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Zusammenfassung 

Eine der zentralen Funktionen der Leber ist die Produktion und Erhaltung der Gallenflüssigkeit. 

Zuzüglich zu der seit langem etablierten Rolle in der Fettabsorption wurden Gallensäuren vor 

Kurzem als Signalmoleküle identifiziert, die das Darmmikrobiom und wichtige zelluläre 

Signalwege beeinflussen. Fehlregulierte Gallenhomöostase aufgrund von genetischen 

Änderungen in Schlüsselproteinen in Hepatozyten ist ein Kennzeichen von cholestatischen 

Erkrankungen wie der progressiven familiären intrahepatischen Cholestase (PFIC). Die 

Phospholipid-Floppase MDR3, die sich in der kanalikulären Membran befindet und für den 

Transport von Phosphatidylcholin und damit für die Aufrechterhaltung eines nicht-toxischen 

Verhältnisses von Lipiden zu Gallensäuren in den Mischmizellen der Galle verantwortlich ist, 

ist bei PFIC Typ 3 betroffen. Aminosäuresubstitutionen stellen den größten Teil der bei PFIC3-

Patienten identifizierten ursächlichen Veränderungen innerhalb des ABCB4 Gens (das für das 

MDR3 Protein kodiert) dar. In der Publikation I habe ich ein maschinelles Lernen-basiertes 

Programm entwickelt, welches Varianten als benigne oder pathogen klassifizieren kann, um 

Kliniker und Wissenschaftler bei der Einschätzung von neuen Varianten für weitere Testungen 

zu unterstützen. Da MDR3 an einer Reihe von Lebererkrankungen beteiligt ist, lässt sich das 

Programm auf jede MDR3-Variante anwenden. MDR3 wird, wie viele andere Proteine 

innerhalb des komplexen Netzwerks zur Regulierung der Gallenhomöostase, durch den 

Nuklearen Rezeptor FXR transkriptionell reguliert. Eine klinisch identifizierte homozygote 

Missense-Variante, die mit PFIC Typ 5 assoziiert ist, wurde innerhalb der Publikation II mittels 

einer Kombination von in vitro und in silico Ansätzen analysiert, um den molekularen 

Mechanismus zu entschlüsseln. Die Variante, lokalisiert innerhalb der Ligandenbindungs-

domäne, beeinflusst die Positionierung von Helix 12, welche entscheidend für die 

Proteinaktivität ist. Die Variante zeigte einen reduzierten Übergang vom inaktiven zum aktiven 

Zustand, passend zur verringerten Transkriptionsaktivität in zellulären Assays. Darüber hinaus 

könnte der enthüllte Übergang zwischen den Konformationszuständen des Wildtyp-FXR 

Proteins eine Grundlage für zukünftige neue Erkenntnisse im Bereich der spezifischen 

Targeting-Strategien bieten. FXR hat vielfältige Funktionen innerhalb des menschlichen 

Körpers, und isoform-, gewebe-, und ligandenspezifische Effekte legen nachgeschaltete Ziele 

auf der Gen-Ebene fest. Trotz der Komplexität und des inhärenten Risikos von 

Nebenwirkungen bleibt die pharmakologische Intervention mittels FXR von hohem Interesse 
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aufgrund der Beteiligung im Fett- und Glukosestoffwechsel, Entzündungen und Immunität, 

sowie der Gallenhomöostase und der Verbindung zum Mikrobiom. Dementsprechend muss 

die sichere Beeinflussung von FXR auf einem detaillierten Verständnis der Protein-Dynamik 

basieren. In der vorliegenden Arbeit stelle ich ein neues, verlässliches Vorhersageprogramm 

für die Pathogenität von MDR3-Varianten und Erkenntnisse in die Regulierung der FXR-

Aktivität vor. 
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Abstract 

One of the central functions of the liver is the production and maintenance of bile. In addition 

to their long-established role in fat absorption, bile acids have recently been identified as 

signaling molecules able to influence the gut microbiome and major cellular pathways. 

Dysregulated bile homeostasis due to genetic alterations in key protein players within 

hepatocytes is a hallmark of cholestatic diseases such as progressive familial intrahepatic 

cholestasis (PFIC). The phospholipid floppase MDR3, located at the canalicular membrane and 

responsible for transporting phosphatidylcholine and thus maintaining non-toxic lipid to bile 

salt ratios within bile mixed micelles, is impacted within PFIC type 3. Missense amino acid 

substitutions represent the majority of causative alterations within the ABCB4 gene (encoding 

for MDR3 protein) identified in PFIC3 patients. In Publication I, I developed a machine learning 

program to classify variants as benign or pathogenic, thus assisting clinicians and researchers 

in the assessment of novel variants for further testing. Due to the involvement of MDR3 in a 

range of liver diseases, the tool is applicable to any MDR3 variant. MDR3, like many other 

proteins involved in the complex network maintaining bile homeostasis, is transcriptionally 

regulated by the nuclear receptor FXR. A clinically identified homozygous missense variant 

associated with PFIC type 5 was analyzed within Publication II using a combination of in vitro 

and in silico approaches to unravel the molecular mechanism. Located within the ligand 

binding domain, the variant impacts the positioning of helix 12, which is critical for protein 

activity. The variant showed reduced transitioning from the inactive to active state, in line with 

reduced transcriptional activity in cellular assays. Additionally, the uncovered transitioning 

between conformational states in the wildtype FXR protein may provide a basis for novel 

insights into specific targeting strategies. FXR has broad functions within the human body, and 

isoform-, tissue-, and ligand-specific effects determine downstream gene targets. Despite the 

complexity and inherent risk of side effects, pharmacological targeting of FXR remains of high 

interest due to its involvement in lipid and glucose metabolism, inflammation, and immunity, 

as well as bile homeostasis and its microbiome linkage. Accordingly, safely targeting FXR must 

be grounded in a thorough understanding of its protein dynamics. Within the presented work, 

I provide a novel, reliable prediction tool for the pathogenicity of MDR3 variants and insights 

into FXR activity regulation.  



 

 
1 

Chapter 1 Introduction 

Guided by evolutionary processes leading to an astounding plethora of cell diversity and 

cellular mechanisms, the human body functions as a deeply connected network of specialized 

organs and tissues (Alberts et al., 2007; Asada et al., 2019; Bartsch et al., 2015). Derived from 

a single cell, epigenetic changes and signaling networks enable cells to differentiate into 

specialized cell types within organs performing carefully adjusted and regulated functions 

(Alberts et al., 2007). Due to the high interconnectivity between cells and, on the higher level, 

organs, a misfunction can lead to imbalances in connected systems. As such, many diseases, 

while potentially originating in a specific location within the body, have implications for other 

organs and show debilitating effects beyond the direct reach of the affected cell area. The 

liver is the main site of impairment in progressive familial intrahepatic cholestasis (PFIC), a 

heterogenous group of rare disorders (Clayton, 1969; Davit-Spraul et al., 2009; Prescher et al., 

2019). These genetic disorders impact the ability of hepatocytes to properly form and secrete 

bile, leading to early-onset progressive liver disease (Davit-Spraul et al., 2009; Gomez-Ospina 

et al., 2016; Gonzales et al., 2017; Sambrotta et al., 2014). Beyond the liver, the expression of 

functionally impaired proteins in other organs, as well as altered bile properties, which in turn 

affect the microbiome interactions, can lead to the involvement of other organs, particularly 

the intestinal system, exemplifying a strong gut-liver axis (Pfister et al., 2022; Yu et al., 2023).  

Within affected patients, genetic analysis often identifies alterations leading to amino acid 

missense variants within relevant hepatocyte proteins. Cellular assays to unravel variant 

impact are time- and cost-intensive, and accordingly, computational methods such as machine 

learning (ML) or molecular dynamics (MD) simulations have been increasingly employed to 

aid the evaluation of variant effects. ML, a computational technique to extract underlying 

patterns from datasets and extrapolate to novel data, is increasingly impacting science from 

basic research to clinical applications (Greener et al., 2022; Iqbal et al., 2021; Stormo et al., 

1982; Yip et al., 2017). In the context of protein missense variants, in which single amino acid 

positions are exchanged, ML approaches resulted in a range of prediction tools for mutational 

impact and are routinely used to guide researcher efforts (Adzhubei et al., 2010; Choudhury 

et al., 2022; Frazer et al., 2021; Livesey & Marsh, 2023). MD simulations allow the study of 

protein motions on an atomic level over time in a controlled computational model system and 

have proven useful in deciphering protein dynamics (Latorraca et al., 2017; Prescher et al., 
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2021), protein-protein (Koch et al., 2019), protein-ligand (Bonus et al., 2020), or protein-

nucleic acid interactions (Yoo et al., 2020). 

Within the presented thesis, I established an ML tool and employed MD simulations to analyze 

PFIC-relevant proteins, namely multidrug resistance protein 3 (MDR3) and farnesoid X 

receptor (FXR). Based on a unique MDR3 dataset, I derived a protein-specific ML prediction 

tool for MDR3 missense variants to classify variants into the categories of benign or 

pathogenic. To ensure easy access, the tool is available as a webserver as well as a standalone 

version (Publication I). Further, I uncovered conformational transitioning from the inactive to 

active state for FXR using MD simulations and revealed a decreased transitioning for a clinically 

identified variant, explaining its reduced protein activity (Publication II). Publication II is 

currently in the peer-review process (status: May 2024).  

 

1.1 Bile homeostasis as a cornerstone of liver health 

The human liver is responsible for a variety of functions within the body, including lipid uptake 

and secretion, cholesterol homeostasis, generation of signaling molecules, glucose 

metabolism, bile formation and secretion (Knell, 1980; Ma et al., 2006; Trefts et al., 2017). Bile 

is necessary for the emulsification and absorption of fat and fat-soluble vitamins within the 

digestive system (Di Gregorio et al., 2021). Furthermore, it is needed in the elimination of 

potentially harmful exogenous toxins and endogenous lipophilic substances such as bilirubin, 

while it is also the main elimination route for cholesterol (Boyer, 2013; Hofmann, Alan, 2009). 

Bile consists of water, bile salts, phospholipids, cholesterol, bilirubin, cations and anions, and 

other proteins, amino acids, and vitamins in smaller traces (Boyer, 2013). Within the 

enterohepatic circulation, bile acids are actively absorbed and transported back to the liver 

(Figure 1) (Hofmann, Alan, 2009; Hofmann, 1976). Upon ingested food reaching the stomach 

(Figure 1, I), the gallbladder starts to release stored bile into the primary part of the small 

intestinal tract, the duodenum (Figure 1, II). Here, the bile acts on the ingested lipids and fat-

soluble vitamins, preventing the formation of large fat droplets while facilitating easier 

enzymatic attack on lipids based on an increased surface available for the enzymes in smaller 

fat droplets (Di Gregorio et al., 2021). Over the course of the small intestinal tract, the bile 

acids are absorbed, mostly in the ileal part, via the ileum bile acid transporter (IBAT) expressed 

in enterocytes (Dawson et al., 2003). Transported via the portal vein and mixed in the liver 



  Introduction 

 
3 

with oxygen-rich blood from the hepatic artery within the sinusoids, the bile acids reach their 

original site of production, the hepatocytes (Figure 1, III). The enterohepatic circulation 

recycles in healthy state around 95% of the bile acids (Halilbasic et al., 2013; Hofmann, Alan, 

2009). While this is in general beneficial in terms of energetic costs, it also allows a direct 

feedback mechanism, in which bile acid levels can be sensed and re-adjusted if necessary. This 

feature is essential to control functioning fat digestion as well as to guard against critically 

elevated bile acid levels, as high levels of bile acids can act on cell membranes, leading to cell 

toxicity (Ikeda et al., 2017; Oude Elferink & Paulusma, 2007). Their unique features justify 

taking a closer look at these molecules. 

 

Figure 1: Overview of the enterohepatic circulation. Bile is produced within the liver and stored via 
bile canaliculi in the gallbladder. After food intake (I), bile is released from the gallbladder (II), entering 
the intestinal system at the Duodenum, the first of the three sections of the small intestines. In healthy 
state, 95% of liver-secreted bile acids are absorbed within the small intestines (III), especially from the 
distally located ileal epithelial cells. The portal vein transports absorbed bile acids and nutrients via the 
liver to other body parts, where bile acids get taken up by hepatocytes, returning to their production 
site. 
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1.2 The unique structure of bile acids 

Bile acids are generated from cholesterol (A. E. C. Wen & Campbell, 1977), and thus, all bile 

acids share the common structure of the cholane skeleton with three six-membered and one 

five-membered carbon rings (Figure 2, A). Within humans, chenodeoxycholic acid (CDCA) and 

cholic acid (CA) are the two main bile acids synthesized from cholesterol (Vlahcevic et al., 

1991), which are conjugated with taurine or glycine before secretion into bile (Chiang, 2013). 

Conjugation, performed by the enzymes bile acid-Coenzyme A (CoA) ligase or bile acid-

CoA:amino acid N-acyltransferase, occurs at the side chain and reduces the molecules’ pKa (Di 

Gregorio et al., 2021). Consequently, conjugated bile acids will be present in their ionized salt 

form (accordingly termed bile salts), thus lowering their passive absorption through cellular 

membranes within the intestinal tract. These molecules, synthesized within hepatocytes, are 

referred to as primary bile acids. Overall, their structure results in a hydrophilic and a lipophilic 

molecule side (Figure 2, B). This aids in fat emulsification, preventing fat droplets from 

converging and enabling easier access for attacking enzymes to break down the fats (Figure 2, 

C). Thus, bile salts have an important role in our digestive system, facilitating the absorption 

of lipids and lipophilic vitamins. Furthermore, the gut microbiome actively contributes to the 

diversity by converting the primary bile acids into a variety of secondary bile acids (S. L. Collins 

et al., 2023; Guzior & Quinn, 2021; Quinn et al., 2020).  

 

Figure 2: Structure of the bile acid CDCA. [A] Structure of CDCA. [B] Three-dimensional view of a 
conformation of CDCA in its ionized form, extracted from a crystal structure of FXR bound with 
agonistic CDCA (PDB ID: 6HL1 (Merk et al., 2019)) and depicted with PyMOL. Oxygen atoms are 
depicted in red, carbon atoms in grey and hydrogens in white. [C] Emulsifying effect of bile acids with 
a central fat droplet (brown sphere). The structure of bile acids, with hydrophilic charged groups (green 
points) pointing towards the surrounding hydrophilic environment and its hydrophobic side (yellow 
area) interacting with lipids from the fat droplet, preventing the coalescence of droplets. Panel C was 
created using BioRender.  
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Modifications range from deconjugation, dehydroxylation, oxidation and epimerization to 

reconjugation, and the levels of specific secondary bile acids differ not only from person to 

person based on the individual microbiome, but also along the intestinal tract (Guzior & Quinn, 

2021; Shalon et al., 2023). In general, this metabolism by the microbiota has been long 

established (Gustafsson et al., 1966). Given the abundance and diversity of the microbial 

community, researchers have long been striving to unravel the composition and interaction 

patterns in greater detail. Recent advances both in molecular (Blaut et al., 2002; Hillman et 

al., 2017) and sampling techniques (Shalon et al., 2023) are enabling a new era, introduced 

with the breakthrough finding of novel microbially conjugated bile acids, namely the 

conjugation of amino acids phenylalanine, tyrosine and leucine to bile acids (Quinn et al., 

2020). As such, the field of microbiome research and the interplay with bile acids and their 

role in healthy and disease states is currently under intense investigation, and a series of novel 

important insights are expected (S. L. Collins et al., 2023; Guzior & Quinn, 2021; Shalon et al., 

2023). Additionally, bile acids have been identified as important signaling molecules for lipid 

and glucose metabolism (de Aguiar Vallim et al., 2013; Ma et al., 2006), inflammation (M. Li et 

al., 2017), and immunity (Fiorucci et al., 2018; Godlewska et al., 2022). Another key aspect of 

bile acids, and one that will be further discussed in the next chapter, is the bile acid feedback 

loop regulating its own homeostasis. 

 

1.3 Hepatocytes control the bile formation 

For a well-functioning fat digestion, the ability to sense and adjust bile formation is important. 

Bile salts produced in hepatocytes and released into the enterohepatic circulation enable this 

feedback mechanism (Figure 1 and Figure 3). Another reason for tight control of bile salt levels 

is their cytotoxic effects due to their detergent nature and their potential to induce 

proinflammatory stimuli at higher concentrations (Claudel & Trauner, 2020; Ikeda et al., 2017; 

M. Li et al., 2017). Bile acids entering from the portal vein can act as agonists for FXR, the 

central transcription factor of the bile formation network (Jiang et al., 2021; H. Wang et al., 

1999). Additionally, FXR activation by elevated bile acid levels in enterocytes can influence 

hepatocyte metabolism, for example, via fibroblast growth factor 19 (FGF19), expressed 

within the enterocyte and traveling via the portal vein to suppress the production of bile acids 

within hepatocytes (Katafuchi & Makishima, 2022). Upon bile acid binding, FXR translocates 

into the nucleus, dimerizes with the transcription factor retinoid X receptor (RXR) and binds 
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to its specific DNA response element (Claudel et al., 2002; Forman et al., 1995; Laffitte et al., 

2000). In this way, FXR can exert control over the synthesis of bile acids from cholesterol via 

the rate-limiting enzyme cytochrome P450 family 7 subfamily A member 1 (CYP7A1), inhibit 

further uptake of bile acids from the portal vein via inhibition of the sodium taurocholate 

cotransporting polypeptide (NTCP) and increase the efflux of bile acids from hepatocytes into 

the portal vein via the heterodimer organic solute transporter alpha/beta (OSTα/β) in order 

to avoid reaching toxic levels of bile acids within the cell (Chiang et al., 2000; Claudel et al., 

2002; Dash et al., 2017; Hoeke et al., 2009). The expression of organic anion transporting 

polypeptide 1 B1 (OATP1B1) has been found to be induced by FXR and liver X receptor (LXR) 

in a hepatoma-derived cell line (Meyer zu Schwabedissen et al., 2010). Previous studies have 

established downregulation of OATP1B1 within PFIC type 2 and type 3 (Keitel et al., 2005) and 

repression of both OATP1B1 and OATP1B3 in CDCA-treated human liver slices (Jung et al., 

2007), potentially to protect hepatocytes from toxic intracellular bile acid levels. Additionally, 

FXR drives protein transporter expression necessary for the transport of bile components into 

the canaliculi. The most prominent and well-studied example is the bile salt export pump 

(BSEP), which is under FXR-regulated promotor control (Ananthanarayanan et al., 2001; Dash 

et al., 2017). This ATP-binding cassette (ABC) transporter translocates bile salts against a 

concentration gradient from within the hepatocytes through the canalicular membrane into 

the canaliculi (Gerloff et al., 1998; Strautnieks et al., 1998). Mixed micelles with lipids such as 

phosphatidylcholine (PC) are formed in the bile canaliculi, preventing detergent effects of the 

bile salts on the cell membranes (Ikeda et al., 2017; Oude Elferink & Paulusma, 2007). PC is 

flopped from the inner canalicular membrane for extraction into bile micelles by another ABC 

transporter, the multidrug resistance protein 3 (MDR3, gene name ABCB4) (Olsen et al., 2020; 

Prescher et al., 2021; A. J. Smith et al., 1994). Like BSEP, MDR3 is a FXR-regulated target (Dash 

et al., 2017; L. Huang et al., 2003; Ijssennagger et al., 2016). However, MDR3 expression was 

not fully abrogated in patients with loss of function FXR variants (Gomez-Ospina et al., 2016), 

indicating a more complex transcriptional regulation.  

