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Zusammenfassung

Functional localizers sind fMRT-Experimente, die die funktionelle Neuroanatomie von
Individuen charakterisieren sollen. Allerdings verwenden diese Paradigmen selektiv aus-
gewihlte, experimentell streng kontrollierte Reize, stiitzen sich auf die kooperative Mitar-
beit des jeweiligen Individuums, und kénnen iiblicherweise nur eine Doméne von Gehirn-
funktionen abbilden. Im Gegensatz dazu bieten naturalistische Stimuli wie Filme oder
auditorische Erzdhlungen ein fesselndes, aufgabenfreies Paradigma, das der Komplex-
itdt und Vielfalt des alltiglichen Erlebens ndher kommt, und dadurch eine Vielzahl von
Gehirnfunktionen abbilden kdnnte. Der Schwerpunkt dieser Dissertation richtet sich
auf das “Parahippocampal Place Area” (PPA), ein funktionelles Areal hoherer visueller
Wahrnehmung, das erhéhte himodynamische Aktivitdt aufweist, wenn Studienteilnehmer
Bilder von Landschaften oder Orientierungspunkten, im Gegensatz Bildern von Gesichtern
oder Werkzeugen, betrachten. Unter Beriicksichtigung der Prinzipien offener, transpar-
enter und reproduzierbarer Wissenschaft untersucht die Arbeit mit zwei methodischen
Ansétzen, ob ein Film und eine auditorische Erzédhlung einen visuellen Localizer ersetzen
kénnten.

Als ersten Ansatz fithrten wir eine modellgetriebene Analyse himodynamischer Aktiv-
itdt wihrend des Films “Forrest Gump” und seiner Audiodeskription durch, die die Haupt-
stimuli des offentlich zugénglichen StudyForrest-Datensatzes sind (studyforrest.org).
Zunichst wurde eine umfassende Annotation der im Film und in der Audiodeskription
vorkommenden gesprochenen Sprache erstellt, um die Grundlage fiir die Modellierung
hdmodynamischer Antworten zu schaffen und das StudyForrest-Projekt als offentlich
zugangliche Wissenschaftsressource zu erweitern. Anschliefend fithrten wir eine Anal-
yse mit dem allgemeinen linearen Modell (GLM) durch, um die PPA in Personen zu
lokalisieren, die zuvor bereits an einem Localizer-Experiment teilgenommen hatten. Die

Ergebnisse legen nahe, dass eine modellgetriebene Analyse auf der Grundlage von An-
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notationen eines Films oder eines ausschlieflich auditorischen naturalistischen Stimulus
verwendet werden kann, um ein visuelles Areal in Individuen lokalisieren.

Als zweiten Ansatz untersuchte die Arbeit ein neuartiges, datengetriebenes Verfahren
fiir eine funktionelle Lokalisierung, das es ermdoglicht die Lage der PPA in einem Indi-
viduum zu schétzen, indem es sich mittels functional alignments Daten anderer Indi-
viduen zu Nutze macht. Unter Verwendung des shared response models (SRM) erstellten
wir einen common functional space (CEFS) und individuelle Transformationen, um funk-
tionale Daten von Individuen in einer Referenzgruppe durch den CFS in den Gehirnraum
des zu untersuchenden Individuums zu projizieren. Dariiber hinaus untersuchten wir die
Beziehung zwischen der Menge funktioneller Daten, die fiir das Alignment eines Indi-
viduums mit dem CFS genutzt wurden und der sich anschliefenden Schéitzleistung. Die
Ergebnisse legen nahe, dass eine auditorische Erzdhlung grundsatzlich dazu verwendet
werden kann, um die neuroanatomische Position eines visuelles Areal wie der PPA zu
schitzen. Dariiber hinaus zeigen die Ergebnisse, dass Daten eines 15-miniitigen Scans,
wihrend dem ein Individuum einen Film schaut, hinreichend sind, um Gehirnmuster
genauer zu schétzen als ein Verfahren, das auf einem anatomischen Alignment beruht.

Die Arbeit zeigt jedoch auch Hindernisse in der Entwicklung eines multifunktionalen
naturalistischen Localizers auf. Daten naturalistischer Stimuli stellen eine Herausforderung
fiir modellgetriebene Analysen insofern da, weil sie physiologische und statistische Model-
lannahmen strapazieren. Aufserdem zielen traditionelle Localizer darauf ab, die interindi-
viduelle Variabilitdt zu minimieren und funktionelle Areale in allen gesunden Perso-
nen reliabel zu lokalisieren, wohingegen naturalistische Stimuli hohere interindividuelle
Variabilitat zulassen. Daher hingt das Potenzial eines naturalistischen Stimulus, einen
oder mehrere traditionelle Localizer zu ersetzen, von weiteren Entwicklungen ab, die
die statistischen und methodologischen Herausforderungen angehen. Jedoch kénnte ein
datengetriebener Ansatz, der auf functional alignment beruht, moglicherweise einen nat-
uralistischen Stimulus von &hnlicher Dauer eines traditionellen Localizers verwenden, um

die Ergebnisse vieler funktioneller Localizer schitzen.
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Summary

Functional localizers are fMRI experiments that aim to characterize the functional neu-
roanatomy on the level of individuals. However, these paradigms employ selectively sam-
pled, tightly controlled stimuli, rely on an individual’s compliance, and can typically map
only one domain of brain functions. In contrast, naturalistic stimuli, such as movies or
auditory narratives, provide an engaging, task-free paradigm that more closely resembles
the complexity and richness of real-life experiences, and sample a wide range of brain
functions. This dissertation focuses on the “parahippocampal place” (PPA), a high-level
visual area, that exhibits increased hemodynamic activity when participants view images
of landscapes or landmarks, as opposed to other stimuli, such as faces or tools. Following
the principles of open, transparent, and reproducible science, the thesis explores whether
a movie and an auditory narrative could replace a visual localizer in two methodological
ways.

As the first approach, we performed a model-driven analysis of hemodynamic activity
during the movie “Forrest Gump” and its audio-description, which are the core stimuli of
the publicly accessible studyforrest dataset (studyforrest.org). An exhaustive annota-
tion of speech occurring in the movie and audio-description was created to establish the
foundation for modeling hemodynamic responses and to extend the studyforrest project
as an open science resource. Subsequently, we performed a general linear model (GLM)
analysis to localize the PPA, which had previously been identified in the same group of
participants using a visual localizer. Results suggest that a model-driven analysis based
on annotations of a movie or an exclusively auditory naturalistic stimulus can be used to
localize a visual area on an individual level.

As the second approach, we explored a novel functional alignment procedure that
allows estimating the location of the PPA in an individual by leveraging data collected
from of a reference group. Using a shared response model (SRM), we created a common

functional space (CFS) and subject-specific transformations to project functional data
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from the reference through the CFS into an individual’s brain space. Additionally, we
investigated the relationship between the quantity of data used for functional alignment
and subsequent estimation performance. Results suggest that an auditory narrative can,
in principle, be used to estimate a visual area such as the PPA. Moreover, 15 minutes of
functional scanning during movie watching can generate a sufficient amount of data to
estimate brain patterns more accurately than a procedure based on anatomical alignment.

The thesis also highlights obstacles in the pursuit of developing a multi-functional nat-
uralistic localizer. Applying a model-driven analysis to naturalistic stimuli is challenging,
as these stimuli stress physiological and statistical assumptions. Moreover, traditional lo-
calizers aim to minimize interindividual variability and reliably localize functional areas in
all healthy individuals, whereas naturalistic stimuli allow for more variability. Therefore,
the potential of a naturalistic stimulus to replace one or multiple traditional localizers
relies on further developments that address the statistical and methodological challenges.
Nevertheless, a data-driven approach based on functional alignment using a naturalistic
stimulus of similar duration to that of one traditional localizer could potentially estimate

the results of many functional localizers.
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List of Abbreviations

BOLD blood oxygen level-dependent
CAS  common anatomical space
CFS common functional space
EBA  extrastriate body area

EEG  electroencephalography
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FoV field of view

GLM  general linear model

fMRI functional magnetic resonance imaging
MEG magnetoencephalography
OPA  occipital place area

PCA  principal component analysis
PET  positron emission tomography
PPA  parahippocampal place area
ROI region of interest

RSC  retrosplenial complex

TR time of repetition

SRM  shared response model
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1 Introduction

“A remarkable feature of the vertebrate brain is the anatomical specialization of cortical
regions for the processing of different types of information. Since the late 19th century, it
has been recognized that restricted lesions of the human brain result in location-specific
sensory, motor or cognitive deficits” (Cohen & Bookheimer, 1994, p. 268). Contemporary
human brain mapping (e.g., Raichle, 2009) investigates in vivo the brain’s topographic
organization (e.g., Eickhoff, Constable, & Yeo, 2018) by specifying “in as much detail as
possible the localisation of function in the human brain” (Savoy, 2001, p. 10). Since
the early 1990s, brain imaging studies have used functional magnetic resonance imaging
(fMRI) to measure blood oxygen level-dependent (BOLD) activity as a proxy for neural
activation. Replicated findings in the domain of high-visual perception, for example,
suggest that category-selective brain regions, such as the parahippocampal place area
(R. Epstein, Harris, Stanley, & Kanwisher, 1999; R. A. Epstein & Kanwisher, 1998)
or the fusiform face area (Kanwisher, McDermott, & Chun, 1997; Kanwisher & Yovel,
2006), exhibit significantly increased BOLD activity correlated with a “preferred” (Op de
Beeck, Haushofer, & Kanwisher, 2008, p. 123) stimulus class. The parahippocampal place
area (PPA) responds more strongly when participants are viewing images of landscapes
or landmarks compared to images of, e.g., faces; vice versa, the fusiform face area (FFA)
responds more strongly when participants are viewing images of faces compared to images
of scenes.

However, most studies in functional imaging research have averaged data across study
participants for practical (e.g., limited scan time per subject), statistical reasons (e.g., im-
proved signal-to-noise ratio), or to generalize from study participants to a broader (neuro-
logically healthy) population. While studies that average data across study participants
may draw population-level inferences, they also risk losing individual-level information
and may capture only the “‘common denominator” (Pinel et al., 2007, p. 2) of functional
patterns. Yet, in order advance human brain mapping towards clinical applications that
assess health and disease, fMRI data need to be interpreted on the level of individuals
(Dubois & Adolphs, 2016; Wegrzyn et al., 2018).

1.1 Functional localization

Functional localizers (s. Friston, Rotshtein, Geng, Sterzer, & Henson, 2006; Saxe, Brett,
& Kanwisher, 2006, for reviews) are fMRI experiments that aim to characterize the topog-
raphy (i.e. the location, size, and shape) of functional areas whose hemodynamic activity
correlates with perceptual processes, such as the perception of object categories (Kan-
wisher et al., 1997), or cognitive processes, such as theory of mind (Spunt & Adolphs,
2014). Functional localizers are frequently used as a separate experiment to identify a
subject-specific functional region of interest (ROI) and reduce the number of voxels in-
vestigated in the main experiment (Poldrack, 2007; Saxe et al., 2006). Additionally, they
may be employed as a diagnostic tool before neurosurgery (cf. Silva, See, Essayed, Golby,



& Tie, 2018; Szaflarski et al., 2017). However localizers are designed to maximize detec-
tion power, use carefully selected, simplified and tightly controlled stimuli presented in a
block-wise manner, and are often accompanied by a task to keep study participants at-
tentive. Consequently, one localizer paradigm can typically map only one domain of brain
functions. In order to map many different processes despite limited resources, researchers
have developed more time-efficient, multi-functional localizer batteries (e.g., Barch et al.,
2013; Drobyshevsky, Baumann, & Schneider, 2006; Pinel et al., 2007; Pinho et al., 2020,
2018). For example, Pinel et al. (2007) uses a range of dedicated stimuli and specific
tasks in a 5-minute routine to map processes of “auditory and visual perception, motor
actions, reading, language comprehension, and mental calculation” (Pinel et al., 2007, p.
15). Nonetheless, current paradigms face two challenges. From a theoretical standpoint,
localizers rely on selectively sampled, tightly controlled stimuli presented in blocks, and do
not resemble how we perceive the real world outside of the laboratory in daily life. From
a practical standpoint, localizers rely on participants’ comprehension of task instructions
and compliance during the scanning session, which can be difficult to achieve in clinical
or pediatric populations (Eickhoff, Milham, & Vanderwal, 2020; Vanderwal, Eilbott, &
Castellanos, 2019; Vanderwal, Kelly, Eilbott, Mayes, & Castellanos, 2015).

1.2 Naturalistic stimuli

Because a major goal of neuroscience is not to reveal how the brain responds to blocks of
stimuli presented in a laboratory setting, but how the brain processes information during
everyday perception, naturalistic stimuli are gaining popularity in neuroimaging. Nat-
uralistic stimuli are “a class of stimuli that aim to evoke more naturalistic patterns of
neural responses than traditional controlled artificial stimuli. Naturalistic paradigms are
typically complex and dynamic, and longer in duration than many conventional stimuli.”
(Vanderwal et al., 2019, p. 2). Currently, the most popular naturalistic stimuli in neu-
roscience are movies and auditory narratives (cf. Sonkusare, Breakspear, & Guo, 2019,
for an introduction) that provide a time-locked event structure, sample a broad range of
brain states, and engage multiple perceptual and cognitive systems in parallel (Haxby,
Gobbini, & Nastase, 2020).

Naturalistic stimuli have several advantages over traditional paradigms. From a the-
oretical standpoint, naturalistic stimuli promise an increased extent of both subtypes
of external validity, namely population validity and ecological validity (Bracht & Glass,
1968). Population validity refers to the extent to which inferences drawn from an ex-
periment’s results may generalize from the experiment’s sample of subjects and stimuli
to the total population of potential subjects and stimuli (Bracht & Glass, 1968; West-
fall, Nichols, & Yarkoni, 2016). Ecological validity refers to the extent to which inferences
drawn from an experiment’s results may generalize from the experiment’s setting, stimuli,
and task to nonexperimental situations (Bracht & Glass, 1968; Orne, 1962; Schmuckler,
2001). Naturalistic stimuli promise an increased population validity of stimuli because the
stimulus features (i.e. the variables or stimulus classes) that are embedded in a natural-
istic stimulus represent a more random sample from the total population of stimuli that
might have been used (Westfall et al., 2016). Naturalistic stimuli also promise a higher
ecological validity because they more closely resemble how we experience our environment
outside of the scanner bore (Hasson & Honey, 2012).

