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 I 

Summary (German) 
Die akute lymphatische Leukämie (ALL) ist die häufigste Krebserkrankung im Kindesalter. 

Obwohl sich die Fünf-Jahres-Überlebensraten in den letzten Jahren drastisch verbessert haben 

und inzwischen bei über 90 % liegen, ist sie immer noch die häufigste Todesursache durch Krebs 

bei Kindern. Die moderne pädiatrische Onkologie steht bei der Behandlung der ALL vor zwei 

Herausforderungen: Zum einen erhöhen akute und langfristige unerwünschte 

Arzneimittelwirkungen die Morbidität und Mortalität von ALL-Patienten. Andererseits sprechen 

Hochrisiko-Subgruppen bei den derzeitigen Behandlungsprotokollen häufig nicht ausreichend 

an. Zielgerichtete Therapien versprechen, beiden Herausforderungen zu begegnen, indem sie 

wirksamere und weniger toxische Behandlungen versprechen.  

In dieser Arbeit wird ein Hochdurchsatz-Drug Screening (HTDS) eingesetzt, um (I) den 

Zusammenhang zwischen dem interindividuellen Ansprechen von Fibroblasten auf Arzneimittel 

und den klinischen Daten zu Therapienebenwirkungen zu untersuchen und (II) anhand von 

Zelllinien und Patientenproben nach vielversprechenden Wirkstoffen für die Behandlung von 

Hochrisikosubtypen zu suchen.  

(I) Bei dem HTDS von insgesamt 51 Fibroblasten Proben von Patienten konnte ein 

interindividuelles Ansprechen auf die einzelnen Wirkstoffe festgestellt werden. Allerdings zeigte 

sich kein Zusammenhand zwischen diesem interindividuellen Ansprechen und den klinischen 

Daten zu Nebenwirkungen während der Therapie. Daher wurde eine fokussiertes Drug 

Screening verwendet, das dem Therapieprotokoll der ALL angelehnt ist. Auch hier zeigte sich 

kein Zusammenhang, weder zischen dem Grad, noch der Häufigkeit von Nebenwirkungen und 

den in vitro Drug Screening Daten. 

(II) Bei dem HTDS von insgesamt 35 Leukämie Zelllinien und 31 Patientenproben konnten 

die etablierten, genetischen Subgruppen das Gesamtansprechen nicht akkurat abbilden. Als 

proof-of-concept zeigte jedoch die Subgruppe mit der Translokation BCR-ABL1 ein verstärktes 

Ansprechen auf Tyrosin Kinase Inhibitoren (TKi). Zudem waren Polo-like Kinase Inhibitoren 

(BI2536 und Volasertib) besonders effektiv gegen die T-ALL Subgruppe. Währenddessen stellte 

der FMS-like Tyrosin Kinase 3 Inhibitor (FLT3i) Lestaurtinib die beste Option für die KMT2Ar 

Subgruppe. Zusätzlich korrelierte die Expression von CD13 in B-ALL mit einer Sensitivität für 

FLT3i, während B-ALLs mit cytoplasmatischem IgM empfindlicher waren für klassische 

Chemotherapeutika.  



 

 II 

Zusammenfassend konnte kein Zusammenhang zwischen dem interindividuellen 

Ansprechen und den klinischen Daten von Patienten festgestellt werden. Allerdings konnte hier 

verschiedene therapeutische Alternativen für Subgruppen mit hohem oder mittlerem Risiko 

dargestellt werden, die weitere Untersuchungen rechtfertigen.  
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Summary (English) 
Acute lymphoblastic leukemia (ALL) is the most prevalent childhood cancer. While five-year 

survival rates have significantly improved and now exceed 90%, it remains a leading cause of 

cancer-related childhood mortality. Modern pediatric oncology confronts two key challenges in 

ALL treatment: first, adverse drug effects, both short-term and long-term, elevate the burden 

on ALL patients, and second, existing treatment protocols often fall short in tackling high-risk 

ALL subtypes, leading to treatment failures. Targeted therapies offer a promising solution, 

aiming to deliver more effective and less toxic treatments for ALL. 

In this study, ex vivo high-throughput drug screening (HTDS) was employed with the dual 

aims of (I) exploring the relationship between interindividual drug responses in patient-derived 

fibroblasts and their clinical data related to therapy-induced adverse events and (II) identifying 

potential therapeutic agents for managing high and medium-risk leukemia subtypes. 

(I) Employing HTDS on 51 patient-derived fibroblasts, distinct inter-individual drug 

responses were observed. However, this individual drug response did not show any apparent 

connection with the occurrence of adverse events in the patient cohort. Subsequently, a focused 

screening was carried out using 25 patient-derived fibroblasts, replicating the ALL therapy 

protocol. However, here as well no correlation was observed between the number or severity 

of adverse events and the drug sensitivity in ex vivo. 

