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Zusammenfassung

Eine der zentralen Funktionen der Leber ist die Produktion und Erhaltung der Gallenfllssigkeit.
Zuziglich zu der seit langem etablierten Rolle in der Fettabsorption wurden Gallensduren vor
Kurzem als Signalmolekile identifiziert, die das Darmmikrobiom und wichtige zelluldre
Signalwege beeinflussen. Fehlregulierte Gallenhomdostase aufgrund von genetischen
Anderungen in Schliisselproteinen in Hepatozyten ist ein Kennzeichen von cholestatischen
Erkrankungen wie der progressiven familidren intrahepatischen Cholestase (PFIC). Die
Phospholipid-Floppase MDR3, die sich in der kanalikuldaren Membran befindet und fir den
Transport von Phosphatidylcholin und damit fir die Aufrechterhaltung eines nicht-toxischen
Verhaltnisses von Lipiden zu Gallensauren in den Mischmizellen der Galle verantwortlich ist,
ist bei PFIC Typ 3 betroffen. Aminosauresubstitutionen stellen den groBten Teil der bei PFIC3-
Patienten identifizierten ursachlichen Veranderungen innerhalb des ABCB4 Gens (das fiir das
MDR3 Protein kodiert) dar. In der Publikation | habe ich ein maschinelles Lernen-basiertes
Programm entwickelt, welches Varianten als benigne oder pathogen klassifizieren kann, um
Kliniker und Wissenschaftler bei der Einschatzung von neuen Varianten fir weitere Testungen
zu unterstlitzen. Da MDR3 an einer Reihe von Lebererkrankungen beteiligt ist, lasst sich das
Programm auf jede MDR3-Variante anwenden. MDR3 wird, wie viele andere Proteine
innerhalb des komplexen Netzwerks zur Regulierung der Gallenhomdostase, durch den
Nuklearen Rezeptor FXR transkriptionell reguliert. Eine klinisch identifizierte homozygote
Missense-Variante, die mit PFIC Typ 5 assoziiert ist, wurde innerhalb der Publikation Il mittels
einer Kombination von in vitro und in silico Ansatzen analysiert, um den molekularen
Mechanismus zu entschliisseln. Die Variante, lokalisiert innerhalb der Ligandenbindungs-
domaéne, beeinflusst die Positionierung von Helix 12, welche entscheidend fir die
Proteinaktivitat ist. Die Variante zeigte einen reduzierten Ubergang vom inaktiven zum aktiven
Zustand, passend zur verringerten Transkriptionsaktivitat in zellularen Assays. Dariiber hinaus
kénnte der enthiillte Ubergang zwischen den Konformationszustinden des Wildtyp-FXR
Proteins eine Grundlage fir zuklnftige neue Erkenntnisse im Bereich der spezifischen
Targeting-Strategien bieten. FXR hat vielfdltige Funktionen innerhalb des menschlichen
Korpers, und isoform-, gewebe-, und ligandenspezifische Effekte legen nachgeschaltete Ziele
auf der Gen-Ebene fest. Trotz der Komplexitdt und des inhdrenten Risikos von

Nebenwirkungen bleibt die pharmakologische Intervention mittels FXR von hohem Interesse
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Zusammenfassung

aufgrund der Beteiligung im Fett- und Glukosestoffwechsel, Entziindungen und Immunitat,
sowie der Gallenhomdostase und der Verbindung zum Mikrobiom. Dementsprechend muss
die sichere Beeinflussung von FXR auf einem detaillierten Verstandnis der Protein-Dynamik
basieren. In der vorliegenden Arbeit stelle ich ein neues, verlassliches Vorhersageprogramm
fur die Pathogenitat von MDR3-Varianten und Erkenntnisse in die Regulierung der FXR-

Aktivitat vor.




Abstract

One of the central functions of the liver is the production and maintenance of bile. In addition
to their long-established role in fat absorption, bile acids have recently been identified as
signaling molecules able to influence the gut microbiome and major cellular pathways.
Dysregulated bile homeostasis due to genetic alterations in key protein players within
hepatocytes is a hallmark of cholestatic diseases such as progressive familial intrahepatic
cholestasis (PFIC). The phospholipid floppase MDR3, located at the canalicular membrane and
responsible for transporting phosphatidylcholine and thus maintaining non-toxic lipid to bile
salt ratios within bile mixed micelles, is impacted within PFIC type 3. Missense amino acid
substitutions represent the majority of causative alterations within the ABCB4 gene (encoding
for MDR3 protein) identified in PFIC3 patients. In Publication |, | developed a machine learning
program to classify variants as benign or pathogenic, thus assisting clinicians and researchers
in the assessment of novel variants for further testing. Due to the involvement of MDR3 in a
range of liver diseases, the tool is applicable to any MDR3 variant. MDR3, like many other
proteins involved in the complex network maintaining bile homeostasis, is transcriptionally
regulated by the nuclear receptor FXR. A clinically identified homozygous missense variant
associated with PFIC type 5 was analyzed within Publication Il using a combination of in vitro
and in silico approaches to unravel the molecular mechanism. Located within the ligand
binding domain, the variant impacts the positioning of helix 12, which is critical for protein
activity. The variant showed reduced transitioning from the inactive to active state, in line with
reduced transcriptional activity in cellular assays. Additionally, the uncovered transitioning
between conformational states in the wildtype FXR protein may provide a basis for novel
insights into specific targeting strategies. FXR has broad functions within the human body, and
isoform-, tissue-, and ligand-specific effects determine downstream gene targets. Despite the
complexity and inherent risk of side effects, pharmacological targeting of FXR remains of high
interest due to its involvement in lipid and glucose metabolism, inflammation, and immunity,
as well as bile homeostasis and its microbiome linkage. Accordingly, safely targeting FXR must
be grounded in a thorough understanding of its protein dynamics. Within the presented work,
| provide a novel, reliable prediction tool for the pathogenicity of MDR3 variants and insights

into FXR activity regulation.

| X
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Chapter 1 Introduction

Guided by evolutionary processes leading to an astounding plethora of cell diversity and
cellular mechanisms, the human body functions as a deeply connected network of specialized
organs and tissues (Alberts et al., 2007; Asada et al., 2019; Bartsch et al., 2015). Derived from
a single cell, epigenetic changes and signaling networks enable cells to differentiate into
specialized cell types within organs performing carefully adjusted and regulated functions
(Alberts et al., 2007). Due to the high interconnectivity between cells and, on the higher level,
organs, a misfunction can lead to imbalances in connected systems. As such, many diseases,
while potentially originating in a specific location within the body, have implications for other
organs and show debilitating effects beyond the direct reach of the affected cell area. The
liver is the main site of impairment in progressive familial intrahepatic cholestasis (PFIC), a
heterogenous group of rare disorders (Clayton, 1969; Davit-Spraul et al., 2009; Prescher et al.,
2019). These genetic disorders impact the ability of hepatocytes to properly form and secrete
bile, leading to early-onset progressive liver disease (Davit-Spraul et al., 2009; Gomez-Ospina
et al., 2016; Gonzales et al., 2017; Sambrotta et al., 2014). Beyond the liver, the expression of
functionally impaired proteins in other organs, as well as altered bile properties, which in turn
affect the microbiome interactions, can lead to the involvement of other organs, particularly

the intestinal system, exemplifying a strong gut-liver axis (Pfister et al., 2022; Yu et al., 2023).

Within affected patients, genetic analysis often identifies alterations leading to amino acid
missense variants within relevant hepatocyte proteins. Cellular assays to unravel variant
impact are time- and cost-intensive, and accordingly, computational methods such as machine
learning (ML) or molecular dynamics (MD) simulations have been increasingly employed to
aid the evaluation of variant effects. ML, a computational technique to extract underlying
patterns from datasets and extrapolate to novel data, is increasingly impacting science from
basic research to clinical applications (Greener et al., 2022; Igbal et al., 2021; Stormo et al.,
1982; Yip et al., 2017). In the context of protein missense variants, in which single amino acid
positions are exchanged, ML approaches resulted in a range of prediction tools for mutational
impact and are routinely used to guide researcher efforts (Adzhubei et al., 2010; Choudhury
et al., 2022; Frazer et al., 2021; Livesey & Marsh, 2023). MD simulations allow the study of
protein motions on an atomic level over time in a controlled computational model system and

have proven useful in deciphering protein dynamics (Latorraca et al., 2017; Prescher et al.,,
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2021), protein-protein (Koch et al., 2019), protein-ligand (Bonus et al., 2020), or protein-

nucleic acid interactions (Yoo et al., 2020).

Within the presented thesis, | established an ML tool and employed MD simulations to analyze
PFIC-relevant proteins, namely multidrug resistance protein 3 (MDR3) and farnesoid X
receptor (FXR). Based on a unique MDR3 dataset, | derived a protein-specific ML prediction
tool for MDR3 missense variants to classify variants into the categories of benign or
pathogenic. To ensure easy access, the tool is available as a webserver as well as a standalone
version (Publication 1). Further, | uncovered conformational transitioning from the inactive to
active state for FXR using MD simulations and revealed a decreased transitioning for a clinically
identified variant, explaining its reduced protein activity (Publication Il). Publication Il is

currently in the peer-review process (status: May 2024).

1.1 Bile homeostasis as a cornerstone of liver health

The human liver is responsible for a variety of functions within the body, including lipid uptake
and secretion, cholesterol homeostasis, generation of signaling molecules, glucose
metabolism, bile formation and secretion (Knell, 1980; Ma et al., 2006; Trefts et al., 2017). Bile
is necessary for the emulsification and absorption of fat and fat-soluble vitamins within the
digestive system (Di Gregorio et al., 2021). Furthermore, it is needed in the elimination of
potentially harmful exogenous toxins and endogenous lipophilic substances such as bilirubin,
while it is also the main elimination route for cholesterol (Boyer, 2013; Hofmann, Alan, 2009).
Bile consists of water, bile salts, phospholipids, cholesterol, bilirubin, cations and anions, and
other proteins, amino acids, and vitamins in smaller traces (Boyer, 2013). Within the
enterohepatic circulation, bile acids are actively absorbed and transported back to the liver
(Figure 1) (Hofmann, Alan, 2009; Hofmann, 1976). Upon ingested food reaching the stomach
(Figure 1, 1), the gallbladder starts to release stored bile into the primary part of the small
intestinal tract, the duodenum (Figure 1, 1l). Here, the bile acts on the ingested lipids and fat-
soluble vitamins, preventing the formation of large fat droplets while facilitating easier
enzymatic attack on lipids based on an increased surface available for the enzymes in smaller
fat droplets (Di Gregorio et al., 2021). Over the course of the small intestinal tract, the bile
acids are absorbed, mostly in the ileal part, via the ileum bile acid transporter (IBAT) expressed

in enterocytes (Dawson et al., 2003). Transported via the portal vein and mixed in the liver
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with oxygen-rich blood from the hepatic artery within the sinusoids, the bile acids reach their
original site of production, the hepatocytes (Figure 1, Ill). The enterohepatic circulation
recycles in healthy state around 95% of the bile acids (Halilbasic et al., 2013; Hofmann, Alan,
2009). While this is in general beneficial in terms of energetic costs, it also allows a direct
feedback mechanism, in which bile acid levels can be sensed and re-adjusted if necessary. This
feature is essential to control functioning fat digestion as well as to guard against critically
elevated bile acid levels, as high levels of bile acids can act on cell membranes, leading to cell
toxicity (lkeda et al., 2017; Oude Elferink & Paulusma, 2007). Their unique features justify

taking a closer look at these molecules.
VN @

Food intake
Liver

Stomach

Gallbladder/‘ Duodenum

Bile release Small Intestines

Large @

Intestines Bile acid and nutrients
absorption, transport via
portal vein to the liver

Figure 1: Overview of the enterohepatic circulation. Bile is produced within the liver and stored via
bile canaliculiin the gallbladder. After food intake (1), bile is released from the gallbladder (ll), entering
the intestinal system at the Duodenum, the first of the three sections of the small intestines. In healthy
state, 95% of liver-secreted bile acids are absorbed within the small intestines (lll), especially from the
distally located ileal epithelial cells. The portal vein transports absorbed bile acids and nutrients via the
liver to other body parts, where bile acids get taken up by hepatocytes, returning to their production
site.
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1.2 The unique structure of bile acids

Bile acids are generated from cholesterol (A. E. C. Wen & Campbell, 1977), and thus, all bile
acids share the common structure of the cholane skeleton with three six-membered and one
five-membered carbon rings (Figure 2, A). Within humans, chenodeoxycholic acid (CDCA) and
cholic acid (CA) are the two main bile acids synthesized from cholesterol (Vlahcevic et al.,
1991), which are conjugated with taurine or glycine before secretion into bile (Chiang, 2013).
Conjugation, performed by the enzymes bile acid-Coenzyme A (CoA) ligase or bile acid-
CoA:amino acid N-acyltransferase, occurs at the side chain and reduces the molecules’ pKa (Di
Gregorio et al., 2021). Consequently, conjugated bile acids will be present in their ionized salt
form (accordingly termed bile salts), thus lowering their passive absorption through cellular
membranes within the intestinal tract. These molecules, synthesized within hepatocytes, are
referred to as primary bile acids. Overall, their structure results in a hydrophilic and a lipophilic
molecule side (Figure 2, B). This aids in fat emulsification, preventing fat droplets from
converging and enabling easier access for attacking enzymes to break down the fats (Figure 2,
C). Thus, bile salts have an important role in our digestive system, facilitating the absorption
of lipids and lipophilic vitamins. Furthermore, the gut microbiome actively contributes to the
diversity by converting the primary bile acids into a variety of secondary bile acids (S. L. Collins

et al., 2023; Guzior & Quinn, 2021; Quinn et al., 2020).

Hydrophilic side

Hy(jrophobic side

Figure 2: Structure of the bile acid CDCA. [A] Structure of CDCA. [B] Three-dimensional view of a
conformation of CDCA in its ionized form, extracted from a crystal structure of FXR bound with
agonistic CDCA (PDB ID: 6HL1 (Merk et al., 2019)) and depicted with PyMOL. Oxygen atoms are
depicted in red, carbon atoms in grey and hydrogens in white. [C] Emulsifying effect of bile acids with
a central fat droplet (brown sphere). The structure of bile acids, with hydrophilic charged groups (green
points) pointing towards the surrounding hydrophilic environment and its hydrophobic side (yellow
area) interacting with lipids from the fat droplet, preventing the coalescence of droplets. Panel C was
created using BioRender.
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Modifications range from deconjugation, dehydroxylation, oxidation and epimerization to
reconjugation, and the levels of specific secondary bile acids differ not only from person to
person based on the individual microbiome, but also along the intestinal tract (Guzior & Quinn,
2021; Shalon et al.,, 2023). In general, this metabolism by the microbiota has been long
established (Gustafsson et al., 1966). Given the abundance and diversity of the microbial
community, researchers have long been striving to unravel the composition and interaction
patterns in greater detail. Recent advances both in molecular (Blaut et al., 2002; Hillman et
al., 2017) and sampling techniques (Shalon et al., 2023) are enabling a new era, introduced
with the breakthrough finding of novel microbially conjugated bile acids, namely the
conjugation of amino acids phenylalanine, tyrosine and leucine to bile acids (Quinn et al.,
2020). As such, the field of microbiome research and the interplay with bile acids and their
role in healthy and disease states is currently under intense investigation, and a series of novel
important insights are expected (S. L. Collins et al., 2023; Guzior & Quinn, 2021; Shalon et al.,
2023). Additionally, bile acids have been identified as important signaling molecules for lipid
and glucose metabolism (de Aguiar Vallim et al., 2013; Ma et al., 2006), inflammation (M. Li et
al., 2017), and immunity (Fiorucci et al., 2018; Godlewska et al., 2022). Another key aspect of
bile acids, and one that will be further discussed in the next chapter, is the bile acid feedback

loop regulating its own homeostasis.

1.3 Hepatocytes control the bile formation

For a well-functioning fat digestion, the ability to sense and adjust bile formation is important.
Bile salts produced in hepatocytes and released into the enterohepatic circulation enable this
feedback mechanism (Figure 1 and Figure 3). Another reason for tight control of bile salt levels
is their cytotoxic effects due to their detergent nature and their potential to induce
proinflammatory stimuli at higher concentrations (Claudel & Trauner, 2020; Ikeda et al., 2017;
M. Li et al., 2017). Bile acids entering from the portal vein can act as agonists for FXR, the
central transcription factor of the bile formation network (Jiang et al., 2021; H. Wang et al.,
1999). Additionally, FXR activation by elevated bile acid levels in enterocytes can influence
hepatocyte metabolism, for example, via fibroblast growth factor 19 (FGF19), expressed
within the enterocyte and traveling via the portal vein to suppress the production of bile acids
within hepatocytes (Katafuchi & Makishima, 2022). Upon bile acid binding, FXR translocates
into the nucleus, dimerizes with the transcription factor retinoid X receptor (RXR) and binds
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to its specific DNA response element (Claudel et al., 2002; Forman et al., 1995; Laffitte et al.,
2000). In this way, FXR can exert control over the synthesis of bile acids from cholesterol via
the rate-limiting enzyme cytochrome P450 family 7 subfamily A member 1 (CYP7A1), inhibit
further uptake of bile acids from the portal vein via inhibition of the sodium taurocholate
cotransporting polypeptide (NTCP) and increase the efflux of bile acids from hepatocytes into
the portal vein via the heterodimer organic solute transporter alpha/beta (OSTa/B) in order
to avoid reaching toxic levels of bile acids within the cell (Chiang et al., 2000; Claudel et al.,
2002; Dash et al., 2017; Hoeke et al., 2009). The expression of organic anion transporting
polypeptide 1 B1 (OATP1B1) has been found to be induced by FXR and liver X receptor (LXR)
in a hepatoma-derived cell line (Meyer zu Schwabedissen et al., 2010). Previous studies have
established downregulation of OATP1B1 within PFIC type 2 and type 3 (Keitel et al., 2005) and
repression of both OATP1B1 and OATP1B3 in CDCA-treated human liver slices (Jung et al.,
2007), potentially to protect hepatocytes from toxic intracellular bile acid levels. Additionally,
FXR drives protein transporter expression necessary for the transport of bile components into
the canaliculi. The most prominent and well-studied example is the bile salt export pump
(BSEP), which is under FXR-regulated promotor control (Ananthanarayanan et al., 2001; Dash
et al., 2017). This ATP-binding cassette (ABC) transporter translocates bile salts against a
concentration gradient from within the hepatocytes through the canalicular membrane into
the canaliculi (Gerloff et al., 1998; Strautnieks et al., 1998). Mixed micelles with lipids such as
phosphatidylcholine (PC) are formed in the bile canaliculi, preventing detergent effects of the
bile salts on the cell membranes (lkeda et al., 2017; Oude Elferink & Paulusma, 2007). PC is
flopped from the inner canalicular membrane for extraction into bile micelles by another ABC
transporter, the multidrug resistance protein 3 (MDR3, gene name ABCB4) (Olsen et al., 2020;
Prescher etal., 2021; A. J. Smith et al., 1994). Like BSEP, MDR3 is a FXR-regulated target (Dash
et al., 2017; L. Huang et al., 2003; ljssennagger et al., 2016). However, MDR3 expression was
not fully abrogated in patients with loss of function FXR variants (Gomez-Ospina et al., 2016),

indicating a more complex transcriptional regulation.

For a healthy bile formation, other key proteins have been identified (Figure 3). Due to
ongoing research efforts, which are often guided by clinical screening of patients and rigorous
sequencing, further proteins are regularly identified and could be extending this list of
involved proteins (e.g., the microtubule motor protein Kinesin family member 12 (KIF12)

(Maddirevula et al., 2019; Stalke et al., 2022)). Within the intracellular transportation
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machinery, apical targeting of membrane proteins such as BSEP and MDR3 is a prerequisite
for bile formation. The cytoskeleton motor protein myosin 5B (MYOS5B), important for
epithelial cell polarization and vesicular trafficking, has been shown to be required for proper
BSEP localization (Miller et al., 2008). Mutations in MYO5B have been associated with
microvillus inclusion disease, characterized by loss of microvilli on enterocytes’ surface, and
with PFIC type 6 (Gonzales et al.,, 2017; Midller et al., 2008; Qiu et al.,, 2017). The
aminophospholipid flippase familial intrahepatic cholestasis 1 (FIC1) is responsible for
maintaining the membrane asymmetry at the canalicular membrane, and mutations have
been associated with liver diseases such as PFIC type 1 (Eppens et al., 2001; Paulusma et al.,
2006). Variants leading to dysfunction of the tight junction protein 2 (TJP2) have been
associated with PFIC type 4 (Sambrotta et al., 2014). TJP2 is a scaffolding protein involved in
establishing tight junctions through interaction with cytoskeletal proteins and integral
membrane proteins such as Claudin proteins (Carlton et al.,, 2003) and despite widespread
expression, TJP2 dysfunction might impact mainly the liver due to the specific environment
with high exposure of tight junctions to detergent bile salts (Sambrotta et al., 2014; Sambrotta
& Thompson, 2015). Within the liver, the heterodimer ABCG5/G8 is responsible for cholesterol
secretion (Graf et al., 2003) and the ATP transporter multidrug resistance protein 2 (MRP2),
besides its function in detoxification, transports bilirubin into the bile canaliculi (Jedlitschky et

al. 1997; Gabriele Jedlitschky, Hoffmann, and Kroemer 2006).
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Figure 3: Overview of important proteins within a hepatocyte involved in the bile formation and
enterohepatic cycle. FXR and MDR3 proteins (dark blue) are marked in bold as they are the focus of
this thesis. Other key players (light blue) are the bile salt export pump (BSEP), familial intrahepatic
cholestasis 1 (FIC1), the heterodimer ABC transporter G5/G8 (ABCG5/G8), multidrug resistance protein
2 (MRP2) [all located within the canalicular membrane], as well as tight junction protein 2 (TJP2),
myosin 5B (MYO5B) [cytosolic proteins] and sodium taurocholate cotransporting polypeptide (NTCP)
and organic anion transporting polypeptide (OATP) [located in the basal membrane]. Straight arrows
indicate molecule transport directions and curved arrows indicate molecule flipping or flopping within
the membrane bilayer. ER: endoplasmatic reticulum, BA: bile acids, BS: bile salts, PC:
phosphatidylcholine, APL: aminophospholipid. Distantly adapted from Pfister et al., 2022, Figure 1 and
Droge et al., 2017, Figure 1. Further, Figure 7 and Figure 10 in this dissertation are based on Figure 3.

Destabilization of this tightly regulated system can lead to pathological effects and liver
disease, from less severe impacts like intrahepatic cholestasis of pregnancy (ICP) to severe
diseases like PFIC. The affected patient numbers are low in accordance with its classification
as rare diseases, but disease severity often necessitates liver transplantation (Srivastava,
2014). Further, the different PFIC subtypes highlight the interplay of proteins involved within
normal bile formation. The BMBF-funded consortium HiChol follows a multi-disciplinary
approach to study phenotypes, molecular causes, effects, and treatment options of PFIC
diseases based on the genetic analyses of individual patients. My work was performed as part
of the HiChol consortium. The combination of in vitro, in vivo and in silico studies, together
with patient and clinical data, enables a holistic view with the goal of advancing the basic
understanding of molecular mechanisms and improving patients’ quality of life. In this

context, | have focused on providing classification guidance for novel variants of the MDR3
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protein (Publication I) and on elucidating the molecular mechanism of a missense variant of

the FXR protein (Publication II).

1.3.1 Variant classification in MDR3

The adenosine triphosphate (ATP)-binding cassette (ABC) subfamily B member 4 (ABCB4, also
known as MDR3) is almost exclusively expressed within the liver (Sticova & Jirsa, 2020; Uhlén
et al., 2015; Van der Bliek et al., 1987). MDR3 dysfunction has been associated with a wide
range of liver diseases with varying severities, such as ICP, drug-induced liver injury (DILI), low
phospholipid-associated cholelithiasis (LPAC), liver fibrosis, liver cirrhosis as well as
hepatobiliary malignancy and progressive familial intrahepatic cholestasis type 3 (PFIC3)
(Deleuze et al., 1996; Dixon et al., 2000; C. Dong et al., 2020; Droge et al., 2017; Gudbjartsson
et al., 2015; Lang et al., 2007; Pauli-Magnus et al., 2004). Genetically, about 70% of the
disease-causing variants are missense variants (Delaunay et al., 2016), in which one amino
acid residue within the MDR3 protein sequence is exchanged for a different amino acid. Upon
gene sequencing, the effect of identified variants within the ABCB4 gene is hard to predict, as
single nucleotide polymorphisms (SNPs) without pathogenic association can also occur. Since
in vitro studies to analyze mutational effects are lengthy and time-consuming, | developed an
ML prediction tool to accurately predict novel variants into the categories of benign or
pathogenic (Publication |, Chapter 4). The project was published in Hepatology
Communications (2022) and intended to assist clinicians in the initial assessment of novel

variants identified in patients.

1.3.2 Impacted transitioning of a variant in FXR

The farnesoid X receptor (FXR), also called nuclear receptor subfamily 1 group H member 4
(NR1H4), is a transcription factor that controls the network of bile homeostasis by acting as a
master regulator (Makishima et al.,, 1999; Parks et al., 1999; H. Wang et al.,, 1999). A
homozygous variant within the FXR protein was identified in a patient suffering from PFIC
subtype 5, leading to an amino acid exchange from threonine to isoleucine at position 296
(p.(Thr296lle), identifier NM_001206979.2: c.887C>T in the FXR-encoding NR1H4 gene)
(Pfister et al., 2022). In vitro assays (performed by Dr. Jan Stindt, Heinrich Heine University
Disseldorf, Germany), in vivo patient sample analysis (performed by Dr. Carola Drége and
Prof. Dr. Verena Keitel-Anselmino) and in silico studies (performed by me) were performed to
elucidate the underlying molecular mechanisms. Within cellular assays, the variant protein
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showed significantly reduced transcriptional activity while presenting a normal protein
localization and similar overall protein levels. Agonist binding occurs within the ligand binding
domain (LBD) of FXR and favors a conformational state of the nearby helix 12 that creates an
interaction surface for nuclear coactivators (Mi et al., 2003). Using MD simulations, |
investigated the LBD of FXR and compared the wildtype to the variant protein. The variant
showed a significant destabilization of the active conformation and a reduced ability to reach
the active conformation from an inactive starting position. To further exclude that the variant
might impact ligand binding, | analyzed the melting temperature of FXR in vitro, revealing no
significant differences between wildtype and variant protein. The project is available as

preprint (DOI 10.1101/2024.02.08.579530) (Publication II, Chapter 5).




Chapter 2 Background

2.1 Computational biology

Computational biology has developed into an indispensable research area to tackle many
biological questions despite it being a rather new field in the context of biological research,
with research beginning in the 1950s with the pioneering work of Margaret Oakley Dayhoff
(Dayhoff, 1966; Gauthier et al., 2019). The rapidly growing data collection through advances
in biological techniques (be it in genomics (Ansorge et al., 1986; F. S. Collins & Fink, 1995; L.
M. Smith et al., 1986), proteomics (Reel et al., 2021), structural biology (Unwin & Henderson,
1975), or cellular imaging (Klar et al., 2000) to only name a few) demands for tools to analyze
and visualize the data, as well as to extract patterns, draw conclusions and use generated data
for simulations and predictions. Accordingly, computational biology nowadays is an extensive
research area with numerous subfields, for example, machine learning (Chapter 2.1.1) or
molecular dynamics simulations (Chapter 2.1.2). While the field is rapidly advancing and yields
increasingly accurate predictions, studies benefit from collaborative efforts of researchers

providing in vitro or in vivo data to corroborate computational results and vice versa.

2.1.1 Machine learning

Machine learning (ML) describes the process of identifying a model that can describe or
predict data to a sufficiently accurate level (Lo Vercio et al., 2020). In itself, this process is not
something unique — animals learn and interact with the world in a learning process where
decisions are made based on previous information and derived causative patterns (Greener
etal., 2022). Alion cub might learn about different classes of animals, learning to differentiate
which ones are potential food sources (e.g., zebras) and which ones to better stay clear off
(e.g., porcupines). Much of this classification process that the lion is undertaking is likely
image-based, i.e., the visual cue of spikes presented by the porcupines will result in the
behavioral output of being more careful and not attacking. Translated into the world of ML,
the lion has learned, based on previous data, from the available information (image-based,

smell-based, touch-based) to classify new objects into potential food sources or danger
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sources by applying and testing different behavioral models and continuously correcting
them. The lion cub will probably have tried more than once to attack a porcupine, either with
his claws or jaw, and adjust his behavior based on good results — e.g., gaining food — or bad
results — e.g., pain. However, one must be wary of comparing how computer programs and
animals learn. Here, | am describing associative learning, meaning associating data to a
particular outcome, employing a reward and/or punishment system. Animal traits such as
curiosity and play, huge driving factors for efficient learning for future situations, are unknown
in ML and even artificial intelligence. ML models will perform their training as often as the
researcher designing them wants them to; they will not spontaneously decide to train more
or search for more data out of curiosity (with the exception of reinforcement learning, see
next paragraph). While this can be seen as an inherent limitation, it provides the huge
advantage of reproducibility in the context of research. Using the same underlying data and
the same training conditions, the model will always result in the same output — a feat that will
never be reached in animal learning. One might argue that other factors contribute to this
variability within animals (genetics, environmental factors, previous learning experiences).
Machine-based learning, in contrast, can start from a “blank slate” state (see Essay “Tabula
Rasa” (2019) by David Young, including a foreword by Jason Bailey, published on Artnome
[www.artnome.com]). Try as we might, animals cannot reset themselves to a blank canvas,
while resetting machines is a common procedure. Overall, this provides ML with the

advantage of standardization and reproducibility (Heil et al., 2021).

