
Analysis of Complete-Linkage, Design of

Algorithms for the Separated k-Clustering
and Euclidean k-MSR Problems

Inaugural-Dissertation

zur Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Julian Wargalla

aus Troisdorf

Düsseldorf, Juni 2024

aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Dr. Melanie Schmidt

2. Prof. Dr. Heiko Röglin

Tag der mündlichen Prüfung: 23.07.2024

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne
unzulässige fremde Hilfe unter Beachtung der �Grundsätze zur Sicherung guter
wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf� erstellt
worden ist.

Ich versichere darüber hinaus, dass die Dissertation an keiner anderen Fakultät
vorgelegt wurde. Es gab weder erfolglose noch erfolgreiche Promotionsversuche.

Abstract

Cluster analysis is a major �eld within (exploratory) data analysis. Its goal is to
classify objects according to degrees of proximity or (dis)similarity in such a way
that the resulting clusters are relevant to whatever problem is at hand. In this
dissertation, we establish new theoretical results for several clustering algorithms
and the objectives that evaluate their output.

After a general introduction, in which we broadly outline the tasks of cluster
analysis and introduce the main objective functions used to evaluate solutions,
we turn to the Complete-Linkage algorithm in Chapter 2, a major algorithm for
computing hierarchical clusterings. We improve the previously best-known level-
by-level lower bounds for its approximation ratio on general metrics from Ω(log k),
established by Dasgupta and Long, to Ω(k) and report the �rst non-trivial upper
bounds. For CLrad, which greedily optimizes the k-center objective, we match the
lower bound by showing that the algorithm always computes O(k)-approximations.
For CLdiam, which greedily optimizes the k-diameter objective and which is much
harder to analyze, we prove an upper bound of O(k2).

In Chapter 3, we analyze how well various important objectives, such as k-
center, k-diameter, k-median, k-means, and k-diameter can be combined with the
k-separation objective. The former ensure that objects within the same cluster
are not too dissimilar, whereas the latter ensures that objects within di�erent
clusters are not too similar. Since no solutions have to exist that approximate two
objectives simultaneously, we instead consider approximations of the Pareto sets
of the corresponding bi-objective clustering problems.

In Chapter 4, we study the Euclidean k-center PTAS for constant k established
by B doiu et al. and modify it in such a way that it yields a PTAS for the Euclidean
k-MSR problem with constant k and logarithmically many outliers. Although
similar results have recently been published, this is, to the best of our knowledge,
the �rst algorithm to explicitly do this.

Chapter 5, a relatively short chapter, then concludes the dissertation by show-
casing some preliminary results for the connected k-center problem.

5

Contents

1 Introduction 9

1.1 The Problem(s) of Cluster Analysis 9
1.2 Partitional Clustering Problems . 16

1.2.1 The k-Diameter and k-Center Problems 18
1.2.2 The k-Median and k-Means Problems 20
1.2.3 The k-MSR and k-MSD Problems 21
1.2.4 The k-Separation Problem 24
1.2.5 Constraints . 25

1.3 Hierarchical Clustering Problems 26

2 Lower and Upper Bounds for Complete-Linkage 33

2.1 Introduction . 33
2.2 Approximation Guarantees for Single-Linkage 34

2.2.1 Lower Bounds . 35
2.2.2 Matching Upper Bounds . 36

2.3 Lower Bounds for Complete-Linkage 41
2.3.1 Dasgupta and Long's Lower Bound 43
2.3.2 Ackermann et al.'s Lower Bound 49
2.3.3 New and Improved Lower Bounds 51
2.3.4 Addendum: Removing Tiebreaks 59

2.4 Upper Bounds for Complete-Linkage 63
2.4.1 Upper Bounds for CLrad . 64
2.4.2 An Upper Bound for CLdiam 69

2.5 The Average Approximation Factor 76

3 Separated k-Clustering 79

3.1 The k-Separation Objective . 79
3.2 Combining k-Diameter and k-Separation 82
3.3 Combining k-Center and k-Separation 85
3.4 Combining k-Median/k-Means with

k-Separation . 89

7

3.5 Combining k-MSR and k-Separation 92

4 Euclidean k-MSR with Outliers 99

4.1 Introduction . 99
4.2 Basic A�ne Geometry . 101
4.3 Approximating the 1-Center problem 105
4.4 Approximating the k-Center Problem 114
4.5 Approximating the k-MSR Problem 117

4.5.1 Guessing Good Lower Bounds 118
4.5.2 The Algorithm . 121
4.5.3 Outliers . 123

5 Connected Clustering 124

5.1 Introduction . 124
5.2 Hardness of the Assignment Problem 125
5.3 An Assignment Algorithm for Trees 127

8

Chapter 1

Introduction

1.1 The Problem(s) of Cluster Analysis

Let us begin by trying to circumscribe, very roughly at �rst, the problem(s) central
to cluster analysis. Cluster analysis as a whole belongs to the �eld of (exploratory)
data analysis and refers to �the process of classifying objects into subsets that have
meaning in the context of a particular problem.�1 It is the �formal study of algo-
rithms and methods�2 that try to make `visible' or uncover underlying structures
or patterns of organization that are relevant for whatever problem is under con-
sideration. Cluster analysis is not concerned with individual objects themselves
but rather with their relations. As the term `cluster' already indicates, the sought-
after partitionings derive from degrees of proximity between the considered objects:
generally speaking, similar objects should belong to the same cluster, whereas dis-
similar objects should belong to di�erent clusters. �All the real knowledge which
we possess, depends on methods by which we distinguish the similar from the
dissimilar.�3 Trying to draw such distinctions and thereby distribute beings into
classes has a long history that can be traced back all the way to the taxonomi-
cal considerations of Aristotle, even if the setting is very di�erent. Relations of
similarity or dissimilarity should not be taken as absolute in any way but rather
concern measurements that have been conducted in a particular context. They
might be implicitly part of the data set and derive from distances between points
representing objects in some (geo-)metric space, or they might derive explicitly
from numerical values assigned to each pair of objects. In the latter case, ob-

1 [58, p. 55]
2 [58, p. 1]
3 This short quote from Carl von Linné's 1737 �Genera Planetarium� nicely illustrates the

broad thrust. We have taken this quote from [40], where a longer version can also be found. In
an earlier edition, Everitt also wrote, �A cluster is a set of entities that are alike, and entities
from di�erent clusters are not alike.�

9

jects are not even required to have any content and are instead fully determined
through their relations with other objects. Before going into any more detail, let
us consider some particular examples.

1. Sequence clustering : Given a data set consisting of biological sequences, such
as nucleic or, more generally, amino acid sequences, the goal of sequence clus-
tering �is to predict homology and function, reduce redundancy, generate sub-
sets that are tractable for more computationally expensive methods, compare
data from di�erent environments and quantify ecosystem diversity.�4 Con-
sider, for example, the task of predicting the function of a protein, which
to a large extent depends on its three-dimensional shape (its tertiary struc-
ture), solely from its amino acid sequence (its primary structure), which is
much easier to analyze. The task is not necessarily to �t unfamiliar proteins
into pre-established classes of known behavior (although this is a possible
application � we will come back to this), but �rst and foremost to �nd
commonalities in structure and thereby possibly function as well. As Sander
and Schneider [69] note, structural homology can be inferred reasonably well
from sequence homology when the alignment length (i.e., the length of the
subsequences that could be matched) is large enough. On the one hand,
this helps in predicting the function of certain proteins by relating them
to other proteins with already-known behavior. On the other, one might
even tentatively posit new classes of proteins, predicting that their behavior,
despite currently unknown, will be similar. So this, then, is the goal: to
cluster a given set of sequences into (a small number of) clusters, such that
proteins in one cluster are structurally similar or homologous while proteins
from di�erent clusters are not. Such clusterings also allow one to simplify,
or rather, summarize data sets (of which some can contain up to billions
of protein sequences, see [74]) by storing from each cluster only a single se-
quence that nicely represents the whole cluster. Clustering algorithms such
as CD-HIT [44], UCLUST [38], and Linclust [74] have been developed with
this purpose in mind.

2. Image segmentation: In general, image segmentation aims to partition a
given image into regions of interest, which might, for example, correspond to
depicted objects. �It is a pre-processing phase of many image-based appli-
cations like biometric identi�cation, medical imaging, object detection and
classi�cation, and pattern recognition.�5 Pixels can be clustered according
to their location within the picture, their color, the intensity of those colors,

4 [38, p. 1]
5 [66, p. 1]

10

etc. In contrast to the preceding example, the measure is one of dissimilar-
ity or distance within some metric space. A prominent application of image
segmentation is the task of �nding abnormalities in brain MRI images that
could indicate tumors. Automated tumor detection can complement existing
medical procedures and assist professionals in their work, especially where
procedures can be very taxing.6

3. Community detection in social networks: This is a vast topic, and we are
only interested in providing a short but hopefully su�cient example. At its
simplest, a social network consists of an (un-)directed graph whose vertices
represent people and whose edges represent acquaintance. Based on these
relationships, one might try to identify or even partition the network into
subgraphs with a high density of internal connections (meaning, for example,
that their diameters are small). These could help track social in�uences,
analyze current or emerging trends, and detect anomalies.

In each of these cases, despite the vast di�erences between the types of data
considered, the goal is to classify or cluster objects (biological sequences, pixels,
people, etc.) according to their measured similarity or dissimilarity. If these mea-
surements are not entirely arbitrary but exhibit some structure or satisfy certain
axioms (for example, when a dissimilarity measure forms a metric), then certain
analyzable patterns start to emerge that could provide new insight into the data
set or into the underlying problem that the data set traces. With cluster analysis,
it all depends on how a given set of objects is distributed, whether relative to each
other or positionally within some ambient space.

To further �esh out cluster analysis, it is helpful to contrast it with other
approaches that resemble it, at least on a surface level. Consider the following
statement by Jain and Dubes: �intrinsic classi�cation is the essence of cluster anal-
ysis.�7 This quote places cluster analysis into the �eld of unsupervised learning
and thereby opposes it to the extrinsic classi�cation schemes of supervised learn-
ing.8 The latter is less exploratory and presupposes that the classes into which
objects are to be distributed are already known in advance to a certain degree,
i.e. that they are already �lled with some content, however minimal. Extrinsic
classi�cation schemes extract features and derive rules from an already correctly
labeled set of example objects, the training set, that help assign newly encountered
objects to the correct classes. In other words, the rules that measure the inter-
nal resemblance of objects to the pre-established classes should nicely extrapolate

6An image segmentation approach to this problem is outlined in [71].
7 [58, p. 57]
8 numerous books provide a quick introduction to these terms and machine learning in

general, such as [70].

11

from the training set to other possible objects on a case-by-case basis. Consider,
for example, the task of detecting skin cancer, or, more generally, of classifying
skin lesions, such as moles, as to whether they might be malignant or not. This
obviously important task � skin cancer is one of the most common forms of cancer
� is very well suited to a supervised learning approach and has received much at-
tention in the �eld (see [73, 72, 75, 67]). Instruments such as convolutional neural
networks (CNNs) trained on large data sets of pictures of skin lesions that have
already been correctly annotated by professionals achieve quite good results. For
a comprehensive overview of this topic, see, for example, [79].

This is not true for cluster analysis or unsupervised learning in general. �The
objective of cluster analysis is simply to �nd a convenient and valid organization of
the data, not to establish rules for separating future data into categories.�9 None
of the classes formed during cluster analysis are posited or �lled with content prior
to the task at hand; the internal constitution of objects is completely ignored in
favor of their extrinsic relations. The goal is not to distribute unseen objects into
already existing classes but rather to develop new classi�cations in the �rst place.
However, while the clusters themselves are not speci�ed beforehand, the overall
clustering, or more generally, the method that produced it, still has to be evaluated
in one way or another � di�erent contexts or tasks just might favor di�erent kinds
of classi�cations, even for the same data set. Depending on the overall approach,
it might be possible to compute clusterings using some heuristic and evaluate them
purely empirically, but this is sometimes not possible and also not always desirable.
From a theoretical perspective, we would instead like to ensure that clusterings
or rather clustering algorithms satisfy certain a priori guarantees, which might
concern:

1. Quantitative assessments which measure how well a given clustering attains
a certain goal. For example, we could try to minimize the largest measured
dissimilarity of objects placed into the same cluster � this would ensure that
the clusters are not too spread out. Most clustering problems are formalized
as optimization problems for certain objective functions and thus fall into
this category.

2. Qualitative assessments which describe certain notions of structural or �func-
torial� stability of clustering algorithms. If clusterings highlight or illuminate
certain fundamental structures of data sets, then similar data sets should
yield similar clusterings. More precisely, if we change the data set in a con-
trolled fashion, then the output of a good clustering algorithm should also
change in a controlled fashion.

9 [58, p. 15]

12

Whereas quantitative approaches consider solutions only in terms of the distances
that separate them from optimal solutions in a linear order arranged by some ob-
jective function, and algorithms in terms of their worst-case approximation ratios,
qualitative approaches directly consider the structural behavior of clustering algo-
rithms themselves. One of the �rst papers to try to establish qualitative results
was published in 2002 by Kleinberg ([61]). He lists three �natural properties�,
or axioms, that he thinks clustering algorithms should satisfy: scale-invariance,
richness, and consistency. The �rst requires that the algorithm should be scale-
invariant, i.e., the output should not change if all numerical measurements are
uniformly scaled. The second requires that we can, in principle, always adjust the
measurements in such a way that the algorithm yields any desired clustering speci-
�ed beforehand. The last requires that the output of a clustering algorithm should
not change if we decrease intra-cluster dissimilarity and increase inter-cluster dis-
similarity. This third axiom is arguably too strong10 and so, although Kleinberg
proves that no such clustering algorithm can exist, the paper still allowed for sub-
sequent research, such as the work of Carlsson and Mémoli (see for example [20,
21]), as well as Ackerman et al. (see for example [1, 2]). In the end, although
being a very interesting �eld, research on qualitative assessments is much sparser
than on quantitative assessments. One of the reasons might be that this line of
research has put more emphasis on analyzing and understanding already existing
algorithms and less on establishing new ones. Several axioms have been posited,
but they also seem to have been somewhat exhausted. Another reason might be
that such structural characteristics are not su�cient in themselves. Single-linkage,
one of the structurally most stable hierarchical algorithms, is not very useful in
practice since it quickly yields large clusters.

In this dissertation, we will instead focus on establishing results for quantitative
assessments; every clustering problem will be framed as an optimization problem
for some objective function. This treatment, of course, does not exhaust all of
cluster analysis and warrants certain criticism, but from a theoretical perspective,
it is highly signi�cant. One issue is that the gap that it leaves between theoretical
results and practical application can, at times, be quite large. Although each ob-
jective captures something desirable for any clustering whatsoever, their relevance
might di�er depending on the task at hand. For many concrete applications, it
is unclear which objective function should best be optimized since they are often
not tied directly to them. Here, some of the exploratory aspect of cluster analysis
comes back, and, based on some prior intuition, di�erent algorithms have to be
weighed against each other. Although this is somewhat unsatisfying, it is also un-
avoidable. At some point, knowledge about the concrete application has to enter

10Changing the distances in this fashion might change the �correct� number of clusters that
should comprise the clustering. See [27].

13

the picture. We agree that it would be nice to develop a better understanding
of objective functions or better tie them to speci�c applications to make it eas-
ier for data analysts to choose between di�erent algorithms, but this is not our
goal. We just wish to extend research on quantitative assessments and develop
new clustering algorithms or understand existing ones better.

Let us summarize the relevant points of the above discussion insofar as it
pertains to this work: Ignoring some of the technicalities, we could describe the
task of cluster analysis as partitioning a given set of objects into groups or clusters
such that

(i) similar objects belong to the same cluster,

(ii) dissimilar objects belong to di�erent clusters,

or, and this is just a rephrasing, such that

(i) similar objects should not belong to di�erent clusters,

(ii) dissimilar objects should not belong to the same cluster.

Of course, we have yet to specify any kind of threshold that di�erentiates similar
objects from dissimilar objects. Partially, this is because even when a context
is speci�ed, no global threshold has to exist. Locally, objects that are similar
sometimes have to be put into di�erent clusters or objects that are dissimilar into
the same cluster. More importantly, though, it is also the case that satisfying both
objectives simultaneously is a highly non-trivial, sometimes even impossible task.
They pull in di�erent, although not necessarily opposite, directions:

1. The �rst objective favors clusterings comprising just a few clusters. It ensures
that objects are not wholly disconnected from each other, such as when all
of them �oat completely detached within singleton clusters.

2. The latter favors clusterings comprising many clusters. It ensures that dif-
ferences between objects do not fully dissolve, such as when every object is
assigned to the same cluster.

There is an inherent tension here that cannot be resolved a priori. Both objectives
are qualitatively di�erent, and they should be understood in light of this di�erence.
If we were to ignore one of them, we would miss out on possibly relevant structures.
As we have already noted, what is at stake, among other things, is the number
k of clusters that should be formed. In most theoretical endeavors of partitional
clustering, this number is bracketed or �xed beforehand and passed as a parameter
to whatever clustering algorithm is used, even though determining such a number

14

should be a part of the overall task of cluster analysis. Finding good values is, in
fact, quite di�cult, and so far, relatively little research regarding this problem has
been published (see [16, 27]). For the most part, that is, whenever we deal with
partitional clustering problems, we will assume that the number of desired clusters
is known in advance.

Of course, whatever clustering problem is under consideration could also be
solved for several values of k and a seemingly good result selected. However, de-
pending on the algorithm, the results, even when the number of clusters only di�ers
by 1, might vary wildly and be especially di�cult to compare. One way of making
them more comparable would be to impose some form of hierarchical compatibility
onto the computed clusterings, meaning that for any two clusterings C1 and C2

with k1 > k2 clusters, we require that C1 can be reached from C2 by clustering
together some of the clusters already formed in C2. That is, in a sequence of hier-
archically compatible clusterings, there must exist a way of nesting one clustering
within the next, thereby �[permitting] the data to be understood simultaneously
at di�erent levels of granularity.�11 Figure 1.2 and Figure 1.3 provide visual repre-
sentations of this constraint. Computing a sequence of hierarchically compatible
and individually good clusterings is a problem that we will pick up in Chapter 2.

Beyond the individual clusterings that comprise such a sequence, the overar-
ching hierarchical structure or taxonomy is also interesting in its own right and
should be assessed as a whole. There are numerous applications in biology, knowl-
edge management, and so on.12 As a concrete example, consider the following
hierarchical variant of sequence clustering. We have already mentioned a parti-
tional variant above, but this time, the objective is quite di�erent. Instead of
clustering proteins in view of their tertiary structure, the goal now is to explore
phylogenetic relationships of organisms and construct a �tree of life� (phylogenetic
tree) that maps out and represents some possible evolutionary ancestry. We could
visualize such an organization as a dendrogram or a vertical series of nested clus-
terings, with every point in a separate cluster at the bottom and a single cluster
containing every point at the top. 13 Objectives (i) and (ii) change slightly for this
example. At some point, every object will be contained in the same cluster, so the
question is rather, how �early� this happens:

(i) Similar objects should be clustered together early.

11[32, p. 2]
12�Hierarchical techniques are popular in biological, social, and behavioral sciences because

of the need to construct taxonomies. Partitional techniques are used frequently in engineering
applications where single partitions are important. Partitional clustering methods are especially
appropriate for the e�cient representation and compression of large data bases.� ([58, pp. 89�
99])

13 We do not necessarily claim the existence of a single universal ancestor. This is just how
we will formalize hierarchical clusterings later on.

15

(ii) Dissimilar objects should be clustered together late.

This concludes our informal introduction. Having established all relevant
themes, we can now turn to mathematically precise formalizations.

1.2 Partitional Clustering Problems

The applications and especially the data sets we have encountered so far were
pretty wide-ranging and diverse, including, for example,

1. nucleic acid sequences, where the degree of their similarity derives from their
alignment,

2. pixels embedded into some Euclidean space, where the degree of their dis-
similarity derives from their Euclidean distance.

To properly state cluster analysis problems in a mathematical fashion, it is �rst
of all necessary to specify in detail the nature of the data sets we will consider.
Since similarity and dissimilarity measures behave quite di�erently, at least from a
theoretical perspective, we will restrict ourselves to one of them and only focus on
the latter. A higher value will always signify a greater dissimilarity. Additionally,
to impose a minimum of structure on the data set, we will require that such
dissimilarity measures satisfy certain axioms. All dissimilarity measures considered
in this dissertation turn the underlying set of objects into a metric space.

De�nition 1. A metric space is a tuple (X, d) consisting of a set X and a mapping
d : X ×X → R≥0, such that

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x),

3. d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z ∈ X. The elements of X will be referred to as points, and d will be
referred to as metric or distance function.

The �rst axiom is a kind of identity of indiscernibles: if two objects are not
dissimilar in any measurable way, then they are already the same. The second
axiom tells us that the dissimilarity measure is symmetrical � it does not vary
with �direction�. The third and last axiom, also known as triangle inequality, is
the most interesting. It is this axiom that imparts X with a minimal geometric
structure and is the reason why the metric can be thought of as a distance function
(and why we have decided to denote it by d) � taking a detour can never result

16

in a shorter path. Most dissimilarity measures satisfy these properties and form
metric spaces together with their objects. From now on, we will not talk about
dissimilarity measures anymore, but only metrics and distance functions.

In the informal introduction, we have described cluster analysis as the task of
partitioning data sets in such a way that the drawn distinctions are useful in a
given context. Here, we had in mind the set-theoretical de�nition of a partitioning.
A clustering for us thus amounts to the following.14

De�nition 2. Let (X, d) be a metric space. A (partitional15) clustering of (X, d)
is a set C of subsets of X, called clusters, such that

1. C ∩ C ′ = ∅ for all C,C ′ ∈ C with C ̸= C ′,

2. X =
⋃︁

C∈C C.

If C consists of k cluster and we want to highlight this, we will say that C is a
k-clustering.

However, how are such clusterings evaluated? Quantitative assessments are
done via objective functions, which introduce a gradient into the set of all clus-
terings and arrange them according to their purported usefulness. As we have
discussed earlier, we are not interested in empirical evaluations, where a clustering
is compared to an already known ground truth � this type of evaluation belongs
more to supervised learning or extrinsic classi�cation tasks. Instead, we would like
to establish quantitative guarantees for algorithms that hold regardless of the data
set under consideration. To make this more precise, recall our two goals from the
previous section:

(i) Similar points should not belong to di�erent clusters.

(ii) Dissimilar points should not belong to the same cluster.

Both goals can individually be turned into objective functions by assigning a nu-
merical value to each cluster that derives from the metric and represents how well

14It should be noted that there are also applications, such as image recognition ([71]), where it
is bene�cial to assign objects to several di�erent clusters at the same time and measure degrees
of �belongingness�. These clusterings are often termed fuzzy or soft in contrast to the hard or
exclusive clusterings that we have de�ned just now. While there is research on fuzzy clustering,
we are only concerned with strict partitionings in this dissertation: every object is assigned to
exactly one cluster.

15If not otherwise speci�ed, clusterings always refer to partitional clusterings. However, it
should also be clear from the context whether we are dealing with partitional or hierarchical
clusterings.

17

the goal has been attained. To formalize (i), we could, for example, assign to a
clustering the smallest distance induced by any pair of points contained in di�erent
clusters. The higher this value, the more separated the clusters, so our objective
would be to maximize this function. Similarly, to formalize (ii), we could assign
to a clustering the largest distance induced by any pair of points that lie in the
same cluster. The lower this value, the less spread out the clusters, so our objec-
tive would be to minimize this function. In each case, despite not being tied to a
particular or concrete application, both assessments, in principle, capture certain
desirable properties of any clustering whatsoever. Depending on the context, these
properties might not always be of equal importance, but at least one of the two, if
not both, are relevant to some extent. Of course, these particular assessments were
just examples; other aspects of the same goal can be emphasized by formalizing
it di�erently, as we will see. Nonetheless, this, in essence, is what each objective
is: a cost function that derives from exactly one of the two goals and penalizes
deviation from it.

Although we would like intra-cluster distances to be small and inter-cluster
distances to be large simultaneously, as we have noted above, this is not necessarily
possible. Both goals point in di�erent directions, especially when considering the
number of clusters that should comprise the clustering. The same holds for any
derived objective function. Usually, only goal (ii) is turned into a penalty function,
whereas (i) is completely ignored. To then prevent every point from being assigned
to a separate cluster, one imposes an upper bound, given by some �xed parameter
k, on the number of allowed clusters.16 With quantitative assessments, clustering
problems are stated as optimization problems for some objective function: �nd a
k-clustering with optimal cost or try to approximate one as well as possible. Since
it is, in almost all cases, NP-hard to compute optimal solutions, most research
focuses on approximation algorithms. That is, the ratio of the computed solution's
cost to the optimal solution's cost should be as close to 1 as possible.

1.2.1 The k-Diameter and k-Center Problems

One of the most straightforward formalizations of (ii) is the one we have described
above. If dissimilar points should not belong to the same cluster, then we should
try to minimize the maximum distance between any two points contained in the
same cluster. In other words, we should minimize the maximum diameter attained
by any cluster in our clustering.

16 There are also relaxations of this type of problem, known as facility location problems, where
instead of �xing the number of clusters, one imposes additional costs when forming clusters.
These costs are again part of the input and thus excluded from the actual clustering problem.
We will not consider facility location problems much here because their range of application is
usually quite di�erent.

18

Problem 3 (The k-Diameter Problem). Let (X, d) be a metric space and k ∈ N.
For any subset C ⊆ X, de�ne its diameter to be the largest distance

diam(C) = max
x,y∈Z

d(x, y)

between any of its points. The goal in the k-diameter problem is then to �nd a
k-clustering C of (X, d) that minimizes the maximal diameter

diam(C) = max
C∈C

diam(C)

of any cluster it contains.

This is one of the best-understood clustering problems from a purely theoretical
perspective. It has long been known that this problem is NP-hard to approximate
within a factor of α < 2 for general metrics ([48]). This bound is also known to be
tight: Gonzalez ([48]), as well as Hochbaum and Shmoys ([54]), have each provided
elegant polynomial-time 2-approximation algorithms.

The k-center problem is closely related and similarly well understood, but we
have to shift our focus a bit to state it properly. Recall that we are not always
interested in partitionings directly but sometimes rather in summarizing a data
set with the help of well-chosen representatives. For example, in the sequence
clustering example, the goal was not only to cluster proteins or other molecules
according to possible structural homology but to �nd for all clusters a particular
protein that nicely represents it. The k-center problem is about �nding such
representatives.

Problem 4 (The k-Center Problem). Let X ⊆ M be a subset of some ambient
metric space (M,d) and k ∈ N. In the k-center problem, the goal is to �nd a
subset Z ⊆ M , whose members are termed centers, of size k that minimizes the
largest distance

max
x∈X

min
z∈Z

d(x, z)

of any point in X to its closest center in Z.

We allow centers to be drawn from a space larger than the actual data set
because sometimes it is not necessary for centers to immediately correspond to
objects directly contained in it. For example, whenX is a subset of some Euclidean
space Rd, each point x ∈ Rd could, in principle, represent an object despite not
yet having been measured. These are continuous clustering problems, in contrast
to the discrete variants in which X coincides with M . Also note that, although
the focus lies on representatives, their assigned value nonetheless relates them
to a speci�c clustering that is implicitly attached to them. Given a set of k

19

centers Z = {z1, . . . , zk} ⊂ M for X we can construct from them the clustering
C = {C1, . . . Ck} that consists of the clusters

Ci = {x ∈ X | ∀j ̸= i : d(x, zj) ≥ d(x, zi)}.

That is, we group together all points that are closest to a given center. The cost
that Z induces for X is then equal to

max
i

max
x∈Ci

d(x, zi).
17

Note that an optimal k-center solution never costs more than an optimal k-
diameter solution, and the latter is, in turn, at most twice as costly as the optimal
k-solution.

Similar to the k-diameter problem, the discrete k-center problem is NP-hard
to approximate within a factor of α < 2 for general metrics ([52, 56]), and this
bound was again shown to be tight by both Gonzalez [48], as well as Hochbaum
and Shmoys [53]. Even when the points lie on the Euclidean plane, this lower
bound is still as large as

√︁
2 +
√
3 ≈ 1.96 ([65, 26]). However, if we consider

the continuous case, where centers can be drawn from all of Rd, then there exist
(1+ε)-approximation schemes with a running time of 2(k/ε log k)dn and O (n log k)+

(1/ε)O(2
dk1−1/d log k).18 The second algorithm is faster for constant dimension d, but

for constant k the former is guaranteed to run in polynomial time.

1.2.2 The k-Median and k-Means Problems

The most important and studied clustering problem likely is the k-means problem
due to its relevance to several machine learning and engineering tasks. It is notable
insofar as the corresponding objective function directly derives or is explicitly
stated in them.

Problem 5 (The k-Means Problem). Let X ⊆ M be a subset of some ambient
metric space (M,d). In the k-means problem the goal is to �nd a set of k centers
Z ⊆M that minimizes ∑︂

x∈X

min
z∈Z

d2(x, z).

17A slight technical problem with this description is that some points might be equidistant
from two di�erent centers, meaning that their corresponding clusters would intersect. Of course,
this can easily be solved by removing any such point from all but one of the clusters that contain
it until all clusters are pairwise disjoint.

18The �rst algorithm, presented in [11], is due to B doiu and Clarkson. The second was
established by Agarwal and Procopiuc in [4]. Although the latter state a better running time in
their paper, Bandyapadhyay et al. ([14]) have noted that it is slightly incorrect and �xed it.

20

The set M almost always coincides with some Euclidean space Rd, although
sometimes the discrete variant is also considered. A closely related problem, whose
�eld of application, however, is quite di�erent, is the k-median problem.

Problem 6 (The k-Median Problem). Let X ⊆ M be a subset of some ambient
metric space (M,d). In the k-median problem the goal is to �nd a set of k centers
Z ⊆M that minimizes ∑︂

x∈X

min
z∈Z

d(x, z).

The only notable di�erence on the level of the problem statement is that the
k-median cost function sums up the non-squared distances from each point to its
closest center instead of the squared distances. Quite often, theoretical results are
�rst established for the k-median problem and transported to the k-means problem
only afterward at the cost of worse approximation ratios. As we have noted earlier,
the number of theoretical guarantees and algorithms for both problems is quite
high. However, since we only care about the discrete variants and most research,
at least for the k-means problem, focuses instead on the continuous case, we can
skip most of them. Cohen-Addad et al. ([28]) have shown that the k-median and
k-means problems cannot be approximated with a factor better than (1+2/e) and
(1 + 8/e), respectively, in FPT time, assuming Gap-ETH. On the positive side,
Cohen-Addad et al. ([76]) have established a 2.67059-approximation algorithm for
the discrete k-median problem, and Ahmadian et al. ([6]) a 9 + ε-approximation
algorithm for the discrete k-means problem in general metric spaces.

1.2.3 The k-MSR and k-MSD Problems

The k-min-sum-radii problem, k-MSR for short, resembles both the k-center and
the k-median problem and takes an intermediate path: the objective is given by the
sum of all radii. Contrary to the k-center objective, we do not completely ignore
the �ne-tuning of all k − 1 smaller clusters since every cluster thus contributes to
the objective cost. Contrary to the k-median objective, not every point contributes
to it, so large individual costs cannot average out in the same manner.

Problem 7 (The k-MSR Problem). Let X ⊆ M be a subset of some ambient
metric space (M,d). The goal in the k-MSR problem is to �nd a set of at most k
pairs {(c1, r1), . . . , (cℓ, rℓ)} ⊂ M × R≥0, each consisting of a center and a radius,
that minimize

∑︁
i ri and guarantee that X ⊆

⋃︁
i B(ci, ri), where

B(ci, ri) = {x ∈ X | d(ci, x) ≤ ri}

denotes the set of all points of X that are at a distance of at most ri from ci.

21

c1 x
c2

Figure 1.1: Left side: An example where k-min-sum-radii rather opens one cluster
than eleven. Right side: An example where the cheapest k = 2-clustering keeps c1
as a singleton rather than combining it with x, despite the fact that c1 is closer to
x than the center c2 of the big cluster. It is cheaper to not assign the blue point
to the orange point even though that would be a closer center.19

Note that it is not su�cient just to provide a set of centers. This is because,
contrary to the other center-based objectives, the k-MSR objective is not local in
the sense that it is not always optimal to assign points to their closest center. It
may be bene�cial to assign them to centers further away (see Figure 1.1, right side).
Even when X is a subset of R and even when the centers are chosen optimally,
assigning points to their closest centers can result in a clustering whose k-msr cost
is three times the cost of an optimal solution (see [62]), and for more complicated
metric spaces this factor grows quickly. As it turns out, the problem of �nding the
best assignment given a set of centers is NP-hard for the k-MSR objective, whereas
computing such an assignment for the k-center objective is basically trivial. This
is why we require a solution that does not solely consist of centers but also of
radii (the costs that the centers induce). Note also that we also allow a solution
to consist of less than k pairs. Contrary to the other center-based objective, the
cost of a k-MSR solution might actually increase if we open additional centers,
i.e., increase the number of pairs with non-zero radii (see Figure 1.1, left side).

The k-MSR problem is closely connected to the base station placement problem
arising in wireless network design [63], where the objective is to minimize the
energy required for wireless transmission. Its mathematical model amounts to the
minimum-sum-radii-cover problem where we have to cover a set of clients with a
set of balls whose centers are located at a subset of server locations in such a way
that the sum of the radii of the balls is minimized. Similar to before, we can also
formulate a variation that focuses more on partitionings than on representatives.
Instead of considering only the largest diameter, as in the k-diameter, we sum all
of them up.20

19This �gure was published in [35].
20In part, this summary of known results for the k-MSR problem was published in [35].

22

Problem 8 (The k-MSD Problem). Let X ⊆ M be a subset of some ambient
metric space (M,d). The goal in the k-MSD for short, is to �nd a k-clustering
C = {C1, . . . , Ck} of (X, d) that minimizes the sum of diameters∑︂

i

diam(Ci)

over all clusters in C .

One nice property of this objective we want to highlight is that the k-MSD
objective is much more amenable than the k-diameter objective to allow the input
to be adequately separated. The latter ensures that every cluster is small by
minimizing the size of the largest cluster. However, this is not always desired.
The data set might contain a relatively homogeneous and large cluster that should
not be split apart since that would yield two clusters whose inter-cluster distance
could be exceedingly small. In other words, no proper delineation within the
data set would correspond to this separation. At the same time, since k-diameter
only considers the largest cluster, it might also merge two small clusters that are
actually quite well separated.

Although being quite natural clustering objectives, the k-MSR and k-MSD
problems have received less attention than the other objectives in our list (k-center,
k-diameter k-median, k-means). Or, rather, interest has picked up only relatively
recently. In part, this might be because the objectives behave quite counter-
intuitively at times and very unlike the other objectives (again, see Figure 1.1).
Back in 2004, Charikar and Panigrahy [22] designed a 3.504-approximation algo-
rithm for the metric k-MSR problem (and thereby also a 7.008 approximation al-
gorithm for the k-MSD problem) based on the primal-dual framework by Jain and
Vazirani for k-median problem. Recently, that is, in 2022, the approach has been
re�ned by Friggstad and Jamshidian [42], who obtained a 3.389-approximation
algorithm for k-MSR and a 6.546-approximation algorithm for the k-MSD prob-
lem (which is not just double the ratio of the k-MSR algorithm). The currently
best-known algorithm, which is also a primal-dual approach, though in many re-
spects simpler, is from Buchem et al. [17] and achieves a (3 + ε)-approximation
ratio with a running time of nO(1/ε). This approximation ratio is guaranteed even
when allowing outliers,21 so their result also improves upon the previously best-
known result of (12.365 + O(ε)). Although they will not concern us as much,
constrained variants of the k-MSR problem have been studied as well. Ahma-
dian and Swamy [5] built upon [22] to obtain a 3.83-approximation for the non-

21An outlier is a point that is ignored and does not contribute to the objective cost. For
variants of outlier problems, we usually specify a number z as part of our input that denotes the
number of outliers in our data set.

23

uniformly lower bounded22 k-MSR problem. Inamdar and Varadarajan [57] derive
a 28-approximation for the uniformly capacitated23 k-MSR problem, but this al-
gorithm is an FPT-approximation algorithm with running time O(2O(k2) · nO(1)).
Bandyapadhyay, Lochet, and Saurabh [15] also give an FPT-approximation: They
develop a (4 + ε)-approximation algorithm with 2O(k log(k/ε)) · n3 running time for
k-MSR with uniform capacities and a (15+ε)-approximation algorithm for k-MSR
with non-uniform capacities that runs in time 2O(k2 log k) · n3.

If we are in the continuous case, where centers can be drawn from all of Rd, it is
possible to obtain better results. In the plane, an optimal set of centers partitions
the plane into k disjoint convex regions in such a way that each cluster from the
corresponding clustering fully lies in one of them. The dual of that partition is an
internally triangulated planar graph, a fact that Capolyleas et al. [19] use to solve
the problem exactly by enumerating over all O(n6k) possible constellations. Gibson
et al. [47] also designed an exact algorithm for the Euclidean k-MSR problem in
R2. Their algorithm is based on an involved dynamic programming approach and
has a running time of O(n881) for d = 2. Bandyapadhyay, Lochet and Saurabh [15]
provide a (1 + ε)-approximation algorithm for the capacitated Euclidean k-MSR
problem that runs in 2O(kd log(k/ε)) ·n3 time. If capacities are allowed to be violated
by a (1 + ε) fraction, then the same approximation ratio can be achieved by a
randomized algorithm whose running time only linearly depends on d.

1.2.4 The k-Separation Problem

We conclude this list with a clustering objective that draws much less attention:
the k-separation objective. Contrary to the other objectives we have discussed,
which are all formalizations of goal (ii), this objective is a formalization of goal
(i). We have already outlined it at the beginning of this section: if similar points
should not belong to di�erent clusters, then we should try to maximize the smallest
inter-cluster distance.

Problem 9 (The k-Separation Problem). Let (X, d) be a metric sapce, and k ∈ N.
The goal in the k-separation problem is to �nd a k-clustering C = {C1, . . . , Ck} of
(X, d) that maximizes the smallest distance

max
i,j

d(Ci, Cj)

22In this variant we prescribe for each center a lower bound for the number of points that have
to be assigned to this center. It is non-uniform if this number can vary from center to center.