(II) In ex vivo HTDS involving 35 leukemia cell lines and 31 patient-derived cells, the 

established genetic subgroups failed to predict overall drug responses accurately. However, as 

a proof of concept, within distinct leukemia subgroups, tyrosine kinase inhibitors (TKIs) 

demonstrated efficacy, particularly in the BCR-ABL1 subgroup. Remarkably, medium-risk T-ALLs 

demonstrated differential sensitivity to polo-like kinase (PLK) inhibitors (BI2536 and Volasertib), 

while high-risk KMT2Ar B-ALLs showed sensitivity to the FMS-like tyrosine kinase 3 (FLT3) 

inhibitor (Lestaurtinib). Notably, CD13 expression correlated with FLT3 inhibitor sensitivity, and 

cytoplasmic IgM expression was linked to classical chemotherapeutic agent sensitivity. 

To conclude, using high-throughput drug screenings no correlation was evidenced between 

inter-individual drug response and clinical adverse events. Nevertheless, the study highlighted 

various potential treatment possibilities for high- and medium-risk ALL, warranting deeper 

investigation.  
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1 Introduction 

1.1 Incidence and Prognosis 

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer [1]. Today the 

five-year survival rate exceeds 90%. Nevertheless, ALL remains the leading cause of death in 

pediatric oncology patients [2]. The highest peak of incidence can be observed between the ages 

of three and five. Both very young patients under one year and patients older than ten years 

show a poor prognosis [2]. ALL in young adults and adolescents is significantly rarer [1]. ALL is 

more often diagnosed in male patients. The male sex has a poorer prognosis than the female [2-

4]. This phenomenon could be explained by a more frequent extramedullary or testicular 

relapse, and more central nervous system (CNS) derived relapses. Analogically to gender, 

different ethnic and racial groups show a higher vulnerability towards ALLs and - through 

adverse genetic mutations – a worse outcome [5]. Lastly, comorbidity involving Down Syndrome 

also dramatically impacts the prognosis. Down Syndrome is associated with ALL, and patients 

with Trisomy 21 seem to suffer from more treatment-related morbidities and lower therapy 

response [6]. Additionally, more unfavorable genetic lesions are observed in Down Syndrome 

ALL. The Children´s Oncology group reported comparable event-free and overall survival of 

Down Syndrome ALL if patients with unfavorable genetic lesions were excluded [7].  

Different disease-related risk factors could be identified. For instance, testicular 

involvement as its own has been associated with worse outcomes in early studies, but through 

improved therapy, it is no longer counted as a risk factor in modern protocols [8]. Besides, the 

involvement of the CNS at diagnosis is discussed as a risk factor [9, 10]. Most importantly, the 

CNS is a potential site for relapse, as not all drugs can overcome the blood-brain barrier. Cranial 

radiation reduces the number of CNS relapses. Although effective, cranial radiation led to a high 

incidence of therapy-related adverse events and was therefore exchanged for the equally 

effective intrathecal admission of Methotrexate for most patients[11]. In addition, the 

distinction of an ALL of the B- or T-cell lineage is an accepted risk factor as the overall survival 

(OS) of the patients with T-ALL is around 5-10% lower [12]. Reasons for the difference in OS are 

favorable genetic subtypes, better treatment response, and more options of drugs for the B-ALL 

lineage. Besides, the median age at diagnosis is higher in the T-ALL group. Moreover, an 

increased white blood cell count over 50.000/µl at diagnosis is associated with inferior outcomes 

for B-ALLs [13]. The prognosis of T-ALL patients with highly elevated white blood cells can be 

improved by intensifying the induction phase [14]. 
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As many of the here-described prognostic factors confound with genetic and biological 

subgroups, these favorable or dismal determinants significantly impact the outcome of modern 

therapy protocols the most [15]. 

1.2 Pathogenesis of Acute Lymphoblastic Leukemias 

ALL is a malignant disease originating from abnormal B-, T- and rarely NK-cell precursors 

[15]. In these abnormal progenitor cells, differentiation is blocked. A dysregulated proliferation 

results in a relentless expansion of these cancerous cells, repressing the normal hematopoiesis 

in the bone marrow over time. The immature blasts can circulate in the peripheral blood and 

manifest in different organs to cause various possible symptoms [16]. While the exact 

mechanisms of leukemogenesis are still to be explored, germline mutations occupy a unique 

position [17]. In adults, cancers are often lifestyle-associated and defined by somatic mutations 

obtained throughout the lifetime. Childhood cancer, however, is more often conditioned by 

germline mutations. But ALL relevant mutations and translocation are regularly found in healthy 

children [18]. Thus, further crucial mutations acquired during early life are needed for leukemia 

to initiate. Moreover, association studies of environmental risk factors, such as maternal alcohol 

consumption during pregnancy, passive smoking, or magnetic fields, failed to elucidate the 

pathogenesis sufficiently [19-22]. Therefore, ionizing radiation is still the only fully validated risk 

factor for leukemia. 