ML has three major forms: supervised, unsupervised, and reinforcement learning (Morales &
Escalante, 2022). In supervised machine learning approaches, the ML model is built on a
dataset with a known output, a so-called label, and trained to find a function to map dataset
features to the label (Lo Vercio et al., 2020). Such a label does not exist in unsupervised
learning, and the machine is expected to derive meaningful patterns from the datasets
(Greener et al., 2022). This is extremely valuable in situations where data is too complex for a
human to process, and ML techniques can aid, for example, in reducing the dimensionality of
the problem with principal component analysis (Salem & Hussein, 2019). In reinforcement
learning, the ML is an agent interacting with its environment. The agent learns from feedback
from the environment after performing an action (Morales & Escalante, 2022). Reinforcement
learning mimics more closely the process of natural learning similar to human or animal

learning, resulting in adaptability based on continuous interaction and feedback with a given
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environment (Sutton & Barto, 2018). Currently, reinforcement learning harbors great
potential and has even outperformed human performance at complex computer games (Mnih
et al., 2015). Applications in real life healthcare scenarios remain challenging (Dulac-Arnold et
al., 2021) but advances are evident especially in areas of sequential decision making (Bock et
al., 2022; Coronato et al., 2020). Nonetheless, in the field of biomedicine, supervised ML
techniques are most common since models are often sought to associate specific human
features (weight, smoking status, age, imaging data, etc.) with a disease outcome (e.g., chronic
obstructive pulmonary disease development (X. Wang et al., 2023), skin cancer detection

(Esteva et al., 2017), (Jovel & Greiner, 2021)).

Underfitted and overfitted models

In a supervised ML approach, a model will learn to associate specific feature patterns for data
points with an output (Lo Vercio et al., 2020). Its learning system is based on a loss function
that is calculated at each learning iteration and indicates an improvement or worsening of the
model (Kamatani et al., 2017, Morales & Escalante, 2022). Additionally, the designing
researcher has the opportunity and responsibility to survey the performance of the ML model
and thread the line between underfitting and overfitting. An overfitted model follows the
underlying training data too closely and believes that the inherent noise contains valuable
information. It has thus memorized the training data instead of learning its underlying trends
(Jovel & Greiner, 2021). Overfitted models fail to draw appropriate conclusions for future
observations, severely limiting their predictive power (Lo Vercio et al., 2020). Underfitted
models, however, fail to capture the connection between training data and labels, indicating
that the model does not capture the complexity of the analyzed system. Underfitted models
will perform poorly on the training data and have poor predictive power (Lo Vercio et al.,
2020). While poor performance at predicting the training data labels is an easy way to detect
underfitting, overfitting is a more common problem in ML due to its good performance on
training data (but with the major drawback of poor performance on unseen or future data).
To counteract overfitting, it is common practice to withhold a part of the available data (the
so-called test set) (Liu et al., 2019; Michelucci, 2018). The ML model will be trained on a large
part of the available data and finally predict the output for the test set, thus imitating how the
model will behave on future unseen data. Overfitted models will show reduced performance
in the performance comparison between the training and final test set. Another technique to

evaluate and limit overfitting is the use of resampling techniques for the training dataset
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(Charilaou & Battat, 2022). Making use of the same underlying principle of withholding a part
of the available data to use as an interim test, the dataset — without the final test set — can be
split into training data and internal validation set. The algorithm will train on the training data,
evaluate its performance on the internal validation set, shuffle the data again and start
training again with a new split of training data and internal validation set (Figure 4). Of note,
there is some ambiguity in the field regarding the naming of the different datasets (e.g., the
internal validation set is sometimes referred to as dev dataset (Michelucci, 2018) or test set
and the external set sometimes referred to as validation set (Cabitza et al., 2021)). Here, in
line with the naming in Publication I, | will follow the introduced naming of validation set as
the internal validation subset used within the training of the algorithm and test set as the final

external set to evaluate the model performance on unseen data.

Entire dataset

Training dataset Final test set

hold out until

Split of training dataset in k folds - here k=3 final evaluation

Validation set

Validation set

Validation set

V| I
Repeated k-fold cross validation:
K () repeat n-times with new splits
Figure 4: Schematic overview of dataset handling for ML models with repeated k-fold cross-

validation. Performance evaluation scores are retained after each iteration to compare to the
performance on the final test set.

A popular resampling technique is k-fold cross-validation, in which the training dataset is split
into equally sized subsets (so-called folds) where k indicates the number of subsets. Each one
of those subsets will now, in turn, be used as an internal validation set, meaning there will be
k-times iteration rounds where one specific subset serves as a validation dataset (Refaeilzadeh

et al., 2009). After each iteration, the evaluation scores are saved, but the model itself is
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discarded, meaning the ML model faces entirely new data in every iteration from its point of
view. The saved evaluation scores aid in evaluating the ML model and testing its performance.
A variation of the k-fold cross-validation is the repeated k-fold cross-validation (Figure 4),
where another parameter defines the number of repeats, and within each repeat, the folds
are differently split, resulting in a more robust model assessment (Rodriguez et al., 2010;

Rodriguez et al., 2013).

Popular algorithms for ML models — Decision Trees

The choice of algorithm to employ for an ML model depends on the specific question the ML
model is trying to answer. In general, ML models create an objective function to map the input
to the output variable. The objective function consists of a loss function and a regularization

term (Equation 1).

Objective function = Z U(yi Vi prea) + Z Q(f) Equation 1

The first term describes the loss function measuring the difference between true output (y)
and predicted output (ypred) at the instance i. Q(f) represents the regularization term that is
applied to each tree (f) of the ensemble. The loss function evaluates the error the model
makes during training and iteratively tries to minimize it, while the regularization term acts to

control overfitting.

In supervised ML, predictions are made based on a learning period with a training dataset
containing established examples with known output (Lo Vercio et al., 2020; Rokach & Maimon,
2005). This output can be a categorical (e.g., image classification into category dog or cat) or
a continuous (e.g., estimation of house prices) variable. Common ML algorithms to employ for
such tasks are Decision Trees (Pedregosa et al., 2011; Quinlan, 1993), Naive Bayes (John &
Langley, 1995), Support Vector Machines (Keerthi et al., 2001), Random Forest (Breiman,
2001), Linear Regression (J. Han et al., 2011), Logistic Regression (Cessie & Houwelingen, 1992)
and Neural Networks (J. Han et al., 2011; Lo Vercio et al., 2020; Sarker, 2021). Decision Trees
are a popular choice for classification problems, where the data is recursively split based on
the most significant attributes or features (Rivera-Lopez et al., 2022; Rokach & Maimon, 2005).
The general idea of a Decision Tree is commonly used in daily life decisions, even though we
are mostly unaware of it, and, in contrast to an ML model, we do not have to follow the rules

of the tree strictly. In a simplified way, | might ask myself the question if and what to eat
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(Figure 5). Collecting data about previous times | have asked myself that question | can create
a dataset and identify important features, for example my hunger level, finances, and the
current situation | am in. Those features carry information on why | reached a specific decision
(which output class | chose) and | can reconstruct a basic Decision Tree from it. The output can
be a multi-class classification (e.g., eat in a restaurant, eat Apple, cook food, do not eat), a

binary classification (e.g., eat / do not eat) or a regression (e.g., how much to eat).

Decision tree levels

' leaf nodes H isi | root
‘ decision nodes || 4.

Figure 5: Example of a simple Decision Tree. The root node in this case is the feature “Hungry” which
splits the tree based on the answer yes and no, resulting in two different branches with further decision
nodes until the last level of the tree with the final leaf nodes. The leaf nodes each hold a class label.
Note that while each leaf holds a different class label (multi-class classification) here, several leaves
can also hold the same class label. Changing the exemplary Decision Tree to a binary output of “Eat”
or “Do not eat”, the leaves might change from “Eat in restaurant” to “Eat”, “Cook at home” to “Do not
eat”, and “Eat apple” to “Eat”.

The decision for a split is performed in a top-down fashion, where the algorithm chooses the
variable that best splits the dataset at each given point (Rokach & Maimon, 2005). Depending
on the used algorithm, the underlying metric for choosing the best split may vary; however,
the overall goal is to increase the homogeneity of the target variable within the resulting split
datasets (Rokach & Maimon, 2005). A single Decision Tree is inherently prone to overfitting,
especially if the tree is allowed to branch down fully (Leboeuf et al., 2020). To avoid this, a
tree can be pruned — limiting the number of times it is allowed to branch — or several trees

can be combined in ensemble techniques (Rokach & Maimon, 2005; Sagi & Rokach, 2018).
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Ensemble techniques increase the model performance by building a larger number of trees,
minimizing the errors of individual trees (Dietterich, 2000). Bagging and boosting methods are
common in building these trees (Breiman, 1996; X. Dong et al., 2020). In bagging, a number of
subsets are randomly drawn from the original dataset, and upon each of these subsets, a
Decision Tree is trained, whose output is either averaged or majority-voted over all trees to
obtain the final ensemble classifier (Dietterich, 2000). The drawn training subsets are
independent from one another, so training is performed in parallel (Bauer & Kohavi, 1999). In
boosting, the model is built on combining weak classifiers in a chain, where each new classifier
attempts to minimize the error of the previous classifier (Freund, 1995; Schapire, 1990).
Assembling those weak classifiers results in a more robust prediction. In gradient boosting,
the loss function is minimized based on gradient descent (Friedman, 2001). It follows the same
principle as general boosting approaches in that trees are iteratively added, and each new tree
trains on residual errors of previous trees, thus concentrating and improving on the weak
areas of the model performance. One of the most popular ensemble algorithms, often
achieving the best results in machine learning competitions on the Kaggle platform, is the
XGBoost algorithm (Chen & Guestrin, 2016). XGBoost stands for extreme gradient boosting,
which uses a gradient boosting framework optimized for speed and performance (Chen &
Guestrin, 2016). While neural networks usually outperform other algorithms in problems
involving unstructured data, such as image analysis (Sharada et al., 2023), XGBoost is a popular
choice due to its superior performance on tabular data sets, especially small to medium

dataset sizes (Grinsztajn et al., 2022; Shwartz-ziv & Armon, 2021).

ML predictions of missense amino acid substitutions

The human population displays substantial genetic variability where the most common
genetic difference, a single nucleotide polymorphism (SNP), occurs about every thousand base
pairs when comparing two individuals (Auton et al., 2015). While many of those nucleotide
exchanges may not result in a difference on the protein sequence level, a considerable subset
does result in a single-site amino acid exchange (also frequently referred to as variant or
mutation) (Auton et al., 2015; Thusberg & Vihinen, 2009). Mutations can have pronounced
effects, and even single missense mutations have been identified as disease-causing for a
variety of disorders (Botstein & Risch, 2003) such as Alzheimer’s disease (Goate, 2006),
amyotrophic lateral sclerosis (Rosen et al., 1993) and PFIC (Droge et al., 2017). Mutations

might impact functionally important sites, change protein dynamics or cellular localization,
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affect the protein’s structural properties, disturb inter- or intramolecular residue networks,
prevent or change post-translational modifications (PTMs), or impact protein translation on
the mRNA level by altered mRNA stability or splicing (Thusberg & Vihinen, 2009; Z. Zhang et
al., 2012). On the other hand, many mutations might not alter the protein function at all or
even give it an evolutionary benefit (Toth-Petréoczy & Tawfik, 2014). Evaluating mutations in
vitro is time- and cost-intensive, and accordingly, predicting the effect of a mutation on the
protein function is a field of intense research, and a range of predictors are available (Mooney
et al., 2010). Broadly, predictors can be categorized into sequence- or structure-based or
considering information from both areas. Sequence-based predictors estimate evolutionary
conservation based on multiple sequence alignments, following the reasoning that benign
substitutions are less evolutionary penalized (Miller & Kumar, 2001). Structure-based
predictors take protein structural effects of mutations into account, either based on available
protein structures or local or global structure predictions (lttisoponpisan et al., 2019).
Combined approaches with sequence conservation as well as structural impact considerations
have been found to further improve predictions (Folkman et al., 2013) and are employed in
widely used tools such as PolyPhen-2 (Adzhubei et al., 2010). Most prediction tools are
designed to predict substitutions for any given protein, which gives the developer the
advantage of a bigger available dataset for developing the tool and a larger potential user
group. However, it does not guarantee good performance of the predictor on every protein
as one potential pitfall can be a skewed training dataset towards a certain protein class,
resulting in weaker performance on other protein classes. Several studies have benchmarked
predictors using different proteins with established missense substitutions, resulting in vastly
varying performances (Choudhury et al., 2022; Livesey & Marsh, 2023; Riera et al., 2016).
Accordingly, protein-specific predictors have also been established to increase performance
for specific proteins of interest (Crockett et al., 2012; Niroula & Vihinen, 2015; Riera et al.,
2016). For the case of MDR3, no protein-specific predictor was available despite its
importance in liver health and bile homeostasis. A previous study claimed MutPred to be a
well-performing general protein predictor on MDR3 variants (Khabou et al., 2017); however,
its performance was tested only on a small set of variants and thus might not be
representative. As missense variants in MDR3 have been associated with a range of liver
diseases, accurate predictions for this specific protein are of high interest. Hence, | established

a dataset containing MDR3-missense variants with pathogenic and benign effects and trained
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an XGBoost ML model specifically for MDR3 (Publication I, Chapter 4). The general structure
of the code and the integration of some features was established by Pegah Golchin (Heinrich
Heine University Disseldorf, Germany; currently at TU Darmstadt, Germany). We used a
combination of input features from established general protein predictors, both sequence-
and structure-based, and features to explicitly include secondary structure effects such as
PTM changes and solvent accessibility for the ML model. The approach led to improved

prediction results, outperforming general protein prediction tools.

2.1.2 Molecular dynamics simulations

The computational method of molecular dynamics (MD) simulations, pioneered by work from
Alder and Wainwright in the 1950s (Alder & Wainwright, 1959), allows studying the motions
of a biomolecular system based on solving Newton’s laws of motion. Biomolecular structures
like proteins can be embedded in a specific environment to mimic the cellular context, and
the movement of each atom during specified time steps is calculated based on physical
properties and interatomic interactions. Depending on the investigated research question, a
guantum mechanical description of the system with an explicit representation of electrons
can be necessary. However, due to their complexity, such calculations are computationally
expensive and currently out of range for larger systems such as proteins (Bottaro & Lindorff-
Larsen, 2018). In turn, molecular mechanics is mainly used to describe protein systems, where
each atom is described as a point connected with springs to represent the bonds to other
atoms (Braun et al., 2019). Hybrid models of quantum mechanics and molecular mechanics
MD can be used when explicit electronic description of a part of the system is required (Horn,
2003). For even larger systems and/or if the problem allows a reduced degree of complexity
of the system, atoms can be grouped, e.g., atoms of an amino acid residue will be represented
by a pseudo-atom (so-called coarse-grained MD) (Levitt & Warshel, 1975). Within the here
presented thesis, molecular mechanics MD (in the following referred to as MD) was used to
investigate conformational changes and missense variant impact within proteins. The protein
of interest is described on an all-atom level, and the forces acting on each atom of the system
are calculated based on the bonded (bond, angle, and torsion terms) and non-bonded
(electrostatic and van der Waals terms) interactions. After a given amount of time steps, the

newly calculated atomic positions and velocities are stored in a so-called “snapshot” or
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“frame” that, taken together over the entire simulated time, form the trajectory of the system
representing the 3D dynamical movement of the analyzed system (Hollingsworth & Dror,
2018). Accurately describing the atomic interactions is of great importance to computing
interatomic forces. Accordingly, considerable research has been and continues to be carried
out on generating functions (referred to as “force fields”) that describe the atomic behavior
well, matching simulated properties to experiments from physics and chemistry (Koes & Vries,
2017; Love et al., 2023). The general force field form to compute the potential energy of a

system (Cornell et al., 1995) consists of bonded and non-bonded terms (Equation 2):

Etotar = Z K.(r— req)z
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The first three terms describe the bonded interactions with bond stretching and bond
compression, bond angle deviations, and torsion angle deviations expressed in the terms,
respectively. Non-bonded interactions are described in the last term of the equation,
combining a Lennard-Jones (12,6) potential and a Coulomb potential to describe van der

Waals and electrostatic interactions (Cornell et al., 1995).

Within the open-source biomolecular MD program AMBER (Assisted Model Building with
Energy Refinement (Case et al., 2021, 2023)), several sets of force fields are integrated and
can be used for simulations of varying molecules, including proteins (e.g., force field ff19SB
(Tian et al., 2020)), DNA (e.g., force field OL21 (Zgarbova et al., 2021)), carbohydrates (e.g.,
force field GLYCAM_06j (Kirschner et al., 2008)) and lipids (e.g., force field lipid21 (Dickson et
al., 2022)). Additionally, AMBER provides, amongst others, a set of programs for the
preparation and execution of molecular simulations and as such has become widely popular
within biomolecular research (Case et al., 2021; Salomon-Ferrer et al., 2013). Furthermore, a
wide range of compatible force fields exist, designed for specific cases such as phosphorylated

amino acids (Stoppelman et al., 2021), fluorescent dye-linked proteins (Schepers & Gohlke,
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2020), or to simulate gold-nanoparticles linked with bioactive molecules (Pohjolainen et al.,
2016), bridging thus several research fields and broadening the potential applications. Within
unbiased MDs, the system will explore its energetically accessible free energy landscape over
the simulation time, creating a dynamic sampling of energetic states (Karplus & McCammon,
2002; Orellana, 2019). In a perfect ergodic trajectory, the system will visit all available states,
resulting in a full view of conformational space in the case of simulated proteins (Abrams &
Bussi, 2013; Pietrucci, 2017). Frequently, however, such an ergodic state is not reached as it
requires long simulation times, resulting in the accessing of available energetic minima more
frequently, while higher energetic states will be visited less frequently (Abrams & Bussi, 2013).
Accordingly, a range of computational methods have been derived to accelerate and enhance
the sampling of conformations blocked by high free energy barriers and higher energy states
like transitioning states (Abrams & Bussi, 2013; Y. I. Yang et al., 2019). Despite the potential
inaccessibility of certain states, biologically relevant conformational transitioning can be
observed within unbiased MD simulations and as such, unbiased MDs have been used
frequently to derive answers from a molecular view on protein flexibility, substrate transport,
and ligand interactions (Calimet et al., 2013; Halder et al., 2015; Latorraca et al., 2017;
Orellana, 2019; Skjaerven et al., 2011).

When studying protein-ligand interactions or within drug design approaches, molecules may
be present that cannot be accurately described with the integrated force fields, leading to the
development of the general AMBER force field (GAFF), which supplies parameters for all
bonded terms and the van der Waals term for most organic molecules (J. Wang et al., 2004).
To determine the missing parameters for the electrostatics term (i.e., the atom-centered point
charges), charges are fitted to reproduce the molecule’s quantum mechanically calculated
electrostatic potential (ESP). For contemporary AMBER force fields, a restrained electrostatic
potential (RESP) fit (Bayly et al., 1993) has been shown to be superior to an unrestrained fit to
the ESP (Cornell et al., 1993) and is therefore considered the standard method to determine
atomic partial charges. The basis set used to describe and compute the molecular orbitals
determines the quality of the calculated molecular electrostatic potential, and popular basis
sets differ in the number of Gaussian functions used to describe the atomic orbitals. Though
the general tradeoff between computation cost and level of detail applies —i.e., the inclusion
of more Gaussian functions will more accurately depict the true ESP at the cost of increasing

computation time — a level of 6-31G(d) is frequently used as the derived ESP charges start to
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converge at this level (Dupradeau et al., 2010; Hariharan & Pople, 1972). With the accurate
description of molecules of interest for MD approaches, a wide range of protein-ligand

interaction studies can be assessed.

Nuclear receptors (NRs) are key regulators of a diverse set of physiological functions. Besides
the overall domain structure of a DNA-binding domain (DBD) and an LBD with a hydrophobic
binding cavity, NRs show a common active conformational state upon agonist binding with a
well-defined helix 12 placement (Aranda & Pascual, 2001; Khan et al., 2022; Saen-Oon et al.,
2019; Wurtz et al., 1996) (see Chapter 2.3). Due to the importance of the protein class and
their effect range, NRs have been a target for intense research efforts to design molecules for
specific regulation (liang et al., 2021; Jin et al., 2013; Merk et al., 2019; Saen-Oon et al., 2019).
A wide spectrum of NR crystal structures has led to a well-defined but static picture of the
active state (Aranda & Pascual, 2001). However, the dynamical conformational change from
an inactive to an active state has been difficult to investigate in detail, while it may hold the
key for the ligand and effect variability as well as structural flexibility of NRs (D’Arrigo et al.,
2022; Folkertsma et al., 2005; Jiang et al., 2021). Accordingly, | employed unbiased MD
simulations to investigate the transition from an inactive conformation to an active state,
including the impact of a clinically identified variant to uncover its molecular mechanistic

effect (Publication I, Chapter 5).

2.2 MDR3 acts as an important transporter in bile homeostasis

The multidrug resistance protein 3 (MDR3) acts as a phosphatidylcholine (PC) floppase at the
canalicular membrane, enabling extraction of PC into mixed micelles and thus maintaining
healthy levels of phospholipid to bile salts ratios which in turn aid in the solubilization of
hydrophobic cholesterol to prevent gallstone formation (Carey & Small, 1978; Elferink et al.,
1997; Lammert et al., 2004; Oude Elferink & Paulusma, 2007). Furthermore, the formation of
mixed micelles lowers bile salt toxicity towards membranes, thus protecting the biliary tract

from detergent effects (lkeda et al., 2017; Oude Elferink & Paulusma, 2007).

2.2.1 MDR3 transporter structure and function

MDR3 structurally consists of two cytosolic nucleotide binding domains (NBDs), where ATP is

bound and hydrolyzed, and two transmembrane domains (TMDs), spanning the membrane
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leaflets (Prescher et al., 2019; van der Bliek et al., 1988) (Figure 6, A). Despite its high sequence
identity of 76% with the P-glycoprotein P-gp (ABCB1 or MDR1), MDR3 does not show the wide
substrate range of xenobiotic transport that characterizes P-gp as a major player in multidrug
resistance (Finch & Pillans, 2014; L. Mercer & Coop, 2011; Prescher et al., 2021). Additionally,
the transport rates for overlapping P-gp and MDR3 drug substrates are much lower in MDR3
(A. J. Smith et al.,, 2000). Overall, the physiological role of MDR3 is the flopping of
phospholipids, especially PC, from the inner to the outer membrane leaflet (Oude Elferink &
Paulusma, 2007; Prescher et al., 2019; A. J. Smith et al., 1994; van Helvoort et al., 1996). This
translocation might involve a central cavity of MDR3 (Nosol et al., 2021; Olsen et al., 2020) or
function via a credit card swipe mechanism along the membrane-facing transmembrane helix
(TMH) 1 (Prescher et al., 2021). Canalicular membranes show a membrane asymmetry, with
PC being more present in the outer leaflet than in the inner leaflet of the membrane (Eckhardt
et al., 1999). Accordingly, PC transport by MDR3 is coupled to ATP hydrolysis, working against
a concentration gradient. It is still unclear whether flopped PCis directly exposed by MDR3 for
extraction into bile mixed micelles or whether mixed micelles later extract PC lipids from the
outer membrane leaflet (Oude Elferink & Paulusma, 2007). The importance of PC transport
for proper bile formation, however, is undisputable, and misfunction of MDR3 is associated

with a variety of liver diseases (Boyer, 2013).

Highly conserved ABC-specific motif sequences within the NBDs of MDR3 are critical for
protein function due to their involvement in ATP binding and hydrolysis (Prescher et al., 2019)
(Figure 6, B). The Walker A motif with a consensus sequence of GXXGXGKT/S (where X can be
any amino acid) is responsible for interacting with the phosphate group of ATP (Schmitt &
Tampé, 2002; Walker et al., 1982). Crucial for ATPase activity is the Walker B motif, consisting
of a stretch of four hydrophobic residues followed by an aspartate (D), which stabilizes a
magnesium (Mg) ion (Rai et al., 2006; Urbatsch et al., 2000). Preceding the Walker B motif is
the signature motif C-loop (consensus sequence LSGGQ), uniquely preserved in ABC
transporters, and C-terminal of the Walker B motif resides the D-loop (consensus sequence
SALD) (Prescher et al., 2019; Schmitt & Tampé, 2002). A conserved histidine is of special
importance as it serves as a key networker between ATP, water molecules, the Mg ion, and
other amino acids (Zaitseva et al., 2005). The coordination of ATP occurs between the two
NBD subunits in a concerted action with Walker A, Walker B, and the conserved histidine of

one NBD and the C-loop of the other NBD (Schmitt & Tampé, 2002) (Figure 6, B).
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Figure 6: Protein structure of MDR3. [A] Overall MDR3 structure in the ATP-bound outward-facing
conformation within the canalicular membrane (PDB ID: 6S7P, Olsen et al., 2020). [B] Rotated view on
the NBD as seen from the perspective of the membrane center towards the cytosolically located NBD.
Highly conserved and functionally relevant motifs are colored and marked, indicating ATP (depicted as
colored licorice) and magnesium ions (depicted as green spheres) coordination between the two NBDs.
exo.: extracellular, cyto.: cytosolic, NBD: nucleotide binding domain.

Based on this detailed mechanistic knowledge of key residues and motifs, mutations within
these residues will likely impact protein function. Corroborating this theory, several missense
mutations have been identified within these key motifs in PFIC patients, and in vitro analyses
further confirmed that variants were normally processed and targeted to the plasma
membrane but exhibited decreased activity (Degiorgio et al., 2013; Delaunay et al., 2017;
Dzagania et al., 2012). However, the effect of other identified variants is less easily classified
and explained at a molecular level. From the identification of the missense variant on the
genetic level to the detailed mechanistic study on the protein level, analyzing a novel variant
is both time- and cost-intensive. Accordingly, variant protein predictors are well-established
and widely used to aid in the prioritization and analysis of variants (Choudhury et al., 2022).
However, there is no established predictor with proven good performance for MDR3 despite

its relevance within the liver. Considerable accumulative research has analyzed missense
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variants of MDR3 both in vivo and in vitro (Andress et al., 2014, 2017; Colombo et al., 2011;
Davit-Spraul et al., 2010; Degiorgio et al., 2007, 2014; Delaunay et al., 2016, 2017; Dixon et al.,
2000; C. Dong et al., 2021; Droge et al., 2017; L. J. Fang et al., 2012; Floreani et al., 2006, 2008;
Frider et al., 2015; Gautherot et al., 2014; Gordo-Gilart et al., 2015, 2016; Gotthardt et al.,
2008; C. Hopf et al., 2011; Jacquemin et al., 2001; Keitel et al., 2006, 2016; Khabou etal., 2017,
Kluth et al., 2015; Kubitz et al., 2011; Lucena et al., 2003; Olsen et al., 2020; Park et al., 2016;
Pauli-Magnus et al., 2004; Poupon et al., 2010, 2013; Rosmorduc et al., 2003; Saleem et al.,
2020; Tougeron et al., 2012; Wendum et al., 2012; Ziol et al., 2008). This valuable research
provided me with the necessary basis to create a dataset for ML approaches with the aim to
further aid researchers and clinicians in the analysis of variants. Following the standardized
American College of Medical Genetics and Association for Molecular Pathology (ACMG-AMP)
guidelines, the classification by an in silico predictor on its own should not be taken as a
definitive classification of a variant (Richards et al., 2015). However, it is a valuable help to
narrow down and prioritize variants to study in vitro (Thusberg & Vihinen, 2009). Since MDR3
plays a vital role in bile homeostasis, its dysfunction is implicated in several diseases (Chapter

2.2.2).