23In this variant, which is in some sense the inverse of the lower bounded variant, we prescribe
for each center an upper bound for the number of points that have to be assigned to this center.
It is uniform if this number is the same for all centers.

24

between any two of its clusters, where

d(Ci, Cj) = min
(xi,xj)∈Ci×Cj

d(xi, xj).

There are several things worth noting about this objective. First, this is not
a clustering objective that's often (or at all) considered. Mostly, it crops up in
the form of a clustering constraint where it requires that the smallest inter-cluster
distance of any feasible clustering has to be at least as large as some threshold
that was speci�ed beforehand.24 Second, this clustering objective is the only one
on this list that does not necessarily favor isotropic clusterings. In Euclidean
settings, optimal clusterings for all other objectives always consist of sets whose
convex hulls are pairwise disjoint, meaning they have a very ball-like shape. Other
constellations, such as the standard example of two encroaching crescents used to
motivate spectral clustering, cannot be found or recognized by optimizing those
objectives. Third, of the clustering objectives we have listed so far, this is the only
one that should be maximized. Although we have said this objective does not draw
much attention, this is only partially true. The corresponding problem is closely
related to the classical minimum spanning tree problem. In the minimum spanning
tree problem, one is given an undirected graph G = (V,E) with weights w : E →
R+, and one tries to �nd a subtree containing all vertices whose overall weight
is minimal. A standard algorithm to solve this problem is Kruskal's algorithm,
where, starting with (V,∅), one successively adds a cheapest edge between di�erent
connected components. Consider now the complete graph on X, where the weight
of an edge coincides with the distance of its points. Stopping Kruskal's algorithm
right when it has formed k connected components, the latter yield an optimal
solution to the k-separation problem. This approach coincides with the Single-
Linkage clustering algorithm we will discuss in the next section. Consequently,
this makes the k-separation problem the only problem on this list that is easy to
solve optimally. In that sense, the k-separation problem is less interesting than
the others, but that changes once we combine it with some other objectives (see
Chapter 3).

1.2.5 Constraints

Sometimes not all clusterings are valid in a given context. For example, it might
be necessary that clusters have a certain size (lower-bounded and capacitated
clustering variants), that certain attributes are well-represented within in cluster
(fair variants), or that speci�c relations between certain objects are respected
(must-link and cannot-link variants). In the corresponding variants of problems

24See, for example, the δ-constraints outlined in [33].

25

for center-based objectives we can then not just compute representatives, since the
optimal distribution of all other points relative to those centers do not necessarily
assign every point to its closest center � the resulting clustering might not be
allowed. Instead, we have to combine representatives and clusterings into the
single notion of clustering assignments.

De�nition 10. Let X be a subset of some metric space (M,d). A k-clustering
assignment of (X, d) is just a mapping σ : X → C of X onto a subset of C ⊂ M .
If C consists of k centers and we want to highlight this, we will say that σ is a
k-clustering assignment.

If cost denotes a general objective that evaluates such assignments, then the
corresponding optimization problem for the constraint asks for a valid assignment
that minimizes cost. This come up in Chapter 3, for example.

1.3 Hierarchical Clustering Problems

In the informal introduction, we also considered hierarchical clusterings. As we
have discussed, they are relevant whenever one wants to understand the data set
at di�erent levels of granularity.

De�nition 11. Let (X, d) be a metric space. A clustering C of (X, d) is hierar-
chically compatible with another clustering C ′ of (X, d) if for every cluster C ′ ∈ C ′

there exists a cluster C ∈ C , such that C ′ ⊆ C. In other words, C is hierarchically
compatible with C ′, if C ′ is a set-theoretical re�nement of C .

De�nition 12. Let (X, d) be a metric space consisting of n points. A collection
H = {C1, . . . ,Cn} is called a hierarchical clustering of (X, d), if

1. Ck is a k-clustering of (X, d) for all k ∈ {1, . . . , n},

2. Ck is hierarchically compatible with Ck+1 for all k ∈ {1, . . . , n− 1}.

There are two principal approaches to quantitatively assess such hierarchical
clusterings: either on a level-by-level basis or as a whole. Let us consider the latter
approach �rst, even if, in the end, we will only deal with the former. The �rst paper
that introduced an objective function for hierarchical structures in their own right
was published in 2015 by Dasgupta ([31]), and it is seminal in this regard. To focus
directly on the hierarchical structure and not on derived partitional clusterings,
he conceives of it not as a sequence of partitional clusterings but as a rooted tree
whose leaves are the objects to be clustered. Each internal vertex then represents
the cluster consisting of all leaves contained in the subtree starting at that vertex.
Recall our general goal from the introduction: if two objects are similar, then they

26

Figure 1.2: A rendition of a hierachical clustering on 5 points. We start with a
clustering C5 that consists only of singletons. In the next step we merge clusters
{x1} and {x2} to produce C4. This is followed by merging {x3} with {x4} and
then with {x5}. In the end all points belong to the same cluster. Note that it
is not clear from the picture at which time step each of the clusters exist. For
example, without the sequence of clusterings provided on the right, one could
also think that the �rst merge would be between {x3} and {x4}. There are other
representations, such as depicted in Figure 1.3, which this ambiguity is eliminated,
should it matter.

Figure 1.3: A di�erent rendition of the hierachical clustering given in Figure 1.2.
This type of diagram is called a dendrogram. Cutting of the upper part of the
dendrogram at each of the dotted red lines gives a forest, where the leaves of every
tree within that forest represent a clustering: the lowest line yields C5, etc.

27

should be merged early, meaning that their smallest common ancestor in the tree
should be closer to the leaves, whereas if they are dissimilar, then they should
be merged late, meaning that their smallest common ancestor should be closer to
the root. Dasgupta formalizes this intuition as follows. To each pair of objects,
we assign the product of their similarity multiplied by the number of objects con-
tained in the subtree rooted at the pair's smallest common ancestor. The goal
is to minimize the sum of all these. If the objects are similar, then the smallest
common ancestor should be close to the leaves, i.e., the subtree rooted at it should
contain few leaves, and, inversely, if this subtree contains many leaves, then the
similarity should be small. Note that Dasgupta has devised this objective with sim-
ilarity measures in mind. While there are several interesting continuations (such
as the paper [77] by Wang and Wang that also measure how much of a hierarchi-
cal structure the initial data set exhibits), for dissimilarity measures, the function
is less interesting. Although it can readily be adjusted for them, and although
Cohen-Addad et al. ([29]) were able to derive several relevant results for com-
mon algorithms (average-linkage is a 2

3
-approximation algorithm, whereas Single-

Linkage and bisection 2-center can be arbitrarily bad), Chatziafratis et al. ([25])
showed that, in expectation, one already gets a 2

3
-approximation by recursively

splitting clusters uniformly at random. Wang and Moseley ([78]) subsequently
proposed an objective function for Euclidean data that does not have this prob-
lem. Despite still being somewhat intuitive, this objective feels decisively more
arti�cial in some of its details. A problem that is already noticeable for partitional
objectives, and which returns with more force here, is that it is pretty di�cult
to establish their relation to concrete problems. To intuit or gauge when such an
objective is appropriate possibly becomes even more challenging. Still, they have
introduced meaningful distinctions between already established clusters and gave
rise to several new ones.

In any case, we will focus only on level-by-level assessments: each k-clustering in
the hierarchical sequence is independently compared to an optimal k-clustering for
this level through one of the partitional objective functions we have discussed in the
previous section. All partitional clusterings comprising the sequence should have a
good approximation ratio in their own right, i.e., the worst overall approximation
ratio should be as close to 1 as possible. In other words, we would like to minimize

max
k

cost(Ck)

cost(Ok)
,

for any given clustering objective cost, where Ok denotes an optimal k-clustering
for cost. This type of assessment is meaningful if, for example, one wants to
extract from the hierarchical sequence one or several partitional clusterings, i.e., if
one did not know which k would be best beforehand and just wanted to compute
several comparable clusterings. Noteworthy, because of the hierarchical constraint,

28

there does not even have to exist a hierarchical sequence of independently optimal
clusters (see [8]). The hierarchical clustering problems we are interested in most
are the hierarchical k-center and the hierarchical k-diameter problem.

De�nition 13. Let (X, d) be a metric space consisting of n points. Then the
goal of the hierarchical k-diameter problem is to compute a hierarchical clustering
H = {C1, . . . ,Cn}, such that the maximal approximation factor

max
k

diam(Ck)

diam(Ok)

is minimal, where (Ok)
n
k=1 are optimal k-diameter clusterings of (X, d).

Although the partitional k-center problem concentrates on representatives, in
the hierarchical k-center variant, we have to shift our focus to clusterings again.
While it is possible to reconstruct an optimal clustering from a set of centers,
getting a hierarchically consistent sequence of clusterings from a sequence of centers
is not as straightforward.

De�nition 14. Let (X, d) be a metric space consisting of n points. Then the
goal of the hierarchical k-center problem is to compute a hierarchical clustering
H = {C1, . . . ,Cn}, such that the maximal approximation factor

max
k

rad(Ck)

rad(Ok)

is minimal, where (Ok)
n
k=1 are optimal k-center clusterings of (X, d). The radius

of a cluster C ∈ C is given by

rad(C) = min
z∈X

max
c∈C

d(z, c),

so that
rad(C) = max

C∈C
rad(C)

as usual.

There are two principal types of algorithms to compute hierarchical cluster-
ings: agglomerative (or bottom-up) algorithms and divisive (or top-down) algo-
rithms. If we consider the second axiom that hierarchical clusterings have to
satisfy, then it becomes clear that all of them can be formed by applying an
appropriate sequence of merges to Cn. Indeed, if each clustering Ck is hierarchi-
cally compatible with the clustering Ck+1 that immediately follows it and contains
just one cluster less, then Ck+1 has to contain two clusters C and C ′, such that
Ck = (Ck+1 \ {C,C ′})∪ (C ∪C ′). That is, we can derive Ck from Ck+1 by merging

29

two of its clusters. The resulting approach is said to be agglomerative or bottom-
up. If one instead descends from C1 to Cn by successively splitting up clusters, then
this results in a divisive or top-down approach. The main algorithm established by
Dasgupta and Long in [32] is an example of such a top-down algorithm, although
a signi�cant amount of pre-processing is involved. Another more direct example
of a divisive algorithm is the bisecting k-means or k-center algorithm. However,
linkage-based agglomerative algorithms are the most popular class of hierarchical
clustering algorithms, be it due to their ease of use or widespread implementation.
This additional description of being linkage-based indicates that each merge per-
formed by the algorithm is determined by optimizing a particular linkage function,
which assigns a cost to every pair of possible merges.

De�nition 15. Let (X, d) be a metric space. A linkage function for (X, d) is a
mapping f : 2X×2X → R≥0 that assigns a non-negative real number to every pair
of subsets.

At each step, an agglomerative algorithm merges a pair of clusters with minimal
assigned value. Algorithm 1 provides the general outline of any agglomerative
algorithm.

Algorithm 1: Linkage-Based Agglomerative Clustering Algorithm
Data: A metric space (X, d) on n points, a linkage function f on (X, d).
Result: A hierarchical clustering H = {C1, . . . ,Cn} of (X, d).

1 Cn ← {{x} | x ∈ X};
2 for i = n . . . 2 do
3 (C,C ′)← argmin{f(D,D′) | (D,D′) ∈ Ci × Ci with D ̸= D′};
4 Ci−1 = (Ci \ {C,C ′}) ∪ (C ∪ C ′);
5 end

6 return {C1, . . . ,Cn};

All agglomerative algorithms are of this form and di�er only by their linkage
functions. A non-exhaustive list of linkage functions and their usages include:

1. sep(C,C ′) = d(C,C ′) = min(c,c′)∈C×C′ d(c, c′) can be used to maximize the
minimal distance between two clusters. The corresponding algorithm is
called Single-Linkage and is related to the k-separation problem.

2. rad(C,C ′) = rad(C ∪ C ′) = minz∈X maxc∈C∪C′ d(c, z) can be used to mini-
mize the largest radius in every step. The corresponding algorithm is called
Complete-Linkage and is related to the k-center problem.

30

3. diam(C,C ′) = diam(C ∪ C ′) = maxx,x′∈C∪C′ d(x, x′) can similarly be used
to minimize the largest diameter. Just like the previous algorithm, this
one is also called Complete-Linkage, but this time it is related to the k-
diameter problem. We denote the former by CLrad and the latter by CLdiam

to di�erentiate between both variants.

4. avg(C,C ′) = 1
|C|·|C′|

∑︁
(c,c′)∈C×C′ d(c, c′) can be used to minimize the average

diameter of a cluster. It is one of several variants known as Average-Linkage.

5. ward(C,C ′) = |C|·|C′|
|C|+|C′|∥µC−µC′∥2 can be used to minimize the increase in the

sum of squares, where µA = 1
|A|
∑︁

a∈A a denotes the centroid of a set A ⊂ Rd.
The corresponding agglomerative algorithm is called Ward's Method and is
related to the k-means problem. In contrast to the other methods, it can
only be applied to Euclidean clustering instances.

Although non-exhaustive, this list covers the most important linkage functions,
such as Ward's Method. Each linkage function is related to a speci�c problem,
which it optimizes in each step. However, greedily optimizing an objective func-
tion in such a way does not necessarily yield a series of independently optimal
clusterings. In fact, this only holds for Single-Linkage. In all other cases, it might
be possible that Cn−1 is the only non-trivial optimal clustering. An initially worse
merge might yield better clusterings in the long run. Since errors might accumu-
late over time, later clusterings might constitute quite bad solutions in their own
right. As such, establishing level-by-level approximation guarantees for each of
these algorithms is quite important. In the next chapter, we will contribute to
these results by analyzing Single-Linkage and Complete-Linkage. They are nicely
complementary in that the �rst wants to maximize inter-cluster distances in each
step, whereas the second wants to minimize intra-cluster distances.

Theorem 16. Let (X, d) be a metric space consisting of n points and Sn, . . . ,S1

the hierarchical clustering computed by Single-Linkage on (X, d). Then Sk is an
optimal solution to the k-separation problem for all k ∈ {1, . . . , n}.

This result is anecdotally quite well known and follows, for example, relatively
quickly from Lemma 69. In the next chapter, we will analyze how useful Sin-
gle-Linkage is in optimizing the objective functions corresponding to Complete-
Linkage.

For hierarchical k-center and k-diameter, the situation is quite di�erent. Of
course, if it is NP-hard to solve the corresponding partitional problems within
a factor of α < 2, as we have noted earlier, then the hierarchical variant is at
least as hard. In fact, as it turns out, optimal k-clusterings are not necessar-
ily hierarchically compatible, so even assuming unlimited computation power, 1-
approximations generally do not exist. Das and Kenyon-Mathieu ([30]) provided

31

an instance for the diameter and Groÿwendt ([50]) for the radius where the best
hierarchical clustering is a 2-approximation. By building on the notion of nestings
introduced by Lin et al. ([64]) Groÿwendt ([50]) proved an existential upper bound
of 4 for hierarchical k-center. This line of research was then further improved
by Arutyunova and Röglin ([8]). However, despite this, several constant-factor
approximations are known. Dasgupta and Long ([32]), as well as Charikar et
al. ([24]) both provide polynomial-time 8-approximations. The aforementioned
notion of nestings ([64]) allows every approximation algorithm for a k-clustering
objective that satis�es its nesting property to be converted into an algorithm for
its hierarchical version. Especially k-median and k-means satisfy this property
and thus (in combination with the currently best constant factor approximations
for k-median ([18]) and k-means ([6])), polynomial time constant factor approxi-
mations do indeed exist for the hierarchical k-median/k-means problem. However,
the resulting guarantees are relatively high (≈ 56 for k-median and ≈ 3662 for k-
means). Nesting can also be applied to k-center/k-diameter but does not improve
upon the 8-approximation.

How well does Complete-Linkage fare? We will consider this question in the
next chapter.

Outlook

In Chapter 2 we analyze Complete-Linkage on a level-by-level basis for
general metric spaces. We improve the previously best-known lower bounds
for the approximation ratio from Ω(log k) to Ω(k) and provide the �rst non-
trivial upper bounds. For CLrad we are able to match the lower bound by
showing that the algorithm always computes O(k)-approximations, while for
CLdiam we are only able to prove an upper bound of O(k2) (which however
can relatively easily be improved to O(k

ln 3
ln 2)).

In Chapter 3 we analyze how well various objectives (k-center, k-diameter,
k-median, k-means, k-diameter) can be combined with the k-separation con-
straint. In each case we show that they cannot be approximated with con-
stant factor simultaneously and thus turn to their Pareto sets.

In Chapter 4 we study the Euclidean k-center PTAS established by B doiu
et al. ([12]) for constant k and modify it in such a way that it yields a PTAS
for the Euclidean k-MSR problem, also for constant k. We also show that
this algorithm is able to deal with outliers.

In Chapter 5, we showcase some preliminary (and somewhat outdated)
results for the connected k-center problem.

32

Chapter 2

Lower and Upper Bounds for

Complete-Linkage

2.1 Introduction

In this chapter we will analyze one of the main agglomerative clustering algo-
rithms (besides Single-Linkage, Average-Linkage and Ward's method): Complete-
Linkage. To recall, the Complete-Linkage algorithm computes a hierarchical clus-
tering by successively merging pairs of clusters whose union will have minimal
radius/diameter, starting with the trivial clustering in which every point is con-
tained in a separate clustering. But how good is this approach, especially on a
level-by-level basis? Clearly, the �rst merge is optimal, but this is not true for any
of the subsequent merges. As is the case with many greedy algorithms, it might
be bene�cial to perform a bad merge �rst if that opens up better merges down the
line. The further the algorithm progresses, the more such errors can accumulate.
If we compare the clustering computed by Complete-Linkage on every level k with
the optimal k-center/k-diameter clustering for that level, then what is the worst
attained approximation ratio?

Dasgupta and Long have already considered this question back in 2005 ([32])
and established a lower bound of Ω(log k) on the approximation ratio of the k-
clustering computed by Complete-Linkage. This is already quite a large lower
bound and the factor seems even worse when we compare it with the new (divi-
sive) algorithm designed by Dasgupta and Long that guarantees an approximation
ratio of 8 over all levels. This was their main result. However, Complete-Linkage
still �nds use in practice, likely due to its simplicity and its widespread imple-
mentation, so it is still of great interest to establish a corresponding upper bound
on it approximation ratio. (We should also keep in mind that the k-center and
k-diameter objective functions are just used as guidance in several applications

33

without directly corresponding to the problem at hand. A worse approximation
factor could be compensated by some other positive aspect.) Ackermann et al. were
the �rst to provide such upper bounds in 2014, although only for Euclidean spaces
Rd:

1. For the discrete k-center objective (where centers have to be chosen from the
original set of points) they provide an upper bound of O(d+ log k).

2. For the k-diameter objective they provide an upper bound of f(d) ·O(log k),
where f is an exponential function.

3. For the k-center objective they provide an upper bound of f(d) · O(log k),
where f is a doubly exponential function.

They also established di�erent lower bounds for ℓp-norms and thus for more �nat-
ural� metrics than the one considered by Dasgupta and Long, although they did
not improve the lower bound by Dasgupta and Long. Groÿwendt and Röglin sub-
sequently improved the three upper bounds in 2017 by getting rid of the log k
factors with the help of a better analysis of the last k merges performed by Com-
plete-Linkage ([49]). In the following sections, we will establish much better lower
bounds of Ω(k) for both the k-center and k-diameter objectives on general metric
spaces. This is a signi�cant jump: in this regard Complete-Linkage is not even
better than Single-Linkage! We will derive an upper bound of O(k) for the k-center
objective, showing that this bound is tight in this case. For the k-diameter objec-
tive we are only able to prove an upper bound of O(k2) (which can be improved to
O(kln 3/ ln 2) without too much extra work), still leaving a not-insigni�cant gap to
the lower bound. These results have all been published in [9] and [10]. Recently,
Dasgupta and Laber were able to, among other things, improve the still standing
upper bound to O(k1.30).

2.2 Approximation Guarantees for Single-Linkage

Before analyzing Complete-Linkage, we �rst spend some time with Single-Linkage
to familiarize ourselves with some themes, notations, and methods relevant to gen-
eral analyses of agglomerative clustering procedures. In some sense, the analysis
below is not fair since Single-Linkage does optimize a very di�erent objective from
the one in regards to which we will assess it. Single-Linkage is excellent, in fact
optimal, at separating clusters, meaning that it maximizes the smallest distance
between any pair of clusters. This is very important when one wants to clearly
delineate between di�erent clusters and force similar objects to belong to the same
cluster. However, this comes at the cost of potentially including very di�erent

34

objects in the same clusters. This is what Complete-Linkage does much better, at
least to some extent.

2.2.1 Lower Bounds

Although it has been known for a long time that Single-Linkage is prone to chain-
ing, we mainly restrict ourselves to analyzing the instance outlined by Dasgupta
and Long [32]. Chaining refers to the process of merging clusters that are close
to each other without regard to the resulting radius or diameter. So although
Single-Linkage optimally solves the separation problem, its cluster can grow quite
large and include very dissimilar points. In Dasgupta and Long's example, Single-
Linkage builds chains of points in such a way that the resulting k-clustering has
a radius (and diameter) that is worse by a factor of Ω(k) from that of an optimal
k-clustering. We �rst discuss this instance and then show that this is, in fact, the
worst scenario, meaning that fact Single-Linkage never computes something worse
than an O(k)-approximative solution for the hierarchical k-center and k-diameter
problem.

Single-Linkage is very good at �nding linear structures � but only at the
detriment of not being able to recognize more complex con�gurations. 1 Since it
always merge clusters that are closest, this behavior can be exploited quite easily
to build chain-clusters than span a large area. The example Dasgupta and Long
give is a set of n points x0, . . . , xn−1 located on the real line with almost equal
spacing between subsequent points. More precisely, the distance between all pairs
of points xi and xi+1 is equal to 1− εi for some �xed, but arbitrarily small ε > 0,
as shown in Section 2.2.1. Although ε might be arbitrarily small, we have thereby
forced an ordering d(xn−1, xn−2) < . . . < d(x1, x2) < d(xi, xj) on the distances,
where i and j are any indices with |i− j| ≥ 2. As such, Single-Linkage will merge
clusters from right to left until it reaches the clustering

Ck = {{xi} | i ≤ k − 1} ∪ {{xk, . . . xn−1}}.

All points to the left of xk (excluding xk) remain singleton clusters, whereas all
points to the right of xk (including xk) have been merged into one cluster. The
latter has a diameter of

d(xk, xn−1) =
n−2∑︂
i=k

(1− εi) = (n− k − 1)− ε

n−2∑︂
i=k

i,

which is much worse than just uniformly partitioning the point set. To see this,
assume that n = ks is a multiple of the cluster size. While not a strictly necessary

1This was noted as early as 1978 by Hansen and DeLattre ([51]): �clusters given by the
single-link algorithm may have little homogeneity, �

35

assumption, this assumption allows us to simplify the analysis. Partitioning the
point set along evenly spaced cuts, we get the clustering

Ok = {{xis, . . . x(i+1)s−1} | i ∈ 0, . . . , k − 1},

of which each cluster has a diameter of at most

d(xjs, x(j+1)s−1) =

(j+1)s−2∑︂
i=js

(1− εi) = (s+ 1)− ε

n−2∑︂
i=k

i.

If n ≥ k2 we see that solution computed by Single-Linkage is only Ω(k)-approxi-
mative:

diam(Ck)

diam(Ok)
≈ n− k − 1

n
k
+ 1

> k − k2

n
≥ k − 1.

We just immediately discard the ε-terms since they are negligible if ε is chosen
small enough. Basically, the same analysis, although slightly more lengthy to
account for optimal centers, also shows that the same result holds for the k-center
objective without changing any of the arguments.

Corollary 17. Single-Linkage computes Ω(k)-approximative solutions for the hi-
erarchical k-center and k-diameter problems in the worst case.

Complete-Linkage avoids falling into this trap. If there are singletons (or other
clusters with a relatively small cost) close to each other, Complete-Linkage will
merge them �rst. However, as it turns out, if Complete-Linkage chooses bad merges
for every cluster, one can still induce a particular type of chaining behavior, which
we will analyze in the next section. This requires that all (or almost all) clusters
are unfavorable for this to work, so it is still more robust than Single-Linkage; the
average approximation ratio is much smaller, as we will see. It takes much longer
for bad clusters to build in Complete-Linkage. Still, if one is interested in a speci�c
k-clustering, where k is small compared to n, then one might want to choose a
di�erent algorithm than Complete-Linkage. All of this will be shown explicitly in
the next chapter.

2.2.2 Matching Upper Bounds

Having thus highlighted one of the fundamental problems of Single-Linkage � at
least as it pertains to the size, or rather, to the diameter and radii of clusters
� we still have to make sure that the above instance is, in fact, a worst-case
instance and that Single-Linkage always computes solutions that are at least O(k)-
approximative.

36

x0 x1 x2

· · ·
xi xi+1

1 − εi

· · ·
xn−3 xn−2 xn−1

Figure 2.1: A rendition of Dasgupta and Long's worst-case example for Single-
Linkage. The only di�erence here is that the indices start at 0 (and thereby slight
shift the distances between subsequent points, but this is of no consequence).
Although this �gure is almost identical to Figure 9 (a) of [32] we have recreated
it here to make this section self-contained.

We will consider the k-diameter and k-center objective function separately
because even though the analyses are quite similar, the notational overlap is sig-
ni�cant. This way, we can reuse the same names for di�erent clusterings without
further di�erentiating them.

A Matching Upper Bound for the k-Diameter Objective To provide an
O(k) upper bound for the approximation ratio of Single-Linkage with regards to
the k-diameter objective function, consider any hierarchical sequence of clustering
(Ck)

n
k=1 computed by Single-Linkage for some instance (X, d). What will allow

us to estimate the cost of any clustering Ck nicely is the fact that � and this is
the main characteristic of Single-Linkage � there always exists a relatively small
sequence of relatively close points that spans the largest cluster contained in Ck.
Let (Ok)

n
k=1 denote the optimal k-diameter solutions for (X, d) that will serve as

our points of reference.
To formalize our idea of estimating cluster costs by the triangle inequality

over small sequences of points that do not include large gaps, we introduce an
undirected graph Gk on top of Ok and connect all pairs of vertices, depending on
whether the corresponding optimal clusters are close to each other. More precisely,
we add to V (Gk) = Ok the following edges:

E(Gk) = {{O,O′} ⊆ Ok | d(O,O′) ≤ diam(Ok)}.

Whenever the distance between two optimal clusters is upper bounded by the value
diam(Ok) of that optimal solution, we connect those clusters. What is essential
here � and what made us choose the above edge set � is that for any cluster
C ∈ Ck, the set of all optimal clusters intersected by C induces a nice connected
subgraph ofGk. Before proving this statement, let us properly introduce a notation
for the set of all optimal clusters intersected by some set � we will use such sets
a lot in the following analyses.

De�nition 18. Let X be a set. For any subset Y ⊂ X and any set of subsets
Z ⊂ 2X , we set Z (Y) = {Z ∈ Z | Z ∩ Y ̸= ∅}.

37

To rephrase the above statement amounts to saying that Gk[Ok(C)] is con-
nected for every cluster C ∈ Ck (see Lemma 19 below). Accordingly, there has to
exist, for every pair of points x, x′ ∈ C, an Ox-Ox′-path in Gk that connects the
optimal clusters Ox, Ox′ that respectively contain x and x′. From this path, we
can then pick a nice set of intermediary points between x and x′, with the help of
which we can then upper bound d(x, x′) using the triangle inequality. Since every
optimal cluster is small and the distance between subsequent clusters in the Ox-
Ox′-path is also small, we should have established enough intuition to be already
able to conceive how an O(k)-approximation ratio might be possible. Figure 2.2
(a) shows the overall form of such paths. But �rst, let us prove that the induced
subgraphs are connected.

Lemma 19. Let C ∈ Ct be any cluster computed by Single-Linkage at some time
step t ≥ k. Then, the subgraph Gk[Ok(C)] is connected.

Proof. We prove the lemma by induction. In the beginning (when t = n), the
lemma holds since any cluster contained in Cn consists of a single point and thus
intersects exactly one optimal cluster. Assume now that the claim holds for some
t > k. By the pigeonhole principle there exist two clusters D1, D2 ∈ Ct that in-
tersect a same cluster O ∈ Ok(D1) ∩ Ok(D2). We thus know that d(D1, D2) ≤
diam(Ok) and this is exactly the value that Single-Linkage minimizes. By exten-
sion, it follows that if Single-Linkage merges the cluster pair C1, C2 ∈ Ct in this
time step, then these still have to satisfy the upper bound we just derived. In
other words, we know that

d(Ok(C1),Ok(C2)) ≤ d(C1, C2) ≤ d(D1, D2) ≤ diam(Ok),

which means that an edge between both sets of optimal clusters Ok(C1) and
Ok(C2) exists. Combining this with the induction hypothesis that Gk[Ok(C1)]
and Gk[Ok(C2)] are themselves connected, it follows that Gk[Ok(C1 ∪ C2)] is also
connected.

With the help of this lemma, we can now estimate the diameter of any Single-
Linkage cluster C by applying the triangle inequality onto (although not directly)
an appropriate path in Ok(C) since both the inter-cluster and intra-cluster dis-
tances are upper bounded by diam(Ok). Yields uncoiling this path within our
original space X yields our desired upper bound.

Theorem 20. For all 1 ≤ k ≤ n it holds that diam(Ck) ≤ 2k · diam(Ok).

Proof. Consider an arbitrary cluster C ∈ Ck and two of its points x, y ∈ C.
Both points are contained in some optimal clusters Ox, Oy ∈ Ok(C), which are
in turn connected by some path P in Gk[Ok(C)] since the latter is connected.

38

x

O1

· · · · · ·

Oℓ

y
C

Figure 2.2: Cluster C intersects the optimal clusters O1, . . . , Oℓ ∈ Ok whose dis-
tance is at most d(Oi, Oi+1) ≤ diam(Ok). Since each optimal cluster has itself
also a diameter of at most diam(Ok), the diameter of C is altogether at most
2ℓ diam(Ok).

Without loss of generality, we can assume that P passes through the optimal
clusters Ox = O1, . . . , Oℓ = Oy in exactly this order by appropriately indexing
the optimal clusters. Uncoiling this path in X then gives us an upper bound of
2k diam(Ok) for d(x, y) as follows. For each i = 1, . . . , ℓ − 1 there exist points
xi ∈ Oi and yi+1 ∈ Oi+1 such that both d(yi, xi) ≤ diam(Ok) and d(xi, yi+1) ≤
diam(Ok). Adding up these distances yields an upper bound of

d(x, y) ≤ d(x, x1) + d(yℓ, y) +
ℓ−1∑︂
i=1

(d(xi, yi+1) + d(yi+1, xi+1))

≤ 2ℓ diam(Ok) ≤ 2k diam(Ok).

Since C and x and y were chosen arbitrarily, the claimed upper bound for Single-
Linkage holds for the k-diameter objective function.

A Matching Upper Bound for the k-Center Objective We can prove
in a similar fashion that the k-clustering computed Single-Linkage is an O(k)-
approximative solution for the k-center problem. The only signi�cant di�erence is
that we must keep track of viable centers. As before, take any hierarchical cluster-
ing (Ck)

n
k=1 computed by Single-Linkage for some instance (X, d) and let (Ok)

n
k=1

denote the optimal individual k-center clusterings. We will again formalize our
argument with the help of some undirected graph Gk on Ok, which, however, has
to be set up slightly di�erently this time. The vertices V (Gk) = Ok are connected
by edges whenever their distance is upper bounded by 2 rad(Ok), meaning that

E(Gk) = {{O,O′} ⊂ Ok | d(O,O′) ≤ 2 rad(Ok)}.

39

x

O1

· · ·

c

O⌈ ℓ
2
⌉
· · ·

Oℓ

y
C

Figure 2.3: Cluster C intersects the optimal clusters O1, . . . , Oℓ whose consecutive
distances are upper bounded by d(Oi, Oi+1) ≤ 2 rad(Ok). We see that choosing a
center c from O⌈ ℓ

2
⌉ induces a radius of at most 2(ℓ+ 1) rad(Ok).

Lemma 21. Let C ∈ Ct be any cluster computed by Single-Linkage at some time
step t ≥ k. Then, the subgraph Gk[Ok(C)] is connected.

Proof. The proof is very similar to that of Lemma 19 and also proceeds by induc-
tion. Initially (when t = n), the lemma holds since any cluster contained in Cn

consists of a single point and thus intersects exactly one optimal cluster. Assume
now that the claim holds for some t > k. By the pigeonhole principle there exist
two clusters D1, D2 ∈ Ct whose centers c1 ∈ D1, c2 ∈ D2 lie in a same optimal
cluster O ∈ Ok(D1) ∩ Ok(D2). We thus know that

d(D1, D2) ≤ d(c1, c2) ≤ 2 rad(O) ≤ 2 rad(Ok)

and this is exactly the value that Single-Linkage minimizes. By extension, it follows
that if Single-Linkage merges the cluster pair C1, C2 ∈ Ct in this time step, then
these still have to satisfy the upper bound we just derived. In other words, we
know that

d(Ok(C1),Ok(C2)) ≤ d(C1, C2) ≤ d(D1, D2) ≤ 2 rad(Ok),

which means that an edge between both sets of optimal clusters Ok(C1) and
Ok(C2) exists. Combining this with the induction hypothesis that Gk[Ok(C1)]
and Gk[Ok(C2)] are themselves connected, it follows that Gk[Ok(C1 ∪ C2)] is also
connected.

Theorem 22. For all 1 ≤ k ≤ n it holds that rad(Ck) ≤ 2(k + 1) · rad(Ok).

Proof. Consider an arbitrary cluster C ∈ Ck and denote by P a longest simple
path in Gk[Ok(C)] ⊆ Gk. Without loss of generality, we can assume that P passes

40

through the optimal clusters O1, . . . , Oℓ in exactly this order. Then, if we choose
an arbitrary point c ∈ C ∩ O⌈ ℓ

2
⌉ from an optimal cluster O⌈ ℓ

2
⌉ lying in the middle

of P , every other point will be close enough to it to derive the desired bound for
rad(C). Since P is a longest path, every optimal cluster in Gk[Ok(C)] is reachable
from O⌈ ℓ

2
⌉ by a path of length at most ⌈ ℓ

2
⌉. (Recall that Gk[Ok(C)] is indeed

connected by Lemma 21.) Uncoiling these paths in X now gives us an upper
bound of 2(k + 1) rad(Ok) for the distance between c and any other point z ∈ C
as follows: If Oz ∈ Ok is the optimal cluster containing z, then by our choice
of O⌈ ℓ

2
⌉, there exists a path O⌈ ℓ

2
⌉ = Oi1 , . . . , Oiλ+1

= Oz in Gk[Ok(C)] of length
λ+1 ≤ ⌈ ℓ

2
⌉ ≤ ⌈k

2
⌉ connecting them. That means, for each j = 1, . . . , λ there exist

points xi ∈ Oij , yi+1 ∈ Oij+1
such that d(xi, yi+1) ≤ 2 rad(Ok). Hence

d(c, z) ≤ d(c, x1) +
λ−1∑︂
i=1

(d(xi, yi+1) + d(yi+1, xi+1))

+ d(xλ, yλ+1) + d(yλ+1, z)

≤ 2(2λ+ 1) rad(Ok) ≤ 2(k + 1) rad(Ok).

We are done since C was an arbitrary cluster and z ∈ C an arbitrary point.

2.3 Lower Bounds for Complete-Linkage

Theoretical analyses of Complete-Linkage are sparse, and of those, only three are
relevant to this chapter. The �rst is by Dasgupta and Long [32], who were one
of the �rst to analyze Complete-Linkage from a purely theoretical perspective and
provide a preliminary assessment of the performance guarantees satis�ed by the
Complete-Linkage algorithm. However, this assessment was purely negative. In
the worst case, it only provided a lower bound of Ω(log k) for the approximation ra-
tio attainable by Complete-Linkage, leaving several questions unanswered. 2 Most
importantly, as Dasgupta and Long themselves ask at the end of their paper, is
this lower bound already the worst possible? It took almost a decade until Acker-
mann et al. [3], focusing on ℓp-metrics, would establish further lower bounds and
derive the �rst non-trivial upper bounds. Regarding the lower bounds, Ackermann
et al. showed that even for ℓp-metrics a lower bound of Ω(p

√︁
log2 k) can be estab-

lished for the discrete k-center and k-diameter variants, providing an alternative to
Dasgupta and Long's lower bound which was itself only con�rmed by a somewhat

2 This is understandable since they also designed � and this was their primary focus �
an algorithm with a much better (i.e., constant) approximation ratio. Nonetheless, Complete-
Linkage is still used in practice, so establishing positive bounds is very much desirable.

41

�arti�cial� metric. Regarding the upper bounds, Ackermann et al. were able to
show that the approximation ratio of Complete-Linkage is in f(d) · log k, where
f(d) is linear in the dimension d in the case of the discrete k-center variant, expo-
nential in d in the case of the continuous k-center variant and doubly exponential
in d in the case of the k-diameter variant. These upper bounds were subsequently
improved by Groÿwendt and Röglin [49] in 2017 by re�ning the analysis of the
last k merges, thereby getting rid of the log k factor in the upper bound. In other
words, the approximation ratio of Complete-Linkage in all its three variants now
only depends on d. Note that this does not contradict the lower bounds previously
established by Ackermann et al. since their worst-case instances have a dimension
that depends linearly on k. Also note, that Groÿwendt and Röglin's analysis does
not make much use of the geometric properties of Rd, if at all, but cannot by
itself yield any bounds for Complete-Linkage on general (that is, abstract) metric
spaces since it builds upon the preliminary cost analyses by Ackermann et al. and
improves the assessment of subsequent merges. What is missing is an initial esti-
mation that does not utilize any geometric structure inherent to ℓp-metrics. Our
contribution, and the goal of this chapter, is to provide lower and upper bounds
for Complete-Linkage in its processing of abstract metrics. More precisely, we will
show that the previously best-known lower bounds of Ω(log k) for both CLdiam and
CLrad can be raised to Ω(k), tying them with Single-Linkage in the worst case.

