
Frame-Semantic Parsing with Lexicalized

Tree Rewriting Grammars

Kumulative Inaugural-Dissertation

zur Erlangung des Doktorgrades der Philosophie (Dr. phil.)

durch die Philosophische Fakultät der

Heinrich-Heine-Universität Düsseldorf

vorgelegt von

TATIANA BLADIER

aus

Lutsk, Ukraine

Erstbetreuerin: Prof. Dr. Laura Kallmeyer

Zweitbetreuerin: Apl.-Prof. Dr. Wiebke Petersen

Drittbetreuerin: Dr. Katalin Balogh

Düsseldorf, April 2024



D61



Summary

This dissertation is a compilation of publications that seek to develop a large-

scale data-driven frame-semantic parsing algorithm based on grammar theories with

the property of extended domain of locality (EDL), particularly tree rewriting for-

malisms of Tree-Adjoining Grammar (TAG; Joshi, 1987) and Tree Wrapping Gram-

mar (TWG; Kallmeyer et al., 2013; Kallmeyer and Osswald, 2018). The building

blocks of these formalisms (i.e., elementary trees) are linguistically motivated and

reĆect the argument structures of predicates in sentences. We pursue this aim with a

particular focus on the syntax-semantics interface, thus working on developing both

a syntactic parsing methodology and combining it with frame semantics. This is,

to our best knowledge, the Ąrst attempt to implement a large-scale deep semantic

parser based on such formalisms, although some prototypical small-scale semantic

parsers for different Ćavors of tree rewriting Grammars already exist. We show that

tree rewriting grammars are a useful additional source for neural semantic parsing

and can improve the general performance of parsing systems, contributing to the

performance of the parsing model on difficult linguistic tasks.

The second chapter of the dissertation describes our method for automatically ex-

tracting tree-rewriting grammars from constituency treebanks. These grammars

can be utilized for both syntactic and semantic parsing. Since these grammars are

extracted from large treebanks, they facilitate generalization over elementary trees

and the development of parsers relying on probabilities. Our algorithm is developed

based on existing extraction procedures for TAG (Xia et al., 2000), with additional

special extraction operations tailored for TWG.

The third chapter of the dissertation outlines our method for syntactic parsing us-

ing the extracted tree-rewriting grammars. Our parsing algorithm is based on su-

pertagging followed by a parsing step. We experiment with various deep learning

architectures for the supertagger and adapt an existing probabilistic TAG parser for

integration into the pipeline using predicted supertags. This adaptation reduces the

search space of the parser, thereby speeding up parsing. Additionally, we modify

this parser to handle the tree combination operations unique to TWG.
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The fourth chapter of the dissertation describes our effort to create treebanks based

on the typologically inspired grammar theory of Role and Reference Grammar

(RRG; Van Valin and LaPolla, 1997; Van Valin, 2005), which is a major framework

used in typological language modeling. RRG places semantics and its interfaces

with morphosyntax, information structure, and discourse at the center of the the-

ory. We utilize these treebanks to extract large-scale grammars for our syntactic

and semantic parsers. While it is theoretically possible to extract a TWG from ev-

ery constituency treebank and tailor it according to project needs, similar to what

is possible with TAG, TWG development has thus far been tightly linked to RRG

theory. Therefore, all previous work on TWG has been based on RRG and utilizes

its grammatical categories.

Finally, the Ąfth chapter describes our approach to large-scale frame-semantic pars-

ing with Tree Rewriting Grammars, using linguistic features extracted from the

tree-rewriting grammars. We adopt a compositional approach to map syntax and

semantics, similar to that outlined in Kallmeyer and Osswald (2013), and utilize

deep learning tools to predict components for our parser.

Keywords: Semantic parsing, supertagging, syntactic parsing, deep learning, Frame

Semantics, Tree rewriting grammars, Tree Adjoning Grammar, Tree Wrapping Gram-

mar.
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Chapter 1

Introduction and motivation

About this thesis

In this thesis, our aim was to broaden the scope of the rich typologically oriented

linguistic framework of Role and Reference Grammar (RRG; Van Valin and LaPolla

(1997); Van Valin (2005)) by implementing computational methodologies for syn-

tactic and semantic parsing. RRG is a semantic-oriented theory of natural language

grammar widely used in comparative linguistics and linguistic typology. RRG pro-

vides an inventory to describe syntax-semantics interface different from constructs

in other linguistic theories (such as X-bar syntax or grammatical relations), since

it assumes that the conceptualization of phrase structure in these theories is not

suitable for a large number of languages across the globe (Van Valin, 2023). RRG is

commonly used to describe and study non-European languages, particularly those

with limited resources for natural language processing1. Due to its ability to handle

syntax and semantics together across languages from different language families,

RRG shows potential as a valuable framework for addressing research problems

in natural language processing. Additionally, we were interested in exploring the

possibilities of enhancing machine learning techniques for semantics by integrating

additional linguistic structure. More speciĄcally, the aim of our dissertation project

was to develop a large-scale semantic parsing methodology based on Tree Rewrit-

ing Formalisms such as Tree Adjoining Grammar (TAG; Joshi and Schabes, 1997)

and Tree Wrapping Grammar (TWG; Kallmeyer et al., 2013; Kallmeyer, 2016). We

aimed to develop a parsing approach that could potentially be extended to a wide

variety of languages, especially those with limited resources.

Despite recent advances in syntax-agnostic language modeling based on machine

learning, we pursued a syntax-mediated approach to semantic parsing based on

1See a list of RRG-based studies on the official RRG homepage https://rrg.caset.buffalo.edu.

1

https://rrg.caset.buffalo.edu 
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principles of compositional semantics because of several important advantages for

typologically oriented studies in NLP. For one, syntax-aware approaches to parsing

provide more transparency and insights into the decisions of statistical language

models. Additionally, syntax-aware semantic models have proven to achieve state-

of-the-art performance or sufficiently well performance (Xia et al., 2019; Kasai et al.,

2019; Lindemann et al., 2019; Poelman et al., 2022). Another important advantage of

grammar-based methods is that they are less data-hungry and are therefore better

adaptable to low-resource languages. This factor becomes particularly important

when dealing with a typologically oriented language theory like the one we are

investigating in our work, Role and Reference Grammar. Lastly, syntax-mediated

approaches to semantic parsing can contribute to grammar and semantic theory

studies and linguistic investigations in different languages, as the generalizations

based on the implemented probabilistic language models can enable comparative

studies of syntax-semantics interface in cross-lingual studies, as well as investigations

of language-speciĄc phenomena.

Research Questions On the theoretical side, this dissertation is concerned with the

syntax-semantics interface in Role and Reference Grammar and semantic composi-

tion, which is triggered by tree rewriting process. The primary focus of our research

centers around the role of Tree Rewriting Formalisms in implementation of an RRG-

based semantic parsing methodology. We aim at investigating several tendencies in

the use of syntactic information in recent neural semantic parsing architectures.

We hypothesize that despite of the success of syntax-free machine-learning-based

methods in semantic parsing, syntactic information is not only useful for overall

performance but also crucial for modeling several linguistic phenomena, such as

non-local dependencies, control, or raising constructions. On the practical side,

this work is concerned with developing a large-scale data-driven semantic parser for

multiple languages based on Tree Rewriting Formalisms.

We formulate the main research questions of the dissertation as follows:

(i) Can we propose an algorithm for inducing Tree Rewriting Grammars from an

RRG-annotated treebank? Can this grammar extraction algorithm be applied

across multiple languages?

(ii) Is it feasible to develop a syntactic parser for RRG based on its formalization

as a Tree Wrapping Grammar?

(iii) What strategies are effective in building a large linguistic resource for RRG to

support NLP development?

(iv) How can Tree Rewriting Formalisms be used for data-driven RRG-based se-

mantic parsing? Can state-of-the-art semantic parsing results be achieved by
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combining Extended Domain of Locality (EDL)-based syntax and semantic

frames?

Thesis structure This cumulative thesis comprises eight self-contained research ar-

ticles, which are divided into four chapters. We describe our method to extract

Tree Rewriting Grammars from constituency treebanks in Chapter 2 ŞAutomatic

Extraction of Tree Rewriting GrammarsŤ. We adapted the algorithm for automatic

grammar extraction developed by Xia (1999) for Tree Adjoining Grammars and

modiĄed it for the extraction of Tree-Wrapping Grammars. We present our method

for syntactic parsing and supertagging with the extracted grammars in Chapter 3

ŞSupertagging and Parsing with Tree Rewriting GrammarsŤ. We followed the pars-

ing algorithm for TAGs proposed by Bangalore and Joshi (1999), which includes

two steps: supertagging and the subsequent step of actual parsing. We experi-

mented with different neural architectures for supertagging and adapted the A*-

based parser ParTAGe developed by Waszczuk (2017) for the actual parsing step.

In Chapter 4 ŞBuilding the Role and Reference Grammar TreebanksŤ, we outline

our efforts to develop RRG-based constituency treebanks, which we used for gram-

mar extraction and for implementing a syntactic and semantic parser. In Chapter 5

ŞSyntax-enhanced Semantic ParsingŤ, we describe semantic parsing experiments

with a multitask neural architecture and evaluate and discuss the results. In the fol-

lowing Chapter 6 ŞDiscussion and ConclusionŤ, we discuss the results of our research

and summarize our Ąndings in different research areas, and also give an outline for

future research.

Theoretical Background

Tree Rewriting Grammars Tree Rewriting Grammars2 (TRGs) are tree-generating

systems used to describe the syntax of languages. A TRG consists of a Ąnite set

of syntactic tree templates (called elementary trees) that can be combined using a

2Although the mechanism of generating trees and replacing subtrees with another subtree struc-

tures was Ąrst formulated in detail in Brainerd (1967), the theory of Tree Rewriting Grammars

suitable for natural language description emerged several years later in the early 1970s in the

works of Aravind Joshi and his colleagues from the University of Pennsylvania. The formative

works ŞTree Adjunct GrammarsŤ (Joshi et al., 1975) and ŞTree Adjoining Grammars: How Much

Context-Sensitivity Is Required to Provide Reasonable Structural Descriptions?Ť (Joshi, 1985)

provided the foundation for the development and formalization of TAG. The most comprehen-

sive overview of TAG, its formal properties, linguistic applications, and its computational aspects

were given in work ŞTree-adjoining grammarsŤ (Joshi and Schabes, 1997) and in the book ŞTree

Adjoining Grammars: Formalisms, Linguistic Analyses and ProcessingŤ (Abeillé and Rambow,

2000).
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limited number of different tree combination operations3, such as substitution, ad-

junction, sister-adjunction, and wrapping substitution. In this thesis, we explore

the Tree Adjoining Grammar (TAG) and the Tree Wrapping Grammar (TWG) for-

malisms. Following the linguistic principles for modeling languages with lexicalized

TRGs (Abeillé, 2002; Frank, 2002), elementary trees in these formalisms are associ-

ated with a lexical item and represent the span over which the lexical item speciĄes

its syntactic or semantic constraints (Kipper et al., 2000). Elementary trees in the

TRGs thus capture the span of the governor and its syntactically necessary argu-

ments, making the argument structure of the predicates explicit. ModiĄers (such as

adverbial or adjective phrases) are captured in auxiliary trees, which are added to

the inner nodes of other trees via the adjunction operation. An example of the TAG

derivation process for the sentence Mary absolutely likes pizza within the classical

version of TAG is illustrated in Figure 1.1. The initial trees for Mary and pizza

are substituted at the NP nodes of the likes tree, and absolutely is adjoined to its

VP node (on the left in Figure 1.1). The derived tree (in the middle) shows the

result of the combination operations, and the derivation tree on the right shows

which operation took place on which nodes in the likes tree. The derivation tree

(on the right in Figure 1.1) with Gorn addresses (i.e. numerical identiĄers of nodes

in tree structures proposed by Gorn (1965)) indicates the nodes involved in the tree

combination operations.

NP

Mary

S

NP↓ VP

V

likes

NP↓

VP

AdvP

absolutely

VP*

NP

pizza

⇒

S

NP

Mary

VP

AdvP

absolutely

VP

V

likes

NP

pizza

likes

Mary absolutely pizza

1 2 22

Figure 1.1: TAG elementary trees and a derived tree in LTAG for Mary absolutely

likes pizza. Mary, likes, and pizza are initial trees, while absolutely is an auxiliary

tree. The derivation tree on the right includes Gorn addresses, which indicate the

target nodes of the tree combinations, while the solid and dotted lines show whether

a substitution or adjunction took place.

3Hence the name tree rewriting, as opposed to string rewriting formalisms, such as Context-

Free Grammar, or graph rewriting formalisms, such as Interaction Nets (Lafont, 1989). Other

TRG formalisms include Tree Substitution Grammar (TSG; Rambow et al., 2001), Tree Insertion

Grammar (TIG; Schabes and Waters, 1995), and different variants of TAG such as Link-Sharing

TAG (LSTAG; Sarkar, 1998), Multicomponent TAG (MCTAG; Kallmeyer, 2005), LTAG-Spinal

Liu and Sarkar (2009), Off Spine TAG (osTAG; Swanson et al., 2013), and so on.
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Tree Wrapping Grammar (TWG; Kallmeyer et al., 2013; Kallmeyer and Osswald,

2018) is a Tree Rewriting Formalism which is based on TAG principles. TWG

was developed as part of formalization of Role and Reference Grammar (RRG; Van

Valin and LaPolla, 1997; Van Valin, 2005), a language theory which we discuss in

greater detail in the next subsection. Similarly to TAG, TWG grammars consist of

elementary trees, which can be combined into larger trees. The tree combination

operations in TWG are substitution, sister-adjunction, and wrapping substitution

(Kallmeyer et al., 2013). The operation of substitution is deĄned exactly as the same

operation in TAG: the substitution node of a tree X is replaced by the elementary

tree which has root node of the same category X. The operation of adjunction is

different from the traditional adjunction in TAG. Instead, modiĄer trees are added

via sister-adjunction in TWG. Since a modiĄer can appear on the right or on the left

side relative to the position of the constituent head, one distinguishes between right-

and left-sister-adjunction. Auxiliary trees in TWG do not have a foot node, but are

marked with an asterisk on the root label (as shown in Figure 1.2), which indicates

the node label X in the initial tree to which the auxiliary tree is adjoined. A left-

sister-adjoining tree γ can only be adjoined to a node η in the tree τ if the root label

of γ is the same as the label of η and the anchor of the elementary tree τ comes in the

sentence before the anchor of γ. The children of γ are inserted on the right side of

the children in η and become the children of η, as illustrated in Figure 1.2. A right-

sister-adjunction is deĄned in a similar way. Figure 1.2 illustrates the operations of

substitution and sister-adjunction in TWG.

NP

Mary

S

NP↓ VP

V

likes

NP↓

VP*

AdvP

absolutely

NP

pizza

⇒

S

NP

Mary

VP

AdvP

absolutely

V

likes

NP

pizza

Figure 1.2: Substitution and sister-adjunction in TWG. Compared to the traditional

adjunction operation in TAG (see previous Figure 1.1), a sister-adjunction does not

introduce additional nodes in the derived tree.

During wrapping substitution in TWG, the initial tree y is split at the d-edge (dom-

inance link, notated as a dashed edge) and Ąlls a substitution node with the lower

part while the upper part is added to the root of the target tree x (see Figure 1.3).

The dominance-edge or d-edge denotes the dominance relation of nodes in a Ąnal

derived tree (Kallmeyer and Osswald, 2018) (see for example the d-edge elementary
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tree for What you remember in which the dominance edge is represented with a

dashed line). In TWGs designed for natural language modeling, wrapping substi-

tution is used for linguistic phenomena in which an argument is displaced from its

canonical position and which cannot be handled by simple substitution or sister-

adjunction Kallmeyer et al. (2013); Kallmeyer and Osswald (2018). The subtree

for say is inserted into the substitution node CORE. The upper part of the tree is

placed above the root of initial tree for are you prepared. The example illustrates

how non-local dependencies, here a wh-extraction, across a control construction,

can be generated by wrapping substitution from local dependencies in elementary

trees.

CLAUSE

CORE

NUC

V

remember

NP

you

PrCS

NPwh

What

CLAUSE

CORE

CORENUC

V

think

NP

you

OP-TNS

do

(a)

CLAUSE

CORE

CORE

NUC

V

remember

NP

you

NUC

V

think

NP

you

OP-TNS

do

PrCS

NPwh

What

(b)

Figure 1.3: Modeling a long distance dependency (wh-movement) in sentence What

do you think you remember? with wrapping substitution in TWG. Note that wrap-

ping substitution does not introduce extra nodes into the initial tree, as does tra-

ditional TAG adjunction in Figure 1.4. Wrapping substitution also simultaneously

adds both parts of the non-local dependency to the initial tree.

As with other formal grammars, Tree Rewriting Grammars can Ąnd applications in

different areas of applied mathematics4, but they have been mostly used for lan-

guage modeling in linguistics. The principles to model natural languages with Tree

Rewriting Grammars were formulated by Abeillé (2002) and Frank (2002). The

Ąrst principle postulates that each elementary tree in a TRG must have at least one

4Tree Rewriting Formalisms such as TAG were initially developed as a formalism for modeling

natural languages, but their applicability has extended to other areas, such as general formal

language theory (Rogers, 1999), computational biology (Uemura et al., 1999), and even music

composition (Mor et al., 2021).
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non-empty lexical item, which is called a lexical anchor (elementary trees for multi-

word expressions can have more than one lexical anchor). If all elementary trees in

a TRG satisfy this condition, the TRG is called a lexicalized TRG, or LTRG. This

principle reduces parsing time on the computational side by allowing to perform su-

pertagging as a separate step, which reduced the search space considerably. Another

important principle for a natural language LTRG is called elementary tree minimal-

ity (Frank, 1992). It requires that every elementary tree which has a predicate as

a lexical anchor must contain slots (i.e., substitution nodes or foot nodes) for all

core arguments of this predicate and for nothing else. Non-arguments are realized

in auxiliary trees that have one distinguished leaf called a foot node which contains a

non-terminal and is usually marked with an asterisk. The adjunction operation can

also be used to model non-local dependency constructions, such as wh-movement

in the sentence what do you think you remember?, in which the auxiliary tree for

do you think Şstretches outŤ the initial tree for what you remember, as shown in

Figure 1.4 (Kroch, 1989; Frank, 2002). Due to the property of extended domain of

locality (EDL)5, the elementary trees in TRGs can collectively represent the lexical

and morphosyntactic properties of lexical nodes, which could potentially be distant

from each other in the corresponding derived trees. For example, wh-movement can

be expressed locally in one elementary tree that will be anchored by a verb from

which an argument is extracted (see Figure 1.4). Figure 1.4 shows the analysis for

a long distance dependency in TAG and Figure 1.3 with TWG.

S

S

VP

V

remember

NP

you

NPwh

What

S

VP

S*V

think

NP

you

VBZ

do

(a)

S

S

VP

S

VP

V

remember

NP

you

V

think

NP

you

VBZ

do

NPwh

What

(b)

Figure 1.4: Modeling the wh-dependency from sentence what do you think you

remember with traditional adjunction operation in TAG.

Role and Reference Grammar The starting point of this dissertation is the typolog-

ically oriented linguistic theory of Role and Reference Grammar (RRG; Van Valin

and Foley, 1980; Van Valin, 2005). RRG started out with the question what a lin-

5In the context of grammar formalisms, the extended domain of locality refers to a property

that allows grammatical rules or constraints to operate beyond the scope of immediately adjacent

elements, as required for long-distance dependencies in syntax or non-local agreement patterns.
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SENTENCE

CLAUSE

CORE

NP

COREN

NUCN

N

Japanese

NUC

V

said

CORECLM

to

NUC

AUX

be

NP

COREN

AP

PERIPHERY

heavy

NUCN

N

buyerswere

V

NUC

CORE

CLAUSE

TNS

Figure 1.5: RRG-annotated sentence with a constituency projection and a distinct

operator projection.

guistic theory would appear if it were based on the description of languages showing

varied grammar systems, such as Lakhota, Tagalog, and Dyirbal (Van Valin, 2005).

The syntactic structures in RRG are rather Ćat in order to be applicable to many

types of different languages. According to RRG, grammatical relations are not uni-

versal, which is why RRG does not use standard formats for representing sentence

structure (like X-bar schema), because they might project certain grammatical con-

cepts on languages for which they do not apply (Van Valin, 1993). Instead, RRG

assumes sentence structure to be organized in layers motivated by semantic and

pragmatic factors. This layered structure6 comprises nucleus (containing the predi-

cate), core (containing the nucleus and the arguments of the predicate) and clause

(the core and extracted arguments). Each layer can have modiĄers (RRG calls

them periphery elements) and operators, that attach to the layer over which they

take semantic scope, as exempliĄed in Figure 1.5. The set of operators comprises

grammatical categories such as tense, aspect or modality. In the representation of

the clause structure in RRG, the operators are separated from predicates and ar-

6Please refer to Van Valin and LaPolla (1997), Van Valin (2005) and Van Valin (2023) for a

more detailed description of layered structure of the clause in RRG.



Introduction and motivation 9

guments and are given in a distinct operator projection (see the lower part of the

Figure 1.5). RRG also deĄnes a set of clause linkage markers (CLM), which are

used for combination of predicator-based units of complex sentences.

RRG assumes an inventory of syntactic templates, which are underspeciĄed tem-

plates to build up sentences and which are used to describe the syntactic inventory

of every language. For instance, a basic intransitive predicate in English has two

placeholders: the nucleus and the singular core argument. Furthermore, due to the

Subject-Verb-Object (SVO) structure of English, the single core argument typically

precedes the nucleus. Similarly, a basic transitive predicate in English has place-

holders for nucleus and two core arguments. Figure 1.6 illustrates two possible core

templates for English active declarative sentences. The theory of RRG has been in-

troduced in Van Valin and Foley (1980) and Van Valin and LaPolla (1997), and the

most extensive description so far has been provided in (Van Valin, 2005; Van Valin,

2023).

CORE

RP NUC

PRED

V

CORE

RP NUC

PRED

V

RP

Figure 1.6: Two core templates for English in RRG for an intransitive and a tran-

sitive verb without prepositional phrases (Van Valin, 2023).

Formalization of RRG Several approaches for formalization were proposed for RRG:

the founders of the theory themselves, Van Valin and LaPolla (1997), suggest two

potential strategies for a formalization of the RRG theory. Since RRG structures are

basically labeled trees (or can be converted to such), the approaches to formaliza-

tion of RRG are based on methods developed for formalization of constituency trees.

The Ąrst approach proposed by Johnson (1987) represents the constituent and the

operator projections as two separate context-free grammars which are connected

together in a projection grammar. The formalization rules for these projections

are based on the immediate dominance and linear precedence rules in the RRG

structures. This surface-oriented approach is however challenging for a practical

implementation, since it does not enforce matching clausal skeletons in both pro-

jections. Additionally, assuming the operator projection as a separate tree presents

further complexities for cases in which the operators can contribute to multiple

layers (Kallmeyer and Osswald, 2023).

The second approach to formalization proposed by Van Valin and LaPolla (1997)
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involves decomposition of RRG structures into TAG-like tree templates which can

be combined together with tree combination operations. This approach allows for

richer encoding of information, facilitating the extraction of sentence semantics, since

each template represents a predicate with obligatory syntactic arguments, similar

to the elementary trees in TRGs. However, implementing the originally proposed

templates in RRG poses challenges in practice, particularly due to the complexity of

parsing with templates, where lines can cross and parse trees include detached nodes

with modiĄers. The works by Kallmeyer et al. (2013); Kallmeyer (2016); Kallmeyer

and Osswald (2023) propose a strategy to overcome these challenges by introducing

a specialized notation for RRG trees. In this notation original RRG trees are trans-

formed into interconnected trees with crossing branches, and the periphery elements

and the operator projection are integrated into the tree. They introduce a TWG for-

malism, closely related to TAG but accommodating non-local dependencies within

trees in a linguistically plausible way. The proposed formalization introduces the

concept of the extended domain of locality, characteristic of TAG, which proves to be

particularly useful for addressing long-distance dependencies resulting from clausal

complements in RRG. Moreover, another notion of TRGs, the Şfactoring recursion

from the domain of localityŤ can be employed to handle instances of multiple co-

ordination in RRG structures. Additionally, since TWG is closely related to TAG,

TWG aims to pave the way for using this theory in computational linguistics and

for developing NLP applications by adapting the methodologies developed for TAG.

Due to the outlined advantages of the formalization approach of Kallmeyer et al.

(2013); Kallmeyer (2016); Kallmeyer and Osswald (2023), we decided to investigate

it further in the present dissertation.

Nolan (2004) proposes an alternative approach to formalize RRG by exploiting

feature-based representations, similar in style to Head-Driven Phrase Structure

Grammar (HPSG; Pollard and Sag, 1994). This formalization could potentially be

used in various computational applications developed for Lexical Functional Gram-

mar (LFG; Kaplan and Bresnan, 1982). In HPSG, constituent structures are mod-

eled by feature structures, and Nolan (2004) suggests the same for RRG. The dis-

advantage of this approach is that it requires introducing features and attributes,

which can access the subconstituents. This requires a reconstruction of tree struc-

tures in RRG by adding feature structures based on formal features (such as first

and rest), or by introducing functional notions like subject, direct-object etc.

Since such conĄgurational syntactic notions do not belong to the basic inventory

of the RRG theory, they should rather be avoided in the underlying formalization

(Kallmeyer and Osswald, 2023).

Frame Semantics We chose Frame Semantics (Fillmore et al., 1976; Barsalou, 1992)

as the theory for semantic sentence representations in our implemented parsing sys-



Introduction and motivation 11

tem. Frame Semantics is a formal linguistic theory of meaning focused on represen-

tation of the semantic and conceptual knowledge about a situation. The underlying

meaning representations in this theory, semantic frames, are contextually sensitive

cognitive structures that represent knowledge across diverse concepts, situations, or

experiences. They are not Ąxed templates but rather adaptable structures that ad-

just to changing contexts and individual experiences. Each frame consists of various

coherent elements such as roles, participants, attributes, and relationships, which

collectively deĄne characteristic features and functions of the underlying concept.

Frame Semantics emphasizes the importance of context in determining meaning in-

stead of focusing on lexems and their meanings in isolation. Linguistic frames are

referenced by predicates which describe similar situations (one speaks about frame

occurrences). The words in sentences ŞevokeŤ concepts as well as the perspective

from which the situation is viewed. For instance, the word ŞsellŤ depicts a property

transfer from the sellerŠs viewpoint, while ŞbuyŤ describes the same situation from

the buyerŠs perspective. These ideas were implemented within the FrameNet project

Fillmore et al. (2003), a large-scale resource available in several languages. FrameNet

aims to describe various situations using basic role frames that capture the type of

situation and the roles of its participants. For example, the situation of buying

or selling goods is captured withing the frame Commerce goods-transfer in

FrameNet, and involves such frame elements as Seller, Buyer, and Goods (those are

called core frame elements, since they are essential to the meaning of the frame), but

also might involve such non-core frame elements as Place or Purpose. FrameNet,

however, does not address compositional semantics, as the frames are not meant

to be combined compositionally. To expand the applicability of frames in general

and computational linguistics, several recent studies, among which are those by Pe-

tersen (2007); Kallmeyer and Osswald (2012, 2013); Löbner (2014), outlined further

formalizations of the frame theory.

Kallmeyer and Osswald (2013) propose a formalization of semantic frames as base-

labelled feature structures with types and relations. Frames, in their account, are

Ąnite relational structures in which attributes correspond to functional relations,

meaning that each attribute assigns a unique value to its carrier. A frame can be

represented with an attribute-value matrix, as shown in Figure 1.7b. The frames

can have a type (e.g., causation in Figure 1.7b). They can also be untyped (or have

a very general type which can be conjoined with any other frame type), while more

than one type is also possible, i.e., types can be combined via conjunction if such

combination does not violate an explicitly formulated incompatibility constraint.

Feature structures in the account of Kallmeyer and Osswald (2013) also contain

base labels, i.e. identiĄers which give access to the frame nodes (represented as

boxed numbers like 1 in Figure 1.7b). The features (e.g., cause) are depicted as
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0causation

activity
1

ingr-of-state smashed-state

2

CAUSE
EFFECTOR

RESULTEFFECT PATIENT

(c)

Figure 1.7: Traditional decompositional notation of the causative reading of the

verb ŚsmashŠ in RRG in (a) and a corresponding decompositional frame structure

as an attribute-value matrix (b) from Kallmeyer and Osswald (2018). The element

doŠ in the traditional RRG representation indicates that the effector argument is

interpreted as an agent which causes the patient y to undergo an ingressive change

of state. The frame in (b) contains all information from the RRG representation,

while the agentive role of the effector is encoded in the frame type activity. The

frame in (b) can also be represented as a graph (c).

a list with their values on the right in this notation. Feature structures can also

be represented as a labeled and tagged directed graph, as shown in the example in

Figure 1.7c. The nodes in such a graph refer to entities (e.g., individuals, events), the

base labels are placed inside the nodes, and types are represented in italics. Edges

correspond to (functional or nonfunctional) relations between the entities and are

tagged by features in small caps.

Kallmeyer and Osswald (2013) extend the standard deĄnition of feature structures

for the formalization of the frames in two regards. First, in addition to features,

feature structures in their account can express proper relations between nodes. Sec-

ond, they introduce a constraint that any frame must have a functional backbone.

This means that every node has to be accessible via attributes from at least one of

the base nodes, i.e., nodes that carry base labels. Feature structures in their account

may have multiple base nodes. In this case, some nodes that are accessible from

different base nodes are connected by a relation. Base labels in frames serve as
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unique identiĄers, meaning that a given base label cannot be assigned to more than

one node. Due to the functional backbone requirement, every node of the frame

can be accessed from a base label plus a Ąnite sequence of attributes (which can be

empty).

Kallmeyer and Osswald (2013) allow the presence of multiple labeled nodes in

frames, as long as each node is accessible from at least one labeled node. As a

consequence, it is not necessary to identify speciĄc root nodes during frame uni-

Ącation, but the uniĄcation process relies on matching nodes with the same label

instead. The components within frames, namely event predicates and semantic roles,

can be interconnected through explicitly formulated hierarchical and distributional

characteristics. This connectivity is supposed to facilitate the computation of tex-

tual entailment and semantic similarity and to potentially enable reasoning using

frames (Long et al., 2022).

Frame Semantics and RRG Semantics in RRG is traditionally represented as de-

compositional logical structures based on the formalization of VendlerŠs Aktionsarten

(Vendler, 1967) in Dowty et al. (1981). Figure 1.7a illustrates the representation

of the causative reading of the verb ŠsmashŠ in the traditional RRG notation7. It

contains the element doŠ to indicate the activity predicate and also the elements

cause and ingr, which were added in Van Valin and LaPolla (1997) and Van Valin

(2005) to indicate a causative activity resulting in the ingressive change of state of

some underspeciĄed object y, namely that of being smashed.

Kallmeyer and Osswald (2018, 2023) adapt the frame-based approach described

above to represent semantics in RRG. They propose decompositional frames capa-

ble of capturing the same information about the event as logical structures in RRG

and can be converted to the traditional RRG notation, as discussed in (Osswald,

2021). The adaptation of frame semantics methodology to RRG by Kallmeyer and

Osswald (2018, 2023) allows keeping the key properties of the original decomposi-

tional system in RRG without preserving the speciĄc form of the logical structures.

An advantage of this approach is that semantic representations can be formalized in

terms of types and attribute-value constraints, and semantic composition is reduced

to frame uniĄcation under constraints. Such formalized frames show good compu-

tational properties because their composition relies on the uniĄcation of attribute-

value structures. Another advantage of this approach is that the theory of feature

structures presented in Kallmeyer and Osswald (2013, 2018, 2023) also comes with a

well-explored logic and a model-theoretic semantics, which makes their methodology

7This methodology of semantic representation in RRG was introduced in (Van Valin and Foley,

1980) and updated with additional elements in (Van Valin and LaPolla, 1997). The most recent

comprehensive version of representing semantics in RRG is described in Van Valin (2005) and

Van Valin (2023)



Introduction and motivation 14

well-suited for use in NLP applications.

Before our dissertation project, frames have already been used for semantic parsing

(Das et al., 2014; Ringgaard et al., 2017; Swayamdipta, 2017; Kalyanpur et al., 2020;

Minnema and Nissim, 2021). However, they have not been employed for a large-scale

data-driven approach to semantic parsing in combination with RRG and a syntactic

theory based on Tree Rewriting Formalisms with EDL property, which is the main

focus of this thesis.

1.1 Automatic Grammar Extraction from Treebanks

Adaptation of the established methods for parsing with TRGs to the formalized

RRG theory requires creation of suitable TWG grammars for different languages

and tasks. A wide-coverage Tree Rewriting Grammar (which does not rely on a

factorization of the elementary tree templates in a metagrammar) for a natural lan-

guage typically contains up to Ąve-six thousands of elementary tree templates (see

for example existing TAG grammars for English (XTAG Research Group, 2001),

French (Abeillé et al., 2002), Vietnamese (Nguyen et al., 2006) or Arabic (Habash

and Rambow, 2004)). There are two ways to create such linguistically accurate

and wide coverage grammars: (1) hand-crafted creation and (2) (semi-)automatic

extraction from a manually validated treebank. The hand-crafted grammars are

usually built from raw data and follow existing grammar handbooks to create a

linguistically plausible language representation. One of the most important man-

ually created grammars is the XTAG project - a large coverage LTAG for English

implemented in the 1990s by the XTAG Research Group at the University of Penn-

sylvania (XTAG Research Group, 2001). This grammar includes over a thousand

tree templates covering syntactic contexts for about 317,000 inĆected words. Ex-

amples of other hand-crafted TRGs include French LTAG (FTAG; Abeillé, 1991;

Abeillé et al., 2000), Chinese LTAG (Xia, 2001b), or Old French LTAG (Regnault,

2019), however, these grammars have much smaller coverage.

Although hand-crafted grammars have the advantage of being independent from

existing treebanks and thus easier to extend to cover new language phenomena,

they also have some drawbacks. The main disadvantage is that building a non-

automatically induced TRG for a natural language requires a lot of human effort.

Manually crafted grammars also cannot be used for parsing algorithms based on

statistics and probabilities, and it becomes difficult to maintain the grammar over

time, modify it, and extend it. To make certain changes in the grammar, all the

related trees have to be manually checked. This process is inefficient and cannot

guarantee consistency (Vijay-Shanker and Schabes, 1992). Additionally, the grow-

ing number of large-scale constituency treebanks for different languages (English,
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German, French, Old French, Spanish, Vietnamese, Korean, Arabic etc.) has moti-

vated the need for automatic induction of linguistically plausible TRGs from such

corpora. This has led to the development of several algorithms for the automatic ex-

traction of TRGs from corpora with syntactically annotated sentences (Xia, 2001a;

Chen et al., 2006), traditionally called the treebanks (for example, Penn Treebank

(Marcus et al., 1993) or French Treebank (Candito et al., 2010)).

Several algorithms and methods have been proposed for automatic extraction of

grammars from treebanks. The extraction algorithms can be divided into rule-

based, unsupervised and hybrid approaches. Rule-based approaches involve creation

of the hand-crafted heuristics to guide the induction process. Such approaches come

closest to a hand-crafted grammar creation and have been broadly used for induction

of different grammar types from the linguistic resources (Xia (1999); Chen et al.

(2006); Zettlemoyer and Collins (2007); Howell and Bender (2022)). Unsupervised

methods let the machine learning algorithms Ąnd patterns in syntactically annotated

data by applying smoothing techniques for unsupervised probabilistic parsing and

decide which information to include in the extracted grammar elements (Headden III

et al., 2009; Berg-Kirkpatrick and Klein, 2010; Jin et al., 2018). Hybrid approaches

combine syntactic constraints with unsupervised techniques to induce grammars

from treebanks while satisfying linguistic constraints or properties (see examples in

Boonkwan (2014); Muralidaran et al. (2021); Evang (2019a))

The extraction of TRGs has traditionally been achieved through a rule-based auto-

matic approach Xia et al. (2000); Chen et al. (2006); Liu and Sarkar (2009); Swanson

et al. (2013), although some unsupervised methods have also been discussed (Nesson

et al. (2006); Cohn et al. (2010)). Xia et al. (2000) and Chen et al. (2006) proposed

two different approaches for (semi-)automatic TAG extraction: a top-down and a

bottom-up approach.

The top-down TAG induction algorithm proposed by Xia et al. (2000) consists of

three steps: (1) adding intermediate nodes to the treebank tree so that at each

level, only one of the following relations holds between the head and its siblings:

head-argument relation, modiĄcation relation, and coordination relation in order to

extract elementary trees for traditional TAG adjunction, (2) top-down decomposi-

tion of the treebank tree into elementary trees and subsequent Ąltering out of the

invalid elementary trees, and (3) building derivation trees.

On the other hand, Chen et al. (2006) propose a tree-extraction algorithm that is

applied recursively and bottom-up. During the application of their method, multiple

elementary trees in various stages are generated until the initial tree is completely

decomposed into elementary trees and no further options to extract elementary trees

are left. Following the bottom-up algorithm, one starts at the leaf node of a tree
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and constructs the rest of the tree by extending the trunk of the partial tree by one

level, adding complements to the root of the resulting tree as substitution nodes.

All elementary trees are extracted in parallel. Since the elementary trees can be in a

completed or still incomplete stage of generation, they are called partial trees. The

full elementary tree is then constructed bottom-up, alternating between two steps:

growing the trunk of the partial tree by one level and adding substitution nodes

as daughters of the root of the partial tree. Similarly to the top-down extraction

procedure, this algorithm also relies on percolation tables, which help to distinguish

head nodes from complements and adjuncts for each level of the derived tree.

In this dissertation, we adapted the top-down approach proposed by Xia (1999) for

TAG grammar extraction and modiĄed this algorithm to extract TWG grammars

for several languages from the multilingual constituency treebank RRGparbank (see

paper (1) ŞAutomatic Extraction of Tree-Wrapping Grammars for Multiple Lan-

guagesŤ). We extended the top-down approach proposed by (Xia et al., 2000) to be

able to produce d-edge elementary trees required for the tree-wrapping operation

used in Tree Wrapping Grammars. We also modiĄed the extraction procedure for

auxiliary trees, since TWGs use sister-adjunction instead of the traditional adjunc-

tion operation in TAG.

While extracting TWG grammars from an RRG-annotated treebank, we wanted to

study whether our developed algorithm works effectively across various languages.

We were also interested in investigating the types of non-local dependencies in dif-

ferent languages and how we can recognize these dependencies within tree structures

and extract d-edge trees to use them with TWGs.

Publications

(1) Bladier, T., Kallmeyer, L., Osswald, R., & Waszczuk, J. (2020). Automatic

extraction of tree-wrapping grammars for multiple languages. In Proceedings

of the 19th International Workshop on Treebanks and Linguistic Theories (pp.

55-61).