1.3 Classification System 

The WHO currently defines only a small group of subtypes for both B- and T-cell acute 

leukemias [23]. However, a variety of different B-ALL subgroups with recurrent genetic 

alterations are established with constantly more emerging [24]: 

 ETV6-RUNX1 

 KMT2Ar 

 BCR-ABL1 

 DUX4r 

 TCF3-PBX1 

 ZNF384r 

 MEF2Dr 

 BCL-2/MYC 

 NUTM1r 

 HLF1r (most common TCF3-HLF1) 
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 iAMP21 

 Ph-like 

 PAX5 P80R 

 IKZF1 N159Y 

 ETV6-RUNX1-like 

 KMT2A-like 

 ZNF384-like 

 CRFL2r 

 High hyperdiploid 

 Low hypodiploid 

 Near haploid 

 Low hyperdiploid 

 Others 

For T-ALL fewer recurrent alterations and subgroups have been described [25]: 

 Early T-cell Progenitor (ETP) 

 TLXr 

 TLX1/NKX2.1 

 TAL/LMO 

Many of these genetic lesions could show prognostic and therapeutic relevance. Recently, 

these genetic subtypes became the focus of targeted therapy by searching for new targets 

implementing next-generation sequencing methods [26].  

Besides recurrent genetic alterations, both B- and T-ALL can be divided by their expression 

of different clusters of differentiation (CD). However, until now the prognostic and therapeutic 

relevance is limited. 

1.4 Clinical Presentation and Symptoms 

With an incidence of around 4 per 100.000, ALL remains a rare disease in children [1]. The 

symptoms of an ALL are often unspecific, which makes the diagnosis tricky. It requires a detailed 

medical history and physical examination. If an ALL seems plausible, the illness can only be 

confirmed by a bone marrow puncture – an invasive and elaborate procedure. This diagnostic 

step is the gold standard. In a retrospective study analyzing data from the university hospital 

Duesseldorf, the medical history most often included exhaustion, skin or mucosal bleedings, and 
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a history of repeated infections as main clinical symptoms. Moreover, the examination often 

revealed hepatosplenomegaly alone or combined with lymphadenopathy respectively [27]. 

Other studies also elaborated on the importance of musculoskeletal symptoms at diagnosis [28]. 

The laboratory findings include anemia, thrombocytopenia, and an increase or decrease in white 

blood cell counts, while mostly more than one lineage is affected [16, 27]. Nevertheless, various 

organ infiltration, such as CNS infiltration, is possible. Thus, many different symptoms and 

laboratory findings are conceivable.  

1.5 Diagnostic Steps and Methods 

For the diagnosis of an ALL, several steps are needed. These steps should be performed in 

ascending order of invasiveness. Therefore, one of the first stages is peripheral blood sampling 

and investigating it with microscopy and flow cytometry. Although the microscopy of a blood 

smear is cheap and widely available, it requires experience. Its validity varies between 

investigators. Automated systems could objectify this method [29]. Flow cytometry is a reliable 

tool for detecting and predicting leukemia and its phenotype [30]. However, high costs and 

elaborate execution limit the wide usage, and flow cytometry is often only available at large 

centers. While peripheral blood sampling is essential for establishing a tentative diagnosis, the 

bone marrow puncture and investigation of the gained sample remains the gold standard. 

Moreover, lymphomas and leukemias may exhibit overlapping symptoms, leading to the need 

to distinguish them by evaluating the quantity of blasts present in the bone marrow. The 

threshold for an ALL is more than 25% blasts in the bone marrow [31]. Besides, the bone marrow 

aspirate is also used for several other methods, including chromosomal analysis, FACS, RT-PCR, 

and in recent years increasingly genomic- and proteomic methods [32]. After diagnosis, several 

other tests are required to evaluate organ infiltration. For preventing relapse, extramedullary 

infiltration sites have been proven to be of high importance [33]. Moreover, the blood-brain 

barrier represents an obstacle to sufficient therapy of leukemic blasts in the central nervous 

system. Therefore, a lumbar puncture is performed to determine blasts in the liquor, which 

significantly influences the treatment protocol [34]. Three different grades of CNS involvement 

are defined: “1” as no blasts detectable, “2” as <10 blasts detectable, and “3” as >10 blasts 

detectable. Furthermore, testing, for example, cardiovascular health is performed to determine 

a baseline for possible adverse events and patients’ fitness. 
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1.6 Therapy 

1.6.1 Current Therapy 

State-of-the-art therapy of ALL is a multidrug chemotherapy regime. International protocols 

vary slightly, but all show the same structure as the AIEOP BFM ALL protocol currently used in 

Germany: First, an induction is started, followed by a consolidation, reinduction, and finally, a 

maintenance phase. Moreover, different therapy branches are available depending on the 

lineage and prognosis of the disease. The here described protocol is the AIEOP BFM 2017 [34]. 

