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 Le véritable voyage de découverte ne consiste pas 

à chercher de nouveaux paysages,  

mais à avoir de nouveaux yeux. 

– Marcel Proust, À la recherche du temps perdu 

 

 

Die wahre Entdeckungsreise besteht nicht darin,  

neue Landschaften zu suchen,  

sondern neue Augen zu haben. 

 

 

The real voyage of discovery consists not  

in seeking new landscapes,  

but in having new eyes. 
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 I 

Zusammenfassung 

Die Bearbeitung von zwei Aufgaben gleichzeitig geht im Vergleich zu einzelnen Aufgaben mit 

Geschwindigkeits- und Genauigkeitsverlusten einher, insbesondere bei älteren Personen. In einer 

Gesellschaft, in der Menschen zunehmend mehrere Aufgaben gleichzeitig jonglieren, ist das 

Interesse an den zugrundeliegenden Mechanismen von Doppelaufgaben (DA)-Interferenz 

gestiegen. Dabei ist es wichtig zu verstehen, wie sich reaktionsbezogene Merkmale auf die 

negativen Folgen der DA auswirken, insbesondere in einer alternden Gesellschaft. Aus diesem 

Grund zielte diese Arbeit darauf ab, Altersunterschiede in den Verhaltens- (Studie 1) und 

neuronalen Korrelaten (Studie 2) der DA-Interferenz auf der Reaktionsebene zu analysieren und 

deren Zusammenhänge mit exekutiven Funktionen (EF) zu untersuchen. Wir induzierten Effektor-

bezogene DA-Interferenz durch zwei räumlich inkongruente manuelle Reaktionen basierend auf der 

Tonhöhe eines einzelnen auditiven Reizes. Beide Studien zeigten eine erhöhte Interferenz bei 

inkongruenten Reaktionen, insbesondere bei älteren Erwachsenen. Diese Interferenz zeigte 

asymmetrische Kosten zugunsten der anspruchsvolleren Aufgabe, was auf eine flexible 

Ressourcenallokation und strategische Priorisierung hindeutet. Ältere Erwachsene zeigten eine 

erhöhte Verwechslungsgefahr bei Reaktionen und Defizite bei der Interferenzabwehr. Unter 

Verwendung der funktionellen Magnetresonanztomografie zeigte Studie 2, dass DA mit 

reaktionsabhängiger Interferenz das domänengenerelle Multiple-Demand-Netzwerk (MDN) 

aktiviert. Die Aktivität innerhalb des MDN wurde jedoch nur minimal von individuellen 

Unterschieden in EF beeinflusst. Ältere Erwachsene zeigten eine nicht-kompensatorische 

Hyperaktivität im linken superioren frontalen Gyrus bei inkongruenten Reaktionen, während 

Arbeitsgedächtnisprozesse die rechte prämotorische und frontale Aktivität während DA 

modulierten. Mit einem Übergang von der Analyse von Gruppenmustern in Gehirn-Verhaltens-

Assoziationen zur Vorhersage individueller kognitiver Leistung anhand von neurobildgebenden 

Daten betonte Studie 3 die Herausforderung, EF aus individuellen strukturellen und funktionellen 

Charakteristika verschiedener Hirnnetzwerke vorherzusagen. Während morphometrische Daten bei 

älteren Erwachsenen vielversprechender waren, erwiesen sich Maße der funktionellen 

Hirnvariabilität als aussagekräftiger für junge Erwachsene. Darüber hinaus wurde die Bedeutung 

der globalen Hirnorganisation im Vergleich zu aufgabenbezogenen Netzwerken deutlich. In 

Zusammenfassung betonen diese Ergebnisse die altersbedingten Schwierigkeiten bei der 

Interferenzabwehr gleichzeitiger Aufgaben, die Rolle des MDN bei der Konfliktlösung in 

reaktionsinkongruenten DA und die Grenzen einzelner Hirnmetriken in der zuverlässigen 

Vorhersage von individuellen EF. 

  



 

 II 

Summary 

Performing two tasks concurrently or in close succession comes with costs in speed and accuracy 

compared to single tasks, especially in older individuals. In a society where people are increasingly 

accustomed to juggling several tasks simultaneously, interest in the underlying mechanisms of dual-

task interference has increased. Thereby, it is crucial to understand how response characteristics 

affect the costs of dual-tasking, especially facing a rapidly aging society. For this reason, this work 

aimed to analyze age differences in behavioral (Study 1) and neural correlates (Study 2) of dual-

task interference at the response level, and their associations with executive functioning (EF) 

abilities. We induced response-related dual-task interference by requiring participants to make two 

spatially incongruent manual responses depending on the pitch of a single auditory stimulus. Both 

studies revealed increased interference with incongruent responses, particularly in older adults. This 

interference showed asymmetric cost allocation, favoring the more demanding task, suggesting 

flexible resource allocation and strategic processing prioritization. In healthy aging, results 

emphasized increased response confusability and deficits in shielding tasks from interference. 

Utilizing functional magnetic resonance imaging, Study 2 demonstrated that dual-tasking with 

response interference engaged the domain-general multiple-demand network (MDN). The activity 

within the MDN was only minimally affected by individual differences in EF performance. Older 

adults exhibited non-compensatory hyperactivity in the left superior frontal gyrus when confronted 

with incongruent responses, and working memory processes modulated their right premotor and 

frontal activity during dual-tasking. Transitioning from analyzing group-level patterns in brain-

behavior associations to predicting individual cognitive performance based on neuroimaging data, 

Study 3 highlighted the challenge of predicting individual EF abilities from structural and functional 

characteristics of different brain networks. While morphometric data showed promise in older 

adults, measures of functional brain variability proved more predictive for young adults. Moreover, 

the importance of the whole-brain organization became apparent compared to task-specific 

networks. In summary, these findings emphasize the age-related difficulties in shielding concurrent 

tasks, the involvement of the MDN in resolving response-related conflict during dual-tasking, and 

the limits of relying on single brain metrics as reliable predictors of EF abilities. 

  



 

 III 

List of abbreviations 

Abbreviation Definition 

ACC Anterior cingulate cortex 

aI Anterior insula  

BIS Balanced integration score 

BOLD Blood-oxygen-level dependent 

CRUNCH Compensatory recruitment of neural circuits hypothesis 

CV Cross-validation 

DECHA Default-executive coupling hypothesis of aging 

dlPFC Dorsolateral prefrontal cortex 

DMN Default-mode network 

dPMC Dorsal premotor cortex 

EF Executive functioning 

eMDN Extended multiple demand network 

fALFF Fractional amplitude of low-frequency fluctuations 

fMRI Functional magnetic resonance imaging 

GLM General linear model 

GMV Gray-matter volume 

gPPI Generalized psychophysiological interaction 

HAROLD Hemispheric asymmetry reduction in older adults 

IFJ Inferior frontal junction 

IFS Inferior frontal sulcus 

IPS Intraparietal sulcus 

MCC Middle cingulate cortex  

MFG Middle frontal gyrus 

MDN Multiple-demand network 

ML Machine learning 

MRI Magnetic resonance imaging 

PASA Posterior-to-anterior shift with aging 
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preSMA Pre-supplementary motor area 

PRP Psychological refractory period 

ReHo Regional homogeneity 

rs-fMRI Resting-state functional magnetic resonance imaging 

RSFC Resting-state functional connectivity 

RT Reaction time 

SFG Superior frontal gyrus 

SOA Stimulus onset asynchrony 

STAC Scaffolding theory of aging cognition 

tb-fMRI Task-based functional magnetic resonance imaging 

WM Working memory 
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1 Introduction 

 

1.1 Multi-tasking and executive functioning 

 In our daily routines, we have grown accustomed to juggling multiple tasks 

simultaneously. Take, for instance, the widespread practice of answering a phone call while 

typing on the computer and browsing websites in parallel. Even in more mundane activities 

such as talking while driving, cooking a meal, or navigating the grocery store, we often find 

ourselves needing to manage various tasks concurrently. However, multi-tasking, or the ability 

to effectively manage two or more tasks simultaneously or in close succession, typically comes 

with a certain cost in performance compared to performing individual tasks in isolation, as 

reflected in speed and accuracy costs (Koch et al., 2018). Furthermore, this effect has been 

shown to be exacerbated with age (Koch et al., 2018; Verhaeghen et al., 2003). 

 With the growing societal interest in enhancing our cognitive abilities and adaptation 

requirements to an ever more technologically driven society, as well as an aging population, the 

study of dual-tasking and multi-tasking has become a topic of interest within several scientific 

fields, ranging from cognitive and clinical neurosciences to psychology, human-computer 

interaction, and education. This research is multi-faceted and dynamic, including various 

experimental paradigms and research questions. Classical multi-tasking studies use clearly 

defined and isolated stimuli and responses to study the mechanisms behind interference effects. 

Such paradigms, including dual-task settings, have been the experimental tasks most 

dominantly used in the field. Other studies have focused on the application dimension using 

paradigms that are closer to the cognitive demands of multi-tasking in the real world, such as 

driving and aircraft-control simulations, as well as combining gait or postural tasks with 

cognitive tasks (e.g., counting while walking or maintaining the balance while performing a 

memory task). Although dual-task settings reflect the lowest level of multi-tasking complexity, 

the combination of two simple tasks into a dual task allows for comparing performance in dual-

tasking and single-task scenarios. This setup enables researchers to manipulate and isolate any 

experimental factor of the task to analyze and interpret underlying temporal dynamics and 

interference mechanisms. Such experiments have been instrumental in developing models that 

elucidate how humans process dual-task settings and the associated challenges. For instance, 

studies have delved into manipulating factors such as the inter-stimulus interval, stimulus 
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salience or order, stimulus–response (S-R) mappings, or stimulus and response modalities. 

