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Abstract
Motivation: For genotype and haplotype inference, typically, sequencing reads aligned to a reference genome are used. The alignments identify
the genomic origin of the reads and help to infer the absence or presence of sequence variants in the genome. Since long sequencing reads of-
ten come with high rates of systematic sequencing errors, single nucleotides in the reads are not always correctly aligned to the reference ge-
nome, which can thus lead to wrong conclusions about the allele carried by a sequencing read at the variant site. Thus, allele detection is not a
trivial task, especially for single-nucleotide polymorphisms and indels.

Results: To learn the characteristics of sequencing errors, we introduce a method to create an error model in non-variant regions of the genome.
This information is later used to distinguish sequencing errors from alternative alleles in variant regions. We show that our method, k-merald,
improves allele detection accuracy leading to better genotyping performance as compared to the existing WhatsHap implementation using edit-
distance-based allele detection, with a decrease of 18% and 24% in error rate for high-coverage Oxford Nanopore and PacBio CLR sequencing
reads for sample HG002, respectively. We additionally observed a prominent improvement in genotyping performance for sequencing data with
low coverage. For 3� coverage Oxford Nanopore sequencing data, the genotyping error rate reduced from 34% to 31%, corresponding to a 9%
decrease.

Availability and implementation: https://github.com/whatshap/whatshap.

1 Introduction

Genotyping is a process used for detecting the genotypes of an
individual, which further helps in the detection of haplotypes,
a task termed as phasing. These processes are widely used in
studying the genetic aspects of different diseases and genetic
relationships among species. Both genotyping and phasing
typically use the alignment between sequencing reads and a
reference genome. Thus, prior to genotyping, it is important
to determine for each read, whether it carries the reference al-
lele “0” or alternative allele “1” at each of the variant posi-
tions it overlaps. Most commonly, short sequencing reads
from second-generation sequencing technologies, e.g.
Illumina, are used for this purpose because long reads
obtained using third-generation sequencing technologies, e.g.
Oxford Nanopore technology (ONT) and Pacific BioSciences
(PacBio), tend to be more prone to sequencing errors (Zhang
et al. 2020) unless techniques like circular-consensus sequenc-
ing are employed (Wenger et al. 2019). However, long reads
can be much more informative as they can span longer geno-
mic regions and may cover many variant positions and repeti-
tive regions (Rhoads and Au 2015, Ebler et al. 2019).

Over the years, a lot of work has been done to improve
basecalling, a process translating raw ONT signal into a
DNA sequence. Earlier basecallers employed a two-step

process, involving pre-segmentation of raw signals followed
by nucleotide label prediction using hidden Markov models
(David et al. 2017) or recurrent neural networks (Bo�za et al.
2017). Recent years have seen a surge in development of deep
learning-based basecallers, dealing directly with the raw sig-
nals, hence avoiding error propagation caused by wrong seg-
mentation (Zhang et al. 2020). Although state-of-the-art deep
learning-based approaches have led to significant improve-
ment in the basecalling accuracy (Wick et al. 2019), the error
rate for ONT sequencing is still higher than short read se-
quencing: ONT’s Guppy basecaller achieves basecalling accu-
racy in a range from 85% to 95% while Illumina Hiseq has
basecalling accuracy of around 99.9% (Zhang et al. 2020).

Most commonly used read alignment algorithms, such as
BWA (Li 2013), do not take sequences of alternative alleles
into account for alignment. This results in reference bias
(Garrison et al. 2018), and pangenomic approaches have
been proposed to overcome this problem (Computational
Pan-Genomics Consortium 2018, Eizenga et al. 2020, Sirén
et al. 2021, Ebler et al. 2022). Despite these developments,
alignment to a single linear reference genome remain the stan-
dard workflow today. Combined with systematic sequencing
errors (Allhoff et al. 2013, Wenger et al. 2019), this can make
alignments at variant sites unreliable to be used for allele de-
tection, thus commonly resulting in sequencing errors being
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mistaken for an alternative allele. One approach to deal with
alignment errors, e.g. employed by WhatsHap (Patterson
et al. 2015, Martin et al. 2016, Porubsky et al. 2017), is read
re-alignment. The existing implementation of WhatsHap
extracts the read sequence from a variant window, 10 bp up-
stream to 10 bp downstream from the variant position. It then
aligns this read sequence to the corresponding reference se-
quence and to the alternative sequence, produced by inter-
changing reference with the alternative allele at the variant
position. The read is then assigned the allele with lower align-
ment cost and “unknown” in case of equal scores (Martin
et al. 2016). The alignment costs are calculated based on edit
distance between the sequences. While this technique outper-
forms the allele detection methods without re-alignment, it
does not take systematic sequencing errors into account.
Tools like Clair3 (Zheng et al. 2022), DeepVariant (Poplin
et al. 2018), and PEPPER (Shafin et al. 2021) perform variant
calling and subsequent genotyping of the discovered variants.
However, to our knowledge, apart from WhatsHap
(Patterson et al. 2015, Martin et al. 2016, Porubsky et al.
2017), there are presently no tools designed specifically for
long-read based genotyping of a set of variants given as input.

