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Introduction: As key-players of plant immunity, the proteins encoded by

resistance genes (R-genes) recognize pathogens and initiate pathogen-specific

defense responses. The expression of some R-genes carry fitness costs and

therefore inducible immune responses are likely advantageous. To what degree

inducible resistance driven by R-genes is triggered by pathogen infection is

currently an open question.

Methods: In this study we analyzed the expression of 940 R-genes of tomato and

potato across 315 transcriptome libraries to investigate how interspecific

interactions with microbes influence R-gene expression in plants.

Results:We found that most R-genes are expressed at a low level. A small subset

of R-genes hadmoderate to high levels of expression and were expressed across

many independent libraries, irrespective of infection status. These R-genes

include members of the class of genes called NRCs (NLR required for cell

death). Approximately 10% of all R-genes were differentially expressed during

infection and this included both up- and down-regulation. One factor associated

with the large differences in R-gene expression was host tissue, reflecting a

considerable degree of tissue-specific transcriptional regulation of this class of

genes.

Discussion: These results call into question the widespread view that R-gene

expression is induced upon pathogen attack. Instead, a small core set of R-genes

is constitutively expressed, imparting upon the plant a ready-to-detect and

defend status.

KEYWORDS

resistance genes, immune system, plant-pathogen interactions, Solanaceae, NBS-LRRs,
NRCs, gene regulation
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Introduction

Plants are constantly in contact with an array of microbes; some

of which may harm the plant, some of which may benefit the plant.

A challenge for every species at the outset of an encounter with a

potential pathogen is to initiate an appropriate, coordinated cellular

and organismal-level response. The plant immune system works to

restrict the pathogen’s ability to damage the host. Key-players of

plant immunity are resistance genes (R-genes; reviewed in Jones

and Dangl, 2006). Their protein products, R-proteins, recognize

secreted pathogen-specific effectors, which may encode proteins,

peptides or other molecules. These molecules interfere with the

host’s physiology, including the immune system. In some cases,

pathogen molecules manipulate host gene expression or inactivate

host secreted proteolytic enzymes (Allen et al., 2004; Song et al.,

2009; Fabro et al., 2011). R-gene mediated recognition can involve

direct recognition through the binding of a pathogen effector by a

corresponding R-protein or via indirect recognition by monitoring

effector-altered endogenous plant proteins (Jones and Dangl, 2006;

Kourelis and van der Hoorn, 2018). R-proteins are the activators of

a powerful, pathogen-specific immune response, which often

includes transcriptional re-programming (Glazebrook, 2005;

Tsuda and Katagiri, 2010). Recently it has been shown that

ZAR1, encoded by an R-gene, is the basis of a structure called the

resistosome and is directly involved in initiating the hypersensitive

resistance response (Wang et al., 2019a). When activated, ZAR1

forms a pore within the cell wall that causes the cell to leak and leads

to cell death. Given the diversity of the potential antagonistic

interspecific encounters, it is clear that the range of recognition

specificities and the ability to orchestrate appropriate downstream

responses cannot be achieved by a limited number of host defense

proteins. Not surprisingly, R-genes in plants are encoded by large

multi-gene families (Jupe et al., 2013; Andolfo et al., 2014; Gao et al.,

2018; Lee and Chae, 2020). The largest class of R-genes is the NBS-

LRR class, which stands for Nucleotide Binding Sites (NBS) and

Leucine Rich Repeats (LRRs; Jones and Dangl, 2006). The

recognition of effectors is typically mediated by the LRR-domain,

while the NBS-domain functions as a molecular switch, activating

downstream components that initiate plant defense (McHale et al.,

2006). Other classes of R-genes encode enzymatic proteins and lack

NBS/LRR domains (e.g. Hm1, Pto, Rpg1; reviewed in Gururani

et al., 2012).

A tight regulatory system controls the expression of R-genes

(Stokes et al., 2002; Holt et al., 2005; Li et al., 2007; Huot et al.,

2014). One layer of regulation is mediated by transcription factors

which alter gene expression by binding to upstream elements of

genes (reviewed in Latchman, 1997). Transcription factors can

enhance or repress the expression of R-genes (e.g. ethylene-

responsive factor ERF; Chakravarthy et al., 2003). Another mode

of gene regulation is RNA silencing, a sequence-specific system that

uses small non-coding RNAs (sRNAs) to repress gene expression

(reviewed in Baulcombe, 2004). These sRNAs are guided via

sequence-complementarity to target mRNAs which, together with

Argonaute proteins, degrade or inhibit translation of mRNA

transcripts (Baulcombe, 2004). One example of such sRNA-

mediated gene suppression of R-genes is the microRNA (miRNA)
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superfamily miR482/2118 (Shivaprasad et al., 2012; de Vries et al.,

2015; de Vries et al., 2018). Another mode of transcriptional

regulation is mediated through alternative splicing. In the context

of R-genes, it has been shown that different splice variants of the

same R-gene can lead to the expression of distinct R-proteins which

underlie different resistance phenotypes (e.g. splicing variants NAT

and NRT of the resistance gene N; Yang et al., 2014).

The Solanaceae plant family harbors many economically

important crops including potato, tomato, eggplant, pepper and

tobacco. As a chief non-cereal crop, potato cultivation yielded 487

million tons in 2017. Due to the economic significance of species in

this plant family, a large body of data is available regarding the

genetic basis of pathogen resistance. This includes well-described

resistance gene repertoires and large-scale transcriptome studies of

these species from a range of tissues, time points, cultivars and

pathogen treatments. In this study, we analyzed the expression

profiles of 940 R-genes from tomato and potato using 315

transcriptomes with and without pathogen treatment.

We determined that the majority of R-genes in tomato and potato

are constitutively expressed at a low level, irrespective of infection

status. Based on our analyses, we could define a core set of R-genes

which are expressed in greater than 90% of all libraries in each species.