However, an aspect overlooked in models of dual-task interference is the impact of effector or 

output characteristics. Consequently, this work focused on assessing dual-task interference by 

examining conflict between response codes, particularly spatial conflict arising from 

incongruent (spatially opposing) response codes. 

Since performing multiple concurrent tasks requires people to act in an adaptive manner 

to accomplish the goal of each task, it is reasonable to assume that multi-tasking is related to 

executive functions (EF). The multi-dimensional construct of EF involves diverse higher-order 

cognitive functions responsible for goal-directed behavior and self-regulation (Diamond, 2013; 

Miyake et al., 2000; Miyake & Friedman, 2012), and it has been thoroughly investigated both 

at the behavioral and neural levels. One of the most well-known EF models has postulated three 

core subcomponents, including cognitive flexibility (i.e., shifting one's mental engagement 

between irrelevant and relevant task sets), working memory (WM; i.e., updating, monitoring, 

and maintaining incoming information according to the relevance of the task), and inhibitory 

control (i.e., deliberately suppressing automatic or prepotent responses when necessary and 

controlling one’s attention from irrelevant information that can potentially cause interference) 

(Diamond, 2013; Miyake et al., 2000). Although dual-tasking was not identified as a 

fundamental component of the three-factor model, dual-tasking and other cognitive abilities 

(e.g., planning and verbal fluency) have been suggested to be closely associated with EF or a 

common higher-order cognitive control. Undoubtedly, dual-tasking engages multiple cognitive 

abilities intertwined with EF, as it involves maintaining the rules of two different task sets, 

shifting the attention between them, inhibiting dominant responses, and controlling the attention 

to suppress interference (Saylik et al., 2022; Szameitat & Brunel Students, 2022). More 

recently, Miyake and Friedman (2012; 2017) updated their classification and proposed a nested 

model with a unity-diversity EF framework, positing a common “unity factor” underlying all 

EFs (Friedman & Miyake, 2017; Miyake & Friedman, 2012). This factor encapsulates the 

shared variance between inhibition, updating, and shifting, while the “diversity factor” 

identifies specific processes representing distinct EF functions that branch from it. Notably, no 

unique inhibition factor remains after accounting for shared variance, indicating separate 

specific factors for updating and shifting. Thus, the nested model emphasizes shared cognitive 

processes across EFs with unique characteristics for each function. It is also a call to recognize 

that each aspect of a complex task contributes to our understanding of how individuals regulate 

their behavior and cognition. 
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Overall, this study aimed to elucidate associations between dual-task interference at the 

response level and EF, on the one hand, and brain functioning and connectivity, on the other, 

while assessing how these associations are modulated by healthy cognitive aging. The research 

field of dual-tasking and EF continues to evolve, driven by the need to understand the neural 

and behavioral mechanisms underlying higher-order cognitive-control processes and enhance 

human performance in an increasingly complex and interconnected world. Furthermore, this 

research may have practical implications for developing complex systems, such as designing 

interfaces, educational strategies, and clinical interventions aimed at optimizing human well-

being in today's fast-paced, information-saturated world, as well as identifying early signs of 

frailty or disability in older adults and preventing an accelerated disease progression. 

1.1.1 Theoretical accounts of dual-task interference 

 Several explanations within diverse theoretical frameworks have been proposed for 

dual-task performance deterioration (i.e., increased reaction times and error rates). Although 

dual-task costs have been mostly attributed to capacity limitations on the central (response 

selection) stage of task processing (Pashler, 1994; Schubert, 1999), there is still an ongoing 

debate about their specific source. Two overarching classes of models have been at the center 

of this debate to explain dual-task interference: The structural response selection bottleneck 

model (Pashler, 1984, 1994) and the central capacity-sharing model (Navon & Miller, 2002; 

Tombu & Jolicœur, 2003).  

The response selection bottleneck model assumes that stimulus processing and response 

execution can operate in parallel for two concurrent tasks. However, the resources needed for 

the central response selection stage can only be allocated to a single task at once. Thus, two 

tasks with response selection stages overlapping in time need to be processed sequentially (De 

Jong, 1995; Pashler, 1994; Strobach et al., 2018). In other words, this class of models implies a 

passive and inflexible “first-come, first-served” serial task-order processing mechanism, in 

which the response for the second task can only be selected after the response selection for the 

first task has been completed. The assumption of a structural bottleneck was mainly inspired by 

the discoveries derived from the psychological refractory period (PRP) paradigm, the 

experimental set-up most widely used to assess dual-task performance. In the PRP paradigm, 

participants are asked to perform two-choice reaction tasks with variable temporal overlap 

(Pashler & Johnston, 1989; Schubert, 1999; Telford, 1931; Welford, 1952). The classical and 

replicated finding has been a prolongation of reaction times (RTs) in the second task with 

increasing temporal overlap, commonly referred to as stimulus onset asynchrony (SOA) (Hein 
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& Schubert, 2004; Pashler, 1994; Schubert, 1999). Meanwhile, RTs in the first task remain 

largely unaffected by the SOA manipulation. The increase of RT in the second task from long 

to shorter inter-stimulus intervals is commonly known as the PRP effect. 

However, rigid structural bottleneck models have been challenged by alternative 

models, such as capacity-sharing models. This class of models argues that central processes 

required for each task’s response selection can run in parallel when two tasks are dealt with 

concurrently, but only to a certain extent. This means that only a limited quantity of resources 

can be shared between two tasks, and this creates costs, as compared to devoting all resources 

to one task because central processing capacity is limited, but one major concern that has 

remained open is how many resources are devoted to either task (Koch et al., 2018; Navon & 

Miller, 2002; Pieczykolan & Huestegge, 2019; Tombu & Jolicœur, 2003). However, it is to be 

noted that the models discussed here are not mutually exclusive but represent processing modes 

among several mechanisms at work. Actually, a growing body of behavioral studies indicates 

that the specific task settings, task representations, and instructions, among other parameters, 

influence dual-task costs and may exert different interference mechanisms (Koch et al., 2018; 

Pieczykolan & Huestegge, 2018, 2019; Schumacher et al., 2018).  

An extension of the capacity-sharing model has proposed to add a strategic resource 

allocation component, in which our cognitive system is perceived as flexible and capable of 

adapting to particular contextual and task demands (Fischer & Plessow, 2015; Hazeltine et al., 

2006; Koch et al., 2018; Pieczykolan & Huestegge, 2019). For example, performing two 

concurrent tasks in a serial manner, rather than being a rigid default processing mechanism, 

may represent a strategic adaptation to avoid between-task interference or crosstalk (Logan & 

Gordon, 2001; Meyer & Kieras, 1997; Miller et al., 2009; Navon & Miller, 1987). In this 

context, crosstalk refers to the non-intentional information transmission between processing 

streams of different (sub)tasks, which becomes more likely if the tasks share physical features 

or conceptual dimensions, such as overlapping response alternatives (Navon & Miller, 1987). 

For example, the more “difficult” task, requiring more attentional resources, could be 

prioritized to overcome crosstalk.  

Inspired by the more flexible processing models, studies have addressed the role other 

task characteristics may have on dual-task performance. To this end, experimental paradigms 

have been devised to manipulate factors such as stimulus and response modalities, task order 

presentation, or S-R mappings. One proposed paradigm to specifically study crosstalk at the 

effector level is the simultaneous-onset paradigm. This approach involves presenting stimuli 

for two tasks simultaneously or triggering two simultaneous responses using a single stimulus 
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with sufficient information for two concurrent task sets (Fagot & Pashler, 1992; Huestegge & 

Koch, 2010; Pieczykolan & Huestegge, 2014). For example, research has confirmed the 

existence of output cross-modality interference in dual-task scenarios (Huestegge & Koch, 

2013; Koch et al., 2018; Pieczykolan & Huestegge, 2014, 2018). Additionally, employing the 

simultaneous-onset paradigm has revealed a response-modality dominance pattern, where 

saccades are prioritized over vocal responses, and vocal responses over manual responses 

(Huestegge & Koch, 2013). Nonetheless, the impact of other response properties, such as spatial 

conflict, on dual-task interference requires further characterization. Moreover, response-related 

crosstalk has been largely overlooked in cognitive neuroscientific and age-related dual-task 

research. 

1.1.2 Neural correlates of dual-tasking and executive functioning 

The field of cognitive neurosciences has profited from non-invasive neuroimaging 

techniques to investigate the neural correlates of different cognitive processes, such as 

inhibitory control, attentional processes, WM, or far less common, dual-tasking. Functional 

magnetic resonance imaging (fMRI) is one of the most popular neuroimaging techniques to 

map functional brain activity. This technique mainly detects changes linked to blood flow in 

different brain areas; more specifically, it detects changes in the relative levels of oxygenated 

and deoxygenated blood. Since it has been demonstrated that neuronal firing is coupled with an 

increased flow of oxygenated blood, the main contrast used in fMRI, the regional blood-

oxygen-level dependent (BOLD) signal, is used as an indirect measure of neuronal activation 

and a proxy for regional functional brain activity. fMRI offers the advantage of being a non-

invasive technique with a high spatial resolution despite a rather low temporal resolution. 

