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Zusammenfassung

Die Magnetresonanztomographie ist ein leistungsfähiges bildgebendes Verfahren

zur Untersuchung der Gehirnstruktur und -funktion, das unser Verständnis der normalen

Gehirnfunktion sowie der zugrunde liegenden Mechanismen neurologischer und

psychiatrischer Störungen verbessert. Techniken des maschinellen Lernens (ML) werden

zunehmend mit Neuroimaging-Daten für die klinische Versorgung und die Forschung

eingesetzt. ML-Arbeitsabläufe sind jedoch anfällig für Fehler, wie z. B. Überanpassung

und verzerrte Ergebnisse, die zu falschen Interpretationen und Entscheidungen führen

können. Daher müssen ML-Arbeitsabläufe sorgfältig konzipiert werden. In der

vorliegenden Arbeit wurden zwei Schlüsselkomponenten des ML-Arbeitsablaufsdesign

systematisch bewertet, die für die Entwicklung unvoreingenommener und

verallgemeinerbarer ML-Modelle unerlässlich sind. Der erste Aspekt ist die e↵ektive

Beseitigung von Störsignalen, die für die Erstellung von unverfälschten Modellen ohne

Störfaktoren wichtig ist. Der zweite Aspekt ist die Verwendung verschiedener

Merkmalsräume und ML-Algorithmen für eine gegebene Aufgabe, um ein

verallgemeinerbares Modell zu finden, sowie die Auswirkungen verschiedener

Vorverarbeitungsentscheidungen auf die extrahierten Merkmale und die Modellleistung.

In Studie 1 untersuchten wir zwei Confound-Regressionstechniken zur Abschwächung

von Störsignalen in einem ML-Arbeitsablauf für die Aufgabe der Geschlechtsvorhersage

unter Verwendung von Daten aus der funktionellen Magnetresonanztomographie im

Ruhezustand. Wir fanden heraus, dass die Durchführung einer Confound-Regression im

Rahmen einer Kreuzvalidierung bei der Confound-Regression wirksam war und eine

bessere Schätzung der Generalisierungsleistung ergab als die Confound-Regression für

die gesamten Daten. In Studie 2 untersuchten wir den Einfluss verschiedener

Merkmalsräume, die aus strukturellen Magnetresonanztomographie-Daten (Volumen der

grauen Substanz) und ML-Algorithmen abgeleitet wurden, auf die Leistung und

Generalisierbarkeit der Altersvorhersage. Wir stellten fest, dass die Merkmalsräume und

ML-Algorithmen einen erheblichen Einfluss auf die Vorhersageleistung haben, ebenso

wie die Vorverarbeitungsalternativen und Merkmale aus verschiedenen Gewebetypen.

Das Gehirn-Alter-Delta war bei neurodegenerativen Erkrankungen erhöht. Im Anschluss

an Studie 2 wurde in Studie 3 die Auswirkung verschiedener

Vorverarbeitungsalternativen auf die Schätzung des Volumens der grauen Substanz
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bewertet, wobei die verschiedenen Pipelines unterschiedliche Altersvorhersageleistungen

erbrachten. Studie 4 schließlich umfasste eine systematische Überprüfung bestehender

psychometrischer Vorhersagestudien, wobei Trends in diesem Bereich aufgezeigt und

große Kohorten sowie eine externe Validierung empfohlen wurden. Insgesamt

unterstreichen unsere Ergebnisse die Bedeutung einer sorgfältigen Implementierung in

jedem Schritt des ML-Arbeitsabläufe und empfehlen die Anwendung von

Confound-Regression und eines Vorverarbeitungsschritts innerhalb der

Kreuzvalidierung, die Erforschung verschiedener Merkmalsräume und ML-Algorithmen,

die Verwendung großer Trainingskohorten zur Entwicklung optimaler und

verallgemeinerbarer Arbeitsabläufe und die Durchführung einer externen Validierung.
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Summary

Magnetic resonance imaging (MRI) is a powerful neuroimaging technique to study

brain structure and function, advancing our understanding of normal brain function as

well as the underlying mechanisms of neurological and psychiatric disorders. Machine

learning (ML) techniques have been increasingly used with neuroimaging data for

clinical care and research. However, ML workflows are prone to errors, such as

overfitting and biased outcomes, which can lead to wrong interpretations and

conclusions. Hence, there is a need for careful designing of ML workflows. The current

work systematically evaluated several key components of ML workflow design, essential

for developing unbiased and generalizable ML models. The first aspect is the e↵ective

removal of confounding signals, which is important for creating confound-free unbiased

models. The second aspect is the usage of di↵erent feature spaces and ML algorithms

for a given task to find a generalizable model—additionally, the impact of various

preprocessing choices on extracted features and model performance. In study 1, we

investigated two confound regression techniques to mitigate confounding signals in an

ML workflow for the sex prediction task using resting-state functional MRI data. We

found that performing confound regression within cross-validation (CV) was e↵ective in

confound removal and gave a better generalization performance estimate than

whole-data confound regression. In study 2, we assessed the impact of di↵erent feature

spaces derived from structural MRI data (gray matter volume; GMV) and ML

algorithms on age prediction performance and generalizability. We found a substantial

impact of feature spaces and ML algorithms on prediction performance, along with an

impact of preprocessing alternatives and features from di↵erent tissue types. Brain-age

delta was elevated in neurodegenerative disease. Following study 2, in study 3, the

impact of several preprocessing alternatives on GMV estimates was assessed, revealing

varying age prediction performance from di↵erent pipelines. Lastly, study 4 involved a

systematic review of existing psychometric prediction studies, highlighting trends in the

field and advocating for large cohorts and external validation. Overall, our findings

emphasize the importance of careful implementation at each step of ML workflow,

recommending applying confound removal and any preprocessing step within CV,

exploring various feature spaces and ML algorithms, utilizing large training cohorts for

developing optimal and generalizable workflows, and performing external validation.
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List of abbreviations

AD Alzheimer’s disease

ANTs Advanced Normalization Tools

BOLD blood-oxygen-level-dependent

CAT Computational Anatomy Toolbox
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CV cross-validation
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FC functional connectivity

fMRI functional magnetic resonance imaging

FSL FMRIB Software Library

GMV gray matter volume

GPR Gaussian process regression

HC healthy control

KRR kernel ridge regression

MAE mean absolute error
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ML machine learning

MRI magnetic resonance imaging
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ReHo regional homogeneity

rs-fMRI resting-state functional magnetic resonance imaging

RVR relevance vector regression
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sMRI structural magnetic resonance imaging

SPM Statistical Parametric Mapping

SVR support vector regression

VBM voxel-based morphometry

WDCR whole-data confound regression

WMV white matter volume
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1 Introduction

A World Health Organization report highlights that approximately one billion people

globally are impacted by a spectrum of neurological disorders, encompassing conditions

such as epilepsy, Alzheimer’s disease (AD), stroke, and brain injuries (Bertolote, 2007).

These disorders a↵ect people worldwide, regardless of age, gender, education, or income.

In the past 30 years, the absolute number of deaths has increased by 39%, and disability-

adjusted life-years have increased by 15%, causing a huge economic burden (Feigin et al.,

2020). This necessitates the advancement of methods and techniques to understand the

human brain and methods for early detection of disease and treatment.

Neuroscience is a multidisciplinary field of study focused on unraveling the

complexities of the nervous system, aiming to understand the intricate workings of the

brain and its role in behavior, cognition, and various physiological functions.

Neuroimaging is a powerful tool in this endeavor, providing techniques such as magnetic

resonance imaging (MRI) and Computed Tomography to study brain structure and

function. MRI is widely used in clinical practice to support clinicians in making

diagnoses and planning treatments (Hashemi et al., 2012). Unlike Computed

Tomography and Positron Emission Tomography, MRI does not use dangerous radiation

or require an injection of radioactive substances, so it is considered safe and

non-invasive. MRI allows us to study the brain in both healthy and diseased states,

advancing our understanding of normal brain function as well as the underlying

mechanisms of neurological and psychiatric disorders. Di↵erent MRI modalities can

capture anatomical, di↵usion, and functional characteristics of the brain, making it a

versatile tool for neuroimaging research and clinical diagnosis. Anatomical or structural

MRI (sMRI) provides detailed images of brain structures, while di↵usion MRI measures

the movement of water molecules, o↵ering insights into white matter connectivity.

Functional MRI (fMRI) detects changes in blood flow, enabling the observation of brain

activity patterns. Together, these modalities help unravel the complex workings of the

human brain and are invaluable in understanding neurological disorders and cognitive
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processes.

Structural magnetic resonance imaging (sMRI): It is a non-invasive imaging

technique used to examine the static anatomy of the brain by di↵erentiating between

tissue types (Ombao, 2016). This technique takes advantage of tissue-dependent

di↵erences in the proton’s rate of relaxation in the presence of a radio-frequency pulse

after placing the tissue in a powerful, uniform external magnetic field (Hashemi et al.,

2012). Images measured this way are useful for their high spatial resolution and provide

a good distinction between di↵erent tissue types that contain di↵erent proportions of

water and fats. Di↵erent images can be generated to emphasize contrast related to

di↵erent tissue characteristics. For example, T1-weighted MRI provides good contrast

between gray matter and white matter tissues, with gray matter appearing as dark gray,

white matter as lighter gray, and cerebrospinal fluid (CSF) appearing as the dark region.

T2-weighted images show CSF as bright and gray matter lighter than white matter.

Functional magnetic resonance imaging (fMRI): It provides a proxy measure for

brain activity by detecting changes associated with blood flow. This technique relies on

the fact that cerebral blood flow and neuronal activation are coupled, i.e., when an area

of the brain is activated, the blood flow to that region also increases (Soares et al.,

2016). The most common approach towards fMRI uses the

blood-oxygen-level-dependent (BOLD) contrast, which allows the measurement of the

ratio of oxygenated to deoxygenated hemoglobin in the blood. The increase in blood

flow leads to an increase in the ratio of oxygenated blood to deoxygenated blood in the

region. Oxygenated hemoglobin takes longer to lose magnetization and hence causes

stronger BOLD signals, while deoxygenated hemoglobin results in weaker BOLD signals.

