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Abstract: Background: Liver transplantation (LT) is a routine therapeutic approach for patients with
acute liver failure, end-stage liver disease and/or early-stage liver cancer. While 5-year survival
rates have increased to over 80%, long-term outcomes are critically influenced by extrahepatic
sequelae of LT and immunosuppressive therapy, including diabetes mellitus (DM). In this study,
we used machine learning (ML) to predict the probability of new-onset DM following LT. Methods:
A cohort of 216 LT patients was identified from the Disease Analyzer (DA) database (IQVIA) between
2005 and 2020. Three ML models comprising random forest (RF), logistic regression (LR), and
eXtreme Gradient Boosting (XGBoost) were tested as predictors of new-onset DM within 12 months
after LT. Results: 18 out of 216 LT patients (8.3%) were diagnosed with DM within 12 months
after the index date. The performance of the RF model in predicting the development of DM was
the highest (accuracy = 79.5%, AUC 77.5%). It correctly identified 75.0% of the DM patients and
80.0% of the non-DM patients in the testing dataset. In terms of predictive variables, patients’ age,
frequency and time of proton pump inhibitor prescription as well as prescriptions of analgesics,
immunosuppressants, vitamin D, and two antibiotic drugs (broad spectrum penicillins, fluocinolone)
were identified. Conclusions: Pending external validation, our data suggest that ML models can be
used to predict the occurrence of new-onset DM following LT. Such tools could help to identify LT
patients at risk of unfavorable outcomes and to implement respective clinical strategies of prevention.

Keywords: LT; OLT; diabetes mellitus; immunosuppression; incidence; AI; machine learning

1. Introduction

Liver transplantation (LT) is a life-saving treatment for patients with end-stage liver
disease or acute liver failure [1]. Although the five-year survival rates have risen to above
80%, the long-term sequela of LT are causing significant morbidity and mortality in many
patients [2,3]. Most importantly, the use of immunosuppressive medications to prevent
rejection of the transplanted liver can lead to several adverse effects, including infections,
hypertension, kidney dysfunction, osteoporosis, and malignancy [4,5]. Additionally, pa-
tients may experience complications related to the surgery itself, such as bleeding, bile
leaks, and thromboses [6–9]. Long-term complications of LT can significantly impact the
patient’s quality of life and increase mortality. However, with appropriate medical manage-
ment and close monitoring, many of these complications can be prevented or effectively
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managed [10]. Therefore, regular follow-up care and adherence to medication regimens are
crucial for patients who have undergone LT.

Just recently, diabetes mellitus (DM) has emerged as a previously underestimated
complication following LT, which can primarily be attributed to the interference of post-
operative immunosuppressive therapy with the patient’s glucose metabolism, leading to
high blood sugar levels and the development of DM. DM after LT can increase the risk of
infection, wound healing complications, and cardiovascular disease, all of which ultimately
reduce the patient’s quality of life and survival rate [11–14]. It is important to acknowledge
that the risk of developing DM after LT is dependent on several factors, including the
type and dose of immunosuppressive drugs, age, family history, and preexisting medical
conditions [15]. Thus, close monitoring of blood glucose levels, lifestyle modifications, and
appropriate medication management are essential for the treatment of DM after LT [10].
Nevertheless, predicting which individual patients will develop DM after LT has thus far
remained challenging. For this purpose, machine learning (ML), which essentially uses
artificial intelligence to build more efficient and effective predictive models than traditional
methods by detecting hidden patterns in large data sets, could be used. To date, there are
very few studies that have applied ML in LT medicine [16].

Accordingly, the aim of our study was to test the application of innovative ML models
to predict the development of new-onset DM after LT (NODALT) and to demonstrate their
potential usefulness. If validated, these tools could help identify LT patients at increased
risk for adverse outcomes and improve individualized prevention strategies after LT.

