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Abstract: Bacterial pathogens have evolved intricate ways to manipulate the host to support infection.
Here, we systematically assessed the importance of the microtubule cytoskeleton for infection by
Chlamydiae, which are obligate intracellular bacteria that are of great importance for human health.
The elimination of microtubules in human HEp-2 cells prior to C. pneumoniae infection profoundly
attenuated the infection efficiency, demonstrating the need for microtubules for the early infection
processes. To identify microtubule-modulating C. pneumoniae proteins, a screen in the model yeast
Schizosaccharomyces pombe was performed. Unexpectedly, among 116 selected chlamydial proteins,
more than 10%, namely, 13 proteins, massively altered the yeast interphase microtubule cytoskeleton.
With two exceptions, these proteins were predicted to be inclusion membrane proteins. As proof of
principle, we selected the conserved CPn0443 protein, which caused massive microtubule instability
in yeast, for further analysis. CPn0443 bound and bundled microtubules in vitro and co-localized
partially with microtubules in vivo in yeast and human cells. Furthermore, CPn0443-transfected
U2OS cells had a significantly reduced infection rate by C. pneumoniae EBs. Thus, our yeast screen
identified numerous proteins encoded using the highly reduced C. pneumoniae genome that modulated
microtubule dynamics. Hijacking of the host microtubule cytoskeleton must be a vital part of
chlamydial infection.

Keywords: microtubule cytoskeleton; Schizosaccharomyces pombe; yeast; effector proteins; screen;
Chlamydia pneumoniae; MAPs; pathogen; bacteria

1. Introduction

Obligate intracellular pathogens rely on intensive molecular crosstalk with their eu-
karyotic host cells. The compartmentalization of the host cell requires an elaborate cytoskele-
tal network that consists of the F-actin and microtubule (MT) cytoskeleton, intermediate
filaments and septins. These structures feed into numerous cellular processes, including the
maintenance of the cell shape and mobility, vesicle transport via motor proteins, endo- and
exocytosis, organization, subcellular positioning and interconnection of organelles [1–5].
Thus, for obligate intracellular pathogens with an intracellular developmental cycle within
a membrane-bound compartment, the rearrangement and repurposing of host cellular
structures, such as the dynamic host cytoskeleton is required. While the modulation of
the host actin cytoskeleton by bacterial pathogens is well studied (for reviews, see [6–8]),
our knowledge of how the MT cytoskeleton is used and altered by pathogenic bacteria is
scarce (for a review, see [9]). A few bacterial effector proteins were identified that alter MT
dynamics, such as VirA from Shigella and EspG from E. coli (for a review, see [9]). However,
their MT-modulating function during the infection process is unclear.
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The obligate intracellular Gram-negative Chlamydiae are responsible for several serious
diseases in humans worldwide. Chlamydia pneumoniae (Cpn) infects the respiratory tract
and its infection is associated with chronic diseases, including Alzheimer’s, atherosclerosis,
asthma and lung cancer (for reviews, see [10–12]). In contrast, Chlamydia trachomatis
(Ctr) causes serovar-dependent sexually transmitted infections of the urogenital tract and
severe eye infections (for reviews, see [13,14]). All Chlamydiae have a unique biphasic
developmental cycle in a parasitophorous membrane-bound vesicle called inclusion. An
infection starts with the extracellular infectious elementary body (EB) attaching to and
activating receptors on target cells. In parallel, effector proteins are secreted via the type III
secretion system (T3SS) targeting host cell processes and structures for EB uptake [15]. After
internalization, EBs differentiate into non-infectious, metabolically active reticulate bodies
(RB), followed by rounds of replication via binary fission, before RBs re-differentiate back
to EBs and are released by host cell lysis or extrusion [15,16]. For a successful chlamydial
infection, the manipulation of and interaction with host cytoskeletal elements is essential.
The analysis to date has almost exclusively focused on the Ctr infection process, where
global disruption of F-actin structures prior to the infection strongly reduced the entry of Ctr
serovar L2 EBs into mammalian cells [17–19]. In contrast, the role of the MT cytoskeleton
for Ctr host cell entry is less clear. Disruption of MT structures via vinca alkaloids prior
to and during incubation with Ctr L2 EBs attenuated the subsequent infection [20], while
MT depolymerization via nocodazole did not reduce Ctr serovars L2 and E host cell
entry [18]. Later during infection, MTs are used as tracks for Ctr inclusions to move
to the MT-organizing center (MTOC), where the inclusion resides and inclusion fusion
occurs [18,21,22]. During the replicative phase, the growing Ctr inclusion is encaged by F-
actin, intermediate filaments and septins [23,24]. At the mid and late stages of development,
stabilized MTs are present at the periphery of the inclusion and their disruption reduces
the formation of infectious progeny [25].

To date, many of the chlamydial effector proteins interacting with and modulating
cytoskeletal structures during the infection cycle remain elusive. The actin cytoskeleton
is targeted via the secreted Ctr effectors TarP (and its Cpn homolog CPn0572) and TmeA
during EB entry [26–29]. Transport of the early Ctr inclusion to the MTOC is mediated
by binding of the inclusion membrane protein (Inc protein) Ct850 to the dynein light
chain DYNLT1 [30]. Ct850 also interacts with the inclusion membrane protein Ct222, but
its role in transport to the MTOC is not known [31]. Interestingly, during a C. psittaci
infection, the inclusion membrane protein IncB binds to the dynein-interacting human
protein Snapin, thus establishing a second connection between MTs and a chlamydial
inclusion [32]. MT assembly around the Ctr inclusion requires the inclusion membrane
protein Ct223/IPAM and the host centrosomal protein CEP170 [33]. Moreover, inclusion
integrity involves the inclusion membrane protein InaC, which controls infection via
activation of the host cell GTPases ARF1 and RhoA formation and dynamics of both the
actin and MT scaffolds surrounding the Ctr inclusion [34,35]. Finally, the Inc protein
CT192 is necessary for dynactin recruitment to the inclusion membrane [36]. In general,
chlamydial effector proteins targeting the cytoskeleton require secretion into the host
cytosol, where they target host cell proteins of interest, or localization at the chlamydia–
host cell interface, in the inclusion membrane. Translocation of effector proteins into the
host cytosol and the inclusion membrane is probably mediated by the type 3 secretion
system (T3SS), which is a form of macromolecular machinery that transports proteins from
the bacterial cytosol directly through the inner and outer bacterial membranes and through
the inclusion membrane. Inc proteins are embedded in the inclusion membrane and are
unique to Chlamydiaceae. The incorporation of Inc proteins into the inclusion membrane,
which was derived from the plasma membrane due to the EB internalization process, leads
to an extensive modification of the inclusion membrane. Inc proteins are characterized by
one or more hydrophobic regions and possess a uni-directional hairpin-like topology in the
inclusion membrane, thus decorating the cytosolic face of the inclusion membrane with
their N- and C-termini and, in this way, drive the interaction of the chlamydial organelle
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with the host cell [37]. Several Incs show some moderate conservation between different
Chlamydiaceae species, but each chlamydial species also has several unique Incs [38]. Using
Inc-specific criteria, for Cpn, a total of 107 Inc proteins were predicted, almost all of which
are functionally unexplored [39].