In this study, we propose a new approach, k-merald, for al-
lele detection which is based on the alignment of k-mers from
reads to k-mers from the reference and alternative sequence
where alignment costs are based on a learned sequencing er-
ror model. k-merald, as the name indicates, works in k-mer
space instead of at the single nucleotide level since k-mers
help to capture the genomic context in which the systematic
errors, specific to a sequencing technology, arise. This ap-
proach is based on the idea that genomic regions without any
variation can be used to learn the characteristics of sequenc-
ing errors. This error model can then be employed to distin-
guish an allelic variant from a sequencing error at the variant
position. Our method first traverses all confident non-variant
regions of the genome, recording the sequence and count of
the read k-mers aligning to each reference k-mer (reference-
read k-mer pairs). These k-mer pairs include cases where the
two k-mers match, indicating an error-free position, or where
they mismatch, indicating a sequencing error. The counts of
k-mer pairs are then used to determine the probability for ob-
serving each reference-read k-mer pair across the whole ge-
nome. We introduce a new approach for global sequence
alignment in k-mer space. The read, reference, and alternative
sequences in each variant window (excluded during the train-
ing phase) are split into k-mers and the strings of k-mers are
then aligned. Instead of using a fixed cost value, k-mer mis-
matches are penalized using the learned error model, i.e.
k-mer mismatches that represent common sequencing errors
can be allowed in the alignment at a low cost. The sequencing
read is then assigned to the allele with the lowest alignment
cost. k-merald has been incorporated into the existing
WhatsHap implementation and is available as an alternative
to the edit-distance-based allele detection.

2 Methods

2.1 Training the model

As input, we expect a list of candidate variants. In the first step,
as shown in Fig. 1A, the sequencing error profile is constructed
from non-variant regions of the genome, i.e. regions without
candidate variants where the sequencing reads and reference se-
quence would be identical if sequencing errors were absent. Any

changes (e.g. insertions, deletions, substitutions) in the read
sequences mapping to these regions can give an indication of the
nature of sequencing errors inherent to the sequencing technique
that generated the data. Let F be the reference sequence exclud-
ing all variant windows, where each variant window, wv, is de-
fined as an interval containing the complete variant v and a
flanking region of a fixed number of w base pairs on each side.
The training data consists of F and the set of sequencing reads
aligned to it, D. Suppose f denotes a k-mer belonging to F, while,
d denotes a k-mer belonging to a sequencing read from D.
During model training, described in Algorithm 1, F is traversed
from left to right while maintaining, for each f, the count of each
mapping d using the mapping positions from the input read
alignments. For extracting the reference-read k-mer combina-
tions ðf ;dÞ, the read sequence is considered and not the align-
ment, e.g. if the read k-mer AC-GTCT is aligned to the reference
k-mer ACTGTCT, the respective ðf ;dÞ would be ðACTGTCT;
ACGTCT�Þ, where * is the nucleotide following ACGTCT in the
read sequence. These counts of k-mer combinations ðf ; dÞ are
then aggregated across all occurrences of each reference k-mer,
to obtain a unique matrix M with reference k-mers f shown in
columns (j) and read k-mers d represented in rows (i). An entry
Mij, thus shows the number of times the read k-mer di aligned
to the reference k-mer fj across the whole length of the reference
sequence F. Although there are 4k possible sequence combina-
tions for a k-mer of length k, many of these combinations are
not observed. The ðf ;dÞ k-mer combinations that are not ob-
served across the whole length of F are each given a pseudo-
count value �. Instead of representing a presence and absence by
“0” and “1,” respectively, a pseudocount value � implies that
these k-mer combinations can theoretically exist, but have a low
probability of occurrence based on our training data. For each
reference k-mer f, we define Kf as the set of all k-mers d aligned
to f, i.e. the pair ðf ;dÞ has an entry larger or equal to 1 in our
matrix M. The sum of individual counts over all of these pairs is
denoted by tf . The matrix of counts M, is then converted into a
matrix P, storing the probability of observing each possible
reference-read k-mer pair ðf ;dÞ. So, Pij represents the probabil-
ity of observing a k-mer combination ðfj;diÞ and is calculated as
follows:

Pij ¼
Mij

tfj
þ ð4k � jKfj

jÞ � �

Table 1 provides an overview of the notations used in this
paper. In our implementation, the input data required for this
training phase is provided as a VCF file with variant posi-
tions, a reference sequence in a FASTA file and a BAM or
SAM file containing sequencing reads aligned to the reference
sequence. This model training step can be performed using
the “learn” module in WhatsHap.

Problem 1 (Allele detection). Let V be a set of all variant
positions across the reference genome, let v 2 V be a
variant position with alleles a1; a2; . . . ; an, and let Bv

be the set of sequencing reads aligned to v. Determine
avb

for each sequencing read b 2 B, where avb
denotes

the allele carried by b at position v.

Definition 1 (Minimum cost allele). Let bv be the read
sequence segment aligned to a variant window wv, i.e.
the read b sequence from the window around variant v

2 Ashraf et al.
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and let Q ¼ ½q1; . . . :; qn� be the set of all possible allele
sequences belonging to wv, i.e. q1 corresponds to wv

sequence with reference allele at v and q2; . . . ;qn to the
sequences with alternative alleles at v. If dðx; yÞ
denotes the alignment cost for two sequences x and y,
then

avb
¼ arg min

i2f1;...;ng
dðb;qiÞ

where, avb
denotes the allele carried by b at position v.

2.2 Alignment algorithm

Our next goal is to use the probability matrix P, which represents
our model of sequencing errors, to define an alignment cost
dðx; yÞ and, based on this, to determine the minimum cost allele
(Definition 1). Therefore, for a given variant position, we seek to
determine whether an observed sequencing read is more likely to
have originated from the reference allele or from one of the alter-
native alleles. In this phase, we only deal with variant windows,
i.e. the regions that were not considered in the model training
phase. The read sequences from each wv are mapped to both the
reference and alternative sequence of the respective wv, as shown
in Fig. 1B. The reference sequence for each wv is extracted

directly from the reference genome, while the alternative se-
quence is obtained by replacing the reference allele with the alter-
native allele at the variant position. For alignment, we developed
a modified version of the Needleman–Wunsch algorithm
(Needleman and Wunsch 1970). This modified algorithm, de-
scribed formally in Algorithm 2, performs k-mer-based compari-
sons (Fig. 1C) instead of the conventional single-character based
sequence comparison. Each sequence is first converted into a
string of consecutive k-mers and the resulting strings are then
aligned by comparing respective k-mers. The algorithm uses
“phred-scaled” probability scores ð�10 � logðprobabilityÞÞ for
alignment cost calculation, where probability values are obtained
from the matrix P learned from the training phase. This cost
model is used to penalize mismatches when the reference k-mer
and the read k-mer are not identical. The mismatching k-mer
pairs frequently observed across the non-variant positions, F, due
to systematic sequencing errors, hence having a high probability
in matrix P, get a lower penalty as compared to those seen occa-
sionally due to sporadic sequencing errors. For gaps, the proba-
bility value can be specified by the user as a parameter, which we
set to 10�4 in this study, i.e. a cost value of “40.”