For tomato, the core set comprises 7.7% of the R-genes; in potato 16.6%

of the R-genes belong to the core set. Members of the core are well

known R-genes such as EDS1 and Pto as well as NRC2, NRC3 and

NRC4, powerful activators of immunity. Analysis of similarity

(ANOSIM) based on relative gene expression showed that the two

main factors that explain variation in R-gene expression are tissue type

and “BioProject”. A BioProject is defined by NCBI as a collection of

biological data related to a single initiative, originating from a single

organization or from a consortium. In our ANOSIM analysis, infection

status and infection time were not associated with significant

differences in R-gene expression. In an independent analysis based

on differential gene expression of paired libraries, we determined that

11.9% of R-genes in tomato and 8.6% in potato are differentially

expressed in the presence of a microbe treatment. In potato, the same

proportion of genes are up-regulated or down-regulated, while in

tomato a larger proportion is up-regulated following treatment with

microbes. The factors BioProject, tissue type or distinction between

treatment with beneficial or pathogenic microbes were not associated

with differential gene expression. These results indicate that plants

express a core set of R-genes, ensuring that they are in a permanent

ready-to-defend status. We find little evidence that this class of genes

responds with large-scale, shared transcriptional reprogramming

following exposure to pathogenic microbes.
Material and methods

Transcriptome data sets

A total of 315 transcriptome datasets of tomato (Zouari et al.,

2014; Du et al., 2015; Barad et al., 2017; Sarkar et al., 2017; Sugimura

and Saito, 2017; Xue et al., 2017; Yang et al., 2017; Zheng et al., 2017;

Chen et al., 2018; Shukla et al., 2018; Fawke et al., 2019; Pesti et al.,

2019; Wang et al., 2019b) and potato (Goyer et al., 2015; Zuluaga
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et al., 2015; Dees et al., 2016; Gao and Bradeen, 2016; Kochetov

et al., 2017; Levy et al., 2017; Li et al., 2017; Lysøe et al., 2017; Hao

et al., 2018; Kumar et al., 2018) were obtained from the Sequence

Read Archive (Figure S1). These studies included treatments with

potentially beneficial organisms (arbuscular mycorrhizal fungi

(AMF) and biocontrol agents) as well as detrimental organisms

(pathogenic bacteria, nematodes, fungi, viruses, viroids, insects and

oomycetes). Only studies with at least one mock treatment were

included. The collected tissues included roots, stems, leaves, fruits

and tubers. The time points of sampling after infection range from 0

days post-infection (dpi) up to 42 dpi or until the end of the host’s

life cycle (Figure S1). Approximately 20% of all tomato and potato

cultivars were denoted as resistant to the applied pathogens.
R-gene data set

The lists of the R-gene repertoires of S. lycopersicum and S.

tuberosum were retrieved from Jupe et al. (2013). R-genes were

classified as “full-length” NBS-LRRs if they contained both NBS and

LRR domains as identified using InterPro (Mitchell et al., 2019). A

slightly modified pipeline as described by Jupe et al. (2013) was used to

verify their novel R-genes (Figure S2). These novel R-genes were

designated by the authors as R gene discovery consortium (RDC)

genes. Using AUGUSTUS (version 3.3.1), a gene-prediction tool

developed by Stanke et al. (2008), we analyzed these RDC genes for

coding regions and searched for NBS and LRR domains using InterPro.

RDCs were classified as true R-genes if they possessed a coding region

and an NBS-LRR domain. Otherwise they were excluded from further

analysis. In cases in which multiple splice variants were identified, the

longest splice variant was analyzed. The well-established R-genes Pto

(Martin et al., 1993) and EDS1 (Hu et al., 2005) from tomato were

included in the dataset. In total, the expression patterns of 359 R-genes

of tomato and 581 R-genes of potato were analyzed.
Identification of physical clusters
of R-genes

R-genes were classified as belonging to a cluster when more

than one R-gene was located in a region of 200 kilobases (kb) on a

chromosome (Van de Weyer et al., 2019). Since Jupe et al. (2013)

performed their analysis on an earlier release of the tomato genome

assembly (ITAG2.4 release, Tomato Genome Consortium, 2012),

the positions of all tomato R-genes had to be re-defined (Table S1).

Positions of RDCs were verified using Blastn v2.6.0 (Altschul et al.,

1990; Camacho et al., 2009) against the tomato (ITAG4.0; Hosmani

et al., 2019) and potato genomes (PGSC_DM_v4.03; Potato

Genome Sequencing Consortium, 2011; Table S1). All R-genes

without defined chromosomal positions (39 genes in tomato)

were classified as R-genes with unknown clustering.
miRNA targeting prediction

To predict potential regulation of R-genes by the miR482-

superfamily (de Vries et al., 2015), we used psRNATarget (release
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2017; Dai et al., 2018). We used the coding sequence (CDS) of our

R-genes as the target library. To ensure a low rate of false-positives,

the maximum expectation was set to ≤3, since higher expectation

values represent less likely mRNA/miRNA interactions. We

evaluated the likelihood of an R-gene being targeted by the

miR482 superfamily and whether the R-gene encoded a full

length NBS-LRR and or belonged to a R-gene cluster using a chi-

square test (Greenwood and Nikulin, 1996).
Calculation of transcript abundance
using Kallisto

The program Kallisto (v.0.46.0) was used to estimate the relative

expression of genes in tomato and potato (Bray et al., 2016). As a

first step, the raw sequence reads were compared to the transcript

sequences. This step in Kall isto is designated as the

pseudoalignment step. To improve the quality of the

pseudoalignment, low-quality reads and adapters were removed

from the transcriptomes using Trimmomatic under the following

settings: seed mismatch = 2; palindrome clip threshold = 30; simple

clip threshold = 10; LEADING = 3; TRAILING = 3;

SLIDINGWINDOW= 4:15; MINLEN =36 (Bolger et al., 2014;

Figure S2). Subsequent quality controls were performed using

FastQC (Andrews, 2010). As Kallisto requires information on

fragment length for single-end sequenced transcriptomes, the

fragment length denoted by the authors was used. If this

information was not available, the recommended fragment length

of the reported RNA isolation kit was used. The standard deviation

was set to ±17.5 bp. Kallisto indices (used for generating the

pseudoalignments) were based on the tomato ITAG4.0 and the

potato PGSC_DM_v4.03 genome releases. R-genes missing from the

current genome releases were manually added to the list of transcripts

(indices in Kallisto). Transcript abundance was calculated as

transcripts per million (TPM; Wagner et al., 2012). We chose to

use TPM since it normalizes the transcript abundance for gene length

and library size, making TPM values comparable across experiments.