Therefore, a stronger BOLD signal reflects an increase in blood flow, which reflects an

increase in neuronal activity in the brain region. Two common types of fMRI

approaches are task-based fMRI and resting-state fMRI (rs-fMRI), each o↵ering distinct

insights into brain function (Biswal et al., 1995). In task-based fMRI, participants

perform a behavioral or cognitive task in the scanner. The neuronal responses

represented by the BOLD signals during the task are compared with the baseline task to

establish a mapping between brain regions involved in the particular task execution.

Conversely, in rs-fMRI, participants are instructed to relax in the scanner. It captures

the spontaneous brain activity in the absence of tasks, shedding light on the brain’s

intrinsic organization (Fox and Raichle, 2007).
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1.1 Neuroimaging-based prediction

Machine learning (ML) involves algorithms and statistical models that enable computers

to learn from data, identify patterns, and make predictions. In the context of

neuroimaging, ML utilizes these techniques to analyze vast amounts of brain imaging

data, such as sMRI or fMRI, extracting intricate patterns useful for predicting

brain-related conditions and disease progression. For example, ML models can be

trained to learn the relationship between MRI-derived features and targets (for example,

disease vs. healthy) and then used to make predictions on new unseen data (Du et al.,

2012, Wang et al., 2015, Du et al., 2018, Nenning and Langs, 2022). This technology

holds immense promise in assisting neuroscientists and clinicians by providing e�cient

tools for diagnosing neurological disorders, identifying neurological biomarkers,

understanding brain function, predicting treatment outcomes, and ultimately advancing

personalized medicine tailored to an individual’s brain characteristics (Caspers, 2021,

Nenning and Langs, 2022).

Diverse features can be derived from di↵erent MRI modalities, which can be used

to make these predictions. For example, cortical and subcortical measurements of

volume, surface, and thickness values, or gray matter volume (GMV), white matter

volume (WMV), CSF obtained through voxel-based morphometry (VBM) analysis from

sMRI, can serve as essential inputs for training ML models (Fischl and Dale, 2000,

Ashburner and Friston, 2000). The rs-fMRI data can provide measures for spontaneous

brain activity at rest, such as local synchronization of rs-fMRI signals or regional

homogeneity (ReHo), which measures the similarity of the time series of a set of voxels

and thus reflects the temporal synchrony of the regional BOLD signal (Zang et al.,

2004). Other features measure the intrinsic connectivity of the brain by measuring the

temporal correlation in BOLD signal changes between di↵erent brain regions using

functional connectivity (FC) matrices (Biswal et al., 1995, Fox and Raichle, 2007).

Additionally, graph-theory representation of FC has been used to infer topological

characteristics of brain networks, such as modularity, centrality, and small-worldedness,

which can provide valuable insights (Wang et al., 2010, Kazeminejad and Sotero, 2019,

Khosla et al., 2019). More recently, several studies have also begun to explore the

predictive capacity of dynamic FC (Fong et al., 2019, Zhu et al., 2021). Similarly, FC

can be derived from task-based fMRI data (Ooi et al., 2022). Since di↵erent MRI

modalities o↵er complementary information, it is sometimes useful to use them together
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to get better predictive performance (Pisharady et al., 2023, Cole, 2020, De Lange et al.,

2020).

Using these features extracted from structural and functional MRI, ML models

have correctly di↵erentiated healthy control (HC) individuals from patients with

neurodegenerative disorders such as AD (Klöppel et al., 2008, Guo et al., 2017), mild

cognitive impairment (MCI) (Westman et al., 2011, Yu et al., 2017), multiple sclerosis

(Weygandt et al., 2011; Weygandt et al., 2015), Parkinson’s disease (Marquand et al.,

2013), neurodevelopment disorders such as autism spectrum disorder (Ecker et al., 2010,

Abraham et al., 2017), neuropsychiatric disorders such as schizophrenia (Zarogianni

et al., 2013, Venkataraman et al., 2012), and depression (Foland-Ross et al., 2015). This

suggests that ML models trained with MRI data could be a valuable tool for the

automatic diagnosing of diseases (Mateos-Pérez et al., 2018). It also allows studying

which regions are associated with these diseases, revealing their imaging signatures. ML

can also help in disease prognosis, predicting the likely course of the disease (Storelli

et al., 2022; Moazami et al., 2021). For instance, studies have used ML to predict the

progression of stable MCI to progressive MCI patients (Moradi et al., 2015), and

conversion of MCI to AD (Westman et al., 2011, Davatzikos et al., 2011).

The applications described above use supervised methods in the sense that they

involve training ML models using labeled data, where a target variable (e.g., disease

status) is provided to guide the learning process. Unsupervised methods, which do not

require a target variable but look for structure in the data, have also been successfully

employed. Unsupervised ML algorithms have been used to find subgroups within

diseases, for example, finding subtypes of multiple sclerosis that exhibited distinct

treatment responses (Eshaghi et al., 2021). Consensus clustering has been used to find

sub-groups of tumor patients (Choi et al., 2020) and patients with epilepsy (Lee et al.,

2020). Identification of subtypes can help develop individualized precision treatment.

Another fundamental aim of neuroscience is understanding how brain

characteristics are linked to cognitive and behavioral measures. There is evidence

stating that inter-individual variation in functional and structural patterns co-vary with

cognitive, behavioral, and demographic traits (Llera et al., 2019). Consequently, these

patterns have been used to predict various individual traits and can help identify

biomarkers for health and disease. For instance, FC has been used to predict cognitive

abilities such as fluid intelligence (Finn et al., 2015), sustained attention (Rosenberg
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et al., 2016), memory performance (Sasse et al., 2023, Meskaldji et al., 2016, Siegel

et al., 2016) in healthy and clinical populations. It has also been used to predict

personality traits such as neuroticism, extraversion, agreeableness, and openness (Nostro

et al., 2018, Hsu et al., 2018). Additionally, numerous studies have used ML to predict

demographic variables such as sex (Zhang et al., 2018, Weis et al., 2020) and age

(Franke et al., 2010, Cole et al., 2017) and achieved good performance.

Studies have highlighted di↵erences in cognition and psychopathology between the

sexes (Seeman, 1997). For instance, variations in spatial perception, memory, and verbal

skills (Miller and Halpern, 2014), a higher susceptibility of females to depression (Picco et

al., 2017), and a greater incidence of autism among males (Werling and Geschwind, 2013)

have been reported, indicating underlying di↵erences in structural and functional brain

organization between the sexes (Kaczkurkin et al., 2019). Therefore, sex prediction studies

can help with the understanding of the neurobiology of sex di↵erences, provide insights

into risks and protective factors, and eventually help to develop sex-specific treatments

(Zhang et al., 2018, Weis et al., 2020).

Since aging is a major risk factor for most neurodegenerative diseases,

individual-level quantification of atypical aging can be helpful for early detection of

disorders. Consequently, many studies have used ML methods to capture multivariate

patterns of age-related changes in the brain associated with healthy aging (Ashburner,

2007, Franke et al., 2010, Cole et al., 2018, Varikuti et al., 2018, Franke and Gaser,

2019, Baecker et al., 2021b). ML models can be trained using neuroimaging data from

healthy subjects to predict age. A higher positive di↵erence between predicted age

(brain-age) and chronological (true) age, i.e., brain-age delta or delta, indicates

“older-appearing” brains. Therefore, brain-age prediction studies can help inform about

abnormal brain aging by measuring the deviation of predicted age from chronological

age. Higher delta has been reported in several common brain disorders (Kaufmann

et al., 2019, Wrigglesworth et al., 2021, Sone et al., 2021). Higher delta has also been

known to relate to several age-related risk factors such as weaker grip strength, poorer

lung function, increased mortality risk, and poorer cognitive functions such as fluid

intelligence, processing speed, semantic verbal fluency, visual attention, and cognitive

flexibility (Cole et al., 2018, Boyle et al., 2021, Wrigglesworth et al., 2021). Thus, delta

can potentially serve as a biomarker of brain integrity.

All these applications rely on a robust and reliable ML workflow design to give
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correct predictions and interpretations. ML workflows involve several crucial steps,

including selecting a suitable ML algorithm to learn the relationship between features

and targets, getting enough training data, employing data transformation methods,

feature selection techniques, and hyperparameter tuning (Scheinost et al., 2019, Lones,

2021). Collectively, these elements form an integrated ML workflow. Despite numerous

successful demonstrations, ML workflows are susceptible to pitfalls such as overfitting

and biased model outcomes due to various factors such as model complexity and

non-representative training data, among others (Domingos, 2012, Lones, 2021, Mehrabi

et al., 2021). Such models might not generalize well and reflect existing biases in the

data, leading to erroneous interpretations and problematic conclusions. Therefore,

careful and correct implementation of an ML workflow is crucial for its application in

real-world scenarios. By recognizing the potential pitfalls and actively addressing them

in the implementation process, we can harness the power of ML while minimizing its

inherent risks. The following section outlines the steps involved in designing an ML

workflow and addresses some of the challenges encountered in ML applications.

1.2 Machine learning workflows

An ML workflow comprises various steps, including 1) Problem definition, 2) Data

collection and preparation, 3) Workflow definition, and 4) Model training and evaluation

(Figure 1). Several choices are available for each step, making designing a robust ML

workflow challenging.