The structure of this section is relatively straightforward. We �rst review and
discuss both previously established lower bounds in detail (once by Dasgupta and
Long and once by Ackermann et al.) and try to work out some of the fundamental
themes undergirding their analyses. Each discussion has, in turn, been divided into
two parts, the �rst being an introduction to and an outline of the respective worst-
case instance, the second being an in-depth breakdown of the resulting behavior
of Complete-Linkage. Both lower bounds share signi�cant conceptual similarities,
which have, however, already reached their limit in some sense. We will have
to considerably change our approach to constructing such instances to push the
lower bound beyond just a logarithmic dependency on k. We will do this in the
subsequent section by drawing on the intuition we have built up thus far. Again,
this section is split into a �rst part that introduces the worst-case instance and
a second part that analyses this instance. This time, the second part is much
longer and is itself subdivided into two parts, accounting separately for CLdiam and
CLrad. The latter is slightly more complicated to analyze since we additionally
have to keep track of optimal centers. In the end, we close this chapter with
a primarily technical addendum that �lls in what could be considered a hole in
our discussion. While we provide an instance for which CLdiam and CLrad might
both yield only Ω(k)-approximative solutions, these solutions are not enforced. By
this, we mean that they depend on how Complete-Linkage breaks upcoming ties

42

during its runtime. Although this is in some respects not that signi�cant, since no
evaluation could distinguish good from bad tiebreaks, we describe a modi�cation
of our instance that forces Complete-Linkage at each step to choose the worst
merge. So even with �luck�, Complete-Linkage cannot compute good solutions for
this instance.

2.3.1 Dasgupta and Long's Lower Bound

In 2005, Dasgupta and Long [32] have constructively shown that for each k ∈ N,
there exists an instance (Xk, d) on which CLdiam produces a k-clustering whose
diameter is worse by a factor of Ω(log k) than that of an optimal k-clustering.
We go through this construction and the corresponding analysis in full since, al-
ready here, we encounter the most important ideas that guide all later worst-case
constructions.

The Instance

The instance that Dasgupta and Long designed consists of k2 points placed on a
k × k grid together with a metric that clearly distinguishes between vertical and
horizontal distances, measuring them di�erently and only later adding them up.
Merging points along the x-axis will be optimal, while merging points along the
y-axis will accrue a much larger cost. The trick is that, in the way those distances
are set up, Complete-Linkage will not be able to distinguish between those two
choices. Since this description was quite vague, let us formally de�ne the instance
�rst before trying to motivate all choices involved in this de�nition. Dasgupta and
Long's worst-case instance (Xk, d) consists of

1. the underlying set Xk = {1, . . . , k}2 = {(i, j) | i, j ∈ {1, . . . , k}}

2. the metric d((x, y), (x′, y′)) = 1[x ̸= x′] + log2(1 + |y − y′|),

where 1[x ̸= x′] denotes the indicator-function, which is 1, when x ̸= x′ and 0
otherwise. A rendition is given in Section 2.3.1 for k = 8. To get a feeling for this
metric, consider the points (2, 7) and (8, 4), highlighted in the �gure. Then, their
distance is computed by

d((2, 7), (8, 4)) = 1[2 ̸= 8] + log2(1 + |7− 4|) = 1 + log2 4 = 3.

The horizontal component of both points is di�erent, so they incur a cost of 1 from
the indicator function 1[x ̸= x′]. Here, it does not matter how large the horizontal
distances are! (This will become very important later on.) At the same time, their
vertical distance is 3, which, when plugged into the logarithmic component of the
metric, evaluates to 2. Hence, the distance is 3 altogether.

43

x

(x, x′) ↦→ 1(x ̸= x′)

y

(y
,y

′)
↦→

lo
g
2
|y
−

y
′ |

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 2.4: A rendition of the Dasgupta and Long's Complete-Linkage instance
for k = 8. The gray lines indicate an optimal k-clustering.

The Metric

Now that we have established Dasgupta and Long's worst-case instance and done
some �rst computations let us take a closer look at the metric. Because this metric
seems somewhat unintuitive at �rst sight, we now spend some time just examining
and dissecting it, envisioning (Xk, d) as the ℓ1-product of two relatively simple
metric spaces (Hk, dh) and (Vk, dv). By this, we mean that the underlying set will
be de�ned as the cartesian product Xk = Hk × Vk and the metric as the sum
d(x, x′) = dh(π1(x), π1(x

′)) + dv(π2(x), π2(x
′)), where π1 : Xk → Hk is the usual

projection onto the �rst coordinate and π2 the projection onto the second. (This
is why we have split the metric into two constituent parts, each placed along the
axis, in Section 2.3.1.) According to a more general but well-known and easily
veri�ed notion of product metrics, this construction indeed forms a metric space.

Proposition 23 (Product Metric). Let (Y1, d1), . . . , (Ym, dm) be metric spaces and
p ≥ 1. Then (Y, d) with Y =

∏︁
i Yi and

d((y1, . . . , ym), (y
′
1, . . . , y

′
m)) =

(︄
m∑︂
i=1

di(yi, y
′
i)

)︄ 1
p

also forms a metric space.

44

As we have already seen, visually, this ℓ1-product should consist of k2 points
placed on a k × k grid with a spacing of 1 and a di�erent distance function for
each axis. Horizontally, the distance is equal to the discrete metric; vertically, it is
measured by a logarithmic function. The reason for this decoupling is that, given
such a setup, CLdiam might unite vertically neighboring points and so construct
the columns {π−1

1 (1), . . . , π−1
1 (k)} as its k-clustering, instead of uniting horizontally

neighboring points to get the rows {π−1
2 (1), . . . , π−1

2 (k)}. Whereas the former k-
clustering has a diameter of 1, the latter has a diameter of log2 k. This is the
core insight. CLdiam is unable to distinguish merges, where a cost is incurred only
once (the horizontal merges), and merges, where a cost is incurred every time (the
vertical merges).

To properly formalize this sketch, set the underlying sets of both auxiliary
spaces to Hk = Vk = {1, . . . , k}. The �rst metric dh : Hk × Hk → R is then
nothing but the discrete metric, meaning that dh(x, x′) = 1[x ̸= x′], but the second
is slightly more intricate. We start with the standard metric (a, b) ↦→ |a− b| for R
and deform it with the help of a metric-preserving function, which, by de�nition,
always yields a metric when composed with some other metric.3 To arrive at our
vertical distance measure dv(x, x

′) = log2(1 + |x − x′|), all we have to do is to
show that x ↦→ log2(1+x) belongs to this class of functions. But this follows from
the well-known fact that all monotonically increasing and concave functions are
metric-preserving, so long as they vanish precisely and only at x = 0 (Theorem 3
in [34]).

Before analyzing this instance in detail, it should be noted that we have slightly
modi�ed Dasgupta and Long's instance, speci�cally Vk, to simplify later descrip-
tions. The trade-o� is that this simpli�cation introduces some ambiguity in the
form of additional but signi�cant tiebreaks. Whereas the tiebreaks in the original
instance do not in�uence the overall clustering process of CLdiam, always steering
it toward a bad clustering, in this new instance, it could, �by chance�, compute
an optimal clustering. Depending on how ties are broken, the rows could be re-
constructed. However, no general rule can di�erentiate between good and bad
tiebreaks, so this is not a big deal. So, while we could minimally reduce the ver-
tical space, as Dasgupta and Long have done, to force vertical merges, we leave
that aside for now to better focus on the overall picture.

The Analysis

As mentioned above, the main problem that this instance poses for CLdiam is
that the latter might merge points along the columns instead of the rows. In
the latter case, a single merge already pays for all upcoming merges within that

3For more information on metric-preserving functions, we refer the reader to [34].

45

row. That is, the diameter of the resulting cluster does not increase with any
subsequent horizontal merges. The same, however, does not hold in the other case.
Whenever two vertically neighboring clusters are merged, the diameter increases
by a strictly positive amount. In the worst case, this amount equals 1, the same as
any horizontal merge induces. Each such merge doubles the number of intersected
optimal clusters, so they can be stacked up to log2 k times, yielding a k-clustering
worse by a factor of Ω(log2 k).

Before analyzing how these cases unfold, we must introduce a few de�nitions
to handle any ensuing tiebreaks properly.

De�nition 24. Given a clustering C and a linkage function f , we say that a merge
C = C1 ∪ C2 with C1 ̸= C2 ∈ C is f -viable, if it is cheapest among all merges
available with regards to f , i.e., if it minimizes

f(C) = min{f(C ′
1 ∪ C ′

2) | C ′
1 ̸= C ′

2 ∈ C }.

The clustering C itself is said to be f -viable, if all merges leading up to it, starting
from {{x} | x ∈ Xk}, are f -viable. That is, C is f -viable if a sequence of tiebreaks
exists such that Algorithm 1 produces it.

Since it is usually apparent from the context which linkage function we currently
consider, we will just write viable instead of the sometimes more clumsy f -viable.
For example, in this section, we only work with the diameter linkage function.
Having established these de�nitions, we can now formulate the main claim.

Theorem 25 (Cf. Section 4.3 of [32]). Consider (Xk, d) as constructed above for
an arbitrary k ∈ N . Then

1. The rows {π−1
2 (1), . . . , π−1

2 (k)} form an optimal k-clustering of Xk with a
diameter of 1.

2. The columns {π−1
1 (1), . . . , π−1

1 (k)} form a viable k-clustering of Xk with a
diameter of log2 k.

The �rst of these two points can be proven relatively quickly. It follows almost
directly from the fact that the distance between any two non-equal points in Xk

is at least 1.

Observation 26. Let x, x′ ∈ Xk be two di�erent points. Then d(x, x′) ≥ 1.

Proof. Since they are non-equal, x and x′ must di�er in at least one coordinate.
If they di�er in the �rst coordinate, then

d(x, x′) ≥ dh(π1(x), π1(x
′)) = 1[π1(x) ̸= π1(x

′)] = 1.

46

Figure 2.5: An outline of the �rst two phases (represented by the arrows) when
k = 4. They gray rows again indicate the optimal clustering.

If they di�er in the second, then

d(x, x′) ≥ dv(π2(x), π2(x
′)) ≥ log2(1 + |π2(x)− π2(x

′)|) ≥ log2 2 = 1,

since the vertical spacing between points is at least 1.

Corollary 27. The rows C ∗ = {π−1
2 (1), . . . , π−1

2 (k)} of Xk form an optimal k-
clustering of diameter diam(C ∗) = 1.

Proof. SinceXk consists of k2 many points, any k-clustering C ofXk has to contain
a cluster C of size at least 2. From the previous observation, it thus follows that
diam(C) ≥ diam(C) ≥ 1 and hence that an optimal k-clustering has to have a
cost of at least 1. But then the rows, whose diameter is purely measured by the
discrete metric and thus equal to 1, necessarily are optimal.

Having established that the rows form an optimal k-clustering, we can now
turn toward the more interesting analysis of the columns.

Corollary 28. The columns C = {π−1
1 (1), . . . , π−1

1 (k)} of Xk form a viable k-
clustering with diam(C) = log2(k).

Proof. We will show that the columns form a viable clustering by providing an
appropriate merge sequence, which is itself split into di�erent phases. To simplify,
we will presume, like Dasgupta and Long, that k = 2λ is some power of 2. The
general case unfolds no di�erently but requires a more elaborate description. In-
tuitively, the following happens in each phase: divide each column into sets of 2
neighboring clusters and merge those. Since the vertical measure is logarithmic,
the diameter of the resulting clusters increases by an additional factor of 1, which
is at least as good as any horizontal or diagonal merge. A rendition of the phases
can be found in Section 2.3.1 when k = 4.

To properly outline the process, let C(0)
i,j = {(i, j)}, where i and j range over

the columns and rows respectively, denote the clusters with which CLdiam initially
starts. Formalizing the above description, we inductively assemble new clusters

47

C
(ℓ)
i,j = C

(ℓ−1)
i,2j−1 ∪ C

(ℓ−1)
i,2j with each phase. What we want to show now is that the

corresponding clusterings

C (ℓ) =
{︂
C

(ℓ)
i,j | i ∈ {1, . . . , 2λ}, j ∈ {1, . . . , 2λ−ℓ}

}︂
after each phase are, in fact, viable clusterings of diameter ℓ.

Visually, the part about the diameter is almost self-evident. By construction,
each cluster in C (ℓ) consists of a sequence of 2ℓ vertically neighboring points. More
precisely, each such cluster is of the form

C
(ℓ)
i,j = {(i, j′) | j′ ∈ {(j − 1)2ℓ + 1, . . . , j 2ℓ}}

for appropriate i and j and thus must indeed have a diameter of diam(C) =
log2(1 + (2ℓ − 1)) = ℓ.

To show that this clustering is also viable, consider the two clusters C
(ℓ−1)
i,2j−1,

C
(ℓ−1)
i,2j ∈ C (ℓ−1) from which C

(ℓ)
i,j derives. Merging either of these with any other

cluster C(ℓ−1)
i,j′ that is also contained in the ith column always necessarily induces

an additional cost of at least 1 (strictly more than one, if the clusters are not
neighboring). Then, what about horizontal merges? Consider merging C

(ℓ−1)
i,2j−1

with C
(ℓ−1)
i′,2j−1 for some i′ ̸= i. This also increases the diameter by 1, since from the

topmost point in the �rst to the bottommost point in the second cluster, we not
only pay ℓ − 1 for the change in the second coordinate but also an additional fee
of 1, orthogonal to the �rst, for the change in the �rst coordinate. All remaining
merges induce a higher cost since not just one but both the horizontal and the
vertical costs separately increase by at least 1. Hence C(ℓ)

i,j and thus C (ℓ) as a whole
is viable.

This wraps up our in-depth review of Dasgupta and Long's lower bound for
CLdiam. Broadly speaking, their main idea is to exploit Complete-Linkage's greedy
behavior as follows. In their instance, CLdiam can always grow clusters in two dif-
ferent directions � horizontally and vertically � between which it cannot di�er-
entiate. Both horizontal and vertical merges increase the cost by the same amount;
however, in the �rst direction, the diameter increases only once, while it increases
with each subsequent merge in the other direction. With every bad merge, the
number of intersected optimal clusters is doubled so that the worst-case diameter
equals log2 k. At this point, one might ask at least three further questions:

1. The instance was designed with the diameter in mind. What happens when
we consider the radius? Does there also exist a lower bound for CLrad?

2. The instance, or rather the metric, seems somewhat arti�cial (at least, this
is something that Ackermann et al. remark [3]). Does the lower bound also
hold for more �natural� metrics?

48

3. Is the lower bound of Ω(log2 k) tight? That is, does a matching upper bound
exist?

We will not analyze how CLrad would process the above instance. Instead, we will
look at a di�erent instance in the next section that not only provides a lower bound
for radii but is also based on a more natural metric, the ℓ1-metric. Although the
third question can be answered a�rmatively for this metric, the lower bound can
be raised to Ω(k) for more general metrics. Establishing this lower bound is the
main goal of this chapter.

2.3.2 Ackermann et al.'s Lower Bound

In 2014, Ackermann et al. ([3]) further expanded theoretical knowledge for sev-
eral Complete-Linkage variants, establishing lower and upper bounds for di�erent
norm-induced metrics on Rd. We will look at some upper bounds in the next
chapter and only consider the lower bound for the ℓ1-metric here.

The Instance

Ackermann et al. outline a di�erent Ω(log2 k) lower bound instance (Xk, d) for
Complete-Linkage, only this time based on the Manhattan metric d = ℓ1. Under-
lying this space is a (k + log2 k) dimensional set X that consists of the following
k2 points:

X =

{︃[︃
ei
b

]︃ ⃓⃓⃓⃓
i ∈ {1, . . . , k}, b ∈ {0, 1}log2 k

}︃
.

Although the instance looks quite di�erent, the main idea is mostly the same. At
each step, there are two �directions� � this time to be taken more loosely � along
which Complete-Linkage can merge clusters. Let us call the vector comprising
the �rst k coordinates indicator and the vector comprising the remaining log2 k
coordinates signature. Merging clusters with the same signature yields the k-
clustering {︃{︃[︃

ei
b

]︃ ⃓⃓⃓⃓
i ∈ {1, . . . , k}

}︃ ⃓⃓⃓⃓
b ∈ {0, 1}log2 k

}︃
,

which turns out to be optimal. Two points within such a cluster have a distance
of exactly 2 since they only di�er in their indicators (recall that those are just
canonical unit vectors). However, CLdiam will instead always merge clusters whose
indicator is the same, ultimately yielding a k-clustering{︃{︃[︃

ei
b

]︃ ⃓⃓⃓⃓
b ∈ {0, 1}log2 k

}︃ ⃓⃓⃓⃓
i ∈ {1, . . . , k}

}︃
,

49

of diameter log2 k. (Note how the inner and outer set speci�cations have switched
places.) Just as in Section 2.3.1, this latter clustering has to be built step by step,
the diameter increasing by 1 with each phase. We will now outline this process
without going as in-depth as in the previous section.

The Analysis

Again, since all coordinates are from {0, 1} and d is the Manhattan metric, the
distance between any pair of points is at least 1. In the �rst phase, CLdiam might
thus construct clusters of the form⎧⎨⎩

⎡⎣ ei
0
b′

⎤⎦ ,

⎡⎣ ei
1
b′

⎤⎦ ⃓⃓⃓⃓⃓⃓ b′ ∈ {0, 1}(log2 k)−1

⎫⎬⎭ ,

whose points only di�er in the �rst coordinate of the signature. Since their distance
is 1, all of the merges are viable. Extending the argument, as in the Dasgupta and
Long lower bound, it is not di�cult to see that CLdiam might continue with such
merges in the future, meaning that⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎣
ei
0
0
b′

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
ei
0
1
b′

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
ei
1
0
b′

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
ei
1
1
b′

⎤⎥⎥⎦
⃓⃓⃓⃓
⃓⃓⃓⃓ b′ ∈ {0, 1}(log2 k)−2

⎫⎪⎪⎬⎪⎪⎭ ,

etc., are all viable clusterings. The resulting k-clustering then has a diameter of
log2 k since each cluster contains a point with all coordinates of the signature equal
to 0 and one with all coordinates of the signature equal to 1. Thus, the lower bound
established in the previous chapter is not just bound to a very speci�c and maybe
arti�cial metric � it also holds for the much more common Manhattan distance.
Notably, these clusters' diameter is already equal to their radius, so CLrad might
run into the same problem. The only di�erence is that the optimal k-clustering,
in that case, has a cost of 1 instead of 2.

In the next section, we raise the lower bound and show that there even exist
instances in which both CLdiam and CLrad yield k-clusterings that are worse by a
factor of Ω(k) � and not just Ω(log2 k). However, this surprising leap is only pos-
sible by considering more general metrics. Indeed, Ackermann et al. had shown
that the lower bound is tight for the ℓ1-metric. Nonetheless, there are enough cases
in which the distance between two points corresponds to the length of a shortest
path connecting them in a weighted graph. We show that in this case, Complete-
Linkage produces k-clusterings that are as bad as those computed by Single-Link-
age, even though Single-Linkage optimizes an entirely di�erent objective function
and is known for its chaining behavior.

50

2.3.3 New and Improved Lower Bounds

In this section, we will now show that both Complete-Linkage variants CLdiam and
CLrad surprisingly do, in the worst case, not perform asymptotically better than
Single-Linkage. That is, for every k ∈ N, we can provide an instance Xk for which
CLdiam as well as CLrad compute a k-clustering that is worse than an optimal
solution for the respective objective by a factor of Ω(k). This result improves
upon both known lower bounds of Ω(log2(k)), established �rst by Dasgupta and
Long and subsequently extended by Ackermann et al. to new classes of metric
spaces.

Neither of the two instances discussed so far can readily be adjusted to yield
a lower bound of Ω(k). The problem is that any horizontal merge already pays
in full for all the involved rows, meaning all clusters parallel to the merge can be
incorporated without increasing the cost. To reach the worst case, one is thus only
allowed to merge vertically, but this can be done at most log2(k) times. Every
vertical merge doubles the number of intersected optimal clusters. The idea is
then to set up an instance in such a way that bad merges increase the number of
intersected optimal clusters only by 1 while ensuring at the same time that they
do not pay for any possible future parallel merges. We construct such an instance
inductively by combining smaller components, always shifting them diagonally by
1 in a precise fashion.

The Instance

The basic building blocks of our instance will be so-called k-components.

De�nition 29. A k-component Kk = (Gk, ϕk) is a certain combination of an
undirected, weighted graph Gk and a mapping ϕk : V (Gk) → {1, . . . , k}. The
latter, also called k-mapping, designates to each point a level that will be used
to specify inter-component distances and later on even determine the shape of an
optimal clustering. The former, referred to as a k-graph, is a graph consisting of
2k−1 vertices with edge weights wk : E(Gk)→ N that de�ne the distances between
the levels. Our worst-case instance, that is, the metric space that we will analyze
in this section, is then nothing other than the metric closure of this graph. Both
graph and mapping are inductively de�ned as follows.

1. The 1-graph consists of a single point x without any edges. Setting the level
of this singular to ϕ1(x) = 1 gives us our 1-component.

2. Suppose we have already speci�ed the (k − 1)-component. Take two such
components (G(0)

k , ϕ
(0)
k), (G(1)

k , ϕ
(1)
k) and combine them as follows. First, start

with a preliminary de�nition of the k-graphGk = G
(0)
k−1

∐︁
G

(1)
k−1 as the disjoint

51

1
1

1
2

1

1
2

1

1
2

3

1

1
2

1

1
2

1

1
2

1

1
2

3

3

4

Figure 2.6: The progression of the �rst 5 components K1, . . . , K5. The gray sets
indicate points on the same level and form the optimal clusters. When analyzing
the instance for the radius, the encircled points in the K2 and K4 component
indicate their optimal centers.

union of both (k − 1)-graphs. All we have to do now is to specify the levels
and add some inter-component edges. The former is simply taken care of by
setting ϕk(x) = ϕ

(i)
k−1(x) + i for each x ∈ V (G

(i)
k−1) ⊂ V (Gk). The levels stay

the same in the �rst k-component, whereas all vertices move up exactly 1
level in the second. To complete Gk, we add one �nal edge of weight k − 1
connected the unique point s ∈ V (Gk) with ϕk(s) = 1 and the unique point
t ∈ V (Gk) with ϕk(t) = k.

The progression of the �rst �ve components is shown in Figure 2.6.

We can now construct our worst-case instance (Xk, d). Let K
(1)
k , . . . , K

(k+1)
k

be k + 1 di�erent k-components. Take the disjoint union Hk =
∐︁

iG
(i)
k of the

corresponding k-graphs and add edges {x, y} of weight 1 between all pairs of points
x ∈ V (G

(i)
k) and y ∈ V (G

(j)
k) whose levels are the same, i.e., ϕ(i)

k (x) = ϕ
(j)
k (y). To

simplify notation, we will usually omit the superscripts and write ϕk(x) to denote
the level of a point x ∈ V (G

(j)
k), irrespective of its component. (Xk, d) is now

de�ned as follows:

1. The underlying set is just Xk = V (Hk).

2. The distance d(x, x′) for all pairs of points x, x′ ∈ Xk is equal to the length
of a shortest x-x′-path in Hk. In other words, d is the metric closure over
the weights of the graph.

52

Figure 2.7: The instance Xk for k = 4.

A rendition of the �nal worst-case instance is given in Figure 2.7 in the case of
k = 4. Note that the edges connecting the individual k-components have turned
each level into a clique of diameter and radius equal to 1 so that they collectively,
in fact, constitute an optimal k-clustering for both objective functions. (Obviously,
any k-clustering must have a diameter or radius of at least 1.)

The Analysis for CLdiam

Let (Cℓ)
n
ℓ=1 denote the clustering sequence produced by CLdiam on (Xk, d). Recall

that Cℓ−1 arises from Cℓ by merging that pair of clusters A,B ∈ Cℓ, whose union
has the smallest diameter. (Of course, this does not have to specify the clusters
to be merged uniquely � several merges can induce the same cost.) Instead of
working with this sequence of clusterings, it will be more helpful to consider just
a certain subsequence that is established relative to the clusterings cost. The
following de�nition will be used throughout the analysis.

De�nition 30. Denote by t≤x = min{ℓ | diam(Cℓ) ≤ x} that point in time,
immediately after which all CLdiam-clusterings costs strictly more than x. In
other words, since the cost is increasing monotonously, it is the last point in time
during which a CLdiam-cluster still has cost at most x. The corresponding CLdiam-
clustering is denoted by Hx = Ct≤x

.

Let us now properly establish what we aim to prove in this section. We wish
to show that each cluster contained in Hk−1 coincides with the vertex set of one
of the k + 1 di�erent k-graphs that make up the instance. Since the last merge
will push the cost to k, this yields our main result.

Theorem 31. For every k ∈ N, the k-clustering computed by CLdiam on (Xk, d)
has a diameter of k, even though there exists an optimal k-clustering of diameter
1.

In the next section, we show that the same instance also yields a lower bound
of Ω(k) for CLrad. For now, however, we focus on the diameter case. As in the
two preceding sections, we �rst establish a lower bound on the distance between
any two points.

53

Lemma 32. The distance between two points x, x′ ∈ Xk is at least as big as the
di�erence in levels. In other words, d(x, x′) ≥ |ϕk(x)− ϕk(x

′)|.

Proof. Due to the speci�c construction of the components, an edge of weight w
can cross at most w levels. Hence the distance between x and x′ is at least
|ϕk(x)− ϕk(x

′)|.

Consider now any ℓ-graph Gℓ. With the help of the above lemma, we can show
that the diameter of the underlying set of this component is upper bounded by
diam(V (Gℓ)) ≤ k − 1. At the same time, we can inductively also show that the
diameter is not strictly less than k−1. In other words, the underlying set of every
ℓ-component within Xk has a diameter of exactly k − 1, as the following lemma
proves.

Lemma 33. For all ℓ ∈ {1, . . . , k} the underlying set of any ℓ-graph Gℓ contained
in Xk has a diameter of diam(V (Gℓ)) = ℓ− 1.

Proof. We �rst prove the upper bound diam(V (Gℓ)) ≤ ℓ − 1 by induction. The
1-graphs are points, so the claim follows trivially for ℓ = 1. Assume now that we
have shown the claim for ℓ − 1. Let s, t ∈ V (Gℓ) be points such that d(s, t) =

diam(V (Gℓ)). If these points lie in the same graph, say G
(0)
ℓ−1, of the two (ℓ − 1)-

graphs G(0)
ℓ−1 and G

(1)
ℓ−1 that make up Gℓ, then

diam(V (Gℓ)) = d(s, t) ≤ diam(V (G
(0)
ℓ−1)) ≤ ℓ− 2 < ℓ− 1

by induction, and we are done. Otherwise we may assume that s ∈ V (G
(0)
ℓ−1) and

t ∈ V (G
(1)
ℓ−1). This leaves us with another case analysis. If s is the unique point

with level 1 and t is the unique point in level ℓ in Gℓ then we are again done, since
by construction, there exists an edge between s and t of weight ℓ− 1. Otherwise,
one of s or t must share a level with a point not in the same (ℓ − 1)-graph as
themselves. Without loss of generality we may assume that s lies in the same level
as some u ∈ V (G

(1)
ℓ−1). By induction d(u, t) ≤ ℓ− 2 and so

diam(V (Gℓ)) = d(s, t) ≤ d(s, u) + d(u, t) ≤ 1 + ℓ− 2 = ℓ− 1.

To derive the lower bound diam(V (Gℓ)) ≥ ℓ − 1, we simply apply Lemma 32
to the unique point s with level 1 and the unique point t with level ℓ in Gℓ. This
shows that diam(V (Gℓ)) ≥ d(s, t) ≥ ℓ− 1 as claimed.

The goal now is to show that CLdiam indeed reconstructs these graphs as clus-
ters. Given the above calculation of the cost of an ℓ-graph, we can show that all
these eventual merges are viable for CLdiam.

54

Lemma 34. CLdiam might merge clusters on (Xk, d) in such a way that for all
ℓ ≤ k, the clustering Hℓ−1 consists exactly of the ℓ-graphs that make up Xk. In
other words, we want to show that the latter are all viable clusterings.

Proof. We again prove the claim by induction. As always, CLdiam starts with
every point in a separate cluster. Since those are exactly the 1-graphs and any
merge costs at least 1, the claim holds for ℓ = 1. Suppose now that Hℓ−1 consists
exactly of the ℓ-graphs that make up the instance. Since we are dealing with
integer weights, any subsequent merge increases the cost by at least 1. In other
words, it is viable to merge all ℓ-graphs into their corresponding (ℓ + 1)-graphs.
All of them are cheapest merges since they only increase the cost from ℓ − 1 to
ℓ (see Lemma 33). To �nish the proof, all that's left to do is to show that there
are no more free merges left. Take any two (ℓ+ 1)-graphs Gℓ+1 ̸= G′

ℓ+1 contained
in the current clustering. If they do not exactly cover the same levels, then the
distance between the point in the lowest level to the point in the highest level is
strictly more than ℓ by Lemma 32. Hence, we can assume that they share the
same levels, say level λ up to level ℓ+λ. Denote by s the unique point in V (Gℓ+1)
with ϕk(s) = λ and by t the unique point in V (G′

ℓ+1) with ϕk(t) = ℓ + λ. A
shortest path connecting s and t must contain an edge {u,w} with u ∈ V (Gℓ+1)
and w ∈ Xk\V (Gℓ+1). Such an edge either weights at least ℓ+1 or weights exactly
1 while connecting points in the same level, i.e., ϕk(u) = ϕk(w). In the �rst case,
we immediately obtain d(s, t) ≥ ℓ + 1; in the second case, we use Lemma 32 and
obtain

d(s, t) = d(s, u) + d(u,w) + d(w, t)

≥ |ϕk(s)− ϕk(u)|+ 1 + |ϕk(w)− ϕk(t)|
= |ϕk(s)− ϕk(t)|+ 1

= ℓ+ 1.

It follows that Hℓ consists exactly of the (ℓ+ 1)-graphs that make up Xk.

Proof of Theorem 31. Lemma 34 shows that Hk−1 can consist of all the k-graphs
that make up Xk. Since there are exactly k+1 of them, one merge remains for us
to end up with a k-clustering. By de�nition of Hk−1, this last merge then increases
the cost at least by 1, so that the k-clustering produced by CLdiam costs at least
k. On the other hand, the levels collectively make up a k-clustering of diameter
exactly 1.

The Analysis for CLrad

In this section, we prove that (Xk, d) also already provides a lower bound of Ω(k)
for CLrad, which, as we will see in the next chapter is, contrary to the CLdiam

55

analysis, actually asymptotically tight. For now, we want to prove the following
theorem.

Theorem 35. For every k ∈ N, the k-clustering computed by CLrad on (Xk, d)
as constructed above has a diameter of k

2
, even though the latter has an optimal

k-clustering of radius 1.

Proving this theorem is more involved than the previous section and requires
additional work since we now have to keep track of optimal centers for each cluster.
To ascertain the radii of the underlying sets of each component (see Lemma 36
below), we inductively show that for any 2ℓ-graph G2ℓ in Xk, there always exists
a point z with the following properties:

1. For all but one of the ℓ-graphs that constitute G2ℓ there exists a point that
is at distance 1 from z. Since the diameter of the underlying sets of these
graphs is ℓ−1 (by induction), it follows that all points within those ℓ-graphs
are within distance ℓ from z.

2. The remaining ℓ-graph lies in the same (ℓ+ 1)-graph as z. Since the under-
lying sets of all ℓ-graphs have a diameter of ℓ − 1 (see Lemma 33), we thus
know that V (G2ℓ) has to have a radius of at most ℓ.

3. At the same time, there cannot exist any point that induces a smaller radius.
This is again because all weights are integers, and the V (G2ℓ) has a diameter
of 2ℓ− 1 by Lemma 33.

Additionally, to keep track of all optimal centers, we prove that all points outside
of G2ℓ induce a higher radius for V (G2ℓ) and are thus not optimal. We need this
observation to show that, once all 2ℓ-graphs have been established, all subsequent
merges necessarily increase the radius. This follows with Lemma 37.

Lemma 36. Let G2ℓ be any one of the 2ℓ-graphs that constitute Xk for any ar-
bitrary 1 ≤ ℓ ≤ k

2
. Then it holds that (i) rad(V (G2ℓ)) = ℓ and (ii) all optimal

centers that induce this cost are themselves contained only within G2ℓ (and not in
any other 2ℓ-graph).

Proof. We prove the properties listed directly above the lemma in reverse order.
As mentioned in the third item, we already know that V (G2ℓ) has to have a radius
of at least ℓ, since its diameter is exactly 2ℓ− 1 by Lemma 33. To show that the
radius of V (G2ℓ) at the same time does not exceed ℓ suppose that G2ℓ intersects
levels λ up to λ+ 2ℓ− 1 of Xk.

Let Gℓ+1 be the unique (ℓ + 1)-graph contained in G2ℓ that intersects levels
λ+ℓ−1 up to λ+2ℓ−1 and let z ∈ Gℓ+1 be that unique point with level λ+ℓ−1.

56

This will be our optimal center. From Lemma 33 we know that the diameter of
V (Gℓ+1) is ℓ, so any point also contained in Gℓ+1 is at distance at most ℓ to z.

Consider any of the remaining points x ∈ V (G2ℓ) \ V (Gz
ℓ+1) together with the

ℓ-graph G′
ℓ containing it. We claim that G′

ℓ necessarily intersects level λ + ℓ − 1,
i.e., that it contains a point y with ϕk(y) = λ + ℓ − 1. If this were not the case,
then G′

ℓ would have to intersect all levels starting from λ + ℓ all the way up to
λ+2ℓ− 1 and therefore contain the unique point in G2ℓ with level λ+2ℓ− 1. But
this is not possible, since that point already belongs to in Gℓ+1. So combining the
fact that the diameter of V (G′

ℓ) is ℓ− 1 and ϕk(z) = ϕk(y) we obtain

d(z, x) ≤ d(z, y) + d(y, x) ≤ 1 + (ℓ− 1) = ℓ,

which proves that rad(V (G2ℓ)) ≤ ℓ, as claimed.
Let us move on to the second part of the lemma and show that all optimal

centers for V (G2ℓ) are already part of it. Quickly rephrasing this statement, this
amounts to showing that maxx′∈V (G2ℓ) d(z

′, x′) ≥ ℓ+1 holds for all possible centers
z′ ∈ Xk \ V (G2ℓ). The reasoning is quite simple: we can enter V (G2ℓ) from the
outside only via one of the levels, in which case we cannot, by the same token,
cover any vertical ground. (Actually, there are other edges entering the component,
but their cost is much too high.) To properly prove this claim, we make a case
distinction over ϕk(z

′).
Suppose that ϕk(z

′) ≤ λ + ℓ − 1. Then we claim that d(z′, x) ≥ ℓ + 1 for the
unique point x ∈ V (G2ℓ) with level λ + 2ℓ − 1. Indeed, consider the �rst edge
{u,w} lying on some shortest z′-x-path with u ∈ Xk \ V (G2ℓ) and w ∈ V (G2ℓ).
By construction {u,w} either weights at least 2ℓ (those are the only edges leaving
a 2ℓ-graph) in which case

d(z′, x) ≥ 2ℓ ≥ ℓ+ 1

or it weights 1, in which case ϕk(u) = ϕk(w), so that

d(z′, x) = d(z′, u) + d(u, v) + d(v, x)

≥ |ϕk(z
′)− ϕk(u)|+ 1 + |ϕk(w)− ϕk(x)|

= |ϕk(z
′)− ϕk(x)|+ 1

≥ ℓ+ 1.

If instead ϕk(z
′) ≥ λ+ ℓ holds we argue in exactly that d(z′, y) ≥ ℓ+ 1 for the

unique point y in G2ℓ with level λ.

In order to now demonstrate that CLrad reconstructs these components, or
rather, that all components are viable clusters, we �rst have to show, as hinted
at above, that merging parallel 2ℓ-graphs increases the cost of our solution by a
positive amount. Here, we make use of the fact that sets of optimal centers for
any pair of 2ℓ-graphs cannot intersect.

57

Lemma 37. Let C,D be two subsets of Xk with rad(C) = rad(D). Let Z(C)
and Z(D) denote the set of all optimal centers for C and D, respectively. If
Z(C) ∩ Z(D) = ∅, then rad(C ∪D) > rad(C).

Proof. Consider an arbitrary point x ∈ Xk. Since Z(C) ∩ Z(D) = ∅, this point
cannot be optimal for both sets simultaneously. Assume without loss of generality
that x /∈ Z(D). Then

max
y∈C∪D

d(y, x) ≥ max
y∈D

d(y, x) > rad(D) = rad(C)

Since x was chosen arbitrarily, this proves the claim.

Given all these auxiliary results, we can �nally analyze the merge behavior of
CLrad and prove that it reconstructs our components in the worst case. Theorem 35
is then an immediate consequence of Corollary 38.

Corollary 38. CLrad might merge clusters for (Xk, d) in such a way, that for all
1 ≤ ℓ ≤ k

2
, the clustering Hℓ consists exactly of the 2ℓ-graphs that make up Xk.

Proof. The proof is an induction analogous to Lemma 34. First, consider the base
case ℓ = 1. Since all weights are integers, the �rst merge increases the cost to 1,
which already equals the cost of any 2-graph (by Lemma 36). In other words, all of
these clusters are viable. Combining Lemma 36 and Lemma 37 shows that merging
any resulting 2-graphs increases the cost by some additional amount. Hence, H1

consists precisely of the 2-graphs.
Assume now that the claim holds for Hℓ. The induction step works essentially

the same as the base case. Any merge will increase the cost of the solution by at
least 1 by de�nition of Hℓ and so we might as well merge all 2ℓ-graphs that together
compose a (2ℓ + 2)-graph as this is a cheapest choice (Lemma 36). Furthermore,
any additional merge would increase the cost to at least ℓ+2 (again by Lemma 37)
and so Hℓ+1 consist of the (2ℓ+ 2)-graphs.