Genes for which the TPM values were less than 1 were treated as “off”

and for these genes, TPM was set to zero. All scripts and settings used

for these analyses are available at the following site: https://

github.com/LauraERose/LargeScaleTranscriptomeAnalysis.
Verification of gene expression
using qRT-PCR

To verify the overall consistency of our estimated TPM values in

this metaanalysis, we performed qRT-PCR on twelve NBS-LRR-

genes and three reference genes (de Vries et al., 2018). We evaluated

the expression of these fifteen genes over six time points on the

Moneymaker cultivar inoculated with Phytophthora infestans (P.

infestans) isolate IPO-C. Three replicates were studied at each

sampling time point and treatment type. Additional details of this

experiment are reported in de Vries et al., 2018. The Bioproject L

(PRJNA487149) from Fawke et al., 2019 is the most similar in

design to our 2018 study, since that project sampled transcriptomes
frontiersin.org
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from leaves of the tomato cultivar ‘MicroTom’ inoculated with P.

infestans isolate 88069. We evaluated the consistency between the

average TPM of these 15 genes from Fawke et al. with our estimated

Cq values at 72 hours post infection, the single overlapping

timepoint between both data sets.
Comparison of gene expression across
gene sets

To compare the mean relative expression between R-genes (R-

gene set size for tomato = 359 and for potato = 581) and non-R-

genes (the rest of the genome) we generated 100 replicate datasets

for each transcriptome by sampling the TPM values of 359 random

genes from tomato and 581 random genes from potato. The average

TPM of all expressed genes was calculated for each replicate dataset.

To compare expression values, four reference genes were used:

ubiquitin (Solyc09g018730.4.1) and actin4 (Solyc04g011500.3.1) for

tomato (Mül l e r e t a l . , 2015 ) an impor t in subun i t

(PGSC0003DMG400007289 ) and e longat ion fac tor -1

(PGSC0003DMG400023270) for potato (Mariot et al., 2015; Tang

et al., 2017). TPM values were tested for normality using the

Anderson-Darling (>5000 data points; Thode, 2002) or Shapiro

test (< 5000 data points; Shapiro and Wilk, 1965) and for equal

variances using the test from Kendall (1938). Significant differences

in expression were identified using a Mann-Whitney-U test (Mann

and Whitney, 1947) for non-normally distributed data or a two-

sample t-test for normally distributed data.

We visualized R-gene expression using heatmaps created in R

(v. 3.6.1). Genes were classified as off (if TPM < 1) or on (if TPM

≥1). In the heatmaps, libraries were clustered by similarity in

patterns of expression between libraries and R-genes were sorted

by the number of libraries expressing the corresponding gene.

Correlations between 1) the total number of expressed R-genes

and the total number of expressed genes, 2) the total number of

expressed genes and the number of pseudo-aligned reads, as well as

3) the number of libraries in which an R-gene was expressed and the

average level of expression of each R-gene were performed using a

Spearman’s rank correlation test (Hollander et al., 2013).

To investigate the extent to which expression patterns of R-

genes were similar to wild close relatives of tomatoes, we evaluated

additional transcriptomes of four wild tomato species: S.

peruvianum, S. chilense, S. ochranthum, and S. lycopersicoides

(Beddows et al., 2017). A subset of R-genes was further analyzed

for their patterns of sequence variation within and between these

wild species. Standard population genetic parameters including

intraspecific variation (p) and interspecific divergence (K) were

estimated using DNaSP v. 5.10 (Librado and Rozas, 2009).
Analysis of differences
in expression

To identify the factors associated with differences in expression

of R-genes across transcriptomes, we performed an ANOSIM in

Primer 7.0.13 (PRIMER-e; Figure S2). ANOSIM is a non-
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parametric statistical test similar to ANOVA. The starting point

of the analysis is a pairwise dissimilarity matrix. In our case, the

dissimilarity matrix was computed as follows: First the TPM values

for each gene within each transcriptome were LOG (x+1)

transformed. On the basis of these transformed TPM values, the

dissimilarity in gene expression patterns between transcriptomes

were calculated based on Euclidean distances. Ranking was applied

to the distance matrix. The two libraries from potato (SRR6511453

and ERR791944) with exceptionally low expression of the entire R-

gene repertoire were excluded in these analyses.

To determine if gene expression is more similar within groups

than between groups (for example when groups are defined by

infection status or tissue type) the R test statistic value was

calculated. The R values can range from -1 to 1, with larger

values corresponding to greater differences between groups.

Statistical significance is calculated through permutation of the

group labels and recalculation of the R value for each replicate. In

our case, 999 permutations were generated. The following factors

were evaluated: BioProject, tissue type, type of treatment, specific

treatment organism, life cycle of the organism, type/kingdom of the

organism, susceptible vs. resistant cultivar, relative sequencing

depth, paired- or single-end sequencing and days post infection.

The ANOSIM analysis was also applied to the differential gene

expression data (see below).
Differential expression analysis

Differentially expressed genes between microbe treatments and

mock treatments were identified using Sleuth (Pimentel et al., 2017;

Figure S2). The p-values were adjusted using the Benjamini-

Hochberg correction (FDR ≤ 0.05; Benjamini and Hochberg,

1995). Since Sleuth relies on replicates within treatments,

BioProjects without replicates were removed from this part of

analysis. We evaluated differences between i) R-genes and all

genes, ii) proportion of up- versus down-regulation iii) average

absolute fold changes.
Results

Large scale patterns of R-gene expression

In total we analyzed 7.78 x109 raw reads from 315

transcriptomes of tomato and potato of which 5.58 x109 could be

uniquely assigned to a transcript from tomato/potato (average

proportion of assigned reads: 77.3% for tomato and 66.8% for

potato; Figure S3). Both mock-inoculated plants as well as plants

inoculated with pathogenic and beneficial organisms were

investigated. In total, 359 R-genes from tomato and 581 from

potato were examined for their expression levels and fold

changes. In tomato, 62.1% of all R-genes possessed NBS- and an

LRR-domains and in potato 89.2% did (Figure S4, Table S1). A large

majority of the R-genes of both species formed physical clusters
frontiersin.org
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meaning that two or more R-genes were found in a span of 200kb

along the chromosome (62.6% in tomato; 83.1% in potato).