For a healthy bile formation, other key proteins have been identified (Figure 3). Due to 

ongoing research efforts, which are often guided by clinical screening of patients and rigorous 

sequencing, further proteins are regularly identified and could be extending this list of 

involved proteins (e.g., the microtubule motor protein Kinesin family member 12 (KIF12) 

(Maddirevula et al., 2019; Stalke et al., 2022)). Within the intracellular transportation 
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machinery, apical targeting of membrane proteins such as BSEP and MDR3 is a prerequisite 

for bile formation. The cytoskeleton motor protein myosin 5B (MYO5B), important for 

epithelial cell polarization and vesicular trafficking, has been shown to be required for proper 

BSEP localization (Müller et al., 2008). Mutations in MYO5B have been associated with 

microvillus inclusion disease, characterized by loss of microvilli on enterocytes ’ surface, and 

with PFIC type 6 (Gonzales et al., 2017; Müller et al., 2008; Qiu et al., 2017). The 

aminophospholipid flippase familial intrahepatic cholestasis 1 (FIC1) is responsible for 

maintaining the membrane asymmetry at the canalicular membrane, and mutations have 

been associated with liver diseases such as PFIC type 1 (Eppens et al., 2001; Paulusma et al., 

2006). Variants leading to dysfunction of the tight junction protein 2 (TJP2) have been 

associated with PFIC type 4 (Sambrotta et al., 2014). TJP2 is a scaffolding protein involved in 

establishing tight junctions through interaction with cytoskeletal proteins and integral 

membrane proteins such as Claudin proteins (Carlton et al., 2003) and despite widespread 

expression, TJP2 dysfunction might impact mainly the liver due to the specific environment 

with high exposure of tight junctions to detergent bile salts (Sambrotta et al., 2014; Sambrotta 

& Thompson, 2015). Within the liver, the heterodimer ABCG5/G8 is responsible for cholesterol 

secretion (Graf et al., 2003) and the ATP transporter multidrug resistance protein 2 (MRP2), 

besides its function in detoxification, transports bilirubin into the bile canaliculi (Jedlitschky et 

al. 1997; Gabriele Jedlitschky, Hoffmann, and Kroemer 2006). 
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Figure 3: Overview of important proteins within a hepatocyte involved in the bile formation and 
enterohepatic cycle. FXR and MDR3 proteins (dark blue) are marked in bold as they are the focus of 
this thesis. Other key players (light blue) are the bile salt export pump (BSEP), familial intrahepatic 
cholestasis 1 (FIC1), the heterodimer ABC transporter G5/G8 (ABCG5/G8), multidrug resistance protein 
2 (MRP2) [all located within the canalicular membrane], as well as tight junction protein 2 (TJP2), 
myosin 5B (MYO5B) [cytosolic proteins] and sodium taurocholate cotransporting polypeptide (NTCP) 
and organic anion transporting polypeptide (OATP) [located in the basal membrane]. Straight arrows 
indicate molecule transport directions and curved arrows indicate molecule flipping or flopping within 
the membrane bilayer. ER: endoplasmatic reticulum, BA: bile acids, BS: bile salts, PC: 
phosphatidylcholine, APL: aminophospholipid. Distantly adapted from Pfister et al., 2022, Figure 1 and 
Dröge et al., 2017, Figure 1. Further, Figure 7 and Figure 10 in this dissertation are based on Figure 3.  

 

Destabilization of this tightly regulated system can lead to pathological effects and liver 

disease, from less severe impacts like intrahepatic cholestasis of pregnancy (ICP) to severe 

diseases like PFIC. The affected patient numbers are low in accordance with its classification 

as rare diseases, but disease severity often necessitates liver transplantation (Srivastava, 

2014). Further, the different PFIC subtypes highlight the interplay of proteins involved within 

normal bile formation. The BMBF-funded consortium HiChol follows a multi-disciplinary 

approach to study phenotypes, molecular causes, effects, and treatment options of PFIC 

diseases based on the genetic analyses of individual patients. My work was performed as part 

of the HiChol consortium. The combination of in vitro, in vivo and in silico studies, together 

with patient and clinical data, enables a holistic view with the goal of advancing the basic 

understanding of molecular mechanisms and improving patients’ quality of life. In this 

context, I have focused on providing classification guidance for novel variants of the MDR3 
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protein (Publication I) and on elucidating the molecular mechanism of a missense variant of 

the FXR protein (Publication II).  

1.3.1 Variant classification in MDR3 

The adenosine triphosphate (ATP)-binding cassette (ABC) subfamily B member 4 (ABCB4, also 

known as MDR3) is almost exclusively expressed within the liver (Sticova & Jirsa, 2020; Uhlén 

et al., 2015; Van der Bliek et al., 1987). MDR3 dysfunction has been associated with a wide 

range of liver diseases with varying severities, such as ICP, drug-induced liver injury (DILI), low 

phospholipid-associated cholelithiasis (LPAC), liver fibrosis, liver cirrhosis as well as 

hepatobiliary malignancy and progressive familial intrahepatic cholestasis type 3 (PFIC3) 

(Deleuze et al., 1996; Dixon et al., 2000; C. Dong et al., 2020; Dröge et al., 2017; Gudbjartsson 

et al., 2015; Lang et al., 2007; Pauli-Magnus et al., 2004). Genetically, about 70% of the 

disease-causing variants are missense variants (Delaunay et al., 2016), in which one amino 

acid residue within the MDR3 protein sequence is exchanged for a different amino acid. Upon 

gene sequencing, the effect of identified variants within the ABCB4 gene is hard to predict, as 

single nucleotide polymorphisms (SNPs) without pathogenic association can also occur. Since 

in vitro studies to analyze mutational effects are lengthy and time-consuming, I developed an 

ML prediction tool to accurately predict novel variants into the categories of benign or 

pathogenic (Publication I, Chapter 4). The project was published in Hepatology 

Communications (2022) and intended to assist clinicians in the initial assessment of novel 

variants identified in patients. 

1.3.2 Impacted transitioning of a variant in FXR 

The farnesoid X receptor (FXR), also called nuclear receptor subfamily 1 group H member 4 

(NR1H4), is a transcription factor that controls the network of bile homeostasis by acting as a 

master regulator (Makishima et al., 1999; Parks et al., 1999; H. Wang et al., 1999). A 

homozygous variant within the FXR protein was identified in a patient suffering from PFIC 

subtype 5, leading to an amino acid exchange from threonine to isoleucine at position 296 

(p.(Thr296Ile), identifier NM_001206979.2: c.887C>T in the FXR-encoding NR1H4 gene) 

(Pfister et al., 2022). In vitro assays (performed by Dr. Jan Stindt, Heinrich Heine University 

Düsseldorf, Germany), in vivo patient sample analysis (performed by Dr. Carola Dröge and 

Prof. Dr. Verena Keitel-Anselmino) and in silico studies (performed by me) were performed to 

elucidate the underlying molecular mechanisms. Within cellular assays, the variant protein 
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showed significantly reduced transcriptional activity while presenting a normal protein 

localization and similar overall protein levels. Agonist binding occurs within the ligand binding 

domain (LBD) of FXR and favors a conformational state of the nearby helix 12 that creates an 

interaction surface for nuclear coactivators (Mi et al., 2003). Using MD simulations, I 

investigated the LBD of FXR and compared the wildtype to the variant protein. The variant 

showed a significant destabilization of the active conformation and a reduced ability to reach 

the active conformation from an inactive starting position. To further exclude that the variant 

might impact ligand binding, I analyzed the melting temperature of FXR in vitro, revealing no 

significant differences between wildtype and variant protein. The project is available as 

preprint (DOI 10.1101/2024.02.08.579530) (Publication II, Chapter 5). 
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Chapter 2 Background  

 

2.1 Computational biology 

Computational biology has developed into an indispensable research area to tackle many 

biological questions despite it being a rather new field in the context of biological research, 

with research beginning in the 1950s with the pioneering work of Margaret Oakley Dayhoff 

(Dayhoff, 1966; Gauthier et al., 2019). The rapidly growing data collection through advances 

in biological techniques (be it in genomics (Ansorge et al., 1986; F. S. Collins & Fink, 1995; L. 

M. Smith et al., 1986), proteomics (Reel et al., 2021), structural biology (Unwin & Henderson, 

1975), or cellular imaging (Klar et al., 2000) to only name a few) demands for tools to analyze 

and visualize the data, as well as to extract patterns, draw conclusions and use generated data 

for simulations and predictions. Accordingly, computational biology nowadays is an extensive 

research area with numerous subfields, for example, machine learning (Chapter 2.1.1) or 

molecular dynamics simulations (Chapter 2.1.2). While the field is rapidly advancing and yields 

increasingly accurate predictions, studies benefit from collaborative efforts of researchers 

providing in vitro or in vivo data to corroborate computational results and vice versa.  

 

2.1.1 Machine learning 

Machine learning (ML) describes the process of identifying a model that can describe or 

predict data to a sufficiently accurate level (Lo Vercio et al., 2020). In itself, this process is not 

something unique – animals learn and interact with the world in a learning process where 

decisions are made based on previous information and derived causative patterns (Greener 

et al., 2022). A lion cub might learn about different classes of animals, learning to differentiate 

which ones are potential food sources (e.g., zebras) and which ones to better stay clear off 

(e.g., porcupines). Much of this classification process that the lion is undertaking is likely 

image-based, i.e., the visual cue of spikes presented by the porcupines will result in the 

behavioral output of being more careful and not attacking. Translated into the world of ML, 

the lion has learned, based on previous data, from the available information (image-based, 

smell-based, touch-based) to classify new objects into potential food sources or danger 
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sources by applying and testing different behavioral models and continuously correcting 

them. The lion cub will probably have tried more than once to attack a porcupine, either with 

his claws or jaw, and adjust his behavior based on good results – e.g., gaining food – or bad 

results – e.g., pain. However, one must be wary of comparing how computer programs and 

animals learn. Here, I am describing associative learning, meaning associating data to a 

particular outcome, employing a reward and/or punishment system. Animal traits such as 

curiosity and play, huge driving factors for efficient learning for future situations, are unknown 

in ML and even artificial intelligence. ML models will perform their training as often as the 

researcher designing them wants them to; they will not spontaneously decide to train more 

or search for more data out of curiosity (with the exception of reinforcement learning, see 

next paragraph). While this can be seen as an inherent limitation, it provides the huge 

advantage of reproducibility in the context of research. Using the same underlying data and 

the same training conditions, the model will always result in the same output – a feat that will 

never be reached in animal learning. One might argue that other factors contribute to this 

variability within animals (genetics, environmental factors, previous learning experiences). 

Machine-based learning, in contrast, can start from a “blank slate” state (see Essay “Tabula 

Rasa” (2019) by David Young, including a foreword by Jason Bailey, published on Artnome 

[www.artnome.com]). Try as we might, animals cannot reset themselves to a blank canvas, 

while resetting machines is a common procedure. Overall, this provides ML with the 

advantage of standardization and reproducibility (Heil et al., 2021).  

ML has three major forms: supervised, unsupervised, and reinforcement learning (Morales & 

Escalante, 2022). In supervised machine learning approaches, the ML model is built on a 

dataset with a known output, a so-called label, and trained to find a function to map dataset 

features to the label (Lo Vercio et al., 2020). Such a label does not exist in unsupervised 

learning, and the machine is expected to derive meaningful patterns from the datasets 

(Greener et al., 2022). This is extremely valuable in situations where data is too complex for a 

human to process, and ML techniques can aid, for example, in reducing the dimensionality of 

the problem with principal component analysis (Salem & Hussein, 2019). In reinforcement 

learning, the ML is an agent interacting with its environment. The agent learns from feedback 

from the environment after performing an action (Morales & Escalante, 2022). Reinforcement 

learning mimics more closely the process of natural learning similar to human or animal 

learning, resulting in adaptability based on continuous interaction and feedback with a given 
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environment (Sutton & Barto, 2018). Currently, reinforcement learning harbors great 

potential and has even outperformed human performance at complex computer games (Mnih 

et al., 2015). Applications in real life healthcare scenarios remain challenging (Dulac-Arnold et 

al., 2021) but advances are evident especially in areas of sequential decision making (Böck et 

al., 2022; Coronato et al., 2020). Nonetheless, in the field of biomedicine, supervised ML 

techniques are most common since models are often sought to associate specific human 

features (weight, smoking status, age, imaging data, etc.) with a disease outcome (e.g., chronic 

obstructive pulmonary disease development (X. Wang et al., 2023), skin cancer detection 

(Esteva et al., 2017), (Jovel & Greiner, 2021)). 

Underfitted and overfitted models 

In a supervised ML approach, a model will learn to associate specific feature patterns for data 

points with an output (Lo Vercio et al., 2020). Its learning system is based on a loss function 

that is calculated at each learning iteration and indicates an improvement or worsening of the 

model (Kamatani et al., 2017; Morales & Escalante, 2022). Additionally, the designing 

researcher has the opportunity and responsibility to survey the performance of the ML model 

and thread the line between underfitting and overfitting. An overfitted model follows the 

underlying training data too closely and believes that the inherent noise contains valuable 

information. It has thus memorized the training data instead of learning its underlying trends 

(Jovel & Greiner, 2021). Overfitted models fail to draw appropriate conclusions for future 

observations, severely limiting their predictive power (Lo Vercio et al., 2020). Underfitted 

models, however, fail to capture the connection between training data and labels, indicating 

that the model does not capture the complexity of the analyzed system. Underfitted models 

will perform poorly on the training data and have poor predictive power (Lo Vercio et al., 

2020). While poor performance at predicting the training data labels is an easy way to detect 

underfitting, overfitting is a more common problem in ML due to its good performance on 

training data (but with the major drawback of poor performance on unseen or future data). 

To counteract overfitting, it is common practice to withhold a part of the available data (the 

so-called test set) (Liu et al., 2019; Michelucci, 2018). The ML model will be trained on a large 

part of the available data and finally predict the output for the test set, thus imitating how the 

model will behave on future unseen data. Overfitted models will show reduced performance 

in the performance comparison between the training and final test set. Another technique to 

evaluate and limit overfitting is the use of resampling techniques for the training dataset 
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(Charilaou & Battat, 2022). Making use of the same underlying principle of withholding a part 

of the available data to use as an interim test, the dataset – without the final test set – can be 

split into training data and internal validation set. The algorithm will train on the training data, 

evaluate its performance on the internal validation set, shuffle the data again and start 

training again with a new split of training data and internal validation set (Figure 4). Of note, 

there is some ambiguity in the field regarding the naming of the different datasets (e.g., the 

internal validation set is sometimes referred to as dev dataset (Michelucci, 2018) or test set 

and the external set sometimes referred to as validation set (Cabitza et al., 2021)). Here, in 

line with the naming in Publication I, I will follow the introduced naming of validation set as 

the internal validation subset used within the training of the algorithm and test set as the final 

external set to evaluate the model performance on unseen data.  

Figure 4: Schematic overview of dataset handling for ML models with repeated k-fold cross-
validation. Performance evaluation scores are retained after each iteration to compare to the 
performance on the final test set.  

 

A popular resampling technique is k-fold cross-validation, in which the training dataset is split 

into equally sized subsets (so-called folds) where k indicates the number of subsets. Each one 

of those subsets will now, in turn, be used as an internal validation set, meaning there will be 

k-times iteration rounds where one specific subset serves as a validation dataset (Refaeilzadeh 

et al., 2009). After each iteration, the evaluation scores are saved, but the model itself is 
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discarded, meaning the ML model faces entirely new data in every iteration from its point of 

view. The saved evaluation scores aid in evaluating the ML model and testing its performance. 

A variation of the k-fold cross-validation is the repeated k-fold cross-validation (Figure 4), 

where another parameter defines the number of repeats, and within each repeat, the folds 

are differently split, resulting in a more robust model assessment (Rodriguez et al., 2010; 

Rodríguez et al., 2013).  

Popular algorithms for ML models – Decision Trees 

The choice of algorithm to employ for an ML model depends on the specific question the ML 

model is trying to answer. In general, ML models create an objective function to map the input 

to the output variable. The objective function consists of a loss function and a regularization 

term (Equation 1).  

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑  𝑙(𝑦𝑖, 𝑦𝑖_𝑝𝑟𝑒𝑑 ) + ∑ Ω(𝑓)  Equation 1 

 

The first term describes the loss function measuring the difference between true output (y) 

and predicted output (ypred) at the instance i. Ω(f) represents the regularization term that is 

applied to each tree (f) of the ensemble. The loss function evaluates the error the model 

makes during training and iteratively tries to minimize it, while the regularization term acts to 

control overfitting. 