This concludes our analysis of CLrad. In the next section, which will serve
mainly as an addendum, we tackle one last, maybe somewhat unsatisfying detail
pertaining to the lower bound presented here and in the previous section. For
either Complete-Linkage variant, we have only shown that worst-case merges that
lead to an Ω(k)-approximate solution are viable. In the section on Dasgupta and
Long's lower bound, we have argued that this is not an important issue because no
general procedure (applicable to Complete-Linkage) could distinguish good from
problematic merges. However, to absolutely rule out any good result, we will show
in the next section that, with appropriate technical adjustments, we can force
worst-case merges for both Complete-Linkage variants. In other words, Complete-
Linkage cannot compute a good k-clustering, even �by chance�. This will form the
�nal section of this chapter.

58

2.3.4 Addendum: Removing Tiebreaks

In this section, we modify the instance (Xk, d) from the previous sections in such a
way that the only viable merges are those that combine two ℓ-graphs Gℓ, G′

ℓ which
are part of the same (ℓ + 1)-graph. All other merges will be slightly more ex-
pensive, so Complete-Linkage will necessarily compute a bad approximation. This
strengthens the previous results and lays some remaining reservations to rest, even
if at the cost of a more technical analysis. Since the original instance was already
quite complex, the underlying modi�cation is not as straightforward as the one
that yields Dasgupta and Long's actual instance. Although these analyses over-
lap signi�cantly with the previous two sections in their overall structure, we will
thoroughly work through them to ensure that no problems crop up � something
that could quickly happen with instances of this complexity.

Adjusting the Instance for CLdiam

Let us �rst focus on the modi�ed construction of the k-components for the diameter
variant. We introduce a new factor ε ∈ (0, 1

2
), arbitrarily small if one wishes, by

which we will skew some of the inter-level distances.
Now, concerning the components, the de�nition of K1 stays the same, and as

before a k-component is constructed from two copies K
(0)
k−1, K

(1)
k−1 of the (k − 1)-

component by taking the disjoint union of the corresponding graphs and increasing
the level of each point in K

(1)
k−1 by one. The new construction di�ers from the old

only through its inter-level edges and their weights. Contrary to before, we do
not just add an edge of weight k − 1 between the unique point s ∈ V (G

(0)
k−1)

with level 1 and t ∈ V (G
(1)
k−1) with level k. Instead, we complete Gk by adding

edges of weight (k − 1)(1 − ε) between all pairs x ∈ V (G
(0)
k−1) and y ∈ V (G

(1)
k−1),

whenever they do not lie on the same level, i.e., whenever ϕk(x) ̸= ϕk(y). Note
that most of these edges do not actually lie on any shortest path and are, in fact,
super�uous. We only added them to simplify the description of the construction.
Given these components, the subsequent arrangement of Xk is almost identical.
Only the number of k-graphs changes. This time, we take the disjoint union of
only k copies G(1)

k , . . . , G
(k)
k of k-graphs and connect them by adding edges {x, y}

of weight 1 for every two points x ∈ V (G
(i)
k) and y ∈ V (G

(j)
k) with ϕ

(i)
k (x) = ϕ

(j)
k (y).

We could have also reduced the number of copies in the original instance. The
only di�erence would be that the lower bound of k is reduced to a lower bound of
k − 1 since the last merge does not occur.

Overall, our goal is to show that the clustering computed by CLdiam on (Xk, d)
at time t≤ℓ(1−ε) consists precisely of the (ℓ+ 1)-graphs that make up the instance.
We start by establishing a new lower bound on the distance between any pair of
points.

59

Lemma 39. The distance between two points x, y ∈ Xk is at least |ϕk(x) −
ϕk(y)|(1− ε).

Proof. From the construction of the components, it is clear that an edge that
crosses w levels costs at least w(1 − ε). Hence the distance between any pair of
points x and y is at least |ϕk(x)− ϕk(y)|(1− ε).

As before, we use this lemma to show that the diameter of any ℓ-graph in Xk

is exactly equal to (ℓ− 1)(1− ε).

Lemma 40. Let Gℓ be any ℓ-graph contained in Xk. Then diam(V (Gℓ)) = (ℓ −
1)(1− ε).

Proof. We prove the upper bound, that diam(V (Gℓ)) ≤ (ℓ−1)(1−ε), by induction.
The 1-graphs are points, so the claim trivially follows for ℓ = 1. Assume now that
we have proven the claim for all ℓ − 1-graphs. Take any ℓ-graph Gℓ and consider
an arbitrary pair s, t ∈ V (Gℓ) contained within it. If these points lie in the same
(ℓ− 1)-graph, say Gℓ−1, then

d(s, t) ≤ diam(V (Gℓ−1)) ≤ (ℓ− 2)(1− ε) < (ℓ− 1)(1− ε)

by induction, and we are done. Otherwise, if s and t belong to di�erent (ℓ − 1)-
graphs, we make the following case distinction:

Case 1: If ϕk(s) = ϕk(t), these points are connected by an edge of weight one by
construction. Note that if ℓ ≤ 2, no ℓ-graph contains points from the same
level. Using ε ≤ 1

2
and ℓ ≥ 3 we obtain

d(s, t) = 1 ≤ (ℓ− 1)(1− ε).

Case 2: If s and t are on di�erent levels there is an edge of weight (ℓ− 1)(1− ε)
between s and t by construction.

Since s and t were chosen arbitrarily, we indeed obtain that

diam(V (Gℓ)) = d(s, t) ≤ (ℓ− 1)(1− ε).

To see that the lower bound diam(V (Gℓ)) ≥ (ℓ − 1)(1 − ε) holds, we apply
Lemma 39 to the unique point s ∈ V (Gℓ) with ϕℓ(s) = 1 and the unique point
t ∈ V (Gℓ) with ϕℓ(t) = ℓ. Altogether this yields diam(V (Gℓ)) = (ℓ− 1)(1− ε) as
claimed.

Finally, we show that CLdiam must, during its execution, in fact reconstruct
each component.

60

Lemma 41. CLdiam must merge clusters on (Xk, d) in such a way that for all
ℓ < k, the clustering Hℓ(1−ε) consists exactly of the (ℓ + 1)-graphs that make up
Xk.

Proof. As usual, we prove the claim by induction. Since the singleton clusters, with
which CLdiam starts, are exactly the 1-graphs, and since any merge of two points
costs at least (1 − ε), the claim follows for ℓ = 1. Suppose now that H(ℓ−1)(1−ε)

consists exactly of the ℓ-graphs of the instance. Consider two ℓ-graphs Gℓ ̸= G′
ℓ

contained in the current clustering. We make the following case distinction to
compute the cost of merging them.

Case 1: If they are contained in the same (ℓ+1)-graphGℓ+1, then mergingGℓ with
G′

ℓ results in Gℓ+1 which itself costs diam(V (Gℓ+1)) = ℓ(1− ε) (Lemma 40).

Case 2: If they are not contained in the same (ℓ+1)-graph, we show that merging
Gℓ with G′

ℓ costs strictly more than ℓ(1− ε). Note that the following holds.

1. The edges connecting x ∈ V (Gℓ) and y ∈ V (G′
ℓ) with ϕk(x) ̸= ϕk(y)

are of weight ≥ (ℓ+ 1)(1− ε).

2. There exist s ∈ V (Gℓ) and t ∈ V (G′
ℓ) with |ϕk(s)− ϕk(t)| ≥ ℓ− 1.

The last observation is because both graphs contain two points whose dif-
ference in level is exactly ℓ− 1. We now prove that d(s, t) > ℓ(1− ε), which
shows that merging Gℓ with G′

ℓ in fact costs more than ℓ(1− ε).

Any shortest path connecting s and t in Xk must contain an edge {u,w} be-
tween a point u ∈ V (Gℓ) and a point w ∈ V (G′

ℓ). By the above observation,
this edge is either of weight ≥ (ℓ + 1)(1 − ε) or u and w are on the same
level, and the edge is of weight 1. In the �rst case, we conclude that

d(s, t) ≥ (ℓ+ 1)(1− ε) > ℓ(1− ε).

And similarly, in the second case, that

d(s, t) = d(s, u) + 1 + d(w, t)

≥ |ϕk(s)− ϕk(u)|(1− ε) + 1 + |ϕk(w)− ϕk(t)|(1− ε)

= |ϕk(s)− ϕk(t)|(1− ε) + 1

≥ (ℓ− 1)(1− ε) + 1

> ℓ(1− ε).

Ultimately, this proves that Hℓ(1−ε) consists exactly of all (ℓ+1)-graphs of Xk.

61

In particular, we get that H(k−1)(1−ε) consists exactly of all k-graphs that make
up Xk. There are exactly k+1 of them, thus the k-clustering produced by CLdiam

costs (k − 1)(1− ε).

Corollary 42. However the tie-breaks are resolved, CLdiam computes a k-clus-
tering on (Xk, d) with diameter (k − 1)(1 − ε) while the optimal k-clustering has
diameter 1.

Adjusting the Instance for CLrad

Lastly, we explain how to adjust the construction of the k-components for CLrad.
Again, we introduce an auxiliary magnitude ε ∈ (0, 1

2
), which we will use to alter

some of the inter-level distances. The de�nition of K1 again does not change and
as before a k-component is assembled from two copies K(0)

k−1, K
(1)
k−1 of the (k − 1)-

component by taking the disjoint union of the corresponding graphs V (G
(0)
k−1),

V (G
(1)
k−1) and increasing the level of each point in K

(1)
k−1 by one. We then complete

Gk by adding edges between x ∈ V (G
(0)
k−1) and y ∈ V (G

(1)
k−1) if ϕk(x) ̸= ϕk(y) and

we assign this edge a weight of ⌈k
2
⌉(1−ε) if |ϕk(x)−ϕk(y)| ≤ ⌈k2⌉−1 and otherwise

a weight of |ϕk(x)− ϕk(y)|(1− ε). The �nal set Xk is de�ned as usual.
Note that Lemma 39 still holds and that the diameter of an ℓ-graph is still

upper bounded by (ℓ− 1)(1− ε).

Lemma 43. Let G2ℓ be any of the 2ℓ-graphs that constitute Xk for 1 ≤ ℓ ≤ k
2
. It

holds that rad(G2ℓ) = ℓ(1−ε). Furthermore, if G′
2ℓ denotes a second 2ℓ-graph which

is not contained in the same 2(ℓ + 1)-graph as G2ℓ, then any cluster containing
both G2ℓ and G′

2ℓ costs at least ℓ(1− ε) + 1.

Proof. Proving that radG2ℓ ≥ ℓ(1− ε) again is the easier of the two bounds. We
know that G2ℓ contains points s and t with |ϕk(s) − ϕk(t)| = 2ℓ − 1. It follows
that max{|ϕk(s)−ϕk(x)|, |ϕk(t)−ϕk(x)|} ≥ ℓ for all x ∈ Xk. But then, Lemma 39
proves that max{d(s, x), d(t, x)} ≥ ℓ(1− ε), so that indeed rad(G2ℓ) ≥ ℓ(1− ε).

To prove the upper bound suppose that G2ℓ covers levels λ up to λ + 2ℓ − 1
of Xk. Consider the unique (ℓ + 1)-graph Hℓ+1 contained in G2ℓ covering levels
λ + ℓ − 1 to λ + 2ℓ − 1. Let c be the unique point in Hℓ+1 with level λ + ℓ − 1.
Remember that the diameter of Hℓ+1 is at most ℓ(1− ε), so any point in Hℓ+1 is
at distance ≤ ℓ(1− ε) to c. Consider now a point x ∈ V (G2ℓ)\V (Hℓ+1). We know
that ϕk(x) < λ+2ℓ−1. Thus |ϕk(x)−ϕk(c)| ≤ ℓ−1. By construction, there exists
an edge of weight at most ℓ(1− ε) between x and c and thus d(x, c) ≤ ℓ(1− ε).

It is left to show that any cluster containing G2ℓ and G′
2ℓ costs at least ℓ(1−ε)+

1. Let y ∈ Xk and let H2(ℓ+1) be the 2(ℓ+1)-graph containing y. Assume without
loss of generality that G2ℓ is not contained in H2(ℓ+1). Let x ∈ V (G2ℓ) be a point
with |ϕk(x) − ϕk(y)| ≥ ℓ. We claim that d(x, y) ≥ (ℓ − 1)(1 − ε) + 1. A shortest

62

path connecting x and y must contain an edge {u,w} with u ∈ Xk \ V (H2(ℓ+1))
and w ∈ V (H2(ℓ+1)). We know by construction that either ϕk(u) = ϕk(w), or the
edge weights at least (ℓ+2)(1− ε). In the �rst case we use Lemma 39 and obtain

d(x, y) = d(x, u) + d(u,w) + d(w, y)

≥ |ϕk(x)− ϕk(u)|(1− ε) + 1 + |ϕk(w)− ϕk(y)|(1− ε)

= |ϕk(x)− ϕk(y)|(1− ε) + 1

≥ ℓ(1− ε) + 1

and in the second case, we obtain

d(x, y) ≥ (ℓ+ 2)(1− ε) ≥ ℓ(1− ε) + 1.

This immediately leads to the following results.

Corollary 44. CLrad must merge clusters on (Xk, d) in such a way that for all
1 ≤ ℓ ≤ k

2
, the clustering Hℓ(1−ε) consists exactly of the 2ℓ-graphs that make up

Xk.

Corollary 45. However the tie-breaks are resolved, CLrad computes a k-clustering
on (Xk, d) with radius k

2
(1− ε), while the optimal k-clustering has radius 1.

2.4 Upper Bounds for Complete-Linkage

We have just seen that CLdiam and CLrad are at most Ω(k)-competitive relative to
their respective objective functions. In the worst case, Complete-Linkage is thus
not better than Single-Linkage, even though the latter optimizes an entirely di�er-
ent objective function. Of course, this statement is a bit deceptive or misleading,
and we could further �esh out di�erences in their behavior. Clearly, Single-Link-
age's chaining characteristic can yield Ω(k)-approximative solutions much more
quickly. In Figure 2.1, we have seen that such solutions can arise with only k − 1
merging steps. Thus, whereas our worst-case instance for Complete-Linkage con-
sists of Ω(2k) points, we only require 2k points to construct a worst-case instance
for Single-Linkage. For now, we leave these considerations to the side because we
�rst of all still have to establish that the lower bounds derived in the previous
section are, in fact, worst cases. We still have to establish that Complete-Link-
age is an O(k)-approximation for the k-center and k-diameter objective functions.
We attempt to show this in this section, although we will only partially succeed
for CLdiam. Our results will be the �rst non-trivial upper bounds for Complete-

63

≤ r ≤ r

≤ x

≤ x

(a) As long as |Hx| > k there have to ex-

ist two clusters C,C ′ ∈ Hx whose cen-

ters lie in the same optimal cluster O.

Merging them yields a new cluster of ra-

dius at most 2r + x, where r = rad(O)
is the radius of the optimal cluster.

≤ d

≤ x

≤ x

(b) As long as |Hx| > k there have to

exist two clusters C,C ′ ∈Hx that inter-

sect a same optimal cluster O. Merging

them yields a new cluster of diameter at

most 2x+ d, where d = diam(O) is the

diameter of the optimal cluster.

Figure 2.8: The cost increase can be upper bounded much better for CLrad than
for CLdiam. In the former case (a), the radius will increase by an additive amount
of at most twice the optimum cost, which is �xed and doesn't change during the
execution of CLrad. In the latter case (b), however, the diameter might increase
to such a degree that it more than doubles the previous diameter. As such, we
cannot derive any logarithmic bound as in Proposition 49.

Linkage on general metrics spaces � that is, metric spaces without any additional
geometric structure, such as is attached, for example, to Euclidean spaces. In the
case of CLrad, the upper bound turns out to be O(k), matching the lower bound
at least asymptotically. However, in the case of CLdiam, we only manage to prove
an upper bound of O(k2). Although this bound can be improved to O(kln 3/ ln 2)
by tightening an important estimation, the gap between this ratio and the lower
bound remains too large. One of the di�culties of analyzing CLdiam relative to
the k-diameter objective function, as opposed to CLrad, is that the cost of clusters
can increase signi�cantly with a single merge. We will provide further insight later
on, but the main point is already captured in Figure 2.8. For now, we will focus
on CLrad.

2.4.1 Upper Bounds for CLrad

In this section, we want to show that the radius of the k-clustering Ck produced
by CLrad for any instance (X, d) and any k is always an O(k)-approximation with
regards to the k-center objective function.

Theorem 46. Let (Ck)
n
k=1 be the hierarchical clustering computed by Complete-

Linkage on (X, d) optimizing the radius. For all 1 ≤ k ≤ n the radius rad(Ck) is

64

upper bounded by O(k) rad(Ok), where Ok is an optimal k-center clustering.

Together with the lower bound derived in the previous section, this shows that
our analysis is asymptotically tight relative to the k-center objective function.

Part 0: Preliminaries and an Outline of the Proof

Throughout this section, every result will pertain to a �xed but arbitrary general
metric space (X, d) and a similarly �xed but arbitrary clustering number k. Since
the behavior of Complete-Linkage is invariant with regard to scaling, 4 we can
assume that the optimal k-clustering, from now on denoted O = Ok, has a cost of
exactly rad(O) = 1

2
.

The proof of Theorem 46 is split into two parts. In the �rst, we crudely upper
bound the increase in cost during the execution of Complete-Linkage in a similar
vein to Ackermann et al. [3], who use the same bound to estimate the cost of later
merge steps. Proposition 49 shows that the di�erence in cost between Ck and Ct

for t > k is at most ⌈log(t− k)⌉+1. That is, rad(Ck) ≤ ⌈log(t− k)⌉+1+ rad(Ct)
holds for all 1 ≤ k < t ≤ n, establishing a logarithmic increase in cost relative to
the di�erence in time steps. A clustering Ct whose cost we can estimate directly
(i.e., without referring to any other clustering) can then serve as a starting point
to derive a proper upper bound for rad(Ck). Ideally, this clustering should consist
of relatively few clusters (so that ⌈log(t− k)⌉ is small) while at the same time not
being too expensive. However, these criteria clearly oppose each other. Naively
choosing the initial clustering Ct = Cn is not good enough. Although its cost
is minimal, the number of clusters is too high, only yielding an upper bound of
rad(Ck) ≤ ⌈log(n − k)⌉ + 1. In the second part of the proof, we thus set out to
�nd a di�erent clustering to start from � one that nicely balances a cost-to-size
ratio.

Part 1: Estimating the relative di�erence in cost

When dealing with radii, any merge performed by Complete-Linkage prior to reach-
ing k clusters increases the cost by at most 2 rad(O) = 1 (Figure 2.8). This is
because the centers of two clusters are necessarily contained in the same optimal
cluster.

We show that Complete-Linkage clusterings at times t≤x and t≤x+1 can have
at most k clusters in common. All other clusters from Hx are merged in Hx+1.

Lemma 47. For all x ≥ 0, the clustering Hx+1 contains at most k clusters of cost
at most x. In particular, it holds that |Hx+1 ∩Hx| ≤ k.

4 This is easy to see. Scaling preserves the ordering of merges according to their cost.

65

Proof. Assume on the contrary that there exist k+1 pairwise di�erent Complete-
Linkage clusters D1, . . . , Dk+1 at time t≤x+1 of cost at most x. Denote by di ∈ Di

a point that induces the smallest radius, i.e. rad(Di) = maxd∈Di
d(d, di) for all i.

Then, two of these points, say d1 and d2, must be contained in the same optimal
cluster O ∈ O. Hence, we know that

rad(D1 ∪D2) ≤ 1 + max
i∈{1,2}

rad(Di) ≤ 1 + x

because d(d1, d2) ≤ 2 rad(O) ≤ 2 rad(O) = 1 and rad(Di) ≤ x for i = 1, 2. This
contradicts the de�nition of Hx+1, as D1 and D2 can still be merged without
pushing the cost beyond x+ 1.

In other words, most clusters will get merged between time steps t≤x and t≤x+1,
at least halving their number. By extending the argument over several time steps,
we can establish the following relation between the size of a clustering and the
relative time at which it appears.

Corollary 48. For all i ∈ N+ and x ≥ 0 it holds that |Hx+i| ≤ k + 1
2i
(|Hx| − k).

Proof. First, we consider what happens when we increase the cost by 1. We �x
an arbitrary x′ ≥ 0. Lemma 47 shows that at most k clusters from Hx′ are left
untouched, while the remaining |Hx′ | − k clusters have to be merged with at least
one other cluster (thus at least halving the number of those clusters) to get to
Hx′+1. This yields a bound of

|Hx′+1| ≤ k +
1

2
(|Hx′| − k).

The case for general i ∈ N follows from a straightforward induction. We have
just shown that the claim is true for i = 1, where we set x′ = x. For the induction
step, suppose that

|Hx+i−1| ≤ k +
1

2i−1
(|Hx| − k).

Substituting this into the inequality

|Hx+i| ≤ k +
1

2
(|Hx+i−1| − k),

derived from the �rst part of our proof with x′ = x+ i− 1, yields

|Hx+i| ≤ k +
k + 1

2i−1 (|Hx| − k)− k

2
= k +

1

2i
(|Hx| − k)

as claimed.

66

Since the particular time steps appearing above already refer to the cost of the
corresponding clusterings (Hx refers to the clustering at time t≤x), we can thereby
estimate the increase in cost from one time step to another. This increase turns
out to be logarithmic in the distance between the respective time steps.

Proposition 49. For all k < t ≤ n it holds that rad(Ck) ≤ ⌈log(t − k)⌉ + 1 +
rad(Ct).

Proof. Let x = rad(Ct), so that Hx consists of at most t clusters. Applying
Corollary 48 with i = ⌈log(t− k)⌉+ 1 then shows that

|Hx+i| < k +
1

t− k
(|Hx| − k) ≤ k + 1.

That is, Hx+i emerges from Ck by merging some (or none) of its clusters, and we
can conclude that rad(Ck) ≤ rad(Hx+i) ≤ x+ i = rad(Ct) + ⌈log(t− k)⌉+ 1.

This particular part of the analysis is already present in Ackermann et al. [3].
We have mostly adjusted the proof to �t our overall notation.

Part 2: A cheap clustering with few clusters

Suppose we know of the existence of a Complete-Linkage clustering Ct with t ∈
O(2k) clusters and rad(Ct) ∈ O(k). Applying Proposition 49 the Ct then yields

rad(Ck) ∈ log(O(2k)) + 1 +O(k) = O(k) = O(k) rad(O)

and we have proven Theorem 46 (recall that rad(O) = 1
2
). We show that Ct =

H4k+2 is a su�ciently good choice. Here, we diverge entirely from Ackermann et
al. Whereas they were able to make use of certain properties of Euclidean space
to estimate the cost of an initial 2k-clustering, we have to approach the problem
by other means.

To estimate the size of H4k+2, we distinguish between regular and irregular
clusters. (Remember that O(C) = {O ∈ O | O ∩ C ̸= ∅} is the set of op-
timal clusters intersected by C.) Contrary to Single-Linkage, Complete-Linkage
sometimes merges clusters that are quite far apart. That is, contrary to Single-
Linkage, Complete-Linkage can produce clusters that are very expensive relative
to the number of optimal clusters intersected by them. Luckily for us, Complete-
Linkage cannot construct many such irregular clusters within a short time frame.
Since the circumstances under which they can come about are very restrictive, we
can establish a relatively small lower bound for the number of irregular clusters
at any given time step. On the other hand, the number of the remaining regular
clusters can be potentially large. However, since they are regular, we can easily
upper-bound them once the cost of our clustering reaches 4k + 1.

67

De�nition 50. We call a cluster C regular, if rad(O(C)) ≤ 4|O(C)| and irregular
otherwise.

Lemma 60 establishes an upper bound for irregular and Lemma 62 for regular
clusters. The former is proved by induction: irregular clusters can descend from
cheap or other irregular clusters. On the one hand, since we know from Lemma 47
that at most k cheap clusters can exist at any given time, we get that the number
of irregular clusters at time step t≤4k+1 is at most 4k2. On the other hand, the
number of regular clusters can be upper-bounded quite easily just by showing that
within the same time step, no optimal cluster can contain centers of two di�erent
regular clusters.

Lemma 51. H4k+1 contains at most 4k
2 irregular clusters.

Proof. We show that the number of irregular clusters created between t≤x−1 and
t≤x is at most k for all x ∈ N. In other words, ifmx denotes the number of irregular
clusters in Hx, then mx ≤ mx−1 + k holds for all x ∈ N. Since all clusters are
regular at time step t = 1, we can inductively infer that m4k+1 ≤ 4k2, as claimed.

Consider an irregular cluster D ∈ Hx for a �xed but arbitrary x ∈ N. Let
D1, . . . , Dℓ ∈ Hx−1 be an enumeration of all ancestors of D at time step t≤x−1.
We show that none of them can cost at least x− 2 and be regular simultaneously.
If that is the case, each irregular cluster in Hx has to descend from

{C ∈Hx−1 |C is irregular} ∪ {C ∈Hx−1 | rad(C) < x− 2}. (2.1)

The set on the left has cardinality mx−1, and the set on the right has a cardinality
of at most k (by Lemma 47), i.e., mx ≤ mx−1 + k.

What is left to show is that the ancestors of D are indeed contained in (2.1).
Suppose that this is not the case, i.e., that 4|O(Di)| ≥ rad(O(Di)) ≥ rad(Di) ≥
x − 2 for some i. Since regularity only concerns the distribution of intersected
optimal clusters, we know that O(D) has to be a proper superset of O(Di), i.e.,
|O(Di)| < |O(D)|. But then

rad(O(D)) ≤ rad(D) + 2 ≤ x+ 2 ≤ rad(Di) + 4

≤ rad(O(Di)) + 4 ≤ 4|O(Di)|+ 4 ≤ 4(|O(Di)|+ 1) ≤ 4|O(D)|

still contradicts the assumption that D is irregular. It follows that all ancestors
D1, . . . , Dℓ must be contained in (2.1) and the proof is complete.

Lemma 52. There are at most 2k regular clusters in H4k+1.

Proof. At time t≤4k+1 there cannot exist two regular clusters C1 and C2 with
O(C1) ⊆ O(C2). Indeed, since C2 intersects all the optimal clusters also intersected
by C1, we get that

rad(C1 ∪ C2) ≤ rad(C2) + 1 ≤ 4|O(C2)|+ 1 ≤ 4k + 1

68

and so C1 or C2 would have already gotten merged in H4k+1. Now, if there are
more than 2k regular clusters in H4k+1, then at least two must intersect the same
set of optimal clusters. Since we have just ruled this out, the lemma follows.

Since all clusters are either regular or irregular, we can upper bound the number
of clusters present at time step t≤4k+1.

Corollary 53. H4k+1 consists of at most 2
k + 4k2 ∈ O(2k) clusters.

Theorem 46 is now an immediate consequence of combining Corollary 53 with
Proposition 49.

2.4.2 An Upper Bound for CLdiam

The main challenge in proving an upper bound on the approximation guarantee of
Complete-Linkage when replacing the k-center objective by the k-diameter objec-
tive is to deal with possibly large increases of cost for particular merge steps, as
shown in Figure 2.8. Whereas it was possible to upper bound this increase by an
additive factor of 1 relative to the k-center objective function (see Lemma 47), the
same cannot be done with regard to the k-diameter objective function. We cannot
a priori rule out an increase by a multiplicative factor of 2. This possible doubling
of the diameter prevents us from establishing a result similar to Proposition 49
and requires us to approach the problem in a completely di�erent fashion. Not
only will the analysis be much more complex, but it will also only guarantee an
O(k2) approximation guarantee. 5

Part 0: Preliminaries

Recall our proof of the fact that Single-Linkage is an O(k)-approximation for the
k-center and k-diameter objective functions. At its core, this proof was concerned
with Single-Linkage clusters only indirectly � �rst and foremost, it was about
the relative placement of optimal clusters and how this placement in�uences the
behavior of Single-Linkage. Whenever two optimal clusters are too far apart, they
will never direct a merge, in the sense that there would be a point in one optimal
cluster and a point in the other and that that pair would minimize the sep linkage
function. This behavior guarantees that no Single-Linkage cluster crosses a large
gap and thus stays relatively small altogether.

We will also approach the upper bound of Complete-Linkage for the k-diameter
problem by considering what Complete-Linkage clusterings are possible for a given

5 At least, according to our computations. As it turns out, one estimation � we will note
which one � turns out not to be tight. So, although we will not do so, this factor could be
improved to O(kln 3/ ln 2)

69

arrangement of optimal clusters. There are two cases, situated at either end of all
possible arrangements, that are easy to analyse and that we will consider soon.
First, we have to establish some notation. As before, �x some arbitrary k as a
parameter for the number of clusters and let O denote an optimal k-diameter
solution for (X, d), which, after scaling the instance appropriately, has diameter
diam(O) = 1. We again introduce a cluster graph G = (O, E) on the set of
optimal clusters. In the Single-Linkage case, we added edges between optimal
clusters whenever their distance is at most 1. We could do the same to analyze
the extreme cases here, but later on, a di�erent setup will be more helpful. So
instead, we will add edges between two optimal clusters O and O′ if there exists
some cluster C ∈ H1 that intersects both of them, i.e., O,O′ ∈ O(C). With this
setup, we do not add edges between any optimal clusters whose distance exceeds 1,
so it is not too di�erent from the cluster graph we constructed for Single-Linkage.
The two extreme cases are now the following.

1. G is completly disconnected, meaning that E = ∅. In this case, H1 = O
and CLdiam has successfully recovered the optimal clustering. No Complete-
Linkage cluster can intersect two di�erent optimal clusters � otherwise,
there would be an edge � and no two Complete-Linkage clusters can be
contained in the same optimal cluster � otherwise, we could merge them
without increasing the cost.

2. G is fully connected, meaning that it consists of a single connected compo-
nent. In this case, the analysis is the same as for Single-Linkage. The in-
stance has to be pretty small overall since merging all of its points into just
one cluster costs at most 2k−1. In particular, any algorithm will necessarily
yield an O(k)-approximative solution.

While these edge cases are easy to handle, everything in between is much
more complicated. Contrary to Single-Linkage, CLdiam can form clusters that
intersect several di�erent connected components, making it di�cult to estimate
their cost properly. Complete-Linkage can build up large clusters within the
connected components to the point that one can connect with a cluster contained
in a di�erent connected component. If the number of such �irregular� clusters
grows much slower than the number of �regular� clusters decreases, we can still
deal with them. Although the setup is quite di�erent, the counting part is very
similar to the one we employed for CLrad. However, this time, the number of
irregular clusters has to be much smaller since we cannot use any result similar to
Proposition 49. Our goal is to balance out the following trade-o� nicely:

1. Connected components in the cluster graph should be small enough so that
we can use them to upper bound the size of Complete-Linkage clusters com-
pletely contained within them.

70

Figure 2.9: An example for instance where Complete-Linkage crosses gap of 2 =
2 diam(O). Distances between points are equal to the length of a shortest path
connecting them in the graph. Note that the gray sets again indicate cliques of
diameter 1. These sets also form the only 4-diameter solution of cost 1. All other
clusterings contain some cluster that joins two points xi,j and xi′,j′ with i ̸= i′ and
j ̸= j′ whose distance necessarily is at least 2. The clusters computed by Complete-
Linkage are indicated by black outlines. First it forms the clusters {x0,0, x0,1},
{x0,1, x1,1} and {x5,0, x5,1}. The precise order in which these merges happen is not
signi�cant, what is relevant is that every following merge has to induce a cost of
at least 2. Complete-Linkage might thus merge {x2,0} and {x4,0} in the following
step, whose distance is exactly 2. Of course there are other viable clusters, but we
could also deduct some small ε from the length of the edge connecting x2,0 and
x4,0 and thus force this merge.

2. Connected components in the cluster graph should be large enough so that
the number of Complete-Linkage clusters intersecting di�erent connected
components should be small. If the number of regular clusters decreases fast
enough, hopefully, we will be able to push the overall number of clusters
below k at some favorable time step t≤x.

It all depends on how we set up our cluster graph or our series of cluster graphs.
What we do is successively add edges between optimal clusters in such a way that
diam(Z) = diam(∪A∈V (Z)A) ≤ |V (Z)|2 for all connected components Z at any
given point in time. The diameter of clusters contained within such connected
components can thus never exceed k2. This is the �rst side of the trade-o�. Al-
though this upper bound of k2 is larger than we would like, it is what ultimately
allows to upper bound the number of irregular clusters at time t≤k2 in such a way
that Hk2 is guaranteed to consist of at most k clusters. This yields our main
theorem.

Theorem 54. Let (Ck)
n
k=1 be the hierarchical clustering computed by CLdiam on

(X, d) optimizing the diameter. For all 1 ≤ k ≤ n the diameter rad(Ck) is upper
bounded by k2 rad(Ok), where Ok is an optimal k-diameter clustering.

Essential for our analysis is the following sequence of cluster graphs Gt =
(Vt, Et) for t = 1, . . . , k2 constructed directly on the set Vt = O of optimal k-

71

clusters. We start with the cluster graph G1 that contains edges {A,B} for every
two vertices A,B ∈ V1 = O that are intersected by a common cluster from H1.
We successively add edges based on some vertex labeling to create the remaining
cluster graphs G2, . . . , Gk2 . The labeling distinguishes vertices as either active or
inactive. We denote the set of active vertices in Vt by V a

t and the set of inactive
ones by V i

t . In the beginning (t = 1), the inactive vertices are set to precisely
those that are isolated: V i

1 = {O ∈ V1 | δG1(O) = ∅}. For t ≥ 2, the labeling
is outlined in De�nition 55. Over time, active vertices may become inactive, but
inactive vertices never become active again.

Given some labeling for Vt+1, we construct Gt+1 from Gt by adding additional
edges: If there are two active vertices A,B ∈ V a

t+1 that are both intersected by a
common cluster from Ht+1, we add an edge {A,B} to Et+1.

De�nition 55. Let A ∈ Vt+1 be an arbitrary optimal cluster and ZA the con-
nected component in Gt that contains A. We call A inactive (i.e., A ∈ V i

t+1) if
⌈diam(ZA)⌉ ≤ t, and active otherwise. Here, and in the following diam(ZA) =

diam
(︂⋃︁

B∈V (ZA)B
)︂
denotes the cost of merging all optimal clusters contained in

V (ZA).

Thus, if a connected component in Gt has a small cost, then all vertices in this
component become inactive by de�nition in Gt+1.

Part 1: Inactive Clusters

We state the following useful properties of inactive vertices in (Gt)
k2

t=1.

Lemma 56. If Z is a connected component in Gt+1 with V (Z) ∩ V i
t+1 ̸= ∅, then

1. Z is also a connected component in Gt and ⌈diam(Z)⌉ ≤ t,

2. we have V (Z) ⊆ V i
t+1, i.e., all vertices in Z become inactive at the same

time.

Moreover, we have V i
t ⊆ V i

t+1, so once vertices become inactive, they stay inactive.
Equivalently, V a

t+1 ⊆ V a
t .

Proof. Take any inactive vertex A ∈ V i
t+1 ∩ V (Z) and consider the connected

component ZA in Gt containing A. By De�nition 55, we have that ⌈diam(ZA)⌉ ≤ t
and so all other vertices in ZA have to be in V i

t+1 as well. We observe that Et+1\Et

only contains edges between vertices from V a
t+1 by construction. This shows that

Z = ZA.
It is left to show that inactive vertices stay inactive. For t = 1, the inactive

vertices V i
1 are already connected components with cost at most 1. As such, they

72

remain inactive at step t = 2. For t ≥ 2, consider an inactive vertex A ∈ V i
t and the

connected component Z ⊆ Gt containing it. We showed previously that V (Z) ⊂ V i
t

and so Z is also a connected component in Gt+1 with ⌈diam(Z)⌉ ≤ t− 1 < t and
thus A ∈ V (Z) ⊂ V i

t+1.

De�nition 57. Let C ∈ Ht for some �xed t ∈ N. We de�ne It = {C ∈ Ht |
O(C)∩V i

t ̸= ∅} as the set of all clusters in Ht which intersect at least one inactive
vertex of Gt. We call these clusters inactive and those from Ht\It active.

We prove the following easy property about active clusters.

Lemma 58. If C ∈ Ht \ It, then Gt[O(C)] forms a clique. In particular, there
exists a connected component in Gt that fully contains O(C).

Proof. By de�nition of It, O(C) must consist exclusively of active vertices. Since
all of them are intersected by C ∈ Ht, there exists an edge {A,B} ∈ Et for
every pair A,B ∈ O(C). In other words, Gt[O(C)] forms a clique and the claim
follows.

This does not necessarily hold for an inactive cluster C ∈ It. As C contains at
least one inactive vertex, the connected component Z, which contains this vertex,
does not grow. If CLdiam merges C with another cluster later on, the result is an
inactive cluster that may intersect vertices outside of Z. So Gt′ does not re�ect the
progression of C for t′ ≥ t. However, as we will show in Lemma 60, the number
of such clusters is at each time step upper bounded by the number of inactive
vertices. Before proving, we �rst have to establish the following auxiliary result.

Lemma 59. Let C,D ∈ It be two clusters, all of whose ancestors at time step
t− 1 are contained in Ht−1 \It−1. Then O(C)∩O(D) cannot contain any vertex
I ∈ V i

t . In other words, no two clusters can become inactive during the same time
step because of the same shared vertex.

Proof. Suppose, on the contrary, that such a vertex I exists. Let C ′, D′ ∈Ht−1 \
It−1 denote those ancestors of C and D that intersect I at time step t− 1. If ZO

denotes the connected component of Gt−1 that contains O, then

1. diam(ZO) ≤ t − 1: This follows directly from the de�nition of inactive ver-
tices.

2. O(C ′)∪O(D′) ⊂ ZO: This follows from Lemma 58. Both induced subgraphs
Gt−1[O(C ′)] and Gt−1[O(D′)] constitute cliques that contain O.

However, then diam(C ′∪D′) ≤ t−1, so they could not exist together at time step
t− 1.

73

We now use this result to build our assignment.

Lemma 60. The number of inactive clusters in Ht is, at most, the number of
inactive vertices at time t. That is, |It| ≤ |V i

t | holds for all t ∈ N.

Proof. We prove the claim by showing that the following inductive construction
de�nes a family of injective mappings ϕt : It → V i

t :

� Let C ∈ I1 be an inactive cluster. By de�nition, C thus has to intersect an
optimal cluster I ∈ V i

1 . As it turns out, C already has to coincide with I:
On the one hand, C cannot intersect any other optimal cluster I ′ since that
would induce an edge {I, I ′} in G1, turning I active. This shows that C is at
least a subset of I. On the other hand, the same holds for any other cluster
D ∈H1 intersecting I. Thus, diam(C∪D) ≤ diam(I) ≤ 1, so we could have
merged them before time step t = 1. In e�ect, setting ϕ1(C) = I and doing
the same for all other inactive clusters yields an injective mapping.