1.6.1.1 Induction Phase 

This phase is equal for most patients. As soon as the diagnosis is made, the induction phase 

is initiated. The current AIEOP BFM ALL 2017 and the older 2009 protocol include a 

glucocorticoid prophase of one week with Prednisolone and one intrathecal dose of 

Methotrexate. After the first week, the Prednisolone response is measured as the blast 

percentage in the peripheral blood using flow cytometry. If the blast count is lower than 1000/µl, 

the patient is considered a Prednisolone good responder. In contrast, in less than 10% of the 

cases, the blast count remains elevated - a Prednisolone bad responder - and predicts a worse 

outcome for T-ALL[35, 36]. Therefore, these patients are enrolled in an intensified treatment 

branch, including one dose of Cyclophosphamide in the induction phase and a modified 

consolidation phase. Besides beginning the chemotherapy, this phase is also used for further 

biological testing to finalize the exact subtype and adapt the treatment protocol. 
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Figure 1 Outline of the treatment of ALL according to the AEIOP-BFM2017 protocol. Here displayed is the 

induction phase. Methotrexate is applied intrathecal (i.th.). Tapering of Prednisolone is not shown. Here shown 

outline is an example of a therapy for a standard-risk patient.. 

After the initial prophase, the multidrug phase is started, as shown in Figure 1. Hereby, the 

drugs Vincristine, Daunorubicin, and PEG-Asparaginase are administrated. Depending on the 

CNS status at diagnosis, two to four intrathecal doses of Methotrexate are additionally given. 

After the first induction phase, minimal residual disease (MRD) testing with PCR is performed in 

the BFM protocol. The measurement of minimal residual disease is completed with flow 

cytometry on day 15. Flow cytometry is a widely available and established technique to measure 

MRD. The measurement at day 15 is only used if the MRD-PCR data is unavailable. Next to clinical 

and biological factors, MRD is an essential tool for therapy stratification. Several studies could 

prove MRD as a prognostic factor for the outcome and risk of relapse [37-39]. 

1.6.1.2 Consolidation Phase 

Depending on the results of the MRD testing after the induction – or if not available the 

results of the flow cytometry measurement on day 15 - further treatment is stratified. High 

variability between the different therapy arms can be observed. Especially in the high-risk 

subgroups, randomizations between different arms are performed. They are aiming to 

investigate new and improved strategies for these subsets. However, for all patients – even if 

they responded well in the induction phase – the therapy is intensified in the consolidation.  
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Figure 2 Outline of the treatment of ALL according to the AEIOP-BFM2017 protocol. Here displayed is the 

consolidation phase. Methotrexate is applied intrathecal (i.th.). Here shown outline is an example of a therapy for a 

standard-risk patient. 

The basic consolidation phase includes Mercaptopurine with pulses of Cytarabine, 

Cyclophosphamide, and intrathecal Methotrexate, as seen in Figure 2. However, depending on 

the therapy response during the induction phase, the consolidation can be prolonged and 

enlarged with the following substances: Vincristine, Dexamethasone, PEG-Asparaginase, and 

Bortezomib. At the end of the consolidation phase, another MRD testing is performed. The 

results are essential for the last treatment stratification. Finally, for high-risk patients, the MRD 

decides on the indication of a hematopoietic stem cell transplantation.  

1.6.1.3 Extracompartment Phase and High-Risk Blocks 

 The extracompartment phase is only administered to non-high-risk patients to clear out 

extramedullary blasts. To reach extramedullary blasts, drugs need to penetrate tissue well. Thus, 

the backbone of the extracompartment phase consists of high-dose Methotrexate and 

Mercaptopurine, as seen in Figure 3. Leucovorin rescue is additionally administered to prevent 

excessive adverse events. High-risk subgroups, however, will get high doses of different drugs in 

a complex sequence administered with several MRD tests, resulting in an allogeneic 

hematopoietic stem cell transplantation for most patients. 
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Figure 3 Outline of the treatment of ALL according to the AEIOP-BFM2017 protocol. Here displayed is the 

extracompartment phase. Methotrexate is applied intrathecal (i.th.). Here shown outline is an example of a therapy 

for a standard-risk patient. 

1.6.1.4 Reinduction Phase 

The reinduction phase is the last phase before starting the maintenance for all non-high-risk 

subgroups. It includes the kind of drugs of the induction with Dexamethasone exchanged for 

Prednisolone, Doxorubicin for Daunorubicin, and Cyclophosphamide, Cytarabine, and 

Thioguanine added, as seen in Figure 4.  

 

Figure 4 Outline of the treatment of ALL according to the AEIOP-BFM2017 protocol. Here displayed is the 

induction phase. Methotrexate is applied intrathecal (i.th.). Tapering of Dexamethasone is not shown. Here shown 

outline is an example of a therapy for a standard-risk patient. 
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1.6.1.5 Maintenance Phase 

The total therapy for all patients takes two years, and after the last reinduction phase, the 

maintenance is begun. During this time, low doses of Mercaptopurine and Methotrexate plus 

six doses in six-week intervals of intrathecal Methotrexate are administered. In addition, a small 

subset of patients with CNS involvement above the age of four will receive cranial radiation.  