In Cpn, only a single protein was identified that modulates MTs. The evolutionarily
conserved T33S effector protein CopN is an MT destabilizer in vitro but its role during
infection is unknown [40,41]. Thus, we employed Cpn to assess (i) the impact of the host
MT cytoskeleton on the early processes of chlamydial infection and (ii) the importance of
the MT cytoskeleton during Cpn infection. As the obligate intracellular bacteria are very
difficult to manipulate genetically, we used the fission yeast Schizosaccharomyces pombe as a
screening tool. Determination of alterations of yeast interphase MT upon the expression of
chlamydial genes uncovered the existence of numerous chlamydial proteins involved in
host MT manipulation. Thus, the importance of the host MT cytoskeleton in chlamydial
infection was found to be vastly underestimated.

2. Results
2.1. Early Steps in Cpn Infection Required an Intact MT Cytoskeleton

The role of the host cell MT cytoskeleton in the Cpn infection cycle had not yet been
studied. Therefore, we first used an assay to determine whether an intact MT cytoskeleton
was required in the early steps of the infection. We reasoned that destabilizing MTs at a later
time point in the infection process would have severe consequences for host cell functions,
and thus, we only assayed infection in cells with no MTs prior to the infection. Human
epithelial HEp-2 cells were treated with the MT-destabilizing drug nocodazole prior to
a Cpn infection. As determined using microscopy, MTs were fully depolymerized before
infection (Figures 1A and S1). The washout of nocodazole with the simultaneous addition of
Cpn EBs resulted in a scenario where EBs infected the human cells in the absence of the MT
network. The MT network repolymerized within the next 5 h (Figure S1). Epithelial cells
treated in this way showed a 46% reduction in Cpn-infected cells in comparison to mock-
treated control cells (Figure 1B,C). Furthermore, the number of inclusions per cell decreased
in the nocodazole-treated cells in comparison to the mock-treated cells (Figure 1D). Thus,
an intact interphase MT cytoskeleton was required for the early processes of Cpn infection.

2.2. Identification of Cpn MT-Modulating Proteins via the S. pombe Test System

To identify chlamydial proteins that modulate the MT cytoskeleton, we decided to use
the fission yeast Schizosaccharomyces pombe, as fundamental features of the MT cytoskeleton
are conserved and this yeast is an excellent model organism for the identification of MT-
modulating proteins: it features an extensive interphase MT cytoskeleton organized in MT
bundles whose dynamic behavior can be imaged and measured easily via life-cell imaging
of α-tubulin-GFP [42–44].

Our screen to identify Cpn MT-modulating proteins encompassed the (i) selection of
chlamydial genes to be assessed; (ii) cloning of these genes into an S. pombe expression vector
and (iii) transformation of yeast with these plasmids and identification of transformants
sensitive to MT poisons. In total, 116 genes from the evolutionarily streamlined Cpn (GiD)
proteome of 1074 protein-coding ORFs were selected for the analysis (Figure 2A). These
include 78 genes encoding putative inclusion membrane (Inc) proteins [39,45]. A total of
21 genes encoded proteins that led to a growth defect when expressed in the budding yeast
Saccharomyces cerevisiae [46,47] and 17 genes coded for highly expressed proteins [48]. A list
of all proteins tested is found in Table S1B. Chlamydial genes encoding these proteins were
cloned into an S. pombe expression vector behind the repressible S. pombe nmt1+ promoter.
Low-level expression from this promoter is in the presence of thiamine, while high-level
expression is in the absence of thiamine [49]. Transformants of a wild-type S. pombe strain
expressing a chlamydial gene were then tested for reduced growth and increased sensitivity
to the MT-destabilizing drug thiabendazole (TBZ) (Figure 2B).
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Figure 1. The host MT cytoskeleton was required for chlamydial infection. (A) Schematic represen-
tation of the experimental setup used: mammalian HEp-2 cells were mock-treated (DMSO-treated, 
top panels) or treated with the MT-destabilizing drug nocodazole (bottom panels) prior to infection 
with purified Cpn EBs (MOI = 5) for 30 h. Nocodazole treatment (bottom panels) was as follows: (i) 
cells were incubated with nocodazole for 30 min at 37 °C and MT depolymerization was monitored 
microscopically. (ii) Nocodazole washout via a media change was followed by infection with Cpn 
EBs. (iii) Repolymerization of MTs was monitored (Figure S1) and was complete after 5 h. (B) Rep-
resentative confocal images of mock-treated or nocodazole-treated HEp-2 cells infected with puri-
fied EBs. Chlamydial inclusions (red) were visualized with an anti-CPn0147 antibody (chlamydial 
inclusion membrane protein) and DNA (blue) with DAPI. White boxes show enlargements (zoom). 
Scale bars: 10 µm. (C) Quantification of the number of infected HEp-2 cells. Treatment of cells 
with/without nocodazole prior to the infection depicted in (A). (D) Quantification of the number of 
chlamydial inclusions per infected HEp-2 cell that were treated with/without nocodazole prior to 
infection. (C,D) three independent experiments/per condition as described in (A), each with 100 
cells; error bars represent ± SEM; T-test: p < 0.001 (***). 
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panels) or treated with the MT-destabilizing drug nocodazole (bottom panels) prior to infection with
purified Cpn EBs (MOI = 5) for 30 h. Nocodazole treatment (bottom panels) was as follows: (i) cells
were incubated with nocodazole for 30 min at 37 ◦C and MT depolymerization was monitored
microscopically. (ii) Nocodazole washout via a media change was followed by infection with Cpn EBs.
(iii) Repolymerization of MTs was monitored (Figure S1) and was complete after 5 h. (B) Representa-
tive confocal images of mock-treated or nocodazole-treated HEp-2 cells infected with purified EBs.
Chlamydial inclusions (red) were visualized with an anti-CPn0147 antibody (chlamydial inclusion
membrane protein) and DNA (blue) with DAPI. White boxes show enlargements (zoom). Scale bars:
10 µm. (C) Quantification of the number of infected HEp-2 cells. Treatment of cells with/without
nocodazole prior to the infection depicted in (A). (D) Quantification of the number of chlamydial
inclusions per infected HEp-2 cell that were treated with/without nocodazole prior to infection.
(C,D) three independent experiments/per condition as described in (A), each with 100 cells; error
bars represent ± SEM; t-test: p < 0.001 (***).

