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Abstract

This thesis deals with the investigation of AI-assisted analysis of flow cytometry data
from human hematopoietic cells and how this can contribute to clinical diagnostics. In
addition, investigations into the establishment of a drug delivery system with carbon
nanodots (CNDs) synthesized in the working group were continued. Four manuscripts
emerged from this work, which summarize the main findings.

In Paper I, the immunological phenotype of hematopoietic stem and progenitor cells
(HSPCs) was analyzed using selected markers in comparison to blast and leukemic stem
cells (LSCs) from patients with acute myeloid leukemia (AML) and myelodysplastic neo-
plasms (MDS) assisted by the t-SNE algorithm. The gates defined on the t-SNE map
could be assigned to diagnostically relevant cell populations and revealed a fine substruc-
ture within the respective cell types. For the selected markers it has been shown that
the differences between HSPCs in comparison to blasts, and LSCs in AML and MDS are
likely to be due to the different proportions of certain cell types and different intensities
of fluorescent markers within the various cell types, rather than the exclusive presence
of certain cell types. In addition, a method was introduced for classifying new samples
using t-SNE reference images and a quantitative similarity comparison with the pearson
coefficient as a measure. This concept can also be used to monitor the evolution of cell
populations of patients in therapy and is not limited to the diagnosis of AML and MDS,
but can be applied to multiparameter diagnostic flow cytometry data as well as single-cell
data in general.

As a further parameter in the AI-supported evaluation of hematopoietic flow cytometry
data, the uptake of CNDs was investigated in Paper II in comparison between healthy
donors and patients with AML. The differential uptake of CNDs between different cell
types as well as between the two comparison groups could be shown concisely using t-
SNE. While all cell types took up the CNDs, the CD34+ and CD33+ subsets of the AML
samples showed a significantly reduced uptake. Confocal fluorescence microscopy images
showed that the CNDs accumulate perinuclearly in the AML cell line HL-60, indicating
localization in the lysosomes, in agreement with previous studies.

In Paper III, the possibilities of functionalizing the CNDs for selective uptake were inves-
tigated. For this purpose, monosaccharides and glycooligomers were covalently coupled to
the CNDs and the uptake was investigated in multiple cell lines. No cell type-dependent
uptake was observed, but the CNDs conjugated with sugar monomers showed a two- to
threefold increase in uptake compared to the pristine CNDs and the CNDs functionalized
with glycooligomers.

Finally, Paper IV shows the results of the study on the influence of CNDs on the lyso-
somes and the associated process of autophagy, as well as the targeted delivery of drugs
into the lysosomes using CNDs as carriers. Lysosomal processes and autophagy as char-
acterized by cathepsin B and L and the autophagy markers SQSTM1/p62 and LC3 were
not significantly altered due to the presence of the CNDs, making them promising inert
carriers for lysosomal drug delivery. Branched Polyethylenimine (bPEI) was coupled to
the CNDs as an example of a drug. bPEI was successfully delivered into lysosomes by the
CNDs, confocal fluorescence microscopy revealing increased accumulation of bPEI-CNDs
in lysosomes compared to pristine CNDs. In addition, it was observed that the effects of
free bPEI on the cell were attenuated by binding to the CNDs.
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Introduction

Medical research and practice are facing a profound transformation in the age of big data
[1]. Especially in the area of single cell data as they may occur in the fields of genomics,
proteomics, transcriptomics, and cytomics the amount and complexity of data is increas-
ing due to technological progress [2], [3]. This variety and wealth of information holds
tremendous potential for making diagnoses more precise, developing personalized thera-
pies and increasing the efficiency of the healthcare system [4], [5]. However, the sheer
volume and complexity of such medical data exceeds the capacity of conventional analy-
sis and processing methods [6]. This creates an urgent need for advanced, AI-supported
analysis methods to extract the relevant information from the data and transform it into
clinically relevant insights [6], [7].

Flow cytometry is a method of analysis at single cell level [8]. It is used as standard
in medical diagnostics for hematological diseases and allows the analysis of up to 10.000
cells per second [9]–[15]. While the first flow cytometer could only record one parameter,
namely the size of cells, modern flow cytometers are able to measure up to 30 fluorescence
channels simultaneously [16], [17]. The conventional data evaluation is carried out manu-
ally by a human operator [18]. Two parameters are plotted against each other and regions
of interest, so-called gates, are drawn in [19]. The cell subsets from within the gates can
then be further analyzed using other parameter combinations. However, due to the in-
creasing number of parameters that can be measured simultaneously, manual evaluation
reaches its practical limits [19]. With 18 parameters, a total of 153 two-dimensional plots
are required to display all marker combinations [18]. Manual analysis thus has several
drawbacks [17]. Due to the increasing number of markers, the analysis gets even more
complex and time-consuming, and when analyzing subspaces defined by two markers,
high-dimensional patterns can get lost during the analysis [17], [18]. Furthermore, manual
analysis depends on the operator’s experience, which may add bias to the analysis so that
new information or unknown cell populations may not be identified [18], [20]. AI based
tools seem promising to help address these challenges [17], [19], [20]. One method that has
already been applied successfully many times to visualize and evaluate multiparameter
single cell data sets is based on the t-distributed stochastic neighbor embedding (t-SNE)
algorithm [17], [18], [21]–[23].

While analysis and diagnostics continue to develop, therapeutic approaches are also evolv-
ing towards ever more precise treatment approaches. One promising approach is using
nanoparticles to build a drug delivery system in which the drugs are targeted to their site
of action and unwanted side effects can be minimized thanks to the high selectivity [24],
[25]. Fluorescent carbon nanodots have proven to be promising candidates for biomedical
applications and have already been successfully used for intracellular sensing [26]–[29],
drug delivery [30], [31], mRNA delivery [32], and photodynamic therapy [33]–[36].

The aim of this work is to investigate how the use of AI algorithms such as t-SNE can con-
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INTRODUCTION

tribute to the analysis of multiparameter flow cytometry data and how it can be used to
support clinical diagnostics. Thereby we focused on the data sets of human hematopoietic
cells. As an additional parameter in the investigation, we examined the uptake of carbon
nanoparticles to differentiate between healthy and diseased samples. The study resulted
in two further studies on the uptake of carbon nanodots. As the previous investigations
showed that there were differences in the uptake of the particles, an attempt was made
on the one hand to make the uptake more selective by modifying the particles. On the
other hand, it was shown that the particles accumulated mainly in the lysosomes, which
raised the question of whether the particles have an influence on the lysosomes and the
associated process of autophagy and whether the particles can be used as a carrier for
drug transport into the lysosomes.

This work is divided into five chapters. Chapter 1 sets out the theoretical basis for the
work. First, artificial intelligence and machine learning are discussed and applications of
dimensionality reduction and clustering are described in more detail. Various applications
in the field of medicine are presented, including a separate discussion of applications in the
field of flow cytometry. Next, carbon nanoparticles are presented, with specific reference
to graphene, graphene quantum dots, carbon nanodots and their biomedical applications.
A discussion of the biomedical basics, namely hematopoiesis, CD antigens, the hemato-
logic diseases acute myeloid leukemia (AML) and myelodysplastic neoplasms (MDS), the
endolysosomal system and the process of autophagy concludes chapter 1. In chapter 2,
the most important experimental methods are briefly explained, while the the specific
methodological details are referred to in the respective papers. Starting the chapter, flow
cytometry is introduced and the process of gating is discussed. The synthesis and modifi-
cation of the carbon nanodots is explained next. The following part covers the explanation
of confocal fluorescence microscopy, western blot and mass spectrometry. Chapter 3 inves-
tigates the contribution of AI to the analysis of flow cytometry data from hematopoietic
cells. In Paper I we use t-SNE to analyze hematopoietic stem and progenitor cells in
comparison to blast and leukemic stem cells from patients with AML and MDS. Further,
a method for classifying new samples using t-SNE is developed. In Paper II, the uptake
of CNDs is included as an additional parameter in the AI-assisted analysis and the selec-
tive uptake of CNDs in various healthy and malignant hematopoietic cells is investigated.
Chapter 4 extends the research by addressing the questions raised in Paper II. In Paper
III, the selective uptake of CNDs is investigated further and the effect of functionalization
is explored. The results regarding the influence of CNDs on lysosomes and autophagy as
well as the use of CNDs as carriers for drug transport into the lysosomes are presented in
Paper IV. Concluding this work, chapter 5 summarizes the findings and discusses potential
future research opportunities.
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1. Fundamentals

This first chapter sets out the theoretical foundation for understanding the papers that
have been published along this thesis. The domains of AI and machine learning are
discussed first, followed by an introduction of the physical principles of carbon nanodots.
A comprehensive walkthrough of biomedical principles completes this chapter.

1.1 Artificial Intelligence and Machine Learning

The term Artificial Intelligence was coined by John McCarthy at a conference at Dart-
mouth University in 1956 [2], [37]. While the exact definitions of AI vary, it can be
understood as a field of computer science that aims to develop intelligent machines and
algorithms that mimic human intelligence and which are able to learn and apply the learn-
ings to solve problems [2], [38], [39]. The field of AI encompasses many branches, such
as natural language processing, computer vision, and machine learning (ML) [40]. ML
enables systems to learn from data without explicit programming [41]. It provides algo-
rithms and methods that allow machines to identify patterns in data to make decisions or
predictions based on input data [42]. ML differentiates between supervised, unsupervised
and reinforcement learning.

Supervised learning is a process where a model is trained on a labeled dataset [41]. Each
input is paired with the corresponding correct output, allowing the model to learn how to
map inputs to outputs [43]. This process mimics human learning under the guidance of a
teacher [43]. An example of this would be when a child learns what a dog is with the help
of its parents. When the child sees a dog, the parents call it a dog so that the child learns
over time to recognise a dog independently based on its characteristics and is also able
to distinguish it from a cat. To bring it back to ML, the model learns to associate spe-
cific features in images with corresponding labels, enabling accurate classification of new,
unseen images [41]. Alongside classification another common task in supervised machine
learning is regression, enabling models to predict an outcome based on the given input [43].

In contrast, unsupervised learning involves unlabeled data, requiring the model to iden-
tify patterns or structure without explicit guidance [44]. In the child and parent analogy,
the child would learn to distinguish between a dog and a cat in a group of dogs and cats
on the basis of the different characteristics of the animals by itself, without knowing the
names of the two species. After recognizing the characteristics the child would be able to
group the animals into cats and dogs. This would be an example for clustering, which is
a common task in unsupervised learning [43]. In clustering, the algorithm groups similar
data points together based on specific features, revealing inherent structures in the data
[2]. Besides clustering another common task is dimensionality reduction, which are both
discussed in detail in the following chapter 1.1.2 and 1.1.1.

Besides supervised and unsupervised learning there is a third basic learning concept namely
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1. FUNDAMENTALS

reinforcement learning [41]. This type is characterized by learning through feedback
from the environment in a trial and error process [43]. An example of this would be
training a dog. If the dog behaves as desired, it gets a treat, if not, it is admonished. By
rewarding the correct behavior, the dog learns the desired actions, as it wants to maximize
positive rewards and avoid negative ones.

1.1.1 Dimensionality Reduction

Dimensionality reduction (DR) is a collection of techniques in unsupervised machine learn-
ing and data analysis, which aim to reduce the number of variables or features in a dataset
while preserving its essential characteristics [43], [44]. The necessity for the use of dimen-
sionality reduction is frequently evident. In the context of the current era of Big Data,
characterized by the growing amount of data, the sheer volume of data produced is in-
creasing continuously, while in the medical field the number of parameters that can be
acquired simultaneously is rising in parallel due to technological progress [1], [6], [45]–[47].
Consequently, DR is pertinent to reduce the computing time and the required storage
space [45]. Moreover, DR is helpful and sometimes even necessary for visualizing data
for analysis, e.g. for revealing hidden features in the dataset, as it becomes more and
more challenging to display data given the increasing number of dimensions [4], [7]. If it
is possible to reduce a data set with a large number of dimensions to just a few without
losing information, the aforementioned challenges can be overcome [44].

DR methods can be subdivided into two main approaches: feature selection (FS) and fea-
ture extraction (FE) [41], [44]. While FS selects the smallest possible number of relevant
features that contain the information and eliminates the others, FE transforms features of
the high-dimensional data set with algebraic transformations into a smaller number of new
features for representation in the low-dimensional data set [44], [48]. Since the algorithms
used in this work are based on the FE approach, the following paragraphs focus on them.
Feature extracting algorithms (FEAs) can further be subdivided into linear or non-linear
FEAs. Linear dimensional reduction methods, such as Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA), seek to identify linear combinations of
the original features that capture the greatest variance or discriminative information in the
data [44]. These methods assume that the underlying relationships between variables are
linear [49]. In contrast, non-linear dimensional reduction methods, such as t-Distributed
Stochastic Neighbor Embedding (t-SNE), Isometric Mapping (ISOMAP), and Uniform
Manifold Approximation and Projection (UMAP) aim to preserve high-dimensional struc-
tures of the data by identifying non-linear mappings. Unlike linear methods, non-linear
methods are capable of capturing complex relationships and manifold structures present
in high-dimensional data [50].
Another difference between the various algorithms can be seen in the preservation of local
and global structure. Depending on the design of the algorithm, when creating the low-
dimensional mapping, the local or global relationships from the high-dimensional data set
are preserved differently [51]. In analogy to our solar system, the local structure would
be the distance of the moons to the planets they orbit [51]. The global structure, on the
other hand, would reoresent the distances between the individual planets [51].

The following two sections explain the PCA and t-SNE algorithms used in more detail.
As PCA is one of the most frequently used and best-known methods, it is only briefly
presented while the focus is put on the introduction of t-SNE [49].
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1.1. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised, linear dimensional reduction
algorithm [52]. In its earliest form, the algorithm goes back to the statistical formulation
by Karl Pearson in 1901 [53]. It was then further developed by Harold Hotelling in the
1930s [54]. PCA reduces the feature space to a smaller number of newly created so-called
Principal Components (PCs) by determining the directions of the maximum variance in
the data set [49]. The new low-dimensional subspace has the PCs as orthogonal axes
pointing in the direction of maximum variance [55]. The individual steps of the algorithm
are shown in Algorithm 1, which is taken from the review of Anowar et al. [44]. PCA offers
several advantages. Primarily, it requires low computation effort since it is not iterative.
Additionally, it can reduce over-fitting for training of a model, and it can also be used for
noise reduction and data compression [44].

Algorithm 1: PCA

Input: X ∈ Rn×d
Output: Y ∈ Rn×k
1: Construct the covariance matrix (X.XT )
2: Apply linear Eigen decomposition to (X.XT ) to obtain eigenvalues and -vectors
3: Sort Eigen values in decreasing order to sort eigenvectors
4: Build matrix W (d× k) with k top eigenvectors
5: Transform X using W to obtain the new subspace Y = X.W

t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised, non-linear di-
mensional reduction algorithm presented by Laurens van der Maaten and Geoffrey Hinton
in 2008 [21]. The algorithm is a further development of Stochastic Neighbor Embedding
(SNE) by Geoffrey Hinton and Sam Roweis [56]. t-SNE enables the visualization of high-
dimensional data in a two- or three-dimensional scatterplot, preserving high-dimensional
local structure [21]. In order to achieve this, the conditional probabilities pi|j are initially
calculated for the high-dimensional distribution between the individual data points, which
serve to quantify the degree of similarity between points xi and xj .

pij =
exp(−||xi − xj ||2/2σ2i )∑
k 6=l exp(−||xk − xl||2/2σ2i )

(1.1)

The step is then repeated for an initially randomly generated, low-dimensional distribution
and the conditional probabilities qi|j between yi and yj are calculated.

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

(1.2)

Furthermore, the approach specifies that the conditional probabilities are symmetrical,

therefore pij = pji, qij = qji and pij =
pj|i+pi|j

2n . Since only pairwise similarities are rele-
vant, pii and qii are set to zero.

The difference between the two probability distributions is that a Gaussian distribution is
used for the high-dimensional distribution and the Student t-distribution with one degree
of freedom is used for the low-dimensional distribution. If the two probability distributions
are identical, the low-dimensional distribution will precisely reflect the high-dimensional
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1. FUNDAMENTALS

distribution. To achieve this, t-SNE employs an iterative process whereby the difference
between the two distributions is minimized. The Kullback-Leibler (KL) divergence is
employed in the cost function C as a metric for the dissimilarities.

C = KL(P ||Q) =
∑

i

∑

j

pijlog
pij
qij

(1.3)

A gradient method is used for optimisation, the gradient is calculated as follows:

δC

δyi
= 4

∑

j

(pij − qij)(yi − yj)(1 + ||yi − yj ||2)−1 (1.4)

The gradient can be understood as an attractive or repulsive force between the individual
points. The calculation for each point determines how strongly and in which direction
the point should be moved. As a result, the t-SNE plot is generated as a function of
the calculated coordinates t-SNE1 and t-SNE2 (in the two-dimensional case). Figure 1.1
shows an example of a t-SNE plot.

Figure 1.1: A t-SNE plot of a merged flow cytometry data set from 21 patients is shown as an
example. Every point represents a single cell. The fluorescence intensity of the CD45RA marker
is colour-coded.

The main steps of the t-SNE algorithm are summarized in Algorithm 2 based on reference
[21].
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1.1. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Algorithm 2: t-SNE

Input: X ∈ Rd
Output: Y ∈ Rk with k usually 2 or 3
1: Compute pairwise similarities pij with given perplexity

2: Set pij =
pj|i+pi|j

2n
3: Create initial random distribution Y 0 in low-dimensional space
4: Compute pairwise similarities qij
5: Compute gradient δC

δyi
6: Adjust Y t accordingly
7: Repeat step 4 to 6 for the number of given iterations t

The choice of hyperparameters for t-SNE drives the quality of the visualization of the
data set [57], [58]. The optimal hyperparameters differ depending on the data set and
a large number of studies deal with the choice of hyperparameters [21], [23], [57]–[60].
Of the several hyperparameters available, two are relevant for this work: the number of
iterations and the perplexity, which are explained in more detail below. To visualize high-
dimensional data, t-SNE optimizes the cost function step by step. The number of steps is
determined by the hyperparameter Number of Iterations and is to be selected by the
user. If the number is set too low, the optimization may end before a stable distribution
is achieved [59]. However, a high number of iterations also costs computing time, so a
compromise must be found here. Figure 1.2 shows runs of t-SNE at different selected
numbers of iterations, with the perplexity parameter fixed. With the number of iterations
between ten and 120, the algorithm was stopped before a stable distribution could be
achieved.

Figure 1.2: Shown are different t-SNE runs at a fixed perplexity of 30 while the number of
iterations is varied between 10 and 1000. The original distribution of the data points is shown on
the left. The image was reprinted from [57] and is distributed under a CC-BY 4.0 license by Distill.

The second hyperparameter, which is also regarded as the most important, is Perplexity
[23]. The value of the perplexity plays a decisive role in the calculation of the similarities
between the points [58]. The selected perplexity influences the width of the Gaussian
distribution and thus the number of nearest neighbors of a point [59]. Figure 1.3 shows
various runs of t-SNE in which the number of iterations is fixed and the perplexity is
varied. The original distribution of the data points can be seen on the left. For small
values such as two and five, many small clusters are formed. At five, in contrast to two,
there is already a separation between the original clusters. At values of 30 and 50, the two
original clusters are easily identifiable. At 100, however, the perplexity seems too high to
form separate clusters, as all the points are dispersed again. In this case, the number of
data points appears to be smaller than the perplexity.
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1. FUNDAMENTALS

Figure 1.3: Shown are different t-SNE runs at a fixed number of iterations (5000) while the
perplexity is varied between two and one hundred. The original distribution of the data points can
be seen in the figure on the left. The image was reprinted from [57] and is distributed under a
CC-BY 4.0 license by Distill.

t-SNE is one of the most commonly used algorithms for dimensionality reduction and
visualization, but it also has some weaknesses [61]. The nature of t-SNE is to preserve
local relationships rather than global structure [21]. This is one of the known limitations of
t-SNE [23]. Thus, global structures such as the arrangement of clusters and their distances
in the t-SNE plot do not provide a basis for interpretation. Therefore, the axes of the
t-SNE plot cannot be interpreted and are omitted, in agreement with common practice.
The prior use of a PCA can improve the global structure of the embedding, as suggested
by [23], [62]. Another difficulty with the t-SNE algorithm is that, unlike PCA, it cannot
add new data points to an existing embedding [59]. This makes it necessary to analyze
the entire data set in one run. Most recently, Kobak, D. and Berens, P. [23] as well as
Poličar et al. [63] have presented methods to subsequently integrate new samples into an
existing embedding.

1.1.2 Clustering

Clustering is a typical task of unsupervised machine learning, in which objects are arranged
in groups, so-called clusters, based on the similarities of their features or characteristics
[64], [65]. Techniques for cluster analysis can be subdivided into two groups: hierarchical
and partitional techniques [66]. In hierarchical cluster algorithms, the objects are placed in
hierarchical relationships to each other [65]. The clusters can be formed using a top-down
or bottom-up approach, resulting in a dendrogram that maps the relationships between
them [64]. Partitional cluster algorithms assign objects to clusters without mapping hier-
archical structures [67]. In an iterative process, the data set with n objects is divided into
a predefined number i of subgroups by optimizing a criterion function [65]. However, it is
often the case that no information about the expected number of clusters is available [68].
So-called automatic clustering algorithms address this problem and refer to all techniques
that automatically determine the number of clusters without prior information [65].

1.2 Application of AI in the medical field

The opportunities from the application of AI herald a new era in medicine, with new
diagnostic possibilities, improved workflow and research [5]. A distinction is made between
two main branches of AI applications: the virtual branch and the physical branch [69].
The virtual branch comprises the area of ML and the applications derived from it, whereas
the physical branch includes physical objects, medical devices and robots, e.g. for surgery
or care [37]. As the investigations in this thesis relate to the virtual area of applications,
examples from this area are given below to illustrate the variety of possible applications.
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1.2. APPLICATION OF AI IN THE MEDICAL FIELD

Diagnostics

AI applications, particularly in the field of ML, have continued to develop in recent years
and can help to improve diagnostics for many diseases [41]. An early diagnosis is par-
ticularly important in cancer diagnostics. In certain areas, AI can already keep up with
experts in terms of accuracy. In the field of dermatology, AI can characterize skin lesions
including melanomas as accurately as experts (area under the curve1 (AUC) 0.94-0.96)
(Figure 1.4) [72], [73]. In the interpretation of mammograms in breast cancer screening,
the level of experts can also be achieved with an AUC of 0.840 for AI compared to 0.814
for experts [74], [75]. Another example is the use of deep learning (DL, field within ML)
to determine molecular status in pathology data. DL can detect and score the expression
of a tumor marker protein and predict which tumor tissues have mutations using a neural
network model (AUC from 0.733 to 0.856).

Figure 1.4: Visualization of the last hidden layer representation of a convolution neural network
(CNN) for four disease classes using t-SNE. The four different classes are shown in different
colors, revealing the clustering by the algorithm. The image was reprinted from [72]. Reproduced
with permission from Springer Nature.

Precision Treatment

Precision medicine is a new approach of customizing treatment to the patient using multi-
module or multi-omics data [4]. This is possible because of the availability of exponentially
growing amount of biological and medical data that can be both generated and analyzed
by the new technologies [42]. For example, ML models have been developed to predict
patient response to treatments using clinical response data [76].
One of the challenges with the existing companion diagnostic assays is that tissue taken
from different locations of a tumor may contain different prognostic information due to
intra-tumor and inter-tumor heterogeneity [77], [78]. Therefore, another useful application
would be the use of AI-based interrogation tools to create a single consistent signature

1The area under the curve is a measure of the accuracy of a quantitative diagnostic test [70]. A test
that is not more accurate than chance has an AUC of 0.5, a perfectly accurate test has an AUC of 1 [71].
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from individual tissue slices from a tumor that reflects the entire lesion [79].

Medical Imaging

Another area that particularly benefits from AI is the field of radiology, where a large num-
ber of images are used for detection, diagnostics and monitoring of diseases [2]. Many AI
applications in this area have already achieved an expert level of accuracy in diagnostics:
Lung nodules can be detected on the basis of CT images [80], and pulmonary tubercu-
losis as well as common lung diseases can be diagnosed with chest radiography [81]–[83].
However, ML methods can not only be helpful to the analysis of medical images, but also
with the imaging techniques themselves. For example, DL methods can be used in inter-
and intra-modality image synthesis [84] or image segmentation [85].

Drug development

Finding new drugs is challenging and is one of the most difficult parts of drug development
due to the enormous number of drug-like molecules that could potentially be synthesized
[86]. The application of AI can help in many areas of drug development, such as identi-
fying and validating drug targets, designing new drugs, and improving the effectiveness
of research and development [87]. For example, DL was used to identify effective drug
candidates and predict their properties and potential toxicity risks [88]. In the field of
pharmacogenomics ML and DL methods are being applied which could lead to the drug
response being predicted mechanistically, which could be a step towards personalized drug
design [89].

1.2.1 AI in flow cytometry

Having discussed examples of the use of AI in the medical field, we will now look in more
detail at its use in the field of flow cytometry, which is the main focus of this work. As de-
scribed in the introduction, the number of parameters that can be measured simultaneously
is constantly growing, making manual analysis of the multidimensional data set increas-
ingly complex and time-consuming [90]. Since 2007, efforts have been made to analyze
the data sets using computational methods in order to overcome the difficulties of man-
ual analysis [91]–[97]. However, as the results were initially difficult to compare because
different data sets and evaluation methods were used when testing the algorithms, the
Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP)
project was set up to solve these problems [97]. The aim was to test and compare the
algorithms for specific tasks using the data sets provided [97]. The results of the first two
FlowCAP challenges are presented in the publication by Aghaeepour et al. [97] and are
briefly summarized below, followed by a short presentation of the results from FlowCAP
III and IV.

The FlowCAP I was about comparing the results from computational tools with the re-
sults from manual gating carried out by experts. There were four different categories
in which the algorithms could compete: 1) completely automatic, 2) manually tuned, 3)
assignment of cells to populations with predefined numbers of populations, and 4) su-
pervised approaches trained with human-provided gates. Within the four categories, the
algorithms were tested on five different data sets. The F-measure statistic was used for the
comparison, a value of 1.0 means that the result of the manual gating could be reproduced
exactly. Many algorithms achieved good results in several challenges with an F-measure

10



1.2. APPLICATION OF AI IN THE MEDICAL FIELD

above 0.85. Some algorithms were among the top, e.g. ADICyt in categories 1-3 and
SamSPECTRAL in challenge 3, while others were among the top group only for certain
data sets, such as flowMeans, FLOCK and FLAME in category 1.

In FlowCAP II, the focus was on the use of biomarker patterns in the data sets to classify
the samples. The algorithms were tested using three different data sets for different dis-
eases. The values for precision, recall, accuracy and F-measure were used for evaluation.
It was found that in two of the three data sets, many algorithms were able to perform the
classification perfectly (F-measure = 1.0). In the third data set, none of the algorithms
performed well, which in retrospect was probably due to the fact that no unambiguous
classification could be performed using the markers used.

FlowCAP III focused on the identification of rare cells using computational methods [98].
Training samples were provided, each data set contained two populations of rare cells,
which made up approximately 0.02 % to 0.04 % of the total population [98]. The chal-
lenge was to identify the rare cells using computational methods. The accuracy of the
identification was determined by comparison with manual gating [98]. In paper [98], Peng
Qiu presents the method that achieved the highest accuracy in the challenge with an F-
measure of 0.64 in phase-one and 0.69 in phase-two.

The FlowCAP IV challenge was about establishing a benchmark for assessing the relative
performance of algorithms in identifying cellular correlates of clinical outcome [99]. The
results were published by Aghaeepour et al. in paper [99]. A key finding was that au-
tomated, unbiased approaches that include the expression of all markers are preferable,
as they do not miss any potentially relevant cell populations. Furthermore, it was shown
that the correlates of biologically important outcomes can be based on cell types that are
not well described in the literature.

The FlowCAP challenges showed that automated methods can keep up with or are al-
ready superior to manual methods for many applications. Nevertheless, a study from
2021 showed that half of the laboratories were still not using automated methods for cell
population identification [90]. However, development is continuing as review articles on
current trends in the field of automated analysis show [18], [19], [90], [100]–[102]. Some
examples from recent years are summarized below:

Zhong et al. [103] have introduced an AI-supported workflow for the diagnosis of acute
leukemia for faster and more objective identification of malignant cell populations. The
AI model used is mainly based on DR, clustering and classification algorithms. Good
agreement was achieved between the manual results and the results using AI (Pearson
correlation coefficient of 0.913 (p < 0.04)).

Aanei et al. [104] investigated differences between AML blasts and normal myeloid progen-
itor cells using high-dimensional analysis algorithms (including Citrus, viSNE, SPADE).
The algorithms were used to identify the most informative markers for differentiation
within a panel to be analyzed.

Cheng et al. [105] have used deep learning to train AI for cell classification and detection
of acute leukemia. The application to the acute leukemia orientation tube (ALOT) pro-
tocol established by Euroflow was investigated. A sensitivity of 94.6 % was achieved for
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the detection of AML and 98.2 % for B-lymphoblastic leukemia (B-ALL) patients. While
the sensitivity for the detection of pathological cells varied, it was at least 80 % for physi-
ological cells.

Clichet et al. [106] have developed an ML model that generates a prediction score based
on five parameters for the diagnosis of high- and low-risk MDS. The sensitivity is 91.8 %
with a specificity of 92.5 %.

Vial et al. [107] and Salama et al. [108] both applied AI for the automated analysis of
multiparameter flow cytometry data to identify minimal residual disease (MRD). Vial
et al. were thus able to identify the MRD in AML using the unsupervised algorithm
Flow-Self-Organizing-Maps (FlowSOM). The results showed good agreement with the
molecular MRD data, which could enable the diagnosis of MRD in AML patients without
molecular markers. Salama et al. developed deep neural networks (DNNs) and were able
to recognize MRD in chronic lymphocytic leukemia (CLL) using a hybrid approach.

Above mentioned research provides strong indication that the use of AI can significantly
contribute to the analysis of flow cytometry data, diagnosis and identification of MRD,
showing the high relevance for further investigations.

1.3 Carbon nanoparticles

As this thesis includes the investigation of the uptake and influence of carbon nanodots
(CNDs) on cellular metabolic processes in Paper II, Paper III and Paper IV, the physical
basis for this will be presented in the following chapter. Additionally, the uptake of the
CNDs as parameters for visualization in a t-SNE plot is examined in Paper II. In the
first section, low-dimensional carbon modification graphene and its physical properties
are introduced. Afterwards, graphene quantum dots are reviewed. Finally, CNDs and
their biomedical applications are discussed.

1.3.1 Graphene

Graphene is a allotrope of the element carbon. Novoselov and Geim succeeded first in
preparing and investigating this two-dimensional modification in 2004 [109]. Until then,
it was assumed that infinitely extended, two-dimensional structures were thermodynami-
cally unstable according to the Mermin-Wagner theorem and therefore unrealisable [110].
The two physicists were awarded the Nobel Prize in Physics in 2010 for their discovery.

In graphene, the sp2-hybridized carbon atoms are arranged in a hexagonal lattice with
a diatomic base. This results in the two sublattices A and B (Figure 1.5). The bond
lengths are each a = 1.42 Å with a bond angle of 120◦. This results in a lattice constant
of around 246 pm. The reciprocal lattice of graphene also has a hexagonal structure. The
vertices of the first Brillouin zone, the so-called Dirac points (K, K’), play an important
role in understanding the unusual band structure of graphene. Using the tight-binding
model (TBM), the band structure of graphene can be calculated as in [111], which allows
a precise observation at the Dirac points:

The real lattice vectors can be written as

~a1 =
a

2
(3,
√

3), ~a2 =
a

2
(3,−

√
3) (1.5)
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and the reciprocal lattice vectors as

~b1 =
2π

3a
(1,
√

3), ~b2 =
2π

3a
(1,−

√
3) (1.6)

Figure 1.5: The lattice structure of graphene is shown with the lattice vectors ai and the vectors
to the nearest neighbors δi. The sublattice A (B) is shown in blue (yellow). On the right is the
corresponding 1st Brillouin zone of graphene with the reciprocal lattice vectors bi and the K, K’,
M and Γ points. The image was reprinted from [111] ©(2009) by the American Physical Society.

The tight-binding Hamiltonians for the electrons in the graphene, taking into account
that they can jump to the nearest neighbor as well as to the next nearest neighbor, can
be represented as:

H = −t
∑

〈i,j〉,σ

(a†σ,i bσ,j + h.c.)− t′
∑

〈i,j〉,σ

(a†σ,i aσ,j + b†σ,i bσ,j + h.c.) (1.7)

with t (≈ 2.7 eV ) as the hopping energy to the nearest neighbor (between the sublattices)
and t’ (≈ 0.1 eV ) as the hopping energy to the next nearest neighbor (within a sublattice).

With aσ,i(a
†
σ,i) the annihilation (creation) operator for an electron with the spin σ in the

sublattice A is denoted. The same applies to bσ,i(b
†
σ,i) with respect to sublattice B. The

energy dispersion derived from this can be described by

E±(~k) = ± t
√

3 + f(~k)− t′f(~k)

f(~k) = 2cos (
√

3kya) + 4cos (

√
3

2
kya) cos (

3

2
kxa)

(1.8)

The plus respective minus sign refers to the binding (π) respective anti-binding (π∗) band.
For t′ = 0 the spectrum is symmetrical around the zero energy. For finite values of t’, the
electron-hole symmetry breaks down and the π- and π∗-band become asymmetric. Figure
1.6 shows the band structure of graphene for t and t’. By developing the band structure
(1.8) in the neighborhood of K (K’) with ~k = ~K + ~q and |~q| � | ~K| it results in:

E±(~k) ≈ ±vF |~q|+O((~q/K)2) (1.9)

Due to the linear dispersion (1.9) near the Dirac points, the charge carriers there behave
like relativistic Dirac fermions with the Fermi velocity vF = 1×106m/s [111]. The equation
of motion of the charge carriers is therefore subject to the Dirac equation:

− ivFσ∇Ψ = EΨ (1.10)
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with the Pauli matrices σ = (σx, σy), the energy eigenvalue E and the two-component
wave function Ψ = (ψA, ψB) for the sublattices A and B.

Figure 1.6: Schematic representation of the band structure of graphene in the vicinity of the
Dirac points. The enlarged view shows that the band gap vanishes at the Dirac points. The image
was reprinted from [111] ©(2009) by the American Physical Society.