1. Problem definition: The first step includes defining the target to predict (e.g.,

demographic variable, behavioral scores, or disease status) and the features to be used

(e.g., neuroimaging-derived FC or GMV). One can also define confounds, i.e., variables

related to both features and target, which one may choose not to model or consider

these relationships in their analysis (Weber et al., 2022). For example, brain size can

be a confound when predicting sex using GMV as brain size correlates with the target,

i.e., sex (males have bigger brains than females, Ritchie et al., 2018), and brain size

information is encoded in GMV features (Wiersch et al., 2023). Thus, if the study aims

to find structural brain organization di↵erences between sexes, it is essential to control for

confounds to ensure that the model learns the true signal of interest, i.e., the feature-target

relationship, and not the confound-target relationship.

2. Data collection and preparation: One needs to collect (or, in some cases, use
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existing databases) and prepare the data for training and testing the ML model. The most

fundamental assumption for the data is that it is composed of independent and identically

distributed samples, i.e., each data point is assumed to be independent of the others and

is drawn from the same underlying distribution (Bishop and Nasrabadi, 2006). Meeting

this assumption lays a strong foundation for learning, enhancing the model’s ability to

perform well on unseen data that share a similar distribution. One could control for some

confounds at the data collection stage, e.g., controlling for sex by equally sampling males

and females or controlling for age by balancing the age range in healthy and diseased

groups. When that is not feasible, post-hoc methods may be employed for confound

control (Tripepi et al., 2010, Snoek et al., 2019, Chyzhyk et al., 2022). Data cleaning

is an important part of data preparation, including imputing missing values, removing

features with too many missing values, removing duplicate values, avoiding typos, and

converting data types (Brownlee, 2020).

3. Workflow definition: It involves several key decisions. One must choose the

model(s) for the task. Choosing an appropriate model depends on the type of problem,

such as classification for predicting disease status or regression for predicting

cognitive/behavioral scores, with several choices available for both. One can decide

which model to use depending on the prior knowledge from literature, the assumed

relationship between features and target (e.g., linear vs. non-linear), the nature of the

data (number of samples and number of features), and the available computational

resources.

One can choose to apply several optional data transformations or preprocessing

steps to the features, such as confound removal, feature normalization (e.g., z-score,

robust scaler), dimensionality reduction via feature selection (e.g., variance thresholding,

information gain, high correlation filter, etc.), or feature engineering (e.g., principal

component analysis (PCA), independent component analysis, etc.), which might help

the training process (Bishop and Nasrabadi, 2006). For example, feature normalization

brings all the features on the same scale, ensuring they contribute equally to the

learning process, improving the stability of optimization algorithms. Dimensionality

reduction can help remove irrelevant or redundant features, thus providing

better-performing models. Deciding on these steps is not trivial, as each choice can

substantially impact the outcome.

Since ML aims to create models that accurately predict outcomes on new unseen
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data by learning generalizable information, testing the model on new unseen out-of-sample

test data (also called external validation) is essential. However, when a dedicated test

dataset is unavailable, a portion of the available data can serve as a proxy for test data,

allowing the assessment of the model’s generalization performance, i.e., its ability to

perform accurately on new, unseen data from the same distribution. Cross-validation

(CV) is frequently employed as a model evaluation scheme for this purpose. In K-fold

CV, the initial dataset is divided into K equally sized non-overlapping parts, where all

subsets but one are used for training the model and the remaining subset for testing. The

assignment of training and testing subsets is repeated K times, so all folds are used for

test once. The average performance across all test folds is computed as an estimate of

generalization performance (also called CV performance). If the model performs much

better on the training set than the test set, then it is overfitting. An optimization strategy,

such as random search or grid search, can be employed for optimizing hyperparameters

(parameters that are not learned by data but rather tuned for a given predictive task) or

feature preprocessing (e.g., feature selection). This is done in a nested CV (also known

as double CV), which involves doing hyperparameter optimization and feature selection

as an extra loop inside the main CV loop (Poldrack et al., 2020, Varoquaux et al., 2017,

Cawley and Talbot, 2010).

4. Model training and evaluation: Model training involves using the training

data to adjust the parameters and tune the model’s hyperparameters (from user-defined

search space) to minimize the prediction error. The training procedure yields models

with fixed parameters and hyperparameters, which can then be used to make predictions

on the test data. It is crucial to treat hyperparameters and feature optimization (e.g.,

feature selection) as part of model training to avoid data leakage. Moreover, it is essential

to check if the hyperparameters are hitting the boundaries in the defined search space

and adjust them accordingly when necessary.

After the model has been trained, it must be evaluated to determine its

performance. This is done by comparing the model’s predictions with the actual values

in the test data using appropriate evaluation metrics, such as classification accuracy (or

balanced accuracy), F1 score, and area under the receiver operating characteristic curve

for classification, or mean absolute error (MAE) and R2 for regression. It is a good

practice to report multiple metrics since di↵erent metrics can present di↵erent

perspectives on the results and increase transparency.
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1.3 Challenges

Designing a generalizable and unbiased ML workflow encompasses many challenges that

demand careful consideration. Overfitting, a common problem, involves models fitting

training data too well and performing poorly on new unseen data (Yarkoni and Westfall,

2017). This can happen because of a small sample size or high model complexity.

Another common challenge is data leakage, a phenomenon where information from

outside the training set is unintentionally included in the model, leading to an

overestimated and unrealistic performance in practice (Kapoor and Narayanan, 2022).

There can be several reasons for data leakage, such as using test data as part of training

data and performing any preprocessing or tuning hyperparameters outside CV, among

others. Another challenge is interpretability, i.e., the degree to which a human can

understand the cause of a decision (Miller, 2019). Highly accurate models may be more

complex and di�cult to understand; simpler, more interpretable models may sacrifice

some accuracy. Hence, a trade-o↵ exists between the accuracy and interpretability of

ML models (Dziugaite et al., 2020). The interpretability of a model can su↵er from

incorrect methods, for example, not controlling for confounds when investigating

brain-behavior relationships, which can lead to biased predictions driven by

confound-target relationships instead of feature-target relationships and thus misleading

conclusions. Furthermore, establishing a robust and generalizable workflow is

challenging as it involves intricate decisions about data preprocessing, feature selection,

model design, hyperparameter tuning, and additional optimization criteria depending on

the task. Addressing these challenges necessitates a holistic approach that blends

domain knowledge and sound methodologies. The current work addressed some key

challenges, including confound removal and designing a robust and generalizable

workflow.

1.3.1 Confound removal

One of the significant challenges in ML is accounting for confounding e↵ects. A

confound is a variable that influences both the independent and the dependent variables

(Pourhoseingholi et al., 2012). Features derived from neuroimaging data can contain

information uniquely associated with the target (true signal-of-interest) but also contain

information from nuisance sources, confounding the relationship between the
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neuroimaging signal and the target. Common confounding variables in neuroimaging

studies include age, sex, handedness, brain size, and in-scanner movement

(Alfaro-Almagro et al., 2021). Failure to remove confounds can lead to biased

predictions and interpretations. For example, in a sex prediction task using FC, brain

size is a confound as it is associated with sex (males having bigger brain size than

females) and is encoded in FC (Ritchie et al., 2018, Zhang et al., 2016). In such an

instance, predictions can be biased as a successful outcome may be driven by the

confounding signal (brain size di↵erences) rather than the true signal of interest (FC

di↵erences). If a study aims to maximize model performance, then the confounding

variables containing neurobiological e↵ects of interest can be used as input features;

however, if a study aims to identify true brain-behavior relationships, then it is

important to control for confounding signals.

Several approaches exist to mitigate confounding variables. One could control for

some confounds at the data collection stage by balancing the acquisition for confounds

or using randomized controlled trials (Pourhoseingholi et al., 2012). However, in

observational/epidemiological studies where data has already been collected, it is

necessary to control for confounds in a post-hoc approach. These approaches include

post-hoc counterbalancing, anti-mutual information sampling, and stratification using

pooling analysis (Tripepi et al., 2010, Snoek et al., 2019, Chyzhyk et al., 2022).

However, these methods often result in data loss and are not feasible with a small

sample. A prevalent strategy is confound regression, which involves fitting a linear

regression model on each feature separately with the confound as the predictor, and the

corresponding residuals are used as new “confound-removed” features (Todd et al., 2013,

Snoek et al., 2019).

Confound regression can be implemented through whole-data confound regression

(WDCR) or cross-validated confound regression (CVCR). WDCR, although aggressive,

su↵ers from data leakage as it constructs confound-removed features on the whole data

before CV. CVCR, on the other hand, addresses this by performing CV-consistent

confound regression within each CV fold. Though both methods are used in

neuroimaging research, the impact of these approaches on generalization estimates and

interpretability is unknown, along with their interaction with normalization methods

(Snoek et al., 2019, Pervaiz et al., 2020). Employing rank-based inverse normal

transformation for normalization after confound regression may reintroduce confounding
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e↵ects (Pain et al., 2018). This lack of knowledge of how to correctly perform confound

removal and the interaction between confound regression and normalization (Figure 1.2)

makes it di�cult to design ML workflows. Lastly, the influence of covariate and

confounding shifts on model building requires exploration.

In study 1, we addressed these gaps by empirically evaluating WDCR and CVCR

for confound removal efficacy and generalization performance, investigating normalization

interactions, and examining model deployment under covariate and confounding shifts.

We apply these investigations to predict sex from rs-fMRI data, considering brain size

and age as confounds, aiming to discern differences in functional organization between

sexes while accounting for brain size differences.

1.3.2 Designing of robust and generalizable workflows

Designing an ML workflow for a specific task involves decisions about various choices at

each step; not all can be predetermined without considering the data. In other words,

data-driven decisions are essential to develop a robust and generalizable workflow.