In supervised ML, predictions are made based on a learning period with a training dataset 

containing established examples with known output (Lo Vercio et al., 2020; Rokach & Maimon, 

2005). This output can be a categorical (e.g., image classification into category dog or cat) or 

a continuous (e.g., estimation of house prices) variable. Common ML algorithms to employ for 

such tasks are Decision Trees (Pedregosa et al., 2011; Quinlan, 1993), Naïve Bayes (John & 

Langley, 1995), Support Vector Machines (Keerthi et al., 2001), Random Forest (Breiman, 

2001), Linear Regression (J. Han et al., 2011), Logistic Regression (Cessie & Houwelingen, 1992) 

and Neural Networks (J. Han et al., 2011; Lo Vercio et al., 2020; Sarker, 2021). Decision Trees 

are a popular choice for classification problems, where the data is recursively split based on 

the most significant attributes or features (Rivera-Lopez et al., 2022; Rokach & Maimon, 2005). 

The general idea of a Decision Tree is commonly used in daily life decisions, even though we 

are mostly unaware of it, and, in contrast to an ML model, we do not have to follow the rules 

of the tree strictly. In a simplified way, I might ask myself the question if and what to eat 
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(Figure 5). Collecting data about previous times I have asked myself that question I can create 

a dataset and identify important features, for example my hunger level, finances, and the 

current situation I am in. Those features carry information on why I reached a specific decision 

(which output class I chose) and I can reconstruct a basic Decision Tree from it. The output can 

be a multi-class classification (e.g., eat in a restaurant, eat Apple, cook food, do not eat), a 

binary classification (e.g., eat / do not eat) or a regression (e.g., how much to eat).  

 

Figure 5: Example of a simple Decision Tree. The root node in this case is the feature “Hungry” which 
splits the tree based on the answer yes and no, resulting in two different branches with further decision 
nodes until the last level of the tree with the final leaf nodes. The leaf nodes each hold a class label. 
Note that while each leaf holds a different class label (multi-class classification) here, several leaves 
can also hold the same class label. Changing the exemplary Decision Tree to a binary output of “Eat” 
or “Do not eat”, the leaves might change from “Eat in restaurant” to “Eat”, “Cook at home” to “Do not 
eat”, and “Eat apple” to “Eat”. 

 

The decision for a split is performed in a top-down fashion, where the algorithm chooses the 

variable that best splits the dataset at each given point (Rokach & Maimon, 2005). Depending 

on the used algorithm, the underlying metric for choosing the best split may vary; however, 

the overall goal is to increase the homogeneity of the target variable within the resulting split 

datasets (Rokach & Maimon, 2005). A single Decision Tree is inherently prone to overfitting, 

especially if the tree is allowed to branch down fully (Leboeuf et al., 2020). To avoid this, a 

tree can be pruned – limiting the number of times it is allowed to branch – or several trees 

can be combined in ensemble techniques (Rokach & Maimon, 2005; Sagi & Rokach, 2018).  
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Ensemble techniques increase the model performance by building a larger number of trees, 

minimizing the errors of individual trees (Dietterich, 2000). Bagging and boosting methods are 

common in building these trees (Breiman, 1996; X. Dong et al., 2020). In bagging, a number of 

subsets are randomly drawn from the original dataset, and upon each of these subsets, a 

Decision Tree is trained, whose output is either averaged or majority-voted over all trees to 

obtain the final ensemble classifier (Dietterich, 2000). The drawn training subsets are 

independent from one another, so training is performed in parallel (Bauer & Kohavi, 1999). In 

boosting, the model is built on combining weak classifiers in a chain, where each new classifier 

attempts to minimize the error of the previous classifier (Freund, 1995; Schapire, 1990). 

Assembling those weak classifiers results in a more robust prediction. In gradient boosting, 

the loss function is minimized based on gradient descent (Friedman, 2001). It follows the same 

principle as general boosting approaches in that trees are iteratively added, and each new tree 

trains on residual errors of previous trees, thus concentrating and improving on the weak 

areas of the model performance. One of the most popular ensemble algorithms, often 

achieving the best results in machine learning competitions on the Kaggle platform, is the 

XGBoost algorithm (Chen & Guestrin, 2016). XGBoost stands for extreme gradient boosting, 

which uses a gradient boosting framework optimized for speed and performance (Chen & 

Guestrin, 2016). While neural networks usually outperform other algorithms in problems 

involving unstructured data, such as image analysis (Sharada et al., 2023), XGBoost is a popular 

choice due to its superior performance on tabular data sets, especially small to medium 

dataset sizes (Grinsztajn et al., 2022; Shwartz-ziv & Armon, 2021).  

ML predictions of missense amino acid substitutions  

The human population displays substantial genetic variability where the most common 

genetic difference, a single nucleotide polymorphism (SNP), occurs about every thousand base 

pairs when comparing two individuals (Auton et al., 2015). While many of those nucleotide 

exchanges may not result in a difference on the protein sequence level, a considerable subset 

does result in a single-site amino acid exchange (also frequently referred to as variant or 

mutation) (Auton et al., 2015; Thusberg & Vihinen, 2009). Mutations can have pronounced 

effects, and even single missense mutations have been identified as disease-causing for a 

variety of disorders (Botstein & Risch, 2003) such as Alzheimer’s disease (Goate, 2006), 

amyotrophic lateral sclerosis (Rosen et al., 1993) and PFIC (Dröge et al., 2017). Mutations 

might impact functionally important sites, change protein dynamics or cellular localization, 
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affect the protein’s structural properties, disturb inter- or intramolecular residue networks, 

prevent or change post-translational modifications (PTMs), or impact protein translation on 

the mRNA level by altered mRNA stability or splicing (Thusberg & Vihinen, 2009; Z. Zhang et 

al., 2012). On the other hand, many mutations might not alter the protein function at all or 

even give it an evolutionary benefit (Tóth-Petróczy & Tawfik, 2014). Evaluating mutations in 

vitro is time- and cost-intensive, and accordingly, predicting the effect of a mutation on the 

protein function is a field of intense research, and a range of predictors are available (Mooney 

et al., 2010). Broadly, predictors can be categorized into sequence- or structure-based or 

considering information from both areas. Sequence-based predictors estimate evolutionary 

conservation based on multiple sequence alignments, following the reasoning that benign 

substitutions are less evolutionary penalized (Miller & Kumar, 2001). Structure-based 

predictors take protein structural effects of mutations into account, either based on available 

protein structures or local or global structure predictions (Ittisoponpisan et al., 2019). 

Combined approaches with sequence conservation as well as structural impact considerations 

have been found to further improve predictions (Folkman et al., 2013) and are employed in 

widely used tools such as PolyPhen-2 (Adzhubei et al., 2010). Most prediction tools are 

designed to predict substitutions for any given protein, which gives the developer the 

advantage of a bigger available dataset for developing the tool and a larger potential user 

group. However, it does not guarantee good performance of the predictor on every protein 

as one potential pitfall can be a skewed training dataset towards a certain protein class, 

resulting in weaker performance on other protein classes. Several studies have benchmarked 

predictors using different proteins with established missense substitutions, resulting in vastly 

varying performances (Choudhury et al., 2022; Livesey & Marsh, 2023; Riera et al., 2016). 

Accordingly, protein-specific predictors have also been established to increase performance 

for specific proteins of interest (Crockett et al., 2012; Niroula & Vihinen, 2015; Riera et al., 

2016). For the case of MDR3, no protein-specific predictor was available despite its 

importance in liver health and bile homeostasis. A previous study claimed MutPred to be a 

well-performing general protein predictor on MDR3 variants (Khabou et al., 2017); however, 

its performance was tested only on a small set of variants and thus might not be 

representative. As missense variants in MDR3 have been associated with a range of liver 

diseases, accurate predictions for this specific protein are of high interest. Hence, I established 

a dataset containing MDR3-missense variants with pathogenic and benign effects and trained 
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an XGBoost ML model specifically for MDR3 (Publication I, Chapter 4). The general structure 

of the code and the integration of some features was established by Pegah Golchin (Heinrich 

Heine University Düsseldorf, Germany; currently at TU Darmstadt, Germany). We used a 

combination of input features from established general protein predictors, both sequence- 

and structure-based, and features to explicitly include secondary structure effects such as 

PTM changes and solvent accessibility for the ML model. The approach led to improved 

prediction results, outperforming general protein prediction tools.  

 

2.1.2 Molecular dynamics simulations 

The computational method of molecular dynamics (MD) simulations, pioneered by work from 

Alder and Wainwright in the 1950s (Alder & Wainwright, 1959), allows studying the motions 

of a biomolecular system based on solving Newton’s laws of motion. Biomolecular structures 

like proteins can be embedded in a specific environment to mimic the cellular context, and 

the movement of each atom during specified time steps is calculated based on physical 

properties and interatomic interactions. Depending on the investigated research question, a 

quantum mechanical description of the system with an explicit representation of electrons 

can be necessary. However, due to their complexity, such calculations are computationally 

expensive and currently out of range for larger systems such as proteins (Bottaro & Lindorff-

Larsen, 2018). In turn, molecular mechanics is mainly used to describe protein systems, where 

each atom is described as a point connected with springs to represent the bonds to other 

atoms (Braun et al., 2019). Hybrid models of quantum mechanics and molecular mechanics 

MD can be used when explicit electronic description of a part of the system is required (Horn, 

2003). For even larger systems and/or if the problem allows a reduced degree of complexity 

of the system, atoms can be grouped, e.g., atoms of an amino acid residue will be represented 

by a pseudo-atom (so-called coarse-grained MD) (Levitt & Warshel, 1975). Within the here 

presented thesis, molecular mechanics MD (in the following referred to as MD) was used to 

investigate conformational changes and missense variant impact within proteins. The protein 

of interest is described on an all-atom level, and the forces acting on each atom of the system 

are calculated based on the bonded (bond, angle, and torsion terms) and non-bonded 

(electrostatic and van der Waals terms) interactions. After a given amount of time steps, the 

newly calculated atomic positions and velocities are stored in a so-called “snapshot” or 
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“frame” that, taken together over the entire simulated time, form the trajectory of the system 

representing the 3D dynamical movement of the analyzed system (Hollingsworth & Dror, 

2018). Accurately describing the atomic interactions is of great importance to computing 

interatomic forces. Accordingly, considerable research has been and continues to be carried 

out on generating functions (referred to as “force fields”) that describe the atomic behavior 

well, matching simulated properties to experiments from physics and chemistry (Koes & Vries, 

2017; Love et al., 2023). The general force field form to compute the potential energy of a 

system (Cornell et al., 1995) consists of bonded and non-bonded terms (Equation 2): 

 𝐸𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝐾𝑟(𝑟 − 𝑟𝑒𝑞)2  

𝑏𝑜𝑛𝑑𝑠

+  ∑ 𝐾𝜃(𝜃 − 𝜃𝑒𝑞 )2

𝑎𝑛𝑔𝑙𝑒𝑠

+  ∑
𝑉𝑛

2
[1 + cos(𝑛𝜙 −  𝛾)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+  ∑ [
𝐴𝑖𝑗

𝑅𝑖𝑗
12 −  

𝐵𝑖𝑗

𝑅𝑖𝑗
6 +  

𝑞𝑖𝑞𝑗

𝜖𝑅𝑖𝑗

]

𝑖<𝑗

 

Equation 2 

 

The first three terms describe the bonded interactions with bond stretching and bond 

compression, bond angle deviations, and torsion angle deviations expressed in the terms, 

respectively. Non-bonded interactions are described in the last term of the equation, 

combining a Lennard-Jones (12,6) potential and a Coulomb potential to describe van der 

Waals and electrostatic interactions (Cornell et al., 1995).  

Within the open-source biomolecular MD program AMBER (Assisted Model Building with 

Energy Refinement (Case et al., 2021, 2023)), several sets of force fields are integrated and 

can be used for simulations of varying molecules, including proteins (e.g., force field ff19SB 

(Tian et al., 2020)), DNA (e.g., force field OL21 (Zgarbová et al., 2021)), carbohydrates (e.g., 

force field GLYCAM_06j (Kirschner et al., 2008)) and lipids (e.g., force field lipid21 (Dickson et 

al., 2022)). Additionally, AMBER provides, amongst others, a set of programs for the 

preparation and execution of molecular simulations and as such has become widely popular 

within biomolecular research (Case et al., 2021; Salomon‐Ferrer et al., 2013). Furthermore, a 

wide range of compatible force fields exist, designed for specific cases such as phosphorylated 

amino acids (Stoppelman et al., 2021), fluorescent dye-linked proteins (Schepers & Gohlke, 
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2020), or to simulate gold-nanoparticles linked with bioactive molecules (Pohjolainen et al., 

2016), bridging thus several research fields and broadening the potential applications. Within 

unbiased MDs, the system will explore its energetically accessible free energy landscape over 

the simulation time, creating a dynamic sampling of energetic states (Karplus & McCammon, 

2002; Orellana, 2019). In a perfect ergodic trajectory, the system will visit all available states, 

resulting in a full view of conformational space in the case of simulated proteins (Abrams & 

Bussi, 2013; Pietrucci, 2017). Frequently, however, such an ergodic state is not reached as it 

requires long simulation times, resulting in the accessing of available energetic minima more 

frequently, while higher energetic states will be visited less frequently (Abrams & Bussi, 2013). 

Accordingly, a range of computational methods have been derived to accelerate and enhance 

the sampling of conformations blocked by high free energy barriers and higher energy states 

like transitioning states (Abrams & Bussi, 2013; Y. I. Yang et al., 2019). Despite the potential 

inaccessibility of certain states, biologically relevant conformational transitioning can be 

observed within unbiased MD simulations and as such, unbiased MDs have been used 

frequently to derive answers from a molecular view on protein flexibility, substrate transport, 

and ligand interactions (Calimet et al., 2013; Halder et al., 2015; Latorraca et al., 2017; 

Orellana, 2019; Skjaerven et al., 2011). 

When studying protein-ligand interactions or within drug design approaches, molecules may 

be present that cannot be accurately described with the integrated force fields, leading to the 

development of the general AMBER force field (GAFF), which supplies parameters for all 

bonded terms and the van der Waals term for most organic molecules (J. Wang et al., 2004). 

To determine the missing parameters for the electrostatics term (i.e., the atom-centered point 

charges), charges are fitted to reproduce the molecule’s quantum mechanically calculated 

electrostatic potential (ESP). For contemporary AMBER force fields, a restrained electrostatic 

potential (RESP) fit (Bayly et al., 1993) has been shown to be superior to an unrestrained fit to 

the ESP (Cornell et al., 1993) and is therefore considered the standard method to determine 

atomic partial charges. The basis set used to describe and compute the molecular orbitals 

determines the quality of the calculated molecular electrostatic potential, and popular basis 

sets differ in the number of Gaussian functions used to describe the atomic orbitals. Though 

the general tradeoff between computation cost and level of detail applies – i.e., the inclusion 

of more Gaussian functions will more accurately depict the true ESP at the cost of increasing 

computation time – a level of 6-31G(d) is frequently used as the derived ESP charges start to 
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converge at this level (Dupradeau et al., 2010; Hariharan & Pople, 1972). With the accurate 

description of molecules of interest for MD approaches, a wide range of protein-ligand 

interaction studies can be assessed. 

Nuclear receptors (NRs) are key regulators of a diverse set of physiological functions. Besides 

the overall domain structure of a DNA-binding domain (DBD) and an LBD with a hydrophobic 

binding cavity, NRs show a common active conformational state upon agonist binding with a 

well-defined helix 12 placement (Aranda & Pascual, 2001; Khan et al., 2022; Saen-Oon et al., 

2019; Wurtz et al., 1996) (see Chapter 2.3). Due to the importance of the protein class and 

their effect range, NRs have been a target for intense research efforts to design molecules for 

specific regulation (Jiang et al., 2021; Jin et al., 2013; Merk et al., 2019; Saen-Oon et al., 2019). 

A wide spectrum of NR crystal structures has led to a well-defined but static picture of the 

active state (Aranda & Pascual, 2001). However, the dynamical conformational change from 

an inactive to an active state has been difficult to investigate in detail, while it may hold the 

key for the ligand and effect variability as well as structural flexibility of NRs (D’Arrigo et al., 

2022; Folkertsma et al., 2005; Jiang et al., 2021). Accordingly, I employed unbiased MD 

simulations to investigate the transition from an inactive conformation to an active state, 

including the impact of a clinically identified variant to uncover its molecular mechanistic 

effect (Publication II, Chapter 5).  

 

2.2 MDR3 acts as an important transporter in bile homeostasis 

The multidrug resistance protein 3 (MDR3) acts as a phosphatidylcholine (PC) floppase at the 

canalicular membrane, enabling extraction of PC into mixed micelles and thus maintaining 

healthy levels of phospholipid to bile salts ratios which in turn aid in the solubilization of 

hydrophobic cholesterol to prevent gallstone formation (Carey & Small, 1978; Elferink et al., 

1997; Lammert et al., 2004; Oude Elferink & Paulusma, 2007). Furthermore, the formation of 

mixed micelles lowers bile salt toxicity towards membranes, thus protecting the biliary tract 

from detergent effects (Ikeda et al., 2017; Oude Elferink & Paulusma, 2007).  

2.2.1 MDR3 transporter structure and function  

MDR3 structurally consists of two cytosolic nucleotide binding domains (NBDs), where ATP is 

bound and hydrolyzed, and two transmembrane domains (TMDs), spanning the membrane 
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leaflets (Prescher et al., 2019; van der Bliek et al., 1988) (Figure 6, A). Despite its high sequence 

identity of 76% with the P-glycoprotein P-gp (ABCB1 or MDR1), MDR3 does not show the wide 

substrate range of xenobiotic transport that characterizes P-gp as a major player in multidrug 

resistance (Finch & Pillans, 2014; L. Mercer & Coop, 2011; Prescher et al., 2021). Additionally, 

the transport rates for overlapping P-gp and MDR3 drug substrates are much lower in MDR3 

(A. J. Smith et al., 2000). Overall, the physiological role of MDR3 is the flopping of 

phospholipids, especially PC, from the inner to the outer membrane leaflet (Oude Elferink & 

Paulusma, 2007; Prescher et al., 2019; A. J. Smith et al., 1994; van Helvoort et al., 1996). This 

translocation might involve a central cavity of MDR3 (Nosol et al., 2021; Olsen et al., 2020) or 

function via a credit card swipe mechanism along the membrane-facing transmembrane helix 

(TMH) 1 (Prescher et al., 2021). Canalicular membranes show a membrane asymmetry, with 

PC being more present in the outer leaflet than in the inner leaflet of the membrane (Eckhardt 

et al., 1999). Accordingly, PC transport by MDR3 is coupled to ATP hydrolysis, working against 

a concentration gradient. It is still unclear whether flopped PC is directly exposed by MDR3 for 

extraction into bile mixed micelles or whether mixed micelles later extract PC lipids from the 

outer membrane leaflet (Oude Elferink & Paulusma, 2007). The importance of PC transport 

for proper bile formation, however, is undisputable, and misfunction of MDR3 is associated 

with a variety of liver diseases (Boyer, 2013). 