The band gap between the valence and conduction band vanishes in the Dirac points (Fig-
ure 1.6). Graphene is therefore a semiconductor with a vanishing band gap. As a result,
interesting transport phenomena such as the quantum Hall effect at room temperature or
the Klein paradox can be observed [111].

1.3.2 Graphene quantum dots

Graphene quantum dots (GQDs) are zero-dimensional graphene derivatives consisting of
single to a few layers of graphene with a diameter of a few nanometers [112]. The decisive
difference between the material graphene and GQDs is the band gap. While graphene is a
material with a vanishing band gap, GQDs have a band gap due to quantum confinement
effects and edge effects [113]. The size of the band gap seems to be influenced by the
number of aromatic carbon rings and thus by the size of the GQDs. As the number of
rings increases, the band gap decreases. Eda et al. [114] were able to show this using sim-
ulations based on density functional theory. The experimental results of Kim et al. [115]
and Ritter et al. [116] are consistent with their findings. On the other hand, influences of
the band gap by the edges of the GQDs can be observed. Both the modification of the
edges by nitrogen-containing functional groups and the ratio of the possible edge types of
graphene zigzag and armchair have an effect on the band gap of the GQDs [115]–[117]. If
the number of attached amino groups increases, the band gap decreases [117].

The changes in the band gap have a direct effect on the fluorescence of the GQDs, which
extends from the UV to the visible range [118]. However, the origin of the fluorescence
has not yet been fully explained [112]. In contrast to II/VI semiconductor quantum dots,
the fluorescence wavelength is not a monotonic function of the particle size [112]. This
indicates a subordinate dependence on the size quantization. The pH value of the en-
vironment also has an effect on the fluorescence intensity. The intensity increases with
increasing pH value [119].

1.3.3 Carbon nanodots

The GQDs discussed above are a pristine system. In the synthesis of carbon nanoparticles
for biomedical applications, however, we are often no longer dealing with a pure system due
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to the possible presence of heteroatoms, mixed edge structures and various hybridization
forms of carbon. These forms of heterogeneous systems as well as GQDs are summarized
in this work under the term carbon nanodots (CNDs). In the following, the synthesis and
modification methods are first described and then the physicochemical properties of the
CNDs are discussed.

Synthesis and modification

Two approaches can be distinguished when synthesizing carbon nanoparticles: the top-
down approach and the bottom-up approach [118]. In the top-down approach, the nanopar-
ticles are obtained by chemical, electrochemical or physical methods from the cutting of
carbon materials [113]. The most common method is cutting with concentrated oxidiz-
ing acid [118]. Other methods involve hydrothermal/solvothermal/special oxidation [120],
[121], electrochemistry [122], [123], metal-graphite intercalation [124], arc discharge [125],
laser ablation [126] and nanolithography with reactive ion etching [127], [128]. In contrast,
in the bottom-up approach, they are synthesized from organic molecules or polymers [118].
During synthesis, -COOH, -OH, -NH2 and other functional groups form covalent bonds
under dehydration [129]. Dehydration and carbonization can be achieved by a variety of
approaches such as hydrothermal [130], microwave [131] and combustion [132] methods,
pyrolysis in concentrated acid, [133] and carbonization in a microreactor [134].

The surface groups of the CNDs vary according to the precursors used and the reac-
tion conditions. Typically, carboxyl, hydrophilic hydroxyl or amino groups decorate their
surface, providing a target for covalent modifications [135]. Other substances such as poly-
mers, DNA, proteins or antibodies can be attached to the CNDs through covalent bonds
with the functional groups [136], [137]. The most commonly used modification method
is the amide coupling reaction in which 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
(EDC) and N-hydroxysuccinimide (NHS) are used as coupling reagents [136]. In the mod-
ifications of the CNDs carried out in Paper III and Paper IV, this method was used
to attach amino sugar, amino terminated sugar oligomers or branched polyethyleneimine
(bPEI) to the CNDs. Another type is non-covalent modification by means of electrostatic,
complexation or π-interactions [129], [135].

Fluorescence properties

As described above, there are a large number of different synthesis methods and modifi-
cation options. The optical properties of the CNDs can vary depending on the synthesis
method or modification used [129]. This makes it difficult to gain a comprehensive under-
standing of the relationship between the optical properties and the structure of the CNDs
[138]. In the following, five mechanisms that are most frequently considered to explain
the fluorescence mechanism of CNDs are briefly presented.

i.) The first effect is the quantum confinement effect of the conjugated π-domains.
The size of the sp2-hybridized domain has a decisive influence on the fluorescence
[114]. The radiative recombination of electron-hole pairs in such domains can gen-
erate fluorescence [118].

ii.) The surface/edge state influences the fluorescence emission of the CNDs. The
surface state is determined by the hybridization of the carbon skeleton and the
associated chemical groups [129]. Carboxyl, carbonyl and amide groups are mainly
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responsible for the green emission, while hydroxyl groups are accountable for the
blue emission [139], [140].

iii.) In non-conjugated systems such as polymeric dots, the crosslink-enhanced emis-
sion effect plays an important role [138]. For cross-linked polymer chains, vibrations
and rotations are reduced, resulting in increased fluorescence emission intensity [141],
[142].

iv.) Another mechanism is based on the self-trapping of an exciton in a polycyclic
aromatic hydrocarbon (PAH) network [143]. This results in a considerable stokes
shift and selective excitation of the various subsets of PAHs [143].

v.) The last mechanism is based on the excitation of small molecular fluorophores,
which are covalently or non-covalently bound to the CNDs [144]. This is particularly
relevant for bottom-up synthesized CNDs that use citric acid as a precursor [145],
[146].

Due to the structural heterogeneity of the individual CNDs, the origin of the fluorescence
may be a combination of the different mechanisms [138]. The quatum yield (QY) is the
ratio of the number of photons emitted to the number of photons absorbed. The QY
achieved vary greatly for different CNDs and can range from less than 1 % to over 90 %
[118], [146].

The fluorescence of CNDs can be used to detect their uptake into cells, for example
using flow cytometry (section 2.1). The fact that CNDs are generally taken up by cells
has already been shown in studies [147]–[149]. As the toxicity of CNDs appears to be
low compared to semiconductor quantum dots, they have a high water solubility, are
biocompatible, can be functionalized and have a fluorescence that can be influenced, they
open up a wide range of possibilities for biomedical applications, which are explored in
the next paragraph [113], [148], [150].

1.3.4 Biomedical application of carbon nanoparticles

Due to the ease of production, the influenceable optical properties and the possibility of
functionalisation with various ligands and biomolecules, carbon nanoparticles offer a whole
spectrum of possible applications in the field of biomedicine [25], [151]. In the following,
possible fields of application will be presented.

Intracellular sensing

One field of application is intracellular sensing, in which the nanoparticles are used as
nanosensors in vitro or in vivo [25]. Interactions with the environment can lead to changes
in the fluorescence properties of the nanoparticles, the measurement of which can be used
to infer changes in the physical property of interest, such as the pH value [25]. There are
already a large number of applications for measuring the pH value [152]. Wu et al. [26]
have presented N-doped GQDs whose fluorescence intensity shows a linear dependence on
the pH value for values between 2 and 9. The authors explain this by the dependence of the
zeta potential on pH. The protonation and deprotonation of the functional groups on the
GQD surface leads to changes in the zeta potential, which exhibits a linear dependence on
the pH value. Nie et al. [27] synthesized and functionalized carbon dots in which the ratio
of fluorescence intensity at different peaks changes linearly with pH for values between 5
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and 8. Other areas of application include the detection of ions or reactive oxygen species
(ROS) such as hydrogen peroxide (H2O2) [25]. Heavy metals can accumulate in organs
or tissues and cause a wide range of diseases [153]. The concentrations of mercury ions
(Hg2+) [28], tin ions (Sn2+) [154] or iron ions (Fe3+) [155] can be detected by the quenching
of the fluorescence caused by complex formation between the ions and the CNDs. ROS
can also be detected by fluorescence quenching. Shan et al. [29] developed boron doped
carbon quantum dots (CQDs) in which quenching occurs in the presence of ROS through
charge transfer between the doped boron atoms and hydrogen peroxide.

Drug delivery

One disadvantage of conventional drug delivery systems is that they can have a number of
undesirable side effects such as incorrect dosing due to low specificity, which can lead to
increased cellular toxicity with serious consequences for the patient [25]. Carbon nanopar-
ticles appear to be suitable candidates to enable risk-reduced drug delivery as nanocarriers
due to their good water solubility, high biocompatibility, low toxicity and tunable opti-
cal properties [24], [25]. Wang et al. [30] explored hollow carbon dots as nanocarriers
for the anticancer drug doxorubicin (DOX). DOX binds to the carbon dots by means of
interactions such as π − π stacking and electrostatic interactions [30]. A rapid uptake by
the cells as well as a pH-controlled release of DOX in vitro could be demonstrated. Fur-
thermore, no influence on drug activity was observed. Tang et al. [31] were also able to
establish a drug delivery system in vitro for DOX using CNDs, in which the drug release
can be observed in real time using Förster resonance energy transfer (FRET). The release
of DOX is pH-dependent. In both publications, the maximum release was in the rather
acidic pH range of 5-5.5. This could play an important role in cancer treatment, as the
microenviroment of tumors is often more acidic compared to healthy tissue [156], [157].

Antimicrobial Therapy

The global increase of bacterial resistance to antibiotics is causing growing concern world-
wide [158]. Certain bacterial infections are resistant to almost any antibacterial treatments
currently available [159]. This calls for new antimicrobial treatment methods. Antimicro-
bial photodynamic inactivation (PDI) appears to be a promising method for inactivating
many microorganisms [158], [160]. The basis of PDI is the non-specific oxidative damage
to biomolecules in the cell membrane or within the cells by ROS [160]. Photoexcited
CNDs can generate ROS, as has been shown in various studies, making them promising
candidates as antimicrobial agents [33]–[36]. Based on the previous results, electron/hole
pairs (e−/h+) are formed in the photoexited CNDs [159]. Both e− and h+ can lead to
the formation of ROS through charge transfer to surrounding substrates, which is referred
to as Type I photosensitization [158], [160]. In Type II, there is a direct energy transfer
with ground-state molecular oxygen (3O2), which leads to the formation of singlet oxygen
(1O2) [158], [160].

1.4 Biomedical fundamentals

This chapter discusses biological and medical principles relevant to this thesis. The heart
of the work, namly Paper I and Paper II, deals with the hematopoietic system, the various
blood cells and malignant diseases of the hematopoietic system. Therefore, the next section
delineates the process of healthy blood formation alongside diverse blood cell types. This
section is followed by an examination of the specific markers utilized for distinguishing
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these blood cells. The subsequent section addresses the implications of malfunction in the
blood-forming system, focusing particularly on the diseases AML and MDS. Important
cellular processes of endocytosis and autophagy are explored in the subsequent, too. These
processes are relevant to understand the mechanisms of the nanoparticle uptake into and
the distribution inside the cell discussed in Paper II, Paper III and Paper IV.

1.4.1 Hematopoiesis

Hematopoiesis is the process of blood cell formation. During fetal development up to
the 5th month, hematopoiesis occurs in the liver and spleen [161]. After that, blood
cells mature exclusively in the bone marrow (BM). The multipotent hematopoietic stem
cells (HSCs), which are capable of self-renewal, reside in the BM and are the origin of
hematopoiesis [162]. The differentiation process is regulated by numerous hematopoietic
growth factors. Thanks to research, the understanding of hematopoiesis is constantly
increasing, so that the model has continued to develop over the years, as can be seen in
Figure 1.7 [163].

Figure 1.7: Visualisation of the different hierarchical models of hematopoiesis. a) Visualisation
based on the research around 2000. Hematopoietic stem cells (HSCs) include the long-term (LT)
HSCs and the short-term (ST) HSCs, which only have a limited potential for self-renewal. The
common myeloid progenitor cells (CMP) and common lymphoid progenitor cells (CLP) develop
from the ST-HSCs. The CMPs branch into megakaryocyte-erythrocyte progenitor cells (MEPs)
and granulocyte-monocyte progenitor cells (GMPs). b) Between 2005 and 2015, the HSC pool be-
came more heterogeneous and also contains multipotent progenitor cells (MPPs). The myeloid and
lymphoid branches remain connected even longer via the lymphoid-primed multipotential progenitor
cells (LMPPs). c) From 2016 onwards studies suggest that development may be more of a contin-
uous process rather than a discrete hierarchy. The image was reprinted from [163]. Reproduced
with permission from Springer Nature.

In the classical model of hematopoiesis, the functional long-term HSCs (LT-HSCs) evolve
into short-term HSCs (ST-HSCs), which have only a limited potential for self-renewal and
can differentiate into the multipotent progenitor cells (MPPs) [164]. The MPPs differenti-
ate into the various precursor cells, on the one hand the myeloid lineage, commen myeloid
progenitor cells (CMPs), and on the other hand the lymphatic lineage, common lym-
phoid progenitor cells (CLPs) [165]. The further developmental stages from the CMPs are
the granulocyte-macrophage (GMPs) and megakaryocyte-erythrocyte progenitors (MEPs)
[163]. CLPs give rise to T-, B-, NK- and dendritic cells, while GMPs differentiate into
granulocytes and monocytes; MEPs evolves into megakaryocytes and erythrocytes [165].
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However, the classical model simplifies the complexity of the HSCs and the precursor cells
and has been further developed over the years [165]. Various studies in recent years sug-
gest that such development may be more of a continuous process rather than a discrete
hierarchy [166]–[168].

The following section describes the composition and function of the blood and the different
blood cells in more detail:

Blood undertakes a multitude of diverse transport and communication tasks [169]. Oxy-
gen, nutrients, and hormonal messengers are transported by the blood to the organs, which
in turn release metabolic by-products and hormones into the blood [161]. To maintain
the system, it is necessary to maintain the blood volume as well as its components nearly
constant [161]. Blood comprises approximately 55% plasma, which in turn consists of
91.5% water with dissolved molecules [170]. The remaining 45% constitutes blood cells,
which can be divided as follows:

Erythrocytes, also known as red blood cells, constitute about 95% of cells in the blood
volume [169]. They are primarily responsible for transporting oxygen from the lungs to
other organs and for transporting carbon dioxide back [171]. The responsible transport
protein is hemoglobin, which imparts the blood its characteristic red color [171]. Erythro-
cytes are biconcave disc-shaped with a mean diameter of 7−8µm and lack a nucleus [170].
They have a lifespan of approximately 120 days [171].

Platelets are also nucleus-free and biconcave in shape with a diameter of 1 − 4µm. The
normal count ranges from 170.000 to 400.000 per µl of blood, where they initially exist in
an inactive state [161]. Platelets are crucial for blood clotting and wound healing, a process
known as hemostasis [161]. In the event of vascular injury, they bind to components of the
subendothelium, initiating their activation [161]. Consequently, they release platelets and
coagulation-activating mediators, leading to the formation of a platelet aggregate [171].

Leukocytes, also known as white blood cells, are a vital component of the immune sys-
tem [161]. As they can actively move, they are capable of leaving the blood vessels and
migrating into tissues [171]. Essentially, they are categorized into granulocytes, lympho-
cytes, and monocytes: Granulocytes belong to the non-specific innate immune system
[161]. They possess a lobed or C-shaped nucleus and numerous granules2 [171]. Lympho-
cytes further divide into B-lymphocytes (10%), T-lymphocytes (80%), and natural killer
(NK) cells (10%) [171]. B- and T-lymphocytes are part of the specific adaptive immune
system, while NK-cells belong to the non-specific part [161]. Monocytes transform into
macrophages in tissues [170]. These macrophages destroy bacteria and foreign bodies
through phagocytosis [171].

1.4.2 CD antigens

Blood cells can not completely be morphologically distinguished from one another [172].
However, depending on their differentiation or state of activity, they express a character-
istic profile of surface molecules [173]. This is schematically depicted in Figure 1.8 for T-
and B-cells. These surface molecules allow for the distinction of various (sub-)populations
of blood cells [174]. Hence, these surface molecules are also referred to as differentiation

2Granular structures present in the cytoplasm BiofuerMed.
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markers or cluster of differentiation (CD) antigens [173].

CD3

CD19

T-cellB-cell

Figure 1.8: Schematic representation of CD antigens with the corresponding CD antibodies using
the example of T- and B-cells. T-cells express CD3 antigens and B-cells express CD19 antigens to
which the corresponding antibodies can bind.

To identify the different surface molecules, specific monoclonal antibodies are utilized [173].
These antibodies can only bind to a specific molecular differentiation antigen [172]. The
resulting antibody bindings can then be visualized using various methods. For example,
it is possible to label the antibodies with fluorochromes [173]. This is exploited, among
other techniques, in flow cytometry, which is discussed in more detail in Section 2.1. The
so-called CD system is utilized for immunophenotyping [173].

1.4.3 Hematological diseases

This section discusses the diseases of the hematopoietic system that are relevant to this
work, namely acute myeloid leukemia (AML) and Myelodysplastic neoplasms (MDS).

Leukemia

Leukemia is a malignant disease of hematopoietic cells characterized by uncontrolled pro-
liferation of immature hematopoietic precursor cells, so called blasts [171]. This leads to
displacement of normal hematopoiesis, with pathological cells being released into the blood
[175]. Acute and chronic forms are distinguished, with the acute form having a rapidly
progressive and highly aggressive course, often leading to death within a few weeks [175].
A diagnosis of acute leukemia is made if more than 20%3 lymphoblasts or myeloblasts are
present in the bone marrow at the time of diagnosis [169], [176]. If there is a proliferation
of lymphatic precursor cells of the BM, the lymphatic system or the thymus, the disease
is referred to as acute lymphoblastic leukemia (ALL), if there is a proliferation of myeloid
precursor cells, the disease is referred to as AML [175]. If the disease cannot be clearly
assigned to either of the two lines, it is referred to as acute leukemia without a clear lineage
[175].

AML accounts for 75-80% of acute leukemias in adults, whereas in children, it represents
only 15-20% [175]. Known risk factors include genetic diseases, ionizing radiation, specific
toxins, cytostatic drugs, and pre-existing conditions [171]. Instead of mature and func-
tional blood cells, AML leads to the development of non-functional blasts. Consequently,
symptoms such as general malaise, weakness, pallor, fatigue, bruising, petechiae (pinpoint-
sized skin and mucous membrane bleedings), nosebleeds, gum bleeding, and fever may
occur [175]. Treatment options vary depending on the type of leukemia and the individual

3AML with defined genetic abnormalities may be diagnosed with less than 20% blasts [176].
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risk profile of the patient, ranging from chemotherapy and stem cell transplantation to
further specific therapies [175]. The treatment goal is molecular/cytogenetic remission.
Without treatment, the majority of AML patients succumb within three months. Thanks
to modern treatment modalities, 15-70% (depending on the risk group) of younger patients
survive five years after, whereas older patients > 60 years have a significantly worse prog-
nosis, with a 5-year survival rate of 10-15% [175]. Common challenges include frequent
relapses and the emergence or pre-existence of resistance to various drugs (multidrug re-
sistance) [171], [177]–[179].

Table 1.1: Classification of Acute myeloid leukemia (AML). Reproduced from [176], which is
distributed under a CC BY 4.0 license by Springer Nature.

Acute myeloid leukaemia with defining genetic abnormalities

Acute promyelocytic leukaemia with PML::RARA fusion
Acute myeloid leukaemia with RUNX1::RUNX1T1 fusion
Acute myeloid leukaemia with CBFB::MYH11 fusion
Acute myeloid leukaemia with DEK::NUP214 fusion
Acute myeloid leukaemia with RBM15::MRTFA fusion
Acute myeloid leukaemia with BCR::ABL1 fusion
Acute myeloid leukaemia with KMT2A rearrangement
Acute myeloid leukaemia with MECOM rearrangement
Acute myeloid leukaemia with NUP98 rearrangement
Acute myeloid leukaemia with NPM1 mutation
Acute myeloid leukaemia with CEBPA mutation
Acute myeloid leukaemia, myelodysplasia-related
Acute myeloid leukaemia with other defined genetic alterations

Acute myeloid leukaemia, defined by differentiation

Acute myeloid leukaemia with minimal differentiation
Acute myeloid leukaemia without maturation
Acute myeloid leukaemia with maturation
Acute basophilic leukaemia
Acute myelomonocytic leukaemia
Acute monocytic leukaemia
Acute erythroid leukaemia
Acute megakaryoblastic leukaemia

AML can be classified according to the WHO classification [176] or the International Con-
sensus Classification (ICC) [180], which were updated in 2022. An older classification is
the FAB classification (French-American-British working group of leukemia) [181]. The
FAB classification categorizes AML into subtypes M0 to M7 based on cytomorphologi-
cal and cytochemical criteria. Meanwhile, the WHO classification and ICC classification
incorporate immunological, cyto-, and molecular genetic changes, providing a more com-
prehensive classification scheme [176], [180]. According to the 2022 WHO classification,
AML can be divided into AML with defining genetic abnormalities and AML defined by
differentiation [176]. The different subtypes are shown in table 1.1.
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Myelodysplastic neoplasms

Myelodysplastic neoplasms (MDS) comprise a heterogeneous group of stem cell diseases
characterised by impaired proliferation and maturation of hematopoietic cells [182]. In the
2022 WHO classification [176], the myelodysplastic syndromes were renamed myelodys-
plastic neoplasms, but the previously known abbreviation ”MDS” remains.

Table 1.2: Classification and defining features of myelodysplastic neoplasms. Reproduced from
[176], which is distributed under a CC BY 4.0 license by Springer Nature.

Blasts Cytogenetics Mutations
MDS with defining
genetic abnormalities

MDS with low blasts and
isolated 5q deletion
(MDS-5q)

< 5% BM and
< 2% PB

5q deletion alone,
or with one other
abnormality other
than monosomy 7
or 7q deletion

MDS with low blasts and
SF3B1 mutationa

(MDS-SF3B1)

< 5% BM and
< 2% PB

Absence of 5q
deletion,
monosomy 7, or
complex karyotype

SF3B1

MDS with biallelic TP53
inactivation
(MDS-biTP53)

<20% BM
and PB

Usually complex

Two or more
TP53 mutations,
or 1 mutation
with evidence of
TP53 copy
number loss
or cnLOH

MDS, morphologically
defined

MDS with low blasts
(MDS-LB)

< 5% BM and
< 2% PB

MDS, hypoplasticb

(MDS-h)
< 5% BM and
< 2% PB

MDS with increased
blasts (MDS-IB)

MDS-IB1
5–9% BM or
2–4% PB

MDS-IB2
10-19% BM or
5–19% PB
or Auer rods

MDS with fibrosis
(MDS-f)

5–19% BM;
2–19% PB

a Detection of ≥ 15% ring sideroblasts may substitute for SF3B1 mutation. Acceptable related
terminology: MDS with low blasts and ring sideroblasts.

b By definition,≤ 25% bone marrow cellularity, age adjusted.
BM bone marrow, PB peripheral blood, cnLOH copy neutral loss of heterozygosity.
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MDS can be classified according to the WHO classification [176] or the International Con-
sensus Classification (ICC) [180], which were updated in 2022. According to the new
WHO classification, MDS are divided into MDS with defined genetic abnormalities and
MDS that are morphologically defined [176]. An overview is depicted in Table 1.2.
The severity of the disease can vary from indolent conditions with an almost normal life
expectancy to forms that are similar to acute myeloid leukemia [183]. MDS can develop
into AML if the blast threshold of 20% is exceeded [182]. The difference between MDS
and non-neoplastic clonal myeloid proliferations is the presence of morphological dysplasia
[184]. MDS is one of the most common hematological systemic diseases affecting adults
[185]. The incidence is age-dependent with 3-5 out of 100.000 per year in the general
population and up to 40 out of 100.000 per year in over 70-year-olds [185]. As with AML,
known risk factors include genetic diseases, ionizing radiation, specific toxins, cytostatic
drugs, and pre-existing conditions [185]. Due to ineffective hematopoiesis and the result-
ing cytopenia, symptoms such as fatigue, reduced performance, tachycardia, dyspnoea on
exertion, epistaxis, petechiae, haemorrhages, haematomas, fever, sepsis, pneumonia, re-
current infections and fungal infections may occur [182], [185]. Whether and which therapy
is necessary depends on various individual factors [185]. Treatment options include several
drug therapies, chemotherapy and stem cell transplants [185].

1.4.4 Endolysosomal system

Figure 1.9: The figure shows the different endocytosis pathways that are frequently discussed in
the context of nanoparticle uptake, namely clathrin-mediated endocytosis, fast endophilin-mediated
endocytosis (FEME), caveolar endocytosis, clathrin-independent / dynamin-independent endocy-
tosis (CLIC/GEEC), macropinocytosis, and phagocytosis [186]–[188]. The endocytotic carriers
formed then fuse with the early endosomes, which sort the cargo and either pass it on to the re-
cycling endosomes or keep it for degradation. The early endosomes mature into late endosomes,
which subsequently fuse with the lysosomes. The image was reprinted from [186]. Reproduced with
permission from Springer Nature.

Endocytosis is the process of taking up cargo from the extracellular space through vesi-
cles [189]. Unlike passive uptake mechanisms such as diffusion, endocytosis is a form of
active transport into the cell [190]. This process is critical for various functions, including
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nutrient uptake, regulation of cellular metabolism, signal transduction, and cell migration
[190]–[192]. Endocytosis encompasses various mechanisms, whose discovery and under-
standing is constantly evolving [191]. As the discussion of endocytosis will be linked to
the uptake of CNDs, this text will provide a brief overview of endocytotic mechanisms
commonly cited in literature regarding nanoparticle uptake [186]–[188], [193]. The key
uptake mechanisms are displayed in Figure 1.9.

The clathrin-mediated endocytosis (CME) is the best understood endocytotic path-
way and is the main route for the uptake of nutrients [186], [187]. The average diameter of
clathrin-coated vesicles is around 100 nm, which enables the uptake of nanoparticles up to
this size by this route [186], [194]. CME involves the formation of clathrin-coated pits on
the cell membrane, which bud inward to form vesicles containing specific cargo molecules
[190], [195]. This process comprises of five steps: initiation, cargo selection, coat assembly,
scission, and un-coating [195]. CME is initiated by the accumulation of endocytic coat
proteins on the inside of the plasma membrane [190]. Additional proteins are recruited
from the cytosol to further expand the protein coat [195]. The cargo is recruited by special
proteins and concentrated in the coated region [190]. As soon as the coat expands, the
membrane bends, resulting in the formation of a clathrin-coated pit [193]. The neck of the
pit is then separated from the plasma membrane by the scission process [195]. After sep-
aration from the plasma membrane, the clathrin coat is detached from the vesicle, which
can now fuse with an endosome [190].

Fast endophilin-mediated endocytosis (FEME) is a pathway that was first de-
scribed almost 10 years ago [196]. In contrast to CME, FEME is clathrin-independent
but dynamin-dependent [186]. Initiated by the activation of specific receptors, endophilin-
containing FEME carriers are formed, which detach from the plasma membrane by a scis-
sion process [197], [198]. The resulting carriers are tubular with a diameter of 60− 80nm
and a length of several hundred nanometres [196]. The attribute ”fast” in the name stems
from the fact that the entire process is completed just within 4 and 10 seconds [197].
FEME is relevant for growth factor signalling and cell migration [186].

Clathrin-independent/dynamin-independent endocytosis (CLIC/GEEC) is nei-
ther clathrin nor dynamin dependent and, similar to FEME, also forms tubular/ring-like
carriers with a length of 200− 600nm and a width of 40− 80nm [186], [199]. In contrast
to FEME, CLIC/GEEC endocytosis is a constitutive pathway and takes place on a con-
tinuous basis in cells that have this pathway [186]. CLIC/GEEC is regarded as a major
pathway for the internal uptake of the fluid phase, glycosylated membrane proteins, and
lipids [200].

Caveolar endocytosis occurs through invaginations of the plasma membran, resulting
in flask-shaped caveolae with a diameter of around 50−80nm [188]. The proteins caveolin
and cavins play important roles in this process and initiate the invagination of the mem-
brane [193]. Caveolae are not found in all cell types (e.g. neurons and many blood cells),
but are very common in others [186]. This puts caveolae in contrast to clathrin-coated
pits, which have a rather constant density in different cell types [186].

Phagocytosis is primarily associated with immune cells such as macrophages and neu-
trophils, where large particles (> 0.5µm) such as microbial pathogens, cell debris, or
apoptotic cells are engulfed into phagosomes for degradation and antigen presentation
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[193]. The process of phagocytosis comprises four steps: i) recognition of the particles to
be ingested, ii) activation of the ingestion process, iii) formation of the phagosomes and
iv) maturation of the phagosomes [201].

Macropinocytosis involves the non-selective uptake of extracellular fluid and solutes
through large (> 0.5µm), actin-driven membrane protrusions called macropinosomes
[191], [193]. It serves as a mechanism for nutrient uptake and sensing, signalling, pre-
sentation of antigens and cell migration [189]. In contrast to other endocytic pathways,
the process is not initiated by cargo molecules binding to the corresponding receptors or
particles making contact with the cell surface [189]. Instead, macropinocytosis is induced
by the polymerisation of actin on the plasma membrane to form protrusions known as
membrane ruffles [189].

After the cargo has been taken up via the pathways, the endocytotic carriers fuse with the
early endosomes, which perform a sorting process and pass on materials to be recycled to
the recycling endosomes [186], [191]. The early endosomes mature into late endosomes,
which finally fuse with the lysosomes to form endolysosomes, where degradation takes
place [191], [202]. Lysosomes are discussed in more detail in section 1.4.4.

The uptake of nanoparticles depends on a broad array of factors factors such as size, shape,
stiffness and surface properties of the particles. These factors are briefly discussed below.

The size of nanoparticles plays a decisive role in their uptake by endocytosis [187]. As
described above, the vesicles formed have different sizes. Particles larger than 0.5µm
can only be taken up by phagocytosis and/or macropinocytosis. With a size of less than
100nm, however, size is a less important factor in uptake [186]. With regard to the size
of the nanoparticles, however, it should be noted that a protein corona is formed when
the nanoparticles are added to the cell medium or applied in vivo [186]. The formation of
the protein corona can lead to aggregation of the particles, so that the effective size can
be considerably larger than measured ex vivo in water or PBS [186].

Just like the size, the shape of the nanoparticles also plays an important role. Vácha et al.
[203] used simulations to investigate the uptake of nanoparticles of different shapes. They
found that the uptake of sphero-cylinders was increased as compared to spheres with the
same diameter. Chithrani et al. [204] also found a form-dependent uptake in vitro. The
results showed that spherical gold nanoparticles exhibited a five-fold increase in uptake
compared to rod-shaped. Possible explanations might include differences in the curvature
of the membrane, less available receptor binding sites, influence of surface molecules on
the binding of serum proteins to the nanoparticle surface or an uneven protein corona
resulting in a lack of multivariate binding to receptors [204].

Another parameter that can influence uptake is the stiffness of the nanoparticles. How-
ever, the research results are inconclusive; there are studies that show that stiffer nanopar-
ticles are more likely to be absorbed than softer ones and vice versa [205], [206]. While
ambiguity exists regarding stiffness, the effects of stiffness appear to depend on the size
of the nanoparticles [207]. Overall, stiffness of the nanoparticles can have an influence on
uptake and it may be worth including this parameter in the considerations [208].

The properties of the surface of the nanoparticles, such as surface charge or surface
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modifications, can have a significant influence on the uptake of the particles [187], [208].
Due to the negative charge of the cell membrane, it has a greater affinity for positively
charged nanoparticles [209]. However, positively charged nanoparticles can impair the
intactness of the cell membrane and therefore increase toxicity [210], [211]. Negatively
charged nanoparticles, on the other hand, are taken up more effectively than neutrally
charged ones, so charge appears to be a factor in uptake [209], [212]. Modifications to
the surface of the nanoparticles with functional groups can have an influence on uptake
by changing the charge [208]. On the other hand, modification with so-called targeting
ligands such as peptides, small molecules, proteins, antibodies or nucleic acids can force
targeted interactions with cell membrane receptors [193], [213].

Lysosomes

Lysosomes are membrane-bound organelles with a size varying between 100 nm and more
than 1µm, responsible for the degradation and recycling of endocytosed material, cellu-
lar waste, and damaged organelles [214], [215]. Previously recognized as pure waste bag
of the cell, their critical role in a variety of processes has just been confirmed, such as
the maintenance of cellular homeostasis, cell adhesion and migration, gene regulation and
metabolic signaling [214], [216], [217]. Lysosomes contain more than 60 acid hydrolases,
which degrade the macromolecules that reach the lysosomes via different pathways such as
endocytosis, phagocytosis and autophagy [218]. The acid hydrolases function optimally at
a pH between 4 and 5 [219]. The lysosomal pH is maintained in this range by proton pump-
ing v-ATPases, chloride channels and ion transporters [219]. Because the lysosomes fulfill
many important functions, their malfunction can have serious consequences, ranging from
rare lysosomal storage disorders (LSDs) to common autoimmune and neurodegenerative
diseases [220]–[223].

1.4.5 Autophagy

Autophagy is a cellular process in which cytoplasmic cargo is transported to the lysosomes
for degradation [224]. The main task of autophagy is to supply the cell with nutrients
to maintain cellular functions during starvation or other forms of stress [225]. Therefore,
autophagy is an adaptive process that is very important for cell homeostasis, both in physi-
ological and pathological situations [226], [227]. Changes in autophagy could be associated
with diseases such as cancer, neurodegeneration and cardiac disorders [227]. Transport of
the cargo can take place in three different ways, the best researched of which is macroau-
tophagy [228]. Other pathways are microautophagy and chaperone-mediated autophagy
[227]. In the following, the focus is on macroautophagy, hereafter referred to as autophagy.

Autophagy can be non-selective or selective [229]. Both involve the formation of au-
tophagosomes, which are vesicles with a double membrane that subsequently fuse with
the lysosomes and form the so called autolysosomes in which the degradation of the cargo
by the lysosomal hydrolases takes place [230]. In non-selective autophagy, cytoplasm is
randomly taken up into the phagophores, the precursors of autophagosomes, in response
to stress such as nutritional deficiency [229]. In selective autophagy, the selective uptake
of e.g. damaged cell organelles, invading bacteria or aggregated proteins can be triggered
by certain signals or cellular events [225]. Various markers can be used to measure the
autophagic flux. Among the most common are the protein p62/SQSTM1 (p62) and the
microtubule-associated protein 1 light chain 3B (LC3) [228], [231]. LC3 is located in au-
tophagosomes inside and outside the membrane and thus provides information about the
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number of autophagosomes and autophagy-related structures [228]. p62 acts as a selective
autophagy receptor for the degradation of labeled structures [231]. Proteins p62 and LC3
located within the autolysosome are degraded and are therefore relevant as markers for
the autophagic flux [228], [231].
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2. Experimental methods

This chapter presents the methods used in the publications resulting from this work. The
exact details can be found in the methods section of the publications. First, the method
flow cytometry is presented. Afterwards, the synthesis and modification of CNDs are
discussed and a brief characterization is given. Confocal fluorescence microscopy is then
described. Finally, the methods Western blot and mass spectrometry are introduced.