Audio-visual movies and spoken narratives have been used during fMRI (s. Hamilton
& Huth, 2020; Hasson et al., 2008; Jédaskeldinen, Sams, Glerean, & Ahveninen, 2021;
Saariméki, 2021, for reviews), and electroencephalography (EEG) or magnetoencephalo-



graphy (MEG) data acquisition (s. Alday, 2019; Kandylaki & Bornkessel-Schlesewsky,
2019, for reviews). Previous studies have shown that watching a movie (Hasson, Malach,
& Heeger, 2010; Hasson, Nir, Levy, Fuhrmann, & Malach, 2004) or listening to a narrative
(Lerner, Honey, Silbert, & Hasson, 2011; S. M. Wilson, Molnar-Szakacs, & Iacoboni, 2008)
reliably synchronizes spatiotemporal responses across multiple subjects in a large part of
the brain compared to, for example, an unedited video of a concert taken from a fixed
viewpoint (Hasson et al., 2008). Importantly, a pioneering study by Bartels and Zeki
(2004) demonstrated results at a group level, indicating that functional specialization of
cortical areas is preserved during naturalistic stimulation. Hence, on an individual level, a
naturalistic stimulus could, in theory, also be used as a more life-like paradigm to replace
traditional localizer paradigms.

From a practical standpoint, naturalistic stimuli require minimal instructions given by
the experimenter, and place minimal task demands on study participants, who can simply
enjoy the movie or audio story. In addition, movies and narratives provide an interesting
and engaging stimulation that can put participants at ease in the uncomfortable and noisy
MRI scanner. Consequently, naturalistic stimuli promise improved data quality due to
reduced fatigue and head movement, particularly in children (Vanderwal et al., 2015),
and possibly psychiatric (Eickhoff et al., 2020) or elderly individuals.

Nevertheless, naturalistic stimuli also have disadvantages over traditional paradigms.
First, the majority of naturalistic stimuli used in neuroimaging have been created by
professional production companies for commercial purposes, rather than for research pur-
poses. The temporal structure of stimulus features embedded in professionally produced
naturalistic stimuli is fixed, and thus reproducible, but initially not explicitly known.
Consequently, modeling brain activity correlating with stimulus features embedded in a
stimulus’ time course is challenging (Saariméki, 2021; Simony & Chang, 2020) because
such models, like a traditional general linear model (GLM), rely on the stimulus features
being annotated. The lack of extensive annotations has resulted in a “usage bottleneck”
(Aliko, Huang, Gheorghiu, Meliss, & Skipper, 2020, p. 16) and may be the main reason
why explicit models of embedded stimulus features are “notoriously” (Richard, Martin,
Pinho, Pillow, & Thirion, 2019, p. 1), if not “prohibitively” (Nastase, Gazzola, Hasson, &
Keysers, 2019, p. 676) difficult to construct. Second, considering practical and monetary
constraints in a clinical context, presenting a full feature film typically lasting 90 to 120
minutes is inappropriate as an individual diagnostic procedure.

1.3 Ethics protocol

All data acquisitions were jointly approved by the Ethics Committee of Otto-von-Guericke-
University of Magdeburg, Germany (approval reference 37/13).

1.4 Aims of thesis

This dissertation aimed to explore—while adhering to the principles of open, transparent,
and reproducible science—whether a movie and the movie’s audio-description that was
produced for a visually impaired audience could, in principle, replace a traditional localizer
paradigm. As a proof of concept, the dissertation focuses on the PPA that exhibits
increased hemodynamic activity when participants view images of landscapes, buildings
or landmarks, as opposed to, for example, images of faces or tools (s. Aminoff, Kveraga, &
Bar, 2013; R. A. Epstein & Vass, 2014, for reviews). To the author’s knowledge, only one
study (Aziz-Zadeh et al., 2008) compared hemodynamic activity levels in the PPA that



were correlated with different categories presented in spoken sentences. Despite mixed
results, the findings by Aziz-Zadeh et al. (2008) suggest that the PPA does not solely
respond to visually presented scene-related stimuli.

The thesis assessed the feasibility of using the movie and audio-description as alterna-
tives to a visual localizer in two ways. As the first approach, we modeled hemodynamic
activity based on annotated stimulus features that are embedded in the audio-visual
movie and the movie’s audio-description (each lasting ~120m). We then created GLM
t-contrasts using the modeled hemodynamic time courses (i.e. regressors) to locate the
PPA, which was previously identified in the same group of participants by a conventional
block-design functional localizer using static images (Sengupta et al., 2016). However,
conducting a two-hour long fMRI scan session may not be desirable or feasible due to po-
tential compliance issues or constraints on time and resources. Therefore, we also explored
a second approach to localize the PPA in an individual that leverages data collected from
an independent sample of other individuals (i.e. data from a reference group). To address
the issue of anatomical variability across persons, previous studies (Frost & Goebel, 2012;
Rosenke, van Hoof, van den Hurk, Grill-Spector, & Goebel, 2021; Weiner et al., 2018;
Zhen et al., 2017) estimated the location of a participant’s functional area by performing
an anatomical alignment that relies on anatomical scans. However, the anatomical loca-
tion of functional regions varies between individuals (Benson, Butt, Brainard, & Aguirre,
2014; Coalson, Van Essen, & Glasser, 2018; Frost & Goebel, 2012; Langers, 2014; Natu et
al., 2021; Rosenke et al., 2021; Wang, Mruczek, Arcaro, & Kastner, 2015; Weiner et al.,
2014). To address the issue of functional-anatomical variability across persons, we there-
fore performed a functional alignment (cf. Bazeille, Dupre, Richard, Poline, & Thirion,
2021; Haxby, Guntupalli, Nastase, & Feilong, 2020, for reviews), and investigated whether
we can estimate the results of t-contrasts (i.e. statistical Z-maps) that we created in the
previous studies to localize the PPA. Considering that functional alignment relies on
functional scans, we also evaluated the relationship between the quantity of functional
data used for functional alignment and subsequent estimation performance.

1.4.1 Open, transparent, and reproducible science

In the last decade, there has been a growing awareness that the results of scientific publica-
tions are not reproducible or general scientific findings are not replicable. This prompted
some authors to refer to the sciences as being in the midst of a “reproducibility crisis”
or “replication crisis” (Baker, 2016; Nosek et al., 2022; Plesser, 2018; Stupple, Singerman,
& Celi, 2019). “A study is reproducible if all of the code and data used to generate the
numbers and figures in the paper are available and exactly produce the published results”
(Leek & Jager, 2017, p. 111). A study is replicable if the same analysis of data from an
equivalent experiment yields consistent results (Dubois & Adolphs, 2016; Leek & Jager,
2017). The first objective in the context of open science was to meet the requirements
of open, shared, accessible, and transparent science (cf. Fecher & Friesike, 2014; Watson,
2015) as well as a reproducible and replicable research project: to achieve this, the dis-
sertation follows the guidelines and best practices for (a) coding and scientific computing
(G. Wilson et al., 2014), (b) procedures and data analyses (Nichols et al., 2017; Poldrack
et al., 2017; Poldrack, Huckins, & Varoquaux, 2019), and (c) sharing code, created data,
and results (Eglen et al., 2017; Nichols et al., 2017; Pernet & Poline, 2015). The second
objective in the context of open science was to reuse a publicly and freely available dataset
for a new research question that was not anticipated at the time the data were released, to
extend the dataset, and to generate novel findings to be published in open-access journals.



The present work is built upon fMRI data that are part of the studyforrest project
(studyforrest.org). The core of this project are two-hour long BOLD fMRI scans of
participants watching the movie “Forrest Gump” (Zemeckis, 1994) and listening to the
movie’s audio-description that was created for a visually impaired audience by adding
a narrator to the movie’s audio track. Since its first publication in 2014 (Hanke et al.,
2014a), the studyforrest project has served as a resource of raw (and preprocessed) data
for international working groups to conduct and publish independent, peer-reviewed re-
search (cf. studyforrest.org/publications.html). All data, materials, custom code,
analysis steps, and results used or created over the course of this dissertation are version-
controlled—i.e. each change of data is logged and documented—and accessible in stan-
dardized DataLad (datalad.org; Halchenko et al., 2021) datasets. Data analysis pipelines
are designed for automated processing and implemented in freely available and, where
possible, open-source software. Among potential software packages, the tools were cho-
sen that offered the most solid documentation, and a large community of developers and
maintainers to ensure long-term support. All custom code is written in open-source pro-
gramming languages (Python and Bash), version-controlled, documented, and publicly
released. Therefore, all executed steps from downloading input data to visualizing the
results can be rerun to improve reproducibility of current results and to facilitate repli-
cation of findings on other datasets. Finally, because “nature abhors a paywall” (DuPre,
Hanke, & Poline, 2020), publications describing generated data, methodological choices,
analysis steps, and results are published in open-access journals.

1.4.2 Specific objectives and hypotheses

During the pre-alpha stage of Datalad, I contributed to its development by testing its
features on a real-world project, evaluating its user interface and documentation, and
providing feedback to the software engineering team. This work laid the technical foun-
dation for conducting a transparent and reproducible research project, and resulted in
co-authorship of the software’s accompanying publication (s. Halchenko et al., 2021).

In Hausler and Hanke (2021), we created and validated an annotation of speech spo-
ken in the movie, as well as its audio-description, with two objectives in mind. The first
objective was to establish the groundwork for creating models of hemodynamic activ-
ity in response to the movie and the audio-description in Hausler, Eickhoff, and Hanke
(2022). The second objective was to create an exhaustive annotation of speech in order
to extend the studyforrest project and supplement the previously published annotations
of portrayed emotions (Labs et al., 2015), perceived emotions (Lettieri et al., 2019), and
cuts and locations depicted in the movie (Hiusler & Hanke, 2016). In order to validate
the annotation’s quality, we conducted a canonical GLM analysis of modeled hemody-
namic activity based on information drawn from the annotation. Regressors correlating
with speech-related events were contrasted with a regressor correlating with events with-
out speech. We hypothesized that results would reveal clusters of increased activity in
brain regions known to be involved in processing spoken language. The analysis revealed
statistically significant increased hemodynamic activity in a bilateral cortical network
replicating results of previous studies that used tightly controlled stimuli (s. Friederici,
2011; Hickok & Poeppel, 2007; Price, 2012, for reviews), and studies that used data-driven
methods to analyze fMRI data from auditory naturalistic stimulation (Honey, Thompson,
Lerner, & Hasson, 2012; Lerner et al., 2011; Silbert, Honey, Simony, Poeppel, & Hasson,
2014). The results of the validation encouraged us to publish the annotation as an exten-
sion of the studyforrest dataset, and use it as the foundation to be adapted to our specific
needs in Héusler et al. (2022).
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In Héausler et al. (2022), our objective was to investigate the possibility of localiz-
ing the PPA using GLM t-contrasts based annotations of the naturalistic stimuli. For
the analysis of the movie, we relied on a previously published annotation of movie cuts
and the depicted location after each cut (Héusler & Hanke, 2016). For the analysis of the
audio-description, we extended the annotation of speech by further annotating nouns that
the audio-description’s narrator uses to describe the missing visual content. We hypothe-
sized that a mass-univariate GLM analysis would reveal increased hemodynamic activity
in medial temporal regions that were functionally identified as the PPA in the same set
of participants employing a traditional block-design functional localizer (Sengupta et al.,
2016). On a group-average level, the results demonstrate that increased activation in the
PPA during the perception of static images generalizes to the perception of spatial infor-
mation embedded in an audio-visual movie and exclusively auditory naturalistic stimulus.
Results add evidence (cf. Bartels & Zeki, 2004) that functional specialization of cortical
areas is preserved during naturalistic stimulation. On an individual level, the analysis
of the movie yielded bilateral clusters of increased hemodynamic activity in the PPA
of five participants and a unilateral cluster in seven participants. The analysis of the
audio-description revealed bilateral clusters in nine participants and a unilateral cluster
in one participant. These results imply that a model-driven GLM analysis based on a
naturalistic stimulus’ annotation can be used to localize functional areas in individuals.

Conducting a two-hour long fMRI scan session may not be desirable or feasible due to
potential compliance issues or constraints on time and resources. In Chapter 5, we there-
fore aimed to explore an alternative approach to identify the PPA in an individual by
leveraging data from a reference group. To address the challenge of functional-anatomical
variability across individuals, we employed a functional alignment approach using the
shared response model (SRM) (Chen et al., 2015). This approach allowed us to predict
an individual’s results of t-contrasts, created in previous studies using time series from
the visual localizer, movie, and audio-description, by projecting the results of persons
in the reference group from their respective voxel space through a common functional
space (CFS) into the individual’s voxel space. Following a leave-one-subject-out cross-
validation, we split the dataset repeatedly in a set of one test subject and N — 1 training
subjects (the reference group). We then calculated a CFS and subject-specific transfor-
mations based on the training subjects’ concatenated response time series of the visual
localizer, the movie, and the audio-description. We assessed the prediction performance
of each paradigm by aligning the test subject’s response time series from each paradigm
separately with the corresponding time points within the CFS. In an ideal scenario, only
a part of a naturalistic stimulus would serve as a “diagnostic” run to align a new individual
with a CFS and then estimate the results of other paradigms. Therefore, we also aimed to
explore the relationship between the quantity of data of each paradigm used for aligning
a test subject with the CFS and subsequent estimation performance. Results suggest
that an auditory narrative can in principle be used to estimate a visual area such as the
PPA. Moreover, 15 minutes of functional scanning during movie watching can generate a
sufficient amount of data to estimate brain patterns with higher fidelity than a procedure
based on anatomical alignment.



2 DatalLad: distributed system for joint
management of code, data, and their
relationship

This part of the dissertation has been published:

Halchenko, Y. O., Meyer, K., Poldrack, B., Solanky, D. S., Wagner, A. S., Gors, J.,
MacFarlane, D., Pustina, D., Sochat, V., Ghosh, S. S., Mdénch, C., Markiewicz, C. J.,
Waite, L., Shlyakhter, 1., de la Vega, A., Hayashi, S., Hausler, C. O., Poline, J.-P.,
Kadelka, T., Skytén, K., Jarecka, D., Kennedy, D., Strauss, T., Cieslak, M., Vavra, P.,
Toanas, H.-1., Schneider, R., Pfliiger, M., Haxby, J. V., Eickhoff, S. B., & Hanke, M. (2021).
Datal.ad: distributed system for joint management of code, data, and their relationship.
Journal of Open Source Software, 6(63), 3262. doi: 10.21105/joss.03262.