1.2 Supertagging and Syntactic Parsing

Several methods, both symbolic and statistical, have been proposed for syntactic

parsing with Tree Rewriting Grammars (TRGs), including CYK (Vijay-Shanker and

Joshi, 1985), Earley (Schabes and Joshi, 1988), and A* (Waszczuk et al., 2016) algo-

rithms. However, TRGs like TAG and TWG, which are the focus of this dissertation,

often exhibit high time complexity, making them less suitable for analyzing real-

world data within reasonable time frames. To address this challenge and enhance

the applicability of TRGs in natural language processing tasks, a pipeline approach
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involving supertagging has been proposed by Joshi and Srinivas (1994); Bangalore

and Joshi (1999). Supertagging involves assigning supertags (i.e., enhanced syntactic

or semantic labels) to tokens or phrases in sentences. These supertags provide richer

information compared to traditional part-of-speech (POS) tags, capturing more nu-

anced syntactic or semantic properties. For example, the supertags for TRGs are

traditionally deĄned as unanchored elementary trees. Supertagging can be viewed

as Şalmost parsingŤ, as it signiĄcantly aids in syntactic disambiguation for the ac-

tual TRG parser. Similar pipeline parsing techniques have been employed in other

grammar formalisms such as Combinatory Categorial Grammar (Clark, 2002; Lewis

and Steedman, 2014; Xu et al., 2015; Vaswani et al., 2016; Yoshikawa et al., 2017) or

Head-driven Phrase Structure Grammar (Zhang et al., 2009). In lexicalized gram-

mars like Lexicalized Tree Adjoining Grammar (LTAG) and CCG, supertags are

assigned to tokens, which are then used by the parser to construct a parse tree.

Supertagging aims to predict a sequence of supertags for each sentence prior to the

actual parsing step, thereby constraining the space of possible structures for the

parser and facilitating faster parsing. Originally rooted in part-of-speech (POS)

tagging, supertagging is essentially a sequence labeling problem, for which various

algorithms have been proposed, including the Maximum Entropy model (Ratna-

parkhi, 1996; Xu et al., 2015), Conditional Random Fields (CRF; Lafferty et al.,

2001), Support Vector Machines (SVM; Cortes and Vapnik, 1995), the perceptron

algorithm as used by Collins and Duffy (2002), and neural network models like Bidi-

rectional Long Short-Term Memory (BiLSTM; Hochreiter and Schmidhuber, 1997;

Schuster and Paliwal, 1997) and Transformers (Vaswani et al., 2017).

In addition to the supertagging-based pipeline for TRG parsing, recent advance-

ments in neural techniques have also demonstrated their capability to learn TRG-

based supertags and the bilexical dependencies directly from data. An example in

Figure 1.8 illustrates the tasks learned by a neural TRG parser necessary to produce

a full parse, which includes combining predicted supertags into a derived syntactic

tree. Thus, a TRG parser must learn the sequence of supertags, the types of com-

bination operations between the supertags, and the bilexical dependencies between

the tokens in an utterance. Another example in Figure 1.9 provides concrete details

on the input required for a TRG parser developed in this dissertation, as well as

the parsing result in bracketed notation. Kasai et al. (2018) propose an end-to-end

supertagging approach for TAG employing deep learning. Their method models the

entire supertagging process using a BiLSTM neural network, thereby eliminating

the need for traditional parsing algorithms and generating supertag sequences and

their bilexical dependencies directly from input sentences. However, it should be

noted that the work of Kasai et al. (2018) does not address the step of combining

predicted supertags to derived TAG trees, thus excluding the full parsing step.
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Alex asked the teacher to excuse him
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Figure 1.8: Jointly predicted bilexical dependency arcs and dependency labels (up-

per part of the Figure) and supertags (lower part) required for TRG parsing. Bilexi-

cal dependencies in TRG parsing do not represent linguistic categories, rather, they

identify the head-dependent relation between the supertags and the type of tree

combination operation required.

# Token Head Supertag

1 Alex 2 (NP ⋄)

2 asked 0 (SENT (VP (NP↓ ) (V ⋄) (NP↓ ) (PP↓ )))

3 the 4 (NP* (D ⋄))

4 teacher 2 (NP (N ⋄))

5 to 2 (PP (P ⋄) (VPinf↓ ))

6 excuse 5 (VPinf (VN (V ⋄) (NP↓ )))

7 him 6 (NP ⋄)

(SENT

(VP

(NP Alex)

(V asked)

(NP (D the) (N teacher))

(PP (P to)

(VPinf (VN

(V excuse)

(NP him))))))

Figure 1.9: Example of predictions made by our TRG parser (in the table on the

left) and the resulting derived trees in bracketed notation (on the right).

In this dissertation, we were interested in developing a parsing method for TWG/RRG,

especially with low-resource languages in mind, which could greatly beneĄt from

employing transparent syntax-aware parsing approaches. Thus, we decided to im-

plement a traditional supertag-based pipeline approach for parsing. In paper (3)

ŞFrom Partial Neural Graph-Based LTAG Parsing Towards Full ParsingŤ we com-

bined the probabilistic A*-based parser ParTAGe developed by (Waszczuk, 2017)

with a neural supertagger to perform syntactic parsing with the extracted TAG

grammars with less computational cost. In paper (4) ŞStatistical Parsing of Tree

Wrapping GrammarsŤ we adapted our LTAG for parsing with Tree-Wrapping Gram-

mar. For this, we extended it to handle the operation of tree wrapping in LTWG

formalism. Since the quality of the supertagger has been shown to be the bottle-

neck for the performance of the parser in such a pipeline parsing architecture, we
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experimented with different neural supertagging architectures and also investigated

if predicting bilexical dependencies, similarly to CCG parsing reported by Yoshikawa

et al. (2017), would improve the performance of the parser. In paper (2) ŞGerman

and French Neural Supertagging Experiments for LTAG ParsingŤ, we explored an

RNN-based neural architecture for supertagging. We also studied supertagging for

German and French to explore if the prediction of supertag sequences would face

any language-speciĄc challenges compared to previous work for English resources.

Furthermore, we investigated whether improving supertagging results would indeed

lead to a better performance in the subsequent parsing step. Given that one of the

strengths of TWG lies in modeling non-local dependencies (NLDs), we were also

interested in assessing how a TWG-based parser would perform in parsing NLDs

compared to other similar parsers.

Publications

(2) Bladier, T., van Cranenburgh, A., Samih, Y., & Kallmeyer, L. (2018). German

and French neural supertagging experiments for LTAG parsing. In Proceedings

of ACL 2018, Student Research Workshop (pp. 59-66).

(3) Bladier, T., Waszczuk, J., Kallmeyer, L., & Janke, J. H. (2019). From par-

tial neural graph-based LTAG parsing towards full parsing. Computational

Linguistics in the Netherlands Journal, 9, 3-26.

(4) Bladier, T., Waszczuk, J., & Kallmeyer, L. (2020). Statistical parsing of tree

wrapping grammars. In Proceedings of the 28th International Conference on

Computational Linguistics (pp. 6759-6766).

1.3 Treebanking for Role and Reference Grammar

Before we began our dissertation project, there were not sufficiently large anno-

tated linguistic resources for RRG, apart from the corpus created by Chiarcos and

Fäth (2019). Chiarcos and Fäth (2019) constructed an RRG corpus through rule-

based transformations of data in the Universal Dependencies subcorpus for English

(UD; Nivre et al., 2016) and corresponding semantic annotations in PropBank (PB;

Palmer et al., 2005). They then used a graph-based parsing algorithm to merge

these UD annotations with PropBank, improving the syntactic annotations. While

Chiarcos and Fäth (2019) evaluated the conversion algorithm against constituent

patterns found in RRG textbooks, they did not manually validate the resulting an-

notations. Consequently, although their algorithm could potentially convert a large

number of English sentences to RRG annotations, these annotations lack the nec-

essary manual linguistic validation to serve as gold standard data. The resulting

RRG corpus comprises only a few hundred manually validated English examples,
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and further expansion was not pursued. As a result, we needed to develop our

own resource containing both syntactic and semantic RRG-based annotations for

experimental purposes.

Similar to the approach described by Chiarcos and Fäth (2019) and following the

methodology of creating the CCGbank (Hockenmaier and Steedman, 2007) for Com-

binatory Categorial Grammar, we also initiated our annotation project by converting

annotations from the Penn Treebank and UD English corpus to RRG annotations.

We developed a semi-automatic approach, augmenting our conversion scripts with

additional rules after manually validating the results for further script adaptation.

Once we accumulated a sufficient number of annotations, we employed them to train

our statistical parser based on RRG/TWG to generate new annotations. We itera-

tively retrained the statistical parser multiple times as we obtained more manually

validated annotations. Throughout our project, we developed two resources: RRG-

bank ((5) ŞRRGbank: a Role and Reference Grammar Corpus of Syntactic Struc-

tures Extracted from the Penn TreebankŤ) and RRGparbank ((6) ŞRRGparbank: A

Parallel Role and Reference Grammar TreebankŤ). RRGbank comprises sentences

from the Penn Treebank (Marcus et al., 1993), which we semi-automatically con-

verted into RRG structures using a set of hand-written conversion rules. RRGbank

contains only English sentences, while RRGparbank is a parallel treebank consisting

of sentences annotated with RRG categories across multiple languages. RRGpar-

bank includes RRG-annotated sentences from George OrwellŠs novel Ş1984Ť and its

translations into German, French, and Russian. For semantic annotations, we parsed

the sentences using the InVeRo-XL multilingual semantic parser (Conia et al., 2021)

based on VerbAtlas (Di Fabio et al., 2019), followed by manual correction of the

suggested annotations.

A different route to creating treebanks was taken by the LinGO Redwoods (Oepen

et al., 2004) and ParGram (Flickinger et al., 2012; Sulger et al., 2013) approaches to

dynamic treebanking for HPSG and LFG, respectively. These projects made use of

manually developed grammars and parsers for the grammar formalisms in question,

and then manually checked and selected the best output among all possible outputs.

We could not follow the same strategy in our dissertation project due to the lack of

suitable grammars to train a parser.

While building RRGbank and RRGparbank, we had several purposes in mind.

Firstly, it should have been large enough to serve for training of NLP applications

based on machine learning. Secondly, we needed a resource which would comprise

different linguistic phenomena for corpus-based investigations, potentially disclosing

the phenomena not yet covered by the RRG theory and which would thus contribute

to the further formalization of RRG. Thirdly, our resource was supposed to facilitate
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supervised data-driven approaches to RRG parsing, including grammar induction,

probabilistic syntactic and semantic parsing. Lastly, we wanted to create a parallel

multilingual resource which would provide new insights into the RRG analyses of the

syntax of different languages and which would allow comparison between different

languages.

Publications

(5) Bladier, T., van Cranenburgh, A., Evang, K., Kallmeyer, L., Möllemann, R.,

& Osswald, R. (2018). RRGbank: a role and reference grammar corpus of

syntactic structures extracted from the penn treebank. In 17th International

Workshop on Treebanks and Linguistic Theories (TLT).

(6) Bladier, T., Evang, K., Generalova, V., Ghane, Z., Kallmeyer, L., Möllemann,

R., Moors, N., Osswald, R., & Petitjean, S. (2022). RRGparbank: A par-

allel role and reference grammar treebank. In Proceedings of the Thirteenth

Language Resources and Evaluation Conference (pp. 4833-4841).

1.4 Semantic Parsing with Tree Rewriting Grammars

Since the 1990s, two main approaches have been proposed for modeling semantics

with Tree Rewriting Grammars. The Ąrst approach, known as synchronous TAG

(Shieber and Schabes, 1990), aims to separate the syntactic and semantic contri-

butions of individual lexical items (such as predicates and corresponding argument

structures) into parallel syntactic and semantic elementary trees. These trees are

linked together through shared nodes, allowing for the simultaneous derivation of

both structures. This means that the application of syntactic rules in the derivation

process also affects the corresponding semantic structures, ensuring that they re-

main synchronized throughout (Gardent, 2008). Figure 1.10 provides an illustration

of a paired set of elementary trees for the transitive verb hate. The tree on the left

denotes the source language (English), while the tree on the right shows the target

representation, i.e., the corresponding logical form.

The second approach involves Feature Structures Based Tree Adjoining Grammar

(Vijay-Shanker and Joshi, 1988) and feature uniĄcation. Here, the goal is to map

elementary trees to segments of semantic representations, which can be combined

through semantic uniĄcation as tree combination operations are applied (Kallmeyer

and Osswald, 2014). We adopt this approach for semantics with TRGs because it

aligns more intuitively with the nature of tree compositionality in TRGs (Kallmeyer

and Romero, 2004). Additionally, similar approaches have been developed for other

grammar formalisms, such as Combinatory Categorial Grammar (CCG; Steedman,

2000), facilitating transfer and comparison between these formalisms. In this method,
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⟨
S

NP↓ VP

V

hates

NP↓

F

R

hates’

T↓ T↓ ⟩
Figure 1.10: Tree pair in synchronous TAG Shieber and Schabes (1990). Thick

lines map the linked nodes in source and target representations.

each semantic representation within a tree template is paired with a feature struc-

ture. Unifying interface feature structures in the linked frames triggers the uniĄca-

tion of feature values across frames as elementary trees are combined during parsing.

The concept of combining LTRG elementary trees mapped to individual frames into

a uniĄed frame representation is illustrated in Figure 1.11.

NP[I = 3 ]

N

⋄

Mary
NUC*[E = 5 ]

ADVP

⋄

absolutely

CLAUSE[E = 0 ]

CORE

NP[I = 2 ]NUC[E = 0 ]

V

⋄

likes

NP[I = 1 ]

NP[I = 4 ]

N

⋄

pizza

3

[︃

Mary

]︃

5

[︃

manner absolutely

]︃

0

⋃︁
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⋁︁
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experiencer 1

stimulus 2

⋂︁

∑︂

∑︂

∑︂

⋀︁

4

[︃

pizza

]︃

Figure 1.11: Frame-semantic derivation with TWG for Mary absolutely likes pizza.

During parsing, as syntactic trees are combined, the associated semantic repre-

sentations mapped to those elementary trees are also combined. The uniĄcation

of interface feature structures triggers the uniĄcation of feature values within the

frames. In our example in Figure 1.11, when the substitution of the subject NP

occurs (merging the elementary trees of likes and Mary), the respective values as-

sociated with the attribute I in the interface feature structures are uniĄed. This

leads to the uniĄcation of the feature structures 3 and 1 , resulting in the frame
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CLAUSE

CORE

NP

N

⋄
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NUC

V

⋄

likes

ADVP

⋄

absolutely
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⋄
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⋂︁

∑︂

∑︂

∑︂

∑︂

∑︂

∑︂

⋀︁

Figure 1.12: Result of the derivation in Figure 1.11 .

for Mary becoming the experiencer of the event likes. A similar process occurs

when the tree for pizza is substituted at the second NP node of the likes tree: 4

and 2 unify, allowing the frame for pizza to become the value of the stimulus

attribute in frame 0 . In this example, the event is modiĄed by a modiĄer role

manner, which is added to the like frame during the adjunction of the adverbial

phrase absolutely to the likes tree. Please note that the frame for absolutely does

not have a speciĄc type. This is because type speciĄcations are not required in the

formal framework developed by Kallmeyer and Osswald (2013), which we are using

in this dissertation. Additionally, since the conjunction of frame types is possible,

in the case of the modiĄer absolutely, one can implicitly consider the most general

frame type that encompasses everything, which is then conjoined to the type of the

main frame. The resulting frame before and after the Ąnal feature uniĄcations is

depicted in Figure 1.13.

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

like

experiencer 1 ≜ 3 Mary

stimulus 2 ≜ 4 pizza

manner 0 ≜ 5 absolutely

⋂︁

∑︂

∑︂

∑︂

∑︂

∑︂

∑︂

⋀︁

⇝

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁
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like

experiencer Mary

stimulus pizza

manner absolutely

⋂︁

∑︂

∑︂

∑︂

∑︂

∑︂

∑︂

⋀︁

Figure 1.13: Frame-semantic representation for Mary absolutely likes pizza, before

and after the feature uniĄcations.

The information contained within a frame aligns with the structure provided by the

corresponding elementary tree. This means that the speciĄc scope of an elementary

tree corresponds to the scope deĄned by the frame associated with the lexical an-
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chor of the tree. To match elementary trees with frames, we adopted a supervised

approach, meaning that grammar induction relies on data containing both syntactic

structure and frame annotations.

The Ąrst large-scale shallow semantic parser with LTAG was implemented by Chen

and Rambow (2003). They demonstrated how to predict semantic roles in Prop-

Bank by extracting various LTAGs from the PropBank and incorporating elementary

tree templates from the grammars as additional features for training a probabilistic

dependency-based parser. Liu and Sarkar (2007) proposed utilizing LTAG-based

features to enhance the standard features used for semantic role labeling in machine

learning approaches, thereby improving the performance of semantic role labeling

systems. Their approach involved transforming constituency trees into LTAG deriva-

tion trees through rule-based pruning and subsequent decomposition into LTAG el-

ementary trees. These derived trees were then used to extract LTAG-based features

for each constituent, which were employed to train a machine learning algorithm.

Liu (2009) introduced a novel variant of LTAG known as LTAG-spinal, in which

elementary trees extracted from the Penn Treebank were combined with PropBank

annotations, enabling the integration of syntax and semantic role information in

LTAG-spinal supertags. In LTAG-spinal, both initial and auxiliary trees only have

a spine and lack substitution nodes. This modiĄcation allowed Liu (2009) to main-

tain a manageable set of features suitable for efficient training of machine learning

algorithms, while also making the predicate-argument relationships in PropBank ex-

plicit. Another approach to do semantic parsing with LTAG was suggested by Kasai

et al. (2019) who extracted traditional LTAG elementary trees from the CoNLL 2009

dataset Hajic et al. (2009) and used elementary tree templates to train several neural

network models for semantic role labeling. A different methodology was proposed by

Arps and Petitjean (2018) who developed a small-scale purely symbolic deep seman-

tic parser using Tree Adjoining Grammar and a TAG-based metagrammar.

Other semantic parsing approaches, not reliant on LTRGs but similar to our imple-

mentation, include those based on CCG. Lewis and Steedman (2013) use a grammar-

based strategy that involves CCG-based supertags paired with entries from a dis-

tributionally induced lexicon of lambda logical expressions. The choice of correct

lexical entries for polysemous words in their system depends on the vector-based

predicate clustering. The semantics of the sentence is then constructed composi-

tionally via lambda calculus, guided by the syntactic derivation. A similar approach

was used previously by Curran et al. (2007) and Bos (2008, 2015) implemented a

CCG-based semantic parser Boxer. This parser produces Discourse Representation

Structures (DRSs), semantic representations used in the Discourse Representation

Theory (Kamp and Reyle, 1993).
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While our dissertation project involves grammar-based feature extraction combined

with a machine learning algorithm, our work differs from the approaches to semantic

parsing described above. Our methodology is outlined in paper (8) titled ŞData-

Driven Frame-Semantic Parsing with Tree Wrapping GrammarŤ. In our approach,

we focused on deep semantic representations, which entail structured and logically

interpretable meaning representations, as opposed to the shallow semantic parsing

tasks such as semantic role labeling or word sense disambiguation. Our objective was

to construct a semantic parsing system capable of generating complete, structured,

and logically interpretable meaning representations of sentences, facilitating logical

inference and reasoning in downstream applications. Our approach to semantic

parsing with LTRGs relies on transformers and contextual embeddings, and we do

not use a metagrammar. Instead, we adopt a strategy based on supertagging.

Previous research on semantics with LTRGs has presented various approaches for

modeling natural language phenomena such as questions (Romero et al., 2004),

negations (Banik, 2004), coordination of verbal phrases (Kallmeyer, 2003), relative

clauses (Romero and Kallmeyer, 2005), focus (Babko-Malaya, 2004), and univer-

sally or existentially quantiĄed sentences (Joshi et al., 2007; Romero, 2002). This

demonstrates the suitability of TRGs for comprehensive semantic modeling of natu-

ral languages. In this thesis, we developed a large-scale and broad-coverage semantic

parsing system that can be expanded to encompass the above-mentioned phenom-

ena, such as incorporating scope information or negation. However, extending the

system in this manner is beyond the scope of the current dissertation and is reserved

for future investigation.
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⋁︁
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∑︂

∑︂
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∑︂

∑︂
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(a)

e1, x1, x2, s1

Mary(x1)

like(e1)

Experiencer(e1, x1)

Stimulus(e1, x2)

Manner(e1, s1)

pizza(x2)

absolutely(s1)

(b)

Figure 1.14: Frame-based semantic representation (a) and a DRS (b) for the sentence

Mary absolutely likes pizza.

Since at the start of our dissertation project, we did not have enough semantically

annotated data for parsing experiments, we conducted a semantic parsing experi-

ment based on Discourse Representation Theory (DRT; (Kamp and Reyle, 1993)).
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DRT is a formal semantic framework designed to deal with the dynamics of dis-

course. The basic idea of DRT is that a sentence in natural language discourse

must be interpreted in the context provided by the preceding sentences (Kamp and

Reyle, 1993). The semantic representations in DRT consist of a set of discourse

referents (i.e., participants of the evolving discourse, which can serve as anchors for

anaphoric expressions) and a separate set of conditions or statements. Discourse

Representation Structures (DRSs) are usually represented in a box notation (see an

example of a DRS for the sentence Mary absolutely likes pizza in Figure 1.14b and

a semantic frame for the same sentence in the form of an attribute-value matrix

in Figure 1.14a). The standard large linguistic resource for DRS parsing experi-

ments is the Parallel Meaning Bank (PMB; (Abzianidze et al., 2017)). The DRSs in

PMB contain semantic role annotations based on VerbNet (Schuler, 2005), while the

predicates are annotated with word senses from WordNet (Fellbaum, 2000). DRS

annotations in PMB are complex constructions and contain time points, quantiĄers,

modal markers, and probability markers. Therefore, in the paper (7) ŞImproving

DRS Parsing with Separately Predicted Semantic RolesŤ, we investigated whether

semantic parsing with DRSs can be improved by dividing the neural-based parsing

approach into two tasks: separately predicting semantic roles and predicates along

with predicting the rest of the DRS. In this paper, we experimented with the most

recent neural DRS parsers, such as the character-level sequence-to-sequence model

by van Noord et al. (2018), an extension of this model that uses linguistic features

(van Noord et al., 2019), the bert-based model by van Noord et al. (2020), and

the transition-based parser by Evang (2019b). Since we observed that a multi-task

approach was beneĄcial for most parsing models in our experiment, we then imple-

mented a multi-task neural model in our Ąnal LTRG-based semantic parser.

Publications

(7) Bladier, T., Minnema, G., van Noord, R., & Evang, K. (2021). Improving

DRS Parsing with Separately Predicted Semantic Roles. In Proceedings of

the ESSLLI 2021 Workshop on Computing Semantics with Types, Frames and

Related Structures (pp. 25-34).

(8) Bladier, T., Kallmeyer, L., & Evang, K. (2023). Data-Driven Frame-Semantic

Parsing with Tree Wrapping Grammar. In Proceedings of the 15th Interna-

tional Conference on Computational Semantics (IWCS).
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Abstract

We present an algorithm for extracting Tree-Wrapping Grammars (TWGs) for multiple languages

from constituency treebanks. The TWG formalism, which is inspired by Tree Adjoining Gram-

mar (TAG), has been developed for the formalization of Role and Reference Grammar (RRG).

We describe the extraction of TWGs for English, German, French and Russian from the multi-

lingual RRG corpus RRGparbank. A special focus is given to how non-local dependencies are

treated by the extraction algorithm. In TWGs, non-local dependencies are considered as arising

from local dependencies in elementary trees by the operation of ‘wrapping substitution’. The

extracted grammars are validated by using them in a subsequent parsing step.

1 Background: Tree-Wrapping Grammars

The Tree Wrapping Grammar (TWG) formalism (Kallmeyer et al., 2013; Kallmeyer, 2016; Osswald and

Kallmeyer, 2018) is a tree-rewriting formalism much in the spirit of Tree Adjoining Grammar (TAG)

(Joshi and Schabes, 1997) that has been developed for the formalization of Role and Reference Grammar

(RRG) (Van Valin, 2005; Van Valin, 2010), a theory of grammar with a strong emphasis on typological

concerns. A TWG consists of a finite set of elementary trees which can be combined by the following

three operations: a) (simple) substitution (replacing a leaf by a new tree), b) sister adjunction (adding

a new tree as a subtree to an internal node), and c) wrapping substitution (splitting the new tree at a

d(ominance)-edge, filling a substitution node with the lower part and adding the upper part to the root

of the target tree). As in (lexicalized) TAG, the elementary trees of a TWG are assumed to encode the

argument projection of their lexical anchors. Figure 1 shows an application of wrapping substitution for

generating the German sentence in (1) (the dashed line indicates a d-edge).1

CLAUSE

CORE

NUC

V

unternehmen

do

CLM

zu

to

PrCS

NPwh

PROwh

Was

What

CLAUSE

CORE

COREsind Sie bereit

are you prepared

CLAUSE

CORE

CORE

NUC

V

unternehmen

do

CLM

zu

to

sind Sie bereit

are you prepared

PrCS

NPwh

PROwh

Was

What

;

Figure 1: Wrapping substitution for the construction in (1).

(1) Was
What

sind
are

Sie
you

bereit
prepared

zu
to

unternehmen
do

?
?

1Abbreviations: NUC = Nucleus, PrCS = Precore slot. All examples are taken from George Orwell’s novel ‘1984’ or its
published translations.
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The example illustrates how non-local dependencies, here a wh-extraction across a control construction,

can be generated by wrapping substitution from local dependencies in elementary trees.

TWG are more powerful than TAG (Kallmeyer, 2016). The reason is that a) TWG allows for more

than one wrapping substitution stretching across specific nodes in the derived tree and b) the two target

nodes of a wrapping substitution (the substitution node and the root node) need not come from the same

elementary tree, which makes wrapping non-local compared to adjunction in TAG. The latter property is

in particular important for modeling extraposed relative clauses (see example (3) for a deeper embedded

antecedent NP, which requires a non-local wrapping substitution).

In this paper, we adopt a slightly generalized version of wrapping substitution which allows the upper

part of the split tree, provided that the upper node of the d-edge is the root, to attach at an inner node of

the target tree. For instance, in Figure 1 an additional SENTENCE node above the CLAUSE node in the

tree of bereit (‘prepared’) would be possible. A further example for this generalized wrapping will be

discussed in Figure 2 below.

By using TWG as a formalization of RRG and applying it to multilingual RRG treebanks, we aim at

extracting corpus-based RRG grammars for different languages, thereby obtaining in particular a cross-

linguistically valid “core” RRG grammar and, furthermore, providing a cross-lingual proof of concept

for TWG in general with respect to its ability to model non-local dependencies. The work presented in

this paper is a first step towards these goals.

2 Non-local dependencies in RRGparbank

RRGparbank is part of an ongoing project to create annotated treebanks for RRG (Bladier et al., 2018;

Bladier et al., 2019).2 RRGparbank provides parallel RRG treebanks for multiple languages. At present,

RRGparbank contains George Orwell’s novel ‘1984’ and its translations in several languages.3

RRGparbank provides annotations of non-local dependencies (NLDs) including those given by long-

distance wh-extraction (2a), relativization (2b), topicalization (2c), and extraposed relative clauses (2d).

(2) a. What do you think you remember?

b. [. . . ] two great problems, which the Party is concerned to solve.

c. By such methods it was found possible to bring about an enormous diminution of vocabu-

lary.

d. Nothing has happened that you did not foresee.

In the present context, ‘non-local’ means that the dependency is not represented within a single ele-

mentary tree. We refer to non-local wh-extraction, relativization and topicalization as long-distance

dependencies (LDDs).

In RRGparbank, LDDs are annotated in the following way: The fronted phrase node carries a feature

PRED-ID whose (numerical) value coincides with the value of the feature NUC-ID of the NUCLEUS

the fronted phrase semantically belongs to. For instance, in the annotation of sentence (1), the NPwh

node in the tree shown on the right of Figure 1 is marked by [PRED-ID 1] while the NUC node above

unternehmen is marked by [NUC-ID 1]. See Figure 3 for another example of the annotation convention.

In the case of extraposed relative clauses, the relative pronoun and the NP modified by the relative clause

both carry the feature REF with identical values (cf. Figure 4).

3 Deriving non-local dependencies by wrapping substitution

Similar to TAG, (simple) substitution in TWG represents the mode of tree composition for expanding

argument nodes by the syntactic representations of specific argument realizations, while sister adjunction

is mainly used for adding peripheral structures (i.e., modifiers) to syntactic representations. Wrapping

substitution, on the other hand, is used for linguistic phenomena in which an argument is displaced

from its canonical position and which cannot be handled by simple substitution or sister adjunction

2https://rrgparbank.phil.hhu.de/
3The data are partly taken from the MULTEXT-East resource (Erjavec, 2012).
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(Kallmeyer et al., 2013; Osswald and Kallmeyer, 2018). This holds in particular for the cases of non-

local dependencies (NLDs) listed in Section 2. The TWG derivation of LDDs by means of wrapping

substitution follows basically the pattern illustrated by the example in Figure 1.

Extraposed relative clauses (ERCs), as in (2d), represent a different type of NLD, namely the extraction

of a modifier (the relative clause), typically to a position to the right of the CORE, which leads to a non-

local coreference link between the relative clause and its antecedent NP. Example (2d) can be analyzed

using wrapping as shown in Figure 2. The extraposed relative clause is associated with a tree that

contributes a periphery CLAUSE below a CLAUSE node while requiring that an NP node (which serves

to locate the antecedent NP) is substituted into an NP node somewhere below the CLAUSE, modeled

by a d-edge between the upper CLAUSE node and a single NP node without daughters. This NP is a

substitution node that gets filled with the actual antecedent NP tree. Put differently, the antecedent NP

merges with this single NP node, which establishes the link to its modifying relative clause.

CLAUSE

CLAUSEperi

you did not foreseePrCS

NPrel

that

NP

NP

PRO

nothing

SENTENCE

CLAUSE

CORE

has happenedNP

SENTENCE

CLAUSE

CLAUSEperi

you did not foreseePrCS

NPrel

that

CORE

has happenedNP

PRO

nothing

;

Figure 2: Wrapping substitution for the extraposed relative clause from (2d)

In RRGparbank, we encountered cases where the antecedent NP is further embedded and also cases

with more than one relative clause modifying the same antecedent. (3) is an example where we have

both: The antecedent NP Menschen (‘people’) is embedded in the direct object NP, and we have two

extraposed relative clauses, both modifying the same antecedent.

(3) Unzählige
Numerous

Male
times

hatte
had

sie
she

[...]
[...]

[die
the

Hinrichtung
execution

von
of

Menschen]NP

people
gefordert
demanded

,
,
[deren
whose

Namen
names

sie
she

nie
never

zu vor
before

gehört
heard

hatte]
had

[und
and

an deren angebliche Verbrechen
in whose alleged crimes

sie
she

nicht
not

im
in

entferntesten
the least

glaubte]
believed

.

.

‘On numerous occasions, she had [...] demanded the execution of people whose names she had

never heard before and in whose alleged crimes she did not even remotely believe.’

Another interesting phenomenon is illustrated by the Russian example in (4), which shows both wh-

extraction (čto) and topicalization (ja).

(4) Ja

I

vot
here

čto
what

xoču

want

skazat’.
to.say

‘What I’m trying to say is this.’

The current annotation in RRGparbank presumes a scrambling analysis of this topicalization, which

gives rise to an RRG tree with crossing branches not generated by sister adjunction. This case is not yet

covered by the extraction algorithm presented in Section 4.

4 TWG Extraction

To extract TWGs from treebanks, we adapt the top-down algorithm from (Xia, 1999) for TAG. While sub-

stituting and sister-adjoining trees can be extracted following the procedure described in (Xia, 1999), we

developed a new algorithm to extract d-edge trees which we describe in more detail below.4 Since TWGs

do not allow for trees to have crossing branches, but the RRG trees often contain them, such edges need to

4Additional information on the extraction algorithm can be found in (Bladier et al., 2020).
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be removed following a rule-based algorithm for re-attaching certain subtrees in the original tree in a pre-

processing step. The process of decrossing tree branches concerns only local re-attaching of peripheral

constituents and operator projections and can be reverted applying a rule-based back-transformation al-

gorithm after the parsing step. We extract lexically unanchored elementary tree templates (i.e. supertags)

for the TWGs. The lexical anchoring happens in the subsequent parsing step.

1. Decross tree branches. First, for local discontinuous constituents (for instance NUCs consisting

of a verb and a particle in German), we split the constituent into two components (e.g., NUC1 and

NUC2), both attached to the mother of the original discontinuous node.

Second, if a tree τ still has crossing branches, the tree is traversed top-down from left to right and

among its subtrees those trees are identified whose root labels contain one of the following strings:

OP-, -PERI, -TNS, CDP, or VOC. For each such subtree γ in question with r being its root, we

choose the highest node v below the next left5 sibling of r such that the rightmost leaf dominated

by v immediately precedes the leftmost leaf dominated by r. If r and v are not yet siblings, γ is

reattached to the parent of v. If the subtree in question has no left siblings, it is reattached to the

right in a corresponding way. After this step, it should be checked if the tree τ still contains crossing

branches. If yes, the process of decrossing branches is continued by applying the steps above to the

next subtree in question.

2. Extract NLDs. Then we traverse each tree τ in a top-down left-to-right fashion and check for each

subtree of τ whether it contains the following special markings for NLDs in its root label: PREDID=,

NUCID= or REF=. The indexes identify the parts of the NLD which belong together. In case of an

LDD, the parts of the minimal subtree which contain both parts of the LDD are extracted within a

single tree with a d-edge (see the multicomponent NUC and CORE in Figure 3). The substitution

site and the mother node are added to the remaining subtree in order to mark the nodes on which

the wrapping substitution takes place (see Figure 3). A similar process is applied to extract ERCs.

CLAUSE

CORE

CORE

NUC[NUC-ID 1]

V

say

CLM

to

CORE

I’m trying

PrCS

NPwh[PRED-ID 1]

PROwh

What

CLAUSE

CORE

CORECORE

I’m trying

CLAUSE

CORE

NUC

V

say

CLM

to

PrCS

NPwh

What

;

+

Figure 3: Extraction of tree with a d-edge for an LDD

The antecedent and the following relative clause (marked with feature REF) are extracted to form

a single d-edge tree. The antecedent of the extraposed relative clause is then removed from this

d-edge tree and replaced by a substitution slot, as represented in Figure 4.

After this step, an empty agenda is created and the extracted tree chunks and the pruned tree τ with

the remaining nodes are placed into the agenda.

3. Extract initial and sister-adjoining trees. If no agenda with tree chunks was created in the pre-

vious step, an empty agenda is created in this step and the entire tree τ is placed into it. Each

tree chunk in the agenda is traversed and the percolation tables are used to decide for each subtree

τ1 . . .τn in the tree chunk whether it is a head, a complement or a modifier with respect to its par-

ent. Initial trees for identified complements and sister-adjoining trees for identified modifiers are

extracted recursively in the top-down fashion until each elementary tree has exactly one anchor site.

5 Evaluation of extracted TWGs

We extracted four TWGs for English, German, French, and Russian from the subcorpora of RRGpar-

bank. We used silver and gold annotated data for our experiments, which means that each sentence was

5A node v1 is left to another node v2 if the leftmost leaf dominated by v1 is left of the leftmost leaf dominated by v2.
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SENTENCE

CLAUSE

CLAUSEperi

you did not foreseePrCS

NPrel

PROrel [REF 1]

that

CORE

has happenedNP[REF 1]

PRO

nothing

CLAUSE

CLAUSEperi

you did not foreseePrCS

NPrel

that

NP

NP

PRO

nothing

SENTENCE

CLAUSE

CORE

has happenedNP

;

+

+

Figure 4: Extraction of a tree with a d-edge for an ERC

annotated and verified manually by at least one linguist. Table 1 provides statistics on the used anno-

tated subcorpora from RRGparbank6 and the occurrences of non-local dependencies (LDDs and ERCs)

in subcorpora. NLDs are generally a relatively rare linguistic phenomenon (Candito and Seddah, 2012;

Bouma, 2018). Compared to the other three languages, German shows a fairly large number of ERCs due

to its dominant verb-final word order which does not allow putting heavy NPs at the end of the sentence.

Parameters English TWG German TWG French TWG Russian TWG

# word tokens 76893 41324 10550 35975

# word types 7193 7372 2571 9996

Avg. sentence length 14.12 13.5 12.4 10.03

# sentences 5445 3062 851 3586

# LDDs 58 13 36 27

# ERCs 8 110 4 0

Table 1: Statistics on annotated subcorpora in RRGparbank.

The extracted TWGs show a relatively large amount of supertags, more than a half of which occur only

once in the corpus. Table 2 shows some statistics on the extracted grammars. The number of supertags

with d-edges (which are used for wrapping substitution) is relatively low since the cases of NLDs are not

frequent in the data.

Parameters English TWG German TWG French TWG Russian TWG

# supertags 3340 2591 947 2272

# supertags occuring once 1994 1689 584 1503

# initial trees 1727 1490 483 1350

# sister-adjoining trees 1571 1031 431 898

# d-edge trees 42 70 33 22

# nominal supertags 366 299 99 290

# verbal supertags 1382 1164 395 957

Table 2: Statistics on extracted TWG grammars.

We measured the similarity of the extracted TWGs for each language pair. In Table 3 we show the

proportions of supertags in one grammar contained in the other grammar7 (for example, the cell with the

row name ‘English TWG’ and the column name ‘German TWG’ shows how many supertags from the

German TWG are contained in the English grammar). The numbers show that the extracted grammars

6The annotation process of the subcorpora in RRGparbank is still in progress and the coverage of annotated sentences differs
across the languages. Currently, around 81% of English data, 47% of German, 12% of French, 54% of Russian, and 15% of
Farsi sentences are annotated.

7Please note that the annotation for different languages in RRGparbank is still in progress, and the proportion of common
supertags can change in future.
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tend to have a large number of supertags in common. For example, the smallest grammar French TWG

(947 supertags) has around 55% supertags in common with the largest grammar for English (3340 su-

pertags). There are 263 supertags common to all four grammars. In future work, we plan to explore the

extent to which common supertags in grammars of different languages can be beneficial for multilingual

parsing.

Common supertags English TWG German TWG French TWG Russian TWG

English TWG – 24.97 (834) 15.45 (516) 21.8 (728)

German TWG 32.19 (834) – 15.51 (402) 24.9 (645)

French TWG 54.49 (516) 42.45 (402) – 37.80 (358)

Russian TWG 32.04 (728) 28.4 (645) 15.76 (358) –

Table 3: Ratio of common supertags across language pairs in percents and in numbers (in brackets).

We used the TWG parser ParTAGe (Waszczuk, 2017; Bladier et al., 2020) in a symbolic way in order

to validate our grammars and to check that the elementary trees in the extracted TWGs can be combined

to produce the original trees.8 While the majority of sentences could be processed by the parser (see

Table 4), some complex sentences which contain an ERC resulting from the free-order placement of

predicate arguments as in (4) above could not be parsed. We address these cases in our future work.

English TWG German TWG French TWG Russian TWG

% exactly matching parses 81 79.07 78.86 80.68

# not parsed sentences 13 8 5 10

Table 4: Validation of extracted TWGs on symbolic parsing with TWG parser ParTAGe.

6 Summary and future work

We presented work in progress on the extraction of TWGs for several languages from the multilin-

gual treebank corpus RRGparbank. TWG is a tree-rewriting system developed for the formalization of

Role and Reference Grammar (RRG). TWG is related to TAG and allows, among others, the adequate

representation of non-local dependencies (NLDs) in sentences using the operation of wrapping substi-

tution. We showed how wrapping substitution can be used to model various cases of NLDs, including

long-distance relativization, long-distance wh-movement, long-distance topicalization, and extraposed

relative clauses. We noticed cross-linguistic differences concerning the frequency of NLDs and the cor-

responding applications of wrapping substitution. At the same time, we observed a considerable overlap

of supertags in the TWG grammars extracted for different languages. We validated the extracted gram-

mars using a revised version of the TWG parser ParTAGe.