1.7 Emerging Therapies 

New therapies to treat acute leukemias and other malignancies emerge rapidly. Therefore, 

only targeted therapies of relevant proteins and pathways in acute leukemias were used in this 

work. 

1.7.1 Classical Chemotherapeutics 

Classical chemotherapeutics include antimetabolites, antimitotics, alkylating agents, 

topoisomerase inhibitors, and glucocorticoids. Antimetabolites are substances that mimic 

pyrimidine or purine bases, causing functional alterations, or acting as inhibitors to impede their 

synthesis. Thus, DNA replication is inhibited, and cell growth stops [40]. These antimetabolites 

are commonly used in chemotherapy protocols. The current therapy protocol for ALL includes 

at least four antimitotics: Cytarabine, 6-Mercaptopurine, 6-Thioguanine, and Methotrexate.  

Antimitotics are taxanes or vinca-alkaloids, which inhibit cell proliferation by interfering with 

the spindle apparatus. As a result, cells cannot advance from the metaphasis [41]. One of these 

antimitotics, Vincristine, is currently also used in the induction and reinduction phase of the ALL 

treatment protocol.  

Alkylating agents interact with the DNA directly. Cross-links and double-strand breaks inhibit 

DNA synthesis and replication [42]. Cyclophosphamide is a potent alkylating agent, that is 

currently used in the ALL treatment.  

Topoisomerase inhibitors block the said protein and, therefore, also inhibit replication and 

cause double-strand breaks [43]. Topoisomerase inhibitors are often used in the therapy of 

leukemias and lymphomas. Moreover, Daunorubicin and Doxorubicin are currently used in the 

therapy of childhood ALL.  

Lastly, glucocorticoids have several mechanisms of action which still need to be fully 

understood. They are reported to bind to intracellular receptors, which then alternate gene 

expression via NF-B. As a result, the gene expression is changed to an anti-inflammatory state 
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in healthy cells. In malignant cells, the pathway to cell death is not understood yet [44]. 

Glucocorticoids are often the backbone of the therapy of lymphoid malignancies. Therefore, 

Prednisolone and Dexamethasone play a crucial role in the treatment protocol of ALL. 

While these drug classes are not new, effective combinations and new application forms are 

current research matters.  

1.7.2 Epigenetic Modifiers 

The group of epigenetic modifiers consists of HDAC inhibitors (HDACi), EZH2 inhibitors 

(EZH2i), and BET bromodomain inhibitors. HDAC inhibitors block the enzymatic activity of 

histone deacetylases, preventing the removal of acetyl groups from histone proteins. Histone 

acetylation plays a crucial role in regulating gene expression by modulating chromatin structure. 

By increasing histone acetylation, HDAC inhibitors promote a more open chromatin 

conformation, allowing for enhanced gene transcription. The approved HDAC inhibitors 

currently in use are primarily pan-HDAC inhibitors, capable of targeting all isoforms of HDAC. 

However, ongoing research initiatives focus on the design of HDAC isoform-specific inhibitors, 

aiming to alleviate the toxicity concerns often associated with pan-HDAC inhibitors [45].  EZH2 

inhibitors exert their effect by preventing the methylation of histone H3, which subsequently 

leads to the restoration of transcriptional activity [46]. BET bromodomain inhibitors target key 

regulators in gene transcription. Especially, BRD4 has been the focus of preclinical drug 

development for its role in transcription initiation, elongation, and enhancement [47]. 

1.7.3 Proteome Affecting Drugs 

This group consists of two classes: Proteasome and HSP90 inhibitors (HSP90i). Proteasomes 

are proteins that degrade others and contribute 80% of protein turnover. Through its connection 

to many relevant signaling pathways, cell cycle regulators, and tumor suppressors, proteasomes 

became an attractive target for drug development [48]. HSP90 is part of a protein complex 

relevant to the correct folding of proteins. It interacts with over 400 client proteins involved in 

crucial pathways for cancer cell survival. In addition, oncoproteins such as BCR-ABL1 have been 

described to be stabilized by HSP90, making inhibitors of HSP90 an attractive target [49]. 

1.7.4 Signaling Pathway Inhibitors 

Signaling pathway inhibitors target essential kinases relevant for cell survival and 

proliferation, such as Aurora kinase A, Polo-like kinase (PLK), cyclin-dependent kinases (CDK), 

epithelial growth factor receptor (EGFR), FMS-like tyrosine kinase 3 (FLT3), PI3K, AKT, mTOR, 
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Janus kinase (JAK), RAS, RAF, MAPK, Bruton´s tyrosine kinase (BTK), and BCR-ABL1. Aurora kinase 

A is an oncogene that plays a role in tumorigenesis and mitosis. Moreover, it interacts with other 

signaling pathways relevant to leukemia, such as PI3K and WNT signaling. Thus, inhibiting Aurora 

kinase A could target leukemic cells through different mechanisms of action. The most popular 

Aurora kinase A inhibitor, Alisertib, is currently in a phase III trial [50]. Similarly, PLKs are also 

serine/threonine kinases with key regulatory roles in mitosis on different levels. PLK1 is the best 

studied isoenzyme. Besides its role in mitotic initiation and execution, it interacts with signaling 

pathways, such as PI3K/AKT/mTOR. While Volasertib also inhibits other kinases accounting for 

adverse drug effects, BI2536 seems to inhibit PLK1 more specifically [51].  