A total of 67 chlamydial genes that were expressed either under low- or high-level
conditions had no discernible effect on yeast growth (Figure 2C,D, category 1a), while the
expression of a further 18 chlamydial genes resulted in a moderate growth defect but no
increased TBZ sensitivity (Figure 2C,D, category 1b). The 18 chlamydial genes in category
2 were lethal to yeast cells under high gene expression and showed no increased sensitivity
to TBZ under low expression (Figure 2C,D). Thus, genes in categories 1a, 1b and 2 had no
measurable effect on the yeast MT cytoskeleton and were not analyzed further. A list of
which protein was put into which category is shown in Table S1B.

The remaining 13 chlamydial genes all caused an increased sensitivity to TBZ when
expressed in yeast. Depending on the severity of the phenotypes of the transformants,
chlamydial genes were grouped into categories 3a, 3b and 4. Four genes caused reduced
growth of the transformants on TBZ under high expression conditions (category 3a), while
the expression of a further three resulted in lethality on TBZ-containing media (category 3b).
Lastly, the expression of six chlamydial genes resulted in reduced growth on media without
TBZ and lethality on media with TBZ (category 4) (Figure 2C,D). Thus, 13/116 chlamydial
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genes tested in our S. pombe assay gave rise to increased sensitivity to an MT poison,
suggesting that they encoded chlamydial proteins that modulated the MT cytoskeleton of
the host cell.
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visiae yeast growth (iii, [46]; iv, [47]) or those that are highly expressed in a transcriptome analysis 

Figure 2. Identification of Cpn MT-modulating proteins via fission yeast. (A) The 116 Cpn proteins
chosen for the analysis were selected from Inc proteins (i, [39]; ii, [45]), proteins that affect S. cerevisiae
yeast growth (iii, [46]; iv, [47]) or those that are highly expressed in a transcriptome analysis (v, [48]).
(B) Schematic representation of the screen setup. Each Cpn gene (dark grey) was cloned into an S.
pombe plasmid flanked by the thiamine-repressible S. pombe nmt1+ promoter (P) and nmt1+ terminator
(T). S. pombe wild-type cells transformed with such a plasmid were tested for growth defects in the
presence of 7 µg/mL of the MT-destabilizing drug thiabendazole (TBZ). The presence of thiamine
(+thia) resulted in low expression (L) from the nmt1+ promotor, while no thiamine (-thia) resulted
in high expression (H) from nmt1+. (C) Schematic representation of a serial dilution patch assay
(104–101 cells) that showed all possible phenotypes scored by the expression of a chlamydial gene in
S. pombe. Growth of transformants was compared with a transformant expressing a control plasmid
(no chlamydial gene). Normal growth (similar to control transformant growth) (big circle), reduced
growth (small circle) and no growth (X). (D) Examples of serial dilution patch tests of a control
transformant and categories 1 to 4 shown in (C). Overall, 67/116 Cpn genes tested gave rise to yeast
growth phenotype 1a, 18/116 to 1b, 18/116 to 2, 4/116 to 3a, 3/116 to 3b and 6/116 to category
4 phenotype. Sensitivity to TBZ was scored after 6 days at 25 ◦C. Chlamydial proteins that when
expressed in yeast gave rise to category 3a, 3b or 4 phenotypes were chosen for further analysis.

Of the 13 chlamydial proteins identified in our yeast screen, 12 had initially been
predicted to be Inc proteins [39]. However, the Phobius prediction program showed that
CPn0045 did not fit the criteria for Inc proteins (Figure S2), thus 11/13 proteins were
likely to be Inc proteins. As shown in Figure S2, the 11 candidates shared the typical Inc
structure with the N- and C-termini of each protein facing the host cytosol. CPn0821 had no
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transmembrane (TM) domain and was likely to be a soluble protein (Table S2). None of the
13 identified Cpn proteins has been characterized to date in relation to chlamydial infection.
As shown in Table S2, 5/13 proteins, namely, CPn0065, CPn0312, CPn0443, CPn0565 and
CPn0821, had a putative homolog in Ctr and other chlamydia, while 1/13, namely, CPn0186,
had a homolog in Ctr only. The identity between homologs is limited (24% to 35% for full-
length proteins). A total of 2/13 proteins, namely, CPn0357 and CPn0365, had homologs in
other chlamydia but not in Ctr. The remaining five proteins, namely, CPn0045, CPn0216,
CPn0284, CPn0372 and CPn1027, were unique to Cpn (Table S2).

2.3. S. pombe Tubulin Mutants Became Synthetically Lethal upon the Expression of
Chlamydial Genes

To further characterize the modulation of MTs by the 13 chlamydial proteins, we tested
(i) whether yeast transformants expressing one of these genes were also sensitive to the
MT inhibitor methyl benzimidazol-2-yl-carbamate (MBC) and (ii) whether the expression
of these genes in conditional-lethal tubulin mutant strains led to synthetic lethality. In all
cases, growth on the MBC-containing medium was similar to that observed for the TBZ-
containing medium (summarized in Figures 3A and S3A). Furthermore, and in contrast to
the expression in wild-type cells, low-level expression of these chlamydial genes in the cold-
sensitive α-tubulin nda2-KM52 or β-tubulin nda3-KM311 mutant strains [50] led to massive
growth reduction at the semi-permissive temperature of 22 ◦C (Figures 3A,B and S3B,C).
High-level expression of all 13 chlamydial genes in these tubulin mutant strains was lethal
under all conditions.
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Figure 3. Expression of all 13 Cpn proteins in yeast resulted in MT hypersensitivity and synthetic
lethality with tubulin mutants. (A) Growth phenotypes of S. pombe transformants that expressed one of
the indicated 13 Cpn genes (systematic names on the left). The severity of the growth defect is indicated
by the shades of the box (the darker, the more severe). The strains analyzed were the wild-type (WT)
and the cold-sensitive nda2-KM52 and nda3-KM311 mutant strains. Media was with TBZ or MBC if
indicated. Growth of WT was undertaken for 5 days at 25 ◦C. The tubulin mutant strains grew for six
days at the indicated temperatures. Top panel in (B): S. pombe serial dilution patch tests (104–101 cells)
of cpn0065-expressing WT cells grown under plasmid-selective conditions at 25 ◦C for 6 days without
or with either 7 µg/mL TBZ or 2.5 µg/mL MBC; L: low expression, H: high expression. Middle and
bottom panels: serial dilution patch tests of cold-sensitive nda2-KM52 and nda3-KM311 transformants
that expressed cpn0065 incubated at 25 ◦C or 22 ◦C for 6 days; L: low expression.