2.1 Flow cytometry

The method of Flow Cytometry enables the analysis and differentiation of single cells by
their optical and fluorescence properties [15]. Cell characteristics like size, granularity,
and antigen expression on the cell surface can be determined for each cell [232]. Likewise,
it is possible to deduce the number of absorbed fluorescent particles like carbon nanodots.
Specialized types of flow cytometers also permit to sort cells based on their fluorescent
properties [8]. These flow cytometers are called ”fluorescence-activated cell sorter” (FACS)
[233].

Figure 2.1: Shown is a schematic illustration of a flow cytometer consisting of the four compo-
nents: Liquid system, the optical systems (excitation and emission) and the electronic system. The
stained cells are separated by hydrodynamic focusing and pass the interrogation point where laser
light hits them. The forward-scattered light (FSC) is detected parallel to the excitation, while the
side-scattered light (SSC) and the fluorescence signals are detected perpendicular to the excitation.
The image was reprinted from [234], ©(2021) reprinted by permission of Informa UK Limited,
trading as Taylor & Taylor & Francis Group.
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Figure 2.1 shows a schematic illustration of a flow cytometer. The setup includes four
primary components: the fluidic system, the optical systems (excitation and emission),
and the electronical system [8]. For the measurement the cells must be present as cell
suspension [235]. For the work with adherent cells detachment agends such as trypsin
must be used. The sample fluid is injected into the sheath fluid with high air pressure
so that the cells align and single cells pass the laser beam [235]. This is called hydrody-
namic focusing [8]. The aligned cells then sequentially pass through the laser beam at
the interrogation zone. The resulting scattered light and fluorescence signals are split by
mirrors, filtered according to wavelength and recorded in the respective detectors [8]. The
scattered light varies depending on cell size and granularity. The forward-scattered light
(FSC) is associated with cell size and is measured parallel to the excitation beam, while
the side-scattered light (SSC) depends on cell granularity and is measured perpendicu-
lar to the direction of the laser beam [15]. The intensity of emitted fluorescence light is
proportional to the number of bound fluorochrome-labeled antibodies [235]. The optical
signals are converted into electronic signals, which can be analyzed.

2.1.1 Gating

As modern flow cytometers incorporate several lasers with different wavelengths and the
number of available fluorescence markers continues to increase, multidimensional data
sets with up to 30 dimensions emerge accordingly [15], [17]. Due to the increasing number
of dimensions, the complexity of subsequent data analysis continues to escalate and be-
comes more time-consuming [236]. Traditionally, data evaluation is manually performed
by a human operator using a method known as gating [8]. In this process, various di-
mensions (such as FSC, SSC, or fluorescence markers) are plotted against each other in
two-dimensional scatterplots, and clusters are defined by manually drawn gates that di-
vide the cells into positive and negative in relation to the respective marker. [8]. These
gates assign specific cell populations based on the fluorescence intensities of the plotted
markers. Pre-gating is performed beforehand to exclude dead cells, debris, and doublets,
ensuring that the subsequent analysis is conducted only on ”real” cells [235].

Although traditional analysis is very time-consuming and can vary depending on the op-
erator, manual gating still remains the standard in many clinics [90]. Additionally, two-
dimensional projections leads to the loss of high-dimensional relationships [19]. Over the
last two decades algorithms have been developed aiming to automate the gating process
through clustering and visualize high-dimensional data sets through dimensionality reduc-
tion [18], [22], [237].

2.2 Carbon nanoparticles

2.2.1 Synthesis

For the preparation of CNDs used in this thesis, a modified version of the microwave-
assisted synthesis bottom up approach described by Qu et al. in [238] was used. This
approach was adapted to a microwave reactor by Fasbender et al. [148]. In a first step,
210mg citric acid and 340mg diethylenetriamine (DETA) are placed in a microwave reac-
tion vessel and stirred at 400 rpm for 10 minutes. Subsequently, the sealed vessel is placed
in an industrial microwave oven manufactured by CEM and is heated with continuous
stirring to a temperature of 180◦C, which is maintained for 150 s. The resulting product
is diluted with deionized water (DI water) and is filled into a 10ml dialysis tube with a
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cut-off size of 100-500Da. The solution is dialyzed against 2 l of DI water. Three water ex-
changes are performed every 12 hours. After 48 hours, the dialysis is considered complete,
and the solution is removed from the dialysis bag. Subsequently, the dialysed product
is freeze-dried for further processing like dissolving in phosphate-buffered saline (PBS)
or for modifications described below. Freeze-drying was carried out with the kind assis-
tance of the Research Group of Prof. Hartmann, Institute of Macromolecular Chemistry,
Heinrich-Heine-University Düsseldorf.

2.2.2 Modifications

To investigate the influence of glycofunctionalization on the selective uptake of CNDs in
Paper III, these were modified with various monosaccharides and glycooligomers. The
coupling was carried out using EDC and NHS to activate the caboxyl groups. In Paper
IV, the CNDs were modified with bPEI as a test molecule to be delivered by the CNDs as
carriers into the lysosomes. EDC and NHS were also used for coupling, the exact details
of which can be found in Paper IV.

2.2.3 Characterization

(a) (b)

Figure 2.2: Optical spectra of the CNDs used in the work related to this thesis. (a) Absorption
spectrum of the CNDs. The shoulder around 230nm is attributed to the π-π*-transition, while the
peak around 350nm is attributed to the n-π*-transition according to the literature [238], [239]. b)
Emission spectrum of the CNDs, the maximum emission is around 450 nm under exicitation at
360 nm wavelength.

The composition and structural properties of the CNDs synthesized as described in 2.2.1
were extensively characterized by Stefan Fasbender in studies related to his dissertation.
This was done using transmission electron microscopy (TEM), atomic force microscopy
(AFM), CHN elemental analysis, X-ray photoelectron spectroscopy (XPS), and Raman
spectroscopy [148], [240]. This section provides a brief description of the essential findings.

TEM and AFM measurements shed light on the geometry of the CNDs. The particles
have an average diameter of 3.3nm and a hexagonal structure with a lattice constant of
0.223nm. Their height ranges between 1nm and 2nm which concurs to two to three layers
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of graphene. The CHN elemental analysis showed that the CNDs consist of 40% carbon,
8% hydrogen, and 19% nitrogen (mass fraction). The remaining portion was allocated to
oxygen, which aligns with the XPS data. Raman spectroscopy showed the presence of a
G-band at 1596 cm−1, which corresponds to graphitic sp2-carbon. Additionally, a D-band
was observed at 1375 cm−1, which is ascribed to disordered sp2-carbon. There were also
Dl-, D2-, and D3-bands at 1195, 1264, and 1412 cm−1, which may be assigned to various
sp3-carbon containing groups [241].
Figure 2.2 displays an absorption and emission spectrum of the CNDs. The absorption
spectrum of the nanoparticles shows a shoulder around 230 nm and a peak around 350nm,
which can be attributed to a π-π*-transition respective a n-π*-transition according to the
literature [238], [239]. The maximum emission occurs at approximately 450 nm when
excited at around 360nm. The quantum yield, as determined by the method of Williams
et al. [242], is approximately 25%.

2.3 Confocal fluorescence microscopy

The technique of confocal fluorescence microscopy is well known. Since it forms the basis
for investigating the intracellular distribution of CNDs in this thesis, it will be explained
briefly. This section is based primarily on the references [243] and [244].

Confocal fluorescence microscopy, also known as confocal laser scanning microscopy, uti-
lizes pinholes in both the illumination and detection planes to ensure that only focused
light reaches the detector. The concept of confocal scanning microscopy was invented by
M. Minsky in 1955. Later the technique was further developed by M.D. Egger and P.
Davidovits, who constructed the first confocal laser scanning microscope in 1969. Figure
2.3 illustrates the setup.

Figure 2.3: Shown is a schematic representation of the main components of a confocal fluores-
cence microscope and the beam path. The light from the excitation beam (blue) is focused on the
sample. The fluorescence light from the focal volume (green) is focused by lenses in such a way
that it passes through the pinhole and can be captured by the detector. Light from outside the focus
(black dashed line) is blocked by the pinhole. The image was reprinted from [245]. Reproduced with
permission from Springer Nature.
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This technique utilises a dichroic mirror or beam splitter to collimate and direct laser
light onto the objective lens. The objective lens then focuses the excitation beam onto the
sample, exciting the fluorophores within it. The emitted fluorescence light is then focused
on a conjugate plane from the tube lens, where a pinhole aperture selectively allows light
from the confocal plane to reach the detector, while blocking out-of-focus light. Typi-
cally, photo-multiplier tubes (PMTs), avalanche photodiodes (APDs), or charge-coupled
device (CCD) cameras are used as detectors in this system. As the illumination pinhole
selectively illuminates the point of interest, this necessitates sequential scanning in the x
and y directions to obtain the intensity for each sample point to create a 2D image. This
technique offers several advantages: reducing background light from unfocused layers, en-
hancing spatial resolution, and enabling imaging of 3D samples when combined with z
scanning. By exclusively detecting in-focus light, confocal microscopy can produce images
of thin sample sections.

2.4 Western Blot

The Western Blot is a method used to separate and identify proteins. It was developed by
Towbin et al. in 1979 [246]. This technique is used in Paper IV to determine the concen-
trations of the proteins p62 and LC3, which serve as biomarkers of autophagy [228], [231].
The aim is to investigate the influence of CNDs on autophagy and on cellular metabolism.
The experimental details are given in Paper IV, the following section provides a general
overview of the method, building upon two references [247], [248].

Figure 2.4: The figure shows schematically the different steps of the Western blot. a) Unstained
SDS-PAGE gel before the Western blot. b) Replicate of the gel on the membrane after the transfer.
c) Staining with the primary antibody. d) Staining with the secondary antibody. e) Specific protein
band visible by fluorescence signal upon excitation. The image was reprinted from [249], ©(2006)
with permission from Elsevier.

Figure 2.4 depicts the schematic procedure of a Western Blot. In a first step the cells
are lysed and the proteins are extracted from the cell lysate. Afterwards the protein

32



2.5. MASS SPECTROMETRY

concentrations are determined. Sodium Dodecyl Sulfate (SDS) is used to mask the charges
of the proteins after denaturation, resulting in an overall negative surface charge of the
proteins. The proteins are then separated by molecular weight through gel electrophoresis,
by loading the proteins onto a polyacrylamide gel and applying an electric field. Due to
the negative surface charge the proteins migrate through the gel towards the positive
electrode. The gel acts as a molecular sieve, allowing smaller proteins to move faster
towards the anode than larger proteins [250]. This results in the formation of bands of
proteins of similar size within the gel after a defined period of time. In the blotting step,
the proteins are transferred onto a membrane, fixed in specific locations, allowing their
storage for further experiments. The transfer can be done using different methods. In
electroblotting, which is the most commonly used method, the proteins are transferred
from the gel to the membrane using an electric field applied perpendicular to the gel.
This step is also referred to as immunoblotting. After the transfer the membrane is
blocked in regions where no proteins adhere. Following this, the proteins are labeled and
stained with specific antibodies and fluorophores in two steps. First the membrane is
incubated with a solution of primary antibody for the specific protein. In a second step,
the membrane is exposed to the secondary antibody which is specific for the host spicies
of the first antibody and is labeled with fluorophores allowing optical detection. Since
several secondary antibodies may bind to one primary antibody the fluorescence signal is
enhanced. This enables a comparison of protein amounts based on fluorescence intensity
between different samples.

2.5 Mass spectrometry

This section is primarily based on the references [251] and [252].
Mass spectrometry (MS) is an analytical method for determining the molecular mass of
molecules, peptides and proteins. While the Western blot method described above can be
used to detect individual proteins, MS can be used to analyze the entire proteome of a
cell. A schematic representation is shown in Figure 2.5.
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Figure 2.5: Schematic representation of a mass spectrometer. It essentially consists of three
components, the ion source, the mass analyzer and a detector. By analyzing the mass-to-charge
ratios, atoms, molecules and proteins can be determined. The image is public domain.
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2. EXPERIMENTAL METHODS

The MS method was used in Paper IV to analyze the proteome and secretome. The
analysis was carried out by the MPL (Molecular Proteomics Laboratory) at the BMFZ
(Biologisch-Medizinisches Forschungszentrum) of the HHU Düsseldorf by Thomas Lenz.
The exact experimental details are laid out in the methods section of Paper IV.

For the analysis, the molecules (here: peptide fragments after protein digestion) are trans-
ferred into the gas phase and ionized using an ion source. An applied electric field acceler-
ates the ions, which are separated in the mass analyzer according to their mass-to-charge
ratio m

q . There are different types of mass analyzers and all are based on the use of static
and/or variable electric and magnetic fields. The whole process takes place under high
vacuum conditions. The separated ions are then recorded by a detector. The protein
abundances can be reconstructed from the detected peptide sequences afterwards.
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3. AI assisted analysis of multipa-
rameter flow cytometry data

As described in section 1.2.1 the number of parameters that can be measured simulta-
neously in flow cytometry is constantly increasing, which makes the analysis increasingly
complex and time-consuming. AI-based methods seem promising to face these challenges.
Paper I explores the question how the t-SNE algorithm can contribute to the analysis of
hematopoietic stem and progenitor cells (HSPCs) and support the diagnosis of the diseases
AML and MDS. The immunological phenotype of HSPCs were examined based on the dif-
ferential expression of various markers using a created t-SNE map and compared them
with the immunophenotype of blasts and leukemic stem cells (LSCs) in AML and MDS. It
was shown that the defined clusters on the t-SNE map could be assigned to diagnostically
relevant cell populations and allowed discrimination at a detailed level. Furthermore, a
method was presented for classifying new samples using t-SNE reference maps based on a
similarity comparison with the pearson coefficient as a quantitative measure.
As an additional parameter in the t-SNE assisted evaluation, the uptake of carbon nanopar-
ticles was examined to differentiate between hematopoietic cells from healthy donors and
from patients with AML in Paper II . There were differences in the uptake between the
two groups, which could be visualized clearly using t-SNE. While all cell types of the
normal and leukemic cells took up CNDs, the CD34+ and CD33+ subsets of the AML
samples showed a significantly reduced uptake compared to the subsets of the healthy
donors. In addition, it was observed that the CNDs accumulate in lysosomes of leukemic
blasts. These observations in Paper II gave rise to new questions that are addressed in
Paper III and Paper IV in Chapter 4.
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3. AI ASSISTED ANALYSIS OF MULTIPARAMETER FLOW CYTOMETRY DATA

3.1 Paper I

Reference

Reproduced from [C. Nollmann, W. Moskorz, C. Wimmenauer, P.S. Jäger, R.P. Cadeddu,
J. Timm, T. Heinzel and R. Haas (2024). Characterization of CD34+ Cells from Patients
with Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS) Using a
t-Distributed Stochastic Neighbor Embedding (t-SNE) Protocol. Cancers, 16(7), 1320.
https://doi.org/10.3390/ cancers16071320], with the permission of MDPI.
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Characterization of CD34+ Cells from Patients with Acute
Myeloid Leukemia (AML) and Myelodysplastic Syndromes
(MDS) Using a t-Distributed Stochastic Neighbor Embedding
(t-SNE) Protocol
Cathrin Nollmann 1 , Wiebke Moskorz 2, Christian Wimmenauer 1, Paul S. Jäger 3 , Ron P. Cadeddu 3 ,
Jörg Timm 2, Thomas Heinzel 1,* and Rainer Haas 3,*
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cathrin.nollmann@hhu.de (C.N.)
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* Correspondence: thomas.heinzel@hhu.de (T.H.); haas@med.uni-duesseldorf.de (R.H.)

Simple Summary: Hematopoietic stem and progenitor cells (HSPCs) play a pivotal role in main-
taining the homeostasis of the blood and immune systems. Acute myeloid leukemia (AML) and
myelodysplastic syndromes (MDS) represent heterogeneous hematologic malignancies resulting from
genetic mutations within cells of the hematopoietic lineage, leading to the expansion of leukemic
blasts including leukemic stem cells (LSCs). Using the t-distributed stochastic neighbor embedding
(t-SNE) methodology, we examined the immunological phenotype of HSPCs based on the differential
expression of CD34, CD38, CD45RA, CD123 and programmed death ligand 1 (PD-L1) antigens, and
contrasted it with the immunophenotype of blasts and LSCs in AML and MDS.

Abstract: Using multi-color flow cytometry analysis, we studied the immunophenotypical differences
between leukemic cells from patients with AML/MDS and hematopoietic stem and progenitor cells
(HSPCs) from patients in complete remission (CR) following their successful treatment. The panel of
markers included CD34, CD38, CD45RA, CD123 as representatives for a hierarchical hematopoietic
stem and progenitor cell (HSPC) classification as well as programmed death ligand 1 (PD-L1).
Rather than restricting the evaluation on a 2- or 3-dimensional analysis, we applied a t-distributed
stochastic neighbor embedding (t-SNE) approach to obtain deeper insight and segregation between
leukemic cells and normal HPSCs. For that purpose, we created a t-SNE map, which resulted in the
visualization of 27 cell clusters based on their similarity concerning the composition and intensity
of antigen expression. Two of these clusters were “leukemia-related” containing a great proportion
of CD34+/CD38− hematopoietic stem cells (HSCs) or CD34+ cells with a strong co-expression of
CD45RA/CD123, respectively. CD34+ cells within the latter cluster were also highly positive for PD-
L1 reflecting their immunosuppressive capacity. Beyond this proof of principle study, the inclusion of
additional markers will be helpful to refine the differentiation between normal HSPCs and leukemic
cells, particularly in the context of minimal disease detection and antigen-targeted therapeutic
interventions. Furthermore, we suggest a protocol for the assignment of new cell ensembles in
quantitative terms, via a numerical value, the Pearson coefficient, based on a similarity comparison
of the t-SNE pattern with a reference.

Keywords: hematopoietic stem and progenitor cell (HSPC); acutemyeloid leukemia (AML); myelodys-
plastic syndromes (MDS); leukemic stem cells (LSC); CD34; CD38; CD45RA; CD123; PD-L1; flow
cytometry; t-SNE; high-dimensional space analyses; classification; dimensionality reduction;
immunophenotyping
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1. Introduction

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are hetero-
geneous disorders originating from hematopoietic stem cells (HSCs) through the progres-
sive and sequential acquisition of genetic and epigenetic alterations. As a result, there
is a clonal expansion of myeloid progenitors/precursors in the bone marrow (BM) and
peripheral blood (PB), associated with impaired cell differentiation leading to hematopoi-
etic insufficiency [1–3]. Drug resistance and dormancy of the leukemic stem cells (LSC)
with a reduced susceptibility to cytotoxic drugs are the main reasons for treatment fail-
ure [4,5]. To tackle the problem of resistance and dormancy, a subtle characterization of the
leukemic blast population including the LSC is a prerequisite for amore efficacious targeting
and eradication.

The search for a better characterization of the various subsets contained within the
bulk mass of leukemic blasts from patients with acute leukemia has prompted a constant
increase in the number of antigens in panels for single-cell cytometry, reaching numbers
from 14 to 28 colors [6–8]. In order to visualize and interpret that kind of multidimensional
marker expression function (MEF), the traditional representation via two-dimensional
scatter plots increases correspondingly and reaches its limits.

Mathematically, these scatter plots represent two-dimensional projections of the multi-
dimensional function, by which some information of the original distribution is inevitably
lost. Consequently, rare or so far unknown leukemic subpopulations of pathophysiological
relevance may be not detected [9,10] or multi-dimensional structural information may
get lost. This prompted the search for two-dimensional, graphical representations of the
MEF, which preserve the full representations [11]. Among such mapping algorithms,
t-distributed stochastic neighbor embedding (t-SNE) [12] is a promising candidate [13–17].
We opted for the t-SNE algorithm as compared to equally valid alternatives like uniform
manifold approximation and projection (UMAP) [18] since it has a long and successful track
record over the past decade and is one of the most widely used for comparable tasks [19,20].
Using this methodology, we aimed at elucidating the CD34+ cell population in more depth
in samples from patients with AML and MDS in comparison to samples from patients in
complete remission (CR) following antineoplastic therapy.

2. Materials and Methods
2.1. Patients

BM samples of 21 patients with MDS (6 patients) and AML (15 patients) were obtained
at the Department of Hematology, Oncology and Clinical Immunology from the University
Hospital Düsseldorf on their regular follow-up visits for routine diagnostics. Our control
population consisted of 12 patients following allografting, cytotoxic chemotherapy or both
who were in CR, with 2 patients (#8 and #21 marked with asterisks in Table 1) still not
having achieved full hematological reconstitution. The characteristics of the entire group of
patients are shown in Table 1.

Table 1. Patient characteristics. The samples are grouped according to whether the patients have
active disease (AD) or are in complete remission (CR). All patients in CR are MRD negative (see
Supplemental Table S2 for the MRD analysis).

Group Pat.
ID Age Sex WHO

Classification
Status of
Disease Initial Mutation Cytogenetic Time **

(Months)

AD 1 61 m MDS-IB2 AD - 46, XY 11

AD 4 58 f AML Mr - 47, XX, +11 10

AD 10 58 m MDS-IB2 Hr - 46, XY 30

AD 11 67 m AML, md-r Mr/p FLT3-ITD, RUNX1,
EZH2 46, XY 5

AD 12 65 f AML, md-r Hr ASXL1 46, XX, del(11)(q21,q24) [21] 26



Cancers 2024, 16, 1320 3 of 17

Table 1. Cont.

Group Pat.
ID Age Sex WHO

Classification
Status of
Disease Initial Mutation Cytogenetic Time **

(Months)

AD 13 60 m AML Id IDH1 47, XY, +8[22]/46, XY[2] 0

AD 14 69 f AML, md-r Hr JAK2 45, XX, -7 39

AD 16 60 m AML, md-r Hr ASXL1, RUNX1 not initial: 46, XY,
del(3)(q21q25)[23]/47idem+8[5] 53

AD 17 60 f
AML with
minimal

differentiation
Hr IDH2

47, XX, +mar[4]/46, XX [22],
cytogenetic aberration:

7(4;12)
216

CR 2 76 m MDS-IB2 CR ASXL1 46, XY 13

CR 3 67 f
AML with
CEBPA
mutation

CR CEBPA 46, XX 21

CR 5 56 f AML with
maturation CR DNMT3A, IDH1 46, XX 4

CR 6 41 m AML, md-r CR RUNX1 complex karyotype 3

CR 7 54 f AML with
NPM1 mutation CR NPM1, IDH2 46, XX 8

CR 8 51 m

MDS with low
blasts and

SF3B1 mutation
(MDS-SF3B1)

CR * JAK2, SF3B1 complex karyotype 60

CR 9 67 f
AML with

CBFB-MYH11
fusion

CR CBFB-MYH11 46, XX, inv(16)(p13q22)[24]/
46, XX [3] 29

CR 15 28 f AML, md-r CR RUNX1 complex karyotype 47

CR 18 39 f AML, md-r CR FLT3-ITD del(7)(q22[22]/46, XX [3] 2

CR 19 40 m AML, md-r CR ASXL1, c-KIT,
TET2 +8, XXY, add(21p) 32

CR 20 61 f AML, md-r CR ASXL1, RUNX1 46, XX 57

CR 21 70 m AML, md-r CR * ASXL1, RUNX1,
TET2, EZH2 46, XY 11

* Patients who still not having achieved full hematological reconstitution; ** time difference between initial
diagnosis and sample collection; md-r: myelodysplasia-related; CR: complete remission; Hr: hematological
recurrence; Mr: molecular recurrence; Mr/p: molecular recurrence/persistence; Id: initial diagnosis; AD: active
disease; MDS: myelodysplastic syndrome.

2.2. Isolation and Phenotyping of White Blood Cells

White blood cells (WBCs) were isolated via red blood cell lysis. For that, BM was
collected in EDTA coated syringes or blood collection tubes and bone fragments were
removed by filtering the BM with a 70 µm cell strainer. The BM was then incubated 1:10
for 10 min with isotonic ammonium chloride solution (155 mM NH4Cl, 10 mM KHCO3
and 0.1 mM EDTA, pH 7.4, purchased from the University Hospital Düsseldorf Pharmacy,
Düsseldorf, Germany). WBCs were pelleted for 5 min at 500 g, supernatant was discarded
and the remaining WBCs were washed twice with DPBS prior to staining. For each sample,
one to four million cells were transferred to a 96 well U-Bottom plate and dead cells were
stained with fixable viability dye (#65-08666-14, Thermo Fisher Scientific, 1:1000 in DPBS),
washed with DPBS and subsequently stained for cell surface molecules. Dead cells and
surface molecules were each stained for 15 min at room temperature in the dark. Antibodies
for cell surface molecules (see Table 2) were diluted in Brilliant Stain Buffer (#566349, BD
Horizon, BD Bioscience, Franklin Lakes, NJ, USA) to prevent staining artifacts due to
polymer dyes. Prior to data acquisition at a BD LSR Fortessa (V/B/YG/R), cells were
washed with DPBS, fixed overnight (IC Fixation Buffer, #00-8222, Thermo Fisher Scientific,
Waltham, MA, USA ) and washed again. Cells were taken up in DPBS and acquired at up
to 3000 events/s. All samples contain more than 105 cells.
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Table 2. WBC staining panel.

Specificity Clone Fluorescence Dye Vendor Cat # RRID Concentration

Fixable viability
dye / eFlour506 TFS * 65-0866-14 / 1:1000

PD-L1 MIH5 PerCP-eFlour710 TFS 46-5983-42 AB_11041815 1:50
CD123 6H6 PE TFS 12-1239-42 AB_10609206 1:100
CD45 HI30 PE-Cy5 BioLegend 304010 AB_314398 1:200

CD45RA HI100 PE-Cy7 TFS 25-0458-42 AB_1548774 1:200
CD34 4H11 APC TFS 17-0349-41 AB_2016604 1:50
CD38 HIT2 APC-eFlour780 TFS 47-0389-41 AB_11217871 1:50

* TFS: Thermo Fisher Scientific.

2.3. Gating Strategy

In the study presented here, we were particularly interested in a detailed, multi-color
flow cytometry-based characterization of the CD34+ cells focusing on a subtle comparison
between the CD34+ cell subsets of patients with active disease (AD) and those of patients
in CR. For that purpose, we used a panel of the following monoclonal antibodies: CD34,
CD38, CD45, CD45RA and CD123, as it provides the basis for defining the various types
of HSPCs (Table 3). In addition, the programmed death ligand 1 (PD-L1) was included,
since it is also expressed on normal hematopoietic cells, exerting a suppressive effect on
the immunological response. We consider this panel suitable and sufficient to demonstrate
strengths and pitfalls of a t-SNE-based analysis.

Table 3. Antigen combinations for HSPC characterization.

Cell Type Label Antigen Combination

Hematopoietic stem cells HSC CD34+ CD38− (CD90+ not included)
Multipotent progenitor cells MPP CD34+ CD38− (CD90− not included)

Common lymphoid progenitors CLP CD34+ CD38− CD45RA+

Common myeloid progenitors CMP CD34+ CD38+ CD45RA− CD123low *
Megakaryocyte/erythroid progenitors MEP CD34+ CD38+ CD45RA− CD123−

Granulocyte-macrophage progenitors GMP CD34+ CD38+ CD45RA+ CD123+

Not identified by this set of antigens Other Various combinations
* By the term “low” we refer to weakly positive.

Our gating strategy for the cells of interest, i.e., the CD34+ cells, encompassed six
steps including: (1) an FSC vs. SSC gate, (2) a CD45 vs. SSC gate, (3) an exclusion step for
the elimination of doublets, and (4) a viability check using eF506 dye for the exclusion of
dead cells. As a result, the (5) final gate of interest (GOI) contained CD34+ cells excluding
the population of granulocytes. Afterwards (6), only the CD34+ cells were selected, as
shown in Figure 1A and B for patient 1. The gating was carried out in FlowJo® (FlowJo,
Ashland, OR, USA). The number of CD34+ positive cells of an individual patient varied
between 129 and 207,994 (Figure 1C). To avoid domination of features in the t-SNE plots by
individual patients, a maximum of 1000 cells was randomly selected in patients with high
cell numbers.
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Figure 1. In (A) and (B), steps (5) and (6) of the gating strategy are shown. The orange arrow means
that in B only the cells from the gate of interest (GOI, black frame) were analyzed. (A) The exclusion
of the population of granulocytes with (5) a GOI; (B) The final step (6), selection of the CD34+ cells; In
(C), the numbers of CD34+ cells after the gating are shown for each patient as well as the numbers
thereof included in the t-SNE analysis.

2.4. Visualization by t-SNE

In a second step, we applied t-SNE for the visualization of different cell clusters based
on their similarity with regards to the composition and intensity of antigen expression.
The t-SNE algorithm is a nonlinear dimensionality reduction technique which visualizes
high-dimensional data in a two-dimensional scatter plot in such a way that the clustering
in high dimensions is preserved. Cells exhibiting comparable protein-expression patterns
are positioned adjacently on the t-SNE map, facilitating the depiction of distinct cellular
subgroups. The nature of this algorithm is to preserve the local relationships and not the
global structure [21]. This is one of the well-known limitations of t-SNE [22–24]. Thus,
global structures such as the arrangement of the clusters and their distances in the t-SNE
plane provide no basis for interpretation. A principal component analysis (PCA) was
therefore carried out for the initialization to improve the global structure of the plot, as
established in the literature [21,25].

To enable comparability between the t-SNE plots, the gated CD34+ cells from all
patients were first merged into a common data set. The patient ID and the group assignment
were appended to the expression matrix prior to data merger permitting the subsequent
separation according to these characteristics after the t-SNE analysis. The fluorescence data
were scaled biexponentially in a preliminary step [26]. The t-SNE analysis was carried out
using the Barnes–Hut implementation of t-SNE by the Rtsne package (Version 0.16, Open
Source). The code is available in the Supplement (Code S1). For the PCA the predefined
value of 50 for the number of retained dimensions was used. The perplexity as well as
the number of iterations were varied over wide intervals. These variations, shown in
Supplement Figure S1, not only reassure us that the structures to be interpreted are robust,
but also demonstrate that a perplexity of 70 and 3000 iterations is a reasonable choice
providing visibility of the relevant morphology within an acceptable computation time [27].
The t-SNE coordinates (t-SNE1, t-SNE2) were also appended to the expression matrix as
novel parameters. The entire data set as well as a data set of only patients in CR and
a data set of the patients with AD were then exported as FSC files for further analysis
in FlowJo ®. The t-SNE plot is created as a function of the two parameters (t-SNE1 and
t-SNE2). Since distances within a t-SNE plot cannot be interpreted in a straightforward
way for reasons mentioned above, axis labels are omitted for all t-SNE plots, in agreement
with common practice.



Cancers 2024, 16, 1320 6 of 17

2.5. Defining Gates in the t-SNE Plots

The expression matrix with the t-SNE coordinates of the three data sets (All patients,
only CR, only AD) were imported into FlowJo®. A group was created therein containing
all three data sets. Density-based polygon gates were manually drawn on the common
t-SNE plot of all patients in CR. Afterward, the 27 gates were applied to the FlowJo® group
in order to transfer them to the remaining two data sets.

2.6. Determination of the Immunological Phenotypes of HSPCs

The immunological phenotype of HSPCs was determined using the markers CD34,
CD38, CD123 and CD45RA. For this purpose, the limits for the classification into positive
(+) and negative (−) according to the marker expression were determined in FlowJo® on
the common data set of all patients using scatter plots (Supplement Figure S2). The fluo-
rescence values for the markers used were exported separately for the patients in CR and
patients with AD for all gates and then displayed as boxplots (Supplement Figure S3). The
commonly used limits for the classification were drawn into the boxplots with the antigen
expression levels and the immunological phenotype of the HSPCs was then determined for
the respective gate depending on whether the mean value of the respective marker was
above or below the limit.

2.7. Quantitative Comparison of t-SNE Plots Using the Pearson Correlation Coefficient

For the quantitative comparison of the t-SNE plots, the density matrix for the respective
t-SNE plot was first calculated in R, e.g., for a single patient or for the cumulative image of all
patients with AD. The density matrices were exported and the Pearson coefficients between the
t-SNE plots were determined using Python. The code is available in the Supplement (Code S2).
The density plots of all patients are shown in Supplement Figure S4.

3. Results and Discussion
3.1. Design of a t-SNE-Based Protocol for Multicolor Flow Cytometry Analysis

For the t-SNE analysis, a common data set of all FSC files from all patients was created,
so that the t-SNE plots are comparable between the patients. The t-SNE analysis was carried
out based on the expressions of CD34, CD38, CD45RA, CD123 and PD-L1. In general, the
CD34 antigen permits the identification of hematopoietic stem and progenitor cells, while
CD38 is considered a marker associated with differentiation [28,29]. The combination of
these two antigens with CD45RA and CD123 permits a characterization and quantification
within a BM of the HSC/HPC within a BM sample [30,31].

After the t-SNE run on the combined data set (Figure 2A), the contributions of the
CR and AD patients were visualized separately to recognize their contributions to the
combined t-SNE picture (Figure 2B,C).

By t-SNE, the cells are arranged in five islands (I–V) of different sizes. It becomes
immediately apparent that the CR (in 2B) and the AD (in 2C) samples contribute almost
complementarily to the combined representation (A). While in the CR patients, most of the
cells are in the east part of the main island (I) plus in three of the four separated islands (II,
III, V), the cells from the AD patients accumulate more to the west of the main island as
well as in island IV. However, the populations are not mutually exclusive, as all cell types
are present in both groups, albeit in some regions with strikingly different prevalence. This
phenomenon is most likely not related to “contaminating” leukemic cells within the CR
samples as the CR patients are MDR negative. In the t-SNE representation, the cells are
distributed according to marker-specific gradients, as shown in the bottom row of Figure 2
D–H for the combined data set, where the black horizontal bars in the color scale column
define the corresponding intensity intervals. The overlay of the different markers is shown
separately for AD and CR in Supplement Figure S5, as well as an example for two patients
from each of the groups in Supplement Figure S6.
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Figure 2. (A) t-SNE representation of the combined data set (cells of patients with active disease (AD)
and in complete remission (CR)), and the contributions from patients in CR (B) as well as from the
patients with AD (C). The color scale for (A–C) corresponds to the local density of cells in arbitrary
units. In each t-SNE plot, the color scale starts at zero and is normalized to the maximum density in
the respective plot. In (D–H), the prevalence of the various markers entering the t-SNE algorithm are
reproduced, for CD34, CD38, CD45RA, CD123 and PD-L1. The color scale represents the expression
level. The classification in terms of positive (+) and negative (−) expression is indicated by the black
horizontal lines in the color bar.

