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levodopa medication
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Introduction: Parkinson’s disease (PD) is a neurodegenerative disorder affecting

the whole brain, leading to several motor and non-motor symptoms. In the past,

it has been shown that PD alters resting state networks (RSN) in the brain. These

networks are usually derived from fMRI BOLD signals. This study investigated

RSN changes in PD patients based on maximum phase-amplitude coupling (PAC)

throughout the cortex. We also tested the hypothesis that levodopa medication

shifts network activity back toward a healthy state.

Methods: We recorded 23 PD patients and 24 healthy age-matched participants

for 30 min at rest with magnetoencephalography (MEG). PD patients were

measured once in the dopaminergic medication ON and once in the medication

OFF state. A T1-MRI brain scan was acquired from each participant for source

reconstruction. After correcting the data for artifacts and performing source

reconstruction using a linearly constrained minimum variance beamformer, we

extracted visual, sensorimotor (SMN), and frontal RSNs based on PAC.

Results: We found significant changes in all networks between healthy

participants and PD patients in the medication OFF state. Levodopa had a

significant effect on the SMN but not on the other networks. There was no

significant change in the optimal PAC coupling frequencies between healthy

participants and PD patients.

Discussion: Our results suggest that RSNs, based on PAC in different parts of

the cortex, are altered in PD patients. Furthermore, levodopa significantly affects

the SMN, reflecting the clinical alleviation of motor symptoms and leading to a

network normalization compared to healthy controls.

KEYWORDS

Parkinson’s disease, resting state networks, magnetoencephalography, phase-amplitude
coupling, levodopa

1. Introduction

Parkinson’s disease (PD) leads to degeneration and functional impairment throughout
the brain, causing both motor and non-motor symptoms (Lang and Lozano, 1998). This
widespread dysfunction also affects different cortical networks that make up short and long-
range communication throughout the brain (Cerasa et al., 2016). The key neuropathological
characteristic of PD is the decline of dopaminergic neurons (Mullin and Schapira, 2015),
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and the resulting dopamine deficiency in basal ganglia could be
linked to weaker connectivity within resting state networks (RSN)
such as the Default Mode Network (DMN) (Tahmasian et al.,
2017). A single measurement can be used to obtain RSN, and
various functional networks can be determined, including motor,
vision, emotional control, and attention (Yeo et al., 2011). Since
the neural impairments and clinical representation in PD also
involve different functional systems, analyses of RSN are suitable
to determine PD-relevant changes.

In the literature, fMRI imaging is seen as the “gold standard”
for identifying these RSNs in individuals (Biswal et al., 1995).
For some time, data-driven approaches for RSN detection
have been proposed for magnetoencephalography (MEG) and
electroencephalography (EEG) data, showing a robust correlation
with fMRI networks (Brookes et al., 2011; Florin and Baillet,
2015). In addition, Schneider et al. (2020) recently found that
RSNs derived from scalp-EEG using a combination of amplitude
envelope and independent component analysis (Envelope-ICA)
(Brookes et al., 2011) are altered in PD patients and sensitive to
levodopa medication (Schneider et al., 2020).

Here we investigate these network alterations further using
instead of Envelope-ICA, an approach based on phase-amplitude
coupling (PAC) (Florin and Baillet, 2015). With MEG, we reach
a higher spatial resolution than with EEG, while deriving cortical
networks from PAC produces networks more closely resembling
those from fMRI (Pelzer et al., 2021). Furthermore, Swann et al.
(2015) and De Hemptinne et al. (2013) showed that PAC is
elevated in PD patients without medication compared to both
healthy controls (HC) and PD patients with medication over
the sensorimotor cortex. In addition, the decrease in PAC after
levodopa administration is correlated with the improvement of
bradykinesia-related subitems in the Unified Parkinson’s Disease
Rating Scale motor (MDS-UPDRS-III) score (Miller et al., 2019).
PAC was, therefore, recently proposed as a possible biomarker
of the parkinsonian state (Miller et al., 2019), establishing a link
between neuroscientific research and clinical application. In PD,
PAC is modulated, especially within beta, as the low-frequency
component of the PAC (De Hemptinne et al., 2013; Swann et al.,
2015). However, these beta oscillations have a non-sinusoidal
shape, which interferes with PAC estimation (Cole and Voytek,
2017).

In this study, we compared well-matched groups of PD patients
with HC. PD patients were measured with and without medication
to investigate whether PAC-RSNs are altered in PD and whether
levodopa has a normalizing effect on these networks, as levodopa
leads to symptom relief in PD. We also hypothesize that differences
will be evident in different functional RSN, as PD patients
have both motor and non-motor symptoms (Przedborski, 2017).
We quantified the changes in cortical activation using jackknife
statistics.