Task-based fMRI (tb-fMRI) is a popular implementation of fMRI to localize the 

functional involvement of specific brain areas associated with cognitive processes; as such, it 

is an approach to explore brain-behavior associations. While a participant is presented with a 

series of stimuli or is instructed to perform a particular behavioral task, usually designed to 

isolate a specific cognitive process, inside the scanner, the BOLD signal changes are measured 

at regular intervals, and a time series of brain activity is created. Statistical analyses entail 

contrasting task-stimulated states and (baseline) control states to identify clusters or a network 

of brain areas that are significantly activated during the cognitive process of interest (Huettel et 

al., 2009). For example, researchers may contrast the BOLD signal during dual-task trials versus 

single-task trials to identify the brain regions functionally involved in dual-tasking. Besides 

regional brain activity, inter-regional communication between brain areas is pivotal for efficient 
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cognitive performance (Pessoa, 2014). In the domain of tb-fMRI, generalized 

psychophysiological interaction (gPPI) analysis is a method that models the functional 

synchronization between a predefined (seed) brain region and the rest of brain voxels depending 

on the experimental conditions or psychophysiological variables (McLaren et al., 2012; 

O’Reilly et al., 2012). Alternatively, resting-state fMRI (rs-fMRI) is a more recent task-free 

design in which spontaneous BOLD signal fluctuations are measured while the participant lies 

at rest in the scanner (with their eyes closed or fixated on a specific point) without performing 

any specific task (Biswal, 2012; Biswal et al., 1995). The intrinsic BOLD signal time series of 

rs-fMRI allows for studying resting-state functional connectivity (RSFC) obtained by 

computing the temporal correlation between time series in different brain regions. This measure 

goes beyond regional brain activity and is nowadays a proxy for functional synchronization and 

indirect coupling between different parts of the brain. The notions of regional brain activation 

and functional connectivity are not necessarily exclusive. For example, the brain can have 

highly specialized primary sensorimotor regions but, at the same time, require a distributed 

network comprised of distant regions for cognitive processes. 

For a long time, the neuroscientific study of higher-order EF was only accessible via the 

observation of patients with brain lesions. Since most patients with frontal lobe damage 

presented deterioration in goal-directed and self-regulatory behavior, EFs were long assumed 

to be specifically related to frontal lobe development (Miyake et al., 2000). Further, with the 

advancements in functional neuroimaging technology, it became possible to corroborate that  

EF processes not only engage prefrontal brain areas, but that additional brain regions are 

recruited as well. A substantial number of functional neuroimaging studies have mapped brain 

areas and networks associated with different aspects of EF. However, the results can be quite 

heterogeneous depending on the specific task demands or EF subcomponents assessed in the 

scanner. By having a large body of fMRI results in the field of EF, it has been possible to 

perform meta-analyses, a statistical technique that integrates and analyzes the results of multiple 

fMRI studies to identify the convergence of brain activation patterns across different studies 

and subjects. Thus, meta-analyses provide a robust summary of brain functions associated with 

EF. Overall, research has found EF to be associated with distributed brain regions and networks 

covering, in particular, the inferior frontal sulcus (IFS), the bilateral anterior insula (aI), the pre-

supplementary motor area, and the adjacent anterior cingulate cortex (preSMA/ACC), and the 

intraparietal sulcus (IPS) (Duncan, 2010). This set of regions has been collectively referred to 

as the multiple demand network (MDN), a network subserving multiple cognitive tasks, such 

as goal-directed behavior, working memory, vigilant attention, and inhibitory control (Cieslik 
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et al., 2015; Duncan, 2010; Langner & Eickhoff, 2013; Müller et al., 2015; Rottschy et al., 

2012). Recently, an extended multiple-demand network (eMDN; Camilleri et al., 2018) has 

been proposed by performing task-dependent and task-independent functional connectivity 

analysis on seed regions that resulted from three different meta-analyses on working memory 

(Rottschy et al., 2012), inhibition (Cieslik et al., 2015) and vigilant attention (Langner & 

Eickhoff, 2013). The eMDN comprised three main groups of brain regions: A subcortical group 

(putamen and thalamus) mainly subserving sensorimotor processing, a group of potential 

organizers (bilateral preSMA/middle cingulate cortex [MCC], aI, IFS/middle frontal gyrus 

[MFG]), and a more heterogeneous task-dependent set of workers (IPS, inferior frontal junction 

[IFJ], dorsal premotor cortex [dPMC], left inferior temporal gyrus). 

The neural substrates underlying dual-tasking performance have received 

comparatively less attention in neuroimaging studies, likely due to the relatively recent surge 

in interest in this multifaceted cognitive function, as well as the inherent complexities involved 

in conducting the experiments within the confines of an MRI scanner. For instance, the 

simultaneous recording of manual and saccadic responses can pose technical challenges when 

implementing such paradigms in an imaging environment. Moreover, the experimental 

paradigms can be highly diverse depending on the manipulated dual-task parameters but have 

often focused on multi-modal input-related interference or the PRP effect. Nevertheless, 

neuroimaging studies have consistently identified dual- and multi-tasking as associated with 

brain activations in a fronto-parietal network. This network comprises key regions, including 

the dorsolateral prefrontal cortex (dlPFC) and superior parietal regions, which play a role in 

detecting task changes, regulating concurrent processes to facilitate adaptive responses, and 

managing attention allocation across tasks, respectively (Al-Hashimi et al., 2015; Deprez et al., 

2013; Hartley et al., 2011; Stelzel et al., 2006, 2008, 2009; Szameitat et al., 2006). Notably, a 

meta-analysis on dual-tasking with 26 studies found involvement of areas that overlap with the 

key regions of the MDN, including bilateral IFS/MFG, aI, dPMC, and IPS (Worringer et al., 

2019). While meta-analyses provide the most robust spatial convergence of activity across 

studies, dual-task neuroimaging studies typically center on broad contrasts comparing dual-task 

versus single-task conditions, potentially overlooking nuanced cognitive processes and lacking 

the precision to isolate more specific dual-task interference mechanisms. Thus, further studies 

are needed to better understand specific dual-task processes. For example, an overlooked aspect 

has been the impact of effector characteristics on dual-task interference. Addressing this gap, 

Studies 1 and 2 in this work delved into dual-task interference at the response level, leveraging 

conflict induced by mutually incongruent spatial response codes. Employing a step-wise 
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analytical approach, we sought to isolate and disentangle the intricate stages involved in dual-

task processing. 

1.2 Healthy cognitive aging 

 In 2020, the WHO reported that the population of individuals aged 60 years and older 

surpassed the number of children younger than five years, and the sociodemographic transition 

towards an increasingly aging population continues to rise (Ritchie, 2019; World Health 

Organization, 2022). As individuals age, they commonly experience a range of health 

conditions and cognitive impairment. However, the extent and nature of these changes can vary 

widely from person to person. Therefore, it is imperative to thoroughly characterize these age-

related cognitive changes, their underlying neural mechanisms, and their inter-individual 

variability to promote well-being and prevent disabilities in our aging population.  

Cognitive aging encompasses not only deterioration but also some gains. Numerous 

aspects of information processing and executive functioning become less efficient, such as 

speed in information processing, attention, working memory, perception, and inhibitory control 

(Craik & Salthouse, 2008; Spreng & Turner, 2019). At the same time, other aspects of implicit 

memory and crystallized knowledge, such as vocabulary and semantic memory, tend to remain 

relatively stable as people age (Craik & Salthouse, 2008; Spreng & Turner, 2019). The theory 

of the semanticization of cognition integrates the decline of cognitive-control abilities and 

processing speed with the stability or increase in semantics or prior-knowledge representations 

during healthy aging (Park & Reuter-Lorenz, 2009; Spreng & Turner, 2019). Concurrently, 

healthy aging is accompanied by motor-related impairments, manifesting as a general slowing 

of motor performance and difficulties in motor coordination during physical activities, thereby 

increasing the susceptibility of older adults to falls.  

1.2.1 Dual-tasking in advanced age 

Older adults not only struggle with individual cognitive demands, but also show an 

overadditive impairment when carrying more than a single task at once. This exacerbates the 

detrimental behavioral effects of dual-tasking for them, as reflected in increased dual-task costs 

in speed and accuracy compared to young adults (Koch et al., 2018; Verhaeghen et al., 2003). 

The combined effect on speed and accuracy facets contradicts the assumption that age-related 

dual-task difficulties can be solely attributed to generalized cognitive slowing (Madden et al., 

1992; Verhaeghen et al., 2003). Alternative explanations point towards the assumption of task-

set differentiation difficulties in advanced age, meaning that older adults have difficulties 
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activating and differentiating two concurrent task sets; this was at least explored in task-

switching scenarios (Mayr & Liebscher, 2001). Another theory proposes an impairment in task-

set shielding or allocation of attentional resources, attributed to an inhibitory deficit, resulting 

in the decline of effectively managing attention distribution across various task sets and the 

disruption of parallel processing, especially with task ambiguity (Hartley, 2001; Hein & 

Schubert, 2004; Mayr, 2001; Mayr & Liebscher, 2001). These mechanisms align with the 

reduced-inhibition hypothesis, which suggests that older adults’ increased distractibility and 

interference susceptibility during cognitive tasks result from a decline in the capacity to 

suppress task-irrelevant information (Hasher & Zacks, 1988). However, it differs from other 

theories in that it partially attributes this decline to a working memory overload. Despite the 

prevalence of these theories, their application to the context of dual-tasking remains unexplored, 

prompting Studies 1 and 2 to investigate age-related cognitive and neural mechanisms 

underlying dual-task decline under conditions of response-code conflict. 