2. Methods
2.1. Datasource

This study used data from the Disease Analyzer (DA) database (IQVIA). Details on the
methodology of the database have been published elsewhere [17]. In brief, the DA database
contains data pertaining to demographic variables, diagnoses, and prescriptions from
general and specialist practices in Germany. Data quality is assessed monthly based on
several criteria, including completeness of documentation and linkage between diagnoses
and prescriptions. The selection of general and specialist practices for inclusion in the DA
database is based on statistics published annually by the Bundesärztekammer (German
Medical Association), which provides data on physician age, specialty group, community
size category, and federal state. Currently, the DA database includes approximately 3% of
all practices in Germany and is representative of these practices [17].

2.2. Study Population and Outcome

This study included patients aged ≥18 years with a first documented LT (ICD-10:
Z94.4) in 206 general practices in Germany between January 2005 and December 2020 (index
date). Further inclusion criteria included an observation period of at least six months prior
to the index date and a follow-up period of at least six months after the index date. Patients
with a diagnosis of DM (ICD-10: E10-E14) before or at the index date were excluded
(Figure 1). The outcome of the study was a first diagnosis of DM, including type 2 DM
(ICD-10: E11), other specified DM (ICD-10: E13), and unspecified DM (ICD-10: E14), which
were documented within 12 months of the LT documentation.
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2.3. Potential Predictors and Statistical Analyses

The objective of the ML model was to differentiate between patients who were di-
agnosed with type 2 DM and those who were not, and to identify key predictors of DM
diagnosis. The test and training data were randomly split into 80% training and 20% test
data and then stratified. According to the reference papers and research conducted, this is
a valid method used by many researchers for clinical data. During the split into training
and test data, the data were shuffled by means of the random_state parameter in the
train_test_split library using the Python programming language.

Three different ML-based models were run. In the first model, potential predictors
corresponded to diagnosis and prescription data obtained within 12 months prior to the
index date and within 12 months after the index date. In the second model, potential
predictors corresponded only to diagnosis and prescription data obtained within 12 months
prior to the index date. In the third model, potential predictors included only diagnosis
and prescription data obtained within 12 months after the index date. Since the third
model had a much higher area under the curve (AUC) value (0.58) than model 1 (0.45)
and model 2 (0.49), we decided to consider the third model for further analyses. The third
model included a total of 36 different variables, including age, sex, and the most commonly
documented diagnoses (ICD-10 codes) and therapies (ATC codes) (Table 1).

We initially analyzed which diagnoses and therapies were documented in the study
population. Over 2300 unique diagnoses and 431 unique therapies were documented
for all patients. All diagnoses and therapies present in less than 30% of the population
were removed. This method was necessary to measure the impact of the most common
diseases and therapies on the outcome as well as to reduce very sparse diagnoses and
therapies as the number of inputs to the predictive model. Both diagnoses and therapies
were transformed into two types of variables, including frequency of documentation
(= frequency) and time between documentation of LT and first documentation of diagnosis
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or prescription after index date (= time). Systemic corticosteroids were not included as a
variable in the model since 100% of study patients received this therapy. Three ML-based
methods for predicting DM were tested: random forest (RF), logistic regression (LR), and
eXtreme Gradient Boosting (XGBoost).

Table 1. Different features.

ICD-10 or
ATC Code Features Patients (N, %)

Median Time between
Documentation of LT and First
Documentation of Diagnosis or

Prescription after Index
Date (Days).

ATC features (based on
the Anatomical
Classification of
Pharmaceutical
Products by the

European
Pharmaceutical Market
Research Association

(EPHMRA)

A02B2 Proton pump inhibitors (25, 11.6%) 85
A05A2 Bilestone therapy (18, 8.3%) 51
A11C2 Vitamin D, plain (13, 6.0%) 134
C03A2 Loop diuretics, plain (11, 5.1%) 62
C07A0 Beta-blocking agents, plain (15, 6.9%) 98
J01C1 Oral broad-spectrum penicillins (18, 8.3%) 219
J01G1 Oral fluoroquinolones (15, 6.9%) 257
L04X0 Other immunsuppressants (25, 11.6%) 42
M01A1 Non-steroidal antirheumatic drugs (9, 4.2%) 109
N02B1 Other analgesics (17, 7.9%) 116
X25A0 Physical therapy (13, 6.0%) 117