In future work, we plan to extract larger grammars from the RRG corpora (as the annotation of these

projects progresses) and to use them in probabilistic parsing experiments. We also intend to include other

languages from RRGparbank into parsing experiments, for example Hungarian and Farsi, depending on

the availability of annotated data. Moreover, we will explore how wrapping substitution can be applied to

model further linguistic phenomena, such as the variable placement of predicate arguments in languages

with a relatively free word order. Finally, we plan to perform multilingual TWG parsing experiments,

hopefully benefiting from the considerable number of common supertags across the extracted grammars.
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Abstract

We present ongoing work on data-driven

parsing of German and French with Lexi-

calized Tree Adjoining Grammars. We use

a supertagging approach combined with

deep learning. We show the challenges

of extracting LTAG supertags from the

French Treebank, introduce the use of left-

and right-sister-adjunction, present a neu-

ral architecture for the supertagger, and

report experiments of n-best supertagging

for French and German.

1 Introduction

Lexicalized Tree Adjoining Grammar (LTAG;

Joshi and Schabes, 1997) is a linguistically mo-

tivated grammar formalism. Productions in an

LTAG support an extended domain of locality

(EDL). This allows them to express linguistic gen-

eralizations that are not captured by typical sta-

tistical parsers based on context-free grammars or

dependency parsing. Each derivation step is trig-

gered by a lexical element and a principled distinc-

tion is made between its arguments and modifiers,

which is reflected in richer derivations. This has

applications in the context of other tasks which can

make use of linguistically rich analyses, such as

frame semantic parsing or semantic role labeling

(Sarkar, 2007). On the other hand, the increased

expressiveness of LTAG makes efficient parsing

and statistical estimations more challenging.

Previous work (Bangalore and Joshi, 1999;

Sarkar, 2007) has shown that the task of parsing

with LTAGs can be facilitated through the inter-

mediate step of supertagging—a task of assign-

ing possible supertags (i.e. elementary trees) for

each word in a given sentence (Chen, 2010). Su-

pertagging has been referred to as “almost pars-

ing” (Bangalore and Joshi, 1999), since supertag-

ging performs a large part of the task of syntac-

tic disambiguation and increases the parsing effi-

ciency by lexicalizing syntactic decisions before

moving on to the more expensive polynomial pars-

ing algorithm (Sarkar, 2007).

Recently, several papers proposed neural ar-

chitectures for supertagging with Combinatory

Categorial Grammar (CCG; Lewis et al., 2016;

Vaswani et al., 2016) and LTAG (Kasai et al.,

2017). Supertagging with LTAG is more chal-

lenging than with CCG due to a higher num-

ber of supertags (counting on average 4000 dis-

tinct supertags for LTAGs). Also, almost half of

the LTAG supertags occur only once. Neverthe-

less, the reported neural supertagging approach for

LTAG (Kasai et al., 2017) reaches an accuracy of

88-90 % for English (compared to over 95 % for

CCG). In this paper we apply a similar recurrent

neural architecture to supertagging with LTAGs

based on Samih (2017) and Kasai et al. (2017) to

German and French data and compare against pre-

viously reported results. For the German data, we

compare our results to the LTAG supertaggers re-

ported in Bäcker and Harbusch (2002) and West-

burg (2016). To our knowledge, no results for

French supertagging based on LTAG or CCG have

been reported so far.

2 Neural Supertagging with LTAGs

2.1 Lexicalized Tree Adjoining Grammar

A Tree Adjoining Grammar (TAG; Joshi and Sch-

abes, 1997) is a linguistically and psychologically

motivated tree rewriting formalism (Sarkar, 2007).

A TAG consists of a finite set of elementary trees,

which can be combined to form larger trees via the

operations of substitution (replacing a leaf node

marked with ↓ with an initial tree) or adjunction

(replacing an internal node with an auxiliary tree).
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Figure 1: Supertagging with French LTAG for L’activité ne suffit pas (“The activity does not suffice”)

An auxiliary tree has a foot node (marked with ∗)

with the same label as the root node. When adjoin-

ing an auxiliary tree to some node n, the daughter

nodes of n become daughters of the foot node. A

sample TAG derivation is shown in Figure 2, in

which the elementary trees for Mary and pizza are

substituted to the subject and object slots of the

likes tree and the auxiliary tree for absolutely is

adjoined at the VP-node.

NP

Mary

S

NP↓ VP

V

likes

NP↓

VP

AdvP

absolutely

VP*

NP

pizza

⇒

S

NP

Mary

VP

AdvP

absolutely

VP

V

likes

NP

pizza

Figure 2: Elementary trees and a derived tree in

LTAG

In a lexicalized version of TAG (LTAG) every

tree is associated with a lexical item and repre-

sents the span over which this item can specify

its syntactic or semantic constraints (for exam-

ple, subject-verb number agreement or semantic

roles) capturing also long-distance dependencies

between the sentence tokens (Kipper et al., 2000).

2.2 RNN-based TAG supertagging

A supertagger is a partial parsing model which

is used to assign a sequence of LTAG elemen-

tary trees to the sequence of words in a sentence

(Sarkar, 2007). Supertagging can thus be seen as

preparation for further syntactic parsing which im-

proves the efficiency of the TAG parser through

reducing syntactic lexical ambiguity and sentence

complexity. Figure 1 provides an example of su-

pertagging with an LTAG for French.

Several techniques were proposed for supertag-

ging over the years, among which are HMM-

based (Bäcker and Harbusch, 2002), n-gram-based

(Chen et al., 2002), and Lightweight Dependency

Analysis models (Srinivas, 2000). Recent ad-

vances show the applicability of recurrent neural

networks (RNNs) for supertagging (Lewis et al.,

2016; Vaswani et al., 2016; Kasai et al., 2017).

RNN-based supertagging with LTAGs can be

seen as a standard sequence labeling task, albeit

with a large set of labels (i.e., several thousand

classes as supertags). Our deep learning pipeline

is shown in Figure 3. A similar architecture

showed good results for POS tagging across many

languages (Plank et al., 2016).

Figure 3: Supertagging architecture based on

Samih (2017); dimensions shown in parentheses.

We use two kinds of embeddings: pre-trained

word embeddings from the Sketch Engine collec-

tion of language models (Jakubíček et al., 2013;

Bojanowski et al., 2016), and character embed-

dings based on the training set data. The pre-

trained word embeddings encode distributional in-

formation from large corpora. The advantage of

the character embeddings is that they can addition-

ally encode subtoken information such as morpho-

logical features and help in dealing with unseen

words, without doing any feature engineering on
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Parameters French German, reduced set German, full set English

(this work) (Kaeshammer, 2012) (Kaeshammer, 2012) (Kasai et al., 2017)

Supertags 5145 2516 3426 4727

Supertags occur. once 2693 1123 1562 2165

POS tags 13 53 53 36

Sentences 21550 28879 50000 44168

Avg. sentence length 31.34 17.51 17.71 appr. 20

Accuracy 78.54 85.91 88.51 89.32

Table 1: Supertagging experiments

morphological features.

The embeddings go through a recurrent layer to

capture the influence of tokens in the preceding

and subsequent context for each token. For the

recurrent layer we use either bidirectional Long

Short Term Memory (LSTM) or Gated Recurrent

Units (GRU). We use a Convolutional Neural Net-

work (CNN) layer for character embeddings, since

it was proved to be one of the best options for ex-

tracting morphological information from word to-

kens (Ma and Hovy, 2016). The results for the

word and character models are concatenated and

fed through a softmax layer that gives a probability

distribution for possible supertags. Dropout lay-

ers are added to counter overfitting. We replaced

words without an entry in the word embeddings

with a randomly instantiated vector of the same

dimension (100). Table 2 provides an overview of

the hyper-parameters we used for the supertagger

architecture.

Layer Hyper-parameters Value

Characters CNN numb. of filters 40
state size 400

Bi-GRU state size 400
initial state 0.0

Words embedding vector dim. 100
window size 5

Char. embedding dimension 50

batch size 128

Dropout dropout rate 0.5

Table 2: Hyper-parameters of the supertagger.

3 LTAG induction from the French
Treebank

Inducing a grammar from a treebank entails iden-

tifying a set of productions that could have pro-

duced its parse trees. In the case of LTAG this

means decomposing the trees into a sequence of

elementary trees, one for each word in the sen-

tence.

In order to extract a TAG from the French Tree-

bank (FTB; Abeillé et al., 2003), we applied the

heuristic procedure described by Xia (1999). The

main idea of this approach is to consider the trees

in the treebank as derived trees from an LTAG. El-

ementary trees are extracted in top-down fashion

using percolation tables to identify grammatically

obligatory elements (i.e., complements), gram-

matically optional elements (i.e., modifiers), as

well as a head child for each constituent. All

sub-trees corresponding to modifiers and comple-

ments are extracted in a further step forming aux-

iliary trees and initial trees, respectively, while the

head child and its lexical anchor are kept in the

tree. When extracted in this way, elementary trees

contain the corresponding lexical anchor and the

branches represent a particular syntactic context of

a construction with slots for its complements.

3.1 LTAG induction: pre-processing steps

Before induction of different LTAGs for French,

we carried out pre-processing steps described in

Candito et al. (2010) and Crabbé and Candito

(2008) including extension of the original POS

tag set in FTB from 13 to 26 POS tags and un-

doing multi-word expressions (MWEs) with reg-

ular syntactic patterns (e.g. (MWN (A ancien) (N

élève)) → (NP (AP (A ancien)) (N élève))). About

14 % of the word tokens (79,466 out of the total

of 557,095 tokens) in FTB belong to flat MWEs.

After rewriting compounds with regular syntactic

patterns, the number of MWEs is reduced to ap-

proximately 5 %.

We also restructured some trees in order to bring

the complements on a higher level in the tree.

In particular, we shifted the initial prepositional

phrase of the VPinf constituents to a higher level

and raised the subordinating conjunction (C-S) of

the final clause constituents (Ssub) (see Figure 4).

After the preprocessing we extracted the fol-

lowing LTAGs from FTB for our supertagging ex-

periments: including 13 or 26 POS tags, with

and without compounds, including and excluding
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Gold supertag Predicted supertag Example

(PP (APPR < >)(NP↓ )) (PP* (APPR < >)(NP↓ )) zu einem Eigenheim zu verhelfen

(NP (DP↓ )(NN < >)) (NP (NN < >)) das heutige und künftige Kreditvolumen

(S (S* )($, < >)(S↓ )) ($,* < >)
S

S $, S

(S (NP↓ )(VVFIN < >)(NP↓ )(PTKVZ↓ )) (S (NP↓ )(VVFIN < >)(NP↓ )) der Umsatzminus geht auf 125 Millionen [...] zurück

Table 3: Most common error classes for German TAG supertagging with TiGer treebank

VPinf-A OBJ

NP-OBJ

N

activité

activity

D

l’

the

VN

V

repartir

restart

V

faire

make

P

à

to

⇓

PP

VPinf-A OBJ

NP-OBJ

N

activité

activity

D

l’

the

VN

V

repartir

restart

V

faire

make

P

à

to

Figure 4: FTB preprocessing: complement raising

punctuation marks. Table 1 provides some statis-

tics on the extracted LTAG which led to the most

accurate supertagging results (13 POS tags, with-

out compounds, including punctuation marks).

3.2 Left- and right-sister-adjunction

Extraction of an LTAG from FTB is challenging

due to the flat structure of the trees, which al-

lows any combination of arguments and modi-

fiers. In order to preserve the original flat struc-

tures in the FTB as far as possible and to facilitate

the extraction of the elementary trees we decided

against the traditional notion of adjunction in TAG

which relies on nested structures and apply sister-

adjunction; i.e., the root of a sister-adjoining tree

can be attached as a daughter of any node of an-

other tree with the same node label.

ROOT

SENT

NP-SUJ↓ VN

ADV

ne

not

VP

suffit

suffice

*SENT

ADV

pas

〈negat.〉

=⇒

ROOT

SENT

NP-SUJ↓ VN

ADV

ne

not

VP

suffit

suffice

ADV

pas

〈negat.〉

Figure 5: Left-sister-adjunction

Since a modifier can appear on the right or on

the left side relative to the position of the con-

stituent head, we distinguish between right- and

left-sister-adjoining trees (marked with * on the

left or the right side of the root label as shown in

Figure 5).

A left-sister-adjoining tree γ can only be ad-

joined to a node η in the tree τ if the root label

of γ is the same as the label of η and the anchor of

the elementary tree τ comes in the sentence before

the anchor of γ. The children of γ are inserted on

the right side of the children in η and become the

children of η. A right-sister-adjunction is defined

in a similar way.

The resulting LTAGs with sister-adjunction are

basically LTIGs (Lexicalized Tree Insertion Gram-

mar; Schabes and Waters, 1995) in the way that

the auxiliary trees do not allow wrapping adjunc-

tion or adjunction on the root node but permit mul-

tiple simultaneous adjunction on a single node of

initial trees. However, since LTIG is a special vari-

ant of LTAG, we refer to the extracted grammar as

LTAG in the remainder of the paper.

4 Experiments and error analysis

4.1 Experimental setups for German and

French

In order to compare the performance of our su-

pertagger with previous work of Kasai et al.

(2017) and LTAG-based supertaggers for German

(Bäcker and Harbusch, 2002; Westburg, 2016), we

experimented with the supertags extracted by Kae-

shammer (2012) from the German TiGer treebank

(Brants et al., 2004). The set of supertags for Ger-

man has the following train, test, and dev. split:

39,925, 5035, and 5040 sentences. We ran a su-

pertagging experiment with this number of sen-

tences, since it is compatible with the experimen-

tal setup described in Kasai et al. (2017). Since

the number of sentences in FTB is smaller than in

TiGer, we created a sample of the train set of the

TiGer treebank with a comparable number of sen-

tences in the train set (18,809). For the supertag-

ging experiments with the French LTAG, we di-
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vided FTB in the standard train, development and

test sets (19,080, 1235, and 1235 sentences), mak-

ing our test and dev. sets comparable to the dev.

and test set reported in Candito et al. (2009).

Tables 3 and 5 show the most frequent erro-

neous supertags for German and French. The sym-

bol < > in the supertags signifies the spot for the

lexical anchor, while * marks the foot node of aux-

iliary trees and ↓ represents a substitution site.

4.2 German TAG supertagging with TiGer

Generally, results for supertagging with German

LTAGs appear to be slightly lower than for En-

glish. Westburg (2016) reports an accuracy of

82.92 % for German TAG with a supertagger

based on perceptron training algorithm, while

Bäcker and Harbusch (2002) reached 78.3 % with

a HMM-based TAG supertagger.

Supertagging for German is more challenging

than for English due to a higher number of word

order variations and the resulting sparseness of

the data (Bäcker and Harbusch, 2002). However,

our experiments show that the proposed neural

supertagging architecture reaches the best perfor-

mance among the previously described supertag-

gers for German (88.51 %) and gets comparable

results to the supertagging model for English de-

scribed in Kasai et al. (2017) (see Tables 1 and 4).

System Accuracy

Bäcker and Harbusch (2002) (HMM-based) 78.3
Westburg (2016) 82.92

This work, full training set (Bi-LSTM) 87.67
This work, full training set (GRU) 88.51
This work, reduced training set (Bi-LSTM) 85.26
This work, reduced training set (GRU) 85.91

Table 4: Supertagging experiments with German

TiGer treebank.

The biggest class of errors for German supertag-

ging contains wrong predictions concerning the

type of the elementary tree (e.g. the supertagger

predicts an auxiliary tree instead of an initial tree

or vice versa). The main reason for this kind of

error is the particularity of German which allows

dependent elements in a sentence being divided by

a big number of other tokens. For example, a de-

terminer and the determined word or the separa-

ble verb prefix and the verb stem can be separated

by a dozen other tokens, as in the sentence Der

Umsatzminus geht auf 125 Millionen [..] zurück

(Engl. “The sales drop goes down to 125 mil-

lions”), the verb geht and its prefix zurück are sep-

arated by 11 tokens (see Table 3).

Since the window size of tokens presented to

the supertagger is limited, the connection between

the tokens can be overlooked by the supertag-

ger. However, increasing the window size leads

to greater noise in the data. We experimented with

window sizes of 5, 9, and 13 for German and got

the best results with a window size of 5 (two words

before and after the token).

Another source of mistakes for German is the

intersentential punctuation in large complex sen-

tences containing several subordinated clauses.

This error can also be explained by the window

size of tokens presented to the supertagger—the

supertagger does not capture the complex struc-

ture of the sentence and classifies the punctuation

mark as a one-child auxiliary tree (see Table 3).

Another big class of errors comes from PPs

which can be either optional (modifiers) or oblig-

atory elements. For example, the supertagger did

not recognize that the verb verhelfen (Engl. “to

help”) requires a prepositional phrase as an argu-

ment (e.g. zu einem Eigenheim zu verhelfen; Engl.

“to help someone to buy a property”) and erro-

neously classified this complement as a modifier

PP.

4.3 French TAG supertagging with FTB

Supertagging with French LTAGs appears to be

more challenging compared to German or English.

There are several general reasons for the perfor-

mance drop of the supertagger, one of which is a

higher average sentence length in FTB (31.34 to-

kens per sentence, compared to 17.51 in TiGer).

Sentences in FTB more frequently have a complex

syntactic structure including explicative elements

separated with brackets or commas.

The large number of supertags lead to higher

data sparsity and make the sequence labeling prob-

lem more difficult for the supertagger. One ex-

planation for the larger number of supertags, be-

sides the longer and more complex sentence struc-

tures in FTB, is the large number of flat multi-

word expressions in FTB. Our experiments show

that rewriting MWEs with regular compounds im-

proves the supertagging performance.

A large number of supertagging errors for

French occur due to different sites of attachment of

the intersentential punctuation marks in FTB. The

punctuation marks in FTB are attached to the cor-

responding constituents and not consistently to the
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Gold supertag Predicted supertag Example

(NP* (PP (P <>) (NP↓ ))) (PP (P <>) (NP↓ )) 32 % par an

(NP* (PONCT < >)) (SENT* (PONCT <>)) -LRB- 66,7 % -RRB-

(NP* (N < >)) (N < >) Mme Dominique Alduy

(ROOT (SENT (NP↓ ) (VN (V < >)))) (VN (V < >)) le droit est officiellement transgressé

Table 5: Most common error classes for LTAG supertagging with French Treebank

System Accuracy

This work (GRU), 13 POS, undone comp. 78.54
This work (GRU), 13 POS, no punct. marks 74.44
This work (GRU), 13 POS, with compounds 76.78
This work (GRU), 26 POS, with compounds 74.84
This work (Bi-LSTM), 13 POS, undone comp. 77.67

Table 6: Supertagging experiments with French

Treebank (FTB).

root node of the whole sentence. However, since

punctuation marks also help to identify possible

constituents, omitting them does not improve su-

pertagging.

Similar to supertagging with German LTAGs,

PP attachments are also a major source of errors

with French LTAGs. In addition to difficulties

with classifying PPs as modifiers or complements

(as with German data), the supertagger for French

more frequently encounters problems with iden-

tifying the correct site for attaching the PPs to a

node in the syntactic tree. The reason for these er-

rors could be that FTB—in comparison to TiGer—

does not offer additional function marks to distin-

guish PPs as modifiers from prepositional comple-

ments of the support verbs.

4.4 N-best supertagging experiments

The softmax layer of the supertagging model we

described in section 2.2 provides a distribution

of probabilities of the supertags when classifying

words in a sentence, and we used this distribu-

tion to enable our supertagger to predict n-best su-

pertags.

n-best
Accuracy
German
(full set)

Accuracy
German
(red. set)

Accuracy
French

1-best 88.51 85.91 78.54
2-best 94.37 93.04 87.34
3-best 96.08 95.00 90.85
5-best 97.45 96.66 94.38
7-best 98.03 97.40 96.00
10-best 98.52 97.97 97.08

Table 7: N-best supertagging experiments.

We experimented with different numbers of n-

best supertags for every word, counting the num-

ber of accurately predicted supertags each time

when at least one of the n-best supertags was pre-

dicted correctly. The experiments show a quick

growth in accuracy prediction up to 5-best su-

pertags, while for ranks n > 5 the improvement

of accuracy is not as big (see Table 7).

5 Conclusion and Future Work

We proposed a neural architecture for supertag-

ging with TAG for German and French and carried

out experiments to measure the performance of the

supertagging model for these languages. We in-

duced several different LTAGs from FTB in order

to compare the supertagging performance. The re-

sults with German LTAG show that the neural su-

pertagging model achieves comparable results to

the state-of-the art TAG supertagging model de-

scribed in Kasai et al. (2017) for English, even

though German is more difficult for supertagging

due to the free word order and the data sparseness.

Supertagging for French appears to be more diffi-

cult due to the larger average length of sentences

and a big number of multiword expressions.

In future work we plan to increase performance

of the supertagger for French by dividing the su-

pertagging algorithm in two steps: factorization of

the extracted supertags in tree families and decid-

ing afterwards on the correct supertag within the

predicted tree family. We plan to use the improved

supertagger for graph-based parsing. In particu-

lar, we aim at adapting the A*-based PARTAGE

parser for LTAGs developed by Waszczuk (2017)

for parsing with extracted supertags. We also in-

tend to add deep syntactic features and informa-

tion on semantic roles to the supertags in order to

test whether the proposed supertagging architec-

ture can be used for semantic role labeling.
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Abstract

In this paper, we extend recent approaches to Lexicalized Tree Adjoining Grammar (LTAG)
parsing that combine supertagging with dependency parsing. In other words, we assign supertags
(= unanchored elementary trees) to lexical items and we compute substitution/adjunction arcs
between them. Kasai et al. (2017, 2018) jointly predict these structures with a neural graph-based
parser. Predicting 1-best supertags and dependency arcs (as in Kasai et al. (2017, 2018)) however
leads only to partial parsing due to incompatibilities between elementary trees and derivation trees.
We therefore extend the approach described in Kasai et al. (2017, 2018) to n-best supertags and
k-best dependency arcs and combine it with a subsequent A?-parsing step that extends the TAG
parser from Waszczuk (2017). We show that this architecture allows for efficient full TAG parsing
while being sufficiently accurate. We test our architecture on an LTAG extracted from the French
Treebank (FTB).

1. Introduction

Lexicalized Tree-Adjoining Grammar (LTAG; Joshi and Schabes (1997)) is a linguistically motivated
grammar formalism which supports an extended domain of locality (EDL). The building blocks in
LTAG – called elementary trees – capture a domain of locality which is large enough to cover co-
occurrence relationships between a lexical item (the anchor of the elementary tree) and the nodes it
posits syntactic or semantic constraints on (Carroll et al., 1999). LTAG elementary trees are capable
of expressing linguistic generalizations (for example, the wh-movement or multi-word-expressions)
which are not captured by typical statistical parsers based on context-free grammars or dependency
parsing. The linguistically rich analyses of LTAG can be used for the downstream tasks like semantic
role labeling or semantic parsing (Liu and Sarkar, 2007; Kallmeyer and Osswald, 2013).

Several parsing approaches have been proposed for LTAG, including symbolic and statistical
ones (Joshi and Srinivas, 1994; Bäcker and Harbusch, 2002; Chiang, 2000; Sarkar, 2000; Kallmeyer
and Satta, 2009). Recent advances in LTAG parsing include graph-based and transition-based
architectures based on Recurrent Neural Networks (RNN) (Kasai et al., 2017, 2018). While many of
the developed approaches for LTAG parsing are computationally costly due to the large number of
elementary trees per lexical item, previous work (Bangalore and Joshi, 1999; Sarkar, 2007) has shown
that LTAG parsing can be facilitated through an intermediate step of supertagging. Supertagging
is the task of assigning a supertag, i.e., an LTAG elementary tree template, to each word in a
given sentence. This step can be seen as “almost parsing”, since it performs a considerable amount
of syntactic disambiguation before applying a computationally more costly algorithm for actual
parsing. For example, linguistic properties of supertags in LTAG grammars proved to enhance the
performance of transition-based LTAG parsers (Chung et al., 2016).

Kasai et al. (2017) proposed to extend the supertagging step of LTAG parsing by jointly predict-
ing the supertags and arcs of the LTAG derivation trees using a deep learning architecture. The idea
is to not only predict the elementary tree templates but also predict how to combine them (hence, the

c©2019 Tatiana Bladier, Jakub Waszczuk, Laura Kallmeyer, Hendrik Janke.
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dependency arcs) to form a derived tree. Predicting dependency relations along with the supertags
should facilitate the subsequent parsing step even further. The authors claim their approach to be
sufficient for LTAG parsing. However, in this paper we show that predicting only 1-best supertags
and dependency relations between the supertags is not sufficient for the full LTAG parsing step (i.e.
step in which the derived trees are predicted) but only allows for partial parsing. The reason is
that the system of Kasai et al. (2017) outputs only sequences of the one most probable supertag
per word in a sentence along with the single most probable dependency arc for this supertag. The
supertags and dependency arcs must be mutually compatible in order to build the derived tree of a
sentence, which means that in many cases predicted 1-best supertags and dependency arcs cannot
be combined to a complete derived tree.

In the present paper we extend the architecture proposed by Kasai et al. (2018) by combining it
with the bottom-up A∗ parsing system ParTAGe developed by Waszczuk (2017) in order to allow
for the full parsing step. Our parsing architecture uses the output from the parser by Kasai et al.
(2018) which is fed into ParTAGe in the subsequent step. For this, we changed the architecture
developed by Kasai et al. (2018) to predict n-best supertags and k-best dependency arcs (for some
arbitrary n and k). This output is then used as the input to the A∗ parser which computes the most
probable combination of supertags and arcs to predict a full derived tree. The original architecture
of ParTAGe, based on weighted deduction rules (see e.g. Nederhof (2003)), was changed in order to
take n-best supertags and k-best dependency arcs as input, since the parser no longer works with
the whole extracted grammar, but has to deal with the supertags and arcs sentence-wise.

Our approach to LTAG parsing takes up on the idea of imposing constraints on the available
dependencies between the LTAG elementary trees for a more efficient parsing, similar to the hy-
pothesis stated in Carroll et al. (1999). In section 5 we show that lowering the number of potential
dependencies between the LTAG supertags improves the speed for parsing of longer sentences (i.e.
sentences with 40 tokens or longer) and reduces the size of the hypergraph created while processing
the parsing chart items.

For our experiments, we extract an LTAG for French along the lines of Bladier et al. (2018c)
from the French Treebank (FTB; Abeillé et al. (2003)). This grammar contains more than 4500
distinct supertags, half of which appear only once in the corpus. The grammar we use was extracted
from 21550 sentences in the current version of the FTB (version 1.0 2016) using the top-down LTAG
extraction algorithm proposed by Xia (1999). A peculiarity of this French LTAG is that it only
requires sister-adjunction and not regular TAG adjunction (i.e., it does not contain TAG’s standard
auxiliary trees where one of the frontier nodes is marked as a foot node). The reason for this decision
is the fact that the FTB trees have a flat structure and do not allow to extract regular TAG auxiliary
trees.

In this paper we show that sufficiently high numbers n of supertags and k of dependency arcs
allow for full parsing for every sentence in the FTB. We also show that our architecture achieves state
of the art labeled evalb F1 score results of 84.36 % on parsing with the test set of the SPMRL (2013)
version of the French Treebank (Seddah et al., 2013). The approach to LTAG parsing presented in
this paper can be extended to different kinds of LTAGs and other grammars consisting of sets of
elementary tree templates, such as for example formalized Role and Reference Grammar (Osswald
and Kallmeyer, 2018).

The paper is structured as follows: Section 2 gives a brief overview of the LTAG theory; section 3
provides a general overview of our architecture and explains the architecture proposed by Kasai
et al. (2018) and our modifications to it. Section 4 describes in detail the changes we made upon the
architecture of ParTAGe (Waszczuk, 2017). We present our experiments and the extracted French
LTAG in section 5. Section 6 provides some error analysis, and we conclude with plans for future
work in section 8.

4
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2. Lexicalized Tree-Adjoining Grammar

Lexicalized Tree-Adjoining Grammar is a linguistically motivated grammar formalism which sup-
ports an extended domain of locality (Joshi and Schabes, 1997). A TAG consists of a finite set of
elementary trees, which can be combined into larger trees via the operations substitution for filling
the argument slots and adjunction for modifier insertion (see an example in Fig. 1a and 1b). In case
of an adjunction an internal node in a tree is replaced with an auxiliary tree, which has a special leaf
node marked with an asterisk (called foot node). When adjoining an auxiliary tree to a node µ, the
subtree with root µ in the old tree is put below the foot node of the auxiliary tree in the resulting
tree. Non-auxiliary elementary trees in LTAG are called initial trees.

Each elementary tree contains (at least) one leaf labeled with a lexical item, its lexical anchor.
For a given derivation, the derivation tree (see Fig. 1c) describes the way the elementary trees are
combined: It contains a node for each elementary tree that has been used and an edge for each
substitution or adjunction that has been performed. Edges are labeled with Gorn addresses of the
target nodes of the respective operation. Because of the property of extended domain of locality in
LTAG, it is possible to state linguistic dependencies between nodes which are further apart in the
final derived tree. For example, the relation between a topicalized constituent and its governor can
be stated locally in a single elementary tree.

NP

Mary

S

NP↓ VP

V

likes

NP↓

VP

AdvP

absolutely

VP*

NP

pizza

(a)

⇒

S

NP

Mary

VP

AdvP

absolutely

VP

V

likes

NP

pizza

(b)

likes

Mary absolutely pizza

1 2 22

(c)

Figure 1: Elementary tree operations (a), a derived tree (b), and a derivation tree (c) in LTAG.

Besides regular adjunction as in Fig. 1a, a simpler type of adjunction for adding modifiers has
also been proposed in the literature, namely sister-adjunction (Rambow et al., 1995), see Fig. 2
for an example. A modifier tree can be added by sister adjunction if its root category matches the
category of the target node. In this case, it adds a new daughter to this node. The result of sister-
adjunction are flatter trees, compared to regular adjunction, since no extra nodes are being added
to the original tree. Regular adjunction is more powerful concerning generative capacity since it can
add two substrings in different places (the spans to the left and the right of the foot node), while
sister adjunction adds only one substring. LTAGs using only substitution and sister-adjunction are
weakly equivalent to CFGs while LTAG in general can generate a larger class of string languages.

VP*

AdvP

absolutely

S

NP↓ VP

V

likes

NP↓

⇒

S

NP↓ VP

AdvP

absolutely

V

likes

NP↓

Figure 2: Sister-adjunction operation and the resulting tree. A sister-adjoining elementary tree is
marked red.
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LTAG grammars for natural languages can be written manually (English XTAG; XTAG Re-
search Group (1998)), also using a metagrammar (French TAG; Crabbé (2005)) or they can be
induced automatically from a treebank using top-down (Xia, 1999) or bottom-up (Chen et al., 2002)
approaches. An LTAG typically includes several thousands of elementary tree templates, i.e. of
unanchored elementary trees (around 4000 on average). About half of them appear only once for
the used treebank. The large number of such supertags makes the task of predicting the correct
supertag sequence difficult and leads to a large difference in parsing performance with gold and
predicted supertags (Chung et al., 2016).

3. LTAG parsing architecture as a pipeline of supertagging, dependency
parsing, and A* parsing

LTAG parsing systems based on supertagging consist of a two-step pipeline including a supertagger
and a subsequent actual parser (Bangalore and Joshi, 1999; Sarkar, 2007). Supertagging is a sequence
labeling task which takes as input a sequence of tokens sinput = (w1, . . . , wn) for each sentence and
outputs a sequence of supertags soutput = (t1, . . . , tn) for this sentence. This sequence of supertags
is used as input for the subsequent actual parsing step, during which the supertags are combined
to a complete derived LTAG tree. In the present paper we use a similar pipeline consisting of the
supertagger and dependency parser developed by Kasai et al. (2018) and an A∗ parser developed by
Waszczuk (2017) for the actual parsing step. Fig. 3 shows the pipeline architecture of our parser.
Note that we modified both the supertagging architecture provided by Kasai et al. (2018) as well as
the A∗ parser by Waszczuk (2017).

Figure 3: Pipeline neural LTAG parsing architecture.

The term ”dependency parser” might be misleading here. The goal of this component is to predict
LTAG derivation trees, which formally are dependency structures (see the example in Fig. 1c). It
means that the parser does not yield syntactic dependencies in the standard sense but edges for
adjunctions and substitutions relating those words whose supertags get combined. Fig. 4 gives an
example of what the output of the supertagger and dependency parser should look like.

Nous prions les cinéastes de nous en excuser .
We ask the filmmakers to us this excuse .

CL

Nous

SENT

VN

CL↓ VN

prions

NP↓ PP↓

NP?

D

les

NP

N

cinéastes

PP

P

de

VPinf↓

CL

nous

CL

en

VPinf

VN

CL↓ CL↓ V

excuser

SENT?

PONCT

.

root

subst

subst

adj

subst

subst

adj

substsubst

Figure 4: A sentence with supertags and labeled dependency arcs. Auxiliary trees are marked red
to distinguish them from initial trees.
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Since supertagging is a sequence labeling problem, a neural network is a good choice for such a
task, since Recurrent Neural Networks (RNN) with their variants such as Long-Short Term Memory
LSTM (Lewis et al., 2016) or Bi-LSTM plus Conditional Random Fields BiLSTM-CRF models
(Le and Haralambous, 2019; Ma and Hovy, 2016) have been proven to deliver state of the art
performance for sequence labeling tasks in the recent years. The graph-based supertagger and
dependency parser developed by Kasai et al. (2018) uses a BiLSTM-based architecture with highway
connections between the layers. The highway connections use gating units to regulate the flow of
information through the neural network in order to reduce the risk of overfitting and improve the
results Srivastava et al. (2015). The neural network model takes as features character embeddings
and pre-trained word embeddings and jointly predicts POS tags, dependency arcs, dependency
labels, and supertags. The supertagger and dependency parser is based on the graph-based parsing
archictecture with deep biaffine attention proposed by Dozat and Manning (2016) (see Fig. 5).

w1 w2 w3
char-CNNs char-CNNs char-CNNs

c1 c2 c3

BiLSTM BiLSTM BiLSTM

POS Stag

arc-dep arc-dep rel-dep arc-head rel-head

Biaffine Biaffine

Word embeddings

Character 
embeddings

 sleeps SUBST 0

NNP (NP (N <>))

ROOT John sleeps

Figure 5: Neural dependency parser for jointly predicting supertags, dependency relations between
supertags, POS-tags, and dependency arc labels (Kasai et al., 2018).

Kasai’s (2018) architecture predicts 1-best supertag for every word in a sentence and 1-best
dependency arc. This is not yet full parsing, since the supertags are not yet combined to a derived
tree. The supertags and arcs have to be mutually compatible in order to produce a full derived tree,
which is, however, not always the case. The left column in Fig. 6 shows an example of a sequence
of predicted supertags which cannot be combined to form a full derived tree, because the supertag
for the word “prions” (line 2) is lacking the substitution slot for the supertags in lines 5 to 9.

We used Kasai’s (2018) parser for our extracted French LTAG and used pre-trained 200-dimensio-
nal word embeddings for French (Fauconnier, 2015). We use the n-best output of Kasai’s architecture
as the input for the ParTAGe parser. Fig. 7 shows a strongly simplified example of an output
of Kasai’s architecture displaying token number, tokens, dependency arcs with probabilities, and
supertags with probabilities (the probabilities are given in float format after the colon). For example,
the verb ‘eats’ is assigned a dependency arc to the root node (id 0) with probability 1.0 and the
two supertags (sent(np)(vp(v �))) and (sent(np)(vp(v �)(np))) with probabilities 0.6 and 0.4
respectively. Among the given n-best supertags and k-best arcs in the input data ParTAGe picks
the most probable combination leading to a full derived tree (as represented in the output section
in the lower part of Fig. 7).

The information about the dependency arcs on the one hand facilitates the actual parsing leading
to a strong decrease in possible parses – as compared to supertagging with no information about the
dependency arcs. But on the other hand it can also be a source of parsing errors. For example, it can
be the case that all supertags are predicted correctly, but cannot be combined due to erroneously
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1-best output (Kasai’s (2018) parser) A∗ parser output (10 best)

line token arc LTAG supertag arc LTAG supertag

1 Nous 2 (CL �) 2 (CL �)
2 prions 0 (SENT (VN (CL ) (V �)) (NP )) 0 (SENT (VN (CL) (V �)) (NP) (PP))
3 nos 4 (NP* (D �)) 4 (NP* (D �))
4 lecteurs 2 (NP (N �)) 2 (NP (N �))
5 de 2 (PP (P �) (VPinf )) 2 (PP (P �) (VPinf))
6 bien 7 (VPinf* (ADV �)) 7 (VPinf* (ADV �))
7 vouloir 5 (VPinf (VN (V �)) (VPinf )) 5 (VPinf (VN (V �)) (VPinf))
8 nous 9 (CL �) 9 (CL �)
9 excuser 7 (VPinf (VN (CL ) (V �))) 7 (VPinf (VN (CL) (V �)))

NO PARSE

SENT

VN

CL

Nous

VN

prions

NP

D

nos

N

lecteurs

PP

P

de

VPinf

ADV

bien

VPinf

VN

V

vouloir

VPinf

VN

CL

nous

V

excuser

Figure 6: The left column shows the output from Kasai et al. (2018) architecture, and the right
column provides the output from our model for the sentence We ask our readers to kindly forgive
us. The 1-best output does not guarantee a full parse. Due to an error in supertag prediction in the
highlighted line 2, the supertags in lines 5 to 9 do not have an attachment site and cannot form a
full derived tree. Our parsing model solves this problem by using 10-best supertags and arcs.

predicted dependency arcs. In section 5 we show that for French LTAG predicting only 1-best
supertag and 1-best arc leads to a fully derived tree in only around 50 % of sentences.

Input

1 John 2:1.0 (NP (N <>)):1.0

2 eats 0:1.0 (SENT (NP) (VP (V <>))):0.6

(SENT (NP) (VP (V <>) (NP))):0.4

3 an 4:0.5|1:0.5 (NP* (D <>)):1.0

4 apple 2:0.5|0:0.5 (NP (N <>)):1.0

Output

1 John 2 (NP (N <>))

2 eats 0 (SENT (NP) (VP (V <>) (NP)))

3 an 4 (NP* (D <>))

4 apple 2 (NP (N <>))

(SENT (NP (N John)) (VP (V eats) (NP (D an) (N apple))))

Figure 7: Input and output (simplified) of the ParTAGe parser.

We changed the architecture of Kasai et al. (2018) by making it predict n-best supertags and
k -best dependency arcs (n, k ≥ 1) and modified the A∗ parsing architecture developed by Waszczuk
(2017) to combine the supertags according to information about dependency arcs to produce a full
derived tree. We experimented with several values for n and k, and it turned out that n = 10 and
k = 10 were the best choices on the development data in order to produce full parses for all sentences
(see a summary of our experiments in Fig. 8).