2.2.2 Involvement of MDR3 in disease

MDR3 dysfunction has been linked to ICP, LPAC, DILI, PFIC3, liver fibrosis, liver cirrhosis and
hepatobiliary malignancy (Deleuze et al., 1996; C. Dong et al., 2021; Droge et al., 2017;
Gudbjartsson et al., 2015; Lang et al., 2007; Pauli-Magnus et al., 2004; Rosmorduc et al., 2001).
Dysfunction leads to decreased PC levels in bile micelles, changing the balance of detergent
bile salts to lipids ratio, which can result in free bile salts that are able to attack epithelial tissue
(Elferink et al., 1997). In the absence of MDR3, hepatocytes might have to rely fully on their
asymmetric membrane composition with high levels of sphingomyelin and cholesterol in the
outer canalicular leaflet for protection against detergent effects (Amigo et al., 1999; Oude
Elferink & Paulusma, 2007). Furthermore, cholesterol that is not solubilized in the mixed
micelles can precipitate and form gallstones (Lammert et al., 2004; Oude Elferink & Paulusma,
2007). In the majority of cases, disease-causing gene variations in the ABCB4 gene lead to
amino acid substitutions, with only a minority leading to protein truncations or other gene

alterations (Delaunay et al., 2016). Delaunay et al. further suggested the classification of
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variants based on their functional impact in the protein’s life cycle (Delaunay et al., 2016),
similar to classification schemes for other proteins like phosphatase and tensin homolog
(PTEN) (Hasle et al., 2019). As a transmembrane protein, MDR3 translation occurs at the
endoplasmatic reticulum (ER), positioning the protein directly into the ER membrane. From
here, integral membrane proteins are trafficked to their destined localization. For MDR3, this
implies trafficking via the Golgi apparatus to the apical canalicular membrane (Kipp & Arias,
2000). Missense variants can either affect protein maturation, localization, stability, activity,
or a combinatorial effect (Figure 7). Of note, the chosen categories are protein-dependent, as
transmembrane proteins differ from cytosolic proteins in their important steps within their
lifecycle. Additionally, categories can be even more fine-tuned, as a minority of genetic
variants might impact pretranslational steps such as mRNA stability (Stenson et al., 2003;
Thusberg & Vihinen, 2009) and thus preclude the protein maturation step. For the case of
MDR3, a classification scheme with protein maturation, localization, activity or stability
affected, similar to the proposition of Delaunay et al., seems a sensible choice both in regards

to known variant effects and potential drug intervention (Delaunay et al., 2016).
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Figure 7: MDR3 protein lifecycle from translation to membrane localization. Genetic variants can
impact the lifecycle at several stages, marked with red circled numbers. Missense variants might
impact protein maturation, inducing misfolding that will target the protein for degradation via ER-
associated degradation (ERAD) to the proteasome (1). Variants might lead to a mislocalization of the
protein, preventing the protein from reaching its apical target location (2). Lastly, variants might impair
the protein’s activity and local stability or influence its turnover time once it is located in the apical
membrane (3).
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In general, the impact of a missense variant will fall somewhere on the spectrum from no
effect on protein function to complete protein failure. In accordance with this, variants
associated with ICP, a transient and reversible disease, while being pathogenic variants,
usually have a less pronounced effect on protein function (Keitel et al., 2006; Pauli-Magnus et
al., 2004) than some PFIC3 associated variants that lead to almost complete loss of function
(Delaunay et al., 2016). Another factor in effect strength comes from the genetic status,
whether the missense variant is present on one (heterozygous) or on both alleles
(homozygous). Homozygous MDR3 variants are often associated with PFIC3 and thus tend to
result in more severe phenotypes (Jacquemin et al., 2001; Saleem et al., 2020). Additional
complexity within patients arises through the general genetic landscape as well as
environmental factors. Compound heterozygosity, where either both alleles or one allele is
marked by two or more variants, and their impact might add up to the presentation of the
specific phenotype, is known in PFIC cases (Droge et al., 2017). Furthermore, several risk genes
might be impacted and contribute to disease strength, as has been shown for ICP (Keitel et al.,

2006) and PFIC3 (Droge et al., 2017).

In order to analyze this heterogeneous and complex system, | specifically narrowed down the
effects of variants into the categories of benign and pathogenic as target categories foran ML
approach. While further categories, as well as functional evaluation predictions, were
envisioned and would certainly be beneficial, a larger and well-controlled dataset would have
been required to enable such predictions. In the case of MDR3, where data from associated
liver diseases was pooled, the obtained dataset size only allowed for a binary pathogenicity

prediction with high confidence (see Publication I, Chapter 4).

2.3 Nuclear receptor FXR regulates bile homeostasis network

2.3.1 FXR isoform expression within the body

Two FXR genes exist, FXRa and FXRPB (Lee et al., 2006); however, FXRp is a pseudogene in
humans (Otte et al., 2003). As such, within this thesis, | am using FXR as a synonym for FXRa.
The FXRa gene encodes for four isoforms formed through alternative splicing (FXRal, FXRa2,
FXRa3, and FXRa4) in human and murine models (Huber et al., 2002; Yangiao Zhang et al.,

2003). Recently, four novel but functionally defective isoforms have been identified in human
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hepatocytes (Mustonen et al.,, 2021), and further research is needed to analyze their
physiological and pathological relevance, if any. Considering only the functionally active four
isoforms, they differ within their N-terminal activation function domain 1 (AF1) as well as in
the presence or absence of a four amino acid long sequence, MYTG, located adjacent to the
DBD (Yangiao Zhang et al., 2003). The short MYTG sequence motif plays a role in FXR target
gene activation via differential DNA-binding preferences, conferring the isoforms with sets of
different transcriptionally regulated genes (Correia et al., 2015). Overall, all isoforms consist
of an AF1 region, followed by the DBD and a flexible hinge region, connecting the N-terminal
part of the protein to the ligand binding domain (LBD) with the C-terminal helix 12 (H12),

frequently referred to as activation function domain 2 (AF2) (Yangiao Zhang et al., 2003)

(Figure 8).
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Figure 8: Schematic view on FXR isoforms. [A] The overall organization of FXR consists of an N-terminal
activation function 1 (AF1) motif, followed by the DNA-binding domain (DBD) and a hinge region
connecting to the C-terminal ligand binding domain (LBD) with the activation function 2 (AF2) motif,
exemplarily depicted in the longest isoform FXRa3 with 486 amino acids. [B] The four FXRa differ in
their AF1 sequence and in the presence or absence of the short sequence motif MYTG. Figure loosely
based on Yangiao Zhang et al., 2003.

FXR is highly expressed within the liver and small intestines (Vaquero et al., 2013), with lower

levels in the kidney and the adrenal gland (Forman et al., 1995). Lower mRNA levels of FXR
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have been identified in a variety of tissues and cell types, including in glial and neuronal cells,
vascular smooth muscle cells, pancreatic B cells and immune cells (Albrecht et al., 2017;
Bishop-Bailey et al., 2004; C. Huang et al., 2016; Renga et al., 2010; Schote et al., 2007).
Overall, acombination of both MYTG-positive (al or a3) and -negative (a2 or a4) FXR isoforms
can be found in FXR-expressing cells (Ramos Pittol et al., 2020), revealing a specific balance of
FXR isoform expression. FXRal and FXRa2 are predominantly expressed within the liver
(Huber et al., 2002; Vaquero et al., 2013), with the metabolism in human and mouse liver cells
being mainly driven by the FXRa2 isoform (Ramos Pittol et al., 2020; Vaquero et al., 2013).
Within the intestines, FXRa3 and FXRa4 are the predominant isoforms (Huber et al., 2002).
Different isoforms showed preferential DNA-binding motifs (Ramos Pittol et al., 2020) and
thus differential isoform expression influences FXR downstream targets. Intriguingly, the
ongoing investigation of cell type specific FXR effects in a range of cell types highlights the
possibility of an even more complex system than currently anticipated. Since the introduction
of the concept of the gut-liver axis (Marshall, 1998), the inter-organ connectivity and its
interplay has revealed widespread implications in human health and disease states with the
bile acid-receptive FXR as a prominent regulator (Bles| & Stadlbauer, 2021; Perino et al., 2021;
Tilg et al., 2022) (Figure 9). Bile homeostasis regulation (Radun & Trauner, 2021), glucose and
lipid metabolism (Ma et al., 2006; Y.-D. Wang, Chen, Moore, et al., 2008), anti-inflammatory
effects (Y.-D. Wang, Chen, Wang, et al., 2008) and liver regeneration (W. Huang et al., 2006)
are amongst the most prominent FXR functions. Interestingly, with the emergence of the gut-
liver-brain axis, FXR modulation might have even further implications (M. Yan et al., 2023).
Effects may work indirectly through interactions to the microbiome and bile acid levels (Perino
et al., 2021) or through yet-to-be clearly established functions of expressed FXR in neurons
and oligodendrocytes within the brain (Albrecht et al., 2017; Deckmyn et al., 2022; C. Huang
et al., 2016).
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Figure 9: Prominent functions of FXR within the gut-liver axis. [A] An intricate interplay between bile
acid pool and microbiome exists within the gut-liver axis. [B] FXR (shown here: LBD structure based on
agonist-bound crystal structure (Merk et al., 2019) with a coactivation peptide shown in green) is an
important regulator within this inter-organ connectivity. Established FXR functions, maintained by
diverse transcriptional regulation, include bile acid homeostasis, glucose and lipid metabolism,
modulation of inflammation and liver regeneration. Created with BioRender.

2.3.2 Transcriptional regulation by FXR

A variety of genes related to bile acid, lipoprotein, and glucose metabolism are regulated by
FXR (Ma et al., 2006; Sinal et al., 2000). Two zinc finger motifs within the DBD of FXR, consisting
of four cysteine residues, each coordinating one zinc ion, form the basis for DNA recognition,
a mechanism conserved in the nuclear receptor superfamily (Rastinejad et al., 2000).
Canonically, FXR forms a heterodimer with the retinoid X receptor a (RXRa, in the following
shortened to RXR) (Forman et al., 1995); however, it can also act as a monomer or homodimer
for specific genes such as apolipoprotein A-1 and the glucose transporter GLUT4 (Claudel et
al., 2002; Shen et al.,, 2008). The genomic target sequences are so-called FXR response
elements (FXREs) within the promotor region of downstream target genes, with an inverted
repeat sequence of AGGTCA bases separated by a 1-base pair spacer (IR-1) being the highest
affinity binding site for the FXR/RXR dimer (Laffitte et al., 2000). Additionally, the FXR/RXR
dimer can bind to other DNA sequences, such as direct repeat sequences with one to five
nucleotide spacers (DR-1 to DR-5) (Laffitte et al., 2000). Furthermore, FXRa2 and FXRa4 can
bind to everted repeat sequences with a nucleotide spacer of two base pairs (ER-2), and
binding was shown to be an important regulator in mouse and human liver cells besides the

canonical IR-1 binding site (Ramos Pittol et al., 2020). Regulation by FXR is target specific and
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thus can either induce (e.g., GLUT4 (Shen et al., 2008)) or repress (e.g., APOA1 (Claudel et al.,
2002)) the target gene.

Adding to the complexity of the FXR-regulated network are tissue-specific effects. Within the
intestines, the apical sodium-dependent bile acid transporter (ASBT, also called ileal bile acid
transporter IBAT) is responsible for ileal reabsorption of bile acids, and its expression is
downregulated upon FXR activation (Neimark et al., 2004). Upon absorption of bile acids into
the enterocytes, the small cytosolic protein ileal bile acid-binding protein (IBABP) facilitates
intracellular trafficking of bile acids (Alrefai & Gill, 2007; Trauner & Boyer, 2003). IBABP
expression is increased on FXR activation (Coppola et al., 1998; Grober et al., 1999; Nakahara
et al., 2005), ensuring functional sensing of the bile acid levels. Furthermore, activated FXR
induces the expression of human fibroblast growth factor 19 (FGF19) (Song et al., 2009) or the
corresponding ortholog gene FGF15 in mouse models (Inagaki et al., 2005). Within mouse
models, intestinal FXR activation leads to FGF15 expression, export and subsequent
suppression of liver-specific cholesterol 7a-hydroxylase (CYP7A1) via FGF receptor 4 (FGFR4)
binding and a c-Jun N-terminal kinase (JNK)-dependent pathway (Holt et al., 2003; Inagaki et
al., 2005; Kim et al., 2007; Xie et al., 1999). CYP7AL1 is the rate-limiting enzyme within the bile
acid synthesis (Russell, 2003), and accordingly, the regulation of this critical enzyme impacts
overall bile homeostasis. Interestingly, liver FXR stimulation did not repress CYP7A1 within the
liver in a knockout mice model with tissue-specific intestinal FXR deficiency (Kim et al., 2007),
verifying gut-liver signaling and transportation of intestinally secreted FGF15 to the liver.
Within humans, there are contradictory indications about whether the same clear tissue
specificity takes place. While FGF19 mRNA was not detectable in human liver samples
(Nishimura et al., 1999), mRNA and protein FGF19 could be detected at low levels in primary
human hepatocytes and positively responded to FXR agonist treatment (Song et al., 2009).
Thus, it seems likely that within humans, both intestinal and liver FXR activation leadsto FGF19
upregulation and secretion and consequently to suppression of CYP7A1 to decrease bile acid

synthesis.

Within the liver, the bile salt export pump (BSEP) is a prominent and well-studied example of
FXR regulation, where expression of BSEP is driven by binding of the heterodimer FXR/RXR to
an IR-1 motif in the BSEP promotor (Ananthanarayanan et al., 2001; Gerloff et al., 2002;
ljssennagger et al., 2016; Plass et al., 2002). BSEP, as the main bile salt efflux transporter

located at the canalicular membrane of hepatocytes, is a critical factor for proper bile flow
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(Strautnieks et al., 1998). Further, active FXR transactivates the orphan nuclear receptor small
heterodimer partner (SHP), which can negatively regulate other nuclear receptors such as the
liver receptor homolog-1 (LRH-1) (Goodwin et al., 2000; Lu et al., 2000). In turn, LRH-1 is
essential for CYP7A1 gene expression (Nitta et al., 1999). As such, downregulation of CYP7A1
via bile acid-mediated FXR activation occurs via FGF19 signaling and via the SHP and LRH-1
axis, thus limiting novel bile acid synthesis. On the other hand, SHP represses the expression
of the hepatic basolateral located bile salt importer, also called sodium taurocholate
cotransporting polypeptide (NTCP) (Denson et al., 2001), consequently limiting the uptake of
bile acids into the hepatocyte and preventing toxic effects. To further the same end, efflux of
bile acids into the bloodstream is upregulated upon FXR activation through increased protein
expression of the heterodimer transporter organic solute transporter a (OSTa) and OSTB as
evidenced in human hepatoma cell lines (Landrier et al., 2006) and in sandwich-cultured
human hepatocytes (Guo et al., 2018; Y. Zhang et al., 2017). Additionally, FXR transactivates
the expression of MDR3, thus upregulating the secretion of phospholipids into bile (L. Huang
et al., 2003; Ijssennagger et al., 2016). PTMs have been shown to further influence and
regulate FXR (reviewed in Appelman, van der Veen, and van Mil 2021). Besides bile
homeostasis regulation, FXR is linked to the regulation of hepatic inflammation and
inflammation-driven development of hepatocellular carcinoma (HCC). FXR represses the
nuclear factor-kB (NF-kB) signaling pathway in human hepatoblastoma and in primary mouse
cells (Y.-D. Wang, Chen, Wang, et al., 2008), explaining the increased inflammation found in
FXR knockout mice (Kim et al., 2007; F. Yang et al., 2007). However, in a reciprocal fashion, the
inflammatory response, in turn, downregulates FXR via NF-kB activation (Wagner et al., 2008;
Y.-D. Wang, Chen, Wang, et al., 2008). Exemplarily, this connection further highlights the
versatility and importance of FXR. It further provides another challenge for specific drug
intervention as changes in FXR activity can have implications in other important pathways. On
the other hand, it could open up novel therapeutic options in diseases associated with

intestinal inflammation such as inflammatory bowel disease (Gadaleta et al., 2011).

In summary, research into the FXR network has revealed a complex system with FXR as a
central regulator, in which cellular responses are dependent on the tissue, the isoform
expression, the ligands, and the nuclear interaction partners. Within human hepatocytes, bile
acid binding to FXR induces upregulation of BSEP, MDR3, and OSTa/B (Ananthanarayanan et

al., 2001; L. Huang et al., 2003; Landrier et al., 2006). Simultaneously, a negative feedback loop
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is triggered that acts via upregulation of SHP to lower CYP7A1 and NTCP levels (Goodwin et
al., 2000) (Figure 10).
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Figure 10: FXR-regulated network within hepatocytes. FXR (marked in dark blue with BA-ligand
bound) acts as a central regulator, upregulating key proteins for increasing bile acid efflux and bile
formation towards the canaliculus via BSEP (Ananthanarayanan et al., 2001) and MDR3 expression (L.
Huang et al., 2003; ljssennagger et al., 2016) and efflux of bile acids towards the blood stream via the
expression of OSTa/B (Landrier et al., 2006). Through SHP expression, FXR additionally downregulates
the uptake of bile acids from sinusoids via NTCP and represses the building of novel bile acids via
CYP7A1 downregulation (Goodwin et al., 2000). Accordingly, FXR senses the current bile acid levels
and acts to prevent bile acids reaching toxic levels within the cell.

Based on these regulatory links, the expression of downstream gene targets of FXR correlate
with the transactivation activity of FXR and can be measured accordingly. Luciferase-based
transactivation assays have been well established for FXR and other nuclear receptors (Cui et
al., 2002; Elbrecht et al., 1999), and allow measuring the activity of FXR on different gene
targets. In short, investigated cell lines are usually transfected with plasmids encoding for FXR
and its canonical binding partner RXR to ensure overexpression. Additionally, a plasmid
encoding for luciferase is used under the promoter control of a known FXR gene target, e.g.,
BSEP or SHP promoter. Using this system, the activity of FXR can be investigated based on its
binding to the promoter sequence, which induces the expression of luciferase. Based on
normalization to a control luciferase signal, the effect of different ligands for FXR or amino

acid substitutions in FXR can be analyzed. We employed this assay to study a FXR variant in
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liver-relevant isoforms and decipher its effect on two well-known gene targets, BSEP and SHP

(see Publication Il, Chapter 5).

In the following subchapters, | will give a short overview of common FXR ligands, both agonists
and antagonists, before discussing the structure of the LBD in detail, as it is crucial for protein

activity.

2.3.3 Diversity of FXR ligands

Due to its importance within metabolism, FXR is a promising target for drug intervention in
metabolic disorders (Claudel et al., 2002; S. Fang et al., 2015) and liver diseases (Adorini et al.,
2012; Merk et al., 2019). However, the complexity of the system makes detailed studies
necessary to minimize side effects. For example, elevated cholesterol levels have been
described in clinical trials of the FXR agonist obeticholic acid (OCA) (Neuschwander-Tetri et al.,
2015) due to overactivation of FXR and its subsequent effect of blocking bile acid synthesis,
which uses cholesterol as a primary building block. Accordingly, current research often focuses
on finding partial agonists or on identifying selective bile acid receptor modulators (SBARMs)
designed to activate or repress certain FXR functions (Massafra et al., 2018; Merk etal., 2019).
Many FXR ligands are based on the steroidal backbone, building on the endogenous bile acid
ligand’s structure. In decreasing potency, these endogenous bile acids are chenodeoxycholic
acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), and cholic acid (CA) (Makishima et
al., 1999; Parks et al., 1999; H. Wang et al., 1999), with the secondary bile acids DCA and LCA
being generated from the primary ones CDCA and CA, respectively (Fiorucci et al., 2020; Jiang
et al., 2021). Derived FXR ligands, as well as the endogenous ones, often have poor aqueous
solubility and bioavailability and show promiscuity towards the G protein-coupled bile acid
receptor (GPBAR1, also called Takeda G protein-coupled receptor 5 (TGR5)) (Kawamata et al.,
2003; Massafra et al., 2018). Targeting both receptors is not necessarily an unwanted off-
target effect. The dual ligand for FXR and TGR5, BAR502, showed positive results in a
nonalcoholic steatohepatitis (NASH) mouse model, interestingly without triggering pruritus
(Carino et al., 2017; Cipriani et al., 2015). However, since the activation of TGR5 has been
linked to pruritus (or, in layman’s terms, itch) in mice (Lieu et al., 2014) and pruritus was a
frequent side effect of OCA treatment in a primary biliary cholangitis (PBC) clinical trial

(Markham & Keam, 2016), dual agonistic ligands are not the answer for every hepatic disorder.
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Nonsteroidal FXR agonists became of interest to increase selectivity (Jiang et al., 2021). The
molecule GW4064 was developed as a potent and specific FXR agonist (Maloney et al., 2000),
although studies also indicate histamine receptors as additional targets for GW4064 (N. Singh
et al., 2014). Nonetheless, GW4064 is frequently used as an investigational tool and as a lead
structure for developing agonists that overcome its predecessor’s limitations (Jiang et al.,
2021). While nonsteroidal FXR agonists do not show TGR5 induction, they do need to avoid
the pitfall that complete FXR activation leads to elevated cholesterol levels. Partial agonists
are therefore of increasing interest for fine-tuning FXR functions. DM175, a nonsteroidal
molecule, induced a conformational change in FXR different to endogenous CDCA binding and
exhibited a partial agonistic and partial antagonistic profile (Merk et al., 2019). TERN-101 is
another potential partial FXR agonist (Genin et al., 2015), currently in clinical trials for NASH
(Y. Wang et al., 2021). On the other hand, FXR antagonists are useful for elucidating
physiological functions, shedding light on molecular mechanisms, and balancing the activity
state of FXR. Guggulsterone is a natural compound that has been identified initially as a FXR
antagonist (Urizar et al., 2002), while later studies identified it as a likely SBARM, as it further
enhanced BSEP expression in presence of other FXR agonists (Cui et al., 2003). Due to its high
affinity towards other NRs (Burris et al., 2005), its usefulness as selective FXR ligand is limited.
Often, compounds need to be reclassified due to novel insights and so far, no antagonist has
been found to block all FXR targets. For the nonsteroidal compound ivermectin, despite being
initially identified as a partial agonist (Jin et al., 2013), it has been referred to as FXR antagonist
in the literature as an ivermectin-bound crystal structure showed preferred corepressor
binding and a dynamic helix 12, indicative of the inactive state (Jiang et al., 2021; Jin et al.,,
2013). Potentially, ivermectin acts in a tissue-specific fashion, with high activity in the
intestines while displaying lower effects in the liver (Jin et al., 2015), thus highlighting its
potential use as a SBARM. However, antagonistic effects of ivermectin on other NRs, namely
LXR and PXR, have also been identified (Hsu et al., 2016) and have to be taken into account.
These examples already indicate the troubles of FXR ligand research, as meticulous efforts
must be undertaken to study the ligand effect on different subsets of FXR targets, within
different tissues, evaluate protein interaction partner binding and analyze off-target binding
to other NR or other proteins. Nonetheless, FXR ligand research is an ongoing topic due to

FXRs widespread functions and associated promises in disease amelioration.
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In Publication Il (Chapter 5) we were, amongst others, interested in the transitioning of FXR
from the inactive to the active state. Accordingly, | used CDCA as strongest endogenous FXR
agonist in MD simulations to drive the system towards the active state. In in vitro experiments,
we (cellular assays performed by Dr. Jan Stindt (Heinrich Heine University Disseldorf,
Germany) and Dr. Alex Bastianelli (Otto von Guericke University Magdeburg, Germany),
recombinant protein purification and assay performed by me) used OCA as a well-established
and potent agonist to analyze protein activity and variant effects on ligand binding. While
there are many ligands available, ligands were chosen here based on their closeness to the in
vivo situation and potency to maximize the signal and drive the protein to activity. OCA has an
increased potency of roughly 100-fold over CDCA, while structurally it remains a close analog
of CDCA with only an additional ethyl group at Cg (Pellicciari et al., 2002). In line with using the
promoter sequences of established FXR targets BSEP and SHP (see Chapter 2.3.2 and
Publication Il, Chapter 5), OCA has been shown to upregulate both BSEP and SHP expression
(Y. Zhang et al., 2017).

Besides broadening the spectrum of research tools and potential treatment options, research
into FXR ligands has increasingly also provided information on the structural basis and
molecular mechanisms of FXR activation. Due to the structural similarity within the NR
superfamily (R. Kumar & Thompson, 1999; Weikum et al., 2018), certain mechanisms can

potentially be inferred from and transferred to other NRs.

2.3.4 Protein structure and conformational states of FXR

Almost all proteins of the superfamily of NRs share the overall architecture of the N-terminal
domain containing the AF1 region, DBD, followed by a hinge region and the LBD with a C-
terminal AF2 domain (except the receptors SHP and DAX) (Weikum et al.,, 2018). The N-
terminal AF1 domain shows low structural order, and as such, efforts to determine its
structure have been unsuccessful so far. Its flexibility likely enables different transit
interaction surfaces, providing the possibility for interacting with a broader spectrum of
binding partners (Simons et al., 2014). As isoforms differ in the N-terminal domain (Ramos
Pittol et al., 2020) and several functionally important PTMs have been identified (Anbalagan
et al., 2012; Appelman et al., 2021), this region has a certain influence which downstream

gene targets are controlled by the NR. However, DNA binding — and thus target gene
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determination — is mainly controlled by the highly conserved DBD (Devarakonda et al., 2003).
Based on the few structural data available on (almost) full-length NRs, namely peroxisome
proliferator-activated receptor y (PPARy) and hepatocyte nuclear factor 4a (HNF4a), domain-
domain interactions between DBD and LBD occur and critically affect the activity (Chandra et
al., 2008, 2013; Simons et al., 2014). Transference towards FXR or other NRs, however, is
difficult as it seems likely that domain-domain interactions change depending on the binding
partner. Accordingly, the heterodimer PPAR/RXR displayed different domain-domain
interaction patterns than the HNF4a homodimer (Chandra et al., 2008, 2013; Simons et al.,
2014). In solution, structural analyses emphasized the importance of the hinge region for the
integrity of the DNA-bound structure and further pointed to the fact that different DNA-
binding elements lead to different conformations within NRs (Rochel et al., 2011). These
revelations further highlight the overall flexibility of NRs and, for the canonical heterodimer
FXR/RXR (Forman et al., 1995) compared to FXR as a monomer (Shen et al., 2008), could
explain differential DNA-binding preferences with potentially different structural
conformations. While the dimerization mechanism and interface between the FXR-DBD and
RXR-DBD are unresolved to date (Jiang et al., 2021), crystal structure determination on the
FXR/RXR LBD complex revealed stabilizing effects of the RXR LBD on the active conformation
of the FXR LBD (Zheng et al., 2018). Similar to other NR heterodimers (Gampe et al., 2000;
Svensson et al., 2003), FXR/RXR LBD dimerization relies especially on interactions between the

helix 10 of both receptors (Zheng et al., 2018).

The LBD is critical for the overall protein activity based on ligand binding and interactions with
coregulator proteins, either coactivator proteins like the nuclear receptor coactivator 2
(NCoA2) or nuclear receptor corepressor proteins (NCoR) (Jiang et al., 2021; Zheng et al.,
2018). Accordingly, intense research focused on elucidating structural features and molecular
mechanisms in the LBD of NRs. Overall, the LBDs of NRs show high structural similarity, with
twelve a-helices folded in a three-layered arrangement. Of special interest for protein activity
is the short C-terminal a-helix, the helix 12 (H12). In the active state, H12, together with parts
of helix 3 and helix 4, forms part of the activation function 2 (AF2) surface, a binding surface
for nuclear coactivation proteins to enhance transcriptional initiation (Aranda & Pascual,
2001; Mi et al., 2003). Accordingly, deletion of H12 within HepG2 cells abolished FXR
transactivation activity, i.e., its ability to bind to its DNA response elements

(Ananthanarayanan et al., 2001). Coactivators bind to the hydrophobic AF2 surface groove
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with an a-helix containing a signature LXXLL motif (where X can be any amino acid) (Heery et
al., 1997). Corepressors interact via a larger (L/I)XX(I/V)l or LXXX(I/L)XXX(l/L) motif, thus
blocking sterically H12 positioning (Nagy et al., 1999). A mousetrap mechanism was initially
proposed to explain the underlying molecular mechanism, in which an unliganded and inactive
LBD with an extruding H12 (pointing away from the LBD) would transition to the active state
upon ligand binding with an LBD-bound H12. This theory was proposed based on crystal
structures of apo and agonist-bound NR RXR (Renaud et al., 1995). An alternative model,
termed dynamic stabilization, argues for a highly flexible H12 in the apo state, which shifts
towards a stable active conformation upon ligand binding (Kallenberger et al., 2003). In
contrast to the mousetrap model with its two specific stable states, the dynamic stabilization
model is characterized by a highly mobile and unstructured H12 (Weikum et al., 2018). A
flexible and likely unstructured H12 in the apo state is supported by studies using fluorescence
spectroscopy (Kallenberger et al., 2003) and nuclear magnetic resonance in PPARy and RXR
(Hughes et al., 2012; X. Yan et al., 2004). Additionally, studies observed a H12 positioning
towards the LBD within the apo state in several NRs (thyroid hormone receptor (Figueira et
al., 2011), estrogen receptor (Dai et al., 2009), FXR (Merk et al., 2019)). Taken together, it
seems likely thatin an unliganded state, H12 of the FXR LBD moves flexibly and visits the active
conformation with some regularity but does not remain stably in this conformation in the
absence of a ligand or a coactivating protein to stabilize the state. This is corroborated by the
identification of transient interactions of H12 to the FXR LBD core in the absence of agonists
in an NMR study (Merk et al., 2019). Additionally, the presence of crystal structures of apo
FXR LBDs associated with a nuclear coactivation peptide indicates its ability to interact with
coactivators even in the absence of ligands (Gaieb et al., 2018; Merk et al., 2019). However,
this recruitment of coactivation protein was not observed in NMR studies and might represent
a crystallization artifact (Merk et al., 2019). Based on the comprehensive study by Merk et al.,
apo FXR can bind corepressor, and subsequent agonist binding induces conformational
changes leading to weakened interactions to the corepressor peptide, shifting the balance to
preferred coactivator peptide binding (Merk et al., 2019). Binding of the coactivator peptide
has a greater influence on the stability of the active conformation than the ligand binding itself
has; while ligand binding increases the propensity of the protein to associate with the
coactivator, it can still partly bind the corepressor. Antagonist binding, however, stabilizes

interactions with the corepressor so that even in the presence of coactivators, the protein will
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stay bound to the corepressor. Partial agonists infer their function due to conformational
changes in which the LBD has partly affinity to the corepressor and partly to the coactivator

(Merk et al., 2019).