Highly conserved ABC-specific motif sequences within the NBDs of MDR3 are critical for 

protein function due to their involvement in ATP binding and hydrolysis (Prescher et al., 2019) 

(Figure 6, B). The Walker A motif with a consensus sequence of GXXGXGKT/S (where X can be 

any amino acid) is responsible for interacting with the phosphate group of ATP (Schmitt & 

Tampé, 2002; Walker et al., 1982). Crucial for ATPase activity is the Walker B motif, consisting 

of a stretch of four hydrophobic residues followed by an aspartate (D), which stabilizes a 

magnesium (Mg) ion (Rai et al., 2006; Urbatsch et al., 2000). Preceding the Walker B motif is 

the signature motif C-loop (consensus sequence LSGGQ), uniquely preserved in ABC 

transporters, and C-terminal of the Walker B motif resides the D-loop (consensus sequence 

SALD) (Prescher et al., 2019; Schmitt & Tampé, 2002). A conserved histidine is of special 

importance as it serves as a key networker between ATP, water molecules, the Mg ion, and 

other amino acids (Zaitseva et al., 2005). The coordination of ATP occurs between the two 

NBD subunits in a concerted action with Walker A, Walker B, and the conserved histidine of 

one NBD and the C-loop of the other NBD (Schmitt & Tampé, 2002) (Figure 6, B).  
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Figure 6: Protein structure of MDR3. [A] Overall MDR3 structure in the ATP-bound outward-facing 
conformation within the canalicular membrane (PDB ID: 6S7P, Olsen et al., 2020). [B] Rotated view on 
the NBD as seen from the perspective of the membrane center towards the cytosolically located NBD. 
Highly conserved and functionally relevant motifs are colored and marked, indicating ATP (depicted as 
colored licorice) and magnesium ions (depicted as green spheres) coordination between the two NBDs. 
exo.: extracellular, cyto.: cytosolic, NBD: nucleotide binding domain.  

 

Based on this detailed mechanistic knowledge of key residues and motifs, mutations within 

these residues will likely impact protein function. Corroborating this theory, several missense 

mutations have been identified within these key motifs in PFIC patients, and in vitro analyses 

further confirmed that variants were normally processed and targeted to the plasma 

membrane but exhibited decreased activity (Degiorgio et al., 2013; Delaunay et al., 2017; 

Dzagania et al., 2012). However, the effect of other identified variants is less easily classified 

and explained at a molecular level. From the identification of the missense variant on the 

genetic level to the detailed mechanistic study on the protein level, analyzing a novel variant 

is both time- and cost-intensive. Accordingly, variant protein predictors are well-established 

and widely used to aid in the prioritization and analysis of variants (Choudhury et al., 2022). 

However, there is no established predictor with proven good performance for MDR3 despite 

its relevance within the liver. Considerable accumulative research has analyzed missense 
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variants of MDR3 both in vivo and in vitro (Andress et al., 2014, 2017; Colombo et al., 2011; 

Davit-Spraul et al., 2010; Degiorgio et al., 2007, 2014; Delaunay et al., 2016, 2017; Dixon et al., 

2000; C. Dong et al., 2021; Dröge et al., 2017; L. J. Fang et al., 2012; Floreani et al., 2006, 2008; 

Frider et al., 2015; Gautherot et al., 2014; Gordo-Gilart et al., 2015, 2016; Gotthardt et al., 

2008; C. Hopf et al., 2011; Jacquemin et al., 2001; Keitel et al., 2006, 2016; Khabou et al., 2017; 

Kluth et al., 2015; Kubitz et al., 2011; Lucena et al., 2003; Olsen et al., 2020; Park et al., 2016; 

Pauli-Magnus et al., 2004; Poupon et al., 2010, 2013; Rosmorduc et al., 2003; Saleem et al., 

2020; Tougeron et al., 2012; Wendum et al., 2012; Ziol et al., 2008). This valuable research 

provided me with the necessary basis to create a dataset for ML approaches with the aim to 

further aid researchers and clinicians in the analysis of variants. Following the standardized 

American College of Medical Genetics and Association for Molecular Pathology (ACMG-AMP) 

guidelines, the classification by an in silico predictor on its own should not be taken as a 

definitive classification of a variant (Richards et al., 2015). However, it is a valuable help to 

narrow down and prioritize variants to study in vitro (Thusberg & Vihinen, 2009). Since MDR3 

plays a vital role in bile homeostasis, its dysfunction is implicated in several diseases (Chapter 

2.2.2).  

 

2.2.2 Involvement of MDR3 in disease 

MDR3 dysfunction has been linked to ICP, LPAC, DILI, PFIC3, liver fibrosis, liver cirrhosis and 

hepatobiliary malignancy (Deleuze et al., 1996; C. Dong et al., 2021; Dröge et al., 2017; 

Gudbjartsson et al., 2015; Lang et al., 2007; Pauli-Magnus et al., 2004; Rosmorduc et al., 2001). 

Dysfunction leads to decreased PC levels in bile micelles, changing the balance of detergent 

bile salts to lipids ratio, which can result in free bile salts that are able to attack epithelial tissue 

(Elferink et al., 1997). In the absence of MDR3, hepatocytes might have to rely fully on their 

asymmetric membrane composition with high levels of sphingomyelin and cholesterol in the 

outer canalicular leaflet for protection against detergent effects (Amigo et al., 1999; Oude 

Elferink & Paulusma, 2007). Furthermore, cholesterol that is not solubilized in the mixed 

micelles can precipitate and form gallstones (Lammert et al., 2004; Oude Elferink & Paulusma, 

2007). In the majority of cases, disease-causing gene variations in the ABCB4 gene lead to 

amino acid substitutions, with only a minority leading to protein truncations or other gene 

alterations (Delaunay et al., 2016). Delaunay et al. further suggested the classification of 
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variants based on their functional impact in the protein’s life cycle (Delaunay et al., 2016), 

similar to classification schemes for other proteins like phosphatase and tensin homolog 

(PTEN) (Hasle et al., 2019). As a transmembrane protein, MDR3 translation occurs at the 

endoplasmatic reticulum (ER), positioning the protein directly into the ER membrane. From 

here, integral membrane proteins are trafficked to their destined localization. For MDR3, this 

implies trafficking via the Golgi apparatus to the apical canalicular membrane (Kipp & Arias, 

2000). Missense variants can either affect protein maturation, localization, stability, activity, 

or a combinatorial effect (Figure 7). Of note, the chosen categories are protein-dependent, as 

transmembrane proteins differ from cytosolic proteins in their important steps within their 

lifecycle. Additionally, categories can be even more fine-tuned, as a minority of genetic 

variants might impact pretranslational steps such as mRNA stability (Stenson et al., 2003; 

Thusberg & Vihinen, 2009) and thus preclude the protein maturation step. For the case of 

MDR3, a classification scheme with protein maturation, localization, activity or stability 

affected, similar to the proposition of Delaunay et al., seems a sensible choice both in regards 

to known variant effects and potential drug intervention (Delaunay et al., 2016). 

 

Figure 7: MDR3 protein lifecycle from translation to membrane localization. Genetic variants can 
impact the lifecycle at several stages, marked with red circled numbers. Missense variants might 
impact protein maturation, inducing misfolding that will target the protein for degradation via ER-
associated degradation (ERAD) to the proteasome (1). Variants might lead to a mislocalization of the 
protein, preventing the protein from reaching its apical target location (2). Lastly, variants might impair 
the protein’s activity and local stability or influence its turnover time once it is located in the apical 
membrane (3). 
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In general, the impact of a missense variant will fall somewhere on the spectrum from no 

effect on protein function to complete protein failure. In accordance with this, variants 

associated with ICP, a transient and reversible disease, while being pathogenic variants, 

usually have a less pronounced effect on protein function (Keitel et al., 2006; Pauli-Magnus et 

al., 2004) than some PFIC3 associated variants that lead to almost complete loss of function 

(Delaunay et al., 2016). Another factor in effect strength comes from the genetic status, 

whether the missense variant is present on one (heterozygous) or on both alleles 

(homozygous). Homozygous MDR3 variants are often associated with PFIC3 and thus tend to 

result in more severe phenotypes (Jacquemin et al., 2001; Saleem et al., 2020). Additional 

complexity within patients arises through the general genetic landscape as well as 

environmental factors. Compound heterozygosity, where either both alleles or one allele is 

marked by two or more variants, and their impact might add up to the presentation of the 

specific phenotype, is known in PFIC cases (Dröge et al., 2017). Furthermore, several risk genes 

might be impacted and contribute to disease strength, as has been shown for ICP (Keitel et al., 

2006) and PFIC3 (Dröge et al., 2017). 

In order to analyze this heterogeneous and complex system, I specifically narrowed down the 

effects of variants into the categories of benign and pathogenic as target categories for an ML 

approach. While further categories, as well as functional evaluation predictions, were 

envisioned and would certainly be beneficial, a larger and well-controlled dataset would have 

been required to enable such predictions. In the case of MDR3, where data from associated 

liver diseases was pooled, the obtained dataset size only allowed for a binary pathogenicity 

prediction with high confidence (see Publication I, Chapter 4).  

 

2.3 Nuclear receptor FXR regulates bile homeostasis network 

2.3.1 FXR isoform expression within the body 

Two FXR genes exist, FXRα and FXRβ (Lee et al., 2006); however, FXRβ is a pseudogene in 

humans (Otte et al., 2003). As such, within this thesis, I am using FXR as a synonym for FXRα. 

The FXRα gene encodes for four isoforms formed through alternative splicing (FXRα1, FXRα2, 

FXRα3, and FXRα4) in human and murine models (Huber et al., 2002; Yanqiao Zhang et al., 

2003). Recently, four novel but functionally defective isoforms have been identified in human 
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hepatocytes (Mustonen et al., 2021), and further research is needed to analyze their 

physiological and pathological relevance, if any. Considering only the functionally active four 

isoforms, they differ within their N-terminal activation function domain 1 (AF1) as well as in 

the presence or absence of a four amino acid long sequence, MYTG, located adjacent to the 

DBD (Yanqiao Zhang et al., 2003). The short MYTG sequence motif plays a role in FXR target 

gene activation via differential DNA-binding preferences, conferring the isoforms with sets of 

different transcriptionally regulated genes (Correia et al., 2015). Overall, all isoforms consist 

of an AF1 region, followed by the DBD and a flexible hinge region, connecting the N-terminal 

part of the protein to the ligand binding domain (LBD) with the C-terminal helix 12 (H12), 

frequently referred to as activation function domain 2 (AF2) (Yanqiao Zhang et al., 2003) 

(Figure 8).  

 

Figure 8: Schematic view on FXR isoforms. [A] The overall organization of FXR consists of an N-terminal 
activation function 1 (AF1) motif, followed by the DNA-binding domain (DBD) and a hinge region 
connecting to the C-terminal ligand binding domain (LBD) with the activation function 2 (AF2) motif, 
exemplarily depicted in the longest isoform FXRα3 with 486 amino acids. [B] The four FXRα differ in 
their AF1 sequence and in the presence or absence of the short sequence motif MYTG. Figure loosely 
based on Yanqiao Zhang et al., 2003. 

 

FXR is highly expressed within the liver and small intestines (Vaquero et al., 2013), with lower 

levels in the kidney and the adrenal gland (Forman et al., 1995). Lower mRNA levels of FXR 



  Background 

 
29 

have been identified in a variety of tissues and cell types, including in glial and neuronal cells, 

vascular smooth muscle cells, pancreatic β cells and immune cells (Albrecht et al., 2017; 

Bishop-Bailey et al., 2004; C. Huang et al., 2016; Renga et al., 2010; Schote et al., 2007). 

Overall, a combination of both MYTG-positive (α1 or α3) and -negative (α2 or α4) FXR isoforms 

can be found in FXR-expressing cells (Ramos Pittol et al., 2020), revealing a specific balance of 

FXR isoform expression. FXRα1 and FXRα2 are predominantly expressed within the liver 

(Huber et al., 2002; Vaquero et al., 2013), with the metabolism in human and mouse liver cells 

being mainly driven by the FXRα2 isoform (Ramos Pittol et al., 2020; Vaquero et al., 2013). 

Within the intestines, FXRα3 and FXRα4 are the predominant isoforms (Huber et al., 2002). 

Different isoforms showed preferential DNA-binding motifs (Ramos Pittol et al., 2020) and 

thus differential isoform expression influences FXR downstream targets. Intriguingly, the 

ongoing investigation of cell type specific FXR effects in a range of cell types highlights the 

possibility of an even more complex system than currently anticipated. Since the introduction 

of the concept of the gut-liver axis (Marshall, 1998), the inter-organ connectivity and its 

interplay has revealed widespread implications in human health and disease states with the 

bile acid-receptive FXR as a prominent regulator (Blesl & Stadlbauer, 2021; Perino et al., 2021; 

Tilg et al., 2022) (Figure 9). Bile homeostasis regulation (Radun & Trauner, 2021), glucose and 

lipid metabolism (Ma et al., 2006; Y.-D. Wang, Chen, Moore, et al., 2008), anti-inflammatory 

effects (Y.-D. Wang, Chen, Wang, et al., 2008) and liver regeneration (W. Huang et al., 2006) 

are amongst the most prominent FXR functions. Interestingly, with the emergence of the gut-

liver-brain axis, FXR modulation might have even further implications (M. Yan et al., 2023). 

Effects may work indirectly through interactions to the microbiome and bile acid levels (Perino 

et al., 2021) or through yet-to-be clearly established functions of expressed FXR in neurons 

and oligodendrocytes within the brain (Albrecht et al., 2017; Deckmyn et al., 2022; C. Huang 

et al., 2016).  
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Figure 9: Prominent functions of FXR within the gut-liver axis. [A] An intricate interplay between bile 
acid pool and microbiome exists within the gut-liver axis. [B] FXR (shown here: LBD structure based on 
agonist-bound crystal structure (Merk et al., 2019) with a coactivation peptide shown in green) is an 
important regulator within this inter-organ connectivity. Established FXR functions, maintained by 
diverse transcriptional regulation, include bile acid homeostasis, glucose and lipid metabolism, 
modulation of inflammation and liver regeneration. Created with BioRender. 

 

2.3.2 Transcriptional regulation by FXR  

A variety of genes related to bile acid, lipoprotein, and glucose metabolism are regulated by 

FXR (Ma et al., 2006; Sinal et al., 2000). Two zinc finger motifs within the DBD of FXR, consisting 

of four cysteine residues, each coordinating one zinc ion, form the basis for DNA recognition, 

a mechanism conserved in the nuclear receptor superfamily (Rastinejad et al., 2000). 

Canonically, FXR forms a heterodimer with the retinoid X receptor α (RXRα, in the following 

shortened to RXR) (Forman et al., 1995); however, it can also act as a monomer or homodimer 

for specific genes such as apolipoprotein A-1 and the glucose transporter GLUT4 (Claudel et 

al., 2002; Shen et al., 2008). The genomic target sequences are so-called FXR response 

elements (FXREs) within the promotor region of downstream target genes, with an inverted 

repeat sequence of AGGTCA bases separated by a 1-base pair spacer (IR-1) being the highest 

affinity binding site for the FXR/RXR dimer (Laffitte et al., 2000). Additionally, the FXR/RXR 

dimer can bind to other DNA sequences, such as direct repeat sequences with one to five 

nucleotide spacers (DR-1 to DR-5) (Laffitte et al., 2000). Furthermore, FXRα2 and FXRα4 can 

bind to everted repeat sequences with a nucleotide spacer of two base pairs (ER-2), and 

binding was shown to be an important regulator in mouse and human liver cells besides the 

canonical IR-1 binding site (Ramos Pittol et al., 2020). Regulation by FXR is target specific and 
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thus can either induce (e.g., GLUT4 (Shen et al., 2008)) or repress (e.g., APOA1 (Claudel et al., 

2002)) the target gene. 

Adding to the complexity of the FXR-regulated network are tissue-specific effects. Within the 

intestines, the apical sodium-dependent bile acid transporter (ASBT, also called ileal bile acid 

transporter IBAT) is responsible for ileal reabsorption of bile acids, and its expression is 

downregulated upon FXR activation (Neimark et al., 2004). Upon absorption of bile acids into 

the enterocytes, the small cytosolic protein ileal bile acid-binding protein (IBABP) facilitates 

intracellular trafficking of bile acids (Alrefai & Gill, 2007; Trauner & Boyer, 2003). IBABP 

expression is increased on FXR activation (Coppola et al., 1998; Grober et al., 1999; Nakahara 

et al., 2005), ensuring functional sensing of the bile acid levels. Furthermore, activated FXR 

induces the expression of human fibroblast growth factor 19 (FGF19) (Song et al., 2009) or the 

corresponding ortholog gene FGF15 in mouse models (Inagaki et al., 2005). Within mouse 

models, intestinal FXR activation leads to FGF15 expression, export and subsequent 

suppression of liver-specific cholesterol 7α-hydroxylase (CYP7A1) via FGF receptor 4 (FGFR4) 

binding and a c-Jun N-terminal kinase (JNK)-dependent pathway (Holt et al., 2003; Inagaki et 

al., 2005; Kim et al., 2007; Xie et al., 1999). CYP7A1 is the rate-limiting enzyme within the bile 

acid synthesis (Russell, 2003), and accordingly, the regulation of this critical enzyme impacts 

overall bile homeostasis. Interestingly, liver FXR stimulation did not repress CYP7A1 within the 

liver in a knockout mice model with tissue-specific intestinal FXR deficiency (Kim et al., 2007), 

verifying gut-liver signaling and transportation of intestinally secreted FGF15 to the liver. 