8

Supertagging and Parsing with Tree Rewriting Grammars 49



k-best stags (FTB, dev set)

n
-b

e
st

a
rc
s 1 2 4 6 8 10

1 968 696 509 448 410 385

5 841 296 53 14 5 2

10 838 276 38 7 2 0

Figure 8: Number of sentences in FTB-dev with no parse as a function of the number of n-best
supertags (columns) and k-best arcs (rows). The values n = 10 and k = 10 are sufficiently high to
obtain full parses for every sentence in the dev set of the French Treebank. These values can vary
depending on the used treebank and the size of the extracted LTAG grammar.

We describe the A∗ parsing step and the changes which have been made upon the original
ParTAGe architecture as described in Waszczuk (2017) in more detail in the next section.

4. A? TAG Parser

Our point of departure is ParTAGe, an A? bottom-up, left-to-right LTAG parser introduced in
Waszczuk et al. (2016b); Waszczuk (2017). The parser relies on the A? algorithm, which allows to
find a most probable derivation – based on the underlying set of weighted deduction rules (Shieber
et al., 1995; Nederhof, 2003) – without exploring the entire parsing chart/hypergraph (Klein and
Manning, 2001). This is possible provided that an appropriate heuristic function is defined, which
serves to estimate the cost of parsing the remaining part of the input sentence at any given point of
the parsing process. The use of the heuristic and the A? algorithm significantly improves the parser’s
efficiency in comparison with the corresponding, purely symbolic parser, which requires creating the
entire parsing hypergraph before a most probable derivation can be extracted.

ParTAGe provides support for weighted TAGs, i.e., TAGs where a non-negative weight is as-
signed to each elementary tree (ET). Such a weighting scheme is suboptimal in that it does not allow
to benefit from the potential knowledge about the bilexical dependencies (i.e. asymmetrical syntac-
tic relations between head tokens and their dependents). The early formalization of probabilistic
TAGs admits their importance – each composition of two (lexicalized) ETs, be it via adjunction or
substitution, incurs the corresponding probability cost (Resnik, 1992). In the context of CCGs, ex-
tending the supertagging-based architecture of Lewis and Steedman (2014); Lewis et al. (2016) with
bilexical probabilities leads to significant improvements in terms of the parsing results (Yoshikawa
et al., 2017).

In this work, we extend ParTAGe1 so as to account for the bilexical affinities within the context
of lexicalized TAGs, which allows to apply it to the output of the neural LTAG parser (Kasai et al.,
2018).

This section is structured as follows. Sec. 4.1 and Sec. 4.2 describe the properties of the TAG
grammar required by the revised parser. In Sec. 4.3, the link between the output of the neural
parser and the A? parser’s input is established. The subsequent sections describe the internals of
the parser. In particular, in Sec. 4.12 the parser’s deduction rules are specified, and in Sec. 4.13 the
A? heuristic tailored to the adopted grammar representation is defined.

4.1 Grammar restrictions

In the new version of ParTAGe, we adopt additional restrictions on the form of the grammar:

• The grammar must be lexicalized, i.e., each ET must contain some terminals in its leaves.

• More specifically, each ET has to have exactly one terminal. Given an ET t, we denote this
terminal as term(t).

1. The code of the revised parser can be found at https://github.com/kawu/partage.
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The point of this limitation is to adapt the parser to handle dependency relations which hold
between terminals (tokens) in the input sentence. In this parsing architecture, tokens and terminals
are synonymous and interchangeable.

4.2 Weighting scheme

In the extended version of ParTAGe, both ETs and dependency links are weighted. More precisely:

• A non-negative weight ω(t) ∈ R≥0 is assigned to each ET t in the grammar.

• A non-negative weight ω(x, y) ∈ R≥0 is assigned to each pair x, y of grammar terminals,
which represents the cost of making y the head of x. This cost applies each time substitution,
adjunction, or sister adjunction is performed.

The weight of a particular derivation is defined as the sum of the weights of the participating
ETs, as in Waszczuk (2017), plus the sum of the weights of the arcs in the derivation tree, i.e., the
weights incurred by the ET combinations. Derivations with lower weights are preferable to those
with higher weights. Parsing thus boils down to finding a lowest-weight derivation among all the
derivations that can be constructed based on the underlying grammar.

4.3 Interface with supertagging and dependency parsing

As described in Sec. 3, the steps preceding A? parsing include (neural) supertagging and dependency
parsing. This means that, for each word in the input sentence, the probability distributions of (i)
the potential supertags, and (ii) the potential dependency heads are provided. These can be easily
transformed to the weighting scheme required by the parser by taking the negative logarithm of the
individual probability values given on input. Figure 9 shows the weighted input grammar presented
in Figure 7 after applying this transformation.

Figure 9: Input grammar from Figure 7 after converting probabilities to weights (enclosed between
square brackets and marked in green). Internal nodes are additionally decorated with a unique IDs.

4.3.1 Input

We define the input sentence as a sequence (si)
n
i=1, where n is the length of the sentence and each

si is a distinct terminal symbol (token). Each terminal must be considered as distinct because, even
if the same word form is used at two positions of the input sentence, the two positions will receive
two distinct distributions of supertags and dependency heads.

4.4 Grammar representation

ParTAGe adopts a two-layered grammar representation in which (a) the set of the grammar ETs
is first transformed to the equivalent directed acyclic graph (DAG), and (b) an automaton-based
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representation is then used to compress the traversals of the individual nodes and their children in
the DAG (from left to right).

In this work, we only assume the first layer of this representation, i.e., the grammar DAG. The
traversals of the individual nodes and their children are represented explicitly via dotted rules. For
simplicity, we assume no subtree sharing (Waszczuk et al., 2016a) in the grammar DAG in our
formalization.2

We define the following auxiliary functions:

• `(N) – the label (non-terminal, terminal, or ε) assigned to node N

• root(N) – predicate which tells if N is a root node

• leaf (N) – predicate which tells if N is a leaf node

• foot(N) – predicate which tells if N is a foot node

• sister(N) – predicate which tells if N is the root of a sister adjunction tree

4.5 Architecture

ParTAGe is based on weighted deduction rules (Shieber et al., 1995; Nederhof, 2003), which serve to
infer chart items. Each chart item is a pair (x, r), where x is a configuration and r is a span. Each
configuration x represents a position in the traversal of the corresponding ET tx, and each span r

represents a fragment of the input sentence. Informally, (x, r) asserts that the already traversed part
of tx can be matched against the words in r.

Additionally, to each item (x, r) a weight is assigned, which is also calculated via deduction rules
and which represents the cumulative weight of the already traversed part of tx. We get back to the
topic of weights in Sec. 4.9.

As mentioned before, ParTAGe is an A? parser, which means that apart from the weights calcu-
lated via the deduction rules, an estimate of the weight remaining to parse the entire input sentence
has to be determined for each chart item (see Sec. 4.13). This allows the parser to explore more
plausible derivations first and find an optimal parse without creating the entire chart.

4.6 Configuration

A parsing configuration x represents a position in the traversal of the corresponding ET tx. It takes
the form of a dotted rule3 N → α • β, where N is a non-leaf node of an ET and αβ is the sequence
of N ’s children nodes (from left to right). The interpretation of the rule N → α•β is that the nodes
in α (on the left of •) are already parsed, i.e., matched against some input words, while the nodes
in β still need to be matched.

We also use N to denote a parsing configuration where all the children nodes α have been matched
against input. While N can be seen as syntactic sugar for N → α• (for some α), the parser makes
a distinction between the two types of parsing configurations and it includes a rule which explicitly
transforms N → α• to N .

4.7 Span

Let pos(n) = {0, . . . , n} be the set of positions between the words of the input sentence. A span is a
4-tuple (i, j, k, l) where i, l ∈ pos(n) and j, k ∈ pos(n) ∪ {−}. If j, k 6= −, i ≤ j ≤ k ≤ l. Otherwise,
i ≤ l. We also write (i, l) to denote (i,−,−, l). The interpretation of the span r depends on the
parsing configuration x accompanying r within a chart item.

2. However, we used subtree sharing among the ETs attached to the same input position in our implementation and
experiments.

3. Not to be confused with a dotted rewriting rule. A dotted rule in our architecture represents a point in the
traversal of a fragment of an ET.
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4.8 Chart item

The presence of the item η = (x, (i, j, k, l)) in the chart asserts that:

• If j = k = −, then x is matched against all the input words between positions i and l.

• Otherwise, x corresponds to an auxiliary ET tx with a foot node. In this case, tx’s foot is
matched against the span (j, k), the processed part of tx on the left of the foot is matched
against (i, j), and the processed part of tx on the right of the foot is matched against (k, l).

If x is a dotted rule, we call η active. Otherwise, if x is a node of an ET, we call it passive.

4.9 Weight pair

To each item η = (x, (i, j, k, l)) in the chart a pair of weights (w,w′) is assigned,4 where w is the
inside weight, i.e., the weight of the inside derivation of η, and w′ is the prediction weight, i.e., the
total weight of the partial derivations used for prediction in η’s inside derivation.

Both w and w′ are calculated directly via deduction rules. The inside weight w corresponds to
the weight of the part of the derivation that is already determined – each full derivation based on η

will have to contain it as its part. In our deduction system, the prediction weight w′ corresponds to
the cost of scanning the words in the gap (j, k) while providing the non-terminal necessary to match
the foot of the auxiliary ET tx. The purpose of w′ is to facilitate the calculation of the A? heuristic
(see Sec. 4.13), which serves to estimate the outside weight, i.e., the weight remaining to parse the
entire input sentence. While the words in the gap are accounted for in the prediction weight w′, the
heuristic has to additionally account for the words on the left of i and on the right of l.

4.10 Scanning cost

To estimate the cost of parsing the remaining part of the sentence, we assume that each word outside
of the current item’s span will be analyzed with the lowest-weight ET and that it will get assigned the
lowest-weight dependency head. This estimation strategy guarantees that the resulting A? heuristic
is admissible, i.e., it never overestimates the cost of parsing the remaining words. We thus define,
for a given token x, the lower-bound cost C(x) as:

C(x) = min{ω(t) : t ∈ T, term(t) = x} + min{ω(x, y) : y ∈ s} (1)

where T is the set of grammar ETs, restricted to supertagging results. The lower-bound cost of
parsing the remaining set of tokens X can be then represented as:

C(X) =
∑

x∈X
C(x) (2)

4.11 Amortized weight

Given a chart item η = (x, r), we define the amortized weight A(x) of x as:

A(x) = ω(tx) + ω(tx, ·) − C(sup(x)),

where ω(tx) is the weight of the ET tx corresponding to x, ω(tx, ·) = min{ω(term(tx), y) : y ∈ s}
is the minimal cost of attaching term(tx) as a dependent to another token in the input sentence,
and C(sup(x)) is the cost of scanning the terminals in tx that remain to be matched (sup(x)). In
practice, sup(x) is either empty (if tx’s anchor is in the already traversed part of the tree) or contains
the tx’s single anchor (we assume that each ET contains precisely one terminal, see Sec. 4.1).

4. We slightly diverge from the terminology used in Nederhof (2003), whose inner weight roughly corresponds to
our inside weight, and forward weight to the sum of our inside and prediction weights.
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Intuitively, A(x) can be understood as the weight of the already parsed part of tx, augmented
with the minimal dependency weight of attaching tx to another tree. Both ω(tx) and (at least)
ω(tx, ·) will have to be accounted for in the total weight of any full derivation based on η. C(sup(x)),
on the other hand, gets discounted because the anchor term(tx) may still be outside of the η’s item
span (i.e., sup(x) = {term(tx)}) and we assume the minimal scanning cost for each remaining token
in the calculation of the heuristic (see Sec. 4.13 below).

4.12 Deduction rules

Table 1 shows the deduction rules of the extended version of ParTAGe, simplified in comparison
with the rules presented previously (Waszczuk et al., 2017) in that no automaton-based grammar
compression is assumed, and extended with two new rules (SA for handling sister adjunction and
EM for empty terminals) as well as support for bilexical dependency weights. AX (axiom) posits that
each subtree can be matched starting from any non-final position in the sentence, which corresponds
to the bottom-up nature of the parser. SC and EM handle scanning input and empty terminals, re-
spectively, while DE (deactivate) handles the situation where a full ET subtree has been matched. PS
is responsible for combining two adjacent fragments of the same ET. SU models regular substitution,
i.e., matching the leaf node of an ET with another, fully matched ET. FA and RA both model regular
adjunction: FA performs predictions in order to identify the spans over which adjunction can be
potentially performed, while RA performs the actual adjunction, i.e., attaching the auxiliary tree to
an internal node of another tree. Finally, SA models sister adjunction, where a fully matched sister
ET is attached to a non-leaf node of another tree.

AX: (0,0) : (N→•α,(i,i))
i∈{0,...,n−1}
N→α is a rule

SC: (w,w′) : (N→α•Mβ,(i,j,k,l))
(w,w′) : (N→αM•β,(i,j,k,l+1))

`(M)=sl+1

EM: (w,w′) : (N→α•Mβ,(i,j,k,l))
(w,w′) : (N→αM•β,(i,j,k,l))

`(M)=ε

DE: (w,w′) : (N→α•,(i,j,k,l))
(w,w′) : (N,(i,j,k,l))

PS:
(w1,w

′

1) : (N→α•Mβ,(i,j,k,l)) (w2,w
′

2) : (M,(l,j′,k′,l′))
(w1+w2,w

′

1
+w′

2
) : (N→αM•β,(i,j⊕j′,k⊕k′,l′))

SU:
(w1,w

′

1) : (N→α•Mβ,(i,j,k,l)) (w2,0) : (R,(l,l′))
(w1+w2+ω(R,N),w′

1
) : (N→αM•β,(i,j,k,l′))

leaf (M) ∧ ¬foot(M)
root(R) ∧ ¬sister(R)

`(M)=`(R)

FA:
(w1,0) : (N→α•Fβ,(i,l)) (w2,w

′

2) : (M,(l,j′,k′,l′))
(w1,w2+w′

2
+A(M)) : (N→αF•β,(i,l,l′,l′))

foot(F ) ∧ `(M)=`(F )
root(M) =⇒ (j′,k′)=(−,−)

¬sister(M)

RA:
(w1,w

′

1) : (R,(i,j,k,l)) (w2,w
′

2) : (M,(j,j′,k′,k))
(w1+w2+ω(R,M),w′

2
) : (M,(i,j′,k′,l))

root(R) ∧ `(R)=`(M)
root(M) =⇒ (j′,k′)=(−,−)

¬sister(M)

SA:
(w1,w

′

1) : (N→α•β,(i,j,k,l)) (w2,0) : (M,(l,l′))
(w1+w2+ω(M,N),w′

1
) : (N→α•β,(i,j,k,l′))

`(M)=`(N) ∧ sister(M)

Table 1: Deduction rules of the revised parser, where (in PS) i⊕j is equal to i if j = − and j otherwise.
To simplify notation, we write ω(M,N) to denote ω(tM ) plus the weight ω(term(tM ), term(tN )) of
the dependency arc combining the corresponding ETs.

Note that the weight ω(tx) of an ET tx is transferred to the inside weight only when tx gets
attached as dependent to another tree (via one of the SU, RA, or SA rules). Firstly, while it could
be more intuitive to transfer ω(tx) to the inside weight already in the axiom rule (AX), the current
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solution composes better with subtree sharing.5 Secondly, the situation where an ET tx becomes
the root of the derivation has to be handled as a special case at the end of parsing. More precisely,
we have to make sure that both ω(tx) and the weight of tx becoming a dependent of the dummy
root position get transferred to the inside weight of the corresponding chart item. For simplicity,
these details are not reflected in the deduction rules in Tab. 1.

4.13 A? heuristic

Given a chart item η = (x, r) such that r = (i, j, k, l) and the corresponding weight pair (w,w′), the
heuristic h (which provides a lower-bound estimate on the cost of parsing the remaining part of the
sentence) is defined as follows:

h(x, r) = A(x) + C(rest(r)) + w′, (3)

where rest(r) is the set of tokens remaining on the left and right of i and l, respectively, and C(rest(r))
is the total minimal cost of scanning each remaining word in rest(r). Note that the minimal possible
cost of scanning the words in the gap (j, k) (provided that j, k 6= −) is accounted for in w′ (see
Sec. 4.9). A(x), on the other hand, represents the weight of the part of tx that has already been
processed, which is not yet transferred to the inside weight (see Sec. 4.11).

The total weight of item η, i.e., the sum of its inside and (estimated) outside weights, is equal
to w +h(x, r). This total weight determines the order in which the created chart items are removed
from the agenda.

4.14 Example

Fig. 10 shows a fragment of the hypergraph constructed when processing the sentence and grammar
presented in Fig. 7 and Fig. 9. Each node represents a chart item and each (hyper)arc represents an
application of a deduction rule (see Tab. 1). Additionally, to each chart item a pair of weights [w;wh]
is assigned (linked to it via a dotted line), where w is the corresponding inside weight (calculated as
prescribed by the deduction rules), and wh – the corresponding value of the heuristic (see Sec. 4.13).
Prediction weights are not shown because, in this example, they are all equal to 0.

4.15 Admissibility and monotonicity

The A? heuristic is admissible if it never overestimates the remaining parsing cost. It is monotonic if
the total parsing cost (w+h(η)) never decreases as new chart items are created. The two properties
guarantee correctness, i.e., that the first final chart item η = (N, (0, n)) : root(N)∧`(N) ∈ S reached
by the parser corresponds to a lowest-weight derivation, where S is the set of start symbols, and
that the inside weight w accompanying η is the corresponding lowest weight.

The heuristic defined in Eq. 3 is both admissible and monotonic within the context of the parser
specified in Tab. 1. Admissibility is virtually by definition – it stems from the assumption adopted in
the heuristic that each remaining word will be matched with the lowest-weight ET and the lowest-
weight dependency head. Monotonicity, on the other hand, can be proved by induction on the
parser’s deduction rules. We provide a formal monotonicity proof, written in Coq, in the ParTAGe’s
code repository. Additionally, the tool provides an optional runtime check, which allows to verify
the monotonicity of the actual implementation each time a new chart item is created.

5. When subtree sharing is used, the parsing configuration x can correspond to several different ETs tx and, therefore,
ω(tx) cannot be uniquely determined.
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Figure 10: Fragment of the hypergraph decorated with the inside and the estimated outside (heuris-
tic values, see Sec. 4.13) weights, generated when processing the input from Fig. 7 and Fig. 9.
The prediction weights (calculated via the deduction rules along the inside weights) are not shown
because, in this example, they are all equal to 0.

5. Evaluation/Experiments

5.1 Dataset: French LTAG and Word Embeddings

In our experiments we use an LTAG for French extracted from the French Treebank (FTB; Abeillé
et al. (2003)). We followed the approach to treebank-based LTAG induction developed by Xia
(1999) and largely adopted parameters reported in Bladier et al. (2018c) for extracting an LTAG
from FTB. Inducing a grammar from a treebank means identifying a set of productions that could
have produced its parse trees. In our case, this amounts to decomposing each treebank tree into a
sequence of elementary trees together with a derivation tree that specifies how the elementary trees
have to be combined.

We use the top-down approach to LTAG induction described in Xia (1999). The main idea of this
approach is to cast the constituency trees in the treebank as derived trees in LTAG. Elementary trees
are extracted in a top-down fashion using percolation tables to identify grammatically obligatory
elements (i.e., complements), optional elements (i.e., modifiers), as well as a head child for each
constituent. Upon marking the nodes in trees as being heads, complements or modifiers, all sub-
trees corresponding to modifiers and complements are extracted forming auxiliary trees and initial
trees, respectively. The head child and its lexical anchor are kept in the tree. When extracted in
this way, elementary trees contain the corresponding lexical anchor and the branches represent a
particular syntactic context of a construction with slots for its complements (Bladier et al., 2018c).

Since several different LTAGs can be extracted from the same treebank depending on the number
of POS-tag and node labels, head and modifier percolation tables as well as the research question,
we adopted the parameters for the French LTAG induction with the most accurate supertagging
results described in Bladier et al. (2018a). We reduced the number of POS tags to 13 and kept most
of the multi-word-expressions (MWEs) in the grammar. We only transformed some of the nominal
MWEs with regular syntactic patterns to regular NP constituents (for example (MWN (A ancien)
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(N élève)) → (NP (AP (A ancien)) (N élève))) in order to keep the size of the grammar low. Table
2 provides some statistics on the extracted LTAG grammar (13 POS tags, including compounds and
including punctuation marks).

Since the trees in FTB have a rather flat structure, the LTAG grammar we use for the experiments
does not have regular adjunction, but sister-adjunction. The resulting LTAG with sister-adjunction
is basically an LTIG Lexicalized Tree Insertion Grammar ; (Schabes and Waters, 1995). Auxiliary
trees in an LTIG do not allow wrapping adjunction or adjunction on the root node but permit
multiple simultaneous adjunction on a single node of initial trees. However, since LTIG is a special
variant of LTAG, we refer to the extracted grammar as LTAG in the remainder of the paper.

Parameters French LTAG

Supertags 5103
Supertags occuring once 2611
POS tags 13
Sentences 21550
Avg. sentence length 29.81

# initial trees 1953
# auxiliary trees 3150

Table 2: Statistics on the extracted French LTAG.

For our experiments, we used the train, dev., and test sets from the French Treebank (version
SPMRL 2013, described in Seddah et al. (2013)) in order to compare with previous work. We
also included additional sentences to the train set from the latest version of the French Treebank
(version 1.0 2016). Thus, our experiment data include 19 080, 1235, and 2541 sentences in the train,
dev., and test set, respectively). We use pre-trained 200-dimensional word embeddings for French
(Fauconnier, 2015) trained on 1.6 billion words in frWaC corpus to transform tokens in our corpus
into numeric vectors. For out-of-vocabulary words, we assign embeddings by random vector.

English LTAG from PTB
(Kasai et al., 2018)

French LTAG from FTB
(our work, dev set)

Parsing Model Stag acc. UAS LAS Stag acc. UAS LAS

BiLSTM3 – 91.75 90.22 – 87.74 82.88
BiLSTM3-CNN – 92.27 90.76 – 88.76 84.68
BiLSTM3-HW-CNN – 92.29 90.71 – 88.52 84.30
BiLSTM4-CNN – 92.11 90.66 – 88.73 84.43
BiLSTM4-HW-CNN – 92.78 91.26 – 88.82 84.62
BiLSTM5-CNN – 92.34 90.77 – 31.94 17.43
BiLSTM5-HW-CNN – 92.64 91.11 – – –
BiLSTM4-CNN-POS – 92.07 90.53 – 89.15 85.15
BiLSTM4-CNN-Stag – 92.15 90.65 – 88.31 84.07
Joint (Stag) 90.51 92.97 91.48 84.05 88.97 84.70
Joint (POS + Stag) 90.67 93.22 91.80 84.91 89.61 85.60

Table 3: Supertagging and dependency parsing experiments and comparison with previous work.
hw and cnn stand for the models with highway connections and the CNN-layer, while the numbers
3, 4 and 5 indicate the number of BiLSTM-layers. Both joint models use 4 BiLSTM layers, CNN,
and the highway connections to predict dependencies along with supertags or POS tags + supertags,
respectively. Our French results show a similar pattern to the reported results for English (Kasai
et al., 2018).
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5.2 Supertagging and Dependency Parsing Experiments

The pipeline of the tree parsing models based on supertagging consists of the step of choosing the
sequences of supertags and dependency arcs and a subsequent actual parsing step. Supertagging is
beneficial for parsing, since it disambiguates many choices before applying the costly actual parsing
step. The problem of choosing the correct supertags, however, remains the bottleneck for such
parsing models, meaning that the accuracy of the pipeline is strongly dependent on this step (Lewis
et al., 2016). Thus, following the experiments reported in Kasai et al. (2018), we run several
experiments with different parameters on the French LTAG to make sure we get the best results
on predicting the supertags and dependency arcs. We used BiLSTM-models including 3, 4, and 5

NP∗

PONCT

(

NP

COORD

NP

N

Normandie

NP

N↓

Figure 11: Attachment ambiguity:
the tree on the left can be attached
to both NP nodes in the tree for
Normandie.

hidden layers, with and without the CNN layer, and highway
connections. We compare our results on French with previous
work on English to prove that the parsing models show similar
behaviour for both languages with the Joint (POS + Stag)
model showing the best results (see Table 3).

The parsing models BiLSTM4-CNN-POS and BiLSTM4-
CNN-Stag are pipeline models which use predicted POS and
supertags as features for the system. The two joint models
(Join Stag and Joint POS + Stag) predict either only stags or
also POS tags and supertags together with dependency arcs
and labels using only word and character features as input.
The results of our supertagging and dependency parsing ex-
periments are summarized in Table 3. The BiLSTM-models in
this table predict only dependency arcs, while the joint mod-
els predict dependency arcs, labels of dependency arcs, supertags and also POS tags. We clus-
tered 27 original dependency labels provided in the FTB data to 6 more general labels (’suj’, ’obj’,
’oblique arg’, ’adj’, ’subst’, and ’root’ ). We used the best parameters from the previous experiments
(4 layers, CNN layer for character embeddings, highway connections) for the joint model, which
proved to provide the most accurate predictions.

In addition, we also run an experiment with gold data using our modified A? parsing algorithm
for LTAGs. For this experiment we used gold supertags and dependency arcs from the extracted
French LTAG. The experiments show the parsing accuracy of 99,4 % (see Table 4). The accuracy
is not 100 % even with the gold supertags and gold dependency arcs data. The reason for the
lacking 0,6 % are the attachment ambiguities: Kasai’s parser does not predict the Gorn addresses
of the nodes in the elementary trees where the substitution or adjunction takes place. Lack of this
information leads to an attachment ambiguity in cases where an initial tree has two different nodes
with the same label on which the adjunction can take place (see an example in Fig. 11).

gold supertags and arcs

dev dev ≤ 25

Exactly matching sentences 88.50 95.61
POS accuracy 100.00 100.00
Labeled Recall 99.40 99.60
Labeled Precision 99.40 99.60
Labeled F1 99.40 99.60

# sentences 1235 501

Table 4: Parsing results with ParTAGe on gold data on the full set of sentences and on the sentences
with less than 25 tokens.
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5.3 A* LTAG Parsing Experiments

Finally, we carried out experiments with 10-best supertags and 10-best arcs on the FTB SPMRL
(2013) Seddah et al. (2013) test set, which showed that ParTAGe is able to find a combination of
suitable supertags and dependency arcs to produce full derived trees for every sentence (see Table 5).
In comparison, taking the 1-best output allowed to produce a complete derivation only in around
50% of sentences in this dataset. We also measured the labeled evalb F1-score on the resulting
constituency trees, excluding punctuation, which showed that our system achieves close to state-of-
the-art results on FTB, although lower than the LSTM-based parser with self-attention developed
by Kitaev and Klein (2018).

Note that the labeled F1 only evaluates the resulting derived trees with respect to the treebank
trees. Our parser, however, outputs also information on which tree fragments constitute elementary
trees and how they combine with each other. This additional syntactic information has been claimed
to be useful for semantic tasks that require knowledge about predicate-argument relations such as
semantic role labeling (Liu and Sarkar, 2009).

1-best output
(supertagger

output)

10-best output
(with arcs)

10-best output
(no arcs)

test test test ≤ 25 test test ≤ 25

Unlabeled Attachment Score (UAS) 88.54 88.76 91.35 84.17 89.07
Supertagging accuracy 81.22 81.37 82.93 81.35 83.04
Sentences 100% correct stags + arcs: 13.81 14.44 30.16 12.08 26.26
# sentences without parse 1215 (47.82%) 0 (0%)

Exactly matching parses – 21.68 41.77 17.83 36.40
Labeled F1 (our parser) – 84.36 88.02 73.97 82.51
# sentences 2541 2541 1154 2541 1154

F1 Best Neural Parser (Cross and Huang, 2016), no punc. 83.11
F1 Best Top-Down Parser (Stern et al., 2017), no punc. 82.23
F1 LSTM Self-Attention (Kitaev and Klein, 2018), with punc. 84.06
F1 Multiling. BiLSTM (Coavoux and Crabbé, 2017), with punc. 82.49

Table 5: Results with ParTAGe parsing on predicted data (10-best columns) compared to the
supertagger output (1-best column) and other parsing systems. We measured the results on parsing
with 10-best predicted LTAG supertags including and excluding predicted dependency arcs. The
results are provided for the full set of sentences and for the sentences with less than 25 tokens on
the test set of SPMRL French Treebank (Seddah et al., 2013). We measured our results without
counting punctuation marks. We use the coarse-grained POS tags provided in the SPMRL data and
do not include function labels into our evaluations.

In the 10-best output (no arcs) column in Tab. 5, we additionally present the results when
ParTAGe uses the distributions of supertags but ignores information about dependencies provided
on input. In this case, the system achieves comparable supertagging accuracy, but at the cost of sig-
nificantly lower UAS and F1 results. In particular, the almost 10% drop in F1 shows how important
the dependency-related information is for the results of constituency parsing in this architecture. Be-
sides, dependency-related information can also reduce the parsing time and the size of the resulting
hypergraph, as shown in Fig. 12a and Fig. 12b, respectively.

6. Error Analysis

In the previous section we have shown that using 1-best supertags and 1-best dependency arcs
is not sufficient for full LTAG parsing, while a 10-best input to the A∗ parsing model yields a
parse for every sentence in the test and development set. Although every sentence now gets a full
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(a) (b)

Figure 12: Reduction of the parsing time and the number of hypergraph edges due to dependency
information (dev set, 10-best output for sentences with length < 80.)

parse, the unlabeled attachment score (UAS) and labeled attachment score (LAS) results as well as
results on supertagging improved only slightly compared to the (1-best) output of the original neural
architecture of the supertagger and dependency parser by Kasai et al. (2018), while the supertagging
results using dependency arcs got slightly worse. The difference in both metrics is small because the
algorithm of ParTAGe searches for mutually compatible supertags and arcs to combine them to a
full derived tree, and thus might pick not the correct supertags for the sentence but the compatible
ones depending on their weights. More precisely, due to this compatibility requirement, an error
in one place (incorrect supertag or incorrect dependency arc) oftentimes leads to further errors in
order to retrieve a correct derivation tree. Thus, prediction of the supertags and arcs remains the
bottleneck of the parsing architecture.

MWP

P↓N↓P

aux N

côtés

P

de

Figure 13: Flat supertags composing the
multiword preposition aux côtés de.

As we have seen, the results for English are better than
the ones for French (see Table 3). One reason for this is
probably the size of the training data for both languages
(39 561 PTB sentences for English versus 19 080 FTB
sentences for French). Furthermore, the average sentence
length in the PTB (23.90 tokens) is lower than the one
in the FTB (29.81 tokens), which makes the prediction of
dependency arcs slightly harder for the French data.

A large number of supertagging errors for French are
due to different possible attachment sites for punctuation
marks. Punctuation marks are attached to the corresponding constituents and not to the root
node of the whole sentence. However, punctuation marks help to identify possible constituents in
sentences and omitting them does not substantially improve supertagging (Bladier et al., 2018c).
PP attachments are another major source of errors while predicting supertags with French LTAGs.
The supertagger encounters difficulties with classifying PPs as modifiers or complements, since FTB
in the majority of cases does not offer additional function marks to distinguish these two. The
supertagger also encounters problems with identifying the correct site for attaching the PPs to
a node in the syntactic tree. Another major source of errors are the flat multi-word expressions
encountered in the FTB, which lead to a high number of flat elementary trees and produce noise in
the training data. See an example for the multi-word preposition aux côtés de (”alongside (with)”)
in Table 6 and the corresponding supertags in Fig. 13.
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Gold supertag Predicted supertag Example

(NP* (PP (P �) (NP↓ ))) (PP* (PP (P �) (NP↓ ))) apprentissage des enfants
(NP* (PONCT �)) (SENT* (PONCT �)) -LRB- 66,7 % -RRB-

(N �) (NP (N �)) aux côtés de Volvo
(NP (N �)) (NP (N �) (NP↓ )) aux partenaires du montage

(SENT (NP↓ ) (VN (V �))) (AP (A �)) des chômeurs sont inscrits

Table 6: Most common error classes for LTAG supertagging with French Treebank (sent and ponct
stand for sentence and punctuation).

Table 7 shows the F1-scores for parsing of the 10 most frequent types of constituents in FTB.
NP is the most frequent constituent in the FTB. Parsing NPs shows a relatively low F1 score, the
reason for which is a diverse inner structure of NPs in French Treebank, which allows NPs to consist
of differently structured subtrees including the problematic PP-subtrees. Thus, NPs can consist of
a big variety of different supertags. This makes the prediction of the correct supertags hard, and
supertagging errors are then oftentimes subsequently reflected in the resulting constituency tree.

Structural diversity of daughter nodes is also the reason of parsing errors for Sint and Srel
constituents (i.e. final clauses in FTB). Note that parsing errors in NP constituents percolate to
other constituents which contain them, for example PP, COORD (coordinating constituents), and
Sint or Ssub (i.e. internal or subordinate clauses). Prediction of supertags for NPs can be potentially
facilitated by using heuristic rules to make the inner structures of the subtrees constituting NPs more
regular. In addition to this, the errors in parsing PP constituents result from the attachment to a
wrong node in the tree, which is a result of errors in supertag prediction.

label frequency recall precision F1

(any) 100.00 84.82 83.90 84.36

NP 34.97 87.61 83.23 85.36
PP 20.39 88.54 79.19 83.60
VN 11.67 96.66 97.49 97.07
AP 5.74 93.60 71.81 81.27
SENT 5.02 100.00 100.00 100.00
VP 4.87 83.41 84.61 84.00
COORD 3.56 89.12 89.12 89.12
MWN 3.01 80.43 82.33 81.37
Sint 2.41 78.13 78.91 78.52
Srel 1.56 88.97 87.31 88.14

Table 7: Results of evaluating the pipeline parsing system on the test set, overall and for the 10
most frequent constituent labels. The scores are labeled EVALB scores.

7. Conclusions

We present a novel architecture for LTAG parsing based on the pipeline of a neural supertagger and
dependency parser proposed by Kasai et al. (2018) and a modified A* based LTAG parsing algorithm
ParTAGe implemented by Waszczuk (2017). We modified the supertagging model to produce n-best
supertags and k-best arcs instead of 1-best output. This output is used as the input for the second
step of the parsing pipeline. We also modified the A* based parser ParTAGe (Waszczuk, 2017) to
be able to process n-best dependency arcs.

We have shown that the 1-best predicted supertags and 1-best predicted dependency relations
between supertags are not sufficient do produce a full parse (i.e. full LTAG derived tree) for a large
number of sentence. However, a sufficient large number of n and k has proven to be enough for
obtaining full parsing trees on our data with our architecture.
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We tested our architecture on an LTAG extracted automatically from the French Treebank
(FTB). Our architecture shows comparable results to other parsers for French. Adding information
on dependency arcs along with the information on supertags considerably reduces ambiguity for the
actual parsing step. We have shown that adding information on dependency arcs to the original
architecture of the A* based parser ParTAGe greatly decreases the parsing time and the number of
possible parses for every tree.

8. Future Work

The parsing approach presented in this paper can be used for several kinds of LTAGs for different
languages. In our follow up work we plan to extract different LTAG grammars for English, Polish
and Dutch and to test our architecture on these grammars. We also intend to induce our own LTAG
from the Penn Treebank (allowing both sister adjunction and regular adjunction), since the existing
LTAGs (Chen et al., 2006; Xia, 1999) do not produce the original derived trees from the treebanks,
but introduce extra nodes due to the binarization arising from adjoining regular auxiliary trees in
LTAG, which contain a footnode. We will extract our grammars for Polish and Dutch from the
existing treebanks Sk ladnica (Woliński et al., 2011) and LASSY (Van Noord et al., 2013).

Besides using LTAG, we also plan to apply the approach presented in this paper to statistical
parsing with Role and Reference Grammar (RRG; Van Valin and LaPolla (1997); Van Valin Jr
(2005)). RRG is a grammar theory that has recently been formlized as a tree-rewriting formalism in
the style of LTAG (Kallmeyer et al., 2013; Osswald and Kallmeyer, 2018), except that it has slightly
different composition operation, namely an additional wrapping operation besides substitution and
sister adjunction. For this work we will use RRGbank (Bladier et al., 2018b), an RRG-based version
of the PTB, and we have to adapt ParTAGe in order to support wrapping.
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Abstract

We describe an approach to statistical parsing with Tree-Wrapping Grammars (TWG). TWG is a

tree-rewriting formalism which includes the tree-combination operations of substitution, sister-

adjunction and tree-wrapping substitution. TWGs can be extracted from constituency treebanks

and aim at representing long distance dependencies (LDDs) in a linguistically adequate way. We

present a parsing algorithm for TWGs based on neural supertagging and A∗ parsing. We extract a

TWG for English from the treebanks for Role and Reference Grammar and discuss first parsing

results with this grammar.

1 Introduction

We present a statistical parsing approach for Tree-Wrapping Grammar (TWG) (Kallmeyer et al., 2013).

TWG is a grammar formalism closely related to Tree-Adjoining Grammar (TAG) (Joshi and Schabes,

1997), which was originally developed with regard to the formalization of the typologically oriented Role

and Reference Grammar (RRG) (Van Valin and LaPolla, 1997; Van Valin Jr, 2005). TWG allows for,

among others, a more linguistically adequate representation of long distance dependencies (LDDs) in

sentences, such as topicalization or long distance wh-movement. In the present paper we show a grammar

extraction algorithm for TWG, propose a TWG parser, and discuss parsing results for the grammar

extracted from the RRG treebanks RRGbank and RRGparbank1 (Bladier et al., 2018).

Similarly to TAG, TWG has the elementary tree combination operations of substitution and sister-

adjunction. Additionally, TWG includes the operation of tree-wrapping substitution, which accounts

for preserving the connection between the parts of the discontinuous constituents. Operations similar to

tree-wrapping substitution were proposed by (Rambow et al., 1995) as subsertion in D-Tree Grammars

(DTG) and by (Rambow et al., 2001) as generalized substitution in D-Tree substitution grammar (DSG).

To our best knowledge, no statistical parsing approach was proposed for DTG or DSG. An approach to

symbolic parsing for TWGs with edge features was proposed in (Arps et al., 2019). In this work, we

propose a statistical parsing approach for TWG and extend the pipeline based on supertagging and A∗

algorithm (Waszczuk, 2017; Bladier et al., 2019) originally developed for TAG to be applied to TWG.

The contributions of the paper are the following: 1) We present the first approach to statistical parsing

for Tree-Wrapping Grammars. 2) We propose an extraction algorithm for TWGs based on the algorithm

developed for TAG by (Xia, 1999). 3) We extend and modify the neural A? TAG-parser (Waszczuk, 2017;

Kasai et al., 2018; Bladier et al., 2019) to handle the operation of tree-wrapping substitution.

2 Long distance dependencies and wrapping substitution in TWG

TWGs consist of elementary trees which can be combined using the operations a) substitution (replacing a

leaf node with a tree), b) sister adjunction (adding a new daughter to an internal node) and c) tree-wrapping

substitution (adding a tree with a d(ominance)-edge by substituting the lower part of the d-edge for a leaf

node and merging the upper node of the d-edge with the root of the target tree, see Fig. 1). The latter is

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

1https://rrgbank.phil.hhu.de, https://rrgparbank.phil.hhu.de
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used to capture long distance dependencies (LDDs), see the wh-movement in Fig. 1. Here, the left tree

with the d-edge (depicted as a dashed edge) gets split; the lower part fills a substitution slot while the

upper part merges with the root of the target tree. TWG is more powerful than TAG (Kallmeyer, 2016).