MD simulations have been increasingly used to analyze the dynamics of NR LBDs and elucidate
the influence of ligands, coactivators, or corepressors binding as well as NR
heterodimerization (Chrisman et al.,, 2018; Diaz-Holguin et al.,, 2023; Heidari et al., 2019;
Kumari et al., 2021, 2023; Saen-Oon et al., 2019). In a comprehensive study by Chrisman et al.
on the PPARy LBD, MD and NMR data confirmed its structural flexibility, indicating a range of
possible conformations available to the protein (Chrisman et al.,, 2018). The AF2 surface,
including the H12, switches rapidly between several conformations in the us to ms time range
in the apo state. Agonist or inverse agonist binding, however, limits the available
conformations with only rare switching (Chrisman et al., 2018). MD simulation studies on the
heterodimer FXR/RXR and the FXR monomer further indicated a destabilization of the H12 in
antagonist-bound states compared to agonist-bound states, as well as changes in the
interaction interface between FXR and RXR (Diaz-Holguin et al., 2023). Overall, this further
strengthens the picture of the LBD of NR as a flexible module in the apo state, moving
relatively freely between conformations. Ligand binding and coregulatory binding limit this
flexibility and push the system towards specific conformations. Within a study employing MD
simulations and NMR techniques for the PPARy protein, the authors observed a
conformational change from inactive to an almost-perfect placement of the H12, potentially
representing the active state, in a system with an inverse agonist and corepressor peptide
present (Chrisman et al., 2018). However, revealing the dynamic pathway from inactive to
active conformation in MD simulations has — prior to Publication Il (see Chapter 5) — not been
shown for FXR. Furthermore, the influence of variants on the FXR function has not been

studied in depth using MD simulations so far.

2.3.5 Dysfunction of FXR

FXR dysfunction can severely affect the intricate network of bile regulation. Accordingly,
several FXR variants have been identified in intrahepatic cholestasis of pregnancy (ICP) (van
Mil et al., 2007). Although ICP is usually transient, affected patients have an increased risk of

developing other liver-associated diseases (Ropponen et al., 2006). Additionally, FXR has been
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linked with various cancers (Girisa et al., 2021; Kainuma et al., 2018; You et al., 2019) with 172
mutations listed in the cBioPortal database for cancer genomics (Cerami et al., 2012; Gao et
al., 2013), out of which 131 are missense mutations, 33 are truncations, and 8 mutations affect
splicing. Overexpression of FXR was identified in breast, lung, and pancreatic cancer and was
associated with increased proliferation (Girisa et al., 2021; You et al., 2017, 2019) and
increased epithelial-mesenchymal transition in hepatocellular carcinoma (HCC) (Kainuma et
al., 2018). Within PFIC5, identified FXR mutations were leading to a premature stop codon and
truncation of the protein (p.Argl76*) or to in-frame insertion on one chromosome
(p.Tyr139_Asn140insLys) and a partly deletion (first two exons of FXR) on the other
chromosome, affecting FXR function to a high degree (Gomez-Ospina et al., 2016). PFIC5
clinically presents with liver dysfunction at an early age with severe cholestasis, accumulation
of bile acids in hepatocytes resulting in elevated aminotransferases levels, and low bile salt
export pump (BSEP) expression (Gomez-Ospina et al., 2016). In the HiChol consortium, a rare
homozygous variant in FXR was identified in a patient presenting with a clinical phenotype in
line with PFIC5 (Pfister et al., 2022). However, the molecular pathomechanism was unknown

for the variant.




Chapter 3 Scope of the Thesis

Within my work for the HiChol consortium, | focused on the investigation of variant impact in
the proteins MDR3 and FXR. Despite its importance within the liver and frequent association
of variants with liver diseases, there is no well-established protein predictor for MDR3 (see
Chapter 2.2). A proposed predictor, MutPred, was tested mainly on pathogenic variants and
lacked testing over a higher number of variants (Khabou et al., 2017). Based on the extensive
research over the years on MDR3 variants within the field of liver research and advances in
ML on small datasets, the possibility to establish a protein-specific dataset to enable machine
learning-based classification of variants arose. While this approach does not reach the level of
depth as single variant studies can provide, it has the advantage of being applicable to future
novel identified variants outside the direct project time scope. The protein-specific predictor
should satisfy strict criteria. First, it needs to outperform general protein predictors such as
the previously proposed general predictor MutPred. Second, it is desirable that the tool can
classify any variant possible within the protein. Additionally, this implies that the predictor
should be sensitive to any potential pathogenic variant and not limited to a specific liver
disease. Accordingly, the training dataset will need to be assembled from MDR3-affected liver
diseases without the limitation to PFIC3. Third, it needs to be easy to use to enable wide usage

and easy interpretation. The project is described in detail in Chapter 4.

The identification of a homozygous variant in FXR identified in a PFIC type 5 presenting patient
(Pfister et al., 2022) demanded an in-depth analysis to understand the molecular mechanism.
Accordingly, a collaborative strategy was established to employ cellular and protein assays,
analyze patient tissue samples, and perform MD simulations in order to investigate the variant
effect and unravel its molecular pathomechanism. Based on the clinical presentation, the
focus was put on liver-relevant isoforms with associated downstream targets and known
ligands (see Chapter 2.3.2 and Chapter 2.3.3). Further, analyzing the variant in the inactive
and the active state using MD simulations may provide a deeper understanding of misfunction

(see Chapter 2.3.4). The project is described in detail in Chapter 5.
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(I adapted parts of the following text and figures from the respective publication.)

4.1 Background

The prediction of an amino acid missense substitution within a protein has received much
attention in the last decades due to the rapidly increasing identification of genetic variations
based on large sequencing efforts (F. S. Collins & Fink, 1995; Gudbjartsson et al., 2015; Oh et
al., 2020; T. Singh et al., 2022; Trubetskoy et al., 2022). Since not every substitution can be
analyzed by time- and cost-consuming in vitro assays, in silico tools provide important
information and can narrow down substitutions for further subsequent analysis (Thusberg &
Vihinen, 2009). General protein predictors, designed and trained to predict effects for any
given protein, often show varying performance when tested on individual proteins (Riera et
al., 2016; Choudhury et al., 2022; Livesey & Marsh, 2023). Furthermore, predictors do not
guarantee coverage of every possible substitution (Riera et al., 2016). Of note, while there is
a tendency for protein-specific predictors to rank higher than general predictors, they do not
outperform general predictors in every case (Riera et al., 2016), and as such, careful evaluation
for every protein is needed. Transporting phosphatidylcholine from the inner canalicular

leaflet to the outer, the MDR3 protein performs an essential function within bile homeostasis
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(Boyer, 2013; A. J. Smith et al., 1994; van Helvoort et al., 1996). Dysfunction, thus, is linked to
a range of liver diseases such as PFIC, cholelithiasis, cholestasis, cirrhosis, DILI, LPAC, ICP, and
HCC (Boyer, 2013; Deleuze et al., 1996; C. Dong et al., 2020; Droge et al., 2017; Gotthardt et
al., 2008; Gudbjartsson et al., 2015; Lang et al., 2007; Pauli-Magnus et al., 2004; Rosmorduc
et al., 2001; Stattermayer et al., 2020). Given a genetic cause, the majority of cases (an
estimation of 70%) are caused by amino acid substitutions (in the following referred to as
‘variant’) (Delaunay et al., 2016). However, a reliable (general or protein-specific) predictor
with specific evaluation on MDR3 prediction performance is missing, although it would
provide a valuable tool for clinicians and researchers. The general predictor MutPred was
proposed as a reliable predictor for MDR3 variants based on a group of 21 variants (Khabou
et al., 2017; B. Li et al., 2009), but the small size of tested variants as well as a bias towards
pathogenic variants within this group were not addressed and may hamper generalization.
Accordingly, we set out to establish an ML model to classify variants into the categories benign
or pathogenic while comparing our model to the updated version of MutPred, MutPred2

(Pejaver et al., 2020), as well as other integrated general protein predictors.

4.2 Results

Creation of an MDR3-specific dataset

To create a basis for an ML model, I first constructed a dataset specifically for MDR3 variants.
Obtaining variants based on literature search allowed the exclusion of variants with no clear
disease association (i.e., no in vitro verification and no information on clinical indications for
disease association), creating a manually curated dataset (Figure 11, A). Due to the scarceness
of well-studied benign variants, | additionally resorted to known variants from the Genome
Aggregation Database (gnomAD), a database based on large-scale genome sequencing
projects where pediatric disease patients and their close relatives have been excluded
(Karczewski et al., 2020). Despite the possibility of a few disease-associated variants being
included in the gnomAD dataset, the benefit of increasing a dataset with highly likely benign
variants currently outweighs the risk, and as such, inclusion is a common strategy in ML
approaches (loannidis et al., 2016; Jagadeesh et al., 2016; Livesey & Marsh, 2023; Wu et al.,
2021). While, in principle, a filter step screening out low allele frequency variants would lower

the risk of disease-associated variants within gnomAD, it drastically reduces the number of
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obtainable benign variants. Similarly, others have refrained from using such an allele
frequency filter with parallel reasoning (Livesey & Marsh, 2023). In order to further exclude
possible false negative variants from the obtained set of gnomAD variants, | further filtered
the variants using the VarSome platform (Kopanos et al., 2019), a tool following the ACMG-
AMP guidelines (Richards et al., 2015) to classify variants, and variants with likely pathogenic
score were excluded (Figure 11, A). While such methods for balancing benefits and risks,
quality and quantity of datasets, are currently often unavoidable, advances in multiplexing
assays may provide help in the future (Esposito et al., 2019; Starita et al., 2017; Weile & Roth,
2018). The final high-quality dataset contained 85 pathogenic and 279 benign variants.
Mapping the variant locations on to the structure of MDR3 revealed a good distribution over
the entirety of the protein, with no distinct clustering of benign or pathogenic variants (Figure
11, B). While such clustering can occur in certain areas, for example, for pathogenic variants
within ligand-binding pockets in cancer-related proteins to form aberrant constitutively active

proteins (Niu et al., 2016), it could also introduce unwanted hidden bias for an ML model.

Establishing predictive features

Next, we" used established general protein predictors to predict the variants and established
further informative features, namely post-translational modifications (PTM) site impact,
variant location within a-helical or B-sheet secondary structure, and residue solvent

accessibility (Figure 11, A).

" Integrating predictors and other informative features was performed by P. Golchin and A. Behrendt.
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Figure 11: Generation of an MDR3-specific dataset. [A] Overview of the creation of the dataset with
variants from the literature and the database gnomAD and the establishment of features. [B] Mapping
of included variants within the dataset onto the protein structure revealed a good distribution of
benign (green) and pathogenic (purple) variants.

The general protein predictor EVE, a multiple sequence alignment-based classifier trained
using an unsupervised ML approach, was integrated as a feature. The naive Bayes classifier
PolyPhen-2 (Adzhubei et al., 2010), frequently used for clinical variant interpretation (Gunning
et al.,, 2021), predicts variant impact based on sequence and structural considerations
(Adzhubei et al., 2010). I-Mutant2.0 and MUpro both employ support vector machine
approaches to predict stability changes of proteins (Capriotti et al., 2005; Cheng et al., 2006).
The tool MAESTRO uses a combination of ML models to derive predictions of stability changes
upon point mutations, including a confidence score (Laimer et al., 2015). Using evolutionary
conservation information, biochemical considerations, and (functional) annotations, PON-P2
classifies variants based on a random forest classifier (Niroula et al., 2015). EVmutation
specifically includes residue interdependencies, showing improvements over using only
evolutionary conservation features, and derives predictions using an unsupervised statistical
model (T. A. Hopf et al., 2017). A specific feature for PTM sites was derived from literature

knowledge and predicted PTM spots from PhosphoMotif (Amanchy et al.,, 2007),
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PhosphoSitePlus (Hornbeck et al., 2015), NetPhos (Blom et al., 1999) and the Eukaryotic Linear
Motif database (M. Kumar et al.,, 2019). Using the database of secondary structure
assignments DSSP (Joosten et al., 2011; Kabsch & Sander, 1983), the secondary structure for
the MDR3 protein (Protein Data Bank identification number 6S7P (Olsen et al., 2020)) was
extracted and further used for a rudimentary feature of secondary structure impact and
calculation of relative solvent accessibility (RSA). RSA was calculated using DSSP-based residue
exposure divided by the maximal residue solvent accessibility (Tien et al., 2013). Half-sphere
exposure (HSE), a measure derived to surmount RSA limitations in measuring residue solvent
exposure, was implemented using the biopython HSExposure module (Hamelryck, 2005). In
preparation for ML, the obtained dataset with the features was cleaned from non-numerical

values.

Establishing a well-balanced test set

Creating a sensible test set is not always straightforward. Considerations range from size to
class distribution within the test set, and often, the answers depend on the individual research
guestion and on the available dataset (Dobbin & Simon, 2011). Borrowing from the Pareto
principle, people often use an arbitrary split of 80/20 for dividing a dataset into training and
test set (Joseph, 2022). Due to the relatively small overall dataset, the test set was designed
to contain 40 variants with equal class distribution (20 benign variants and 20 pathogenic
variants). In order to avoid biases within the test set towards the overrepresentation of
specific amino acids — and the potential exclusion of other amino acids — | established the test
set by performing a root-mean-square deviation (RMSD)-based minimization of the amino
acid distribution within the test set against the overall dataset. As a first step, 10 variants were
randomly chosen for the test set to calculate an initial amino acid distribution for comparison
with the distribution of amino acids within the entire dataset. Following, randomly chosen
variants were only transferred into the test set if the RMSD decreased or only marginally
increased (as otherwise, the limited size of the dataset could have resulted in failures to
generate a test set). Using such an approach, | ensured that the test set included a good
distribution of variants (Figure 12), and the resulting test set was withheld from machine

learning until the final validation of the model.
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Figure 12: Comparison of the amino acid distributions. Plotted differences between amino acid
distributions, both for the wildtype (green star) and variant amino acid (blue dot), with points above
the horizontal dotted line indicating a higher representation in the test set and below the line a higher
representation in the overall dataset. Due to the limited number of variants, it was not possible to
minimize the distribution differences to zero. However, the obtained test set displayed an overall
distribution of amino acids similar to that of the general dataset.

Training and evaluation of the ML tool

Since the overall dataset displayed a clear class imbalance (85 pathogenic and 279 benign
variants) and such imbalances can influence predictor performance (Wei & Dunbrack, 2013),
| employed an established technique to generate synthetic new data points within the N-
dimensional data set space with the synthetic minority oversampling technique (SMOTE)
(Chawla et al., 2002). Next, the training dataset was used to train an XGBoost model (with a
default gradient boosting tree, maximum tree depth set to 3, and a learning rate of 0.02) (Chen
& Guestrin, 2016). To evaluate the performance, repeated k-fold cross-validation was used
with a split of 3 and the number of repeats set to 5. Performance on the respective internal
fold used for evaluation within the cross-validation was visualized using receiver operating
characteristics (ROC) curves and compared to the final evaluation on the test set to detect
potential overfitting (see Chapter 2.1.1). Further, | calculated the feature importance using
two approaches, the XGBoost internal tree-based feature importance and permutation-based
feature importance, to reduce the number of features. The four shared least-informative
features were removed with marginal impact on model performance. Additionally, such a

feature evaluation provides insights into the usefulness of specific features on the overall
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prediction outcome and indicated EVE as the most important feature. In the specific case with
a relatively small dataset and feature space, a reduction of features is not computationally
necessary; however, it is a common practice in the field and aims towards the highest
efficiency (Jia et al., 2022). Performance with the reduced number of features was again
evaluated with repeated k-fold cross-validation and assessed against the predictions of the
final model, termed Vasor (Variant assessor of MDR3), on the withheld test set (Figure 13, A).
Calculation of the confusion matrix with True Negative (TN), False Positive (FP), False Negative
(FN), and True Positive (TP) predictions revealed only four mis-classified variants for the test

set (Figure 13, B).
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Figure 13: Performance of Vasor. [A] The performance estimations within the repeated k-fold cross-
validation (thin black lines) show similar ROC curves and area under the curve (AUC) values as the
evaluation on the final test set (thick green line), indicating a well-fit model without over- or
underfitting. [B] Confusion matrix of Vasor performance on the test set.

Next, | compared the performance of Vasor against other integrated general protein
predictors and against MutPred2 as a previously suggested high-performing predictor on
MDR3 (Khabou et al., 2017) (Figure 14). In line with other studies identifying a combination of
general predictors (meta-predictors) to outperform their individual contributors (Broom et al.,
2017; Gunning et al., 2021), Vasor achieved the highest ROC curve and highest AUC value
(Figure 14, A). Looking at the coverage of the predictors, EVE and PON-P2 did not derive
predictions for the full dataset (Figure 14, B). To obtain a fair comparison of predictors, the
ROC curves and precision-recall-curves indicative of performance (Figure 14, A and C) were

normalized to the coverage of the dataset. Vasor outperformed the closest competitor, EVE,
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based on performance scores and additionally on protein coverage (Table 1). While EVE
achieved the lowest number of FP predictions on the overall dataset, it only covered 85.7% of
the dataset and failed to recognize 19 pathogenic variants (FN). Vasor, with 100% coverage of
the dataset, achieved low numbers of 14 FN and 12 FP predictions, indicating a good balance.
Of note, MutPred2 achieved an admirable low number of only 6 FN predicted variants, but at
the expense of a high number of 93 benign variants falsely classified as pathogenic (FP).
Accordingly, the superiority of Vasor resulted in the highest values in the weighted measures

of F1-score (0.85) and Matthew’s correlation coefficient (MCC) (0.80) (Table 1).
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Figure 14: Performance comparison of Vasor against other predictors. [A] ROC curve comparison of
Vasor and the integrated general protein predictors EVE, PolyPhen-2, PON-P2, as well as the external
MutPred?2 predictor. [B] Coverage of the MDR3-specific dataset for the respective prediction tools. [C]
Precision-recall curves for the respective predictors on the MDR3-specific dataset. Values for both the
ROC curves and precision-recall curves were normalized to the covered set of variants for each
predictor, respectively.
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Table 1: Detailed performance measures of predictors on the entire dataset.

Vasor EVE PolyPhen-2 PON-P2 MutPred2

Recall 0.84 0.73 0.84 0.74 0.93
Specificity 0.96 0.98 0.74 0.89 0.67
Precision 0.86 0.91 0.49 0.52 0.46
NPV 0.95 0.93 0.94 0.95 0.97
Accuracy 0.93 0.92 0.76 0.87 0.73
F1-Score 0.85 0.81 0.62 0.61 0.61
MccC 0.80 0.77 0.50 0.54 0.51
TP 71 52 71 17 79

FN 14 19 14 6 6

TN 267 236 206 125 186
FP 12 5 73 16 93

Coverage [%] 100 85.7 100 45.1 100

Abbreviations: NPV, negative predictive value; MCC, Matthew’s correlation coefficient; TP, true

positive; FN, false negative; TN, true negative; FP, false positive.

Of note, such a full description of performance measures is recommended for an accurate
judgment of binary predictors (Vihinen, 2012). To further investigate Vasor performance, |
assessed how certain Vasor was in its predictions. Accordingly, | assessed its output, the
probability of pathogenicity, with values below 0.5 leading to a classification as benign and
values above 0.5 leading to a classification as pathogenic. Good predictors show a distinctive
clustering towards very low and very high probabilities of pathogenicity (loannidis et al., 2016;
Pejaver et al., 2017, 2020). Visualizing the probability of pathogenicity for every variant within
the dataset as well as the SMOTE-generated points for the minority pathogenic class, Vasor
showed high peaks towards low probability and high probability values, with few variants in

the range between 0.3 to 0.7 probability of pathogenicity (Figure 15). The distribution further
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indicated Vasor as a well-performing predictor, classifying the majority of cases with a high

certainty.
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Figure 15: Distribution of probability of pathogenicity values of Vasor. The generated output of Vasor,
the probability of pathogenicity, for each benign (blue), pathogenic (red), or SMOTE-generated
datapoint for the minority class (orange) showed a good class separation with peaks towards low and
high probabilities.

Generating predictions for every substitution and providing easy access to Vasor

Having established a high-performing predictor, | next predicted every possible amino acid
substitution within MDR3. This precomputed prediction map was used as the basis for
retrieving predictions from the Vasor webserver for rapid assessment of variant impact

(accessible at https://cpclab.uni-duesseldorf.de/mdr3 predictor/). We' integrated a structure

visualization feature specific to the variant entered and offer downloadable enlarged images
of the variant and wildtype. Additionally, Vasor can be downloaded and locally installed,
allowing users to access the source code. Similarly, visualization of the variant from the
webserver can be enhanced by the user based on a downloadable PyMOL script. In general,
these steps were taken to enable researchers and clinicians from different fields to use the

tool, as ML-based tools often remain cumbersome to handle for non-experts in the field.

T Webserver establishment and structural visualization was executed by F. K&nig in accordance with A. Behrendt.
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Mapping the average probability of pathogenicity value over every possible substitution for
each position back onto the protein structure (Figure 16) revealed an additional view of areas

of high susceptibility to harmful substitutions.

NBD

Figure 16: Average probability of pathogenicity per position mapped onto the protein structure of
MDR3. Vasor-derived prediction values were averaged over all possible substitutions at each position
and color-coded with values closer to 0 (blue), indicating the average probability corresponds to benign
predictions, while highly susceptible positions where the average probability corresponds to
pathogenic classifications are closer to 1 (red). TMD: transmembrane domain, NBD: nucleotide binding
domain.

In line with knowledge about functional motifs, such as Walker A and Walker B (Schmitt &
Tampé, 2002), buried residues within the NBDs of MDR3 showed in tendency a high average
probability of pathogenicity value, indicating that most substitutions at those position were
predicted as pathogenic and, thus, to result in functional impairment. Buried residues within
the helices of the TM were predicted as more susceptible to pathogenic substitutions than
more exposed residues of the protein, in line with previous studies on RSA and evolutionary

conservation (Franzosa & Xia, 2009; Ramsey et al., 2011). Variants within the helices forming
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the TM domain of MDR3 might lead to disruption of helical structure, providing a functional
explanation for the overall pattern. Specific variants might, however, diverge from the trend
due to averaging over possible substitutions and as such, a detailed view on every substitution

is necessary.
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4.3 Conclusion and significance

Focusing on a single protein for an ML predictor can be beneficial to predictor performance,

providing increased accuracy for the protein of interest (Riera et al., 2016). While the trend to

increasingly larger datasets to provide predictions for every known protein is undisputably

valuable, the publication presented here highlights the additional benefit of further creating

specific protein predictors. Key points that are addressed and provided within this publication:

Generation of an MDR3-specific dataset
The largest dataset specifically for the MDR3 protein to date was derived using a
combination of literature-based knowledge and filtered variants from the gnomAD

database.

Development of a highly reliable MDR3-specific predictor
A unique combination of general protein predictors and additional features resulted in
increased predictor performance, outperforming single included protein predictors

and the external general predictor MutPred?2.

Providing access to prediction results and structural visualization

A webserver was implemented to allow easy access and rapid assessment of variants.
Due to the precomputation of all possible substitutions, waiting time for the user is
minimized. Visualization of the variant site within the protein structure is provided to
further engage users. Additionally, source code, precomputed substitution map, and
standalone version of Vasor can be downloaded for more experienced users within the

ML field.

The successful collaboration of experts from different fields was vital for this project to shape

a well-rounded prediction tool. With the developed ML-based tool Vasor, | provide a specified

predictor for single-site amino acid substitutions in MDR3. Based on the importance of MDR3,

research on a range of diseases, including PFIC3, can benefit from such a highly reliable

predictor.
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(I adapted parts of the following text and figures from the respective manuscript.)

5.1 Background

Nuclear receptors (NRs) mediate a wide range of functions, orchestrating different
downstream target gene expression based on the ligand, isoform, and tissue-specific effects
(Kim et al., 2007; Massafra et al., 2018; Merk et al., 2019; Ramos Pittol et al., 2020). Subtle
ligand changes have been found to change the ligands impact from agonistic to partial
agonistic or antagonistic effects, indicating a highly sensitive and flexible ligand binding
domain (LBD) (Merk et al., 2019). The activation function 2 (AF2) surface is of high importance
for protein function as it mediates binding to coactivator or corepressor proteins, depending
on the positioning of the helix 12 (H12) as a crucial part of the AF2 surface (Aranda & Pascual,
2001; Mi et al., 2003). Coactivators interact with the AF2 surface using a conserved LXXLL motif
(Heery et al., 1997), while partial agonists and antagonists have been found to disturb the

proper placement of H12, leading to favored corepressor binding with a larger hydrophobic
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motif that additionally blocks the positioning of H12 required for an active state (Merk et al.,
2019; Xu et al., 2002). A plethora of crystallization studies have revealed a highly similar LBD
structure for NRs with a conserved H12 positioning for the active conformation (Chrisman et
al., 2018; Kroker & Bruning, 2015; Wurtz et al., 1996; Xu et al., 2002; Zheng et al., 2018).
Revealing the structure of H12 in the inactive state, however, has proven more difficult.
Studies suggest that H12 is highly flexible in the apo state and does not form connections to
the core of the LBD (Kallenberger et al., 2003; Renaud et al., 1995; Weikum et al., 2018), while
others indicate that H12 can be bound to the LBD even within the apo state (Merk et al., 2019)
(see Chapter 2.3.4). Crystal structure determination of antagonist-bound states failed to
resolve H12, further indicating high flexibility within inactive states (Jiang et al., 2021; Jin et
al., 2013). Overall, NR LBDs likely can access a range of different conformations, with one well-
defined active state, and both ligand and coactivator or corepressor binding influence the
likelihood of certain states. The NR farnesoid X receptor (FXR) is involved in glucose and lipid
metabolism (Jiao et al., 2015; Ma et al., 2006; Sinal et al., 2000), immune response (Fiorucci
et al.,, 2018, 2022) and bile production (Goodwin et al., 2000), based on a range of
transcriptionally regulated genes as well as tissue-specific differences (reviewed in Han, 2018;
Jiang et al., 2021; Massafra et al., 2018). The bile acid-responsive FXR protein is a key regulator
in hepatocytes and maintains bile homeostasis by transcriptional control of the BSEP
promotor (Ananthanarayanan et al., 2001; Ijssennagger et al., 2016) as well as the SHP
promotor (Goodwin et al., 2000; Lu et al., 2000). Its widespread functions have made FXR a
target for pharmaceutical interventions (Jiang et al., 2021; Massafra et al., 2018). To maximize
desired targeting while avoiding side effects, detailed molecular mechanistic studies and an
in-depth understanding of the dynamical movement of FXR are needed to enable future
targeted approaches. Genetic variations within FXR may lead to a predisposition for ICP (van
Mil et al., 2007) or inflammatory bowel diseases (Attinkara et al., 2012). Further, variants have
been linked to PFIC subtype 5 (Gomez-Ospina et al., 2016; Mehta et al., 2022; Pfister et al.,
2022). A novel homozygous missense variant has been identified in a patient and has been
classified as PFIC5 (Pfister et al., 2022). Within this publication, we* studied the effect of the

variant on FXR activity using in vitro and in silico studies. Additionally, by assessing FXR-

¥ Cellular assays and patient tissue were analyzed by J. Stindt, A. Bastianelli, C. Drége and V. Keitel; in silico studies
and in vitro ligand binding were performed by A. Behrendt and H. Gohlke.
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regulated gene expression in patient tissue, we confirmed FXR dysfunction in vivo. Using
unbiased MD simulations, | uncovered the conformational change from the inactive to the
active state of the wildtype (WT) FXR LBD and deciphered the variants’ effect on both inactive

and active states, enabling a detailed mechanistic interpretation of the variant effect.

5.2 Results

The variant FXR T296l is located within the LBD

The identified variant, a mutation from a threonine at position 296 (reference sequence
UniProt entry Q96RI1-1) to an isoleucine (in short T296l), lies within the helix 3 in the LBD
(Figure 17). Based on its localization (Figure 17, A), we hypothesized an influence of the variant
on forming the active state. Accordingly, | prepared four systems for MD simulations to study
the variant influence compared to the WT protein: “active WT”, “active T2961”, “inactive WT”
and “inactive T296l1” (Figure 17, B). All systems further contained the most potent in vivo
endogenous FXR agonist CDCA (H. Wang et al., 1999), as well as a short peptide of the nuclear
receptor coactivator 2 (NCoA2) to drive the systems towards the active conformation. Protein
activity measurements in cellular assays were based on the transcriptional activity of FXR in

HEK293 cells using reporter-based luciferase assays.
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Figure 17: Schematic overview of the variant localization and MD simulation setup of the FXR LBD.
[A] T296I variant localization (red star) within the active state of the FXR LBD, based on the crystal
structure of agonist-bound FXR (PDB ID 6HL1) (Merk et al., 2019). Helix 12 (H12, shown in blue) is in
close proximity to the variant site in the active conformation. The endogenous ligand
Chenodeoxycholic acid (CDCA, shown as licorice in pink) is bound within the LBD core. A short peptide
containing the LXXLL interaction motif, belonging to the nuclear receptor coactivator 2 (NCoA2, purple)
binds to the surface formed by H12, helix 3, and helix 4. [B] Setup of the four systems for MD
simulations to analyze the variant impact within the active and the inactive conformation.