Abstract

DataLad is a Python-based tool for the joint management of code, data,
and their relationship, built on top of a versatile system for data logistics
(git-annex) and the most popular distributed version control system (Git).
It adapts principles of open-source software development and distribution to
address the technical challenges of data management, data sharing, and digital
provenance collection across the life cycle of digital objects. Datal.ad aims to
make data management as easy as managing code. It streamlines procedures
to consume, publish, and update data, for data of any size or type, and to
link them as precisely versioned, lightweight dependencies. Datal.ad helps to
make science more reproducible and FAIR (Wilkinson et al., 2016). It can cap-
ture complete and actionable process provenance of data transformations to
enable automatic re-computation. The DataLad project (datalad.org) deliv-
ers a completely open, pioneering platform for flexible decentralized research
data management (RDM) (Hanke et al., 2021). It features a Python and a
command-line interface, an extensible architecture, and does not depend on
any centralized services but facilitates interoperability with a plurality of ex-
isting tools and services. In order to maximize its utility and target audience,
DataLad is available for all major operating systems, and can be integrated
into established workflows and environments with minimal friction.
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3 A studyforrest extension, an annota-
tion of spoken language in the Ger-
man dubbed movie “Forrest Gump”
and 1ts audio-description

This part of the dissertation has been published:

Héusler, C. O., & Hanke, M. (2021). A studyforrest extension, an annotation of spo-
ken language in the German dubbed movie “Forrest Gump” and its audio-description.
F1000Research, 10(54). doi: 10.12688/£1000research.27621.1.

Abstract

Here we present an annotation of speech in the audio-visual movie “Forrest
Gump” and its audio-description for a visually impaired audience, as an addi-
tion to a large public functional brain imaging dataset (studyforrest.org).
The annotation provides information about the exact timing of each of the
more than 2500 spoken sentences, 16,000 words (including 202 non-speech vo-
calizations), 66,000 phonemes, and their corresponding speaker. Additionally,
for every word, we provide lemmatization, a simple part-of-speech-tagging (15
grammatical categories), a detailed part-of-speech tagging (43 grammatical
categories), syntactic dependencies, and a semantic analysis based on word
embedding which represents each word in a 300-dimensional semantic space.
To validate the dataset’s quality, we build a model of hemodynamic brain ac-
tivity based on information drawn from the annotation. Results suggest that
the annotation’s content and quality enable independent researchers to create
models of brain activity correlating with a variety of linguistic aspects under
conditions of near-real-life complexity.
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4 Processing of visual and non-visual
naturalistic spatial information in the
“parahippocampal place area”

This part of the dissertation has been published:

Héusler, C. O., Eickhoff, S. B., & Hanke, M. (2022). Processing of visual and non-visual
naturalistic spatial information in the “parahippocampal place area”. Scientific Data, 9(1).
doi: 10.1038/s41597-022-01250-4.

Abstract

The “parahippocampal place area” (PPA) in the human ventral visual stream
exhibits increased hemodynamic activity correlated with the perception of
landscape photos compared to faces or objects. Here, we investigate the
perception of scene-related, spatial information embedded in two naturalistic
stimuli. The same 14 participants were watching a Hollywood movie and lis-
tening to its audio-description as part of the open-data resource studyforrest
.org. We model hemodynamic activity based on annotations of selected stim-
ulus features, and compare results to a block-design visual localizer. On a
group level, increased activation correlating with visual spatial information
occurring in the movie is overlapping with a traditionally localized PPA. Ac-
tivation correlating with semantic spatial information occurring in the audio-
description is more restricted to the anterior PPA. On an individual level, we
find significant bilateral activity in the PPA of nine individuals and unilateral
activity in one individual. Results suggest that activation in the PPA gener-
alizes to spatial information embedded in a movie and an auditory narrative,
and may call for considering a functional subdivision of the PPA.
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5 Assessing the quantity of data for func-
tional alignment to estimate responses
in the “parahippocampal place area”

Abstract

Block-design functional localizers are traditionally used to identify functional
brain areas in individuals. However, these paradigms rely on selectively sam-
pled, tightly controlled stimuli and participant compliance, and are typically
limited to mapping a single domain of brain functions. We explored an al-
ternative procedure to identify functional areas, and investigated whether the
results from our previous studies that used a localizer, a movie or the movie’s
audio-description to localize the “parahippocampal place area” (PPA), a high-
visual area, could be estimated in an individual by leveraging data from oth-
ers individuals. To address the challenge of functional-anatomical variability
across persons, our procedure utilizes the shared response model (SRM) to per-
form a functional alignment of study participants with a common functional
space (CFS) that we derived from the concatenated responses to the localizer,
the movie and its audio-description. In particular, we assess the relationship
between the estimation performance and the amount of data from each of the
three paradigms used to align an individual with the CFS. Our results reveal
that data from the audio-description allow to estimate the results of the vi-
sual paradigms, however at the expense of a long scanning session. Moreover,
results indicate that 15 minutes of movie watching provide a sufficient amount
for our functional alignment procedure to more accurately estimate the results
of the visual localizer than a procedure based on anatomical alignment. This
opens up the possibility of estimating results from many functional localizers
using a movie of similar duration to that of one localizer.

13



5.1 Introduction

In the domain of high-visual perception, functionally defined category-selective brain re-
gions, such as the parahippocampal place area (PPA) (R. A. Epstein & Kanwisher, 1998),
the fusiform face area (FFA) (Kanwisher et al., 1997), or the extrastriate body area (EBA)
(Downing, Jiang, Shuman, & Kanwisher, 2001) exhibit significantly increased blood oxy-
gen level-dependent (BOLD) activity correlated with a “preferred” (Op de Beeck et al.,
2008, p. 123) stimulus category. While the topographies, i.e. the location, size and
shape, of these category-selective areas are similarly distributed across individuals, their
exact topographies vary interindividually (Frost & Goebel, 2012; Rosenke et al., 2021;
Zhen et al., 2017, 2015). To identify the topography of functional areas in individuals,
block-design functional localizer paradigms are traditionally used that contrast modeled
hemodynamic responses correlating with the corresponding stimulus category, such as
landscapes, faces, or bodies. Functional localizers are designed to maximize detection
power and thus limited to mapping only one domain of brain functions, such as category-
selective regions (Stigliani, Weiner, & Grill-Spector, 2015), retinotopic visual areas (Wang
et al., 2015), theory of mind (Spunt & Adolphs, 2014), or semantic processes (Fedorenko,
Hsieh, Nieto-Castanion, Whitfield-Gabrieli, & Kanwisher, 2010; Fernandez et al., 2001).
However, when mapping multiple functional domains in a limited amount of time is de-
sired, the approach “one paradigm for one domain of functions” becomes impractical. To
address this issue, researchers have attempted to create time-efficient, multi-functional
localizer batteries (e.g., Barch et al., 2013; Drobyshevsky et al., 2006; Pinel et al., 2007).
Nevertheless, the diagnostic quality of localizer paradigms heavily depends on a partici-
pant’s comprehension of the task instructions and general compliance, a criteria that can
be difficult to meet in clinical or pediatric populations (Eickhoff et al., 2020; Vanderwal
et al., 2019).

In a previous study (Héausler et al., 2022), we demonstrated that a functionally defined
region such as the PPA can be localized using a general linear model (GLM) that is based
on the annotated temporal structure of a two-hour long naturalistic stimulus. However,
conducting a two-hour long fMRI scan session may not be desirable or feasible due to po-
tential compliance issues or constraints on time and resources. An alternative approach
that addresses the challenges of a lengthy scanning procedure is to localize a functional
area in an individual by leveraging data collected from an independent sample of other
individuals (i.e. from a reference group). Previous studies have estimated the most prob-
able location of a functional area in an individual from a reference group by performing
either a volume-based (Zhen et al., 2017, 2015) or a surface-based (Frost & Goebel, 2012;
Rosenke et al., 2021; Wang et al., 2015; Weiner et al., 2018) anatomical alignment. First,
in order to address the issue of anatomical variability across persons, functional data of
persons in the reference group are anatomically aligned with (i.e. projected into) a com-
mon anatomical space, such as the Montreal Neurological Institute brain atlas (MNI152
atlas; Fonov et al., 2011). Then, data are projected from the common anatomical space
into the individual person’s voxel space to provide an estimate of a functional region’s
location. Volume-based anatomical alignment (s. Klein et al., 2009, for a review) aligns
voxels to a three-dimensional common anatomical space (e.g., MNI152 atlas; Fonov et al.,
2011). Surface-based anatomical alignment (Fischl, Sereno, & Dale, 1999; Yeo et al., 2009)
aligns vertices to a two-dimensional common anatomical space (e.g., FreeSurfer’s fsaver-
age template; Fischl, Sereno, Tootell, & Dale, 1999). Whereas volume-based alignment
does not account for individual sulcal and gyral folding patterns, surface-based alignment
respects interindividual variability of the cortical surface. Consequently, previous stud-
ies that compared volume-based and surface-based alignment to estimate the location of
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functional regions have shown that surface-based alignment reduces interindividual vari-
ability and improves estimation performance (Frost & Goebel, 2012; Rosenke et al., 2021;
Wang et al., 2015; Weiner et al., 2018). However, even after surface-based alignment, the
anatomical location of functional regions varies between individuals (Benson et al., 2014;
Coalson et al., 2018; Frost & Goebel, 2012; Langers, 2014; Natu et al., 2021; Rosenke et al.,
2021; Wang et al., 2015; Weiner et al., 2014). Frost and Goebel (2012), for example, local-
ized 13 functional areas of the high-level visual cortex and “found a large variability in the
degree to which functional areas respect macro-anatomical boundaries” (Frost & Goebel,
2012, p. 1369). The remaining variability indicates that functional areas a not neces-
sarily bound to anatomical landmarks, and reflects the degree of functional-anatomical
correspondence between a brain function and its underlying anatomical location.

In order to address the issue of functional-anatomical variability across subjects, func-
tional alignment algorithms, such as hyperalignment (Guntupalli et al., 2016; Haxby et
al., 2011) or the shared response model (SRM) (Chen et al., 2015; Zhang et al., 2016),
have been developed. Whereas anatomical alignment aligns voxels (or vertices) that
share the same anatomical location to a common anatomical space, functional alignment
aligns voxels (or vertices) that share similar functional properties to a common functional
space (CFS). Functional alignment algorithms are typically used to compute both a high-
dimensional, functional brain template (i.e. the CFS) and subject-specific transformations
based on functional data of a study’s participants. A subject-specific transformation al-
lows projecting functional data from a subject’s three-dimensional voxel space into the
CFS. Conversely, the inverse transformation allows projecting data from the CFS into
the subject’s voxel space (Haxby, Guntupalli, et al., 2020; Kumar et al., 2021). The CFS
and transformations are computed (i.e. trained) by either maximizing the interindividual
similarity of BOLD response time series correlating with a time-locked external stimula-
tion (Chen et al., 2015; Haxby et al., 2011; Sabuncu et al., 2010), or by maximizing the
interindividual similarity of connectivity profiles (Feilong, Nastase, Guntupalli, & Haxby,
2018; Guntupalli, Feilong, & Haxby, 2018; Nastase, Liu, Hillman, Norman, & Hasson,
2019). While connectivity-based functional alignment has been shown to be more effec-
tive in aligning connectivity profiles, response-based functional alignment is more effective
in aligning response time-series (Guntupalli et al., 2018). Although functional alignment
algorithms can be applied to fMRI time series data from paradigms employing simplified
stimuli, data from naturalistic stimuli provide improved generalizability of the CFS and
transformations to novel stimuli or tasks. This is presumably because naturalistic stimuli
sample a broader range of brain states (Guntupalli et al., 2016; Haxby et al., 2011).

Consequently, a more recent procedure (e.g., Guntupalli et al., 2016; Haxby et al.,
2011; Jiahui et al., 2020) to estimate the most probable location of a functional area in
an individual from a reference performs a functional alignment. First, the functional data
of individuals in the reference group are anatomically aligned with a common anatomical
space (CAS). Second, to address the issue of functional-anatomical variability across
individuals, the data are functionally aligned with (i.e. projected into) a CFS. Finally,
data are projected from the CFS into the individual’s voxel space, serving as an estimate
of a functional region’s location. For instance, Jiahui et al. (2020) used surface-based
hyperalignment to calculate CFSs and transformations based on data from the movie
“Grand Budapest Hotel” (=50 min; time of repetition (TR)=1s) and the movie “Forrest
Gump” (=120 min; TR=2s). Jiahui et al. (2020) then estimated t¢-contrast maps of a
visual localizer that aimed to identify the FFA by projecting the t-contrast maps of a
reference group through each CFS into an individual’s brain anatomy. Results showed
that t-contrast maps of the visual localizer correlated more highly with contrast maps that
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were estimated via hyperalignment than contrast maps that were estimated via surface-
based anatomical alignment.

Here again, our focus is on the PPA (e.g., Aminoff et al., 2013; R. A. Epstein & Vass,
2014, for reviews). We investigated whether we can estimate the results of ¢-contrasts (i.e.
statistical Z-maps) created in previous studies that aimed to identify the PPA using re-
sponse time series from three different paradigms: (a) a classic visual localizer (Sengupta
et al., 2016) as the assumed “gold standard” to localize the PPA, (b) a movie (Hausler
et al., 2022), and (c) an auditory narrative (H&usler et al., 2022). To obtain predicted
Z-maps of these empirical Z-maps, we employed a volume-based functional alignment
approach that utilizes the SRM (Chen et al., 2015; Richard et al., 2019). The SRM is
an unsupervised probabilistic latent-factor model that decomposes response time series
of participants who have experienced the same stimulus into a CFS of shared features
(also known as shared feature space; Chen et al., 2015) and subject-specific linear trans-
formations. Specifically, the SRM algorithm uses each n'* subject’s response time series
represented as matrix X,, (v voxels by ¢ time points) to compute the CFS C' (k shared
responses by t time points) and subject-specific transformation matrices W, (v voxels by
k shared responses) with orthonormal columns (WW,, = I)). The algorithm randomly
initializes and fits the transformation matrices over iterations to minimize the error in
explaining the participants’ data, while also learning the time course of the shared re-
sponses (cf. brainiak.org/tutorials/11-SRM). Unlike hyperalignment, the number of
dimensions of the CFS is not set by the number of voxels, but rather it is determined
by the researcher to a number lower than the number of voxels, a procedure that also
filters out noise and reduces overfitting (Chen et al., 2015). Each shared feature can be
thought of as a weighted sum of many voxels across subjects (Kumar et al., 2021). A
subject-specific transformation matrix represents the weight of each voxel in a subject’s
voxel space on each shared feature, and allows an functional alignment of subjects by
projecting hemodynamic responses within the voxels into the k-dimensional CFS.