Many factors can influence model performance, with the feature space being a

primary consideration. Di↵erent feature spaces (Figure 1.1) can have di↵erent

information content, leading to di↵erential outcomes. Furthermore, di↵erent ML

algorithms (Figure 1.3), each with its own inductive biases, contribute to disparate

performance results. Every algorithm must embody some knowledge or assumptions to

generalize beyond the provided data (Domingos, 2012). Formalized by Wolpert as the

“no free lunch” theorem, according to which no algorithm can beat random guessing

over all possible functions to be learned (Wolpert, 1996), highlighting that there is no

single ML algorithm universally the best for all problems. So, it is recommended to try

di↵erent algorithms to evaluate what works best for the task at hand (Domingos, 2012).

Moreover, di↵erent combinations of feature spaces and ML algorithms can yield diverse

outcomes.

For instance, to design a workflow for brain-age estimation, voxel-wise GMV data

can be used directly, or additional pre-processing such as smoothing and/or resampling

can be applied, or parcel-wise averages within a brain atlas can be used as features

(Franke et al., 2010, Boyle et al., 2021, Varikuti et al., 2018, Eickho↵ et al., 2021).

Further dimensionality reduction methods, such as PCA, can improve the observations-
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to-features and signal-to-noise ratios (Franke et al., 2010, Franke et al., 2013, Gaser et al.,

2013). Choosing from a pool of ML algorithms like relevance vector regression (RVR),

support vector regression (SVR), Gaussian process regression (GPR), and kernel ridge

regression (KRR) is crucial as these choices can impact performance (Lee et al., 2021,

Baecker et al., 2021a, Lange et al., 2022). Many studies predicting age from VBM-

derived GMV have shown ⇠5–8 years of prediction errors in healthy individuals. Despite

the extensive work in this field, there remains a gap in understanding which feature spaces

and ML algorithms can e↵ectively capture the aging process and perform optimally for age

prediction. Challenges arise due to the diversity in study setups and methodology, such

as variations in training data, sample size, feature spaces, and ML algorithms, making it

di�cult to compare the results and draw valid conclusions.

There can be additional criteria to optimize for when predicting behavioral,

demographic, or cognitive variables from neuroimaging data. For example, for brain-age

estimation, the workflow should perform well on new samples from the same dataset

(high within-dataset performance) and generalize well on data from a new site (high

cross-dataset performance). The ability to make predictions that generalize across sites

is crucial. It allows for the development of diagnostic tools, biomarkers, or predictive

models that can be applied in diverse healthcare settings or research studies. It should

have high test-retest reliability, i.e., estimated age must be reliable on repeated

measurements, and exhibit longitudinal consistency, i.e., the predicted age should be

proportionally higher for later scans assuming no significant health-related interventions

between the measurements (Franke and Gaser, 2019, Cole and Franke, 2017, Sone and

Beheshti, 2022). These objectives can make designing robust and generalizable

workflows even more challenging. Overall, designing a generalizable workflow is intricate

because of the many choices available at each step, especially when a workflow is

expected to perform well in multiple criteria.

Consequently, in study 2, we studied the task of age prediction using GMV data

to develop a robust and generalizable workflow through evaluation under different

criteria important for real-world application. We examined 128 workflows encompassing

16 feature spaces derived from gray matter images (voxel-wise or parcel-wise) and eight

ML algorithms leveraging extensive neuroimaging databases containing a broad age

spectrum. We evaluated these workflows for their within-dataset and cross-dataset

performances. Following this, we delved into the test-retest reliability and the
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longitudinal consistency of predictions over time for some well-performing workflows.

All these criteria are important to ensure real-world application of delta. Additionally,

we measured the e↵ectiveness of our top-performing workflow in a clinical setting. We

examined the correlations between delta and behavioral/cognitive measures in healthy

and clinical cohorts and various factors a↵ecting these correlations. Further analyses

were carried out to study the e↵ects of preprocessing choices and the inclusion of

features from various tissue types on predictive performance.

There are many preprocessing tools available for feature extraction from

neuroimaging data, such as Statistical Parametric Mapping (SPM) (Friston, 2003),

Computational Anatomy Toolbox (CAT) (Gaser et al., 2022), and FMRIB Software

Library (FSL) (Smith et al., 2004). Prior studies have highlighted the variability in

extracted features, such as cortical thickness estimates, introduced by the choice of a

preprocessing pipeline for sMRI data (Tustison et al., 2014, Dickie et al., 2017). These

inconsistencies in the results arise from several algorithmic and parametric di↵erences

that exist in the preprocessing tasks, such as image normalization, registration, and

segmentation within pipelines (Bhagwat et al., 2021). Di↵erences in feature spaces

extracted by various preprocessing tools can impact their correlation with behavioral,

cognitive, or demographic variables. Consequently, there has been a di↵erence in the

performance of the individual-centric prediction tasks using di↵erent preprocessing

pipelines (Bhagwat et al., 2021, Tavares et al., 2020, Zhou et al., 2022). Therefore, in

study 3, we studied the impact of 10 different VBM preprocessing tools on GMV

estimation by comparing their performance for age prediction. By systematically

examining the e↵ects of various preprocessing tools on the derived features and

subsequent predictive models, study 3 contributes valuable insights into the importance

of methodological choices in neuroimaging analyses and highlights the necessity of

considering preprocessing variations when interpreting results or building predictive

models based on neuroimaging data.

1.3.3 Other general consideration in designing ML workflows

Our previous studies delved into investigating various factors impacting ML model

performance in neuroimaging analysis, including preprocessing tools choices, feature

spaces, feature preprocessing, and ML algorithms. There are numerous other factors,

such as the training sample size and the CV strategy used (leave-one-out vs. K-fold
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Figure 1: Various steps in machine learning (ML) workflow design with some
examples of (1) feature spaces, (2) preprocessing steps, and (3) ML algorithms.
First, the input data is split into training and test sets. Next, preprocessing steps are applied
exclusively to the training features, and ML models are trained using these preprocessed training
features and the target. Next, the preprocessing models from training data are applied to the
test features. Finally, the trained ML model is applied to the preprocessed test features to get
the test predictions.

CV), which can a↵ect generalization estimates (Varoquaux, 2018, Scheinost et al., 2014,

Poldrack et al., 2020). Additionally, the validation of models using external data holds

pivotal importance in ensuring they are not overfitted and aids in evaluating their

applicability in real-world scenarios. A comprehensive understanding of these factors is

crucial to devising an improved study design. To achieve this goal, in study 4, we

conducted a literature survey focusing on psychometric prediction, such as memory,

fluid intelligence, and attention in healthy subjects. Our aim was to outline the current

status and ongoing advancements concerning data, analysis methods, and reporting.

This excluded papers related to sex and age prediction and clinical applications.

1.4 Ethics Protocols

The ethics protocols were approved by the Ethics Committee of Heinrich Heine University

Düsseldorf (5193 and 2018-317-RetroDEuA).

1.5 Aims of Thesis

This work aims to assess several key components of ML workflows by predicting

demographic traits, sex, and age using neuroimaging data. While the ultimate goal for

ML in clinical application is to develop fair and trustworthy models to understand the
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disease and deliver correct treatment, starting with reliable and clinically relevant

targets such as sex and age can provide crucial understanding regarding key components

of ML workflows.

In study 1, we evaluated the methods for confound removal to understand the

e↵ect of confounds in predictive modeling and the procedures to deal with them. This

was studied using a sex prediction task (male vs. female) using ReHo and FC as

features from rs-fMRI data, with brain size and age as confounds. The additional aim

was the interpretability of the ML confound-free model to gain insights about brain

regions involved in sex prediction. We aimed to answer an important biological

question: “Are there di↵erences in the functional organization of brains between males

and females after controlling for the apparent di↵erence in brain size?”.

In study 2, the aim was to establish a robust and reliable ML workflow for age

prediction by evaluating several combinations for feature spaces derived from GMV (voxel-

wise and parcel-wise) and ML algorithms and assessing them under di↵erent scenarios

crucial for real-world applications. The additional aim was to explore the potential clinical

value of the brain-age delta as a biomarker for brain health and factors a↵ecting the

estimation.

In study 3, we studied several preprocessing alternatives for VBM analysis

commonly used for localized quantification of GMV and compared their utility for age

estimation.

In study 4, we performed a comprehensive literature survey that examined previous

studies investigating psychometric prediction based on neuroimaging data. By analyzing

the patterns and findings from these studies, we aimed to identify established and novel

concerns that can be e↵ectively acknowledged and tackled in future studies.
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6 Discussion

The development of usable ML models is a multifaceted endeavor influenced by several

critical factors, including data quality, feature engineering, model selection, and

interpretability. Overlooking these factors can introduce risks, such as biased and

inaccurate predictions, compromised trust in the model’s decisions, and potential ethical

concerns. Hence, careful consideration of these factors is essential to building reliable

and trustworthy ML models (Scheinost et al., 2019).

In this work, we examined several key factors integral to the development of unbiased

and generalizable ML models, ensuring their utility in real-world scenarios. The first is

the e↵ective removal of confounding signals so that models are unbiased. To study this,

we tested several confound removal workflows on the task of sex classification using ReHo

and FC features derived from rs-fMRI data with brain size and age as confounds in study

1. We addressed the biological question of whether there are di↵erences in the functional

organization of brains between males and females after controlling for brain size. The

second is the usage of di↵erent feature spaces and ML algorithms for a given task to find

a generalizable model. To study this, we investigated several ML workflows using various

combinations of feature spaces from GMV data and ML algorithms to investigate their

e↵ect on age prediction performance in study 2. The aim was to find a generalizable

and reliable workflow for age prediction by evaluating it under various criteria important

for real-world application. We also investigated the potential of brain-age delta or delta,

i.e., the di↵erence in predicted and chronological age, as a biomarker and the factors

influencing its estimation. As various VBM pipelines exist for GMV estimation, in study

3, we extended the investigation from study 2 to examine the e↵ect of GMV estimates

from several VBM alternatives on age prediction performance. Finally, in study 4, we

conducted a literature survey of psychometric prediction studies using neuroimaging data.