FXR T296I decreases transcriptional activity in cellular assays

HEK293 cells were co-transfected with both liver-expressed FXR isoforms, FXR1a and FXRaz2,
as well as RXRa. Of note, FXRaz2 is the main metabolic regulator in hepatocytes (Ramos Pittol
et al., 2020; Vaquero et al.,, 2013). Cells were subjected to immunostaining and Western
blotting to exclude any effect of the variant T296l on protein localization and overall
expression levels. Both FXR WT and T296] showed the expected nuclear localization with
similar protein levels (Figure 18, A and B). A luciferase-based assay was performed to study
the protein activity of FXR WT and T296l. Cells were transfected with FXR and RXR constructs
and a vector containing the luciferase gene under the control of either the BSEP- or SHP-
promotor sequence. Both BSEP and SHP are well-established transcriptionally regulated FXR
targets (Ananthanarayanan et al., 2001; Goodwin et al., 2000; Lu et al., 2000; Plass et al.,

2002). Cells were stimulated with the FXR agonist obeticholic acid (OCA) (Pellicciari et al.,
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2002) and RXR-agonist 9-cis-retinoic acid (Heyman et al., 1992) to provide optimal conditions
for protein activity. Values were normalized to FXRal WT and RXRa or FXRa2 WT and RXRa
signals (Figure 18, C and D), as these conditions are expected to lead to the highest protein
activity. FXRal WT or FXRa2 WT transfection alone resulted in a significant decrease of protein
activity since the functional readout is based on binding to the BSEP and SHP promotor,
containing the IR-1 canonical motif for FXR/RXR heterodimers (Forman et al., 1995). FXR T296I
transfection consistently resulted in a significant decrease in transcriptional activity compared
to the WT in both isoforms and on BSEP and SHP promotor targets. Specifically, co-
transfection of FXRa1/2 T296! with RXRa showed significantly reduced luciferase activity in
BSEP- (Figure 18, C) and SHP-promotor regulated luciferase readouts (Figure 18, D). Overall,
the data indicated decreased functional activity of the FXR T296I protein while subcellular

localization and protein expression were unaffected.
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Figure 18: FXR WT and T296l localization, protein levels, and transcriptional activity in HEK293 cell
assays. [A] HEK293 cells were transiently transfected with either FXRa1-WT, FXRa1-T296I, FXRa2-WT,
or FXRa2-T296! in combination with RXRa. Staining was performed with an anti-FXR antibody (H-130,
Santa Cruz Biotechnology, shown in green) and with the nuclear counterstain 4',6-diamidino-2-
phenylindole (DAPI, shown in blue), revealing nuclear localization for both WT and T296I protein. [B]
Western blot of transfected HEK293 cells indicated similar overall protein levels of variant and WT
protein. [C] Transcriptional activity of FXR constructs and in combination with RXRa (or RXRa only as
control) measured using a Luciferase assay readout, with the luciferase gene under BSEP-promoter
control. [D] Transcriptional activity of FXR constructs and in combination with RXRa (or RXRa only as
control) measured using a Luciferase assay readout, with the luciferase gene under SHP-promoter
control. Significance testing was performed using a two-tailed Student’s t-test.

Furthermore, to exclude the possibility that the variant T2961 impacts ligand binding, which in
turn could affect protein activity, we analyzed recombinant FXR WT and T296I protein in the

presence and absence of the ligand. Of note, within the simulated time of MDs, no unbinding
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events of the ligands were observed, neither in the WT nor in the variant protein, indicating
stable ligand binding once positioned in its pocket independently of helix 12 placement. To
study the ligand binding and its impact on protein stability, FXR WT and FXR T296l
recombinant proteins (with a 6xHis- and small ubiquitin-related modifier (SUMO)-tag for
easier purification and increased solubility (Butt et al., 2005; Malakhov et al., 2004)) were
expressed within E. coli Rosetta cells and separated from other bacterial proteins using a two-
step procedure. First, the His-tagged FXR protein was subjected to a HisTrap column and, in a
second step, further purified using a size exclusion chromatography column. Purified and
concentrated protein was aliquoted and stored at -80°C until further usage in melting
temperature experiments. NanoDSF, a differential scanning fluorescence method, was
employed in which a protein solution is gradually heated while measuring the
autofluorescence of intrinsic tryptophan residues within the protein as a measure of structural
unfolding (J. Wen et al.,, 2020). Both FXR WT and FXR T296l exhibited a similar melting
temperature in the absence of OCA, indicating that the variant does not impact the overall
structure of the protein fold (Figure 19, A and B). In the presence of the ligand, both WT and
T2961 showed a significant shift towards decreased melting temperature while showing no
significant difference between each other, indicating ligand binding to both wildtype and

variant protein (Figure 19, B).
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Figure 19: Melting temperature of FXR WT and T296l protein. [A] NanoDSF-measured melting
temperature of FXR WT or FXR T296I protein (25uM) with either DMSO (2.5%) only or OCA (250uM)
dissolved in DMSO (2.5%) present. [B] Derived mean values and standard deviations over three
experiments with three replicates each. Significance testing was performed using Welch's t-test.

Supporting our data that ligand binding is likely undisturbed by the variant, steered MD studies
on the FXR LBD with the agonist GW4064 have indicated an egress pathway facing helix 1-
helix 2 loop and helix 5-helix 6 loop as energetically most favorable (W. Li et al., 2012), thus
facing away from the H12 and the variant site. Furthermore, computational studies on ligand
binding and unbinding in related NRs such as retinoic-acid related-orphan-receptor-C gamma
(RORYy) identified the so called “backdoor” pathway, facing away from the AF2 surface (Saen-
Oon et al., 2019). Overall, the variant T296l, facing towards H12 and in close proximity to the

AF2 surface, did not disturb the binding of OCA or general protein properties.
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The variant FXR T296l lowers the probability of H12 placement correlated to the active state

Next, | employed MD simulations to investigate the molecular mechanism underlying the in
vitro identified decreased functional activity of FXR T296l. Using the four different systems
“active WT”, “active T2961”, “inactive WT” and “inactive T2961” (Figure 17, B), 15 replica per
system with a simulation time of 1 ps per replica were prepared and analyzed. Within the
crystal structure of agonist-bound FXR LBD (Merk et al., 2019), residue 296 likely interacts with
a threonine directly preceding H12, T466 (Figure 20, A). The derived distance between residue
296 and residue 466 was used as a reference value indicating a likely active conformation and
compared to measured distances over the simulation time. Comparing the active WT with the
active T296l! system indicated increased distances. Active WT systems showed a distance
distribution with a large peak around the reference distance cutoff, indicating an active
conformation, and a smaller peak with slightly higher distances (Figure 20, B, first panel).
Active T296l, however, revealed a shift of the distance distribution to one broadened peak
towards higher distances (Figure 20, B, second panel). Analyzing the frequency of reaching the
reference cutoff (converted into percentages as measured over the simulation time for each
replica) revealed a significant decrease of the active T296l system (mean value of 0.40%) in
reaching the reference cutoff compared to the active WT, which showed close contact to T466
below the reference value for about one-fourth of the entire simulation time (mean value of
26.95%) (Figure 20, C). Accordingly, even in the active WT, the active conformation is not
always perfectly preserved, which is attributable to the dynamic movement of proteins. Due
to the high degree of flexibility for H12 in the inactive systems, measured distances show a
broad fluctuation (Figure 20, B, third and fourth panel). Interestingly, the inactive WT system
reached distances below the reference value in several replicas (mean value of 1.79%),
resulting in a small peak around the reference distance (Figure 20, B and C), indicating that
inactive WT might transition into an active conformation. However, this was not observed for
the inactive T296l system (Figure 20, B and C), where distances below the reference cutoff

were only reached briefly in one replica (mean value of 0.03%).
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Figure 20: T296l variant leads to increased distance to residue T466. [A] Overview of measured
distance within the FXR LBD with marked residue T296 and T466 (upper panel). The distance was
measured between the Cg atoms of T296 (middle panel, with WT residue T296 shown in green) or 1296
(lower panel, with variant residue 1296 shown in orange) and T466. The mean distance over the
simulation time is increased in the active T296 system (6.6 A) compared to the active WT system
(5.0A) and the reference distance as measured in the agonist-bound crystal structure (4.6 A). [B]
Histogram of measured distance distribution for each system setup. The reference distance cutoff is
indicated as a dashed grey line. [C] Frequency of each system reaching the reference distance,
calculated per replica and pooled per system. Boxes depict the quartiles of the data with the median
(straight black lines) and mean (grey dots) indicated; the whiskers indicate the minimum and the
maximal values, outlier points are depicted as rhombus. Differences in the mean values were
statistically evaluated using a two-sided Mann-Whitney U test (N = 15, n.s.: not significant; *: p < 0.05,
**:p<0.01, *¥**: p <£0.001, ****: p <0.0001).

Visualization of the distance measurement over the simulated time for each replica further
provided an overview of which replica might transition from an inactive to active
conformation (Figure 21). While 6 out of 15 replicas for the inactive WT reached the reference
distance value, only 1 replica of the inactive T296I system transiently reached below the cutoff
(replica 6). In summary, the data revealed an increased distance between the variant site and
T466 as an interacting residue next to H12, indicating that the active state is destabilized in

the variant protein.
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Figure 21: Distance measurement between T466 and residue 296 within MD replicas. The distance
measured between Cg atoms of T466 and residue 296 over the simulated time for each replica and
system. Histograms and calculated frequencies of Figure 20 were calculated based on the data. The
reference distance value is marked as a dashed grey line. Inactive system replicas that reach the
reference value are marked (#).

The variant FXR T296l leads to decreased conformational change into the active

conformation

Several MD studies using the FXR LBD have confirmed the importance of the H12 positioning
(Kumari et al., 2021) and investigated changes associated with novel drug candidates (Diaz-
Holguin et al., 2023; Kumari et al., 2023). However, the transitioning from the inactive to the
active conformation has so far not been shown in MD studies. Based on the indication from
the previous distance analysis that the inactive WT system may transition into an active
conformation, | visually inspected MD trajectories with a special focus on H12 placement in
line with the active conformation (Figure 22). Of note, several replicas of the inactive WT
showed similar transitioning and accordingly, one replica (replica 2) was chosen at random
(Figure 22, A). Replica 6 of the inactive T2961 was chosen for visualization as it showed
conformational transitioning closest to the active state although not fully reaching perfect H12

placement (Figure 21 and Figure 22, B).
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Figure 22: Conformational change of H12 over exemplary MD trajectories of inactive WT or T296I
systems. [A] Inactive WT (replica 2) transitioned from the initial inactive state into a conformation with
H12 closely aligning to the active reference state (based on the crystal structure of agonist-bound FXR
LBD (Merk et al., 2019), green translucent structure). [B] Inactive T296l (replica 6) showed a
conformational change into a close to the active state structure but with an imperfect H12 placement
(marked with a red arrow). The side chain of residue T466 (light blue licorice), T296 (green licorice) or
1296 (orange licorice), as well as H12 (blue cartoon), NCoA2 peptide (purple cartoon), and CDCA ligand
(pink licorice) are highlighted (oxygen atoms within side chains are consistently colored red).

To further investigate and quantify the observed conformational change, | employed an
RMSD-based measurement to analyze atomic coordinate distances between H12 residues
over the MD simulation time compared to the initial reference crystal structure of agonist-
bound FXR. In detail, | first fixed the conformations of the trajectory to the most stable core,
calculated over all four MD systems, to avoid arbitrary distortion of the RMSD values by, e.g.,
rotational movement. Next, | calculated the all-atom RMSD of the H12 residues and the
preceding T466 against the active reference structure and visualized the derived distribution
for the active WT and active T296I systems (Figure 23, A). In line with the results of the
distance analysis, RMSD distribution is significantly shifted to higher RMSD values based on
fitted skewed Gaussian functions on the active T296I histogram compared to the active WT
histogram (Figure 23, A). Further, the RMSD distribution of the active WT system was used to

derive a reference RMSD value, indicating the mean RMSD value for H12 fluctuations that can
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be expected in an uninhibited active state. The calculated value of 1.9 A was used as a
reference in the histogram distribution of all four MD states (Figure 23, B). Calculation of
average time spent reaching the reference value over the simulation time per replica (Figure
23, C) revealed a significant decrease in the frequency of occupying the active state in all three
systems compared to the active WT state. RMSD value distribution of the inactive WT system
(Figure 23, B, third panel) revealed a peak close to the reference value, indicating again that
transitioning into an active conformation can occur, confirming the indication from the basic

distance analysis (Figure 20 and Figure 21) and in line with visual analysis (Figure 22).
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Figure 23: Movement of H12 in MD systems based on RMSD measurement. [A] RMSD value
distribution of H12 and preceding T466 over all replicas, compared to the initial crystal structure as the
active reference state. Skewed Gaussian functions were fitted to the distributions of active WT and
active T296l systems, revealing a significant shift towards higher RMSD values in the active T296lI
system (two-sided Students t-test). The derived mean of the active WT system (1.9 A) was further used
as a reference value for expected RMSD fluctuations for H12. [B] RMSD value distribution for all four
MD systems, with the reference value derived from [A] marked as a dashed grey line. [C] Frequency of
each system reaching the reference value, calculated per replica and pooled per system. Boxes depict
the quartiles of the data with the median (straight black lines) and mean (grey dots) indicated; the
whiskers indicate the minimum and the maximal values, outlier points are depicted as rhombus.
Differences in the mean values were statistically evaluated using a two-sided Mann-Whitney U test (N
=15, n.s.: not significant; *: p £0.05, **: p<0.01, ***: p <0.001, ****: p < 0.0001).
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Accordingly, inactive WT reached below the reference value in several replica, translating into
frequencies of occupying states below the reference RMSD value as high as ~15% (Figure 23,
C). The data indicates that once the inactive WT system transitioned, the system stably stays
within the active state, in line with the indications from the distance analysis. However, since
only 4 out of 15 replicas reach below the reference value for the inactive WT while the inactive
T2961 system reached in one replica with a calculated frequency of 0.01%, differences

between the inactive systems are not significant.

Overall, within the active systems of MD simulations, the variant T2961 showed structural
deviation from the stable active conformation, indicating a destabilization of the active state.
Further, analyzing the transitioning from inactive to active conformation, the variant likely
impedes effective conformational change, decreasing the frequency of FXR within the active
state and accordingly its protein activity. This observation correlates with the decreased
protein transcriptional activity identified in vitro. Of note, the remaining activity indicated by
both in vitro and in silico data might explain the clinical manifestation. Despite high disease
severity with the necessity for organ liver transplantation at the age of 8 months due to
terminal liver disease (Pfister et al., 2022), this homozygous variant is not per se incompatible
with life. The reduced protein function was further verified within a patient’s tissue sample by
analyzing the expression of downstream targets BSEP and SHP, revealing a significant decrease
in protein expression and, thus, decreased FXR T296I transcriptional activity. My work within
this project substantially contributed to understanding the functional impact of the variant on

a molecular level.
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5.3 Conclusion and significance

Within this highly interdisciplinary project, we combined patient sample data, cellular assays,

and in silico analysis to unravel the molecular mechanism and functional impact of a missense

variant in the NR FXR. Key points within this project include:

Functional impairment of FXR variant protein in in vitro and in vivo assays

The variant 7296l reduced the transcriptional activity significantly, while FXR protein
levels, localization, and ligand binding were not affected. Functional impairment was
further validated in vivo in patient tissue based on reduced expression of

transcriptionally regulated target genes BSEP and SHP.

Decreased transitioning of FXR variant protein into the active state in unbiased MD

The variant T296I critically impacted the positioning of H12, showing impairments
when comparing the active systems. Further, and potentially more impactful, T296I
reduced the frequency of transitioning from the inactive to the active conformation.
Together, the data explains the functional impairment of FXR T296l on a molecular

level.

Uncovering transitioning of FXR WT from inactive to active state in unbiased MD
For the FXR WT, protein functionality is dependent on conformational changes from
inactive to active states. To our knowledge, this is the first study to reveal the pathway

of this transitioning for the FXR LBD using unbiased MD simulations.

Beyond understanding the effect of a missense variant in detail, the work may provide a basis

for future revelations. Extrahepatic FXR expression is widespread with diverse tissue-specific

functions and accordingly, dysregulation and disease involvement of FXR in cholestatic

diseases, non-alcoholic fatty liver disease (NAFLD), inflammation, and various cancers have

made FXR a pharmacological target (reviewed in Han, 2018). Safely targeting and modulating

FXR function requires a detailed understanding of protein dynamics, wherein the inclusion of

inactive to active transitioning may provide valuable information for future rational drug

design.




Chapter 6 Summary and Perspective

During the work performed for this thesis, | have achieved and successfully used skills from
the computational fields of machine learning (ML) and molecular dynamics (MD) simulations
(see Figure 24). In short, in collaboration with Pegah Golchin and Filip Konig (both Heinrich
Heine University Disseldorf, Germany), | built an MDR3-specific dataset of variants that are
either disease-associated or benign to train a ML algorithm for classifying single-site mutations
into benign or pathogenic (see Chapter 4, Publication I). The generated tool, called Vasor
(Variant assessor of MDR3), enables users to rapidly assess the impact of a novel variant and
thus prioritize variants for further experimental evaluation. In order to facilitate access to
users, especially novice ones in the field of bioinformatics, Vasor was made available as a
webserver (https://cpclab.uni-duesseldorf.de/mdr3_predictor/). To further engage users, a
structural overview of the MDR3 protein was additionally provided with an automatic
highlighting of the entered variant as well as automated image generation of wildtype and
variant protein. The python-coded Vasor program can also be downloaded and locally
installed. The program has been tested against current state-of-the-art mutation predictor,
MutPred2, and outperformed it as well as other predictors, which were included as features

for the machine learning approach.

The established approach for a protein-specific predictor has proven beneficial and
accordingly will be further used for the protein BSEP (see Chapter 2.3.2), which is a bile salt
transporter located at the canalicular membrane. Similar to the MDR3 protein, there is no
protein-specific prediction tool available yet despite BSEP’s disease involvement. Using
information from extensive studies on missense variants (see e.g., Droge et al., 2017; Sohail
et al., 2021) may provide a good dataset for machine learning to enable classification of novel
variants. We envision this project in the continuation of the HiChol consortium, which
achieved continued funding from the BMBF based on its success. Further, the establishment
of protein-specific prediction tools contributes to the active field of applying machine learning
for research problems. While a high number of available tools may seem daunting at first
glance, they offer the possibility to identify of best-suited tools for specific problems.
Accordingly, besides well-performing general protein predictors, protein-specific tools fill

important niches and provide a great asset to researchers and clinicians.
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Figure 24: Overview of the presented work. The ML-based predictor Vasor classifies variants of the
MDR3 protein, located within the canalicular membrane in hepatocytes (upper panel). Transitioning
from the inactive to active positioning was uncovered using MD simulations for the FXR LBD (lower

panel). A PFIC5-associated variant impaired this transitioning, in line with in vitro assays. Created with
BioRender.
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For the FXR protein, MD simulations were employed to analyze the effect of the variant T296I
within the protein (see Chapter 5, Publication IlI). Combining the work with in vitro and in vivo
studies performed by Dr. Jan Stindt (Heinrich Heine University Dusseldorf, Germany), Dr.
Malte Sgodda, Prof. Dr. Tobias Cantz (Medizinische Hochschule Hannover, Germany), Dr. Alex
Bastianelli, Dr. Carola Droge and Prof. Dr. Verena Keitel-Anselmino (Otto von Guericke
University Magdeburg, Germany), the work provides an in-depth analysis of mutational
impact on the protein function. Of note, | provided a detailed mechanistic understanding of
variant impact within the activation dynamics of the FXR protein, and | reveal the transitioning
from inactive to active state for FXR, a conformational change not yet described for the FXR

LBD in MD simulations.

In a novel project within the continued HiChol consortium, we aim to investigate residue
specific importance in the LBD of FXR using an Alanine Mutation Scanning approach. A
combination of in silico and in vitro data will be used to create an extensive dataset for a
machine learning approach to predict variant impact. Due to the structural similarity of NR
LBDs and the high research interest in the area, the provided data (both from finished and
novel projects) can provide valuable information for research on other NRs. Additionally, the
establishment of the inactive and the active system including its transitioning may be used to
study and design novel FXR ligands, without the previous limitation of analyzing effects only
on the active state. Given the complexity of the FXR network (see Chapter 2.3.2 and Chapter
2.3.3), increased knowledge of residue importance and including explicitly both

conformational states may provide a next step in understanding and regulating FXR functions.

Furthermore, | provided expertise on six clinically identified variants of interest within the
ATP7B protein and supplied structure-based estimations of variant influence (Stalke et al.,
2023). Similarly, | enriched the assessment of a clinically relevant MDR3 variant using the
previously described derived MDR3-prediction tool as well as a structural assessment of the
variant (Droge et al., 2023). Overall, the collaborative effort and the unique combination of
different fields of expertise to understand variant impact within important liver proteins has
proven to be prosperous. It led to a substantial increase of knowledge within the field and
hopefully will contribute to further research efforts in tackling and mediating variant impact

to improve patient care and outcomes in the future.
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Abstract

The phosphatidylcholine floppase multidrug resistance protein 3 (MDR3) is
an essential hepatobiliary transport protein. MDR3 dysfunction is associated
with various liver diseases, ranging from severe progressive familial intrahe-
patic cholestasis to transient forms of intrahepatic cholestasis of pregnancy
and familial gallstone disease. Single amino acid substitutions are often found
as causative of dysfunction, but identifying the substitution effect in in vitro
studies is time and cost intensive. We developed variant assessor of MDR3
(Vasor), a machine learning-based model to classify novel MDR3 missense
variants into the categories benign or pathogenic. Vasor was trained on the
largest data set to date that is specific for benign and pathogenic variants of
MDR3 and uses general predictors, namely Evolutionary Models of Variant
Effects (EVE), EVmutation, PolyPhen-2, I-Mutant2.0, MUpro, MAESTRO,
and PON-P2 along with other variant properties, such as half-sphere ex-
posure and posttranslational modification site, as input. Vasor consistently
outperformed the integrated general predictors and the external predic-
tion tool MutPred2, leading to the current best prediction performance for
MDR3 single-site missense variants (on an external test set: F1-score, 0.90;
Matthew's correlation coefficient, 0.80). Furthermore, Vasor predictions cover
the entire sequence space of MDR3. Vasor is accessible as a webserver at
https://cpclab.uni-duesseldorf.de/mdr3_predictor/ for users to rapidly obtain
prediction results and a visualization of the substitution site within the MDR3
structure. The MDR3-specific prediction tool Vasor can provide reliable pre-
dictions of single-site amino acid substitutions, giving users a fast way to
initially assess whether a variant is benign or pathogenic.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Hepatology Communications published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases.
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INTRODUCTION

Bile formation is a carefully regulated system, from
bile acid synthesis to secretion of bile acids across the
canalicular membrane. Adenosine triphosphate (ATP)-
binding cassette (ABC) transporters present on the
canalicular membrane of hepatocytes are responsible
for the transport of primary bile components, namely,
bile acids through the bile salt export pump (BSEP,
ABCBT11), cholesterol through the ABC subfamily G
members 5 and 8 (ABCG5/ABCGS8), and phospho-
lipids through multidrug resistance protein 3 (MDRS,
ABCB4). MDR3 acts as a floppase, translocating sub-
strates, such as phosphatidylcholine, from the inner to
the outer membrane leaflet"? and exposing the sub-
strate for extraction into primary bile.l’! Recent studies
have suggested different transport pathways that follow
either an alternating two-site access model through the
protein's inner cavity®” or a credit-card swipe mecha-
nism along transmembrane helix 7 (TM H7).”) MDR3
dysfunction has been linked to various liver-associated
diseases, including intrahepatic cholestasis of preg-
nancy, low phospholipid-associated cholelithiasis,
drug-induced liver injury, progressive familial intrahe-
patic cholestasis type 3, liver fibrosis/cirrhosis, and
hepatobiliary malignancy.[5'12]

It is estimated that at least 70% of disease-causing
ABCB4 variants are amino acid substitutions, whereas
variants leading to premature stop codons and protein
truncations are in the minority."™ However, while the ad-
vancement of sequencing allows rapid testing of patients,
it remains challenging for clinicians and researchers to
assess the potential impact of novel missense variants.

Evaluation of newly found MDR3 amino acid substi-
tutions by in vitro cellular assays remains time consum-
ing. Machine-learning-based prediction tools instead

offer rapid analysis and have led in recent years to many
predictors.“"‘ﬁl Nonetheless, general predictors do not
consistently perform well on all proteins, necessitating
the development of protein-specific prediction tools. To
date, there is no MDR3-specific predictor available for
classifying amino acid substitutions despite the vital
role of MDR3 in bile homeostasis. An initial evaluation
of general predictor performances on MDR3 variants
suggested MutPred as a well-performing tooll'®"7);
however, generalization is difficult due to only 21 tested
variants with established cellular effects. Additionally,
the tested variants presented a clear bias toward patho-
genic effects.

Here, we created an MDR3-specific variant data set
and trained a machine-learning algorithm using estab-
lished general prediction tools, namely Evolutionary
Models of Variant Effects (EVE), EVmutation,
PolyPhen-2, [-Mutant2.0, MUpro, MAESTRO, and
PON-P2,"®-24 as well as half-sphere exposure and
posttranslational modification (PTM) site influence as
features to obtain an MDR3-specific prediction tool for
help in classifying variants as benign or pathogenic
(see Figure 1 for a graphical overview). Our predictor,
variant assessment of MDR3 (Vasor), performed bet-
ter than each integrated general predictor. Additionally,
Vasor outperformed MutPred2,? a general predictor
we chose for comparison based on the suggested high
performance of its predecessor MutPred on MDR3.®!
We provide easy access to Vasor through a webserver
where users can enter a missense variant of interest
and obtain a prediction if it is benign or pathogenic to-
gether with an estimate of the prediction probability.
Additionally, the mutation site is displayed on the struc-
ture of MDR3, giving the user a comprehensive view of
the local site and the overall position of the assessed
variant.

Create MDR3-specific data set ( Machine Learning h
Literature Literature  gnomAD
Manual Manual Varsome Train model
fitter fitter on selected features
Pathogenic variants Benign variants l
Obtain features
— - _— Evaluation
General predictors: Additional features: on independent test set
EVE PTM site effect
PolyPhen-2 Secondary structure
|-Mutant2.0 effect
MUpro Residue solvent .
MAESTRO accessibility Comparison of performance
PON-P2 Half-sphere exposure to established predictors
EVmutation
18 features extracted ) K Y,

FIGURE 1

Graphical overview of data set generation and machine-learning approach. For details, see text. EVE, Evolutionary Models

of Variant Effects; gnomAD, Genome Aggregation Database; MDR3, multidrug resistance protein 3; PTM, posttranslational modification.
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MATERIALS AND METHODS
MDR3 missense variants

MDR3 variants were obtained from a literature search
for variants causative of MDR3 dysfunction or known
variants with no effect in any MDR3-associated disease
(see Table S1). We excluded variants with unclear infor-
mation on disease association (i.e., no in vitro verifica-
tion analysis and no information on clinical indications
for disease association) to eliminate false positives
(FPs) or false negatives (FNs). As studied benign vari-
ants for MDR3 are rare,[>'% further missense variants
were obtained from Genome Aggregation Database
(gnomAD) v2.1.1%% to increase the number of benign
variants. During the generation of the gnomAD data-
base, individuals with severe pediatric diseases are
removed; however, it is possible that pathogenic vari-
ants exist in the gnomAD data set. Accordingly, we em-
ployed a selection step to exclude FN cases of MDR3
variants. Using the platform VarSome,?”) variants were
preclassified following the guidelines of The American
College of Medical Genetics and Association for
Molecular Pathology (ACMG-AMP)?® rules, and vari-
ants with a likely pathogenic or pathogenic effect were
removed, whereas variants with uncertain significance,
likely benign, or benign classification by VarSome were
integrated into the data set. These steps were included
to create a high-quality data set to keep the number of
misclassified variants low but at the same time retain
a sufficiently high number of variants. The final list of
variants contained 85 pathogenic and 279 benign vari-
ants. Every variant was mapped to the longest MDR3
isoform, corresponding to Uniprot?” entry P21439-1.

Data set and features

The list of MDR3 variants was subjected to general
predictors for missense mutations (EVE, PolyPhen-2,
I-Mutant2.0, MUpro, MAESTRO, PON-P2, and
EVmutation), and additional features (half-sphere ex-
posure, secondary structure disruption, PTM site, and
relative solvent accessibility) were computed, creating
an MDR3-specific feature set.