ICD-10 features

A09.9 Gastroenteritis and colitis of
unspecified origin (4, 1.9%) 261

I10.0 Essential (primary) hypertension (15, 6.9%) 83

J06.9 Acute upper respiratory
infection, unspecified (17, 7.9%) 224

J20.9 Acute bronchitis, unspecified (9, 4.2%) 187
K74.6 Other and unspecified cirrhosis of liver (4, 1.9%) 86
M54.1 Radiculopathy (10, 4.6%) 78
Z25.1 Need for immunization against influenza (12, 5.6%) 208

Age mean = 62.1 years,
SD = 14.7 years

Sex (Female) (96, 44.4%)

Since the RF model consists of multiple decision trees, it is helpful to begin with a
brief description of the decision tree algorithm. A decision tree is similar to a flowchart
tree structure consisting of root nodes, branches, internal nodes, and leaf nodes. It is used
to classify input data points or to predict output values for a given input. The input data
are processed by asking a series of if-then-else true/false feature questions as well as by
estimating the minimum number of questions required to assess the probability of arriving
at a correct decision.

The RF algorithm uses decision tree learning by building a large number of decision
trees and then aggregating their output using bootstrap aggregation (bagging). Bagging
works by creating multiple subsets of training data that are randomly selected with re-
placement. At this juncture, each subset of data is used to train the decision trees. Majority
voting, i.e., the most frequent categorical variable across the different trees, will yield the
predicted class, which in turn will be more robust and have less variance than a single tree.
RF is a slightly modified version of bagging where, in addition to taking into account the
random subset of data, it also takes into account a random selection of features rather than
using all features to grow trees, thus creating an uncorrelated forest of decision trees [18].

Gradient boosting is a method to improve any ML model by iteratively training new
models that specialize in addressing the weaknesses of the previous models. Unlike random
forest bagging algorithms, which only minimize variance and overfitting of the model,
boosting minimizes bias and underfitting. In laymen’s terms, gradient boosting functions
by building a weak model from the training data, and subsequently building another weak
model that follows the previous model and then attempts to correct its errors. This process
continues until either the entire data set has been correctly predicted or the maximum
number of models have been added. The technical operation of gradient boosting methods
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can be explained by two concepts: namely, the gradient descent algorithm and the loss
function. The gradient descent algorithm is based on a convex function that can establish
a relationship between the actual output and the predicted output. At each point, the
derivative (or slope) is found, and we observe the steepness of the slope. This slope will
determine the parameters, i.e., the weights and the bias. As the number of successively
built weak models increases, the steepness ought to gradually decrease until it reaches the
point of convergence. The loss function measures the error between the predicted output
and the actual output at the current position. It then provides feedback to the model so
that it can adjust the parameters to minimize the error. It continuously iterates along the
direction of steepest descent until the cost function is either close to or at zero. At that
point, the model stops learning. XGBoost builds trees in parallel, rather than sequentially
as is typical in traditional gradient boosting decision trees. It follows a level-wise strategy,
scanning across gradient values and using these partial sums to evaluate the quality of
splits at each possible split in the training set [19].

LR estimates the probability of an event occurring based on a given set of independent
variables. The odds are defined as the probability of success divided by the probability of
failure. LR uses a logistic function to transform the odds. The model runs multiple iterations
to calculate the log-likelihood function, and LR attempts to maximize this function to find
the best parameter estimate. Once the best parameter is found, the conditional probability
of each observation is calculated, logged, and summed together to obtain a predicted
probability. For binary classification, the probability greater than 0.5 predicts 1 [20].

3. Results
3.1. Characteristics of the Study Sample and Incidence of DM

The selection of study patients is shown in Figure 1. A total of 216 patients who met
all inclusion criteria were included in the study, among which 18 (8.3%) were diagnosed
with DM within 12 months of the index date. The mean age of the study patients was
54.1 years (SD: 13.5 years); 56.5% of the patients were male. Patients with a new diagnosis
of DM were slightly older (56.3 vs. 53.6 years, p = 0.260), and the proportion of men was
higher in patients with DM than in those without (64.6 vs. 54.8%, p = 0.430). None of these
differences were significant.