In contrast to previous studies (Guntupalli et al., 2016; Haxby et al., 2011; Jiahui et al.,
2020) that calculated a CFS based on data from a single paradigm, we calculated a multi-
paradigm CFS based on data from three different paradigms. Following an exhaustive
leave-one-subject-out cross-validation, each training subject’s response time series from
the movie “Forrest Gump” (/120 min, split into eight runs; TR=2s), the movie’s audio-
description that was produced for a visually impaired audience (=120 min, split into eight
runs runs; TR=2s), and the visual localizer (~20 min, split into four runs; TR=2s) were
concatenated and fed into the SRM algorithm in order to calculate the CFS and the
training subjects’ transformations (s. Fig. 5.1). We then aligned the test subject with the
CFS to obtain the test subject’s transformation. In order to investigate the prediction
performance of each paradigm, a test subject’s response time series from each of the three
paradigms was separately aligned with the paradigm’s corresponding TRs within the
CFS letting us obtain transformation matrices based on each paradigm. In other words,
the time series of each paradigm served as a separate predictor to estimate three different
empirical Z-maps (i.e. one cross-subject-within-paradigm prediction and two cross-subject-
cross-paradigm predictions per paradigm). Further, considering that acquiring functional
data from a two-hour long naturalistic stimulus to align an individual to a CFS may
not be desirable or feasible, we also investigated the relationship between the quantity
of data of each predictor used to obtain a test subject’s transformation and subsequent
performance of estimating each Z-map. Our results indicate that an auditory narrative
can be employed to estimate the results of a visual localizer, although it requires a longer
functional scanning session. Additionally, we find that ~15min of movie data sampled at
0.5Hz used for volume-based functional alignment can estimate the results of the visual
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Fig. 5.1: Overview of the shared response model (SRM). For each fold of the leave-
one-subject-out cross-validation, each training subject’s response time series from the
movie (/120 min; time of repetition (TR)=2s), the movie’s audio-description (/120 min;
TR=2s), and the visual localizer (~20 min; TR=2s) were concatenated to serve as the
input for the SRM algorithm. From these response time series represented as matrix X,
(v voxels by t time points), the algorithm calculates the common functional space (CFS)
C' (k shared features by ¢ time points) and subject-specific transformation matrices W,
(v voxels by k shared features) with orthonormal columns (WXW, = I}).

localizer more accurately than an estimation procedure based on non-linear volume-based
anatomical alignment. This opens up the possibility of estimating results from many
localizer paradigms using a naturalistic stimulus of similar duration to one localizer to
gain insights into individual functional brain anatomy.

5.2 Methods

For the current study, we used the same subset of the studyforrest dataset as in Héusler
et al. (2022). The same fourteen participants participated in a six-category block-design
visual localizer (Sengupta et al., 2016), watched the audio-visual movie “Forrest Gump”
(Hanke, Adelhofer, et al., 2016), and listened to the movie’s audio-description (Hanke et
al., 2014a). An exhaustive description of the participants, stimulus creation, procedure,
stimulation setup, and fMRI acquisition can be found in the corresponding publications,
while a summary is provided in H&usler et al. (2022).

5.2.1 Preprocessing

The analyses in this study were conducted on the same preprocessed fMRI data (s. github
.com/psychoinformatics-de/studyforrest-data-aligned) that were used for (a) the
technical validation of the dataset (Hanke, Adelhéfer, et al., 2016), (b) the localization
of high-visual areas (Sengupta et al., 2016), and (c) the investigation of responses of the
PPA correlating with naturalistic spatial information (H&usler et al., 2022). We reran
the preprocessing and analyses steps performed in Sengupta et al. (2016) and H&usler et
al. (2022) using FEAT v6.00 (FMRI Expert Analysis Tool; Woolrich, Ripley, Brady, &
Smith, 2001) as shipped with FSL v5.0.9 (FMRIB’s Software Library; S. M. Smith et al.,
2004) to reproduce the time series that served as input for the previous statistical analyses
and their results (i.e. the empirical Z-maps). The preprocessing steps included high-pass
temporal filtering (using a Gaussian-weighted least-squares straight line) for every run
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Fig. 5.2: Size of the bilateral region of interest (ROI) of each participant. In
order to reduce the number of voxels, we warped the union of individual PPAs (cf. Fig.
1 in Héusler et al., 2022) from MNI152 space into each participant’s native voxel space.
The remaining voxels of each participant were further constrained to those voxels that
are included in the respective participant’s FoV of the audio-description (cf. Hanke et al.,
2014a).

of the visual localizer (cutoff period of 100s) and naturalistic stimuli (cutoff period of
1505s). Brain extraction was performed using BET (S. M. Smith, 2002), and data from
all three paradigms were spatially smoothed using a Gaussian kernel with a full width
at half maximum of 4.0mm. A grand-mean intensity normalization was applied to each
run of the functional localizer (four runs, each lasting ~5min; TR=2s) and naturalistic
stimuli (eight runs, each lasting ~15 min; TR=2s). Further analyses on these reproduced
times series were performed using Python (v3.7) scripts that relied on NiBabel v4.0.2
(nipy.org), NumPy v1.21.6 (numpy.org), Pandas v1.3.5 (pandas.pydata.org), Scipy
v1.7.3 (scipy.org), scikit-learn v1.0.2 (scikit-learn.org), BrainlAK v0.11 (brainiak
.org Kumar et al., 2021, 2020), Matplotlib v3.5.3 (matplotlib.org), seaborn v0.11.2
(seaborn.pydata.org), and calling command line functions of FSL.

The SRM requires that the number of samples (i.e. TRs) exceed the number of features
(i.e. voxels). In order to restrict the number of voxels, we created a bilateral ROI for each
participant. Specifically, we warped the union of individual PPAs (s. Fig. 1 in Hausler
et al., 2022) from MNI space into each participant’s voxel space using subject-specific,
non-linear transformation matrices that were previously computed (Hanke et al., 2014a,
github.com/psychoinformatics-de/studyforrest-data-templatetransforms). The
time series of each participant were then masked in their native voxel space by the union
of individual PPAs and the subject-specific field of view (FoV) of the audio-description.
The number of remaining voxels per participant (range 1369-1951, X = 1592, SD = 188)
can be seen in Fig. 5.2. Data of each run were normalized (z-scored) to a mean of zero
(X = 0) and a standard deviation of one (SD = 1). Due to an image reconstruction
problem (cf. Hanke et al., 2014a), the last 75 TRs of the audio-description were missing
in subject 04. The SRM allows for different numbers of voxels across subjects, but the
number of TRs must be the same. Consequently, we removed the last 75 TRs of the
audio-description from the time series of all other participants. As a result, the data used
to fit the SRM in the next step included 3599 TRs of the movie, 3524 TRs of the audio-
description, and 624 TRs of the visual localizer (7747 TRs in total). The time series of
all three paradigms were concatenated and z-scored.

5.2.2 Estimation via functional alignment

To estimate the empirical Z-maps (i.e. the results of the three t-contrast), we followed
a three-step procedure. First, for every fold of the leave-one-subject-out cross-validation
(N=14 participants), we fit a SRM to N — 1 training subjects’ response response time
series from the movie, the audio-description, and the visual localizer. This step generated
a CFS for each fold of the cross-validation and a transformation matrix with orthonormal
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columns for each training subject. Second, we aligned the test subject’s response time
series from the movie, audio-description, and visual localizer separately to the correspond-
ing TRs within the CFS. This procedure yielded different transformation matrices for the
test subject based on data from different paradigms. In order to examine the relationship
between the estimation performance and the amount of data used to generate a trans-
formation matrix, we also varied the number of runs of the paradigms. This additional
procedure during step two produced transformation matrices based on an increasing num-
ber of runs per paradigm. In the third step, we estimated a test subject’s empirical Z-map
by first projecting the training subjects’ empirical Z-maps from their voxel space into the
CFS using their transformation matrices. Then, we projected the training subjects’ Z-
maps from the CFS into the test subject’s voxel space using the transpose of the test
subject’s transformation matrix (that is equivalent to the inverse of the transformation
matrix due to its orthonormal columns). Finally, we obtained the test subject’s pre-
dicted Z-maps by calculating the arithmetic mean of the respective paradigm’s projected
empirical Z-maps.

Fitting the SRM

In order to obtain the CFS and the training subjects’ transformation matrices, we used
the probabilistic SRM algorithm that is implemented in BrainTAK v.11 (Brain Imaging
Analysis Kit; Kumar et al., 2021, 2020), and approximates the SRM based on the Expec-
tation Maximization (EM) algorithm as proposed by Chen et al. (2015) and optimized by
Anderson et al. (2016). We chose a value of k = 10 for the number of shared features (i.e.
the number of dimensions in the CFS) based on the temporal and spatial resolution of our
data (TR = 25s; 2.5 x 2.5 x 2.5mm), the average number of voxels per ROI, and findings
from Haxby et al. (2011). Haxby et al. (2011) used hyperalignment to create a CFS of
1,000 dimensions based on functional data (TR = 3s) of voxels (3 x 3 x 3mm) located
in the ventral temporal cortex. They then reduced the dimensionality of the CFS by
applying a principal component analysis (PCA) in order to determine the subspace that
is sufficient to capture the full range of response-pattern distinctions. Results revealed
that approximately 35 principal components (i.e. dimensions) were sufficient to represent
the information content of a movie from which the CFS was derived. Results also showed
that the cortical topographies of category-selective brain regions was preserved in the
35-dimensional CFS. In the present study, we also computed CFSs of £ = 5, 20, 30, 40, 50
but the prediction performance based on these CFSs barely varied from a 10-dimensional
CFS. The algorithm was set to iterate 30 times to minimize the error.

In order to visualize characteristics of the CFS, we calculated the Pearson correlation
coefficients between the shared responses and the regressors that we previously created
to model hemodynamic responses during the three paradigms (cf. Hausler et al., 2022;
Sengupta et al., 2016). As an example, we chose the CFS that was created in the first fold
of the cross-validation from N — 1 subjects to estimate the Z-maps of subject 01. The
time series of the shared features were trimmed to match the corresponding TRs of the
respective paradigms. Fig. 5.3 shows the correlations between regressors created to model
hemodynamic responses during the visual localizer and shared responses (trimmed to the
TRs that match the visual localizer). Fig. 5.4 shows the correlations between regressors
created to model hemodynamic responses during the movie (cf. Table 3 in H&usler et
al., 2022) and shared responses, while Fig. 5.5 shows the correlations between regressors
created to model hemodynamic responses during the audio-description (c¢f. Table 3 in
Héusler et al., 2022) and shared responses.
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As a negative control, we created 1000 models based on randomly shuffled time se-
ries. We expected that the SRM algorithm would yield “shared” responses that are not
correlated with the regressors. For each of the 1000 models, the order of runs of the
visual localizer and naturalistic stimuli were shuffled separately for each training subject.
Then, we concatenated the time series, fit the SRM, calculated the Person correlation
coefficients per model, and finally their means across the 1000 models. As hypothesized,
the shared features within CFSs based on shuffled time series show no or just minor mean
correlations with the regressors, as shown in Fig. A.1, Fig. A.2, and Fig. A.3.

Alignment of a test subject

We aligned the test subject’s response time series from the visual localizer, the movie, or
the audio-description to the corresponding TRs within the CFS by factorizing the response
time series data via singular value decomposition. This step produced transformation
matrices with orthonormal columns that allow a linear transformation of data from a test
subject’s voxel space into the CFS. To investigate how the amount of data used to acquire
a transformation matrix affects the estimation performance, we also varied the number
of runs per paradigm. Specifically, we used one up to four runs (each lasting ~5min) of
the visual localizer, and one up to eight runs (each lasting ~15min) of the naturalistic
stimuli to align the test subject’s time series with the corresponding TRs within the CFS.
Therefore, for each test subject, we obtained four matrices based on data from the visual
localizer and eight different matrices per naturalistic stimulus, each transformation matrix
having a size of v voxels by k shared responses but being based on an increasing amount
of data used to calculate the linear transformation.

Estimation of a test subject’s Z-maps

We estimated the empirical Z-maps of the test subject by projecting the empirical Z-
maps of all training subjects trough the CFS into the test subject’s voxel space. First,
we masked the empirical Z-maps of the training subjects with the same subject-specific
masks that we used to mask the time series data. Then, we used the transformation
matrices derived during the training of the CFS to map the masked empirical Z-maps
from each training subject’s voxel space into the CFS. Next, we used the transpose of
a transformation matrix obtained from the alignment of the test subject to project the
Z-maps from the CFS into the test subject’s voxel space. For each of the three t-contrasts,
we obtained the test subject’s predicted Z-map by calculating the arithmetic mean of the
respective paradigm’s projected empirical Z-maps.