Since the miR482-superfamily is a known regulator of NBS-

LRR expression (Shivaprasad et al., 2012; de Vries et al., 2015; de

Vries et al., 2018), we evaluated the targeting probability by

members of the miR482 gene family for each R-gene. In tomato

17.6% of all R-genes were predicted to be targeted by the miR482-

superfamily, while in potato 28.6% were predicted to be targeted

(Figure S4, Table S1). It has previously been shown that miR482-

members regulate R-genes by reverse-complementary binding to

the mRNA region encoding NBS-domains (Shivaprasad et al.,

2012). Full length R-genes were more likely to be predicted to be

regulated by the miR482-superfamily compared to partial length

NBS-LRR genes (c2tomato = 21.32, p-value < 0.001; c2potato = 14.69,

p-value < 0.001; Figure S4; Table S2).
Most R-genes show consistently low
expression, both in the presence and
absence of pathogens

Proteins encoded by R-genes act as key regulators of plant

immunity by recognizing plant pathogens and activating the plant

immune response. However, the existence of growth-defense trade-

offs implies that the constitutive expression of R-genes in the

absence of pathogens might be costly (reviewed in Brown and

Rant, 2013; Vos et al., 2013). In our study, a large proportion of the

R-gene repertoire in tomato (67.6% ± 13.8%) is not expressed in a

given library (or is below the threshold of detection) whether or not

the plant was treated with an interacting organism (Figure 1A). A

smaller proportion (~ 46%) of the non-R-genes are “off” or below

the threshold of detection in tomato (Figure 1A). For potato, the

proportion of the R-gene repertoire that is not expressed is 49.3%

(± 11.7%); this is nearly equal to the proportion of genes that are not

expressed in the rest of the genome (Figure 1B).

In both species, the average TPM of R-genes per library is

significantly lower than the average TPM of an equal number of

randomly selected genes per library (p-value <0.001; Figures 1C, S5).

Of the R-genes that are expressed, most are expressed at very low

levels within each library (between 1 and 10 TPM). Approximately

one quarter of R-genes in tomato (25.9% ± 8.4%) and 44.0% (± 9.8%)

of R-genes in potato are expressed at this level. Less than 1% of the R-

genes fall into the medium (50≤ TPM <200) or high (200≤ TPM

<1000) expression classes, a scant proportion for these two expression

classes compared to non-R-genes (Figures 1A, B).

The distribution of the expression classes for R-genes varies

greatly across libraries (Figure S6). For example, 88.3% of R-genes

are not expressed in library SRR7073605, while in library

SRR442353, 47.0% are not expressed (Figure S6). Although the

relative transcript abundance of a few R-genes can be high, the

average TPM of the top 10% (or even the top 5%) is still well below

the average TPM across all other genes in the genome for a given

library (Figure 1C; S5; p-valuetomato <0.001; p-valuepotato <0.001).

Taken together, most R-genes are typically expressed at low to

extremely low levels across libraries.
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In our study, the overall distribution of expression classes of R-

genes is similar between plants treated with interaction partners

versus untreated controls (Figures 1A, B, S6). However, conditioning

on only the expressed R-genes in each individual library, the average

expression level (measured as TPM) of these expressed R-genes is

significantly higher in tomato plants treated with microbes compared

to mock treated controls (p-value <0.05; Figure 1C). This effect was

specific for treatment with pathogenic organisms: We observed that

the average TPM-values for expressed R-genes (TPM >1) was higher

in tomato plants exposed to pathogenic organisms compared to

plants exposed to beneficial microbes (p-value <0.001; Figure S7A).

In contrast, in potato no difference in the average expression of R-

genes between treated and untreated plants, nor between the types of

treatments (pathogenic versus beneficial) could be detected (p-value

>0.05; Figure S5; p-value = 0.58; Figure S7B).
Some R-genes are consistently expressed
across libraries

We observed that some R-genes were expressed (TPM ≥1)

under both challenged and unchallenged conditions. Therefore, the

question arose if these R-genes represent a “core set” of expressed R-

genes across all libraries. Approximately 7.7% of all R-genes in

tomato are expressed in > 90% of all analyzed libraries (Figure 2A).

In potato, 16.6% of all R-genes were expressed in >90% of all

libraries (Figure S8A). Among these expressed “core” R-genes in

tomato are EDS1, Pto, NRC2, NRC3 and NRC4. Wu et al. (2017)

identified these NRCs as part of a complex network in Solanaceae in

which the NRCs (Solyc10g047320, Solyc05g009630, Solyc04g007070)

interact with NBS-LRR sensors to activate resistance.

We evaluated whether this set of expressed “core” R-genes shared

other characteristics. We found that the mean TPM-value of an R-gene

within a library was positively correlated with expression breadth as

defined as the number of libraries in which it was expressed

(correlation factor rhotomato = 0.39, p-value <0.000, rhopotato = 0.47,

p-value < 0.000, Figures S9A, B). Therefore, this set of expressed “core”

R-genes has both higher relative expression within a library and

broader expression across libraries than non-core R-genes.

The total number of R-genes expressed per library varied from

27 to 191 in tomato, with a mean proportion of ~30% of R-genes

expressed in a given library (Table S3; Figure S10A). For potato, the

number of R-genes expressed per library ranged from 1 to 421 R-

genes, with a mean proportion of 50.8% of the R-genes expressed in

a given library (Table S4; Figure S10B). We also evaluated whether

the proportion of expressed R-genes correlated with the total

number of expressed genes in a given library. In both potato and

tomato, libraries in which a larger number of genes were expressed

also had a higher proportion of expressed R-genes (rhotomato = 0.84,

rhopotato = 0.71, p-value <0.000; Figures S9C, D). We investigated

how the distribution of the proportion of R-genes expressed

correlated with the proportion of assigned reads (as a proxy for

sequencing quality). Overall, we detected a weak positive

correlation between both factors (rhotomato = 0.39, rhopotato =

0.42, p-value <0.001; Figures S9E, F).
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Factors associated with variation in R-gene
expression across libraries are BioProject
and tissue type

We applied an ANOSIM method to evaluate which factors were

associated with variation in R-gene expression across the libraries

(Table 1; Table S5; Table S6). In the ANOSIM analysis, higher R-

values indicate a larger influence of a factor on the patterns of gene

expression. The factor with the highest R-value for R-genes was

BioProject (R-valuetomato = 0.876, p-value <0.001; R-valuepotato =

0.928, p-value <0.001, Table 1). Differentiation by BioProject is also

apparent in the principal component analysis (PCA, Figures 2B, C,

Figures S8B, C). Libraries clustering closer together in the PCA indicate
Frontiers in Plant Science 06
those with more similar expression patterns. In this study, the factor