3.2. Performance of the DM Prediction Models

Since the data are highly unbalanced, we performed a weighted RF, where we assigned
a positive weight of 8886110.520507872 and a negative weight of 10 × 10−4. The values
were derived by running multiple iterations of weight combinations and selecting the most
optimal weights. Since the RF classifier tends to be biased toward the majority class, this
weight imposes a heavier penalty for misclassifying the minority class. The number of trees
in the forest was set to 1000. The Gini impurity scores were used to evaluate the accuracy
of the classification. The top features are selected based on their feature importance scores.
The learning curve is shown in Figure 2.

Figure 3 shows the performance of the three DM prediction models. The performance
of the RF model was highest (accuracy = 79.5%, AUC 77.5%). The other two models
(LR and XGBoost) showed an overall accuracy and AUC of only 38.6/55.0% (LR) and
70.5/57.5% (XGBoost), respectively (Figure 3). In terms of sensitivity, the RF model was
able to correctly identify 75.0% of the DM patients and 80.0% of the non-DM patients in the
test dataset (Figure 4).
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3.3. Important Variables Predicting the Risk of DM

Figure 5 shows the importance of the individual variables on which the RF model
was based. The most important feature was age with a value of 0.29 for future importance.
The next two features were proton pump inhibitor (PPI) prescriptions with values of
0.07 (frequency of prescription) and 0.06 (time of prescription). Other features of lower
importance comprise the prescriptions of analgesics, immunosuppressants, vitamin D, and
two antibiotics (broad-spectrum penicillins, fluocinolone; Figure 5).
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4. Discussion

This retrospective cohort study evaluated three ML models (RF, LR, and XGBoost)
on the basis of their predictive performance for NODALT in a German outpatient co-
hort using the DA database (IQVIA). Remarkably, 8% of patients were newly diagnosed
with DM within 12 months of LT. The RF model performed best in predicting NODALT
(accuracy = 79.5%, AUC 77.5%), correctly identifying 75.0% of patients with DM and
80.0% of patients without DM in the test dataset. Age was considered to be the most impor-
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tant predictor of NODALT. The PPI prescription followed with values of 0.07 (frequency
of prescription) and 0.06 (timing of prescription). Other features of lesser importance in-
cluded the prescription of analgesics, immunosuppressants, vitamin D, and two antibiotics
(broad-spectrum penicillins, fluocinolone).

Although the underlying pathophysiological mechanisms of NODALT remain to be
determined, there appear to be unique aspects of this disease [21]. LT is characterized by
the graft taking over numerous functions such as digestion, detoxification, and immunity
and becomes the patient’s primary metabolic regulator, playing a central role in amino
acid synthesis, gluconeogenesis, glycogenolysis, glycogen formation, lipogenesis, and
insulin secretion [21]. In this context, the data from Stockmann et al. suggest that the
transplanted liver itself may be the origin of metabolic disorders, distinguishing NODALT
from new-onset DM after non-liver transplantation [22].

To date, there are very few studies that have evaluated ML in LT medicine. These
include a review by Spann et al. from 2020 that provides an overview of the strengths
and limitations of ML in hepatology and LT medicine [16]. Another study by Bhat et al.
analyzed data from adult LT recipients between 1987 and 2016 from the Scientific Registry
of Transplant Recipients using different ML methods to identify predictors of NODALT [23].
Consistent with our results, the authors found that increasing age of the recipient was a
major contributor to NODALT [23]. In addition, they identified male sex and obesity to be
significant recipient factors [23] and, similar to our study, also linked immunosuppressants
to the development of NODALT. Against this background, the authors demonstrated that
sirolimus as the primary immunosuppressant was associated with a 33% higher risk of
post-transplant DM than tacrolimus [23]. However, for donor characteristics not captured
in our study, no effect on recipient NODALT risk was observed [23].