This o↵ered a comprehensive summary of the field’s current state and advancements,

highlighting additional factors to consider when designing ML workflows.

The discussion encompasses results from various studies and is structured as
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follows. In the initial segment of our discussion, we delve into two critical facets of ML

workflow design. First, we underscore the significance of exploring diverse feature spaces

and ML algorithms to find a generalizable model. Additionally, we examine the

influence of di↵erent preprocessing techniques on feature extraction and their

consequent impact on predictive performance, drawing insights from studies 1, 2, and 3.

Second, we address the concept of mitigating confounding bias and age bias to foster the

development of unbiased models, citing findings from studies 1 and 2. Next, we discuss

other general considerations integral to the design of ML workflows. These

considerations encompass feature preprocessing and engineering (as observed in studies

1 and 2), training sample size (observed in studies 2 and 4), external validation (from

study 4), and data shift (noted in studies 2 and 4), all of which exert an influence on the

generalizability of ML workflows. The latter part of the discussion centers on

interpretability and clinical relevance. We scrutinize the interpretability of the

confound-free sex prediction model as demonstrated in study 1. Next, we delve into the

clinical implications of the delta, touching upon its relevance in capturing deviance in

neurodegenerative disorders and its correlation with behavioral/cognitive measures in

healthy and diseased populations, drawing insights from study 2.

6.1 Machine learning workflow design

The overarching goal of ML is to develop unbiased and generalizable models for the task at

hand; however, the modeling process involves a series of pivotal decisions. When working

with imaging data, the variety of features that can be extracted is extensive. For instance,

in the field of computer vision, several kinds of features, such as color histograms, texture

features, edge detection, corner detection, and shape descriptors, can be helpful for tasks

such as image classification or object detection (Viola and Jones, 2001, Lienhart and

Maydt, 2002). Given the variety of features, it is di�cult to know which will be best

for a given task. Similarly, in the neuroimaging domain, a plethora of features can be

derived, and identifying the optimal set for a given task often necessitates a data-driven

approach. Additionally, the choice of neuroimaging preprocessing tools can introduce

variations in extracted features, potentially influencing model performance. Moreover,

within ML workflows, the preprocessing steps undertaken on the features or targets, such

as confound removal, Z-score normalization, feature selection, etc., also impact model

performance. The choice of the ML algorithm can a↵ect the learned relationship between
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features and the target of interest, which can significantly a↵ect the generalizability of

the models. Furthermore, factors such as training set sample size and di↵erences in data

properties between the train and test set can a↵ect how well the models perform on out-

of-sample test data from a new site. Thus, constructing a robust and reliable ML model

involves careful consideration of all these intricate decisions and their collective impact

on model performance and generalizability.

6.1.1 Try di↵erent feature spaces and ML algorithms

The choice of feature space plays a vital role in predictive analysis. Various feature

spaces can capture distinct types of information from neuroimaging data, leading to

diverse outcomes in predictive tasks. Moreover, the selection of ML algorithms can

significantly impact the ability to learn the true relationship between these features and

target variables. Thus, it becomes imperative to systematically explore many feature

spaces and ML algorithm combinations in neuroimaging studies to obtain optimal

predictive models and get valuable insights.

A variety of features can be used for sex classification. Some studies have adopted

a classification approach based on sMRI (Feis et al., 2013, Rosenblatt, 2016, Zhang et al.,

2020, Ebel et al., 2023) or fMRI (Smith et al., 2013b, Ktena et al., 2018, Zhang et al.,

2018, Weis et al., 2019) data. Studies with fMRI have generally employed whole-brain

FC based on pre-defined regions of interest (ROI) or brain parcellations and achieved a

sex prediction accuracy of roughly 75–83% (Satterthwaite et al., 2015, Weis et al., 2020,

Zhang et al., 2018, Zhang et al., 2020). Using ReHo, a prediction accuracy of 91% has

been shown (Zhang et al., 2020). The choice of the algorithm in previous studies includes

SVM (Zhang et al., 2020, Weis et al., 2020), partial least squares regression (Zhang et al.,

2018, Chen et al., 2019), random forests classifier Chen et al., 2019, logistic regression

(Al Zoubi et al., 2020). Our results from study-1 are consistent with the existing literature

demonstrating CV accuracy of 75-78% and out-of-sample test accuracy of 76-78% without

controlling for brain size. In contrast, one study observed a lower prediction accuracy of

62% (Casanova et al., 2012). This might be because of a smaller sample size of only 148

subjects and a high feature dimensionality of FC. A recent study reported a high sex

prediction accuracy of 98%(Chen et al., 2019). This high accuracy might be because the

study used the HCP1200 dataset (Van Essen et al., 2013), which includes sibling data.

Since siblings exhibit similar FC patterns, high prediction accuracy can be achieved if
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siblings are not grouped together either in the training or the test sets. Furthermore, the

study employed group-independent component analysis (Smith et al., 2013a) to derive six

ROI definitions as features before splitting the data into train and test sets. To be noted,

in our study, we found slightly higher accuracy with ReHo features compared to FC and

partial least squares outperforming ridge, indicating the e↵ect of feature space and ML

algorithms on prediction error.

The initial exploration of age prediction using GMV within a single cohort was

documented in 2007 (Ashburner, 2007). Subsequently, there has been a surge in

brain-age prediction studies aiming to assess the e�cacy of delta as a potential

biomarker for brain health (Cole et al., 2017, Beheshti et al., 2022). One of the crucial

challenges with developing a brain-age estimation framework is selecting input feature

space. Various imaging modalities o↵er distinct insights; for example,

fluorodeoxyglucose-positron emission tomography scans reveal details about the brain’s

glucose metabolism, while sMRI data provide information about the anatomy/structure

of the brain. T1-weighted MRI images have been extensively used in brain-age

estimation studies. The two commonly used feature extraction approaches from

T1-weighted images include (i) voxel-wise methods which use gray matter, white matter,

CSF signal intensities as brain features (Franke et al., 2010, Gaser et al., 2013, Cole

et al., 2015 Becker et al., 2018, Varikuti et al., 2018, Sone et al., 2022); and (ii)

region-wise methods, which use cortical and subcortical measurements of volume,

surface, and thickness values as brain features (Aycheh et al., 2018, Zhao et al., 2019,

Lee et al., 2021, Vidal-Pineiro et al., 2021, Elliott et al., 2021, Lange et al., 2022).

Dimensionality reduction through unsupervised methods like PCA is commonly

employed on voxel-based data, which removes redundant information and helps in

reducing computational cost and increasing accuracy (Franke et al., 2010, Becker et al.,

2018, Baecker et al., 2021a). Although both kinds of features are used widely, one study

comparing ML models using voxel-and region-based morphometric data found

voxel-based features to perform better than the region-based features (Baecker et al.,

2021a). In our study 2, comparing 128 workflows constituting 16 feature spaces

extracted from GMV images (voxel-wise and parcel-wise) and eight ML algorithms

(linear and non-linear) for age prediction, we also found voxel-wise features generally

performed better than parcel-wise features. This suggests that sometimes, summarizing

information, like using average GMV from voxels in di↵erent parcels or regions, can
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cause information loss, leading to lower prediction performance.

Another important step in developing a brain-age estimation framework is choosing

an ML model. The most widely used regression algorithms include RVR (Franke et

al., 2010, Gaser et al., 2013, Baecker et al., 2021a), GPR (Cole et al., 2018, Becker

et al., 2018 Baecker et al., 2021a), SVR (Lancaster et al., 2018, Sone et al., 2021), and

eXtreme Gradient Boosting (Lange et al., 2022, Butler et al., 2021). Overall, the available

ML models for brain-age prediction di↵er with regard to complexity and computational

resources and have been shown to influence prediction accuracy (Beheshti et al., 2022).

Recent studies have compared the performance of commonly used models to guide on the

most suitable model choices for brain-age prediction (in narrow age range: MAE = 2.6-

2.7 and 3.7-4.7 years (Lee et al., 2021, Baecker et al., 2021a) and in broad age range: MAE

= 7.2-7.7 and 4.6-7.1 years (Lee et al., 2021, Beheshti et al., 2022)). From our study 2, we

found that either non-linear or kernel-based algorithms (GPR, KRR, and RVR) are well

suited for brain-age estimation. These results align with a study that comprehensively

evaluated 22 ML algorithms in broad age range data using GMV features and found SVR,

KRR, and GPR with a diverse set of kernels to perform well (Beheshti et al., 2022).

We found voxel-wise GMV features smoothed with a 4 mm FWHM kernel and

resampled to a spatial resolution of 4 mm, with PCA retaining 100% variance, and the

GPR model (S4 R4 + PCA + GPR) was the best-performing workflow on the evaluated

criteria and was selected for the downstream analysis. This is in line with another study

reporting a voxel size of 3.73 mm3 and a smoothing kernel of 3.68 mm as the optimal

parameters for processing GM images for brain-age prediction with a performance similar

to our workflows (Lancaster et al., 2018).