1.2.2 Neurocognitive models of healthy aging 

Considering that cognitive processes rely on the anatomy and physiology of the brain, 

it is reasonable that the field of cognitive neurosciences has searched for links between the 

observed behavioral differences in aging and age-related changes in the integrity of brain 

structure and function (Craik & Salthouse, 2008). The diverse and complex pattern of age-

related differences in brain-behavior associations has led to multiple dynamic neurocognitive 

models integrating age-specific neural and behavioral alterations. 

Aging is typically accompanied by structural changes in the brain, often referred to as 

brain atrophy, manifesting in volumetric reduction, cortical thinning, and a decrease in white-

matter integrity. Exaggerated brain atrophy has been identified as a neural biomarker and a risk 

factor for transitioning from typical to pathological aging (Craik & Salthouse, 2008; Spreng & 

Turner, 2019).  

Functionally, it is common to find reduced but also increased brain activations among 

older people when performing different cognitive tasks or being at rest. However, the 

relationship between brain structure and function is still under debate and research. A common 

neurocognitive interpretation is that hypoactivations in certain brain regions reflect brain 

atrophy and cognitive deficits that come with age. On the other hand, hyperactivations have 

been explained by two largely popular competing but not necessarily mutually exclusive 

neurocognitive models: The compensatory hypothesis and the neural dedifferentiation 

hypothesis (Grady, 2012; Spreng & Turner, 2019). The compensatory hypothesis interprets age-
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related brain hyperactivations, typically in prefrontal and contralateral regions, as a beneficial 

neural over-recruitment to counteract brain atrophy and cognitive decline and facilitate 

successful task performance. Conversely, the dedifferentiation hypothesis assumes a loss of 

neural specificity when performing a particular task. The dedifferentiation becomes evident 

through more diffuse and less efficient brain activation patterns, encompassing regions that are 

unrelated to the task, like more dispersed activations in visual regions. According to this model, 

hyperactivations should not correlate with enhanced task performance. These two mechanisms 

have been integrated into a model named compensatory recruitment of neural circuits 

hypothesis (CRUNCH; Reuter-Lorenz & Cappell, 2008), including the dependency of the 

neural resources according to the particular task demands. It proposes that since cognitive 

processing may become noisier and inputs may be gated more poorly with age, more cognitive 

control is required, but neural resources in older people may reach a limit at a lower demand 

level. This results in the utilization of compensatory neural circuits to maintain performance 

but also in a dysfunctional reduction of neural specificity for certain functions. 

The prevalent finding of over-recruitment of prefrontal cortical areas, a brain region 

implicated in cognitive control and several cognitive tasks, in advanced age has been explained 

via two additional models: The hemispheric asymmetry reduction in older adults (HAROLD; 

Cabeza, 2002) and the posterior-to-anterior shift with aging (PASA; Davis et al., 2008; Grady 

et al., 1994). The HAROLD model suggests that as people age, hemispheric lateralization 

patterns during cognitive processing begin to decrease, especially in the prefrontal cortex. The 

theory was inspired by young adults showing highly lateralized prefrontal activity when 

performing, for example, cognitive tasks involving inhibitory control. In contrast, the 

HAROLD model suggests that older adults recruit both hemispheres more equally to manage 

demanding cognitive tasks and, thus, shift toward more symmetrical brain activation patterns. 

On the other hand, the PASA model proposes that older adults show a change in activation 

distribution when demands for cognitive-control processes increase from a decrease in posterior 

activation to increased engagement of anterior brain regions. In contrast, in young adults, 

posterior areas are more involved than anterior ones. These age differences could be reflected 

in a positive correlation between behavioral scores and increased frontal activity but a negative 

correlation with posterior areas among older adults. 

Similar to the semanticization of cognition theory, the scaffolding theory of aging 

cognition (STAC; Park & Reuter-Lorenz, 2009) acknowledges that neurocognitive aging may 

not solely be characterized by cognitive decline but also by an ability to change and adapt 

according to the cognitive demands and to develop external support systems. According to this 
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model, besides developing compensatory mechanisms, older adults may engage in selective 

optimization methods of specific cognitive functions particularly relevant to them and which 

facilitate brain maintenance. The model additionally emphasizes that older adults’ brains can 

still undergo neuroplastic processes, allowing them to learn new abilities and reorganize their 

neural architecture in response to new challenges. Finally, older people can also profit from 

enrichment and protective factors, such as using tools and strategies, modifying their 

environment, and engaging in social activities. 

A more recent model, the default-executive coupling hypothesis of aging (DECHA; 

Turner & Spreng, 2015), incorporates knowledge from functional connectivity studies and 

different neurocognitive models. The DECHA model suggests a shift in the relationship 

between two distinct brain networks as individuals age: The default mode network (DMN) and 

the executive-related networks. The DMN is primarily active during rest and internally focused 

tasks and becomes suppressed during externally oriented tasks. It comprises the posterior 

cingulate cortex, precuneus, medial temporal lobes, and medial prefrontal areas  (Raichle, 2015; 

Raichle et al., 2001). In contrast, increased activation in the executive-related networks has been 

linked to tasks increasing cognitive demands and requiring attention, working memory, 

cognitive control, and goal-directed thinking. Studies have often reported that in young adults, 

there is a certain level of anti-correlation between the DMN and executive networks, such that 

the latter becomes more active during executive tasks, and the former is suppressed. The model 

proposes a shift in the association between these two networks as people age, such that the 

strong anti-correlation observed in young adults becomes weaker in the older. As such, this 

shift involves transitioning to a decline in control processes, as indicated by less active 

prefrontal areas, as well as to a stronger dependence on prior knowledge, as indicated by less 

suppression of the DMN. The shift to a more positive coupling between the two networks is 

supposed to facilitate the semanticization of cognition. 

Diving more particularly into the age-related differences in dual-tasking and cognitive 

control, neuroimaging studies also report increased prefrontal activation when comparing older 

and young participants (Clapp et al., 2011; Hartley et al., 2011; Ohsugi et al., 2013; Thönes et 

al., 2018). Regarding brain connectivity related to cognitive control, resting-state functional 

connectivity studies suggest that age-related decreases in the intrinsic coupling of right dlPFC 

and bilateral aI and preSMA may go along with a decline in cognitive action control (Langner 

et al., 2015), as these regions are associated with overcoming conflict in tasks with S-R 

incompatibility (Cieslik et al., 2010). However, the previous study centered on resting-state 

functional connectivity in association with cognitive control. In contrast, age differences in 
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brain activation, as well as task-related connectivity, have not yet been explored in dual-tasking, 

particularly in relation to response-code conflict or in conjunction with other cognitive domains, 

which will be the focus of Study 2. 

After reviewing the established neurocognitive models of healthy aging, the diversity 

of theories highlights the challenge of integrating the changes across multiple cognitive 

domains, the associated neural processes, and the high inter-individual variability inherent in 

these processes. Nevertheless, they represent a diligent effort to incorporate findings from a 

constantly evolving research field. More recent directions suggest that studying various 

neuroimaging modalities within multivariate approaches may offer valuable insights for the 

understanding of the aging brain, as will be emphasized in Study 3. 

1.3 Elucidating brain-behavior associations through inter-individual 

differences 

 The large body of neurocognitive models and their implied inter-individual differences 

make apparent the complexity of the human neural architecture and their associated behavioral 

and cognitive processes. Inter-individual variability refers to the differences in the expression 

of one or more behaviors or neural characteristics between individuals of a population. This 

heterogeneity should be considered when studying brain-behavior associations and developing 

neurocognitive models, as they can shed light on the mechanisms underlying cognitive 

functions, neurological conditions, and age-related changes. 

 In the cognitive domain, for example, some individuals excel in certain cognitive tasks 

while others may struggle. A myriad of factors could explain these differences, but one is that 

individuals can use diverse mechanisms and strategies to solve a given task. For example, when 

performing a cognitive task, some people may prioritize completing the task quickly but 

sacrifice accuracy. On the other hand, other people may prioritize accuracy when completing a 

task, but this may take them longer, increasing their reaction times (RT). This principle is 

referred to as the speed-accuracy trade-off, and it stands for a continuum of focus on speed or 

accuracy when solving a task (Liesefeld & Janczyk, 2019). In the context of dual-tasking, some 

participants may prioritize one task over another, allocating their attentional resources 

differently or planning a task solution differently. These differences in cognitive strategies may 

encompass variability in brain activation patterns or brain network recruitment, such as the 

multiple-demand network (Assem et al., 2020; Miller et al., 2012; Wen et al., 2020). For that 

reason, it becomes relevant, on the one hand, to use behavioral measures that account for 

different facets of task performance and, on the other hand, integrate diverse cognitive and 
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neural processes (e.g., regional activation and functional connectivity) when assessing brain-

behavior associations (Breukelaar et al., 2018). 

In healthy cognitive aging, significant inter-individual variability has also been 

observed across cognitive domains, including working memory, processing speed, attention, 

and inhibitory control. While certain people experience a faster decline in certain cognitive 

abilities, others maintain relatively stable cognitive functioning as they age (Tucker-Drob & 

Salthouse, 2011). Even within the same person, certain cognitive domains may remain 

unaffected while others are more susceptible to deterioration. In dual-task performance, 

variability in age-related detriments could be explained, on the one hand, by some older adults 

experiencing generalized slowing and higher susceptibility to response or task confusability 

linked to declining working memory. On the other hand, others may already be predisposed to 

distractions when processing stimuli, linked to attentional deficits. Alternatively, some older 

adults may resort to over-using top-down control, which, for example, can lead to an excessive 

resource allocation to central processes, ultimately harming overall performance. This 

mechanism has been termed the over-reliance on central attention in advanced age 

(Maquestiaux & Ruthruff, 2021). These cognitive differences are additionally accompanied by 

heterogeneity in brain development in interaction with the interplay of environmental factors, 

such as lifestyle. For example, variability in cognitive aging may be partially explained by 

differences in brain atrophy or network coupling but also by the availability of an external 

support system and daily cognitive stimulation. Certain neurocognitive models, such as the 

STAC model, acknowledge the adaptability and plasticity of the cognitive system and neural 

architecture. 