2.4. The S. pombe Interphase MT Cytoskeleton Became Highly Aberrant upon the Expression of
Chlamydial Genes

To determine whether and how the 13 identified chlamydial proteins altered the
S. pombe MT cytoskeleton, we used a GFP-α-tubulin strain to visualize MTs via life-cell
imaging. This strain endogenously expresses the minor α-tubulin (S. pombe has two α-
tubulin genes) fused to GFP via the weak nmt81 promoter, which leads to slightly altered
MT properties compared with a wild-type strain [51,52].
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Expression of all 13 Cpn genes in this strain led to TBZ sensitivity (Figure S3D) and al-
tered interphase MT organization (Figure 4A). In wild-type cells, the three to four polarized
MT bundles present in the cytoplasm orientated along the long axis of the cell, extending
with their MT-plus ends toward the cell end and their MT-minus ends overlapping at the
cell center (control in Figure 4A, shown diagrammatically in Figure 4B). MT-plus ends
reaching a cell tip will pause before depolymerizing back to the cell center [53,54].
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Figure 4. Cpn proteins cause massive alterations in the S. pombe interphase MT cytoskeleton. S. pombe
cells that expressed gfp-α-tubulin (nmt81::GFP-atb2+) were transformed with a control plasmid or
plasmids carrying one of the 13 Cpn genes highly expressed from the nmt1+ promoter. (A) Pho-
tomicrographs (MTs in green) and the corresponding schematic representations. Scale bars: 10 µm.
(B) Schematic illustration of WT interphase MT dynamics and the alterations observed for Cpn gene
expressing cells. (i) Disoriented MTs, (ii) aberrantly short MTs or (iii) aberrantly long MTs. Black
arrowheads show the directions moved for growing/depolymerizing MT. Cells were divided into
3 parts: the middle region was defined as being close to the nucleus (NN) and the other two regions
as NC (regions close to either cell end). (C) Heatmap of the aberrant interphase MT phenotypes
caused by Cpn proteins as described in (B). A total of 100 MTs/transformant strains were counted for
disoriented MTs, MTs predominant in region NN only, MTs reaching the cell end (region NC) and
MTs that continued to grow when the cell end had been reached (growth around cell end).

All yeast transformants expressing one of the 13 chlamydial genes showed alterations
of the MT cytoskeleton; some of them were severe (Figure 4A–C). The most prominent
were MT bundles that were not aligned with the long axis of the cell, such as those seen
for CPn0565 transformants, which were much shorter than wild-type MTs, as seen in
transformants expressing CPn0443, or MT bundles that were much longer than those
of the wild-type and curled around the cell tip, as observed for CPn0216 transformants
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(Figure 4A–C). To better define the MT phenotypes observed, we divided a cell into
three parts and quantitatively determined via live-cell imaging the number of MTs in the
middle part close to the nucleus, MT bundles that were not oriented along the long-axis
of the cell and MT bundles that curled around the cell tip (Figure 4B). All transformants
expressing a chlamydial gene featured misorientated MT bundles, but with the exception
of CPn0443 transformants, such MT bundles were still able to reach the cell tip (Figure 4C).
Transformants that expressed CPn0065, CPn0443 or CPn0565 all had abnormally short MTs.
The CPn0443 phenotype was the most severe, with the vast majority of MTs never reaching
the cell end (Figure 4A,C). Such short MTs are reminiscent of strains with a deletion of
the mal3+ gene [55]. Mal3 is a member of the plus-end-binding protein 1 (EB1) family that
tracks MT-plus ends and is central to the regulation of MT dynamics [56]. In contrast,
the expression of CPn0216 resulted in MTs that were aberrantly long, as MT plus-ends
continued to grow upon reaching the cell tip (Figure 4C). Such a phenotype was observed
in various mutants of MT-modulating proteins, such as components of the yeast MTOC or
kinesin-8 motor proteins [57,58].

We concluded that all 13 chlamydial proteins altered the yeast MT interphase cy-
toskeleton, albeit in different ways, demonstrating that modulation of the host MT during
a chlamydial infection must be manifold and diverse.

2.5. CPn0216 and CPn0443 Altered the MT Dynamics

We chose transformants that expressed either CPn0216 or CPn0443 for further analy-
sis, as these cells showed the most aberrant MT cytoskeleton: cpn0216 expression led to
abnormally long MTs that continued to grow once the cell tip was reached, while cpn0443
expression resulted in aberrantly short MTs (Movies S1–S3). Using live-cell imaging of
GFP-α-tubulin transformants, MTs of the control cells polymerized from the vicinity of the
nucleus in an oriented manner along the long cell axis to the cell end, followed by paus-
ing and depolymerizing back to the nucleus (diagrammatically shown in Figure 5A and
Movie S1). This type of MT dynamic pattern occurred many times during the interphase.
Individual dynamics of MT bundles of control transformants are shown in Figure 5B. In
contrast, MTs of transformants expressing CPn0216 showed an aberrant and much more
diverse phenotype, with the most severe being MT bundles that polymerized faster than in
the wild-type and did not pause upon reaching the cell end. Instead, these MT-plus ends
continued to grow, resulting in curved MTs before catastrophe (Figure 5C and comparison
with the control in Figure 5E; Movie S2). In contrast, CPn0443-affected MTs did not reach
the cell tip but showed multiple rounds of polymerization and depolymerization events
resulting in aberrantly short MTs (Figure 5D and comparison with the control in Figure 5E;
Movie S3).