5.2.3 Estimation via anatomical alignment

As a baseline, we used a non-linear anatomical alignment procedure to estimate a test
subject’s empirical Z-maps. First, we projected the masked empirical Z-maps of each
paradigm and each training subject from their native voxel space into the MNI space
via previously computed subject-specific transformation matrices (Hanke et al., 2014a,
github.com/psychoinformatics-de/studyforrest-data-templatetransforms). We
then used the test subject’s pseudoinverse transformation matrix to project the data from
MNI space into the test subject’s voxel space. Similar to our functional alignment pro-
cedure, we obtained an estimation of the test subject’s empirical Z-maps by calculating
the arithmetic mean of the respective paradigm’s projected Z-maps.
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Fig. 5.3: Similarity of hemodynamic responses modeled for the analysis of the
visual localizer in Sengupta et al. (2016) and shared features calculated by the
shared response model (SRM) in the first fold of the cross-validation. Before
calculating the Pearson correlation coefficients plotted in the figure, the time series of the
shared features within the multi-paradigm CF'S were trimmed to match the corresponding
TRs of the visual localizer paradigm (Sengupta et al., 2016). The modeled hemodynamic
responses (i.e. regressors) represent predicted responses to the six categories of pictures
that were presented in blocks.
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Fig. 5.4: Similarity of hemodynamic responses modeled for the analysis of the
movie in Hiusler et al. (2022) and shared features calculated by the shared
response model (SRM) in the first fold of the cross-validation. Before calcu-
lating the Pearson correlation coefficients plotted in the figure, the time series of the
shared features within the multi-paradigm CFS were trimmed to match the correspond-
ing TRs of the movie (Hanke, Adelhofer, et al., 2016). The modeled shared responses
(i.e. regressors) vse_new to vno_cut are based on annotations of movie frames, whereas
the regressors fg_av_ger_1r to fg_av_ger_ud represent low-level visual or auditory con-
founds (cf. Table 3 in Hiusler et al., 2022). vse_new: change of the camera position
to a setting not depicted before; vse_old: change of the camera position to a recur-
ring setting; vlo_ch: change of the camera position to another locale within the same
setting; vpe_new: change of the camera position within a locale not depicted before;
vpe_old: change of the camera position within a recurring locale; vno_cut: a pseudo-
randomly selected frames within a continuous movie shot; fg_av_ger_1r: left-right lumi-
nance difference; fg_av_ger_lrdiff: left-right volume difference; fg_av_ger_ml: mean
luminance; fg_av_ger_pd: perceptual difference; fg_av_ger_rms: root mean square vol-
ume; fg_av_ger_ud: upper-lower luminance difference.

22



body -
bpart-o.1
fahead -o0.1 0.0
furn-o0.1 0.0 -0.0

geo --0.0 -0.0 -0.0 0.0

(7)) : 1.00
groom-0.0 0.0 0.0 0.0 0.0 ()] t” | Ie I
—
object-o01 01 -00 01 00 0.1 S - 0.75
e
Se_Nnew - 0.0 -0.0 -0.0 -0.0 0.1 -0.0 0.1 [
se_old --0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0 -0.0 () - 0.50
- Y—
sex_f-01 01 01 01 00 01 01 0.0 0.0
sex_m-01 01 01 01 01 01 02 0.1 -0.0 0.0 -0.25
fg_ad_Irdiff--0.1 -0.0 -0.0 -0.0 -0.1 0.0 0.0 -0.0 0.0 -0.0 0.0
- -0.00
fg_ad_rms-00 01 00 00 01 00 01 01 0.0 01 0.1 0.1
--0.0 -0.0 -0.0 0.0 [0.7 0.7| 0.1 0.0 0.0 0.1 0.1 -0.0 0.1
--0.25
shared feature 1-01 0.0 0.1 -0.0 -0.1 -0.0 -0.0 -0.1 -0.0 0.0 0.0 -0.0 0.0 -0.1
shared feature 2 --0.1 -0.0 0.0 -0.1 -0.2 0.2 -0.2 -0.1 -0.0 -0.1 -0.1 -0.0 -0.2 -0.2 0.4 - 050
shared feature 3 --0.0 0.0 0.0 -0.0 -0.1 -0.0 -0.1 -0.1 -0.0 -0.0 -0.0 -0.0 -0.1 -0.1 0.3 0.3
shared feature 4-0.1 0.0 0.0 01 02 01 02 01 0.0 01 01 00 0.2 02 -0.0 -0.4 -0.1 - —0.75
shared feature 5--0.0 -0.0 0.0 -0.1 -0.2 -0.1 -0.2 -0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.2 -0.1 0.1 -0.1 -0.3 I
shared feature 6 -0.0 -0.0 -0.0 0.0 0.2 0.1 01 0.1 0.0 0.0 0.0 0.0 01 02 0.0 -0.1 -0.2 0.2 0.0 - —1.00
shared feature 7 --0.0 -0.1 0.0 -0.1 -0.0 -0.1 -0.1 -0.0 -0.0 0.0 -0.0 0.0 -0.1 -0.1 -0.1 0.2 0.1 -0.3 -0.0 0.0

shared feature 8 --0.1 -0.1 -0.1 -0.0 0.1 0.1 -0.1 0.0 0.0 -0.0 -0.1 0.0 -0.0 0.1 -0.5 -0.2 -0.1 0.1 -0.0 -0.1 -0.0
shared feature 9 --0.2 -0.1 -0.1 -0.1 -0.2 -0.1 -0.3 -0.1 0.0 -0.1 -0.2 -0.0 -0.1 -0.2 0.2 0.5 0.3 -0.3 0.1 -0.3 0.2 0.1
shared feature 10-01 01 00 02 02 02 02 01 -00 0.1 0.1 0.0 01 03 02 -02 -0.1 0.3 -0.4 0.3 -0.1 -0.1 -0.4
| | 1 1 1 1 | 1 | | | 1 | 1 1 1 | 1 1 1 | | 1 1
>+ T £ O = T + = v S N M < N O N~N©OO O
T EREGGETC T IEEZ 9
S [SE) o I © v U VUV U VU VU U OV W
O g U & O —_ C | © X = = = = = T T =
(] = (]
B 56 8 "8 g0 522222222325
Y o g @ Vo5 T © ©® ©® © © © © © D
ml | v vV OV O OV O VO UV UV ©
o e e N )]
o = T T D U T T T T T ¥
9 0 O 0 0 O O O O T
—_ —_ —_ —_ —_ —_ —_ —_ —_ [0
T © © © © @ © @© @© =
£ € £ £ £ c cc c®©
w w w wn w wn wn wn wn cC
M)

Fig. 5.5: Similarity of hemodynamic responses modeled for the analysis of the
audio-description in Hiusler et al. (2022) and shared features calculated by
the shared response model (SRM) in the first fold of the cross-validation.
Before calculating the Pearson correlation coefficients plotted in the figure, the time se-
ries of the shared features within the multi-paradigm CFS were trimmed to match the
corresponding TRs of the audio-description (Hanke et al., 2014a). The modeled shared
responses (i.e. regressors) body to sex_m are based on annotated categories of nouns spo-
ken by the audio-description’s narrator, whereas the regressors fg_ad_ger_lrdiff and
fg_ad_ger_rms represent low-level auditory confounds (cf. Table 3 in Héusler et al.,
2022). body: trunk of the body; overlaid clothes; bpart: limbs and trousers; fahead:
(parts) of the face or head; furn: moveable furniture (insides & outsides); geo: immobile
landmarks; groom: rooms & locales or geometry-defining elements; object: moveable
and countable entities with firm boundaries; se_new: a setting occurring for the first
time; se_old: a recurring setting; sex_f: female name, female person(s); sex_m: male
name, male person(s); fg_ad_lrdiff: left-right volume difference; fg_ad_rms: root mean
square volume. geo&groom is a combination of regressors as used on the positive side of
the primary contrasts aimed to localize the PPA (cf. Table 5 in Héusler et al., 2022).
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Fig. 5.6: Reliability of the empirical Z-maps for each paradigm and subject.
Cronbach’s o was calculated based on the Z-maps yielded by the first-level GLM analyses
of the visual localizer (four runs; Sengupta et al., 2016) and naturalistic stimuli (eight runs;
Héusler et al., 2022). The second-level GLM analyses across runs yielded the empirical
Z-maps that were estimated in the present study.

5.2.4 Reliability of the empirical Z-maps

We calculated Cronbach’s o as a measure of reliability and the amount of measurement
error (Cortina, 1993; Cronbach, 1951) present in the empirical Z-maps of each paradigm
and subject. Cronbach’s o expresses the expected correlation between the currently used
empirical Z-maps and an additional set of empirical Z-maps calculated based on data
of a hypothetical independent dataset collected from the same paradigm and subjects
(Jiahui et al., 2020; Jiahui, Feilong, Nastase, Haxby, & Gobbini, 2022). These expected
correlations, represented by Cronbach’s «, were calculated based on the first-level GLM
Z-maps (four in case of the visual localizer; eight in case of the naturalistic stimuli) that
were averaged in the second-level GLM analyses of Sengupta et al. (2016) and H&usler
et al. (2022) respectively. Cronbach’s a of the empirical (i.e. second-level) Z-maps for
each subject and paradigm can be seen in Fig. 5.6, descriptive statistics across subjects
for each paradigm can be seen in Table 5.6.
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Table. 5.1: Descriptive statistics of the reliability measure. Cronbach’s a was
calculated based on the Z-maps yielded by the first-level GLM analyses of the visual
localizer (four runs; Sengupta et al., 2016) and naturalistic stimuli (eight runs; Hausler et
al., 2022). The second-level GLM analyses across runs yielded the empirical Z-maps that
were estimated in the present study.

statistic localizer movie audio-description

mean 0.90 0.61 0.48
std 0.09 0.14 0.36
min 0.66 0.28 -0.53
25% 0.91 0.56 0.43
50% 0.93 0.63 0.63
5% 0.95 0.68 0.68
max 0.96 0.80 0.82

5.3 Results

In order to assess the performance of the alignment procedures, we calculated the Pear-
son correlation coefficients between each individual’s empirical Z-maps obtained from the
previous analyses (Hausler et al., 2022; Sengupta et al., 2016) and their respective pre-
dicted Z-maps (s. Fig. 5.7). In general, the mean Pearson correlation coefficients vary
depending on the paradigm being estimated (i.e. Z-maps of the visual localizer, movie, or
audio-description), as well as the alignment procedure (anatomical vs. functional align-
ment). In the case of functional alignment, the quantity of the paradigm’s data used
as a predictor and to align a test subject to the CFS also affects the correlation coef-
ficients. However, the functional alignment procedure consistently shows an increasing
estimation performance as more data of a predictor is used to align the test subjects.
In order to investigate potential differences between some conditions, we conducted 15
pairwise comparisons using Fisher z-transformed correlation values. These comparisons
were not pre-planned, but rather were selected later as examples for further exploration.
We used a Bonferroni correction for multiple comparisons to adjust the alpha level to an
a of 0.05/15 = 0.003.

When estimating the Z-maps of the visual localizer, the mean correlation between
empirical Z-maps and Z-maps predicted using ~15min of the visual localizer (within-
paradigm prediction) was significantly higher than the mean correlation between empirical
Z-maps and Z-maps predicted via an anatomical alignment (£(14) = 13.99, p < .0001).
Similarly, the mean correlation between empirical Z-maps and Z-maps predicted us-
ing ~15min of the movie (cross-paradigm prediction) was significantly higher than the
correlations between empirical Z-maps and Z-maps predicted via anatomical alignment
(t(14) = 6.35, p < .0001). A comparison between the prediction based on ~15min of
the movie and ~15min of localizer data revealed a significantly lower performance of
functional alignment using the movie (£(14) = —11.64, p < .0001). The prediction per-
formance based on ~30min of the movie was significantly higher than the prediction
performance based on ~15min of the movie (¢(14) = 5.49, p = .0001), with no significant
difference between ~45min and ~30min of the movie (¢(14) = 0.13, p = .8990). Visual
inspection indicated that the prediction performance based on ~15min of the audio-
description was lower than the prediction performance based on anatomical alignment,
functional alignment using /15 min of the localizer, or ~15 min of the movie. However,
the prediction performance of the audio-description increased monotonically the more
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Fig. 5.7: Similarity between empirical and predicted Z-maps for each subject
and paradigm. Functional alignment was performed based on an increasing amount
of functional data used to align a test subject to the common functional space (CFS):
each of the four runs of the visual localizer paradigm lasted ~5min (TR=2s); each of
the eight runs of the naturalistic stimuli lasted ~15min (TR=25). Solid horizontal lines:
median of Cronbach’s « across subjects the for empirical Z-maps of the respectively
estimated paradigm (cf. Fig. 5.6). Dotted horizontal lines: mean of Cronbach’s a across
subjects for the empirical Z-maps of the respectively estimated paradigm (cf. Fig. 5.6).
Grey dots: Pearson correlation coefficients between empirical Z-maps and an estimation
using anatomical alignment. Green dots: correlations between empirical Z-map and an
estimation using functional alignment based on transformations calculated from one up
to four runs of the visual localizer. Red dots: correlations between empirical Z-map and
an estimation using functional alignment based on transformations calculated from one
up to eight runs of the movie. Blue dots: correlations between empirical Z-map and an
estimation using functional alignment based on transformations calculated from one up
to eight runs of the audio-description.
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data were used to align the test subjects. A t-test comparing the prediction performance
based on ~120 min of the audio-description to anatomical alignment yielded no significant
difference (¢(14) = —1.17, p = .2640).

When estimating the Z-maps of the movie, the mean correlation between empirical
Z-maps and predicted Z-maps using ~15 min of the movie (within-paradigm prediction)
were significantly higher than the correlations between empirical Z-maps and predicted
Z-maps via an anatomical alignment (¢(14) = 5.78, p < .0001). Comparing the within-
paradigm prediction using ~15min of the movie to the cross-paradigm prediction using
~15min of the localizer revealed a higher prediction performance of the movie (£(14) =
5.53, p < .0001). There was no significant difference between the prediction using ~15 min
of the localizer and the prediction via anatomical alignment (¢(14) = 1.15, p = .2726).
The prediction performance based on ~30 min of movie data was significantly higher than
the prediction performance based on ~15min of the movie (¢(14) = 3.75, p = .0024),
whereas there was no significant difference between the performance based on ~/45min
and ~30min of the movie (¢(14) = 2.58, p = .0230). As is evident by visual inspection,
the prediction performance based on ~15min of the audio-description was lower than
a prediction based on anatomical alignment, functional alignment using ~15min of the
localizer, or functional alignment using ~15 min of the movie. Here again, the prediction
performance of the audio-description monotonically increased the more data were used to
align the test subjects. A t-test comparing the prediction performance based on ~120 min
of the audio-description to a prediction via anatomical alignment yielded no significant
difference (¢(14) = —2.40, p = .0318).