Within humans, there are contradictory indications about whether the same clear tissue 

specificity takes place. While FGF19 mRNA was not detectable in human liver samples 

(Nishimura et al., 1999), mRNA and protein FGF19 could be detected at low levels in primary 

human hepatocytes and positively responded to FXR agonist treatment (Song et al., 2009). 

Thus, it seems likely that within humans, both intestinal and liver FXR activation leads to FGF19 

upregulation and secretion and consequently to suppression of CYP7A1 to decrease bile acid 

synthesis.  

Within the liver, the bile salt export pump (BSEP) is a prominent and well-studied example of 

FXR regulation, where expression of BSEP is driven by binding of the heterodimer FXR/RXR to 

an IR-1 motif in the BSEP promotor (Ananthanarayanan et al., 2001; Gerloff et al., 2002; 

Ijssennagger et al., 2016; Plass et al., 2002). BSEP, as the main bile salt efflux transporter 

located at the canalicular membrane of hepatocytes, is a critical factor for proper bile flow 
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(Strautnieks et al., 1998). Further, active FXR transactivates the orphan nuclear receptor small 

heterodimer partner (SHP), which can negatively regulate other nuclear receptors such as the 

liver receptor homolog-1 (LRH-1) (Goodwin et al., 2000; Lu et al., 2000). In turn, LRH-1 is 

essential for CYP7A1 gene expression (Nitta et al., 1999). As such, downregulation of CYP7A1 

via bile acid-mediated FXR activation occurs via FGF19 signaling and via the SHP and LRH-1 

axis, thus limiting novel bile acid synthesis. On the other hand, SHP represses the expression 

of the hepatic basolateral located bile salt importer, also called sodium taurocholate 

cotransporting polypeptide (NTCP) (Denson et al., 2001), consequently limiting the uptake of 

bile acids into the hepatocyte and preventing toxic effects. To further the same end, efflux of 

bile acids into the bloodstream is upregulated upon FXR activation through increased protein 

expression of the heterodimer transporter organic solute transporter α (OSTα) and OSTβ as 

evidenced in human hepatoma cell lines (Landrier et al., 2006) and in sandwich-cultured 

human hepatocytes (Guo et al., 2018; Y. Zhang et al., 2017). Additionally, FXR transactivates 

the expression of MDR3, thus upregulating the secretion of phospholipids into bile (L. Huang 

et al., 2003; Ijssennagger et al., 2016). PTMs have been shown to further influence and 

regulate FXR (reviewed in Appelman, van der Veen, and van Mil 2021). Besides bile 

homeostasis regulation, FXR is linked to the regulation of hepatic inflammation and 

inflammation-driven development of hepatocellular carcinoma (HCC). FXR represses the 

nuclear factor-κB (NF-κB) signaling pathway in human hepatoblastoma and in primary mouse 

cells (Y.-D. Wang, Chen, Wang, et al., 2008), explaining the increased inflammation found in 

FXR knockout mice (Kim et al., 2007; F. Yang et al., 2007). However, in a reciprocal fashion, the 

inflammatory response, in turn, downregulates FXR via NF-κB activation (Wagner et al., 2008; 

Y.-D. Wang, Chen, Wang, et al., 2008). Exemplarily, this connection further highlights the 

versatility and importance of FXR. It further provides another challenge for specific drug 

intervention as changes in FXR activity can have implications in other important pathways. On 

the other hand, it could open up novel therapeutic options in diseases associated with 

intestinal inflammation such as inflammatory bowel disease (Gadaleta et al., 2011). 

In summary, research into the FXR network has revealed a complex system with FXR as a 

central regulator, in which cellular responses are dependent on the tissue, the isoform 

expression, the ligands, and the nuclear interaction partners. Within human hepatocytes, bile 

acid binding to FXR induces upregulation of BSEP, MDR3, and OSTα/β (Ananthanarayanan et 

al., 2001; L. Huang et al., 2003; Landrier et al., 2006). Simultaneously, a negative feedback loop 
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is triggered that acts via upregulation of SHP to lower CYP7A1 and NTCP levels (Goodwin et 

al., 2000) (Figure 10). 

 

Figure 10: FXR-regulated network within hepatocytes. FXR (marked in dark blue with BA-ligand 
bound) acts as a central regulator, upregulating key proteins for increasing bile acid efflux and bile 
formation towards the canaliculus via BSEP (Ananthanarayanan et al., 2001) and MDR3 expression (L. 
Huang et al., 2003; Ijssennagger et al., 2016) and efflux of bile acids towards the blood stream via the 
expression of OSTα/β (Landrier et al., 2006). Through SHP expression, FXR additionally downregulates 
the uptake of bile acids from sinusoids via NTCP and represses the building of novel bile acids via 
CYP7A1 downregulation (Goodwin et al., 2000). Accordingly, FXR senses the current bile acid levels 
and acts to prevent bile acids reaching toxic levels within the cell. 

 

Based on these regulatory links, the expression of downstream gene targets of FXR correlate 

with the transactivation activity of FXR and can be measured accordingly. Luciferase-based 

transactivation assays have been well established for FXR and other nuclear receptors (Cui et 

al., 2002; Elbrecht et al., 1999), and allow measuring the activity of FXR on different gene 

targets. In short, investigated cell lines are usually transfected with plasmids encoding for FXR 

and its canonical binding partner RXR to ensure overexpression. Additionally, a plasmid 

encoding for luciferase is used under the promoter control of a known FXR gene target, e.g., 

BSEP or SHP promoter. Using this system, the activity of FXR can be investigated based on its 

binding to the promoter sequence, which induces the expression of luciferase. Based on 

normalization to a control luciferase signal, the effect of different ligands for FXR or amino 

acid substitutions in FXR can be analyzed. We employed this assay to study a FXR variant in 
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liver-relevant isoforms and decipher its effect on two well-known gene targets, BSEP and SHP 

(see Publication II, Chapter 5).  

In the following subchapters, I will give a short overview of common FXR ligands, both agonists 

and antagonists, before discussing the structure of the LBD in detail, as it is crucial for protein 

activity.  

 

2.3.3 Diversity of FXR ligands 

Due to its importance within metabolism, FXR is a promising target for drug intervention in 

metabolic disorders (Claudel et al., 2002; S. Fang et al., 2015) and liver diseases (Adorini et al., 

2012; Merk et al., 2019). However, the complexity of the system makes detailed studies 

necessary to minimize side effects. For example, elevated cholesterol levels have been 

described in clinical trials of the FXR agonist obeticholic acid (OCA) (Neuschwander-Tetri et al., 

2015) due to overactivation of FXR and its subsequent effect of blocking bile acid synthesis, 

which uses cholesterol as a primary building block. Accordingly, current research often focuses 

on finding partial agonists or on identifying selective bile acid receptor modulators (SBARMs) 

designed to activate or repress certain FXR functions (Massafra et al., 2018; Merk et al., 2019). 

Many FXR ligands are based on the steroidal backbone, building on the endogenous bile acid 

ligand’s structure. In decreasing potency, these endogenous bile acids are chenodeoxycholic 

acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), and cholic acid (CA) (Makishima et 

al., 1999; Parks et al., 1999; H. Wang et al., 1999), with the secondary bile acids DCA and LCA 

being generated from the primary ones CDCA and CA, respectively (Fiorucci et al., 2020; Jiang 

et al., 2021). Derived FXR ligands, as well as the endogenous ones, often have poor aqueous 

solubility and bioavailability and show promiscuity towards the G protein-coupled bile acid 

receptor (GPBAR1, also called Takeda G protein-coupled receptor 5 (TGR5)) (Kawamata et al., 

2003; Massafra et al., 2018). Targeting both receptors is not necessarily an unwanted off-

target effect. The dual ligand for FXR and TGR5, BAR502, showed positive results in a 

nonalcoholic steatohepatitis (NASH) mouse model, interestingly without triggering pruritus 

(Carino et al., 2017; Cipriani et al., 2015). However, since the activation of TGR5 has been 

linked to pruritus (or, in layman’s terms, itch) in mice (Lieu et al., 2014) and pruritus was a 

frequent side effect of OCA treatment in a primary biliary cholangitis (PBC) clinical trial 

(Markham & Keam, 2016), dual agonistic ligands are not the answer for every hepatic disorder. 
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Nonsteroidal FXR agonists became of interest to increase selectivity (Jiang et al., 2021). The 

molecule GW4064 was developed as a potent and specific FXR agonist (Maloney et al., 2000), 

although studies also indicate histamine receptors as additional targets for GW4064 (N. Singh 

et al., 2014). Nonetheless, GW4064 is frequently used as an investigational tool and as a lead 

structure for developing agonists that overcome its predecessor’s limitations (Jiang et al., 

2021). While nonsteroidal FXR agonists do not show TGR5 induction, they do need to avoid 

the pitfall that complete FXR activation leads to elevated cholesterol levels. Partial agonists 

are therefore of increasing interest for fine-tuning FXR functions. DM175, a nonsteroidal 

molecule, induced a conformational change in FXR different to endogenous CDCA binding and 

exhibited a partial agonistic and partial antagonistic profile (Merk et al., 2019). TERN-101 is 

another potential partial FXR agonist (Genin et al., 2015), currently in clinical trials for NASH 

(Y. Wang et al., 2021). On the other hand, FXR antagonists are useful for elucidating 

physiological functions, shedding light on molecular mechanisms, and balancing the activity 

state of FXR. Guggulsterone is a natural compound that has been identified initially as a FXR 

antagonist (Urizar et al., 2002), while later studies identified it as a likely SBARM, as it further 

enhanced BSEP expression in presence of other FXR agonists (Cui et al., 2003). Due to its high 

affinity towards other NRs (Burris et al., 2005), its usefulness as selective FXR ligand is limited. 

Often, compounds need to be reclassified due to novel insights and so far, no antagonist has 

been found to block all FXR targets. For the nonsteroidal compound ivermectin, despite being 

initially identified as a partial agonist (Jin et al., 2013), it has been referred to as FXR antagonist 

in the literature as an ivermectin-bound crystal structure showed preferred corepressor 

binding and a dynamic helix 12, indicative of the inactive state (Jiang et al., 2021; Jin et al., 

2013). Potentially, ivermectin acts in a tissue-specific fashion, with high activity in the 

intestines while displaying lower effects in the liver (Jin et al., 2015), thus highlighting its 

potential use as a SBARM. However, antagonistic effects of ivermectin on other NRs, namely 

LXR and PXR, have also been identified (Hsu et al., 2016) and have to be taken into account. 

These examples already indicate the troubles of FXR ligand research, as meticulous efforts 

must be undertaken to study the ligand effect on different subsets of FXR targets, within 

different tissues, evaluate protein interaction partner binding and analyze off-target binding 

to other NR or other proteins. Nonetheless, FXR ligand research is an ongoing topic due to 

FXRs widespread functions and associated promises in disease amelioration. 
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In Publication II (Chapter 5) we were, amongst others, interested in the transitioning of FXR 

from the inactive to the active state. Accordingly, I used CDCA as strongest endogenous FXR 

agonist in MD simulations to drive the system towards the active state. In in vitro experiments, 

we (cellular assays performed by Dr. Jan Stindt (Heinrich Heine University Düsseldorf, 

Germany) and Dr. Alex Bastianelli (Otto von Guericke University Magdeburg, Germany), 

recombinant protein purification and assay performed by me) used OCA as a well-established 

and potent agonist to analyze protein activity and variant effects on ligand binding. While 

there are many ligands available, ligands were chosen here based on their closeness to the in 

vivo situation and potency to maximize the signal and drive the protein to activity. OCA has an 

increased potency of roughly 100-fold over CDCA, while structurally it remains a close analog 

of CDCA with only an additional ethyl group at C6 (Pellicciari et al., 2002). In line with using the 

promoter sequences of established FXR targets BSEP and SHP (see Chapter 2.3.2 and 

Publication II, Chapter 5), OCA has been shown to upregulate both BSEP and SHP expression 

(Y. Zhang et al., 2017).  

Besides broadening the spectrum of research tools and potential treatment options, research 

into FXR ligands has increasingly also provided information on the structural basis and 

molecular mechanisms of FXR activation. Due to the structural similarity within the NR 

superfamily (R. Kumar & Thompson, 1999; Weikum et al., 2018), certain mechanisms can 

potentially be inferred from and transferred to other NRs.  

 

2.3.4 Protein structure and conformational states of FXR 

Almost all proteins of the superfamily of NRs share the overall architecture of the N-terminal 

domain containing the AF1 region, DBD, followed by a hinge region and the LBD with a C-

terminal AF2 domain (except the receptors SHP and DAX) (Weikum et al., 2018). The N-

terminal AF1 domain shows low structural order, and as such, efforts to determine its 

structure have been unsuccessful so far. Its flexibility likely enables different transit 

interaction surfaces, providing the possibility for interacting with a broader spectrum of 

binding partners (Simons et al., 2014). As isoforms differ in the N-terminal domain (Ramos 

Pittol et al., 2020) and several functionally important PTMs have been identified (Anbalagan 

et al., 2012; Appelman et al., 2021), this region has a certain influence which downstream 

gene targets are controlled by the NR. However, DNA binding – and thus target gene 
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determination – is mainly controlled by the highly conserved DBD (Devarakonda et al., 2003). 

Based on the few structural data available on (almost) full-length NRs, namely peroxisome 

proliferator-activated receptor γ (PPARγ) and hepatocyte nuclear factor 4α (HNF4α), domain-

domain interactions between DBD and LBD occur and critically affect the activity (Chandra et 

al., 2008, 2013; Simons et al., 2014). Transference towards FXR or other NRs, however, is 

difficult as it seems likely that domain-domain interactions change depending on the binding 

partner. Accordingly, the heterodimer PPAR/RXR displayed different domain-domain 

interaction patterns than the HNF4α homodimer (Chandra et al., 2008, 2013; Simons et al., 

2014). In solution, structural analyses emphasized the importance of the hinge region for the 

integrity of the DNA-bound structure and further pointed to the fact that different DNA-

binding elements lead to different conformations within NRs (Rochel et al., 2011). These 

revelations further highlight the overall flexibility of NRs and, for the canonical heterodimer 

FXR/RXR (Forman et al., 1995) compared to FXR as a monomer (Shen et al., 2008), could 

explain differential DNA-binding preferences with potentially different structural 

conformations. While the dimerization mechanism and interface between the FXR-DBD and 

RXR-DBD are unresolved to date (Jiang et al., 2021), crystal structure determination on the 

FXR/RXR LBD complex revealed stabilizing effects of the RXR LBD on the active conformation 

of the FXR LBD (Zheng et al., 2018). Similar to other NR heterodimers (Gampe et al., 2000; 

Svensson et al., 2003), FXR/RXR LBD dimerization relies especially on interactions between the 

helix 10 of both receptors (Zheng et al., 2018). 

The LBD is critical for the overall protein activity based on ligand binding and interactions with 

coregulator proteins, either coactivator proteins like the nuclear receptor coactivator 2 

(NCoA2) or nuclear receptor corepressor proteins (NCoR) (Jiang et al., 2021; Zheng et al., 

2018). Accordingly, intense research focused on elucidating structural features and molecular 

mechanisms in the LBD of NRs. Overall, the LBDs of NRs show high structural similarity, with 

twelve α-helices folded in a three-layered arrangement. Of special interest for protein activity 

is the short C-terminal α-helix, the helix 12 (H12). In the active state, H12, together with parts 

of helix 3 and helix 4, forms part of the activation function 2 (AF2) surface, a binding surface 

for nuclear coactivation proteins to enhance transcriptional initiation (Aranda & Pascual, 

2001; Mi et al., 2003). Accordingly, deletion of H12 within HepG2 cells abolished FXR 

transactivation activity, i.e., its ability to bind to its DNA response elements 

(Ananthanarayanan et al., 2001). Coactivators bind to the hydrophobic AF2 surface groove 
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with an α-helix containing a signature LXXLL motif (where X can be any amino acid) (Heery et 

al., 1997). Corepressors interact via a larger (L/I)XX(I/V)I or LXXX(I/L)XXX(I/L) motif, thus 

blocking sterically H12 positioning (Nagy et al., 1999). A mousetrap mechanism was initially 

proposed to explain the underlying molecular mechanism, in which an unliganded and inactive 

LBD with an extruding H12 (pointing away from the LBD) would transition to the active state 

upon ligand binding with an LBD-bound H12. This theory was proposed based on crystal 

structures of apo and agonist-bound NR RXR (Renaud et al., 1995). An alternative model, 

termed dynamic stabilization, argues for a highly flexible H12 in the apo state, which shifts 

towards a stable active conformation upon ligand binding (Kallenberger et al., 2003). In 

contrast to the mousetrap model with its two specific stable states, the dynamic stabilization 

model is characterized by a highly mobile and unstructured H12 (Weikum et al., 2018). A 

flexible and likely unstructured H12 in the apo state is supported by studies using fluorescence 

spectroscopy (Kallenberger et al., 2003) and nuclear magnetic resonance in PPARγ and RXR 

(Hughes et al., 2012; X. Yan et al., 2004). Additionally, studies observed a H12 positioning 

towards the LBD within the apo state in several NRs (thyroid hormone receptor (Figueira et 

al., 2011), estrogen receptor (Dai et al., 2009), FXR (Merk et al., 2019)). Taken together, it 

seems likely that in an unliganded state, H12 of the FXR LBD moves flexibly and visits the active 

conformation with some regularity but does not remain stably in this conformation in the 

absence of a ligand or a coactivating protein to stabilize the state. This is corroborated by the 

identification of transient interactions of H12 to the FXR LBD core in the absence of agonists 

in an NMR study (Merk et al., 2019). Additionally, the presence of crystal structures of apo 

FXR LBDs associated with a nuclear coactivation peptide indicates its ability to interact with 

coactivators even in the absence of ligands (Gaieb et al., 2018; Merk et al., 2019). However, 

this recruitment of coactivation protein was not observed in NMR studies and might represent 

a crystallization artifact (Merk et al., 2019). Based on the comprehensive study by Merk et al., 

apo FXR can bind corepressor, and subsequent agonist binding induces conformational 

changes leading to weakened interactions to the corepressor peptide, shifting the balance to 

preferred coactivator peptide binding (Merk et al., 2019). Binding of the coactivator peptide 

has a greater influence on the stability of the active conformation than the ligand binding itself 

has; while ligand binding increases the propensity of the protein to associate with the 

coactivator, it can still partly bind the corepressor. Antagonist binding, however, stabilizes 

interactions with the corepressor so that even in the presence of coactivators, the protein will 
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stay bound to the corepressor. Partial agonists infer their function due to conformational 

changes in which the LBD has partly affinity to the corepressor and partly to the coactivator 

(Merk et al., 2019). 