Immunosuppressants have previously been associated with the development of
NODALT and are thought to have an impact on the deterioration of β-cell function [21]. In
addition to systemic corticosteroids—which were not included as a feature in our models
since 100% of study patients received this therapy—calcineurin inhibitors, considered as
standard immunosuppressants and used for an extended period of time after transplan-
tation, are believed to play a role in the development of NODALT [21]. In this context,
experimental studies have shown that tacrolimus negatively affects insulin secretion from
β-cells through multiple pathways, including mitochondrial biogenesis, ATP metabolism,
membrane trafficking, and cytoskeletal remodeling [21,24,25]. An animal study in obese
and lean diabetic rats further demonstrated that preexisting insulin resistance potentiates
the diabetogenic effects of tacrolimus through potent inhibition of the Ins2 gene and β-cell
proliferation [26].

The knowledge of the side effects of immunosuppressive drugs and the immunology
of LT has greatly increased over the past years [21]. Due to hepatic immune tolerance,
immunosuppressive therapy with low-dose and low-concentration tacrolimus has become
a routine protocol in LT patients. Furthermore, mTOR inhibitor combination therapy may
allow for a reduction in tacrolimus dose, potentially minimizing tacrolimus-related side
effects. However, in clinical trials, no significant reduction in the incidence of NODALT was
observed in LT patients treated with tacrolimus minimization therapy (tacrolimus in combi-
nation with mTOR inhibitors) as opposed to standard dose therapy [27]. Similarly, another
experimental study discovered that even short-term and extremely low concentrations of
tacrolimus impaired β-cell secretion by causing a low rate of insulin gene transcription in
rats [28]. In addition, corticosteroid-free immunosuppression in LT may be recommended
in the future upon discovery of its association with a lower risk of NODALT in a recent
evidence-based review [29].

Recent research interest has also focused on the gut microbiome, the alteration of which
has been discussed in the context of the pathogenesis of glucose metabolism disorder [21,30].
To this end, there is evidence that antibiotics, PPIs, and non-steroidal anti-inflammatory
drugs identified in our model as predictive features of NODALT have an impact on the
gut microbiome [31–33]. A Chinese metagenome-wide association study has found that
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patients with type 2 DM are characterized by a dysbiosis of the gut microbiome, with a
decrease in the abundance of several universal butyrate-producing bacteria and an increase
in several opportunistic pathogens, as well as an enrichment of other microbial functions
mediating sulfate reduction and resistance to oxidative stress [34]. Interestingly, specific gut
microbiota are also found in LT patients [35]. In a pilot study from China that examined six
gut bacteria in fresh stool samples, LT recipients showed a significant decrease in butyrate-
producing bacteria (e.g., Faecalibacteriumprausnitzii) and an increase in opportunistic
pathogens (e.g., Enterococcus spp.) compared to healthy subjects [35], which were similar
to the characteristics of patients with DM [34,36].

Inflammatory processes and the involvement of lipopolysaccharides (LPS), the major
component of the outer membrane of Gram-negative bacteria, which in turn activate toll-
like receptors (TLRs) by binding to the LPS-binding protein (LBP), may also play a role in
the development of NODALT [37]. It is interesting to note that animal studies in this context
suggest a possible impairment of glucose homeostasis in LT recipients by establishing that
LT leads to a translocation of LPS in hepatocytes and an upregulation of LBP, resulting in
an enhanced inflammatory response [38]. Imbalance of gut microbiota and an impaired
gut barrier in liver transplant recipients could ultimately lead to various liver diseases such
as inflammation and steatosis as well as to metabolic syndrome via the “gut–liver axis”
through various biological mechanisms [37].