2. Materials and methods

2.1. Participants

We recorded 28 PD patients. Inclusion criteria were clinically
confirmed PD with positive motor response to levodopa or

apomorphine and age ranging between 40 and 70 years, and
exclusion criteria were any other severe neurological or psychiatric
disease, a Parkinson-plus-syndrome as well as severe frontal
executive dysfunction and hypokinetic-rigid movement disorders.
Patients had been diagnosed with PD and were selected for DBS
treatment within the nucleus subthalamicus according to the
guidelines of the German Society for Neurology. Furthermore,
patients were not selectively chosen for a phenotype, but patients
with severe head tremor were excluded because it affects the quality
of measurement. From the originally 28 patients, five patients
were excluded because medication OFF and/or ON data quality
was not sufficient for further analysis due to motion artifacts or
the recordings yielded less than 10 min of usable MEG data per
condition. We used the MDS-UPDRS-III motor score to assess
motor dysfunction (Goetz et al., 2008) and levodopa response
based on the change in the MDS-UPDRS-III motor score. The
MDS-UPDRS-III score was obtained on the day of the MEG-
measurement.

For the HC group, we recruited 25 participants in the
age between 40 and 70 years, which were not regularly
taking medication influencing the central nervous system. One
participant could not be included in the study due to excessive
motion artifacts.

All participants completed a Beck Depression Inventory (BDI-
II) test to screen for depression and the mini-mental status test
(MMSE) (Folstein et al., 1975) to assess cognitive abilities. Of the
HC, 23 were right-handed (1 left). In the PD group, 22 subjects were
right-handed (1 both) according to the Edinburgh Handedness
Inventory (EHI) (Oldfield, 1971). For detailed descriptive statistics,
see Table 1.

TABLE 1 Descriptive statistics.

Control (n = 24) PD (n = 23)

Age (years) 63.2 ± 5.1 60.2 ± 7.9

Gender Female: 8
Male: 16

Female: 7
Male: 16

MMSE (points) 29.6 ± 0.6 28.7 ± 1.6

BDI-II (points) 4.3 ± 4.1 11.7 ± 7.9

EHI score (points) 73.5 ± 32.5 75.4 ± 25.1

Levodopa dosage (mg) – 169.0 ± 37.0

Disease duration (years) – 7.0 ± 3.9

MDS-UPDRS-III score OFF
(points)

– 36.0 ± 11.0

MDS-UPDRS-III score ON
(points)

– 21.6 ± 9.6

MDS-UPDRS-III
improvement (off-on)
(points) (percentage)

– 14.4 ± 8.4
40.8 ± 18.9

Number of PD patients with
dopamine agonists

– 9

L-dopa equivalent dose
(LEDD) for dopamine
agonists (mg)

– 62.7 ± 112.9

Descriptive statistics of study groups. Values are referring to the mean ± standard deviation.
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All participants gave written consent to participate in the
study. The study was approved by the Local Ethics Committee
(study no. 5608R) and conducted in accordance with the
Declaration of Helsinki.

2.2. MEG recording

Participants were seated in a magnetically shielded room. MEG
measurements were done with a 306-channel Elekta system (Elekta
Vectorview, Elekta Neuromag, Finland) at the University Clinic
in Düsseldorf.

In addition to the MEG signals, we recorded
electrocardiography, electrooculography, and pupil diameter
(iView X 2.2, SensoMotoric Instruments, Teltow, Germany) in
order to identify and correct artifacts during data preprocessing.

At the beginning of every MEG session, four head position
indicator coils were placed on the patient’s head, and their position
was digitized using the Polhemus system (Polhemus Isotrack,
Colchester, CT, USA). In addition, the fiducial points (nasion,
left preauricular, and right preauricular) and the participant’s
head surface were digitized using the same system to allow for
better registration of the head position within the MEG and
the participant’s MRI. Before each MEG recording block, the
participant’s head position inside the MEG helmet was registered
using the four coils.

For each participant, three blocks of 10 min of eyes-
open resting state data per condition were recorded with
a sampling rate of 2,400 Hz, a lowpass filter of 800 Hz,
and DC correction. Recordings were performed in a seated
position, while a cardboard fixation cross was presented to
limit eye movement and visual attention bias. After each 10-
min section, the participant had the opportunity to take a
break to reduce potential fatigue. Additionally, 5 min of empty
room data were acquired for each MEG session on the same
day. To ensure an OFF medication state for the patient’s
measurement, oral PD medication was discontinued at least
12 h before the start of the measurement. For the following
ON block, one and a half times the morning levodopa dose
was given as fast-acting soluble levodopa. To ensure a stable
ON state, we waited until clinical improvement occurred. Two
patients that were present in both PD groups were measured
in “best medical on,” meaning the patients took their regular
dopaminergic medication and were measured at the time of
maximal clinical effect.