The reason is that a) TWG allows for more than one wrapping substitution stretching across specific nodes

in the derived tree and b) the two target nodes of a wrapping substitution (the substitution node and the

root node) need not come from the same elementary tree, which makes wrapping non-local compared to

adjunction in TAG.

CLAUSE

CORE

NUC

V

remember

NP

PRO

you

PrCS

NPwh

PROwh

What

CLAUSE

CORE

COREdo you think

CLAUSE

CORE

CORE

NUC

V

remember

NP

PRO

you

do you think

PrCS

NPwh

PROwh

What

RRG categories:

NUC = predicate

CORE = NUC + non-extracted argum.

CLAUSE = CORE + extracted argum.

;

Figure 1: Tree-wrapping substitution for the sentence “What do you think you remember” with long-

distance wh-movement.

Linguistic phenomena leading to LDD differ across languages. Among LDDs in English are some cases

of extraction of a phrase to a non-canonical position with respect to its head, which is typically fronting in

English (Candito and Seddah, 2012). We identified the following LDD variants in our data which can be

captured with tree-wrapping substitution: long-distance relativization, long-distance wh-movement, and

long-distance topicalization, which we discuss in Section 6.2 LDD cases are rather rare in the data, which

is partly due to the RRG analysis of operators such as modals, which do not embed CORE constituents

(in contrast to, for example, the analyses in the Penn Treebank). Only 0,11 % of tokens in our experiment

data (including punctuation) are dislocated from their canonical position in sentence to form an LDD.

This number is on a par with 0,16 % of tokens reported by (Candito and Seddah, 2012) for French data.

3 Statistical Parsing with TWGs

The proposed A? TWG parser3 is a direct extension of the simpler A? TAG parser described in (Waszczuk,

2017). The parser is specified in terms of weighted deduction rules (Shieber et al., 1995; Nederhof, 2003)

and can be also seen as a weighted variant of the symbolic TWG parser (Arps et al., 2019). As in (Bladier

et al., 2019), both TWG elementary trees (supertags) and dependency links are weighted, a schema also

used in A? CCG parsing (Yoshikawa et al., 2017). These weights come directly from a neural supertagger

and dependency parser, similar to the one proposed by (Kasai et al., 2018). Parsing consists then in finding

a best-weight derivation among the derivations that can be constructed based on the deduction rules for a

given sentence.

Figure 2: Pipeline of our neural statistical TWG parsing architecture.

The supertagger takes on input a sequence of word embeddings4 (xi)
n
i=1, to which a 2-layer BiLSTM

transducer is applied to provide the contextualized word representations (hi)
n
i=1, common to all subsequent

tasks: POS tagging, TWG supertagging, and dependency parsing. On top of that, we apply two additional

2Another potential LDD cases in English are it-clefts (for example “It was the uncertainty that Mr Lorin feared”). Although
we have not found this LDD variant in our data, our parsing method will work for these cases as well.

3The parser, the TWG extraction code and the recipes to reproduce the experiments described in this paper are available at
https://github.com/TaniaBladier/Statistical_TWG_Parsing.

4In our experiments (see Sec. 5), we used fastText (Bojanowski et al., 2016) to obtain the word vector representation.
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2-layer BiLSTM transducers in order to obtain the supertag- and dependency-specific word representations:

(h
(sup)
1 , . . . , h(sup)n ) = BiLSTMs(h1, . . . , hn) (1)

(h
(dep)
1 , . . . , h(dep)n ) = BiLSTMd(h1, . . . , hn) (2)

The supertag-specific representations are used to predict both supertags and POS tags (POS tagging is a

purely auxiliary task, since POS tags are fully determined by the supertags):

Pr(sup(i)) = softmax(Linears(h
(sup)
i )) (3)

Pr(pos(i)) = softmax(Linearp(h
(sup)
i )) (4)

Finally, the dependency parsing component is based on biaffine scoring (Dozat and Manning, 2017), in

which the head and dependent representations are obtained by applying two feed-forward networks to

the dependency-specific word representations, hdi = FFhd(h
(dep)
i ) and dpi = FFdp(h

(dep)
i ). The score of

word j becoming the head of word i is then defined as:

φ(i, j) = dpTi M hdj + bThdj , (5)

where M is a matrix and b is a bias vector.5

Extending the TAG parser to TWG involved adapting the weighted deduction rules to handle wrapping

substitution as well as updating the corresponding implementation with appropriate index structures to

speed up querying the chart. The A? heuristic is practically unchanged and it is both admissible (by

construction) and monotonic (checked at run time), which guarantees that the first derivation found by

the parser is the one with the best weight. The scheme of our parsing architecture is shown in Fig. 2.

In Appendix A we provide details on modifications we have applied to the A? parser to handle the

tree-wrapping substitution.

4 TWG extraction

To extract a TWG from RRGbank and RRGparbank, we adapt the top-down grammar extraction algorithm

developed by (Xia, 1999) for TAG. While inital and sister-adjoining trees can be extracted following

this algorithm, we added a new procedure to extract d-edge trees for wrapping substitution operation.

Extraction of initial and sister-adjoining elementary trees requires manually defined percolation tables

for marking head and modifier nodes. In order to extract d-edge elementary trees for LDDs, dependent

constituents need to be marked prior to TWG extraction. In RRGbank and RRGparbank the constituents

belonging to LDDs are indicated with features PRED-ID and NUC-ID and an index. These indicated parts

alongside with the mother node are extracted to form a single tree with a dominance link (d-edge) (see for

instance the elementary tree for “What to say” in Fig. 3). The remaining nodes plus the duplicated mother

node and a substitution slot form the target tree, for example the tree for “I’m trying” in Fig. 3. Please find

a more detailed formal description of our extraction algorithm along with a link to the percolation tables

in Appendix B.

CLAUSE
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V
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I’m trying
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NPwh
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CORECORE

I’m trying

CLAUSE

CORE

NUC
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say

CLM

to

PrCS

NPwh

What

;

Figure 3: Extraction of a target tree and an elementary tree with a dominance edge (marked with dotted

line). The nodes with PRED-ID and NUC-ID in the left tree identify the components of the LDD.

5The head representation hd0 of the dummy root node is a parameter in this architecture.
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5 Data and Parsing Experiments

Parameters TWG

Supertags 3125

Supertags occuring once 1858

Avg. sentence length 10.97

Sentences 7656

# initial trees 1527

# sister-adjoining trees 1549

# d-edge trees 49

Table 1: Statistics on the extracted TWG.

We have taken the gold and silver data from RRGbank and

the English part of RRGparbank6. The data is split in a train

and a test set. We have taken 10 % of the sentences from the

train set to create a dev. set. Thus, our train, dev. and test sets

include 4960, 551, and 2145 trees, respectively. There are 46

constituents with LDDs in the train set, 5 in the dev. set and

27 in the test set. We extracted a TWG from this data and

present in Table 1 statistics on the elementary tree templates

(supertags) in the TWG.

We compare the parsing results with the parser DiscoDOP (van Cranenburgh and Bod, 2013) which

is based on the discontinuous data-oriented parsing model. We also compare our results with the state-

of-the-art transition-based parser Discoparset (Coavoux and Cohen, 2019). We evaluated7 the overall

performance of the parsers and also analyzed how well all three systems predict LDDs (see Tables 2

and 3). Unrelated to LDDs, the treebanks contain crossing branches (e.g., for operators and modifiers).

Prior to TWG extraction, we decross these while keeping track of the transformation in order to be able

to reverse it. For parsing with DiscoDOP and Discoparset, we added crossing branches for all LDDs.

To evaluate LDD prediction with DiscoDOP and Discoparset we counted how many crossing branches

were established in parsed trees. For ParTAGe we counted the LDD predictions as correct whenever the

predicted supertags and dependencies indicated that the long distance element would be substituted to

the elementary tree of the corresponding predicate. We counted partially correct LDDs in both parsing

architectures as correctly predicted as long as the connection between the predicate and the fronted

element was predicted.

DiscoDOP Discoparset ParTAGe
ParTAGe
gold POS

dev test dev test dev test dev test

Unlabeled Attachment Score – – – – 87.74 87.67 85.13 84.64
Supertagging accuracy – – – – 74.25 75.81 77.50 77.52

POS-tagging accuracy 92.02 93.25 94.24(+3.04) 94.92(+2.69) 94.63 95.07 100.00 100.00
Exactly matching parses 29.04 32.87 28.68(+8.89) 28.30(+13.19) 36.12 38.32 38.64 38.73
Labeled F1 79.26 80.96 83.57(+6.83) 84.56(+6.39) 85.26 85.26 85.54 85.84
# sentences with parses 551 2145 551 2145 551 2145 546(−5) 2120(−25)

Table 2: Parsing results compared with DiscoDOP (van Cranenburgh et al., 2016) and Discoparset

(Coavoux and Cohen, 2019). In case of Discoparset, the numbers in subscript represent the relative gain

provided by BERT (Devlin et al., 2019) used in neither DiscoDOP nor ParTAGe experiments.

6 Error analysis for LDD prediction

We evaluated the performance of our parsing architecture with regard to the labeled F1-score and

we also focused on prediction of the LDDs (see Tables 2 and 3). The results show that ParTAGe

Predicted LDDs DiscoDOP Discoparset ParTAGe

test test test
test

(gold POS)

# true positives 13 14 22 18
# false positives 7 0 0 0
# false negatives 14 13 5 9

Table 3: Prediction of LDDs on test data.

predicted the LDDs in the test data

more accurately than the compared

parsers. Please note that LDDs are

generally rare in the corpus data and

that we also had only about 5000 sen-

tences in the training data.

Some mistakes resulted from the

wrong prediction of a POS tag which

6Gold annotated data means that data were annotated and approved by at least two annotators of RRGbank or RRGparbank
and silver data means an annotation by one linguist.

7We use the evaluation parameters distributed together with DiscoDOP for constituency parsing evaluation. Our evaluation
file is available at https://github.com/TaniaBladier/Statistical_TWG_Parsing/blob/main/experiments/eval.prm.
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leads to the parser confusing an LDD constituent with a construction without LDD. For example, in (1),

the word “is” should have POS tag V, but the parsing system erroneously labels it as AUX (= auxiliary)

and thus interprets the wh-element as a predicate. In order to check our assumption about POS tags

as a source of error, we have run an experiment in which we presented the parser with gold POS tags.

Although this additional information helped to rule out the LDD errors in (1), restriction of the available

supertags introduced new errors in LDD predictions (see Table 3) and also was the reason why some

sentences could not be parsed (as shown in Table 2).

(1) a. What is one to think of all this? (is tagged AUX instead of V)

b. [. . . ] which he told her to place on her tongue (which tagged CLM instead of PRO-REL)

In some cases where the relative or wh phrase of the LDD is an adjunct, as in (2), the parser incorrectly

attaches it higher, taking it to be a modifier of the embedding verb.

(2) And why do you imagine that we bring people to this place?

Cases where the embedding verb also has a strong tendency to take a wh-element as argument sometimes

get parsed incorrectly: In (3), which is analysed as an argument of said.

(3) [. . . ] slip of paper which they said was the bill

7 Conclusions and Outlook

We have presented a statistical parsing algorithm for parsing Tree-Wrapping Grammar - a grammar for-

malism inspired by TAG which aims at linguistically better representations of long distance dependencies.

The LDDs in TWG are represented in a single elementary tree called d-edge tree which is combined with

the target tree using tree-wrapping substitution. This operation allows to simultaneously put both parts of

a discontinuous constituent to the corresponding slots of the target tree. We have extracted a TWG for

English from two RRG treebanks and have compared our parsing experiments with the parser DiscoDOP

based on the DOP parsing model and with the transition-based parser Discoparset. We have evaluated our

parser on prediction of LDDs and could achieve more accurate results than the compared parsers.

In our future work we plan to explore TWG extraction and parsing for different languages, since the

linguistic phenomena leading to LDDs vary across the languages. In particular, we have already started to

work on extraction of TWGs for German and French. We plan to apply our TWG extraction and parsing

algorithm to other constituency treebanks, for example French Treebank (Abeillé et al., 2003). We also

plan to implement a slightly extended version of tree wrapping substitution which would allow to place

the parts of discontinuous constituents in various slots between the nodes of the target tree.
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Appendix A. Specification of the TWG parser

AX: (0,∅) : (N→•α,i,i,[])
i∈{0,...,n−1}
N→α is a rule

SC:
(w,m) : (N→α•Mβ,i,j,Γ)

(w,m) : (N→αM•β,i,j+1,Γ)
`(M)=sj+1

DE:
(w,m) : (N→α•,i,j,Γ)
(w,m) : (N,i,j,Γ,ws?)

ws?=yes ⇐⇒ dnode(N)

CS:
(w1,m1) : (N→α•Mβ,i,j,Γ1) (w2,m2) : (M,j,k,Γ2,no)

(w1+w2,m1⊕m2) : (N→αM•β,i,k,Γ1⊕Γ2)

SU:
(w1,m1) : (N→α•Mβ,i,j,Γ1) (w2,m2) : (R,j,k,Γ2,no)
(w1+w2+ω(R,N),m1⊕m2) : (N→αM•β,i,k,Γ1⊕Γ2)

leaf (M)
root(R) ∧ ¬sister(R)

`(M)=`(R)

SA:
(w1,m1) : (N→α•β,i,j,Γ1) (w2,m2) : (M,j,k,Γ2,no)
(w1+w2+ω(M,N),m1⊕m2) : (N→α•β,i,k,Γ1⊕Γ2)

`(M)=`(N) ∧ sister(M)
¬sister(N)

PW:
(w1,m1) : (N→α•Mβ,i,j,Γ1) (w2,m2) : (D,j,k,Γ2,yes)

(w1,m1[j⇒w2+sum(m2)+A(D)]) : (N→αM•β,i,k,Γ1⊕[(j,k,`(D))])
leaf (M)

`(M)=`(D)

CW:
(w1,m1) : (R,i,j,Γ1⊕[(f1,f2,y)]⊕Γ2,ws?) (w2,m2) : (D,f1,f2,Γ3,yes)

(w1+w2+ω(R,D),m1[f1⇒⊥]⊕m2) : (D,i,j,Γ1⊕Γ3⊕Γ2,no)

root(R) ∧ y=`(D)
`(parent(D))=`(R)

¬sister(R)

Table 4: Weighted deduction rules of the TWG parser

Our TWG parser is specified in terms of weighted deduction rules (Shieber et al., 1995; Nederhof,

2003). Each deduction rule (see Table 4) takes the form of a set of antecedent items, presented above the

horizontal line, from which the consequent item (below the horizontal line) can be deduced, provided that

the corresponding conditions (on the right) are satisfied. The specification of the TWG parser consists

of 8 deduction rules which constitute a blend of the TAG parser (Bladier et al., 2019) with the symbolic

TWG parser (Arps et al., 2019). Here, we assume familiarity with both these parsers and limit ourselves

to explaining the features specific to the statistical TWG parser.

Weights. A pair (w,m) is assigned to each chart item via deduction rules, where w is the inside weight,

i.e., the weight of the inside derivation, and m is a map assigning weights to the individual gaps in the

corresponding gap list Γ. Since each gap in Γ can be uniquely identified by its starting position, we use

the starting positions as keys in m. The need to use a map (dictionary) data structure instead of a single

scalar value, as in the TAG parser, stems from the CW rule (complete wrapping), in which the calculation

of the resulting weight map requires removing the weight corresponding to the gap (f1, f2, y).
We use ∅ to denote an empty map, m[x ⇒ y] to denote m with y assigned to x, m[x ⇒ ⊥] to denote

m with x removed from the set of keys (together with the corresponding value), and sum(m) to denote

the sum of values (weights) in the map m. We also re-use the concatenation operator ⊕ to represent map

union. Whenever map union is used (m1 ⊕m2), the sets of keys of the two map arguments (m1 and m2)

are guaranteed to be disjoint (an invariant which can be proved by induction over the deduction rules).

Heuristic. Given a chart item η = (x, i, j,Γ) with the corresponding weights (w,m), the TWG A?

heuristic (which provides a lower-bound estimate on the cost of parsing the remaining part of the sentence)

is a straightforward generalization of the TAG A? heuristic used by (Bladier et al., 2019). In particular, it

accounts for the total minimal cost of scanning each word outside the span (i, j), as well as the words

remaining in the gaps in Γ. Thus, in constrast with the TAG heuristic, since there can be many gaps in Γ,

the sum of the weights in the map m has to be accounted for.
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Appendix B. TWG extraction algorithm

1. Decross tree branches. First, for local discontinuous constituents (for instance NUCs consisting

of a verb and a particle in German), we split the constituent into two components (e.g., NUC1 and

NUC2), both attached to the mother of the original discontinuous node.

Second, if a tree τ still has crossing branches, the tree is traversed top-down from left to right and

among its subtrees those trees are identified whose root labels contain one of the following strings:

OP-, -PERI, -TNS, CDP, or VOC. For each such subtree γ in question with r being its root, we choose

the highest node v below the next left8 sibling of r such that the rightmost leaf dominated by v

immediately precedes the leftmost leaf dominated by r. If r and v are not yet siblings, γ is reattached

to the parent of v. If the subtree in question has no left siblings, it is reattached to the right in a

corresponding way. After this step, it should be checked if the tree τ still contains crossing branches.

If yes, the process of decrossing branches is continued by applying the steps above to the next subtree

in question.

2. Extract LDDs. Then we traverse each tree τ in a top-down left-to-right fashion and check for each

subtree of τ whether it contains the following special markings for LDDs in its root label: PREDID=,

NUCID= or REF=. The indexes identify the parts of the NLD which belong together. In case of an

LDD, the parts of the minimal subtree which contain both parts of the LDD are extracted within a

single tree with a d-edge (see the multicomponent NUC and CORE in Figure 3). The substitution

site and the mother node are added to the remaining subtree in order to mark the nodes on which the

wrapping substitution takes place (see Figure 3).

After this step, an empty agenda is created and the extracted tree chunks and the pruned tree τ with

the remaining nodes are placed into the agenda.

3. Extract initial and sister-adjoining trees. If no agenda with tree chunks was created in the previous

step, an empty agenda is created in this step and the entire tree τ is placed into it. Each tree chunk in

the agenda is traversed and the percolation tables9 are used to decide for each subtree τ1 . . . τn in the

tree chunk whether it is a head, a complement or a modifier with respect to its parent. Initial trees for

identified complements and sister-adjoining trees for identified modifiers are extracted recursively in

the top-down fashion until each elementary tree has exactly one anchor site.

Initial trees are extracted as follows: If a node of a subtree is identified as a complement, it is

removed from the parent tree and the parent node is marked as a substitution slot. In order to extract

sister-adjoining trees for identified modifier subtrees, the parent node of the subtree is copied and

added as the new root node of the elementary tree with a special marking * on the root label.

8A node v1 is left to another node v2 if the leftmost leaf dominated by v1 is left of the leftmost leaf dominated by v2.
9Please find the code for our TWG extraction algorithm along with the percolation tables for head and modifier distinction in

this repository: https://github.com/TaniaBladier/Statistical_TWG_Parsing.
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ABSTRACT

This paper presents RRGbank, a corpus of syntactic trees from the Penn Treebank automatically
converted to syntactic structures following Role and Reference Grammar (RRG). RRGbank is
the first large linguistic resource in the RRG community and can be used in data-driven and
data-oriented downstream linguistic applications. We show challenges encountered while con-
verting PTB trees to RRG structures, introduce our annotation tool, and evaluate the automatic
conversion process.

KEYWORDS: Role and Reference Grammar, RRG, treebank conversion, Penn Treebank.
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1 Introduction

Wide empirical coverage is a touchstone for every grammatical theory. Treebanks have been
widely used as training material for data-driven parsing approaches, data-oriented language pro-
cessing, statistical linguistic studies, or machine learning throughout the last decades. However,
no large linguistic resource exists for the framework of Role and Reference Grammar (RRG; Van
Valin and LaPolla, 1997; Van Valin, 2005) so far. In this paper we describe the development of
the first annotated corpus of RRG structures1 created through (semi-)automatic conversion of
the Penn Treebank.

Providing a treebank resource to the RRG community will be useful for several reasons: (i) it
will be a valuable resource for corpus-based investigations in the context of linguistic modeling
using RRG and in the context of formalizing RRG, which is needed for a precise understanding
of the theory and for using it in NLP contexts. Efforts towards a formalization of RRG as a
tree-rewriting grammar have already been made recently (Kallmeyer et al., 2013; Kallmeyer,
2016; Kallmeyer and Osswald, 2017). (ii) In the context of implementing precision grammars, at
least for English, an RRG treebank is useful for testing the grammar and evaluating its coverage.
(iii) It will enable supervised data-driven approaches to RRG parsing (grammar induction and
probabilistic parsing). (iv) Finally, and more immediately, the specification of the treebank
transformation yields valuable new insights into RRG analyses of English syntax — since, even
though RRG has covered a large range of typologically different languages, compared to other
theories, English has not been considered much.

Since manual annotation is very time-consuming, we decided to (semi-)automatically derive
RRGbank from an existing treebank. For this, we chose the Penn Treebank (PTB; Marcus et al.,
1993) because of its large size and and availability of additional layers such as OntoNotes (Hovy
et al., 2006) which may be used to enrich RRGbank in the future. The PTB has been used in
the past, among others, for deriving CCGbank, a corpus of Combinatory Categorial Grammar
derivations (Hockenmaier and Steedman, 2007). We decided to start from the original PTB
rather than CCGbank because its phrase structure trees are more similar to RRG than CCG
derivations, and to avoid possible compounding of errors in automatic conversion. A different
route to creating treebanks is taken by the LinGO Redwoods and ParGram approaches to dynamic
treebanking for HPSG and LFG, respectively (Oepen et al., 2004; Flickinger et al., 2012; Sulger
et al., 2013). These projects made use of manually developed grammars and parsers for the
grammar formalisms in question, and then manually checked and selected the best output
among all possible outputs. This is not an option for RRGbank at the moment because no
wide-coverage computational grammar for RRG is available yet, but it may be a possible avenue
in the future, after such a grammar has been extracted from RRGbank.

2 Syntactic Structures in Role and Reference Grammar

2.1 Brief Overview of RRG

RRG is intended to serve as an explanatory theory of grammar as well as a descriptive framework
for field researchers. It is a functional theory of grammar which is strongly inspired by typological
concerns and which aims at integrating syntactic, semantic and pragmatic levels of description
(Van Valin, 2005, 2010). In RRG, there is a direct mapping between the semantic and syntactic
representations of a sentence, unmediated by any kind of abstract syntactic representations. In
particular, RRG is a strictly non-transformational theory and therefore does not make use of

1A demo version of the treebank is awailable at rrgbank.phil.hhu.de.
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Figure 1: Representation of periphery, operator projection and clause-linkage-markers (CLMs) in standard

RRG structures (left-hand side) and our notational variant (right-hand side).

traces and the like; there is only a single syntactic representation for a sentence that corresponds
to its actual form. The mapping between the syntactic and semantic representations is subject
to an elaborate system of linking constraints. For the purposes of the present paper, only the
syntactic side of the representations is taken into account.

A key assumption of the RRG approach to syntactic analysis is a layered structure of the clause:
The core layer consists of the nucleus, which specifies the (verbal) predicate, and its arguments.
The clause layer contains the core plus extracted arguments, and each of the layers can have a
periphery for attaching adjuncts (as shown for example in Figure 1). Another important feature
of RRG is the separate representation of operators, which are closed-class morphosyntactic
elements for encoding tense, modality, aspect, etc. Operators attach to those layers over which
they take semantic scope. Since the surface order of the operators relative to arguments and
adjuncts is much less transparent and often requires crossing branches, RRG represents the
constituent structure and the operator structure as different projections of the clause (usually
drawn above and below the sentence, respectively).

2.2 Tree Annotation Format for RRG Syntactic Structures

The standard data structure for constituent treebank annotations is trees, specifically, a single
tree per sentence whose leaves are the tokens and whose structure and constituent and edge
labels depend on the concrete annotation scheme. Many computational tools that process and
use treebanks, such as query engines and parsers, rely on this format. By contrast, the usual
notation for RRG syntactic structures departs from it in two ways (cf. Van Valin, 2005, 2010).
Firstly, there are two trees per sentence, the constituent projection and the operator projection.
A second idiosyncratic element is the use of arrows (instead of edges) for attaching peripheral
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constituents (adjuncts) and clause linkage markers (CLMs), as well as the operators in the
operator projection.

SENTENCE

CLAUSE

CORE

NUC

V

likes

NP

She

ADVP-PERI

evidently

NP

syntax

Figure 2: Periphery with crossing branches

in RRG.

To resolve this discrepancy, we adopt a notational vari-
ant in which each RRG structure is represented as a
single tree, exemplified in the right half of Figure 1.
Firstly, note that the spine of the operator projection al-
ways mirrors that of the constituent projection. We thus
simply identify the corresponding nodes (such as the
CLAUSE, CORE, NUC and V nodes in the example) and
attach operators in the same tree as other constituents.
Secondly, we represent arrows as ordinary edges (and
eliminate PERIPHERY nodes), whereby the roots of op-
erators, peripheries and clause linkage markers become
daughters of the nodes they attach to (see the TNS, CLM and AP nodes in the example). In order
to still distinguish operators and peripheries, we decorate the labels of their roots with -OP and
-PERI, respectively. Clause linkage markers are already distinguished by the root label CLM. As
a result, we obtain trees that sometimes have crossing branches, resulting from operator scope
(see Figure 1 on the right) or from adjunct scope (see Figure 2).

3 From Penn Treebank to RRGbank

We transform PTB annotations into RRG annotations by iteratively combining automatic con-
version with manual correction. The process is sketched in Figure 3. We started with a small
sample of sentences from the PTB (n= 16). Annotators with RRG expertise annotated these
sentences from scratch with RRG trees, without looking at the PTB annotation, resulting in a
small validation treebank. We then developed a conversion algorithm which transforms PTB
trees into RRG trees. This development was error-driven, that is, the algorithm was improved
step by step until its output was identical to the gold standard annotation.

validation
treebank

conversion
algorithm

error-driven development

conversion and manual correction

Figure 3: Annotation through itera-

tive conversion and correction.

We then used the developed algorithm to convert a larger
sample (n = 100) of PTB trees to RRG.2 The resulting “silver-
standard” annotation was checked and corrected by annota-
tors, using a click/drag/drop-based interface we developed,
shown in Figure 7.3 Correcting silver-standard data is less
time-consuming than annotating from scratch; thus in this
way we were able to increase the size of our validation tree-
bank iteratively. After this step the set of conversion rules
was updated again in order to correctly convert the entire
new set of sentences. We plan to repeat the process of manual tree correction and updating the
set of conversion rules to increase it further.

In the following subsections, we motivate and describe the conversion algorithm in more detail.

2The sentences were selected randomly from Sections 02–21 of the PTB, but we excluded sentences that contained
fragmentary constituents (marked FRAG) or were longer than 25 tokens.

3See rrgbank.phil.hhu.de for a set of demo sentences.
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3.1 Differences between PTB Trees and RRG Structures

We illustrate some important differences between PTB and RRG syntactic structures in Figure 4:
First, the PTB assumes a separate VP projection inside clauses which does not include the subject,
whereas RRG groups the subject together with other arguments in the core. This is due to RRG’s
semantic approach to argument realization. Second, while the PTB treats auxiliaries similarly
to other verbs, RRG treats them as operators and attaches them according to their semantic
scope. Copulas are the exception to this, as RRG attaches them within the core, signalling the
following element to be the nucleus.
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Figure 4: An example of a sentence from PTB (left tree) converted to RRG (right tree).

Third, the PTB uses traces to mark non-local dependencies whereas RRG has no such notion
(the trace and the corresponding constituent in the PTB are marked with numbers, as shown in
Figure 4 on the left-hand side). Fourth, adjuncts and other non-arguments like the adjective
heavy in the example are analyzed as peripheries in RRG. Note that attachment of operators
(as in Figure 4) and peripheries (as in Figure 2) according to their semantic scope can lead to
crossing branches in RRG structures, which never occur in the PTB. Figure 5 shows the rules
which were used for the conversion.

a

NNP

NP-SBJ-1
→

a

N

NUCN

COREN

NP

+

a b

NP-SBJ-1

VBD VBD

VP

S

VP

S

→

SENTENCE

CLAUSE

CORE

NP NUC

V

b

CORETNS-OP

a

+

+

*trace* a b

NP-SBJ TO VB

VP

NP-PRD

VP

S

→

CORE

CLM

a

NUC

NPAUX

b

+

a b

JJ NNS

NP-PRD
→

a b

A

NUCA

COREA

AP-PERI NUCN

N

COREN

NP

Figure 5: Conversion rules used for the sentence from Figure 4.
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3.2 Outline of the Conversion Algorithm

The conversion algorithm was developed in an error-driven way, as outlined above. To each
tree, the algorithm applies a series of rules. Each rule applies to specific constituents and may
introduce, remove and relabel nodes. We started this conversion process by defining rules for
the most frequent constituent types, with the aim of covering the whole treebank.

3.2.1 Conversion Algorithm: Regular Transformation Rules

In order to convert the PTB trees to RRG structures we created a relatively small set of general
transformation rules applicable to all constituents of the same type throughout the PTB corpus.
Some of these rules convert constituents with exactly one child node (Figure 6a). Other rules are
used to convert larger constituents. For example, the rule in Figure 6b rewrites a basic sentence
with a transitive verb to an RRG structure. Figure 6c shows one of the rules for transforming
topicalized constituents to a left-detached position (LDP) in RRG.
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Figure 6: Three examples of conversion rules for PTB trees.

Figure 7: The annotation interface.
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3.2.2 Problematic Cases for Conversion

The majority of the constituents in the PTB can be transformed with a small set of transformation
rules, described in the previous section. However, the conversion process also revealed some
systematic sources of conversion mistakes, among which are the following.

Annotation inconsistencies or errors in the PTB. In the example in Figure 8, a noun network

is erroneously annotated as a verb. In such cases of annotation inconsistencies in the PTB,
we do not introduce special conversions rules, since they would become too specific and only
applicable for this particular sentence.

complained to network executives

VBD TO VB NNS

NP

PP-CLR

VP

complained to network executives

V

NUC

P V N

NUCN

NP

COREN

PP-PERI

COREP

NUC

Figure 8: Errors in the PTB annotation.

Underspecific annotation in the PTB. In some cases, a deterministic conversion from PTB to
RRG annotations is not possible because RRG makes distinctions that the PTB does not (always)
make. One case in point is the negation operator not, which is always attached as an adverb
inside a VP in the PTB, but can be attached to different layers in RRG depending on its semantic
scope (see Figures 9). The RRG analysis provided in the middle tree on Figure 9 displays the
case of internal negation with the possible readings “Japan is not a political country (but Belgium
is)” or also “Japan is not a political country (it is a cultural one)”. External negation however,
negates the proposition as a whole, so the sentence displayed in the right tree in Figure 9 can
be read as “It is not the case, that Japan is a political country”.
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Figure 9: Difficult constructions in RRG: scope of negation in the PTB and in RRG.

Moreover, the trees in Penn Treebank and RRG structures are not deterministically related. That
is, similar tree structures in the PTB might require different analyses in RRG. Figures 10 and
11 display the difference between two juncture types in RRG. Figure 10 shows the case of core

cosubordination, in which the cores share their operators, while operator sharing is not required
for coordinated cores (Figure 11).
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Figure 10: Core cosubordination.

S

NP

VP
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S

VP
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VB
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VP
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SENTENCE

CLAUSE

CORE CORE

NP NUC

N V

production seems

CLM AUX NUC

V

to be slackening

Figure 11: Core coordination.

RRG also differentiates between restrictive and non-restrictive relative clauses (see Figures
12 and 13). Restrictive relative clauses restrict the possible referents of the modified nominal
expression by specifying information about them.

NP

NP

DT

a

NN

trader

SBAR

who...

NP

COREN

NUCN

N

trader

DEF-OP

a

CLAUSE-PERI

who...

Figure 12: Restrictive relative clause.

Non-restrictive relative clauses, usually separated by a comma, encode additional information
about a referent which is already unambiguously identifiable.

NP

NP

NNP

Mr.

NNP

DaPuzzo

SBAR

who...

,

,

NP

COREN

NUCN

N

DaPuzzo

N

Mr.

CLAUSE-PERI

who...

,

,

Figure 13: Non-restrictive relative clause.

Another example of underspecification in the Penn Treebank is the distinction between argument
(non-pheripheral) PPs, which are to be labeled PP, and adjunct (peripheral) PPs, which are to be
labeled PP-PERI. In some cases, functional labels in the PTB (for example, PP-TMP for temporal
PPs or PP-DIR for directional PPs) indicate adjuncthood, while in other cases, the PTB provides

Proceedings of the 17th International Workshop on Treebanks and Linguistic Theories (TLT 2018); Linköping Electronic Conference Proceedings #155 [page 12 of 207]

Building the Role and Reference Grammar Treebanks 83



no such marking (compare, for example, the PP attachments in Figures 8 and 14).

Open questions in the theory of RRG. The process of converting PTB trees to RRG structures
also reveals a number of under-investigated issues within RRG. An example is treatment of
quantifier phrases (QPs). In particular, the PTB treats various kinds of constituents as QPs which
can be headed by different lexical categories. The analysis of quantifiers differs in RRG, where
some elements are analyzed as operators and others as peripheries. In such cases, we decided
to leave problematic constituents unchanged until sufficient linguistic analysis is provided (see
Figure 14).

NP

NP

DT

a

NN

trading

NN

range

PP

IN

of

NP

QP

$

$

CD

1.19

TO

to

$

$

CD

1.34

NP

DEF-OP

a

COREN

NUCN

N

trading

N

range

PP-PERI

COREP

NUCP

P

of

NP

QP

$

$

N

NUCN

CD

1.19

CLM

to

$

$

CD

1.34

Figure 14: An open question in RRG: Quantifier phrases (marked with dashed lines).

4 Evaluation

We evaluate our conversion algorithm in terms of completeness and correctness.

Our algorithm finds an output tree for every input tree from the Penn Treebank. We measure the
completeness of conversion as the ratio of nodes in a tree that have a label in the RRG label set.
Because the PTB and RRG share some labels (e.g., NP, PP), this measure is nonzero even before
conversion. Applied to WSJ Sections 02–21 of the Penn Treebank, completeness is currently
25.0% before conversion and 97.1% after conversion.

To measure correctness, we apply the algorithm to our validation treebank. This currently
contains 100 RRG structures that have been manually corrected by one annotator. We are in
the process of increasing this number to at least 500 and repeating the correction process with
a second annotator to compute inter-annotator agreement and perform arbitration. In Table 1,
we provide a preliminary evaluation of our conversion algorithm by comparing its output to the
100 corrected structures. We measure correctness in terms of shared labeled bracketings (the
EVALB measure) of the automatic output and the annotated test set.

We also evaluated our conversion algorithm on different constituents since some of them turned
out to be more problematic for the automatic conversion than the others. Table 1 provides
an overview of the conversion scores for different constituents. Among the most problematic
rewriting rules are those which are used to convert the constituents to highly complex structures
in the framework of RRG (for example, CORE, NUC or CORE_N). These structures can include
different elements and exhibit different arrangements of these elements (compare, for example,
the RRG structures in Figures 1, 2 and 8). By contrast, constituents such as CORE_A or NUC_ADV
tend to be non-problematic for the conversion since their structure is either highly predictable
(CORE_A (A )) or is clearly indicated by the corresponding labels in the PTB (for example, ADVP

Proceedings of the 17th International Workshop on Treebanks and Linguistic Theories (TLT 2018); Linköping Electronic Conference Proceedings #155 [page 13 of 207]

Building the Role and Reference Grammar Treebanks 84



label frequency recall precision F1

(any) 100.00 91.18 90.21 90.69

NP 14.74 96.04 95.40 95.72
CORE_N 14.48 90.36 89.16 89.76
NUC_N 13.89 91.36 86.31 88.76
CORE 6.49 75.00 77.32 76.14
NUC 6.49 87.50 87.06 87.28
CLAUSE 5.19 78.75 86.90 82.62
NUC_P 5.16 100.00 98.15 99.07
PP 5.13 97.47 96.86 97.16
CORE_P 5.13 97.47 96.86 97.16
AP 3.80 90.60 92.17 91.38
CORE_A 3.73 93.91 93.10 93.51
NUC_A 3.73 97.39 96.55 96.97
ROOT 3.25 100.00 100.00 100.00
ADVP 2.30 81.69 96.67 88.55
NUC_ADV 2.21 100.00 95.77 97.84
CORE_ADV 2.21 92.65 88.73 90.60

Table 1: Preliminary results of evaluating the conversion algorithm on our 100-sentence validation corpus,

overall and for the 15 most frequent constituent labels. The scores are labeled EVALB scores.

for adverbial phrases).

5 Conclusion

This paper reports on ongoing efforts towards creating a treebank for Role and Reference
Grammar, a grammar theory that is widely used in typological research and that adopts a
view on grammar as a complex system of syntax, semantics, morhpology, and information
structure. We concentrate on the syntactic analyses assumed in RRG, and we first proposed a
tree-based representation structure for them. We then started an iterative process of annotating
PTB sentences with RRG structures, developing rules for an automatic transformation of PTB
trees into RRG trees, and then feeding back information about errors on the gold data into
the development of transformation rules. We plan to continue this cycle of annotation, rule
development and testing for some time.

The work presented here will lead to RRGbank, an RRG annotation of the PTB. RRGbank will be
the first large linguistic resource in the RRG community. It opens up new possibilities for using
RRG in natural language processing (grammar implementation, grammar induction, data-driven
parsing, semantic parsing when adding for instance the semantic information from PropBank
etc.). Furthermore, the development of RRGbank will also lead to new insights about how
to analyze certain constructions in English within RRG, and the treebank will be a valuable
resource for empirical, corpus-based investigations of RRG structures.

We also plan to explore treebanks available in the framework of the Universal Dependencies
project (Nivre et al., 2016) for conversion to RRG structures. An advantage of using Universal
Dependencies is the coverage of many languages along with a uniform labeling while taking
into consideration linguistic peculiarities of each language.

The transformation tool will be made available and, in addition, we plan to provide RRGbank
via the Linguistic Data Consortium (LDC) as an alternative annotation layer to the PTB.
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Abstract

This paper describes the first release of RRGparbank, a multilingual parallel treebank for Role and Reference Grammar (RRG)

that contains annotations of George Orwell’s novel 1984 and its translations. The release comprises the entire novel for English

and a constructionally diverse, parallel ªseedº sample for German, French, Russian, and Farsi. The paper gives an overview of

the annotation decisions taken and describes the adopted treebanking methodology. As a possible application, a multilingual

parser is trained on the treebank data. RRGparbank is one of the first resources for which RRG has been applied to large

amounts of real-world data. It enables comparative and typological corpus studies in RRG and creates new possibilities of

data-driven NLP applications based on RRG.

Keywords: Syntax, Treebank, Parallel Corpus, Role and Reference Grammar, English, German, French, Russian, Farsi

1. Introduction

Role and Reference Grammar (RRG) (Van Valin and

LaPolla, 1997; Van Valin, 2005; Van Valin, 2010) has

been proposed as a theory of grammar with an empha-

sis on typological adequacy. More recently, RRG has

also been studied from the perspective of formal and

computational linguistics: A formalization of RRG has

been proposed in (Kallmeyer et al., 2013; Osswald and

Kallmeyer, 2018), based on which a symbolic parser

for precision grammars has been developed (Arps et

al., 2019). Moreover, there have been recent initiatives

for creating treebanks for RRG (Bladier et al., 2018;

Chiarcos and FÈath, 2019).