� For t > 1 and C ∈ It we distinguish two cases. On the one hand, if C
descends from some cluster C ′ ∈ It−1, then we can just set ϕt(C) = ϕt−1(C

′).
This is not a problem in itself since ϕt−1 is already assumed to be injective.
On the other hand, if C only descends from clusters contained in Ht−1\It−1,
then O(C) has to contain a vertex I ∈ V i

t that was not yet inactive at time
step t− 1, and we can set ϕt(C) = I. Two observations guarantee that this
yields a unique assignment. First, all clusters D ∈ It that descend from
some cluster D′ ∈ It−1 have already been assigned to a di�erent cluster
ϕt(D) ∈ V i

t−1. Second, due to Lemma 59, no other cluster that becomes
inactive at this time step can intersect I.

Part 2: Active Clusters

Active clusters from Ht are nicely represented by the graph Gt as shown in
Lemma 58. We can indirectly upper-bound the cost of active clusters by upper-
bounding the cost of the connected components in which they are contained.

Lemma 61. Let Z be a connected component in Gt. If V (Z) ⊂ V a
t , we have

diam(Z) ≤ |V (Z)|2.

Proof. Again, we prove this via an induction over t. The base case t = 1 is very
similar to the Single-Linkage analysis of Theorem 20. For every pair of clusters
A,B ∈ V (Z) there exists a simple path A = Q1, . . . , Qs = B ∈ V (Z) of at most
|Z| optimal clusters with d(Qi, Qi+1) ≤ 1. Using the triangle inequality we can
thus upper bound diam(Z) ≤ 2|V (Z)| − 1 ≤ |V (Z)|2.

74

For t > 1 let Z1, . . . , Zu denote the connected components in Gt−1 with V (Z) =⋃︁u
j=1 V (Zj). Let j, j′ ∈ {1, . . . , u}. We observe that V (Zj) ⊂ V (Z) ⊂ V a

t ⊂ V a
t−1.

Thus, we obtain by induction that

diam(Zj) ≤ |V (Zj)|2. (2.2)

Suppose that ⌈diam(Zj)⌉ ≤ t − 1. Then V (Zj) ⊂ V i
t by de�nition, which is a

contradiction to V (Z) ∩ V i
t = ∅. So we must have

t ≤ ⌈diam(Zj)⌉. (2.3)

Combining (2.2) and (2.3) we obtain

t ≤
√︂
⌈diam(Zj)⌉⌈diam(Zj′)⌉ ≤

√︂
|V (Zj)|2|V (Zj′)|2 = |V (Zj)||V (Zj′)|. (2.4)

For A,B ∈ V (Z), we want to upper bound the distance between p ∈ A and
q ∈ B. Let A = Q1, . . . , Qs = B be a simple path connecting A and B in
Z which enters and leaves every connected component Zj for j ∈ {1, . . . , u} at
most once. We divide the path into several parts such that every part lies in one
connected component from {Z1, . . . , Zu}. Let 1 = m1 < m2 < . . . < ml = s such
that Qmj

. . . , Qmj+1−1 lie in one connected component Z(j) ∈ {Z1, . . . , Zu} and
Z(j) ̸= Z(j+1) for all j ∈ {1, . . . , l}. Since (Qmj−1, Qmj

) ∈ Et we know that there
exists a cluster in Ht that intersects Qmj−1 and Qmj

, thus there is a pair of points
pj ∈ Qmj−1 and qj ∈ Qmj

such that d(pj, qj) ≤ t. We obtain

d(p, q) ≤
l−1∑︂
j=1

(︁
diam(Z(j)) + d(pj, qj)

)︁
+ diam(Z(l)) ≤

l∑︂
j=1

(︁
|V (Z(j))|2 + t

)︁
≤
(︂ l∑︂

j=1

|V (Z(j))|
)︂2

= |V (Z)|2.

For the second inequality we use (2.2) and d(pj, qj) ≤ t. For the third inequality,
we use (2.4). So, we obtain the claimed upper bound on the cost of Z.

A connected component in Gk2 cannot contain two active clusters, yielding the
following upper bound.

Lemma 62. At time t≤k2, the number of active clusters is less than or equal to
the number of active vertices. In other words, |Hk2 \Ik2| ≤ |V a

k2 |.

Proof. By Lemma 58 we know that every cluster C ∈Hk2 \Ik2 is fully contained
in a connected component ZC from Gk2 . We show that mapping any such C to an

75

arbitrary vertex in ZC yields an injective map φ : Hk2 \Ik2 ↪−→ V a
k2 . First, notice

that φ is well-de�ned: If ZC contains an inactive vertex, then all its vertices are
inactive (Lemma 56), contradicting the choice of C as active.

Suppose now that there are two di�erent clusters C,C ′ ∈ Hk2 \ Ik2 that are
mapped to the same vertex φ(C) = φ(C ′). Then the connected components ZC

and ZC′ , in which they are embedded, already have to coincide (ZC = ZC′). But
we have just shown (Lemma 61), that diam(ZC) ≤ |V (ZC)|2 ≤ k2 and so C and
C ′ would have already been merged in Hk2 . As such, the images of both cannot
coincide, and the map is injective.

Together with the bound for the number of inactive clusters, we can now prove
the theorem.

Proof of Theorem 54. Using Lemma 60 and Lemma 62 we obtain

|Hk2| = |Hk2 \Ik2|+ |Ik2| ≤ |V a
k2|+ |V i

k2| = k

and thus diam(Ck) ≤ diam(Hk2) ≤ k2 diam(O).

2.5 The Average Approximation Factor

Although we have just increased the lower bound on the approximation guarantees
of Complete-Linkage for both the k-diameter and k-center objective functions with
regard to k, if we instead consider the approximation guarantees with regard to
the number of points of the instance, then the lower bound has not been improved.
The lower bound established by Dasgupta and Long was only Ω(log k), but their
instance was exponentially smaller than ours, containing just n = k2 points. So
in terms of n they have proven a lower bound of Ω(log n). Complete-Linkage only
yields an Ω(k)-approximate solution for our instance, but this instance contains
n = k2k points and so we still get a lower bound of Ω(log n). From this perspective
nothing much has changed. In fact, Proposition 49 proves that Complete-Linkage
always returns an O(log n)-approximative solution, so we cannot increase the lower
bound. However, if we also analyze Single-Linkage from this perspective then we
see that it is much worse than Complete-Linkage. As we have established, with an
instance consisting of only n = 2k points we can force Single-Linkage to compute
a solution that is worse by a factor of Ω(k) = Ω(n). We will conclude this chapter
by showing these lower bounds even hold when we average over all computed
clusterings. This substantiates our earlier claim that Complete-Linkage builds up
worst-case solutions much slower than Single-Linkage. Single-Linkage computes
an asymptotically much worse clustering than Complete-Linkage in average.

76

De�nition 63. Let (Ck)
n
k=1 be an arbitrary hierarchical clustering on (X, d) and

let (Ok)
n
k=1 be optimal solutions for the k-center or k-diameter objective functions.

We denote by

avg((Ck)
n
k=1) =

1

n

n∑︂
k=1

cost(Ck)

cost(Ok)

the average approximation factor of (Ck)
n
k=1.

The following corollary is an immediate consequence of Proposition 49.

Corollary 64. Let (Ck)
n
k=1 be the hierarchical clustering computed by Complete-

Linkage for the radius. We have

avg((Ck)
n
k=1) ≤ ⌈log(n)⌉.

However, this upper bound of ⌈log n⌉ seems too pessimistic. It would be in-
teresting to know whether Complete-Linkage does not in fact compute a constant
factor approximation on average and whether similar results hold for the diameter.
Still let us compare it with the average approximation factor of Single-Linkage.

Proposition 65. Let X = {1, . . . , 2s} ⊂ R for some s. Then the average ap-
proximation factor achieved by Single-Linkage on (X, ∥ · ∥1) for both, radius and
diameter, is at least n

24
− 1.

Proof. Let n = 2s. We can assume that in the k-th step Single-Linkage merges the
two clusters containing xn−k and xn−k+1 as the distance between these clusters is
1. The k-clustering computed by Single-Linkage on (X, ∥ · ∥1) then equals

Ck = {{x1}, . . . , {xk−1}, {xk, . . . , xn}}

and has diameter n− k.
On the other hand for 0 ≤ t ≤ s the optimal 2t-clustering has diameter 2s−t−1

and consists of clusters with 2s−t consecutive points in X

O2t = {{x1, . . . , x2s−t}, . . . , {x2s−t(2t−1)+1, . . . , x2s}}.

77

Thus we obtain for the diameter

avg((Ck)
n
k=1) =

1

n

s−1∑︂
t=0

2t+1∑︂
k=2t+1

cost(Ck)

cost(Ok)
≥ 1

n

s−1∑︂
t=0

2t
cost(C2t+1)

cost(O2t)

≥ 1

n

s−1∑︂
t=0

2t
2s − 2t+1

2s−t
=

1

n

s−1∑︂
t=0

22t
2s−t − 2

2s−t

≥ 1

2n

s−2∑︂
t=0

4t =
1

2s+1

4s−1 − 1

3
=

2s−1

12
− 1

3 · 2s+1

≥ n

24
− 1

The same computation can be done for the radius, as the radius of C2t+1 equals
2s−2t+1

2
and the radius of O2t equals 2s−t

2
.

78

Chapter 3

Separated k-Clustering

In the introduction, we have spoken of a certain tension between the two main
goals of cluster analysis as we have established them. We would like to partition
a data set in such a way that, on the one hand, dissimilar points lie in di�erent
clusters, and on the other, similar points lie in the same cluster. However, this
tension, which cannot be resolved a priori and can only be experimented with on
a case-by-case basis, is usually pushed aside. The �rst goal is turned into a penal-
izing objective (k-center, k-diameter, k-MSR, k-MSD, k-median, k-means, etc.),
which measures the spread of a clustering, while the second is omitted altogether.
As a result, clusters do not have to be separated well, and no clear lines of demar-
cation have to exist. The second goal can only be traced implicitly through the
imposition of a pre-determined number k of allowed clusters.1 This is true also for
this dissertation. In almost all chapters, we have treated clustering problems as op-
timization problems where dissimilarity is penalized, but the similarity is ignored.
In this chapter, we would like to prove a di�erent outlook by trying to combine
each of the objectives deriving from the �rst goal with the k-separation objective,
which, to recall, measures the separation of a clustering, i.e., the minimal distance
between any of its clusters. These results form part of a yet unpublished project
on bi-objective clustering. We have decided not to deviate from the larger context
and allow each objective to refer to a separate metric. For the most part, we will
thus work with two metrics d1, d2 de�ned on a single set X.

3.1 The k-Separation Objective

Although we have already introduced the k-separation objective in the introduc-
tion, let us quickly recap the main points. The separation sep(C , d) of a clustering

1 This also holds for hierarchical clusterings that are evaluated based on their individual
levels.

79

C of some �nite metric space (X, d) is de�ned to be minimal distance

sep(C , d) = max
C,C′∈C

min
(c,c′)∈C×C′

d(c, c′)

between any two of its clusters. Note that we also pass the metric as an argument
to the objective. This is because we will work with two di�erent metrics simulta-
neously and have to explicitly state in relation to which the objective is evaluated.
Contrary to all the other objectives discussed in this work, the goal is to maxi-
mize this function instead of minimizing it. A larger objective value implies that
distinctions between di�erent clusters are more pronounced. If we consider the set
of all clusterings that satisfy a given separation value, we will �nd that it can be
characterized quite nicely.

De�nition 66. Let (X, d) be a �nite metric space and τ ≥ 0. A clustering C of
(X, d) is τ -separated, if τ ≤ sep(C).

As it turns out, imposing τ -separability amounts to imposing a speci�c set of
must-link constraints. The latter consists of a set Lτ ⊂

(︁
X
2

)︁
of links, which are

satis�ed by a given clustering C = {C1, . . . , Ck}, if and only if

x ∈ Ci ∧ {x, y} ∈ Lτ ⇒ y ∈ Ci

for all x, y ∈ X and all i ∈ {1, . . . , k}. If we conceive of these links as edges on
the set of points (as we will do), then a clustering has to partition this graph in
such a way that no edge is cut. To see the connection between τ -separability and
must-link constraints, consider the following graph.

De�nition 67. Let (X, d) be a �nite metric space and τ ≥ 0. The τ -separation
graph G(X,d)(τ) of X consists of

� vertices V(X,d)(τ) = X and

� edges E(X,d)(τ) = {{x, y} | x, y ∈ X : 0 < d(x, y) < τ}.

In other words, if the distance between two di�erent points is smaller than τ ,
then we impose a must-link constraint for that pair: Lτ = E(X,d)(τ). Intuitively, it
should already be clear how these must-link constraints amount to τ -separability,
but we will also prove it in just a bit.

De�nition 68. Let (X, d) be a �nite metric space and τ ≥ 0. We denote by
S(X,d)(τ) the clustering consisting of the connected components of G(X,d)(τ).

What is noteworthy about must-link constraints (and therefore also τ -sepa-
rability), as opposed to other constraints, is that there exists something like a
minimal clustering for that constraint, in that it is a re�nement of every clustering
satisfying the constraints. For τ -separability this is S(X,d)(τ).

80

Lemma 69. Let (X, d) be a metric space and τ ≥ 0. Then

1. S(X,d)(τ) is τ -separated.

2. If C is clustering of (X, d) then it is τ -separated if and only if S(X,d)(τ) is a
re�nement clustering C . This means that for every S ∈ S(X,d)(τ) there has
to exist some C ∈ C such that S ⊆ C.

In this sense, S(X,d)(τ) can be called the minimally τ -separated clustering of
(X, d).

Proof. This lemma immediately follows from two easy observations:

1. The minimal distance between two di�erent clusters S, S ′ ∈ S(X,d)(τ) is
strictly more than τ . Otherwise, if there exist points x ∈ S and x′ ∈ S ′

whose distance is smaller than τ , we would have added an edge between
them, meaning that neither S nor S ′ would be connected components.

2. We cannot split any cluster S ∈ S(X,d)(τ) without lowering its separation to
something strictly smaller than τ : since S is connected in G(X,d)(τ) at least
one edge would have to be cut.

In particular, if we want to compute a τ -separable clustering, then we only have
to merge the clusters contained in S ∈ S(X,d)(τ), which itself can be computed
relatively easily for any speci�c τ .

Lemma 70. Let (X, d) be a metric space consisting of n elements and τ ≥ 0. We
can compute S(X,d)(τ) in O(n2) time.

Proof. The τ -separation graph can be computed in O(n2) time by passing over
all pairs of points. In turn, connected components can be computed in linear
time.

Lemma 71. Let (X, d) be a metric space consisting of n elements. We can compute
the minimally τ -separated clusterings S(X,d)(τ) for all τ ∈ d(X×X) in O(n2 log n)
time.

Proof. We can just run Kruskal's algorithm on the complete graph on X, where
the edge weights are given by the respective distances. The set of connected
components at any given point in time equals S(X,d)(τ), where τ is the weight of
the last introduced edge. This is the same as running Single-Linkage on (X, d).

With this established, let us continue our task and combine this objective with
other objectives.

81

3.2 Combining k-Diameter and k-Separation

What do we have in mind when discussing the combination of two di�erent ob-
jectives? The best-case scenario would be that of �nding a clustering that ap-
proximates both objectives well, independently of each other. However, this is not
feasible, at least for the k-diameter and k-separation objectives, as Observation 72
will show. Both objectives are too opposed to each other to properly approximate
them simultaneously. For any �xed number of clusters, there is no guarantee that
a solution exists that yields constant-factor approximations for both objectives,
not even for subspaces of the Euclidean line R.

Observation 72. For any �xed k,m ∈ N≥1 consider the set

Xk,m = {1, . . . , k − 1} ∪ {−x/m | x ∈ {0, . . . ,m(k − 1)2}}⏞ ⏟⏟ ⏞
Ak,m

together with the usual metric d1(x, y) = d2(x, y) = |x− y| from R. We now show
that all clusterings can have a good (i.e., constant-factor) approximation ratio with
regard to at most one of the two objectives; when measured against the other, its
approximation ratio is necessarily quite bad.

1. The only clustering that achieves a constant-factor approximation ratio with
regard to sep is C = {{1}, . . . , {k − 1}, Ak,m} with sep(C , d1) = 1. Every
other clustering C ′ necessarily breaks up Ak,m into at least two sets and
so has to have a separation value of sep(C ′, d1) = 1/m, which is just the
distance between two consecutive points in Ak,m.

However, precisely by not splitting up Ak,m does C have a bad approximation
ratio with regard to the k-diameter objective. Its maximal diameter is equal
to diam(Ak,m, d2), and thus at least (k−1)2 while partitioning [−(k−1)2, k−
1] ⊃ Xm into k intervals of equal length yields a clustering of diameter at
most

(k − 1)2 + (k − 1)

k
=

k(k − 1)

k
= k − 1.

It is thus, at most, a k-approximation with regard to diam.

2. The same argument also shows that constant-factor approximations for diam
perform poorly with regards to sep. A solution with a constant-factor ap-
proximation ratio relative to the former must break up Ak,m and thus has a
separation value at least m times worse than the optimal.

Either case is untenable in its own right; the approximation ratios are just too
large. Instead of analyzing the cost of a solution independently for each objective,

82

we turn to the computation of Pareto sets, which encode trade-o�s between the
two objectives and which are a standard object of study in multi-objective opti-
mization.2 In our case, it amounts to the following: a clustering C belongs to the
Pareto set for this combination, meaning that it is Pareto optimal, if and only if
no clustering C ′ with diam(C ′, d2) ≤ diam(C , d2) and sep(C ′, d1) ≥ sep(C , d1) ex-
ists, where at least one of both inequalities is strict. (In the following sections, we
will replace the diameter objective with various other objectives.) In other words,
when given a Pareto optimal clustering, we cannot improve its value regarding
either objective without worsening the other. Despite being quite an interesting
problem, such a bi-objective clustering scenario was published in 2017 by Alam-
dari and Shmoys ([7]). However, they are interested in a very di�erent type of
combination: that of the k-center and the k-median objective.

Finding Pareto sets is NP-hard because we would still have to solve the vanilla
k-diameter problem (this is the case when the separation value equals the minimal
distance between any two points). Instead, we will try to �nd clusterings that
closely approximate Pareto-optimal solutions. As it turns out, due to the simple
structure that must-link constraints impose, we can relatively easily compute a
set that contains for every Pareto optimal solution C ∗ a clustering C , such that
diam(C , d2) ≤ 2 diam(C ∗, d2) and sep(C , d1) ≥ sep(C ∗, d1). We call such a set a
(1, 2)-approximative Pareto set. (The �rst factor always refers to the separation
objective, and the second always to whatever other objective is considered.) To
this end, we slightly modify the 2-approximative k-center/k-diameter algorithm
of Hochbaum and Shmoys (given in [54]) in such a way that it does not just
cluster points but rather merges speci�c pre-established clusters. For every possible
separation value τ , we can then use this algorithm as a subroutine (applied to
the clusters of the minimally τ -separated clustering) to compute a 2-approximate
τ -separated k-diameter clustering. In other words, we just approximate the τ -
separated k-diameter problem de�ned below for every τ .

De�nition 73 (The τ -separated k-diameter problem). Let d1, d2 be two metrics
over a �nite set X, k ∈ N, and τ ≥ 0. The goal in the τ -separated k-diameter
problem is to �nd a clustering C = {C1, . . . , Ck} that minimizes

diam(C , d2) = max
i

max
x,y∈Ci

d2(x, y)

and that guarantees that for all S ∈ S(X,d1)(τ) there exists some i ∈ {1, . . . , k}
with S ⊆ Ci.

Algorithm 2 shows a modi�cation of the algorithm of Hochbaum and Shmoys
that yields 2-approximations for the τ -separated k-diameter problem. In a �rst

2For a general book on multi-objective optimization see, for example, [39].

83

step, the algorithm computes the minimally τ -separated clustering S(X,d)(τ) for
(X, d), whose clusters it then merges in a second step in such a way that the
number of clusters falls below k+1 and the diameter stays small. The underlying
idea in the second step is exactly the same as in the algorithm of Hochbaum
and Shmoys. We sort of guess the maximal diameter of an optimal τ -separated
k-diameter clustering and use it to further merge the clusters of our minimally
τ -separated clustering. Since there are at most O(|X|2) values for the maximal
diameter, this can be done in polynomial time.

Two quick notes on the running time of Algorithm 2, without going into too
much depth: Despite our phrasing, it is not necessary to test every possible cost
that the solution could take:

1. Since the cost of an optimal τ -separated k-diameter clustering has to be at
least as large as the cost of the minimally τ -separated clustering, we know
that we only have check δ's, which are at least as large as

max
S∈S(X,d1)

(τ)
max
x,y∈S

d2(x, y).

2. We only have to �nd the smallest δ for which the maximally independent set
consists of at most k clusters, meaning that the loop can be implemented as
a binary search, though we will not get into the details.

Theorem 74. Algorithm 2 is a 2-approximation algorithm for the τ -separated
k-diameter problem that runs in polynomial time.

Proof of Theorem 74. Let C ∗ = {C∗
1 , . . . , C

∗
k} be an optimal τ -separated k-diam-

eter clustering, and {S∗
1 , . . . , S

∗
ℓ } the independent set computed by Algorithm 2

during iteration δ∗ = diam(C ∗, d2). From Lemma 69, we know that S is neces-
sarily a re�nement of C ∗, so each cluster contained in the independent set has to
be a subset of some cluster from C ∗. This implies that ℓ ≤ k by the pigeonhole
principle. (Otherwise, some optimal cluster, of which there are only k, would have
to contain two clusters from S , of which there would be at least k+1, whose union
would have a diameter strictly greater than δ∗.) By merging the clusters from S
via star graphs, we ensure that the diameter of all resulting clusters X1, . . . , Xℓ is
at 2δ∗. Indeed, if for any two points x, y contained in some Xi, we know that

d2(x, y) ≤ d2(x, z) + d2(z, y) ≤ δ∗ + δ∗ = 2δ∗

for all z ∈ Si. Finally, since we only merged clusters from S and did not split up
any of them, the separation of the �nal clustering is at least τ . The separation
can only increase.

84

Algorithm 2: k-Diameter Pareto Approximation
Input : Two metrics d1, d2 over a �nite set X, a number k ∈ N, a

threshold τ ∈ R.
Output: A 2-approximation C = {C1, . . . Ck} for the τ -separeted

k-diameter problem.

1 C ← {X}
2 S ← S(X,d1)(τ)
3 for δ ∈ d2(X ×X) do
4 G≤δ ← (S , {{S, S ′} | diam(S ∪ S ′, d1) ≤ δ})
5 {S1, . . . , Sℓ} ← maximal independent set in G≤δ

6 if ℓ ≤ k then
7 partition G≤δ into star-graphs X1, . . . , Xℓ centered at S1, . . . , Sℓ

8 if diam({X1, . . . , Xℓ}, d2) < diam(C , d2) then
9 C ← {X1, . . . , Xℓ}

10 end

11 end

12 end

13 return C

Finally, we can compute our approximate Pareto set by just running the al-
gorithm for every τ ∈ d1(X × X). We could also accomplish this slightly more
e�ciently by pre-computing all minimally separated clusterings using Single-Link-
age, respectively, Kruskal's algorithm.

Corollary 75. Given two metrics d1 and d2 over a �nite set X, we can compute in
polynomial time a (1, 2)-approximate Pareto with respect to the objectives f1 = sep
and f2 = diam.

Running Algorithm 2 with a threshold of τ = minx ̸=y d1(x, y) amounts to
�nding a 2-approximative solution for the vanilla k-diameter problem. Since no
polynomial-time (2 − ε)-approximation algorithm for this problem can exist for
any ε > 0 unless P = NP ([41]), we also know that the (1, 2)-approximation ratio
we have established in Theorem 74 cannot really be improved.

3.3 Combining k-Center and k-Separation

We can also combine the k-separation objective with the k-center objective. As
we have seen in the introduction, the latter is closely related to the k-diameter
objective; both draw on the same intention, and there is merely a shift of focus

85

from partitionings to representatives. Consequently, the analyses conducted here
will be very similar to those of the previous section. For instance, Observation 72
unfolds almost the same for the k-center objective and can be reused as is. As
such, we will not repeat it and instead focus primarily on the algorithm(s), the
only part where qualitative (though not stark) changes are required.

De�nition 76 (The τ -separated k-center problem). Let d1, d2 be two metrics over
a �nite set X, k ∈ N, and τ ≥ 0. The goal in the τ -separated k-center problem is
to �nd an assignment σ : X → C from X to a set of k centers C = {c1, . . . , ck}
that minimizes

rad(σ, d2) = max
x∈X

d2(x, σ(x))

and that guarantees that for all S ∈ S(X,d1)(τ) there exists some i ∈ {1, . . . , k}
with S ⊆ σ−1(ci).

Algorithm 3 again builds on the algorithm by Hochbaum and Shmoys and is
just a slight variation of Algorithm 2. Interestingly, we can choose any arbitrary
point from the clusters of the minimally separated clustering as a center for our
assignment.

Algorithm 3: k-Center Pareto Approximation
Input : Two metrics d1, d2 over a �nite set X, a number k ∈ N, a

threshold τ ∈ R.
Output: A 2-approximation σ : X → C for the τ -separeted k-center

problem.

1 σ ≡ x for some x ∈ X;
2 for ρ ∈ d2(X ×X) do
3 G≤2ρ ←

(︁
S(X,d1)(τ), {{S, S ′} | diam(S ∪ S ′, d1) ≤ 2ρ}

)︁
;

4 {S1, . . . , Sℓ} ← maximal independent set in G≤2ρ;
5 if ℓ ≤ k then
6 partition G≤2ρ into star-graphs X1, . . . , Xℓ centered at S1, . . . , Sℓ;
7 ci ← arbitrary point from Si for all i;
8 de�ne σ′, such that σ′(x) = ci, i� x ∈ Xi;
9 if rad(σ′, d2) < rad(σ, d2) then
10 σ ← σ′;
11 end

12 end

13 end

14 return σ;

86

Theorem 77. Algorithm 3 is a 2-approximation algorithm for the τ -separated
k-center problem that runs in polynomial time.

Proof of Theorem 77. Let σ∗ be an optimal τ -separated k-center assignment, and
{S∗

1 , . . . , S
∗
ℓ } the independent set computed by the algorithm during iteration ρ∗ =

rad(σ∗, d2). From Lemma 69, we know that S(X,d1)(τ) necessarily is a re�nement of
the clustering induced by σ∗, so each cluster contained in the independent set has
to be a subset of some cluster from σ∗. This implies that ℓ ≤ k by the pigeonhole
principle. Otherwise, some optimal cluster would have to contain two clusters
from S(X,d1)(τ) whose union would have diameter strictly greater than 2ρ∗ and
thus radius strictly greater than ρ∗. By merging the clusters from S(X,d1)(τ) via
star graphs, we ensure that the diameter of all resulting clusters C1, . . . , Cℓ is at
most 2ρ∗, so for any x ∈ Ci it holds that

d2(x, σ(x)) = d2(x, ci) ≤ diam(Ci, d2) ≤ 2ρ∗.

Finally, since we have only merged clusters from S(X,d1)(τ) and did not split up
any of them, the separation can only increase, and has to be at least τ .

We get the following result by running this algorithm for every τ , or rather by
applying it to the hierarchical clustering computed by Single-Linkage.

Corollary 78. Given two metrics d1 and d2 over a �nite set X, we can compute
in polynomial time a (1, 2)-approximate Pareto set P with respect to the objectives
f1 = sep and f2 = rad. Since the Pareto set has size at most

(︁
n
2

)︁
, the same holds

for P.

Again, the (1, 2)-approximation factor cannot be improved. For τ = 0, the
Algorithm 3 computes 2-approximative solutions for k-center, which is the lowest
approximation ratio achievable in polynomial time unless P = NP ([54]).

As a quick side note, Line 3 can be pretty expensive. Instead of building the
graph on top of the clusters of the minimally separated clustering, we can instead
build the graph on top of good representatives for each cluster. Algorithm 4 shows
the corresponding modi�cation, which is still closer to the algorithm by Hochbaum
and Shmoys.

Theorem 79. Algorithm 3 is a 2-approximation algorithm for the τ -separated
k-center problem that runs in polynomial time.

Proof. Let σopt : X → Copt be an optimal τ -separated k-center assignment,
and {c∗1, . . . , c∗ℓ} the independent set computed by the algorithm during iteration
ρopt = rad(σopt, d2). From Lemma 69, we know that S is necessarily hierarchi-
cally compatible with the clustering induced by σopt, so each cluster corresponding

87

Algorithm 4: Pareto Approximation
Input : Two metrics d1, d2 over a �nite set X, a number k ∈ N, a

threshold τ ∈ R.
Output: A 2-approximation σ : X → C for the τ -separated k-center

problem.

1 σ ≡ x for some x ∈ X;
2 S ←∈ S(X,d1)(τ);
3 cS ← arbitrary point from argminc∈X maxx∈S d1(x, c) for all S ∈ S ;
4 CS ← {cS | S ∈ S };
5 for ρ ∈ d2(X ×X) do
6 G2

ρ ← (CS , {{c, c′} | ∃x ∈ X : d2(c, x) ≤ ρ, d2(c
′, x) ≤ ρ});

7 {c1, . . . , cℓ} ← maximal independent set in G2
ρ;

8 if ℓ ≤ k then
9 σ′ ← for all S ∈ S set σ′(S) = {ci} if d2(cS, ci) ≤ ρ and resolve

tiebreaks in such a way to stay hierarchically compatible with S ;
10 if rad(σ′, d2) < rad(σ, d2) then
11 σ ← σ′;
12 end

13 end

14 end

15 return σ;

to a center contained in the independent set has to be a subset of some cluster
from σopt. This implies that ℓ ≤ k by the pigeonhole principle. Otherwise, some
optimal cluster would have to contain two clusters from S whose centers cannot
be covered by a ball of radius ρopt centered at any point in X. By merging the
clusters from S via σ we ensure that the radius of all resulting clusters C1, . . . , Cℓ

is at most 2ρopt: for any x ∈ S it holds that

d2(x, σ(x)) = d2(x, cS) + d2(cS, σ(x)) ≤ ρopt + ρopt.

Here we have used the fact that ρopt is to be at least

max
S∈S

max
x∈S

d2(x, cS)

by choice of each center cS. Finally, since we have only merged clusters from S
and did not split up any of them, the separation can only increase and has to be
at least τ .

88

3.4 Combining k-Median/k-Means with

k-Separation

As in the previous two sections, Observation 72 can be used to show that there
is no hope of �nding a clustering that performs well with regards to both the k-
median (or k-means) and the k-separation objective, meaning that we again have
to focus on Pareto approximations.

Observation 80. Consider a set of points {x/m | x ∈ {0, . . . ,mℓ}} for any ℓ and
even m. The 1-median cost of this set is given by

mℓ∑︂
x=0

⃓⃓⃓⃓
x

m
− ℓ

2

⃓⃓⃓⃓
= 2

mℓ
2
−1∑︂

x=0

(︃
ℓ

2
− x

m

)︃

=
2

m

mℓ
2
−1∑︂

x=0

(︃
mℓ

2
− x

)︃

=
2

m

mℓ
2∑︂

x=1

x

=
1

4
ℓ(mℓ+ 2)

since the points are evenly spaced, and thus, the optimal center coincides with ℓ/2.
Now, if we consider the same set

Xk,m = {−x/m | x ∈ {0, . . . ,m(k − 1)2}}⏞ ⏟⏟ ⏞
Ak,m

∪{1, . . . , k − 1}

as in Observation 72, then we run into the same issues. By the above computation,
Ak,m has a 1-median cost that is in Ω(k4), whereas the subsets that we get from
dividing [−(k − 1)2, k − 1] into k intervals of equal length each have a 1-median
cost that is in O(k2). The k-median cost of the only clustering C = {{1}, . . . , {k−
1}, Ak,m} that achieves a constant-factor approximation ratio with regard to sep
is worse by factor of Ω(k) from that of the optimum. Conversely, if we split up
Ak,m to achieve a good k-median cost, then the separation value will necessarily
be bad.

Thus, as before, we have shown that all clusterings can have a good (i.e.,
constant-factor) approximation ratio either with regard to the k-median objective
or with regard to the k-separation objective, but not both simultaneously. The
approximation ratio must be quite bad for at least one of them.

89

The issue we are facing now is that competitive algorithms for the k-median ob-
jective are much more involved than for k-center of k-diameter objectives, and it is
not obvious whether they could be adjusted in the same manner as in the previous
two sections to incorporate τ -separation. While this might be possible (algorithms
with the best approximation ratios are mostly Primal-Dual algorithms), we will
instead make use of the several results of Lin et al. ([64]) that provide us with a
certain black box approach. This independence of any speci�c algorithm comes
at the cost of increasing the approximation by an additive factor of 2. The idea
was in a certain way already present in the previous section: we �rst compute
a minimally separated clustering and then merge its clusters in such a way that
the cost stays small. Whereas we could easily guess the value (radius/diameter)
of an optimal solution � there are at most O(n2) di�erent possibilities � in the
k-median case, this is not possible in polynomial time, so instead, we merge those
clusters in relation to an approximate solution for the vanilla k-median problem.

De�nition 81 (The τ -separated k-median problem). Let d1, d2 be two metrics
over a �nite setX, k ∈ N, and τ ≥ 0. The goal in the τ -separated k-median problem
is to �nd an assignment σ : X → C from X to a set of k centers C = {c1, . . . , ck}
that minimizes

med(σ, d2) =
∑︂
x∈X

d2(x, σ(x))

and that guarantees that for all S ∈ S(X,d1)(τ) there exists some i ∈ {1, . . . , k}
with S ⊆ σ−1(ci).

Theorem 82. Given an α-approximation algorithm for the vanilla k-median prob-
lem, we can �nd a (2+α)-approximate solution for the τ -separated k-median prob-
lem in polynomial time.

This is possible because, as Lin et al. ([64]) show, the k-median objective admits
of the (2, 1)-nesting property.

Proof. Let σ∗ : X → C∗ be an optimal τ -separated k-median assignment. From
Lemma 69, we know that it is hierarchically compatible with S = S(X,d1)(τ), so
each cluster contained in S has to be a subset of some cluster from σ∗. We turn
the partitioning S into an assignment σS : X → CS by picking, for each S ∈ S ,
an arbitrary point

cS ∈ argmin
c∈X

∑︂
x∈S

d2(x, cS)

and de�ning σS (x) = cS, if x ∈ S. We now merge clusters from σS according to
the assignments of their centers within an α-approximative solution σα : X → Cα

for the vanilla k-median problem on (X, d2). What we wish to show is that the
cost of σ = σα ◦ σS is at most (2 + α) times larger than med(σ∗, d2). To bound

90

this cost, we �rst bound the distance of each point x ∈ X to its center σ(x) in
terms of its distance to σS and σα:

d2(x, σ(x)) = d2(x, σα(σS (x)))

≤ d2(x, σS (x)) + d2(σS (x), σα(σS (x)))

≤ d2(x, σS (x)) + d2(σS (x), σα(x))

≤ 2 · d2(x, σS (x)) + d2(x, σα(x))

The �rst and third inequality hold due to the triangle inequality, the second,
because σα assigns each point to the center closest to it: σα(x) cannot be closer to
σS (x) than σα(σS)(x). Taking the sum over all points then gives us the following:∑︂

x∈X

d2(x, σ(x)) ≤
∑︂
x∈X

(2 · d2(x, σS (x)) + d2(x, σα(x)))

= 2 ·med(σS , d2) + med(σα, d2)

≤ 2 ·med(σ∗, d2) + δ ·med(σ∗, d2)

= (2 + δ) ·med(σ∗, d2),

where the last inequality holds because:

1. The induced clustering of σS is a re�nement of the induced clustering of σ∗

and thus cheaper than it,

2. The assignment σα costs at most α times more than the optimal assignment
for the vanilla k-median problem, which cannot cost more than the optimal
solution for the τ -separated k-median problem.

Similar to the case of the k-center objective where the value of the k-separation
function is determined by only two of the points in P , we know that for the same
reasons that the Pareto set for this combination consists of at most

(︁
n
2

)︁
di�erent

solutions.

Corollary 83. Given two metrics d1 and d2 over a �nite set X, we can compute in
polynomial time a (1, 2+α)-approximate Pareto set P with respect to the objectives
f1 = sep and f2 = med, where α is the best approximation ratio of any polynomial-
time algorithm for the vanilla k-median problem. Since the Pareto set has size at
most

(︁
n
2

)︁
, the same holds for P.

Plugging in the approximation ratio α = 2.67059 established by Cohen-Addad
et al. ([76]) then directly yields a (1, 4.67059)-approximate Pareto set.

91

De�nition 84 (The τ -separated k-means problem). Let d1, d2 be two metrics over
a �nite set X, k ∈ N, and τ ≥ 0. The goal in the τ -separated k-means problem is
to �nd an assignment σ : X → C from X to a set of k centers C = {c1, . . . , ck}
that minimizes

med(σ, d2) =
∑︂
x∈X

d22(x, σ(x))

and that guarantees that for all S ∈ S(X,d1)(τ) there exists some i ∈ {1, . . . , k}
with S ⊆ σ−1(ci).

We can combine the k-separation and the k-means objective in a similar fashion
with the help of the (8, 2)-nesting property that Lin et al. establish for the k-means
objective. Note that Observation 80 also holds for this combination.

Theorem 85. Given an α-approximation algorithm for the vanilla k-means prob-
lem, we can �nd a (8 + 2α)-approximate solution for the τ -separated k-means
problem in polynomial time.

Similarly to the result for the k-median combination, this one follows from
the fact that, as Lin et al. show, the k-means objective function admits of an
(8, 2)-nesting.

Corollary 86. Given two metrics d1 and d2 over a �nite set X, we can compute
in polynomial time a (1, 8 + 2α)-approximate Pareto set P with respect to the
objectives f1 = sep and f2 = mean, where α is the best approximation ratio of any
polynomial-time algorithm for the vanilla k-means problem. Since the Pareto set
has size at most

(︁
n
2

)︁
, the same holds for P.