In summary, by design, the algorithm ensures that a read
carrying a sequencing error aligns to the reference with a cost
lower than to the alternative allele, thus minimizing the risk
of a sequencing error being mistaken for a variant allele. The

Figure 1. (A) Model training: counts for all the unique reference-read k-mer pairs ðf ; dÞ in non-variant regions of the genome are recorded. These counts

are then used to construct a matrix storing for each unique reference k-mer f, the probability of seeing each read k-mer d. (B) Allele detection: a variant

window, wv , containing the complete variant v and a flanking region of a fixed number of w base pairs on each side is considered. Both reference and

read sequences inside wv are converted into k-mers. (C) Alignment: strings of consecutive k-mers from each read sequence are aligned individually to the

k-mer strings obtained from the reference and alternative allelic sequences. A global alignment of the two strings of k-mers is done in a similar fashion as

global alignment of two base-pair sequences while using phred scores of probabilities, stored during model training, as alignment costs.
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read is assigned the allele resulting in lowest alignment cost.
However, equal alignment costs indicate that the algorithm
was unable to make an allele detection based on the align-
ment. In case of multiallelic variants, the alignment is per-
formed using each alternative sequence. k-merald has been
implemented inside WhatsHap and can be used as an alterna-
tive approach for allele detection in (i) haplotagging, the pro-
cess to label each read with a haplotype of origin, (ii)
genotyping, and (iii) phasing.

3 Results

3.1 Sequencing error profiles

We first visualized the sequencing error profiles for Oxford
Nanopore, PacBio CLR, and PacBio HiFi, respectively. These
profiles were generated using sequencing reads from sample

HG002 aligned to human reference genome GRCh38. For
comparison, we generated simulated long-read data with uni-
form error distribution with an error rate of 0.05, 0.1, and
0.15, each with an average read length of 20 kb and 35�
mean coverage across available positions. The rate of muta-
tions was set to 0.0010, of which 10% are indels. The aligned
simulated reads and simulated variants were used for genera-
tion of the error profiles as described in Algorithm 1. That is,
this process also captures any alignment artifacts that might
be present. Figure 2 shows the error profiles generated by set-
ting k¼ 7 and w¼ 25. The error rate for each reference k-mer
represents the sum of probabilities of observing each k-mer
pair ðf ;dÞ such that d 6¼ f . Figure 2 shows that in contrast to
the error rate pattern observed for data with uniform base-
line error rate, the error rate distribution differs across the se-
quencing technologies and is non-uniform for each of them. A
closer look at the 25 most erroneous k-mers for ONT, PacBio
CLR, and PacBio HiFi, each, reveals that the nature of errone-
ous k-mers also differs across the sequencing technologies
(Fig. 3). The erroneous k-mers from PacBio CLR seem to be
more GC-rich while ONT erroneous k-mers appear to be AT
rich. The fact that these error distributions are not uniform
and distinct from one another supports our hypothesis that
considering technology-specific error profiles can help im-
prove allele detection accuracy.

GIAB variant callsets come with a designation of high con-
fidence regions in which the callsets can be considered com-
plete. However, for the remainder of the genome, they are less
complete. To assess the impact of missing variant positions on
the error profiles, we evaluated the genotyping performance
across error models learned using multiple variant callsets.
Each of these callsets contained only a percentage of variants,
ranging from 1% to 95%, from the full GIAB benchmark
callset. We observed that the genotyping error rates as shown
in Supplementary Fig. S1 remain almost unaffected even after
excluding a large fraction of variant positions, hence proving
the robustness of our training method.

Algorithm 1. Model training

Input:

1: The complete reference sequence, R

2: Aligned sequencing reads, B

3: Variants for which allele detection is to be performed, V

Output: M

4: counter; i ( 0

5: v ( V ½counter�
6: while i < jRj do

7: if i >¼ v �w & i <¼ v þw then

8: do nothing

9: else if i > v þw then

10: counter( counterþ 1

11: v ( V ½counter�
12: else

13: kR ( R½i; i þ k � 1�
14: for b 2 fb0 2 Bj alignment of b0 contains R½i �g do

15: kb ( b½j ; j þ k � 1�jb½j � aligns to R[i ]

16: M½ðkb ; kRÞ� (M½ðkb ; kRÞ� þ 1

17: end for

18: end if

19: i ( i þ 1

20: end while

21: return M

Table 1. Overview of used notations.