BioProject corresponds to the set of libraries submitted by a single lab

group. In total, 13 BioProjects for tomato were studied and 12

BioProjects for potato. The number of libraries submitted as part of

a BioProject ranged from as low as two and up to 36. In some cases,

BioProjects sampled only a single tissue type; other BioProjects

sampled multiple tissue types. Most BioProjects focused only on a

single potato or tomato cultivar. Individual BioProjects typically

included treatment with one main (micro-)organism, except for a

handful which studied treatments with two or more organisms. Due to

the diversity of projects in terms of plant genotypes, type of organismal

challenge and time of sampling and since the sampling was not based

on a nested design, the large effect of the BioProject is not unexpected.
B

C

A

FIGURE 1

Comparison of relative gene expression in tomato and potato. Relative expression of R-genes compared to the rest of the genes in the genome for
(A) tomato and (B) potato. Each gene was assigned to 1 of 6 expression categories based on TPM. (C) Mean TPM for gene sets in libraries from mock-
treated plants (dark red) and plants treated with organisms (light red). Random gene subsets were created by sampling 359 genes randomly (matching
the number of R-genes in tomato) from each tomato library and calculating the mean TPM of these 359 genes across each library. Overall 100
random gene sets (containing different sets of 359 genes) per library were created and the average TPM across the 100 replicates is displayed in the
box plot format. The distribution of gene expression (TPM values) for the top 10% and 5% of the set of R-genes in each library are displayed as well as
the mean TPM for two reference genes (ubiquitin and actin). The midline of each box is the median, boxes extend from the 25th to the 75th
percentile, and the dots are outliers. Pairwise differences were computed using either a Mann-Whitney-U test for non-normally distributed data or a
two-sample t-test for normally distributed data: n.s. = not significantly different; * p-value <0.05; ** p-value <0.01; *** p-value <0.001.
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However, the value of such ameta-analysis is that robust and consistent

patterns of gene expression that do emerge from this study, in the face

of a large amount of experimental variation across labs, are likely to be

highly reliable because a wide range of sampling conditions were

included (different lab conditions, different cultivars, different time of

sampling, different treatments, etc.). Furthermore, this type of analysis

can be used to identify key experiments that are missing (such as tissue
Frontiers in Plant Science 07
type, time of sampling, cultivar, or pathogen) that if included could

provide the necessary cross-lab validation of patterns.

Despite a large effect of BioProject, gene expression was also

strongly affected by tissue type (R-valuetomato = 0.527, R-valuepotato =

0.758, p-value <0.001) and days post infection (R-valuetomato = 0.408,

R-valuepotato = 0.522, p-value <0.001; Table 1; Figures 2D, E; Figures

S8D, E). All other evaluated factors (type of treatment, life cycle of the
B C

D E

A

FIGURE 2

Patterns of R-gene expression in tomato. (A) Heatmap of R-gene expression (359 genes) from tomato (133 libraries). Genes were classified as off/
white (if TPM <1) and on/red (if TPM ≥1). Libraries were clustered by similarity in patterns of expression between libraries. R-genes were sorted by the
number of libraries expressing the corresponding R-gene from highest (left) to lowest (right). Assignments to individual BioProjects are indicated by
different colors in the first vertical column next to the dendrogram. The treatment status of the libraries with mock-treated (white) or treated with an
organism (black) is displayed in the 2nd vertical column next to the dendrogram. (B-E) Principal component analysis of gene expression of R-genes
(B, D) and all genes (C, E). Samples are labeled by the BioProject (B, C) or by the tissue type (D, E). Clustered groups indicate higher levels of
similarity in gene expression.
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organism, susceptible vs. resistant cultivars, specific treatment

organism, type/kingdom of the organism) were characterized by

lower R-values (Table 1). Library dependent parameters such as

relative sequencing depth (R-valuetomato/potato = 0.297/0.119, p-

valuemax <0.001) and paired- or single-end sequencing (R-valuetomato/

potato = 0.358/0.218, p-valuemax <0.001) were also characterized by low

R-values (Table 1). Furthermore, the rank order of the factors

according to R-values did not differ depending upon the

classification of R-genes into the following categories: full-length

versus partial, miR482-targeted versus not targeted or clustered

versus not clustered (Table S7). The ANOSIM analyses of all coding

genes did not deviate significantly from the analyses of the R-genes

alone (Table 1; Figures 2C, E; Figure S8C, E).

In a sub-analysis, we performed ANOSIM on the mock-treated

libraries only. For the mock-treated libraries, the BioProject (R-

valuetomato/potato = 0.911/0.936, p-valuemax <0.001) and the tissue type

(R-valuetomato/potato = 0.561/0.789, p-valuemax <0.001) remain the two

dominant factors associated with differences in R-gene expression

(Table S8; Figure S11). In a separate sub-analysis of organism-treated

libraries only, the R-values for multiple factors increased compared to
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the ANOSIM analyses of all libraries together (Table S8, Figure S12).

For example, the R-values for the factor “specific organism” was

R=0.264 in tomato and R=0.104 in potato when all available libraries

were included. The R-value for this factor increased to R=0.889 in

tomato and R=0.85 potato when only microbe treated libraries were

analyzed. This was also true for the related factors “life cycle of the

organism” and “type of organism”.
Patterns of gene expression are consistent
with independent qRT-PCR analysis

qRT-PCR was conducted on twelve NBS-LRR-genes and three

reference genes (de Vries et al., 2018). The expression of these fifteen

genes was assayed in the Moneymaker cultivar at six time points

following mock-inoculation or inoculation with P. infestans, isolate

IPO-C. The Cq values for the three reference genes (SAND/

Solyc03g115810, TIP2/Solyc10g049850, and TIF3H/Solyc12g098680)

were always lower (corresponding to higher transcript abundance) at

all time points compared to the twelve R-genes, supporting our
TABLE 1 ANOSIM analysis of (R-)gene expression.

Organism Factor
All genes R-genes

R-value p-value R-value p-value

Tomato

BioProject (A through M) 0.959 0.1% 0.867 0.1%

Tissue type (roots, fruit, leaf, stem) 0.689 0.1% 0.527 0.1%

Paired- or single-end sequencing 0.495 0.1% 0.358 0.1%

Days post infection (0 days till end of life cycle of the plant) 0.361 0.1% 0.408 0.1%