To note, we evaluated these workflows on four criteria in contrast to other studies

evaluating either one or two. Moreover, we used multiple large cohorts for training and

testing the models. On the first criterion, within-dataset performance, the MAE ranged

between 4.9–8.5 years and 4.7–8.4 years in CV and left-out-test data for 128 workflows. On

the second criterion, cross-dataset performance, the MAE ranged between 4.3–7.4 years

and 5.2–9.0 years in CV and out-of-sample test data. The third and fourth criteria, i.e., the

test-retest reliability and longitudinal consistency, also varied for di↵erent combinations of

feature space and ML algorithm. All these criteria are important facets of any biomarker

(Cole and Franke, 2017). We found the delta reliable over a short scan delay of less than

three months (concordance correlation coe�cient = 0.76–0.98; Lawrence and Lin, 1989) in
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two test datasets. This aligns with other studies which have shown intraclass correlation

coe�cient between 0.81-0.96 in di↵erent samples with di↵erent age groups (Cole et al.,

2017, Franke and Gaser, 2012, Elliott et al., 2021). For the last criterion, longitudinal

consistency, we found a significant positive linear relationship between the di↵erence in

predicted age and the di↵erence in chronological age at a retest duration of 2–3.25 years

(r = 0.45–0.44) in one dataset and no correlation with a retest duration of 3–4 years in

another test dataset. Thus, the evidence for longitudinal consistency was weak. Previous

research suggests that lifestyle interventions like meditation and exercise positively impact

brain-age (Luders et al., 2016, Ste↵ener et al., 2016, Levakov et al., 2023), while habits

such as smoking and alcohol intake may have adverse e↵ects (Bittner et al., 2021, Cole,

2020), influencing longitudinal brain-age trajectories. One study found no association

between cross-sectional brain-age and the rate of brain change measured longitudinally,

questioning the validity of brain age as a reliable marker for ongoing brain aging changes

within an individual (Vidal-Pineiro et al., 2021). Thus, further studies on longitudinal

brain age are therefore necessary.

In general, we observed MAE of ⇠ 4.7 years in our healthy population, which

compares favorably with existing literature (Franke et al., 2010, Cole et al., 2015,

Lancaster et al., 2018, Boyle et al., 2021, Baecker et al., 2021a, Eickho↵ et al., 2021).

However, we would like to acknowledge here that this error (MAE) encompasses both

the generalization error of the models and genuine biological deviation, and it is

challenging to determine their respective contributions. So, there is still a need to

develop more accurate models. Recent work suggests that by using large training

datasets (⇠ 10000 subjects or more) and complex models such as deep learning, the

prediction error can go down to ⇠ 3 years (Levakov et al., 2020, He et al., 2021b, He

et al., 2021a, Tanveer et al., 2023), likely reflecting biological variability.

We also conducted experiments to explore the potential performance improvement

gained by incorporating additional features from various tissue types. Studies have shown

di↵erent patterns in both the global and regional GMV, WMV, and CSF alterations in

the young and older groups with aging (Good et al., 2001, Ge et al., 2002, Farokhian

et al., 2017). Therefore, features from di↵erent tissue types may o↵er complementary

information related to age, leading to better predictions. As anticipated, predictions

using three tissues, GMV, WMV, and CSF combined as features, were better than GMV

only in our study (for example, MAE = 5.08 vs. 6.23). However, one should be cautious
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about large dimensions of features compared to the sample size, which might lead to

overfitting (Hastie et al., 2009). To address this, we used PCA, keeping 100% variance

on the features, thus reducing the number of features to 450 only. Our findings are

consistent with a previous study that showed a slight performance improvement when

using both GMV and WMV compared to only using GMV (Cole et al., 2017). Notably,

combining features from di↵erent tissue types has been popular in brain-age estimation

studies (Franke and Gaser, 2012, Cole et al., 2018, Hobday et al., 2022). Overall, our

results from both study-1 and study-2 provide evidence for the impact of the choice of

feature space and the ML algorithm on the prediction performance.

In study 2, we used the CAT toolbox (Gaser et al., 2022), one of the standard

VBM analysis choices, to derive estimates of GMV, WMV, and CSF. However, there are

several alternatives available, such as SPM (Ashburner and Friston, 2000) and FSL

(Smith et al., 2004), exhibiting di↵erential specificity in GMV estimation (Bhagwat

et al., 2021). VBM analysis involves a series of essential preprocessing steps,

encompassing brain extraction, segmentation, spatial registration or normalization, and

modulation. VBM tools o↵er di↵erent algorithms with several configurable options for

each preprocessing step. These di↵erences can lead to di↵erences in the GMV estimates,

which can influence the estimated association with age (Tavares et al., 2020, Zhou et al.,

2022). A study demonstrated that GMV and WMV estimates obtained through SPM12

and CAT12 di↵ered, further impacting their relationship with age (Tavares et al., 2020).

Another recent study performing a comprehensive comparison between CAT12, two

FSL-based and one FSL-dependent hybrid pipelines has shown that the choice of

preprocessing pipeline impacts sex and age prediction performances (Zhou et al., 2022).

We found evidence supporting that di↵erent preprocessing tools can give di↵erential age

prediction outcomes. In study 2, we found that CAT-derived GMV performed better

than SPM-derived GMV with lower MAE, higher correlation between true and

predicted age, and lower age bias, i.e., the correlation between age and delta.

To delve deeper, in study 3, we evaluated 10 VBM pipelines, including two o↵-the-

shelf pipelines, CAT (version 12.8, r1813) and FSLVBM (uses FSL tools, version 6.0), and

three modularly constructed pipelines, including Advanced Normalization Tools (ANTs,

version 2.2.0), ANTs-FSL (uses ANTs for brain extraction and segmentation, FSL for

registration) and fMRIPrep-FSL (uses ANTs for brain extraction, FSL for segmentation

and registration), each of these implemented using a general template (e.g., MNI-152) and
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a study-/data-specific template. Using three large datasets covering the adult lifespan

acquired in di↵erent scanners and protocols, the systematic di↵erences between the VBM

pipelines were confirmed by the high accuracy when predicting the pipelines using their

respective GMV estimates. There was a substantial impact of GMV derived from di↵erent

VBM pipelines on within-dataset and cross-dataset age prediction performance, with

fMRIPrep-FSL and CAT-derived GMV estimates performing the best.

In summary, results from both studies reveal the significant impact of di↵erent

preprocessing or feature extraction tools on GMV estimates, which influenced the

prediction performance. The results highlighted the importance of testing di↵erent

combinations of feature spaces and ML algorithms in a data-driven fashion and

evaluating them on multiple criteria to find an accurate and generalizable workflow.

6.1.2 Control for bias

Controlling for bias in ML workflows is critical to ensure fairness, equity, and accuracy

in the predictions and decisions. Biases can arise from various sources, including non-

representative training data, imbalances in class distribution, the presence of confounds,

or incomplete information in the features (missing variable bias), among other potential

sources (Mehrabi et al., 2021, Larrazabal et al., 2020, Li et al., 2022). Our studies

addressed two specific biases and outlined strategies to deal with them e↵ectively.

6.1.2.1 Removal of confounding signal

If one wants to establish a brain-phenotype relationship by estimating generalization

performance and identifying brain regions explaining the variance in phenotype, it is

important to control for confounding signals that can mask the true relationship between

brain and phenotype. Brain size is highly correlated with sex, with a larger total brain

volume in males compared to females, and is encoded in neuroimaging features such as

ReHo and FC (Ruigrok et al., 2014, Ritchie et al., 2018). Hence, brain size is a confound

in the sex classification task if one is interested in studying the di↵erence in functional

organization between sexes. Regressing out brain size signal from every feature can remove

sex-specific information from the features, therefore forcing the prediction performance to

be weaker. In (Zhang et al., 2018), authors have shown that the sex prediction accuracy

drops from 80% to 70% after regressing out brain size from FC. In our study 1, all three

27



datasets showed significant brain size di↵erences between sexes, and consequently, we

saw the highest model performance for sex classification with workflow not controlling

for confounds. The out-of-sample test accuracy dropped from 76-78% to 56-67% after

confound removal; however, above-chance sex classification performance indicates that

models can capture the di↵erence in functional organization between sexes independent

of variations in brain size.

The two confound removal approaches investigated, WDCR and CVCR, showed

reduced performance in line with previous studies (Pervaiz et al., 2020, Snoek et al., 2019).

We subsequently validated the e↵ectiveness of these confound removal methods. There

were no correlations between each residual feature and brain size in a univariate fashion

with both schemes. We checked for any remaining multivariate confounding e↵ects using

multiple linear regression to predict brain size from the residual features and observed

negative adjusted R2 with both schemes. Thus, there was no signal from brain size in the

residual features after confound removal, and hence, the models should not encode any

confound-related information.

We observed lower generalization estimates with WDCR compared to CVCR. In

fact, with WDCR, the accuracy dropped to a chance level. This is contrary to

expectations as WDCR uses the whole sample before CV to remove confounding signals,

causing data leakage from the training sample to the testing/validation sample;

therefore, we expected higher generalization performance. However, in this case, that

actually made the model perform worse. This could be because WDCR aggressively

removes confounding signals from the data, leading to chance-level performance. On the

other hand, out-of-sample performance was closer to the generalization performance

estimated with CVCR. Consistent with our findings, other studies demonstrated that

WDCR led to pessimistic model performance estimates, notably below chance (Todd

et al., 2013, Snoek et al., 2019). They demonstrated that this occurs when the “signal”

in the data, operationalized as the width of the feature-target correlation distribution, is

lower than would be expected by chance (Snoek et al., 2019), similar to findings by

(Jamalabadi et al., 2016). WDCR reduces the width of the correlation distribution,

leading to lower model performance, and this e↵ect is exacerbated by higher

confound-target correlations and by a larger number of features. They showed CVCR

yielded significantly above-chance model performance and nearly unbiased model

performance in the simulations and di↵erent datasets with di↵erent numbers of features
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and the strength of the confound. CVCR removes all variance associated with the

confound in the train set and may show reduced performance in some scenarios (Snoek

et al., 2019).

Therefore, we concluded that CVCR is better for confound removal than WDCR.

Moreover, since the sex classification performance after confound removal was still high,

one could conclude that there are di↵erences in the functional organization of brains

between sexes, as captured from ReHo and FC after removing brain size di↵erences.

Another important observation was the disparity between important features from the

model trained without confound removal and those trained after confound removal (using

WDCR and CVCR), implying that interpretations derived from these models would be

di↵erent (for more details, refer to section 6.2.1).