Notation Definition

R The complete reference sequence
B Sequencing reads aligned to R
V A set of variants for which allele detection is to be

performed
wv A window of fixed number of w base pairs on each side

of v 2 V
F R excluding wv for all v 2 V
D B excluding parts of read sequences mapping to a wv for

all v 2 V
f A k-mer belonging to F
d A k-mer belonging to D
M A matrix recording the number of occurrences of each

reference-read k-mer pair, ðf ; dÞ
P A matrix recording the probability of occurrence of each

reference-read k-mer pair, ðf ; dÞ

Algorithm 2. k-mer alignment

Input:

1: List of k-mers from the target sequence, S1

2: List of k-mers from the query sequence, S2

3: Gap penalty, Cgap

4: P

Output: Optimal cost for aligning S1 to S2

5: for i  0 to lengthðS1Þ do

6: DP ½i ;0� ( Cgap � i
7: end for

8: for j  0 to lengthðS2Þ do

9: DP ½0; j� ( Cgap � j
10: end for

11: for i  1 to lengthðS1Þ do

12: for j  1 to lengthðS2Þ do

13: Cmatch ( DP ½i � 1�½j � 1� þ PS1½i�1�;S2½j�1�

14: Cdelete ( DP ½i � 1�½j � þ Cgap

15: Cinsert ( DP ½i �½j � 1� þ Cgap

16: DP ½i�½j � ( minðCmatch;Cdelete;CinsertÞ
17: end for

18: end for

19: return DP ½lengthðS1Þ; lengthðS2Þ�
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3.2 Comparison to WhatsHap genotyping

Correct allele detection from individual reads plays a pivotal
role in genotyping. So, we compared our genotyping results
with those obtained using WhatsHap’s original implementa-
tion. We based our evaluation on two Genome in a Bottle
(GIAB) samples, HG001 (NA12878) and HG002
(NA24385). We used whatshap genotype for genotyping
the GIAB v4.2.1 high confidence benchmark callsets (Wagner
et al. 2022). We performed comparisons using various cover-
ages of ONT ultra-long, PacBio CLR and PacBio HiFi se-
quencing reads. To evaluate genotyping performance, we
calculated genotype concordance, i.e. the percentage of var-
iants genotyped correctly. Additionally, we used RTG Tools
“vcfeval” (Cleary et al. 2015) to calculate precision, sensitiv-
ity, and F1 score for the predicted genotypes. Finally, we used
GIAB v3.0 stratifications to compare the genotyping perfor-
mance in difficult-to-map and low-complexity regions of the
genome.

We first evaluated the genotyping performance using ONT
sequencing reads for GIAB samples HG002 and HG001. We
used a k-mer value of k¼ 7, variant window w¼ 25 and � ¼
0.15 for the genotyping results presented in this study. A com-
parison of genotyping error rates across multiple values of k
is shown in Supplementary Fig. S2. Considering single-
nucleotide polymorphisms (SNPs) and indels together, we ob-
served that genotyping using k-merald for allele detection
shows an improved performance in comparison to
WhatsHap’s genotyping results based on the conventional
edit-distance-based allele detection approach. For 54�
HG002 ONT sequencing reads, the genotype concordance
improved from 95.22% to 96.08%, indicating a 18.12% de-
crease in error rate (Fig. 4). Precision, sensitivity, and F1 score
values also depict this improvement (Fig. 4A). To assess the
robustness, we also evaluated the genotyping performance for
sample HG001, using the error profiles trained using ONT se-
quencing data for HG002. A similar trend was observed for
the 34� HG001 ONT sequencing reads, with genotype con-
cordance improving from 92.78% to 94.18% indicating a
19.41% decrease in error rate (Fig. 4A). This consistent im-
provement in genotyping performance seen while using differ-
ent samples for training and testing confirms that the
characteristics of error profiles captured by k-merald are tech-
nology specific, instead of being sample specific. Thus, an er-
ror profile generated using only one sample can be readily

used for genotyping multiple samples with sequencing data
generated from the same source.
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CLR, and PacBio HiFi, individually.
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Furthermore, we evaluated the genotyping performance in-
dividually for SNPs and indels. For HG001, we observed
55.07% decrease in error rate for SNPs and 9.52% for indels.
For HG002, the percentage decrease was 47.42% and
13.94%, for SNPs and indels, respectively (Fig. 4B).