When estimating the Z-maps of the audio-description, the mean correlation between
empirical Z-maps and predicted Z-maps via ~15min of the audio-description (within-
paradigm prediction) was not significantly different to the mean correlation between em-
pirical Z-maps and predicted Z-maps via anatomical alignment (¢(14) = —1.82, p =
.0925). Comparing the prediction based on ~120min of the audio-description to the
anatomical alignment procedure yielded a significantly higher performance of the esti-
mation via functional alignment (£(14) = 6.56, p <= .0001). Comparing the prediction
based on functional alignment via ~120 min of the movie to the anatomical alignment
procedure yielded no significant difference (¢(14) = —0.76, p = .4625).

5.4 Discussion

Block-design functional localizers are traditionally used to identify functional areas in in-
dividuals. However, these paradigms are typically limited to mapping a single domain of
brain functions. Additionally, the diagnostic quality of functional localizers relies on an
individual’s comprehension of task instructions and compliance. In our study, we focused
on the PPA as an example of a high-visual area. We estimated the results of t-contrasts
(i.e. the empirical Z-maps), created in previous studies (H&usler et al., 2022; Sengupta et
al., 2016) in order to localize the PPA, in an individual by leveraging data collected from
a reference group. To address the challenge of functional-anatomical variability across
individuals, we employed a functional alignment approach based on the shared response
model (SRM) (Chen et al., 2015). Following an exhaustive leave-one-subject-out cross-
validation, we computed a multi-paradigm common functional space (CFS) based on the
training subjects’ concatenated response time series from a visual localizer, a movie, and
the movie’s audio-description. Each test subject’s response time series from one of the
paradigms was separately used to functionally aligning the test subject with the corre-
sponding paradigm’s TRs within the CFS. Finally, we projected the empirical Z-maps
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of the reference group through the CFS into the test subject’s voxel space to generate
the predicted Z-maps for each test subject. Considering the challenges of acquiring func-
tional data from a two-hour paradigm to functionally align an individual with a CFS,
we also explored the relationship between the amount of data used for alignment and
subsequent estimation performance. As a baseline comparison, we employed an anatom-
ical alignment procedure in which the training subjects’ Z-maps were projected via a
non-linear transformation through the MNT space into the test subject’s voxel space. Our
findings demonstrate that an auditory narrative can be utilized to estimate the results of
a visual localizer, although it requires a longer functional scanning session. Furthermore,
we observed that employing ~15min of movie data sampled at 0.5Hz for volume-based
functional alignment leads to more accurate estimations of the visual localizer results
compared to a non-linear volume-based anatomical alignment approach. By leveraging
data from a reference group, our procedure opens up the possibility of estimating results
from many localizer paradigms using a naturalistic stimulus of similar duration to one
traditional localizer.

5.4.1 Estimating the results of the visual localizer

We estimated the results of the visual localizer, which is the established method for
identifying the PPA. Our results indicate that ~15min of localizer or movie data used
for functional alignment with a CFS are sufficient to estimate the results of the visual
localizer with higher fidelity compared to an estimation procedure based on anatomical
alignment. When comparing the within-paradigm prediction based on the localizer data
to the cross-paradigm prediction based on the movie data, the within-paradigm prediction
showed a superior estimation performance. These results are in line with Haxby et al.
(2011), who created two CFSs: one CFS based on a controlled paradigm that employed
images of stimulus categories and another CEFS based on a movie. They found that
a cross-subject classification of the controlled paradigm’s categories via the CFS and
transformations calculated from the same paradigm’s data outperformed the classification
based on the movie data. Haxby et al. (2011) interpreted these results gained from two
paradigms providing roughly the same amount of TRs to calculate the CFS and align
a test subject as the controlled paradigm sampling the investigated brain states more
extensively than the movie. In our study, the prediction performance based on movie
data increased significantly when ~30min of the movie were used for alignment with
the CFS. However, comparing ~30 min to ~45min for aligning a test subject did not
yield a significant difference. Overall, these results suggest that the estimation based
on functional alignment using a movie approaches a performance limit, with diminishing
benefits of longer scanning time (cf. Fig. 5.7).

We also explored a cross-paradigm prediction of the visual localizer’s results using
time series from the audio-description, lacking a visual stimulation. The prediction based
on ~15min of audio-description showed the lowest performance among all alignment
procedures, including anatomical alignment. A possible first explanation for the low per-
formance might be that the audio-description offers a less diverse stimulation and has a
sparser event structure that does not sample the targeted responses as extensively. Fur-
ther investigations might explore alternative auditory paradigms that more extensively
sample the targeted responses to achieve higher estimation performances. However, as
more data were used, the prediction performance based on the audio-description improved
while narrowing the gap to the prediction based on the same amount of movie data. When
comparing the prediction based on ~120 min of the audio-description to the prediction
based on anatomical alignment, we found no statistical difference. These results suggest
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that an auditory paradigm could potentially substitute a visual paradigm for functional
alignment and subsequent estimation of a visual paradigm’s results. However, achieving a
comparable estimation performance requires a lengthy functional scanning session. There-
fore, a second explanation, not mutually exclusive to the first one, might be that neural
responses in the PPA to an auditory paradigm differ from responses to a visual paradigm.
This explanation would support findings of Hausler et al. (2022) and would be in line
with Haxby et al. (2011). In Héausler et al. (2022), we observed hemodynamic activity
during auditory stimulation that is restricted to the anterior part of the PPA. Neverthe-
less, further studies using controlled paradigms are needed to investigate responses of the
PPA to auditory spatial information. Haxby et al. (2011) demonstrated that the general
validity of their functional alignment procedure “based on the responses to the movie is
not dependent on responses to stimuli that are in both the movie and the category per-
ception experiments” (Haxby et al., 2011, p. 409). In light of our current findings, we
hypothesize that a stimulus used for functional alignment does not necessarily need to
sample hemodynamic responses identical to those evoked by the target paradigm, however
with the disadvantage of a longer scanning time. Therefore, it would be interesting to ex-
plore whether functional alignment can be employed to estimate Z-maps from paradigms
designed to elicit brain processes that are typically not sampled during passive movie
watching, such as planning or decision-making.

5.4.2 Estimating the results of the movie & audio-description

We also estimated the results of Hiusler et al. (2022), where we created t-contrast based on
modeled hemodynamic activity during two naturalistic stimuli to localize the PPA under
more ecologically conditions. Once again, the within-paradigm predictions achieved higher
correlations between empirical and predicted Z-maps compared to the cross-paradigm
predictions. Similar to the estimation of the visual localizer results, the estimation of the
movie results based on the audio-description showed the lowest performance among all
alignment procedures, including anatomical alignment. However, as more data from the
audio-description were incorporated for alignment, the prediction performance improved.
Moreover, similar to the estimation of the visual localizer, the gap between the estimation
performance using the audio-description and the same amount of movie data narrowed.
These results add evidence that an auditory paradigm can be used to estimate the results
of a visual paradigm. However, it requires a long scan session.

Contrary to expectation, the within-paradigm prediction based on ~15min of the
audio-description did not outperform the prediction via anatomical alignment. Given the
exploratory nature of our study, it is challenging to untangle the individual contributions
of the exclusively auditory stimulus, the multi-paradigm CF'S, the transformation matrices
of test subjects, and the mean reliability of the audio-description’s Z-maps on the estima-
tion performance. Notably, calculating Cronbach’s o of the audio-description’s Z-maps
revealed mediocre to poor reliability in three participants. The three participants with
low Cronbach’s a also represent the three outliers exhibiting low correlations between the
audio-description’s empirical and predicted Z-maps independent of the amount of data
used for functional alignment. Results suggest that these participants are not outliers
showing a response in the PPA that is reliably deviant from the norm but rather exhibited
more variable responses to auditory spatial information during the two-hour stimulation.
Nevertheless, when estimating the Z-maps of the visual paradigms based on data of the
audio-description, we did not identify the same participants as outliers. Therefore, the
reliability of the audio-description’s Z-maps might be low in these three participants, how-
ever results show that their responses to the audio-description could be used to acquire
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transformations that enabled the estimation of the visual paradigms’ results. Moreover,
the observation that the mean correlation between the audio-description’s empirical and
predicted Z-maps exceeds mean Cronbach’s a as more data from the audio-description
are used can be interpreted as the SRM denoising a test subject’s data (cf. Chen et al.,
2015). Therefore, it would be interesting to estimate the results of a controlled auditory
experiment, such as a speech localizer, that yields more reliable results in all participants.
To test the hypothesis that the SRM filters out noise, one could calculate more reliable
second-level Z-maps from actual time-series, and time series with artificially added noise
at different intensities. If the SRM filters out noise, the prediction based on an alignment
using a test subject’s time series with added noise should resemble the actual Z-maps
more closely than the Z-maps calculated from noisy data.

Lastly, it is important to acknowledge that our analysis was restricted to voxels located
in the union of individual PPAs, and thus, to voxels that exhibited significantly increased
activity in at least one participant in Sengupta et al. (2016). However, the findings
of Héusler et al. (2022) suggest that hemodynamic activity during auditory semantic
stimulation is confined to the anterior part of the PPA. Consequently, the ROI introduced
a bias against the reliability of the Z-maps derived from the audio-description. This is
because the ROI includes voxels that did not show significantly increased activity in
response to auditory spatial information in at least one participant, but rather exhibit
random variation (or potentially significantly decreased activation, which would not affect
the reliability measure).

5.4.3 Summary, shortcomings & future studies

Our analyses revealed that using ~15 min of the audio-description for aligning a test sub-
ject with the CFS resulted in relatively low performance in the cross- and within-paradigm
predictions. Nevertheless, results suggest that it is in principle feasible to substitute a
visual paradigm with an auditory paradigm. An interesting avenue for further investiga-
tion would be to estimate the topography of language-related areas using a narrative for
functional alignment and compare the results with an estimation based on a movie. Fur-
thermore, our findings indicate that ~15min of movie data used for functional alignment
are sufficient to estimate the results of the visual localizer with higher fidelity than an
estimation based on an anatomical alignment. The prediction performance based on the
movie significantly improves when ~30 min of the movie are used. However, we found no
significant difference in performance between aligning a test subject using ~45 min com-
pared to ~30min. Overall, our results suggest that the functional alignment based on
movie data is approaching a performance limit, and longer scanning sessions than 30 min
during audio-visual stimulation may not yield substantial benefits.

When estimating the results of the visual localizer, the cross-paradigm prediction
based on the movie showed lower performance than the within-prediction based on the
localizer. However, movies offer a more complex stimulation compared to controlled
paradigms. While we focused on the PPA as a high-visual area, naturalistic stimuli have
been successfully employed to investigate various domains of brain function, including
vision, audition, language, emotions, or social cognition (s. Jiiskeldinen et al., 2021, for a
review). Given the ability of naturalistic stimuli to elicit responses across diverse domains,
they potentially provide transformations that better generalize across a wider range of
paradigms compared to transformations obtained from dedicated experiments such as a
visual localizer. Previous studies that used an anatomical alignment procedure to estimate
the most probable location of functional areas have “found a large variability in the degree
to which functional areas respect macro-anatomical boundaries” (Frost & Goebel, 2012,
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p. 1369). For instance, retinotopically defined regions of the early visual cortex exhibit
low interindividual variability (Rosenke et al., 2021), while the spatial location of other
functional areas, such as language areas, varies greatly across individuals (Frost & Goebel,
2012). Even within the domain of category-selective areas, interindividual variability
varies across functional areas, with scene-selective regions showing larger variability in
spatial topography compared to face-selective regions (Frost & Goebel, 2012; Zhen et al.,
2017, 2015). Future studies should explore the performance of functional alignment in
other domains than high-visual perception. In particular, we showed that an auditory
paradigm can be used to estimate the results of a visual paradigm. Therefore, it would be
interesting to explore whether functional alignment can be employed to estimate Z-maps
from paradigms that were designed to elicit brain processes that are not sampled during
passive movie watching such as planning or decision-making.

Lastly, we emphasize that our study is exploratory, based on a sample of 14 partici-
pants, and therefore provides preliminary results that warrant further in-depth investiga-
tions into aspects that are beyond of scope here. For example, we restricted our analysis
to voxels in a ROI with an average of ~1600 voxel per participant. The use of searchlight
functional alignment (e.g., Guntupalli et al., 2016; Zhang et al., 2016) could cover the
entire cortex but restricts the simultaneously aligned voxels to those within the search-
light’s sphere. Future studies are needed to develop functional alignment algorithms that
can align voxels across larger distances. Such algorithms would be especially beneficial
for functional areas that show large interindividual variability in anatomical location,
such as language areas, or for cases of atypical topography, e.g., resulting from cortical
reorganization after brain injuries.

Our results suggest that 15 to 30 minutes of fMRI scanning during a naturalistic stimu-
lus that captures a wide range of brain states could provide sufficient data for a functional
calibration scan. This calibration scan could be employed to align a new subject to a CFS
derived from extensive scans of a reference group. The reference group’s scans would en-
compass data collected from both naturalistic paradigms and controlled paradigms. The
controlled paradigms would include functional localizers specifically designed to reliably
map perceptual or cognitive processes. Compared to a diagnostic run based on a controlled
paradigm, a naturalistic stimulus would offer the additional benefits of higher engagement
and better compliance (Eickhoff et al., 2020; Vanderwal et al., 2015), especially in chil-
dren or patients. Once a new subject is aligned with the CFS, functional data collected
from the reference group could be mapped through the CFS into the new subject’s voxel
space. This enables the estimation of patterns in the new subject that are common in the
normative reference group when obtaining additional functional scans is not feasible due
to scanner availability, time constraints, financial limitations, or compliance issues. Fur-
thermore, this approach allows for quantifying the similarity (or dissimilarity) between a
new subject’s actual pattern and the common pattern estimated from the normative refer-
ence. For instance, Yates, Ellis, and Turk-Browne (2021) calculated a SRM to investigate
the presence and localization of adult brain functions in children. The authors mapped
hemodynamic responses of adults watching a movie through a CFS into the anatomical
brain space of children that watched the same movie. They found reliable correlations
between the predicted and actual fMRI activity of children, and the strength of these cor-
relations in the precuneus, inferior frontal gyrus, and lateral occipital cortex could predict
the children’s age.
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5.5 Conclusion

Our findings suggest that 15 minutes of functional scanning using an engaging movie can
generate a sufficient amount of data to functionally align an individual with a common
functional space and estimate brain patterns with higher fidelity than a procedure based
on anatomical alignment. By leveraging data from a reference group, it becomes possible
to estimate the results from many localizer paradigms using a naturalistic stimulus of
similar duration to that of one traditional localizer. This procedure offers a more efficient
and cost-effective method to acquire valuable insights into the functional organization of
an individual when additional functional scans are not feasible due to various constraints.
While our study focused on the PPA as an example of a high-visual area, future re-
search should explore the performance of functional alignment in other domains of brain
functions, especially those not directly sampled during passive movie watching.