For the PD patients, the 3T T1-MRIs, which were obtained
as part of the clinical routine after the MEG, were used. For
HC, T1-MRIs were acquired in the following days or weeks
after the MEG measurement (MAGNETOM Prisma, Siemens
Healthcare, Erlangen, Germany; 3 Tesla). These T1-MRIs were
used to reconstruct the cortical surface of each participant with
FreeSurfer (Dale et al., 1999).

2.3. Data preprocessing

Data analysis was performed with the Matlab-based
(PRID:SCR_001622; version R2019a; The MathWorks, Inc.,

Natick, MA, USA) Brainstorm software (RRID:SCR_001761;
Tadel et al., 2011), which is documented and freely available for
download online under the GNU general public license.1

All recordings have been visually checked by at least one
researcher; in case of low data quality (such as excessive
noise or noise that could not be removed using the methods
mentioned below), the data was reviewed independently by
another researcher to obtain a consensus on the usability of
the data. For all recordings the signal-space projectors (SSP)
provided by the Neuromag system were applied to reduce
the environmental noise. Frequently occurring artifacts such
as eye-blinks and cardiovascular artifacts were removed using
Brainstorms built-in SSP functions (Uusitalo and Ilmoniemi, 1997).
Movement and other artifacts that could not be cleaned with
SSPs were removed by excluding these parts of the recording
from further processing. In the case that artifacts appeared
mainly in one MEG-channel, the MEG-channel in question
was removed. On average, 10.1 ± 5.2% of the MEG-channels
were removed per run. If there were too many artifacts in
one of the individual measurement blocks that could not be
removed from the data (e.g., jumps in the MEG sensor or head
movement), then this block was completely excluded from further
analysis.

Line noise in a range from 50 to 600 Hz with 50 Hz steps was
removed using a notch filter. After artifact removal, the data were
resampled to 1,000 Hz for the following steps.

2.4. Source reconstruction

We used the overlapping spheres head model available in
Brainstorm (Huang et al., 1999). Source reconstruction was done
inside Brainstorm using a linearly constrained minimum variance
beamformer (Van Veen et al., 1997) on the participant’s individual
cortex surface obtained from FreeSurfer at a resolution of 15,002
vertices.

2.5. megPAC calculation

For the extraction of RSNs, we used the method from Florin
and Baillet (2015). All source data for a participant (and in the case
of patients for each medication state separately) were concatenated
in time. PAC between the low frequencies from 2 to 30 Hz and
the high frequencies from 80 to 150 Hz was calculated for each
source time series using the method from Özkurt and Schnitzler
(2011). Based on this, the frequency pair with the maximal PAC
value was determined and used to extract the megPAC time
series, which is the amplitude of the corresponding high-frequency
signal interpolated between the peaks and the troughs of the low-
frequency signal [for details on obtaining the megPAC time series
see Florin and Baillet (2015)]. This was done for each vertex in
the individually reconstructed cortical source space and down-
sampled to 10 Hz. We then used Brainstorm’s built-in methods
to project these individual datasets on the ICBM152 standard

1 http://neuroimage.usc.edu/brainstorm
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brain (Fonov et al., 2011) and applied a spatial smoothing filter
using Brainstorm’s processing pipeline of 7 mm full width at half
maximum to the cortex surface. We then calculated the correlation
between all cortical time series concatenated across participants.
The cortical RSNs were then extracted using a singular value
decomposition after a dimensionality reduction on the correlation
matrix (see Florin and Baillet, 2015). We also performed the same
analysis on simulated Gaussian noise data, and the first component
was used as a projector to control the noise (see Florin and
Baillet, 2015). The resulting principal modes were cortical maps
with values between 0 and 1, which we will refer to as coupling
strength.

2.6. Group network comparison

To compare the RSNs between HC, PD-ON, and PD-OFF, we
used a jackknife approach (Stute, 1996; Efron and Stein, 2007).
Therefore, we repeatedly calculated RSNs, each time leaving out
one of the participants. That resulted in 23 jackknife runs for each
PD condition and 24 runs in the HC group, respectively, with each
participant missing in one of these runs (every participant was left
out exactly once).

From each of the jackknife runs, we obtained nine networks.
To quantify the similarity of these networks to known RSNs
(“templates”), we used a phi coefficient between a list of template
networks and the given component as a measure of the correlation
between two binary variables (activity/no activity) (Yule, 1912).
This step also helped in pre-sorting network components since
networks would not necessarily be in the same order in all jackknife
runs.