We hypothesized that using our sequencing error profiles
would also improve the process of estimating genotype qual-
ity values, particularly for indels. That is, the method is better
able to assess the reliability of genotypes and to express it as a
genotype quality provided along with the genotypes, which is
potentially beneficial for downstream applications. To evalu-
ate this, we compared the genotype quality between k-merald
and edit-distance-based genotypes for GIAB v4.2.1 whole-
genome high confidence indels, genotyped using 54� ONT

data for sample HG002. We observed that the correct k-mer-
ald genotypes tend to be of higher genotype quality as com-
pared to the correct genotypes obtained using WhatsHap’s
genotyping using edit-distance-based allele detection. In total,
67% of the correct k-merald genotypes exhibited a genotype
quality of at least 200, while this percentage was 60% for
WhatsHap genotypes. For all genotypes with a quality of at
least 200, the percentage of correct genotypes was 89% for k-
merald while 85% for WhatsHap (Supplementary Fig. S3).

We reasoned that the negative impact of sequencing errors
on allele detection might become even more prominent at low
coverage, and therefore evaluated the genotype performance
across multiple coverages of sequencing reads. For HG002,
we downsampled the Oxford Nanopore data to coverages

Figure 4. (A) Genotyping performance comparison between WhatsHap with conventional edit-distance-based allele detection and k-merald using ONT

sequencing reads for sample HG001 and HG002. (B) Genotyping performance comparison for SNPs and indels, individually, using ONT sequencing reads.

(C) Genotyping performance comparison across multiple coverages of ONT sequencing reads. (D) Genotyping performance comparison across multiple

genome stratifications using ONT sequencing reads for sample HG002. (E) Genotyping performance comparison, individually for ONT, PacBio CLR, and

PacBio HiFi data for sample HG002.
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ranging from 3� to 54�. For HG001, we downsampled the
Oxford Nanopore data to coverages ranging from 3� to
34�. For both these samples, we observed, in line with our
hypothesis, that although our new approach outperforms the
conventional allele detection algorithm at all coverages, the
absolute difference becomes more pronounced at lower cover-
ages (Fig. 4C).

Additionally, we compared the genotyping performance in
low mappability segmental duplications as well as low com-
plexity regions like tandem repeats (dinucleotide, trinucleo-
tide and quadnucleotide STRs, and simple repeats) and
homoploymers (perfect homopolymers >6 bp and imperfect
homopolymers >10 bp). We observed that across all these
regions, k-merald gives better genotyping performance than
the conventional edit-distance-based genotyping with 15%
decrease in error rate for tandem repeats and homopolymers
and 18% for segmental duplications (Fig. 4D).

Finally, to evaluate performance across different sequenc-
ing platforms, we evaluated the results obtained by using
PacBio CLR and PacBio HiFi sequencing reads. For 20�
HG002 PacBio CLR sequencing reads, the genotype concor-
dance improved from 96.32% to 97.24% indicating a 24%
decrease in error rate. For 35� HG002 PacBio HiFi sequenc-
ing reads, we observed both approaches to show very similar
genotyping performance (Table 2 and Fig. 4E). This supports
the hypothesis that our method provides a particular advan-
tage for more error-prone sequencing reads.

For 54� Oxford Nanopore reads, generating genome-wide
error profile took about 145 CPU hours collectively. Whole-
genome genotyping collectively took about 29 single-core
CPU hours using whatshap genotype with conventional
edit-distance-based allele detection, while about 139 single-
core CPU hours using whatshap genotype with k-merald.
We attribute the increased running time to the more involved
bookkeeping for working with k-mers in Algorithm 2 com-
pared to the single-nucleotide sequence alignment. However,
we note that the steps were performed in parallel in a
chromosome-wise manner. Given the running time of read
alignment that happens before genotyping, we do not con-
sider this increased runtime to be the main bottleneck in proc-
essing a long read dataset.

3.3 Comparison to PEPPER

We aimed to compare our approach to the state-of-the-art
tool PEPPER (Shafin et al. 2021), which detects candidate
variants, genotypes, and phases them in an integrated work-
flow. Comparing a genotyper’s performance to such an inte-
grated variant caller is not a straight-forward process. To
avoid a skewed comparison, we performed this comparison in
two ways. Firstly, we computed precision, recall, and F1 score

for all the variants called/genotyped by each method in their
respective default mode. That is, our method is provided with
the set of all variants to be genotyped as input, while PEPPER
runs both discovery and genotyping. We performed this com-
parison using multiple coverages of Oxford Nanopore reads
for sample HG001, while using the error profiles for HG002.
For all these measures, we observed that our method per-
formed better as compared to PEPPER at all coverages
(Fig. 5A–C). However, it should be noted that PEPPER had to
perform the additional step of variant discovery before geno-
typing. Therefore, this evaluation method could potentially
favor the genotyper. To address this, we additionally com-
puted genotype concordance only for the variants common
between GIAB v4.2.1 callset and the PEPPER callset. Even
though this method of comparison favors PEPPER, as we re-
strict our evaluation only to the variants that could be called
by the variant caller, we observed that our method still gives
lower error rate as compared to PEPPER for low coverage
data (Fig. 5D).