CDKs are well-regulated kinases that initiate the transition from G1 to S phase in the cell 

cycle, interacting with transcriptional factors like E2F and tumor suppressors like Rb. CDKs are 

activated by pathways often dysregulated in cancer, such as RAS/RAF/MAPK, PI3K/AKT/mTOR, 

WNT/beta-catenin, and JAK/STAT. In healthy cells, CDKs are well-regulated endogenously. In 

cancer cells, CDKs are often down- or upregulated. Inhibition of CDKs has shown senescence 

induction as expected, as well as immune-modulatory effects and metabolism changes. Immune 

modulation is attributed to CDKi-mediated MHC upregulation and interferon induction. Altered 

gene expression of CDK inhibition most likely changes the metabolisms [52].  

EGFR is a membrane-based signaling receptor that binds epithelial growth factor (EGF). 

Upon binding EGF, the receptor activates the RAS/RAF/MAPK pathway, which mediates cell 

survival and proliferation. EGFR overexpression and mutations are common in solid tumors. 

Immunotherapies and small molecule inhibitors have been established to treat solid tumors.  

Small molecule inhibitors targeting EGFR or other polypeptide growth factor receptors have also 

been described to be effective against leukemic cell lines [53].  

FLT3 is a class III receptor tyrosine kinase first detected in 1991 [54-56]. In early B-cell 

development, FLT3 is expressed and promotes proliferation and inhibition of differentiation [57, 

58]. A variety of downstream kinases are associated with this receptor. These include the RAS-, 

PI3K-, and JAK/STAT-pathway [58-60].  

The PI3K/AKT/mTOR pathway is often misregulated in B- and T-ALLs. In B-ALL, fusion 

proteins like the BCR-ABL1 and ETV6-RUNX1 directly activate the pathway. In T-ALL, negative 

regulators – mainly PTEN – are frequently mutated. Thus, consecutive activation of this pathway 

leads to proliferation and chemotherapy resistance [61]. Numerous small molecule inhibitors 

have been developed to target PI3K, AKT, or mTOR and are currently tested in treating ALL [62].  
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JAK and its target STAT are one of the most important pathways in early hematopoiesis. 

Various stimuli from growth hormones, cytokines, and other hormones activate it. The pathway 

activation mediates cell survival, stem cell maintenance, self-renewal, and immune cell 

development through hematopoiesis. Thus, activating mutations exist in ALL and acute myeloid 

leukemia (AML) [63].  

The RAS/RAF/MAPK pathway is central to human malignancies. With 20% of all cancers 

having mutations in RAS, this pathway is often dysregulated, leading to cell survival, 

proliferation, and differentiation [64]. In addition, the pathway plays an important role in 

tumorigenesis in solid and hematological cancers. Mutations in this pathway have been reported 

to mediate an adverse survival of patients, making it an interesting target for small molecule 

inhibitors [65].  

BTK is a kinase with a central function in B-cell receptor and Toll-like receptor signaling. Upon 

activation by PI3K or SYK, BTK phosphorylates PLC. MYC, NF-B, and NFAT are consecutively 

activated through different pathways. Altered gene expression then causes proliferation, 

survival, differentiation, migration, antibody class switch, and cytokine production. The FDA 

approved the first BTK inhibitor Ibrutinib in 2014, paving the way for targeting BTK in B-cell 

malignancies [66].  

BCR-ABL1 is a consecutive active tyrosine kinase that phosphorylates several signaling 

pathways in leukemic blasts [67]. The aberrant protein BCR-ABL1 can be targeted with tyrosine 

kinase inhibitors (TKi). The first drug of this group – Imatinib – was first described to show 

specific effects against the oncoprotein BCR-ABL1 in 1996 [68]. However, newer generations of 

TKis display higher affinity and can overcome some of the most prominent mutations that cause 

resistance to earlier generations [69]. 

1.7.5 Others 

Besides the earlier explained targets, inhibitors against PARP, BCL-2, NF-B, and IDH have 

emerged. PARP is an enzyme that is primarily active in DNA damage response. Moreover, both 

double- and single-strand breaks are repaired by PARP. Therefore, it has overlapping functions 

with BRCA in the homologous recombination repair in double-strand breaks. Thus, the loss of 

function of both proteins leads to multiple double-strand breaks, resulting in cell death. As BRCA 

is frequently mutated in acute leukemias, PARP could be a promising target for inhibition for 

these patients [70].  