As templates, we calculated RSNs over all participants in each
of the three groups, resulting in nine network components for every
template. Of these components, we selected three components that
we could detect in all three groups (i.e., HC, PD-OFF, and PD-ON).
These networks are further referred to as sensorimotor (SMN),
visual, and frontal networks due to their spatial distribution. These
templates were also used in the jackknife pseudo-value calculation
(see Figure 1).

For the assignment of networks to the corresponding template,
we processed each of the jackknife runs in the following way:

1. Threshold the coupling strength at every cortical source to a
minimum of 0.4 (values are normalized to a range between
0 and 1). All values below the threshold are set to 0, and all
values above to 1, resulting in a binary map of the template.

2. For the two binary maps, we calculate the phi-coefficient R
between every network found in the jackknife run and every
template network.

3. The network with maximum positive R was assigned to the
template. If the network matched with two templates, we
determined the maximum difference between the R-values of
both matches. If the difference was at least 0.2, the match with
the highest R was chosen. If the difference was smaller, the best
match was determined by visual comparison.

4. Both the network and the template are removed from the list
of available networks, so they cannot be reassigned during the
current run.

FIGURE 1

Resting-state networks of healthy controls. Shown here are the
three resting-state networks (RSN) of the healthy controls. The
same RSN are also detected in the two Parkinson conditions. The
columns display the sensory-motor, visual, and frontal RSN. The
color scale marks the coupling strength from 0 to 1, with a warmer
color indicating a higher coupling strength. No threshold was
applied.

The result of this assignment step is a file for every
template holding all matched components for this template from
every participant.

An estimate of variance was determined using the jackknife
method, analogous to Sure et al. (2023). For each vertex, we used
a paired two-sided t-test for the comparison between PD-OFF and
PD-ON and an unpaired t-test for the comparison between HC
and PD. We corrected for multiple comparisons using the false
discovery rate (FDR) correction. In addition to the vertices, we
also corrected for the number of networks and conditions. Results
were considered significant after correction at the 0.05 level. The
anatomical regions referred to in the results section are based on
the Desikan-Killiany atlas as provided in Brainstorm (Desikan et al.,
2006). For the functional segregation of the sensorimotor cortex,
we refer to Mayka et al. (2006). We will not discuss changes in the
subcortical parts of the brain since MEG sensitivity is lower in these
areas in comparison to the cortex and might produce false data.

Descriptive and test statistics on participant data have been
calculated using the JASP Statistics Software (JASP Team, 2023).

2.7. Comparison of PAC frequencies

We were also interested in the phase-driving low-frequency
component of the PAC signal and whether the frequency spectrum
would change between groups and conditions.

For this analysis, we determined the maximum PAC value
in the frequency plane of low and high frequencies for every
vertex of each participant. To determine whether this value was
significantly different from zero, we generated 100 PAC values from
random noise data with a 1/f characteristic (Kasdin, 1995) and
data length corresponding to each participant. We accepted a PAC
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value from the participant data if it was above the 95th percentile
of the noise data’s value. For this PAC value, we then determined
the corresponding low frequency. These low frequencies were
then compared between the conditions for each vertex using
an independent two-sided t-test as provided in Brainstorm’s
processing pipeline. FDR correction was used to correct for
multiple comparisons. Results were considered significant after
correction at the 0.05 level.

We further investigated the correlation between clinical scores
(e.g., MDS-UPDRS-III score) and the PAC values, the associated
low (phase), or high frequencies (amplitude). Therefore, the
median PAC value (or low or high frequency) for the vertices
belonging to one RSN (e.g., motor) in all groups (e.g., PD-OFF)
was obtained for each patient. Those median values were then
correlated with the clinical values. This was done for all three RSNs
(motor, frontal, and visual) and PAC values, as well as the low and
high frequency associated with the maximal PAC value.

3. Results

3.1. Comparison of study groups

Finally, we included the data of 23 patients, of which eight were
female. The mean time since diagnosis of PD was 7.0 ± 3.9 years.
Furthermore, we included 24 healthy participants, of which eight
were female, in our analysis. We tested for significant differences
in mean age, BDI, and mini-mental state exam (MMSE) scores
between the 24 controls and 23 PD patients (alpha = 0.05).

There was no significant age difference between the groups
(see Table 2; Mann–Whitney U = 344.0, p = 0.150; Levene’s
test was significant). BDI scores were significantly lower in the
HC group (Mann–Whitney U = 92.5, p < 0.001; Shapiro–Wilk’s
test was significant). Concerning the MMSE the mean score was
significantly lower in the PD group (Mann–Whitney U = 366.5,
p = 0.036; Levene’s test and Shapiro–Wilk’s test were significant).
Both results are to be expected since the cognitive decline and a
higher incidence of depression is common in PD patients (see also
section “4.7. Limitations”).