Plugging in the approximation ratio α = 9 + ε established by Ahmadian et
al. ([6]) then directly yields a (1, 26 + 2ε)-approximate Pareto set.

3.5 Combining k-MSR and k-Separation

In this section, we would like to combine the k-separation and the k-MSR objec-
tives. In the introduction, we have seen that the latter di�ers quite drastically
from other center-based objectives on a fundamental level. Whereas it is always
optimal regarding the k-center, the k-median, or the k-means objectives to assign
points to their closest center, the same does not hold for the k-MSR objective.
Even on a line graph and even when the centers are chosen optimally, assigning
points to their closest centers can result in a clustering whose k-MSR cost is thrice
the cost of an optimal solution ([62]), and for more complicated metric spaces this
factor grows quickly. In particular, the black box approach we used in the previous
two sections is not applicable here since it relies heavily on this property. Instead,

92

we will work through the explicit primal-dual algorithm of Buchem et al. ([17]) and
show that it still works if we replace single points with preformed clusters. Before
that, however, let us again quickly ascertain that these two objectives cannot be
approximated well simultaneously.

Observation 87. The example we now provide does not turn out to be as bad as
the ones given in Observation 72 or Observation 80. This is because we can often
merge clusters that are close to each other without increasing the k-MSR cost by
that much. If we were to consider the other examples, then we would quickly �nd
that the same arguments do not hold. For example, in the k-diameter case, we
only had to compare the clustering

C = {{1}, . . . , {k − 1}, Ak,m}

with one that evenly partitions Xk,m as a subset of [−(k− 1)2, k− 1] into k sets of
equal length k − 1, to deduce that C , which is the only constant-factor approxi-
mation with regard to the k-separation objective, is only Ω(k)-approximative with
regard to the k-diameter objective. However, regarding the k-MSR objective, we
would have to sum up all the radii of the second partitioning and end up with clus-
tering whose cost is also in Ω(k2). In other words, this example does not show that
C is a bad clustering with regard to the k-MSR objective. Instead, we consider a
graph metric consisting of two parts:

1. a line graph consisting of k − 1 points, where all edges have weight 1;

2. a clique consisting of k − 1 points, where all edges have weight
√
k.

Each distance d(x, y) on the union of both graphs is given as the weight of a
shortest path between connecting x and y. For such a path to always exist, we
can add a single edge with an arbitrarily large weight somewhere between the �rst
and second parts. Now, let us consider the only constant-factor approximation
with regard to the k-separation objective. As before, this clustering results from
merging all points in the line graph and leaving all points in the clique separate.
Its separation value is

√
k, whereas every other clustering has to have a separation

value of 1 since it has to split up the line graph. However, the k-MSR cost of this
solution is ⌈k−1

2
⌉, which is worse by a factor of

√
k than merging the clique and

leaving each point in the line graph separate, as the latter has a k-MSR cost of
exactly

√
k.

As in the previous chapter, instead of working with explicit assignments, we
rather conceive k-MSR clusters as sets of points that are all at a certain distance
from a given center. This is possible since the cost of a k-MSR cluster derives from
only two of its points, as in the case of the k-center objective, and by resolving

93

tiebreaks arbitrarily, we can always extract an explicit assignment from them. Let
us quickly revisit the de�nition of a ball, which we have to adjust slightly to denote
the metric with regard to which we consider it. This is necessary since we now
work with two di�erent metrics at once.

De�nition 88. Let (X, d) be a �nite metric space. For a pair (c, r) ∈ X × R let
B(X,d)(c, r) = {x ∈ X | d(x, c) ≤ r} denote the set of points in X that are at
distance at most r from c.

The general approach will be the same as in the previous sections: compute
minimally separated clusterings and merge their clusters in a second step. As such,
it makes sense to again consider something like a τ -separated k-MSR problem.

De�nition 89 (The τ -separated k-MSR problem). Let d1, d2 be two metrics over
a �nite set X, k ∈ N, and τ ≥ 0. The goal in the τ -separated k-MSR problem is
to �nd a set of at most k pairs3 P = {(c1, r1), . . . , (ck, rk)} that minimizes

msr(P) =
k∑︂

i=1

ri

and that guarantees that for all S ∈ S(X,d1)(τ) there exists some i ∈ {1, . . . , k}
with S ⊆ B(X,d2)(ci, ri).

By slightly adjusting the algorithm by Buchem et al. ([17]), we will be able
to prove the following result, which can then, in turn, be used to construct a
(1, 3 + ε)-Pareto approximation.

Theorem 90. There exists a (3 + ε)-approximation algorithm for the τ -separated
k-MSR problem that runs in nO(1/ε) time.

The approximation factor is exactly the same as in the original paper and
thus, in this sense, tight. Before getting into the details of Buchem et al.'s primal-
dual algorithm, we have to highlight one of the authors' principal observations
(Lemma 92) � which is of general interest for the k-MSR problem, not just for
their algorithm in speci�c.

De�nition 91. Let (X, d) be a �nite metric space and P ⊂ X × R a �nite set of
pairs. The intersection graph G(X,d)(P) of P consists of

� vertices V(X,d)(P) = P and

� edges E(X,d)(P) = {{(c, r), (c′, r′)} | B(X,d)(c, r) ∩ B(X,d)(c
′, r′) ̸= ∅}.

3To exclude the possibility of the trivial solution dominating every other solution, we just
assign it a separation value of ∞.

94

(This graph should not be confused with the separation graph that we introduced
earlier.)

One of the most interesting properties of the k-MSR objective is that the cost
of a solution can sometimes be reduced by merging clusters � this cannot happen
with other center-based objectives. We have already seen this in the introduction.
For example, whenever we have a solution where one center (say ci) is contained
in the ball of a di�erent pair (i.e., ci ∈ B(X,d)(cj, rj) for some j), then we can close
the �rst pair (i.e., set ri = 0) and increase the radius of the other pair (i.e., set
rj ← rj + ri) without increasing the overall cost. More generally, if the centers of
two clusters are at a distance of δ from each other, then we can merge them in such
a way that the overall increase in cost is upper bounded by δ. This analysis can be
pushed much further: Buchem et al. were able to show that sets of intersecting
clusters can always be covered by a single ball whose radius is at most three times
the sum of the radii of the original set.

Lemma 92 (Cf. Appendix C of [17]). Let (X, d) be a �nite metric space, P ⊆
X × R a �nite set of pairs whose intersection graph G(X,d)(P) is connected, and
I ⊂ V(X,d)(P) an independent set that maximizes msr(I). Then there exists a pair
(c∗, r∗) ∈ X × R such that

1.
⋃︁

(c,r)∈P B(X,d)(c, r) ⊂ B(X,d)(c
∗, r∗) and

2. r∗ ≤ 3
∑︁

(c,r)∈I r.

The proof of this result is dispersed over several technical and intermediary
results contained in Appendix C of [17]. We will not repeat it here since it does
not concern our new constraints. Instead, we will just work through their primal-
dual algorithm in the remainder of this chapter and ensure that we can prepend the
Single-Linkage algorithm without introducing too many problems. From now on,
�x an arbitrary τ -separated k-MSR instance (X, d1, d2) and let (c∗1, r

∗
1), . . . , (c

∗
k, r

∗
k)

denote the pairs of one of its optimal solutions P ∗ in non-increasing order of their
radii.

The �rst step is common to all primal-dual (or Langragian relaxation) ap-
proaches for the k-MSR problem ([23, 43, 17]) and consists of guessing the 1/ε
largest pairs (c∗1, r

∗
1), . . ., (c∗1/ε, r

∗
1/ε) of the optimal solution, where we assume

wlog. that 1/ε ∈ N. This can be done in nO(1/ε) time and leaves us in the
position where we only have to approximate the remaining k′ = k − 1/ε pairs
(c∗1/ε, r

∗
1/ε), . . . , (c

∗
k, r

∗
k). Of course, we can assume here that k > 1/ε since we

would be done otherwise. The pairs comprising the optimal solution can be of
drastically di�erent sizes, but this segmentation ensures that all leftover clusters

S ′ = {S ∈ S(X,d1)(τ) | ∀i ∈ {1, . . . , 1/ε} : S ̸⊆ B(X,d2)(ci, ri)}

95

can be covered by balls of radius at most r1/ε ≤ ε ·msr(P). This will give us some
breathing room later on. From now on, we can focus on the τ -separated k′-msr
problem for X ′ =

⋃︁
S∈S ′ S, which consists of all yet uncovered points.

The next step requires us to set up the corresponding primal and dual LPs.
While they look quite similar to those for the vanilla k-MSR problem (cf. [17]),
conceptually they are slightly di�erent. Whereas Buchem et al. only have to cover
one individual point at a time, we have to ensure that all points from a given
cluster S ∈ S are simultaneously covered by the same ball. To formulate the LPs
enumerate S ′ = {S1, . . . , Sℓ}.

Primal LP:

minimize
∑︁

(c,r) r · x(c,r)

subject to
∑︁

(c,r):Sj⊂B(X,d2)
(c, r) x(c,r) ≥ 1 ∀j ∈ {1, . . . , ℓ}∑︁
(c,r) x(c,r) ≤ k′

x(c,r) ≥ 0

Here the variables x(c,r) range over all (c, r) ∈ X ×R, where

R = {d(x, y) | x, y ∈ X : d(x, y) ≤ r∗1/ε}.

The �rst inequality ensures that every cluster Si is fully covered, and the second en-
sures that at most k clusters are formed (at least fractionally). The corresponding
dual LP is then as follows.

Dual LP:

maximize
∑︁

j αj − λk′

subject to
∑︁

j : Sj⊂B(X,d2)
(c, r) αj ≤ r + λ ∀(c, r)

αj ≥ 0 ∀j ∈ {1, . . . , ℓ}
λ ≥ 0

As expected, the second step now consists of computing a solution for the dual
LP that can almost fully pay for a solution of the original τ -separated k-MSR
problem. While this is the standard for primal-dual algorithms or other approaches
via Lagrangian relaxations, Buchem et al.'s approach di�ers signi�cantly from
those established at an earlier point by Charikar and Panigrahy ([23]), as well as
Friggstad and Jamshidian ([43]). The latter, in the spirit of Jain and Vazirani
([59]), �rst compute a suitable bi-point solution (which consists of a solution with
at least k centers and a solution with at most k centers) via a binary search over

96

the Lagrangian multiplier, and then combine them to get a good feasible solution
for the k-MSR problem. Buchem et al., on the other hand, do not have to guess a
suitable Lagrangian multiplier, as they consider λ a variable that can be adjusted
during the execution of the algorithm, which arguably simpli�es the analysis of
their approach, especially after proving Lemma 92.

De�nition 93. Let (α, λ) be a solution for the dual LP and µ =
r∗
1/ε

|X|2 . A pair
(c, r) ∈ X × R is almost tight, if the corresponding dual constraint is tight up to
an additive factor of µ, i.e., if ∑︂

j : Sj⊂B(X,d2)
(c, r)

αj ≥ r + λ− µ.

Starting with the trivial solution α1 = . . . = αℓ = 0 and λ = 0, Buchem et
al. successively increase the values in such a way that the number of connected
components of the intersection graph of almost tight pairs decreases while still
guaranteeing that the solution stays valid and that every point is contained in
the ball of at least one almost tight pair. Roughly speaking, once they reach k′

connected components, they are able to derive a good solution for k′-msr problem
on X ′ with the help of Lemma 92.

The overall approach is the same for us, but we have to modify the invariant
to ensure that the clusters S ∈ S ′ are fully contained within the ball of at least
one tight pair. Now, contrary to the vanilla case, in which the trivial solution sat-
is�es the invariant, because every point x ∈ X ′ is contained within the respective
ball B(X,d2)(x, 0), the trivial solution for our LP does not necessarily satisfy our
modi�ed invariant. This is because the balls of radius 0 do not necessarily cover
all clusters S ∈ S ′. But this can easily be recti�ed by successively increasing the
αj's for clusters Sj that are not yet covered at a uniform speed and end when no
such cluster remains. At the end of this phase, the invariant will be satis�ed, and
we can continue in the same manner as Buchem et al. Let T denote the set of
currently tight pairs. Since no αj can be increased on its own, from now on, we
also have to increase λ to o�set this. Even then, if there is an (almost) tight pair
whose ball covers two di�erent clusters from S ′, then we cannot increase both of
them, as this would (quickly) lead to a violation of the respective constraint. Like
Buchem et al. we greedily choose a maximal set of αj's in such a way that no two
corresponding clusters are fully contained within the ball of some pair from T .
These variables, as well as λ, are increased uniformly by some value until one ad-
ditional pair that until then was not almost tight becomes tight. Due to the choice
of the αj's, the validity of the solution is guaranteed and the invariant satis�ed.
As long as the intersection graph of the updated set T contains strictly more than
k′ connected components, we will increase the αj values of at least k′ + 1 clusters,

97

which means that the objective value of the solution increases as well. By relating
this increase in cost during each iteration to the upper bound k′r∗1/ε of the primal
LP, Buchem et al. prove that the number of possible iterations is upper bounded
by O (|X|4) (or rather O (k|X|3)). In particular, this shows that the process can
be continued until, at most, k′ connected components are left.

From this point onward, the remaining analysis is independent of the newly im-
posed constraints, so we will not cover them in detail. Just note that the resulting
set of almost tight clusters T satis�es all the requirements that are necessary for
us to conclude the proof in the same manner as Buchem et al. have done (see the
proof of Lemma 2.3 in [17]). Finally, by considering all thresholds τ ∈ d1(X ×X),
we get the following result on the Pareto set for f1 = sep and f2 = msr.

Corollary 94. Given two metrics d1 and d2 over a �nite set X, we can compute in
polynomial time a (1, 3+ε)-approximate Pareto set P with respect to the objectives
f1 = sep and f2 = msr. Since the Pareto set has size at most

(︁
n
2

)︁
, the same holds

for P.

98

Chapter 4

Euclidean k-MSR with Outliers

4.1 Introduction

In 2002, B doiu, Har-Peled and Indyk established a (1 + ε)-approximation algo-
rithm for the Euclidean k-center problem that runs in 2O(ε

−2k log k) time [12]. In
particular, it yields a PTAS for constant k but arbitrary dimension d. Our goal
in this chapter is to try and use the same underlying idea to approach the much
more complicated k-MSR problem (with outliers). We published a more general
algorithm in 2023 ([35]), but in preparation for this dissertation, we discovered a
signi�cant error in the paper that was not easily resolvable. As a result, we decided
to weaken the claims, and instead of providing an algorithm for general mergeable
constraints, we focused only on outliers. Also noteworthy is that roughly during
the same time period, Bandyapadhyay et al. ([15]) established several great results
on the capacitated k-MSR problem (as mentioned in the introduction) that par-
tially overlap with our own. However, since they did not deal with outliers and
our approach is nonetheless di�erent, we feel this chapter is still worth presenting.
Our main result will be the following.

Theorem 95. There exists a (1+ε)-approximation algorithm for the k-MSR prob-
lem with z outliers that runs in O (nd · kz · f(k, ε−1)) time. Assuming that k is con-
stant and z ∈ O(log n), such an algorithm yields a PTAS for the k-MSR problem
with outliers.

Roughly speaking, the idea of B doiu et al. is to guess small portions � which
they call coresets1 � of an optimal solution that are nonetheless signi�cant enough

1Since coresets play a much more signi�cant role for B doiu et al. than becomes apparent in
our presentation, even appearing in the title of their paper (�Approximate Clustering via Core-
Sets�), we should spend just a little time on explaining the concept. Generally, coresets are small
representations (weighted subsets) of a clustering instance that retain almost all of the structure

99

for the whole clustering to be reconstructed almost exactly. A coreset of some
cluster C ⊂ Rd is small if its size is independent of d and |C|; it is signi�cant
enough if its MEB is almost as large as the MEB of C. In other words, a coreset

1. has a large enough spread that its MEB yields an almost optimal 1-center
approximation for C and

2. is small enough that, once computed, we can easily guess its assignment
within an optimal clustering.

However, it is not the case that coresets are computed �rst and that approximate
solutions are extracted only subsequently. Instead, the computation of good cen-
ters and radii is intertwined with the very construction of these coresets. They
are built by the successive incorporation of new points, each chosen relative to a
previously established set of centers, where this set of centers is modi�ed in turn
by this incorporation. B doiu et al. were able to show that such coresets can
be computed for all optimal clusters simultaneously while appropriately guessing
their optimal assignments. This then yields their overall algorithm.

To prove Theorem 95 we will proceed as follows:

1. We start with a quick overview of a few basic notions and results from a�ne
geometry that will help us formalize the ideas and geometrical intuitions
central to the remaining chapter.

2. Next, we will consider the simple 1-center problem and show how the theory
we have just introduced is utilized. The algorithms developed here form the
basis for all subsequent approaches.

3. The following section then describes how the algorithms developed for the 1-
center case can be combined to solve the general k-center problem for k > 1.
Most of our presentation until there is a considerable expansion of papers [13,
12], where detailed descriptions are relatively sparse.

relevant for whichever center-based clustering objective is considered. Barely any signi�cant
information is lost in their construction in the sense that any solution for the coreset yields a
solution with almost the same cost for the original instance and vice versa. More speci�cally,
a coreset � let us consider k-center coresets as an example � is supposed to guarantee the
following: for every set of k centers, the maximum radius induced by those centers for the
coreset di�ers from the maximum radius induced for the original input by at most an ε-fraction.
Solving the k-center problem on the coreset then yields a good k-center solution for the original
input. This requires that the cost really is approximated for all possible sets of k centers and not
just for the optimal center set since this set is not known in advance. While one could establish
some continuity between this more widely employed notion of coresets and the one appearing
in [12], there are also signi�cant di�erences. Regardless, we will not outline them, partially
because B doiu et al. do not provide a rigorous de�nition in their paper (this is remedied in later
research), but also because it is not that important for us.

100

4. Finally, we will move on to the k-MSR objective and discuss the problems
that the approach developed so far faces and then provide modi�cations
to circumvent them. The resulting algorithm still works, even when we
introduce outliers.

4.2 Basic A�ne Geometry

De�nition 96. For a �nite set X ⊂ Rd let

ζ (X) = argmin
z∈Rd

max
x∈X
∥z − x∥

denote the optimal Euclidean 1-center solution and

ρ (X) = max
x∈X
∥x− ζ (X)∥

the induced radius.

In contrast to the previous chapters, which were concerned with abstract met-
ric spaces only, Rd carries additional geometric information: there are not only
distances but also angles.2 Moving forward, we will thus make use of two di�erent
interpretations of elements of Rd: as points and as vectors. The former interpre-
tation encapsulates position; the latter encapsulates orientation. Combining both
interpretations yields the notion of a�ne spaces.

De�nition 97. An a�ne space is a tuple (A, V,+) consisting of a set A, a vector
space V and an action + : A×V → A, such that the following axioms are satis�ed:

1. a+ 0 = a for all a ∈ A,

2. (a+ v) + w = a+ (v + w) for all a ∈ A and v, w ∈ V ,

3. V → A, v ↦→ a + v is a bijection for every a ∈ A. Equivalently, we could
require that for every pair a, b ∈ A, a unique vector, denoted b − a ∈ V ,
exists, such that a+ (b− a) = b.

Principally, a�ne spaces allow us to forget or rather displace the origin of
vectors. Indeed, any point a0 ∈ A can serve as the origin by considering the set
{a−a0 | a ∈ A} which can be identi�ed with V via the bijection A→ V, a ↦→ a−a0
from Axiom 3. Note that, in our case, A = V = Rd just acts on itself via
translations. Since the underlying sets of A and V are thus the same, we cannot
do much to distinguish them notationally; sometimes, the same element has to be

2For a more comprehensive introduction see [45], for example.

101

interpreted both as a vector and as a point. However, it should always be apparent
from the context with which interpretation we are working.

The geometric properties of Euclidean space relevant to us are all encapsulated
in the inner product

⟨·, ·⟩ : Rd × Rd → R, (x, y) ↦→ x⊤y.

It relates to distances and angles in the following way:

1. The squared distance between two points x, y ∈ Rd is given by

∥x− y∥2 = ⟨x− y, x− y⟩.

2. If v, w ∈ Rd are non-zero vectors and θ the angle between them, then

∥v∥ ∥w∥ cos θ = ⟨v, w⟩.

The central geometric insight we want to establish in the following paragraphs
concerns the distribution of points located on the boundary of the MEB of a �nite
set X ⊂ Rd. No matter how the MEB is split into two equal (closed) halves, both
sides have to contain a point from X that is positioned exactly on the boundary
of the MEB. If such a point lacks on one side, then we could move the center of
the MEB further toward the other side and reduce the induced radius. However,
that would contradict the assumption that the original ball was an MEB. This
geometrical insight is crucial for all algorithms developed in this chapter. To
properly formalize this gesture of splitting the MEB (or rather, all of Rd) into two,
we have to introduce a few basic notions from a�ne geometry.

De�nition 98. Let (A, V,+) be an a�ne space. A subset B ⊆ A is an a�ne
subspace of (A, V,+), if the set of induced translations {b − x | b ∈ B} forms a
linear subspace of V for every x ∈ B.

In other words, for B to be an a�ne subspace, it must be parallel to a linear
subspace W of V in the sense that B = x+W for some x ∈ B. (The subspace W
would be equal to the set of translations of B relative to x.) Since we are dealing
with Euclidean space, another way of de�ning a�ne subspaces would be to require
that B be closed under a�ne combinations, i.e., that b + λ(b′ − b) ∈ B for all
b, b′ ∈ B and λ ∈ R.

De�nition 99. A subset A ⊂ Rd is an a�ne subspace of dimension ℓ, if A is
parallel to an ℓ-dimensional subspace of Rd. In the special case that ℓ = d− 1, we
call A a hyperplane.

102

Any hyperplane H cuts Rd into two and thus plays a role analogous to planes
in R3. To see this, �x any point z ∈ H and consider the parallel linear subspace
V ⊂ Rd with H = z+ V . Since H is a hyperplane, V has to have dimension d− 1
and its orthogonal complement

V ⊥ = {w ∈ Rd | ∀v ∈ V : ⟨v, w⟩ = 0}

has to have dimension 1. If we pick any x ∈ Rd di�erent from z, but such that
x− z ∈ V ⊥, then

H = z + V

= {z + v | v ∈ Rd : ⟨v, x− z⟩ = 0}
= {p ∈ Rd | ⟨p− z, x− z⟩ = 0}

yields another equivalent de�nition of hyperplanes.

Corollary 100. A subset H ⊂ Rd is a hyperplane if and only if there exist two
di�erent points z, x ∈ Rd, such that

H = Hz,x = {p ∈ Rd | ⟨p− z, x− z⟩ = 0}.

The displacement of the origin is quite obvious here: if we interpret elements
as vectors starting from z, then Hz,x contains all those that are orthogonal to x.
In other words, it comprises all those points p for which the triangle spanned by
x, z, and p has a right angle at z. From this point of view it becomes also clear
that Hz,x necessarily splits up Rd into two disjoint (convex) sets:

Rd \Hz,x = {p ∈ Rd | ⟨p− z, x− z⟩ > 0} ∪ {p ∈ Rd | ⟨p− z, x− z⟩ < 0}.

The left set contains all points p whose angle with x relative to z is strictly acute,
while the one on the right continues all those whose angle is strictly obtuse.

De�nition 101. Let x, z ∈ Rd be two di�erent points and Hz,x the associated
hyperplane centered at z and orthogonal to x− z. Then

H+
z,x = {p ∈ Rd | ⟨p− z, x− z⟩ ≥ 0}

and
H−

z,x = {p ∈ Rd | ⟨p− z, x− z⟩ ≤ 0}

are the (closed) half-spaces induced by Hz,x.

With these de�nitions in place, we can now analyze the distribution of points
on the boundary of MEBs.

103

Lemma 102 (Cf. Lemma 2.2 of [12]). Let X ⊂ Rd be a �nite set and p ∈ Rd

an arbitrary point that is di�erent from ζ (X). Then there exists a point x ∈
H−

ζ(X),p ∩X with ∥x− ζ (X)∥ = ρ (X).

Proof. Notice that p ∈ H+
ζ(X),p, since ⟨p − z, p − z⟩ = ∥p− z∥2 > 0. So, visually,

this statement is quite intuitive: if H−
ζ(X),p would not contain a point from X that

is exactly on the boundary of the MEB, then we could shift ζ (X) slightly towards
p and cover X by a ball with a radius strictly smaller than ρ (X).

1. Since H−
ζ(X),p is closed, its complement H−

ζ(X),p must be open. In particular,
there has to exist some positive error factor δ > 0 that is nonetheless small
enough to guarantee that δ < ∥x− y∥ for all x ∈ H−

ζ(X),p∩X and y ∈ H−
ζ(X),p.

2. At the same time, since H−
ζ(X),p ∩ X does not contain any point that is at

a distance of ρ (X) from ζ (X), there must exist some other positive error
factor δ′ > 0 that is small enough to guarantee that ρ (X)−δ′ > ∥x− ζ (X)∥
for all x ∈ X ∩H−

ζ(X),p.

Both observations hold at once for ε = min{δ, δ′}. Now, if we consider the distances
of points to the shifted center ζ (X)+ ε

2
(p−ζ (X)), then we can see that for all points

in H−
ζ(X),p ∩X they are still at most ρ (X)− ε

2
, while for all points in H−

ζ(X),p ∩X
they have been reduced by some positive amount. However, this cannot happen
since ρ (X) is the smallest radius of any ball covering X.

The following two results will help us derive a useful lower bound on the max-
imal distance from any given point x to a point inside an MEB.

Lemma 103. Let x, z ∈ Rd be two di�erent points and Hx,z the associated hyper-
plane. Then

∥p− z∥2 ≥ ∥p− x∥2 + ∥z − x∥2

for all p ∈ H−
x,z and

∥p− z∥2 ≤ ∥p− x∥2 + ∥z − x∥2

for all p ∈ H+
x,z.

Proof. This lemma is just a rephrasing of the Law of Cosines. The triangle spanned
by x, z and p has an acute angle at z if p ∈ H−

x,z and an obtuse angle for p ∈ H+
x,z.

However, we can also prove it directly with the theory we have set up. Since
p− z = (p− x)− (z − x), we can apply the bilinearity of the inner product to get
that

∥p− z∥2 = ∥p− x∥2 + ∥z − x∥2 − 2⟨p− x, z − x⟩.

104

The last term is negative for all p ∈ Rd \H+
x,z (because ⟨p, z− x⟩ < ⟨x, z− x⟩ and

thus ⟨p − x, z − x⟩ < 0) and positive for all all p ∈ Rd \H−x, z. This yields the
claimed inequalities.

Now follows the geometrical insight that will be exploited throughout this
chapter. It has been established by B doiu et al. in [13] but was basically already
in use in [12].

Corollary 104 (Cf. Lemma 2.1 of [13]). Let X ⊂ Rd be a �nite set. Then for
any point p ∈ Rd there exists a point x ∈ X with

∥p− x∥ ≥
√︂
∥p− ζ (X)∥2 + ρ (X)2.

Proof. This corollary is a straightforward combination of previously established
lemmata. First, we apply Lemma 102 to H−

ζ(X),p to infer the existence of some
point x ∈ X ∩H−

ζ(X),p at distance exactly ρ (X) from ζ (X). Since p ∈ H−
ζ(X),x (the

angle at ζ (X) is obtuse), we apply Lemma 103 to deduce that

∥x− p∥ ≥
√︂
∥x− ζ (X)∥2 + ∥x− ζ (X)∥2 =

√︂
∥z − ζ (X)∥2 + ρ (X)2.

With this, we have established all the a�ne geometry we need moving forward.

4.3 Approximating the 1-Center problem

Let us now consider the 1-center problem. There are two ways in which we could
approximate an optimal solution: we could approximate the optimal center directly
(which means that we would �nd a center close to it), or we could approximate the
optimal radius (which means that we would �nd a center whose induced radius is
close to it).

De�nition 105. Let X ⊂ Rd be a �nite set, and 0 < ε < 1. A point c ∈ Rd is

� an ε-approximate center for X, if ∥c− x∥ ≤ (1 + ε)ρ (X) for all x ∈ X

� an ε-close center for X, if ∥c− ζ (X)∥ ≤ ερ (X).

The latter is a (strictly3) stronger requirement, as the following lemma shows.
Although ε-approximate centers already yield (1 + ε)-approximate solutions by
de�nition, it is not much more di�cult to compute ε-close centers (Algorithm 5),
and this sometimes comes in handy.

3 We will not prove this claim. However, it should be intuitive that, depending on the
distribution of points on the boundary of the MEB, an ε-approximate center can be placed
further from the optimal 1-center.

105

Lemma 106. Let X ⊂ Rd be a �nite set and c ∈ Rd an ε-close center for X.
Then c is also an ε-approximate center for X.

Proof. This lemma is an immediate consequence of applying the triangle inequality.
For any x ∈ X we have

∥x− c∥ ≤ ∥x− ζ (X)∥+ ∥ζ (X)− c∥ ≤ ρ (X) + ερ (X) = (1 + ε)ρ (X) .

Algorithm 5: ε-Close Center

Input : A �nite set X ⊂ Rd, an error-parameter 0 < ε < 1.
Output: An ε-close center for X.

1 c← an arbitrary point from X;
2 for i = 1, . . . , ⌈ε−2⌉ do
3 p← argmaxx∈X ∥x− c∥;
4 c← c+ 1

i+1
(p− c);

5 end

6 return c;

B doiu and Clarkson [13] have devised a very simple algorithm (see Algo-
rithm 5), that computes an ε-close center for any �nite set X ⊂ Rd in O (|X|dε−2)
time. And, although this algorithm cannot be used directly to �nd ε-close centers
for several clusters at once (that is, it does not generalize to the k-center problem
for k > 1), we will nonetheless discuss it in detail for the following reasons:

1. working out why the algorithm cannot be used to compute ε-close centers
for several clusters simultaneously is quite insightful;

2. we will use it as a subroutine later on (it can easily replaced, though);

3. it provides an opportunity to show how the preliminary geometric insights
from the previous section are utilized.

Lemma 107 (Cf. Claim 3.1 in [13]). Let X ⊂ Rd be a �nite set consisting of n
points and 0 < ε < 1 an arbitrary error-parameter. Then Algorithm 5 returns an
ε-close center in O (ndε−2) time.

Proof. The running time is obvious. To prove the correctness, let c(i) refer to
variable c right before the i-th iteration of the for-loop, and p(i) to the next chosen
point, meaning that c(i+1) = c(i)+ 1

i+1

(︁
p(i) − c(i)

)︁
. B doiu and Clarkson prove that⃦⃦

ζ (X)− c(i)
⃦⃦
≤ ρ(X)√

i
for all i by induction. If that's the case, then after iteration

106

i = ⌈ε−2⌉ we have that
⃦⃦⃦
ζ (X)− c(ε

−2)
⃦⃦⃦
≤ ρ(X)

ε
, proving that the algorithm indeed

returns an ε-close center.
For the base case i = 1 the hypothesis is obviously true:

⃦⃦
ζ (X)− c(i)

⃦⃦
≤

ρ (X) = ρ(X)
1
, just because c(1) was chosen from X. For the induction step, assume

that the hypothesis holds for some arbitrary i. If c(i) already coincides with the
optimal center, that is, if c(i) = ζ (X), then

⃦⃦
ζ (X)− c(i+1)

⃦⃦
=

⃦⃦⃦⃦
ζ (X)−

(︃
ζ (X) +

1

i+ 1

(︁
p(i) − ζ (X)

)︁)︃⃦⃦⃦⃦
=

1

i+ 1

⃦⃦
p(i) − ζ (X)

⃦⃦
≤ ρ (X)

i+ 1
≤ ρ (X)√

i+ 1

as claimed. Otherwise, we can consider the hyperplace Hζ(X),c(i) and Lemma 102

yields the existence of a point x ∈ X with
⃦⃦
x− c(i)

⃦⃦2 ≥ ⃦⃦c(i) − ζ (X)
⃦⃦2

+ ρ (X)2.
Since p(i) was chosen such that it maximizes the distance to c(i) and since⃦⃦

x′ − c(i)
⃦⃦2 ≤ ⃦⃦c(i) − ζ (X)

⃦⃦2
+ ρ (X)2

for all points x′ ∈ X ∩H+
ζ(X),c(i)

, we know that p(i) ∈ X ∩H−
ζ(X),c(i)

.
There are now two possible cases that deserve separate attention: whether

c(i+1) ∈ H−
ζ(X),c(i)

or whether c(i+1) ∈ H+
ζ(X),c(i)

. We will only consider the �rst case,
as the other one is more di�cult to prove rigorously. (The broad idea can be found
in B doiu and Clarkson's paper [13].) Recall that c(i+1) is a convex combination
of c(i) and p(i): the algorithm places c(i+1) exactly 1

i+1
of the way along the line

going from c(i) to p(i). If we displace c(i) by some vector v, then c(i+1) is displaced
by
(︁
1− 1

i+1

)︁
v. In particular, if c(i+1) ∈ H−

ζ(X),c(i)
, then by moving c(i) closer to

ζ (X), we necessarily push c(i+1) away from ζ (X). That means that the distance
between c(i+1) and ζ (X) is maximized for c(i) = ζ (X) and we can conclude, as we
have done earlier, that

⃦⃦
c(i+1) − ζ (X)

⃦⃦
≤ ρ(X)√

i+1
.

Now is an excellent moment to discuss how B doiu et al. move from the 1-
center problem to the k-center problem. Roughly speaking, the idea is to guess
an optimal k-center solution and run a 1-center algorithm for each of its clusters.
Of course, guessing a whole solution cannot be done in a reasonable amount of
time, so we must be more precise in our description. The trick is that Algorithm 5
only considers ε−2 many points from the input, so if we were only to guess their
assignment within the optimal solution, we would incur a running time, whose
only exponential dependencies are ε−1 and k. However, we cannot do this with

107

Algorithm 5. The reason is simply that we do not know in advance which points
from the respective clusters maximize the distance to the already established cen-
ters, and, as we have seen, this choice is crucial for the proper functioning of the
algorithm. This would re-introduce the original problem with the running and
again force us to guess the proper assignments of basically all points. The next
algorithm we will discuss does not have that same weakness, so we can use it to
solve the k-center problem for k > 1.

Algorithm 6: ε-Approximate Center (1st Variant)

Input : A point set X, an error-parameter 0 < ε < 1.
Output: A pair (c, r) consisting of an ε-approximate center c of X and

the radius r it induces.
1 x← some arbitrary point from X;
2 y ← argmaxp∈X ∥x− p∥;
3 S ← {x, y};
4 while there exists a point p ∈ X \ B(ζ (S) , (1 + ε)ρ (S)) do
5 S ← S ∪ {p};
6 end

7 return (ζ (S) , ρ (S));

Although the algorithm also tries to maximize the distance to a previously
selected point, it only happens once, and we have a lot more leeway doing so; the
point does not actually have to maximize the distance to the previously selected
center. The only penalty is that the computed coreset S increases in size, which
in turn also increases the running time.

Lemma 108 (Cf. Lemma 2.3 of [12]). For every �nite set X ⊂ Rd Algorithm 6
returns an ε-approximate center after at most 48

ε2
iterations.

Let us �rst prove that Algorithm 6 terminates after O (ε−2) many iterations.
This is because the MEB of the points collected in S grows su�ciently with every
newly added point.

Lemma 109 (Cf. Lemma 2.3 in [12]). Let X ⊂ Rd be a �nite set, 0 < ε ≤ 1, and
p ∈ Rd a point with ∥p− ζ (X)∥ ≥ (1 + ε)ρ (X). Then

ρ (X ∪ {p}) ≥
(︃
1 +

ε2

4(1 +
√
2)

)︃
ρ (X) .

Proof. The proof proceeds in the form of a case distinction over the distance be-
tween the old center ζ (X) and the new center ζ (X ∪ {p}). If this distance is

108

small, then p, which is far from ζ (X), is also far from ζ (X ∪ {p}), and the new
radius ρ (X ∪ {p}) would be su�ciently large. On the other hand, if the distance
∥ζ (X ∪ {p})− ζ (X)∥ is already large, then we can apply Corollary 104 to �nd a
point x ∈ X lying at the other end of the MEB. This point is far from ζ (X ∪ {p}),
and the new radius would be su�cient again.

1. Suppose that ∥ζ (X)− ζ (X ∪ {p})∥ < ε
2
ρ (X). In this case, the triangle

inequality implies that

ρ (X ∪ {p}) ≥ ∥ζ (X ∪ {p})− p∥
≥ ∥ζ (X)− p∥ − ∥ζ (X ∪ {p})− ζ (X)∥

≥ (1 + ε)ρ (X)− ε

2
ρ (X)

≥
(︂
1 +

ε

2

)︂
ρ (X) .

Since ε ∈ [0, 1] this last term is lower bounded by
(︂
1 + ε2

4(1+
√
2)

)︂
ρ (X).

2. Suppose now that ∥ζ (X)− ζ (X ∪ {p})∥ ≥ ε
2
. Then Corollary 104 implies

that there exists a point x ∈ X with

∥ζ (X ∪ {p})− x∥ ≥
√︂
∥ζ (X ∪ {p})− ζ (X)∥2 + ρ (X)2

≥

√︄(︃
1 +

ε2

4

)︃
ρ (X)2

≥

√︄(︃
1 +

ε2

4

)︃
ρ (X)

≥
(︃
1 +

ε2

4(1 +
√
2)

)︃
ρ (X) ,

where the last inequality follows from the straightforward observation that√
1 + r ≥ 1 + r

1+
√
2
for all r ∈ [0, 1].

By showing that the distance between the �rst two selected points x and y in
Algorithm 6 is su�ciently large, we can derive the desired upper bound on the
number of iterations. However, before we get to that, we will prove a simple (and
quite obvious) result that concerns MEBs of subsets.

Lemma 110. Let X ⊂ Rd be a �nite set and Y ⊂ X an arbitrary subset. Then
ρ (Y) ≤ ρ (X).