Relative sequencing depth (5 categories from low to high) 0.312 0.1% 0.297 0.1%

Specific treatment organism (14 types) 0.203 0.1% 0.264 0.1%

Life cycle of the organism (5 types) 0.152 0.1% 0.189 0.2%

Type/Kingdom of the organism (6 kingdoms) 0.14 0.1% 0.242 0.1%

Susceptible vs resistant cultivar* 0.103 0.1% 0.079 0.7%

Type of treatment (3 treatments) 0.068 0.2% 0.05 2.7%

Potato

BioProject (A through L) 0.92 0.1% 0.928 0.1%

Tissue type (tuber, root, leaf) 0.766 0.1% 0.758 0.1%

Tissue type II** (root, leaf) 0.697 0.1% 0.751 0.1%

Days post infection (0 to 42 days) 0.538 0.1% 0.522 0.1%

Paired- or single-end sequencing 0.245 0.1% 0.218 0.1%

Type/Kingdom of the organism (6 kingdoms) 0.125 0.1% 0.141 0.1%

Relative sequencing depth (5 categories from low to high) 0.107 0.1% 0.119 0.1%

Specific treatment organism (11 types) 0.087 0.5% 0.104 0.1%

Life cycle of the organism (4 types) 0.069 2.5% 0.083 0.2%

Susceptible vs resistant cultivar* 0.048 0.6% 0.021 9.5%

Type of treatment (3 treatments) 0.004 34.8% -0.022 97.6%
R- and p-values for R-genes and all genes from tomato and potato. R-values based on Euclidean distance based pairwise dissimilarity matrix. p-values ≤5% represent significant R-values. * In
addition to assignment of cultivars to either resistant or susceptible, a third category (beneficial) was used for libraries treated with a beneficial organism. ** Roots and tubers of S. tuberosum were
classified as the same tissue-type.
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findings in this metaanalysis (Figure S13; Table S9). The sampling

design of the BioProject L (PRJNA487149) from Fawke et al., 2019 was

the most similar to the qRT-PCR experiment. Therefore, we compared

the estimates of gene expression using TPM and Cq values from these

two studies. The three reference genes all had the highest TPM values

and lowest Cq values, while all the R-genes had low TPM values and

high Cq values. Furthermore, gene expression as assayed by TPM and

Cq did not radically differ between samples inoculated with P. infestans

and mock inoculated samples (indicated by contrasting colors in

Figure S13).
Similar expression patterns extend to
closely related wild species

In tomato, 27.5% of the R-gene repertoire is not expressed in

any library (Figure 2A). Even under this wide range of experimental

conditions and treatments, these R-genes seem to be “off”. In a

previous study, we evaluated the transcriptomes of 38 individuals of

wild close relatives of cultivated tomato, namely S. chilense, S.

peruvianum, S. ochranthum, and S. lycopersicoides (Beddows

et al., 2017). Using this dataset from wild species of tomatoes, we

evaluated whether any of these R-genes that are “off” in cultivated

tomato are “on” in the wild genotypes. Expression was detected for

~35% of these genes, although the expression was restricted to a few

libraries (Figure S14, Table S10). Five R-genes which were “off” in

the studies of cultivated tomatoes (Solyc01g102920, Solyc01g102930,

Solyc06g065150, Solyc10g079020 and Solyc12g038890) were

expressed in >30% of all libraries from the wild species, although

their overall relative expression was still low (Ø1.8-6.6 TPM).

For these five R-genes which are “off” in all libraries from

cultivated tomatoes, but “on” in a subset of wild genotypes, we

evaluated whether these genes showed the genetic signatures of

evolutionary constraint within the population sample from our

earlier study (Beddows et al., 2017). A signature consistent

evolutionary constraint (or purifying selection) may indicate that

these R-genes are still functionally intact in wild tomato species and

could be exploited for crop improvement in the cultivated tomato.

The low pa/ps ratios within species and Ka/Ks ratios between species

indicated that purifying selection is the dominant force acting on

these R-genes in wild tomatoes (Table S11).
Differential regulation of R-genes in the
presence of pathogens

We evaluated the differential regulation of R-genes in the

presence and absence of biotic treatments (Tables S12, S13). This

included 26 datasets in tomato and 29 datasets in potato. On

average, 11.9% of R-genes were differentially expressed in the

presence of pathogens in tomato and 8.6% in potato (Figures 3A,

S15A). Of these significantly differentially expressed genes in

tomato, a larger proportion were up-regulated (72.5%) compared
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to down-regulated (27.5%; p-value <0.05; Figure 3B). In potato, the

proportion of up- versus down-regulated genes was not statistically

different (up = 54.1%, down = 45.9%, p-value >0.05, Figure S15B).

In tomato, the proportion of genes differentially up- or down-

regulated was not statistically different between the class of R-genes

and the rest of the genes in the genome (p-value >0.05; Figure 3B).

In potato the proportion of down-regulated genes is lower for the

class R-genes compared to the rest of the genes in the genome (p-

value <0.05; Figure S15B). Of the differentially expressed genes, the

mean of the absolute fold change did not differ between the class of

R-genes and the rest of the genes in the genome (Figures 3C, S15C).

However, the mean of the absolute fold change for differentially up-

regulated R-genes is significantly larger than the fold change of

differentially down-regulated R-genes in tomato (Figure 3C).

The patterns of differential expression of R-genes are shared

across datasets (Figure 3A, Figure S15A). However, in contrast to the

previous ANOSIM analysis based on expression investment in R-

genes (as captured by TPM values), variation in differential gene

expression is not associated with the same factors such as BioProject

or tissue type (Figure S16, Tables S14, S15, S16). Likewise, the

assignment of R-gene type in terms of full-length versus partial,

miR482-targeted versus not targeted or clustered versus not clustered

did not correlate with the likelihood of differential regulation (Table

S16). It is known that about 20% of R-genes in tomato are targeted by

the miR482-superfamily (de Vries et al., 2015). In the presence of

pathogens, microRNA processing is down-regulated (Shivaprasad

et al., 2012; de Vries et al., 2018). This should lead to a release of the

suppression and consequently up-regulation of R-genes targeted by

miR482 members in pathogen-infected plants. We tested whether R-

genes predicted to be regulated by miR482 were over-represented in

the class of up-regulated R-genes in the presence of pathogens. This

was not the case. The R-genes predicted to be targeted by miR482

were neither enriched nor depleted in the set of differentially

regulated R-genes (p-value > 0.05; Table S17).

We evaluated the level of shared differential regulation between

plants treated with pathogens versus treated with putatively

beneficial microbes. In tomato, only three R-genes were

differentially regulated in the presence of beneficial microbes, two

of which were also differentially down-regulated in pathogen

treated plants (Figure S17). In potato, a larger number of genes

were differentially regulated in the presence of beneficial microbes

and a large proportion of these overlapped with the genes that are

differentially expressed in pathogen treated plants (Figure S17).