Parkinson’s disease patients received, on average,
169.0 ± 37.0 mg levodopa. MDS-UPDRS-III scores improved
from 36.0 ± 11.0 points in med-OFF to 21.6 ± 9.6 points in
med-ON. Of the 23 PD patients 73.9% had a good levodopa
response (>30% improvement of the MDS-UPDRS-III score).

For detailed descriptive statistics, see Table 1.

TABLE 2 Test statistics.

PD vs. HC Test results Normality
(Shapiro–Wilk)

Age (years) Student 1.523 (p = 0.135) HC: W = 0.950, p = 0.271
PD: W = 0.977, p = 0.851

BDI-II (points) Mann–Whitney 92.500
(p < 0.001)

HC: W = 0.865, p = 0.004
PD: W = 0.863, p = 0.006

MMSE (points) Mann–Whitney 366.500
(p = 0.036)

HC: W = 0.681, p < 0.001
PD: W = 0.759, p < 0.001

Test statistics of study groups. Significant results are printed in bold letters, for non-normal
distributions we used the Mann–Whitney U test, for normal distributions an independent
Student’s t-test.

3.2. Network comparison

We found three RSNs in all jackknife runs: the SMN, frontal,
and visual RSN (see Figure 1 and also see Table 3 for the MNI
coordinates of the highest coupling strength within each RSN).
Comparison between conditions yielded significant differences in
the coupling strength of all three RSNs, at least in the comparison
of HC versus PD-OFF.

3.2.1. Sensorimotor network
For the SMN, coupling strength was significantly higher for HC

on the right hemisphere in the precuneus, inferior parietal gyrus,
and superior parietal gyrus compared with PD-OFF and on the
left hemisphere in regions of the insula and temporal pole (see
Figure 2). A higher coupling strength in PD-OFF was only present
for the right superior frontal gyrus at the transition to the precentral
gyrus.

Compared with PD-ON, HC showed a significantly higher
coupling strength in the right precuneus and superior parietal
gyrus and on the left temporal pole. The comparison between
PD-OFF and PD-ON showed a significant reduction of the
coupling strength in the left insula after administration of the
dopaminergic medication.

3.2.2. Visual network
For the visual RSN, HC had a significantly higher coupling

strength in the right superior temporal gyrus and right insula
compared to PD-OFF and PD-ON (see Figure 3). In PD-ON,
however, coupling strength in the left superior parietal and lateral
occipital gyrus was higher than in HC. There were no differences
between PD-OFF and PD-ON.

3.2.3. Frontal network
Within the frontal network the bilateral superior parietal gyrus,

precuneus, and left superior frontal gyrus had a significantly higher
coupling strength for HC compared to PD-OFF (see Figure 4).
Sparsely, HC also showed higher coupling strength in the area of
the left superior parietal gyrus compared with PD ON. At the left
supramarginal and superior temporal gyrus, the coupling strength
was higher for both PD-OFF and PD-ON compared to HC. For
PD-ON, this was also the case for the right insula and the right

TABLE 3 MNI coordinates of resting-state networks hot spots.

RSN Study group MNI coordinates in (m)

Motor PD-OFF 0.021/−0.027/0.056

PD-ON 0.026/−0.037/0.052

HC 0.015/−0.043/0.054

Visual PD-OFF 0.034/−0.072/−0.013

PD-ON −0.024/−0.076/−0.007

HC 0.023/−0.074/−0.010

Frontal PD-OFF −0.007/0.070/0.010

PD-ON −0.001/0.007/0.068

HC −0.019/0.037/0.040

MNI coordinates of the highest coupling strength of each resting-state network (RSN) for
each study group.
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FIGURE 2

Comparison of the sensorimotor network. Sensorimotor network
comparison between Parkinson’s patients with medication
(PD-ON), without medication (PD-OFF), and healthy participants
(HC). Areas belonging to either one and/or both recording
conditions are marked in white. Red indicates a significantly higher
coupling strength for the former measurement group and blue for
the latter one. Significance is given at a p-value below 0.05 after
false discovery rate correction for the number of vertices, networks,
and conditions based on a two-sided Student’s t-test (HC vs.
OFF/ON independent t-test, ON vs. OFF paired t-test). In particular,
PD-OFF had a higher coupling strength in the right superior frontal
gyrus than in HC, whereas the coupling strength in HC was higher
in the left parietal and temporal gyrus.

FIGURE 3

Comparison of the visual network. Visual network comparison
between Parkinson’s patients with medication (PD-ON), without
medication (PD-OFF), and healthy participants (HC). There were
significant differences in coupling strength between all three
measurement groups. Only the comparison between PD and HC
showed significant differences in coupling strength. Compared to
PD-OFF as well as to PD-ON, HC had a higher coupling strength at
the right superior temporal gyrus. For detailed description, refer to
Figure 2.

pars opercularis. In contrast, there were no significant differences
between PD-OFF and PD-ON.