109

Proof. Apply Corollary 104 to ζ (X) in relation to the MEB of Y , which yields
the existence of a point y ∈ Y ⊂ X with

ρ (X) ≥ ∥ζ (X)− y∥ ≥
√︂
∥ζ (X)− ζ (Y)∥2 + ρ (Y)2 ≥ ρ (Y) .

Unsurprisingly, the radius of an MEB of a subset is upper bound by the radius
of the MEB of the overall set. We are now able to prove Lemma 108.

Proof of Lemma 108. Denote the state of variable S right before the i-th iteration
by S(i) (in particular, this means that S(1) = {x, y} consists only of the points
chosen in Line 1 and 2). The fact that y was chosen such that it maximizes the
distance to x immediately implies that

2ρ(S(1)) = ∥x− y∥ ≥ diam(X)

2
.

Indeed, the contrary assumption yields a contradiction: if every point z ∈ X would
be at a distance of ∥x− z∥ ≤ ∥x− y∥ < diam(X)

2
from x, then we could cover X by

a ball B(x, ∥x− y∥) whose diameter is strictly smaller than diam(X). This gives
us a lower bound on the initial radius of the MEB of S. Combining this with the
lower bound on the increase in radius with every iteration we have established in
Lemma 109 then yields the claim.

Together, we thus know that the number of iterations is upper bounded by the
smallest t ∈ N for which(︃

1 +
ε2

4(1 +
√
2)

)︃t
diamX

4
≥ diamX.

We could solve this exactly, but a weaker bound is su�cient here. From the
observations we have established so far, we know that the radius always increases
by an additive factor of

ε2

4(1 +
√
2)

diam(X)

4
=

ε2

16(1 +
√
2)

diam(X)

with every iteration. Clearly, this can happen at most 16(1+
√
2)

ε2
≤ 48

ε2
many times.

To prove correctness note that ρ
(︁
S(i)
)︁
≤ ρ (X) for all i by Lemma 110. Once

the algorithm terminates, every point x ∈ X is thus within a distance of (1 +
ε)ρ
(︁
S(i)
)︁
≤ (1 + ε)ρ (X) from ζ

(︁
S(i)
)︁
. In other words, it is an ε-approximate

center for X.

110

We have only provided an upper bound on the number of iterations and not
an actual running time because computing MEBs is quite costly. In the following,
we will adjust the algorithm to work with ε-close centers instead of optimal ones
to circumvent an exponential dependency on d in the running time. B doiu et
al. have only mentioned this in passing, without providing much or any detail.
Sadly, our modi�cation increases the size of the coreset from O (ε−2) to O (ε−4)
and impacts the running accordingly.

Algorithm 7: Approximate Center (2nd Variant)

Input : A point set X, an error-parameter 0 < ε < 1.
Output: A pair (c, r) consisting of an ε-approximate center c of X and

the radius r it induces.
1 δ ← ε2

8
;

2 γ ← 1 + δ + 2
√
δ;

3 x← some arbitrary point from X;
4 y ← argmaxp∈X ∥x− p∥;
5 S ← {x, y};
6 (c, r)←

(︁
1
2
(x+ y), 1

2
∥x− y∥

)︁
;

7 while there exists a point p ∈ X \ B(c, (1 + γ)r) do
8 S ← S ∪ {p};
9 (c, r)← δ-close center of S with induced radius r;

10 end

11 return (c, r);

As a quick side note: the variable S in Algorithm 7 is only necessary for the
analysis of the algorithm. It can be removed without introducing any problems.

Lemma 111. For every �nite set X ⊂ Rd Algorithm 7 returns an ε-approximate
center after O(ε−4) iterations and thus has a runtime of O (ndf (ε−1)) for some
polynomial f .

Proof. Again, let S(i) denote the state of variable S right before the ith iteration
and p(i) the point selected during iteration i. Similarly, let c(i) and r(i) denote
the approximate centers and radii computed during this iteration. We will again
establish that ρ (S) grows signi�cantly with each iteration. Since nothing has
changed in the construction of S(1), we can conclude the proof in the same manner
as in the proof of Lemma 108. Lower bounding the increase in radius is slightly
more complicated because points are now selected relative to an approximate and
not optimal center. Points that are at �rst sight su�ciently far away from this
approximate center might still be too close to the optimal center. To o�set this,

111

we have to change the increase in radius in Line 7 by the multiplicative factor
1 + γ. As we will see, this ensures that

B
(︁
ζ
(︁
S(i)
)︁
, (1 + δ)ρ

(︁
S(i)
)︁)︁
⊂ B

(︁
c(i), (1 + γ)r(i)

)︁
,

allowing us to apply Lemma 109.
Since p(i) was chosen relative to c(i−1) and not ζ

(︁
S(i−1)

)︁
, we have to pass

through the former to establish any relation between ζ
(︁
S(i−1)

)︁
and ζ

(︁
S(i)
)︁
. First,

we show that c(i−1) and ζ
(︁
S(i−1)

)︁
cannot be too far apart from each other. From

Corollary 104 we know that there exists a point z ∈ X, such that⃦⃦
c(i−1) − z

⃦⃦2 ≥ ⃦⃦c(i−1) − ζ
(︁
S(i−1)

)︁⃦⃦2
+ ρ

(︁
S(i−1)

)︁2
.

Since c(i−1) is an δ-approximate center for S(i−1) we get that

(1 + δ)2 · ρ
(︁
S(i−1)

)︁2 ≥ (︁r(i−1)
)︁2

≥
⃦⃦
z − c(i−1)

⃦⃦2
≥ ρ

(︁
S(i−1)

)︁2
+
⃦⃦
c(i−1) − ζ

(︁
S(i−1)

)︁⃦⃦2
,

which in turn implies that⃦⃦
c(i−1) − ζ

(︁
S(i−1)

)︁⃦⃦
≤
√︁

δ(2 + δ)ρ
(︁
S(i−1)

)︁
≤
√
3δρ

(︁
S(i−1)

)︁
≤ 2
√
δρ
(︁
S(i−1)

)︁
.

We are now able to carry out the same case distinction as before. First, if⃦⃦
ζ
(︁
S(i−1)

)︁
− ζ

(︁
S(i)
)︁⃦⃦

<
δ

2
ρ
(︁
S(i−1)

)︁
,

then using the triangle inequality twice yields

ρ
(︁
S(i)
)︁
≥
⃦⃦
p(i) − ζ

(︁
S(i)
)︁⃦⃦

≥
⃦⃦
p(i) − ζ

(︁
S(i−1)

)︁⃦⃦
−
⃦⃦
ζ
(︁
S(i−1)

)︁
− ζ

(︁
S(i)
)︁⃦⃦

≥
⃦⃦
p(i) − c(i−1)

⃦⃦
−
⃦⃦
c(i−1) − ζ

(︁
S(i−1)

)︁⃦⃦
−
⃦⃦
ζ
(︁
S(i−1)

)︁
− ζ

(︁
S(i)
)︁⃦⃦

≥ γr(i−1) − 2
√
δρ
(︁
S(i−1)

)︁
− δ

2
ρ
(︁
S(i−1)

)︁
≥
(︃
γ − 2

√
δ − δ

2

)︃
ρ
(︁
S(i−1)

)︁
=

(︃
1 +

δ

2

)︃
ρ
(︁
S(i−1)

)︁
≥
(︃
1 +

δ2

4(1 +
√
2)

)︃
ρ
(︁
S(i−1)

)︁
112

and we are done. (Recall that we precisely set γ = 1 + δ + 2
√
δ.) Next, consider

the case where
⃦⃦
ζ
(︁
S(i−1)

)︁
− ζ

(︁
S(i)
)︁⃦⃦
≥ δ

2
ρ
(︁
S(i−1)

)︁
. Then Corollary 104 yields

the existence of a point z ∈ S(i−1), such that

ρ
(︁
S(i)
)︁
≥
⃦⃦
ζ
(︁
S(i)
)︁
− z
⃦⃦

≥
√︂

ρ (S(i−1))
2
+ ∥ζ (S(i−1))− ζ (S(i))∥2

≥
√︃

ρ (S(i−1))
2
+

δ2

4
(ρ (S(i−1)))

2

≥

√︄(︃
1 +

δ2

4

)︃
ρ
(︁
S(i−1)

)︁
≥
(︃
1 +

δ2

4(1 +
√
2)

)︃
ρ
(︁
S(i−1)

)︁
for 0 < δ < 1. As before, the number of iterations is thus upper bounded by
48
δ2

= O (ε−4). Since we used Algorithm 5 to compute δ-close centers for the
coresets, the running time follows from Lemma 107.

We still have to make sure that the resulting point is an ε-approximate center
for X. Once the algorithm terminates ∥x− c∥ ≤ (1 + γ)r for all x ∈ X. Since c
is an ε-close center for S we know that r ≤ (1 + δ)ρ (X), so every point is at a
distance from c by at most (1+ γ(1+ δ)+ δ)ρ (X). All that's left now, is to upper
bound γ(1 + δ) + δ: since δ = ε2

8
we get that

γ(1 + δ) + δ = (1 + δ + 2
√
δ)(1 + δ) + δ

= 1 + 3δ + 2
√
δ + δ2 + 2δ

√
δ

≤ 1 + 4δ + 4
√
δ

≤ 1 + 8
√
δ

= 1 + ε

as claimed.

As a quick side note, it would have been su�cient to work with ε-approximate
centers instead of ε-close centers. Algorithm 5 could be replaced with any other
coreset algorithm, such as the one presented by Yildirin in [80]. In any case, we can
now approach the general k-center problem. Instead of maximizing the distance of
the second selected point to the �rst one, we just make sure that it is su�ciently
far away to provide a useful lower bound on the initial radius of the coreset.

113

4.4 Approximating the k-Center Problem

For the sake of clarity, we will ignore the reasons that led us to posit Algorithm 7
and only show how to solve the k-center problem using Algorithm 6. We are not
concerned with the running time per se but only with the underlying idea, which is
the same, whether we work with MEBs directly or instead with ε-approximations.
So, suppose we can run above Algorithm 6 for all clusters of a given k-center
clustering C = {C1, . . . , Ck} simultaneously. After O (kε−2) steps, we will have
found k sets S1 ⊂ C1, . . ., Sk ⊂ Ck of size at most 48ε−2 each, such that

X ⊂
⋃︂
i

B((1 + ε)ζ (Si) , ρ (Si)).

In such a case, the number of points is small enough to guess these coresets directly.
Although trying to �nd an optimal clustering purely by brute force usually takes
O (kn) time, since for each of the n points contained in X, we have k possible
clusters into which to put it, once we pass to coresets we only have to decide this
distribution for O (kε−2) points, which is possible if k is small. In other words, with
a multiplicative overhead of kO(kε−2), we can guess for each point, newly selected
during the coreset construction, where to put it. This is then the algorithm: to
brute-force the coresets of an optimal solution on a much more restricted �solution
space�. We could also think of this in terms of oracles. Whenever we select a new
point, the oracle will tell us exactly which coreset Si to put it into, multiplying
the running time by k each time. But how do we select new points to incorporate
into our coresets? There are two things to take care of right now:

1. We have to outline how several ε-coreset constructions can be executed �si-
multaneously�. In particular, we must consider how points will be selected
without knowing to which coreset they should belong.

2. We must show that the approach yields a PTAS for constant k.

Algorithm 8 shows an outline of the approach. We have decided to use the ora-
cle formulation �rst since the resulting algorithm is more concise and intuitively
clearer. We will discuss a di�erent representation where the running time is easier
to establish.

Theorem 112. Let X ⊂ Rd a �nite set, C ∗ = {C∗
1 , . . . , C

∗
n} an optimal k-center

clustering of X, and u∗ : X → {1, . . . , k} the corresponding oracle (meaning that
u∗(x) = i for x ∈ Ci). Then Algorithm 8 terminates after O (kε−2) iterations and
returns a (1 + ε)-approximate k-center solution.

Proof. First, we will show that the resulting solution is a (1 + ε)-approximation.
This is the case because:

114

Algorithm 8: k-Center via Coresets

Input : A �nite set X ⊂ Rd, a number k ∈ N, an error-parameter
0 < ε < 1, an oracle u : X → {1, . . . , k}.

Output: A (1 + ε)-approximate solution (c1, r1), . . . (ck, rk).

1 Sj ← ∅ for all j ∈ {1, . . . , k};
2 r ← 0;
3 Su(x) ← {x} for some arbitrary x ∈ X;
4 while ∃x ∈ argmaxp∈X\

⋃︁
j B(ζ(Sj), (1+ε)r) minj ∥p− ζ (Sj) ∥ do

5 Su(x) ← Su(x) ∪ {x};
6 r ← ρ

(︁
Su(x)

)︁
;

7 end

8 return {ζ (S1) , . . . , ζ (Sk)}

1. The algorithm terminates once all points are within a distance of (1 + ε)r
from some center. In other words,

X ⊂
⋃︂
j

B(ζ (Sj) , (1 + ε)r).

2. The variable r always equals the radius of some subset Si ⊂ C∗
i ∈ C ∗.

Lemma 110 thus implies that

r ≤ max
j

ρ
(︁
C∗

j

)︁
= rad(C ∗).

Combining both observations shows that the solution computed by the algorithm
is upper-bounded by

(1 + ε)r ≤ (1 + ε)max
j

ρ
(︁
C∗

j

)︁
= (1 + ε) rad(C ∗).

Note that although the radius by which we open a center ζ (Si) might signi�cantly
exceed ρ (C∗

i), this is not a problem since only the largest radius is relevant to the
k-center objective. Strictly speaking, the Si do not necessarily form coresets, but
we will still refer to them as such.

Next, we will upper bound the number of iterations and show that the simulta-
neous construction of coresets does not incur additional overhead. Whereas r still
grows by a multiplicative factor of at least 1+ ε2

4(1+
√
2)
with each new addition, we

have to establish the initial lower bound di�erently. This is because new points
are chosen not by maximizing the distance to the center of the coreset, which
represents their cluster in the optimal solution, but by maximizing the smallest

115

distance to all already computed centers. However, as it turns out, this is not a big
problem. Because we consider all radii to be the same, saved in variable r, we only
have to consider the �rst time r is set to a non-zero value. Indeed, this non-zero
value has to be at least rad(C ∗): otherwise, the process by which we select new
points would guarantee that every point would be at a distance from some center
that is strictly smaller than rad(C ∗). The centers collected so far would thus con-
stitute a cheaper-than-optimal solution, which is impossible. In other words, the
initial lower bound for each coreset Si is at least

rad(C ∗) ≥ ρ (C∗
i) ≥

1

2
diam(C∗

i)

and we can conclude as before that each Si can reach a size of at most 48ε−2. This
upper bounds the number of iterations by 48kε−2, at least, when u∗ is an optimal
oracle.

The above proof only works if we have an oracle for the optimal solutions.
Three questions remain:

1. How can the oracle be modeled so that we can properly use it?

2. How do we �nd the oracle?

3. What is the actual running time of the algorithm?

As we said earlier, we are leaving out the running time for now and will only
return to it in the next section for the k-MSR objective. Switching from MEBs to
approximations introduces several technical complications that are not particularly
interesting at the moment. Nothing much is lost by skipping this aspect for now.
However, we have also partially skipped it because we have yet to formalize oracles
properly. In the remaining two paragraphs, we will sketch our approach and answer
the �rst two questions. We can envision an oracle u as a sequence of numbers drawn
from {1, . . . , k}, where the i-th entry of the sequence tells us to which coreset
the point selected in iteration i should be added. As we have seen, for every
optimal clustering, there exists a sequence of length at most 48kε−2 that allows
us to reconstruct it approximately, and those are the only ones we care about.
Computation can always be terminated after 48kε−2 iterations; if the resulting
solution does not cover everything, then it can be thrown away. This ensures that
the running time does not explode even when the sequence representing an oracle
is unfavorable. We can then return the one with the smallest objective value from
those that yield viable clusterings.

One last problem remains before we can actually model oracles as such se-
quences. While the sequence �xes a speci�c order in which the points are to be

116

distributed, the points chosen by the algorithm are not yet fully determined: at
several moments (for example, when we select the very �rst point), there might be
several viable choices for newly selected points. Without further control, even if we
brute-force all possible oracles, we might still miss the distribution of an optimal
solution simply due to bad tiebreaks. To �x this problem, all we have to do is to
provide a �xed rule by which tiebreaks are resolved. This can be achieved quite
simply by enumerating the points in X and, at any tiebreak, selecting the one
whose index is smallest, meaning that in the same scenario, tiebreaks are always
resolved the same way and, in particular, that the �rst selected point is always the
same. This representation will be used in the next section to tackle the k-MSR
problem.

4.5 Approximating the k-MSR Problem

By now, the approach should be obvious. We would like to successively select
points and guess their assignments within an optimal solution in such a way that
the coresets remain small. However, this is much more complex in the k-MSR
setting. The problem lies in establishing proper lower bounds for the initial sizes
of the coresets due to the possibly wildly di�erent radii sizes in an optimal solution
(all of which enter into the objective). Assume, for example, that the next point
selected by the algorithm is always chosen from

argmax
p∈X−

⋃︁
j B(ζ(Sj), (1+ε)ρ(Sj))

min
j
∥p− ζ (Sj) ∥ − ρ (Sj) ,

where j ranges over all coresets containing at least one element in both cases.
We have slightly adjusted the function from Algorithm 8 on the right side by
factoring in the radii of the coresets. This ensures that p is always chosen furthest
from all constructed MEBs, which is somewhat necessary if we want to argue in a
similar fashion to the k-center case. To establish a lower bound by contradiction,
we could try the following: once we add a second point x to some coreset Su(x)

that consisted of a single point y until then, then ∥x− y∥ ≥ 1
k
ρ
(︂
C∗

u(x)

)︂
. This is

already quite a bad lower bound and would increase the running time exponentially
by a multiplicative factor of k (one multiplicative factor of k for each additional
point for which we would have to guess the assignment). Even worse, this need not
necessarily hold. The argument would be as follows: if ∥x− y∥ < 1

k
ρ
(︂
C∗

u∗(x)

)︂
=: r,

then we could try to increase the radii of all other centers by r − δ and open y
by r − δ for some δ > 0. The hope would be that this would yield a k-MSR
solution of cost strictly less than rad(C ∗). However, the resulting balls do not
necessarily cover all points despite our choice of x, as we have not considered the

117

points within the ε-enlarged balls of any of the other centers. This was necessary
to ensure that the MEBs grew su�ciently quickly. However, now, we might be in
a position where there is a point within the ε-enlarged ball B(ζ (Si) , (1 + ε)ρ (Si))
of its center, but that is still further away from that ball than ∥x− y∥. It would
not be covered. What would need to hold is that

ερ (Si) ≤ ∥x− y∥ < 1

k
ρ
(︁
C∗

u∗(x)

)︁
where the �rst term could be equal to εmaxj ρ

(︁
C∗

j

)︁
in the worst-case. To ensure

this, we would have to shrink ε to ε
k2

and lead the proof to a contradiction, not
relative to an optimal solution, but relative to an optimal ε-balanced solution (we
will de�ne this type of solution later on). However, this change would exponentially
impact the running time, which is even worse than the increase we mentioned just
earlier. Instead, we will guess a good lower bound for each coreset beforehand and
pass it to the algorithm.

4.5.1 Guessing Good Lower Bounds

We will essentially guess the radii of an (almost) optimal solution up to a multi-
plicative factor of 2. First, we will guess the radius of the largest ball and then use
that value in the next step to guess the remaining radii. To do this, we will ex-
ploit the following relation between the largest radius in an approximately optimal
k-MSR solution and the value of an optimal k-center solution.

Lemma 113. Let rcenterα denote the value of an α-approximate k-center solution
and rmsr

β the largest radius of a β-approximative k-MSR solution for the same
instance. Then, it holds that

rmsr

β ∈
[︃
rcenterα

α
, β · k2 · rcenterα

]︃
.

Proof. Let rcenteropt denote the value of an optimal k-center solution. Since the centers
of any a k-MSR solution yield a solution for the k-center problem, we know that
rmsr
β ≥ rcenteropt . Combining this with the fact that rcenterα ≤ α · rcenteropt yields the lower
bound rmsr

β ≥ rcenteropt ≥ rcenterα /α.
On the other hand, since every k-center solution also yields a solution to the

k-MSR problem by assigning points to their closest center, we know that rcenteropt ≤
k · rcenterα . This forces rmsr

β ≤ β · k2 · rcenterα , because otherwise rmsr
β > β · k2 · rcenterα ≥

β · k · rcenteropt would contradict the assumption that rmsr
β is the largest radius in a

β-approximation for the k-MSR problem.

This lemma already yields a candidate set (which we will discretize in a second)
for the largest radius. A few quick remarks:

118

1. For our purposes, it is enough that α = 2, so we can use either the algorithm
by Gonzalez or the one by Hochbaum and Shmoys.

2. The reason that we are considering β-approximations for the k-MSR problem
instead of optimal solutions, as we have done so far, will become clear in just
a second or once we build a candidate set for the other radii.

By utilizing standard discretization techniques on this interval, we will be able to
obtain a �nite candidate set such that

1. its size only depends on ε, k, α and β, and

2. it contains a 2-approximation for each value in the interval.

Once we have guessed the largest radius, we can apply a similar technique to obtain
a candidate set for the remaining radii. However, this requires that the other radii
are not too small compared to the largest. More precisely, we will assume that the
solution we are interested in is ε-balanced.

De�nition 114. Let ε > 0. A k-MSR solution {(c1, r1), . . . , (ck, rk)} is ε-balanced,
if ri ≥ ε

k
maxj rj for all i ∈ {1, . . . , k}.

Since we will guess the solution of an ε-balanced solution later on, let us quickly
show that such a solution always exists that is worth guessing.

Lemma 115. Let (X, d) be a �nite metric space, k ∈ N a number, and ε > 0 an
error parameter. Then there exists an ε-balanced solution that is also a (1 + ε)-
approximation.

Proof. Let (c∗1, r
∗
1), . . . , (c

∗
k, r

∗
k) denote an optimal k-MSR solution for (X, d). De�ne

a new k-MSR solution on the same centers with the following radii:

ri =

{︄
r∗i , if r∗i ≥ ε

k
maxj r

∗
j

ε
k

otherwise.

This new solution, which covers at least as much as the optimal solution (we have
only increased the radii of some balls), has a cost that is larger than the optimum
by an additive factor of at most

k · ε
k
max

j
r∗j ≤ ε

∑︂
i

r∗i .

Given such an ε-balanced solution, we can conclude this part with the following
statement.

119

Lemma 116. Let ε > 0 and (c1, r1), . . . , (ck, rk) an ε-balanced solution with r1 ≥
. . . ≥ rk. Then, we can compute

1. a set of size O (log k) that contains a number ˜︁r1 with 1
2
r1 ≤ ˜︁r1 ≤ r1.

2. a set of size O (log (kε−1)) that contains, for each ri, a number ˜︁ri with 1
2
ri ≤˜︁ri ≤ ri.

We start with the following helpful lemma to later prove Lemma 116. It en-
capsulates the common technique of �covering� an interval [a, b] by O(log(b/a))
smaller intervals to obtain a (somewhat reasonably sized) discrete set of values
that contains for each value in [a, b] a 2-approximation.

Lemma 117. Let I = [a, b] ⊂ R be an interval consisting of non-negative numbers.
Then for every r ∈ I, there exists a number ˜︁r within

R = {2i−1a | i ∈ {0, . . . , ⌈log(b/a)⌉}},

such that 1
2
r ≤ ˜︁r ≤ r.

Proof. Consider the exponential growing set of intervals Ij = [2j−1a, 2ja] for j ∈
{0, . . . , ⌈log(b/a)⌉}. Then

1. the union of these intervals covers I, and

2. R consists exactly of the left endpoints of each of them.

Both of these observations combined prove the claim.

This lemma can directly be applied to the interval given by Lemma 113 to
obtain a candidate set for the largest radius in any feasible solution whose size
does not depend on n.

Lemma 118. Let (X, d) be a �nite metric space and (c1, r1), . . . , (ck, rk) a β-
approximative k-MSR solution with r1 ≥ . . . ≥ rk. If rcenterα denotes the value of
an α-approximate k-center solution, then the set

R =

{︃
2i−1 r

center

α

α
| i ∈ {0, . . . , 2⌈log(αβk)⌉}

}︃
contains a number ˜︁r1 with 1

2
r1 ≤ ˜︁r1 ≤ r1.

Once the largest radius is �xed, we can obtain a candidate set for all other
radii in a similar manner. The di�erence here is that we need a suitable lower
bound for the radii so that the candidate set does not get too large. We achieve
this by assuming that the solution we are trying to approximate is ε-balanced, as
introduced in De�nition 114.

120

Lemma 119. Let (X, d) be a �nite metric space and (c1, r1), . . . , (ck, rk) an ε-
balanced solution with r1 ≥ . . . ≥ rk. Then the set

R =

{︃
2i−1 ε

k
r1 | i ∈

{︃
0, . . . ,

k

ε

}︃}︃
contains for each ri a number ˜︁ri with 1

2
ri ≤ ˜︁ri ≤ ri.

Proof. Since the solution is ε-balanced, we necessarily have that ri ∈
[︂
εr∗1
k
, r∗1

]︂
for

all i. The claim then immediately follows from Lemma 117.

We are now able to prove Lemma 116.

Proof of Lemma 116. Lemma 118 shows how to obtain the candidate set for the
largest radius of the desired size, Lemma 119 shows it for the remaining radii.

4.5.2 The Algorithm

Instead of establishing a lower bound via the workings of the algorithm, we will
now supply it directly. Algorithm 9 shows the �nal algorithm (at least for a given
oracle and set of lower bounds). We have �nally �xed an order on the points in X
and replaced the oracle with a sequence that represents the assignments of newly
selected points. As usual, the union in Line 5 runs only over those j for which cj
has been set.

Suppose we correctly guessed the oracle and the lower bounds for some k-MSR
solution. Then the following lemma shows that Algorithm 9 yields a solution whose
cost is at most (1 + ε) times higher.

Lemma 120. Let X ⊂ Rd be a �nite ordered set, ε > 0 an error parame-
ter, and ˜︁r1, . . . , ˜︁rk radii, such that 1

2
r∗i ≤ ˜︁ri ≤ r∗i for some k-MSR solution

(c∗1, r
∗
1), . . . , (c

∗
k, r

∗
k). Then there exists a sequence u∗ ∈ {1, . . . , k}768kε−4

, such that
running Algorithm 9 on X, u∗, and (˜︁ri)i returns a k-MSR solution (c1, rk), . . .,
(ck, rk) with ∑︂

i

ri ≤ (1 + ε)
∑︂
i

r∗i .

Proof. We construct u∗ by recording the proper assignments during the selection
process. This is possible because

1. after �xing an ordering of the points, the algorithm is deterministic,

2. assignments do not have to be speci�ed before points are selected.

121

Algorithm 9: k-MSR Algorithm

Input : A �nite ordered set X = {x1, . . . , xn} ⊂ Rd, a number k ∈ N, an
error-parameter 0 < ε < 1, a sequence u ∈ {1, . . . , k}∗, a set of
radii r1, . . . , rk.

Output: A set of k pairs {(c1, r1), . . . (ck, rk)}.
1 δ ← ε2

8
;

2 γ ← 1 + δ + 2
√
δ;

3 Sj ← ∅ for all j ∈ {1, . . . , k};
4 for i = 1, . . . , |u| do
5 R← X −

⋃︁
j B(cj, (1 + γ)rj);

6 if R = ∅ then

7 exit loop;
8 end

9 x← point in R with smallest index;
10 Sui

← Sui
∪ {x};

11 (cui
, rui

)← δ-close center of Sui
with induced radius;

12 end

13 return {(c1, r1), . . . , (ck, rk)}

During the �rst iteration, if the �rst selected point x(1) lies within B
(︁
c∗i1 , r

∗
i1

)︁
,

where i1 is the smallest such index, we set u1 = i1. Continuing in this fashion,
we ensure that Si ⊆ B(c∗i , r

∗
i) for all i. Furthermore, since we also pass a value ˜︁ri

with 1
2
r∗i ≤ ˜︁ri ≤ r∗i as a lower bound to the algorithm, we know that

ρ (C∗
i) ≥ ρ (Si) ≥

1

2
ρ (C∗

i) ≥
1

4
diam (C∗

i)

holds for the initial radius of Si (i.e., when Si contains exactly two points). Finally,
we can apply the same estimation from the proof of Lemma 111 to show that ρ (C∗

i)
always grows by a factor of 1+ δ2

4(1+
√
2)
with every new addition and that the size of

Si is thus upper bounded by 2 · 48δ−2 = 96δ−2 = 768ε−4. This proves that R = ∅
after processing 768kε−4 many entries of u∗, so we can upper bound the length of
u∗ accordingly.

Finally, we get to the main theorem.

Theorem 121. Let X ⊂ Rd be a �nite ordered set, ε > 0 an error parameter, and
k ∈ N. Then there exists an algorithm that computes a (1+ε)-approximate k-MSR
solution for X in O (nd · f(k, ε−1)) time. Thus, assuming that k is constant, this
algorithm yields a PTAS for the k-MSR problem.

122

Proof. Let (c∗1, r
∗
1), . . . , (c

∗
k, r

∗
k) be an ε-balanced and (1+ ε)-approximative k-MSR

solution for X. If we have guessed the lower bounds and the oracle correctly,
then Lemma 120 shows that we can compute a (1 + ε)2-approximative solution in
O(ndkε−4) time. The oracle can be guessed in kO(kε−4) time and the lower bounds
in O

(︁
log k

ε

)︁k time by going over all possible combinations. This yields a running
time of

O

(︄
ndε−4 · kO(kε−4) ·O

(︃
log

k

ε

)︃k
)︄
.

4.5.3 Outliers

In this short �nal section, we would like to show that outliers can be incorporated
into the above algorithm. That is, we can even allow the user to specify a number
z of how many points can be ignored when assessing the cost of a solution. All we
have to do is to add a (k + 1)-th set Sk+1 for the outliers, whose radius remains
0 throughout. If there are z outliers, then the oracle is drawn from {1, . . . , k +
1}768kε−4+z, where at most z entries are equal to k+1. This then yields Theorem 95.

123

Chapter 5

Connected Clustering

5.1 Introduction

In this chapter, we provide a simple assignment algorithm for the connected k-
center problem.

De�nition 122 (Connected k-Center Problem). Let (X, d) be a �nite metric
space, G = (X,E) a graph on X, and k ∈ N. The goal in the connected k-center
problem is to �nd an assignment σ : X → C to a set of k centers C ⊂ X that
minimizes maxx∈X d(x, σ(x)) and guarantees that G[σ−1(c)] is connected for all
c ∈ C.

In other words, this k-center variant allows us to consider object relations
that go beyond the metric that measures their dissimilarity. Ge et al. ([46])
�rst came up with this restriction in order to separate attribute data (a set of
points X in Euclidean space) and relationship data (a graph G on top of X),
which is of interest in market segmentation (which is �the process of dividing a
market into distinct customer groups with homogeneous needs�1) and community
detection within social networks, for example. In the �rst case, clusterings are
derived primarily from attributes, such as demographic data; in the second, they
are primarily derived from social relations. However, in both cases, the other data
is also of importance. Social relations along which word of mouth can spread are
important to markets and commonalities of interest to social formations. We can
also draw examples from geodesy. Consider the task of reconstructing regional
of global mean sea levels from recordings of gauge stations situated all across
the world, such as the PSMSL data set ([68], [55]). These stations, however,
are distributed very unevenly around the globe, skewing the result. One way of
handling this is to cluster the stations and consider good representatives to thin

1 [46], p. 3

124

out the data. This entails clustering stations according to their gauge time series
while ensuring that stations from di�erent geographic regions are not clustered
together. In other words, stations must be viewed through two di�erent lenses:
(1) as points on the globe and (2) as sources of sea level data. The �rst yields the
metric (via the Fréchet distance, for example), and the second the relations (via
coastal neighborhood, for example).

As a generalization of the k-center problem, it is known to be NP-hard in gen-
eral, but we can solve it optimally in polynomial time for simpler graph structures,
such as trees. This was already proven by Ge et al., who provided a DP that solves
the problem in O(n2 log n) time, where n is the number of points. In this short
chapter, we present a simple algorithm that solves the corresponding assignment
problem. This algorithm was established as a preliminary result for [37] (and can
be found in the full version [36]) during a time when we were unaware of the ex-
istence of the paper [46] by Ge at al. Even without considering these results, the
assignment algorithm was superseded by a di�erent DP (also outlined in [36]) that
optimally solves the whole connected k-center problem, not just the assignment
problem. In any case, we hope this algorithm might still be of some interest, even
if just as a preparation for the DP.

5.2 Hardness of the Assignment Problem

In the assignment version of the connected k-center version, we are also given, apart
from the �nite metric space (X, d) and the graph G = (X,E), a predetermined
set of k centers C. The task is only to assign the points from X to C in the best
possible way, meaning that the resulting assignment σ : X → C should minimize
rad(σ, d). Finding such an assignment is trivial for the vanilla k-center problem:
just assign every point to its closest center. However, this might not be possible
for the connected k-center problem since the resulting clusters might not induce
connected subgraphs. In fact, there is no (3− ε)-approximation algorithm for the
general assignment problem for any ε > 0, unless P = NP. We will have to be
more careful later on.

Theorem 123. It is NP-hard to approximate the assignment variant of the con-
nected k-center problem with an approximation factor smaller 3, even if k = 2.

Proof. We prove this claim via a reduction from 3-SAT (which is known to be
NP-hard [60]). Given a set of variables X = {x1, ..., xn} and a set of clauses
Z = {z1, z2, ..., zm} consisting of 3 literals each, the 3-SAT problem consists in
determining, whether there exists a truth assignment f : X → {T, F}, such that
each clause contains at least one true literal. Here, the set of literals L = {x, x |

125

T

F

a1 a2 a3 x̄3x3x2x1 x̄1 x̄2

b1 b2

G = (V,E) T

F

a1

a2
a3 x̄3x3x2x1 x̄1 x̄2

b1 b2

G′ = (V,E′)

Figure 5.1: The connectivity graph and metric corresponding to 3SAT instance
(x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3)

x ∈ X} just consists of variables and their negations. We will turn any such 3-
SAT instance into an instance for the connected k-center problem in such a way
that an assignment of cost 1 exists if and only if the 3-SAT instance is solvable.
Otherwise, there only exists an assignment of cost 3. The connectivity graph
G = (V,E) consists of vertices

V = {T, F} ∪ {ai | xi ∈ X} ∪ L ∪ Z

and edges

E = {{λ, T}, {λ, F} | λ ∈ L}
∪ {{xi, ai}, {xi, ai} | xi ∈ X}
∪ {{λ, z} | λ ∈ z}.

The distance between two vertices is given by the length of a shortest path in the
graph G′ = (V,E ′), where

E ′ = {{λ, T}, {λ, F} | λ ∈ L} ∪ {{ai, F} | xi ∈ X} ∪ {{z, T} | z ∈ Z},

and the pre-established set of centers is given by C = {T, F}. For a picture of the
�nal instance, see Figure 5.1.

If f is a truth assignment satisfying the above 3-SAT instance, then the fol-
lowing cluster assignment σ provides a solution with radius 1 for the connected
k-center problem. First, set σ(ai) = F for all xi ∈ X and σ(z) = T for all
z ∈ Z. This part of the assignment does not depend on f . Then, if f(xi) = T ,
set σ(xi) = T and σ (xi) = F . Otherwise, switch both of these assignments. It is
easy to verify that this assignment induces a maximal radius of 1, and it is only
slightly harder to show that the subgraphs induced by the clusters are connected.
The only vertices at issue are the ais since all other vertices are directly connected
to their assigned centers. However, since each ai is adjacent to xi and xi, and since
one of these vertices gets assigned to F , the claim follows.

126

For the other direction, suppose that we are given a feasible assignment σ : V →
{T, F} whose maximal radius is less than 2. By de�nition of E ′ this necessitates
that σ(ai) = F for all xi ∈ X and σ(z) = T for all z ∈ Z. We now wish to show
that the truth assignment f(xi) = σ(xi) satis�es all clauses in Z. However, this is
not di�cult to see. Since no clause is connected directly to T , at least one of its
neighbors must be adjacent to T . However, the only neighbors of clauses in (V,E)
are the literals of which they consist. Hence, all clauses must be satis�ed, and f
is a feasible solution.

After combining both directions, we see that if there were to exist a (3 −
ε)-approximation algorithm for the assignment variant of the connected k-center
problem, then we could also solve 3-SAT.

5.3 An Assignment Algorithm for Trees

Although the assignment variant of the connected k-center problem is NP-hard to
approximate to within a factor of 3 for general connectivity graphs, the same is
not true for simpler connectivity graphs, such as trees. This is what we wish to
show in the remainder of this chapter. From now on, assume that the underlying
connectivity graph is a tree T = (X,E). We will consider a simpli�cation in
which every pre-established center is a leaf in T , as this allows us to more readily
exploit the tree structure of the connectivity graph to build an assignment from
the ground up.

Given a guess for the optimal radius r, we process the vertices from leaves to
root. For each vertex v ∈ V , we maintain two sets: n(v) and z(v). The former
set consists of all previously processed vertices that must be served together with
v, meaning they must be assigned to the same center as v. The set z(v) consists
of all centers that are reachable from v, where a center c is said to be reachable
from v if d(x, c) ≤ r all x ∈ n(v). In the end, if z(t) is empty, then no center
is reachable from vertex t, and we can conclude that r is too small. Otherwise,
process the points from top to bottom and assign them to reachable centers. A
more precise description is given in Algorithm 10. For any v, let π(v) denote its
parent and Pv,c the unique v-c-path connecting it to center c. From line 1 to line
3, we initialize the set, which will hold all processed vertices, as well as the lists
n(·) and z(·). From line 4 to line 11 and line 12 to 21, we update both lists for all
points bottom-up, from leaves to root. After processing a point v, if z(v) is empty,
then v has to be assigned to a center the same as its parent π(v), and we add all of
n(v) to n(π(v)). During lines 22-24 and 25-32, the algorithm either fails, implying
that r is too small, or outputs a feasible assignment.

Lemma 124. For any v ∈ V and c ∈ z(v), it must hold that d(y, c) ≤ r for all
points y ∈

⋃︁
x∈Pv,c

n(x).