MD simulations have been increasingly used to analyze the dynamics of NR LBDs and elucidate 

the influence of ligands, coactivators, or corepressors binding as well as NR 

heterodimerization (Chrisman et al., 2018; Díaz-Holguín et al., 2023; Heidari et al., 2019; 

Kumari et al., 2021, 2023; Saen-Oon et al., 2019). In a comprehensive study by Chrisman et al. 

on the PPARγ LBD, MD and NMR data confirmed its structural flexibility, indicating a range of 

possible conformations available to the protein (Chrisman et al., 2018). The AF2 surface, 

including the H12, switches rapidly between several conformations in the µs to ms time range 

in the apo state. Agonist or inverse agonist binding, however, limits the available 

conformations with only rare switching (Chrisman et al., 2018). MD simulation studies on the 

heterodimer FXR/RXR and the FXR monomer further indicated a destabilization of the H12 in 

antagonist-bound states compared to agonist-bound states, as well as changes in the 

interaction interface between FXR and RXR (Díaz-Holguín et al., 2023). Overall, this further 

strengthens the picture of the LBD of NR as a flexible module in the apo state, moving 

relatively freely between conformations. Ligand binding and coregulatory binding limit this 

flexibility and push the system towards specific conformations. Within a study employing MD 

simulations and NMR techniques for the PPARγ protein, the authors observed a 

conformational change from inactive to an almost-perfect placement of the H12, potentially 

representing the active state, in a system with an inverse agonist and corepressor peptide 

present (Chrisman et al., 2018). However, revealing the dynamic pathway from inactive to 

active conformation in MD simulations has – prior to Publication II (see Chapter 5) – not been 

shown for FXR. Furthermore, the influence of variants on the FXR function has not been 

studied in depth using MD simulations so far. 

 

2.3.5 Dysfunction of FXR 

FXR dysfunction can severely affect the intricate network of bile regulation. Accordingly, 

several FXR variants have been identified in intrahepatic cholestasis of pregnancy (ICP) (van 

Mil et al., 2007). Although ICP is usually transient, affected patients have an increased risk of 

developing other liver-associated diseases (Ropponen et al., 2006). Additionally, FXR has been 
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linked with various cancers (Girisa et al., 2021; Kainuma et al., 2018; You et al., 2019) with 172 

mutations listed in the cBioPortal database for cancer genomics (Cerami et al., 2012; Gao et 

al., 2013), out of which 131 are missense mutations, 33 are truncations, and 8 mutations affect 

splicing. Overexpression of FXR was identified in breast, lung, and pancreatic cancer and was 

associated with increased proliferation (Girisa et al., 2021; You et al., 2017, 2019) and 

increased epithelial-mesenchymal transition in hepatocellular carcinoma (HCC) (Kainuma et 

al., 2018). Within PFIC5, identified FXR mutations were leading to a premature stop codon and 

truncation of the protein (p.Arg176*) or to in-frame insertion on one chromosome 

(p.Tyr139_Asn140insLys) and a partly deletion (first two exons of FXR) on the other 

chromosome, affecting FXR function to a high degree (Gomez-Ospina et al., 2016). PFIC5 

clinically presents with liver dysfunction at an early age with severe cholestasis, accumulation 

of bile acids in hepatocytes resulting in elevated aminotransferases levels, and low bile salt 

export pump (BSEP) expression (Gomez-Ospina et al., 2016). In the HiChol consortium, a rare 

homozygous variant in FXR was identified in a patient presenting with a clinical phenotype in 

line with PFIC5 (Pfister et al., 2022). However, the molecular pathomechanism was unknown 

for the variant.  
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Chapter 3 Scope of the Thesis 

Within my work for the HiChol consortium, I focused on the investigation of variant impact in 

the proteins MDR3 and FXR. Despite its importance within the liver and frequent association 

of variants with liver diseases, there is no well-established protein predictor for MDR3 (see 

Chapter 2.2). A proposed predictor, MutPred, was tested mainly on pathogenic variants and 

lacked testing over a higher number of variants (Khabou et al., 2017). Based on the extensive 

research over the years on MDR3 variants within the field of liver research and advances in 

ML on small datasets, the possibility to establish a protein-specific dataset to enable machine 

learning-based classification of variants arose. While this approach does not reach the level of 

depth as single variant studies can provide, it has the advantage of being applicable to future 

novel identified variants outside the direct project time scope. The protein-specific predictor 

should satisfy strict criteria. First, it needs to outperform general protein predictors such as 

the previously proposed general predictor MutPred. Second, it is desirable that the tool can 

classify any variant possible within the protein. Additionally, this implies that the predictor 

should be sensitive to any potential pathogenic variant and not limited to a specific liver 

disease. Accordingly, the training dataset will need to be assembled from MDR3-affected liver 

diseases without the limitation to PFIC3. Third, it needs to be easy to use to enable wide usage 

and easy interpretation. The project is described in detail in Chapter 4.  

The identification of a homozygous variant in FXR identified in a PFIC type 5 presenting patient 

(Pfister et al., 2022) demanded an in-depth analysis to understand the molecular mechanism. 

Accordingly, a collaborative strategy was established to employ cellular and protein assays, 

analyze patient tissue samples, and perform MD simulations in order to investigate the variant 

effect and unravel its molecular pathomechanism. Based on the clinical presentation, the 

focus was put on liver-relevant isoforms with associated downstream targets and known 

ligands (see Chapter 2.3.2 and Chapter 2.3.3). Further, analyzing the variant in the inactive 

and the active state using MD simulations may provide a deeper understanding of misfunction 

(see Chapter 2.3.4). The project is described in detail in Chapter 5.  
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Chapter 4 Publication I 

 

Vasor: Accurate prediction of variant effects for amino acid substitutions in multidrug 

resistance protein 3 

A. Behrendt, P. Golchin, F. König, D. Mulnaes, A. Stalke, C. Dröge, V. Keitel, H. Gohlke. 

Original publication. Contribution: 40% 

Study conception and design: A. Behrendt, P. Golchin, A. Stalke, C. Dröge, V. Keitel, H. Gohlke; 

data collection: A. Behrendt, P. Golchin; analysis, interpretation, and visualization of results: 

A. Behrendt, F. König, D. Mulnaes; draft manuscript preparation: A. Behrendt, H. Gohlke. All 

authors contributed to scientific discussions, reviewed the results and approved the final 

version of the manuscript. 

(I adapted parts of the following text and figures from the respective publication.) 

 

4.1 Background 

The prediction of an amino acid missense substitution within a protein has received much 

attention in the last decades due to the rapidly increasing identification of genetic variations 

based on large sequencing efforts (F. S. Collins & Fink, 1995; Gudbjartsson et al., 2015; Oh et 

al., 2020; T. Singh et al., 2022; Trubetskoy et al., 2022). Since not every substitution can be 

analyzed by time- and cost-consuming in vitro assays, in silico tools provide important 

information and can narrow down substitutions for further subsequent analysis (Thusberg & 

Vihinen, 2009). General protein predictors, designed and trained to predict effects for any 

given protein, often show varying performance when tested on individual proteins (Riera et 

al., 2016; Choudhury et al., 2022; Livesey & Marsh, 2023). Furthermore, predictors do not 

guarantee coverage of every possible substitution (Riera et al., 2016). Of note, while there is 

a tendency for protein-specific predictors to rank higher than general predictors, they do not 

outperform general predictors in every case (Riera et al., 2016), and as such, careful evaluation 

for every protein is needed. Transporting phosphatidylcholine from the inner canalicular 

leaflet to the outer, the MDR3 protein performs an essential function within bile homeostasis 
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(Boyer, 2013; A. J. Smith et al., 1994; van Helvoort et al., 1996). Dysfunction, thus, is linked to 

a range of liver diseases such as PFIC, cholelithiasis, cholestasis, cirrhosis, DILI, LPAC, ICP, and 

HCC (Boyer, 2013; Deleuze et al., 1996; C. Dong et al., 2020; Dröge et al., 2017; Gotthardt et 

al., 2008; Gudbjartsson et al., 2015; Lang et al., 2007; Pauli-Magnus et al., 2004; Rosmorduc 

et al., 2001; Stättermayer et al., 2020). Given a genetic cause, the majority of cases (an 

estimation of 70%) are caused by amino acid substitutions (in the following referred to as 

‘variant’) (Delaunay et al., 2016). However, a reliable (general or protein-specific) predictor 

with specific evaluation on MDR3 prediction performance is missing, although it would 

provide a valuable tool for clinicians and researchers. The general predictor MutPred was 

proposed as a reliable predictor for MDR3 variants based on a group of 21 variants (Khabou 

et al., 2017; B. Li et al., 2009), but the small size of tested variants as well as a bias towards 

pathogenic variants within this group were not addressed and may hamper generalization. 

Accordingly, we set out to establish an ML model to classify variants into the categories benign 

or pathogenic while comparing our model to the updated version of MutPred, MutPred2 

(Pejaver et al., 2020), as well as other integrated general protein predictors. 

 

4.2 Results 

Creation of an MDR3-specific dataset 

To create a basis for an ML model, I first constructed a dataset specifically for MDR3 variants. 

Obtaining variants based on literature search allowed the exclusion of variants with no clear 

disease association (i.e., no in vitro verification and no information on clinical indications for 

disease association), creating a manually curated dataset (Figure 11, A). Due to the scarceness 

of well-studied benign variants, I additionally resorted to known variants from the Genome 

Aggregation Database (gnomAD), a database based on large-scale genome sequencing 

projects where pediatric disease patients and their close relatives have been excluded 

(Karczewski et al., 2020). Despite the possibility of a few disease-associated variants being 

included in the gnomAD dataset, the benefit of increasing a dataset with highly likely benign 

variants currently outweighs the risk, and as such, inclusion is a common strategy in ML 

approaches (Ioannidis et al., 2016; Jagadeesh et al., 2016; Livesey & Marsh, 2023; Wu et al., 

2021). While, in principle, a filter step screening out low allele frequency variants would lower 

the risk of disease-associated variants within gnomAD, it drastically reduces the number of 
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obtainable benign variants. Similarly, others have refrained from using such an allele 

frequency filter with parallel reasoning (Livesey & Marsh, 2023). In order to further exclude 

possible false negative variants from the obtained set of gnomAD variants, I further filtered 

the variants using the VarSome platform (Kopanos et al., 2019), a tool following the ACMG-

AMP guidelines (Richards et al., 2015) to classify variants, and variants with likely pathogenic 

score were excluded (Figure 11, A). While such methods for balancing benefits and risks, 

quality and quantity of datasets, are currently often unavoidable, advances in multiplexing 

assays may provide help in the future (Esposito et al., 2019; Starita et al., 2017; Weile & Roth, 

2018). The final high-quality dataset contained 85 pathogenic and 279 benign variants. 

Mapping the variant locations on to the structure of MDR3 revealed a good distribution over 

the entirety of the protein, with no distinct clustering of benign or pathogenic variants (Figure 

11, B). While such clustering can occur in certain areas, for example, for pathogenic variants 

within ligand-binding pockets in cancer-related proteins to form aberrant constitutively active 

proteins (Niu et al., 2016), it could also introduce unwanted hidden bias for an ML model.  

 

Establishing predictive features 

Next, we* used established general protein predictors to predict the variants and established 

further informative features, namely post-translational modifications (PTM) site impact, 

variant location within α-helical or β-sheet secondary structure, and residue solvent 

accessibility (Figure 11, A). 

 
* Integrating predictors and other informative features was performed by P. Golchin and A. Behrendt.  
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Figure 11: Generation of an MDR3-specific dataset. [A] Overview of the creation of the dataset with 
variants from the literature and the database gnomAD and the establishment of features. [B] Mapping 
of included variants within the dataset onto the protein structure revealed a good distribution of 
benign (green) and pathogenic (purple) variants. 

 

The general protein predictor EVE, a multiple sequence alignment-based classifier trained 

using an unsupervised ML approach, was integrated as a feature. The naïve Bayes classifier 

PolyPhen-2 (Adzhubei et al., 2010), frequently used for clinical variant interpretation (Gunning 

et al., 2021), predicts variant impact based on sequence and structural considerations 

(Adzhubei et al., 2010). I-Mutant2.0 and MUpro both employ support vector machine 

approaches to predict stability changes of proteins (Capriotti et al., 2005; Cheng et al., 2006). 

The tool MAESTRO uses a combination of ML models to derive predictions of stability changes 

upon point mutations, including a confidence score (Laimer et al., 2015). Using evolutionary 

conservation information, biochemical considerations, and (functional) annotations, PON-P2 

classifies variants based on a random forest classifier (Niroula et al., 2015). EVmutation 

specifically includes residue interdependencies, showing improvements over using only 

evolutionary conservation features, and derives predictions using an unsupervised statistical 

model (T. A. Hopf et al., 2017). A specific feature for PTM sites was derived from literature 

knowledge and predicted PTM spots from PhosphoMotif (Amanchy et al., 2007), 
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PhosphoSitePlus (Hornbeck et al., 2015), NetPhos (Blom et al., 1999) and the Eukaryotic Linear 

Motif database (M. Kumar et al., 2019). Using the database of secondary structure 

assignments DSSP (Joosten et al., 2011; Kabsch & Sander, 1983), the secondary structure for 

the MDR3 protein (Protein Data Bank identification number 6S7P (Olsen et al., 2020)) was 

extracted and further used for a rudimentary feature of secondary structure impact and 

calculation of relative solvent accessibility (RSA). RSA was calculated using DSSP-based residue 

exposure divided by the maximal residue solvent accessibility (Tien et al., 2013). Half-sphere 

exposure (HSE), a measure derived to surmount RSA limitations in measuring residue solvent 

exposure, was implemented using the biopython HSExposure module (Hamelryck, 2005). In 

preparation for ML, the obtained dataset with the features was cleaned from non-numerical 

values. 

 

Establishing a well-balanced test set  

Creating a sensible test set is not always straightforward. Considerations range from size to 

class distribution within the test set, and often, the answers depend on the individual research 

question and on the available dataset (Dobbin & Simon, 2011). Borrowing from the Pareto 

principle, people often use an arbitrary split of 80/20 for dividing a dataset into training and 

test set (Joseph, 2022). Due to the relatively small overall dataset, the test set was designed 

to contain 40 variants with equal class distribution (20 benign variants and 20 pathogenic 

variants). In order to avoid biases within the test set towards the overrepresentation of 

specific amino acids – and the potential exclusion of other amino acids – I established the test 

set by performing a root-mean-square deviation (RMSD)-based minimization of the amino 

acid distribution within the test set against the overall dataset. As a first step, 10 variants were 

randomly chosen for the test set to calculate an initial amino acid distribution for comparison 

with the distribution of amino acids within the entire dataset. Following, randomly chosen 

variants were only transferred into the test set if the RMSD decreased or only marginally 

increased (as otherwise, the limited size of the dataset could have resulted in failures to 

generate a test set). Using such an approach, I ensured that the test set included a good 

distribution of variants (Figure 12), and the resulting test set was withheld from machine 

learning until the final validation of the model.  
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Figure 12: Comparison of the amino acid distributions. Plotted differences between amino acid 
distributions, both for the wildtype (green star) and variant amino acid (blue dot), with points above 
the horizontal dotted line indicating a higher representation in the test set and below the line a higher 
representation in the overall dataset. Due to the limited number of variants, it was not possible to 
minimize the distribution differences to zero. However, the obtained test set displayed an overall 
distribution of amino acids similar to that of the general dataset. 

 

Training and evaluation of the ML tool 

Since the overall dataset displayed a clear class imbalance (85 pathogenic and 279 benign 

variants) and such imbalances can influence predictor performance (Wei & Dunbrack, 2013), 

I employed an established technique to generate synthetic new data points within the N-

dimensional data set space with the synthetic minority oversampling technique (SMOTE) 

(Chawla et al., 2002). Next, the training dataset was used to train an XGBoost model (with a 

default gradient boosting tree, maximum tree depth set to 3, and a learning rate of 0.02) (Chen 

& Guestrin, 2016). To evaluate the performance, repeated k-fold cross-validation was used 

with a split of 3 and the number of repeats set to 5. Performance on the respective internal 

fold used for evaluation within the cross-validation was visualized using receiver operating 

characteristics (ROC) curves and compared to the final evaluation on the test set to detect 

potential overfitting (see Chapter 2.1.1). Further, I calculated the feature importance using 

two approaches, the XGBoost internal tree-based feature importance and permutation-based 

feature importance, to reduce the number of features. The four shared least-informative 

features were removed with marginal impact on model performance. Additionally, such a 

feature evaluation provides insights into the usefulness of specific features on the overall 
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prediction outcome and indicated EVE as the most important feature. In the specific case with 

a relatively small dataset and feature space, a reduction of features is not computationally 

necessary; however, it is a common practice in the field and aims towards the highest 

efficiency (Jia et al., 2022). Performance with the reduced number of features was again 

evaluated with repeated k-fold cross-validation and assessed against the predictions of the 

final model, termed Vasor (Variant assessor of MDR3), on the withheld test set (Figure 13, A). 

Calculation of the confusion matrix with True Negative (TN), False Positive (FP), False Negative 

(FN), and True Positive (TP) predictions revealed only four mis-classified variants for the test 

set (Figure 13, B). 