Data Availability

All fMRI data and results are available as Datalad (Halchenko et al., 2021) datasets,
published to or linked from the G-Node GIN repository (gin.g-node.org/chaeusler/
studyforrest-ppa-srm). Raw data of the audio-description, movie and visual local-
izer were originally published on the OpenfMRI portal (https://legacy.openfmri.org/
dataset/ds000113, Hanke et al., 2014b), (https://legacy.openfmri.org/dataset/
ds000113d, Hanke, Kottke, et al., 2016). Results from the localization of higher visual ar-
eas are available as Datalad datasets at GitHub (github.com/psychoinformatics-de/
studyforrest-data-visualrois). The realigned participant-specific time series that
were used in the current analyses were derived from the raw data releases and are avail-
able as Datalad datasets at GitHub (github.com/psychoinformatics-de/studyforrest
-data-aligned). The same data are available in a modified and merged form on Open-
Neuro at https://openneuro.org/datasets/ds000113.

Code Availability

Scripts to generate the results as Datalad (Halchenko et al., 2021) datasets are available
in a G-Node GIN repository (gin.g-node.org/chaeusler/studyforrest-ppa-srm).
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6 (General discussion

Traditionally, human brain mapping studies have averaged fMRI data across participants.
To advance the field towards a clinical application, data need to be interpreted on the level
of individuals. Functional localizers are an established method to describe the topography
(i.e. the location, size, and shape) of functional areas in individuals. However, traditional
localizer paradigms rely on selectively sampled, tightly controlled stimuli and participant
compliance, and can usually map only one domain of brain functions. Naturalistic stimuli
like movies and auditory narratives offer a time-locked event structure that samples a vari-
ety of brain functions ranging from low-level perception to high-level cognition. A localizer
based on a naturalistic stimulus could offer a higher external validity and potentially map
a variety of brain functions. Consequently, the purpose of this thesis was—while adhering
to the principles of open, transparent, and reproducible science—to investigate whether a
movie and the movie’s audio-description may, in principle, replace a traditional localizer
paradigm. As a proof of concept, we focused on the PPA, as an example of a high-level
visual area. The PPA exhibits increased hemodynamic activity when participants view
photos of landscapes, buildings or landmarks, compared to, for instance, photos of faces
or tools (cf, Aminoff et al., 2013; R. A. Epstein & Vass, 2014, for reviews). Moreover, re-
sults of Aziz-Zadeh et al. (2008), who compared hemodynamic activity levels in the PPA
correlated with different categories presented in spoken sentences, revealed that semantic
scene-related information also modulates the PPA’s activity level. We assessed the poten-
tial of both the movie and the audio-description to replace a visual localizer in two ways.
As the first approach, we modified the procedure for the analysis of data from localizer
paradigms to data from the two naturalistic stimuli. Hemodynamic responses correlating
with the temporal structure of annotated stimulus features (cf. Hausler & Hanke, 2016,
2021) were modeled in order to create GLM t-contrasts that aimed to localize the PPA
as identified in the same participants using a visual localizer in Sengupta et al. (2016).
As the second approach, we applied a functional alignment procedure as a novel method
in order to estimate results from the visual localizer, the movie and the audio-description
in an individual from the results of individuals in a reference group.

6.1 Open Science

In recent years, there has been a growing movement towards open science, which seeks
to make scientific research more accessible, transparent, and reproducible. Open science
encompasses a range of practices, including open data, open-source software, and open
access publishing. The overarching aim of this dissertation was to meet the standards of
open, shared, accessible, and transparent science in general, as well as the standards of a
reproducible and replicable research project specifically (cf. Fecher & Friesike, 2014; Wat-
son, 2015). This aim included using open data and open-source software, and publishing
data, materials, code, and results openly available.
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6.1.1 Using open data and open-source software

The first objective in the context of open science was to use open data, open materials,
and open-source software. To achieve this, the thesis utilized publicly available fMRI data
(Hanke, Adelhofer, et al., 2016; Hanke et al., 2014a; Sengupta et al., 2016), subject-specific
ROIs (Sengupta et al., 2016) and stimulus annotations (Hausler & Hanke, 2016) that are
part of the studyforrest project (studyforrest.org). The analyses were implemented
in freely available and, where possible, open-source software to prevent creating an “ar-
tificial paywall” for running the analyses again on the initially openly accessible data.
The thesis benefited from established free software such as Python and FSL (FMRIB’s
Software Library; S. M. Smith et al., 2004), which have been developed and debugged for
years through collaborative efforts, but also from scientific software packages like DatalLad
(datalad.org; Halchenko et al., 2021) or BrainIAK (brainiak.org; Kumar et al., 2021,
2020) that emerged recently. The use of pre-existing software packages, data, and results
from previous analyses enabled the project to shift time and resources from software de-
velopment and data collection to subsequent stages of the project. The available data
proved to be extremely valuable during the COVID-19 pandemic as acquiring new fMRI
data from participants became impossible, which led to a need to revise the project plan.

A first issue with open data that is frequently overlooked is that openly accessible
data do not exempt the data consumer from the responsibility of carefully scrutinizing
the quality of the data and the underlying experimental paradigm (e.g., stimuli and code).
It is too tempting to “simply push the data through an analysis pipeline” without carefully
assessing the quality of the data first. Researchers must ensure that potential errors in
the data are identified and addressed before proceeding with their analysis. Consumers
of datasets must assume that anything not clearly specified in the dataset’s description
has not been taken into account. This is particularly important as the standards (e.g.,
quality, formats, parameters) and open sciences practices (e.g., documenting) may differ
across scientific fields or even within a scientific field depending on a working group’s
expertise and rigor. Even if the data are provided by a reputable source, researchers who
consider using third-party data should also consider themselves to be obliged to test and
validate a dataset’s quality as if it was created by themselves, and in accordance with
their standards and particular use case. In this regard, open data, despite being collected
to the best of knowledge and belief, can be compared to open-source software: data will
contain noise, errors, or artifacts, just as software will contain bugs, but “given enough
eyeballs, all bugs are shallow” (Raymond, 2001, p. 30).

A second issue of open data is that the decisions made during data collection, prepro-
cessing, and further analyses may influence or even limit subsequently performed anal-
yses. Researchers must carefully consider previous decisions when deciding whether to
use pre-existing data, or to collect or preprocess data themselves. For instance, we and
Sengupta et al. (2016) selected the PPA as one of several scene-selective areas because
the PPA was the first scene-selective area to be discovered and is the most reliably acti-
vated region across studies that investigate visual scene perception. However, other areas,
such as the retrosplenial complex (RSC) and occipital place area (OPA), have repeatedly
been shown to be involved in visual spatial perception and navigation (Bettencourt &
Xu, 2013; Chrastil, 2018; Dilks, Julian, Paunov, & Kanwisher, 2013; R. A. Epstein &
Baker, 2019). Although we did not explicitly hypothesize it, we assumed that at least the
analysis of the movie would likely reveal significant clusters in the medial parietal and
lateral occipital cortex that may correspond to the functionally defined RSC and OPA
respectively. Indeed, results revealed significantly increased activity in the medial pari-
etal and lateral occipital cortex, and provide an incentive for further studies. However, in
order to create the corresponding masks of participants of the studyforrest dataset, one
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would have to replicate the non-automatized procedure of Sengupta et al. (2016). This
example shows how decisions made during data collection, preprocessing or preceding
investigations, despite being state-of-the-art at the time of being published, are affecting
subsequent studies. Hence, when considering using open data, researchers need to weigh
the costs and benefits of one option (such as using preprocessed data as provided) relative
to an alternative option (such as preprocessing raw data differently than provided), and
then choose the option that will yield the highest net return. In summary, any previous
step that required human intervention or was not fully automated influences the degree
to which data or materials can be replicated, updated, or extended.

6.1.2 Publishing data, materials, code, and results

The second objective in the context of open science was to publish the data, materials,
and results openly available. The data and custom code created for this dissertation are
version-controlled, meaning that any changes made were logged and documented, to pro-
mote transparency. To ensure reproducibility, processing steps, ranging from downloading
input data to plotting figures, are implemented in scripts that can be rerun from the com-
mand line. For example, the annotation of speech has been published freely accessible
(Héusler & Hanke, 2021). Its content goes far beyond what was required to conduct the
analyses in Héusler et al. (2022), serves as an extension of the studyforrest project and
widens the “annotation bottleneck” (Aliko et al., 2020, p. 16) of two naturalistic stimuli.
In Hausler et al. (2022), we used open fMRI data to investigate a research subject that
was not anticipated when the data were initially made available. The results of Hausler
et al. (2022) indicate that increased hemodynamic activity in the PPA generalizes from
blocks of images to spatial information embedded in a movie and an auditory narrative.
These results published in a peer-reviewed journal highlight the benefits of sharing and
reusing data to explore unanticipated research questions and to generate new insights.

From a negative perspective, creating data, materials, and code to be published re-
quires a considerable amount of time and effort. To encourage third parties to reuse the
data, dataset creators must anticipate potential use cases, collect the data with appropri-
ate extent and rigor, convert the data into a standardized format (taking into account,
for example, naming conventions and folder structure). Analyses pipelines need to be
designed and tested in a way that they can reliably replicate every stage of a dataset.
Additionally, dataset creators must take into account legal matters (such as intellectual
property rights, use licenses, statements of agreement, and anonymization of participant
data), facilitate discovery by humans and web bots (e.g., by including detailed descriptions
and machine-readable metadata), and guarantee long-term curation and accessibility.

From a positive perspective, creating a dataset that is intended to be published has
immediate benefits for a researcher. Meticulously recording each step and commenting
the advantages and disadvantages of alternate procedural options leads to deeper under-
standing of the scientific area, its practices, and methods. The version-control of every
step reduces the likelihood of a look-ahead bias. Tracking and extensively documenting
each stage of the data and code from the beginning to the final results can also be thought
of a lab protocol that comprises structured information for writing the corresponding sci-
entific article. Hence, creating a dataset supposed to be published encourages precise
work habits and good scientific practices in general.
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6.1.3 Interim summary

The pursuit of conducting an open and reproducible research project was not mandatory
for thesis submission but entailed significant additional effort and time. Since open sci-
ence practices are not yet covered in graduate or PhD curricula, learning about principles
and standards, as well as putting them into practice, relied on self-initiative and self-
learning. The constantly emerging standards and principles, and the steadily developing
software packages to apply these standards, made it difficult to put theoretical knowl-
edge into practice. In my opinion, the time and effort needed for open science practices
greatly exceed any short-term advantages. The lengthy procedures are not justified by
“gambling” on being cited in the event that released data are reused, or by merely pursu-
ing the “higher purpose” of addressing the replication crisis. Particularly, designing and
testing fully automated analysis pipelines or scripts to plot complex figures without any
manual finishing for the perceived sole purpose of reproducibility is out of proportion to
the immediate benefit of easier bug tracking or simply “higher confidence in one’s own
work”. On the contrary, PhD students that pursue a career in science may be concerned
about exposing themselves to critique owing to a maximum of voluntary transparency
and possibly (and blamelessly?) overlooked errors. Another concern is the potential for
being “scooped”, which refers to the risk that another working group is using the same
data for a similar research question at the same time and eventually claiming priority to
the research idea and its findings (cf. Laine, 2017). This risk is aggravated in case of early-
career scientists that created and maintain a public dataset, pre-registered studies based
on a public dataset, or have to adhere to inflexible project plans. Hence, undergraduate
programs should teach the benefits and best practices, but also risks of open science, and
provide practical training in related software packages. Postgraduate programs should
create incentives to conduct open science projects. After all, open sciences is a suitable
tool to (a) hold researchers responsible for collecting, storing, documenting, processing,
and publishing data and materials in accordance with best practices, (b) increase the
reproducibility of results and replicability of findings, (¢) make knowledge and technolo-
gies widely accessible, (d) therefore increase the efficiency of the scientific progress and
promote innovation, and (e) ultimately increase the public’s trust in the scientific process
and its findings.

6.2 Naturalistic stimuli for functional localization

The traditional method for identifying the PPA is to contrast hemodynamic responses to
blocks of images of landscapes or landmarks with blocks of images of tools or faces. While
the exact outline of the PPA varies depending on the type of stimuli, task, and contrast
as well as statistical threshold, the traditional localizer approach can reliably delineate
the PPA bilaterally in a large proportion of subjects (Zhen et al., 2017). Sengupta et al.
(2016), for instance, were able to identify the left-hemispheric PPA in 12 of 14 subjects
and right-hemispheric PPA in 14 of 14 subjects. In Hausler et al. (2022), we investigated
whether the PPA | as previously identified in the same group of participants of Sengupta et
al. (2016), could be localized using an audio-visual naturalistic stimulus and an exclusively
auditory naturalistic stimulus. We adapted the traditional localizer approach and modeled
hemodynamic responses to events in the two naturalistic stimuli to create t-contrasts that
aimed to localize the PPA. For the statistical analysis (i.e. GLM) of the movie, we
utilized an annotation of movie cuts and depicted locations (H&usler & Hanke, 2016).
For the GLM of the audio-description, we extended the annotation of speech that we
created and validated in Héusler and Hanke (2021) by further annotating nouns that

36



the audio-description’s narrator uses to describe the lacking visual content. On a group-
average level, results demonstrate that increased hemodynamic activation in the PPA
during the perception of static images generalizes to the perception of spatial information
embedded in a movie and an auditory stimulus. We have shown that a model-driven
analysis based on a naturalistic stimulus’ annotation can replicate findings of studies that
employed traditional paradigms. Our results provide further evidence (cf. Bartels & Zeki,
2004) that functional specialization of cortical areas is maintained during naturalistic
stimulation. On an individual level, our analysis of the movie revealed bilateral clusters
of increased hemodynamic activity in the PPA of five participants and a unilateral cluster
in seven participants. The analysis of the audio-description revealed bilateral clusters in
nine participants and a unilateral cluster in one participant. These findings suggest that
a naturalistic stimulus, whether visual or auditory, could potentially replace a traditional
localizer to assess brain functions in individuals.