As far as CD34 is concerned, the corresponding intensities in (Figure 2D) comprise
only positive values since per definition only cells above the threshold of expression were
included. Still, the islands in the t-SNE plot show quite varying CD34 expression levels.
With respect to CD38, the cells are assorted from northwest to southeast of the main island
with increasing expression level, while it is particularly low in island IV. A pronounced
CD38 gradient is visible in island III and V, indicating a sub-ensemble of cells undergoing
some kind of development. The CD123 concentration, on the other hand, increases from
east to west across island I, is almost zero in island II, and shows gradients within islands III
and V. The CD45RA expression increases strongly from north to south. Finally, the PD-L1
expression, which is not considered in the assignment of the cells according to Table 3, is
non-monotonously distributed across island I and takes characteristic low values in islands
II and III.

We can therefore conclude that the gradients in the intensities of CD38, CD45RA and
CD123 cause the main substructure in island I, while the expression levels of CD34 and
PD-L1 refine this landscape.

3.2. Exemplifying Discussion of t-SNE Gates

For a more detailed study of the five islands, we have defined 27 gates in the t-SNE
plot of the CR samples, each with a characteristic set of expression levels for the markers
used (Figure 3A). This gate pattern was then transferred without modifications to the AD
data as described in Section 2.5, shown in Figure 3B. The percentage distribution of the
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cells in the 27 gates for the three datasets (all patients, only CR, only AD) is shown in
Supplement Table S1.

                 

                  

                      

                    

               

                

    

               

                

            

               

                 

              

                 

             

              

                 

      

          

           

              

            

                

Figure 3. (A) Density-based gate definition on the t-SNE plot of the CR data set, performed by
visual inspection; (B) Application of the gates on the AD data set; In (C), the ratio of the percentage
distribution of the cells for the CR to the AD samples is given for each gate; The gates are inked in
red if this ratio is smaller than 1, i.e., most of the cells in this gate come from AD samples, and blue
for ratios larger than 1. The cell type identification for the gates is represented in (D,E) for the CR
samples and for the AD samples, respectively; (F) Evolution scheme for the relevant cell types; The
ratios of the percentage distribution of cells for the different types in CR samples vs. AD samples are
listed in (G).

From that kind of visualization, eight gates emerge, namely gates 1, 6, 7, 10–13 and 15,
in which the cells of patients with AD dominate. The remaining gates contain more cells
from the CR patients, while within gate 14 the ratio is very close to 1.

The box plots of the 27 gates (Supplement Figure S3) were used to assign the cells
within each gate according to the classification scheme as detailed in Table 3 and shown
in Figure 3F. As can be extracted from Figure 3, the CR subsets are composed of 0.7%
HSC/MPP, 9.4% CMP, 1.2% CLP, 11.4% MEP and 44.6% GMP. A proportion of cells (32.7%)
could not be allocated according to the classification scheme. On the other hand, the
samples of the patients with AD comprised 14.3% HSC/MPP, 4.7% CMP, 4.1% CLP, 13.7%
MEP and 47.0% GMP with a proportion of 16.2% of the cells which could not be classified.
Clearly, in comparison with the CR samples the AD samples show a significantly greater
proportion of HSC/MPP as well as CLP cells, while there are smaller percentages of CMP
cells as well as of those cells that cannot be allocated. The fractions of MEP cells are
approximately equal for both groups.

Beyond this canonical classification, the t-SNE representation provides a rich substruc-
ture within the regions of particular cellular subtypes, reflecting subtle differences between
the various populations. A complete delineation of all 27 gates would be certainly beyond
the scope of our presentation. We therefore selected gates representing five characteristic
cellular subsets, namely gates 1, 3, 6, 12 and 26, to illustrate the possibilities, but also the
potential shortcomings associated with a t-SNE representation. The corresponding box
plots are shown in Figure 4.
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Figure 4. Box plots of the antigen expression levels (red: CD34, green: CD38, blue: CD45RA, orange:
CD123, purple: PD-L1) within 5 selected gates from the 27 shown in Figure 3. The fluorescence data
were scaled biexponentially in a preliminary step. The light blue and red background indicate the
expression levels classified as negative (blue) and positive (red), respectively. The PD-L1 antigen was
not used for the cell classification.

In general, a clear distinction of one gate from the others originates from a particularly
low expression of one antigen within this gate.

We beginwith gate 1, a well-separated island containing the greatmajority of HSC/MPP
cells, as defined by the lack, or extremely low expression, of CD38. Since the differentiation
between HSC and MPP is based on the CD90 marker (with CD38 negative in both cases)
which was not included in our panel, we cannot distinguish these two cell types within
our data set. As far as CD45RA and CD123 are concerned, their expression levels show
a broad distribution spanning almost the full intensity range. Since AD cells contribute
88% to this population, this gate represents a predominantly leukemic-related gate and is
compatible with the signature of leukemic stem cells. We note that the patients’ ID and the
group assignment were added to the expression matrix prior to the data merging, which
allows us to determine the contribution of each patient group (CR and AD) to each gate.
To relate these findings to the results of Kersten et al. [32], we looked at the expression
level of CD45RA and CD123 on the CD34+ cells within this gate and found a greater
expression of these antigens on the leukemic cells compared to those from the control
samples. The aforementioned investigators examined the potency of CD45RA to specifi-
cally discriminate LSC and normal HSC for a better LSC quantification and found that in
comparison to other markers such as CLEC12A, CD33 and CD123, CD45RA was the most
reliable antigen. From a clinical point of view, it was interesting to note that CD45RA+ LSC
tended to be associated with a more favorable cytogenetic/molecular marker constellation.
However, it is important to recognize that the expression of CD45RA in AML is not as
straightforward as in the immune system T cell subsets, and the functional implications
can be quite diverse [33]. With regard to CD123, the study by Testa et al. based on the
screening of CD123 expression in various hematopoietic malignancies shows that this
antigen not only frequently expressed at high levels in AMLs but also on B-ALLs [34]. In
an earlier report, they had explored a large set of AML patients and reported that 45% of
these patients overexpress CD123 [35]. Similar to their results, Al-Mawali et al. [36] found
that overall, this antigen was expressed in 37 (97%) out of 38 AML cases analyzed. The
median expression of CD123 was 90% (range 21%–99%). Interestingly, the proportion of
cells co-expressing CD123 on CD34+/CD38− leukemic stem cells was also 37 (97%) out of
the 38 AML patients with a broad range from 0.0262% to 39.7% (median 0.8164, mean 4.45)
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at the time of diagnosis. These results are in line with our findings regarding the expression
pattern of the CD34+/CD38− in our gate 1.

Gate 3, on the other hand, has been selected as an example for a cell cluster mainly
encompassing CD34+ normal progenitor cells of GMP subtype, as the great majority of
cells show a strong CD38 expression in the presence of CD45RA and CD123. Different from
this normal signature, the few CD34+ cells falling onto this gate from patients with AD are
lacking or only faintly expressing CD38 while the intensity for CD45RA and CD123 tends
to be stronger in comparison to their normal counterparts.

Gate 6 resides at the edge of the main island with a proportion of 93% of cells from
AD samples. Since the expression levels of all antigens are above the threshold of detection,
they are formally classified as GMP. Still, a specific property of gate 6 in comparison to other
gates containing GMP-like cells is that the PD-L1 expression level is relatively high—well
above the levels in all other gates—and the levels of CD45RA and CD38 are also above
the average observed for GMP cells. Furthermore, it is remarkable that these cells have
a relatively low CD34 antigen expression and that all antigens display a relatively sharp
intensity distribution with relatively low standard deviations. This suggests that there is
no ongoing evolution among the cells in this gate. The CD34+ cells of this cluster were to
some extent CD38+, indicating a kind of “late” HSC on its way towards an abnormal stage
of differentiation. As far as PD-L1 is concerned, our t-SNE-based data confirm the results
obtained previously in a study focusing on the immunophenotype of T cells in patients
with MDS and AML [37]. The mechanisms underlying T cell evasion to immune checkpoint
inhibitors in acute myeloid leukemia have been recently elucidated by Gurska et al. [38].

We now take a closer look at the cells in gate 12, where two-thirds of the cells originate
from AD samples. This gate represents a kind of borderline cell pool regarding the AD
samples. In general, the expression level of CD45RA is very low, and the CD34 level is
extraordinarily high with a relatively broad distribution of CD38 expression. While the
cells in this gate from the CR patients are unequivocally classified as CMP, this is not
possible for the AD samples, as they rather appear to be a mixture of CMP with HSC/MPP.
This gate is, therefore, distinct from most other gates due to its internal shift of the t-SNE
intensity between AD and CR samples. Accordingly, the AD cells with a lack or very low
expression of CD38 reside more at the left side of this gate, whereas the cells of the CR
samples preferentially group around its center. This indicates that the cells undergo an
evolution from HSC/MPP when the disease is active, towards CMP during remission. The
cluster contained within gate 12 is thus a nice example for the discriminative strength of
t-SNE. In comparison to gate 1, the CR group shows a positive CD38 signal, while the AD
group in this gate is CD38 negative, even though these values are significantly higher than
in gate 1.

Gate 26 is dominated by a proportion of 68% of CR cells. It is a kind of enigmatic cluster,
as this subpopulation of CD34+ cells could not be allocated unequivocally according to the
classification scheme as described in Figure 3F. Their characterization certainly requires an
extended labelling for the lymphoid progenitor cells including antigen markers like CD10,
CD7 or CD19. With regard to the leukemic cells contained within this cluster, aberrant
marker constellations not related to the canonic scheme are also conceivable. Therefore,
starting from our proof-of-principle marker panel, modifications including newmonoclonal
antibodies are necessary taking into account the steadily evolving knowledge and discovery
of leukemic-related antigens and their co-expression patterns. Within this process, our
efforts should be geared towards linking the phenotypical characterization to the molecular
signature of the leukemic cells in the sense of a phenotype–genotype linkage. In the context
of an antigen-targeted therapy, this could be helpful in defining the most relevant subset,
i.e., leukemic stem cell, within the bulk mass of leukemic cells.

We proceed by drawing some general conclusions from these characteristic examples.
First, carefully selected additional markers can discriminate the cells to a deeper

level. In that respect, we found a strong correlation between the expression level of
the PD-L1 antigen and the percentage of predominantly leukemic cells in a particular
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gate. Considering that PD-L1 is an immunoprotective antigen, one may speculate that by
increasing the PD-L1 expression during the evolution from healthy towards malignant, the
cells protect themselves with respect to the immune system.

On the other hand, disregarding a relevant marker can leave the cell population within
some of the gates unspecified, as has been seen from the example of gate 26. Moreover,
since the markers used tend to show a continuous expression on this cell ensemble, only
a few distinct islands became apparent in the t-SNE plot. This means that with manual
density-based gating, the areas sometimes do not have a distinct border, which is reflected
by the variability of the box plots for the respective gates. By using more markers that
ideally exclude each other, better separation within the t-SNE plot [39] may improve
subsequent gating or also enable the use of more automated density-based gating, such as
DBSCAN [40] or HDBSCAN [41].

Furthermore, in our control samples of patients (CR), the composition of the cell
ensemble was similar to our previous findings in normal donors showing a predominance
of the GMP followed by the CMP, HSC and the MEP [42]. Subtle differences may be
explained by the fact that in our study, BM samples of patients in CR served as normal
controls, as BM from normal volunteers were not available. More specifically, normal
hematopoietic cells that express high levels of CD34 lacking CD38 are considered stem
cells, whereas those that express low levels of CD34 and high levels of CD38 represent
more differentiated progenitor cells [43]. The lack of CD38 on leukemic blast cells is also
characteristic for the leukemic stem cell [4].

3.3. Quantification of the t-SNE Representation

We proceed by asking to what extent a t-SNE-based assessment can be quantified.
Based on quantitative evaluations already proposed [44,45], we suggest an analysis in
terms of the Pearson correlation coefficient r (A, B), a well-established measure for the
similarity of two pictures labelled A and B. The two pictures are composed of N pixels each,
with pixel density Aj and Bj, respectively. The Pearson coefficient is defined as

r(A, B) =
cov(A, B)

σAσB
(1)

with the covariance of the two pictures given by

cov(A, B) =
∑N

j=1 AjBj −
(

∑N
j=1 Aj

)
·
(

∑N
j=1 Bj

)

N
(2)

and the standard deviation of the pixel densities of picture X (X = A, B) given by

σX =

√√√√∑N
j=1 X

2
j −

(
∑N

j=1 Xj

)2

N
(3)

For r (A, B) = 1, the two pictures are identical, and they are maximally different, i.e.,
their sum picture has a density of zero at all sites, for r (A, B) = −1.

The comparison of the two representations of the combined data sets, Figure 2B,C
gives r∑CR,∑AD = 0.46. Here, ∑AD and ∑CR denote the sum pictures of all AD and all CR
samples, respectively.

Based on this value, we evaluate a classification protocol in which the t-SNE represen-
tation of a new sample is generated by first merging it with a reference plot composed of a
sufficient number of samples, which is split up again into the two reference pictures ∑AD
and ∑CR plus the contribution from the new sample labelled as N.

When we refer to the sample N including its classification, we label it by NCR or NAD,
respectively. In the next step, the Pearson coefficients of N with the two reference pictures
r∑AD,N and r∑CR,N are computed.
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We have implemented this protocol with the present data set as follows. From our
data set, we have removed each sample separately and considered the remaining combined
pictures as reference pictures. We now treat the individual sample N as unknown and
compute r∑AD,N as well as r∑CR,N. This implementation is represented schematically in
Figure 5.

                  

                 

                  

                 

               

               

            

                 

              

                

               

             

    

             

              

               

                 

           

Figure 5. Graphic representation of the calculation of the r value as an example for two patients,
6 (CR group, top center) and 16 (AD group, bottom center). For patient 6, the density distribution
is compared with those containing all patients with AD (top right) and for all patients of the CR
group except patient 6 (top left). Likewise, we compare for patient 16 the density with the t-SNE
plots containing all patients with AD except patient 16 (bottom right) and all patients of the CR
group (bottom left). The orange arrows indicate which two plots were compared with each other.
The r values are given in between the compared plots. The density is normalized to the respective
maximum value of the plot. The gates are shown as an overlay for all plots.

The results are the values without parentheses listed in Table 4. For all but one of the
twelve control samples, we measure r∑CR,NCR > r∑AD,NCR, with differences up to 0.47 for
sample 20. Therefore, only in the case of N = 18, the sample would have been classified
as AD in contrast to the correct classification. We will elucidate the reasons for the wrong
classification below.

Regarding the identification of an AD sample, the situation is less clear. While samples
1, 12, 13, 14 and 16 show r∑AD,NAD > r∑CR,NAD and are thus classified correctly, we observe
that r∑AD,NAD is just slightly smaller than r∑CR,NAD in samples 10 and 17, but find dramatic
deviations from the classification for samples 4 and 11, with r value differences of 0.68 and
0.42, respectively.

In order to investigate how stably the classification works with respect to multiple
t-SNE runs, two further runs were performed, and the classification was carried out as
described previously. The AD samples were assigned to the same group in all runs as
described above. In two out of three runs, all CR samples except N = 18 were identified as
CR samples and in the third run, all were classified as CR.

The failure of allocating samples 4 and 11 asks for refined consideration. Despite their
different subtype of AML, the leukemic cells show a monoblastic differentiation reflecting a
more “mature” subtype not necessarily reflected by a particular CD34/CD38 subset. Since
the cells of these misassigned patients represent a more mature type and the patients had
only a molecular relapse, it is very likely that they could not be adequately assigned, since
the leukemic cells were not contained within the CD34+ cell population. For the detection of
that kind of subtype, additional markers such as CD33 and CD14, for example, would still



Cancers 2024, 16, 1320 13 of 17

be necessary. Rather, the antigen markers used should show expression levels quite similar
to those of the CR samples. Since it is of great interest to study how such a misallocation
influences the t-SNE representation and the corresponding Pearson coefficients, we remove
patients 4 and 11 from the ensemble and repeat the quantitative analysis. The modified
t-SNE plot in comparison to the plots of these two patients, shown in Figure 6, illustrates
the dissimilarity of the density distributions. The obtained r values are given in Table 4
in parentheses. First, we notice a striking decrease of r∑AD,∑CR by 0.22. Apparently, these
two samples have been responsible for a significant similarity between the two t-SNE
representations, again indicating that samples 4 and 11 generate a pattern that resembles
more CR samples than AD cases. Second, for all control samples, the values of r∑AD,NCR
improve, some of them dramatically, e.g. for patient 9, r drops from 0.24 to −0.05. Third,
however, we observe some effect on the r∑AD,NAD values, which change by no more than
0.19. It increases only for patients 1 and 13 but decreases for the remaining cases. This
impressively shows how the lack of a relevant marker for clear characterization can lead to
false similarities and thus impede the classification. It is therefore conceivable that with
each additional diagnostically relevant marker the characterization becomes better, the
t-SNE image becomes more differentiated and thus the classification becomes more reliable.

Table 4. The calculated r values are shown, in the second respective third column, the density of the
t-SNE plot of the individual patient (first column) with AD is compared with the density of the t-SNE
plot containing all patients with AD (∑AD) respective of the density of the t-SNE plot containing
all patients of the CR group (∑CR). In columns 4 to 6, this is shown accordingly for the individual
patients from the CR group (fourth column), in each case compared to the density of the t-SNE plot
of the entire CR group (∑CR) or entire group of patients with AD (∑AD). In the seventh column, the
r value for the comparison between the densities of the two t-SNE plots with all patients from the
CR group (∑CR) and with all patients with AD (∑AD) is shown. The calculated r values from the
analysis in which patients 4 and 11 were excluded from the AD group are given in parentheses in the
respective column.

1 2 3 4 5 6 7

Pat. NAD vs. ∑AD NAD vs. ∑CR Pat. NCR vs. ∑CR NCR vs. ∑AD ∑CR vs. ∑AD

1 0.23 (0.25) 0.17 2 0.46 0.17 (0.00) 0.46 (0.24)
4 0.12 0.80 3 0.53 0.41 (0.36)
10 −0.01 (−0.2) 0.06 5 0.77 0.44 (0.23)
11 0.29 0.71 6 0.84 0.52 (0.31)
12 0.14 (0.13) 0.12 7 0.50 0.43 (0.41)
13 0.05 (0.07) −0.06 8 0.56 0.19 (0.02)
14 0.22 (0.19) 0.14 9 0.61 0.24 (-0.05)
16 0.34 (0.33) 0.25 15 0.70 0.55 (0.43)
17 0.12 (0.11) 0.15 18 0.43 0.48 (0.42)

19 0.28 0.18 (0.16)
20 0.67 0.25 (0.01)
21 0.69 0.43 (0.28)

As an evaluation of this proposed identification protocol, we note that the values
of r∑CR,NCR are large, a fact which quantifies the high similarity of the cell population
in the CR stage. They are furthermore significantly larger than r∑AD,NCR and we can
thus conclude that the state of CR is safely identified and clearly distinguished from the
AD state. Furthermore, it can be characterized by a single number with the t-SNE-based
protocol, namely by r∑CR,N. The identification of an AD case, however, has remained
ambiguous. All values for r∑AD,NAD and r∑CR,NAD are close to zero, with correspondingly
small differences which in some cases would even indicate a remission. This situation
reflects, in our opinion, the heterogeneity of the considered AD cases. Since these samples
generate widely varying t-SNE patterns, they have relatively low r values and if such a
reference pattern is comparedwith a new sample, a t-SNE-based identification is ambiguous
if not impossible. On the other hand, we have seen in the example of patients 4 and 11
how the t-SNE-based identification can be improved considering blasts of a more “mature”
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analysis; Code S1: R script for the t-SNE analysis, calculation of the density matrices and some figures;
Code S2: Python script for quantitative analysis of the t-SNE plots with the Pearson coefficient.
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Abbreviations

AD active disease
AML acute myeloid leukemia
BM bone marrow
CLP common lymphoid progenitors
CMP common myeloid progenitors
CR complete remission
GMP granulocyte-macrophage progenitors
GOI gate of interest
HSCs hematopoietic stem cells
HSPC hematopoietic stem and progenitor cell
HSPCs hematopoietic stem and progenitor cells
LSC leukemic stem cell
LSCs leukemic stem cells
MDS myelodysplastic syndromes
MEF marker expression function
MEP megakaryocyte/erythroid progenitors
MPP multipotent progenitor cells
PB peripheral blood
PCA principal component analysis
PD-L1 programmed death ligand 1
t-SNE t-distributed stochastic neighbor embedding
UMAP uniform manifold approximation and projection
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Figure S1. Evaluation of the impact of varring the t-SNE parameters number of iterations and perplexity on the t-
SNE embedding. The whole dataset was analyzed. The parameter combination used for the analysis presented in 
the manuskript is framed in red. As an example, the expression of CD45RA in color code (color scale in arbitrary 
units). 
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Figure S4. Density-plots of all patients, sorted according to active disease (AD, left) and complete remission (CR, 
right). 
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Figure S5. t-SNE represetations of the common datasets of patients in complete remission (CR) and of patients with 
active disease (AD). The prevalence of the various markers entering the t-SNE algorithm are reproduced, for CD34, 
CD38, CD45RA, CD123 and PD-L1. The color scale represents the expression level in arbitrary units. The 
classification in terms of positive (+) and negative (-) expression is indicated by the black horizontal lines in the color 
bar.  
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Figure S6. t-SNE represetations as an example for four patients, two each in complete remission (Patient 5, Patient 
15) and with active disease (Patient 14, Patient 16). The prevalence of the various markers entering the t-SNE 
algorithm are reproduced, for CD34, CD38, CD45RA, CD123 and PD-L1. The color scale represents the expression 
level. The classification in terms of positive (+) and negative (-) expression is indicated by the black horizontal lines 
in the color bar.  
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Table S1. Percentage distribution of the cells in the 27 gates, defined in the t-SNE plot of the CR samples, for the 
three datasets (all patients, only AD, only CR). 
 
 

Gate All / [%] AD / [%] CR / [%] 
1 2.50 0.65 4.79 
2 5.17 5.93 4.23 
3 4.64 6.88 1.87 
4 0.49 0.79 0.12 
5 4.86 6.35 3.01 
6 9.33 1.42 19.13 
7 3.37 2.87 4.00 
8 2.48 3.59 1.12 
9 4.10 4.98 3.00 
10 2.70 0.84 5.01 
11 2.49 1.22 4.06 
12 6.85 4.69 9.52 
13 4.10 3.60 4.73 
14 3.75 3.84 3.63 
15 3.93 1.15 7.36 
16 3.97 5.48 2.10 
17 2.71 3.43 1.82 
18 5.31 7.14 3.04 
19 2.59 3.51 1.45 
20 2.02 2.65 1.23 
21 1.57 1.83 1.26 
22 3.38 4.39 2.13 
23 3.57 4.71 2.16 
24 1.72 2.30 1.01 
25 2.91 3.20 2.55 
26 5.27 7.53 2.49 
27 4.22 5.05 3.18 
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Table S2. MRD analysis. All 12 patients in haematological CR were MRD negative. In two patients (7 and 9), 
leukaemia specific markers were monitored using next-generation sequencing (NGS) or fragment analysis, both 
yielding negative results. As our molecular biological methods do not detect any leukemia related mutation, MRD 
in the other patients is defined by a low WT1 level following an initially high expression or 100% donor chimerism.  
 

Pat. ID MRD markers 
2 chimerism, ASXL1, WT1 
3 chimerism, CEBPA, WT1 
5 chimerism, WT1 
6 chimerism, WT1 
7 chimerism, NPM1 
8 chimerism, WT1, JAK2, SF3B1 
9 chimerism, CBFB-MYH11 
15 chimerism, WT1, RUNX1, FISH 
18 chimerism, WT1, FLT3-ITD 
19 chimerism, ASXL1, WT1 
20 chimerism, WT1, ASXL1, RUNX1 
21 chimerism, WT1, ASXL1, RUNX1, TET2 and EZH2 

 
 
 
Code S1. R script for the t-SNE analysis, calculation of the density matrices and some figures. 

 
#LIBRARIES#################################################### 
library(devtools) 
library(flowCore) 
library(flowClean) 
library(flowClust) 
library(Rtsne) 
library(ggplot2) 
install.packages("scales") 
install.packages("ggthemes") 
library(viridis)  
library(png) 
library(reshape2  
library(MASS)  
library(writexl) 
library(dplyr) 
############################################################# 
 
#Transformations 
BiTrans <- biexponentialTransform(b = 1, d = 1)  
LinTrans <- linearTransform(a = 1/100) 
 
#Create Dataframe 
df_t <- data.frame(FSCA=numeric(0), FSCH=numeric(0), FSCW=numeric(0), 
SSCA=numeric(0), SSCH=numeric(0), SSCW=numeric(0), CD34=numeric(0), 
CD38=numeric(0), Viability=numeric(0), CD123=numeric(0), CD45=numeric(0), 
CD45RA=numeric(0),  PDL1=numeric(0), time=numeric(0), PatientID = 
numeric(0), Control = numeric(0)) 
 
#Load files and transform 
patients = c(1:21) 
for (patient in patients) { 
  setwd(toString(patient)) 
  fcm <- read.FCS(paste0("00",patient,".fcs" ))  
  fcm.linear = transform(fcm,`FSC-A`=LinTrans(`FSC-A`),`FSC-
H`=LinTrans(`FSC-H`),`FSC-W`=LinTrans(`FSC-W`),`SSC-A`=LinTrans(`SSC-
A`),`SSC-H`=LinTrans(`SSC-H`),`SSC-W`=LinTrans(`SSC-W`), 
                         `FJComp-APC-A`=BiTrans(`FJComp-APC-A`),  
                         `FJComp-APC-Cy7-A`=BiTrans(`FJComp-APC-Cy7-A`),  



 8 

                         `FJComp-AmCyan-A`=BiTrans(`FJComp-AmCyan-A`),  
                         `FJComp-PE-A`=BiTrans(`FJComp-PE-A`), 
                         `FJComp-PE-Cy5-A`=BiTrans(`FJComp-PE-Cy5-A`), 
                         `FJComp-PE-Cy7-A`=BiTrans(`FJComp-PE-Cy7-A`), 
                         `FJComp-PerCP-Cy5-5-A`=BiTrans(`FJComp-PerCP-Cy5-
5-A`) ) 
  df <- as.data.frame(fcm.linear@exprs) 
   
  #Add parameter Patient 
  df['Patient'] = patient 
   
  #Add parameter control yes or no 
  if(patient == 2 || patient == 3 || patient == 5 || patient == 6 || 
patient == 7 || patient == 8 || patient == 9 || patient == 15 || patient == 
18 || patient == 19 || patient == 20 || patient == 21){ 
    df['Control'] = 1 #Control  
  } else {df['Control'] = 0} #Active Disease 
   
  df_t <- rbind(df_t, df) 
  setwd("..") 
} 
 
 
#Change column names 
colnames(df_t) <- c("FSCA", "FSCH", "FSCW", "SSCA", "SSCH", "SSCW", "CD34", 
"CD38", "Viability","CD123", "CD45", "CD45RA", "PDL1", "Time", "Patient", 
"Control")  
 
#Choose markers for t-SNE run 
datamat_t <- as.matrix(df_t[c("CD34","CD38", "CD123", "CD45RA", "PDL1")]) 
 
#Run t-SNE for different parameters 
 
iterations = c(500,1000,3000,5000) 
perplexities = c(20,50,70,100,180) 
markers = c("CD34", "CD38", "CD123", "CD45RA", "PDL1") 
 
for (iteration in iterations){ 
  for(perp in perplexities){ 
    tsne <- Rtsne(datamat_t, dims = 2, perplexity=perp, verbose=TRUE, 
max_iter = iteration, check_duplicates = FALSE) 
    df_t[c('tSNE1', 'tSNE2')] <- as.data.frame(tsne$Y) 
    perplexity <- perp 
    dataname <- paste0("Data_tSNE_it",iteration,"_p",perp,".Rdata") 
    save(data, file = dataname) 
      for (marker in markers){ 
        ggplot(data=subset(df_t, ), aes_string(x="tSNE1", y="tSNE2",colour 
= `marker`)) +geom_point(size = 0.1) + 
scale_colour_gradientn(colours=rev(rainbow(5)), limits = c(5, 13), oob = 
scales::squish) + theme_linedraw() + theme(panel.grid = element_blank(), 
axis.text = element_blank(), axis.title = element_blank(), axis.ticks = 
element_blank()) + guides(color = FALSE) 
        ggsave(paste0(marker,"_p",perp, ".pdf"), plot = last_plot(),  
               scale = 1, width = 20, height = 20, dpi = 600, 
               units = "cm") 
      } 
  } 
} 
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#Create scatter plots 
#Note that you have to adjust the limits according to your transformation 
 
markers = c("CD34", "CD38", "CD123", "CD45RA", "PDL1") 
 
#Common scatter plot all Patients, fluorescent markers color-coded 
for (marker in markers){ 
  ggplot(data=subset(df_t,), aes_string(x="tSNE1", y="tSNE2",colour = 
`marker`)) +geom_point(size = 0.1)  + 
scale_colour_gradientn(colours=rev(rainbow(5)), limits = c(5, 13), oob = 
scales::squish) + theme_linedraw() + theme(panel.grid = element_blank())  
  ggsave(paste0(marker,"_p",perplexity, ".pdf"), plot = last_plot(), 
         scale = 1, width = 22, height = 20, dpi = 600, 
         units = "cm") 
} 
 
#Common scatter plot all patients with active disease, fluorescent markers 
color-coded 
for (marker in markers){ 
  ggplot(data=subset(df_t, Control==0), aes_string(x="tSNE1", 
y="tSNE2",colour = `marker`)) +geom_point(size = 0.1) + theme_classic() + 
scale_colour_gradientn(colours=rev(rainbow(5)), limits = c(5, 13), oob = 
scales::squish) + theme_linedraw() + theme(panel.grid = element_blank())  
  ggsave(paste0(marker,"_p",perplexity, "_AD", ".pdf"), plot = last_plot(),  
         scale = 1, width = 22, height = 20, dpi = 600, 
         units = "cm") 
} 
 
#Common scatter plot all control patients, fluorescent markers color-coded 
for (marker in markers){ 
  ggplot(data=subset(df_t, Control==1), aes_string(x="tSNE1", 
y="tSNE2",colour = `marker`)) +geom_point(size = 0.1) + theme_classic() + 
scale_colour_gradientn(colours=rev(rainbow(5)), limits = c(5, 13), oob = 
scales::squish) + theme_linedraw() + theme(panel.grid = element_blank())  
  ggsave(paste0(marker,"_p",perplexity,"_CR", ".pdf"), plot = last_plot(),  
         scale = 1, width = 22, height = 20, dpi = 600, 
         units = "cm") 
} 
 
#Scatter plot for every patient, fluorescent markers color-coded 
for (marker in markers){ 
  for (patient in patients){ 
    ggplot(data=subset(df_t,Patient == patient), aes_string(x="tSNE1", 
y="tSNE2",colour = `marker`)) +geom_point(size = 0.1)  + 
scale_colour_gradientn(colours=rev(rainbow(5)), limits = c(5, 13), oob = 
scales::squish) + theme_linedraw() + theme(panel.grid = element_blank())  
    ggsave(paste0("Pat",patient,"_", marker, "_p",perplexity,".pdf"), plot 
= last_plot(),  
           scale = 1, width = 22, height = 20, dpi = 600, 
           units = "cm") 
  } 
} 
 
#Create density plots with overlay of the scatter plot 
 
#Common density plot all patients 
ggplot(data=subset(df_t), aes(x=tSNE1, y=tSNE2)) + 
scale_x_continuous(limits =range(df_t$tSNE1)) + scale_y_continuous(limits = 
range(df_t$tSNE2) )  +geom_point(size = 0.1) + 
geom_density2d_filled(contour_var = "ndensity", alpha = 0.7 ) + 
theme_linedraw() + theme(panel.grid = element_blank())    
ggsave(paste0("Densityplot_Scatter_p",perplexity,".pdf"), plot = 
last_plot(), 
       scale = 1, width = 22, height = 20, dpi = 600, 
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       units = "cm") 
 
#Common density plot with overlay of the scatter plot patients with active 
disease 
ggplot(data=subset(df_t, Control == 0), aes(x=tSNE1, y=tSNE2)) + 
scale_x_continuous(limits =range(df_t$tSNE1)) + scale_y_continuous(limits = 
range(df_t$tSNE2) )  +geom_point(size = 0.1) + 
geom_density2d_filled(contour_var = "ndensity",alpha = 0.7) + 
theme_linedraw() + theme(panel.grid = element_blank())  
ggsave(paste0("Densityplot_Scatter_AD_p",perplexity,".pdf"), plot = 
last_plot(), 
       scale = 1, width = 22, height = 20, dpi = 600, 
       units = "cm") 
 
#Common density plot with overlay of the Scatter plot patients control 
ggplot(data=subset(df_t, Control == 1), aes(x=tSNE1, y=tSNE2)) + 
scale_x_continuous(limits =range(df_t$tSNE1)) + scale_y_continuous(limits = 
range(df_t$tSNE2) )  +geom_point(size = 0.1) + 
geom_density2d_filled(contour_var = "ndensity",alpha = 0.7) + 
theme_linedraw() + theme(panel.grid = element_blank())  
ggsave(paste0("Densityplot_Scatter_CR_p",perplexity,".pdf"), plot = 
last_plot(), 
      scale = 1, width = 25, height = 22, dpi = 600, 
      units = "cm") 
 