Introduction 

 13 

BCL-2 is an antiapoptotic protein. While proapoptotic proteins of the BH3, BAX, and BAK 

families disrupt the mitochondrial outer membrane integrity, BCL-2 and other anti-apoptotic 

proteins bind the pro-apoptotic proteins. In healthy cells, the balance between pro- and anti-

apoptotic proteins is essential, preventing the development of mutated cells. While malignant 

cells often upregulate BCL-2 proteins to evade apoptosis. Moreover, this leads to chemotherapy 

resistance which could be overturned by BCL-2 inhibitors like Venetoclax [71].  

NF-B is a transcription factor that induces proliferation, differentiation, and survival upon 

activation. It is activated either by the canonical or non-canonical pathway. The canonical 

pathway is enabled by various stimuli such as pro-inflammatory cytokines, antigens, or cellular 

stress. The non-canonical pathway, on the other hand, is enabled through a restricted number 

of stimuli belonging to the tumor necrosis factor (TNF) family [72]. In ALL, most cases show a 

consecutive activation of the canonical pathway [73]. Thus, inhibition of NF-B is a logical 

approach to treating ALL.  

IDH is an enzyme of the citric acid cycle that catalyzes the conversion of isocitrate to -

ketoglutarate. IDH mutations often occur in AML – and less frequently in ALL. These mutations 

can lead to a new function of the enzyme, catalyzing -ketoglutarate to R-2-hydroxyglutarate 

(R-2-HG). R-2-HG competes with -ketoglutarate as a coenzyme for many proteins, causing 

epigenetics and cell signaling changes [74].  

1.8 Challenges in the Treatment of ALL 

The present treatment approach for ALL encounters two key hurdles: Firstly, childhood 

cancer survivors are burdened with adverse drug events and long-term impairments that persist 

throughout their lives. Secondly, high-risk subtypes of ALL are struggling to achieve satisfactory 

treatment outcomes. Targeted therapies emerge as a potential solution to these challenges, as 

they hold the potential to enhance treatment effectiveness while minimizing side effects. 

1.8.1 Adverse Events and Long-Term Deficits 

Polychemotherapy to treat ALL causes acute and long-term adverse events. Around 3% of 

patients die due to acute adverse events during treatment [75, 76]. The most common acute 

adverse events are infections, which are also the primary cause of death [75, 76]. The 

myelosuppression through chemotherapeutic agents and dysplastic leukemic lymphocytes 

consolidates these infections. Other non-lethal infections - such as oral mucositis - are also often 

observed during treatment with Methotrexate and are a significant burden [77]. Further, 
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polychemotherapy causes anemia and thrombocytopenia, which usually requires transfusion on 

a regular base. Moreover, neurological adverse events, especially headaches, are experienced. 

Rarer but severe neurological adverse events include seizure, encephalopathy, cerebrovascular 

diseases, movement disorders, cranial and peripheral neuropathy, spinal cord syndromes, 

plexopathy, and myopathy [78]. L-Asparaginase is associated with pancreatitis during treatment 

[79]. Hepatic and renal damage or failure occur as acute and long-term adverse events [80]. 

Long-term adverse events are experienced by almost every survivor of childhood cancer above 

the age of 50 [81]. ALL-survivors suffer from cardiovascular, pulmonary, neurological, and 

metabolic disorders, as well as growth deficits and secondary neoplasms, [81, 82]. Thus, 

treatment-related toxicity not only influences the quality of life of cancer survivors but 

challenges the health economy [83]. 

Several gene polymorphisms are known to influence the toxicities of chemotherapy. 

However, only variants of TPMT and NUDT15 are clinically accepted and available for testing 

[84]. These variants are associated with increased toxicities towards thiopurine-based drugs. 

Patients carrying either of these polymorphisms need dose reductions up to only eight percent 

of the original dose [78, 79]. Many other variants relevant to the treatment of ALL have been 

reviewed by Maamari et al. [85].  

Clinical implementation of newfound pharmacogenetic variants is challenging. Firstly, most 

studies only investigate gene variants in the context of single drug use, while drugs are combined 

during treatment [85]. Secondly, most studies focus on the effect of variants in exons, while only 

a few explore the role of other variants, such as miRNAs [86]. Finally, searching routinely for 

various gene variants before treatment would be time-consuming and very expensive. 

Therefore, faster and cheaper methods that study pharmacogenetic toxicities in cell-based 

models would be appreciated.  

1.8.2 High-risk Subgroups 

This thesis features four different high-risk B-ALL subgroups. These high-risk subgroups are 

KMT2Ar, BCR-ABL1, Ph-like, and TCF3-HLF: 

1.8.2.1 KMT2Ar 

Rearrangements of the gene KMT2A define this subgroup. KMT2A, formally known as the 

mixed-lineage leukemia (MLL) gene, encodes for a protein involved in epigenetic regulation [87]. 

Over 100 different translocation partners have been described, but most often, AF4 is 
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translocated with KMT2A in B-ALL [88]. KMT2Ar B-ALL often co-express myeloid markers, such 

as CD13, CD33, and CD65 [89, 90]. 