EVE is a recently developed, unsupervised, compu-
tational method that trained Bayesian variational auto-
encoders on multiple sequence alignments to classify
variant effects based on a computed evolutionary index
followed by a fitted global-local mixture of Gaussian
mixture models.["® PolyPhen-2 employs a naive Bayes
classifier for predicting variant effects using sequence-
based features and structure-based features.'¥ I-
Mutant2.0 predicts protein stability changes by using
a support vector machine-based tool trained on either
sequence or structural information.?” MUpro predicts
stability changes on single-site mutations by using
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sequence and structural information with a support vec-
tor machine.?" Both I-Mutant2.0 and MUpro predict the
direction of stability change and the energy difference.
MAESTRO employs a combination of machine-learning
approaches to predict the energy difference introduced
by missense mutations based on consensus, along
with predicting a confidence score.”?! PON-P2 applies
selected features from evolutionary conservation and
biochemical properties of amino acids to develop a ran-
dom forest classifier that classifies mutations as benign
or pathogenic or those with unknown significance.m]
EVmutation explicitly considers interdependencies be-
tween residues or nucleotide bases in their unsuper-
vised statistical method to include epistasis.|**!

EVE and EVmutation predictions for the MDR3
protein were accessed using the precomputed data
set available from the method creators (https://evemo
del.org/,  https://marks.hms.harvard.edu/evmutation/
human_proteins.html).  I-Mutant2.0, Mupro, and
MAESTRO predictions were generated using their
standalone downloadable versions. PolyPhen-2 pre-
dictions were accessed using the batch query of the
webserver (http://genetics.bwh.harvard.edu/pph2/bgi.
shtml) with the default values. PON-P2 predictions
were generated using the sequence submission fea-
ture for variants of the webserver (http://structure.bmc.
lu.se/PON-P2/).

Additional features were added to explicitly integrate
effects on PTM sites, variant location in «-helical or p-
sheet secondary structure, and effects on residue sol-
vent accessibility. Known PTM sites from the literature
were supplemented by potential PTM sites predicted
by PhosphoMotif,*” PhosphoSitePlus,*” NetPhos,??
and the Eukaryotic Linear Motif (ELM) database.l*®!
The secondary structure was extracted from the MDR3
structure (Protein Data Bank identification [PDB ID]:
6S7P), using the database of secondary structure as-
signments DSSP.E**°! Relative solvent accessibility
was computed based on residue exposure calculated
with DSSP divided by the maximal residue solvent
accessibility.*®! Half-sphere exposure was introduced
before®”! to measure residue solvent exposure and
surpass limitations of relative solvent accessibility.
It was implemented using values from the Biopython
HSExposure module calculated according to the half-
sphere corresponding to the direction of the sidechain
of the residue as measured from the Ca atom.

Machine learning

The obtained data set was cleaned from non-
numerical values. In the case of binary features, such
as classification features of general predictors, —1
was set if no prediction was available to distinguish
from benign (value 0) or pathogenic (value 1) predic-
tions. Additionally, relative solvent accessibility and
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half-sphere exposure were set to -1 if no prediction
value was obtained in order to distinguish from pre-
diction values of 0. Other numerical features were
replaced by 0 if no prediction for the respective fea-
ture was available. The correlation between features
within the data set was assessed by the Spearman R
correlation coefficient.

A test set was generated by selecting 20 benign
and 20 pathogenic variants from the overall data set.
To avoid a bias toward specific amino acids, we mini-
mized the root-mean-square deviation (RMSD)-based
difference between the amino acid distribution of the
variants within the test set compared to the overall
data set (Figure S1). After randomly drawing 10 vari-
ants into the test set, the RMSD-based difference
between the amino acid distribution of the general
data set and current test set was computed; further
variants were only transferred into the test set if they
met one of the following conditions: (a) the RMSD
between reference sequence and substituted amino
acid distributions decreased by addition of the new
variant, (b) the RMSD between reference sequence
amino acid distributions decreased while the RMSD
between substituted amino acid distributions did not
increase more than 0.1, or (c) the RMSD between
substituted amino acid distributions decreased while
the RMSD between reference sequence amino acid
distributions did not increase more than 0.1. Due to
the limited size of the data set, it might not otherwise
be possible to draw a variant for the test set. The test
set was withheld from the machine-learning training
step and used for final validation.

To handle the imbalance between the pathogenic
(85 variants) and benign (279 variants) class, we
used the synthetic minority oversampling technique
(SMOTE).B® This method generates new synthetic
data points by using existing minority data points within
the N-dimensional data set space, drawing lines to the
five nearest minority class neighbors, and randomly
selecting synthetic data points along these lines to bal-
ance out the classes.

On the training data set, the XGBoost algorithm[sg]
(as implemented in the Python library) was trained
using the default gradient-boosted tree (gbtree); the
maximum depth of a tree (max_depth) was 3, subsam-
ple 0.6, and step size (learning_rate) 0.02. The training
was evaluated using repeated k-fold cross-validation,
with k = 3 and the value of repeats (n_repeats) = 5.
Using this procedure, the training data set was ran-
domly split into three equally sized folds, where each
fold is used as an internal test data set with the remain-
ing two folds as training data sets. The performance
results were measured and visualized in receiver oper-
ating characteristic (ROC) curves for comparison to the
final test set. These steps were repeated 5 times.

To reduce features and estimate feature impor-
tance, we analyzed the tree-based feature importance
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and the permutation importance, leading to the re-
moval of the four least informative features shared in
both feature-importance measures: relative solvent
accessibility, 1-Mutant2.0 stability sign, I-Mutant2.0
deltaG value, and secondary structure disruption.
Tree-based feature importance was computed using
the XGBoost algorithm built-in feature and the “gain”
(average gain across all splits where a feature is
used). Permutation-based feature importance was
computed by random shuffling each feature consec-
utively, followed by a performance test; this denoted
performance alterations following feature permuta-
tion. The performance of the model without feature
selection is shown in Figure S2.

The trained model, termed Vasor, predicts a proba-
bility ranging from 0 to 1 for a given variant to belong to
the pathogenic class. Predictions above (below) 0.5 are
classified as pathogenic (benign).

Comparison to established predictors

To assess the general performance of Vasor, we com-
pared it to the general predictors EVE, PolyPhen-2,
PON-P2, and MutPred2. MutPred2 predictions were
used to compare our prediction tool to an external gen-
eral predictor as MutPred2 was not used as an input
feature for Vasor. The standalone version of MutPred2
was used to classify each variant within the entire data
set, and a threshold of 0.5 was used to classify patho-
genicity.!*! The performance of Vasor and the other
predictors was evaluated on the entire data set and the
test set. This ensured increased fairness for the perfor-
mance comparison as Vasor may have an advantage
over other predictors based on its training on the train-
ing data set. ROC and precision-recall curves were ad-
justed to the availability of variants each predictor was
able to classify over the entire data set (i.e., if general
predictors did not classify a variant into the category
benign or pathogenic, the respective variant could not
be assessed and curves were shown only on assess-
able variants). To account for this, the coverage of each
predictor of the MDR3 data set was computed.

Performance evaluation

The performance of Vasor and the other prediction
tools was evaluated using recommended measures
for binary classifiers,*% including additionally the F1-
score as well as visualization in ROC and precision-
recall curves. The measures are based on the values
of carrectly classified variants, indicated by true posi-
tives (TPs) for correctly predicted pathogenic variants
and true negatives (TNs) for correctly predicted be-
nign variants as well as incorrectly classified variants
indicated by FPs for variants predicted as pathogenic
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albeit benign and false negatives FNs for variants
predicted as benign albeit pathogenic. The analyzed
measures of recall, specificity, precision, negative
predictive value (NPV), accuracy, F1-score, and
Matthew's correlation coefficient (MCC) were calcu-
lated as

Recall = % (1
Specificity = % )
Precision = % @3)

NPV = % )
Accuracy = g5 lz LT:E +FN ©)

Precision x Recall _ 2TP
Precision + Recall 2 TP+ FP +FN
(6)

F1 — score =2 x

oo TP x TN — FP x FN
V(TP +FP)(TP + FN)(TN + FP)(TN + FN)

(7)

Webserver tool

Vasor can be accessed online at https://cpclab.uni-
duesseldorf.de/mdr3_predictor/. Users can enter a
single-site amino acid missense MDR3 variant; the tool
will only recognize MDR3 variants corresponding to the
largest protein isoform UniProt ID: P21439-1. The entry
needs to be in the format of the standard International
Union of Pure and Applied Chemistry code for amino
acids, entering first the one-letter code of the amino
acid of the reference sequence, followed by the posi-
tion and the amino acid substitution of interest. On the
results page, users can see the predicted classifica-
tion (either benign or pathogenic) and the probability
of pathogenicity (PoP). This probability ranges from 0
(highest probability for the variant to be benign) to 1
(highest probability for the variant to be pathogenic).
Probability values close to 0.5 indicate less confidence
in the prediction.

Additionally, the results page displays the structure
of the MDR3 protein (PDB ID: 6S7P) with the NGL
Viewer,[41'42] including the membrane localization ob-
tained from the Orientations of Proteins in Membranes
database!® as a red and blue plane. The substituted
residue is colored according to the predicted ef-
fect either in red (pathogenic) or green (benign). The
user can download a zip archive containing a high-
resolution image of the complete protein, PDB files of
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the reference sequence and the variant protein, and
high-resolution images of the position with the refer-
ence sequence residue or the substituted one.

Code availability

The code for Vasor was written in Python 3.9 and is
provided for download at https://cpclab.uni-duessel-
dorf.de/index.php/Software.

RESULTS

Generation of a data set with informative
features and good overall coverage of the
MDRS3 protein

To establish an MDRS3-specific prediction tool, we
prepared a data set of benign and pathogenic MDR3
variants. Relevant literature on MDR3-associated dis-
eases was screened. Variants with unclear association
to effects were omitted to avoid misclassified variants.
Additionally, the gnomAD databasel®® was screened
for MDR3 variants, and the results were subjected to
filtering by VarSomeP”! using ACMG-AMP rules®®
to remove variants with a high potential for a patho-
genic effect. This step was necessary as pathogenic
MDR3 variants on a single allele with a potential late-
onset or mild phenotype might have been included
in the gnomAD database. Next, we used general
predictors (EVE,""® Evmutation,?* PolyPhen-2,1'"
[-Mutant2.0,% MUpro,”"" MAESTRO,*?! and PON-
P212%) and descriptors of the variant site, namely, the
disruption of secondary structure, possible PTM site
disturbance, and changes in the relative solvent ac-
cessibility and half-sphere exposure of the position in
question, as features in the data set. Projecting the
variant locations from the data set onto the known cry-
ogenic electron microscopy structure of MDR3 (PDB
ID: 6S7P) revealed a broad coverage of the struc-
ture with benign and pathogenic variants (Figure 2A).
No functional domain is devoid of variants, and we
do not observe large clusters of benign or pathogenic
variants, which may indicate a potential bias within
the data set. Such a bias might prevent applying the
tool to areas of low coverage. Hence, we expect that
our tool can generalize predictions to every position
of MDR3.

To further probe for domains of low applicability, we
mapped variants misclassified by Vasor to the MDR3
structure. Misclassified variants from the data set tend
to occur on the solvent-exposed surface of the pro-
tein rather than within buried regions of the protein
(Figure S3). As solvent-exposed residues are less evo-
lutionary conserved than buried residues,** the ob-
tained trend might visualize the underlying increased
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FIGURE 2 Coverage of MDR3 by the data set and correlation analysis of features. (A) Mapping of data set variants onto the MDR3
structure. Benign variants are marked in green and pathogenic variants in magenta. (B) Spearman rank correlation matrix of features
computed for the data set. conf., confidence; cyto., cytosolic; epi., epistatic; EVE, Evolutionary Models of Variant Effects; exo., extracellular;
HSE, half-sphere exposure; ind., independent; MDR3, multidrug resistance protein 3; NBD, nucleotide-binding domain; prob., probability;
PTM, posttranslational modification; R, reliability index; RSA, relative solvent accessibility; Sec. structure, secondary structure; st. sign,

stability sign.

uncertainty of those integrated general predictors
that are based on evolutionary sequence conserva-
tion. Overall, also given the small number of misclas-
sifications, we do not see indications of domains of
increased uncertainty for MDR3 predictions. The cor-
relation coefficients between input features range from
-0.64 to 0.76 (RMS value, 0.25) over the 18 features
(Figure 2B), indicating that each feature adds informa-
tion that does not overlap with information from another
feature.

Generating Vasor: training the XGBoost
algorithm on the data set

For machine-learning models to function reliably, it is
vital to estimate potential overfitting or underfitting of
the trained model. One of the most important tech-
niques in that respect is the hold-out method, where a
subsection of the entire data set is split off as an exter-
nal test set. Ideally, the test set has a similar probability

distribution as the entire data set[45]; however, this is not
certain if a test set is randomly drawn. Therefore, we
paid attention to drawing our test set with a similar dis-
tribution of amino acids as to both reference sequence
and variant amino acid distributions by minimizing the
RMSD-based difference in amino acid distributions to
the overall data set; the test set contained 20 benign
and pathogenic variants each (Figure S1).

Next, for the remaining data set, SMOTEP® was
used to create synthetic examples of the minority class
(pathogenic variants) to balance the classes. The final
training data set consisted of 259 data points for each
class, benign and pathogenic, on which an XGBoost
algorithm was trained. To evaluate the most important
features, we measured and visualized feature impor-
tance (Figure S4) and removed the four consistently
least important features (Figure S5) without reducing
performance. Of note, EVE is highly important for the
prediction outcome of the model, indicating that Vasor
primarily relies on EVE's predictions compared to other
features.
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FIGURE 3 Performance of Vasor on the test set. (A) ROC curve of Vasor performance on the test set (green line) compared to
perfarmance estimates from repeated k-fold cross-validation (black lines). (B) Confusion matrix of Vasor performance on the test set.
AUC, area under the curve; ROC, receiver operating characteristic; Vasor, variant assessor of MDR3.

Performance estimates were visualized within a
repeated k-fold cross-validation and compared to the
performance against the held-out test set (Figure 3A).
The trained model performs on the test set with an ac-
curacy of 90%, with 18 out of 20 variants being pre-
dicted correctly, both for the benign and the pathogenic
class (Figure 3B). Notably, the performance based on
the k-fold cross-validation does not differ from that on
the independent test set, indicating a well-fit model
without overfitting or underfitting.

Vasor outperforms integrated general
predictors and the external general
predictor MutPred2

We compared the performance of Vasor with general
predictors on the entire data set. We compared Vasor
to EVE, PolyPhen-2, and PON-P2, integrated as fea-
tures into the data set on which Vasor was trained.
Vasor should outperform each predictor due to the ad-
ditional information gathered from the other features.
Additionally, we compared Vasor to MutPred2® as an
external prediction tool; the predecessor tool MutPred
was indicated to perform well on MDR3 classification
problems.“sl Vasor outperformed EVE, PolyPhen-2,
PON-P2, and MutPred2 according to ROC (Figure 4A)
and precision-recall curves (Figure 4C), with an area
under the curve (AUC) of 0.98 for Vasor against 0.90
for EVE, 0.89 for MutPred2, 0.87 for PolyPhen2, and
0.81 for PON-P2 for the ROC and an AUC of 0.94
for Vasor against an AUC of 0.86 for EVE, 0.74 for
MutPred2, 0.72 for PolyPhen2, and 0.55 for PON-P2
for the precision-recall curves. Precision-recall curves
have been shown to be more robust and accurate for
binary classifiers on imbalanced data sets.”®
Noteworthy, the second best performing predictor,
EVE, was the most important feature for Vasor, sug-
gesting that the machine-learning model recognized

86

the information contained within this feature as highly
correlated with the true output and its value in pre-
dicting the output correctly. However, EVE could only
predict 85.7% of the variants in the data set, whereas
Vasor, by design, predicted an outcome for every pos-
sible missense variant of MDR3 (Figure 4B; Table 1).

Additional performance measures are summarized
in Table 1, indicating that Vasor outperforms existing
prediction tools according to the weighted measures
F1-score (0.85) and MCC (0.80). Specifically, Vasor
achieved a low number of FNs. Comparable low values
in FNs were achieved by PolyPhen2 and MutPred2 (but
at the cost of an increased number of FPs) and PON-
P2, but only at coverage of 45.1% of the variants in the
MDRS3 protein and an increased number of FPs.

When comparing the performance of the missense
predictors on the test set (Table S2), our tool reached
the best scores in F1-score and MCC (0.90 and 0.80,
respectively) compared to other predictors with full
coverage of the test set. EVE showed F1-score and
MCC values of 0.91 and 0.83, respectively, on a subset
(82.5%) of variants where it reached a prediction. By
contrast, MutPred2 was able to predict every patho-
genic variant as pathogenic, albeit at the cost of pre-
dicting almost half of the benign variants as pathogenic,
resulting in a high number of FPs.

Overall, Vasor outperformed other predictors con-
sistently according to ROC and precision-recall curves,
revealing a well-balanced prediction with few FNs and
FPs, both on the entire data set and the test set.

Vasor classifies the majority of variants
with high certainty

Additionally, we investigated the distribution of Vasor's
output, the PoP values. Vasor assigns the majority
of benign cases low probability values (74% of be-
nign variants <0.24 PoP), whereas the majority of
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FIGURE 4 Performance of Vasor in comparison to established general predictors. (A) ROC curve of the performance of Vasor, EVE,
PolyPhen-2, PON-P2, and MutPred2 on the variants of the entire data set. Note that the performance was determined for those variants
each predictor was able to make a prediction for (see [B]). (B) Coverage of data set variants by the predictors. (C) Precision-recall curves of
the predictors. Performance was determined for those variants each predictor was able to make a prediction for. AUC, area under the curve;
EVE, Evolutionary Models of Variant Effects; ROC, receiver operating characteristic; Vasor, variant assessor of MDR3.

TABLE 1
set
Vasor EVE

Recall 0.84 0.73
Specificity 0.96 0.98
Precision 0.86 0.91
NPV 0.95 0.93
Accuracy 0.93 0.92
F1-score 0.85 0.81
MCC 0.80 0.77
11 71 52
FN 14 19
TN 267 236
FP 12 5
Coverage (%) 100 85.7

Detailed performance measurements of Vasor in comparison to EVE, PolyPhen-2, PON-P2, and MutPred2 on the entire data

PolyPhen-2 PON-P2 MutPred2
0.84 0.74 0.93
0.74 0.89 0.67
0.49 0.52 0.46
0.94 0.95 0.97
0.76 0.87 0.73
0.62 0.61 0.61
0.50 0.54 0.51
71 iz 79
14 6 6
206 125 186
73 16 93
100 451 100

Abbreviations: EVE, Evolutionary Models of Variant Effects; FN, false negative; FP, false positive; MCC, Matthew's correlation coefficient; NPV, negative
predictive value; TN, true negative; TP, true positive; Vasor, variant assessor of MDR3.

pathogenic cases are assigned a high probability value
(75% of pathogenic variants >0.74 PoP) (Figure 5).
Furthermore, Vasor showed no misclassifications of
variants in the data set for values below 0.23 and above

87

0.84, indicating high certainty for benign variant predic-
tions in the range 0—0.23 (74% of the benign variants)
and pathogenic variant predictions in the range 0.84—1
(60% of the pathogenic variants).
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FIGURE 5 Distribution of probability of pathogenicity values over the entire data set. Distribution of Vasor's probability of pathogenicity
output for benign (blue) and pathogenic (red) variants. Vasor classified 74% of benign variants into the benign category with values below
0.22, which is below the lowest probability value of any pathogenic variant (0.23) within the data set; 60% of pathogenic variants were
classified into the pathogenic category with values above 0.85, which is greater than the highest probability value of any benign variant
(0.84) within the data set; 75% of pathogenic variants were classified with probability values greater than 0.74. Vasor, variant assessor of

MDR3.

We further investigated the use of SMOTE to gen-
erate data points for the minority class (i.e., patho-
genic variants). Due to the method underlying SMOTE,
SMOTE-generated data points are expected to follow
the distribution of pathogenic variants within the PoP
curve. Accordingly, no SMOTE data point was pre-
dicted with a lower value of PoP than 0.28, and data
points mainly clustered within the high certainty zone
(Figure S6).

Overall, Vasor showed a robust separation of PoP
values of both variant classes, indicating that Vasor
classified most variants within the data set with high
certainty.

Easy accessibility of Vasor as a
webserver tool

Using Vasor, we precalculated the effect of every pos-
sible amino acid substitution for MDRS3, resulting in a
heatmap of 1286 x 20 probabilities of pathogenicity
(Figure 6; Table S3). We mapped the average PoP of
each position onto the MDR3 protein structure to visu-
alize positions that are functionally more sensitive to
substitutions (Figure 7). As expected, areas near the
ATP-binding site within the nucleotide-binding domain
displayed a high average PoP. Similarly, buried resi-
dues within the helices forming the TM part showed
high sensitivity as several missense mutations may
lead to a disruption of the helical structure. More ex-
posed residues located on the outsides of helices or in
flexible regions, such as the small extracellular loops,
displayed less sensitivity. However, this trend does not
exclude that specific variants at seemingly less sensi-
tive sites can be pathogenic and vice versa.

88

To indicate the usage of the webserver more specif-
ically, we exemplarily predicted the effect of two vari-
ants, V428D and N902D, identified in Drége et al.!
These variants were identified in patients without fur-
ther in vitro analysis and not used in the data set for
creating Vasor. The variant V428D is predicted to be
pathogenic by Vasor with a PoP of 0.77, indicating a
good level of certainty for a correct prediction of the
pathogenic effect as only four out of 12 variants from
the data set were falsely predicted with a similarly high
score (Figure 5). V428D is located directly before the
Walker A motif, which is important for correctly coordi-
nating the adenosine and the phosphate moiety of ATP
in combination with the Walker B motif. Accordingly,
the variant might disturb this recognition, resulting in a
distorted functionality of MDR3. The variant N902D is
predicted to be pathogenic by Vasor with a PoP of 0.90,
indicating a high level of certainty for a correct predic-
tion as no false predictions within the data set were ob-
served at such high values (Figure 5). N902D is located
in the cytosol-facing part of TM10, with the potential
to interact with residues of the X loop of nucleotide-
binding domain 1, especially R529. As the X loop is
likely involved in relaying the ATP-binding event to the
TM domains through conformational change,*”! N902D
might exert its effect by hindering this transmission.

We also used the precomputed heatmap for rapid
lookup and output generation of the webserver tool,
thus eliminating waiting time for users needing a predic-
tion for a specific MDR3 variant. The webserver can be
accessed at https://cpclab.uni-duesseldorf.de/mdr3_
predictor/. It requires as input an MDR3 variant (with
the amino acid of the reference sequence in the one-
letter format, its position within the canonical sequence
of Uniprot ID: P21439-1, and the substituted amino acid
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FIGURE 6 Heatmap of predictions for every possible amino acid substitution in MDR3. (A) Color-coded predictions for every position
(displayed on the y axis) within the MDR3 protein and every possible amino acid substitution (x axis). Prediction values range from likely
benign (blue) to likely pathogenic (red). (B) Secondary structure of MDR3. a-helical stretches are depicted as green zig-zag curves,
3-sheet stretches as orange arrows. (C) Domains, secondary structure elements, and characteristic motives are indicated on the right.
MDR3, multidrug resistance protein 3; NBD, nucleotide-binding domain; TM H, transmembrane helix.

FIGURE 7 Mapping the average pathogenicity onto the structure of MDR3. Prediction values for each position were averaged over all
possible substitutions. Values closer to 0 (most likely benign) correspond to blue, values closer to 1 (most likely pathogenic) correspond to

red residues. MDR3, multidrug resistance protein 3.

in the one-letter format) and yields the predicted effect
of the entered variant, either benign or pathogenic, to-
gether with the PoP. Additionally, the variant position is
depicted in the three-dimensional structure of MDRS3,
and high-quality images of reference sequence amino
acid, variant, and the overall MDR3 structure can be
downloaded. The heatmap is also downloadable from
the webserver for implementation in other applications.

DISCUSSION

Although recent years have resulted in many general
predictors for protein properties, their performance on
specific proteins of interest can differ greatly.*® While
existing state-of-the-art tools to predict substitution ef-
fects perform admirably on the MDR3 protein, especially
EVE,"® the potential for improvement is given both for
the performance on and coverage of the MDR3 data
set because not every general predictor can classify
each MDR3 variant. To improve predictions, we created

what is to our knowledge the largest data set specific for
pathogenic and benign variants of MDR3, obtained from
the literature and gnomAD database and comprising 85
pathogenic and 279 benign variants. As the generation
of a high-quality data set is a critical first step for any
machine-learning approach,>° we carefully screened
the literature specifically for MDR3 variants, filtering out
variants with unclear disease associations. To counter-
act the bias that mainly pathogenic variants are chosen
for detailed in vitro or in vivo analysis, we obtained vari-
ants from the gnomAD database.*®! Because there may
be potentially disease-associated variants in the da-
tabase, we implemented an additional filtering step of
removing variants categorized as likely pathogenic or
pathogenic as evaluated by VarSome”! to exclude FN
variants. The data set resulting from this strategy was
then kept as is (i.e., no variants were added or removed),
thus eliminating the potential to introduce bias from the
researcher. Using established general predictors and
variant site properties, we trained an MDRS3-specific
machine-learning model, termed Vasor, to classify
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protein missense variants into benign or pathogenic.
Vasor outperformed general predictors. Over the entire
data set, Vasor showed F1-score and MCC values of
0.85 and 0.80, respectively; the second best method,
EVE, followed with scores of 0.81 and 0.77, respectively,
but coverage of only 85.7%. By contrast, Vasor ensured
high-quality predictions for all MDR3 missense variants.
As machine-learning models trained on a specific data
set exhibit a bias toward overperformance on this data
set, Vasor has an inherent advantage when evaluated
on the entire data set over other predictors. Notably, the
superior performance of Vasor was also present on the
independent test set where Vasor only misclassified two
(5%) benign and two (5%) pathogenic variants, leading
to the highest performance compared to other predic-
tors, as indicated by F1-score and MCC of 0.9 and 0.8,
respectively. Although EVE and PON-P2 achieved simi-
lar performances for the test set, they only covered a
fraction of the variants (82.5% and 37.5%, respectively).
Overall, no other analyzed predictor provided a similarly
good balance of consistently low FN and FP predictions.
Both measures have important implications for using
Vasor within a clinical setting. Predictors with a high
number of FNs will lead to variants found within patients
being falsely given no attention, whereas a high number
of FPs will result in a predictor raising too often a false
alarm for an actually benign variant.

We established an easily accessible webserver for re-
liable and fast predictions of novel MDR3 variants based
on Vasor. It can serve as an important step for deciding
which variants to study and to provide the first indica-
tion of a variant effect. It does not eliminate the need for
classical in vitro studies for mutational impact, however,
and in a clinical setting, the ACMG-AMP guidelines?®®
should be followed. The webserver classifies single-site
amino acid substitutions into the categories benign or
pathogenic. Truncation, insertion, and deletion variants
of MDR3 cannot be assessed. However, the PoP for
such variants is often more definite.®% Of note, the effect
of a single missense variant within the biological context
might not always be a clear-cut pathogenic or benign ef-
fect. Therefore, the PoP provided by the webserver can
act as an indicator of prediction reliability.

As a limitation, the exact mechanism underlying a
pathogenic variant cannot be inferred from the current
tool. MDR3 missense variants may impact protein fold-
ing and maturation, activity, or stability,"® and several
of these categories can be influenced. Information on
mechanistic dysfunction may aid in targeted therapy.
In terms of machine learning, such a multiclass clas-
sification problem might be solved—with the prem-
ise of a sizeable data set of quality-assured variants.
Unfortunately, we are unaware of such a data set for
MDR3. The currently employed data set strived for such
quality-assured variants; however, especially lacking
large-scale functional studies of benign variants, vari-
ants indicated by VarSome as of unclear significance
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were included. Thus, we encourage the scientific com-
munity to submit novel MDR3 variants with a proven
effect on folding, maturation, activity, and stability to the
authors to be added to the data set to improve and de-
velop Vasor further.
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Supplemental Tables

Sl Tables 1 and 3 are provided as separate .xlsx files.

Sl Table 2: Detailed performance measurements of Vasor in comparison to EVE, PolyPhen-

2, PON-P2, and MutPred2 on the independent test set.