 
#Calculate and plot density matrix 
#For every single patient 
 
for (patient in patients) { 
   
  data_sub = subset(df_t, Patient == patient ) 
  density_matrix_list = kde2d(data_sub$tSNE1, data_sub$tSNE2,lims = 
c(range(df_t$tSNE1), range(df_t$tSNE2)), n=90)  
 
  rownames(density_matrix_list$z) = density_matrix_list$x 
  colnames(density_matrix_list$z) = density_matrix_list$y 
   
  density_matrix= melt(density_matrix_list$z, 
id.var=rownames(density_matrix_list)) 
  names(density_matrix) = c("tSNE1","tSNE2","z") 
   
  write_xlsx(density_matrix, 
paste0('Density_matrix_patient',patient,'.xlsx')) 
   
  ggplot(density_matrix, aes(tSNE1, tSNE2, z=z, fill=z)) + geom_tile() + 
scale_fill_viridis_c() + theme_linedraw() + theme(panel.grid = 
element_blank())  
  ggsave(paste0( "Densitymatrix_patient_",patient, ".png"), plot = 
last_plot(),  
         scale = 1, width = 25, height = 20, dpi = 600, 
         units = "cm") 
   
} 
 
#Common density matrix for patient groups 
patients_AD = c(1,4,10,11,12,13,14,16,17) 
patients_control = c(2,3,5,6,7,8,9,15,18,19,20,21) 
 
#Common density matrix patients with active disease 
 
data_sub = subset(df_t, Control == 0)  
 
density_matrix_list = kde2d(data_sub$tSNE1, data_sub$tSNE2,lims = 
c(range(df_t$tSNE1), range(df_t$tSNE2)), n=90)  
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rownames(density_matrix_list$z) = density_matrix_list$x 
colnames(density_matrix_list$z) = density_matrix_list$y 
 
 
density_matrix= melt(density_matrix_list$z, 
id.var=rownames(density_matrix_list)) 
names(density_matrix) = c("tSNE1","tSNE2","z") 
 
write_xlsx(density_matrix, paste0('Density_matrix_AD.xlsx')) 
 
ggplot(density_matrix, aes(tSNE1, tSNE2, z=z, fill=z)) + geom_tile() + 
scale_fill_viridis_c() + theme_linedraw() + theme(panel.grid = 
element_blank())  
ggsave(paste0( "Densitymatrix_AD.pdf"), plot = last_plot(),  
       scale = 1, width = 22, height = 20, dpi = 600, 
       units = "cm")  
  
 
#Common density matrix patients with active disease without patient k  
for(k in patients_AD){ 
   
  data_sub = subset(df_t, Control == 0 & Patient != k )  
   
  density_matrix_list = kde2d(data_sub$tSNE1, data_sub$tSNE2,lims = 
c(range(df_t$tSNE1), range(df_t$tSNE2)), n=90) 
   
  rownames(density_matrix_list$z) = density_matrix_list$x 
  colnames(density_matrix_list$z) = density_matrix_list$y 
   
   
  density_matrix= melt(density_matrix_list$z, 
id.var=rownames(density_matrix_list)) 
  names(density_matrix) = c("tSNE1","tSNE2","z") 
   
  write_xlsx(density_matrix, paste0('Density_matrix_AD_woPat',k,'.xlsx')) 
   
  ggplot(density_matrix, aes(tSNE1, tSNE2, z=z, fill=z)) + geom_tile() + 
scale_fill_viridis_c() + theme_linedraw() + theme(panel.grid = 
element_blank())  
  ggsave(paste0( "Densitymatrix_AD_woPat",k,".pdf"), plot = last_plot(),  
         scale = 1, width = 22, height = 20, dpi = 600, 
         units = "cm")  
} 
 
#Common density matrix patients with active disease without patient 4 and 
11 
   
  data_sub = subset(df_t, Control == 0 & Patient != 4 & Patient != 11 )  
   
  density_matrix_list = kde2d(data_sub$tSNE1, data_sub$tSNE2,lims = 
c(range(df_t$tSNE1), range(df_t$tSNE2)), n=90)  
   
  rownames(density_matrix_list$z) = density_matrix_list$x 
  colnames(density_matrix_list$z) = density_matrix_list$y 
   
   
  density_matrix= melt(density_matrix_list$z, 
id.var=rownames(density_matrix_list)) 
  names(density_matrix) = c("tSNE1","tSNE2","z") 
   
  write_xlsx(density_matrix, 
paste0('Density_matrix_AD_woPat4_woPat11.xlsx')) 
   
  ggplot(density_matrix, aes(tSNE1, tSNE2, z=z, fill=z)) + geom_tile() + 
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scale_fill_viridis_c() + theme_linedraw() + theme(panel.grid = 
element_blank())  
  ggsave(paste0( "Densitymatrix_AD_woPat4_woPat11.pdf"), plot = 
last_plot(),  
         scale = 1, width = 22, height = 20, dpi = 600, 
         units = "cm")  
 
#Common density matrix patients with active disease without patient 4, 11 
and patient k 
   
  data_sub = subset(df_t, Control == 0 & Patient != 4 & Patient != 11 & 
Patient != k  )  
   
  density_matrix_list = kde2d(data_sub$tSNE1, data_sub$tSNE2,lims = 
c(range(df_t$tSNE1), range(df_t$tSNE2)), n=90)  
   
  rownames(density_matrix_list$z) = density_matrix_list$x 
  colnames(density_matrix_list$z) = density_matrix_list$y 
   
   
  density_matrix= melt(density_matrix_list$z, 
id.var=rownames(density_matrix_list)) 
  names(density_matrix) = c("tSNE1","tSNE2","z") 
   
  write_xlsx(density_matrix, 
paste0('Density_matrix_AD_woPat4_woPat11_woPat',k,'.xlsx')) 
   
  ggplot(density_matrix, aes(tSNE1, tSNE2, z=z, fill=z)) + geom_tile() + 
scale_fill_viridis_c() + theme_linedraw() + theme(panel.grid = 
element_blank())  
  ggsave(paste0( "Densitymatrix_AD_woPat4_woPat11_woPat",k,".pdf"), plot = 
last_plot(),  
         scale = 1, width = 22, height = 20, dpi = 600, 
         units = "cm") 
 
 
#Common density matrix patients control 
 
data_sub = subset(df_t, Control == 1)  
 
density_matrix_list = kde2d(data_sub$tSNE1, data_sub$tSNE2,lims = 
c(range(df_t$tSNE1), range(df_t$tSNE2)), n=90)  
 
rownames(density_matrix_list$z) = density_matrix_list$x 
colnames(density_matrix_list$z) = density_matrix_list$y 
 
 
density_matrix= melt(density_matrix_list$z, 
id.var=rownames(density_matrix_list)) 
names(density_matrix) = c("tSNE1","tSNE2","z") 
 
write_xlsx(density_matrix, paste0('Density_matrix_CR.xlsx')) 
 
ggplot(density_matrix, aes(tSNE1, tSNE2, z=z, fill=z)) + geom_tile() + 
scale_fill_viridis_c()  + theme_linedraw() + theme(panel.grid = 
element_blank())  
ggsave(paste0( "Densitymatrix_CR.pdf"), plot = last_plot(),  
       scale = 1, width = 22, height = 20, dpi = 600, 
       units = "cm")  
 
 
#Common density matrix patients control without patient k  
 
for(k in patients_control){ 
   



 13 

  data_sub = subset(df_t, Control == 1 & Patient != k )  
   
  density_matrix_list = kde2d(data_sub$tSNE1, data_sub$tSNE2,lims = 
c(range(df_t$tSNE1), range(df_t$tSNE2)), n=90)  
   
  rownames(density_matrix_list$z) = density_matrix_list$x 
  colnames(density_matrix_list$z) = density_matrix_list$y 
   
   
  density_matrix= melt(density_matrix_list$z, 
id.var=rownames(density_matrix_list)) 
  names(density_matrix) = c("tSNE1","tSNE2","z") 
   
  write_xlsx(density_matrix, paste0('Density_matrix_CR_woPat',k,'.xlsx')) 
   
  ggplot(density_matrix, aes(tSNE1, tSNE2, z=z, fill=z)) + geom_tile() + 
scale_fill_viridis_c()  + theme_linedraw() + theme(panel.grid = 
element_blank())  
  ggsave(paste0( "Densitymatrix_CR_woPat",k,".pdf"), plot = last_plot(),  
         scale = 1, width = 22, height = 20, dpi = 600, 
         units = "cm")  
} 
 
 
#Convert dataframe in CSV file 
 
#For all patients 
 
datasub_csv <- subset(df_t) 
write.csv(datasub_csv, paste0("csv_dataframe_all.csv"), row.names=FALSE)  
 
 
#For every single patient 
 
for(patient in patients){ 
  datasub_csv <- subset(df_t, Patient==patient) 
  write.csv(datasub_csv, paste0("csv_dataframe_",patient,".csv"), 
row.names=FALSE)  
} 
 
#All patients with active disease 
 
datasub_csv <- subset(df_t, Control ==0) 
write.csv(datasub_csv, paste0("csv_dataframe_AD.csv"), row.names=FALSE)  
 
#All patients control 
 
datasub_csv <- subset(df_t, Control ==1) 
write.csv(datasub_csv, paste0("csv_dataframe_control.csv"), 
row.names=FALSE)  
 
 
#Read FSC File of a single FlowJo Gate and convert it into a CSV File 
 
for(k in 1:27) { 
  fcm_temp <- read.FCS(paste0("export_csv_dataframe_all_",k,".fcs" ), 
truncate_max_range = TRUE) 
  data_csv_temp <- as.data.frame(fcm_temp@exprs) 
  colnames(data_csv_temp) <- c("FSCA", 
"Viability","CD123","CD45","CD45RA","PDL1","FSCH","Time","Patient","tSNE1",
"tSNE2","FSCW","SSCA","SSCH","SSCW","CD34","CD38")  
  data_csv_temp <- data_csv_temp[c(paste0("FSCA"), paste0("FSCH"), 
paste0("FSCW"), paste0("SSCA"), paste0("SSCH"), paste0("SSCW"),"CD45", 
"CD34", "CD38", "CD45RA", "CD123", "PDL1", "Time", "Patient", "tSNE1", 
"tSNE2")] 
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  write.csv(data_csv_temp, paste0("csv_dataframe_all_gate_",k,".csv"), 
row.names=FALSE) 
} 

 
 
 
Code S2. Python script for quantitative analysis of the t-SNE plots with the Pearson coefficient 
 
import numpy as np 
import pandas as pd 
 
 
#Calculate Pearson  Coefficient 
 
def pearson_coeff(density1, density2): 
    df = pd.concat([density1[density1.columns[-1]], 
                   density2[density2.columns[-1]]], axis=1) 
    df.columns = ['d1', 'd2'] 
    pearson = df.cov().iloc[1, 0] / (df.iloc[:, 0].std() * df.iloc[:, 
1].std()) 
    return(pearson) 
 
 
#Compare common dataset AD vs common dataset control 
 
datasets = [] 
 
datasets.append(pd.read_excel("Density_matrix_AD.xlsx")) 
datasets.append(pd.read_excel("Density_matrix_CR.xlsx")) 
 
R = [] 
 
for df1 in datasets: 
    tempR = [] 
 
    for df2 in datasets: 
        tempR.append(pearson_coeff(df1, df2)) 
    R.append(tempR) 
 
R = np.array(R) 
 
 
#Compare common dataset AD / common dataset Control with single patients 
NAD / NControl 
 
dataset_AD_woN = [] 
dataset_control_woN = [] 
dataset_NAD = [] 
dataset_NAD_woPat4Pat11 = [] 
dataset_Ncontrol = [] 
dataset_control = [] 
dataset_AD = [] 
dataset_AD_woPat4_Pat11 = [] 
dataset_AD_woPat4_Pat11_woN = [] 
 
patients_AD = [1, 4, 10, 11, 12, 13, 14, 16, 17] 
patients_control = [2, 3, 5, 6, 7, 8, 9, 15, 18, 19, 20, 21] 
patients_AD_woPat4Pat11 = [1, 10, 12, 13, 14, 16, 17] 
 
#Compare common dataset AD without patient N vs single patient NAD 
 
R_AD = [] 
 
for j in range(9): 
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    dataset_AD_woN.append(pd.read_excel( 
        "Density_matrix_AD_woPat{}.xlsx".format(patients_AD[j]))) 
    dataset_NAD.append(pd.read_excel( 
        "Density_matrix_patient{}.xlsx".format(patients_AD[j]))) 
    tempR = [] 
    tempR.append(pearson_coeff(dataset_AD_woN[j], dataset_NAD[j])) 
    R_AD.append(tempR) 
 
 
R_AD = np.array(R_AD) 
 
np.savetxt('pearson_coefficient_AD.csv', R_AD, delimiter=',') 
 
 
#Compare common dataset control without patient N vs single patient 
Ncontrol  
 
R_control = [] 
 
for k in range(12): 
 
    dataset_control_woN.append(pd.read_excel( 
        "Density_matrix_CR_woPat{}.xlsx".format(patients_control[k]))) 
    dataset_Ncontrol.append(pd.read_excel( 
        "Density_matrix_patient{}.xlsx".format(patients_control[k]))) 
 
    tempR = [] 
    tempR.append(pearson_coeff(dataset_control_woN[k], 
dataset_Ncontrol[k])) 
    R_control.append(tempR) 
 
R_control = np.array(R_control) 
 
np.savetxt('pearson_coefficient_control.csv', R_control, delimiter=',') 
 
 
#Compare common dataset control vs single patient NAD 
 
R_NAD_vs_control = [] 
 
dataset_control.append( 
    pd.read_excel("Density_matrix_CR.xlsx")) 
 
for j in range(9): 
 
    tempR = [] 
    tempR.append(pearson_coeff( 
        dataset_control[0], dataset_NAD[j])) 
    R_NAD_vs_control.append(tempR) 
    
R_NAD_vs_control = np.array(R_NAD_vs_control) 
 
np.savetxt('pearson_coefficient_NAD_vs_control.csv', 
           R_NAD_vs_control, delimiter=',') 
 
 
 
#Compare common dataset AD vs single patient N Control 
 
R_Ncontrol_vs_AD = [] 
 
dataset_AD.append(pd.read_excel( 
    "Density_matrix_AD.xlsx")) 
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for i in range(12): 
 
    tempR = [] 
    tempR.append(pearson_coeff( 
        dataset_AD[0], dataset_Ncontrol[i])) 
    R_Ncontrol_vs_AD.append(tempR) 
    
 
R_Ncontrol_vs_AD = np.array(R_Ncontrol_vs_AD) 
 
np.savetxt('pearson_coefficient_Ncontrol_vs_AD.csv', 
           R_Ncontrol_vs_AD, delimiter=',') 
 
 
#Compare common dataset AD without Pat 4 and Pat 11 vs single patient 
Ncontrol 
 
R_Ncontrol_vs_AD_woPat4Pat11 = [] 
 
 
dataset_AD_woPat4_Pat11.append(pd.read_excel( 
    "Density_matrix_AD_woPat4_woPat11.xlsx")) 
 
for i in range(12): 
 
    tempR = [] 
    tempR.append(pearson_coeff( 
        dataset_AD_woPat4_Pat11[0], dataset_Ncontrol[i])) 
    R_Ncontrol_vs_AD_woPat4Pat11.append(tempR) 
    
R_Ncontrol_vs_AD_woPat4Pat11 = np.array(R_Ncontrol_vs_AD_woPat4Pat11) 
 
np.savetxt('pearson_coefficient_Ncontrol_vs_AD_woPat4Pat11.csv', 
           R_Ncontrol_vs_AD_woPat4Pat11, delimiter=',') 
 
 
#Compare common dataset AD without patient 4 and 11 vs single patient NAD 
 
R_NAD_vs_AD_woPat4Pat11 = [] 
 
 
for l in range(7): 
     
    dataset_AD_woPat4_Pat11_woN.append(pd.read_excel(     
"Density_matrix_AD_woPat4_woPat11_woPat{}.xlsx".format(patients_AD_woPat4Pa
t11[l]))) 
    dataset_NAD_woPat4Pat11.append(pd.read_excel(       
"Density_matrix_patient{}.xlsx".format(patients_AD_woPat4Pat11[l]))) 
    tempR = [] 
    tempR.append(pearson_coeff( 
        dataset_AD_woPat4_Pat11_woN[l], dataset_NAD_woPat4Pat11[l])) 
    R_NAD_vs_AD_woPat4Pat11.append(tempR) 
    
R_NAD_vs_AD_woPat4Pat11 = np.array(R_NAD_vs_AD_woPat4Pat11) 
 
np.savetxt('pearson_coefficient_NAD_vs_AD_woPat4Pat11.csv', 
          R_NAD_vs_AD_woPat4Pat11, delimiter=',') 



3. AI ASSISTED ANALYSIS OF MULTIPARAMETER FLOW CYTOMETRY DATA

3.2 Paper II
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Uptake of carbon nanodots into human AML cells in
comparison to primary hematopoietic cells†

Cathrin Nollmann,a Christian Wimmenauer,a Stefan Fasbender, a Saskia Mayer,b

Ron-Patrick Caddedu,b Paul Jäger,b Thomas Heinzel *a and Rainer Haas*b

Carbon nanodots (CNDs) comprise a class of next generation nanomaterials with a wide variety of potential

applications. Here, we report on their uptake into primary hematopoietic cells from three normal donors

and malignant cells from five patients with de novo acute myeloid leukemia (AML). A significant CND

uptake was observed in all cell types of the normal and leukemic cells. Still, the uptake was significantly

smaller for the CD34+ and CD33+ myeloid subsets of the malignant cell population as compared to the

normal blood-derived CD34+ and CD33+ cells. For the T and B lymphoid cell populations as defined by

CD3 and CD19 within the leukemic and normal samples a similar uptake was observed. The CNDs

accumulate preferentially in small clusters in the periphery of the nucleus as already shown in previous

studies for CD34+ progenitor/stem cells and human breast cancer cells. This particular subcellular

localization could be useful for targeting the lysosomal compartment, which plays a pivotal role in the

context of autophagy associated survival of AML cells. Our results demonstrate the usability of CNDs

beyond their application for in vitro and in vivo fluorescence labeling or drug delivery into normal and

malignant cells.

1. Introduction

Carbon nanodots, the family of carbon based, nanometer-sized
particles which includes graphene quantum dots as well as
small graphitic crystallites, have a large surface to volume ratio
and excellent biocompatibility,1,2 and studying new ways for
their production is still an active eld of research.3–6 Since they
also show uorescence with advantageous properties in an
aqueous environment, CNDs have been widely used in
biomedical studies,3,7–9 although the origin of the uorescence
is still under debate.10–13 As far as living cells are concerned,
CNDs enter the cytoplasm of many human cell lines as well as of
primary human blood cells, without signicant effects on the
cell viability.14–19 As for other nanoparticles, CNDs have been
used in studies for cancer diagnosis or drug delivery.20–26 In this
context, the question arises whether the uptake of CNDs by
malignant primary cells differs from that observed for healthy
cells.

We therefore investigated the uptake of CNDs into leukemic
cells that were freshly obtained from patients with de novo acute
myeloid leukemia. In the majority of patients with this kind of
leukemia, the pathological blasts resemble their normal

counterparts to some extent, in particular with respect to the
expression of particular lineage- and differentiation associated
surface molecules. Between those, CD34 and CD33 are prom-
inent representatives reecting an early stemness phenotype
and myeloid differentiation, respectively. Our focus was on the
aspect whether there is a differential uptake between primary
human blood cells and leukemic cells, which could be of
translational relevance.

2. Experimental section
2.1 Patients according to AML classication

The AML can be divided into different subtypes. The most
commonly used classication schemes are the French–Amer-
ican–British (FAB)27 and the World Health Organization
(WHO)28 system. The FAB classication is based on cytomor-
phological and cytochemical criteria, while the more recent
WHO classication combines the FAB classication with
immunological, cyto-as well as molecular genetic alterations.
Table 1 lists the WHO and FAB classications of the AML
samples used in our study, as well as the percentage of blasts in
the bone marrow and peripheral blood. The AML samples fall
into different FAB categories permitting to some extent
a subtype related assessment of the uptake.

2.2 Materials

Citric acid (ACS reagent, $99.5%), Diethylentriamine (DETA,
99%), Dulbecco's Phosphate Buffered Saline (DPBS), Lysis
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Buffer, Float-A-Lyzer dialysis devices (100–500 Da). Antibodies
against CD45-PE-Cy7, CD34-PerCP-Cy5.5, CD33-PE, CD19-APC-
R700 and CD3-APC-H7 were purchased from BD biosciences.
Stem SPAN™ SFEM medium was bought at STEMCELL™
Technologies and microwave reaction vessels were obtained
from CEM GmbH. NucBlue™ Live ReadyProbes™ Reagent
(Invitrogen™), Poly-L-Lysine coated 8 well m-slide was obtained
from Ibidi.

2.3 Preparation and characterization of CNDs

The CNDs were prepared and characterized exactly as described
in detail elsewhere.18 In brief, uorescent CNDs were synthe-
sized according to the method of Qu et al.29 with slight modi-
cations. 210 mg citric acid and 340 mg Diethylentriamine
(DETA) were mixed and heated to 180 �C for 150 s in a closed
microwave reaction chamber (CEM Discover). The resulting
viscous liquid was dissolved in 10 ml DI water. Citric acid, DETA
and very small particles were removed by dialysis for 72 h, using
a 100–500 Da membrane, with two water exchanges every 24 h.
Aerwards, the CND solution was freeze-dried and dissolved for
further use. The CNDs were characterized by scanning probe
microscopy, transmission electron microscopy as well as by
Raman- and XPS spectroscopy. These measurements indicate
that the CNDs are composed of the mass fractions 40% C, 33%
O, 19% N and 8% H. About 30% of the carbon bonds are C–C
bonds, and the Raman spectra reveal their mixture of sp2 with
sp3 hybridization. The average size of the CNDs was (3.3 �
0.6) nm. Some particles showed a hexagonal crystal symmetry in
the TEM with a lattice constant of approximately 220 pm, which
is 10% smaller than that one of free-standing graphene. Hence,
we conclude that the CNDs are particles with mixed crystal
structures of graphene-, graphite- and possible diamond-type
sections. Their photoluminescence properties are most rele-
vant for the present study. They were measured using a Horiba
FluoroMax®-4 spectrouorometer, while the absorbance
spectra were taken with an Agilent Cary 4000 spectrophotom-
eter. The absorbance shows a peak around 360 nm wavelength
of approximately 80 nm linewidth (full width at half maximum-
FWHM). To avoid UV exposure of the cells, we excited the CNDs
with light of l ¼ 400 nm, yielding a uorescence spectrum
centered at l ¼ 460 nm (FWHMz 100 nm), which ts well into
the V450 channel of the ow cytometer (see below), which we
used for their detection. The quantum yield of the CNDs was
23%.20 Since our particles do not show a uorescence wave-
length that differs from the values expected for size quantiza-
tion and furthermore contain structural elements, like sp3

hybridizations, that should be absent in graphene, we refer to

them as carbon nanodots. These nanoparticles are selected for
the present study for several reasons. First of all, it has been
shown earlier that they have a small toxicity and almost no
inuence on the gene expression of the exposed cells.19 Second,
they have a small mass and are thus expected to exert only
a marginal inuence on the dynamics of attached macromole-
cules of interest. Finally, they are relatively simple to prepare,
show a competitive quantum yield and have a long shelf life of
several months.

2.4 Collection of leukapheresis derived blood samples from
normal donors

Primary hematopoietic cells were obtained from leukapheresis
products (LP) of three healthy individuals who served as HLA-
identical donors for an allogeneic blood stem cell trans-
plantation using the granulocyte colony stimulating factor (G-
CSF) at a dose of 480 mg per day over a period of ve days.
This increases the number of circulating human progenitor and
stem cells (HSCs) – as characterised by the expression of CD34
on the cell surface – in the peripheral blood. This kind of LP
samples are furthermore enriched with mononuclear blood
cells (MNCs) including T and B cells, monocytes and CD34+

HSCs.30–32 The samples also contain a signicant percentage of
granulocytes which are activated due to the exposure to G-CSF
for ve days.33

2.5 Cell preparation

Blood samples from LPs of three healthy donors and AML
samples from ve patients de novo AML were used for the in
vitro studies. In order to remove the erythrocytes, the samples
from the donors and from the patients were lysed with 50 ml
ammonium chloride, once and twice, respectively. For all
samples, the remaining leukocytes were resuspended in 50 ml
PBS and centrifuged for 5 min at 300 g. Cell pellets were
resuspended in 2 ml PBS. 3 ml per well of StemSpan™ Serum-
Free Expansion Medium (SFEM) were dispended in six well
plates and appropriate amounts of cell suspension were added,
resulting in a nal concentration of 2 � 106 cells per ml.

2.6 Cultivation of the cells for CND uptake studies

CNDs were dissolved in PBS at concentrations of 20 mg ml�1.
The obtained solutions were sterile ltered. 75 ml of CND
solution, corresponding to a concentration of 500 mg ml�1, was
added to the cell culture. The same amount of PBS without
CNDs was added to the wells serving as negative control. The
cells were cultivated in a Heracell™ 150i incubator in

Table 1 WHO and FAB classifications of the five AML samples and the percentage of blasts in bone marrow (BM) and peripheral blood (PB)

Sample WHO classication FAB classication Percentage of blasts

AML 1 AML with MDS-associated modications AML M0 PB: 39% BM: 32%
AML 2 AML with MDS-associated modications AML M2 PB: 65% BM: 69%
AML 3 Acute leukemia, assignment unclear AML M4/5 PB: 10% BM: 40%
AML 4 AML without further cytometric or molecular genetic specication AML M2 PB: 1% BM: 57%
AML 5 AML without further cytometric or molecular genetic specication AML M1 PB: 77% BM: 85%

26304 | RSC Adv., 2021, 11, 26303–26310 © 2021 The Author(s). Published by the Royal Society of Chemistry
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a humidied atmosphere at 5% CO2 and 37 �C. Aer 24 h, all
samples were washed twice with PBS (centrifugation for 5
minutes at 300 g) and stained with antibodies as described in
detail below.

2.7 Flow cytometry workow

To study the differential uptake of CNDs in the various
subpopulations of primary human blood cells and leukemic
cells, monoclonal antibodies directed against lineage and
differentiation specic antigens, i.e., CD45-PE-Cy7, CD34-
PerCP-Cy5.5, CD33-PE, CD19-APC-R700 and CD3-APC-H7 were
used. The cells were incubated for 15 minutes in the dark with 2
ml diluted CD45 (1 : 10 with PBS), 2.5 ml CD34, 2.5 ml CD33, 1 ml
CD19 and 1 ml CD3 per sample. Aerwards, they were washed
with 2 ml PBS (centrifugation for 5 minutes at 300 g) and xed
with 200 ml 0.5% formaldehyde. To exclude results that do not
originate from viable cells (e.g., cell fragments or clumps), a gate
was set in a forward vs. side scatter plot (FSC vs. SSC, see Fig. S1†
in the ESI for examples). The FSC strength allows the discrim-
ination of the cells by their size, while the SSC signal distin-
guishes the cell types by their granularity. Our gating strategy is
exemplied for one AML sample and one donor sample each in
Fig. 1. For an overall characterization of the sample composi-
tion, all viable cells from each sample are represented in a CD45
vs. SSC scatter plot (Fig. 1A and F). This also allows us to set
blast gates for the AML samples later on.34–36 Aerwards, the
CD33+ cells were gated out in a CD33 vs. CD45 plot, see Fig. 1B
and G. Since the AML samples were extracted from the bone
marrow (BM), the CD33+ gate of the AML samples contains both
myeloid progenitor cells and malignant blasts. The donor
samples, on the other hand, are collected from the peripheral
blood (PB), and hence the CD33+ cells are mainly monocytes,
mixed with some basophils (a subtype of granulocytes). In the
next step, the stem and progenitor cells (CD45+/CD34+) were
selected with a CD34 vs. CD45 plot as shown in Fig. 1C and H,
respectively. The CD34+ cells of the AML samples include the
malignant blasts. Even though some of the CD33+ cells of the
donor samples have a high uorescence intensity in the CD34
PerCp-Cy5.5 channel, they were not included in the CD34+ gate
since CD34+/CD33+ cells are absent in the peripheral blood. To
distinguish between the lymphocyte subpopulations, CD3+/
CD19� cells (T cells) as well as CD19+/CD3� cells (B cells) were
gated out in a CD45 vs. CD3 respectively CD45 vs. CD19 plot. In
order to distinguish between the different types of blasts,
further gates were set which are detailed in Section 2.7.

FACS analysis was performed using a BD FACSLyric™ ow
cytometer. It is equipped with a 488 nm and a 640 nm laser to
measure the uorescence intensities in the PE, PerCP-Cy5.5, PE-
Cy7, APC-R700 and APC-H7 channels and a laser with an exci-
tation wavelength of 405 nm, allowing the measurement of the
CND induced uorescence in the V450 channel. For each
sample, at least 50 000 events were recorded. The analysis was
carried out using the BD FACSuite™ soware.

The ratio of the mean V450 uorescence intensity measured
for the samples with CNDs to that one in the control samples
was calculated, resulting in the uptake factor as the parameter,

which quanties the cellular uptake of CNDs for each specic
subpopulation. We thereby postulate that the CND uorescence
intensity represents a suitable parameter reecting the local
particle number. This implies that the intensity is not

Fig. 1 Gating strategy of the AML samples in the left column and of the
donor samples in the right column: scatter plots of the viable cells of
AML 2 (A) and donor 3 (F) which are further differentiated using CD
markers. Gating of the myeloid progenitor cells and CD33+ malignant
blasts (B) and the monocytes (G). (C) CD34+ blasts respectively stem
and progenitor cells gate (H). Differentiation between CD3�/CD19+ B
cells and CD19�/CD3+ T cells of AML 2 (D and E) and of donor 3 (I and
J).
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concentration-or pH-dependent. Concentration-dependent
studies have shown that for the CND concentrations used
here, the uorescence intensity is linear as a function of the
concentrations, while a signicant pH dependence is observed
only for unphysiologically low of high pH values (not shown).

2.8 Confocal uorescence microscopy

The AML cell line HL-60 (passage number 18) was selected for
the microscopy experiments. The cells were incubated in
appropriate nutrition medium with a concentration of 500 mg
ml�1 CNDs at 37 �C and 5% CO2 for 48 h in a Poly-L-Lysine
coated 8 well m-slide, the nuclei were stained using NucBlue™
Live ReadyProbes™ Reagent (Invitrogen™) and the nutrition
medium was exchanged for fresh medium without CNDs. The
cells were imaged using a Zeiss LSM 710 confocal microscope
evaluating the Hoechst 33342 channel (excitation 405 nm,
emission 410–495 nm), the CND channel (excitation 488 nm,
emission 495–530 nm) in framewise acquisition mode. A 63�
oil objective with NA 1.40 was used.

2.9 t-SNE representation of the ensembles

Visualization of the multi-labelled cell ensembles in two
dimensions by t-distributed stochastic neighbour embedding
(t-SNE) has been carried out.37,38 The FlowJo™ soware has
been used for this purpose. The perplexity was set to 30 and the
number of iterations to 1000, respectively. The learning rate was
automatically adjusted for every sample by FlowJo™ soware.
In our t-SNE plots, the cell subtypes appear in clusters, while
a colour scale represents the CND uorescence intensity. In
order to attribute partially overlapping clusters to the corre-
sponding cell types in the AML ensembles, overlays with the
gated CD33+, CD34+, CD19+ and CD3+ populations are created,
and the thereby identied populations are framed in the t-SNE
plots accordingly.

2.10 Ethical statement

All experiments were performed in compliance with the relevant
laws and institutional guidelines and have been approved by the
ethical committee of the Heinrich Heine University (Study-no.:
2018-50_1). All donors had given their informed consent
according to the guidelines of the ethical committee specied
above.

3. Results and discussion
3.1 Subset analysis of AML samples

To investigate the CND uptake by the blasts depending on their
maturity level, four categories were dened based on the
expression level of CD33 and CD34. Undifferentiated blasts
almost only express CD34 antigens on their surface, while CD33
gradually emerges at a later stage of maturation when CD34 is
vanishing. To investigate the inuence of the maturity level on
the CND uptake, the blasts were gated within a CD45 vs. SSC
plot for every AML sample (Fig. 2A and B). Aerwards, the blasts
were classied according to the expression of CD33 and CD34 in

four subsets depending on whether they were positive or
negative for the respective antigen.

The resulting distribution varied signicantly between the
different AML samples (Fig. 2C). While the CD33+/CD34�,
CD34+/CD33� or CD33+/CD34+ blasts are nearly equally
distributed in AML 2, AML 4 and AML 5, CD34+/CD33� blasts
predominated in AML 1 and CD33+/CD34� blasts in AML 3,
reecting the degree of relative maturity of the blasts within
their pathological boundaries. The results correspond to some
degree with the classications of the AMLs (Table 1). AML 1 was
classied as M0, i.e., a predominantly undifferentiated acute
myeloblastic leukemia (CD34+/CD33�), whereas AML 2 and 4
belong to theM2 class (AML withmaturation). AML 5 belongs to
M1, an acute myeloblastic leukemia with some maturation, as
indicated by the increase of the CD33+/CD34+ and CD33+/CD34�

blasts. Finally, in AML 3, the CD33+/CD34� blasts were domi-
nant reecting the M4/M5 classication (acute
myelomonocytic/monocytic leukemia).

Fig. 2 AML samples characteristics: gating of the different blasts
subsets, firstly all blasts were gated out in a CD45 vs. SSC plot (A).
Secondly four categories were defined: CD33+/CD34� blasts, CD34+/
CD33� blasts, blasts that were positive for both antibodies (CD33+/
CD34+) and those that were not positive for either antibody (CD33�/
CD34�) (B). (C) Distributions of the four blasts categories are shown for
the five AML samples.
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3.2 Cellular uptake of CNDs

We proceed by examining whether there is a differential uptake
between primary human blood cells and the leukemic cells
collected from the bone marrow, as well as between different
subpopulations of the samples. In order to quantify and
compare the uptake, we dened the uptake factor as the ratio of
the mean uorescence signal aer CND exposure to that one of
the negative control.

First, healthy and leukemic cells show an uptake of CNDs,
reected by a signicant increase in signal intensity in the cells
cultivated in the presence of CNDs as compared to the controls.
The mean uorescence signal in the V450 channel is increased
by at least a factor of four. Representative examples are given in
Fig. 3 for AML 2 (C) and for donor 3 (D). In more detail, the
uptake factor for the CD34+ cells (HSCs) from the donor
samples is 1.7 – fold greater as compared to that one of the AML
samples. The uptake factors of the CD33+ populations differ
even more between AML and donor samples, as the mean
uptake factor for the donor samples is increased by 3.2. These
ndings indicate that the leukemic cells CD33+ and CD34+

leukemic cells have an apparently reduced ability to take up
small compounds such as CNDs from the extracellular space.