4 Discussion

Correct detection of alleles carried by sequencing reads is vital
for variant genotyping and haplotype phasing (Glusman et al.
2014). In comparison to short reads, long reads span larger
regions, hence providing more information. However, se-
quencing errors generated by long-read sequencing technolo-
gies pose a challenge for allele detection. The sequencing error
profiles vary across multiple sequencing technologies such as
ONT, PacBio CLR, and PacBio HiFi. That includes different
error distributions as well as different characteristics of se-
quencing errors (Fig. 2). The conventional allele detection
methods are mostly based on edit distance, which penalizes
all sequence mismatches equally. We hypothesized that in-
stead of fixed costs, using technology-specific sequencing er-
ror profiles for determining alignment costs can provide more
insights to distinguish a variant allele from a sequencing error,
hence improving the allele detection accuracy. To address
this, we proposed a method that generates technology-specific
k-mer-based error profiles by traversing aligned sequencing
reads in the non-variant regions of the genome. We also devel-
oped a k-mer-based alternative to global sequence alignment
that uses the error profiles for alignment cost calculation.
This method, instead of aligning the sequences of base pairs,
aligns strings of consecutive k-mers generated from the re-
spective sequences.

We observed that WhatsHap genotyping using k-merald
results in better genotyping performance as compared to the
existing WhatsHap implementation, which detects alleles us-
ing edit-distance-based sequence alignment. We observed
18% and 24% decrease in genotyping error rate for 54� ONT
and 20� PacBio CLR sequencing reads, respectively. The gen-
otyping performance, however, was similar for PacBio HiFi
sequencing data potentially because of their lower error rate
as compared to ONT and PacBio CLR. While evaluating the
genotyping performance individually, we observed a 47% de-
crease in error rate for SNPs while 14% for indels, for sample
HG002. A comparison of genotyping performance across
multiple coverages of ONT data revealed that the improve-
ment in genotyping performance shown by our new approach
becomes even more prominent at low coverages.

At present, ONT is the most cost-effective long-read se-
quencing platform in terms of costs per sequenced base pair.

Table 2. Genotyping performance for HG002.

GT concordance
(%)

Precision
(%)

Sensitivity
(%)

F1 score
(%)

ONT-UL
WhatsHap 95.22 93.57 94.34 93.95
k-merald 96.08 97.46 95.19 96.31

PacBio CLR
WhatsHap 96.32 97.65 93.97 95.78
k-merald 97.24 97.89 94.90 96.37

PacBio HiFi
WhatsHap 99.70 99.75 98.77 99.26
k-merald 99.67 99.78 98.74 99.26
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But this comes at the disadvantage of increased and more sys-
tematic error profiles. Our method provides substantial
improvements in allele detection in order to push genotyping
performance to its limits. Of note, the use of error models
trained for a given sequencing dataset provides a way to take
technology-specific differences into account when computing
genotype likelihoods, hence allowing us to quantify uncer-
tainty in a more informed way. This is reflected in our results
showing that variants genotyped with high genotype quality
(GQ) above 200 are more strongly enriched for correct geno-
types when using k-merald.

Our training procedure exploits the similarity of a se-
quenced sample and the reference genome by using variant-
free regions for training. In this way, our model can be readily
retrained even on a single dataset, which potentially allows it
to adapt to subtle differences such as version of the sequenc-
ing chemistry and other batch effects. Because the learning
procedure is technology agnostic, we anticipate that our
method can readily be applied to future long read data types.

Supplementary data

Supplementary data are available at Bioinformatics Advances
online.

Software and Data availability

Links to all the sequencing data used in this study can be found in
the Data availability section in the Supplementary Data. The
source code is available at https://github.com/whatshap/whatshap.
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