Only a single R-gene (PGSC0003DMT400014280) was differentially

up-regulated in plants treated with beneficial microbes and was not

differentially expressed in plants treated with pathogens. For the set

of R-genes that are exclusively up- or down-regulated in pathogen

treatments, most are limited to specific pathogen treatments,

showing a high degree of pathogen specificity. Therefore,

although broad-scale, shared up-regulation or down-regulation of

specific genes is not detected across experiments in which plants

were inoculated with different pathogens, some genes do show

pathogen specific regulation (Tables S12, S13).
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Discussion

A long-standing objective in genetics and evolutionary biology

is to understand which factors affect gene expression. Expression of

R-genes is of particular interest for plant biologists due to the

relevance of this class of genes in crop protection and to understand

host-pathogen dynamics in both natural and agricultural settings.

Taking a meta-analysis approach, we evaluated the amplitude of

expression variation across R-genes in tomato and potato and the

underlying factors associated with expression differences. By

focusing on transcriptome studies that involved treatments with

known pathogenic or beneficial organisms, we could specifically

address the question whether R-genes were modulated by treatment

with these organisms in a consistent way across experiments. We

discovered that pathogen-treated plants showed only relatively

modest differences in R-gene expression, despite the long-

standing belief that pathogen induced resistance would be most

effective at restricting pathogen growth, while avoiding high fitness

costs in the absence of pathogens.

Fitness costs of R-genes have been thoroughly investigated in a

handful of cases. In Arabidopsis thaliana, for example, Tian et al.

(2003) and Karasov et al. (2014) determined that the presence of the

R-genes RPM1 and RPS5 in the absence of pathogen infection

reduced seed production by ~10%. Furthermore, transient

expression of several R-genes can induce a hypersensitive
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response (HR) resulting in cell death, which is costly in the

absence of pathogen infection (Kim et al., 2010; Chae et al.,

2014). Hence specific induction of defenses only when the

pathogen is present should be beneficial. In our study, we did not

see a strong, shared induction of R-genes in the presence of

pathogens. On the contrary, we detected a core of constitutively

expressed R-genes in tomato and potato.

Does this indicate that the possession and expression of R-genes

are less costly than expected? Burdon and Thrall (2003) surmised

that it is unlikely that all R-genes possess the same high fitness costs

since the additive or multiplicative effects would be prohibitive.

Therefore, the high fitness costs documented for single R-genes

such as Rpm-1 (Tian et al., 2003) are most likely the exception and

not the rule. However, it should be noted that fitness costs are

inherently difficult to estimate, in part because costs are not

constant over time and under all conditions. Fitness costs can be

influenced by many factors such as environmental conditions, plant

age, genetic background and pleiotropic effects – the effect of a

single gene on multiple traits (McDowell et al., 2005; Krasileva et al.,

2011; MacQueen and Bergelson, 2016). For example, while young

plants likely face high competition for resources and are strongly

constrained in defense allocation, older plants, having already

established themselves, may have more resources to allocate to

defense. It is likely that growth-defense tradeoffs may be stronger

during certain timepoints of a plant’s life history. Therefore, the
B C

A

FIGURE 3

Differential expression of R-genes in tomato plants treated with organisms. (A) Differential R-gene expression following treatment with organisms.
Up-regulated genes are displayed in blue, down-regulated in green – darker colors represent larger fold changes between mock- and organism-
treated libraries. Libraries and R-genes were clustered by similarity. (B) Proportions of genes per library which show differential regulation following
treatment by an organism. Up-regulation (green arrow); down-regulation (red arrow). (C) The average absolute fold changes of up-regulated (green
arrow) and down-regulated (red arrow) R-genes and for all genes per library. The midline of each box is the median, boxes extend from the 25th to
the 75th percentile, and the dots are outliers. Pairwise differences were evaluated using either a Mann-Whitney-U test for non-normally distributed
data or a two-sample t-test for normally distributed data. n.s. = not significantly different; * p-value <0.05.
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costs and benefits of expressing R-genes are likely to be strongly

dependent on specific environmental circumstances and depend

upon pre-existing growth-defense tradeoffs. Taken together, our

discovery of a core of constitutively expressed R-genes indicates that

the expression and possession of at least some R-genes might be less

costly than anticipated or that their benefits greatly outweigh

their costs.

What is the function of this core of constitutively expressed R-

genes? Brown and Rant (2013) speculate that the constitutive

expression of R-genes might be stimulated by exposure to the

natural microbial communities, since some R-genes were only

induced by pathogens under non-sterile conditions, but not

induced in aseptic (but pathogen-treated) plants. Constitutively

expressed R-genes likely serve as a constant monitor of the plants

intimate cellular environment, contributing to the plant’s ability to

distinguish friend and foe. Plants failing to perceive and distinguish

between beneficial or pathogenic organisms may either permit

colonization by pathogenic organisms or overreact to non-

pathogenic organisms with a defense response. How plants

discriminate between organisms is only partially understood.

However, it is becoming clearer that R-genes may play a role in

this discrimination. For example, Yang et al. (2010) showed that the

species-specific activation of R-genes is essential for establishing

symbiosis between soybeans and nitrogen-fixing bacteria. Another

hypothesis is that this constitutive core serves a dedicated function,

such as a constituent of the plant resistosome (Wang et al., 2019a).

Such genes would be expressed, but these encoded proteins lie in

wait in a repressed state until other host molecules, dedicated to

pathogen detection, activate these proteins.

The class of core, constitutively expressed R-genes constitutes a

relatively small proportion of all putative R-genes in these genomes.

However, it seems plausible that a range of functional diversity

would be advantageous to discriminate between the large diversity

of microbes a plant encounters across its lifetime. While some R-

proteins are known to possess dual recognition of completely

different pathogens (Mi-1 gene in tomatoes for example), it has

been hypothesized that these R-proteins might incur higher fitness

costs compared to ones specific to a more limited set of pathogen

molecules (Gururani et al., 2012; Brown and Rant, 2013). Therefore,

an expansion of a constitutive R-gene repertoire with distinct

recognition functions may be advantageous. This would allow the

plant to mount an optimal pathogen/species specific response. For

example, activation of HRmight be effective to restrict the growth of

biotrophic pathogens which require living host tissue; however

necrotrophic pathogens may actually benefit from the activation

of HR since they feed on dead tissue. Likewise, defense against

pathogenic fungi can be achieved through the activation of

chitinases, but chitinases would be ineffective against organisms

lacking chitin in their cell walls. Furthermore, the diverse repertoire

of core R-genes might reflect differences in how plants perceive

potential invaders. Some R-proteins detect infections by direct

binding of pathogenic effectors (consistent with the gene-for-gene

hypothesis; Flor, 1971); other R-proteins monitor host proteins that

are modified by pathogens (reviewed in Jones and Dangl, 2006). To

cover these different functions, a diverse group of specialized R-

genes is needed.
Frontiers in Plant Science 11
While some R-genes are constitutively expressed, others showed

variable expression across libraries. Only a small proportion of this

variation in expression was affected by treatment with pathogenic

organisms. Instead, this cross-sectional study revealed that many R-

genes showed tissue-specific expression. This mirrors prior studies

in other species reporting tissue-specificity of R-genes including a

transcriptome study in chickpeas (Sharma et al., 2017) as well as for

individual R-genes. For example, CreZ, an R-gene in wheat is only

expressed in the root while the R-gene, CaMi, in peppers is

expressed in flowers, leaves and roots but not in fruits (Chen

et al., 2007; Zhai et al., 2008). Tissue-specific expression of R-

genes might be related to underlying differences of the structures

and functions of these tissues and their regulatory networks.