In this paper, we present the first release of RRG-

parbank, a multilingual parallel treebank for RRG,

based on George Orwell’s novel 1984 and transla-

tions thereof.1 RRGparbank is the first effort to apply

RRG to a parallel large-scale corpus, making RRG us-

able as a framework for data-driven NLP and corpus-

linguistic research. We expect the parallel nature of

the treebank to make it especially useful for compara-

tive and typological studies, for which RRG has been

designed. Applying RRG to large amounts of real

data has raised (and already helped answer) a number

of questions about the details of RRG analyses which

were previously undefined. We have used several inno-

vative techniques to make treebanking efficient, includ-

ing rule-based conversion from Universal Dependen-

cies to RRG (Evang et al., 2021) and statistical parsing

as starting points for annotation, as well as incremen-

tal improvements of these starting points with human

annotators in the loop. We make the resulting treebank

available with various download and search options.

In this paper, we give a brief introduction to RRG

(Section 2), describe our treebanking methodology and

1RRGparbank is available at:

https://rrgparbank.phil.hhu.de

highlight important aspects of the annotation guide-

lines we developed (Section 3), describe the released

resource and tools (Section 4), and demonstrate statis-

tical parsing as one possible use of an RRG treebank

(Section 5).

2. Role and Reference Grammar

2.1. Background

Role and Reference Grammar (RRG) is a functional

theory of grammar whose development has been

strongly driven by the investigation of typologically

varied languages. RRG aims at integrating syn-

tactic, semantic and pragmatic levels of description

which are related to each other by the ªlinking sys-

temº, an elaborate system of linguistic rules and con-

straints (Van Valin and LaPolla, 1997; Van Valin, 2005;

Van Valin, 2010). Since the focus of RRGparbank

is primarily on syntactic annotation, RRG’s syntax-

semantics-pragmatics interface will not be discussed

here in more detail.

A key syntactic concept of RRG is the ªlayered struc-

ture of the clauseº comprising the layers nucleus, core

and clause. The nucleus encodes the main predicate,

the core consists of the nucleus and the syntactic re-

alizations of the predicate’s arguments, and the clause

includes the core plus extracted arguments. Each layer

can be accompanied by peripheral structures for at-

taching adjuncts. For instance, in a verbal constituent,

aspectual modifiers attach to the nucleus, locative and

temporal modifiers attach to the core, while modal ad-

verbials attach to the clause. The layered structure

is not restricted to verbal phrases but applies also to

constituents headed by other elements such as nouns,

prepositions, etc.

Closed-class morphosyntactic elements for encoding

tense, modality, aspect, or definiteness, among others,

are referred to as operators in RRG. They attach to the
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layers over which they take scope, and it is a crucial

assumption of RRG that the surface ordering of the op-

erators is aligned with the height of their attachment

site. Since the surface order of the operators relative to

arguments and adjuncts would often require crossing

branches in the syntactic representations, RRG consid-

ers the constituent structure and the operator structure

as different syntactic projections of the clause.

Concerning the structure of complex sentences, RRG

draws not only a distinction between embedded, depen-

dent structures (subordinations) and non-embedded,

independent ones (coordinations), but assumes in ad-

dition non-embedded dependent structures, so-called

cosubordinations. Cosubordinate structures have the

general form [[ ]X [ ]X]X. In such constructions, oper-

ators that apply to category X are usually realized only

once but have scope over both constituents. An ex-

ample for a CORE cosubordination is en-23042, Pre-

sumably [[she could be trusted]CORE [to find a safe

place]CORE]CORE, where we have a modal operator

(could) that is part of the first CORE but scopes also

over the second. The three different nexus types can oc-

cur at all layers. For instance, English resultative con-

structions such as tore open in He tore open a corner

of the packet (en-2889) are analyzed as nuclear cosub-

ordinations since they function as complex predicates.

By comparison, raising constructions like He seemed

to know the place (en-1788) are generally analyzed as

core coordinations.

2.2. Formalization

The syntactic annotations in RRGparbank build on the

formalized version of RRG proposed by Kallmeyer and

Osswald (2017) and Osswald and Kallmeyer (2018)

(see also Kallmeyer et al. (2013)). An important dif-

ference between the structures used in this formaliza-

tion and the syntactic representations found in RRG

textbooks is that operators are integrated into the con-

stituent projection. They are attached where they take

scope, e.g., tense attaches at the CLAUSE level and

negation attaches for instance at the CORE level, see

Figure 1. The attachment of operators and also of mod-

ifiers (periphery structures in RRG) can lead to crossing

branches.

The proposed formalization treats RRG as a Tree

Wrapping Grammar (TWG), which is based on a tree-

rewriting formalism in the spirit of Tree Adjoining

Grammar (Joshi and Schabes, 1997). A TWG con-

sists of a finite set of elementary trees that can be com-

bined by the following three basic operations: (simple)

substitution (replacing a leaf by a new tree); sister ad-

junction (adding a new tree as a subtree to an internal

node); and wrapping substitution (splitting the new tree

at a dominance-edge, filling a substitution node with

the lower part and adding the upper part to the root of

the target tree). For more details on this formalization,

2Throughout the paper, L-n is used as id for sentence num-

ber n in language L in RRGparbank.

CLAUSE

CORE

NUC

V

matter

OPneg

not

OPtns

did

NP

COREN

NUCN

N

patrols

OPdef

The

Figure 1: Examples of definiteness, tense and negation

operators (en-28)

see Kallmeyer et al. (2013; Osswald and Kallmeyer

(2018). While not directly relevant to the annotation

task per se, viewing RRG as a TWG allows us to ex-

tract grammars from the annotated corpora, which in

turn can be employed for parsing purposes (see Sec-

tion 5), and which was also used for selecting the seed

data (see Section 4.5).

3. Annotation

3.1. Annotation pipeline

We provide annotators with initial, automatically cre-

ated trees for all sentences, which they then correct us-

ing a web-based annotation interface (see Figure. 2).3

For creating the initial trees, we first parsed the sen-

tences with an off-the-shelf Universal Dependencies

parser and converted them to RRG using a rule-based

algorithm (Evang et al., 2021). Later, as annotators pro-

duced enough corrected annotations to train a statisti-

cal parser (see Section 5), we started to use the results

of this parser instead for selected languages because it

provided more accurate syntactic structures 4.

In total, 11 annotators were involved in creating the

data in the release described in this paper. They were

presented with sentences pre-annotated using the au-

tomatically generated trees, corrected them using the

drag-and-drop web interface, and finally marked their

version as correct. Annotators do not see each other’s

annotations. A tree marked correct by at least one an-

notator has silver status (the release includes the latest

silver tree in such cases).

Some of the annotators (who are RRG experts) are also

allowed to sign in using a special judge account, where

they can see all annotations, and a diff view highlight-

ing the parts of trees where annotations differ (i.e.,

3The first prototype of the interface was implemented by

Andreas van Cranenburgh using components of his disco-dop

framework (van Cranenburgh et al., 2016).
4Evang et al. (2021) showed that a statistical parser starts

to outperform the rule-based conversion algorithm from UD

dependencies to RRG structures at about 2000 training sen-

tences for English. Although a further fine-tuning of the rule-

based approach is possible, it would not be practical due to a

large number of additional required rules.
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Figure 2: The drag-and-drop annotation interface of RRGparbank (view as judge)
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Figure 3: Cumulative quarterly inter-annotator f-score

from January 2020 to March 2022, overall (solid curve)

and for sentences with disagreements (dashed curve).

inter-annotator disagreements). The judge then has to

decide which annotation decisions are the correct ones

and create a final authoritative tree (based on the latest

silver tree) using the normal tree editing operations. A

tree marked correct by the judge has gold status. When

it is not clear how to resolve a disagreement, the sen-

tence is discussed between annotators at regular adju-

dication meetings before being marked as gold.

In the beginning, each sentence was annotated by at

least two annotators before being judged. As annota-

tors gained more experience and the guidelines were

extended to cover more cases explicitly, we gradually

moved to a more speedy annotation workflow where

the expert annotators were allowed to use the judge ac-

count to directly mark a single annotation (that is not

their own) as gold in easier cases, i.e., where they feel

the existing annotation is clearly correct. They could

also correct small, trivial annotation mistakes (for in-

stance, deleting a second NP node below a first one

with just a unary branch between the two). However,

if, beyond that, they disagreed with something in the

annotation, they were again instructed to create an al-

ternative annotation using their regular annotator ac-

count, and leave the judging to another annotator. This

workflow speeded up the annotation process consider-

ably without sacrificing too many checks and balances

compared to the complete workflow with at least two

annotators and one judge. Between 30% (for Rus-

sian) and 60% (for English) of all released gold sen-

tences have at least two annotations (see Section 4 for

details). For these sentence pairs, we have an over-

all inter-annotator agreement of 91.04% measured as

EVALB f-score (Collins, 1997). In Figure 3, we show

cumulative agreement over time, binned by quarter.

The solid curve represents overall agreement, count-

ing sentences where the second annotator accepted the

first annotation as agreeing perfectly. The dashed curve

considers only sentences where a second annotation

was provided. Overall agreement starts at 96.2% and

goes down to 95.3% over time, as the ªeasy casesº

tended to be annotated early. For sentences with two

annotations, agreement starts at 89.1% and goes up to
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almost 91% as annotation guidelines got more fleshed

out and annotators gained experience. In order to find

out whether the possibility for the second annotator to

start from the first annotation unduly biases them, we

also compared agreement in the month before and af-

ter this possibility was introduced, finding no dramatic

difference (87.64% to 89.88%).

3.2. Selected phenomena

RRGparbank, along with RRGbank (Bladier et al.,

2018), a previous RRG treebank of text from the Penn

Treebank, also annotated by our group, is the first en-

deavour to annotate large amounts of corpus data with

RRG structures. The only other electronic syntactic

RRG resource is that of Chiarcos and FÈath (2019)5, a

corpus consisting of 351 examples from the textbook of

Van Valin and LaPolla (1997). In contrast to them, we

were faced with a variety of constructions that RRG

had not considered so far, which means that, besides

annotating, we also had to take numerous decisions

concerning syntactic analyses in RRG.

For a detailed description of the annotation decisions,

see the guidelines available on the treebank website. In

the following, we discuss a few interesting questions

that came up during the annotation process.

Copula constructions. Most copula constructions

feature a verb (usually ‘to be’) annotated as AUX (aux-

iliary). It is placed under NUC and is thus one of the

predicating parts. It can also bear some operator fea-

tures, e.g., tense, aspect, or modality. The other part of

the predicate (mostly AP, PP, NP, or participle) is also

dependent on the NUC. There is no auxiliary in the

present tense in Russian, so the only predicating part

and the only descendant of the NUC is the non-verbal

constituent.

Discontinuous structures. Discontinuities (i.e.,

crossing branches) can arise in the treebank trees due

to elements belonging to a higher layer but being

positioned between elements belonging to a lower

layer. These can be not only operators or periphery

elements (as mentioned above) but also arguments. In

these cases as well, the annotation contains crossing

branches. Examples are discontinuous NUC con-

stituents as in Figure 4 and discontinuous CORE

constituents as in 1 below (the relevant part of the

tree is given in Figure 5). We found this type of

discontinuous CORE mainly in German.

(1) MerkwÈurdigerweise

Curiously

schien

seems

ihn

himacc

das

the

Schlagen

chiming

der

of.the

vollen

full

Stunde

hournom

mit

with

neuem

new

Mut

courage

erfÈullt

filled

zu

to

haben

have

.

.

‘Curiously, the chiming of the full hour seems to

have filled him with new courage.’

5https://github.com/acoli-repo/RRG

CLAUSE

CORE

PRT

hinauf

‘upwards’

NP

die Treppe

‘the stairs’

NUC

V

ging

‘went’

NP

Winston

Figure 4: Discontinuous NUC for German particle verb

(de-5)

CLAUSE

CORE

NUC

erfÈullt

zu haben

PP

mit neu-

em Mut

NP

das Schlagen

der vollen Stunde

CORE

NP

ihn

NUC

schien

Figure 5: Discontinuous COREs in German (de-481)

Non-local dependencies. Two types of non-local de-

pendencies are annotated in RRGparbank: one is

long-distance dependencies arising from a fronted wh-

phrase, or relative pronoun (in the pre-core slot (PrCS)

in RRG) that does not belong to the CORE it pre-

cedes but to another CORE. In these cases, the feature

NUCID identifies the predicate on which the PrCS de-

pends. The PrCS, in turn, is provided with a PREDID

feature pointing at the predicate. The coindexing of

these two features expresses the predicate-argument re-

lation in a long-distance dependency construction, see

Figure 6.

CLAUSE

CORE

NUC[NUCID=1]

V

say

CLM

to

CORE

NP

PRO

me

NUC

V

expect

NP

PRO

you

PrCS

NPwh[PREDID=1]

PROwh

what

Figure 6: Subordinate interrogative clause with long-

distance dependency (en-1761)

The second type of non-local dependency covered by

the annotations are extraposed relative clauses (at-

tached as a periphery element at the higher clause) that

are linked to their antecedent NPs via coindexation in

a feature REF. An example is given in Figure 7. Such

constructions are particularly frequent in the German

RRGparbank data (due to German’s free word order);

4.8% of the German treebank sentences contain an ex-

traposed relative clause.
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CLAUSE

CLAUSEperi

you did

not foresee

PrCS

NPrel

PROrel[REF=1]

that

CORE

NUC

V

happened

OPtns

has

NP[REF=1]

PRO

Nothing

Figure 7: Extraposed relative clause (en-5922)

Multi-word expressions (MWEs). Fixed MWEs

(e.g., Big Brother, of course) that cannot be modified

and are syntactically inflexible are annotated in a flat

way, i.e., with all POS tags below the same NUC (resp.

NUC X) node. This includes also inherently reflex-

ive verbs (for instance German sich erinnern ‘remem-

ber’, or French se trouver ‘be located’, se souvenir ‘re-

member’), where the reflexive pronoun and the verb are

daughters of NUC, as well as fixed V N combinations

such as English give way, get hold, and French avoir

lieu ‘take place’.

In contrast to this, light verb constructions (LVC),

which are more flexible and productive, are annotated

like full verbs, i.e., the non-verbal part (usually an NP

or a PP) is placed under CORE, and the light verb is a

V under NUC. An example is French donner un bain

(‘give a bath’, fr-6400) and its English translation in

en-5957.

Negation and modality. Expressions of negation are

usually analyzed as operators (indicated by OPneg or

OP-NEG). They can attach to any layer (CLAUSE,

CORE or NUC) depending on their scope. Syntac-

tic tests (for instance, addition of peripheral elements)

show that English and German negation scopes over the

CORE, and over the NUC in Russian. This difference

is reflected in the annotation: negation elements are at-

tached to NUC structures in Russian and to COREs in

English and German (cf. en-106, de-105 vs. ru-104).

In French, the negation usually consists of two parts,

i.e., we have negative concord. The particles ne and pas

are annotated as operators exclusively as their unique

function is to introduce the negation. In contrast, neg-

ative adverbs (like jamais ‘never’) and pronouns (like

rien ‘nothing’) are heads of their respective phrases. In

this case, the functional tag NEG is attached to the re-

spective category labels.

The same applies to annotating modality: there are

modality operators (e. g., the Russian particle by used

for building the irrealis mood) as well as words that re-

ceive their own part-of-speech together with the func-

tional MOD tag. For instance, Russian modal predica-

tive adverbs, see ru-452 in 2, are annotated as ADV-

MOD and can take their own dependencies.

(2) Proshloe

past

umer-lo

die-3SG.PST

budushhee

future

nel’zja

impossible.ADV.MOD

voobrazi-t’

imagine-INF

.

.

‘The past was dead, the future was unimaginable.’

(lit.: ‘impossible to imagine’)

Reported speech. The literary text contains many

cases of direct and indirect reported speech. Direct

speech includes a clause with a verb of saying and a

quoted block with the contents of the utterance, e.g.,

ªAnd now let’s see which of us can touch our toes!º

she said enthusiastically (en-611). In these cases, the

quoted text is annotated as a separate SENTENCE

subordinate to the main SENTENCE, while the re-

porting part appears under the usual spine, see Fig.8.

Note, however, that not all cases of direct speech come

with quotes; in French, we frequently have cases with-

out quotes, for instance Ils sont si bruyants! dit-elle.

(‘ªThey are so noisy!º, she says.’, fr-434).

SENTENCE

CLAUSE

she said enthusiastically

SENTENCE

ªAnd now let’s see ... º

Figure 8: Direct speech (en-611)

Indirect reported speech often contains complementiz-

ers, anaphoric pronouns and relative tense marking. In

these cases, the contents of the speech is treated as an

argument of the saying predicate and appears as a sub-

ordinate CLAUSE, see Fig. 9 illustrating en-593: The

Party said that Oceania had never been in alliance with

Eurasia.

SENTENCE

CLAUSE

CLAUSE

that Oceania had never been ...

CORE

The Party said

Figure 9: Indirect speech (en-593)

4. Resource

4.1. Source texts and sentence alignments

The annotated texts in RRGparbank are taken from

George Orwell’s novel 1984. The English and Russian

tokenized texts and sentence alignments are taken from

the MULTEXT-East dataset (Erjavec, 2017). The cor-

responding French and German data was built manu-

ally using the published translations Orwell (1972) and

Orwell (2003), respectively.
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EN EN-SEED DE-SEED FR-SEED RU-SEED FA-SEED

Number of sentences 6 737 1 450 1 454 1 555 1 416 1 476

Number of tokens 122 843 23 750 23 444 24 670 17 697 22 456

Average sentence length 18.2 16.4 16.1 15.9 12.5 15.2

Not yet annotated 0 0 0 0 0 1 010

Silver 348 0 889 1 309 1 019 589

Gold with 1 annotation 2 691 575 286 112 183 0

Gold with ≥ 2 annotations 3 698 875 279 134 214 0

Table 1: Statistics beginning of May 2022 (preliminaryÐfurther annotations will be added for first release in June

2022). The release includes the entire novel for English and the seed sentences for German, French, Russian, and

Farsi. Sentences that are not annotated yet (this concerns the Farsi seed data) will be released with so-called bronze

trees, which means with automatically obtained parse trees.

4.2. Coverage

We make all sentences from the English text avail-

able. Currently, they are all at least silver, by the time

of the conference they will be gold. This means that

gold RRG trees for the entire English 1984 corpus will

be provided in the planned release. Furthermore, we

make a part of the German, French, Russian, and Farsi

data publicly available as a ªseed corpusº.6 We aim

at representing a broad variety of linguistic phenomena

across the languages in the seed data. We also aim at

a high degree of parallelism in the seed, making cross-

linguistic comparisons possible. We describe the se-

lection of seed sentences in Section 4.5. Table 1 gives

some statistics of the first release.

4.3. Download and search options

All released data can be downloaded in NEGra tree-

bank export format (Brants, 1997), which is suitable

to represent trees with crossing branches. We provide

a suggested split into training, development, and test

data for experiments: all sentences whose numbers end

with [1-8] are used for training, sentences with num-

bers ending in 9 go into development and in 0 into the

test set. The sentence alignments between the English

text and each translation are availale for download as

text files in a simple column-based format.

We make it easy for linguists to find certain construc-

tions of interest in RRGparbank by providing the possi-

bility to search the trees via RRGparbank’s Web inter-

face using the TGrep2 tree search tool (Rohde, 2005).

Users can query the trees whose structure matches a

specified pattern. For example, the search query ‘NUC

< (V $.. PRT)’ returns all trees in which the node NUC

directly dominates a verb V with a separate particle

PRT, such that V precedes PRT, for example stood up

in English or fuhr fort (‘continued’) in German. The

query ‘/=SAID$/ . /=WINSTON$/’ returns all trees in

which the word WINSTON comes directly after SAID.

6For copyright reasons, we cannot provide all annotated

sentences in the other languages.

4.4. Annotation guidelines

We document our annotation decisions in the form of

an annotation manual, available on the RRGparbank

website. These guidelines are work in progress since

the annotation process still leads to discussions of pre-

viously unseen phenomena or, sometimes, to revisions

of earlier decisions.

4.5. Selection of seed data

To select seed corpora with a high degree of parallelism

and a broad coverage of constructions, we extracted a

Tree Wrapping Grammar for each language (see Sec-

tion 5 for more details), which included assigning syn-

tactic supertags (unanchored elementary trees) to to-

kens. We then selected a set of sentences together with

their translations in all four languages in a way that

maximizes the number of distinct supertags per lan-

guage. Doing this optimally is an NP-complete prob-

lem, so we opted for a greedy approximation. We se-

lected seed training sentences for the language with the

highest annotation coverage first (German) and then

proceeded to add sentences for English, Russian, and

French. For each language, we iterated until all su-

pertags that occur in the silver and gold training split at

least twice were included. At each iteration, we added

the sentence that maximizes the ratio u/l, where u is

the number of unseen supertags in the sentence (i.e.,

supertags that are not yet in the seed) and l is the length

of the sentence. Before moving on to the next language,

we added all sentences that occur in the same sentence-

level translation unit according to our sentence align-

ments (regardless of whether they are training, develop-

ment, or test sentences) in order to ensure parallelism.

As a result, for English, Russian, and French, the seed

was already initialized with parallel sentences, and the

iterative algorithm only had to ªfill the remaining gapsº

in the supertag coverage.

For future languages added to RRGparbank, we will

just add all sentences aligned to the English seed data.

This is the case for Farsi, for instance, for which align-

ments were added only recently.
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5. Applications

One of the motivating factors behind RRGparbank is

to create a sufficiently large linguistic resource to be

used in different NLP contexts. This is made possi-

ble by the formalization of RRG and the extraction of

formal grammars for the languages in RRGparbank.

These grammars consist of elementary tree templates

(i.e., supertags). They can be used to formulate com-

positional analyses of sentence syntax and semantics,

and to design both precision grammars and statistical

parsers. We use such a (syntactical) statistical parser

for generating trees as starting points for annotation (cf.

Section 3). Beyond this, syntactic parsers can be use-

ful for downstream NLP tasks such as semantic pars-

ing. In this section, we describe our statistical syntactic

parsing architecture and carry out parsing experiments

that demonstrate the usefulness of RRGparbank as a

resource for training syntactic parsers.

As mentioned in Section 2.2, the formalization of RRG

that underlies RRGparbank is based on Tree Wrapping

Grammars (TWG). TWGs can be extracted from tree-

banks using an automatic extraction process described

in Bladier et al. (2020a). TWGs typically consist of

several thousand unlexicalized elementary trees, about

half of which appear only once in the corpus. As an ex-

ample, Figure 10 shows the clause ‘what you expect me

to say’ from Figure 6 annotated with elementary tree

templates. TWGs can be used for statistical parsing, for

example with the parser ParTAGe 7 (Waszczuk, 2017;

Bladier et al., 2019; Bladier et al., 2020b). The pipeline

of this parser consists of supertagging (i.e. assigning

the n-best elementary tree templates to each word in a

sentence) and a subsequent A* parsing step.

NPwh

PROwh

⋄

what

NP

PRO

⋄

you

CLAUSE

CORECORE

NPNUC

V

⋄

expect

NP
NP

PRO

⋄

me

CORE*

CLM

⋄

to

CLAUSE

CORE

NUC

V

⋄

say

PrCS

NPwh

Figure 10: Extracted TWG supertags for the clause

‘what you expect me to say’ from Fig. 6. The sister-

adjoining tree to is marked with an asterisk on the root

node. The wrapping elementary tree say has a domi-

nance link, notated as a dashed edge.

For our parsing experiments, we extract TWGs from

the English, German, French, and Russian gold and sil-

ver subcorpora of a pre-release snapshot8 of RRGpar-

bank (including all training data, not just the one from

the seed subcorpora). We train the statistical TWG

parser ParTAGe using training and development sets

7https://rrgparser.phil.hhu.de/
8The data were downloaded on 2021-12-23.

and parse the corresponding test set to evaluate the lan-

guage models. Table 2 gives an overview of the num-

ber of sentences and elementary trees for different lan-

guages. Many of the extracted supertags are common

for all grammars. We found 426 supertags which ap-

pear in all four extracted TWGs.

We fine-tune the multilingual BERT model9 and single-

language BERT models for the supertagging compo-

nent of the parser (similar to Schmidt (2021)) and

compare the parsing accuracies. The experimental

results are given in Table 3. We use the follow-

ing single-language Transformer models: bert-base-

cased10 for English, bert-based-german-cased11 for

German, camembert-base12 for French, rubert-base-

cased-sentence13 for Russian, and bert-base-parsbert-

peymaner-uncased 14 for Farsi. We train all models for

20 epochs and use the same hyper-parameters across

all models (see Table 4).

The results show that the TWG grammars extracted

from RRGparbank have sufficient quality to be used

for statistical multilingual parsing and that the parser

trained on these grammars generalizes well. We also

observe that the parser based on the multilingual model

shows better performance compared to single-language

models for all languages except English15. The single-

language models on the other hand show a higher num-

ber of exactly matching parses. We assume that the

better performance of the multilingual model can be

explained by the cross-lingual transfer property of the

multilingual BERT model (Wang et al., 2019; Ahmad

et al., 2021) and some overfitting of the monolingual

models. It would be interesting however to explore

which role is played by the supertags common in all

languages for the better performance of the multilin-

gual parsing model. In our future work we will in-

clude further languages in the parsing experiments as

the annotation of RRGparbank continues. We also plan

to explore how to use extracted grammars and trained

parsing models for cross-lingual parsing.

6. Conclusion

In this paper, we presented the first release of RRG-

parbank, a parallel treebank based on George Orwell’s

novel 1984 and its translations. The sentences in the

corpus are annotated with RRG structures. For English,

we include the entire novel, while for other languages

(so far German, French and Russian), we provide a par-

allel seed corpus.

9https://huggingface.co/bert-base-multilingual-cased
10https://huggingface.co/bert-base-cased
11https://huggingface.co/bert-base-german-cased
12https://huggingface.co/camembert-base
13https://huggingface.co/DeepPavlov/

rubert-base-cased-sentence
14https://huggingface.co/HooshvareLab/

bert-base-parsbert-peymaner-uncased
15All fine-tuned multilingual and single language models

can be downloaded from the TWG parsing repository https://

github.com/TaniaBladier/Transformer-based-TWG-parsing.
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lang. train dev. test TWG size

en 4635 (4432) 574 (535) 566 (532) 3861 (2378)

de 4452 (1440) 566 (189) 561 (189) 4590 (2956)

fr 2324 (238) 273 (27) 289 (30) 2272 (1388)

ru 3877 (712) 480 (91) 486 (92) 3425 (2295)

fa 1169 (0) 146 (0) 128 (0) 1532 (992)

total 16457 2039 2030 ±

Table 2: Number of sentences in data split for parsing experiments. The number in brackets indicate the gold

sentences among the train, development and test data. The column TWG size shows the number of elementary

trees in the extracted grammars, the numbers in brackets show how many supertags appear only once in each

training set. Please note that the annotation of RRGparbank is not yet finished.

multilingual single-language exact match exact match

model models (mult. model) (sing. model) # sents ∅ len.

en 86.27 86.56 122 155 566 15.43

de 85.19 84.15 95 80 561 13.86

fr 85.68 85.21 66 71 289 11.66

ru 86.16 84.74 115 108 486 9.68

fa 80.80 74.37 37 17 127 8.66

Table 3: Parsing results (labeled F1 score) with the ParTAGe parser based on a fine-tuned multilingual BERT

model and single-language BERT models. The results are shown for the test data without considering punctuation

and function tags.

Hyper-parameters Value

Max seq length 128

Train batch sizes 8

Learning rate 4e-05

Optimizer AdamW

Lower case False

Attention probability dropout rate 0.1

Hidden layer activation function gelu

Hidden size 768

Warmup proportion 0.06

Warmup steps 1337

Number of hidden layers 12

Number of attend heads 12

Number of training epochs 20

Table 4: Hyper-parameters of the Transformer models.

RRGparbank is a valuable resource for several reasons.

First, while building the treebank, we encountered nu-

merous constructions that had not been taken into con-

sideration in the RRG literature and for which we pro-

pose an analysis, documented in the guidelines. In this

sense, RRGparbank contributes to the domain of syn-

tactic analyses in RRG. Second, by building a treebank,

in particular a parallel treebank, data-driven syntactic

processing such as the parsing application presented in

Section 5 become possible. Third, RRGparbank, to-

gether with options for download and for search, and

also in combination with supertag extractions, enables

corpus-based investigations of RRG structures, also

across languages.

In the future, we plan to add further languages. Fur-

thermore, besides syntactic annotations, we also started

annotating semantic roles.
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Abstract

This paper addresses Semantic Role Label-

ing (SRL) within the context of English Dis-

course Representation Structure (DRS) pars-

ing. In particular, we investigate whether se-

mantic roles predicted by a near-state-of-the-

art SRL model can be used to improve the out-

puts of modern end-to-end neural DRS parsers

using a rule-based post-processing algorithm.

We compare two methods of generating train-

ing data for the SRL model from the Parallel

Meaning Bank, one DRS-based and one CCG-

based. We also compare two different post-

processing algorithms. Our results vary across

different DRS parsers, but overall we find a

small to moderate improvement of up to 0.5 F1

on the final DRSs. We find a small but consis-

tent advantage of DRS-based over CCG-based

training data generation, and of token-based

over concept-based post-processing, where ap-

plicable.

1 Introduction

With the increasing availability of multi-layered

semantically annotated corpora, semantic pars-

ing today is typically approached as an end-

to-end task of predicting a meaning representa-

tion in one go, including information on word

senses, predicate-argument structure, scope, se-

mantic roles, and more. Since each of these lay-

ers is complex in its own right, it might be benefi-

cial to rely on multiple specialized components to

separately predict individual semantic layers, and

to combine their output. In this paper, we focus

on separately predicting semantic roles in the con-

text of Discourse Representation Structure (DRS)

parsing.

DRSs are meaning representations grounded

in Discourse Representation Theory (Kamp and

Reyle, 1993). We use the English part of the

Parallel Meaning Bank (PMB; Abzianidze et al.,

2017), which contains sentences annotated with

DRSs. Figure 1 shows an example. Events (e.g.,

e1) are related to their participants (e.g., x1, x2)

via semantic roles (e.g., Theme, Destination)

from the VerbNet/LIRICS inventory (Bonial et al.,

2011). Semantic roles are a crucial aspect of

meaning since they encode how each entity par-

ticipates in an event (Fillmore, 1968).

e1 t1 b2

jump.v.01(e1)
Theme(e1, x1)
Destination(e1, x2)

time.n.08(t1)
Time(e1, t1)
t1 ≺ now

x1 b1

male.n.02(x1)

x2 b3

train.n.01(x2)

Figure 1: DRS for He jumped into the train (source:

PMB, document 00/2759)

Semantic role labelling (SRL) is typically ap-

proached as a task of labeling tokens or parse tree

edges with predicate/role labels, independently of

other aspects of meaning (e.g., Li et al., 2019,

2020b; Shi et al., 2020; Marcheggiani and Titov,

2020; Li et al., 2020a). Conversely, DRS parsers

such as Evang (2019); Fancellu et al. (2020); van

Noord et al. (2020); Liu et al. (2021) do not have

dedicated SRL modules but predict a complete

meaning representation of which roles are one

part. In this paper, we explore the possibility of

combining semantic parsers with a dedicated SRL

system. The main research question we seek to

answer is: can we in this way obtain DRSs with

more accurate semantic roles?

Our approach is summarized in Figure 2: we

first convert the PMB training data into a stan-

dard SRL annotation format (§2) in order to train

a near-state-of-the-art SRL system on it (§3). At

test time, we merge the output of DRS parsers

with that of the SRL system using a rule-based

post-processing algorithm (§4), aiming to produce
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a more accurate final DRS. We experiment with

applying our procedure on top of several recent

DRS parsing systems, and find that, albeit with

some caveats, our procedure leads to overall better

scores (§5). 1

Figure 2: System overview

2 DRS-to-SRL Conversion

Before we can train an SRL system, we first need

to convert semantic role annotations in the PMB

to a more standard SRL format. Two characteris-

tics of the PMB make this a non-trivial task. First,

role annotations in the PMB are predicate-based,

meaning that roles are carried by predicates in-

stead of by arguments, as in standard SRL sys-

tems. Table 1 illustrates this: in standard SRL, the

Theme role would be marked on he. Instead, in the

PMB, the role is annotated on jumped, the predi-

cate assigning the role; in a later step, the DRS

parser makes sure that the role is associated to the

discourse referent introduced by “He”. Second,

prepositional and adverbial roles (e.g. into the

train, slowly) are treated differently from “core”

semantic roles: they are carried by the preposition

or adverb itself, instead of by the verbal predicate

they are associated to.

Token He jumped into the train

PMB Theme Destination

SRL: head Theme PRED Destination

SRL: span Theme PRED { ← Destination → }

Table 1: PMB-style versus standard SRL annotations.

We experiment with two approaches for convert-

ing PMB role labels to a standard SRL format:

2.1 DRS-based conversion

Here, predicates and fillers for semantic roles are

found via DRSs, which in the training data are

anchored, i.e., most clauses are aligned to ex-

actly one token. We extract predicate-role-filler

triples such as 〈jumped,Theme,he〉 from the an-

chored DRSs by looking for role clauses such as

1Code and data at https://github.com/TaniaBladier/DRS
Parsing with SRL

b2 Theme e1 x1 and then finding the clause

introducing the filler (b1 REF x1, anchored to

He), and the clause introducing the event (b2

REF e1, anchored to jumped). The process is il-

lustrated in Figure 3.2

Disadvantages of this approach are 1) that it

only yields the heads of the fillers, not full spans,

and 2) that in some cases, the ‘deep’ semantic

structure of the DRS does not directly match the

surface realisations of the semantic roles we want

to find. One example of the latter problem is found

in sentences such as “She saw herself”, where a

DRS-based approach would return “She” as the

Stimulus role, instead of “herself”, which is the

surface filler of this role but does not introduce a

discourse referent of its own.

b1 REF x1             % He [0...2]
b1 PRESUPPOSITION b2  % He [0...2]
b1 male "n.02" x1     % He [0...2]
b2 REF e1             % jumped [3...9]
b2 REF t1             % jumped [3...9]
b2 TPR t1 "now"       % jumped [3...9]
b2 Theme e1 x1        % jumped [3...9]
b2 Time e1 t1         % jumped [3...9]
b2 jump "v.01" e1     % jumped [3...9]
b2 time "n.08" t1     % jumped [3...9]
b2 Destination e1 x2  % into [10...14]
b3 REF x2             % the [15...18]
b3 PRESUPPOSITION b2  % the [15...18]
b3 train "n.01" x2    % train [19...24]
                     % . [24...25]

2) find role filler 
(Theme → x1)  

1) find predicate 
(“jumped”)

3) find 
introduction of 
filler (x1 → “He”)

4) result: predicate 
= “jumped”, Theme 
= “he”

Figure 3: Example of DRS-based conversion.

2.2 CCG-based conversion

The second approach aims at overcoming both

limitations of the DRS-based approach by mak-

ing use of the CCG derivations in the PMB. Here,

predicates and fillers for semantic roles are found

via the CCG (Categorial Combinatorial Grammar,

Steedman 2000) syntax trees and predicate-based

role annotations in the PMB.

Main conversion process First, we transform

the CCG trees using the pmb ccg to term

module in the LangPro package (Abzianidze,

2017), removing directionality of the combina-

tory rules and reducing the number of possible

combinators, which simplifies tree traversing. In

particular, long-distance dependencies (such as

wh-movement) are handled using the λ-operator,

which introduces a relationship between two vari-

ables at different points in the tree. An example of

this kind of tree is given in Figure 4.

2The DRS in clause notation in Figure 3 is equivalent to
the one in box notation in Figure 1, but additionally shows
the alignment with tokens in the sentence.
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s[dcl]

@

np np~>s[dcl]

@

s[qem]~>np

~>s[dcl]

s[qem]

t

"I"

t

"know"

@

(pp~>s:dcl)

~>s[qem]

pp~>s[dcl]

t

"where"

λ

p1

(pp)

s[dcl]

@

np~>s

(np~>s)

~>s[dcl]

*

np

t

"he"

pp~>np

~>s[dcl]

@

p1

(pp)

t

"is"

Figure 4: Simplified CCG tree with examples of all combinators (@: simple functional application; λ: variable

introduction;, ∗: type-raising). Solid rectangles are types, circles are operators, dotted rectangles are lambda vari-

ables, and ovals are lexical nodes. s[dcl] means ‘declarative sentence’; s[qem] means ‘embedded question’.

Next, we deploy our role span extraction al-

gorithm, which traverses the simplified tree and

tries to match the semantic roles annotated on each

predicate to the constituents filling these roles.

Figure 5 displays a high-level overview of this pro-

cess, showing how CCG arguments get mapped to

constituents in the tree. This process is explained

in more detail in Figure 6.

Given a simplified tree, we extract each predi-

cate’s syntactic roles from its CCG type signature

and match them with the annotated semantic roles.

For example, suppose jump has the type signature

NP→S3 and the role annotation [Theme], then

it has a single NP syntactic role, corresponding to

3The original CCG category would be S\NP, which we
simplify into the direction-agnostic NP→S.

2) find & trace CCG 
argument for role 
(Theme → “\NP”)

1) find predicate 
(“jumped”)

3) find derivation 
step where role is 
resolved

4) result: predicate = 
“jumped”, Theme = 
“he”

Figure 5: Example of CCG-based conversion.

a Theme semantic role. Then, we move upwards

through the syntax tree, checking the type signa-

ture at every step; whenever we detect that a role

has been filled, we process the constituent that was
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Identify predicate

"jumped"
lemma: "jump"

cat: PP~>NP~>S[dcl]
verbnet: [Theme]

Match syntactic and
semantic roles

syn: [PP, NP]
sem: [PP_ROLE, Theme]

Any unfilled
roles left?

Stop

no

Move up one level in
the tree

yes

yes (PP and
NP/Theme)

"jumped into the train"
cat: NP~>S[dcl]
verbnet: [Theme]

Did this step
fill a role? (a) yes (the PP)

Find the span of the
role (b)

PP/Destination:

"into the train"

yes

Are we at the
root node?

no

no

no

yes

yes 
(NP/Theme)

"he jumped into the train"
cat: S[dcl]
verbnet: []

yes (the NP
/Theme)

NP/Theme:

"he"

Figure 6: Flow chart of the main CCG-based conversion process. Algorithmic steps in white, example in purple.

merged at that point of the tree as the filler of the

corresponding semantic role. This process is re-

peated until we have found a filler for every role,

or until we reach the top of the tree.4

Detecting merged constituents A crucial step

of our process (step (a) in Figure 6) is detect-

ing, given a particular node in the tree, whether

a role has been resolved at that node. In many

cases, this is straightforward; for example, in the

sentence in Figures 5 and 6, we can see that

he fills the NP/Theme role of jump at the point

where he is combined with jumped into the train

through simple functional application, changing

the type signature from NP→S to S. In other cases,

more complicated rules are needed, for example

when dealing with to-clauses (She wants me to

leave), where, on combining wants me with to

leave, the type signature of to leave changes from

NP→S[to] to NP→S[dcl]. In such cases, at

first glance, it appears as if not much has changed

except a change of clause type (from a to-clause

4In some cases, e.g. wh-questions, it is possible that some
roles remain unfilled.

to a declarative sentence), whereas in fact, me has

filled the subject NP of leave, and a new NP ar-

gument (the subject NP of wants) has been added.