Next, we have studied whether one of the four blast
subpopulations (as obtained from the gating protocol shown in
Fig. 2) shows a selective uptake behaviour. The resulting uptake

factors do not show any differences between the various blast
categories (see Fig. S2† of the ESI). This nding indicates that
the degree of differentiation of the blasts is not related to the
uptake capability of the CNDs, suggesting that a subset specic
targeting of blasts without further modications of the CNDs is
not feasible.

Having a closer look on the intensity histogram of the CD33+

population (Fig. 3(B) and (C)) it becomes apparent that the
intensity of the donor CD33+ cells show two peaks, one around 2
� 103 counts and a second one around 104 counts. This split
was not found in the negative control, which represents the
autouorescence. Hence, the splitting indicates that two
different CD33+ cell types are present which differ with regard to
their CND uptake behaviour, which can be related to CD33+

monocytes only present in the LP products of the normal
donors. This cell type is a prototype for a phagocytic cell
implying that the CNDs are engulfed by vesicles related to the
endolysosomal pathway, as suggested in earlier work.19 On the
other hand, the rst peak is probably related to a small
proportion of CD33+ progenitor cells contained within the
population of mobilized CD34+ cells (see Fig. S3† in the ESI).

For the CD19+ and CD3+ populations, there was no signi-
cant difference between the uptake factors of AML and donor
samples. Still, for both, AML as well as donor samples, the
uptake factor for the CD19+ subpopulation is signicantly

Fig. 3 (A) The sample-averaged uptake factors as determined for the four cell types and the corresponding statistical properties. The black
squares denote the uptake factors of the individual samples, the horizontal bars are the median values and the unfilled squares are the mean
values. The error bars indicate the standard deviation, and the lower and upper edge correspond to the first and the third quartile of the data.
Please note that the CD34+ population from the AML samples contains the CD34+/CD33+ and the CD34+/CD33� cells. Likewise, the CD33+

population is composed of the CD34+/CD33+ and the CD34�/CD33+ cells. Examples of the CND uptake by an AML (AML 2, (B)) and a healthy
donor (donor 3, (C)) sample, as observed in the populations characterized by four CD antibodies. The intensity histograms are all normalized to
a maximum value of 1 for better comparability. The t-SNE plots for the AML 2 and donor 3 samples are shown in (D) and (E), respectively as
examples. Here, the colour scale quantifies the fluorescence intensity in the V450 A channel. The identified CD populations (CD33+, CD34+,
CD19+ and CD3+) have been framed manually.

© 2021 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2021, 11, 26303–26310 | 26307
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greater in comparison to the CD3+ cells. For the AML and the
normal donor samples, the mean uptake factors of the CD19+

cells are about 1.38 and 1.76 times greater, respectively. A
smaller uptake avidity of CD3+ T and T helper cells compared to
CD19+ B cells from healthy donors was already observed in our
previous study.19 The difference between these two types of
lymphoid cells may relate to the phagocytic ability of activated B
cells.39

The t-SNE plots (Fig. 3(D) (for AML 2) and (E) (for donor 3))
permit a very informative illustration of our ndings, as the
uorescence intensity of the CND signal in the V450 channel is
color-coded. With regard to the AML samples, the relatively
homogeneous intensity of colour across all subpopulations
represents the similar uptake behaviour of the various cell types
with a strong overlap of the CD33+ and the CD34+ cells. In
contrast, the populations of the healthy samples are distin-
guishable in the t-SNE map, each of them characterized by
a particular colour-coded uptake activity, which corresponds to
the distinct peaks shown in Fig. 3C.

3.3 Subcellular distribution of CNDs in AML cells

In order to compare the intracellular distribution of the CNDs
in AML cells, confocal microscopy images of HL-60 cells (cor-
responding to AML FAB M2 cells) were taken aer 48 h of
incubation with CNDs (Fig. 4). The CNDs accumulate prefer-
entially in small clusters in the periphery of the nucleus. Based
on the results of previous studies in HSCs and human breast
cancer cells using a counterstaining method these clusters
could be localized to lysosomes.19,40 It is therefore conceivable
that the CNDs following ingestion into the leukemic blasts are
stored in the lysosomes, suggesting that the endolysosomal

pathway is also effective in AML cells. In the light of this nding
the results of Folkerts et al. are interesting and of potential
therapeutic relevance.41 They could show decreased survival
upon HCQ 20 mM hydroxychloroquine (HCQ) treatment for
leukemic cell lines as well as primary sorted AML CD34+ cells (n
¼ 36) compared to normal bone marrow CD34+ cells (N ¼ 6;
NBM CD34+: 41.7% � 7.1 vs. AML CD34+: 21.3% � 3.2, p ¼
<0.05).

Microscopy images of the control samples are contained
within in the ESI (see Fig. S4† and S5 in the ESI).

4. Conclusions

We compared the cellular uptake of small graphene quantum
dots into normal blood cells with that into primary leukemic
cells from patients with AML. Based on the intensity of the
CNDs related autouorescence recorded following a 24 h
exposure time in an in vitro culture, a signicantly smaller
uptake was noted into leukemic cells compared to normal
cells. This was true for both, the CD34+ as well as CD33+

subset. With regard to the uptake into lymphoid cells,
a similar degree of uptake was observed for normal and
leukemic cells, while a signicant difference was only found
between CD19+ B cells and CD3+ T cells irrespective of the
sample source. This decreased differential uptake by the
malignant cells studied here in comparison to their healthy
counterparts forms a challenge for a selective addressing of
those cells to which, e.g., a drug should be delivered. Suitable
drug delivery systems based on our CNDs therefore may
require some functionalization which increases the uptake by
the target cells, like antigens or sugars, for example by pref-
erential binding to the target cells. Alternatively, one might

Fig. 4 Microscopy image of HL-60 cells taken 48 h after incubation with 500 mg ml�1 CNDs taken with a Zeiss LSM 710 confocal microscope
(63� oil, NA 1.40). The nucleus was stained with Hoechst 33342, which was exited with a 405 nmUV diode laser and emission light was detected
between 410 nm and 495 nm (cyan). The CNDs were exited with a 488 nm line from a multiline argon laser and the fluorescence was detected
between 495 nm and 530 nm (yellow). The images have been acquired framewise. Image (A) displays only the fluorescence channels, while an
overlay of the transmitted light from the CND channel and the fluorescence channels is shown in (B). Images of the control samples, taken with
the same imaging parameters, are shown in the ESI.†
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imagine selective inhibitor schemes where the CNDs protect
the healthy cells from the impact of a drug. These issues are,
however, beyond our scope here and will be the topic of future
studies. It should be noted in this context that the reduced
uptake of quantum dots in the malignant cell type studied
here cannot be generalized to malignant cells of other organs,
such as solid tumors of the breast or lung. The latter ones are
epithelial in nature by their germline affiliation and thus may
well differ with regard to their uptake properties from
leukemia cells of mesenchymal origin.

Following their uptake, the CNDs reside in close proximity to
endosomal–lysosomal machinery, which is involved in the
uptake of extracellular particles via endocytosis. This subcel-
lular location could be useful for therapeutic targeting involving
the lysosomal compartment, which plays a pivotal role in the
context of autophagy.41 Watson and colleagues demonstrated
the dual function of autophagy for the balance between cell
death and cell survival.42 They found that the complete blockade
of autophagy induced the death of leukemic cells, while
a reduction of this pathway increased their proliferation, which
was associated with a signicantly reduced latency of the
disease. The dual role of autophagy for cancer progression and
resistance is complex and therefore challenging when a targeted
therapy is envisaged. Therefore, one direction of further work
may be geared towards methods mediating a more specic
leukemic uptake to assess functional effects on autophagy
related processes in a dose-dependent manner.

List of abbreviations

AML Acute myeloid leukemia
t-SNE t-Distributed stochastic neighbour embedding
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sample CD33+ CD34+ CD19+ CD3+ 
AML 1 7,96% 14,40% 0,25% 0,84%                                       
AML 2 77,01% 72,55% 0,55% 4,87% 
AML 3 88,16% 3,82% 1,69% 6,33% 
AML 4 42,11% 35,50% 1,11% 31,30% 
AML 5 84,82% 77,05% 0,08% 1,21%  

    
donor 1 33,14% 1,89% 2,48% 43,87% 
donor 2 43,94% 3,56% 8,75% 36,93% 
donor 3 24,15% 2,13% 4,64% 47,12% 

Fig. S1: Examples of FSC vs. SSC plots by which the cell population was selected via 
suitable gates. Shown are AML 2 in (A) and donor 3 in (B). The colours represent the 
rear projections of further gates that have been set, namely CD33+ (pink), CD34+ 
(blue), CD19+ (green), CD3+ (red), CD33+/CD34+ (purple) and CD33-/CD34- (orange).  

Tab. S1: Percentage distribution of the CD33+, CD34+, CD19+ and CD3+ populations 
for all samples. 
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Fig. S3: CD45 vs. V450 plot, shown exemplarily for AML 1 (A) and donor 3 (B). The 
colours are rear projections of other set gates CD33+ (pink), CD34+ (blue), CD19+ 
(green), CD3+ (red), CD34+/CD33- (light blue) and CD33-/CD34- (orange). 

Fig. S4: Control samples (HL-60 cells) without CNDs. The nuclei are stained with 
Hoechst 33342. 

Fig. S5: Control sample of CND-exposed HL-60 cells with the nuclei unstained. The 
CNDs show fluorescence in the blue (a) and in the yellow (B) channel. 

Fig. S2: Uptake factors for all blasts and four subsets which were defined by means of 
the CD34 and CD33 markers. 



4. Further experiments on the up-
take of CNDs

As an additional parameter in the AI-assisted evaluation of flow cytometry data from
healthy donors compared to AML patients, the uptake of CNDs was investigated in Paper
II. This investigation revealed differences in the uptake between diseased and healthy
individuals. This observation gave rise to the question of whether a more selective uptake
could be achieved by functionalizing the CNDs, which was investigated in Paper III by
glycofunctionalizing the CNDs with various sugar monomers and glycooligomers. No
differential uptake could be observed between the different cell types, whereas the various
nanoparticle conjugates showed different uptake rates between the investigated cell lines.
The investigations in Paper II also showed that the CNDs accumulate primarily in the
lysosomes. This led to the question of which influence the CNDs have on the lysosomes and
the associated process of autophagy and whether it is possible to deliver drugs specifically
to the lysosomes using the CNDs as carriers. This question was investigated in Paper IV,
where the influence of pristine CNDs and CNDs modified with bPEI was examined. The
bPEI was coupled to the CNDs as an example of a drug. It was shown that the CNDs are
inert as carriers and have no significant influence on lysosomal processes and autophagy
characterized by cathepsins B and L, the autophagic markers SQSTM1/p62 and LC3,
and proteome analysis. The bPEI was successfully transported into the lysosomes by the
CNDs and led to an increased accumulation of bPEI-CNDs in the lysosomes compared to
bPEI or CNDs alone.
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4. FURTHER EXPERIMENTS ON THE UPTAKE OF CNDS
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Carbon nanoparticles are coupled covalently to various monosaccharides as well as glycooligomers 
and studied for their interaction with different tumor cell lines overexpressing carbohydrate-
recognizing lectin receptors. Monosaccharide-conjugated carbon nanoparticles show an enhanced 
uptake rate as compared to both pristine as well as glycooligomer-coated particles. However, 
coating with mannose, galactose, N-acetylglucosamine or glycooligomers derived thereof does not 
influence the intracellular distribution of the nanoparticles showing that they are preferably stored 
in the endolysosomal pathway. 

 

Functionalized nanoparticles and their application in biomedical research have developed into a 
mature scientific field over the last two decades.1-3 Multicolor fluorescence spectroscopy based on 
quantum dots is used routinely within various diagnostic medical protocols.4-6 Carbon nanoparticles 
(CNPs) are a promising complement to conventional semiconducting quantum dots in these respects, 
due to their low mass, intrinsic water solubility, easy functionalization and low toxicity.7,8  They have 
been used as intracellular pH meter,9 selectivity enhancers during cisplatin10 or doxorubicin11 uptake, 
or in confocal fluorescence microscopy12-14, to name just a few examples. One important advancement 
in the development of nanomaterials for biomedical applications is their selectivity, e.g., for cancer vs. 
healthy cells.15,17 Such selectivity can enable more efficient drug delivery and thus reduced side effects 
in anti-cancer therapy.18-20 Interactions between carbohydrates and lectins as receptors have been 
shown to allow for such selectivity and have been successfully applied to derive various 
glycofunctionalized nanomaterials for use in biomedicine.21-22 Examples of glycofunctionalization for 
cell specific targeting include galactose (Gal) ligands addressing the asialoglycoprotein receptor, sialic 
acid (Neu5Ac) ligands targeting Siglecs,23 and hyaluronic acid (HA) functionalization for binding to CD44 
receptors,24; each receptor is overexpressed in a specific cell type. Another carbohydrate recognizing 
C-type lectin receptor (CLR) with relevance for targeting cancer cells is the Mannose Receptor (MR). 
MR recognizes mannose (man) , fucose (fuc) and N-acetylglucosamine (GlcNAc) in a calcium-
dependent manner.25,26 Different types of cancer cells are known to overexpress MR,27 and it has been 
shown that by targeting the MR e.g., through binding with its carbohydrate ligands, cancer cells can be 
distinguished from healthy cells.28 In this study we aim to combine the advantages of CNPs and 
glycofunctionalization, with a special focus on targeting MR overexpressing cancer cells, and 
investigate the cellular uptake of glyco-CNPs in dependence of the type of glycofunctionalization using 
used and comparing different monosaccharides as well as glycooligomers.  
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Figure 1: A) Synthesis of glyco-CNPs: SPPoS of Oligo-TriMan functionalization of CNPs via activation the 
carboxyl groups by EDC/NHS. B) Library of synthesized glyco-CNPs including the extension of carboxyl 
group of CNPs through succinic anhydride to gain higher level of functionalization degree (AcCNPs) and 
their glyco-conjugated derivatives. C) Functionalization degrees of glyco-CNPs.

Here, we present the preparation and characterization of the glyco-CNPs (Figure 1A), followed by 
uptake studies using three ubiquitous cell lines, which were exposed to a set of CNPs coupled to 
different monosaccharides as well as glycooligomers. We opted to use CNPs prepared by microwave 
assisted pyrolysis from citric acid and diethylenetriamine as described in detail the ESI, leading to free 
acid- and primary amine groups at the surface of the CNPs. A second fraction of the particles was first 
coupled to succinic anhydride (AcCNPs) thereby reacting with amine groups also present on the CNP 
surface and increase the degree of carboxylic groups, which are required for conjugation of the 
carbohydrate derivates and glycooligomers. (Figure 1B) In addition to acceptable fluorescence 
properties, these CNPs are very small with diameters of roughly 3 nm, and extremely stable. 
Furthermore, they are known to have only a marginal toxicity, even on the gene expression level.29 For 
glycofunctionalization, a set of monosaccharides were used: Man and GlcNAc as known MR ligands, 
and Gal as a negative control.

Additionally, glycooligomers presenting multiple copies of Man or Gal were synthesized and applied 
for the functionalization of the CNPs. Cancer cells such as MDA-MB-231 breast cancer can be targeted 
by receptor-mediated endocytosis through overexpressed MR. 30,31 The multivalent presentation of 
Man is expected to increase binding and thus cell uptake, through the statistical possibility of a Man 
molecule encountering a CRD, resulting in binding enhancement.32 Thus, glycooligomers were 
synthesized by previously established solid-phase polymer synthesis (SPPoS, see ESI).33,34 In brief, 
stepwise conjugation of tailor-made building blocks using standard Fmoc-peptide coupling protocols 
on resin provided access to sequence-defined oligo(amidoamines) with alkyne side chains, which were 
used for further conjugation of carbohydrate-azide derivatives via a copper-mediated click reaction 
(CuAAc).35 Glycooligomers used for subsequent conjugation to NPs carry a long hydrophilic chain and 
three terminal Man ligands. For later use as negative control, glycooligomers presenting Gal were 
synthesized accordingly.
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Figure 2: 1H NMR spectra of pristine and functionalized CNPs. Hydroquinone was used as internal 
standard (blue frame). Green frame: anomeric proton signal of Man/Gal. Grey frame: signal from the 
protons of the triazole ring of the glycooligomers. The EDC signal is framed in red.

Conjugation of both, monosaccharides and glycooligomers to the CNPs were achieved by activation of 
carboxylic groups on the CNPs via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-
hydroxysuccinimide (NHS) followed by subsequent reaction with free amine groups either from amino-
functionalized monosaccharides (see ESI for synthesis and analytical data of the amino sugars) or on 
the C-terminal position of the oligomer. The hydrophilic chain of the glycooligomer provides flexibility 
and may potentially increase the accessibility of the carbohydrate ligands in binding to cell surface 
receptors (see the ESI for further details on the synthesis and analytical data of the products). 

The degree of functionalization of the glycol-CNPs was studied by 1H NMR, see Figure 2. Hydroquinone 
was used as an internal standard and compared to either the anomeric protons of the sugar (green 
frame) or the protons of the triazole ring of the glycooligomers (grey frame), which provided the overall 
sugar concentration. Successful glycofunctionalization was demonstrated for both AcCNPs and CNPs, 
but with different degrees of functionalization. While the AcCNPs have a larger number of acid groups 
indicating a higher degree of functionalization, they have a lower sugar concentration as compared to 
the glycofunctionalized CNP system, see Figure 1 C. We attribute this to steric effects, since succinic 
anhydride functionalization limits the accessibility of the acid groups. In the CNP system, on the other 
hand, the acid groups have more space on the CNP surface, which results in better accessibility for 
glycofunctionalization. Additionally, the CNP system was used for functionalization with 
glycooligomers, confirming and quantifying the degree of functionalization via NMR (see Figure 2). In 
the NMR spectra, we also identified an EDC contamination (red frame in Figure 2) for the 
monosaccharide functionalized CNPs. Since we were unable to remove this contamination with 
extensive washing protocols, this is likely either covalently attached to the surface of the CNPs or 
located in between the carbohydrates through ionic interactions. Since the EDC remained present also 
after dialysis against high ionic buffer (PBS), covalent binding strikes us as more plausible. This 
contamination is not seen in the CNPs functionalized with glyco-oligomers, which could be because 
the flexible chain covers a larger surface area on the CNPs, thus preventing EDC binding to the surface. 
Diffusion ordered spectroscopy (DOSY) measurements were performed to evaluate the change of the 
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Figure 3: (a) CNP uptake as determined from flow cytometry measurements. Confocal microscopy on 
MDA-MB-231 cells after uptake of pristine (b) and mannose-conjugated (c), CNPs. The size of the scale 
bars is 5 µm. 

hydrodynamic radii before and after the functionalization. All diffusion coefficients lie in the range [4 
– 6] x 10-10 m2 s-1,corresponding to hydrodynamic radii around 0.4 nm, almost independent of the 
functionalization (see Table 1 in the ESI). Fluorescence spectroscopy reveals that all functionalized 
CNPs show a weak but noticeable redshift of the fluorescence maximum, while the shape of the 
spectrum remains approximately constant (see ESI Table 2).  

With this set of glyco-CNPs in hand, we then performed flow cytometry, confocal microscopy, and XTT 
assays to determine their cellular uptake rates, subcellular distribution, and cell toxicity, respectively. 
Two breast cancer cell lines MCF-7 and MDA-MB-231 as well as the embryonic kidney cell line HEK-
293 were employed in these experiments based on their expression of MRs: HEK-293 cells were shown 
to present few MR in previous work, while MDA-MB-231 are known to possess a high expression of 
MRs.36 MCF-7 cells were selected due to their high uptake of CNPs shown in previous studies.13 To 
quantify cellular uptake, measured in terms of the total mass of nanoparticles per cell, the fluorescence 
intensity of an event detected in flow cytometry was corrected with the brightness of each particle 
species (see ESI Table 2). Here, the quantum yield under an excitation wavelength of 360 nm was 
determined using Coumarin 1 with a quantum yield of 0.5 as a reference. The excitation coefficient is 
obtained from a fit of Lambert-Beer’s law to the concentration dependence of the absorption. We 
define the brightness of a particle type as the product of the quantum yield and the extinction 
coefficient. Increased uptake rates of CNPs functionalized with monosaccharides compared to non-
functionalized CNPs were observed as shown in Figure 3 (a). This effect is independent of the cell type 
and therefore of the receptor expression. This was confirmed by additional receptor-specific studies 
with HepG2 cells, which are widely used for drug development and toxicity testing and overexpress 
the asialoglycoprotein receptor (ASGPR)37 and MR38. Here, the specific uptake of Gal-CNPs targeting 
ASGPR of HepG2 cells were investigated, and showed the same uptake rate as the negative control cell 
line HEK293 (see the ESI). In addition, the influence of glycofunctionalization on the subcellular 
distribution of the glyco-CNPs was investigated, see Figure 3 (b), (c). Confocal microscopy revealed that 
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they accumulate in small sub-spaces inside the cell, which most likely correspond to vesicles in the 
endo-lysosomal pathway, an observation that has been confirmed via other studies.13 Pristine and 
glycofunctionalized CNPs were observed to share this characteristic subcellular distribution 24 h after 
the incubation. Co-staining of the lysosomes with CellLight Lysosomes-RFP (Invitrogen) reveals a high 
correlation of the distribution of the lysosome resident protein LAMP1 and the CNPs (See ESI, Figure 
S36 + S37), indicating that all the CNPs used in our studies tend to accumulate in the lysosomes. 
Furthermore, glycofunctionalization does not lead to a decrease in cell viability 24 h post incubation, 
as measured via XTT assay (see the ESI Figure S38 for details). Surprisingly, CNPs functionalized with 
glycooligomers show uptake rates similar to the prisitine CNPs. We tentatively explain this uptake 
behaviour using the following, qualitative picture: During endocytosis, both pristine and oligomer-
conjugated CNPs are taken up from the encapsulated extracellular solution; the uptake rate is 
proportional to the density of the CNPs in solution. In addition to this process, monosaccharide-
conjugated CNPs may adhere to the outer membrane surface. This picture is commensurate with a 
quantitative estimation (see ESI). Since the uptake rates are independent of the cell type and hence of 
the densities of the sugar receptors at the cell surface, we conclude that interactions with receptors 
do not play a major role in CNP uptake. Rather, we conjecture that the increased uptake rate of 
monosaccharide-conjugated CNPs may originate from non-specific, physical interactions. The fact that 

glycoconjugation of the CNPs does not influence the viability of the cells supports the picture that the 
nanoparticles are captured in the endolysosomal pathway, where they exert only a marginal influence 
on cellular metabolism. 

In conclusion, we have presented protocols for the glycofunctionalization of carbon nanoparticles with 
different monosaccharides, as well as glycooligomers. NMR studies have been used to verify the 
nanoparticle-sugar coupling. Uptake studies with different cancer cell lines reveal that the uptake rate 
does not correlate with the cell-specific expression of lectin receptors nor the type of carbohydrate. 
Rather, CNPs functionalized with sugar monomers show an approximately two- to threefold increase 
of the uptake rate in comparison to the pristine nanoparticles, which is similar to the uptake rate for 
oligomer-functionalized CNPs. This behaviour is tentatively explained using a geometric picture where 
the uptake takes place in an unspecific combination of CNPs in solution and those which adhere to the 
cell membrane. Confocal microscopy shows that glycofunctionalization does not modify the 
intracellular distribution, where the nanoparticles are preferably stored in the endolysosomal 
pathway. While carbohydrate functionalization has not led to an increase in cell selectivity, cell uptake 
increased with monosaccharide functionalization, making these glyco-CNPs potentially interesting for 
cell imaging or drug delivery applications. To achieve a more selective uptake, future studies could 
explore the effects of using more complex oligosaccharide ligands or non-carbohydrate ligands such 
as antibodies.  
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Heine University) for recording the mass-spectrometric and the NMR-spectroscopic data, the Center 
for Advanced Imaging (CAi) at Heinrich-Heine-University Düsseldorf for providing access to the Zeiss 
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acknowledge the founding by the Jürgen Manchot Stiftung. 
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We present functional studies of lysosomes in human cells after uptake of carbon nanodots (CNDs).
Even under high CND concentrations, the lysosomal functionality, as characterized via cathepsins
B and L as well as the autophagic markers SQSTM1/p62 and LC3B, is maintained. Furthermore,
branched polyethylenimine (bPEI) molecules have been coupled to the CNDs as a model function-
alization or example of a drug. We observe that the bPEI-CND conjugates accumulate to a higher
degree in the lysosomes as compared to bPEI or CND alone. Here, changes in the lysosomal size
and function are observed, which can be explained exclusively by the bPEI. It is concluded that
CNDs are highly efficient and inert carriers for functional molecules into lysosomes as target, with
the added value that lysosomal escape is suppressed, thereby avoiding unintended side effects in
other cellular compartments.

INTRODUCTION

Carbon nanodots (CNDs) are promising fluorophores for cellular imaging, since they combine a low mass with
relatively low toxicity [1, 2], high water solubility [3, 4] and easy functionalizability [5]. In recent years, several studies
have addressed their uptake by cells, their intracellular distribution as well as the metabolic and genetic response of the
cells to their presence even at very high concentrations. Remarkable results have been reported, like for example, their
suitability as intracellular pH sensors [4, 6], drug delivery options [7–9], application in photosensitizing experiments
[10, 11] or the observation that the gene expression of the cells remains essentially unaffected in the presence of even
approximately one hundred million CNDs per cell [2].

This raises expectations regarding their application in drug delivery, with hopes that their presence neither alters
drug effects nor causes side effects by themselves. In this context, the distribution pathway of the CNDs in the cell
after exposure is relevant. It has been shown that unmodified CNDs are primarily taken up via the endolysosomal
pathway and end up at large concentrations in the lysosomes [12] and to a lesser extent in the nucleus, particularly in
the nucleoli [13]. Therefore, the question naturally arises as to whether the CNDs modify the physiology or metabolism
of the lysosomes. Furthermore, when considering CND-mediated drug delivery, one could envisage protocols where
the lysosome is the primary therapeutic target, such as enzyme replacement therapy, which has shown successes in
the treatment of the quite severe lysosomal storage disorders, as being particularly promising [14].

In this context, it is relevant to clarify how CNDs as well as conjugates formed by CNDs and projectile molecules
influence the lysosomal metabolism and trafficking, which comprises such different tasks as degradation of proteins
and extracellular particles, nutrient sensing or catabolite export.[15] Furthermore, CNDs may be suitable as carriers
for selective drug delivery into lysosomes, while possible carrier effects remain to be evaluated.

In the present study, we expose MCF-7 cells to pristine CNDs as well as to CNDs conjugated to branched
polyethylenimine (bPEI) with a molecular weight of 600 Dalton (bPEI-CNDs) up to high concentrations, where the
bPEI, a cationic polymer with abundant amine groups, plays the role of a test molecule to be delivered into the
lysosome [16, 17]. The bPEI molecule was chosen because it is well established as a vehicle for non-viral gene or drug
delivery[18], for example to deliver doxorubicin to the nucleus [19] or to stabilize fragile proteins during transduction
[20]. The transfection via bPEI is based on its ability to buffer the pH by binding H+ ions, which can ultimately lead
to rupture of the acidified endosomes or lysosomes, allowing the encapsulated particles to enter the cytosol [16, 21].
Furthermore, bPEI can be regarded as a drug by itself with functions like gastric emptying [22], blockage of fibrin
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formation [23] or the enhancement of the permeability of Gram negative bacterial membranes [24]. These wide-spread
applications enable conclusions regarding greatly varying aspects of the studied effects.

We characterize the functionality of the lysosomes via monitoring the expression levels or activity of lysosomal
markers, such as the enzymes cathepsin B and L, or the autophagy-related markers SQSTM1/p62 and LC3B-II (LC3)
in response to the exposures. The multifunctional protein p62 mediates the recruitment of damaged or foreign proteins
to the autophagosomal pathway which leads to the lysosomal degradation of the proteins and the autophagy receptor
p62 itself [25–27]. Since p62 is degraded during this process, a decrease or increase in its level indicates enhanced
or hampered autophagy, respectively. LC3 is another well-established marker for autophagy-related processes, since
it is involved in autophagosome formation as well as the binding of p62-marked cargo [28, 29]. Due to its partial
degradation during the digestion [30], LC3 levels can be used for sensing the autophagic activity as well. Cathepsines
belong to the group of lysosomal hydrolases and are part of a variety of processes including the degradation of proteins
[31–33]. By monitoring their activity and the expression levels of the two autophagy markers, conclusions about the
status of the lysosomes are drawn, and the effects of the bPEI bound to CNDs on the lysosomal function in comparison
to both pristine CNDs as well as free bPEI are specified.

MATERIALS AND METHODS

Preparation of CNDs and bPEI-CND compounds

The CNDs were synthesized according to a modified version of the protocol of Qu et al. [3] which has been described
elsewhere [34]. Briefly, 210mg anhydrous citric acid (Thermo Fisher, #036664.22) and 340mg Diethylenetriamine
(DETA, Merck, #8032740100) are heated in a sealed, teflon-lined microwave vessel under continuous stirring at
180 °C for 2:30min (CEM Discover). The product was dissolved in 10ml deionized (DI) water, transferred to a
dialysis device (Repligen, Float-A-Lyzer, 0.1-0.5kD, #G235061) and dialysed against 2 l DI water for 48 h with three
water exchanges. After dialysis, the product was lyophilized to determine the final mass and dissolved with the
targeted concentration in the required solvents for further experiments.

The functionalization of the CNDs was implemented with N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hy-
drochloride (EDC, Merck, #E6383) and N-Hydroxysuccinimide (NHS, Merck, #130672) coupling. The lyophilized
CNDs were solved in DI water in a concentration of 20mgml−1. After solving 1 g of EDC in 5ml DI water, 10ml
of the CND solution were added and stirred for 10min. 1 g of NHS was added and stirred for another 10min before
200mg of bPEI (Merck, #408719) was added. The final solution was stirred for 24 h. Afterwards the solution was
transferred to dialysis devices (Repligen, Float-A-Lyzer, 3.5-5kD, G235065) and dialyzed until the peak of the residual
coupling reagents in the 1H-NMR spectrum (around 2.65 ppm) was sufficiently low (dialysis for at least 132 h with
two water exchanges per 24 h). The final product was lyophilized to determine the dry mass and used to prepare the
solutions for the experiments.

Characterization of the CNDs

Characterization of the unfunctionalized CNDs via fluorescence spectroscopy, Raman spectroscopy, X-ray photo-
electron spectroscopy (XPS), CHN chemical elemental analysis and high resolution transmission electron microscopy
(HRTEM) has been previously described by Fasbender et al. [2] and led to the following results. CHN chemical
elemental analysis revealed that the CNDs consist of 40% C, 19% N and 8% H atoms. The remaining fraction could
be assigned to oxygen atoms by XPS analysis. Furthermore, XPS revealed that 29% of the carbon bonds consist of
C-C single bonds, while the remaining bonds were equally assigned to C-O and C-N bonds. Via Raman spectroscopy,
it was shown that the C-C bonds consist of sp2- and sp3-hybridized carbon atoms. Furthermore, COOH/C-OH and
C=O/C-O edge functional groups were identified. The mean particle size was measured via HRTEM and determined
to be 3.3 nm with a FWHM of 0.6 nm. The fluorescence spectra revealed absorption peaks at 240 nm and 350 nm
which can be assigned to π − π∗ transitions of C=C bonds and to n − π∗ transitions of C=O bonds, respectively
[3]. Excitation between 320 nm and 400 nm leads to a fluorescence emission with a maximum around 460 nm. The
quantum yield for excitation at 360 nm was found to be 23%.

In this work, CNDs and bPEI-CNDs were synthesized as described above and their fluorescence and 1H-NMR
spectra were used for characterization. The fluorescence spectra of CNDs, bPEI-CNDs and bPEI in DI water, shown
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in Fig. 1, were obtained using a Horiba Duetta™Fluorescence and Absorbance Spectrometer. Emission spectra were
measured with excitation at 360 nm wavelength.
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FIG. 1. Main figure: Absorption spectra of the pristine CNDs, bPEI as well as the bPEI-CND conjugate. The inset shows the
fluorescence spectra under excitation at 360 nm wavelength. Only the CNDs contribute to the fluorescence detected in this
study.

The spectra of the pristine CNDs, shown in Fig. 1, are in good agreement with findings reported elsewhere
[3, 34]. They show an absorption peak at approx. 346 nm and a shoulder in the deeper UV-region around 240 nm.
After an excitation with 360 nm, the fluorescence signal with a maximum at 449 nm can be observed. Following the
functionalization, the fluorescence spectra of the bPEI-CNDs are slightly red shifted, see the inset in Fig. 1. Their
absorption peaks appear at 353 nm and 245 nm. The emission maximum is now located at 456 nm. bPEI shows no
absorption resonances and does not fluoresce. Furthermore, the functionalization of CNDs leads to a lower absorption
at the same CND mass concentration compared to the pristine CNDs. An increase by a factor of 4 for the mass of the
bPEI-CND particles results in the same absorption at the maximum around 350 nm as the pristine CNDs, indicating
that the CND contributes ≈ 25% of the mass of a bPEI-CND conjugate. Moreover, the fluorescence spectra indicate
that a covalent bond between the CNDs and bPEI has been established, most likely via unsaturated sites at the CND
edges.

For an independent confirmation of the successful functionalization, 1H-NMR spectra (600MHz) of CNDs, bPEI-
CNDs and bPEI in D2O were recorded with a Bruker Avance III - 600 by the CeMSA@HHU. The data was then
processed and displayed with MestReNova (14.2.0-26256).

As seen in Fig. 2, the 1H-NMR spectrum of pristine CNDs shows narrow compound peaks between 1.99 ppm and
4.85 ppm (detailed figures in the supplement). After the functionalization, the CND peaks are broadened, indicating
their successful bond to larger molecules (in this case bPEI). We tentatively explain this by a lower rotational diffusion
due to an enlarged particle size. As a consequence, the direct nuclear spin-spin coupling, which is dependent on the
angle between the external magnetic field and the binding vector between two atoms, is no longer averaged out, such
that the peaks of the bPEI-CNDs appear broadened compared to those of pristine CNDs.

Cell Experiments

Cell Culture

For all experiments, MCF-7 cells were used. The cells were cultured in RPMI 1640 (Biowest, #L0501) with 10%
Fetal Bovine Serum (FBS, Sigma-Aldrich, #F2442), 100Uml−1 penicillin and 100 µgml−1 streptomycin (Sigma-
Aldrich, #P0781) and 300mg l−1 L-Glutamin (Sigma-Aldrich, #G7513) in an incubator with humidified air at 37 °C
and 5%CO2. The cells were passaged every three to five days using Trypsin-EDTA solution (Sigma-Aldrich #T3924).
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FIG. 2. 1H-NMR spectra of CNDs, bPEI-CNDs and bPEI diluted in D2O. The D2O peak of the solvent is visible at 4.79 ppm.