A long-standing statistical method to study brain-behavior associations has been the 

general linear model (GLM), which involves modeling brain activity as a linear combination of 

explanatory variables, such as the different experimental conditions of a paradigm (Huettel et 

al., 2009). It is usually used to detect activity changes in brain regions that respond to 

experimental manipulations at the group level or to explore group differences in brain activity. 

Additionally, one can incorporate covariates into the models, such as other cognitive scores, to 

assess to what level other behavioral measures can explain the variance in brain activation 

underlying a specific experimental setting. 

Another method that has gained significant attention in the field of neuroimaging over 

the last two decades is the prediction framework using machine learning (ML), particularly for 

its potential to draw individual-level inferences from multivariate neuroimaging data patterns 

(Habeck & Stern, 2010; Scheinost et al., 2019). A standard ML procedure consists of, first, 
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extracting the neuroimaging features per participant, such as brain region’s volumes, mean time 

series, or FC correlation values between pairs of brain areas, which form the independent 

variables, predictors, or features. Then, multivariate ML models are iteratively trained to 

identify neuroimaging patterns that best predict a given phenotype. The dependent variable or 

target could be, for example, a task performance score or a neurological disease label. Thus, 

ML models are an approach that considers the multivariate nature of brain organization when 

mapping neuroimaging patterns onto individual phenotypical data. The technique primarily 

used in ML to evaluate the prediction effectiveness of a model is cross-validation (CV). CV 

involves splitting the available data into a train and test subset (Hastie et al., 2009). The model 

is trained on a given fraction of subsets, and a subset is withheld to test the model. A different 

testing subset is used in each iteration. This process is repeated several times, randomly splitting 

the sample into train and test subsets in each iteration to evaluate the generalizability and 

robustness of the model with unseen and independent datasets (Habeck & Stern, 2010; 

Scheinost et al., 2019). In this way, inter-individual variability in neuroimaging data is 

accounted for, as each individual’s multivariate features are considered when predicting 

individual targets, such as a task performance score or disease label. 

While a common approach in predictive studies is to use neuroimaging features from 

the whole brain, another approach has been selecting brain networks composed of delimited 

areas that functionally represent or are close to the cognitive domain under study (Heckner et 

al., 2023a; Nostro et al., 2018; Pläschke et al., 2017, 2020). This approach is inspired by the 

assumption that these networks should maximally represent the neural substrates of the 

cognitive process of interest, either based on group-level GLM analyses or meta-analytic 

studies. In addition, delimited networks can facilitate the interpretability of the underlying 

mechanisms in brain-behavior associations. However, these approaches have not been studied 

profoundly in the context of multi-tasking or executive functions. Furthermore, the field of 

predictions in neurosciences still faces methodological and theoretical challenges, mirrored by 

overall low behavioral prediction accuracies and generalizability. 

1.4 Ethics protocols 

Studies 1 and 2 were performed following the positive vote by the local ethics 

committee of the RWTH Aachen University Hospital (Study Registration Number: EK 188/10). 

Study 3 used open-access data from the Enhanced Nathan Kline Institute – Rockland 

Sample (eNKI). The local ethics committee of the Heinrich-Heine University in Düsseldorf 
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approved the analysis of the data, and all methods were carried out following the relevant 

guidelines and regulations (Study Registration Number: 4039). 

1.5 Aims of the thesis 

This work was conceived with the goal of enhancing behavioral and neuroscientific 

dual-tasking models by analyzing interference mechanisms influenced by response-related 

characteristics. While previous studies have identified a response-modality dominance pattern 

in dual-tasking (Huestegge & Koch, 2013), further investigation is needed to understand the 

impact of other response properties, such as spatial conflict, on dual-task interference. 

Additionally, cognitive neuroscientific and age-related dual-task research has largely 

overlooked response-related crosstalk. Therefore, the overarching aim of this study was to 

elucidate associations between dual-task interference at the response level and EF, on the one 

hand, and brain functioning and connectivity, on the other, while assessing how these 

associations are modulated by healthy cognitive aging. 

Prior research has suggested that response-related characteristics may affect dual-task 

interference, such as potential crosstalk resulting from spatially incongruent response codes. 

This effect has been previously reported under cross-modal, but not unimodal, dual-response 

demands (Huestegge & Koch, 2010; Pieczykolan & Huestegge, 2014). Within this conceptual 

framework, Study 1 aimed to disentangle how spatial response-code conflict within the same 

response modality impacts dual-task performance at the behavioral level and how these effects 

vary between young and older adults. To achieve this, we developed a novel dual-task paradigm 

to ensure that dual-task interference remained unconfounded by factors such as stimulus or 

response modality, temporal task overlap, task order, and the number and relative location of 

response alternatives. 

Once we confirmed that crosstalk between conflicting response codes contributes to 

dual-task interference, we moved forward to the neural level by implementing the 

aforementioned dual-task paradigm in the MRI scanner with young and older adults. Thus, 

Study 2 is a neuroimaging study that comprehensively analyzes the neural correlates of 

response-related dual-task crosstalk and aging and addresses inter-individual variability in 

various cognitive domains. The study had multiple objectives: First, it aimed to investigate 

brain activity correlates of dual-task response-code conflict; second, it sought to examine 

activity modulations based on individual dual-task performance and cognitive abilities related 

to executive functioning; and third, it explored task-modulated functional connectivity within 
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the dual-task conflict network. Lastly, age-related differences were assessed across all previous 

aspects. 

 Building upon the findings of Study 1 and Study 2, which elucidated behavioral and 

neural correlates of response-related dual-task interference, I embarked on a third project, 

considering that dual-tasking can be conceived as closely related to several of the cognitive 

abilities that form the multi-dimensional construct of EF. Therefore, we examined how brain-

behavior associations looked for other executive functions using different brain metrics within 

multiple networks. Furthermore, since healthy aging processes are heterogeneous and manifest 

differently in neuronal and behavioral measures, using a method that would account for inter-

individual variability was relevant. Thus, Study 3 employed an ML framework and aimed to 

predict EF abilities in young and older adults using structural (gray-matter volume [GMV]) and 

resting-state functional brain characteristics (resting-state functional connectivity [RSFC], 

regional homogeneity [ReHO], fractional amplitude of low-frequency fluctuations [fALFF]). 

These measurements were derived from EF-related, perceptuo-motor, and whole-brain 

networks. The study focused on three main aspects: First, determining whether differences in 

out-of-sample prediction accuracy could be attributed to a specific modality; second, assessing 

if predictions varied based on the network, age group, or task-demand levels; third, examining 

whether young and older adults differed in their predictability depending on the brain metric, 

network, or task-demand level. In essence, this final study assessed the robustness and age-

sensitivity of predicting a set of EF abilities based on diverse neuroimaging characteristics that 

capture aspects of brain structure and function across distinct networks.  
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5 Discussion 

 

5.1 Summary of findings 

 This work investigated the relationship between response-related dual-task interference 

and executive functioning (EF) on the one hand, and brain functioning and connectivity on the 

other, while assessing their modulation by healthy cognitive aging. It comprises three 

independent research papers. Study 1 is a behavioral investigation. It showed that the nature of 

the responses and age both have an impact on dual-task performance. Building upon these 

behavioral findings, Study 2 investigated how dual-tasking and EF relate to neural activity and 

connectivity in young and older participants. It found that brain areas of the multiple-demand 

network (MDN) are recruited when solving response conflict in dual-tasking. Activity within 

the conflict-specific MDN shared limited variance with EF and its connectivity was not 

sensitive to dual-task conflict or age effects. Compared to young adults, older adults showed a 

different brain activation pattern when dealing with response-code conflict in dual-tasking, with 

non-compensatory hyperactivity in left superior frontal gyrus (SFG). Finally, Study 3 used 

brain characteristics of various networks to predict individual EF performance in young and 

older adults. In general, we found limited predictive power. Regional morphometric brain 

measures proved more predictive for older adults, while functional within-subject brain 

variability showed greater predictive ability for young adults. In the following, I provide a 

detailed summary of these findings. 

In Study 1 and Study 2, we developed and implemented an auditory-manual single-

stimulus onset paradigm to assess response-related dual-task interference unconfounded by 

other dual-task parameters. Here, young and older adults responded to high- or low-pitched 

tones through spatially mapped button presses with one or two hands concurrently. This 

paradigm allowed us to manipulate the spatial congruency between response codes in dual 

conditions and induce intra-modal response-code conflict by having two spatially opposing 

stimulus–response (S-R) mapping rules between hands (e.g., high pitch – low hand response 

combined with a high hand response). At the behavioral level, Study 1 and Study 2 showed 

that across age groups, spatially incongruent response codes elicited substantial mutual 

interference, as reflected via significantly higher dual-task costs in the response–response (R-

R) incongruent condition compared to settings with dual congruent responses. In the R-R 

incongruent condition, a notable asymmetric cost allocation was identified, in which S-R 
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compatible responses exhibited higher dual-task costs than their S-R incompatible counterpart. 