We have developed a set of heuristics that cover

all such difficult cases occurring in the gold an-

notations in the PMB. While we believe that this

amounts to a wide general coverage, it is likely

that there exist other constructions that our algo-

rithm does not (yet) cover.

Once it has been defined that a role is resolved at

a given node in the tree, the next crucial step (step

b in Figure 6) is to find the correct role span within

the constituent that was combined. In many cases

(like he in he jumped), the entire constituent is the

role filler, but in other cases (like wants me in She

wants me to leave), only a part of the constituent

(me) is the role filler that we are looking for. To

find this constituent, we designed a separate al-

gorithm that moves down the tree starting from

the merged constituent, until an argument with the

correct type is found.

PP and adverbial roles Semantic roles carried

by PP constituents (e.g. into the train) or by adver-

bial phrases (e.g. quickly) pose an additional chal-
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lenge, since, in the PMB annotation framework,

these roles are annotated on the syntactic head of

the PP or adverbial phrase (e.g. into in into the

train) rather than on the verb that they combine

with. In cases where the PP is a syntactic argu-

ment of the verb (as in jump into the train), we

solve this by first adding a placeholder role (see

the PP role at the top of Figure 6) corresponding

to the verb’s PP argument, and then replacing this

by the semantic role carried by the PP at the point

where it is combined with the predicate. In cases

where a PP or adverb is an adjunct (e.g. with type

signature S→S or (NP→S)→(NP→S)), we add

the semantic roles introduced by the adjunct to the

predicates in the constituent that is modified (e.g.,

quickly modifies he ran in he ran quickly. To en-

sure that adjuncts get the right scope, we added a

constraint to our algorithm that forbids adding ad-

junct roles to predicates if doing so would cross a

clause boundary; e.g., loudly in he loudly said he

was going to leave can modify said but not leave.

Span-to-head conversion As a final step, to

make the outputs of the CCG-based algorithm

comparable to those of the DRS-based algorithm,

we add a final step that converts the extracted

role spans to their semantic heads. This algo-

rithm consists of a set of (recursive) rules defining

what the head of each type of phrase is. For ex-

ample, H(the old woman) = H(old woman) =
H(woman) = woman, where H is a function ap-

plying the appropriate rule for a given phrase type

and returning the ‘head part’ of the phrase. There

are many possible phrase types, but in general, the

head of an NP is a noun, the head of a VP is a

verb, the head of a PP is an NP, and the head of a

sentence is the VP.

2.3 Comparing the approaches

Comparing the outputs of both conversion ap-

proaches, we find that 68% of documents match

exactly, and 82% differ by at most one role. This

shows that both approaches show significant dif-

ferences worth further investigating. The differ-

ences mainly concern structural mismatches be-

tween syntax and semantics. For example, in sen-

tences with co-referential NPs, CCG-based con-

version gives more intuitive results than DRS-

based conversion: in she handed him1 the money

that she owed him2, DRS-based conversion treats

the two hims as the same entity and assigns the

Beneficiary role of owe to him1, whereas CCG-

based conversion correctly assigns it to him2. Sim-

ilarly, with reflexives, in she saw herself, DRS-

based conversion is unable to assign any role to

herself, since this word does not introduce a new

discourse referent but refers back to she. The

syntax-driven CCG-based conversion also allows

for a better resolution of hearer and speaker dis-

course participants in such sentences as I don’t re-

member your name.

On the other hand, CCG-based conversion has

difficulties dealing with light verb constructions

where the semantics of the main verb and the light

verb interact. For instance, in he had his wallet

stolen, the relationship between he and stolen is

not detected. Finally, more heuristics will need to

be added to CCG-based conversion to cover all ad-

junct semantic roles due to the way that these are

annotated in the PMB, e.g. by-clauses in passive

sentences. Also, the CCG-based conversion needs

additional rules to distinguish between the seman-

tic and syntactic head in such constructions as all

of the town or a kilo of plums.

3 SRL Predictions

We predict semantic roles using the graph-based

end-to-end coreference resolution system by He

et al. (2018). This syntax-agnostic SRL model

jointly predicts predicates, role fillers, and role la-

bels. The SRL system builds contextualized rep-

resentations for spans of arguments and predicate

tokens based on BiLSTM outputs. The argument

spans and predicates are predicted independently

of each other and the aggressive beam pruning is

used to discard the least probable combinations

of predicate and argument spans. The output of

the system is a graph, which lists predicted SRL

roles as edges and the associated text spans as

nodes. The SRL graph is predicted directly over

text spans. Unlike He et al., we do not predict

the full spans of semantic roles, but only syntactic

heads of the semantic role spans, since the DRSs

in the PMB do not contain information about full

spans of arguments.5 We experiment with GloVe

(Pennington et al., 2014) and ELMo (Peters et al.,

2018) embeddings to train the SRL system.6

We use the gold section of the English PMB

data (release 3.0.0) to train and test the SRL sys-

tem, which contains a train, dev, and test split of

5The full spans of semantic arguments can be recon-
structed from head spans using syntactic information from
dependency graphs (Gliosca and Amsili, 2019).

6The hyper-parameters are given in the appendix.
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6 620, 885, and 898 documents, respectively. The

SRL system is trained on the output of both DRS-

to-SRL conversion tools separately. We include

only verbal predicates and exclude the predicate

be due to its inconsistent annotation in the PMB.

4 Merging DRS and SRL Predictions

As baseline DRS parsers without external SRL

prediction, we use DRS parsers for which the out-

put is publicly available: the transition-based com-

positional parser of Evang (2019) and three neural

sequence-to-sequence models: the character-level

model of van Noord et al. (2018b), an extension of

this model that uses linguistic features (van Noord

et al., 2019) and the best BERT-based model of van

Noord et al. (2020). We refer to these models with

E19, N18, N19, and N20.

We propose two methods for merging DRS and

SRL output: a token-based method for parsers that

are lexically anchored (each clause maps to one to-

ken), such as E19, and a concept-based method for

parsers for which this is not the case (N18, N19,

N20). Both methods only aim to replace roles in

the DRS; no new full clauses are inserted.

Token-based merging When the SRL sys-

tem predicts a predicate-role-filler tuple such as

〈jumped,Theme,he〉, we look for a corresponding

role prediction in the parser output. A correspond-

ing prediction is a role clause such as b2 Agent

e1 x1, where the event discourse referent (e1)

and the filler discourse referent (x1) are intro-

duced by the corresponding tokens, i.e., jumped,

and he, respectively. We say that a referent is in-

troduced by a token if the token is anchored to a

concept clause for that referent, such as b2 jump

"v.01" e1 or b1 male "n.02" x1. In this

example, the DRS parser predicted a different role

(Agent) than the SRL system (Theme), so we re-

place the former with the latter.

Concept-based merging Concept-based merg-

ing works similarly but does not rely on clauses

being anchored to tokens. Instead, concept clauses

are matched to tokens using corpus-level align-

ment and lemmatization. We say that a concept

clause (e.g., b1 male "n.02" x1) matches a

token (e.g., he) if it is observed anchored to the

same word anywhere in the full PMB training

data (bronze, silver, and gold). We also say that

a concept clause (e.g., b2 jump "v.01" e1)

matches a token (e.g., jumped) if there is a string

match between the concept and the lemma7 of the

token (jump).

Restrictions In order to avoid some incor-

rect role replacements, we impose the following

heuristics to restrict replacement: a role r is not

replaced with r′ if 1) r is one of the special roles

Time and Name, 2) r′ was predicted by the SRL

system with < 50% precision, 3) r′ already exists

in the same box as r. For concept-based merging,

the general concepts person, be and entity

are never matched with any input tokens.

5 Experiments and Discussion

The main results of our experiments are shown

in Table 2. Overall, we see small but consistent

improvements for all parsers, except for N20, the

most recent system. It seems that once the parser

reaches a certain accuracy it is not straightforward

to improve the scores by using an imperfect exter-

nal system. This is also reflected by the number of

replaced roles, which goes down as the parsers get

better. Comparing the two conversion methods,

we find that DRS-based conversion leads to higher

scores. The difference with CCG-based conver-

sion is small, though consistent between setups.

In a sense, this is unsurprising given that DRS

is also our target representation format. Further-

more, we found that using ELMo outperformed

GloVe; while this is unsurprising, it supports the

intuition that using a higher quality SRL system

leads to more improvement. In other words, any

development on the SRL parsing side is likely to

lead to better performance on DRS parsing as well.

Comparing token-based to concept-based merging

on the output of the E19 parser (the only one where

it is applicable), it makes more replacements and

results in slightly higher accuracy, suggesting an

advantage in terms of recall over concept-based

merging.

Room for improvement As can be seen in Ta-

ble 2, SRL performance seems to be a bottleneck;

hence, using future, higher-quality SRL systems

might also lead to better overall performance of

our method. In particular, due to the merging

step in our pipeline system, missing roles in SRL

predictions are less costly than wrong predictions.

Hence, we expect that SRL systems that are opti-

mized for precision rather than for F-score will be

more suited for use in our task. Furthermore, we

7We use spaCy (Honnibal et al., 2020) for this.
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Experiments SRL E19-tok E19 N18 N19 N20

dev test dev test dev test dev test dev test dev test

Baseline – – 81.4 (0) 81.4 (0) 81.4 (0) 81.4 (0) 84.3 (0) 84.9 (0) 86.8 (0) 88.7 (0) 88.4 (0) 89.3 (0)

DRS conv.: upper 100 100 +1.5 (154) +1.3 (144) +1.3 (124) 1.2 (124) +0.9 (92) +1.2 (132) +0.9 (88) +1.1 (117) +0.5 (51) +0.7 (76)

CCG conv.: upper 100 100 +1.2 (145) +1.2 (134) +1.2 (115) 1.1 (118) +0.9 (89) +1.2 (129) +0.8 (80) +1.1 (114) +0.5 (50) +0.8 (78)

DRS conv. + GloVe 79.7 81.6 +0.3 (129) +0.3 (113) +0.4 (97) +0.2 (102) +0.2 (68) +0.4 (92) +0.1 (64) +0.2 (90) -0.2 (57) -0.1 (70)

DRS conv. + ELMo 85.8 86.3 +0.5 (128) +0.4 (120) +0.5 (104) +0.4 (110) +0.3 (73) +0.5 (107) +0.2 (74) +0.3 (104) -0.1 (55) 0.0 (69)

CCG conv. + GloVe 80.7 83.0 +0.3 (129) +0.3 (117) +0.3 (107) +0.2 (108) +0.1 (96) +0.4 (102) 0.0 (93) +0.1 (103) -0.2 (73) -0.1 (74)

CCG conv. + ELMo 85.2 87.0 +0.4 (118) +0.4 (109) +0.4 (99) +0.3 (103) +0.2 (81) +0.4 (104) +0.1 (73) +0.2 (102) -0.2 (63) 0.0 (66)

Table 2: Experiment results, including F-scores and number of replaced roles (in brackets). The F-scores are

calculated using Counter (van Noord et al., 2018a). Scores for N19 and N20 are averaged over 5 runs. E19-tok

uses token-based merging, E19 uses concept-based merging like the rest.

expect that further improvements in the conversion

algorithms will lead to better overall performance.

Error analysis We identified four sources of er-

rors in the SRL predictions. The data show an im-

balanced role distribution towards the roles Theme

and Agent, which take up 52% of all annotations

out of 32 semantic roles. This leads to overpre-

diction of these roles by the SRL-labeler. Indeed,

for N20 we find that these roles have an inser-

tion precision of < 50%, or in other words, they

were more often wrongly inserted than that they

correctly replaced a non-matching role. Figure 7

shows the confusion matrix for the most frequent

semantic roles.

pred./gold Agent Co-Theme Dest. Exper. Loc. Patient Source Stim. Theme

Agent 337 0 0 5 0 1 0 0 5

Co-Theme 0 54 0 0 0 1 0 0 3

Destination 0 0 33 0 2 0 0 0 0

Experiencer 1 0 62 0 3 0 1 1

Location 0 0 0 0 62 0 0 0 0

Patient 2 0 1 1 77 0 1 7

Source 1 0 0 0 0 0 21 1 2

Stimulus 2 0 0 0 0 0 0 56 2

Theme 14 2 1 0 2 7 0 4 356

Figure 7: Confusion matrix for semantic labeling er-

rors, showing the numbers of predicted labels for the

most frequent labels.

The role Theme and Agent are also frequently

predicted extra in cases where no semantic role

should be predicted. For example, the pronoun

her in the sentence she ate her dinner is erro-

neously assigned the role Agent. Semantic roles

of prepositional phrases also lead to prediction er-

rors. For example, the phrase the field of biology in

the sentence He is working in the field of biology is

wrongly recognized as Location instead of Theme.

Another cause of prediction errors are possessive

determiners which are wrongly predicted as role

fillers. For example, both her and dinner are pre-

dicted as Patient in the following sentence: She

ate her dinner. Also, no semantic roles are pre-

dicted by the SRL-labeler if the head word has no

vector embedding due to a special character, for

example like post∼office. Due to the merging step

in our pipeline, the erroneously missing semantic

roles in SRL predictions do not lead to a drop of

parsing performance and also do not improve it.

6 Conclusions and Future Work

We have presented experiments on using exter-

nally predicted semantic roles to improve the out-

put of four recent DRS parsers. We saw that

there is considerable room for improvement and

our method fills it – but not fully, especially as

parsers get more accurate. We conclude that our

approach is useful especially with parsers such as

E19 which do not reach state-of-the-art accuracy

but may have other advantages such as smaller

models or lexical anchoring. An advantage of our

approach is that it is very flexible: it can be applied

on top of any DRS parsing model without having

to alter or retrain the model itself. This means

that our method, or an improved version of it,

could also be applied to future DRS parsers, possi-

bly with completely different architectures. In fu-

ture work we intend to experiment with enhancing

the SRL system using syntactic input from CCG-

based supertags and also try out other SRL sys-

tems. We also plan to experiment with prediction

of nominal and adjectival predicates along with

their semantic roles. We also intend to reconstruct

and predict full spans of semantic roles. Moreover,

we plan to carry out parsing experiments with fur-

ther languages in the PMB, including Dutch, Ger-

man, and Italian, as our method should be univer-

sally applicable. Finally, it would be interesting

to improve the SRL predictions by enforcing co-

herence of predicted predicates and corresponding

semantic roles.
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Appendix

Layer Hyper-parameters Value

Characters CNN numb. of filters 50

Bi-LSTM state size 200
# layers 3

Words embedding vector dim. 300

Char. embedding dimension 8

batch size 40

Dropout dropout rate 0.5

Max. gradient norm 5.0

Optimizer Adam

Learning rate 0.001

Decay rate 0.999

Decay frequency 100

Hyper-parameters of the SRL system.

34

Syntax-enhanced Semantic Parsing 107



Proceedings of the 15th International Conference on Computational Semantics pages 223±232
June 21±23, 2023. ©2023 Association for Computational Linguistics

223

Data-Driven Frame-Semantic Parsing
with Tree Wrapping Grammar

Tatiana Bladier Laura Kallmeyer Kilian Evang

Heinrich Heine University DÈusseldorf, Germany

first.last@hhu.de

Abstract

We describe the first experimental results for

data-driven semantic parsing with Tree Rewrit-

ing Grammars (TRGs) and semantic frames.

While several theoretical papers previously dis-

cussed approaches for modeling frame seman-

tics in the context of TRGs, this is the first

data-driven implementation of such a parser.1

We experiment with Tree Wrapping Grammar

(TWG), a grammar formalism closely related

to Tree Adjoining Grammar (TAG), developed

for formalizing the typologically inspired lin-

guistic theory of Role and Reference Gram-

mar (RRG). We use a transformer-based multi-

task architecture to predict semantic supertags

which are then decoded into RRG trees aug-

mented with semantic feature structures. We

present experiments for sentences in different

genres for English data. We also discuss our

compositional semantic analyses using TWG

for several linguistic phenomena.

1 Introduction

While many user-facing applications of Natural

Language Processing such as machine translation

or sentiment analysis can these days be performed

with state-of-the-art accuracy by syntax-agnostic

machine learning models, grammar-based meth-

ods are still important. For one thing, they offer

more transparency and insight into the decisions of

a model, while in many cases having near-state-

of-the-art performance (Xia et al., 2019; Kasai

et al., 2019; Lindemann et al., 2019; Poelman et al.,

2022). Secondly, they tend to be less data-hungry

and therefore more readily adapted or transferred to

low-resource languages. Symbolic methods for se-

mantic parsing can also greatly contribute to gram-

mar theory studies and to linguistic investigations

of different languages.

1The code for our semantic parser can be found on
https://github.com/TaniaBladier/
Frame-Semantic-Parser-with-Lexicalized-Grammars

In this paper, we are interested in developing

a methodology for deep semantic parsing (i.e.,

producing semantic representations for entire sen-

tences) which would also allow easy transfer to

different languages, including low-resource ones.

We start from the typologically oriented linguis-

tic theory of Role and Reference Grammar (RRG).

This theory uses a common inventory of labels

and structures to describe languages from differ-

ent language families (Van Valin and Foley, 1980;

Van Valin, 2005). The formalization of RRG using

Tree Wrapping Grammar (TWG; Kallmeyer et al.,

2013) has paved the way for using this theory in

computational linguistics and for developing NLP

applications such as syntactic parsers (Bladier et al.,

2022; Evang et al., 2022).

NP[I = 3 ]

N

⋄

John

CLAUSE[E = 0 ]

CORE

NP[I = 2 ]NUC

V

⋄

needed

NP[I = 1 ]

NP[I = 4 ]

N

⋄

help

3

[

John
]

0







require need want hope

AGENT 1

THEME 2







4

[

help
]

Figure 1: Frame-semantic derivation with TWG for

John needed help

The TWG formalism is inspired by Tree-

Adjoining Grammar (TAG; Joshi and Schabes,

1997) and allows for adequate modeling of long-

distance dependencies. Since TWG is closely re-

lated to TAG, we can readily apply existing com-

putational methods developed for TAG. In this

work, we explore how well the methodology for

compositional semantics with a tree-based syn-

tax outlined in several theoretical papers on TAG

(Kallmeyer and Osswald, 2012a,b; Zinova and
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Kallmeyer, 2012) is suitable for TWG and can be

used for a large scale implementation.

A small-scale frame-semantic parser based on

the Tree Adjoining Grammar was already imple-

mented by Arps and Petitjean (2018). Our ap-

proach differs from theirs in that it is data-driven

and aims for a broad-coverage semantic parser. Our

method is based on transformers and contextual

embeddings and we do not use a metagrammar

in our application, but go for an approach based

on supertagging. Our work also differs from Se-

mantic Role Labeling (i.e., shallow semantic pars-

ing) with TAG (Liu and Sarkar, 2009; Kasai et al.,

2019) since we are interested in deep semantic rep-

resentations of the sentences. Figure 1 shows how

the semantic representations for the sentence John

needed help can be produced compositionally with

elementary trees in TWG paired with frames, and

Figure 3 shows the frame representation for this

sentence.

The objective of this paper is to implement

a broad-coverage semantic parser based on Tree

Rewriting Grammars. Since this is the first broad-

coverage implementation of a deep semantic parser

for either TAG or TWG, we are particularly inter-

ested in modeling linguistic phenomena which we

came across during this data-driven implementa-

tion. We describe this in §2. We also want to inves-

tigate if our syntax-aware methodology allows us

to achieve state-of-the-art results on semantic pars-

ing. We describe the theoretical background of our

work and introduce our approach to frame-based se-

mantics with TWG in §3 and present experimental

results in §4. We discuss future work in §5.

2 Semantic Parsing with TWG

2.1 Tree Wrapping Grammar

TWGs consist of elementary trees which can be

combined using the operations of a) substitution (re-

placing a leaf node with a tree), b) sister adjunction

(adding a new daughter to an internal node), and

c) tree-wrapping substitution (adding a tree with a

d(ominance)-edge by substituting the lower part of

the d-edge for a leaf node and merging the upper

node of the d-edge with the root of the target tree,

see Fig. 2). The latter is used to capture long dis-

tance dependencies (LDDs), see the wh-movement

in Fig. 2. Here, the left tree with the d-edge (de-

picted as a dashed edge) gets split; the lower part

fills a substitution slot while the upper part merges

with the root of the target tree. TWG is more pow-

erful than TAG (Kallmeyer, 2016). The reason

is that a) TWG allows for more than one wrap-

ping substitution stretching across specific nodes

in the derived tree and b) the two target nodes of

a wrapping substitution (the substitution node and

the root node) do not have to come from the same

elementary tree, which makes wrapping non-local

compared to adjunction in TAG.

TWG emerged as a result of the formalization

of Role and Reference Grammar (RRG; Van Valin

and LaPolla, 1997; Van Valin, 2005). RRG is a

linguistic theory strongly inspired by typological

concerns. RRG was used to describe languages

with diverse syntactic structures such as Lakhota,

Tagalog, and Dyirbal. RRG’s syntactic structures

are rather flat in order to be applicable to all types of

different languages. According to RRG, sentence

structure is organized in layers: nucleus (containing

the predicate), core (containing the nucleus and

the arguments of the predicate) and clause (the

core and extracted arguments). Each layer can

have modifiers (called periphery elements), and

operators attach to the layer over which they take

semantic scope.

2.2 Frame Semantics and TWG

We adapt the syntax-semantics interface for LTAG

proposed by Kallmeyer and Osswald (2013) to se-

mantic parsing with TWG. Kallmeyer and Osswald

represent semantic frames as base-labelled, typed

feature structures. The frames can be understood

as a straightforward representation of the semantic

and conceptual knowledge about a situation, while

having good computational properties as their com-

position relies on the unification of attribute-value

structures. The frames represent genuine semantic

representations, and not logical expressions, whose

meaning has to be derived during semantic compo-

sition2.

The elementary trees in a lexicalized TWG are

paired with frames via interface feature structures,

as shown in Figure 1. Here, the root of the el-

ementary tree for ‘needed’ is augmented with an

interface feature structure whose E (event) attribute

value is a frame of type require need want hope,

which has two attributes: an agent and a theme.

2The advantage of the unification is that the order of se-
mantic argument filling is not specified by successive lambda
abstraction or the like. Instead, semantic argument slots can
be filled in any order (in particular, independently of surface
word order) via unifications triggered by syntactic compo-
sition). For a more detailed discussion see Kallmeyer and
Romero (2004) and Kallmeyer and Osswald (2014)
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Figure 2: Tree-wrapping substitution for the sentence ªWhat do you think you rememberº with long-distance

wh-movement.

0







require need want hope

AGENT John

THEME help







Figure 3: Frame-semantic representation for John

needed help.

The values of these attributes are shared with the

feature structures paired with the NP substitution

nodes for the subject and the object, where they

are the values of the I (individual) attribute3. The

roots of the elementary trees for ‘John’ and ‘help’

are augmented with feature structures for whose

I attribute values are feature structures for whose

types we use the respective lemmas (more detailed

semantic representations of NPs are beyond the

scope of this paper).

During parsing, as syntactic trees are combined

(by adjunction, substitution or wrapping substitu-

tion), the semantic representations are also com-

bined. The unification of interface feature struc-

tures triggers unification of feature values in the

frames. In our example, as the substitution of the

subject NP takes place (combining the elementary

trees of ‘needed’ and ‘John’), the respective val-

ues associated to the attribute I in the interface

feature structures are unified. This results in the

unification of the feature structures 3 and 1 , which

makes the frame for John become the agent of the

event ‘needed’. The same happens when the tree

for ‘help’ is substituted at the object NP node of

the ‘needed’ tree: 4 and 2 unify to let the frame

for ‘help’ become the value of the theme attribute

in the frame 0 .

To build our frame lexicon, we use the inven-

tory of the lexical-semantic resource VerbAtlas

(Di Fabio et al., 2019). VerbAtlas covers over

13 700 verbal WordNet (Fellbaum, 2000) senses,

but organizes them into a relatively small number

of frames (466) with only 25 cross-frame seman-

tic roles, which makes it well suited for training

3The feature I is used as a variable in untyped frames re-
ferring to an argument (possibly syntactically complex) which
fills the substitution slot.

neural language models. The frames in VerbAt-

las are mapped to PropBank (Palmer et al., 2005)

framesets and multilingual BabelNet (Navigli and

Ponzetto, 2010) frames, and can potentially be

linked to FrameNet (Baker et al., 1998; Baker,

2014) frames.

2.3 Complex linguistic cases

In the process of developing our data-driven se-

mantic parser, we came across several complex

linguistic constructions which were not previously

described in papers dealing with the combination of

Tree Rewriting formalisms and semantics. Depend-

ing on the syntactic complexity of the sentences,

such constructions occur in about 20% of all sen-

tences in our data, distributed unevenly among the

subcorpora we used for the experiments. We de-

scribe some of our semantic modeling choices in

this section4.

Control constructions We introduce the variable

pivot for cases in which an elementary tree does

not have an explicit syntactic argument, but shares

the argument with an elementary tree it combines

with. Figs. 4 and 5 show an example. The pivot

variable is only assigned to CORE nodes and is

used to propagate the semantic representation of

the controlled argument.

Constructions with a peripheral subordinate

clause The representation of discourse relations

is beyond the scope of this work, so for now we

generate semantic representations for such clauses

separately. Fig. 6 shows the elementary tree-frame

pairs and Fig. 7 shows a representation for the sen-

tence The sheep follow him because they know his

voice.

Constructions with a non-peripheral subordi-

nate clause If a subordinate clause is not a modi-

4For the sake of space we only represent the relevant el-
ementary trees in the figures of this section and skip some
initial elementary trees that are substituted or adjoined into
the larger trees.
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Figure 4: The pivot variable in semantic representation

of the sentence She loves to cook.
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Figure 5: Label unifications and resulting frame for she

loves to cook.
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Figure 6: Tree-frame pairs for the sentence The sheep

follow him because they know his voice
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THEME him













know
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Figure 7: Semantic representations of a main clause and

a peripheral subordinate clause in sentence The sheep

follow him, because they know his voice

fier, but an argument of a main clause, the frame of

the subordinate clause fills the corresponding argu-

ment slot of the parent frame (see the elementary

trees and frame representation in Fig. 8, 9 for the

sentence What people say about themselves means

nothing).

Treatment of prepositional phrases The treat-

ment of prepositional phrases depends on whether

CLAUSE[E = 0 ]

CORE

PP[I = 2 ]NUC

V

say

NP[I = 1 ]

PrCS

NPwh
[I = 3 ]

CLAUSE[E = 4 ]

CORE

NP[I = 8 ]NUC

V

means

CLAUSE[E = 7 ]

0
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AGENT 1
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THEME 3
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CAUSE 7

TOPIC 8







Figure 8: Tree-frame pairs for constructions with subor-

dinate clauses
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CAUSE










affirm

AGENT people

ATTRIBUTE themselves

THEME what











TOPIC nothing





















Figure 9: Constructions with subordinate clauses, here

What people say about themselves means nothing

the PP is an argument or an adjunct of the predicate.

In (1-a) below, the PP fills a core role of the predi-

cate lowered. However, the role filler well for this

argument slot should itself be substituted first into

the elementary tree of the preposition into. Thus, to

propagate the filler of the destination role to the des-

ignated argument slot of lowered, we check during

the substitution of the PP subtree and the subse-

quent frame unification that the argument role of

the PP corresponds to the required argument role of

the sentential predicate (see Fig. 10). If the preposi-

tional phrase is an adjunct of the predicate (as, for

example, in (1-b), where with a check modifies the

predicate pay), the subframe of the prepositional

phrase is added as an additional semantic role of

the predicate after adjoning the PP subtree.

Since we focus on verbal predicates in this work,

we do not explore an explicit frame representation

of different prepositions, as outlined in Kallmeyer

and Osswald (2013). Instead, we leave the rep-

resentation of prepositions and other non-verbal

predicates for future work.

(1) a. Tom lowered the bucket into the well.

b. I want to pay with a check.

Constructions with non-local dependencies

Constructions with non-local dependencies (e.g.
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long-distance wh-movement or extraposed relative

clauses) can be handled via unification during wrap-

ping substitution (see tree-frame pairs in Fig. 11

and the resulting representation in Fig. 12).

Supertag Frame Arg. Link.

she (NP (PRO ⋄)) (entity) (±)
loves (CL (CO (like) ((1, ‘Exp.’),

(NP ) (2, ‘Stim.’))
(NUC (V ⋄))
(CORE )))

to (CO* (CLM ⋄)) (±)
cook (CO (NUC (V ⋄))) (cook) ((0, ‘Agent’))

Table 1: Example of the training data, CL stands for

Clause, CO means Core.

3 Method

3.1 Argument linking

As outlined in the previous section, our approach to

semantic parsing requires two components which

are used to compositionally produce a deep seman-

tic representation of the sentences: TWG elemen-

tary trees and the corresponding semantic frames.

We divide prediction of semantic frames into two

subtasks: prediction of the correct frame and learn-

ing the argument linking within those frames.

The argument linking mechanism relies on the

elementary tree of the predicate and predicts which

substitution slot of the supertag carries which se-

mantic role. For example, in Table 1 the argu-

ment linking for the predicate likes means that the

first substitution slot of the corresponding supertag

should get the role label ªExperiencerº and the

second slot gets the label ªStimulusº, hence the

numbers 1 and 2. In case an elementary tree has a

semantic role with no local filler, as in control or

raising constructions (see Figure 4) or in sentences

with conjoining predicates, we mark the seman-

tic role with the index 0, indicating that there is

CLAUSE[E = 0 ]

CORE

PP[E = 0 , I = 3 ]NP[I = 2 ]NUC

V

lowered

NP[I = 1 ]

PP[E = 7 ,I= 6 ]

NP[I = 6 ]P[E = 7 ]

into
0











lower

AGENT 1

THEME 2

DESTINATION 3









 7

[

event

DESTINATION 6

]

Figure 10: Propagating the role of the argument PP into

to the main frame lower for the example (1-a)

no substitution slot for this role (see, for example

the frame cook in Table 1). For non-predicative

frames we learn the frame with the dummy type

ENTITY and resolve the type of the frame to the

corresponding lemma after parsing.

3.2 Reducing the size of TWG grammars

Since the TWG grammars are usually large and

contain several thousands distinct elementary trees,

which is potentially hard for a neural model to learn,

we reduce the size of the grammar by flattening the

elementary trees and thus simplifying the syntactic

structure of the trees from which we induce the

TWG grammar. We collapse the internal structure

of the trees, so that it preserves the relevant syn-

tactic information about the lexical anchor and its

argument structure. In particular, we delete the

internal nodes of the tree which are not relevant

for syntactic composition (i.e. the nodes are not

involved in any tree combination operations) while

leaving the root node and unlexicalized leaves un-

touched. We delete all SENTENCE nodes while

keeping however the spine of CLAUSE, CORE

and NUC since these are important targets for mod-

ifier and operator adjunctions. Figure 13 shows an

example. After flattening the trees, we extract a

TWG elementary trees using the automated gram-

mar extraction approach of Bladier et al. (2020a).

Since the syntactic trees in TWG grammars can

have crossing branches, but the algorithm for TWG

parsing (Bladier et al., 2020b), which we use to

obtain syntactic representations for our data, does

not support crossing branches, some nodes in trees

have to be reattached before grammar extraction

and re-attached to the correct nodes after parsing.

3.3 Multi-task transformer-based learning

We use the MaChAmp toolkit (van der Goot et al.,

2021) to build a multi-task neural model for si-

multaneous learning of the elementary tree tem-

plates (i.e. supertags), frame selection, and argu-

ment linking, all cast as sequence labeling tasks.

The MaChAmp multi-task models share a BERT-

based encoder, but use task-specific decoders for

the subtasks. Table 1 shows an example of the in-

put for the multi-task neural model. We initially

experimented with training a single-task model for

each subtask and tried out different combinations

of multi-task models. Since the results of a multi-

task model turned out to be comparable with the

single-task models (showing only around 0.1 per-

cent of difference), we therefore carry out our ex-
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Figure 11: Wrapping substitution for wh-LDD in sentence Whom does Paul think Mary likes? The OP=CL notion

means that the node will be attached to the CLAUSE node of the parent tree after the parsing step.
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Figure 12: Semantic representation for an LDD con-

struction in Whom does Paul think Mary likes?
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Figure 13: Example of a transformed tree before gram-

mar extraction: the crossing branch from the original

tree (on the left) is reattached and some of the internal

nodes are removed. OP=CL indicates that the OPtns

node was originally immediately below CLAUSE.

periments with the multi-task model. This model

has the advantage of predicting all the components

of our semantic parsing approach at once, resulting

in lower training and prediction times. We tried

to apply different weights on the loss function of

each subtask to see if it affects the performance of

the multi-task model, however the results did not

change significantly. Apart from experimenting

with different loss functions, we used the default

values of the MaChAmp Bert model for training.

The model is trained for 10 epochs, and we select

the model with the highest F1-checkpoint for the

evaluation.

4 Experiments and Discussion

4.1 Data

Since there is currently no manually annotated gold

dataset for semantic parsing with TWG, we use al-

ternative resources to train our model. We use the

statistical neural TWG parser ParTAGe (Bladier

et al., 2020b) developed for syntactic parsing with

TWGs and train it on multilingual data from RRG-

parbank, the first large resource for TWG and Role

and Reference Grammar (Bladier et al., 2022). The

ParTAGe parser predicts the syntactic trees based

on predicted n-best supertags for each sentence

and also predicts the dependency heads based on

the produced syntactic tree. The performance of

this parser is different for sentences with different

sentence length, but is sufficiently high for shorter

sentences. We measured the ParTAGe performance

on English sentences from the RRGparbank cor-

pus (since the parser was originally trained on this

data). We found that the performance of the parser

on sentences with less then 7 tokens had the labeled

F1 score of 93.52 for the produced syntactic trees,

and the labeled F1 score of longer sentences was

around 85.26.

We use the Parallel Meaning Bank v3.0.0 (PMB;

Abzianidze et al., 2017) and the CoNLL-2012 En-

glish dataset based on OntoNotes 5.0 (Pradhan

et al., 2012) for the frame-semantic parsing ex-

periments. The PMB provides deep semantic rep-

resentations of sentences following Discourse Rep-

resentation Theory. It has rather short sentences

(around 6.7 tokens on average) consisting of Web

texts, newspaper articles and the Bible. The En-

glish part of the CoNLL-2012 corpus is a large re-

source which includes over 94 000 sentences from

different genres, including journal articles, web

data, broadcast news and phone conversations. We
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use the pre-defined train, development and test sets

for both resources (see Table 2).

PMB OntoNotes

# sents (train, dev, test) 6654, 886, 75187, 9480,
902 9260

avg. sent length 6.94 16.71
# tokens 54205 201300
# lemmas 5463 10975
# dist. frames 350 436
# dist. frame/lemma pairs 949 2965
# frame occurrences 4783 34930
# role occurrences 13495 45496
# supertags 782 4158
# supertags occ. once 354 2204

Table 2: Statistics on the used data.

PMB and OntoNotes are not explicitly annotated

with VerbAtlas frames, but PMB provides WordNet

senses and VerbNet semantic roles, and OntoNotes

is annotated with PropBank framesets and semantic

roles. Since VerbAtlas provides manually created

mappings to these resources, we used these map-

pings to create a sufficient amount of semantically

annotated data. In order to obtain syntactic repre-

sentations needed for our frame-semantic parser,

we parse all sentences with the pretrained ParTAGe

models available from Bladier et al. (2022).

4.2 Frame-semantic parsing experiments

Our frame-semantic parser predicts supertags

needed to produce syntactic trees in parallel with

the frame labels and corresponding semantic roles.

We predict only heads of the semantic roles, since

the full spans can be reconstructed deterministically

from the predicted syntactic trees. We use the con-

stituent trees produced by our parser to reconstruct

the full spans of semantic roles5.

VerbAtlas has 466 frames, 350 of which we ob-

serve in PMB and 436 in the OntoNotes data. The

distribution of the frames is relatively even, without

any frames occurring particularly more frequent

then other frames. We do not consider frames asso-

ciated with modal verbs. Since some of the frames

occur only in test or development set and thus can-

not be learned, we calculate the upper bound for

the data to determine what would be the highest

possible achievable score. The evaluations show

a long tail of prediction errors without particular

errors occurring more often then the others. Table 4

shows some of the most frequent mistakes.

5We reconstructed full spans of semantic roles only for
OntoNotes, since the data from PMB are not annotated with
full-span semantic roles.

The distribution of the supertags is uneven with

a couple of most frequent ones occurring in the

majority of the cases. We found 225 distinct pred-

icative supertags in the PMB data, and 1358 in

OntoNotes. Table 5 shows that the first three most

common predicative supertags make up around two

thirds of all predicates in PMB. A similar distribu-

tion is also present in the larger OntoNotes corpus,

although the frequency of the most common su-

pertags is less prominent.

The results of the frame-semantic parsing show

that we achieve results comparable with the base-

line Semantic Role Labeling (SRL) results on the

OntoNotes and show a slight improvement on the

PMB data (see Table 36). The results on different

genres in OntoNotes show a significant increase in

performance on the Bible data and the worst results

for the web texts. This result is due to the greater

sentence length for the web data and a high amount

of internet slang and deviations from standard En-

glish orthography and syntax.

4.3 Error analysis

Although VerbAtlas has rather coarse-grained

frame lexicon, the number of frames (466) is still

large and some frame pairs have only a subtle dif-

ference in its definition (e.g. the frame pairs GO-

FORWARD and LEAVE DEPART RUN-AWAY or AF-

FIRM and SPEAK). Also there are some verbs, like

for example go, which are polysemous and can be

assigned different frames which appear more or

less frequent in the annotated data. Since the ma-

jority of the frames appear only a couple of times

in the training data, the model sometimes predicts

the wrong frame which appears more frequently, as

for example the frame LEAVE DEPART RUN-AWAY

is wrongly predicted instead of CONTINUE in ex-

ample (2).

(2) [...] but they’re determined to keep

going[leave depart run-away]

Each frame in VerbAtlas comes with its own set

of semantic roles. Although the number of the

roles is small (26), the model has to learn the cor-

rect labels for each of the 466 frames. Since for

most frames in VerbAtlas, the agentive and patien-

tive role have the labels AGENT and THEME, the

6We use the following terms while describing our semantic
parsing experiments: the term trigger stands for a lexical unit
that can evoke a frame, the term role for frame element, and
role candidate for the sequence of words that instantiates a
role.

Syntax-enhanced Semantic Parsing 114



230

PMB OntoNotes
avg. bn+bc nw+mz pt tc wb

frame trigger detection 93.75 92.92 92.35 92.14 96.41 94.79 91.56
frame label selection 89.75 89.57 88.56 88.65 95.81 92.5 86.15

(w. entity and event labels)
frame label selection 83.9 89.06 87.93 87.78 97.11 92.06 85.48

(only VA-labels)
*upper bound 99.81 99.46 99.59 99.38 99.71 99.65 98.88

role candidate detection 91.1 87.47** 86.54** 87.91** 91.45** 86.45** 86.25**
role label selection (head) 86.15 89.67** 88.36** 90.08** 93.16** 89.56** 88.15**
role label selection (full span) ± 88.34** 87.61** 88.63** 92.11** 88.82** 86.43**

role label selection 85.8 92.1
(baseline, head) Bladier et al. (2021) InVeRo-XL (Conia et al., 2021)
role label selection ± 86.8
(baseline, full span) InVeRo-XL (Conia et al., 2021)

avg. sent. length 5.99 14.73 14.36 20.09 11.02 8.04 16.71
# sents 902 9260 2968 2568 1051 1618 1055

Table 3: Frame-semantic parsing results. We use the frame inventory from VerbAtlas (VA; Di Fabio et al., 2019) in

our semantic representations. The role label selection for full spans is not evaluated for the PMB experiment, since

only semantic heads of role spans are annotated in gold PMB data. *Since some labels from the test set are not

present in the training data, we measure the highest possible upper bound for the VA-label selection. **We measure

the scores for OntoNotes only for pre-identified predicates to make the evaluations comparable with the reported

baseline. bn+bc = broadcast, nw+mz = newswire, pt = bible, tc = telephone conversations, wb = web.