127

Algorithm 10: Assignment Algorithm
Input: A tree T = (V,E) with root t, centers C that are also leaves, a

metric d, a radius r.
Result: If an assignment with radius r exists, then the algorithm will �nd

such an assignment. Otherwise, it will fail.

1 M ← ∅;
2 z(v)← ∅ for all v ∈ V ;
3 n(v)← {v} for all v ∈ V ;

4 forall leaves ℓ ∈ V do

5 M ←M ∪ {ℓ};
6 if ℓ ∈ C then

7 z(ℓ)← z(ℓ) ∪ {ℓ};
8 else

9 n(π(ℓ))← n(π(ℓ)) ∪ n(ℓ);
10 end

11 end

12 while M ̸= V do

13 pick v ∈ V such that u ∈M for each child u of v;
14 forall child u of v do
15 z(v)← z(v) ∪ {c ∈ z(u) | ∀x ∈ n(v) : d(x, c) ≤ r};
16 end

17 if z(v) = ∅ then
18 n(π(v))← n(π(v)) ∪ n(v);
19 end

20 M ←M ∪ {v};
21 end

22 if z(t) = ∅ then
23 fail;
24 end

25 while M ̸= ∅ do
26 let v be the point in M that was added last;
27 pick c ∈ z(v) arbitrarily and let Pv,c denote the unique v-c-path;
28 forall x ∈ Pv,c do

29 assign all points in n(x) to c;
30 M ←M \ n(x);
31 end

32 end

33 return assignment

128

Proof. For all x ∈ Pv,c, we know that c ∈ z(x) since c can only be passed upward
along path Pv,c (see lines 12 and 13) in a tree. If some z(x) does not contain c,
then z(v) can neither. Line 13 then ensures that the distance between each point
in n(x) and center c should be at most r, which completes the proof.

We are now ready to analyze the correctness of the algorithm using the following
case distinction.

1. The algorithm succeeds. Then, applying Lemma 124 to the assignments com-
puted in lines 27-29 shows that the maximal radius of the resulting solution
is at most r.

2. The algorithm fails. Then z(v) = ∅ for some point v ∈ V . Since the subgraph
induced by the clusters of any feasible assignment cluster has to be connected
and the connectivity graph is a tree, v must be assigned to the same center as
point π(v). Since we process the points in a bottom-up fashion, from leaves
to root, root t is processed at the end, and thus z(t) = ∅ implies that there
is no feasible assignment with radius r.

Altogether, Algorithm 10 needs at most O(nk) time since we check the distance
from every point to every center at most once. While this would suggest an overall
running time of O(nk log n), which includes guessing r, we initially assumed that
the centers are all leaves and have yet to deal with the general case. If some center
c is not a leaf, we remove it from T , add |δ(c)| new vertices, and pair them with
the old neighbors. That is, each new copy is connected to a di�erent neighbor
from c in T . After doing this for each non-leaf center, we get a connectivity
forest, in which each center is a leaf. The trees making up this forest can then be
individually passed to Algorithm 10 and the resulting assignments combined into
a single feasible solution, increasing the overall running time since the number of
centers can be in Ω(n).

Theorem 125. There exists an optimal assignment algorithm on trees that runs
in O(n2 log n) time.

129

Acknowledgments

Chapter 2 is based on [10, 9] which I've co-authored with Anna Arutyunova,
Anna Groÿwendt, Heiko Röglin and Melanie Schmidt. My main contribu-
tion concerned the lower bounds, while Anna Arutyunova was the driving
force behind the upper bounds. After I constructed several CLdiam worst-
case examples for particular k by hand, Anna Groÿwendt realized that they
exhibited a pattern that could be continued inductively to yield worst-case
examples for all k. I then formalized and �eshed out this approach and also
used it to construct lower bounds for CLrad. (It should be noted that Anna
Arutyunova found another relatively di�erent worst-case example for CLrad.
However, that example was not included in the publications.)

Chapter 3 is based on a not yet published paper, which I have worked
on with Anna Arutyunova, Jan Eube, Heiko Röglin, Melanie Schmidt, and
Sarah Sturm. When I heard that the other authors researched Pareto sets for
combinations of di�erent clustering objectives, I approached them with the
idea of also considering the k-separation objective. Anna Arutyunova and
Sarah Sturm quickly devised a concrete algorithm to combine this objective
with the k-center and k-diameter objective, which I then �eshed out. While
I was responsible for the combination of the k-separation objective with
the k-MSR objective, the remaining combinations with the k-median and
k-means objectives are due to Sarah Sturm. I have merely rewritten those
parts for this thesis. The initial example that shows that k-separation and k-
diameter are not simultaneously constant-factor approximable is from Anna
Arutyunova and myself. I have later used this example to establish similar
results for other combinations with the k-separation objective.

Chapter 4 is based on [35], which I have co-authored with Lukas Drexler,
Annika Hennes, Abhiruk Lahiri, and Melanie Schmidt. I joined the group
late and did not participate in initial discussions and preparations. To a
large extent, these consisted of �eshing out B diou et al.'s description for
the k-center algorithm. However, I have contributed considerably to the
paper. The main lemma, the lemma that shows that there always exist good

130

clusterings that are both balanced and separated, the method of guessing
radii for general mergeable constraints, as well as the proof of the correctness
of the main theorem, are in their �nal form all written by me. However, while
preparing the paper for this thesis, I sadly discovered a signi�cant error in
one of the proofs. Although the problem might be �xable, I have instead
weakened the result. Chapter 4 is quite di�erent from the published paper
and was, apart from Section 4.5.1, which goes back to Lukas Drexler, entirely
written by me.

Chapter 5 is based on [37, 36], which I have co-authored with Lukas Drexler,
Jan Eube, Kelin Luo, Heiko Röglin and Melanie Schmidt. Beyond some
initial discussions, I have not contributed much to the paper and, hence,
have only prepared a small part of it for this dissertation. Kelin Luo had
the initial idea for the assignment algorithm, which I then �eshed out. The
NP-hardness result is due to Jan Eube.

131

Bibliography

[1] Margareta Ackerman, Shai Ben-David, and David Loker. �Characterization
of Linkage-based Clustering�. In: Annual Conference Computational Learn-
ing Theory. 2010. url: https://api.semanticscholar.org/CorpusID:
58691790.

[2] Margareta Ackerman, Shai Ben-David, and David Loker. �Towards Property-
Based Classi�cation of Clustering Paradigms�. In: Advances in Neural Infor-
mation Processing Systems. Ed. by J. La�erty et al. Vol. 23. Curran Asso-
ciates, Inc., 2010. url: https://proceedings.neurips.cc/paper_files/
paper/2010/file/f93882cbd8fc7fb794c1011d63be6fb6-Paper.pdf.

[3] Marcel R. Ackermann et al. �Analysis of Agglomerative Clustering�. In: Al-
gorithmica 69.1 (2014), pp. 184�215. doi: https://doi.org/10.1007/
s00453-012-9717-4.

[4] P. K. Agarwal and C. M. Procopiuc. �Exact and Approximation Algorithms
for Clustering�. In: Algorithmica 33.2 (June 2002), pp. 201�226. issn: 1432-
0541. doi: 10.1007/s00453-001-0110-y. url: https://doi.org/10.
1007/s00453-001-0110-y.

[5] Sara Ahmadian and Chaitanya Swamy. �Approximation Algorithms for Clus-
tering Problems with Lower Bounds and Outliers�. In: Proc. of the 43rd Inter-
national Colloquium on Automata, Languages, and Programming (ICALP).
Vol. 55. 2016, 69:1�69:15. url: https://doi.org/10.4230/LIPIcs.ICALP.
2016.69.

[6] Sara Ahmadian et al. �Better Guarantees for k-Means and Euclidean k-
Median by Primal-Dual Algorithms�. In: SIAM J. Comput. 49.4 (2020). doi:
https://doi.org/10.1137/18M1171321.

[7] Soroush Alamdari and David Shmoys. �A Bicriteria Approximation Algo-
rithm for the k-Center and k-Median Problems�. In: Approximation and
Online Algorithms. Ed. by Roberto Solis-Oba and Rudolf Fleischer. Cham:
Springer International Publishing, 2018, pp. 66�75. isbn: 978-3-319-89441-6.

132

https://api.semanticscholar.org/CorpusID:58691790
https://api.semanticscholar.org/CorpusID:58691790
https://proceedings.neurips.cc/paper_files/paper/2010/file/f93882cbd8fc7fb794c1011d63be6fb6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/f93882cbd8fc7fb794c1011d63be6fb6-Paper.pdf
https://doi.org/https://doi.org/10.1007/s00453-012-9717-4
https://doi.org/https://doi.org/10.1007/s00453-012-9717-4
https://doi.org/10.1007/s00453-001-0110-y
https://doi.org/10.1007/s00453-001-0110-y
https://doi.org/10.1007/s00453-001-0110-y
https://doi.org/10.4230/LIPIcs.ICALP.2016.69
https://doi.org/10.4230/LIPIcs.ICALP.2016.69
https://doi.org/https://doi.org/10.1137/18M1171321

[8] Anna Arutyunova and Heiko Röglin. �The Price of Hierarchical Clustering�.
In: 30th Annual European Symposium on Algorithms, ESA 2022, September
5-9, 2022, Berlin/Potsdam, Germany. Ed. by Shiri Chechik et al. Vol. 244.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 10:1�10:14.
doi: 10.4230/LIPICS.ESA.2022.10. url: https://doi.org/10.4230/
LIPIcs.ESA.2022.10.

[9] Anna Arutyunova et al. �Upper and Lower Bounds for Complete Linkage
in General Metric Spaces�. In: Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2021). Ed. by Mary Wootters and Laura Sanità. Vol. 207. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl � Leibniz-Zentrum für Informatik, 2021, 18:1�18:22. isbn: 978-3-
95977-207-5. doi: 10.4230/LIPIcs.APPROX/RANDOM.2021.18. url: https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/

RANDOM.2021.18.

[10] Anna Arutyunova et al. �Upper and lower bounds for complete linkage in
general metric spaces�. In: Machine Learning 113.1 (Jan. 2024), pp. 489�
518. issn: 1573-0565. doi: 10.1007/s10994-023-06486-8. url: https:
//doi.org/10.1007/s10994-023-06486-8.

[11] Mihai Badoiu and Kenneth L. Clarkson. �Smaller core-sets for balls�. In:
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). ACM/SIAM, 2003, pp. 801�802. url: http://dl.acm.
org/citation.cfm?id=644108.644240.

[12] Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. �Approximate clustering
via core-sets�. In: Proceedings on 34th Annual ACM Symposium on Theory
of Computing (STOC). ACM, 2002, pp. 250�257. url: https://doi.org/
10.1145/509907.509947.

[13] Mihai B doiu and Kenneth L. Clarkson. �Optimal core-sets for balls�. In:
Computational Geometry 40.1 (2008), pp. 14�22. issn: 0925-7721.

[14] Sayan Bandyapadhyay, Zachary Friggstad, and Ramin Mousavi. �Param-
eterized Approximation Algorithms and Lower Bounds for k-Center Clus-
tering and Variants�. In: Algorithmica (May 2024). issn: 1432-0541. doi:
10.1007/s00453-024-01236-1. url: https://doi.org/10.1007/s00453-
024-01236-1.

[15] Sayan Bandyapadhyay, William Lochet, and Saket Saurabh. �FPT Constant-
Approximations for Capacitated Clustering to Minimize the Sum of Clus-
ter Radii�. In: 39th International Symposium on Computational Geometry
(SoCG). Vol. to appear. 2023. url: https://doi.org/10.48550/arXiv.
2303.07923.

133

https://doi.org/10.4230/LIPICS.ESA.2022.10
https://doi.org/10.4230/LIPIcs.ESA.2022.10
https://doi.org/10.4230/LIPIcs.ESA.2022.10
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.18
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.18
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.18
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.18
https://doi.org/10.1007/s10994-023-06486-8
https://doi.org/10.1007/s10994-023-06486-8
https://doi.org/10.1007/s10994-023-06486-8
http://dl.acm.org/citation.cfm?id=644108.644240
http://dl.acm.org/citation.cfm?id=644108.644240
https://doi.org/10.1145/509907.509947
https://doi.org/10.1145/509907.509947
https://doi.org/10.1007/s00453-024-01236-1
https://doi.org/10.1007/s00453-024-01236-1
https://doi.org/10.1007/s00453-024-01236-1
https://doi.org/10.48550/arXiv.2303.07923
https://doi.org/10.48550/arXiv.2303.07923

[16] Chiranjib Bhattacharyya, Ravindran Kannan, and Amit Kumar. �How many
Clusters? - An algorithmic answer�. In: Proceedings of the 2022 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 2607�2640. doi: 10.
1137/1.9781611977073.102. url: https://epubs.siam.org/doi/abs/
10.1137/1.9781611977073.102.

[17] Moritz Buchem et al. �A (3 + ε)-approximation algorithm for the mini-
mum sum of radii problem with outliers and extensions for generalized lower
bounds�. In: Proceedings of the 2024 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 1738�1765. doi: 10.1137/1.9781611977912.
69. url: https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.
69.

[18] Jaroslaw Byrka et al. �An Improved Approximation for k -Median and Pos-
itive Correlation in Budgeted Optimization�. In: ACM Trans. Algorithms
13.2 (2017), 23:1�23:31. doi: https://doi.org/10.1145/2981561.

[19] Vasilis Capoyleas, Günter Rote, and Gerhard Woeginger. �Geometric clus-
terings�. In: Journal of Algorithms 12.2 (1991), pp. 341�356. issn: 0196-
6774. url: https://www.sciencedirect.com/science/article/pii/
019667749190007L.

[20] Gunnar Carlsson and Facundo Mémoli. �Characterization, Stability and Con-
vergence of Hierarchical Clustering Methods�. In: Journal of Machine Learn-
ing Research 11.47 (2010), pp. 1425�1470. url: http://jmlr.org/papers/
v11/carlsson10a.html.

[21] Gunnar E. Carlsson and Facundo Mémoli. �Classifying Clustering Schemes�.
In: Foundations of Computational Mathematics 13 (2010), pp. 221�252. url:
https://api.semanticscholar.org/CorpusID:9097762.

[22] Moses Charikar and Rina Panigrahy. �Clustering to minimize the sum of
cluster diameters�. In: J. Comput. Syst. Sci. 68.2 (2004), pp. 417�441. url:
https://doi.org/10.1016/j.jcss.2003.07.014.

[23] Moses Charikar and Rina Panigrahy. �Clustering to minimize the sum of
cluster diameters�. In: J. Comput. Syst. Sci. 68.2 (Mar. 2004), pp. 417�441.
issn: 0022-0000.

[24] Moses Charikar et al. �Incremental Clustering and Dynamic Information
Retrieval�. In: SIAM J. Comput. 33.6 (2004), pp. 1417�1440. doi: https:
//doi.org/10.1137/S0097539702418498.

134

https://doi.org/10.1137/1.9781611977073.102
https://doi.org/10.1137/1.9781611977073.102
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.102
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.102
https://doi.org/10.1137/1.9781611977912.69
https://doi.org/10.1137/1.9781611977912.69
https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.69
https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.69
https://doi.org/https://doi.org/10.1145/2981561
https://www.sciencedirect.com/science/article/pii/019667749190007L
https://www.sciencedirect.com/science/article/pii/019667749190007L
http://jmlr.org/papers/v11/carlsson10a.html
http://jmlr.org/papers/v11/carlsson10a.html
https://api.semanticscholar.org/CorpusID:9097762
https://doi.org/10.1016/j.jcss.2003.07.014
https://doi.org/https://doi.org/10.1137/S0097539702418498
https://doi.org/https://doi.org/10.1137/S0097539702418498

[25] Vaggos Chatziafratis, Rad Niazadeh, and Moses Charikar. �Hierarchical Clus-
tering with Structural Constraints�. In: Proceedings of the 35th Interna-
tional Conference on Machine Learning. Ed. by Jennifer Dy and Andreas
Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, Oct.
2018, pp. 774�783. url: https://proceedings.mlr.press/v80/chatziafratis18a.
html.

[26] Raymond Chen. �On Mentzer's Hardness of the k-Center Problem on the
Euclidean Plane�. In: (2021). url: https://digitalcommons.dartmouth.
edu/cs_tr/383.

[27] Vincent Cohen-Addad, Varun Kanade, and Frederik Mallmann-Trenn. �Clus-
tering redemption�beyond the impossibility of kleinberg's axioms�. In: Pro-
ceedings of the 32nd International Conference on Neural Information Pro-
cessing Systems. NIPS'18. Montréal, Canada: Curran Associates Inc., 2018,
pp. 8526�8535.

[28] Vincent Cohen-Addad et al. �Tight FPT Approximations for k-Median and
k-Means�. In: 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019). Ed. by Christel Baier et al. Vol. 132. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, 2019, 42:1�42:14. isbn:
978-3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.42. url: https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.

2019.42.

[29] Vincent Cohen-addad et al. �Hierarchical Clustering: Objective Functions
and Algorithms�. In: J. ACM 66.4 (June 2019). issn: 0004-5411. doi: 10.
1145/3321386. url: https://doi.org/10.1145/3321386.

[30] Aparna Das and Claire Kenyon-Mathieu. �On Hierarchical Diameter-Clustering
and the Supplier Problem�. In: Theory Comput. Syst. 45.3 (2009), pp. 497�
511. doi: https://doi.org/10.1007/s00224-009-9186-6.

[31] Sanjoy Dasgupta. �A cost function for similarity-based hierarchical cluster-
ing�. In: Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing (2015). url: https://api.semanticscholar.org/CorpusID:
2262168.

[32] Sanjoy Dasgupta and Philip M. Long. �Performance guarantees for hierar-
chical clustering�. In: J. Comput. Syst. Sci. 70.4 (2005), pp. 555�569. doi:
https://doi.org/10.1016/j.jcss.2004.10.006.

135

https://proceedings.mlr.press/v80/chatziafratis18a.html
https://proceedings.mlr.press/v80/chatziafratis18a.html
https://digitalcommons.dartmouth.edu/cs_tr/383
https://digitalcommons.dartmouth.edu/cs_tr/383
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.42
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.42
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/10.1145/3321386
https://doi.org/10.1145/3321386
https://doi.org/10.1145/3321386
https://doi.org/https://doi.org/10.1007/s00224-009-9186-6
https://api.semanticscholar.org/CorpusID:2262168
https://api.semanticscholar.org/CorpusID:2262168
https://doi.org/https://doi.org/10.1016/j.jcss.2004.10.006

[33] Ian Davidson and S. S. Ravi. �Clustering With Constraints: Feasibility Is-
sues and the k-Means Algorithm�. In: Proceedings of the 2005 SIAM Inter-
national Conference on Data Mining (SDM), pp. 138�149. doi: 10.1137/1.
9781611972757.13. url: https://epubs.siam.org/doi/abs/10.1137/1.
9781611972757.13.

[34] Jozef Dobo². Metric preserving functions. �tro�ek Ko²ice, 1998.

[35] Lukas Drexler et al. �Approximating Fair k-Min-Sum-Radii in Euclidean
Space�. In: Approximation and Online Algorithms - 21st International Work-
shop, WAOA 2023, Amsterdam, The Netherlands, September 7-8, 2023, Pro-
ceedings. Ed. by Jaroslaw Byrka and Andreas Wiese. Vol. 14297. Lecture
Notes in Computer Science. Springer, 2023, pp. 119�133. doi: 10.1007/978-
3-031-49815-2_9. url: https://doi.org/10.1007/978-3-031-49815-
2%5C_9.

[36] Lukas Drexler et al. Connected k-Center and k-Diameter Clustering. 2023.
arXiv: 2211.02176 [cs.DS].

[37] Lukas Drexler et al. �Connected k-Center and k-Diameter Clustering�. In:
50th International Colloquium on Automata, Languages, and Programming
(ICALP 2023). Ed. by Kousha Etessami, Uriel Feige, and Gabriele Pup-
pis. Vol. 261. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl � Leibniz-Zentrum für Informatik,
2023, 50:1�50:20. isbn: 978-3-95977-278-5. doi: 10.4230/LIPIcs.ICALP.
2023.50. url: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.ICALP.2023.50.

[38] Robert C. Edgar. �Search and clustering orders of magnitude faster than
BLAST�. In: Bioinformatics 26.19 (Aug. 2010), pp. 2460�2461. issn: 1367-
4803. doi: 10.1093/bioinformatics/btq461. eprint: https://academic.
oup.com/bioinformatics/article-pdf/26/19/2460/48857155/bioinformatics\

_26_19_2460.pdf. url: https://doi.org/10.1093/bioinformatics/
btq461.

[39] Matthias Ehrgott. Multicriteria Optimization (2. ed.) Springer, 2005. isbn:
978-3-540-21398-7. doi: 10.1007/3-540-27659-9. url: https://doi.org/
10.1007/3-540-27659-9.

[40] Brian S. Everitt et al. Cluster Analysis. Wiley Series in Probability and
Statistics. 2011.

[41] Tomás Feder and Daniel Greene. �Optimal Algorithms for Approximate
Clustering�. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing. STOC '88. Chicago, Illinois, USA: Association for

136

https://doi.org/10.1137/1.9781611972757.13
https://doi.org/10.1137/1.9781611972757.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611972757.13
https://epubs.siam.org/doi/abs/10.1137/1.9781611972757.13
https://doi.org/10.1007/978-3-031-49815-2_9
https://doi.org/10.1007/978-3-031-49815-2_9
https://doi.org/10.1007/978-3-031-49815-2%5C_9
https://doi.org/10.1007/978-3-031-49815-2%5C_9
https://arxiv.org/abs/2211.02176
https://doi.org/10.4230/LIPIcs.ICALP.2023.50
https://doi.org/10.4230/LIPIcs.ICALP.2023.50
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.50
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.50
https://doi.org/10.1093/bioinformatics/btq461
https://academic.oup.com/bioinformatics/article-pdf/26/19/2460/48857155/bioinformatics_26_19_2460.pdf
https://academic.oup.com/bioinformatics/article-pdf/26/19/2460/48857155/bioinformatics_26_19_2460.pdf
https://academic.oup.com/bioinformatics/article-pdf/26/19/2460/48857155/bioinformatics_26_19_2460.pdf
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9

Computing Machinery, 1988, pp. 434�444. isbn: 0897912640. doi: 10.1145/
62212.62255. url: https://doi.org/10.1145/62212.62255.

[42] Zachary Friggstad and Mahya Jamshidian. �Improved Polynomial-Time Ap-
proximations for Clustering with Minimum Sum of Radii or Diameters�. In:
30th Annual European Symposium on Algorithms (ESA). Vol. 244. 2022,
56:1�56:14. url: https://doi.org/10.4230/LIPIcs.ESA.2022.56.

[43] Zachary Friggstad and Mahya Jamshidian. �Improved Polynomial-Time Ap-
proximations for Clustering with Minimum Sum of Radii or Diameters�.
In: 30th Annual European Symposium on Algorithms (ESA 2022). Ed. by
Shiri Chechik et al. Vol. 244. Leibniz International Proceedings in Infor-
matics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl � Leibniz-Zentrum
für Informatik, 2022, 56:1�56:14. isbn: 978-3-95977-247-1. doi: 10.4230/
LIPIcs.ESA.2022.56. url: https://drops-dev.dagstuhl.de/entities/
document/10.4230/LIPIcs.ESA.2022.56.

[44] Limin Fu et al. �CD-HIT�. In: Bioinformatics 28.23 (Dec. 2012), pp. 3150�
3152. issn: 1367-4803. doi: 10.1093/bioinformatics/bts565. url: https:
//doi.org/10.1093/bioinformatics/bts565.

[45] Jean Gallier. Geometric methods and applications: for computer science and
engineering. Berlin, Heidelberg: Springer-Verlag, 2000. isbn: 0387950443.

[46] Rong Ge et al. �Joint cluster analysis of attribute data and relationship
data: The connected k-center problem, algorithms and applications�. In:
ACM Trans. Knowl. Discov. Data 2.2 (July 2008). issn: 1556-4681. doi:
10.1145/1376815.1376816. url: https://doi.org/10.1145/1376815.
1376816.

[47] Matt Gibson et al. �On Clustering to Minimize the Sum of Radii�. In: SIAM
Journal of Computing 41.1 (2012), pp. 47�60. url: https://doi.org/10.
1137/100798144.

[48] Teo�lo F. Gonzalez. �Clustering to minimize the maximum intercluster dis-
tance�. In: Theoretical Computer Science 38 (1985), pp. 293�306. issn: 0304-
3975. doi: https://doi.org/10.1016/0304-3975(85)90224-5. url:
https://www.sciencedirect.com/science/article/pii/0304397585902245.

[49] Anna Groÿwendt and Heiko Röglin. �Improved Analysis of Complete-Linkage
Clustering�. In: Algorithmica 78.4 (2017), pp. 1131�1150. doi: https://doi.
org/10.1007/s00453-017-0284-6.

[50] Anna-Klara Groÿwendt. �Theoretical Analysis of Hierarchical Clustering and
the Shadow Vertex Algorithm�. PhD thesis. University of Bonn, 2020. url:
http://hdl.handle.net/20.500.11811/8348.

137

https://doi.org/10.1145/62212.62255
https://doi.org/10.1145/62212.62255
https://doi.org/10.1145/62212.62255
https://doi.org/10.4230/LIPIcs.ESA.2022.56
https://doi.org/10.4230/LIPIcs.ESA.2022.56
https://doi.org/10.4230/LIPIcs.ESA.2022.56
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.56
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.56
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1145/1376815.1376816
https://doi.org/10.1145/1376815.1376816
https://doi.org/10.1145/1376815.1376816
https://doi.org/10.1137/100798144
https://doi.org/10.1137/100798144
https://doi.org/https://doi.org/10.1016/0304-3975(85)90224-5
https://www.sciencedirect.com/science/article/pii/0304397585902245
https://doi.org/https://doi.org/10.1007/s00453-017-0284-6
https://doi.org/https://doi.org/10.1007/s00453-017-0284-6
http://hdl.handle.net/20.500.11811/8348

[51] Pierre Hansen and Michel Delattre. �Complete-Link Cluster Analysis by
Graph Coloring�. In: Journal of the American Statistical Association 73.362
(1978), pp. 397�403. issn: 01621459. url: http://www.jstor.org/stable/
2286672 (visited on 06/07/2024).

[52] Dorit S. Hochbaum. �When are NP-hard location problems easy?� In: Ann.
Oper. Res. 1.3 (1984), pp. 201�214. doi: https://doi.org/10.1007/
BF01874389.

[53] Dorit S. Hochbaum and David B. Shmoys. �A Best Possible Heuristic for
the k -Center Problem�. In: Math. Oper. Res. 10.2 (1985), pp. 180�184. doi:
https://doi.org/10.1287/moor.10.2.180.

[54] Dorit S. Hochbaum and David B. Shmoys. �A Uni�ed Approach to Ap-
proximation Algorithms for Bottleneck Problems�. In: J. ACM 33.3 (May
1986), pp. 533�550. issn: 0004-5411. doi: 10.1145/5925.5933. url: https:
//doi.org/10.1145/5925.5933.

[55] Simon J. Holgate et al. �New Data Systems and Products at the Permanent
Service for Mean Sea Level�. In: Journal of Coastal Research 29.3 (2013),
pp. 493�504. doi: 10 . 2112 / JCOASTRES - D - 12 - 00175 . 1. url: https :
//doi.org/10.2112/JCOASTRES-D-12-00175.1.

[56] Wen-Lian Hsu and George L. Nemhauser. �Easy and hard bottleneck location
problems�. In: Discret. Appl. Math. 1.3 (1979), pp. 209�215. doi: https:
//doi.org/10.1016/0166-218X(79)90044-1.

[57] Tanmay Inamdar and Kasturi R. Varadarajan. �Capacitated Sum-Of-Radii
Clustering: An FPT Approximation�. In: Proc. of the 28th Annual European
Symposium on Algorithms (ESA). Vol. 173. 2020, 62:1�62:17. url: https:
//doi.org/10.4230/LIPIcs.ESA.2020.62.

[58] Anil K. Jain and Richard C. Dubes. �Algorithms for Clustering Data�. In:
1988.

[59] Kamal Jain and Vijay V. Vazirani. �Approximation algorithms for metric
facility location and k -Median problems using the primal-dual schema and
Lagrangian relaxation�. In: Journal of the ACM 48.2 (2001), pp. 274�296.
url: https://doi.org/10.1145/375827.375845.

[60] Richard M Karp. �Reducibility among combinatorial problems�. In: Com-
plexity of computer computations. Springer, 1972, pp. 85�103.

[61] Jon Kleinberg. �An Impossibility Theorem for Clustering�. In: Proceedings
of the 15th International Conference on Neural Information Processing Sys-
tems. NIPS'02. Cambridge, MA, USA: MIT Press, 2002, pp. 463�470.

138

http://www.jstor.org/stable/2286672
http://www.jstor.org/stable/2286672
https://doi.org/https://doi.org/10.1007/BF01874389
https://doi.org/https://doi.org/10.1007/BF01874389
https://doi.org/https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1145/5925.5933
https://doi.org/10.1145/5925.5933
https://doi.org/10.1145/5925.5933
https://doi.org/10.2112/JCOASTRES-D-12-00175.1
https://doi.org/10.2112/JCOASTRES-D-12-00175.1
https://doi.org/10.2112/JCOASTRES-D-12-00175.1
https://doi.org/https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.4230/LIPIcs.ESA.2020.62
https://doi.org/10.4230/LIPIcs.ESA.2020.62
https://doi.org/10.1145/375827.375845

[62] Nissan Lev-Tov and David Peleg. �Polynomial time approximation schemes
for base station coverage with minimum total radii�. In: Computer Networks
47.4 (2005), pp. 489�501. issn: 1389-1286. doi: https://doi.org/10.
1016/j.comnet.2004.08.012. url: https://www.sciencedirect.com/
science/article/pii/S1389128604002427.

[63] Nissan Lev-Tov and David Peleg. �Polynomial time approximation schemes
for base station coverage with minimum total radii�. In: Comput. Networks
47.4 (2005), pp. 489�501. url: https://doi.org/10.1016/j.comnet.
2004.08.012.

[64] Guolong Lin et al. �A General Approach for Incremental Approximation and
Hierarchical Clustering�. In: SIAM J. Comput. 39.8 (2010), pp. 3633�3669.
doi: https://doi.org/10.1137/070698257.

[65] Stuart Mentzer. �Approximability of Metric Clustering Problems�. In: (Mar.
1988).

[66] Himanshu Mittal et al. �A comprehensive survey of image segmentation:
clustering methods, performance parameters, and benchmark datasets�. In:
Multimedia Tools and Applications 81.24 (Oct. 2022), pp. 35001�35026. issn:
1573-7721. doi: 10.1007/s11042-021-10594-9. url: https://doi.org/
10.1007/s11042-021-10594-9.

[67] Simona Moldovanu et al. �Re�ning skin lesions classi�cation performance
using geometric features of superpixels�. In: Scienti�c Reports 13.1 (July
2023), p. 11463. issn: 2045-2322. doi: 10.1038/s41598-023-38706-5. url:
https://doi.org/10.1038/s41598-023-38706-5.

[68] Permanent Service for Mean Sea Level (PSMSL), 2024, �Tide Gauge Data�,
Retrieved 03 February 2022 from http://www.psmsl.org/data/obtaining/.

[69] Chris Sander and Reinhard Schneider. �Database of homology-derived pro-
tein structures and the structural meaning of sequence alignment�. In: Pro-
teins: Structure, Function, and Bioinformatics 9.1 (1991), pp. 56�68. doi:
https://doi.org/10.1002/prot.340090107. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/prot.340090107.

[70] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014. doi: 10.
1017/CBO9781107298019.

[71] Motahare Shekari and Milad Rostamian. �Brain tumor segmentation from
MRI using FCM clustering, morphological reconstruction, and active con-
tour�. In: Multimedia Tools and Applications (Oct. 2023). issn: 1573-7721.
doi: 10.1007/s11042-023-17233-5. url: https://doi.org/10.1007/
s11042-023-17233-5.

139

https://doi.org/https://doi.org/10.1016/j.comnet.2004.08.012
https://doi.org/https://doi.org/10.1016/j.comnet.2004.08.012
https://www.sciencedirect.com/science/article/pii/S1389128604002427
https://www.sciencedirect.com/science/article/pii/S1389128604002427
https://doi.org/10.1016/j.comnet.2004.08.012
https://doi.org/10.1016/j.comnet.2004.08.012
https://doi.org/https://doi.org/10.1137/070698257
https://doi.org/10.1007/s11042-021-10594-9
https://doi.org/10.1007/s11042-021-10594-9
https://doi.org/10.1007/s11042-021-10594-9
https://doi.org/10.1038/s41598-023-38706-5
https://doi.org/10.1038/s41598-023-38706-5
http://www.psmsl.org/data/obtaining/
https://doi.org/https://doi.org/10.1002/prot.340090107
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.340090107
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.340090107
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1007/s11042-023-17233-5
https://doi.org/10.1007/s11042-023-17233-5
https://doi.org/10.1007/s11042-023-17233-5

[72] Bhuvaneshwari Shetty et al. �Skin lesion classi�cation of dermoscopic images
using machine learning and convolutional neural network�. In: Scienti�c Re-
ports 12.1 (Oct. 2022), p. 18134. issn: 2045-2322. doi: 10.1038/s41598-
022-22644-9. url: https://doi.org/10.1038/s41598-022-22644-9.

[73] Luis R. Soenksen et al. �Using deep learning for dermatologist-level de-
tection of suspicious pigmented skin lesions from wide-�eld images�. In:
Science Translational Medicine 13.581 (2021), eabb3652. doi: 10.1126/
scitranslmed.abb3652. url: https://www.science.org/doi/abs/10.
1126/scitranslmed.abb3652.

[74] Martin Steinegger and Johannes Söding. �Clustering huge protein sequence
sets in linear time�. In: Nature Communications 9.1 (June 2018), p. 2542.
issn: 2041-1723. doi: 10.1038/s41467-018-04964-5. url: https://doi.
org/10.1038/s41467-018-04964-5.

[75] Jitendra V. Tembhurne et al. �Skin cancer detection using ensemble of ma-
chine learning and deep learning techniques�. In: Multimedia Tools and Ap-
plications 82.18 (July 2023), pp. 27501�27524. issn: 1573-7721. doi: 10.
1007/s11042-023-14697-3. url: https://doi.org/10.1007/s11042-
023-14697-3.

[76] Vincent Cohen-Addad Viallat et al. �Breaching the 2 LMP Approximation
Barrier for Facility Location with Applications to k-Median�. In: Proceedings
of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 940�986. doi: 10.1137/1.9781611977554.ch37. url: https://epubs.
siam.org/doi/abs/10.1137/1.9781611977554.ch37.

[77] Dingkang Wang and Yusu Wang. �An Improved Cost Function for Hierar-
chical Cluster Trees�. In: J. Comput. Geom. 11 (2018), pp. 283�331. url:
https://api.semanticscholar.org/CorpusID:54446891.

[78] Yuyan Wang and Benjamin Moseley. �An Objective for Hierarchical Clus-
tering in Euclidean Space and Its Connection to Bisecting K-means�. In:
AAAI Conference on Arti�cial Intelligence. 2020. url: https : / / api .

semanticscholar.org/CorpusID:213720113.

[79] Yinhao Wu et al. �Skin Cancer Classi�cation With Deep Learning: A Sys-
tematic Review�. In: Frontiers in Oncology 12 (2022). issn: 2234-943X. doi:
10.3389/fonc.2022.893972. url: https://www.frontiersin.org/
articles/10.3389/fonc.2022.893972.

[80] E. Alper Yildirim. �Two Algorithms for the Minimum Enclosing Ball Prob-
lem�. In: SIAM Journal on Optimization 19.3 (2008), pp. 1368�1391. url:
https://doi.org/10.1137/070690419.

140

https://doi.org/10.1038/s41598-022-22644-9
https://doi.org/10.1038/s41598-022-22644-9
https://doi.org/10.1038/s41598-022-22644-9
https://doi.org/10.1126/scitranslmed.abb3652
https://doi.org/10.1126/scitranslmed.abb3652
https://www.science.org/doi/abs/10.1126/scitranslmed.abb3652
https://www.science.org/doi/abs/10.1126/scitranslmed.abb3652
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1007/s11042-023-14697-3
https://doi.org/10.1007/s11042-023-14697-3
https://doi.org/10.1007/s11042-023-14697-3
https://doi.org/10.1007/s11042-023-14697-3
https://doi.org/10.1137/1.9781611977554.ch37
https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch37
https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch37
https://api.semanticscholar.org/CorpusID:54446891
https://api.semanticscholar.org/CorpusID:213720113
https://api.semanticscholar.org/CorpusID:213720113
https://doi.org/10.3389/fonc.2022.893972
https://www.frontiersin.org/articles/10.3389/fonc.2022.893972
https://www.frontiersin.org/articles/10.3389/fonc.2022.893972
https://doi.org/10.1137/070690419

	Introduction
	The Problem(s) of Cluster Analysis
	Partitional Clustering Problems
	The k-Diameter and k-Center Problems
	The k-Median and k-Means Problems
	The k-MSR and k-MSD Problems
	The k-Separation Problem
	Constraints

	Hierarchical Clustering Problems

	Lower and Upper Bounds for Complete-Linkage
	Introduction
	Approximation Guarantees for Single-Linkage
	Lower Bounds
	Matching Upper Bounds

	Lower Bounds for Complete-Linkage
	Dasgupta and Long's Lower Bound
	Ackermann et al.'s Lower Bound
	New and Improved Lower Bounds
	Addendum: Removing Tiebreaks

	Upper Bounds for Complete-Linkage
	Upper Bounds for CLrad
	An Upper Bound for CLdiam

	The Average Approximation Factor

	Separated k-Clustering
	The k-Separation Objective
	Combining k-Diameter and k-Separation
	Combining k-Center and k-Separation
	Combining k-Median/k-Means with k-Separation
	Combining k-MSR and k-Separation

	Euclidean k-MSR with Outliers
	Introduction
	Basic Affine Geometry
	Approximating the 1-Center problem
	Approximating the k-Center Problem
	Approximating the k-MSR Problem
	Guessing Good Lower Bounds
	The Algorithm
	Outliers

	Connected Clustering
	Introduction
	Hardness of the Assignment Problem
	An Assignment Algorithm for Trees