The cost asymmetry was confirmed even after removing trials with strongly synchronized 

responses. Moreover, the response-related interference effect was accentuated with advanced 

age. It is to be noted that these effects were observed across all performance scores, including 

dual-task speed and accuracy costs, as well as costs on the balanced integration score (BIS) 

incorporated in Study 2. The BIS is a recently introduced behavioral score that accounts for 

potentially different speed–accuracy trade-offs (Liesefeld et al., 2015; Liesefeld & Janczyk, 

2019). Thus, Study 2 represents a within-scanner replication of the behavioral findings of Study 

1, confirming that crosstalk between conflicting response codes contributes to dual-task 

interference, an effect that is exacerbated with age. 

At the neural level, Study 2 allowed us to delineate brain areas associated with response-

code conflict in dual-tasking and their age-related differences. By contrasting R-R incongruent 

vs. congruent trials through a GLM approach, we identified that response-code conflict was 

linked to the recruitment of a large fronto-parieto-insular network, covering substantial parts of 

the MDN, such as dPMC, preSMA, MCC, dlPFC, anterior insula, SPL, thalamus, and 

cerebellum (Camilleri et al., 2018; Duncan, 2010). Here, older adults, compared to young 

adults, showed non-compensatory hyperactivity in left SFG when dealing with response-code 

conflict in dual-tasking. Since dual-tasking involves other cognitive abilities that may vary 

among individuals, we conducted a covariance analysis to account for the inter-individual 

variability in brain activity within the response-code conflict network. Thus, the second aim of 

the study addressed how activity during response-code conflict was modulated by individual 

dual-task performance and cognitive abilities related to executive functioning. We found that 

enhanced dual-task performance went along with higher bilateral SMA and premotor 

recruitment, pointing towards a critical brain-behavior association for enhanced dual-task 

conflict resolution. When incorporating executive abilities, we found limited shared variance 

with the task-related network. Increased thalamic and caudate activity during response-code 

conflict was associated with higher cross-modal attentional and working memory performance, 

and reduced medial prefrontal activity during congruent trials went along with a faster cross-

modal allocation of attention. In addition, increased right IPS activity was linked to improved 

global task-switching abilities. Assessing the age differences herein, older adults showed 

increased engagement of right PMC and MFG during dual-task conflict resolution to be 

positively associated with higher working memory capacity. The final objective of this study 

was to explore task-modulated functional connectivity between conflict-sensitive brain regions 

(i.e., right dPMC and SPL) and the dual-task conflict network and assess whether the 
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connectivity is affected by age. Study 2 showed that conflict-modulated connectivity was not 

sensitive to dual-task response-code conflict for either of the premotor or parietal seed regions 

or age-related effects. 

Further, Study 3 assessed the potential of structural (GMV) and functional (RSFC, 

ReHo, and fALFF) brain parameters within EF-related and EF-unrelated networks for 

predicting individual EF abilities in young and older adults. The nodes of the EF-related 

network were derived through the maximum conjunction of three meta-analytic studies on 

working memory (Rottschy et al., 2012), cognitive action regulation (Langner et al., 2018), and 

multi-tasking (Worringer et al., 2019). It is to be noted that, although not identical, this network 

resembles substantial brain areas of the MDN, as well as the response-code conflict network 

identified in Study 2. The EF-unrelated control networks included nodes from a perceptuo-

motor and a whole-brain network (Heckner et al., 2021; Power et al., 2011). Finally, the 

predicted EF abilities covered low- and high-demand subtasks of working memory, inhibitory 

control, and cognitive flexibility. Using a CV approach within an ML framework, Study 3 

showed prediction accuracies of individual EF abilities to be low to moderate for all modalities, 

networks, task-demand levels, and age groups, with explained variance not exceeding more 

than 6%. Focusing first on the brain modalities, fALFF and GMV reached the highest 

accuracies for predicting individual EF abilities, but the modality effect was age-dependent. In 

young adults, EF performance was predicted best by fALFF, a marker for functional within-

subject brain variability. In contrast, in older adults, regional GMV, well linked to brain atrophy, 

was the brain metric that carried the strongest information. Study 3 is, additionally, a 

confirmation of the results reported in the previous companion paper (Heckner et al., 2023a). 

Both studies showed that across modalities, the EF-related network was not superior to the 

perceptuo-motor or even whole-brain networks when predicting individual executive abilities. 

Furthermore, predictions in each age group depended on the task difficulty level. In young 

adults, high-demand (vs. low-demand) EF abilities were best predicted. In comparison, the 

effect was reversed for older adults, for which low-demand (vs. high-demand) EF conditions 

were best predicted. The following sections will discuss and integrate the findings of the three 

studies. 

5.2 Interpretation of findings 

 Across the history of cognitive neurosciences, one of the major aims of the field has 

been to understand common brain mechanisms underlying higher cognitive functions 

(Gazzaniga et al., 2018; Purves et al., 2018). One of the most prevalent approaches to 
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accomplish this objective involves utilizing neuroimaging methods to identify statistical   

similarities in brain structure and function across individuals linked to cognitive processes 

(Gazzaniga et al., 2018; Purves et al., 2012). Brain functional changes have been evaluated 

through manipulations imposed by various diverse cognitive tasks or experimental paradigms 

(Huettel et al., 2009; Soares et al., 2016). These findings have provided valuable insights for 

proposing mechanisms underlying the brain-behavior associations. However, it is crucial to 

emphasize that no average brain is responsible for performing a cognitive task in each 

individual (Braver et al., 2010; Finn et al., 2017). Instead, the specific cognitive strategies and 

neural mechanisms engaged during the solution of a particular task are likely to be 

heterogeneous among individuals. Furthermore, although a common activation pattern exists at 

the group level, each subject probably engages slightly different brain regions, as well as brain 

areas beyond the group-level pattern, when performing a given task. Thus, an ultimate and 

much more recent endeavor in the field has been to map cognitive processes within individual 

brains (Yeung et al., 2022). One of the predominant methods towards that goal has been 

implementing ML models, which account for and are sensitive to inter-individual differences, 

to predict and identify brain-behavior associations at the individual level (Poldrack et al., 2020; 

Scheinost et al., 2019; Yeung et al., 2022).  

Considering these two overarching approaches in neuroimaging, one can see this work 

as, on the one hand, focusing on identifying common behavioral, cognitive, and neural patterns 

associated with dual-tasking across subjects, as well as assessing their age-related differences. 

Herein, we incorporated inter-individual differences in individual dual-task performance and 

EF abilities through covariance analyses. On the other hand, the last study sought to map brain 

characteristics to individual EF abilities with a framework sensitive to inter-individual 

differences in brain structure and function and their age-related differences. 

5.2.1 Coping with response-code dual-task crosstalk and difficulties in healthy aging 

 A predominant model in the field of dual-task crosstalk has been the structural 

bottleneck model, which assumes a sequential response selection in dual-tasking, meaning that 

the response for the second task can only be selected after the response selection of the first or 

easier task has finalized (De Jong, 1995; Pashler, 1994; Strobach et al., 2018). Our findings are 

at odds with this model. Behaviorally, we found increased dual-task interference when two 

concurrent tasks with spatially opposing response codes had to be processed. However, most 

importantly, an atypical subtask order implied by the asymmetric cost allocation depending on 

the response compatibility towards the stimulus was observed, which is against a rigid serial 
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response selection strategy. As discussed in Study 1 and Study 2, the underadditive cost 

asymmetry is more consistent with a rather flexible model, in which the cognitive system is 

capable of adapting to the specific task demands (Fischer & Plessow, 2015; Hazeltine et al., 

2006; Koch et al., 2018; Pieczykolan & Huestegge, 2019). Our findings point towards a limited 

but strategic resource allocation according to task difficulty for preventing crosstalk in multiple-

task scenarios, which has been previously reported in cross-modal scenarios (Huestegge & 

Koch, 2010; Pieczykolan & Huestegge, 2014; Weller et al., 2022). It appears likely that 

participants prioritize and allocate more processing resources toward the more demanding 

(incompatible) task, leaving the easier (compatible) response unattended (Hoffmann et al., 

2020; Huestegge & Koch, 2010; Lehle & Hübner, 2009; Pieczykolan & Huestegge, 2014). For 

that reason, a large part of dual-task costs are conferred onto the easier but deprioritized task, 

while the more demanding task is shielded against crosstalk and suffers from lower dual-task 

costs. Alternatively, instead of engaging in an active and strategic resource allocation, a natural 

top-down bias may explain the increased attention toward the incompatible response, affecting 

task-set shielding (see Rusconi et al., 2006).  

In addition to a flexible and possibly strategic resource allocation under dual-task 

conditions of response-code conflict, participants likely implemented a response grouping 

strategy, in which the first response is selected but held in until the second response has also 

been selected and is ready to be executed, presumably because it is easier to emit two responses 

simultaneously than in rapid succession (Fagot & Pashler, 1992; Pashler, 1994; Ulrich & Miller, 

2008). The variability in cognitive strategies implemented within a cognitive task may differ 

between subjects, and, as suggested previously, the decision for a specific strategy might be 

made online within each trial (Miller & Ulrich, 2008). 