6.1.2.2 Mitigation of age bias

Numerous brain-age estimation studies have reported age bias, a phenomenon wherein

brain-age or predicted age is over-predicted in young subjects, under-predicted in older

subjects, and subjects closer to the mean of training data are predicted more accurately

(Liang et al., 2019, Cole, 2020); thus causing a negative correlation between chronological

age and delta. This age bias complicates the use of delta in clinical contexts, as it can

lead to misleading correlations between delta and behavioral or cognitive measures and

erroneous interpretations while comparing delta between di↵erent clinical groups. To

mitigate this age bias, an additional bias correction step can be applied to the predicted

age or delta to regress out the e↵ect of age. Generally, a linear regression model is

fitted with the predictions on CV-derived training data as the dependent variable and

chronological age as the independent variable. The predicted age in the CV-derived

test set is corrected by subtracting the resulting intercept and dividing by the slope

(Cole, 2020). Training bias correction models in a CV-consistent fashion helps avoid

information leakage from the test to training data. There are several alternatives available

for statistical bias correction (Lange and Cole, 2020); the one we used does not use the

chronological age of the test data for correction, while others use test labels in correction

(Smith et al., 2019, Lange et al., 2019, Beheshti et al., 2019), causing data leakage and

not suitable for real-world use.

Our workflows showed negative associations between chronological age and delta

for both within-dataset and cross-dataset predictions (ranging between -0.2 to -0.8), with
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more accurate models displaying lower age bias. Speculatively, this age bias may be

attributed to missing or omitted variables bias, which occurs when a statistical model

leaves out relevant independent variables that are a determinant of the dependent variable

(Wilms et al., 2021). In other words, when the input features lack su�cient information to

predict age, predictions tend to cluster around the median or mean age, thus introducing

age bias, also demonstrated in another recent study (Lange et al., 2022). Consequently,

we observed that adding features from additional tissue types reduced the age bias in our

study.

Our results show that bias correction models work well in within-dataset analysis,

i.e., when the train and test sets are derived from the same dataset or site, but residual

bias remains in the predictions from cross-dataset analysis, i.e., when bias correction

models are derived from the training set and applied to out-of-sample test data from a

new site. This discrepancy may arise because of di↵erences in data properties, e.g.,

scanner-specific idiosyncrasy (Jovicich et al., 2006, Chen et al., 2014), between the

training and the test data. Additionally, we observed that the e↵ectiveness of bias

correction models was influenced by the sample size of the within-dataset used for

correction. Specifically, we found that smaller samples used for bias correction led to

high variance in mean corrected delta (see section 6.2.2.1). This aligns with previous

studies demonstrating greater variability in model performance with small sample sizes

(Varoquaux, 2018). Overall, the choice of data source (within-data or cross-data) and

the sample size used for bias correction substantially impact the quality of the model,

a↵ecting the corrected prediction values. This eventually a↵ects the observed

delta-behavior correlations (see section 6.2.2.2).

With these findings, we emphasize the importance of selecting an appropriate bias

mitigation strategy to ensure the predictions are bias-free, thereby ensuring accurate and

equitable decision-making.

6.1.3 Other general considerations

There can be several other factors that can a↵ect the generalizability of an ML model,

for instance, employing feature preprocessing and engineering, such as Z-score

normalization (Ali et al., 2014), PCA (Jolli↵e, 2002), and other feature selection

techniques (Chandrashekar and Sahin, 2014, Mwangi et al., 2014), can help improve

model performance. Additionally, other factors such as training set sample size and
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di↵erence in data properties between the train and test set can a↵ect how well the

models perform on out-of-sample test data from a new site (Hastie et al., 2009). This

section delves into specific observations derived from our studies in these contexts.

6.1.3.1 Feature preprocessing and engineering

Several preprocessing steps can be applied to features prior to model training, which can

help improve data quality and improve model performance. One common technique is

Z-score normalization, which transforms the features by subtracting the mean value of a

feature from each data point and then dividing it by the standard deviation of that feature,

thus centering the data around a mean of zero and scaling it to have a standard deviation

of one (Ali et al., 2014). It helps mitigate the magnitude di↵erences between features,

ensuring that all features contribute equally to the learning process, aids algorithms that

rely on distance or magnitude comparisons to work e↵ectively, and makes the coe�cients

or feature importance scores comparable and easier to interpret. In study 1, we observed

that Z-scoring improved the model performance for sex classification with ReHo but not

with FC. Additionally, the Z-score normalization of the features before or after confound

removal did not a↵ect model performance. However, since some learning algorithms

might benefit from well-scaled features (Anggoro and Supriyanti, 2019, Fei et al., 2021),

we recommend normalizing features after confound removal.

For high-dimensional neuroimaging data, employing dimensionality reduction

techniques can improve the observations-to-features ratio. One method is variance

thresholding, which is a feature selection technique that filters out low-variance features

that are less informative for predictive modeling. Some feature engineering methods,

such as PCA, can transform high-dimensional data into a lower-dimensional space while

retaining the variance in the original features (Jolli↵e, 2002, Lever et al., 2017). Another

commonly employed approach in neuroimaging involves resampling voxel-wise data to

lower spatial resolution (Franke et al., 2010) or using a brain atlas to summarize data

from distinct brain regions or parcels (Fan et al., 2016, Yeo et al., 2011, Buckner et al.,

2011). In study 2, we observed that smoothed and resampled voxel-wise GMV

outperformed parcel-wise GMV, suggesting that summarizing information can result in

a loss of valuable information in certain cases. Interestingly, smoothed and resampled

voxel-wise GMV with and without PCA yielded similar results, contrary to other studies

that have shown performance improvement with PCA (Franke et al., 2010, Franke and
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Gaser, 2012). This could be attributed to prior dimensionality reduction through

resampling. These results highlight the importance of feature preprocessing and

engineering in performance improvement in some cases.

6.1.3.2 Large training sample size and external validation

A large training sample is of paramount importance in ML. It can help improve

generalization capabilities by providing a more representative and diverse set of data

points, enabling the model to capture underlying patterns in the data and reduce the

risk of overfitting (Hastie et al., 2009). As articulated by Domingos, a key rule is “more

data beats a cleverer algorithm,” emphasizing the critical role of training sample size

(Domingos, 2012). In study 2, we observed lower CV generalization errors with a higher

sample size in the cross-dataset analysis as it had a larger sample pooled from multiple

datasets compared to the single cohort within-dataset analysis. Additionally, bias

correction models worked e↵ectively with large sample sizes (see section 6.2.2.1). This

highlights the impact of the training set sample size on the estimation of generalization

performance and corroborates with previous studies showing lower errors with larger

training datasets (Baecker et al., 2021a, Lange et al., 2022). On the contrary, in study 4,

our literature review on existing psychometric prediction research showed an intriguing

negative relationship between prediction accuracy and sample size, similar to some other

studies (Sui et al., 2020, Varoquaux, 2018, Wolfers et al., 2015). This pattern was

particularly noticeable in studies employing CV within single cohorts. Since only 25

percent of the surveyed studies used external test sets, it was not possible to assess

whether highly accurate models were overfitted. The higher prediction accuracies

observed in smaller samples may not necessarily imply superior models; rather, they

could be attributed to publication bias. Nevertheless, this negative correlation did not

reach statistical significance when comparing external test accuracy and the external

test sample size, suggesting that employing external validation is a valuable approach to

address this issue. .

6.1.3.3 Presence of data shift

Neuroimaging studies frequently involve data acquisition from various scanners, which

might cause systematic di↵erences related to di↵erent scanning platforms (Jovicich

et al., 2006, Kruggel et al., 2010) between the training and the out-of-sample test
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sample. Additionally, demographic di↵erences between samples might exist, leading to

dataset shift and confound shift (Landeiro and Culotta, 2018). An ideal model should

generalize well despite such di↵erences. From study 1, we found that in the absence of

data shift, i.e., when sample properties between train and test are similar, the

out-of-sample performance was best when confound models from the train data were

applied to test data. On the other hand, the test performance was much lower in the

presence of data shift. Even though residual correlations were observed between features

and confound in the out-of-sample test data after applying confounding models, the

training models were confounding-free, so this performance cannot be driven by

confounding e↵ects. Similarly, from study 2, we found the workflows gave a lower

performance on out-of-sample test data from cross-dataset analysis compared to

within-dataset analysis. Additionally, the bias correction models derived from the

cross-dataset did not correct for the age bias adequately. These results indicate that ML

workflows might show reduced performance on new test samples in the presence of data

shift.

Overall, the findings from the four studies emphasize the significance of careful

implementation at each step of ML workflow design. It highlights various factors

impacting the predictive performance of ML workflows, including preprocessing tools,

feature space and preprocessing steps applied to features, ML algorithm choices, and the

presence of data shifts. They highlight the significance of conducting data preprocessing

within the CV loop, utilizing large samples, and external validation if possible.

6.2 Interpretability and clinical relevance

Interpretability is the degree to which a human can understand the cause of a decision

(Miller, 2019). The higher the interpretability of an ML model, the easier it is for

someone to comprehend why certain decisions or predictions have been made. It aids

trust in the decisions, which is especially important for critical tasks such as clinical

diagnosis. Inherently interpretable models can provide valuable insights into

brain-behavior relationships by investigating feature importance scores. The

advancement in interpretable ML/explainable AI has led to local model-agnostic

interpretability methods (Molnar, 2019, Carvalho et al., 2019). While exploring model

interpretability was not our primary focus, we did investigate significant brain regions

associated with sex prediction. Additionally, we sought to evaluate the clinical
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significance of delta.

6.2.1 Interpretability of confound-free sex prediction model

Removing confounding e↵ects is crucial for obtaining unbiased results; otherwise, an ML

model might mostly rely on confounds, rendering signals of interest redundant. We

compared the predictive features from two models: a model trained without removing

the confounding signal of brain size and another confound-free model for sex prediction.