 

Figure 13: Performance of Vasor. [A] The performance estimations within the repeated k-fold cross-
validation (thin black lines) show similar ROC curves and area under the curve (AUC) values as the 
evaluation on the final test set (thick green line), indicating a well-fit model without over- or 
underfitting. [B] Confusion matrix of Vasor performance on the test set. 

 

Next, I compared the performance of Vasor against other integrated general protein 

predictors and against MutPred2 as a previously suggested high-performing predictor on 

MDR3 (Khabou et al., 2017) (Figure 14). In line with other studies identifying a combination of 

general predictors (meta-predictors) to outperform their individual contributors (Broom et al., 

2017; Gunning et al., 2021), Vasor achieved the highest ROC curve and highest AUC value 

(Figure 14, A). Looking at the coverage of the predictors, EVE and PON-P2 did not derive 

predictions for the full dataset (Figure 14, B). To obtain a fair comparison of predictors, the 

ROC curves and precision-recall-curves indicative of performance (Figure 14, A and C) were 

normalized to the coverage of the dataset. Vasor outperformed the closest competitor, EVE, 
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based on performance scores and additionally on protein coverage (Table 1). While EVE 

achieved the lowest number of FP predictions on the overall dataset, it only covered 85.7% of 

the dataset and failed to recognize 19 pathogenic variants (FN). Vasor, with 100% coverage of 

the dataset, achieved low numbers of 14 FN and 12 FP predictions, indicating a good balance. 

Of note, MutPred2 achieved an admirable low number of only 6 FN predicted variants, but at 

the expense of a high number of 93 benign variants falsely classified as pathogenic (FP). 

Accordingly, the superiority of Vasor resulted in the highest values in the weighted measures 

of F1-score (0.85) and Matthew’s correlation coefficient (MCC) (0.80) (Table 1).  

 

Figure 14: Performance comparison of Vasor against other predictors. [A] ROC curve comparison of 
Vasor and the integrated general protein predictors EVE, PolyPhen-2, PON-P2, as well as the external 
MutPred2 predictor. [B] Coverage of the MDR3-specific dataset for the respective prediction tools. [C] 
Precision-recall curves for the respective predictors on the MDR3-specific dataset. Values for both the 
ROC curves and precision-recall curves were normalized to the covered set of variants for each 
predictor, respectively. 
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Table 1: Detailed performance measures of predictors on the entire dataset.  
 

Vasor EVE PolyPhen-2 PON-P2 MutPred2  

Recall 0.84 0.73 0.84 0.74 0.93 

Specificity 0.96 0.98 0.74 0.89 0.67 

Precision 0.86 0.91 0.49 0.52 0.46 

NPV 0.95 0.93 0.94 0.95 0.97 

Accuracy 0.93 0.92 0.76 0.87 0.73 

F1-Score 0.85 0.81 0.62 0.61 0.61 

MCC 0.80 0.77 0.50 0.54 0.51 

TP 71 52 71 17 79 

FN 14 19 14 6 6 

TN 267 236 206 125 186 

FP 12 5 73 16 93 

Coverage [%] 100 85.7 100 45.1 100 

Abbreviations: NPV, negative predictive value; MCC, Matthew’s correlation coefficient; TP, true 

positive; FN, false negative; TN, true negative; FP, false positive. 

Of note, such a full description of performance measures is recommended for an accurate 

judgment of binary predictors (Vihinen, 2012). To further investigate Vasor performance, I 

assessed how certain Vasor was in its predictions. Accordingly, I assessed its output, the 

probability of pathogenicity, with values below 0.5 leading to a classification as benign and 

values above 0.5 leading to a classification as pathogenic. Good predictors show a distinctive 

clustering towards very low and very high probabilities of pathogenicity (Ioannidis et al., 2016; 

Pejaver et al., 2017, 2020). Visualizing the probability of pathogenicity for every variant within 

the dataset as well as the SMOTE-generated points for the minority pathogenic class, Vasor 

showed high peaks towards low probability and high probability values, with few variants in 

the range between 0.3 to 0.7 probability of pathogenicity (Figure 15). The distribution further 
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indicated Vasor as a well-performing predictor, classifying the majority of cases with a high 

certainty. 

 

Figure 15: Distribution of probability of pathogenicity values of Vasor. The generated output of Vasor, 
the probability of pathogenicity, for each benign (blue), pathogenic (red), or SMOTE-generated 
datapoint for the minority class (orange) showed a good class separation with peaks towards low and 
high probabilities. 

 

Generating predictions for every substitution and providing easy access to Vasor 

Having established a high-performing predictor, I next predicted every possible amino acid 

substitution within MDR3. This precomputed prediction map was used as the basis for 

retrieving predictions from the Vasor webserver for rapid assessment of variant impact 

(accessible at https://cpclab.uni-duesseldorf.de/mdr3_predictor/). We† integrated a structure 

visualization feature specific to the variant entered and offer downloadable enlarged images 

of the variant and wildtype. Additionally, Vasor can be downloaded and locally installed, 

allowing users to access the source code. Similarly, visualization of the variant from the 

webserver can be enhanced by the user based on a downloadable PyMOL script. In general, 

these steps were taken to enable researchers and clinicians from different fields to use the 

tool, as ML-based tools often remain cumbersome to handle for non-experts in the field. 

 
† Webserver establishment and structural visualization was executed by F. König in accordance with A. Behrendt. 
 

https://cpclab.uni-duesseldorf.de/mdr3_predictor/
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Mapping the average probability of pathogenicity value over every possible substitution for 

each position back onto the protein structure (Figure 16) revealed an additional view of areas 

of high susceptibility to harmful substitutions. 

 

Figure 16: Average probability of pathogenicity per position mapped onto the protein structure of 
MDR3. Vasor-derived prediction values were averaged over all possible substitutions at each position 
and color-coded with values closer to 0 (blue), indicating the average probability corresponds to benign 
predictions, while highly susceptible positions where the average probability corresponds to 
pathogenic classifications are closer to 1 (red). TMD: transmembrane domain, NBD: nucleotide binding 
domain. 

 

In line with knowledge about functional motifs, such as Walker A and Walker B (Schmitt & 

Tampé, 2002), buried residues within the NBDs of MDR3 showed in tendency a high average 

probability of pathogenicity value, indicating that most substitutions at those position were 

predicted as pathogenic and, thus, to result in functional impairment. Buried residues within 

the helices of the TM were predicted as more susceptible to pathogenic substitutions than 

more exposed residues of the protein, in line with previous studies on RSA and evolutionary 

conservation (Franzosa & Xia, 2009; Ramsey et al., 2011). Variants within the helices forming 



  Publication I 

 
53 

the TM domain of MDR3 might lead to disruption of helical structure, providing a functional 

explanation for the overall pattern. Specific variants might, however, diverge from the trend 

due to averaging over possible substitutions and as such, a detailed view on every substitution 

is necessary.  
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4.3 Conclusion and significance 

Focusing on a single protein for an ML predictor can be beneficial to predictor performance, 

providing increased accuracy for the protein of interest (Riera et al., 2016). While the trend to 

increasingly larger datasets to provide predictions for every known protein is undisputably 

valuable, the publication presented here highlights the additional benefit of further creating 

specific protein predictors. Key points that are addressed and provided within this publication: 

i. Generation of an MDR3-specific dataset 

The largest dataset specifically for the MDR3 protein to date was derived using a 

combination of literature-based knowledge and filtered variants from the gnomAD 

database. 

 

ii. Development of a highly reliable MDR3-specific predictor  

A unique combination of general protein predictors and additional features resulted in 

increased predictor performance, outperforming single included protein predictors 

and the external general predictor MutPred2. 

 

iii. Providing access to prediction results and structural visualization 

A webserver was implemented to allow easy access and rapid assessment of variants. 

Due to the precomputation of all possible substitutions, waiting time for the user is 

minimized. Visualization of the variant site within the protein structure is provided to 

further engage users. Additionally, source code, precomputed substitution map, and 

standalone version of Vasor can be downloaded for more experienced users within the 

ML field. 

The successful collaboration of experts from different fields was vital for this project to shape 

a well-rounded prediction tool. With the developed ML-based tool Vasor, I provide a specified 

predictor for single-site amino acid substitutions in MDR3. Based on the importance of MDR3, 

research on a range of diseases, including PFIC3, can benefit from such a highly reliable 

predictor. 
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Impaired transitioning of the FXR ligand binding domain to an active state underlies a 

PFIC5 phenotype 

A. Behrendt, J. Stindt, E.-D. Pfister, K. Grau, S. Brands, C. Dröge, A. Stalke, M. Bonus, M. 

Sgodda, T. Cantz, A. Bastianelli, U. Baumann, V. Keitel, H. Gohlke. 
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Keitel, H. Gohlke. All authors contributed to scientific discussions, reviewed the results and 
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(I adapted parts of the following text and figures from the respective manuscript.) 

 

5.1 Background 

Nuclear receptors (NRs) mediate a wide range of functions, orchestrating different 

downstream target gene expression based on the ligand, isoform, and tissue-specific effects 

(Kim et al., 2007; Massafra et al., 2018; Merk et al., 2019; Ramos Pittol et al., 2020). Subtle 

ligand changes have been found to change the ligands impact from agonistic to partial 

agonistic or antagonistic effects, indicating a highly sensitive and flexible ligand binding 

domain (LBD) (Merk et al., 2019). The activation function 2 (AF2) surface is of high importance 

for protein function as it mediates binding to coactivator or corepressor proteins, depending 

on the positioning of the helix 12 (H12) as a crucial part of the AF2 surface (Aranda & Pascual, 

2001; Mi et al., 2003). Coactivators interact with the AF2 surface using a conserved LXXLL motif 

(Heery et al., 1997), while partial agonists and antagonists have been found to disturb the 

proper placement of H12, leading to favored corepressor binding with a larger hydrophobic 
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motif that additionally blocks the positioning of H12 required for an active state (Merk et al., 

2019; Xu et al., 2002). A plethora of crystallization studies have revealed a highly similar LBD 

structure for NRs with a conserved H12 positioning for the active conformation (Chrisman et 

al., 2018; Kroker & Bruning, 2015; Wurtz et al., 1996; Xu et al., 2002; Zheng et al., 2018). 

Revealing the structure of H12 in the inactive state, however, has proven more difficult. 

Studies suggest that H12 is highly flexible in the apo state and does not form connections to 

the core of the LBD (Kallenberger et al., 2003; Renaud et al., 1995; Weikum et al., 2018), while 

others indicate that H12 can be bound to the LBD even within the apo state (Merk et al., 2019) 

(see Chapter 2.3.4). Crystal structure determination of antagonist-bound states failed to 

resolve H12, further indicating high flexibility within inactive states (Jiang et al., 2021; Jin et 

al., 2013). Overall, NR LBDs likely can access a range of different conformations, with one well-

defined active state, and both ligand and coactivator or corepressor binding influence the 

likelihood of certain states. The NR farnesoid X receptor (FXR) is involved in glucose and lipid 

metabolism (Jiao et al., 2015; Ma et al., 2006; Sinal et al., 2000), immune response (Fiorucci 

et al., 2018, 2022) and bile production (Goodwin et al., 2000), based on a range of 

transcriptionally regulated genes as well as tissue-specific differences (reviewed in Han, 2018; 

Jiang et al., 2021; Massafra et al., 2018). The bile acid-responsive FXR protein is a key regulator 

in hepatocytes and maintains bile homeostasis by transcriptional control of the BSEP 

promotor (Ananthanarayanan et al., 2001; Ijssennagger et al., 2016) as well as the SHP 

promotor (Goodwin et al., 2000; Lu et al., 2000). Its widespread functions have made FXR a 

target for pharmaceutical interventions (Jiang et al., 2021; Massafra et al., 2018). To maximize 

desired targeting while avoiding side effects, detailed molecular mechanistic studies and an 

in-depth understanding of the dynamical movement of FXR are needed to enable future 

targeted approaches. Genetic variations within FXR may lead to a predisposition for ICP (van 

Mil et al., 2007) or inflammatory bowel diseases (Attinkara et al., 2012). Further, variants have 

been linked to PFIC subtype 5 (Gomez-Ospina et al., 2016; Mehta et al., 2022; Pfister et al., 

2022). A novel homozygous missense variant has been identified in a patient and has been 

classified as PFIC5 (Pfister et al., 2022). Within this publication, we‡ studied the effect of the 

variant on FXR activity using in vitro and in silico studies. Additionally, by assessing FXR-

 
‡ Cellular assays and patient tissue were analyzed by J. Stindt, A. Bastianelli, C. Dröge and V. Keitel; in silico studies 
and in vitro ligand binding were performed by A. Behrendt and H. Gohlke.  
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regulated gene expression in patient tissue, we confirmed FXR dysfunction in vivo. Using 

unbiased MD simulations, I uncovered the conformational change from the inactive to the 

active state of the wildtype (WT) FXR LBD and deciphered the variants’ effect on both inactive 

and active states, enabling a detailed mechanistic interpretation of the variant effect. 

 

5.2 Results 

The variant FXR T296I is located within the LBD 

The identified variant, a mutation from a threonine at position 296 (reference sequence 

UniProt entry Q96RI1-1) to an isoleucine (in short T296I), lies within the helix 3 in the LBD 

(Figure 17). Based on its localization (Figure 17, A), we hypothesized an influence of the variant 

on forming the active state. Accordingly, I prepared four systems for MD simulations to study 

the variant influence compared to the WT protein: “active WT”, “active T296I”, “inactive WT” 

and “inactive T296I” (Figure 17, B). All systems further contained the most potent in vivo 

endogenous FXR agonist CDCA (H. Wang et al., 1999), as well as a short peptide of the nuclear 

receptor coactivator 2 (NCoA2) to drive the systems towards the active conformation. Protein 

activity measurements in cellular assays were based on the transcriptional activity of FXR in 

HEK293 cells using reporter-based luciferase assays. 
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Figure 17: Schematic overview of the variant localization and MD simulation setup of the FXR LBD. 
[A] T296I variant localization (red star) within the active state of the FXR LBD, based on the crystal 
structure of agonist-bound FXR (PDB ID 6HL1) (Merk et al., 2019). Helix 12 (H12, shown in blue) is in 
close proximity to the variant site in the active conformation. The endogenous ligand 
Chenodeoxycholic acid (CDCA, shown as licorice in pink) is bound within the LBD core. A short peptide 
containing the LXXLL interaction motif, belonging to the nuclear receptor coactivator 2 (NCoA2, purple) 
binds to the surface formed by H12, helix 3, and helix 4. [B] Setup of the four systems for MD 
simulations to analyze the variant impact within the active and the inactive conformation. 

 

FXR T296I decreases transcriptional activity in cellular assays 

HEK293 cells were co-transfected with both liver-expressed FXR isoforms, FXR1α and FXRα2, 

as well as RXRα. Of note, FXRα2 is the main metabolic regulator in hepatocytes (Ramos Pittol 

et al., 2020; Vaquero et al., 2013). Cells were subjected to immunostaining and Western 

blotting to exclude any effect of the variant T296I on protein localization and overall 

expression levels. Both FXR WT and T296I showed the expected nuclear localization with 

similar protein levels (Figure 18, A and B). A luciferase-based assay was performed to study 

the protein activity of FXR WT and T296I. Cells were transfected with FXR and RXR constructs 

and a vector containing the luciferase gene under the control of either the BSEP- or SHP-

promotor sequence. Both BSEP and SHP are well-established transcriptionally regulated FXR 

targets (Ananthanarayanan et al., 2001; Goodwin et al., 2000; Lu et al., 2000; Plass et al., 

2002). Cells were stimulated with the FXR agonist obeticholic acid (OCA) (Pellicciari et al., 
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2002) and RXR-agonist 9-cis-retinoic acid (Heyman et al., 1992) to provide optimal conditions 

for protein activity. Values were normalized to FXRα1 WT and RXRα or FXRα2 WT and RXRα 

signals (Figure 18, C and D), as these conditions are expected to lead to the highest protein 

activity. FXRα1 WT or FXRα2 WT transfection alone resulted in a significant decrease of protein 

activity since the functional readout is based on binding to the BSEP and SHP promotor, 

containing the IR-1 canonical motif for FXR/RXR heterodimers (Forman et al., 1995). FXR T296I 

transfection consistently resulted in a significant decrease in transcriptional activity compared 

to the WT in both isoforms and on BSEP and SHP promotor targets. Specifically, co-

transfection of FXRα1/2 T296I with RXRα showed significantly reduced luciferase activity in 

BSEP- (Figure 18, C) and SHP-promotor regulated luciferase readouts (Figure 18, D). Overall, 

the data indicated decreased functional activity of the FXR T296I protein while subcellular 

localization and protein expression were unaffected.  
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Figure 18: FXR WT and T296I localization, protein levels, and transcriptional activity in HEK293 cell 
assays. [A] HEK293 cells were transiently transfected with either FXRα1-WT, FXRα1-T296I, FXRα2-WT, 
or FXRα2-T296I in combination with RXRα. Staining was performed with an anti-FXR antibody (H-130, 
Santa Cruz Biotechnology, shown in green) and with the nuclear counterstain 4′,6-diamidino-2-
phenylindole (DAPI, shown in blue), revealing nuclear localization for both WT and T296I protein. [B] 
Western blot of transfected HEK293 cells indicated similar overall protein levels of variant and WT 
protein. [C] Transcriptional activity of FXR constructs and in combination with RXRα (or RXRα only as 
control) measured using a Luciferase assay readout, with the luciferase gene under BSEP-promoter 
control. [D] Transcriptional activity of FXR constructs and in combination with RXRα (or RXRα only as 
control) measured using a Luciferase assay readout, with the luciferase gene under SHP-promoter 
control. Significance testing was performed using a two-tailed Student’s t-test. 