A robust body of studies has reported that difficulties in dual-tasking are exacerbated 

with advanced age (Koch et al., 2018; Verhaeghen et al., 2003). However, the age-related 

deficits still need to be explored under dual-task settings with interference at the response level, 

unconfounded by other dual-task factors. The negative effects of incongruent response codes 

in older adults, observed across Study 1 and Study 2, confirm that the ability to shield 

ambiguous task sets becomes compromised in older adults, particularly in situations where two 

mutually incongruent response codes need to be selected concurrently from otherwise highly 

similar task sets (Mayr, 2001; Mayr & Liebscher, 2001). These age-related dual-task 

differences do not underlie a difference in the speed–accuracy trade-off between age groups. 

However, the deficits can be partially explained by generalized slowing (Salthouse, 1996) or 

response grouping (Miller & Ulrich, 2008). Alternatively, older adults may experience an 
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inhibitory deficit, affecting their ability to control and manage their attentional resources across 

different tasks in multi-tasking scenarios. This could lead to interference and distraction 

between parallel processing streams and, ultimately, to response-code confusability (Hein & 

Schubert, 2004; Mayr, 2001; Mayr & Liebscher, 2001). Furthermore, older adults may 

voluntarily over-use attentional resources when confronted with demanding tasks, possibly 

attributed to an over-reliance on central attention with advanced age (Maquestiaux & Ruthruff, 

2021), in this case, intending to improve performance and prevent dual-task crosstalk. 

Unfortunately, this overexerted top-down attention allocation, where not needed, could 

ultimately lead to reduced overall performance. 

5.2.2 Mapping dual-task response-code conflict onto brain function and age-related 

differences 

 Through a step-wise analysis of the neuroimaging data of dual-tasking and age 

differences, it became possible to elucidate specific stages of the brain functional mechanisms 

involved in resolving dual-task response-code conflict and its modulation by age. Across 

subjects, dual-response execution, meaning simultaneously executing two congruent responses 

with a conjoint response selection process compared to single-hand reaction tasks, required 

increased input from motor, parietal, thalamic, and cerebellar areas, indicating that this aspect 

engages mainly brain processes involved in motor output and spatial transformations (Grefkes 

et al., 2004; Jäncke et al., 2000; Rizzolatti et al., 1998; van Dun et al., 2021). These findings 

are consistent with the literature, suggesting an upregulation of mainly motor areas during 

bimanual response execution (Jäncke et al., 2000; Nair et al., 2003; Swinnen & Gooijers, 2015). 

Additionally, dual-response execution was accompanied by reduced bilateral occipital and 

medial prefrontal activity, indicating an attentional shift away from the visual modality 

(Langner et al., 2011; Mozolic et al., 2008) and the downregulation of the task-negative DMN 

(Fox et al., 2005; Raichle et al., 2001) during an auditory-manual externally focused task. 

Behaviorally and neurally, this process appears to be well-preserved in age, since no differences 

were identified. 

 In the following step, we analyzed dual-tasking at large, meaning having two concurrent 

spatially incongruent mapping selections compared to single tasks. Dual-tasking showed to 

require, beyond motor-related areas, more top-down cognitive control by recruiting a large 

fronto-parieto-insular network covering regions of the extended MDN, involved in top-down 

executive control, as well as multi-tasking (Al-Hashimi et al., 2015; Camilleri et al., 2018; 

Duncan, 2010; Müller et al., 2015; Papegaaij et al., 2017; Worringer et al., 2019). As with dual-



 

 
26 

response execution, global dual-tasking is consistently linked with visual processing 

disengagement and DMN suppression. In this case, age-related differences in brain functioning 

became apparent. When more demands were put on top-down cognitive control during dual-

tasking, older adults showed hyperactivation in medial motor, cingulate and prefrontal areas, 

indicating increased difficulties in handling and coordinating incongruent dual-task sets (Goble 

et al., 2010; Swinnen & Gooijers, 2015) and inhibiting inadequate response tendencies 

(Botvinick et al., 2004; Cieslik et al., 2015; Corbetta & Shulman, 2002). 

 Ultimately, resolving response-code conflict in dual-tasking, meaning comparing two 

spatially incongruent mapping selections with a dual-response condition with a conjoint 

mapping selection, required additional top-down executive control via a more circumscribed 

but domain-general fronto-parieto-insular network (MDN) without additional primary motor 

recruitment nor reductions in brain activity. During dual-task response-code conflict resolution, 

besides other brain areas, right dPMC and SPL showed the strongest activation effect, 

presumably engaged in motor response preparation, for the former (Abe & Hanakawa, 2009; 

Genon et al., 2016; Worringer et al., 2019), and top-down attentional control shifting and spatial 

information processing, for the latter (Corbetta & Shulman, 2002; Grefkes et al., 2004; Langner 

et al., 2014). Furthermore, we found a critical brain-behavior association of dual-task response-

related crosstalk effect when incorporating inter-individual variability in individual dual-task 

performance. Our results indicate that increased bilateral SMA and premotor activity is 

associated with enhanced conflict and interference resolution (Cieslik et al., 2010; Isherwood 

et al., 2021; Nachev et al., 2008) and accurate response preparation (Beurze et al., 2007; Genon 

et al., 2016) in demanding dual-task settings where spatially incongruent response codes need 

to be processed concurrently. 

 Interestingly, the activity within the conflict-sensitive MDN as a whole did not share 

general variance with executive functioning overall, as we only found limited overlap when 

introducing inter-individual variability in other EF abilities. For instance, only bilateral IPS and 

SPL conflict-sensitive activity shared variance with task-switching performance, emphasizing 

their relevance in effectively and flexibly allocating and maintaining spatial motor attentional 

resources across two concurrent task sets (Iacoboni, 2006; Rushworth et al., 2001; Saylik et al., 

2022; Weiss et al., 2006; Worringer et al., 2019). Conversely, increased thalamic and caudate 

activity in the response-code conflict network was linked to enhanced cross-modal attentional 

and spatial working-memory performance. This suggests an attentional and task-rule 

maintenance requirement for resolving response-related interference between two tasks. It is 

worth noting that while these subcortical nuclei are part of the extended MDN (Camilleri et al., 
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2018), they are densely packed brain regions associated with a wide range of cognitive functions 

(Boeken et al., 2022), including sensorimotor functions, movement regulation (Sommer, 2003), 

and higher-order cognitive functioning (Camilleri et al., 2018). However, contrary to our 

expectations, the activity of key MDN regions typically representative of cognitive control, 

such as lateral prefrontal areas and MCC, did not share variance between dual-task response-

code conflict and executive functioning. 

Regarding the impact of age on response-code conflict in dual-tasking, older adults 

demonstrated hyperactivation in a specific cluster in the left SFG when coping with conflicting 

response codes. This is consistent with previous literature reporting a potential compensatory 

over-recruitment of prefrontal resources to counteract age-related brain structural and 

functional decline and deficits in executive functioning (Reuter-Lorenz & Cappell, 2008; 

Seidler et al., 2010; Spreng & Turner, 2019). However, in our case, the left SFG hyperactivation 

did not indicate a compensatory mechanism because no positive association with dual-task 

performance was found. Instead, increased activity in right premotor and middle frontal areas 

during dual-task response-code conflict was linked with higher working memory capacity in 

older adults compared to young adults. Thus, these findings instead reflect a dedifferentiation 

pattern with more widespread activation and a loss of regional specificity in aging without any 

behavioral improvement, but also a potential inter-individual heterogeneity in strategies 

employed by older adults (Park et al., 2001; Voss et al., 2008). The mechanisms behind the 

increased behavioral dual-task costs in conditions with incongruent response codes among older 

adults may, thus, include a higher task-rule confusability or difficulty in maintaining the task 

sets (Hein & Schubert, 2004; Mayr, 2001; Mayr & Liebscher, 2001) for accurate dual-task 

processing and motor execution, which engages right premotor and frontal areas. Alternatively, 

similar to the theory of an over-reliance on central attention (Maquestiaux & Ruthruff, 2021), 

older adults may have put increased effort into maintaining the task rules more prominently to 

compensate for the cognitive deficits, e.g., reduced processing speed, that come with age, 

resulting, however, in an inefficient recruitment of neural resources in PMC and MFG, as 

indicated by higher dual-task costs. Additionally, the influence of spatial working memory on 

right premotor and middle frontal activity, coupled with the behavioral observation of 

generalized slowing in older adults, may indicate a tendency to be generally slower in 

distributing spatial motor attentional resources amidst conflicting mappings and sustaining task 

sets for optimal behavioral performance. 

Finally, the lack of task-modulated connectivity changes during dual-task response-code 

conflict for either of the seed regions and the absence of any age differences reflect that 
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functional synchrony between conflict-sensitive brain areas is not pivotal for the efficient 

processing of simultaneous and conflicting mapping selection. In contrast, it is the level of 

activity within the MDN that emerges as a crucial component for coping with conflicting 

response codes in dual-tasking. 

5.2.3 Mapping structural and functional brain characteristics onto individual executive 

performance 

 Based on the previous findings, it becomes evident that, across subjects, the general 

neural pattern for solving conflicting dual-task scenarios is to recruit the domain-general MDN 

instead of involving specific and delimited brain regions. Considering dual-tasking as part of 

the umbrella term of EF, our findings resonate well with the ample research literature 

associating EF with the MDN. However, the question arises whether different brain 

characteristics within such a network are informative to map their inter-individual 

characteristics onto each individual and identify each subject’s unique cognitive performance 

level. The weak brain-behavior associations obtained in Study 3 showed that predicting 

individual behavioral performance remains challenging, although the predictability levels are 

comparable to previous related research. Here, it is relevant to reiterate that, in contrast to Study 

2 using tb-fMRI, the brain characteristics used to predict EF performance in this study were 

extracted from regional structural MRI (GMV) and task-unconstrained rs-fMRI (RSFC, ReHo, 

and fALFF), representing intrinsic functional measures. 