Vasor EVE PolyPhen-2 PON-P2 MutPred2
Recall 0.90 0.83 0.95 0.75 1.00
Specificity 0.90 1.00 0.80 1.00 0.55
Precision 0.90 1.00 0.83 1.00 0.69
NPR 0.90 0.83 0.94 0.92 1.00
Accuracy 0.90 0.91 0.88 0.93 0.78
F1-Score 0.90 0.91 0.88 0.86 0.82
MCC 0.80 0.83 0.76 0.83 0.62
TP 18 15 19 3 20
FN 2 3 1 1 0
TN 18 15 16 11 11
FP 2 0 4 0 9
Coverage [%] 100 825 100 375 100
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SI Fig. 3: Distribution of misclassified variants. Misclassified variants were mapped to the
MDR3 structure. Vasor-misclassified False Negatives are depicted in cyan and False Positives
in pink.
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Abstract

Nuclear receptor farnesoid X receptor (FXR) acts as a key regulator of bile acid pool
homeostasis and metabolism. Within the enterohepatic circulation, reabsorbed bile acids act
as agonists on FXR, which transcriptionally controls the synthesis and transport of bile acids.
Binding occurs in the ligand binding domain (LBD), favoring a conformational change to the
active state in which helix 12 interacts with the LBD to form an interaction surface for nuclear
co-activators. The homozygous missense variant T296l, identified in a PFIC5 patient, is
located close to the critical helix 12 interaction. Here, we identified reduced transcriptional
activity of the variant protein on the downstream targets BSEP and SHP in vitro and within the
patient’s liver. Analysis of the structural dynamics of the conformational change from an
inactive to an active state of the FXR LBD with molecular dynamics simulations revealed that
while the wildtype protein frequently transitions into the active state, this movement and the
necessary perfect placement of helix 12 was significantly impeded in the T2961 mutated
protein. To our knowledge, this is the first study to describe the conformational change from
an inactive to an active state of the FXR LBD. This might be useful for new therapeutic
approaches targeting the activation of FXR. Overall, combining in vivo data with in vitro and in
silico experiments, we suggest a molecular mechanism underlying the PFIC phenotype of a

patient with an FXR missense variant.
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Introduction

Progressive familial intrahepatic cholestasis (PFIC) is a rare group of genetic disorders that
affect the liver's ability to excrete bile constituents, resulting in impaired bile flow, subsequent
intrahepatic cholestasis, and progressive liver damage and failure (1, 2).

Farnesoid X receptor (FXR), encoded by the NR71H4 gene, is a nuclear receptor (NR)
responsive to bile acids (BA) and a key regulator of BA metabolism, playing a pivotal role in
maintaining BA homeostasis by controlling BA synthesis, transport, and detoxification (3, 4).
NR1H4 variants associated with PFIC (subtype 5) were characterized by coagulopathy and a
rapid progression toward end-stage liver disease (5-7). While most patients carried bi-allelic
protein-truncating variants (5-8), only two NR7H4-associated PFIC patients carrying
homozygous missense variants have been identified (7, 9). While one patient died on the
transplant waiting list due to end-stage liver disease at the age of 9 months (c.557G>A) (7),
the other patient was successfully transplanted at the age of 8 months (c.887C>T,
p.(Thr296lle), referred to as T296I in the following) and is currently 10 years old (9). FXR and
BSEP staining was found negative in the liver tissue of PFIC patients with protein-truncating
NR1H4 variants (5, 8). To determine the contribution of the homozygous NR1H4 T296I
missense variant to the PFIC phenotype of our patient, we studied the localization and
transcriptional activity of the mutated protein in vitro.

Molecular dynamics (MD) simulations have proven useful in elucidating the functional
mechanisms of protein activity (10). In particular, nuclear receptors (NRs) have benefited from
this in-depth analysis as their functions are often diverse, and subtle changes in ligands can
lead to altered conformations and, thus, protein activity (11-13). The positioning of helix 12
(H12), forming part of the activation function 2 (AF2) surface, is pivotal for NR activity via the
recruitment of coregulatory proteins. Coactivators interact with the AF2 surface using a
conserved LXXLL motif (14), while antagonist-bound NRs favor corepressor binding to the AF2
surface with a larger hydrophobic motif and blocking the active positioning of H12 (15). Several
MD studies of the LBD of FXR have underlined the importance of H12 positioning (16-18).

However, the transitioning from the inactive to the active conformation as well as the effect of
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single-site missense variants on the function of FXR has so far not been analyzed by MD
studies. Thus, we employed MD simulations to analyze the conformational change from an
inactive to an active state and evaluated the impact of the T296I variant both with a localized

distance measurement and with regard to its influence on H12 positioning.
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Materials and Methods

Plasmids, cloning and mutagenesis

The BSEP promoter plasmid based on pGL3-basic (BSEPP™™-Luc) was a kind gift from Roche.
The human SHP promoter (bases -572 to +10, GenBank Accession Number AF044316) (19)
was amplified by PCR from a healthy human liver genomic DNA pool. DNA sequencing was
performed for all cDNAs used (Eurofins). Note that the numbering of the protein variant (T2961)
is based on the alpha1 isoform (Uniprot acc. Q96RI1-1). For details on the cloning strategies

see Sl.

Immunofluorescence staining of HEK293 cells

HEK293 cells seeded onto glass coverslips in 12-well plates were transiently transfected with
1ug each of FXR and retinoic X receptor (RXR) o expression constructs for 48h. After 24h,
cells were stimulated with obeticholic acid (OCA, INT-747, 10puM) and 9-cis-retinoic acid (9-
cis-RA, 1uM). Cells on coverslips were washed with PBS before fixation with ice-cold methanol
(30sec). After blocking in UltraVision protein block (ThermoFisher Scientific) for 30min, cells
were stained for 1h at 1:100 with rabbit anti-FXR (H-130; sc-13063, Santa Cruz Biotechnology)
followed by staining at 1:250 with goat anti-rabbit-IgG-FITC (Jackson ImmunoResearch) and
DAPI at 1:20.000. Coverslips were mounted on microscopic slides using Dako fluorescence

mounting medium.

Western Blot

HEK293 cells seeded into 6-well plates were transiently transfected for 48h with 2ug per well
of either WT or mutant pnoCherry-FXR as described above and in Sl. Membranes were
blocked with 5% BSA in TBS-T for 1h before overnight incubation with rabbit anti-FXR (H-130;
1:2.000) and mouse anti-B-actin (ab6276, Abcam; 1:10.000) followed by incubation with goat
anti-rabbit-IgG-AlexaFluor 647 and goat anti-mouse-lIgG-AlexaFluor 488 (both at 1:5.000).

Fluorescent signals were detected using a ChemiDoc MP imaging system (Biorad).

—t

{ 109



Reprinted publications

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.08.579530; this version posted February 12, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Luciferase Assay

Luciferase assays were performed using the Dual Luciferase reporter assay (Promega)
according to the manufacturer’s instructions. Briefly, HEK293 cells kept in DMEM containing
10% fetal calf serum (FCS) were seeded onto 12-well plates at 150.000 cells per well and
transfected the next morning with 1ug of the BSEPP™™-Luc or SHPP™™-Luc plasmid and 100ng
each of FXR and RXR expression plasmids using Fugene HD (Promega) at a ratio of 2.5:1
(reagent:DNA). Cells transfected with FXRa1/2 expression plasmid were stimulated with 10uM
OCA (INT-747), cells transfected with RXRa were stimulated with 1uM 9-cis-retinoic acid (9-
cis-RA), cells transfected with both FXRa1/2 and RXRa expression plasmids were stimulated

with both ligands.

RNA preparation, reverse transcription, pre-amplification, and PCR analysis

Total RNA was extracted and purified using the AmoyDx FFPE DNA/RNA Kit, (Amoy
Diagnostics Co.) according to the manufacturer's instructions. 100ng of RNA was reverse
transcribed using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems).
After pre-amplification, qPCR was carried out with different TagMan™ Gene Expression
Assays (Applied Biosystems). Relative quantification of mMRNA was performed according to
the comparative 22T method with SDHA as an endogenous control (see Sl for detailed

information).

Structure modeling and molecular dynamics simulations

To analyze the impact of the variant T296l, the ligand binding domain (LBD) structure of FXR
(Q96RI1-1, residues 248 to 476) was modeled based on the chenodeoxycholic acid (CDCA)-
and NCoA2 peptide-bound X-ray crystal structure of the FXR LBD (PDB ID 6HL1) (13),
representing the active state of FXR, using SWISS-MODEL (20). To model the inactive state
with H12 not interacting with the LBD core, the loop between helix11 and H12 was remodeled

within PyMOL (Schradinger, LLC, New York). In detail, residues 460 to 466 (**°VNDHKFT46®)

were removed and readded, pointing away from the LBD core, followed by the a-helix H12.
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MD simulations were performed for both the active and inactive states in the presence of the
endogenous ligand CDCA and a short peptide sequence from the NCoA2 protein (sequence
KENALLRYLLDKD), containing the signature motif LXXLL for binding to an NR (14). The
structural models were prepared for molecular dynamics (MD) simulations using the AMBER21
package (21). Overall, four different systems were prepared: FXR wildtype in the active state
(hereafter termed “active WT”), FXR T296l variant in the active state (“active T2961"), FXR
wildtype in the inactive state (“inactive WT”), and FXR T296l variant in the inactive state
(“inactive T2961"). Postprocessing and analysis of the MD trajectories were performed with
CPPTRAJ (22) implemented in AmberTools21 (21). For further details, please see the SI

Methods.

Statistical Analysis

Significance tests were performed using the Mann-Whitney U test or Student’s t-test if not
indicated otherwise. The indicated significance levels are n.s. (not significant, p > 0.05), *: p <

0.05, **: p<0.01, ***: p <£0.001, ****: p < 0.0001.
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Results

The T2961 variant is located within the LBD of FXR

The ligand binding domain (LBD) of FXR is critical in regulating the protein’s activity. Residue
296 is located on helix 3 with its side chain facing toward the AF2 interaction surface formed
partly by H12 (Fig. 1A and B). We thus hypothesized that variant T2961 impacts FXR'’s ability
to transition from the inactive to the active state. Accordingly, we investigated the effect of
variant T296l in MD simulations starting from one of the four configurations: FXR WT in the
active state (“active WT”), FXR T296! variant in the active state (“active T296!"), FXR WT in
the inactive state (“inactive WT”"), and FXR T296I variant in the inactive state (“inactive T2961")
(Fig. 1C). All systems contained the LBD of FXR, the agonist chenodeoxycholic acid (CDCA)
(23, 24), and a short peptide sequence of the nuclear receptor coactivator 2 (NCoA2). The
inactive state was created from the active state through repositioning of the loop region
between H11 and H12 such that H12 pointed away from the LBD core and had a distance
> 45A to it (distance in the active state 16A). This setup allowed us to study if the substitution

impacts the active state and/or the transition from the inactive to the active state.
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Fig. 1: Overview of the protein structure of FXR and the variant site within the LBD. A)
Schematic of the domain arrangement of the FXR protein. The N-terminal activation function
1 (AF1) motif is followed by the DNA-binding domain (DBD), which is connected via a flexible
hinge region to the LBD and the C-terminal H12. The variant T296l (red star) is located within
the LBD. B) Protein structure of the LBD of FXR. The protein systems were modeled based on
the crystal structure of agonist-bound FXR LBD (13) and used for MD simulations, containing
additionally CDCA as ligand (pink, shown as sticks) and a short peptide of NCoA2 (magenta).
H12 is highlighted in blue and H3, containing the variant site T2961 (red star), is labeled. C)
Overview of the four systems used as input to MD simulations to study the variant’s impact on
the active and the inactive state of the LBD. To differentiate between the different systems, we
have consistently used the following color scheme: active WT in darker grey, inactive WT in
lighter grey (corresponding to the depicted color of the LBD), active T296l in red and inactive
T2961 in faded red (corresponding to the depicted color of the star indicating the variant
position).

T2961 decreases the transcriptional activity of FXR

To determine the consequences of the FXR missense variant T2961 on expression, subcellular
localization and target gene induction, human FXRa1 and FXRa2 were cloned from human
liver and co-transfected with RXRa into HEK293 cells. Both wildtype (WT) as well as the

missense variant were detected within the nucleus of transfected cells (Fig. 2A). Furthermore,

protein amounts as determined by western blotting were similar in WT and T296l transfected
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cells (Fig. 2B). For functional analysis, we used a luciferase expression vector containing the
BSEP promoter sequence (BSEPP™™-Luc), which was co-transfected with several
combinations of RXRa and either FXRa1, FXRa2, FXRa17%! or FXR02™%' and subsequently
stimulated with an FXR ligand (OCA, 10uM) and an RXR ligand (9-cis-RA, 1uM). The highest
BSEP transactivation was observed when both RXR and WT FXRa1/2 were co-transfected,
represented as 100% luciferase activity (Fig. 2C). Transfection of FXRa1 or FXRo2 alone
resulted in luciferase activity of 19.24% and 34.45% respectively, in comparison to co-
transfection with both RXRa and either WT FXRa1/2. However, when the FXRa1/27°®! variant
was transfected alone, there was a significant decrease in luciferase activity to 11.72% and
4.89%, respectively, when compared to either WT FXRa1/2. Similarly, the co-transfection of
RXRa with the FXRa1/2™%! variant resulted in a significant reduction in luciferase activity, with
decreases to 26.06% and to 13.14%, respectively, in comparison to the co-transfection of
RXRa and either WT FXRa1/2. We obtained similar results by using the SHP promoter
sequence in the same luciferase expression vector (SHPP°™-Luc) and under the same
experimental conditions (Fig. S2). In summary, even though the subcellular localization and
protein expression levels were unaffected, the presence of the T2961 missense variant resulted

in a substantial decrease in FXR target gene transactivation in vitro.
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Fig. 2: FXR T296l reduces transcriptional activity of the BSEP promoter in transfected
HEK293 cells. A) HEK293 transiently co-transfected with RXRa and either FXRa1, FXRa2,
FXRa17%!, or FXRa2™%! showed correct nuclear localization of the wildtype (WT) and mutant
protein. Bar = 10um. B) Western blot analysis revealed similar protein amounts in cells
transfected with the different FXR cDNA constructs, un=untransfected controls. C) Analysis of
luciferase enzymatic activity after transfection of HEK293 cells with a luciferase reporter gene
downstream of the BSEP promoter (BSEPP™™-Luc) as well as different combinations of RXRa
and either FXRa1, FXRa2, FXRa1™%! or FXRa2™% as indicated on the x-axis. The plasmid
pRL-TK was included in each transfection for normalization. Cells were stimulated with the
FXR ligand OCA (10uM) and the RXR ligand 9-cis-RA (1uM). Values were obtained from three
independent experiments, in which each condition was tested in duplicates. Values on the y-
axis represent the mean and SD, expressed as % luciferase activity. The asterisks indicate a
significant difference analyzed by a two-tailed Student t-test, *** = p < 0.001.
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FXR T296l leads to an increased distance between H12 and the substitution site,
indicative of a less favorable active state

Using MD, we investigated the molecular mechanisms underlying the decreased activity of the
T2961 variant. All simulation systems showed minor structural variability with respect to the
binding of CDCA and NCoA2 and the FXR LBD structure up to and including H11 (Fig. S1).
Based on the crystal structure of the FXR LBD (13), representing the agonist-bound active
state, the WT T296 likely interacts with T466 preceding H12 (Fig. 3A). Accordingly, we
measured the distance between residue T296 and T466 during MD simulations and compared
it to the reference distance in the crystal structure. For the active states, the variant showed
an increase in the distance (Fig. 3B). We determined the frequency of occurrence when the
reference cutoff distance was reached (Fig. 3C, Table S1). Across the 15 replicas, the active
WT system was found in approx. 27% of the time in the active state according to distances
below the reference distance. The frequency of occurrence was significantly lower for active
T2961 (0.40%). The inactive systems showed initially high distance values, as expected.
Inactive WT reached below the reference distance in 6 out of 15 replicas and often stayed
within this active state for the remainder of the simulation time, indicating that the active state
is the preferred one under the simulation conditions (Fig. S3, Table S1). Inactive T296! only
reached the reference distance in one replica (Fig. S3, Table S1) and, accordingly, the
frequency of reaching the reference value was significantly reduced in the inactive T296l
system compared to the inactive WT system (Fig. 3C).

Overall, we observed an increase in the distance between residue T296 and T466 for the T296I
variant in the active state. In line, for systems started either from the active or inactive state,
T296I led to a significant decrease in the frequency of occurrence in reaching the reference
distance compared to the WT. This data indicates that the active state is destabilized in the

variant.
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Fig. 3: Distance analysis between residues T296 and T466 over MD simulation time. A)
Depiction of the distance measured within the LBD of FXR between the Cg atoms of residue
T296 and T466. The mean distance is increased in the active T296! (6.6A) compared to the
active WT (5.0A). B) Histograms of measured distances over all 15 MD runs (see Fig. S3) for
each analyzed state. The reference distance (4.6A) as measured in the agonist-bound crystal
structure (13) is depicted as dashed lines. C) Frequency of occurrence that the respective
system is in the active state. For each replica (Fig. S3), the percentage of reaching a distance
below the reference distance (4.6A) is depicted as a boxplot. Individual values are shown in
Table S1. Boxes depict the quartiles of the data with the median (straight black lines) and mean
(grey dots) indicated; the whiskers indicate the minimum and the maximal values, outlier points
are depicted as rhombus. Differences in the mean values were statistically evaluated using a
two-sided Mann-Whitney U test (N = 15, n.s.: not significant; *: p £ 0.05, ****: p £ 0.0001).

The correct positioning of H12 in the active state is reduced in the T296l variant

As the correct positioning of H12 within NRs is crucial for activity (25-28), we visually analyzed
the simulation trajectories of the inactive systems and exemplarily show the conformational
change from the inactive to the active state for one out of several MD replicas of the inactive
WT system showing this transitioning (Fig. 4A and Movie S1). For the inactive T296l, we show
the MD replica where H12 positioning was closest to the conformation in the active state (Fig.
4B and Movie S2). Further, we analyzed the impact of T2961 on the positioning of H12 using
the root mean square deviation (RMSD) of residues 466 to 473 (H12 and preceding T466)

over the MD simulation time (Fig. 4C and D). As a reference state, we employed the active
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conformation based on the crystal structure of the agonist-bound FXR LBD (13). For the active
WT, a skewed Gaussian function was fitted to the RMSD histogram, yielding a mean of 1.9A
(Fig. S4 and Fig. 4C). Over the entire MD simulations, more than half of the time (~56%, Table
S2 and Fig. 4D) the active WT had an RMSD below this mean value, which we used as a
further reference to indicate reaching the active state. Comparing the active systems revealed
a significant shift in the distributions, with a larger mean of active T296l indicating a higher
deviation from the active positioning (active WT mean: 1.9A, active T296] mean: 2.6A, p =
0.0022, two-sided t-test, Fig. S4). The frequency of reaching the active state was significantly
lower for active T296I, inactive WT, and inactive T296l systems compared to active WT (Fig.
4D). While the inactive WT reached the reference RMSD value in four out of 15 replicas, the
inactive T296I reached it in one replica (Fig. S5). Furthermore, while the inactive T296I did not
stay in the active state long (frequency: 0.01% in replica no. 6), the inactive WT — once reaching
the active state — showed often prolonged persistence times (frequency: 15.40% in replica no.
2, 0.26% in replica no. 6, 10.17% in replica no. 8, 14.29% in replica no. 13) (Fig. S5 and Table
S2). The comparison between inactive WT and inactive T296l indicated a similar trend as
observed for the distance analysis but did not reach the significance level (Fig. 4D).

Overall, H12 positioning is significantly structurally deviating with respect to the reference
active state for all systems compared to the active WT. While the active T296I could reach the
reference cutoff, it did so for a significantly decreased amount of time compared to the active
WT, again indicating that the active conformation is less favorable in the variant. Although
inactive WT and inactive T296I could both reach the cutoff, the inactive WT reached it more
frequently and for a longer time. However, the differences to inactive T2961 are not significant.
Our data indicate that unbiased MD simulations on the us-scale can sample the transition from
the inactive to the active state (see Table 1) and that this conformational change is less

frequent in the variant.
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Fig. 4: Positioning of H12 during MD simulations. A) Conformational transitioning of the
inactive WT (replica no. 2, Fig. S3 and S5) over the MD simulation time. The initial active state
(based on the crystal structure of agonist-bound FXR LBD (13) is depicted as a green,
translucent cartoon structure. B) Transitioning of the inactive T296l (replica no. 6, Fig. S3 and
S5) over the MD simulation time. The initial active state is depicted as a green, translucent
cartoon structure. Important residues (variant site 296 [green or orange, shown as sticks], T466
[cyan, shown as sticks], H12 [blue], NCoA2 [magenta], and bound ligand CDCA [pink, shown
as sticks]) are additionally depicted in A and B. After 1000ns, H12 of the inactive WT almost
perfectly overlayed with that of the active structure, while H12 of the inactive T2961 showed
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structural deviations (red arrow). C) Histograms of RMSD values of H12 and the preceding
T466 over all 15 MD replicas for each analyzed state. Data for each MD replica are depicted
in Fig. S5. A skewed Gaussian function was fitted to the distribution of active WT (Fig. S4),
and the obtained mean (1.9A) was used as a reference cutoff (dashed lines). D) Frequency of
occurrence a system spends in the active state, i.e., when the reference cutoff is reached. For
each replica (Fig. S5), the frequency of occurrence was determined and depicted within
boxplots. Individual values are shown in Table S2. Boxes depict the quartiles of the data with
the median (straight black lines) and mean (grey dots) indicated; the whiskers depict the
minimum and the maximum values, outlier points are depicted as rhombus. Differences in the
mean values were statistically evaluated using a two-sided Mann-Whitney U test (N = 15, n.s.:
not significant; *: ***: p < 0.001, ****: p < 0.0001).

Table 1: Overview of the MD simulation results.

Distance criteria RMSD criteria
Inactive WT reaching active 6 out of 15 runs 4 out of 15 runs
state
Inactive T2961 reaching 1 out of 15 runs 1 out of 15 runs
active state
Significance between WT * (0= 0.016) n.s. (p = 0.076)
and T29612

2 Using one-sided t-test.

The T2961 variant is associated with reduced expression of FXR target genes

To investigate the mRNA expression of FXR and two of its targets (BSEP, SHP) in the PFIC5
patient carrying the T296I variant, we performed qPCR analysis using FFPE samples from the
patient’s liver taken at the time of transplantation. Additionally, FFPE-liver samples from two
cirrhotic adult patients and a healthy adult control were included in the analysis. To address
the putatively low RNA integrity after isolation from FFPE samples, we employed TagMan
Gene Expression Assays targeting different regions of the FXR and BSEP transcripts. While
FXR mRNA expression was similar between the patient and control and the two cirrhosis livers
(Fig. 5A), BSEP mRNA and SHP mRNA expression was strongly reduced in comparison to
the healthy control but also the two cirrhotic liver samples (reduction to 3.03, 1.82 and 10.91%

of healthy control for BSEP Taq1, BSEP Tag2, and SHP, respectively) (Fig. 5B). These
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findings further demonstrate that our in vitro and in silico data authentically reflect the impaired

transcriptional target gene activation by the FXR T296I variant.
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Fig. 5: FXR, BSEP, and SHP expression in the patient’s liver tissue. A) Relative mRNA
expression of FXR using two different TagMan probes (Taq1 and Taq2) showed similar levels
in the liver of a healthy control (white bars), two samples from cirrhotic livers (black bar and
dark grey bar) as well as the patient (light grey bar). B) FXR target gene expression of BSEP
and SHP were lower in the two cirrhotic livers as compared to the healthy control but were
further reduced in the sample from the T2961 PFIC patient.
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Discussion

In this study, we combined in vitro experiments with computational studies to analyze the
impact of the PFIC5-associated NR1H4 T296I variant on FXR protein expression, subcellular
localization, and function. While the introduction of the missense variant into the a1 or a2 FXR
isoform did not affect protein expression and nuclear localization in vitro, it significantly reduced
activation of the FXR target genes BSEP and SHP. A strong reduction of BSEP and SHP was
also observed in the patient’s liver at the time of transplantation. Using our computational
approach, we elucidated a detailed mechanism for the effect of the variant on the
conformational transition of the LBD from the inactive to the active state. The variant showed
a significantly reduced tendency to reach the active state, which can explain the in vitro-

identified decreased target gene expression and thus the PFIC phenotype of the patient (9).

We describe conformational changes from an inactive to the known active state of the FXR
LBD in unbiased MD simulations. To drive the system towards the active state, we used a
coactivator peptide and the most potent in vivo agonist CDCA (29) within the MD systems as
both coactivator peptide and ligand binding have been shown to induce and stabilize the active
state in vitro (13). Depending on the analysis, the inactive WT system reached the active state
in 27% or 40% (4/15 replicas for H12 RMSD analysis and 6/15 replicas for distance analysis,
respectively) of the simulations (Table 1). A dynamic movement from the inactive to the active
state (and potentially reverse, at least in ligand-free states) may occur in the nanosecond time
scale as indicated by time-resolved fluorescence anisotropy decay studies on PPARYy (27).
Chrisman et al. showed conformational changes of the H12 within the NR PPARYy towards an
almost-active state within the ys to ms time scale range in unbiased MD simulations (30).
Within our MD simulations, the LBD of FXR might sample conformational spaces usually not
available due to sterical hindrances either by the not considered parts of FXR (DNA binding
domain and linker sequences) or due to hetero-dimer binding partners. Thus, it is not surprising
that in several replicas, H12 did not move into the active position within the 1us of simulation
time due to being trapped in other energy minimas. Still, fast transitioning from the inactive to

the active state was observable in some replicas. Comparing the difference of inactive WT and
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inactive T2961 systems in reaching the active state, we observed a decrease by a factor of 3.8
to 5.7 (inactive WT: 26.7% or 40%; inactive T296l: 7%). This is in good agreement with the
transcriptional activity reduction of T2961 compared to WT as shown in the luciferase assay for
BSEP as well as the patient’s liver tissue (Fig. 2, Fig. 5).

Overall, the variant T2961, while also impacting the active state, likely exerts its negative impact
on protein activity due to a change in the structural dynamics of the inactive-to-active state
transition. Our results indicate that the T296! protein does not reach the active state fully and
less frequently compared to the WT protein.

Furthermore, from the analysis of the MD simulations, insights into the activation mechanism
of the LBD were gained. The presence of the ligand and co-activation peptide allows FXR to
switch into an active state and stably stay within this state. This is in line with previous NMR or
MD studies in RORy (11), PPARYy (30, 31), and FXR or FXR/RXR heterodimers (16-18). By
contrast, the transition from inactive to active FXR has previously not been observed in MD
simulations. Our setup of the MD simulations can be useful to predict the impact of other
missense variants on FXR function and potentially strengthen studies on FXR targeting,
enabling detailed evaluations of the molecular mechanism of drugs based on their impact on

the activation transitioning.
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Supplementary Results

Structural variability during the MD simulations

The structural variability of the systems was analyzed by root mean square deviations (RMSD)
with respect to the first production frame over the MD trajectories (Fig. S1). The results indicate
that the CDCA ligand remains in its initial binding mode (Fig. S1A, B) and show minor structural
differences between the active T296! and the inactive WT system (Fig. S1C-E). The LBD of
FXR, excluding the flexible region of helix 12 (H12) and the preceding loop, showed a constant
RMSD over the simulation time with no significant differences between the four systems (Fig.
S1C), further indicating that the LBD without H12 did not undergo significant conformational
changes over the simulation time. Expectedly, the inactive WT and inactive T296! systems
showed higher structural variability of H12 and the preceding loop region compared to the
active systems, indicating higher mobility of this part of FXR in the inactive systems.
Furthermore, in the active T296l, the mobility of H12 and the preceding loop region is
significantly higher than in the active WT system (Fig. S1D), in line with further analyses of
H12 mobility (see Fig. 4). The mobility of the NCoA2 peptide is similarly low in all systems,
indicated by generally low RMSD values. Larger values, especially visible in the inactive
systems, are indicative of higher mobility, and the displacement of the peptide was also visually
observed in several replicas. Except for the comparison of active T296l to inactive T2961, which
reveals a significantly increased mobility, the differences between the systems were not
significant.

FXR T296I reduces transcriptional activity of the SHP promoter

For further functional analysis, we used a luciferase expression vector containing the SHP
promoter sequence (SHPP™™-Luc), which was co-transfected with several combinations of
RXRa and either FXR1a, FXRa2, FXRa172%!, or FXRa2™%!. The highest SHP transactivation
was observed when both RXR and either WT FXRa1/2 were co-transfected, which we
represented as 100% luciferase activity (Fig. S2). Transfection of FXRa1 or FXRa2 alone
resulted in luciferase activity of 17.72% and 18.46%, respectively, in comparison to co-
transfection with both RXRa and WT FXRa1/2. However, when the FXRa1/272%¢! variant was
transfected alone, there was a significant decrease in luciferase activity to 7.39% and 9.53%,
respectively, when compared to WT FXRa1/2. Similarly, the co-transfection of RXRa with the
FXRa1/2™%! variant led to a significant reduction in luciferase activity, with decreases to
43.65% and 71.67%, respectively, in comparison to the co-transfection of RXRa and WT
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FXRa1/2. In conclusion, the presence of T296l resulted in a substantial decrease in SHP

transactivation in the transfected cells.

Geometric analyses of the MD trajectories

The distance between residue T296, the mutation site, and the threonine preceding H12, T466,
was measured over the MD simulation time (Fig. S3). The distance was measured between
the Cp atoms of both residues to avoid biases due to rotations of the side chains. For each
replica, the time the system has a distance below the reference distance cutoff (taken from the

initial active structure) was calculated (Table S1).