2.6. CPn0443 Associated with MTs in Different Cell Systems

Next, we determined whether the phenotype observed upon CPn0443 expression
was caused by CPn0443 binding to MTs. CPn0443 has a moderate overall protein identity
of 35% for Ctr CT005/IncV. IncV is located in the inclusion membrane and tethers this
to the endoplasmic reticulum (ER) to form membrane contact sites (MCS), which are
crucial for nonvesicular trafficking-based interorganelle communication [59]. To determine
the subcellular localization of CPn0443, we expressed plasmid-encoded tagged variants
in yeast and human cells. Microscopic analysis of CPn0443-mCherry-expressing yeast
cells showed aberrantly short interphase MTs, as seen when the untagged CPn0443 was
expressed, confirming that the tagged protein was functional (Figure 6A). The predominant
localization of this chlamydial protein in S. pombe was ER-like, with 68.7% of cells analyzed
showing this localization [60] (Figure 6A, second row). As short MTs were present close to
the nucleus, we also observed some co-staining with MT structures. A subpopulation of
CPn0443-mCherry-expressing yeast cells (31.3% of all analyzed cells) showed a clear MT
colocalization (Figure 6A, rows three and four)). We concluded that in S. pombe, CPn0443
can associate with a subpopulation of MTs.
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Figure 5. Expression of chlamydial CPn0216 or CPn0443 proteins altered the MT dynamics in yeast.
(A) Diagrammatic representation of wild-type MT dynamics of an S. pombe interphase cell (control
cells) and the main differences observed in yeast transformants that expressed CPn0216 or CPn0443.
Interphase MTs from control cells polymerized from the vicinity of the nucleus in an oriented manner
along the long cell axis to the cell end, then paused (pink triangle) and depolymerized back to
the nucleus (blue dot). MTs of CPn0216 expressing cells did not stop polymerization once the cell
end was reached but continued to grow around the cell end, resulting in a “curling” phenotype
(red star), while the MTs of CPn0443 expressing cells depolymerize before reaching the cell end.
(B–D) Examples of the dynamic behavior of individual interphase MTs from the control, CPn0216-
or CPn0443-expressing cells that demonstrated consistently aberrant MT dynamics caused by the
expression of a chlamydial protein. Each color represents MT dynamics for individual MTs from cells
transformed with the indicated plasmid. (E) Representative examples of the dynamic behavior of a
single MT from either a control, CPn0216- or CPn0443-expressing cell. The MT dynamics of MTs that
were 1.5–2 µm in length (from the middle of the MT overlap zone at the nucleus) were measured via
live-cell imaging of GFP-α-tubulin-expressing transformants.

Next, we determined the CPn0443 localization in human epithelial U2OS cells. For
this analysis, U2OS cells were transfected for 18 h with a plasmid containing gfp-tagged
cpn0443. Interestingly, we found results similar to ours for the fission yeast, namely, that
75% of CPn0443-expressing cells showed co-localization of the chlamydial protein with
the ER (visualized via calnexin staining) (Figure 6B, top panels). In the remaining 25% of
CPn0443-expressing cells, the chlamydial protein was associated with the MT network
(Figure 6B, bottom panels). MTs with CPn0443-GFP association showed different degrees
of an aberrant MT cytoskeleton, including thick, cable-like MTs that were probably due
to varying CPn0443-GFP expression levels. Surprisingly, 33% of cells with CPn0443-GFP
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that co-localized with MTs also showed calnexin co-localization with MT (Figure 6C). In
such cases, MTs were cable-like, which was reminiscent of the overexpression of known
microtubule regulators [61–63].
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Figure 6. Ectopically expressed CPn0443 localized with the MT cytoskeleton and the ER. (A) Pho-
tomicrographs of GFP-α-tubulin-expressing (green) S. pombe cells (nmt81::GFP-atb2+). Cells were
transformed with plasmids expressing mCherry (control) or CPn0443-mCherry. CPn0443-mCherry
(red) co-localized with ER-like structures and partially with MTs (green). White boxes show the areas
of enlargement; scale bar: 10 µm. Examples shown are representative cells from 3 independent exper-
iments analyzing 50 cells/experiment. (B) Confocal images of fixed human U2OS cells that expressed
either gfp or gfp-cpn0443. gfp-cpn0443-expressing cells that showed an ER or MT co-localization. ER
was visualized with the anti-calnexin antibody (red), MTs with the anti-α-tubulin antibody (red), and
DNA with DAPI (blue). White boxes show enlargement (zoom). The examples shown are representa-
tive of two independent experiments that analyzed 50 transfected cells/experiment. (C) Fluorescent
microscopy images of fixed U2OS cells that expressed gfp-cpn0433 showing co-localization with
altered MTs and an altered ER. MTs were visualized with the anti-α-tubulin antibody (red), ER with
the anti-calnexin antibody (magenta) and DNA with DAPI (blue). (B,C) scale bars: 10 µm.

2.7. CPn0443 Had Microtubule-Binding Activity

We then explored the possibility that the observed MT defects in CPn0443-expressing
cells were a result of direct MT binding by this chlamydial effector protein. Considering that
the expression of full-length CPn0443 or CPn0443164-417 resulted in comparable microtubule
defects in S. pombe (Figure 7A,B), the MT regulatory domain was likely to be present in the
smaller CPn0443164-417 variant. As we were unable to purify the full-length GST-tagged
protein, we purified GST-CPn0443164-417 and performed MT co-sedimentation assays with
Taxol-stabilized MTs [64]. After incubation at RT, MTs and purified proteins were ultra-
centrifugated at 100,000× g under conditions that are sufficient for the sedimentation of
large proteinaceous structures, such as MTs. Under these conditions, the vast majority
of a GST control protein remained in the soluble fraction (Figure 7C-i) and only a small
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percentage co-sedimented with MTs in the pellet fraction (Figure 7C-ii). However, GST-
CPn0443164-417 was almost entirely found in the pellet fraction (Figure 7C-iv) together with
MTs, demonstrating that GST-CPn0443164-417 binds MTs directly (Figures 7C and S4B).
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Figure 7. CPn0443 bound MTs. (A) Schematic illustration of the CPn0443 full-length protein and
CPn0443164-417 variant with deletion of the N-terminus. Transmembrane domains are shown in blue.
(B) Photomicrographs of GFP-α-tubulin-expressing (green) S. pombe cells (nmt81::GFP-atb2+) express-
ing either CPn0443 or the variant CPn0443164-417. Expressions of both CPn0043 and CPn0443164-417