3.2.4. PAC coupling frequencies
In addition to the RSNs, we also analyzed whether the

frequency of the low-frequency component of the PAC differed
between PD and HC groups or was altered by dopaminergic
medication. There were no significant changes, neither between HC
and PD-OFF nor between HC and PD-ON or PD-ON and PD-OFF
groups. Overall, the low-frequencies coupling to high-gamma were
in the delta and theta range (see Figure 5). We further tested for
correlation between clinical values (i.e., MDS-UPDRS-III, MMSE,
and BDI), and the PAC coupling frequencies, finding no significant
correlations at p < 0.05.

FIGURE 4

Comparison of the frontal network. Frontal network comparison
between Parkinson’s patients with medication (PD-ON), without
medication (PD-OFF), and healthy participants (HC). There were
significant differences in coupling strength between all three
measurement groups. Only the comparison between PD and HC
showed significant differences in coupling strength. While PD-OFF
had a lower coupling strength at the bilateral parietal gyrus than in
HC, the coupling strength for PD-ON was higher than in HC,
especially for the right insula. For detailed description, refer to
Figure 2.

FIGURE 5

Driving low frequency component. Average low-frequency
component of the phase-amplitude coupling used for network
estimation across conditions. Statistically, we saw no significant
differences in coupling frequencies using a two-sided independent
Student’s t-test (false discovery rate correction, alpha = 0.05). The
colors indicate the frequency spectrum at the given cortical
location (delta: 2–4 Hz, theta: 4–8 Hz, alpha 8–12 Hz, beta:
12–30 Hz).

4. Discussion

In this work, we investigated whether RSNs determined via
PAC differ between HC and PD depending on the administration
of dopaminergic medication. Via the chosen methods, we detected
in all three groups the SMN, the visual network, and the frontal
network. For all three RSNs, significant differences in coupling
strength were found, especially when comparing HC and PD, but
less so between PD-OFF and PD-ON.

4.1. Alteration in various RSNs

Due to the dominant motor symptoms in PD, differences in
coupling strength were expected between the three studied groups,
especially in the SMN. However, because PD is also associated
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with non-motor symptoms, we had as an initial hypothesis that
coupling strength would be different in several functional RSNs. We
were able to confirm this within the visual and frontal RSN. These
findings match previous results from fMRI and also multimodal
approaches, which indicated changes in different RSNs in PD
(Filippi et al., 2019; Ruppert et al., 2021; Steidel et al., 2022).

In terms of PD-related impairment, there were significant
differences in motor (MDS-UPDRS-III) as well as non-motor (BDI,
MMSE) scores in our patient cohort. Thus, the differences in PAC-
RSNs coupling strength could be electrophysiological correlates of
the clinical scores. However, there was no significant correlation
between the coupling strength values and the clinical scores. This
may be due to used scores not being specific to a particular
functional network. For example, we did not obtain scores related
to visual impairments. A repeated analysis with scores functionally
matching the considered RSNs could establish the link between
RSN changes and scoring results.

Overall, this confirms that RSNs in PD determined via PAC are
sensitive to changes in the patient’s condition, e.g., the medication
state, which was already evident when comparing RSNs before
and after electrode implantation (Sure et al., 2023). In the present
case, however, it is striking that the changes occurred mainly
between HC and PD and less between PD-OFF and PD-ON.
While there was a significant change between PD and HC for all
three RSNs, this was only the case for the SMN for PD patients
with and without dopaminergic medication. The dopamine-related
difference in coupling strength of the SMN emerged only in the
area of the left insula, where sensorimotor information, besides a
wide variety of other functions, are processed (Uddin et al., 2017).
However, at the insula, which is located at the periphery of the
SMN, the overall coupling strength is lower than in the center of
the SMN. As a result, the influence of this alteration in the coupling
strength on the motor system is likely to be less relevant. Therefore,
a normalizing effect on RSNs by dopaminergic medication as in
previous work (Schneider et al., 2020) can only be confirmed with
these data for the SMN but not for the visual and frontal RSNs. The
absence of this difference may be related to the different approaches
used for estimating the RSN: in Schneider et al. (2020) we used
envelope correlation in specific frequency bands, while here we
used PAC, which incorporates both low (delta and theta) as well as
high (gamma) frequency oscillatory activity. Therefore, the changes
in the previous study are likely tight to a specific frequency band
and the PAC might not be the best marker to indicate the changes
in dopamine related changes of the RSN.