6.2.1 Current challenges and limitations

The current thesis highlights obstacles in the pursuit of developing a multi-functional
naturalistic localizer. Traditional experimental designs typically involve presenting par-
ticipants with simple, well-controlled stimuli that are carefully designed to elicit clearly
defined responses in targeted brain regions. This allows for modeling of hemodynamic
responses that can predict and explain the neural activity observed in response to these
stimuli. The currently dominant analysis approach is the mass-univariate GLM, which
has its roots in positron emission tomography (PET) research, and is tailored to analyze
data of parametric experimental designs that manipulate isolated experimental variables
of interest. The GLM requires the researcher to specify which stimulus features are pre-
sumed to be correlated with the brain process under investigation. Then, the researcher
needs to model a hypothesized hemodynamic time course that is fit to the data in order
to predict the observed hemodynamic activity and contrast parameter estimates (Friston
et al., 1998). Naturalistic stimuli, however, are continuous and complex, with a multitude
of sensory features that can activate different brain regions simultaneously. Applying
the traditional analysis approach is challenging and can lead to difficulties in isolating
specific neural correlates of perceptual or cognitive processes. Moreover, properties of
naturalistic stimuli stress physiological assumptions of the traditional GLM approach,
such as cognitive subtraction (Friston et al., 1996), the consistency of hemodynamic re-
sponses across events (the rationale behind trial-averaging; cf. Dale & Buckner, 1997),
and the linearity of hemodynamic responses (Boynton, Engel, Glover, & Heeger, 1996;
Cohen, 1997; Dale, 1999). The properties of naturalistic stimuli also stress statistical as-
sumptions such as the absence of collinearity among variables. The lack of experimental
control, however, can be alleviated by detailed annotations that allow modeling and sta-
tistically controlling potentially confounding variables (e.g., Deniz, Nunez-Elizalde, Huth,
& Gallant, 2019). Low-level visual features, such as brightness, and low-level auditory
features, such as root-mean square power (i.e., volume), can be automatically extracted
on a low temporal scale (e.g., per movie frame; cf. github.com/psychoinformatics-de/
studyforrest-data-confoundsannotation for low-level annotations of the studyforrest
project). Recent advances in machine learning have led to the creation tools, such as
“pliers” (McNamara, de la Vega, & Yarkoni, 2017) implemented in the neuroscout plat-
form (neuroscout.org; de la Vega et al., 2022), that can automatically extract high-level
features like semantics or clearly defined object categories. Such tools can replace time-
consuming manual annotations or provide a provisional scaffold that reduces manual labor
for a growing number of stimulus features. However, variables that are difficult to define,
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hard to consistently label, have multiple interpretations, fluctuate on longer time scales,
or subject-related variables, such as the level of engagement or felt emotions (cf. Lettieri
et al., 2019; Saarimaki, 2021), still defy an automatic annotation. Hence, merely assessing
the confound structure of a naturalistic stimulus as a possible candidate for a prospec-
tive model-driven analysis might become time-consuming. Moreover, a large amount of
annotated features may lead to annotations that are “hard to use” (Richard et al., 2019,
p. 2) or “high-dimensional, cumbersome models” (Richard et al., 2019, p. 2) eventually
resulting in a lack of statistical power due to insufficient data samples.

6.2.2 Interim summary

Given the unsolved issues and current limitations, it is perhaps not surprising that, even
20 years after the group-level findings of Bartels and Zeki (2004), no functional localizer
based on a movie or an auditory narrative exists that localizes high-level visual areas.
The most ecologically valid visual localizers currently available are dynamic localizers
(e.g., Fox, Iaria, & Barton, 2009; Pitcher, Dilks, Saxe, Triantafyllou, & Kanwisher, 2011)
that use blocks of short videos (each video lasting ~2-3s) of scenes, faces, etc., making
them well-suited for traditional modeling procedures.

Even naturalistic stimuli, despite being labeled as “naturalistic” and ubiquitously re-
ferred to as “more ecologically valid”, are not strictly “naturalistic”, but rather an ap-
proximation of real-life presented via a screen and headphones in the laboratory. Similar
to traditional stimuli that have been carefully designed by researchers to probe specific
brain processes, most naturalistic stimuli used in neuroscience have been carefully de-
signed by professional media creators to appeal to their target audience. Film directors
intentionally manipulate the viewers’ attentional focus and mental states using a variety
of techniques like camera-movement, composition, movie editing, or voice-overs (Brown,
2012; Dancyger, 2011; Katz, 1991; Mercado, 2011) that, when used correctly, largely oc-
cur unnoticed. For example, participants asked to spot movie cuts miss between 10% and
50% of them depending on the type of cut (T. J. Smith & Henderson, 2008). While these
techniques reduce individual variation and lead to reliably synchronized spatial-temporal
responses across subjects in a large part of the cortex (Hasson et al., 2008), they also
introduce a confounding factor in the form of “naturalistic stimulus statistics”.

Although naturalistic stimuli are intended to be inherently engaging and offer a task-
free paradigm, sustained attention is still required by participants when “freely viewing”
a movie or “freely listening” to an auditory narrative, which may become challenging
over longer periods of time. The occasional disengagement of single subjects may have
a negligible effect on group-average results, especially when statistics are calculated over
long stimulus intervals. However, when a study aims to investigate a brain process that is
expected to be universal across humans on an individual level, a varying engagement may
impair the reliability of individual-level results across stimulus segments and potentially
mask effects of interest. Nonetheless, a varying level of engagement may reflect a personal
preference towards the presented stimulus or elicit, given the low demand characteristics
(cf. Orne, 1962) of naturalistic paradigms, a more natural behavior reflecting a personal
trait.

6.2.3 Estimation based on data of a reference group

Given the current limitations of modeling hemodynamic responses during naturalistic
stimulation to reliably localize the PPA in all participants, the thesis aimed to explore
a second approach to identify a functional area based on data of naturalistic stimuli. In
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Chapter 5, we estimated the empirical Z-maps acquired from the analysis of the visual
localizer in an individual by leveraging data from other individuals. Our results indicate
that =15 min of movie data sampled at 0.5Hz used for functional alignment can estimate
the results of the visual localizer more accurately than an estimation procedure based
on anatomical alignment. Results suggest that a fMRI scanning session using a complex
naturalistic stimulus lasting 15 to 30 minutes could serve as a functional calibration scan.
This calibration scan can be used to align a new subject to a common functional space
derived from data of a reference group. Once aligned with the common functional space,
functional data of controlled and naturalistic paradigms can be mapped through the
common model space into the new subject’s voxel space. This approach enables the
possibility of using a short movie to estimate the results of various localizers that are
designed to provide reliable measures in all individuals. Just presenting an engaging
short movie to a new subject would allow to estimate patterns that are observed in the
normative reference group, when additional functional scans are not feasible due to various
constraints, such as time, scanner availability, financial limitations, or compliance issues.
Furthermore, this approach would allow for quantifying the similarity or dissimilarity
between a new subject’s actual pattern and the common pattern estimated from the
normative reference. In particular, our results suggest that an auditory paradigm can
be used to estimate the results of a visual paradigm. Future studies should explore the
performance of functional alignment in other domains than high-visual perception. It
would be intriguing to investigate whether functional alignment can be utilized to predict
brain patterns that are correlated with paradigms specifically designed to elicit brain
processes not captured during passive movie viewing, such as planning or decision-making.
However, future developments are necessary to advance functional alignment to a clinical
application. Increased sampling rates and improved functional alignment algorithms are
required to reduce scanning time and the amount of data needed to functionally align a
higher number of voxels simultaneously. Further developments that allow aligning a large
number of voxels across larger distances would be particularly beneficial for functional
areas that exhibit large interindividual variability in anatomical location, such as language
areas, or in cases of atypical topography resulting from cortical reorganization after brain
injuries.

6.3 Conclusions

Traditional localizer paradigms are designed to selectively elicit certain perceptual or
cognitive processes in the majority of study participants. In contrast, naturalistic stimuli
more closely resemble the complexity of real-world experiences, leading to responses in
multiple brain regions simultaneously. As a proof of concept, the thesis focused on the
PPA, a high-level visual area, to investigate the potential of a movie and its audio-
description to replace a traditional visual localizer. We found that a model-driven analysis
based on annotations of stimulus features embedded in the naturalistic stimuli can yield
results that are consistent with previous studies using a visual localizer. A second, model-
driven approach revealed that 15 minutes of functional scanning during movie watching
can generate a sufficient amount of data to functionally align a subject with a common
functional space and estimate brain patterns more accurately than a procedure based on
anatomical alignment. Further studies are needed to investigate whether findings of this
thesis generalize to other high-level visual areas and other domains of brain functions.
The thesis also highlights challenges of naturalistic stimuli. Researchers should fa-
miliarize themselves with media techniques to make informed decisions when choosing
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potential stimulus candidates. Moreover, the creation of annotations is crucial for a cou-
ple of reasons. First, annotations allow to quantify the confound structure of potential
candidates. Second, annotations enable model-driven analyses that may reveal which
stimulus features and brain responses are correlated, enabling future investigations to
more effectively choose an appropriate naturalistic stimulus for a given research ques-
tion or population. Last, annotations allow to test physiological assumptions, address
statistical issues, and eventually adapt traditional analysis approaches and foster the de-
velopment of new analysis methods.

To address the challenge of individually varying levels of engagement due to a lack
of a task, fMRI scanning sessions should be accompanied with EEG, eye-tracking, phys-
iological recordings, such as skin conductance response and heart rate, and followed up
with self-reports to evaluate a participant’s alertness and audio track audibility within the
noisy scanner. These additional recordings may increase expenditures but also the num-
ber of use cases of a dataset. Given the versatility naturalistic stimuli, researchers who
consider running an experiment that employs a naturalistic stimulus, should also consider
eventually sharing the data with the scientific community. Creating a dataset with the
intention of sharing it promotes best practices of collecting, documenting, storing, and
processing data, and ultimately promotes a collaborative effort to advance the field.

With further investigations and refinements of analysis methods, it may be possible
to use only one naturalistic stimulus to assess multiple domains of brain functions on an
individual level under more ecological conditions. It is important to note that natural-
istic stimuli should not necessarily be expected to yield identical results to traditional
paradigms. Traditional localizers aim to minimize inter-subject variability and reliably
localize functional areas in all healthy individuals. The lack of demand characteristics
of naturalistic stimuli presents challenges when investigating brain responses assumed to
be universal across all humans. However, naturalistic paradigms allow participants to
behave more genuinely during an experiment, potentially revealing individual differences
in perception and cognition that may also be correlated with genuine behavior in the real
world. Therefore, naturalistic stimuli should not seek to replace traditional paradigms
and it is important for researchers to acknowledge the strengths and limitations of both
paradigms.
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Fig. A.1: Mean similarity of hemodynamic responses modeled for the analysis
of the visual localizer in Sengupta et al. (2016) and shared features in 1000
shared response models based on randomly shuffled runs in the first fold of
the cross-validation. Before calculating the Pearson correlation coefficients between
modeled responses and shared responses within one of the multi-paradigm CF'Ss, the time
series of the respective CFS’s shared features were trimmed to match the corresponding
TRs of the visual localizer paradigm (Sengupta et al., 2016). The modeled hemodynamic
responses (i.e. regressors) represent predicted responses to the six categories of pictures
that were presented in blocks.
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Fig. A.2: Mean similarity of hemodynamic responses modeled for the analysis of
the movie in Hiusler et al. (2022) and shared features in 1000 shared response
models based on randomly shuffled runs in the first fold of the cross-validation.
Before calculating the Pearson correlation coefficients between modeled responses and
shared responses within one of the multi-paradigm CF'Ss, the time series of the respective
CFS’s shared features were trimmed to match the corresponding TRs of the movie (Hanke,
Adelhofer, et al., 2016). The modeled shared responses (i.e. regressors) vse_new to
vno_cut are based on annotations of movie frames, whereas the regressors fg_av_ger_lr
to fg_av_ger_ud represent low-level visual or auditory confounds (cf. Table 3 in Hausler
et al., 2022). vse_new: change of the camera position to a setting not depicted before;
vse_old: change of the camera position to a recurring setting; vlo_ch: change of the
camera position to another locale within the same setting; vpe_new: change of the cam-
era position within a locale not depicted before; vpe_old: change of the camera position
within a recurring locale; vno_cut: a pseudorandomly selected frames within a continuous
movie shot; fg_av_ger_1r: left-right luminance difference; fg_av_ger_lrdiff: left-right
volume difference; fg_av_ger_ml: mean luminance; fg_av_ger_pd: perceptual differ-
ence; fg_av_ger_rms: root mean square volume; fg_av_ger_ud: upper-lower luminance
difference.
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Fig. A.3: Mean similarity of hemodynamic responses modeled for the analysis
of the audio-description in Hiusler et al. (2022) and shared features in 1000
shared response models based on randomly shuffled runs in the first fold of the
cross-validation. Before calculating the Pearson correlation coefficients between mod-
eled responses and shared responses within one of the multi-paradigm CFSs, the time
series of the respective CFS’s shared features were trimmed to match the correspond-
ing TRs of the visual localizer paradigm (Sengupta et al., 2016). The modeled shared
responses (i.e. regressors) body to sex_m are based on annotated categories of nouns spo-
ken by the audio-description’s narrator, whereas the regressors fg_ad_ger_lrdiff and
fg_ad_ger_rms represent low-level auditory confounds (cf. Table 3 in Héusler et al.,
2022). body: trunk of the body; overlaid clothes; bpart: limbs and trousers; fahead:
(parts) of the face or head; furn: moveable furniture (insides & outsides); geo: immobile
landmarks; groom: rooms & locales or geometry-defining elements; object: moveable
and countable entities with firm boundaries; se_new: a setting occurring for the first
time; se_old: a recurring setting; sex_f: female name, female person(s); sex_m: male
name, male person(s); fg_ad_lrdiff: left-right volume difference; fg_ad_rms: root mean
square volume. geo&groom is a combination of regressors as used on the positive side of
the primary contrasts aimed to localize the PPA (cf. Table 5 in Héusler et al., 2022).
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