TABLE I. Compound concentrations

Compound Concentration Justification
[mgml−1]

CNDs 0.5 no influence on cell viability after 48 h incubation [12]

bPEI-CNDs 0.5 mass-concentration equal to 0.5mgml−1 CNDs

bPEI-CNDs 2 particle concentration equal to 0.5mgml−1 CNDs

bPEI 0.1 no influence on cell viability after incubation for 48 h

bPEI 0.333 cell viability is above 75% after incubation for 48 h as seen in Fig. 4

bPEI 0.375 equal to concentration of bound bPEI in 0.5mgml−1 bPEI-CND

bPEI 1.5 equal to concentration of bound bPEI in 2mgml−1 bPEI-CND

Incubation with CNDs, bPEI-CNDs and bPEI

CNDs, bPEI-CNDs and bPEI were dissolved in DPBS (Dulbecco’s phosphate-buffered saline, Gibco, #14190144)
and sterile filtered through a 0,2 µm PES membrane (Sarstedt, 83.1826.001) prior to their incubation with cells. The
compounds were added to the culture medium, such that the final concentrations are obtained. All samples (including
the control) were adjusted to contain the same amount of PBS while retaining the correct compound concentration.
The cells are then incubated for 48 h at humidified air with 5% CO2 and 37 °C. In Table I, the selected compound
concentration are listed along with the corresponding justifications.

Confocal Fluorescence Microscopy

For confocal fluorescence microscopy with Lysotracker™Deep Red (”lysotracker”, Thermo Fisher, Invitrogen™ ,
#L12492) staining, the cells were seeded in a 8 well µ-Slide (ibidi, ibiTreat #80806) and treated for 48 h as described
above. The basal culture medium was exchanged to phenol red-free RPMI 1640 (Biowest, #L0505). After the
incubation time of 48 h, the medium was removed and new medium containing 50 nM lysotracker was added. After an
incubation for 45min in the dark at humidified air with 5% CO2 and 37 °C the medium was removed and fresh medium
without lysotracker was added. The samples were directly imaged using a Zeiss LSM 710 with a Plan-Apochromat
63x/1,4 Oil objective and a closed sample chamber heated to 37 °C. The CNDs were excited with a 405 nm laser
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diode and the fluorescence was detected in the range of 410-580 nm (”CND channel”). The lysotracker was excited
with a 633 nm HeNe Laser and the emission was detected in the range of 647-754 nm (”lysotracker channel”). The
transmitted light images were obtained through the lysotracker channel. All images were obtained using the same
measurement parameters. The images were plotted using OMERO.figure (v6.0.1).

Image analysis To determine the amount and size of lysosomes per cell in each sample, the microscopy images were
analyzed using Fiji [35] (with ImageJ v1.54f). First, background noise is removed through a convoluted background
subtraction (median, radius:10) by the implemented BioVoxxel plugin and an intensity threshold is set. Afterwards,
the amount and size of the lysosomes is determined using the Analyze Particles function (size: 0.01 µm2-Infinity,
circularity: 0.00-1.00) provided within ImageJ. The macro used is provided in the supplement.

Viability Assay

The cell viability was measured using an MTT assay (Roth, #4022). The cells were seeded in a 96-well plate in
triplicates and incubated as described above. For the positive control, cells were treated with 5 µM staurosporine
(Sts, Biozol, #LCL-S-9300) for 48 h. Afterwards, 20 µl MTT solution (5mgml−1 in DI water) were added to each
well and incubated for 40 min. The medium containing residual MTT was removed and 100 µl DMSO were added
to each well. The plates were shaken gently until violet formazan was dissolved. The absorbance was measured at
570 nm and 650 nm (for reference) with a microplate reader (SynergyMx, BioTek, Winooski, VT, USA). The reference
absorption at 650 nm was subtracted from the absorption at 570 nm. Afterwards the offset of wells without cells was
was set to zero. The mean value of the control cells was set to a viability of 100%.

Immunoblotting/Western Blot

After the incubation with the compounds described above, the cells were washed with DPBS and treated with
full culture medium or starvation medium (Earle’s Balanced Salt Solution, EBSS, Gibco, #24010-043) containing
bafilomycin A1 (BafA1, Sigma-Aldrich, #B1793) or a solvent control for 6 h. After the incubation time, the cells were
harvested in chilled DPBS by scraping, pelletized at 300 g and 4 °C for 5 min and frozen in liquid nitrogen. After cell
lysis in lysis buffer (20mM Tris–HCl, 150mM NaCl, 500 µM EDTA, 1% [v/v] Triton X-100, 1X protease inhibitor
cocktail [Roche, #4693132001] and 1XPhosSTOP [Roche, #04906837001]) for 30min on ice, the lysates were cleared
by centrifugation at 18,000 rcf and 4 °C for 15min and the protein concentration was determined by Bradford assay.
Sample buffer was added (62.5mM Tris, 8.6% [v/v] glycerol, 2% [w/v] SDS, 33.3 µgml−1 bromophenol blue, 1% [v/v]
β-mercaptoethanol) and the samples were heated at 95 °C for 5min. Equal amounts of protein (25 µg) were subjected
to SDS-polyacrylamide gels and afterwards transferred to PVDF membranes (Merck, #IPFL00010). The membranes
were blocked with 5% milk powder in TBST and incubated in the indicated primary antibodies (anti-LC3B, CST
#2775; p62, PROGEN #gp62-c; Cathespin B, CST #31718; GAPDH, Abcam #ab8245; β-Actin, Sigma-Aldrich
#A5316) followed by appropriate IRDye 800- or IRDye 680-conjugated secondary antibodies (LI-COR Biosciences).
The fluorescence signals were detected using an Odyssey Infrared Imaging system (LI-COR Biosciences, Lincoln, NE,
USA) and signals were quantified using Image Studio (LI-COR Biosciences, Lincoln, NE, USA). The density of each
protein band was divided by the average of the density of all bands of this protein on the membrane. The ratios were
normalized to the loading control, and fold changes were calculated by dividing each normalized ratio by the average
of the ratios of the control line (full medium). For the quantification of Cathepsin B protein levels in Figure S9, both
detected protein bands were included in the quantification.

Cathepsin Assay

The Cathepsin B and Cathepsin L activity was measured using the Cathepsin Activity Assay Kits (abcam, #ab65300
and #ab65306) according to the manufacturer’s instructions. 10 µg of protein per sample were used in both assays. For
inhibitor control, 100 µM Z-FF-FMK (Merck, #219421) was used. The fluorescence of the samples was measured in
duplicates with a microplate reader (SynergyMx, BioTek, Winooski, VT, USA) at 505 nm after 405 nm excitation. The
average fluorescence intensity of ”buffer only” wells without cell lysate was subtracted from the sample fluorescence.
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Mass spectrometry (MS)-based proteomics and secretomics

Sample Preparation: After incubation with 0.5mgml−1 CNDs for 48 h (as described above), the cells were carefully
washed 6 times with DPBS. Afterwards, the cells were incubated for 6 h in full cell culture medium, basal medium
RPMI1640 or in starvation medium EBSS. Only culturing in basal medium or EBSS was selected for secretome
analysis, as additives such as FBS would severely impair the detection of secreted proteins. After the incubation, the
conditioned medium (basal medium or EBSS) was collected, centrifuged (5min, 800 g, 4◦C) and filtered through a
0.2 µm membrane (Acrodisc, 32mm Syringe Filter with 0.2 µm Supor Membrane; Pall, #4652). Aliquots were shock
frozen in liquid nitrogen and stored at -80 ◦C. The cells were washed 3 times with chilled DPBS, harvested in DPBS
on ice via scraping and pelleted by centrifugation (5min, 800 g, 4◦C). The supernatant was discarded and the cells
were stored at -80◦C until further processing. A total of 5 replicates for each condition were prepared.

Proteomics: Proteins were extracted from frozen cell pellets as described elsewhere [36, 37]. Briefly, cells were
lysed and homogenized in chaotropic lysisbuffer (30 mM Tris, 2M thiourea, 7M urea, 4% CHAPS, pH 8.5; 5 µl
per mg cell wet weight) using a TissueLyser (1min, 40Hz; Qiagen) and ultrasound (6x 10 s under ice cooling in an
ultrasonic bath). After centrifugation (15min, 16000 rcf, 4 ◦C), supernatants were collected. After determination of
protein concentration (Pierce 660 nm Protein Assay, Thermo Fischer Scientific, #22662), samples were adjusted to
0.5mgml−1 total protein concentration with SDS buffer (final 7.5% glycerol, 3% SDS, 37.5mM Tris/HCl pH 7.0).
A quality control was performed by SDS-PAGE using 2 µg total protein per condition and replicate, respectively, and
silver staining according to Heukeshoven and Dernick [38] with slight modifications. 5 µg total protein per condition
and replicate were reduced (final 20mM dithiothreitol, 20min, 56 ◦C), alkylated (4x molar excess iodoacetamide to
dithiothreitol, 15min, r.t., protected from light), quenched (same amount dithiothreitol as for reduction, 15min,
r.t.) and finally underwent tryptic digestion (200 ng trypsin in 20 µl 50mM triethylammonium bicarbonate) after
applying a slightly modified sp3 protocol [39] using 50 µg 1:1 mix Sera-Mag SpeedBeads (GE #45152105050250 and
#65152105050250) and final 50% ethanol for protein precipitation and 80% ethanol (3x) as well as acetonitrile (1x)
for washing the protein-solid phase aggregates. Peptides (25% of input) were reconstituted in 0.1% trifluoracetic acid
and subjected to LC-MS analysis.

Secretomics: Secretomics was performed as described by Vogt et al. [40]. An aliquot (400 µl) per condition and
replicate was thawed on ice in the presence of a protease inhibitor cocktail (added 50 µl of a solution of 1 complete
ULTRA tablet, mini, EDTA-free in 2mL water; Roche, #05892791001), supplemented with SDS buffer (added 50 µl of
30% glycerin, 12% SDS, 150mM Tris/HCl pH 7.0), reduced (added 40.5 µl of 100mM dithiothreitol; 20min at 56 ◦C
under shaking), alkylated (added 54 µl of 300mM iodacetamide; 15min at r.t. protected from light), and quenched
(added 40.5 µl of 100mM dithiothreitol; 15min at r.t.). Applying a slightly modified sp3 protocol [39], proteins were
precipitated (added 10 µl of 20mgml−1 1:1 bead-mix of pre-washed Sera-Mag SpeedBeads [GE #45152105050250
and #65152105050250] in water; added 645 µl ethanol abs. p.a.; 15min at 24 ◦C under shaking), washed (3x 80%
ethanol, 1x acetonitrile) and digested (100 ng trypsin in 20 µl 50mM triethylammonium bicarbonate). Peptides were
reconstituted in 0.1% trifluoracetic acid and subjected to LC-MS analysis.

LC-MS analysis: For the LC-MS analysis, an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher),
operated in positive mode and coupled with a nano electrospray ionization source connected with an Ultimate 3000
Rapid Separation liquid chromatography system (Dionex / Thermo Fisher) equipped with an Acclaim PepMap 100
C18 column (75 µm inner diameter, 25 cm length, 2mm particle size from Thermo Fisher) was applied using a 120min
LC gradient. Capillary temperature was set to 275 ◦C and source voltage to 1.5 kV. MS survey scans had a mass range
from 200 to 2000 m/z at a resolution of 120,000. The normalized AGC target was set to 62.5% and the maximum fill
time was 60ms. A cycle time of 2 s was employed for isolation and fragmentation of the most intensive peptide ions
per survey scan by high-energy collision dissociation (HCD).

Data analysis: MaxQuant (version 2.1.3.0, Max Planck Institute for Biochemistry, Planegg, Germany) was used for
peptide and protein identification and quantification using a human sequence database (UniProtKB, downloaded on
01/27/2021, 75777 entries). Methionine oxidation and N-terminal acetylation were considered as variable modifications
and carbamidomethylation at cysteine residues as fixed modification. The identification threshold was set as a false
discovery rate of 1% on protein and peptide level. A total of 3239 protein groups were identified after removing
potential contaminants, reverse hits, and proteins only identified by modified peptides (only identified by site).

Both, intensities and label free quantification (LFQ) intensities as measures for relative protein abundance by the
MaxQuant software (output proteinGroups.txt file) were statistically analyzed using R (version 4.2.0). First, the
data were normalized such that the median of the logarithmic (LFQ) intensity differences over all proteins between
two samples, respectively, approached zero. As a quality control, a principle component analysis (PCA) using the
prcomp()-function and cluster analyses using the heatmap()-function and cluster methods ”ward.D”, ”ward.D2”,
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”single”, ”complete”, ”average”, ”mcquitty”, ”median”, and ”centroid” were performed. Replicate 1 of the proteome 
control (no CND treatment) sample using EBSS medium was identified as outlier and omitted in further analyses.

Testing for significant d ifferential pr otein ex pression (u p- or  do wnregulation; pr oteomes) or  di fferential protein 
secretion (secretomes) of the CND treated samples vs. the control samples was performed using the “Significance 
Analysis of Microarrays” (SAM) analysis method [41] within the Siggenes R package, separately for each of the three 
(two for secretomes) media. For this approach, a minimum of four valid values had to be present in at least one group 
(CND treated or control), data were log 2 transformed to reach a normal distribution like data structure, and missing 
values were filled i n w ith r andom values f rom s amplewise d ownshifted n ormal d istributions ( 0.3 SD w idth, 1 .8 SD 
downshift). A permutation based false discovery rate (FDR) of 5 % was used as significance c utoff. Lysosomal lumenal 
and lysosomal membrane protein classification was performed according to the list of lysosomal proteins contained in 
Table S3 of the supplementary material of Richards et al. [42].

Data availability: The mass spectrometry proteomics and secretomics data have been deposited to the ProteomeX-
change Consortium via the PRIDE [43] partner repository with the dataset identifier PXD053105.

Statistical analysis

The exact number of replicates measured per experiment is indicated in the corresponding figure legends. Viability 
assay, cathepsin B/L assay and immunoblot data are represented as mean ± SD. The statistical analysis was performed 
with OriginPro (Version 2021b, OriginLab Corporation). The statistical tests used are stated in the figure legends. 
In summary, for the viability assay (Fig. 4), cathepsin B/L (Fig. 7) and quantification of the lysotracker (Fig. 8), 
one-way ANOVA with Bonferroni comparisons was used. For the immunoblots of CNDs and bPEI-CNDs (Fig. 6), 
two-way ANOVA with Bonferroni comparisons was used. For the immunoblots of bPEI (see supplement), three-
way ANOVA with Bonferroni comparisons was used. For MS-based proteomics analysis, SAM and a FDR < 5 % was 
used as described above.

RESULTS AND DISCUSSION

CNDs and bPEI-CNDs accumulate within lysosomes

We begin by characterizing the distribution of the CNDs and of the bPEI-CNDs within the cells. In Fig. 3, 
microscopy images of the MCF-7 cells after CND - as well as after bPEI-CND - incubation are shown. For lysosomal 
staining, lysotracker was used. By merging the cyan (bPEI-) CND channel and the magenta lysotracker channel (Fig. 
3 (g) and (k)), it emerges from the appearance of the mixed color that (bPEI-) CNDs accumulate mainly in the 
lysosomes, in accordance with earlier reports [12, 34]. Due to imaging of living cells with moving organelles and a 
time delay between the measurement of the two fluorescence channels, a slight displacement of the overlaying 
CND and lysotracker signals may be observed.

We emphasize that a weak signal of the pristine CNDs is visible across the cell, possibly indicating a small rate 
of CND leakage from the endolysosomal pathway. A background signal from bPEI-CND signal, on the other hand, 
in other cell compartments besides lysosomes is not detectable. Apparently, the bPEI molecules localize the CNDs 
inside the lysosomes. We tentatively explain this by the enlarged particle size and / or by an altered charge of the 
bPEI-CNDs preventing lysosomal escape. Alternatively, the bPEI may buffer or change the lysosomal pH [44] and 
thus its functionality. Nevertheless, the microscopy images confirm a successful transport of functionalized CNDs, 
i.e. the transport of the compound bPEI-CND into the lysosomes and therefore support the potential application of 
CNDs as carriers for lysosomal-targeting therapeutics.

In contrast to free bPEI, CNDs and bPEI-CNDs do not affect the cell viability

Since pristine bPEI does not fluoresce, only indirect conclusions about its intracellular distribution can be drawn from 
functional studies. The first of these studies comprises viability assays. Previous experiments have shown that an 
incubation with CNDs in a concentration of 0.5 mg ml−1 for 48 h does not alter the viability [12]. We confirm this
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FIG. 3. Confocal microscopy images of MCF-7 cells incubated with CNDs or bPEI-CNDs. Lysosomes are stained with
lysotracker. The CND channel is shown in cyan, the lysotracker (”LT”) channel in magenta. (a-d) MCF-7 cells without
(bPEI-) CND incubation as a control. (e-h) MCF-7 cells incubated with 0.5mgml−1 CNDs. (i-l) MCF-7 cells incubated with
2mgml−1 bPEI-CNDs. Merging of the cyan CND channel and magenta LT channel results in blue-white color-signals. As seen
in the CND-LT-overlay images (g) and (k), CNDs and bPEI-CNDs mainly accumulate inside the lysosomes. The scale bar of
20 µm shown in (a) applies to all images.

observation in our system and complement it by investigating the influence on the cell viability of the functionalized
CNDs as well as the influence of unbound bPEI. As can be seen in Fig. 4 (a), a concentration up to 2 mgml−1 of
bPEI-CNDs does not impact the viability significantly. Concentrations of free bPEI above 0.333mgml−1, however,
do reduce the cell viability significantly, see Fig. 4 (b). A free bPEI concentration of 0.375mgml−1 equals the
concentration of the bound bPEI in the 0.5mgml−1 bPEI-CNDs solution and causes already a viability decrease
to 68%. In addition, it is observed that a free bPEI concentration of 1.5mgml−1 which corresponds to a bound
bPEI concentration in 2mgml−1 bPEI-CNDs leads to a viability of 14% which is similar to that one observed after
incubation with the apoptosis-inducing and positive control staurosporine.
We identify two possible reasons for this weakening effect of the CNDs on the bPEI-induced effects. First, the binding
of bPEI to CNDs will lead to capture of bPEI inside the lysosomes and thus to a reduction of cytotoxic effects of
bPEI outside of the lysosomes. This is plausible considering the reported effects bPEI showed in other studies when
inducing the lysosomal pathway [45]. This explanation is in good accordance to the microscopy images (Fig. 3) which
show a strong localization of bPEI-CNDs inside the endo-lysosomal pathway. Second, possible cytotoxic effects by
the bPEI inside the lysosomes may be attenuated due to saturation of otherwise reactive bPEI sites by their bonds
to the CNDs. We will revisit this explanation below.
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FIG. 4. Viability of MCF-7 cells after incubation with (a) CNDs and bPEI-CNDs or (b) bPEI. Staurosporine (Sts) was used as
a positive control. Data are represented as mean ± SD of N=3 biologicalreplicates with each n=3 technicalreplicates (expect
bPEI 1mgml−1: N=2, n=3). p values were determined by one-way ANOVA with Bonferroni comparison. In comparison with
the control sample ”ct”: **p<0.01, ****p<0.0001.

CNDs do not influence the cells’ proteome

To investigate the influence of the pristine CNDs on the cells’ proteome, MS-based quantitative differential (CND
incubation vs. control) proteomics and secretomics analyses were performed using three (two for secretomics) different
media (complete cell culture medium, basal medium RPMI1640 or starvation medium EBSS), resulting in a total of
3239 identified and quantified proteins. For the statistical analyses, the two values for relative protein quantification
given by the MaxQuant software, the ”intensities” and the ”LFQ intensities”, were used (The ”intensities” simply
comprise the sum of all intensities of the identified peptides of a given protein in a given sample, while the ”LFQ
intensities” are calculated based on the intensities of the peptides that share their identification in the samples to be
compared. Therefore, LFQ intensity values tend to be more accurate when there are enough shared peptides, but
disregard many values from non-shared peptides, resulting in more missing data [46]).

Except for membrane-associated progesterone receptor component 2 (PGRMC2 ) in the proteome for EBSS medium,
no protein showed consistent significance (permuation-based FDR < 5%, SAM analysis) for both the intensity- and
LFQ intensity-based statistical analyses in neither full medium nor basal RPMI1640 medium, and there was no protein
that was significant over all analyses (see Fig. 5 for an exemplary volcano plot and Fig. S6 for the full set). Notably,
none of the red or blue marked proteins associated with the lysosomal lumen and lysosomal membrane, respectively,
were found to be significantly altered. Moreover, no profound functional connections or corresponding pathways were
found for the significant proteins for the different conditions by a functional enrichment analysis using the STRING
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FIG. 5. Volcano plot based on LFQ intensity values for MS-based proteomics. Analysis of differential protein abundance
(fold-change) after CND treatment of MCF-7 cells in full culture media was performed. See Fig. S6 for the full set of proteome
and secretome analyses in the three (two for secretomes) tested media. No proteins with a permutation-based FDR (SAM
analysis) < 5% were identified in the present analysis. Grey gene name labels indicate proteins, for which this criterion was
met for other conditions. Lysosomal lumenal and lysosomal membrane proteins are labelled with blue and red data points,
respectively, and lumenal proteins with p-value < 0.05 are labelled with red gene names.

database [47] (see Fig. S7).

In the secretome data, no significantly altered proteins were detected (permuation-based FDR < 5%, SAM analysis),
indicating that pristine CNDs do not strongly alter the cellular secretion of proteins, and therefore also suggesting
that pristine CNDs are inert to the metabolic processes of the cells.

CNDs do not influence lysosomal functions, and bPEI-CNDs show attenuated effects compared to free bPEI

We proceed by functional studies of the lysosomes after exposure to the nanoparticles, exemplified by their au-
tophagic activity via the markers p62 and LC3, as well as the activity of the cathepsins B and L, as a measure of the
rate of lysosome-based degradation of proteins. Here, we keep the nanoparticle concentrations in the regime where
their effect on the viability is below the significance threshold or the viability of the cells is still above 75%.

In the full cell culture medium (”RPMI”) we do not observe any significant effect of CNDs on p62 and LC3 levels,
see the left hand side in Fig. 6 (a). At high bPEI-CND concentrations (2mgml−1) the bPEI-CNDs lead to a
significant decrease of the p62 level to 31% of the control, and a tendency towards decreasing p62 concentrations is
already noticeable for the concentration of (0.5mgml−1). The LC3 levels are not significantly altered, nevertheless a
tendency to increased LC3 levels can be seen in Fig. 6 (b) for bPEI-CND treatments. Starvation (right hand side,
”EBSS”) reduces p62 levels, and this effect is not significantly altered by any additional treatment. Again, increased
LC3 levels can be observed for bPEI-CND treatments. Collectively, CNDs do not appear to affect cellular autophagic
capacity. In order to further characterize the observed effects for bPEI-CNDs, we combined bPEI (unbound) with
bafilomycin A1. This compound is an inhibitor of the vacuolar H+-ATPase and ultimately inhibits the fusion of
autophagosomes with lysosomes [48]. The combination of a stimulus +/- bafilomycin A1 allows the analysis of the
autophagic flux. As shown in Fig. S8, bafilomycin A1 cannot prevent the bPEI-induced reduction of p62, indicating
that autophagy-unrelated mechanisms contribute to this effect. Since the effects of unbound bPEI and bPEI-CNDs
on p62 levels are similar, we assume that these autophagy-unrelated mechanisms also cause the effects on p62 and
LC3 levels shown in Fig. 6. Note that for unbound bPEI a reduced concentration by a factor of 4.5 compared to
bound bPEI is needed to effect the cells metabolism significantly.

The activity of cathepsins B and L is not significantly altered upon CND incubation as seen in Fig. 7, which
supports the suitability of CNDs as inert carriers for drug delivery systems. After incubation with high bPEI-CND
concentrations (2mgml−1), cellular cathepsin B activity is significantly enhanced by a factor of 3.3. Incubation with
(0.333mgml−1) bPEI leads to a significantly increased cathepsin B activity by a factor of 5.8. Therefore bPEI incuba-
tion results in a higher cathepsin B activity regardless of the state (bound/unbound). Note that the effect of unbound
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FIG. 6. Influence of CNDs and bPEI-CNDs on cellular (a) p62 and (b) LC3-II levels. Samples were measured in biological
triplicates. The levels were quantified and normalized to GAPDH. Data are represented as mean ± SD. A representativ
immunoblot is shown in (c). p values were determined by two-way ANOVA with Bonferroni comparison. Shown is the
significance compared to the control-sample (”ct”) in the same medium. *p<0.05.

bPEI on the cells cathepsin B activity is attenuated upon CND binding. A concentration of 0.333mgml−1 unbound
bPEI leads to a higher cathepsin B activity than a concentration of 2mgml−1 bPEI-CNDs which corresponds to
approximate 1.5mgml−1 bound bPEI. The increased cathepsin B activities due to bPEI are in good accordance with
an significantly increased level of cathepsin B inside the cells after free-bPEI incubation as shown in the immunoblots
in Fig. S9. This could be due to a general higher activity inside the lysosomes, as well as a larger total quantity due
to a higher lysosomal number needed due to bPEI-mediated effects on the whole cell. Compared to the cathepsin
B activity, for the cathepsin L activity, a concentration dependent effect of bPEI is observed. Lower concentrations
of bPEI (bound in 0.5mgml−1 bPEI-CNDs or unbound 0.1mgml−1) lead to a significant decrease of the relative
activity to 58% respective 44%. Upon bPEI concentration increase (e.g. bound in 2mgml−1 bPEI-CNDs or unbound
0.333mgml−1), the cathepsin L activity is significantly enhanced to 125% or back at an unaltered level. We assume
that two different effects occur depending on the bPEI concentration, especially on the free reaction sites of bPEI. At
low bPEI concentrations, a potential change of the pH value inside the lysosomes towards neutral could be a reason
for the decreased cathepsin L activity as it was seen that bPEI can prevent the strong acidification of lysosomes [44].
Due to the cathepsin L activity optimum in acidic environment, at higher pH their activity is expected to be reduced.
This is in good accordance with the unaltered cathepsin B activity at low bPEI concentrations since cathepsins B
are known to show still good activity at less acidic environments [49]. Note that the change of the lysosomal pH
upon bPEI incubation is still under debate [50], such that other lysosome-affecting effects like direct interactions
with unsaturated bPEI-sites need to be considered as well. Since the cathepsin L activity is increased again to a
normal or higher level at higher bPEI concentrations, a second bPEI-mediated effect should be considered. Taking
the increased cathepsin B and L activity together, we suggest that the increased bPEI levels lead to cellular stress
reactions, resulting in higher lysosomal activity. This is in good accordance with the immunoblotting and viability
results which indicate autophagy-unrelated mechanisms as described above.
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FIG. 7. Activity of (a) cathepsin B and (b) cathepsin L after incubation with CNDs, bPEI-CNDs and bPEI. The cathepsin
inhibitor Z-FF-FMK was used as a positive control. The samples were measured in biological triplicates with technical dublicates
each. Data are represented as mean ± SD. p values were determined by one-way ANOVA with Bonferroni comparison. In
comparison with the control sample ”ct”: *p<0.05, ***p<0.001, ****p<0.0001.

Lysosomal size and abundance does not change upon CND incubation but is influenced by free bPEI and
bPEI-CNDs

Finally, we look at the size distributions of the lysosomes after incubation, see Fig. 8. In agreement with all other
observations, there is again no effect of the pristine CNDs on the number (Fig. 8 (a)) and the size (Fig. 8 (b)) of
the lysosomes. Incubation of bPEI-CNDs leads to significantly less lysosomes per cell with larger average sizes. For
pristine bPEI, concentration dependent effects are observed. Free bPEI causes the lysosomes’ size to increase and
number of lysosomes to decrease significantly at intermediate concentrations, similar to the effects of bPEI-CNDs.
For large bPEI concentrations, the lysosomal size decreases again to a not significantly altered level compared to the
control while the average number of lysosomes increases significantly compared to the control. Note that much smaller
concentrations are needed for free bPEI (here 0.1mgml−1) to qualitatively reach the same effect as bPEI-CNDs. The
effect of bPEI is, as seen in the other experiments as well, attenuated due to the binding to CNDs. An increased
lysosomal size upon free bPEI or bPEI-CND incubation might be explained by an early-state osmotic swelling as a
consequence of the proton buffering capacitance (”proton sponge effect”) of bPEI [51]. Rupture of Lysosomes, usually
observed when bPEI is used for transfection [52], is unlikely due to missing signal distribution of bPEI-CNDs across
the whole cell as seen in the microscopy images (Fig. 3). If other effects like an enhanced lysophagy because of
bPEI-damaged lysosomes occur needs to be further investigated. A different lysosomal positioning in the cell could
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FIG. 8. (a) Number of lysosomes per cell and (b) average size of lysosomes per cells as quantified from the microscopy data
(e.g. Fig. 3 and Fig. S4). 34 to 72 cells per condition were analyzed. p values were determined by one-way ANOVA with
Bonferroni comparison. In comparison with the control sample ”ct”: **p<0.01, ***p<0.001, ****p<0.0001.

also be the reasons for the altered values. Since the lysosomal sizes are in the scale of the microscopic resolution, for
lysosomes that cluster perinuclear, as seen upon lysosomal perturbations [53], the microscopic distinction could be
difficult. This can lead to distorted values since multiple smaller lysosomes could be detected as one. For higher free
bPEI concentration, the increased number of lysosomes and unaltered size compared to the control, could be assigned
to a general stress reaction of the cell against bPEI. This is also consistent with the previously discussed elevated
cathepsin B activity and abundance, as well as slightly increased LC3 levels upon incubation with higher free bPEI
concentrations, all suggesting the formation of new lysosomes.

Conclusion

We investigated the effects of pristine fluorescent carbon nanodots on the cells’ proteome and on general aspects of
the lysosomal activity. We found that even though high numbers of CNDs accumulate inside the lysosomes, they did
not affect the lysosomal function nor the overall proteome. We furthermore examined the functionalizability of those
CNDs by binding a relevant polymer (bPEI) to them and testing whether the CNDs can transport those compounds
into the lysosomes as a target. We have seen indeed that the functionalized CNDs show a more correlated uptake into
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the lysosomes compared to the pristine CNDs. The results suggest that the binding to CNDs localizes the bPEI more
targeted into lysosomes compared to the distribution of free bPEI inside the cells, resulting in better cell viability
and probably less unwanted damage to other cell compartments. Moreover we saw that the bound bPEI could still
interfere the lysosomal metabolism as investigated by the autophagy markers LC3 and p62, the cathepsin B and L
activity as well as seen by the influenced lysosomal size and quantity. We conclude that the CNDs are suitable as inert
carriers in drug delivery systems and can transport the compound to be delivered precisely into the (endo-)lysosomal
compartments without interfering with the overall viability of the cells. This could be particularly relevant for the
treatment of diseases where the cell should remain intact, such as lysosomal storage diseases or neuro-degenerative
diseases, but lysosomal functions should be altered. In such protocols, a possible attenuation of the therapeutic effects
due to the binding of the compound to the CND needs to be assessed.

Limitations of the study

All studies reported above have been observed on one cell line. However, since in earlier studies, the uptake of CNDs
by live cells has shown only marginal cell-type specific variations, we expect that the behavior will be similar in other
cell lines. It remains to be seen in future studies to what extent these lysosomal effects depend on the type/nature of
the functional molecule attached to the CND.
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FIG. S1. 1H NMR spectrum of CNDs. Peaks marked in blue, multiplets marked in purple. 1H NMR (600 MHz, D2O) δ[ppm]=
4.86 (s, 3H), 4.86 – 4.81 (m, 1H), 4.77 (s, 2H), 3.87 – 3.76 (m, 0H), 3.56 – 3.48 (m, 1H), 3.50 (s, 1H), 3.34 (s, 2H), 3.39 – 3.29
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close("*"); 
//programm written for .czi images. Images should all 
be obtained with same measurement parameters. 
 