4.2. Sensorimotor network

In the SMN, we detected a modulation of the coupling strength,
especially in comparing HC and PD-OFF. Coupling strength
increased, in particular within the supplementary motor area for
PD-OFF, which is in line with the already described increase of the
PAC values in this area (De Hemptinne et al., 2013). However, in
this case, the frequency contributing to the PAC signal was in the
beta range, whereas in our case, it was in the theta/delta range.
Even though the beta band is considered very important for the
motor function in PD, connections to the motor function could
also be established for the theta/delta band (Brauns et al., 2014;

Hamel-Thibault et al., 2018; van der Cruijsen et al., 2021). Since
cortical network formation in PD also occurs in the theta/delta
band (Sharma et al., 2021), this work further highlights that when
looking at PAC in PD, broadband oscillatory activity, i.e., not only
beta, should be considered.

For HC, coupling strength was higher compared to PD-
OFF within two separate regions, the left temporal and right
occipital/parietal. At the same time, coupling strength was higher in
the supplementary motor area in PD-OFF, suggesting PD-induced
modulation of the SMN. Here, the peripheral areas seem to be less
important with respect to the coupling strength, while central areas
are strengthened. This fits with higher PAC in the primary motor
cortex of PD patients (De Hemptinne et al., 2013) and may reflect
the prominent effect of PD on the motor system.

4.3. Visual network

Like many other parts of the cortex, also alterations within
the visual system have been described in PD. Clinically visual
hallucinations are often encountered in PD patients (Barnes and
David, 2001; Meppelink et al., 2009). However, visual hallucinations
occur mainly in severely advanced PD and, moreover, the role
of dopaminergic medication in the development of hallucinations
in PD is not fully elucidated (Powell et al., 2020). Nevertheless,
surprisingly, coupling strength in the superior parietal and lateral
occipital gyrus – areas around the visual cortex – was only increased
when comparing HC and PD-ON. For PD-OFF, coupling strength
was only altered in the temporal lobe. Still this dopaminergic
effect on the visual RSN could be a further indication for the
central role of dopamine in the visual system, as already shown
anatomically in the retina (Harnois and Di Paolo, 1990; Jackson
et al., 2012) or functionally in cognitive vision (Vitay and Hamker,
2007). Furthermore, the increased coupling strength for PD-ON
could also be a reflection of the saccadic latency being prolonged
by dopamine (Michell et al., 2006).

We did not find significant differences in the visual network
comparing PD-ON versus PD-OFF. Schneider et al. (2020)
described a shift in main frequency for the visual network
component, i.e., in the delta band for HC and alpha band for
PD patients OFF medication. In their investigation, levodopa was
able to reinstate the physiological delta rhythm in PD patients.
With the PAC-based network extraction, network components are
not extracted separately for each frequency band. Since visual
impairment is tied to whole-brain alteration in PD for both patients
with and without visual hallucinations, significant changes in
PAC that are related to visual impairments may be detectable in
other network components than the ones we considered in this
study.

4.4. Frontal network

The network described in this article as a frontal network
approximates the well-known DMN (Mantini et al., 2007; Brookes
et al., 2011), which has been investigated in the context of
several diseases, revealing altered DMN activity in various
neurological diseases like Alzheimer’s disease, epilepsy, and also PD
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(Mohan et al., 2016). Since dopamine has a modulatory effect on
the DMN in face recognition (Delaveau et al., 2010), an influence on
the frontal network described by us was expected due to the spatial
similarity. Although there was no difference between PD-OFF and
PD-ON for the frontal network, there were partially changes of
coupling strength between PD-OFF and PD-ON compared to HC,
suggesting an influence of dopamine on the network. Lacking a
difference in coupling strength for the frontal network between
PD-OFF and PD-ON, dopaminergic medication is not likely to
have a normalizing effect, as it can be assumed for the SMN.
Moreover, it can be assumed that there is no general attenuation
or amplification of the frontal network when comparing PD and
HC but rather a spatial modulation. This is because areas close to
the sulcus centralis HC had higher coupling strength than in PD,
and more distant areas tended to have higher coupling strength in
PD compared to HC.

4.5. Driving low frequencies

The choice of the megPAC approach for network determination
was made because previous studies have reported that the coupling
between beta phase and high gamma amplitude is pathologically
modulated in PD, and thus PD-specific RSN changes could be
accentuated (De Hemptinne et al., 2013; Swann et al., 2015). These
alterations are, however, most likely linked to a change in the non-
sinusoidal characteristics of the oscillations and not PAC itself (Cole
and Voytek, 2017). Still, the change of oscillations and the change
in PAC, be it due to sinusoidal or non-sinusoidal characteristics,
is an indication of pathologically changed brain activity. Of note
here is that we did not test in the present paper for a non-
sinusoidal character of the oscillations (Cole and Voytek, 2017).
The main reason is that current methods to do these kinds of
tests are not computationally feasible with the large number of
signals we are analyzing, i.e., 15,002 per subject. Of note, the low-
frequency strongest coupling to gamma is not significantly different
between the patients and HC. Those are the signals which are
the basis for the extraction of the megPAC-based RSN. Thus, the
estimation of the RSN is based on more or less the same low-
frequency component, making it likely not the driving effect of the
RSN differences we report.