Obviously, leaves are exposed to wider fluctuations in

temperature and light than roots. Furthermore, leaves and roots

differ fundamentally in their main functions: photosynthesis and

respiration for leaves versus storage and transport for roots.

However, tissue specific R-gene expression may also be driven by

adaptation to the tissue-associated microbiome (and by extension to

specialized pathogens). Since microbes display a high degree of

tissue-specificity, evolution may have favored the selection for

defenses to be deployed where the encounter likely takes place

(Jin et al., 2015; Sapp et al., 2018; Maggini et al., 2019).

About 20% of the R-genes in tomato and potato are predicted to

be targeted by the miR482-family (de Vries et al., 2015). This subset

of R-genes would be predicted to be released from miR482

suppression during pathogen treatment and consequently be up-

regulated (Shivaprasad et al., 2012). However, we did not detect a

significant up-regulation of these predicted R-gene targets in the

presence of pathogens. One explanation for this might be that not

all pathogens down-regulate the microRNA processing machinery.

Furthermore, the failure to detect a pathogen-specific change in

regulation in the subset of R-genes predicted to be targeted by the

miR482 family may be linked to the low relative expression of R-

genes on average compared to other genes in the genome. Detecting

relative expression differences of genes with a low average

expression is more difficult, compared to genes which show a

larger amplitude of expression. Furthermore, repression of R-

genes by miR482 is not exclusively restricted to uninoculated

plants (de Vries et al., 2018). Using 5’ RACE, we detected the

degradation products of three R-genes (Solyc02g036270,

Solyc08g075630, Solyc08g076000) both in the presence and

absence of pathogen treatment. This points to a more general role

of miR482 in gene regulation, independent of pathogen treatment.

Therefore, although modulation of R-gene expression by members

of the miR482 is known to take place in nature, regulation by this

microRNA family is only one of many factors likely influencing R-

gene expression.

Our meta-analysis included a handful of experiments

conducted in parallel on susceptible and resistant cultivars

inoculated with the same pathogen. This made it possible to test

whether the expression profiles of resistant and susceptible cultivars

differed in a unified manner following pathogen treatment.

Although it might be predicted that expression profiles should

differ between resistant and susceptible cultivars, we did not detect

any consistent differences in the R-gene responses between resistant
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and susceptible cultivars. This may be due to the fact that only a

small proportion of genes (or even small differences in gene

expression) may be sufficient to confer isolate-specific resistance

and that these differences, when present, are not shared across

different resistant cultivars. This means that resistant lines do not

express a shared resistance syndrome dictated by a uniform

transcriptional re-programming following pathogen infection.

One of the strengths as well as a limitation of our study is the

fact that such a large diversity of cultivars, pathogen strains and

sampling methods (for example, timepoint or tissue type) were

analyzed. On the one hand, this means that consistent signals or

patterns in the data are reproducible across a wide range of

environments and genotypes. For example, we discovered that a

subset of R-genes appears to be more or less constitutive and

another subset appear to be “off”. With a large number of

datasets created under lab-specific settings and using different

host genotypes and pathogens, these consistent patterns can be

viewed as robust, despite the “noisiness” of the data. On the other

hand, this diversity in datasets poses a problem, because each

experiment was designed with slightly different aims in mind

(different host genetic backgrounds, different pathogen species,

different tissues sampled, different sampling times, etc.). This

made it difficult to unambiguously attribute observed expression

differences to the ultimate underlying cause. We observed that

BioProject itself accounts for a large amount of the variation in

expression. However, BioProjects often differ jointly in a number of

factors including cultivar and the pathogen used. Therefore, when

we detect clear expression differences, it is not obvious which factor

has the greatest influence. This is one motivation for full-factorial

designs, which are currently not available for this combination of

species. Using such a meta-analysis however, one can quickly reveal

which key experiments are missing and which new experiments

could, in conjunction with older work, begin to approach a full-

factorial design. Nevertheless, this meta-analysis has uncovered a

large core of constitutively expressed R-genes and a robust signal of

tissue-specific expression of R-genes.

As a closing remark, we would like to highlight the value of

reassessing existing transcriptome datasets. Each of these datasets

provided valuable insights on their own, but can also contribute

new insights in combined analyses, such as this one. Revisiting

previously collected data increases the overall value of these

individual datasets and can stimulate new ideas. To increase the

probability that future datasets can be analyzed by multiple

scientists, we have assembled a few guidelines based on

our experience.

Recommendations for scientists embarking on new

transcriptome studies on their organisms of interest: 1) In studies

involving stress treatments (biotic or abiotic), it is ideal to sample

the mock treatment (or control) at all the same time points when

the stress-treated individuals are sampled. Some studies only

sampled mock-treated individuals at the first time point, which

limits the ability to pinpoint differential gene regulation over time.

2) For each time point and treatment, include at least three
Frontiers in Plant Science 12
biological replicates. 3) If possible, sample from multiple tissues.

4) Importantly, report details about the library preparation

including which sequencing kits were used, adaptor sequences,

and fragment size, for non-paired end samples. This helps for

processing the data. 5) Include complete information about the

sampled genotypes/isolates. 6) Use consistent, informative names

for sequencing libraries and/or provide a list that allows a new user

to know which libraries are derived from which treatments. 7)

Finally, we observed very good representation of our genes of

interest in datasets with a read volume of at least 30 million high

quality reads. This read volume has also been advocated in previous

reviews (for example, see Stark et al., 2019). We believe that this

handful of recommendations can increase the utility of

transcriptome datasets in the future and will allow for numerous

scientists to test hypotheses and generate new insights by revisiting

existing datasets, as we have demonstrated in our study of global

expression of R-genes in tomato and potato.
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