On the one hand, since the whole-brain network achieved superior or similar prediction 

accuracies compared to the EF-related and perceptuo-motor networks, the relevance of global 

brain organizational properties in brain-behavior associations becomes apparent (Heckner et 

al., 2023a; Pläschke et al., 2020). The EF-related network was derived through the conjunction 

of meta-analytic studies using tb-fMRI on three core executive functions: Working memory 

(Rottschy et al., 2012), cognitive regulation (Langner et al., 2018), and multi-tasking 

(Worringer et al., 2019), and the obtained network covers substantial regions of the MDN. The 

network, thus, entails a highly reliable and robust convergence of brain areas associated with 

EF across the vast majority of studies and usually young subjects. Its superiority in 

predictability would have facilitated the interpretation of brain-behavior associations. Contrary 

to that assumption, it appears that the constrained network does not suffice to explain inter-

individual differences in EF performance. On the other hand, the specific reason underlying the 

whole-brain network superiority in prediction accuracies still remains to be revealed. A 

potential reason is a larger feature space, as the whole-brain network includes significantly more 
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nodes than the task-specific one. Another reason is that the whole-brain network might include 

hubs or areas unspecific to EF but crucial for information exchange between brain networks, 

ultimately relevant for individual executive control (Heckner et al., 2023a). In any way, our 

results align with previous reports showing comparable or superior prediction accuracies based 

on whole-brain (vs. task-specific) networks (Kraljević et al., 2023; Pläschke et al., 2020). 

 Within the scope of overall low prediction accuracies, GMV and fALFF held a higher 

potential in predicting individual differences in EF performance when compared to the other 

modalities, and this potential is different between age groups. Individual EF performance in 

older adults was better explained by GMV, a measure that could reflect brain atrophy processes 

that come with advanced age. In contrast, young adults’ individual EF performance was 

predicted better by fALFF, a measure of functional within-subject brain variability that may 

reflect their ability of cognitive adaptability to complex task demands (Uddin, 2020), as well as 

the flexibility and intrinsic variability to explore different functional network configurations for 

efficient task performance (Deco et al., 2011; Garrett et al., 2011). Furthermore, the overall 

better predictability of older (vs. young) adults’ EF performance was not only modality-

dependent but was also affected by the task difficulty level. In young adults, high-demanding 

EF tasks were most sensitive for capturing inter-individual differences in EF abilities. In 

contrast, in older adults, the low-demanding EF tasks were best predicted by the brain 

characteristics. This age-related predictability difference according to task difficulty is 

potentially explained by a compensatory mechanism (Reuter-Lorenz & Cappell, 2008), which 

would assume that older adults manage to recruit additional neural resources that suffice to 

compensate for performance in low-demanding conditions. However, a ceiling effect is reached 

so that the neural resources do not suffice to meet high-level task demands. 

5.3 Navigating the limitations and charting the future path 

 Although this work offers new insights into dual-task interference at the response level, 

it is essential to note that the paradigm used in Study 1 and Study 2 tackles a specific and 

constricted process underlying dual-task interference. Further research is required to assess the 

relevance of output-related features interfering with dual-task abilities and their changes across 

ages within the context of a content-dependent central interference model. For example, studies 

could manipulate different dual-task parameters, such as having different response modalities 

in combination with different input systems, to investigate which combinations increase or 

decrease the probabilities of response-code confusability. To insert our findings into a broader 

perspective, it would be required to explore how our findings generalize using more 
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conventional task settings, considering input-output modality compatibility effects and 

different temporal overlaps. Within this context, a step-wise analysis of the neural mechanisms 

based on diverse task difficulty levels within an experimental paradigm, as exemplified in Study 

2, offers the potential for more detailed insights into the specific brain mechanisms underlying 

complex cognitive processes. Likewise, using different behavioral scores that account for 

variability in cognitive performance, such as speed-accuracy trade-offs, will expand our 

knowledge of underlying cognitive mechanisms. This approach facilitates the interpretability 

of the findings and opens avenues for a more profound understanding of higher-order cognitive 

functions. 

 The GLM approach relies on within-sample consistent brain activations across subjects 

and aims to make population-level inferences based on the obtained brain-behavior 

associations. Since this approach is rather informative at the group-average level, it remains 

open to what extent individual brain activation and connectivity can explain differences in the 

individual’s dual-task performance. Thus, a multivariate ML framework could be advantageous 

to validate our findings with unseen samples (i.e., out-of-sample predictions). However, it is 

relevant to note that univariate GLM and multivariate ML approaches should complement 

rather than contradict each other. At least, predicting individual EF abilities from different brain 

characteristics obtained from structural MRI and intrinsic rs-fMRI has proved challenging 

(Heckner et al., 2023b). New promising avenues in prediction studies entail featuring multi-

modal neuroimaging data, such as combining rs- and tb-fMRI, structural and diffusion MRI, or 

different imaging techniques, such as magnetoencephalography, positron emission 

tomography, or functional near-infrared spectroscopy, with stacking frameworks to integrate 

multiple ML models (Engemann et al., 2020; Vaghari et al., 2022). 

Recent research has shown that phenotypical prediction from functional connectivity 

during more constricted task settings (e.g., movie watching) may outperform prediction 

accuracies derived from rest (Finn & Bandettini, 2021; Greene et al., 2018; Kraljević et al., 

2023). Since tasks modulate functional brain states, they may be informative for inter-individual 

differences in brain-behavior associations (Greene et al., 2018). Furthermore, functional and 

structural connectomes appear to carry different information related to cognition (Dhamala et 

al., 2021). Since structural brain measures (GMV) explained individual EF performance better 

in older adults, it may be advisable to test additional structural measures sensitive to brain 

atrophy in advanced age, such as structural connectivity. 

Furthermore, meta-analytical networks derived from task-based fMRI offer robust and 

convergent nodes across most studies and subjects associated with a particular cognitive 
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process. However, when implementing those nodes in an ML framework, the inter-individual 

differences of brain characteristics are constrained to the alignment within the network nodes. 

In contrast, it has become increasingly recognized that the topography (e.g., size, shape, and 

position), subdivision, and connectivity patterns of single brain functional regions vary between 

individuals (Mueller et al., 2013). Recent studies have marked a promising research avenue 

being able to achieve better task-performance prediction accuracies from individualized resting-

state networks, accounting for inter-individual variability in the functional organization of the 

brain, compared to group-level brain atlases (Kong et al., 2021; Li et al., 2019). For example, a 

future study may involve predicting individual dual-task performance from functional and 

structural connectomes in individualized task-specific and whole-brain networks.  

Finally, given the studies’ cross-sectional nature, it would be beneficial to use 

longitudinal designs to analyze intra-individual variability in brain and cognitive processes, 

considering both short-term fluctuations but also systemic changes over a more extended period 

of time, likely due to developmental and environmental factors that contribute to the age-related 

deficits. 

5.4 Conclusions 

This work sheds light on the complex relationships between brain activity and 

connectivity, inter-individual differences, and dual-task interference as part of executive 

functioning, as well as their modulation by healthy cognitive aging. Across subjects, the pattern 

of increased behavioral interference but asymmetric cost allocation with response-code conflict 

in dual-tasking corroborated a flexible allocation of attentional resources and a strategic 

prioritization of limited processing capacity, besides response grouping, which engaged 

substantial parts of the domain-general multiple-demand network. Within this response-code 

conflict network, thalamic and parietal activity was modulated by attentional, working-memory 

and task-switching abilities, but enhancing supplementary motor and premotor activity was 

shown to be crucial for efficient dual-task conflict resolution and response preparation. Task-

modulated functional connectivity between conflict-sensitive regions, on the contrary, was not 

pivotal for efficiently processing incongruent dual-task mapping selections nor sensitive to age-

related differences. 

Older adults showed marked deficits in multiple-action control at the level of task-set 

shielding, with non-compensatory hyperactivity in left superior frontal gyrus. Our findings 

suggest higher response-code confusability and difficulties maintaining the task sets for 

accurate dual-task processing, which engage right premotor and frontal areas. In addition to 
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general slower distribution of spatial motor attentional resources, older adults may over-exert 

attentional and working memory resources to compensate for the cognitive and neural decline 

that come with age, resulting, however, in an inefficient recruitment of right premotor and 

frontal areas. Dual-task interference should be further studied using different response 

modalities, dual-task parameters, and conventional dual-task settings, as well as their 

modulation by age. 

Although these group-level patterns offer new information about neural and cognitive 

mechanisms underlying dual-task interference processes, it remains challenging to predict 

individual executive function abilities from structural and functional brain metrics, at least 

considering structural (GMV) and intrinsic functional (RSFC, ReHo, and fALFF) brain metrics. 

The global organization of the whole brain carries relevant information for individual task 

performance, compared to task-delimited networks that are consistently activated across 

subjects. Nonetheless, measures of functional within-subject brain variability (fALFF) offer 

higher promise for predicting EF abilities in young adults, while structural brain metrics 

possibly reflecting brain atrophy processes (GMV) do so for older adults. 

Our findings underscore the complexity of individual cognitive control, the involvement 

of the MDN in dual-task conflict resolution, and the challenges of using single brain metrics as 

reliable predictors of EF abilities. A holistic approach that combines different structural and 

functional metrics from individualized networks, accounting for the inter-individual variability 

in the topography and functional organization of the brain, may hold promise for improving 

predictions, especially in distinct age groups.  
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