In our study, the PAC low-frequency was not in the beta
band but in the delta/theta band. Of note here is that Swann and
colleagues did not investigate the delta frequencies, and thus the
findings are not directly comparable. Especially within the motor
areas, where Swann et al. (2015) and De Hemptinne et al. (2013)
report most of the changes in PAC, we determined delta as the main
driving low-frequency from the PAC.

In addition, network formation in the delta/theta band could be
detected in non-human primates under pharmacologically induced
PD (Devergnas et al., 2019), PD patients under dopaminergic
medication (Sharma et al., 2021), and also other measurement
groups (Babiloni et al., 2017; Harper et al., 2017; Muthukrishnan
et al., 2020). Since the low-frequency component of the PAC
signal was in the delta/theta band in all three conditions with no
significant difference between groups, in our comparison, network
formation is based mainly on delta/theta activity. An indirect
influence between our determined delta/theta PAC and beta is

conceivable because PAC between theta and beta has been shown
for PD patients (Karimi et al., 2022).

4.6. Clinical applications

If levodopa effects on RSNs can reliably be derived from
electrophysiological data such as with megPAC, new opportunities
for clinical applications arise. Especially the objective nature of such
measurements could be useful, e.g., in cases where the patients’ own
judgment might be limited due to their disease. It has been shown
for instance, that in up to a quarter of PD patients dyskinesias due to
overdosing of levodopa are not properly recognized by the patient
(Amanzio et al., 2010; Pietracupa et al., 2013).

4.7. Limitations

Parkinson’s disease patients had significantly higher BDI-II
scores and lower MMSE scores. These differences in depression
scores and cognitive abilities should be kept in mind when
interpreting our findings. However, PD is also known to be
associated with non-motor symptoms, which is also likely to affect
functional networks.

It can be assumed that patients were in a dopaminergic OFF
state because the patients were measured 12 h after the last
administration of therapeutic medication for PD. However, nine
patients received dopamine agonists [levodopa equivalent daily
dose: 62.7 ± 112.9 mg (mean ± SD), calculated according to Schade
et al. (2020)], which have a longer half-life. Therefore, it is possible
that residual medication was present and influenced the OFF state
so that the OFF state might not be the same for each patient.
Yet, a washout period of 12 h is common practice in PD research.
Furthermore, for the ON state, two patients received their regular
dopaminergic medication and no fast-acting soluble levodopa. As
this was the case for only two patients, this should not significantly
impact the results.

Compared to Schneider et al. (2020), we could not find
significant differences in the visual network after levodopa intake.
This might be because we did not calculate the networks for
different frequency bands separately. Thus, the changes within
the visual network might only occur within a small frequency
range, which might not be detectable by the PAC-based network
extraction. With regard to other PAC studies on PD, our results
are not completely comparable since most PAC studies in PD are
investigating phase-amplitude coupling between a beta-phase and
amplitude of high-gamma-oscillations, whereas the phase-driving
low-frequency component in our study was in the delta to theta
range.

Since subtype- and lateralization-specific changes in brain
networks have been described for PD patients (Wang et al., 2016;
Riederer et al., 2018), it would have been desirable to also compare
the networks for different subtypes and disease lateralization.
However, our sample was too small for such a comparison. Future
studies with a larger sample should investigate this.

Furthermore, it would be interesting to confirm our findings
within the frontal network/DMN using a task-based paradigm to
assess activation/deactivation within the DMN. This would also
allow for better comparability with other studies.
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5. Conclusion

We determined significantly altered PAC RSNs in PD patients
compared to HC and that dopaminergic medication has a
normalizing effect for the SMN. Therefore, in extension to Florin
and Baillet (2015) and Sure et al. (2023), PAC-RSN are present in
both healthy and patient groups and RSN of different groups can be
compared. Since Schneider et al. (2020) indicated a normalization
effect for RSN with other methods, our results suggest that this
effect is independent of the method used for RSN estimation.
Nevertheless, while there are changes in coupling strength, the
low-frequency component driving the PAC remains unchanged
between HC and PD patients both ON and OFF medication. Our
results indicate a role of PAC RSNs both in the pathogenesis
of PD beyond the sensorimotor system as well as the effect
of levodopa on motor symptoms. Our data-driven, PAC-based
approach is thus in line with previous work based on fMRI and
EEG, highlighting the potential of MEG-driven paradigms for
investigating electrophysiological changes in PD.
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