As anticipated, we observed di↵erences in the predictive features between these two

models. Specifically, we noticed that the features selected by the model without

confound removal exhibited stronger positive or negative correlations with brain size.

Conversely, in models incorporating confound removal techniques (WDCR and CVCR),

the selected features displayed lower correlations with brain size. This suggests that the

features selected after accounting for confounding signals can capture the functional

patterns associated with sex di↵erences. With ReHo, the performance was slightly

better compared to FC, and selected regions were in the dorsolateral prefrontal cortex,

inferior parietal lobule, occipital, ventromedial prefrontal cortex, precentral gyrus, post

insula, parietal, temporoparietal junction, and inferior cerebellum, in line with a study

identifying regions in the inferior parietal lobule and precentral gyrus (Xu et al., 2015).

These regions are associated with a diverse array of cognitive and functional processes

that have been shown to exhibit sex-related di↵erences (Miller and Halpern, 2014). We

found important FC features widespread across the entire brain with strong

interhemispheric connections, suggesting sex-related variations in neural function and

connectivity involve a global network and integration of information between the two

brain hemispheres.

6.2.2 Clinical relevance of brain-age delta

Brain-age estimations derived from sMRI features o↵er an intuitive measure of the

brain’s intricate aging patterns. The disparity between predicted and chronological age

(delta) can serve as a valuable metric for assessing deviations from typical brain aging

trajectories. Various diseases, including neurological conditions such as AD, MCI

(Franke et al., 2010, Franke and Gaser, 2012, Gaser et al., 2013), Parkinson’s disease

(Eickho↵ et al., 2021, Beheshti et al., 2020), traumatic brain injury (Cole et al., 2015,
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Savjani et al., 2017), epilepsy (Sone et al., 2021, Pardoe et al., 2017), multiple sclerosis

(Cole et al., 2020, Høgestøl et al., 2019), and stroke (Egorova et al., 2019, Richard et al.,

2020), as well as psychiatric disorders such as schizophrenia (Lee et al., 2021,

Koutsouleris et al., 2014), bipolar disorder (Hajek et al., 2019, Van Gestel et al., 2019),

major depressive disorder (Han et al., 2021a, Han et al., 2021b), autism spectrum

disorder (Becker et al., 2018, Lombardi et al., 2020), and attention deficit hyperactivity

disorder (Kaufmann et al., 2019), have shown higher brain-age. Studies suggest that

preclinical stages of some diseases, such as clinical high risk for psychosis (CHR) and

early-stage first-episode psychosis (FEP) (preclinical stage of schizophrenia) and MCI

(preclinical stage of AD), display neuroanatomical changes and already show increased

delta. Moreover, higher brain-age has been shown to relate to cognitive aging, multiple

aspects of physiological aging such as grip strength, lung function, lifestyle factors such

as smoking and alcohol consumption, and mortality in older adults (Gaser et al., 2013,

Liem et al., 2017, Anatürk et al., 2021, Boyle et al., 2021, Franke and Gaser, 2012, Cole

et al., 2018, Cole, 2020). On the other hand, lower brain-age has been shown to relate to

protective e↵ects of medication (Luders et al., 2016), practicing music (Rogenmoser

et al., 2018), or having higher levels of education or physical activity (Ste↵ener et al.,

2016). Thus, delta holds promise as a marker for general brain health, early detection of

brain disorders, and evaluating the e↵ects of lifestyle changes and medications (Franke

and Gaser, 2019, Cole and Franke, 2017). We explored the clinical utility of delta by

applying brain-age models to neurodegenerative disorder and by computing the

relationship between delta and behavioral/cognitive measures in healthy and diseased

populations.

6.2.2.1 Higher brain-age delta in disease

For age prediction, our selected workflow (S4 R4 + PCA + GPR) showed high

within-dataset performance, cross-dataset performance, test-retest reliability, and

moderate longitudinal consistency in the healthy population. These findings illustrate

that the brain-age model can e↵ectively capture the typical structural changes

associated with healthy aging. Neurodegenerative disorders, such as AD and MCI, are

characterized by progressive structural and functional disruptions in the brain, causing a

decline in global and local GMV (Good et al., 2001, Fjell et al., 2014). Consequently,

patients with neurodegenerative disorders have older-appearing brains, which brain-age

35



prediction models should be able to capture. We tested this by comparing the delta

between HC, early MCI, late MCI, and AD groups. We found advanced brain aging

with neurodegenerative disorders, with the mean corrected delta significantly higher in

the AD (6.6-4.5 years) and late MCI (2.9-2.1 years) groups compared to HC. Our results

align with previous studies, which have reported an increased delta of 3–8 years in MCI

and ⇠ 10 years with AD patients (Franke and Gaser, 2012, Gaser et al., 2013, Varikuti

et al., 2018, Beheshti et al., 2022). Furthermore, the corrected delta correlated with

disease severity and cognitive impairment measures, such as the Mini-Mental State

Examination, Global Clinical Dementia Rating Scale, and Functional Assessment

Questionnaire in MCI and AD patients, in line with other studies (Franke and Gaser,

2012, Gaser et al., 2013, Löwe et al., 2016, Beheshti et al., 2018). Thus, the delta

confirmed its potential to indicate accelerated brain aging in neurodegenerative diseases.

Furthermore, we demonstrated that the delta estimates in di↵erent groups were

dependent on the workflow, i.e., the feature space and ML algorithm used, which

consequently a↵ected the observed relationship with cognitive measures. Moreover, the

choice of data for bias correction, whether within-dataset or cross-dataset, impacted the

delta estimates. Within-dataset correction worked more e↵ectively, although it was also

influenced by the size of the within-dataset. We tested the impact of within-dataset

sample size on the e↵ectiveness of bias correction by using di↵erent sub-samples of

within-dataset HC subjects to correct the age bias in HC and AD groups. We found

high variance in the mean corrected delta using small sample sizes. As a result, it is

imperative to exercise caution when comparing findings across di↵erent research studies

as they di↵er in experimental setup and methodology, such as feature spaces, ML

algorithms, and di↵erent methods and sample sizes for bias correction, leading to

di↵erences in the outcomes.

6.2.2.2 Delta-behavior correlations in healthy populations

Previous studies have shown delta is predictive of mortality and correlates with age-

sensitive physiological measures, including grip strength, lung function, walking speed,

blood pressure, and allostatic load in the aging population (Cole et al., 2018, Cole, 2020).

Delta is significantly increased in AD, MCI, and Parkinson’s disease (Franke and Gaser,

2012, Eickho↵ et al., 2021). Most studies have shown an association of delta with cognitive

variables in a clinical population. It is important to check if delta can capture cognitive
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and behavior variability associated with healthy aging. Due to the presence of age bias,

it is essential to control for age when analyzing correlations between delta and behavioral

measures; otherwise, it will give spurious correlations. One could either use age as a

covariate while using the uncorrected delta or apply the bias correction method to get

corrected predictions and then use the corrected delta for further analysis (Le et al., 2018).

We identified a weak but statistically significant association between delta and

several cognitive and motor performance measures using CV predictions from

within-dataset analysis. Specifically, we observed that higher uncorrected delta values

(while controlling for age as a covariate) were correlated to lower fluid intelligence,

higher motor learning reaction time, and lower response inhibition and selective

attention abilities. It is worth noting that these correlations exhibited slight variations

when using corrected delta values. The reason could be the di↵erence between the two

methods to control for age bias; when using age as a covariate, the whole sample is used,

while the linear regression for bias correction uses CV-derived training data, leading to

correction using fewer data points. Moreover, our investigation also showed a disparity

between delta-behavior correlations derived from within-dataset predictions and those

obtained through cross-dataset predictions, even though they were highly correlated. In

the cross-dataset analysis, delta values did not exhibit significant correlations with fluid

intelligence and motor learning reaction time; however, the higher delta was correlated

with lower response inhibition, selective attention abilities, and lower executive

functioning. One previous multi-site study has shown that a higher delta is associated

with lower general cognitive status, processing speed, visual attention, cognitive

flexibility status, and semantic verbal fluency (Boyle et al., 2021). These findings

collectively suggest that the delta can capture variability in cognitive and behavioral

functioning in the healthy population. Nevertheless, the estimates of the delta are

sensitive to the ML workflow used and data used for bias correction, leading to

disparities in the observed delta-behavior associations.

Our results provide further evidence for the potential future application of delta as

a biomarker while drawing attention to factors influencing delta estimates. It is important

to note that there are remaining challenges in the field before brain-age estimation can be

used as a general screening tool in clinics (Butler et al., 2021, Kumari and Sundarrajan,

2023, Dempsey et al., 2023).
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6.3 Conclusion

This work addressed challenges encountered in designing a robust, generalizable, and

bias-free machine learning workflow. We emphasized the significance of confound

removal and the impact of confound regression strategies on prediction performance and

model interpretability, noting their limitations in the presence of data shifts. The study

demonstrates the importance of performing confound regression within a cross-validation

framework, akin to other preprocessing steps, to get generalizable performance estimates

using a sex classification task. Furthermore, we demonstrated the importance of

evaluating di↵erent feature spaces and machine learning algorithms in predictive

analysis and evaluating them under multiple criteria to find a robust and generalizable

workflow. Voxel-wise gray matter volume features and the Gaussian process regression

model exhibited superior performance in age prediction across various criteria important

for practical applicability. The studies highlight the e↵ect of neuroimaging preprocessing

tools for feature extraction, preprocessing steps on features, training sample size, and

data shifts on model performance and downstream analyses. Lastly, by shedding light on

the trends and issues in current psychometric prediction research, we advocate adopting

large sample sizes and external validation. Collectively, these insights contribute to a

more informed and e↵ective approach to designing ML workflows and stress the need to

exercise caution during the design process, meticulous result analysis, and reporting.
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