gave rise to abnormally short MTs compared with the control cells. (C) A representative MT co-
sedimentation assay showing a direct interaction between GST-CPn0443164-417 and MTs. Bacterially
expressed recombinant GST or GST-CPn0443164-417 and porcine-derived Taxol-stabilized MTs were
incubated at RT followed via high-speed centrifugation (100,000× g). Supernatant (S) and pellet (P)
fractions were separated via a 15% SDS-PAGE followed by Coomassie staining. Matching control
samples without MTs are found in Supplementary Figure S4B. (D) SDS gel analysis of the formation
of higher-order MT structures was performed in the presence of GST or GST-CPn0443164-417 and
Taxol-stabilized MTs. After low-speed centrifugation (4000× g), equivalent amounts of pellet and
supernatant were processed as in (C). (E) Quantification of the MTs found in pellet fractions shown
in (D); ns, not significant; p < 0.0018 (**), p < 0.0008 (***). Results represent typical examples from
three independent experiments. Error bars denote ±SEM. Two-tailed unpaired Student’s t-test was
used to determine statistical significance.

We next investigated whether GST-CPn0443164-417 was able to modify or aggregate
MTs. We took advantage of differential centrifugation and its ability to separate regular MT
cylinders from larger macromolecular structures produced via MT bundling. Following
a 4000× g centrifugation, MTs were found in the soluble fraction when incubated with
a buffer (Figure 7D-i) or a GST control (Figure 7D-iii). However, incubation with GST-
CPn0443164-417 generated larger MT structures that were predominantly found in the pellet
fraction (Figure 7D-vi). Additionally, GST-CPn0443164-417 was also able to generate large
MT structures that were even pelleted at 100× g (Figure S4A), similar to known MT-binding
proteins that were proposed to bundle MTs [65].



Int. J. Mol. Sci. 2023, 24, 7618 12 of 19

2.8. Ectopically Expressed CPn0443 Attenuated Cpn Infection

To determine whether ectopically expressed CPn0443 affected the C. pneumoniae infec-
tion efficiency, we infected gfp (control) or cpn0443-gfp-expressing U2OS cells with Cpn EBs
for 30 h (Figure 8A). We observed a 26% reduction in Cpn-infected cpn0443-gfp-expressing
cells in comparison to the control (Figure 8B). Furthermore, the number of inclusions per cell
was significantly decreased compared with the control cells (Figure 7C). This demonstrated
that cpn0443-expression had a negative impact on Cpn infection in mammalian cells.
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Figure 8. Ectopically expressed CPn0443 resulted in reduced Cpn infection. (A) Confocal fluorescence
images of GFP or GFP-CPn0443-expressing (green) U2OS cells followed by Cpn infection (MOI 1) for
30 h. The chlamydial inclusion membrane was visualized with the anti-CPn0147 antibody (red) and
DNA/inclusions with DAPI (blue). Scale bars: 5 µm. (B,C) Quantification of the number of infected
cells (B) and chlamydial inclusions (C) per cell. U2OS cells transfected with GFP or GFP-CPn0443
and infected with EBs were analyzed. Error bars denote ± SEM. Two-tailed unpaired Student’s t-test;
p < 0.001 (***). n = 2; 50 cells per experiment and plasmid.

3. Discussion
3.1. The MT Cytoskeleton Played a Vital Role in C. pneumoniae Infection

The fission yeast Schizosaccharomyces pombe is one of two model yeasts that were instru-
mental in discovering fundamental eukaryotic processes, such as the cell cycle, and were
used as models of major human diseases [66–68]. As S. pombe has a very distinct interphase
MT cytoskeleton, we used this yeast to identify C. pneumoniae proteins that manipulate
the host cytoskeleton. C. pneumoniae is an obligate intracellular human pathogen that is
very difficult to manipulate genetically, and thus, the S. pombe system has been an excellent
tool to identify chlamydial MT modulators. The role of the MT cytoskeleton in bacterial
infection processes had not yet been studied systematically, and thus, our analysis uncov-
ered the important role of this cytoskeleton for a bacterial pathogen. Unexpectedly, of the
116 chlamydial proteins tested, which comprised more than 10% of the reduced C. pneu-
moniae genome, we found that 13 massively changed the yeast interphase cytoskeleton. It
was possible that the 18 chlamydial proteins found in the yeast screen in category 2 also
contributed to the manipulation of the host MT cytoskeleton, but this could not be assayed
as the expression in yeast was lethal. Furthermore, although the basic principles between
the yeast and the human MT cytoskeleton were conserved, S. pombe tubulin does not have
all the modifications found in higher eukaryotes. For example, tubulin detyrosination does
not appear to exist in S. pombe, while C. trachomatis stabilizes the MTs surrounding the
inclusion via tubulin modifications [25,34,69,70]. This suggests that our screen was highly
valuable in identifying MT-modulating proteins, but probably underestimated the number
of Cpn proteins involved in MT modulation. We concluded that the contribution of the MT
cytoskeleton in bacterial pathogenesis was vastly underrated.
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3.2. The Identified MT-Modulating Proteins Were Expressed at Different Stages of the Chlamydial
Developmental Cycle

None of the 13 candidates identified had been analyzed to date, and thus, the mech-
anisms by which Cpn targets aspects of MT biology during infection were unknown.
However, transcriptome analysis data exist for all 13 candidates pinpointing to MT ma-
nipulation during the entire chlamydial life cycle [48,71,72]. Their expression profiles can
be clustered into three classes: “early”, “mid” and “late” (adapted from [48]) (Figure S5).
The six early genes, namely, cpn0284, cpn0372, cpn0443, cpn0565, cpn0821 and cpn1027, are
expressed at high levels already at 6 h post-infection (p.i.), implying that the corresponding
proteins are functional at the early stage of infection. Thus, they might be required for
establishing the infectious niche, localizing the inclusion in proximity to the nucleus and/or
differentiating EBs from RBs. The four mid genes, namely, cpn0045, cpn0186, cpn0312 and
cpn0367, are expressed constitutively between 24 h and 48 h p.i., and thus, these proteins
might play a role in RB cell division, immunity evasion or anti-apoptosis. The three late
genes, namely cpn0065, cpn0216 and cpn0365, have increased expression from 36 h p.i.
(Figure S5) and their function could be linked to RB to EB re-differentiation, host cell exit or
as EB effector proteins for the new infection.