 

Furthermore, to exclude the possibility that the variant T296I impacts ligand binding, which in 

turn could affect protein activity, we analyzed recombinant FXR WT and T296I protein in the 

presence and absence of the ligand. Of note, within the simulated time of MDs, no unbinding 
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events of the ligands were observed, neither in the WT nor in the variant protein, indicating 

stable ligand binding once positioned in its pocket independently of helix 12 placement. To 

study the ligand binding and its impact on protein stability, FXR WT and FXR T296I 

recombinant proteins (with a 6xHis- and small ubiquitin-related modifier (SUMO)-tag for 

easier purification and increased solubility (Butt et al., 2005; Malakhov et al., 2004)) were 

expressed within E. coli Rosetta cells and separated from other bacterial proteins using a two-

step procedure. First, the His-tagged FXR protein was subjected to a HisTrap column and, in a 

second step, further purified using a size exclusion chromatography column. Purified and 

concentrated protein was aliquoted and stored at -80°C until further usage in melting 

temperature experiments. NanoDSF, a differential scanning fluorescence method, was 

employed in which a protein solution is gradually heated while measuring the 

autofluorescence of intrinsic tryptophan residues within the protein as a measure of structural 

unfolding (J. Wen et al., 2020). Both FXR WT and FXR T296I exhibited a similar melting 

temperature in the absence of OCA, indicating that the variant does not impact the overall 

structure of the protein fold (Figure 19, A and B). In the presence of the ligand, both WT and 

T296I showed a significant shift towards decreased melting temperature while showing no 

significant difference between each other, indicating ligand binding to both wildtype and 

variant protein (Figure 19, B). 
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Figure 19: Melting temperature of FXR WT and T296I protein. [A] NanoDSF-measured melting 
temperature of FXR WT or FXR T296I protein (25µM) with either DMSO (2.5%) only or OCA (250µM) 
dissolved in DMSO (2.5%) present. [B] Derived mean values and standard deviations over three 
experiments with three replicates each. Significance testing was performed using Welch’s t-test. 

 

Supporting our data that ligand binding is likely undisturbed by the variant, steered MD studies 

on the FXR LBD with the agonist GW4064 have indicated an egress pathway facing helix 1-

helix 2 loop and helix 5-helix 6 loop as energetically most favorable (W. Li et al., 2012), thus 

facing away from the H12 and the variant site. Furthermore, computational studies on ligand 

binding and unbinding in related NRs such as retinoic-acid related-orphan-receptor-C gamma 

(RORγ) identified the so called “backdoor” pathway, facing away from the AF2 surface (Saen-

Oon et al., 2019). Overall, the variant T296I, facing towards H12 and in close proximity to the 

AF2 surface, did not disturb the binding of OCA or general protein properties.  
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The variant FXR T296I lowers the probability of H12 placement correlated to the active state  

Next, I employed MD simulations to investigate the molecular mechanism underlying the in 

vitro identified decreased functional activity of FXR T296I. Using the four different systems 

“active WT”, “active T296I”, “inactive WT” and “inactive T296I” (Figure 17, B), 15 replica per 

system with a simulation time of 1 µs per replica were prepared and analyzed. Within the 

crystal structure of agonist-bound FXR LBD (Merk et al., 2019), residue 296 likely interacts with 

a threonine directly preceding H12, T466 (Figure 20, A). The derived distance between residue 

296 and residue 466 was used as a reference value indicating a likely active conformation and 

compared to measured distances over the simulation time. Comparing the active WT with the 

active T296I system indicated increased distances. Active WT systems showed a distance 

distribution with a large peak around the reference distance cutoff, indicating an active 

conformation, and a smaller peak with slightly higher distances (Figure 20, B, first panel). 

Active T296I, however, revealed a shift of the distance distribution to one broadened peak 

towards higher distances (Figure 20, B, second panel). Analyzing the frequency of reaching the 

reference cutoff (converted into percentages as measured over the simulation time for each 

replica) revealed a significant decrease of the active T296I system (mean value of 0.40%) in 

reaching the reference cutoff compared to the active WT, which showed close contact to T466 

below the reference value for about one-fourth of the entire simulation time (mean value of 

26.95%) (Figure 20, C). Accordingly, even in the active WT, the active conformation is not 

always perfectly preserved, which is attributable to the dynamic movement of proteins. Due 

to the high degree of flexibility for H12 in the inactive systems, measured distances show a 

broad fluctuation (Figure 20, B, third and fourth panel). Interestingly, the inactive WT system 

reached distances below the reference value in several replicas (mean value of 1.79%), 

resulting in a small peak around the reference distance (Figure 20, B and C), indicating that 

inactive WT might transition into an active conformation. However, this was not observed for 

the inactive T296I system (Figure 20, B and C), where distances below the reference cutoff 

were only reached briefly in one replica (mean value of 0.03%). 
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Figure 20: T296I variant leads to increased distance to residue T466. [A] Overview of measured 
distance within the FXR LBD with marked residue T296 and T466 (upper panel). The distance was 
measured between the Cβ atoms of T296 (middle panel, with WT residue T296 shown in green) or I296 
(lower panel, with variant residue I296 shown in orange) and T466. The mean distance over the 
simulation time is increased in the active T296I system (6.6 Å) compared to the active WT system 
(5.0 Å) and the reference distance as measured in the agonist-bound crystal structure (4.6 Å). [B] 
Histogram of measured distance distribution for each system setup. The reference distance cutoff is 
indicated as a dashed grey line. [C] Frequency of each system reaching the reference distance, 
calculated per replica and pooled per system. Boxes depict the quartiles of the data with the median 
(straight black lines) and mean (grey dots) indicated; the whiskers indicate the minimum and the 
maximal values, outlier points are depicted as rhombus. Differences in the mean values were 
statistically evaluated using a two-sided Mann-Whitney U test (N = 15, n.s.: not significant; *: p ≤ 0.05, 
**: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001). 

 

Visualization of the distance measurement over the simulated time for each replica further 

provided an overview of which replica might transition from an inactive to active 

conformation (Figure 21). While 6 out of 15 replicas for the inactive WT reached the reference 

distance value, only 1 replica of the inactive T296I system transiently reached below the cutoff 

(replica 6). In summary, the data revealed an increased distance between the variant site and 

T466 as an interacting residue next to H12, indicating that the active state is destabilized in 

the variant protein. 
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Figure 21: Distance measurement between T466 and residue 296 within MD replicas. The distance 
measured between Cβ atoms of T466 and residue 296 over the simulated time for each replica and 
system. Histograms and calculated frequencies of Figure 20 were calculated based on the data. The 
reference distance value is marked as a dashed grey line. Inactive system replicas that reach the 
reference value are marked (#).  

 

The variant FXR T296I leads to decreased conformational change into the active 

conformation 

Several MD studies using the FXR LBD have confirmed the importance of the H12 positioning 

(Kumari et al., 2021) and investigated changes associated with novel drug candidates (Díaz-

Holguín et al., 2023; Kumari et al., 2023). However, the transitioning from the inactive to the 

active conformation has so far not been shown in MD studies. Based on the indication from 

the previous distance analysis that the inactive WT system may transition into an active 

conformation, I visually inspected MD trajectories with a special focus on H12 placement in 

line with the active conformation (Figure 22). Of note, several replicas of the inactive WT 

showed similar transitioning and accordingly, one replica (replica 2) was chosen at random 

(Figure 22, A). Replica 6 of the inactive T296I was chosen for visualization as it showed 

conformational transitioning closest to the active state although not fully reaching perfect H12 

placement (Figure 21 and Figure 22, B). 
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Figure 22: Conformational change of H12 over exemplary MD trajectories of inactive WT or T296I 
systems. [A] Inactive WT (replica 2) transitioned from the initial inactive state into a conformation with 
H12 closely aligning to the active reference state (based on the crystal structure of agonist-bound FXR 
LBD (Merk et al., 2019), green translucent structure). [B] Inactive T296I (replica 6) showed a 
conformational change into a close to the active state structure but with an imperfect H12 placement 
(marked with a red arrow). The side chain of residue T466 (light blue licorice), T296 (green licorice) or 
I296 (orange licorice), as well as H12 (blue cartoon), NCoA2 peptide (purple cartoon), and CDCA ligand 
(pink licorice) are highlighted (oxygen atoms within side chains are consistently colored red). 

 

To further investigate and quantify the observed conformational change, I employed an 

RMSD-based measurement to analyze atomic coordinate distances between H12 residues 

over the MD simulation time compared to the initial reference crystal structure of agonist-

bound FXR. In detail, I first fixed the conformations of the trajectory to the most stable core, 

calculated over all four MD systems, to avoid arbitrary distortion of the RMSD values by, e.g., 

rotational movement. Next, I calculated the all-atom RMSD of the H12 residues and the 

preceding T466 against the active reference structure and visualized the derived distribution 

for the active WT and active T296I systems (Figure 23, A). In line with the results of the 

distance analysis, RMSD distribution is significantly shifted to higher RMSD values based on 

fitted skewed Gaussian functions on the active T296I histogram compared to the active WT 

histogram (Figure 23, A). Further, the RMSD distribution of the active WT system was used to 

derive a reference RMSD value, indicating the mean RMSD value for H12 fluctuations that can 
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be expected in an uninhibited active state. The calculated value of 1.9 Å was used as a 

reference in the histogram distribution of all four MD states (Figure 23, B). Calculation of 

average time spent reaching the reference value over the simulation time per replica (Figure 

23, C) revealed a significant decrease in the frequency of occupying the active state in all three 

systems compared to the active WT state. RMSD value distribution of the inactive WT system 

(Figure 23, B, third panel) revealed a peak close to the reference value, indicating again that 

transitioning into an active conformation can occur, confirming the indication from the basic 

distance analysis (Figure 20 and Figure 21) and in line with visual analysis (Figure 22). 
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Figure 23: Movement of H12 in MD systems based on RMSD measurement. [A] RMSD value 
distribution of H12 and preceding T466 over all replicas, compared to the initial crystal structure as the 
active reference state. Skewed Gaussian functions were fitted to the distributions of active WT and 
active T296I systems, revealing a significant shift towards higher RMSD values in the active T296I 
system (two-sided Students t-test). The derived mean of the active WT system (1.9 Å) was further used 
as a reference value for expected RMSD fluctuations for H12. [B] RMSD value distribution for all four 
MD systems, with the reference value derived from [A] marked as a dashed grey line. [C] Frequency of 
each system reaching the reference value, calculated per replica and pooled per system. Boxes depict 
the quartiles of the data with the median (straight black lines) and mean (grey dots) indicated; the 
whiskers indicate the minimum and the maximal values, outlier points are depicted as rhombus. 
Differences in the mean values were statistically evaluated using a two-sided Mann-Whitney U test (N 
= 15, n.s.: not significant; *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001). 
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Accordingly, inactive WT reached below the reference value in several replica, translating into 

frequencies of occupying states below the reference RMSD value as high as ~15% (Figure 23, 

C). The data indicates that once the inactive WT system transitioned, the system stably stays 

within the active state, in line with the indications from the distance analysis. However, since 

only 4 out of 15 replicas reach below the reference value for the inactive WT while the inactive 

T296I system reached in one replica with a calculated frequency of 0.01%, differences 

between the inactive systems are not significant.  

Overall, within the active systems of MD simulations, the variant T296I showed structural 

deviation from the stable active conformation, indicating a destabilization of the active state. 

Further, analyzing the transitioning from inactive to active conformation, the variant likely 

impedes effective conformational change, decreasing the frequency of FXR within the active 

state and accordingly its protein activity. This observation correlates with the decreased 

protein transcriptional activity identified in vitro. Of note, the remaining activity indicated by 

both in vitro and in silico data might explain the clinical manifestation. Despite high disease 

severity with the necessity for organ liver transplantation at the age of 8 months due to 

terminal liver disease (Pfister et al., 2022), this homozygous variant is not per se incompatible 

with life. The reduced protein function was further verified within a patient’s tissue sample by 

analyzing the expression of downstream targets BSEP and SHP, revealing a significant decrease 

in protein expression and, thus, decreased FXR T296I transcriptional activity. My work within 

this project substantially contributed to understanding the functional impact of the variant on 

a molecular level. 
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5.3 Conclusion and significance 

Within this highly interdisciplinary project, we combined patient sample data, cellular assays, 

and in silico analysis to unravel the molecular mechanism and functional impact of a missense 

variant in the NR FXR. Key points within this project include: 

i. Functional impairment of FXR variant protein in in vitro and in vivo assays 

The variant T296I reduced the transcriptional activity significantly, while FXR protein 

levels, localization, and ligand binding were not affected. Functional impairment was 

further validated in vivo in patient tissue based on reduced expression of 

transcriptionally regulated target genes BSEP and SHP. 

 

ii. Decreased transitioning of FXR variant protein into the active state in unbiased MD 

The variant T296I critically impacted the positioning of H12, showing impairments 

when comparing the active systems. Further, and potentially more impactful, T296I 

reduced the frequency of transitioning from the inactive to the active conformation. 

Together, the data explains the functional impairment of FXR T296I on a molecular 

level.  

 

iii. Uncovering transitioning of FXR WT from inactive to active state in unbiased MD 

For the FXR WT, protein functionality is dependent on conformational changes from 

inactive to active states. To our knowledge, this is the first study to reveal the pathway 

of this transitioning for the FXR LBD using unbiased MD simulations.  

 

Beyond understanding the effect of a missense variant in detail, the work may provide a basis 

for future revelations. Extrahepatic FXR expression is widespread with diverse tissue-specific 

functions and accordingly, dysregulation and disease involvement of FXR in cholestatic 

diseases, non-alcoholic fatty liver disease (NAFLD), inflammation, and various cancers have 

made FXR a pharmacological target (reviewed in Han, 2018). Safely targeting and modulating 

FXR function requires a detailed understanding of protein dynamics, wherein the inclusion of 

inactive to active transitioning may provide valuable information for future rational drug 

design. 
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Chapter 6 Summary and Perspective 

During the work performed for this thesis, I have achieved and successfully used skills from 

the computational fields of machine learning (ML) and molecular dynamics (MD) simulations 

(see Figure 24). In short, in collaboration with Pegah Golchin and Filip König (both Heinrich 

Heine University Düsseldorf, Germany), I built an MDR3-specific dataset of variants that are 

either disease-associated or benign to train a ML algorithm for classifying single-site mutations 

into benign or pathogenic (see Chapter 4, Publication I). The generated tool, called Vasor 

(Variant assessor of MDR3), enables users to rapidly assess the impact of a novel variant and 

thus prioritize variants for further experimental evaluation. In order to facilitate access to 

users, especially novice ones in the field of bioinformatics, Vasor was made available as a 

webserver (https://cpclab.uni-duesseldorf.de/mdr3_predictor/). To further engage users, a 

structural overview of the MDR3 protein was additionally provided with an automatic 

highlighting of the entered variant as well as automated image generation of wildtype and 

variant protein. The python-coded Vasor program can also be downloaded and locally 

installed. The program has been tested against current state-of-the-art mutation predictor, 

MutPred2, and outperformed it as well as other predictors, which were included as features 

for the machine learning approach. 

The established approach for a protein-specific predictor has proven beneficial and 

accordingly will be further used for the protein BSEP (see Chapter 2.3.2), which is a bile salt 

transporter located at the canalicular membrane. Similar to the MDR3 protein, there is no 

protein-specific prediction tool available yet despite BSEP’s disease involvement. Using 

information from extensive studies on missense variants (see e.g., Dröge et al., 2017; Sohail 

et al., 2021) may provide a good dataset for machine learning to enable classification of novel 

variants. We envision this project in the continuation of the HiChol consortium, which 

achieved continued funding from the BMBF based on its success. Further, the establishment 

of protein-specific prediction tools contributes to the active field of applying machine learning 

for research problems. While a high number of available tools may seem daunting at first 

glance, they offer the possibility to identify of best-suited tools for specific problems. 

Accordingly, besides well-performing general protein predictors, protein-specific tools fill 

important niches and provide a great asset to researchers and clinicians. 
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Figure 24: Overview of the presented work. The ML-based predictor Vasor classifies variants of the 
MDR3 protein, located within the canalicular membrane in hepatocytes (upper panel). Transitioning 
from the inactive to active positioning was uncovered using MD simulations for the FXR LBD (lower 
panel). A PFIC5-associated variant impaired this transitioning, in line with in vitro assays. Created with 
BioRender. 
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For the FXR protein, MD simulations were employed to analyze the effect of the variant T296I 

within the protein (see Chapter 5, Publication II). Combining the work with in vitro and in vivo 

studies performed by Dr. Jan Stindt (Heinrich Heine University Düsseldorf, Germany), Dr. 

Malte Sgodda, Prof. Dr. Tobias Cantz (Medizinische Hochschule Hannover, Germany), Dr. Alex 

Bastianelli, Dr. Carola Dröge and Prof. Dr. Verena Keitel-Anselmino (Otto von Guericke 

University Magdeburg, Germany), the work provides an in-depth analysis of mutational 

impact on the protein function. Of note, I provided a detailed mechanistic understanding of 

variant impact within the activation dynamics of the FXR protein, and I reveal the transitioning 

from inactive to active state for FXR, a conformational change not yet described for the FXR 

LBD in MD simulations.  

In a novel project within the continued HiChol consortium, we aim to investigate residue 

specific importance in the LBD of FXR using an Alanine Mutation Scanning approach. A 

combination of in silico and in vitro data will be used to create an extensive dataset for a 

machine learning approach to predict variant impact. Due to the structural similarity of NR 

LBDs and the high research interest in the area, the provided data (both from finished and 

novel projects) can provide valuable information for research on other NRs. Additionally, the 

establishment of the inactive and the active system including its transitioning may be used to 

study and design novel FXR ligands, without the previous limitation of analyzing effects only 

on the active state. Given the complexity of the FXR network (see Chapter 2.3.2 and Chapter 

2.3.3), increased knowledge of residue importance and including explicitly both 

conformational states may provide a next step in understanding and regulating FXR functions.  

Furthermore, I provided expertise on six clinically identified variants of interest within the 

ATP7B protein and supplied structure-based estimations of variant influence (Stalke et al., 

2023). Similarly, I enriched the assessment of a clinically relevant MDR3 variant using the 

previously described derived MDR3-prediction tool as well as a structural assessment of the 

variant (Dröge et al., 2023). Overall, the collaborative effort and the unique combination of 

different fields of expertise to understand variant impact within important liver proteins has 

proven to be prosperous. It led to a substantial increase of knowledge within the field and 

hopefully will contribute to further research efforts in tackling and mediating variant impact 

to improve patient care and outcomes in the future.  
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