeless individuals under 20 years of age for humanitarian
purposes on a voluntary basis in Asella, Ethiopia. Their original clothes were cleaned
via autoclaving; prior to this procedure, body lice were collected from the clothes for
subsequent molecular assessments. No association between collected lice and participating
individuals was recorded to ensure absolute anonymity.

2.2. Molecular Diagnostics

The collected lice were stored and transported in 70% ethanol. Preparation was
conducted with single-use consumables in order to avoid cross-contamination. Genomic
nucleic acid was extracted via a Maxwell® 16 device using a Maxwell LED DNA kit
(Promega, Germany) as described in [39]. A 16S rRNA gene-specific pan-eubacterial
PCR was initially performed [40] (Table A1 for details). Furthermore, Bartonella genus
16S-23S internal transcribed spacer (ITS) sequence-specific nested PCR [41] (Table A2 for
details) and Bartonella genus gltA gene-specific nested PCR [42] (Table A3 for details) were
conducted. Also, a 16S rRNA-gene PCR targeting relapsing-fever-associated Borrelia spp.
was performed [43] (Table A4 for details). Amplicons with the expected sequence length
were subjected to Sanger sequencing at Eurofins Scientific (Luxembourg). While results
of the pan-eubacterial PCR were considered as preliminary only, any Bartonella spp. and
Borrelia spp. sequences obtained with the Bartonella-genus- and Borrelia-genus-specific
primers were deposited at NCBI GenBank. All laboratory assessments were conducted
in line with standard requirements for molecular diagnostic assessments in laboratory
infrastructure accredited according to strictly controlled DIN EN ISO 17025 standards
(certificate number D–PL–19082-02-04) [44].

2.3. Ethical Clearance

Ethical clearance was not applicable because no human patients or human-patient-
related data were included in the assessment.

3. Results

A total of 23 P. humanus lice were subjected to molecular assessment. A total of
16 positive PCR signals were obtained via pan-eubacterial 16S rRNA gene PCR screening.
From the 16 amplicons, DNA was extracted for sequencing from 13 samples with expected
amplicon lengths. From a total of eight interpretable sequences, the endosymbiont Can-
didatus Riesia pediculicola was identified in seven instances, and Bartonella quintana (99%
query coverage, 99% sequence identity) was identified in one instance, albeit with relatively
poor sequence quality as defined by the ambiguous signals in the trace data from Sanger
DNA sequencing.

In the same sample, the Bartonella genus 16S-23S internal transcribed spacer (ITS)
sequence-specific PCR showed a positive result. The associated B. quintana sequence was
deposited with the NCBI GenBank accession number OR504472. Once more from this
sample and from two others as well, three B. quintana gltA sequences were obtained and
deposited at NCBI GenBank. The associated accession numbers are OR499104, OR499105,
and OR499106. A photograph of the electrophoretic separation of positive amplification
products, also comprising amplicons from which Bartonella spp.-specific sequences could
not be confirmed via Sanger sequencing, are provided in Appendix A (Figure A1).



Pathogens 2023, 12, 1299 4 of 8

Three positive signals were seen using the PCR targeting the 16S rRNA locus of
relapsing-fever-associated Borrelia spp. Interpretable sequences were obtained from two out
of the three amplicons corresponding to the endosymbiont Candidatus Riesia pediculicola.
Borrelia spp.-specific sequences were not recorded.

4. Discussion

The limited xenosurveillance approach applied indicated the presence of Bartonella
quintana in three out of twenty-three (13.0%) body lice collected from the clothes of homeless
individuals in Ethiopia. The occurrence of B. quintana in Ethiopian lice and patients has
been repeatedly described [45–48]. Insofar, the results observed in this assessment are not
surprising. However, the fact that positive findings were achieved even with a very low
number of assessed P. humanus lice indicates either random matching or, more likely, a
substantial infection pressure for lice-infested homeless local individuals. Due to the design
of the study reported here, it remains unknown whether any of the individuals whose
clothes were assessed showed any clinical symptoms. However, due to the heterogenicity
of symptoms in B. quintana infections [27–32], even a lack of symptoms would not have
excluded an infection.

As the endemicity of B. recurrentis in Ethiopia is considered well established [22–26], a
Borrelia-specific PCR was added to the pan-bacterial 16S rRNA gene PCR. However, both
approaches failed to provide a Borrelia-specific sequence. Additionally, Rickettsia prowazekii
DNA was not detected in any of the lice.

This study has a number of limitations. The low number of investigated lice provided
only superficial insight into the local epidemiology of the lice-transmitted agents of in-
fectious diseases. To provide more reliable data in a cross-sectional assessment, a larger
sample size would be necessary. Collecting such a sample was, unfortunately, unfeasible
due to financial restraints in this investigator-initiated assessment. Finally, the fact that the
cultivation of Bartonella quintana was not attempted in this assessment must be considered
a limitation.

5. Conclusions

In spite of the above-mentioned limitations, the described xenosurveillance approach
once more confirmed that B. quintana is an infection risk for lice-infested individuals in
Ethiopia. This finding stresses the need for further Bartonella spp. surveillance and for
providing basic hygiene options for local homeless individuals for infection control and
prevention purposes. Also, Bartonalla spp. infection needs to be considered in migrants
from Ethiopia. Such infections can both endanger migrants’ health and contribute to the
spread of bacterial pathogens in the host countries.
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Appendix A

Table A1. Details of the 16S rRNA gene-specific eubacterial screening PCR.