Correspondingly, the proliferation of proteobacteria is considered to be a hallmark of
abnormal microbiota as a result of dietary changes, inflammation, or antibiotic therapy [39].
The finding in our study, which demonstrated that only broad-spectrum penicillins and
fluocinolones were identified as predictive features of NODALT in our ML model, may
suggest that even single antibiotic drugs could lead to a relevant change in the composition
of the gut microbiome. Within this framework, it has been observed that various antibiotics
that target the gut have different effects on the density and diversity of the microbiota.
Accordingly, a broader spectrum of activity of penicillin and fluocinolone could explain
their influence in the development of NODALT via a stronger effect in reducing microbial
diversity [40]. However, to better understand the relationship between NODALT and the
gut microbiome as well as the effects of antibiotic therapy, further studies focusing on this
question are required.

Several studies have indeed observed a change in the composition of the microbiome
with PPI use [32,41]. PPIs are among the most commonly used medications worldwide
and are primarily used to treat reflux disease and gastric and duodenal ulcers. Long-
term use of PPIs has been associated with a number of complications, including kidney
disease, bone fractures, intestinal inflammation, and more recently, the development of
DM. Yuan et al. analyzed whether regular use of PPIs increases the risk of type 2 DM in
three large epidemiologic studies with a total of 204,689 participants who did not have DM
at baseline [42] and found a 24% increased risk of DM in individuals who regularly used
PPIs. The risk was dependent on the duration of PPI therapy and was lower in individuals
who had taken the medication for up to 2 years than in those with a longer duration of
therapy [43]. However, to our knowledge, our study was the first to evaluate NODALT in
combination with PPIs.

In terms of age, which was identified as the most important feature of NODALT in our
study comprising a retrospective analysis of data from 188 adult primary liver transplant
recipients in Japan, Abe et al. also found, in agreement with our findings, that older
recipient age (≥55 years) was a significant risk factor for the development of DM after
transplantation [43]. Similarly, Cosio et al. examined data from 2078 kidney transplant
recipients using a multivariate Cox model and found that patients older than 45 years at
the time of transplantation had more than twice as high a risk of developing DM after
transplant compared with younger patients [44]. In addition, other studies show that the
risk of developing post-transplant DM after solid organ transplantation more than doubles
with each 10-year increase in recipient age [45]. This effect is claimed to be attributable to
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the fact that islet cells age and undergo apoptosis with age. Decreased insulin secretion
and increased insulin resistance have also been suggested to this end [46].

At this juncture we should refer to some of the limitations of this study. First of all, the
sample size is small, especially for the test group. Therefore, further studies with larger
samples are required to externally validate the application of the models. Second, the
retrospective and observational nature of our study may lead to unavoidable selection
bias. The ML algorithms generated are only as good as the quality of the data provided.
Thus, several factors may influence the performance and accuracy of an ML model. Since
the diagnoses are based on the documentation of ICD-10 and ATC codes by primary care
physicians, it cannot be excluded that some of the diagnoses were misclassified. Another
limitation of the study is the lack of information regarding the underlying diseases of
LT recipients and donors. Furthermore, certain information that would have allowed for
additional analyses, such as socioeconomic status, family history, ethnic background/race,
environmental conditions, lifestyle factors (e.g., physical activity, nicotine or alcohol use,
diet), including etiology, surgery duration, or other factors associated with increased DM
risk, such as presence of acute rejection and the number of rejection episodes, dose of
glucocorticoid treatment, and family history of diabetes mellitus, were not available. In
addition, there was no information available on the genotype of the patients that would
have allowed further analyses, especially since the literature has acknowledged that the
graft genotype may also influence the metabolic state after LT. In particular, the graft gene
variant of the DM susceptibility gene TCF7L2 rs290487 (C allele) has been associated with
an increased risk of NODALT [31]. Finally, it is important to consider that this retrospective
analysis indicates an association, as opposed to a cause-and-effect relationship.

Pending external validation, our data suggest that ML models may be useful in pre-
dicting the occurrence of NODALT. Such tools could help to identify LT patients at risk
for adverse outcomes and implement appropriate clinical prevention strategies. Neverthe-
less, further studies are required to confirm which factors contribute most to facilitating
individualized clinical care during post-transplant management.
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