Gold frame Predicted frame %

GO-FORWARD LEAVE DEPART RUN-AWAY 0.7
CONTINUE LEAVE DEPART RUN-AWAY 0.48
INCITE INDUCE EXIST-WITH-FEATURE 0.42
KNOW MEET 0.42
RESULT CONSEQUENCE ARRIVE 0.42

Table 4: Most frequent frame label prediction mistakes

with the percentage from the overall frame label predic-

tion errors, measured on OntoNotes data.

Supertag % %
(PMB) (ON)

(CL (CO (NP ) (NUC (V ⋄)) (NP ))) 38.82 8.5
(CL (CO (NP ) (NUC (V ⋄)))) 14.37 6.64
(CL (CO (NP ) (NUC (V ⋄)) (PP ))) 10.62 3.3
(CL (CO (NP ) (NUC (V ⋄)) (NP ) (NP ))) 7.6 0.1
(CL (CO (NP ) (NUC (V ⋄)) (P ) (NP ))) 5.28 0.01

Table 5: Most common predicative supertags for PMB

and OntoNotes (ON) data.

model frequently picks these two labels instead of

some less frequent frame-specific role labels. For

example in (3), the correct role set for the COME-

AFTER FOLLOW-IN-TIME frame is THEME and CO-

THEME, but the model predicts the more common

AGENT and THEME role labels.

(3) That[agent] follows[come-after follow-in-time] a

decline[theme] in the prior six months [. . .]

As for the errors in prediction of argument linking,

the most errors emerge when an infinitive modifies

a noun or an adjective (see an example in (4)). The

supertag for the verb in such constructions has the

type of an auxiliary tree and thus lacks the agentive

argument slot. In these cases, the semantic role

corresponding to the PIVOT variable sometimes is

not predicted (we described the PIVOT in greater

detail in Section 2.3). For example, in (4) for the

MANAGE frame, only the role THEME is predicted,

but not the AGENT role for strategy.

(4) A time-honored strategy to control[manage]

the masses[theme].

5 Conclusion and Future Work

In this paper, we presented the first broad-coverage

frame-semantic parser with Tree Wrapping Gram-

mar, a grammar formalism closely related to Tree

Adjoining Grammar. To develop our parser, we

adapted the theoretical approach of Kallmeyer and

Osswald (2013) to semantic parsing with TAG

and transferred it to TWG. We explored parsing

strategies for several complex linguistic construc-

tions. We developed our transformer-based lan-

guage model based on the VerbAtlas frame lexicon,

and experimented with English data in several gen-

res. We could see that our semantic parser shows

results close to the state-of-the-art semantic parsers.

In future work we want to explore the transfer-

ability of our approach to different languages, in-
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cluding low-resource ones. Our approach to seman-

tic parsing starts from statistical syntactic parsing

for TWG proposed by Waszczuk (2017); Bladier

et al. (2020b). A recent work by Evang et al. (2022)

presents a modification of this method for cross-

lingual syntactic parsing based on word embed-

dings and English glosses. The underlying idea is

to transfer supertag information from an English

translation to the target sentence via word align-

ments. We plan to extend this method to semantics.

The frame lexicon VerbAtlas, which we use as

a frame inventory for the semantic representations,

lacks relations between frames. In order to enable

semantic inference and logical reasoning with our

parser, we currently investigate possibilities to de-

velop a rule-based mapping from VerbAtlas frames

to FrameNet frames, which would then yield also

hierarchical relations between frames.
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Chapter 6

Discussion and Conclusion

Key Ąndings In this dissertation, we worked on the implementation of the syntax-

semantics interface for the typologically grounded structural-functionalist theory of

language Role and Reference Grammar (RRG). Since its starting point in the 1980s,

Role and Reference Grammar was used to describe several dozens of languages from

around the globe, and proved to be useful both for language description as well

as for exploring central theoretical issues in linguistics. Kallmeyer et al. (2013)

developed a formalization of RRG - Tree Wrapping Grammar - in order to use RRG

in computational linguistics and to potentially develop NLP tools for a wide variety

of languages, including rare, endangered, and low-resource ones. Starting from

this formalization, we implemented a full system for probabilistic RRG grammar

induction together with a syntactic and semantic parsing tool based on TWG/RRG.

Our system can also be used for other Tree Rewriting Formalisms, such as TAG and

its different variations, since it allows to extract different types of syntactic trees

used in both formalisms (traditional initial and auxiliary trees used for TAG, but

also sister-adjoining and d-edge trees used for TWG).

Since TWG is closely related to TAG, we have shown that a variety of algorithms and

NLP tools existing for TAG can be re-used for RRG. In particular, we adapted an

existing TAG induction algorithm to develop a methodology for extraction of linguis-

tically motivated probabilistic RRG grammars from constituency treebanks. We also

adapted and modiĄed an existing syntactic parser for TAG ParTAGe (Waszczuk,

2017) and enhanced it with the supertagging component to boost the parsers accu-

racy and speed.

Since one of the main strengths of TWG is treatment of non-local dependencies

(NLDs), we compare our parsing system with two LCFRS-based syntactic parsers

DiscoDOP (van Cranenburgh et al., 2016) and Discoparset (Coavoux and Cohen,

2019) and show that our parser outperforms them in recognizing NLDs, while using
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linguistically motivated syntactic constructions in the underlying grammar. Extrac-

tion of the elementary trees for NLDs from treebanks however remains challenging

due to the heterogeneous nature of NLDs and their language speciĄcity. In our work

we present several types of NLDs we encountered in English and German data and

outline a strategy to induce elementary trees for them from the treebanks.

According to RRG, the syntax of a natural language can only be understood with

reference to its semantic and communicative functions (cf. Van Valin (2005)). In

our dissertation we investigated the ways to computationally implement the outlined

syntax-semantics interface and to use it for RRG-based semantic parsing. The im-

plementation revealed several challenges, since the methodology for such a parser has

been so far only theoretically described in the literature (Van Valin, 2005; Kallmeyer

and Osswald, 2014) and only prototypically implemented for LTAG in Arps and Pe-

titjean (2018) for a small number of verbal predicates. Arps and Petitjean (2018)

also did not pursue a large scale implementation and their parser is based on the

metagrammar and not on a grammar directly extracted from a treebank. A data-

driven implementation of the syntax-semantics interface for RRG revealed challenges

with certain linguistic phenomena which we investigated in this dissertation.

As a part of our dissertation project, we also co-worked on the creation of two Ąrst

large treebanks for RRG - a monolingual corpus RRGbank and a parallel multilin-

gual resource RRGparbank. These resources provided insights on not yet described

linguistic phenomena in RRG and enabled Ąrst investigations of the ŞcoreŤ RRG

grammar, a set of syntactic constructions common to multiple languages. We could

also leverage these resources for the implementation of both syntactic and semantic

parsers. Our practical implementation proved these treebanks suitable for inte-

gration within downstream NLP applications. Moreover, our parsing experiments

establish a benchmark for subsequent RRG-based applications.

Detailed discussion We included eight studies in this cumulative dissertation to

discuss various aspects of syntactic and semantic parsing based on lexicalized Tree

Adjoining Grammar (TAG) and Tree Wrapping Grammar (TWG). We started our

dissertation project with four main research questions in mind, which we can now

answer. Let us begin with the Ąrst one:

(i) Can we propose an algorithm for inducing Tree Rewriting Grammars from an

RRG-annotated treebank? Can this grammar extraction algorithm be applied

across multiple languages?

The elementary trees which constitute Tree Rewriting Grammars capture the syntac-

tic arguments of their lexical anchor, thus making the predicate-argument relations

explicit - a property which was previously discussed as particularly promising for
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semantic parsing (Liu and Sarkar, 2009; Kallmeyer and Osswald, 2014; Arps and

Petitjean, 2018). We pursued the idea proposed by Kallmeyer and Osswald (2014) to

map the elementary trees to meaning representations and develop a semantic parser

which would derive the meaning of utterances compositionally during syntactic pars-

ing. The development of the syntax-mediated semantic parser from scratch includes

several key components, which we addressed in this dissertation. We described the

process of obtaining probabilistic grammars to be used for parsing and outlined our

methodologies for syntactic and semantic parsing. Finally, we showed the process

of creating sufficiently large treebanks to train our language models on.

Our created semantic parser is of interest to several Ąelds of linguistics for various

reasons: to the best of our knowledge, this is the Ąrst large-scale implemented se-

mantic parser based on tree-rewriting grammars which uses the theoretical basis of

the typologically oriented Role and Reference Grammar. We showed that our parser

reaches state-of-the-art semantic parsing performance while bringing some impor-

tant advantages for natural language modeling and processing. The grammar-aware

approach to semantic parsing allows to develop more transparent language models,

compared to Şblack boxesŤ of neural syntax-agnostic tools. Grammar-based meth-

ods which we used in the dissertation also require less data and can be potentially

extended to a broad variety of languages, even to low-resource ones, as has been

done in Evang et al. (2022). The methodology we developed in this dissertation is

particularly relevant in the context of typological linguistic theories such as RRG,

Functional Discourse Grammar (Dik, 1987), or Systemic Functional Linguistics (Hal-

liday, 1961), for which a lot of typologically oriented research is done, which means

research mostly on low resource languages.

TWG was developed as a part of the overall goal of formalizing RRG. One of the

most important linguistic properties of TWG is that it allows for a linguistically

motivated modeling of non-local dependent elements in utterances, such as for ex-

ample an extraposed wh-clause in the sentence ŚWhat do you think you remember?Š

in Fig. 6.1. The wh-phrase ŚwhatŠ in such sentences does not appear in the canon-

ical position of a direct object in the CORE of the predicate (here after the verb

ŚrememberŠ), but in the front of the phrase. In TWG, such constructions are han-

dled by the tree combination operation wrapping substitution. During wrapping

substitution, the elementary tree with a dominance edge (on the left in Fig. 6.1)

is split in two so that the lower part Ąlls the substitution node of the target tree

and the upper part is added to the root of the target tree). In our Ąrst study (1)

ŞAutomatic Extraction of Tree-Wrapping Grammars for Multiple LanguagesŤ we de-

veloped an algorithm to extract TWG grammars from treebanks. We adapted and

extended the top-down algorithm developed by Xia et al. (2000) for TAG extrac-

tion. We introduced special extraction operations to account for sister-adjunction
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and wrapping substitution which are used in TWG. Since the frequency and the

types of non-local dependencies (NLDs) vary broadly across the languages, only a

few types of constructions with non-local dependencies (NLDs) can be recognized

automatically based on predeĄned rules (for example, relative clauses introduced

by the pronoun que in French with a raising construction between que and the

governour predicate) (Candito and Seddah, 2012). Thus, we found it necessary to

manually mark all parts of NLDs in the corpus prior to grammar extraction. It

should be noted that the frequency of such constructions in corpus data depends

on the language (accounting typically around 1% or 2% of sentences in English

newspaper or literary texts, but occurring more frequently in languages with free

constituent order like German or Russian). We identiĄed two types of NLDs: (1)

the long-distance dependencies (LDD) include the non-local dependencies in which

an obligatory syntactic element is moved to the front position within the scope of

syntactic element. This includes such constructions as wh-extraction, relativization

or topicalization. We called the second type (2) of NLDs extraposed relative clauses

(ERCs). In ERCs, the relative clause is extracted from its canonical position (i.e.

directly following the introducing relative pronoun) typically to the position right

of the scope, which leads to a non-local coreference link between the relative clause

and its antecedent nominal phrase (like for example in Nothing has happened that

you did not foresee.). In the Ąrst study (1) we showed that these two types of

NLDs require slightly different procedures to extract elementary trees, since LDDs

concern obligatory syntactic arguments and ERCs contain syntactic modiĄers. For

example, the sentence in example 6 has a non-local dependency (NLD) of the type

of a long-distance wh-extraction (wh-LDD):

(1) What do you think you remember

The NLD in this sentence is handled with wrapping substitution in TWG, since it

is an extraction out of an argument, i.e., the wrapping substitution Ąlls a CLAUSE

argument slot while adding the extracted part to the left of the entire CLAUSE.

Figure 6.1 shows an example of wrapping substitution between the elementary trees

of ŠrememberŚ and ŠthinkŚ. The wrapping substitution allows to simultaneously

put both parts of a discontinuous constituent to the slots of the target elementary

tree.

The ERC type of non-local dependencies is slightly different from the LDD type

since it involves the extraposition of a modiĄer. It therefore requires a slightly

different modeling with putting the antecedent NP and the relative clause into the

same elementary d-edge tree, as exempliĄed in Fig. 6.2 (cf. Kallmeyer (2021)).

In the study (1) ŞAutomatic extraction of tree-wrapping grammars for multiple
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NPwh

What

NP

you

CLAUSE

CORE

NUC

V

remember

NP

PrCS

NPwh
CORE*

OP-TNS

do

NP

you

CLAUSE

CORE

CORENUC

V

think

NP

Figure 6.1: Wrapping substitution for the wh-long distance dependency (wh-LDD)

in sentence What do you think you remember?

CLAUSE

CLAUSEperi

you did not foreseePrCS

NPrel

that

NP

NP

PRO

nothing

CLAUSE

CORE

has happenedNP

CLAUSE

CLAUSEperi

you did not foreseePrCS

NPrel

that

CORE

has happenedNP

PRO

nothing

⇝

Figure 6.2: Wrapping substitution for the extraposed relative clause (ERC) in the

sentence nothing has happened that you did not foresee.

languagesŤ we extracted TWG grammars for English, German, French, and Russian.

We thus showed that our developed algorithm for TWG extraction can be used to

extract grammars from different languages and also adapted to grammar extraction

for other languages in future research. Potentially, the algorithm can be applied

to every constituency treebank and also dependency treebanks (after converting

dependency trees to constituency trees).

Our answer to the Ąrst research question is thus that we could indeed adapt the ex-

isting induction algorithm for TAG induction and use it for Tree Wrapping Grammar

induction. However, the TWG-speciĄc operation of wrapping substitution requires

special manually added node markers in order to identify the parts of non-local

dependent elements in sentences.

Let us now look at the second research question:

(ii) Is it feasible to develop a syntactic parser for RRG based on its formalization

as a Tree Wrapping Grammar?

The three studies (2)-(4) comprising Chapter 3 Supertagging and Parsing with Tree

Rewriting Grammars discuss parsing strategies with the extracted grammars. We
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adapted the classical parsing method of the pipeline supertagging and a subsequent

actual parsing step. Supertagging is traditionally referred to as being Śalmost pars-

ingŠ because it reduces the number of choices which an actual parser has to make,

since the actual parsing step is in general computationally costly. For example, a

TAG for different languages usually consists of around two to three thousands trees,

but the supertagger reduces this number to several most probable supertags per

token in a sentence. The supertagging step also helps to increase the parsing speed.

In (2) ŞGerman and French Neural Supertagging Experiments for LTAG ParsingŤ,

we investigated the supertagging strategies for German and French and developed a

neural architecture of the supertagger which shows results for both languages com-

parable with the supertagging results for English. We also showed that accuracy

prediction is improving up to 5-best predicted supertags per token, while for ranks n

≥ 6 the improvement of accuracy is not as big. We Ąnd that the supertagging accu-

racy depends on the sentence length (thus, we had good results for German despite

the free word order) and the amount of multiword constructions in the treebank,

as such constructions are usually annotated differently from the rest of the corpus,

which can lead to a confusion by the training of the neural supertagger.

Supertagging, however, is not yet parsing. In the study (3) ŞFrom partial neural

graph-based LTAG parsing towards full parsingŤ we discussed the results presented

by Kasai et al. (2017, 2018) and showed that a high accuracy in 1-best supertagging

does not lead to a full parse tree in many cases. We demonstrated that for the

English TAG even if just one supertag from the sequence of most probable supertags

for the sentence is not correct, in almost half of the sentences these supertags cannot

be combined to form a syntactic tree for the sentence. We showed that prediction

of n-best supertags is necessary to produce syntactic trees for the majority of the

sentences. We investigated how many predicted supertags per token are sufficient for

parsing and show that the rank of n depends on the average sentence length, but that

in general n = 10 is sufficient to parse sentences from the French Treebank (which

has an average sentence length of 30 tokens). We developed a parsing pipeline

consisting of a supertagger based on the BiLSTM Deep Learning algorithm and

adapt the A* star parser for TAG developed by Waszczuk (2017) to be able to

deal with supertags. The new version of this parser considers each set of n-best

supertags predicted sentence-wise as complete grammars, from which the parser

chooses a sequence of one supertag per token to produce a constituency tree for the

sentence. This accelerates the parsing speed as it reduces the grammar and thus also

the number of choices the A* star parser has to make. We also trained the parser to

predict the bilexical dependencies between the supertags, i.e. the information which

supertags should be combined with each other. We showed that prediction of such

dependencies along with the supertags further speeds up the A* parsing architecture,
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as it reduces the size of the hypergraph created by the parser. It should be noted

however, that the bilexical dependencies do not resolve the attachment ambiguity

- thus, if a target supertag has two internal nodes with the same label, a bilexical

dependency does not tell explicitly the exact node of the tree combination operation.

Supertagging is a sequence labeling problem, thus machine learning algorithms, such

as neural networks of different architectures are well suitable for this task. In this

paper we used a BiLSTM-based model, but as we showed in later papers, other

more advanced deep learning architectures can be employed as well, for example

transformer-based models, which are in the last years increasingly used for NLP

tasks (Vaswani et al., 2017; Wolf et al., 2020).

In the study (4) ŞStatistical Parsing of Tree Wrapping GrammarsŤ we elaborated on

our modiĄcation of an A* parser, which was initially developed for TAG, to handle

tree combination operations unique to TWGs, such as sister adjunction and wrap-

ping substitution. In this study we investigated if statistical parsing with TWGs is

better suitable for handling the non-local dependencies than other syntactic parsers,

since representation of NLDs is a particular strength of TWG. We showed that such

constructions appear differently frequent in different languages. For instance, Ger-

man tends to have more extraposed relative clauses than English or French. This is

because German allows for more Ćexibility in how sentences are structured, and there

is a tendency to avoid heavy NPs, particularly those with relative clauses, which of-

ten occur before the sentenceŠs Ąnal position because of the verb-Ąnal order. We

compared our parsing approach with the discontinuous data-oriented parsing model

DiscoDOP developed by van Cranenburgh and Bod (2013). We also compared our

results with the state-of-the-art transition-based parser Discoparset (Coavoux and

Crabbé, 2017) and show that our parser shows a better performance with regard to

NLD recognition. We investigated the errors of the parser and Ąnd that the cases

where a relative clause or wh-phrase of the NLD is an adjunct are harder to pro-

cess for the parser. Also the cases in which a relative clause is introduced with a

wh-word and contains a verb that usually takes a wh-element as argument, as for

example with verbs of communication (i.e. ŚsayŠ) were not processed correctly, i.e.

in the phrase slip of paper which they said was the bill the pronoun which is wrongly

analyzed as an argument of the verb said).

Our answer to the research question (ii) is thus that it is possible to develop a syn-

tactic parser for RRG based on TWGs and that it works well for parsing non-local

dependencies, modeling of which is one of the strengths of TWG. Our parsing strat-

egy exploits the idea of using TAG-like syntactic templates described in Van Valin

(2005) and Van Valin (2023) for parsing. Some other approaches for RRG pars-

ing has been discussed previously (see Guest (2009); Diedrichsen (2014); Cortes-

Rodriguez (2016); Mairal-Usón and Cortés-Rodŕıguez (2017)). These approaches
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are, however, not able to deal with long-distance dependencies and two of them are

either language- or application-speciĄc Diedrichsen (2014); Cortes-Rodriguez (2016)

and none of the existing RRG parsing approaches has a large-scale implementa-

tion.

Let us now turn to the third research question:

(iii) What strategies are effective in building a large linguistic resource for RRG to

support NLP development?

We addressed the research question (iii) in papers (5) ŞRRGbank: a Role and Refer-

ence Grammar Corpus of Syntactic Structures Extracted from the Penn TreebankŤ

and (6) ŞRRGparbank: A Parallel Role and Reference Grammar TreebankŤ. Al-

though it is possible to extract a TWG from any kind of constituency treebank,

TWGs are tightly linked to Role and Reference Grammar, as the TWG methodol-

ogy was originally developed for its formalization in order to use it in computational

applications. Since there were no suitably large linguistic resources for RRG before

we started our dissertation project, we built two resources to have enough data for

statistical parsing experiments and grammar induction: RRGbank (5) ŞRRGbank:

a Role and Reference Grammar Corpus of Syntactic Structures Extracted from the

Penn TreebankŤ and RRGparbank (6) ŞRRGparbank: A Parallel Role and Ref-

erence Grammar TreebankŤ. We were interested to build a resource which would

cover as many linguistic phenomena as possible for different languages. We were

also interested in Ąnding a treebanking methodology which would allow a relatively

speedy annotation while also producing gold standard RRG trees. We started out

our annotations converting the constituency trees from the Penn Treebank to RRG

structures. For RRGparbank we wanted to build a parallel multilingual corpus in

order to be able to better compare the grammar phenomena in different languages

and to build NLP tools based on gold data for several languages, thus we decided

to annotate the novel Ś1984Š by George Orwell which has translations into many

languages, some of which were annotated with Universal Dependencies. We decided

to manually validate the resulting annotations in order to achieve a reliable RRG-

based treebank. We found that the majority of the trees from Penn Treebank could

be converted with a rule-based script to the RRG structures. However, we identiĄed

several reasons for systematic conversion errors, among which were the annotation

errors or inconsistencies in PTB and some underspeciĄcations in PTB with regard

to the RRG theory (for example, the attachment site of the negation operator in

RRG depends on its scope, which is not reĆected in PTB). In order to bootstrap

our rule-based conversions and to potentially create RRG-based corpora in several

languages, we decided to implement an additional conversion script from Universal

Dependencies to RRG annotations. We used both conversion algorithms for RRG-



Discussion and Conclusion 126

parbank. As we had manually validated enough annotated data, we trained our

developed RRG/TWG parser on them and used the parser for annotations, since

it produced more accurate results. We showed that approximately 1000 annotated

sentences in every language were enough to train a sufficiently accurate parser.

Since the RRG annotations differ from traditional constituency trees in several ways

(for example, the RRG annotations have disconnected nodes and a constituent along

with an operator projection for each sentence), we developed a notational variant

for RRG syntactic structures in order to make annotations conform with the usual

constituency treebank notations. While Figure 6.3 shows the sentence with tradi-

tional RRG annotations, the Figure 6.4 shows the tree as it would be represented

with our notation in the RRGparbank. This notational variant can easily be con-

verted to a traditional RRG annotation To reconstruct the operator projection in

Figure 6.4 one should mirror the spine of our tree notation. The node label for ŞdoŤ

indicates that this is a tense operator (op-tns) and its parent node, core, is the

site of attachment on the operator projection.

CLAUSE

CORE

PrCS

NPwh

What

NUC

V

think

CORE

NUC

NP

you

NP

you

V

rememberdo

V

NUC

CORE

CLAUSE

TNS

Figure 6.3: Original RRG notation for the sentence ŚWhat do you think you re-

memberŠ.

Generally, the majority of studies based on RRG are focused around certain linguis-

tic phenomena and are not based on English or other European languages. Since

we opted for a data-driven approach, we were able to discover language phenom-

ena not yet covered by the RRG theory. Some of those phenomena were rather

language-speciĄc (for example, the clitics in French, stranding of CLM ŚtoŠ in En-

glish or constructions with modal adverbials in Russian, such as lemmas ŚmozhnoŠ

(Śto be allowedŠ, Śto canŠ) or ŚnuzhnoŠ (Śto needŠ). Another example are Russian

particles, which can scope over different token spans and do not have a Ąxed sen-

tential position due to the free constituent order in Russian. Other open questions
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concerned phenomena from a potentially large variety of languages (for example,

quantiĄer phrases, multiword expressions or reported speech require a detailed anal-

ysis within the RRG theory). Since no systematic analysis of the languages we used

for RRGbank and RRGparbank was made in RRG, our annotations revealed several

open questions for these languages, which required personal consultations with the

founder of the RRG theory Robert D. Van Valin Jr.

CLAUSE

CORE

CORE

NUC[nucid=1]

V

remember

NP

you

NUC

V

think

NP

you

OP-TNS

do

PrCS

NPwh[predid=1]

What

Figure 6.4: Constituency tree for ŚWhat do you think you rememberŠ from previous

Figure in our RRGparbank notation. PREDID (predicate identiĄcation number)

and NUCID (nucleus identiĄcation number) with the same ID number indicate the

parts of the non-local dependency. We use these indications for automatic extraction

of d-edge trees during the TWG induction procedure.

In order to annotate semantics in RRGparbank, we chose the VerbAtlas frame lex-

icon (Di Fabio et al., 2019). We chose VerbAtlas because it uses a relatively small

set of roles, which is beneĄcial for training NLP models. However, it also offers

a sizable range of roles that adequately capture various aspects of meaning. The

VerbAtlas frames are directly associated with the English senses of verbal words,

covering all the verbal synsets present in WordNet. These synsets are further con-

nected to verb senses across other languages. Additionally, the VerbAtlas roleset

aligns closely with the roleset of VerbNet, which is structured in a hierarchy ranging

from coarse-grained to Ąne-grained roles. This hierarchical organization enables the

training of models with varying levels of granularity, depending on speciĄc appli-

cations. We annotated only heads of semantic role spans and not full spansŮfor

example, if the whole NP the swift answer was supposedd to Ąll a Theme role, only

the word answer was annotated as Theme. The full spans of semantic roles can be

reconstructed deterministically from the corresponding syntactic trees (cf. Bladier

et al. (2023)).

In the last chapter of the dissertation we addressed the question of the role of

syntactic input for semantic parsers and whether multi-task models can be beneĄcial

for the parsing performance. This led to our fourth and Ąnal research question:

(iv) How can tree rewriting formalisms be used for data-driven RRG-based se-
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mantic parsing? Can state-of-the-art semantic parsing results be achieved by

combining Extended Domain of Locality (EDL)-based syntax and semantic

frames?

In paper (7) ŞImproving DRS Parsing with Separately Predicted Semantic RolesŤ

we investigated another type of semantic representations - the Discourse Represen-

tation Structures as introduced by Discourse Representation Theory (Kamp and

Reyle, 1993). We developed an approach to convert existing DRS representations

to semantic role labels (SRLs) in order to be able to predict SRLs separately and

afterwards use to improve the parsers. We showed a syntax-aware and a syntax-

agnostic way to convert DRSs to SRLs. We experimented with several DRS-based

full semantic parsers ans show that the use of separately predicted SRLs to improve

the performance of the existing DRS parsers, even of the neural based ones, depend-

ing on the accuracy of the SRL predictions. We developed two conversion scripts

from DRSs to semantic role labeled spans. The Ąrst script uses only the DRS nota-

tions for conversion, while the second one makes use of the CCG annotations which

are associated with the DRSs in Parallel Meaning Bank (PMB; (Abzianidze et al.,

2017)) to reconstruct the correct SRL-spans. The conversion from DRSs to SRLs re-

vealed several challenges resulting from the structural mismatches be- tween syntax

and semantics. For example, the syntax-aware CCG-based conversion is better at

handling co-referential NPs (like for example assigning correct roles and predicates

to both ŚhimŠ tokens in sentence Śshe handed him1 the money that she owed him2Š)

or the reĆexives, as for example in Śshe saw herselfŠ. In the latter case, the syntax-

agnostic DRS-based conversion is unable to assign a semantic role to ŚherselfŠ, since

this token does not introduce a new discourse referent. On the other hand, the

syntax-agnostic conversion approach is better at dealing with light verb construc-

tions in which the semantics of the main verb interacts with the semantics of the

light verb. For example, the CCG-based approach does not detect the relationship

between ŚheŠ and ŚstolenŠ in Śhe had his wallet stolenŠ. After extracting the gold SRLs

from the PMB-data, we train a neural semantic role labeling system and add the

results on top of the existing DRS parsers, merging the SRL predictions with the

output of the parsers. We showed that our approach is especially useful for parsers

which might not reach state-of-the-art accuracy, but may provide other advantages

such as smaller models or lexical anchoring. We also showed that our approach is

very Ćexible and can be applied on top of any DRS parsing model without having

to alter or retrain the model itself.

Finally, in the last paper (8) ŞData-Driven Frame-Semantic Parsing with Tree Wrap-

ping GrammarŤ we combined the developments presented in previous papers com-

prising this dissertation and discuss the syntax-aware semantic parser based on

TWGs extracted from the RRGparbank. This is the Ąrst large-scale implementa-
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tion of the syntax-semantics interface in RRG presented for TAG Kallmeyer and

Osswald (2014) and prototypically implemented in Arps and Petitjean (2018). The

semantic representations, i.e. frames, are assigned to elementary trees, as repre-

sented in Figure 6.5. We followed Kallmeyer and Osswald (2014) to represent frames

as base-labeled feature structures. During parsing, the combination operations for

elementary trees triggers also the semantic composition of the frames mapped to

them. The semantic representation of the complete utterance after the combina-

tions is shown in Figure 6.6.
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Figure 6.5: Wrapping substitution for wh-LDD in the sentence What do you think

you remember?

Table 6.1 shows an example of the input data to train our semantic parser.

Supertag Frame Arg. Link.

What (NPwh (PRO ⋄)) (entity) (Ű)

do (CORE* (OP-TNS ⋄)) (Ű) (Ű)

you (NP (PRO ⋄)) (Ű) (Ű)

think (CL (CORE (NP ) (NUC (V ⋄)) (CORE ))) (think) ((1, ŚAgentŠ), (2, ŚThemeŠ))

you (NP (PRO ⋄)) (Ű) (Ű)

remember (CL (PrCS (NPwh ))(CORE (NP ) (NUC (V ⋄)))) (remember) ((1, ŚAgentŠ), (2, ŚThemeŠ))

Table 6.1: Example of the training data, CL stands for Clause, CO means Core.
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Figure 6.6: Semantic representation for an LDD construction in What do you think

you remember



Discussion and Conclusion 130

We showed in this last paper (8) ŞData-Driven Frame-Semantic Parsing with Tree

Wrapping GrammarŤ that our syntax-aware approach leads to an almost state-of-

the-art result in dependency semantic parsing (i.e. semantic parsing approach which

predicts only heads of semantic roles) and outperforms the syntax-agnostic parser

when it comes to predict the full spans of semantic roles in a frame-based semantic

parser. The results for the full spans are better with our parser (compared to the

baseline systems) since it appears to be easier to reconstruct the full spans from

the constituent heads using predicted syntactic tree than to predict the full spans.

Due to its being the Ąrst data-driven implementation of the syntax-semantics inter-

face in RRG, we were confronted with several linguistic phenomena in English data

not yet covered in the research on TRG-based semantics, such as control and rais-

ing constructions, peripheral and non-peripheral subordinate clauses, prepositional

phrases and non-local dependencies. In this paper we described our implementation

decisions for these phenomena.

Our answer to the last research question (iv) is thus that we could implement a large-

scale semantic parser based on RRG and its formalization TWG, which reaches a

state-of-the-art performance in predicting full spans of semantic roles in frames and

performs also sufficiently well in predicting heads of semantic roles.

Future work In our future work, we plan to pursue several directions:

• We explored PropBank, VerbNet, FrameNet and VerbAtlas as possible sources

for meaning representation inventory in our work. We decided to choose Ver-

bAtlas since it has the largest coverage of verb senses among the four resources

and also a relatively small (but also not too general) set of frames and semantic

roles, so this inventory can be better learned with machine learning algorithms.

FrameNet for example, has a large number of semantic roles, which are fre-

quently frame-speciĄc and thus hard to learn, whilst the semantic roles in

PropBank are too general and hard to interpret outside of the context. The

only disadvantage of VerbAtlas is the lack of the FrameNet-like relations and

the hierarchy of frames, which would enable reasoning and logical inference.

However, since VerbAtlas provides hand-crafted mappings to the mentioned

verbal and frame resources, we would like to explore the possibility of creat-

ing a relation map for the frame-sense pairs in VerbAtlas through rule-based

mappings to FrameNet frames.

• In this work we only explored verbal predicates as frame-evoking elements

for our semantic parser. In future work we plan to extend our approach to

nominal, adjectival, and prepositional predicates.

• We would like to investigate the challenges arising from our implementation
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for other languages, starting from the multilingual subcorpora in RRGparbank

(i.e. German, French, and Russian subcorpora).

• We started our dissertation project with the aim of facilitating creation of NLP

tools for languages from different language families, including low-resource

ones. Evang et al. (2022) described a methodology for cross-lingual syntac-

tic parsing by using the English glosses and aligning them with the words in

original language. In our future work we want to extend our semantic parser

according to their methodology and to investigate how well our semantic pars-

ing system can be adapted for use with low-resource languages. In particular,

we plan to to start from extending our semantic parser for the Daakaka lan-

guage, an RRG-based treebank for which is currently being developed.

• The Fillmore-style semantic frames we use in our parsing implementation have

shown to adequately capture lexical meaning (Fillmore, 1982; Löbner, 2014),

but they cannot be easily extended to integrate logical operators to enable

computational reasoning. Based on previous work (Kallmeyer and Richter,

2014; Kallmeyer et al., 2015), we plan to explore incorporating logical opera-

tors, e.g. quantiĄers and negation, into our frame-semantic parsing tool.

• The syntax-semantics interface in the RRG theory includes the discourse-

pragmatics component alongside syntax and semantics. We left out the dis-

course pragmatics in our implementation of the syntax-semantics interface in

RRG, as this goes beyond the scope of this dissertation, but we want to explore

it in future work.
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2009 shared task: Syntactic and semantic dependencies in multiple languages.

In Proceedings of the Thirteenth Conference on Computational Natural Language

Learning (CoNLL 2009): Shared Task, pages 1Ű18.

Halliday, M. A. K. (1961). Categories of the theory of grammar. Word, 17(2):241Ű

292.

Headden III, W. P., Johnson, M., and McClosky, D. (2009). Improving unsupervised

dependency parsing with richer contexts and smoothing. In Proceedings of human

language technologies: the 2009 annual conference of the North American chapter

of the association for computational linguistics, pages 101Ű109.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural com-

putation, 9(8):1735Ű1780.

Hockenmaier, J. and Steedman, M. (2007). CCGbank: A Corpus of CCG Deriva-

tions and Dependency Structures Extracted from the Penn Treebank. Computa-

tional Linguistics, 33(3).



References 137

Howell, K. and Bender, E. M. (2022). Building analyses from syntactic inference

in local languages: An HPSG grammar inference system. In Derczynski, L., edi-

tor, Northern European Journal of Language Technology, Volume 8, Copenhagen,

Denmark. Northern European Association of Language Technology.

Jin, L., Doshi-Velez, F., Miller, T., Schuler, W., and Schwartz, L. (2018). Un-

supervised grammar induction with depth-bounded PCFG. Transactions of the

Association for Computational Linguistics, 6:211Ű224.

Johnson, M. (1987). A New Approach to Clause Structure in Role and Reference

Grammar, pages 55Ű59. 2.

Joshi, A. K. (1985). Tree adjoining grammars: How much contextsensitivity is

required to provide reasonable structural descriptions? In Dowty, D., Karttunen,

L., and Zwicky, A., editors, Natural Language Parsing, pages 206Ű250. Cambridge

University Press.

Joshi, A. K. (1987). An introduction to Tree Adjoining Grammars. In Manaster-

Ramer, A., editor, Mathematics of Language, pages 87Ű114. John Benjamins,

Amsterdam.

Joshi, A. K., Kallmeyer, L., and Romero, M. (2007). Flexible Composition in LTAG:

QuantiĄer Scope and Inverse Linking. In Muskens, R. and Bunt, H., editors, Com-

puting Meaning Volume 3, volume 83 of Studies in Linguistics and Philosophy,

pages 233Ű256. Springer.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree Adjunct Grammars.

Journal of Computer and System Science, 10:136Ű163.

Joshi, A. K. and Schabes, Y. (1997). Tree-adjoining grammars. In Handbook of

formal languages, pages 69Ű123. Springer.

Joshi, A. K. and Srinivas, B. (1994). Disambiguation of super parts of speech (or su-

pertags): Almost parsing. In Proceedings of the 15th conference on Computational

linguistics-Volume 1, pages 154Ű160. Association for Computational Linguistics.

Kallmeyer, L. (2003). LTAG Semantics for Relative Clauses. In Bunt, H., van der

Sluis, I., and Morante, R., editors, Proceedings of the Fifth International Workshop

on Computational Semantics IWCS-5, pages 195Ű210, Tilburg.

Kallmeyer, L. (2005). Tree-local Multicomponent Tree Adjoining Grammars with

Shared Nodes. Computational Linguistics, 31(2):187Ű225.

Kallmeyer, L. (2016). On the Mild Context-Sensitivity of k-Tree Wrapping Gram-

mar. In Foret, A., Morrill, G., Muskens, R., Osswald, R., and Pogodalla, S.,



References 138

editors, Formal Grammar: 20th and 21st International Conferences, FG 2015,

Barcelona, Spain, August 2015, Revised Selected Papers. FG 2016, Bozen, Italy,

August 2016, Proceedings, number 9804 in Lecture Notes in Computer Science,

pages 77Ű93, Berlin. Springer.

Kallmeyer, L. (2021). Extraposed relative clauses in Role and Reference Grammar.

An analysis using Tree Wrapping Grammars. Journal of Language Modelling,

9(2):225Ű290.

Kallmeyer, L. and Osswald, R. (2012). A Frame-Based Semantics of the Dative

Alternation in Lexicalized Tree Adjoining Grammars. Submitted to Empirical

Issues in Syntax and Semantics 9.

Kallmeyer, L. and Osswald, R. (2013). Syntax-driven semantic frame composition in

Lexicalized Tree Adjoining Grammars. Journal of Language Modelling, 1(2):267Ű

330.

Kallmeyer, L. and Osswald, R. (2014). Syntax-driven semantic frame composition in

Lexicalized Tree Adjoining Grammars. Journal of Language Modelling, 1(2):267Ű

330.

Kallmeyer, L. and Osswald, R. (2018). Towards a formalization of Role and Refer-

ence Grammar. In Kailuweit, R., Künkel, L., and Staudinger, E., editors, Pro-

ceedings of the 2013 Conference on Role and Reference Grammar.

Kallmeyer, L. and Osswald, R. (2023). Formalization of RRG Syntax, page 737Ű784.

Cambridge Handbooks in Language and Linguistics. Cambridge University Press.

Kallmeyer, L., Osswald, R., and Pogodalla, S. (2015). Progression and Iteration in

Event Semantics Ű An LTAG Analysis Using Hybrid Logic and Frame Semantics.

In Colloque de Syntaxe et Sémantique à Paris (CSSP 2015).
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