3.3. Eleven of the Identified Proteins Were Inc Proteins

Effector proteins interacting with the host cell MT system need to be associated with
the inclusion membrane or secreted into the host cell cytosol. Although our initial selection
of chlamydial proteins included several predicted Inc proteins, and thus, was not random,
it is noteworthy that 11/13 proteins were putative Inc proteins. To date, eight of these
proteins have been analyzed for a functional N-terminal type-3-secretion signal (T3SS) and
all of them were able to allow for the secretion of a reporter in the heterologous Shigella
test system, which would allow for the secretion of these proteins during infection ([39]
and references in there). For four of our T3SS-carrying proteins, a subcellular localization
during infection was determined: CPn0186 and CPn1027 are associated with the inclusion
membrane, while CPn0284 and CPn0357 are bacteria-associated [39,73,74]. It is possible
that the two bacteria-associated proteins are secreted at low levels and that the microscopy
only detected the bacterial cytosolic protein pool, but not the final subcellular localization.

3.4. Inc Proteins and Modulation of the MT Cytoskeleton

How then could the inclusion membrane proteins modulate the host MT cytoskele-
ton? Analysis of Ctr inclusion membrane points to the existence of inclusion membrane
microdomains that interact with the MT network/MT-associated proteins [30,31]. Thus,
it is possible that the identified Inc proteins interact with different components of the MT
cytoskeleton in time and space during the infection cycle. How they crosstalk with the host
MT, whether they act in concert and the outcome of the specific MT modulation for infection
is at present unclear. However, the MT phenotype observed in yeast cells expressing such
proteins might help in defining their function. cpn0216 belongs to the late expressed genes
(Figure S5) and the CPn0216 protein might therefore be required for the early steps in
Cpn infection, which we showed required an intact MT cytoskeleton (Figure 1). CPn0216-
expressing yeast cells showed abnormally long MTs that continued to grow although they
have reached the cell end (Figure 5). Thus, the normal MT length control, which is required
for numerous cellular functions, was altered by CPn0216. In S. pombe, the switch from MT
polymerization to depolymerization once MT bundles reach the cell end is accomplished by
two spatially distant competitor complexes: the stabilizing Mal3 (EB1 family)-containing
complex and the destabilizing Kinesin-8-containing complex [75]. As CPn0216 can also
exert its function in yeast cells without the stabilizing complex, we propose that CPn0572
antagonizes an MT destabilizer motor protein to modulate the MT cytoskeleton.

The second protein that we analyzed in more detail, as far as the MT-modulating func-
tion is concerned, was CPn0443. CPn0443 is an early expressed protein. This chlamydial
protein can bind directly to Taxol-stabilized MTs in vitro and bundle them. In vivo, we
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found the protein to be associated with the ER and part of the MT cytoskeleton in both
yeast and human cells. Interestingly, the shape of the ER, which is MT-associated and
contacts numerous organelles, was altered in CPn0443-expressing cells, as demonstrated
by calnexin staining (Figure 6C, transfected versus non-transfected cells). The putative Ctr
homolog of CPn0443, namely, IncV, was shown to link the chlamydial inclusion with the
ER [76]. As ER proteins, such as p180, kinectin and CLIMP63, associate with specific MT
populations and regulate ER positioning and organelle reallocation [77], we speculate that
CPn0443 might mimic such a function.

In summary, our screen in S. pombe was the first systematic analysis to evaluate the
importance of the host MT cytoskeleton for infection by a bacterial pathogen. We identified
13 uncharacterized C. pneumoniae proteins that were expressed at different stages of the
chlamydial infection cycle and these all significantly altered the MT cytoskeleton. As
this obligate intracellular pathogen has a highly reduced genome, this work uncovered a
hitherto vastly underestimated role for this dynamic cytoskeleton in bacterial pathogenesis.

4. Material and Methods
4.1. Yeast Strains, Media and Growth Conditions

S. pombe strains used:
h− his3-D1 ade6-M210 leu1-32 ura4-D18 (wild-type strain); h+ kanR::nmt81::GFP-atb2+

ade6-M210 his3D1 leu1-32 ura4-D18; h+ mal3-pk-GFP::ura4+ ade6-M216 ura4-D18 leu1-32
his3-D1; h+ nda2-KM52 his3-D1 ade6-M21 leu1-32 ura4-D18; h− nda3-KM311 ade6-M210
leu1-32 ura4−.

S. pombe strains were transformed with control plasmids pJR2-3XU or pJR2-3XL [49]
or derivatives with a specific Cpn gene cloned behind the nmt1+ promoter. Generation of
these plasmids was achieved via homologous recombination in S. cerevisiae CEN.PK2 [78].
For patch test assays, S. pombe transformants were grown in liquid selective minimal
medium in the presence or absence of thiamine for 24 h at 25 ◦C, diluted, and plated on
plasmid-selective minimal medium with/without 5 µg/mL thiamine and with/without
3–9 µg/mL TBZ (Merck KGaA, Darmstadt, Germany) or with/without 0.5–4.5 µg/mL of
MBC (Merck KGaA, Darmstadt, Germany). At least two independent transformants per
plasmid were assayed.

4.2. Generation of the Cpn Expression Library for Screening in S. pombe

A total of 116 Cpn genes [48,79] were selected for the Cpn expression library in S. pombe.
Genes (lengths between 291–4614 bp) were amplified via PCR using Cpn GiD DNA as a
template [80] and primers with 20-nucleotide homology to the respective gene and 40-
nucleotide homology to the S. pombe expression vector pJR2-3XU. Genes were cloned down-
stream of the nmt1+ promoter using homologous recombination in S. cerevisiae CEN.PK2
and grown under plasmid-selective conditions [78]. Plasmids were isolated from S. cere-
visiae and amplified in E. coli XL1-blue. Correct insert integration was verified via DNA
sequencing. Genes with sequence deviation (nucleotide exchanges or insertions) were
cpn0045, cpn0132, cpn0150 and cpn0132. Cloning of these genes was repeated but subse-
quent sequence analysis revealed the existence of the sequence deviation in the Cpn GiD
strain (Supplementary Table S1A) [81].