The structural variability of H12 was measured using the RMSD of all atoms of the H12
residues and the preceding T466 (**TPLLCEIW“73). Beforehand, the least mobile part of the
FXR LBD was identified, and the trajectories were fitted to this core. As a reference, the initial
active WT system was used. The RMSD was determined over the entire MD simulations time;
a histogram of the values revealed a skewed Gaussian curve for the active WT and active
T2961 system (Fig. S4). Since the distribution of active WT can be expected in a physiological,
uninhibited, active system, the mean of a fitted skewed Gaussian curve was used as a
reference for the active state. The histogram of the active T296! is significantly shifted
(assessed by a two-sided ttest) towards higher RMSD values compared to the active WT,
indicating increased mobility of H12. The RMSD values over the MD trajectories of the
individual replicas are depicted in Fig. S5. The inactive WT reached the reference RMSD value
of the active WT in four out of 15 replicas, whereas the inactive T2961 only reached the
reference in one out of 15 replicas. For each replica, the time the system showed an RMSD
below the reference RMSD cutoff (mean of the fitted skewed Gaussian curve on active WT)
was calculated (Table S2).

Melting temperature measurement of WT and variant protein in the absence or presence
of ligand

To exclude the possibility that the variant's decreased protein activity identified in luciferase
assays is due to changed ligand binding, we measured the thermostability of the FXR protein
in the presence and absence of the agonist OCA (INT-747). FXR WT and FXR T296I variant
proteins were expressed in E. coli with a His-tag and SUMO-tag to aid in purification and
solubility (Fig. S6). In the absence of ligand, both FXR WT and variant FXR T296l had
comparable melting temperatures, indicating that the protein structure is not significantly
changed due to the amino acid substitution (Fig. S7 and Fig. S8, Welch’s t-test WT+DMSO vs.
T2961+DMSO: n.s.). As expected, the presence of the ligand induced a shift in the melting
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temperature curve and led to a significantly lower melting temperature for the WT FXR protein
by 2.32+/-0.70°C (Welch’s t-test WT+DMSO vs. WT+OCA: *). For the variant protein FXR
T296l, the presence of the ligand induced a similar shift by 2.78+/-0.49°C (Welch’s t-test
T2961+DMSO vs. T2961+OCA: ***) and resulted in a lower melting temperature, comparable
to the FXR WT in the presence of ligand (Welch’'s t-test WT+OCA vs. T2961+OCA: n.s.).
Accordingly, agonist OCA binding to the protein was not disturbed by the variant, in line with
previous studies on the NR retinoic-acid related-orphan-receptor-C (RORYy) suggesting that
the ligand entry and exit pathway occurs via the so-called “backdoor” pathway and, thus, away
from the variant site (1). Of note, other NRs such as estrogen receptor, androgen receptor,
and glucocorticoid receptor can be classified by a different ligand entry via a Helix 3/Helix
7/Helix 11 interface (2), while FXR has been grouped with RORy and PPARYy (1, 3). Similarly,
unbinding MD simulation studies on the FXR LBD indicated egress pathways in line with the
backdoor pathway, facing away from the Helix 12 and the variant site, as most favorable for
the agonistic ligand GW4064 (4).

Visualization of the conformational change from the inactive to the active state

The trajectories of the inactive WT replica no. 2 (Movie S1) and the inactive T296I replica no.
6 (Movie S2) were chosen as representative trajectories of the respective system reaching the
active state. In the case of inactive T296l, the system moved close to the active state but did
not entirely reach it and/or showed higher mobility there. The reference state of the initial active
WT is repeatedly shown in the movie as a green translucent representation to aid in the
judgment of H12 positioning.
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Supplementary Figures
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Fig. S1: RMSD over MD simulation time of ligand, protein, and co-activation peptide. (A)
RMSD analysis of CDCA ligand (all atoms) over the MD simulation time (pooled over 15
replicas). (B) RMSD of CDCA ligand (all atoms) over the MD simulation time, shown for each
of the 15 replicas. (C) RMSD of FXR LBD (residues 248-458) (Cq atoms), excluding the loop
between helix (H) 11 and H12 and H12 itself (pooled over 15 replicas). (D) RMSD of FXR
(residues 459-476) (Cq atoms), corresponding to the loop between helix 11 and helix 12 and
helix 12 itself, over the MD simulation time (pooled over 15 replicas). (E) RMSD of NCoA2 co-
activation peptide (Ca atoms) over the MD simulation time (pooled over 15 replicas).
Significance tests were performed based on the means of the 15 replicas, respectively, using
the Mann-Whitney U test. Violin plots were plotted using the Seaborn library (5), with the 15 to
3 quartile within the box and the median marked as a white dot.
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Fig. S2: FXR T296l reduces transcriptional activity of the SHP promoter in transfected
HEK293 cells. Analysis of the luciferase enzymatic activity after transfection of HEK293 cells
transfected with a luciferase reporter gene downstream of the SHP promotor (SHPP™™-Luc) as
well as different combinations of RXRa and either FXRa1, FXRa2, FXRa1T296l, or
FXRa2T296l, as indicated on the x-axis. The plasmid pRL-TK was included in each
transfection for normalization. Cells were stimulated with an FXR and RXR ligand (OCA, 10pM
and 9-cis-RA, 1uM). Values were obtained from six independent experiments, in which each
condition was tested in duplicate. Values on the y-axis represent the mean and SD, expressed
as % luciferase activity. The asterisks indicate a significant difference analyzed by a two-tailed
Student t-test, * = p< 0.05, *** = p < 0.001.
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Fig. S3: Distance between C; atoms of residues 296 and T466 over the MD simulations
time. The distances over the 15 independent replicas for the four different systems of FXR
LBD are shown. The reference distance cutoff of 4.6A, based on the crystal structure of the
agonist-bound FXR LBD (6), is shown as a dashed line. For the inactive WT and inactive T296I
systems, replicas are marked (#) where the reference distance cutoff was reached. Histograms
and frequencies of occurrence shown in Fig. 3 were calculated based on this data.
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Fig. S4: Skewed Gaussian fits on histograms of RMSD values of H12. RMSD values of
H12 and preceding T466 residue over 15 replicas of MD simulations with respect to the crystal
structure of the agonist-bound FXR LBD are shown for active WT (grey) and active T296l (red).
Using the scipy.stats module (7), skewed Gaussian functions were fitted (black and red lines).
The fitted distributions are significantly different (assessed by a two-sided t-test based on the
mean (active WT: 1.9A, active T2961: 2.6A) and the standard deviation (active WT: 0.5A, active
T2961: 0.5A). The mean of the active WT was further used as a reference cutoff value for the
expected RMSD fluctuations of H12 to the initial active structure. **: p-value = 0.0022.
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Fig. S5: RMSD values of H12 over the MD simulation time. The initial active WT structure,
based on the crystal structure of agonist-bound FXR LBD (6), was used as a reference state
for the RMSD analysis. The RMSD over the 15 independent replicas for the four different
systems of FXR LBD is shown. The reference RMSD cutoff of 1.9A, based on the mean of the
fitted skewed Gaussian function for active WT values (Fig. S3), is shown as dashed lines. For
the inactive WT and inactive T296I systems, replicas are marked (#) where the reference
RMSD cutoff was reached. Histograms and frequencies of occurrence shown in Fig. 4 were
calculated based on this data.
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Fig. S6: Coomassie staining of FXR WT and FXR T2961 protein expression and
purification. The molecular weight of FXR protein with the SUMO and His-tag is ~70kDa.

SEC: Size exclusion chromatography.
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Fig. S7: Thermostability assay of purified FXR WT and FXR T296I revealing binding of
agonist OCA. First derivative of fluorescence ratio 350nm over 330nm measured via

nanoDSF. Measured melting temperatures and significance testing are shown Fig. S8.
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Fig. S8: Melting point measurements of FXR WT and FXR T296l. Tm was measured via

nanoDSF (Fig. S7) and statistical significance was tested using Welch'’s t-test. Protein samples

were measured either in the absence (DMSO) or presence of agonist OCA.
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Atom Charge Atom Charge Atom Charge Atom Charge
C1 -0.0476 Cc7 0.1181 C15 -0.1328 C21 -0.0746
H1_1 0.0044 HC7 0.0410 H151 0.0228 H211 0.0044
H1_2 0.0044 o7 -0.6947 H152 0.0228 H212 0.0044
C2 -0.0483 HO7 0.4468 C16 -0.0703 H213 0.0044
H2_1 0.0171 Cc8 -0.0346 H161 0.0529 Cc22 0.0418
H2_2 0.0171 HC8 0.0557 H162 0.0529 H221  -0.0266
C3 0.1878 C9 0.0268 c17 0.0099 H222  -0.0266
HC3 0.0129 HC9 0.0527 HC17  0.0100 c23 -0.0168
03 -0.7098 C10 0.0880 Cc18 -0.1016 H231 -0.0319
HO3 0.4297 c11 -0.0192 H181 0.0165 H232  -0.0319
C4 -0.0620 H111 0.0115 H182 0.0165 C24 0.7860
H4_1 0.0852 H112 0.0115 H183 0.0165 025 -0.8101
H4_2 0.0852 Cc12 -0.0520 C19 -0.0961 026 -0.8101
C5 -0.0533 H121  -0.0008 H191 0.0107

HC5 0.0144 H122  -0.0008 H192 0.0107

Cé6 -0.0347 C13 0.0863 H193 0.0107

H6_1  0.0210 | C14 0.0017 | C20 0.0470

He_2 0.0210 HC14 0.0098 HC20 -0.0038

Fig. S9: Atomic point charges of the CDCA ligand used for MD simulations. Top:

Visualization of ligand structure and atom names. Bottom: RESP-derived atomic point charges.
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Supplementary Tables

Table S1: Frequencies of occurrence of the distance between residue T296 and T466

(Cs atoms) below the cutoff of 4.6A, calculated for each MD simulations replica.

Replica # Active WT? Active T2961* Inactive WT*# Inactive T29612
1 25.52 0.72 0.00 0.00
2 28.41 0.27 4.17 0.00
3 16.60 1.01 0.00 0.00
4 35.54 0.05 2.87 0.00
5 25.91 0.67 0.00 0.00
6 32.81 0.04 2.27 0.40
7 17.34 0.01 0.00 0.00
8 31.91 0.18 8.82 0.00
9 25.83 0.00 0.00 0.00
10 36.84 1.39 0.00 0.00
11 35.10 0.25 0.00 0.00
12 27.08 1.04 0.00 0.00
13 9.13 0.00 1.57 0.00
14 20.44 0.05 7.13 0.00
15 35.84 0.31 0.00 0.00
Mean 26.95 0.40 1.79 0.03
STD 8.20 0.45 2.85 0.10
2In %.

Table S2: Frequencies of occurrence of the RMSD of H12 with respect to the initial active

reference structure below the cutoff of 1.9A°\, calculated for each MD simulations replica.

Replica # Active WT? Active T296/2 Inactive WT? Inactive T29612
1 52.92 5.97 0.00 0.00
2 51.83 9.88 15.40 0.00
3 54.43 12.72 0.00 0.00
4 88.11 0.46 0.00 0.00
5 49.94 9.75 0.00 0.00
6 60.23 14.64 0.26 0.01
7 42.79 1.39 0.00 0.00
13
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8 85.92 1.84 10.17 0.00
9 53.63 12.91 0.00 0.00
10 79.32 14.81 0.00 0.00
11 59.12 19.89 0.00 0.00
12 66.80 5.80 0.00 0.00
13 8.33 0.02 14.29 0.00
14 22.62 27.15 0.00 0.00
15 59.88 17.60 0.00 0.00
Mean 55.72 10.32 2.67 0.00
STD 21.15 7.90 5.59 0.00
21In %.

Table S3: List of TagMan™ Gene Expression Assays used for pre-amplification qPCR

analysis.
Accession Gene Taq ID Amplicon Exon RefSeq
number Symbol length boundary

(base pairs)
Hs01026590_m1 | NR1H4 FXR1 78 10-11 NM 001206979.1
Hs01026592_m1 | NR1H4 FXR2 84 2-3 NM 001206979.1
Hs00994824_m1 | ABCB11 | BSEP1 93 3-4 NM 003742.2
Hs00994811_m1 | ABCB11 | BSEP2 |77 16-17 NM 003742.2
Hs00222677_m1 | NROB2 SHP 87 1-2 NM 021969.2
Hs99999909_m1 | HPRT1 HPRT1 100 6-7 NM 000194.2
Hs00188166_m1 | SDHA SDHA 70 5-6 NM 001294332.1
Hs02786624_g1 | GAPDH GAPDH | 156 7 NM 001256799.2

14
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Supplementary Movies

Movie S1: Trajectory of inactive WT (replica no. 2), visualized over the entire MD
simulations time. The trajectory displays the conformational change from the inactive to the
active state. For an easier judgment of the protein conformational state, the initial active state
(based on the agonist-bound crystal structure) is depicted as green translucent representation.
Important residues and motifs are highlighted (T296 as green sticks, T466 as cyan sticks, H12
in dark blue, NCoA2 peptide in magenta, and CDCA as pink sticks).

Movie S2: Trajectory of inactive T296l (replica no. 6), visualized over the entire MD
simulations time. The trajectory displays the conformational change from an inactive to an
almost active state. For an easier judgment of the protein conformational state, the initial active
state (based on the agonist-bound crystal structure) is depicted as green translucent
representation. Important residues and motifs are highlighted (1296 as orange sticks, T466 as
cyan sticks, H12 in dark blue, NCoA2 peptide in magenta, and CDCA as pink sticks).

15

—t

[ 140



Reprinted publications

Supplementary Methods
Plasmids, cloning and mutagenesis

The BSEP promoter plasmid based on pGL3-basic (BSEPP™™-Luc) was a kind gift from Roche.
The human SHP promoter (bases -572 to +10, GenBank Accession Number AF044316) (8)
was amplified by PCR using forward (5- agggtaccTCCTAGACTGGACAGTGGGCAAAG-3))
and reverse (5'- gtgctagcCTTCCAGCTCTCTGGCTCTGTGTT-3') to introduce, respectively,
exogenous Kpnl and Nhel sites at 5°ends. Genomic DNA was extracted from human liver
tissue, using the DNeasy® Blood & Tissue Kit (Qiagen) and was PCR amplified with the above
primers. pPCDNA3.1(+)-hRXR « (9) was obtained from Addgene (#135910). The FXR coding
sequence was amplified from a human liver cDNA pool with the primer pair FXR-S1/-S2 (5'-
ATGGGATCAAAAATGAATCTCATTGAACA-3; 5'-
TCACTGCACGTCCCAGATTTCACAGAG-3") using Phusion HiFi DNA polymerase
(ThermoFisher scientific). We thus obtained pCR2.1-FXR (a1l isoform, acc. no.
NM_001206979.2). The FXR expression vector was constructed as follows: pmCherry-N1
(TaKaRa Bio) was linearized by PCR using primer pair pmCherry-tagdel-S1/-S2 (5'-
CGGCCGCGACTCTAGATCATA-3"; 5-GGTGGCGACCGGTGGATCCC-3"), removing the
mCherry coding sequence in the process. FXR was amplified from pCR2.1-FXR using primer
pair FXR-IFHD-S1/-S2 (5-
CCACCGGTCGCCACCATGGGATCAAAAATGAATCTCATTGAACA-3'; 5'-
CTAGAGTCGCGGCCGTCACTGCACGTCCCAGATTTCACAGAG-3"), adding necessary
terminal homologous overhangs. The a2 isoform (acc no. NM_005123.4) of FXR was
generated from pnoCherry-FXR by inverse PCR using the primer pair FXR-MYTGA-S1/-S2
(5"-CTTGTTAACTGAAATTCAGTGTAAATCTAAGCGACTGAG-3'; 5-
CATTCAGCCAACATTCCCATCTCTTTGCATTTCC-3") followed by phosphorylation of the 5'-
termini and blunt-end self-ligation. The T296I variant was introduced into both FXR isoforms
by site-directed mutagenesis using primer FXR-T2961-SDM (5
TGACGGAAATGGCAATCAATCATGTACAGGTTCTT-3") and the QuikChange Lightning
Multi kit (Stratagene) according to the manufacturer’s instructions. DNA sequencing was
performed for all cDNAs used (Eurofins). Note that the numbering of the protein variant (T2961)
is based on the alphat isoform (Uniprot acc. Q96RI1-1).

Luciferase Assay

Luciferase assays were performed using the Dual Luciferase reporter assay (Promega)
according to the manufacturer’s instructions. Briefly, HEK293 cells kept in DMEM containing
10% fetal calf serum (FCS) were seeded onto 12-well plates at 150.000 cells per well and
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transfected the next morning with 1ug of the BSEP-Luc or SHP-Luc plasmid and 100ng each
of FXR and RXR expression plasmids using Fugene HD (Promega) at a ratio of 2.5:1
(reagent:DNA). Where applicable, plasmids were substituted with equal amounts of their
respective empty backbones as control, and each well additionally received 50ng of pRL-TK
as internal assay control so that the total amount of DNA per well was always 1.25ug. Each
condition was assayed in three independent replicates for BSEPP™™-Luc-based experiments
and six independent replicates for SHPP™-Luc-based experiments. 4h after transfection, cells
were pre-starved overnight by a medium change to DMEM containing 1% FCS (starvation
medium) before stimulation with ligands in starvation medium for 2h. Cells transfected with
FXRa1/2 expression plasmid were stimulated with 10puM obeticholic acid (OCA, INT-747), cells
transfected with RXRa were stimulated with 1uM 9-cis-retinoic acid (9-cis-RA), cells
transfected with both FXRa1/2 and RXRa expression plasmids were stimulated with both
ligands. Cells were washed with PBS, lysed in 80uL passive lysis buffer at RT for 20min and
scraped into 1.5mL microcentrifuge tubes. Lysates were cleared by centrifugation at 16.000 g
at 4°C for 10min, and supernatants were kept on ice. 10uL of each sample were assayed in
duplicate using 50uL each of LARII and Stop & Glo reagents in a GloMax multi detection
system (Promega).

RNA preparation, reverse transcription, pre-amplification, and PCR analysis

Total RNA was extracted from FFPE blocks of the patient’s liver, one control liver, and two
cirrhotic livers and purified using the AmoyDx FFPE DNA/RNA Kit (Amoy Diagnostics Co.)
according to the manufacturer's instructions. The non-tumorous liver tissue from a patient
undergoing liver metastasis resection was used as control tissue and histopathologically
contained no signs of hepatitis or fibrosis (denoted as healthy control). Cirrhotic tissue was
obtained from two patients undergoing resection of hepatocellular carcinoma. The cirrhotic
tissue used was histopathologically free of HCC. The study was approved by the local ethics
committee Magdeburg, Germany (33/01) and Hannover, Germany (10062_BO_K_2021).
Purified RNA was eluted with 30uL nuclease-free water. RNA integrity was assessed by
microcapillary electrophoresis on 2100 BioAnalyser (Agilent Technologies). 100ng of RNA was
reverse transcribed for 120min at 37°C followed by 5min of enzyme inactivation at 85°C using
the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) with the following
components: 1xRT buffer, 100mM dNTP mix, 1xRandom Primers, 50 U of MultiScribe Reverse
Transcriptase and 1 U of RNAse inhibitor. cDNA was then diluted 1:3 in nuclease-free water.
Before qPCR, sequences of interest in the cDNA were pre-amplified through 10 cycles using
1xTagMan PreAmp Master Mix (Applied Biosystems) and a pool of TagMan Gene Expression
Assays (Table S3), diluted 1:200 in nuclease-free water, in a final volume of 50uL (0.05x each
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Assay). Relative quantification of mRNA was performed according to the comparative 2-42CT
method with SDHA as an endogenous control. HPRT1 and GAPDH were excluded as
endogenous controls due to high Ct values. All TagMan Gene Expression Assays used for

cDNA pre-amplification and gPCR amplification were ordered from Applied Biosystems.

Setup of MD simulations and production replicas

The structural models were prepared for molecular dynamics (MD) simulations using the
AMBER21 package (10). Overall, four different systems were prepared: FXR wildtype in the
active state (hereafter termed “active WT”), FXR T296! variant in the active state (“active
T2961"), FXR wildtype in the inactive state (“inactive WT”), and FXR T296I variant in the
inactive state (“inactive T2961”). Maestro (Schrddinger, LLC, New York) was used for assigning
protonation states with PROPKA (11) at pH 7.0; histidine HIP states were reverted to HIE.
Parameters for the protein were taken from the ff14SB force field (12), and the TIP3P (13)
parameters were used for the water and ions. The protein was solvated in a cubic water box,
and Na* ions were added to neutralize the protein charges using tleap (10). The CDCA ligand
was parametrized in its physiologically relevant deprotonated form. Electrostatic point charges
were obtained with the RESP method (14) to represent the electrostatic potential of the ligand
using the R.E.D. server (PyRED version April 2022) (14-17) with the electrostatic potential
calculated at the 6-31G(d) level of theory using Gaussian16 vC.01 (Gaussian, Inc.,
Wallingford, USA). In line with the deprotonated state of the carboxylic acid group, the overall
molecule charge was kept at -1. The ligand, as well as the derived point charges, are depicted
in Fig. S9. Applying the SHAKE algorithm (18) to constrain bond lengths of hydrogen atoms to
heavy atoms enabled a time step of 2fs. Long-range electrostatic interactions were considered
using the particle mesh Ewald algorithm (19). Fifteen independent replicas were set up for
each system, and each system was minimized for 1000 steps using the steepest descent
algorithm, followed by 1000 steps using the conjugate gradient algorithm, applying harmonic
positional restraints with a force constant of 50 kcal mol™" A2 to the system excluding the
protein hydrogens, water molecules, protein side chains, protein, and ligand atoms in
consecutive runs. The system was heated to 300 K for 25ps in the NVT ensemble using the
Langevin thermostat with a collision frequency of 2.0ps™ (20) with the protein atoms restrained
with a force constant of 10 kcal mol~' A-2. Within the following seven consecutive equilibration
steps performed in the NPT ensemble using the Berendsen barostat (21) at 1 bar, the restraints
were removed (after 100ps of the overall 4975ps simulation time). Using hydrogen mass
repartitioning (22), the time step was increased to 4fs for the production replicas (each replica
was simulated for 1us, giving a total length of 15us per system). Coordinates were stored in
time steps of 100ps.
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Analysis of MD simulations

Postprocessing and analysis of the MD trajectories were performed with CPPTRAJ (23)
implemented in AmberTools21 (10). Root mean square deviations (RMSD) of the systems over
the production time were based on Cq atom positions (for FXR and NCoA2) or all atoms (for
CDCA) to analyze the structural variability of the systems. Analysis of the RMSD of H12 and
the preceding T466 (residues 466 to 473) was performed against the reference of the active
state of the initial FXR WT structure, first fitting the conformations along a trajectory on the
most stable core of the four different FXR systems (active WT, active T296l, inactive WT,
inactive T2961) over the production time. In detail, frames were extracted from all trajectories
every 10ns and analyzed using the BIO3D package (24-26) to identify the least mobile residues
throughout the simulations, which resulted in a part of helix 4 (residues 328 to 335) located at
the core of the FXR LBD. The distance between the Cg atoms of residue 296 and T466 was
measured to avoid a bias due to side-chain motions. Visualization was done using PyMOL
v2.4.0. (Schrodinger, LLC, New York) or VMD v1.9.3. (27). The distance between H12
(residues 467 to 473) and LBD core (residues 248 to 459) was measured using the center of
mass function within PyMOL.

Statistical Analysis of MD simulations

Significance tests were performed using the Mann-Whitney U test if not indicated otherwise.
The indicated significance levels are n.s. (not significant): p> 0.05, *: p< 0.05, **: p<0.01, ***:
p =0.001, ***: p< 0.0001.

Bacterial expression plasmid construction

In order to express the FXRa2 isoform (residues 1 to 472, uniprot acc. Q96RI1-2) in
Escherichia coli (E. coli), the FXRa2 gene was PCR-amplified (Q5 Polymerase, NEB, Ipswich,
USA) from the pnoCherry::fxr_alpha2_wt plasmid with the following primers: FXR_fw 5'-
GAACAGATTGGTGGTATGGGATCAAAAATGAATCTC-3 and FXR_rv 5-
CAGCCGGATCTCACTGCACGTCCCAGATTTC-3. The pET SUMO vector backbone
(Invitrogen, Waltham, USA) was PCR-amplified using the following primers: pET SUMO_fw 5'-
TGAGATCCGGCTGCTAACAAAGCC-3 and pET SUMO_rv 5-
ACCACCAATCTGTTCTCTGTGAGC-3'. PCR products were run on agarose gels for expected
size verification, Dpnl (NEB) digested for 1h at 37°C and purified using NucleoSpin Gel and
PCR clean-up kit (Macherey-Nagel, Dueren, Germany). For homologous recombination,
vector backbone and insert were used at a ratio of 1:3 for transformation of competent E. coli
DH5alpha (DE3) (Invitrogen, Waltham, USA). Transformed cells were plated on Luria-Bertani
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agar plates containing 50pug/mL kanamycin (Sigma Aldrich, St. Louis, USA) and incubated
overnight at 37°C. Plasmid isolation of single colonies was performed using the NucleoSpin
Plasmid kit (Macherey-Nagel) according to manufacturer’s instruction and sequenced
(Eurofins, Luxembourg). Recombinant plasmid (pET SUMO::fxr_alpha2_wt) was further used
for the transformation of competent E. coli Rosetta (DE3) pLysS cells (Sigma Aldrich) for
protein expression. The T296] mutation was introduced via a modified QuikChange protocol
taking the pET-SUMO-FXR_alpha2_wt as template, using the primers: FXR_T296I_fw 5'-
GACGGAAATGGCAattAATCATGTACAGG-3' and FXR_T296_rv 5'-
CATGATTaatTGCCATTTCCGTCAAAATG-3' (small letters indicating codon exchange).
Similar to the wildtype, variant recombinant plasmid pET-SUMO::fxr_alpha2_T2961 was first
subcloned in E. coli DH5alpha cells, sequenced to verify the site-specific exchange, and used

for transformation of competent E. coli Rosetta (DE3) pLysS for protein expression.

Protein expression and purification

FXR WT and T296I protein expression was performed with E. coli Rosetta(DE3) pLysS pET-
SUMO::fxr_alpha2_wt or pET-SUMO::fxr_alpha2_T292I grown in terrific broth (TB) medium
with 50pg/mL kanamycin (Sigma Aldrich). Cultures were grown at 37°C and shaking at 180
rom until reaching an OD600 of 0.9. Protein expression was induced with 1mM of IPTG (Sigma
Aldrich, St. Louis, USA) and cultures were further incubated at 20°C for 20h at 180 rpm.
Bacterial cells were harvested by centrifugation (9,150xg for 12min at 4°C (Avanti JXN-26,
Beckman Coulter, Brea, USA)) and cell pellets either stored at -80°C or directly used for
subsequent cell lysis. For cell lysis, the bacterial pellet was resuspended in 10mL/g Lysis Buffer
(50mM NazHPO4, 300mM NaCl, pH 8.0, supplemented with protease and phosphatase
inhibitors (Complete tablets, Roche, Basel, Switzerland)), 1mg/mL of lysozyme (Sigma Aldrich)
and 5ug/mL of DNAse 1 (Roche, Basel, Switzerland) were added. The mixture was then
sonicated on ice three consecutive times for 15min each with an interval pulse of 2 seconds
(UP200St Sonicator, Hielscher Ultrasonics, Teltow, Germany). Cell debris was removed by
centrifugation at 58,540xg for 60min at 4°C (Avanti JXN-26, Beckman Coulter, Brea, USA)
before loading the supernatant on a pre-equilibrated HisTrap column (HisTrap HP, Cytiva,
Marlborough, USA). Pre-equilibration was performed with binding buffer (50mM NazHPO,,
300mM NaCl, 30mM imidazole (Thermo Fisher Scientific, Waltham, USA), pH 8.0). After
protein extract application, the column was washed with 4 column volumes of binding buffer,
before eluting the recombinant protein with elution buffer (50mM NaxHPQO., 300mM NaCl,
500mM imidazole, pH 8.0). The purity of the recombinant protein was further improved via size
exclusion chromatography (SEC) using a HiLoad 16/600 Superdex 200pg column (Cytiva,
Marlborough, USA, product number 28989335) in SEC buffer (50mM NazHPO4, 300mM NaCl,
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pH 8.0). Samples for SDS-PAGE analysis (12% gels, MiniProtean Gel, BioRad, Hercules,
USA) were taken before and after induction, after HisTrap elution, and after SEC elution (Fig.
S6). Fractions containing purified protein were concentrated and stored at -80°C in 50uM

aliquots.

Thermostability assay

Recombinant FXR WT and FXR T296I protein samples were analyzed for their thermostability
using the nanoDSF technology (Prometheus, Nanotemper, Munich, Germany). Protein
samples were analyzed at a concentration of 25uM in SEC buffer (50mM NaHPO4, 300mM
NaCl, pH 8.0) either in the presence of 10-fold excess of the agonist OCA (INT-747, AbMole,
Houston, USA) (250uM in 2.5% DMSO) or with a respective 2.5% DMSO control. Prometheus
Standard capillaries (Nanotemper, Munich, Germany; with three technical replicates per
sample) were used and three runs from 20°C to 90°C with an increase of 1°C per minute were
performed (Fig. S7 and Fig. S8).
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