//define directorys 
inputdir = getDirectory("input"); 
dir = getDirectory("output"); 
dir2  = getDirectory("Zell-ROIs"); //in this directory, cell 
ROIs (each cell is one ROI) should be saved in zip files 
with the name: [title of image].czi_cells.zip 
dir3  = getDirectory("Lysosome areas"); 
 
list = getFileList(inputdir); 
for (p = 0; p < list.length; p++) { 
 
//open image from the input directory and get infos 
open(inputdir+list[p]); 
title = File.nameWithoutExtension; 
title2 = getInfo("image.filename"); 
 
imagedir = getInfo("image.directory"); 
 
//start ROI manager and open the previously defined 
cell ROIs 
run("ROI Manager..."); 
roiManager("Open", dir2+title+".czi_cells.zip"); 
 
n = getNumber("How many cell-ROIs are shown in the 
ROI-Manager?", 10); 
 
 
//start image analysis 
for (i = 0; i < n; i++) { 
//use a duplicate for analysis to not overwrite the 
original image: 
selectWindow(title2); 
run("Duplicate...", "duplicate"); 
//Name of the duplicate will be Name-1.czi 
 
selectWindow(title+"-1.czi"); 
 
//Start image processing with convoluted background 
subtraction and intensity threshold setting. Make 
image binary for further process. Intensity threshold 
should be set once for all images. 
Stack.setPosition(1,1,1); 
run("Convoluted Background Subtraction", 
"convolution=Median radius=10 slice"); 
setThreshold(10, 255); 
run("Make Binary", "calculate only black"); 
run("Watershed", "slice"); 
 
//ROI manager will be opened to start with the analysis 
of each cell separately 
run("ROI Manager..."); 
roiManager("Show All"); 
roiManager("Delete"); 

roiManager("Show None"); 
roiManager("Open", dir2+title+".czi_cells.zip"); 
 
x=i+1; 
 
selectWindow("ROI Manager"); 
roiManager("Select",i); 
//lysosome channel should be the first image in the 
stack. 
selectWindow(title+"-1.czi"); 
Stack.setPosition(1,1,1); 
 
//use particle analyzer to count particles and 
determine size. Results should be saved (e.g. in excel 
or txt table) an can be further analysed 
run("Analyze Particles...", "size=0.01-Infinity 
show=Outlines exclude clear summarize add slice"); 
 
//sav an image of the lysosomes of each cell 
Stack.setPosition(1,1,1); 
saveAs("Tiff", dir+title+"_Bild_lysosomen"+"_cell"+x); 
close(); 
 
 
selectWindow(title+"-1.czi"); 
close(); 
 
//save lysosome ROIs 
selectWindow("ROI Manager"); 
roiManager("Save", 
dir+title+"lysosomes_cell"+x+"_ROI.zip"); 
run("Close"); 
 
//close all open windows for analysis of next image 
selectWindow(title2); 
close("\\Others"); 
 
run("ROI Manager..."); 
roiManager("Open", dir2+title+".czi_cells.zip"); 
 
} 
run("ROI Manager..."); 
roiManager("Show All"); 
roiManager("Delete"); 
roiManager("Show None"); 
} 
 

FIG. S5. ImageJ Macro for lysosomal analysis
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Analysis of differential protein abundance after CND treatment of MCF-7 cells was performed in different media (full medium
”RPMI”, basal medium RPMI1640 ”RPMI-” or EBSS) as indicated. Proteins with a permutation-based FDR (SAM analysis)
< 5% are indicated by green data points and labelled with their gene names in black for the respective conditions or in grey if
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FIG. S8. (a) p62 and (b) LC3 levels of cells that are exposed to bPEI for 48 h and/or BafA1 in full medium ”RPMI” or
starvation medium ”EBSS” for 6 h. The levels were quantified and normalized to β-Actin. Data are represented as mean ±
SD. A representativ immunoblot is shown in (c). p values were determined by three-way ANOVA with Bonferroni comparison.
Only the significance values compared to the control samples ”ct” in the same medium are shown. *p<0.05, ****p<0.0001.
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5. Conclusion and outlook

This thesis investigates how AI algorithms such as t-SNE can contribute to the analysis
of flow cytometry data from human hematopoietic cells and support clinical diagnostics.
First, HSPCs were examined using a developed t-SNE protocol. The immunological phe-
notype of HSPCs was analyzed based on the expression of the markers CD34, CD38,
CD123, CD45RA and PD-L1 and compared with the immunophenotype of blasts and
LSCs in AML and MDS. Using the t-SNE map created from the common data set, the
manually defined gates could be assigned to diagnostically relevant cell populations, two
of which were predominantly leukemia-related. It was shown that this method can be ap-
plied to resolve fine substructures within a cell population, reflecting the subtle differences
between the cells. For the selected markers it has been shown that the differences between
HSPCs in comparison to blasts, and LSCs in AML and MDS are likely to be determined
by the different proportions of certain cell types and different intensities of fluorescent
markers within the cell types, rather than the exclusive presence of certain cell types.
Furthermore, a method for classifying new samples based on the similarity comparison
with t-SNE reference maps was proposed, using the pearson coefficient as a quantitative
measure. This concept can also be applied to monitor the evolution of cell populations or
patients undergoing therapy.
The uptake of CNDs in hematopoietic cells from healthy donors compared to patients
with AML was examined as a parameter in the AI-supported evaluation. There were sig-
nificant differences in the uptake between the two groups and between different cell types,
which could be visualized concisely in a two-dimensional plot using t-SNE. While all cell
types took up the CNDs, the CD34+ and CD33+ subsets of the AML samples showed a
significantly reduced uptake. Having shown in principle, that the CNDs can selectively
address specific cell subsets, an attempt was made to increase selective uptake by modify-
ing the CNDs. For this purpose, the CNDs were modified with various monosaccharides
and glycooligomers. No differences were observed in the uptake of CNDs between the
different cell types as a function of the receptors, which are expressed according to the
literature. On the other hand, differences were found in the uptake rate. CNDs that were
functionalised with monosaccharides such as mannose or galactose showed a two- to three-
fold increase in uptake compared to pristine CNDs and other conjugates. One preliminary
explanation for the increased uptake of the monosaccharides could be the increased level
of adsorption to the cell membrane through electrostatic interactions or sugar-mediated,
cell type-independent selective binding.
Finally, the influence of CNDs on the lysosomes and the process of autophagy was in-
vestigated, as well as whether the CNDs are suitable as carriers for drug delivery into
the lysosomes. The CNDs were shown to be inert as carriers and did not significantly
affect lysosomal processes and autophagy as characterised by cathepsin B and L,the au-
tophagy markers SQSTM1/p62 and LC3, and proteome analysis. As an example of a
drug bPEI was coupled to the CNDs. It could be shown that bPEI was successfully de-
livered into lysosomes by the CNDs, confocal florescence microscopy revealing increased
accumulation of bPEI-CNDs in lysosomes compared to pristine CNDs. In addition, it was
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observed that the effects of free bPEI on the cells were attenuated by binding to the CNDs.

In summary, questions regarding the contribution of AI-assisted analysis of flow cytometry
data of hematopoietic cells and clinical diagnostics have been successfully answered by the
work this thesis is based on. The t-SNE supported analysis of hematopoietic cells could
- by expanding to more markers - help to further characterize cell subsets on the basis
of the rich substructure resolvable by t-SNE and to identify possible differences between
healthy and diseased cells in order to derive potentially suitable therapeutic measures.
By using more markers, which ideally exclude each other, a better separation of the cell
populations within the t-SNE plot may be achieved [22]. This may be used to automate
the gating process utilizing algorithms that, for example, recognize density-based clusters
without specifying a number of clusters in advance. In order to further develop the clas-
sification of new samples using a t-SNE reference image, it is necessary that the reference
image has a consistent and unchanging assignment of the cell types on the t-SNE map,
consisting of as many samples as possible, so that subtypes of the disease to be diagnosed
are adequately represented. Methods recently presented by D. Kobak, and P. Berens [23]
as well as Poličar et al. [63] for embedding new samples into an existing t-SNE plot for
single-cell transcriptomics data could be integrated into the algorithm to enable classifica-
tion without any impact on the reference image once new samples are inserted. It is worth
noting that the concepts presented are not limited to flow cytometry data from patients
with AML and MDS, but can be applied to any multiparameter diagnostic flow cytometry
data or to single-cell data in general. Other algorithms should also be tested for possible
advantages in specific applications.
Regarding the selective uptake of the CNDs synthesized by the working group and their
influence on cellular processes and use as a carrier in drug delivery systems relevant ques-
tions were answered and new areas of investigation have opened up driving the need for
future work. The predominant localization in the lysosomes observed to date could be
used for targeted drug delivery, for example to address lysosomal storage diseases or neu-
rodegenerative diseases. It should be noted that the coupling of the compound to the
CNDs may negatively impact the therapeutically effect as observed in the case of bPEI.
The CNDs appear to be promising candidates for the development of a drug delivery sys-
tem, as they have so far exposed characteristics as inert carriers regarding the lysosomal
function and autophagy processes. Consequently, coupling the CNDs with corresponding
drugs could be investigated. Organoids would be particularly suitable for this purpose,
as they come closer to the complex arrangement and interaction of cells in the human
body than the conventional two-dimensional cell culture. Selective uptake should also be
investigated further and attempts should be made to reinforce the trends found.
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[63] P. G. Poličar, M. Stražar, and B. Zupan, “Embedding to reference t-SNE space
addresses batch effects in single-cell classification,” Machine Learning, vol. 112,
no. 2, pp. 721–740, 2023.

[64] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J. Er,
W. Ding, and C.-T. Lin, “A review of clustering techniques and developments,”
Neurocomputing, vol. 267, pp. 664–681, 2017.

[65] A. E. Ezugwu, A. M. Ikotun, O. O. Oyelade, L. Abualigah, J. O. Agushaka, C. I.
Eke, and A. A. Akinyelu, “A comprehensive survey of clustering algorithms: State-
of-the-art machine learning applications, taxonomy, challenges, and future research
prospects,” Engineering Applications of Artificial Intelligence, vol. 110, 2022.

[66] P.-N. Tan, M. Steinbach, and V. Kumar: Introduction to data mining. Pearson
Education India, 2016.

[67] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Let-
ters, vol. 31, no. 8, SI, pp. 651–666, 2010.

[68] Y. Liu, X. Wu, and Y. Shen, “Automatic clustering using genetic algorithms,”
Applied Mathematics and Computation, vol. 218, no. 4, pp. 1267–1279, 2011.

122

https://arxiv.org/abs/1708.03229
https://arxiv.org/abs/1708.03229


BIBLIOGRAPHY

[69] Amisha, P. Malik, M. Pathania, and V. K. Rathaur, “Overview of artificial intel-
ligence in medicine,” Journal of Family Medicine and Primary Care, vol. 8, no. 7,
pp. 2328–2331, 2019.

[70] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver
operating characteristic (ROC) curve,” Radiology, vol. 143, no. 1, pp. 29–36, 1982.

[71] N. A. Obuchowski, “Receiver operating characteristic curves and their use in radi-
ology,” Radiology, vol. 229, no. 1, pp. 3–8, 2003.

[72] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,
“Dermatologist-level classification of skin cancer with deep neural networks,” Na-
ture, vol. 542, no. 7639, pp. 115–118, 2017.

[73] L. Yu, H. Chen, Q. Dou, J. Qin, and P.-A. Heng, “Automated Melanoma Recogni-
tion in Dermoscopy Images via Very Deep Residual Networks,” IEEE Transactions
on Medical Imaging, vol. 36, no. 4, pp. 994–1004, 2017.

[74] D. Shen, G. Wu, and H.-I. Suk: “Deep Learning in Medical Image Analysis,” Annual
Review of Biomedical Engineering, ser. Annual Review of Biomedical Engineering,
M. Yarmush, Ed., vol. 19, 2017, pp. 221–248.

[75] D. Ueda, A. Shimazaki, and Y. Miki, “Technical and clinical overview of deep
learning in radiology,” Japanese Journal of Radiology, vol. 37, no. 1, pp. 15–33,
2019.

[76] C. Huang, E. A. Clayton, L. Matyunina V, L. D. McDonald, B. B. Benigno, F.
Vannberg, and J. F. McDonald, “Machine learning predicts individual cancer pa-
tient responses to therapeutic drugs with high accuracy,” Scientific Reports, vol. 8,
2018.

[77] F. Michor and K. Polyak, “The Origins and Implications of Intratumor Hetero-
geneity,” Cancer Prevention Research, vol. 3, no. 11, pp. 1361–1364, 2010.

[78] K. Cyll, E. Ersvaer, L. Vlatkovic, et al., “Tumour heterogeneity poses a significant
challenge to cancer biomarker research,” British Journal of Cancer, vol. 117, no. 3,
pp. 367–375, 2017.

[79] K. Bera, K. A. Schalper, D. L. Rimm, V. Velcheti, and A. Madabhushi, “Artificial
intelligence in digital pathology - new tools for diagnosis and precision oncology,”
Nature Reviews Clinical Oncology, vol. 16, no. 11, pp. 703–715, 2019.

[80] B. van Ginneken, A. A. A. Setio, C. Jacobs, and F. Ciompi: “Off-the-shelf convolu-
tional neural network features for pulmonary nodule detection in computed tomog-
raphy scans,” 2015 IEEE 12th International Symposium on Biomedical Imaging
(ISBI), 2015, pp. 286–289.

[81] P. Lakhani and B. Sundaram, “Deep Learning at Chest Radiography: Automated
Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks,”
Radiology, vol. 284, no. 2, pp. 574–582, 2017.

[82] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers: ChestX-ray8:
Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Clas-
sification and Localization of Common Thorax Diseases, 2017. arXiv: 1705.02315
[cs.CV].

123

https://arxiv.org/abs/1705.02315
https://arxiv.org/abs/1705.02315


BIBLIOGRAPHY

[83] P. Rajpurkar, J. Irvin, K. Zhu, et al.: CheXNet: Radiologist-Level Pneumonia De-
tection on Chest X-Rays with Deep Learning, 2017. arXiv: 1711.05225 [cs.CV].

[84] T. Wang, Y. Lei, Y. Fu, J. F. Wynne, W. J. Curran, T. Liu, and X. Yang, “A review
on medical imaging synthesis using deep learning and its clinical applications,”
Journal of Applied Clinical Medical Physics, vol. 22, no. 1, pp. 11–36, 2021.

[85] H. Seo, M. B. Khuzani, V. Vasudevan, C. Huang, H. Ren, R. Xiao, X. Jia, and
L. Xing, “Machine learning techniques for biomedical image segmentation: An
overview of technical aspects and introduction to state-of-art applications,” Medical
Physics, vol. 47, no. 5, E148–E167, 2020.

[86] M. H. S. Segler, T. Kogej, C. Tyrchan, and M. P. Waller, “Generating Focused
Molecule Libraries for Drug Discovery with Recurrent Neural Networks,” ACS Cen-
tral Science, vol. 4, no. 1, pp. 120–131, 2018.

[87] K.-K. Mak and M. R. Pichika, “Artificial intelligence in drug development: Present
status and future prospects,” Drug Discovery Today, vol. 24, no. 3, pp. 773–780,
2019.

[88] J. P. Hughes, S. Rees, S. B. Kalindjian, and K. L. Philpott, “Principles of early
drug discovery,” British Journal of Pharmacology, vol. 162, no. 6, pp. 1239–1249,
2011.

[89] A. A. Kalinin, G. A. Higgins, N. Reamaroon, S. Soroushmehr, A. Allyn-Feuer,
I. D. Dinov, K. Najarian, and B. D. Athey, “Deep learning in pharmacogenomics:
From gene regulation to patient stratification,” Pharmacogenomics, vol. 19, no. 7,
pp. 629–650, 2018.

[90] M. Cheung, J. J. Campbell, L. Whitby, R. J. Thomas, J. Braybrook, and J. Petzing,
“Current trends in flow cytometry automated data analysis software,” Cytometry
Part A, vol. 99, no. 10, pp. 1007–1021, 2021.

[91] J. Quinn, P. W. Fisher, R. J. Capocasale, R. Achuthanandam, M. Kam, P. J.
Bugelski, and L. Hrebien, “A statistical pattern recognition approach for deter-
mining cellular viability and lineage phenotype in cultured cells and murine bone
marrow,” Cytometry Part A, vol. 71A, no. 8, pp. 612–624, 2007.

[92] K. Lo, R. R. Brinkman, and R. Gottardo, “Automated gating of flow cytome-
try data via robust model-based clustering,” Cytometry Part A, vol. 73A, no. 4,
pp. 321–332, 2008.

[93] G. Finak, A. Bashashati, R. Brinkman, and R. Gottardo, “Merging mixture com-
ponents for cell population identification in flow cytometry,” Advances in bioinfor-
matics, vol. 2009, no. 1, p. 247 646, 2009.

[94] S. Pyne, X. L. Hu, K. Wang, et al., “Automated high-dimensional flow cytometric
data analysis,” Proceedings of the National Academy of Sciences of the United States
of America, vol. 106, no. 21, pp. 8519–8524, 2009.

[95] I. P. Sugar and S. C. Sealfon, “Misty mountain clustering: Application to fast
unsupervised flow cytometry gating,” BMC Bioinformatics, vol. 11, 2010.

[96] N. Aghaeepour, R. Nikolic, H. H. Hoos, and R. R. Brinkman, “Rapid Cell Popu-
lation Identification in Flow Cytometry Data,” Cytometry Part A, vol. 79A, no. 1,
pp. 6–13, 2011.

124

https://arxiv.org/abs/1711.05225


BIBLIOGRAPHY

[97] N. Aghaeepour, G. Finak, H. Hoos, T. R. Mosmann, R. Brinkman, R. Gottardo,
R. H. Scheuermann, C. A. P. C. Flow, and D. Consortium, “Critical assessment
of automated flow cytometry data analysis techniques,” Nature Methods, vol. 10,
no. 3, pp. 228–238, 2013.

[98] P. Qiu, “Computational prediction of manually gated rare cells in flow cytometry
data,” Cytometry Part A, vol. 87A, no. 7, pp. 594–602, 2015.

[99] N. Aghaeepour, P. Chattopadhyay, M. Chikina, et al., “A benchmark for evalu-
ation of algorithms for identification of cellular correlates of clinical outcomes,”
Cytometry Part A, vol. 89A, no. 1, pp. 16–21, 2016.

[100] C. P. Verschoor, A. Lelic, J. L. Bramson, and D. M. E. Bowdish, “An introduction
to automated flow cytometry gating tools and their implementation,” Frontiers in
Immunology, vol. 6, 2015.

[101] Z. C. Hu, S. Bhattacharya, and A. J. Butte, “Application of Machine Learning for
Cytometry Data,” Frontiers in Immunology, vol. 12, 2022.

[102] M. C. Béné, F. Lacombe, and A. Porwit, “Unsupervised flow cytometry analysis in
hematological malignancies: A new paradigm,” International Journal of Laboratory
Hematology, vol. 43, no. 1, pp. 54–64, 2021.

[103] P. Q. Zhong, M. Z. Hong, H. Y. He, J. Zhang, Y. M. Chen, Z. G. Wang, P. S. Chen,
and J. Ouyang, “Diagnosis of Acute Leukemia by Multiparameter Flow Cytometry
with the Assistance of Artificial Intelligence,” Diagnostics, vol. 12, no. 4, 2022.

[104] C.-M. Aanei, R. Veyrat-Masson, L. Rigollet, J. Stagnara, E. T. Tardy, E. Daguenet,
D. Guyotat, and L. C. Catafal, “Advanced Flow Cytometry Analysis Algorithms
for Optimizing the Detection of ”Different From Normal” Immunophenotypes in
Acute Myeloid Blasts,” Frontiers in Cell and Developmental Biology, vol. 9, 2021.

[105] F.-M. Cheng, S.-C. Lo, C.-C. Lin, W.-J. Lo, S.-Y. Chien, T.-H. Sun, and K.-C. Hsu,
“Deep learning assists in acute leukemia detection and cell classification via flow
cytometry using the acute leukemia orientation tube,” Scientific Reports, vol. 14,
no. 1, 2024.

[106] V. Clichet, D. Lebon, N. Chapuis, J. Zhu, V. Bardet, J.-P. Marolleau, L. Garcon, A.
Caulier, and T. Boyer, “Artificial intelligence to empower diagnosis of myelodys-
plastic syndromes by multiparametric flow cytometry,” Haematologica, vol. 108,
no. 9, pp. 2435–2443, 2023.

[107] J. P. Vial, N. Lechevalier, F. Lacombe, P.-Y. Dumas, A. Bidet, T. Leguay, F.
Vergez, A. Pigneux, and M. C. Bene, “Unsupervised Flow Cytometry Analysis
Allows for an Accurate Identification of Minimal Residual Disease Assessment in
Acute Myeloid Leukemia,” Cancers, vol. 13, no. 4, 2021.

[108] M. E. Salama, G. E. Otteson, J. J. Camp, J. N. Seheult, D. Jevremovic, D. R.
Holmes III, H. Olteanu, and M. Shi, “Artificial Intelligence Enhances Diagnostic
Flow Cytometry Workflow in the Detection of Minimal Residual Disease of Chronic
Lymphocytic Leukemia,” Cancers, vol. 14, no. 10, 2022.

[109] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon
Films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.

125



BIBLIOGRAPHY

[110] N. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism
in one- or two-dimensional isotropic heisenberg models,” Physical Review Letters,
vol. 17, no. 22, pp. 1133–1136, 1966.

[111] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
“The electronic properties of graphene,” Review of modern physics, vol. 81, no. 1,
pp. 109–163, 2009. doi: https://doi.org/10.1103/RevModPhys.81.109.

[112] X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing Graphene
Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applica-
tions,” Small, vol. 11, no. 14, pp. 1620–1636, 2015.

[113] X. Zhang, C. Wei, Y. Li, and D. Yu, “Shining luminescent graphene quantum dots:
Synthesis, physicochemical properties, and biomedical applications,” TrAC Trends
in Analytical Chemistry, vol. 116, pp. 109–121, 2019.

[114] G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen,
and M. Chhowalla, “Blue Photoluminescence from Chemically Derived Graphene
Oxide,” Advanced Materials, vol. 22, no. 4, pp. 505–509, 2010.

[115] S. Kim, S. W. Hwang, M.-K. Kim, et al., “Anomalous behaviors of Visible Lumi-
nescence from Graphene Quantum Dots: Interplay between Size and Shape,” ACS
Nano, vol. 6, no. 9, pp. 8203–8208, 2012.

[116] K. Ritter and L. J.W., “The influence of edge structure on the electronic proper-
ties of graphene quantum dots and nanoribbons,” Nature Materials, vol. 8, no. 3,
pp. 235–242, 2009.

[117] S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong, and S. Jeon, “Tuning the Photo-
luminescence of Graphene Quantum Dots through the Charge transfer Effect of
Functional Groups,” ACS Nano, vol. 7, no. 2, pp. 1239–1245, 2013.

[118] S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence
mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer
dots): Current state and future perspective,” Nano Research, vol. 8, no. 2, pp. 355–
381, 2015.

[119] Z. L. Wu, M. X. Gao, T. T. Wang, X. Y. Wan, L. L. Zhenga, and C. Z. Huang,
“A general quantitative pH sensor developed with dicyandiamide N-doped high
quatum yield graphene quatum dots,” Nanoscale, vol. 6, no. 7, pp. 3868–3874,
2014.

[120] S. Zhu, J. Zhang, C. Qiao, et al., “Strongly green-photoluminescent graphene quan-
tum dots for bioimaging applications,” Chemical Communications, vol. 47, no. 24,
pp. 6858–6860, 2011.

[121] D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal Route for Cutting Graphene
Sheets into Blue-Luminescent Graphene Quantum Dots,” Advanced Materials, vol. 22,
no. 6, pp. 734–738, 2010.

[122] J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-Pot Synthesis of
Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation
of Graphite in Ionic Liquids,” ACS Nano, vol. 3, no. 8, pp. 2367–2375, 2009.

126

https://doi.org/https://doi.org/10.1103/RevModPhys.81.109


BIBLIOGRAPHY

[123] L. Zheng, Y. Chi, Y. Dong, J. Lin, and B. Wang, “Electrochemiluminescence of
Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite,”
Journal of the American Chemical Society, vol. 131, no. 13, pp. 4564–4565, 2009.

[124] L. Lin and S. Zhang, “Creating high yield water soluble luminescent graphene
quantum dots via exfoliating and disintegrating carbon nanotubes and graphite
flakes,” Chemical Communications, vol. 48, no. 82, pp. 10 177–10 179, 2012.

[125] M. Bottini, C. Balasubramanian, M. Dawson, A. Bergamaschi, S. Bellucci, and
T. Mustelin, “Isolation and characterization of fluorescent nanoparticles from pris-
tine and oxidized electric arc-produced single-walled carbon nanotubes,” Journal
of Physical Chemistry B, vol. 110, no. 2, pp. 831–836, 2006.

[126] Y.-P. Sun, B. Zhou, Y. Lin, et al., “Quantum-sized carbon dots for bright and
colorful photoluminescence,” Journal of the American Chemical Society, vol. 128,
no. 24, pp. 7756–7757, 2006.

[127] J. Lee, K. Kim, W. I. Park, et al., “Uniform Graphene Quantum Dots Patterned
from Self-Assembled Silica Nanodots,” Nano Letters, vol. 12, no. 12, pp. 6078–6083,
2012.

[128] L. Fan, M. Zhu, X. Lee, R. Zhang, K. Wang, J. Wei, M. Zhong, D. Wu, and H.
Zhu, “Direct Synthesis of Graphene Quantum Dots by Chemical Vapor Deposition,”
Particle & Particle Systems Characterization, vol. 30, no. 9, pp. 764–769, 2013.

[129] B. Wang and S. Lu, “The light of carbon dots: From mechanism to applications,”
Matter, vol. 5, no. 1, pp. 110–149, 2022.

[130] Z.-C. Yang, M. Wang, A. M. Yong, S. Y. Wong, X.-H. Zhang, H. Tan, A. Y. Chang,
X. Li, and J. Wang, “Intrinsically fluorescent carbon dots with tunable emission
derived from hydrothermal treatment of glucose in the presence of monopotassium
phosphate,” Chemical Communications, vol. 47, no. 42, pp. 11 615–11 617, 2011.

[131] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, “Microwave synthe-
sis of fluorescent carbon nanoparticles with electrochemiluminescence properties,”
Chemical Communications, no. 34, pp. 5118–5120, 2009.

[132] A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, and
E. P. Giannelis, “Surface functionalized carbogenic quantum dots,” Small, vol. 4,
no. 4, pp. 455–458, 2008.

[133] H. Peng and J. Travas-Sejdic, “Simple Aqueous Solution Route to Luminescent
Carbogenic Dots from Carbohydrates,” Chemistry of Materials, vol. 21, no. 23,
pp. 5563–5565, 2009.

[134] J. Zong, Y. Zhu, X. Yang, J. Shen, and C. Li, “Synthesis of photoluminescent
carbogenic dots using mesoporous silica spheres as nanoreactors,” Chemical Com-
munications, vol. 47, no. 2, pp. 764–766, 2011.

[135] F. Yan, Y. Jiang, X. Sun, Z. Bai, Y. Zhang, and X. Zhou, “Surface modification and
chemical functionalization of carbon dots: A review,” Microchimica Acta, vol. 185,
no. 9, 2018.

[136] B. Wang, H. Cai, G. I. N. Waterhouse, X. Qu, B. Yang, and S. Lu, “Carbon Dots
in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review,” Small
Science, vol. 2, no. 6, 2022.

127



BIBLIOGRAPHY

[137] W. Dong, S. Zhou, Y. Dong, J. Wang, X. Ge, and L. Sui, “The preparation of
ethylenediamine-modified fluorescent carbon dots and their use in imaging of cells,”
Luminescence, vol. 30, no. 6, pp. 867–871, 2015.

[138] W. Kasprzyk, P. P. Romanczyk, J. Feldmann, J. K. Stolarczyk, and T. Swiergosz,
“The role of molecular fluorophores in the photoluminescence of carbon dots de-
rived from citric acid: Current state-of-the-art and future perspectives,” Nanoscale,
vol. 14, no. 39, pp. 14 368–14 384, 2022.

[139] L. Wang, S.-J. Zhu, H.-Y. Wang, et al., “Common Origin of Green Luminescence
in Carbon Nanodots and Graphene Quantum Dots,” ACS Nano, vol. 8, no. 3,
pp. 2541–2547, 2014.

[140] S. Zhu, J. Shao, Y. Song, X. Zhao, J. Du, L. Wang, H. Wang, K. Zhang, J.
Zhang, and B. Yang, “Investigating the surface state of graphene quantum dots,”
Nanoscale, vol. 7, no. 17, pp. 7927–7933, 2015.

[141] S. Zhu, L. Wang, N. Zhou, X. Zhao, Y. Song, S. Maharjan, J. Zhang, L. Lu, H.
Wang, and B. Yang, “The crosslink enhanced emission (CEE) in non-conjugated
polymer dots: from the photoluminescence mechanism to the cellular uptake mech-
anism and internalization,” Chemical Communications, vol. 50, no. 89, pp. 13 845–
13 848, 2014.

[142] J. Sun, J. Yu, Z. Jiang, Z. Zhao, and Y. Xia, “Fluorescent Carbonized Polymer Dots
Prepared from Sodium Alginate Based on the CEE Effect,” ACS Omega, vol. 5,
no. 42, pp. 27 514–27 521, 2020.

[143] M. Fu, F. Ehrat, Y. Wang, K. Z. Milowska, C. Reckmeier, A. L. Rogach, J. K. Sto-
larczyk, A. S. Urban, and J. Feldmann, “Carbon Dots: A Unique Fluorescent Cock-
tail of Polycyclic Aromatic Hydrocarbons,” Nano Letters, vol. 15, no. 9, pp. 6030–
6035, 2015.

[144] W. Wang, B. Wang, H. Embrechts, C. Damm, A. Cadranel, V. Strauss, M. Distaso,
V. Hinterberger, D. M. Guldi, and W. Peukert, “Shedding light on the effective
fluorophore structure of high fluorescence quantum yield carbon nanodots,” RSC
Advances, vol. 7, no. 40, pp. 24 771–24 780, 2017.

[145] A. Cappai, C. Melis, L. Stagi, P. C. Ricci, F. Mocci, and C. M. Carbonaro, “Insight
into the Molecular Model in Carbon Dots through Experimental and Theoretical
Analysis of Citrazinic Acid in Aqueous Solution,” Journal of Physical Chemistry
C, vol. 125, no. 8, SI, pp. 4836–4845, 2021.

[146] W. Kasprzyk, T. Swiergosz, S. Bednarz, K. Walas, N. V. Bashmakova, and D.
Bogdal, “Luminescence phenomena of carbon dots derived from citric acid and
urea - a molecular insight,” Nanoscale, vol. 10, no. 29, pp. 13 889–13 894, 2018.

[147] S. Fasbender, S. Allani, C. Wimmenauer, et al., “Uptake dynamics of graphene
quatum dots into primary human blood cells following in vitro exposure,” RSC
Advances, vol. 7, no. 20, pp. 12 208–12 216, 2017.

[148] S. Fasbender, L. Zimmermann, R.-P. Cadeddu, M. Luysberg, B. Moll, C. Janiak, T.
Heinzel, and R. Haas, “The Low Toxicity of Graphene Quantum Dots is Reflected
by Marginal Gene Expression Changes of Primary Human Hematopoietic Stem
Cells,” Scientific Reports, vol. 9, 2019.

128



BIBLIOGRAPHY

[149] D. Kersting, S. Fasbender, R. Pilch, et al., “From in vitro to ex vivo: Subcellular lo-
calization and uptake of graphene quatum dots into solid tumors,” Nanotechnology,
vol. 30, no. 39, p. 395 101, 2019.

[150] A. Kalluri, D. Debnath, B. Dharmadhikari, and P. Patra: “Chapter Twelve -
Graphene Quantum Dots: Synthesis and Applications,” ser. Methods in Enzymol-
ogy, C. V. Kumar, Ed., vol. 609, Academic Press, 2018, pp. 335–354.

[151] P. Miao, K. Han, Y. Tang, B. Wang, T. Lin, and W. Cheng, “Recent advances in
carbon nanodots: Synthesis, properties and biomedical applications,” Nanoscale,
vol. 7, no. 5, pp. 1586–1595, 2015.

[152] H. Ehtesabi, Z. Hallaji, S. Najafi Nobar, and Z. Bagheri, “Carbon dots with ph-
responsive fluorescence: A review on synthesis and cell biological applications,”
Microchimica Acta, vol. 187, no. 2, 2020.

[153] P. Miao, L. Liu, Y. Li, and G. Li, “A novel electrochemical method to detect
mercury (ii) ions,” Electrochemistry Communications, vol. 11, no. 10, pp. 1904–
1907, 2009.

[154] S. N. A. M. Yazid, S. F. Chin, S. C. Pang, and S. M. Ng, “Detection of Sn(II) ions
via quenching of the fluorescence of carbon nanodots,” Microchimica Acta, vol. 180,
no. 1-2, pp. 137–143, 2013.

[155] T. H. Le, H. J. Lee, J. H. Kim, and S. J. Park, “Detection of Ferric Ions and
Catecholamine Neurotransmitters via Highly Fluorescent Heteroatom Co-Doped
Carbon Dots,” Sensors, vol. 20, no. 12, 2020.

[156] Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki, T. Maeda, and Y. Baba,
“Acidic extracellular microenvironment and cancer,” Cancer Cell International,
vol. 13, 2013.

[157] E. Boedtkjer and S. F. Pedersen: “The Acidic Tumor Microenvironment as a Driver
of Cancer,” Annual Review of Physiology, ser. Annual Review of Physiology, M.
Nelson and K. Walsh, Eds., vol. 82, 2020, pp. 103–126.

[158] R. Knoblauch and C. D. Geddes, “Carbon Nanodots in Photodynamic Antimicro-
bial Therapy: A Review,” Materials, vol. 13, no. 18, 2020.

[159] X. Dong, W. Liang, M. J. Meziani, Y.-P. Sun, and L. Yang, “Carbon Dots as Potent
Antimicrobial Agents,” Theranostics, vol. 10, no. 2, pp. 671–686, 2020.

[160] F. Cieplik, D. Deng, W. Crielaard, W. Buchalla, E. Hellwig, A. Al-Ahmad, and
T. Maisch, “Antimicrobial photodynamic therapy - what we know and what we
don’t,” Critical Reviews in Microbiology, vol. 44, no. 5, pp. 571–589, 2018.

[161] R. Klinke, H.-C. Pape, A. Kurtz, and S. Silbernagl, Eds.: 7 Blut: Ein flüssiges
Organsystem, 8. Auflage. Georg Thieme Verlag, 2018.

[162] S. M. van Neerven and L. Vermeulen, “Cell competition in development, homeosta-
sis and cancer,” Nature Reviews Molecular Cell Biology, vol. 24, no. 3, pp. 221–236,
2023.

[163] E. Laurenti and B. Goettgens, “From haematopoietic stem cells to complex differ-
entiation landscapes,” Nature, vol. 553, no. 7689, pp. 418–426, 2018.

129



BIBLIOGRAPHY

[164] Y. K. Bozhilov, I. Hsu, E. J. Brown, and A. C. Wilkinson, “In Vitro Human
Haematopoietic Stem Cell Expansion and Differentiation,” Cells, vol. 12, no. 6,
2023.

[165] H. Cheng, Z. Zheng, and T. Cheng, “New paradigms on hematopoietic stem cell
differentiation,” Protein & Cell, vol. 11, no. 1, SI, pp. 34–44, 2020.

[166] F. Notta, S. Zandi, N. Takayama, et al., “Distinct routes of lineage development
reshape the human blood hierarchy across ontogeny,” Science, vol. 351, no. 6269,
p. 139, 2016.

[167] L. Velten, S. F. Haas, S. Raffel, et al., “Human haematopoietic stem cell lineage
commitment is a continuous process,” Nature Cell Biology, vol. 19, no. 4, pp. 271–
281, 2017.

[168] D. Karamitros, B. Stoilova, Z. Aboukhalil, et al., “Single-cell analysis reveals the
continuum of human lympho-myeloid progenitor cells,” Nature Immunology, vol. 19,
no. 1, pp. 85–97, 2018.

[169] J. Behrends, J. Bischofberger, R. Deutzmann, et al., Eds.: Duale Reihe - Physiolo-
gie, 3. Auflage. Georg Thieme Verlag KG, 2016.

[170] D. Harmening: Clinical Hematology and Fundamentals of Hemostasis. F.A. Davis,
2024.
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vorher nie nachgedacht hatte). Die folgenden Jahre waren eine wirklich spannende, lehrre-
iche, wenn auch herausfordernde Zeit, in der du immer ein offenes Ohr hattest und versucht
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