4.3. Yeast Protein Extracts and Western Blot Analysis

Whole yeast protein extracts were obtained as described [82]. Actin and tubulin were
visualized on an 8% SDS-PAGE with the anti-actin antibody (Thermo Scientific, Waltham,
MA, USA) or anti-α-tubulin antibody (Santa Cruz Biotechnology, Dallas, TX, USA). The den-
sitometry of the bands was determined using Image Lab 6.1 (BioRad, Hercules, CA, USA)
and quantification using GraphPad Prism8 (Graph-Pad Software, Inc., Boston, MA, USA).
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4.4. Mammalian Cell Lines and Production of Infectious Cpn EBs

HEp-2 (ATCC: CCL-23) and U2OS (ATCC: HTB-96) cells were cultured in Dulbecco’s
Modified Eagle Medium (Thermo Scientific, Waltham, MA, USA) supplemented with
10% FCS, MEM vitamins and nonessential amino acids (Thermo Scientific, Waltham, MA,
USA). Cpn GiD was propagated in HEp-2 cells and EBs were purified in a 30% gastrographin
solution (Bayer Vital GmbH, Leverkusen, Germany) and stored at −80 ◦C in an SPG buffer
(220 mM sucrose, 3.8 mM KH2PO4, 10.8 mM Na2HPO4, 4.9 mM L-glutamine).

4.5. Drug-Induced MT-Depolymerization and Chlamydia Infection

HEp-2 cells were treated with 10 µg/mL nocodazole (Merck KGaA, Darmstadt, Ger-
many) in supplemented DMEM medium for 30 min at 37 ◦C, followed by nocodazole
washout via replacement of the medium with fresh DMEM medium containing purified
EBs (MOI 5), followed by centrifugation at 2980 rpm at 37 ◦C for 20 min. The supernatant
medium was then replaced with fresh DMEM medium containing 12 µg/mL cycloheximide.
Cells were incubated at 37 ◦C for 30 h. Samples were fixed at specific time points (0–30 h)
with 3% paraformaldehyde in 37 ◦C warm PBS for 10 min, permeabilized with 2% Saponin
in PBS and immunostained for microscopy. MTs were visualized with the anti-α-tubulin
antibody (OriGene Technologies, Inc., Rockville, MD, USA), the inclusion membrane with
an anti-CPn0147 antibody [83] and DNA with DAPI (Merck KGaA, Darmstadt, Germany).

4.6. Transfection and Staining of Mammalian Cells

The transfection of U2OS cells was achieved according to the manufacturer’s instruc-
tions (Thermo Scientific, Waltham, MA, USA). Transfected samples were fixed 18 h p.i.
with fresh, pre-warmed 3% paraformaldehyde in 37 ◦C warm PBS for 10 min and pro-
cessed. MTs were visualized with the anti-α-tubulin antibody (OriGene Technologies, Inc.,
Rockville, MD, USA), endoplasmatic reticulum (ER) with the anti-calnexin antibody (Santa
Cruz Biotechnology) and DNA with DAPI (Merck KGaA, Darmstadt, Germany). For a
following Cpn infection, transfected cells were treated as described above.

4.7. Microscopy and Image Processing

Fixed mammalian cells: images were acquired using an inverse Nikon TiE Live Cell
Confocal C2plus with a 100-x TIRF objective and a C2 SH C2 Scanner (Nikon Corporation,
Tokyo, Japan). All images are displayed as maximum intensity projections, except when
noted. Analysis of images and measurements were generated with Nikon Element software
and ImageJ 1.47v (National Institutes of Health, Bethesda MD, USA).

Live-cell imaging of S. pombe cells: Yeast cells were grown in plasmid-selective minimal
media (MM) with supplements [84]. Prior to microscopy, cells were grown at 25 ◦C for
24 h in liquid MM without thiamine to the early/mid-log phase. Microscopy slides were
prepared by mounting cells on agarose pads [85]. Live-cell images were acquired at
RT using a Zeiss LSM 880 inverted confocal microscope (Carl Zeiss Microscopy GmbH,
Oberkochen, Germany) equipped with an Airyscan detector and a Plan-Apochromat
63x/1.4 oil immersion objective lens. Raw Airyscan images were processed using the
ZEN Black software’s Airyscan Processing function. For the observation of MT dynamics,
Z-stacks were collected at 7 s intervals and maximum intensity projections were used for
analysis using ZEN 3.0 blue edition (Carl Zeiss Microscopy GmbH, Oberkochen, Germany).

For the quantification of MT dynamics, nmt81::GFP-atb2+ cells of 9 to 12 µm in length
were assayed. The antiparallel MT overlapping zones at the nucleus were chosen as the
starting point for the measurement and MTs with a length of 1.5–2 µm were chosen for MT
dynamic measurements.

4.8. MT Binding and Bundling Assays

Recombinant GST and GST-CPn0443164-417 were expressed in E. coli Rosetta (DE3) cells
(Merck KGaA, Darmstadt, Germany) and purified using glutathione agarose beads (Merck
KGaA, Darmstadt, Germany) according to manufacturer’s instructions and dialyzed o/n
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at 4 ◦C in buffer A1 (50 mM Hepes-HCl pH 7.4, 150 mM NaCl, 20% glycerol w/v). The
purity of GST-CPn0443164-417 was analyzed using SDS-PAGE and Coomassie blue staining.
Taxol-stabilized MTs were generated in vitro according to the manufacturer’s instructions
(Cytoskeleton Inc., Denver, CO, USA). MT binding assays were carried out as follows: 25 µL
of Taxol-stabilized MTs (equivalent to 4 µM tubulin dimer) in 80 mM PIPES pH 7.0, 2 mM
MgCl2, 0.5 mM EGTA, 72 µM GTP, 0.4% glycerol (w/v) and 18 µM Taxol were incubated
with 25 µL of 4.6 µM GST-CPn0443164-417 or a GST control in buffer A1 for 30 min at RT.
Mixtures were then layered on top of a 100 µL glycerol cushion (80 mM PIPES pH 7.0, 1 mM
MgCl2, 1 mM EGTA, 60% glycerol, 20 µM Taxol) and centrifuged at 100,000× g at RT for
45 min. The supernatant was carefully collected before the removal of the glycerol cushion.
Pellets were resuspended and loaded next to their corresponding supernatant fraction on a
15% SDS gel, followed by Coomassie staining. Identification of the formation of larger MT
assemblies was achieved following the same procedure, except that the protein mixture
was centrifuged at 4000× g at RT for 45 min. The densitometry of the bands in soluble and
pellet fractions was carried out using Image Lab (BioRad, Hercules, CA, USA), and the
values of MTs in pellet fractions were graphed as percentages of total MTs found in soluble
and pellet fractions together.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24087618/s1. References [86–89] are cited in the Supplementary
Materials.
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