16S rRNA Gene-Specific Pan-Eubacterial PCR

Forward primer 27F (5′-AGAGTTTGATCMTGGCTCAG-3′)
Reverse primer 1392r (5′-ACGGGCGGTGTGTRC-3′)

Reaction mix 30 µL volumes containing 15 µL of Qiagen (Hilden, Germany) Hot Start Mix, 6 µL of
PCR-grade H2O, 3 µL of each primer (final concentration 10 pmol), 5 µL of DNA eluate

Initial denaturation 15 min at 95 ◦C
Denaturation 30 s at 94 ◦C

Annealing 30 s at 54 ◦C
Amplification 1.5 min at 72 ◦C

Cycle numbers 30 cycles
Final extension 7 min at 72 ◦C

Gel electrophoresis Application of 6µL PCR product + 2 µL loading dye to a 1.5% agarose gel with 0.065% Gel
Red nucleic acid stain

Table A2. Details of the Bartonella genus 16S-23S internal transcribed spacer (ITS) sequence-specific,
two-round PCR.

Bartonella Genus 16S-23S-ITS-Specific PCR
(First Round)

Bartonella Genus 16S-23S-ITS-Specific PCR
(Second Round)

Forward primer new-bigF (5′-GGAAGGTTTTCCGGTTTATC-3′) new-bigF
(5′-GGAAGGTTTTCCGGTTTATC-3′)

Reverse primer new-bogR (5′-GTCTGAATATA(C/T)CTTCTCTTCAC-3′) bigR (5′-TCCCAGCTGAGCTACG-3′)

Reaction mix 25 µL volumes containing 12.5 µL of Qiagen (Hilden, Germany) Hot Start Mix, 9.5 µL of PCR-grade H2O, 1 µL of
each primer (final concentration 10 pmol), 1 µL of DNA eluate

Initial denaturation 15 min at 95 ◦C
Denaturation 30 s at 95 ◦C

Annealing 30 s at 55 ◦C
Amplification 1.0 min at 72 ◦C

Cycle numbers 35 cycles
Final extension 5 min at 72 ◦C

Gel electrophoresis Application of 6 µL PCR product + 2 µL loading dye to a 1.5% agarose gel with 0.065% Gel Red nucleic acid stain

Table A3. Details of the Bartonella genus gltA gene-specific, two-round PCR.

Bartonella Genus gltA Gene, First Round Bartonella Genus gltA Gene, Second Round

Forward primer 443f (5′-GCTATGTCTGCATTCTATCA-3′) 781f (5′-GGGGACCAGCTCATGGTGG-3′)
Reverse primer 1137r (5′-AATGCAAAAAGAACAGTAAACA-3′) 1137r (5′-AATGCAAAAAGAACAGTAAACA-3′)

Reaction mix 50 µL volumes containing 25 µL of Qiagen (Hilden, Germany) Hot Start Mix, 20 µL of PCR-grade H2O,
2 µL of each primer (final concentration 10 pmol), 1 µL of DNA eluate

Initial denaturation 15 min at 95 ◦C
Denaturation 30 s at 95 ◦C

Annealing 30 s at 55 ◦C
Amplification 1.0 min at 72 ◦C

Cycle numbers 35 cycles
Final extension 5 min at 72 ◦C

Gel electrophoresis Application of 6µL PCR product + 2 µL loading dye to a 1.5% agarose gel with 0.065% Gel Red nucleic
acid stain
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Table A4. Details of PCR targeting relapsing-fever-associated Borrelia spp.

16S rRNA Gene PCR Targeting Relapsing-Fever-Associated Borrelia spp.

Forward primer 5′-GGCTTAGAACTAACGCTGGCAGTGC-3′

Reverse primer 5′-CCCTTTACGCCCAATAATCCCGA-3′

Reaction mix 30 µL volumes containing 15 µL of Qiagen (Hilden, Germany) Hot Start Mix, 6 µL of PCR-grade
H2O, 3 µL of each primer (final concentration 10 pmol), 5 µL of DNA eluate

Initial denaturation 15 min at 95 ◦C
Denaturation 15 s at 94 ◦C

Annealing 30 s at 54 ◦C
Amplification 1 min at 72 ◦C

Cycle numbers 40 cycles
Final extension 7 min at 72 ◦C

Gel electrophoresis Application of 6µL PCR product + 2 µL loading dye to a 1.5% agarose gel with 0.065% Gel Red
nucleic acid stain
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Figure A1. (a) Electrophoretic separation of positive amplification products of the Bartonella
spp.-specific PCRs. Amplicons, from which Bartonella spp.-specific sequences could not be con-
firmed via Sanger sequencing, are shown as well. First and sixth columns: DNA mass standards.
From second to fourth columns: first round of the Bartonella spp.-specific gltA gene PCR (356 bp
amplicons in columns two and three, and 694 bp amplicon in column four). Fifth column: second
round of the Bartonella spp.-specific gltA gene PCR (356 bp amplicon). Seventh to eleventh columns:
first round of the Bartonella spp.-specific 16S-23S rRNA gene PCR (400 bp amplicons in columns
seven to ten, and 539 bp amplicon in column eleven). Twelfth column: second round of the Bartonella
spp.-specific 16S-23S rRNA gene PCR (400 bp amplicon). Sample HL10: second and ninth columns.
Sample BL06: third and tenth columns. Sample BL12: fourth, fifth, eleventh, and twelfth columns.
Sample L03: seventh column. Sample L05: eighth column. (b) Pattern of the applied DNA standard.
Numbers indicate base pair (bp) counts.
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