KMT2Ar B-ALL is most often in infants and indicates a very poor prognosis [91, 92]. The 6-

year overall survival is estimated at 58 to 62% [93]. Moreover, the poor prognosis is due to 

resistance to chemotherapy, especially glucocorticoids and L-Asparaginase [94, 95].  

1.8.2.2 BCR-ABL1 

Blasts of the BCR-ABL1 subgroup are defined by the presence of the Philadelphia 

chromosome t(9;22). The resulting protein is a consecutive active tyrosine kinase that activates 

downstream pathways promoting proliferation [67]. Additionally, BCR-ABL1 B-ALL often shows 

alterations in the IKAROS gene [96]. IKAROS alterations are associated with a worse outcome 

and convey a resistance even to TKis [97, 98].  

The BCR-ABL1 subgroup presents itself slightly differently than other ALLs. The relative 

incidence of BCR-ABL1 ALL increases with age up to almost 50 % in patients older than 44 years 

[99]. Further characteristics include a high leucocyte count and an increased incidence of CNS 

involvement at diagnosis [100].  

1.8.2.3 Ph-like 

The Ph-like subgroup shows similar gene expression as BCR-ABL1 ALLs but lacks the 

Philadelphia chromosome. In 2009, den Boer et al. and Mullighan et al. first described this 

subgroup [101, 102]. Several kinase alternations have been reviewed, resulting in different 

activated pathways [103]. Similarly to the BCR-ABL1 subgroup, it is associated with a poorer 

outcome [92]. 

1.8.2.4 TCF3-HLF 

The TCF3-HLF1 is a rare subtype with a bad prognosis. The subtype accounts for around 1% 

of childhood ALLs and was first described by Raimondi et al. in 1991 [104]. Moreover, patients 

relapse very early during treatment, and this disease almost always ends fatally in the first two 

years after diagnosis [105]. A poor prognosis was ascribed to RAS mutations conveying a 

resistance towards drugs used in induction therapy [106, 107].  

1.8.3 Medium-risk Subgroups 

Aside from the high-risk subgroups, two medium-risk subgroups are featured in this work. The 

first group is the T-ALLs. The second group is the TCF3-PBX1 B-ALL. 
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1.8.3.1 T-ALL 

T-ALL are leukemias that arise from T-cell precursors as opposed to the other here-described 

subgroups that belong to the B-cell lineage. Around 15% of all ALL cases derive from the T-cell 

lineage [2]. Like B-ALLs, T-ALLs can be subdivided into early T-cell precursor ALL (ETP-ALL), pro-

T-ALL, pre-T-ALL, cortical-T-ALL, and mature-T-ALL based on the expression of the CDs. However, 

these different differentiation stages have proven unable to predict the outcome of pediatric 

patients effectively [108]. However, T-ALL also displays recurrent alterations, enabling further 

division into subgroups [109]. Unlike their B-ALL counterparts, studies showed conflicting 

prognostic relevance of these recurrent alterations. Therefore, T-ALL biomarkers only play a 

subordinate role in the diagnostic workflow of many therapy protocols [110]. Only MRD has 

proven effective in predicting the outcome and relapse risk [111]. 

Since T-ALL patients tend to be older, have higher white blood cell counts at diagnosis, and 

show more CNS involvement, their outcomes are always lacking behind those of B-ALLs [112]. 

In addition, unfavorable biological features are more common in T-ALL [113]. Finally, whenever 

T-ALLs relapse, the therapeutic options are very limited as immunotherapies and targeted 

inhibitors are often explicitly designed for B-ALLs [114]. Moreover, T-ALL is considered an 

independent prognostic factor for an unfavorable outcome in relapsed ALL [115]. Thus, finding 

new targets or agents that can be repurposed is immensely important for these patients. 

1.8.3.2 TCF3-PBX1 

The translocation t(1;19) results in the TCF3-PBX1 fusion protein, which displays an 

individual gene expression profile. This translocation occurs in around 5% of childhood B-ALLs 

[15]. While the fusion protein cannot initiate leukemia alone, mutations of different signaling 

pathways and cell cycle regulators were explored [116]. Moreover, Diakos et al. uncovered a 

direct interaction of the fusion protein with signaling pathways and other regulators [117]. 

Recent clinical studies with intensified chemotherapy have shown an improvement in the 

outcome of this subtype [118]. 

1.9 Drug Screening 

Phenotypical drug testing is an established method first used almost half a century ago. 

However, integrating modern techniques allowed upscaling and more reliable usage, resulting 

in high throughput drug screenings (HTDS) [119]. Compared to techniques used to search for 

new targets, the advantage is the direct identification of potential agents. In opposition, genetic 

approaches could identify a magnitude of mutations, which are to some extent druggable, but 
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failed in predicting cancer-specific drug response alone [120, 121]. Drug Screening of patient-

derived samples together with commercially available cell lines or independently could already 

identify new targets in several studies [106, 120, 122-126]. These studies could also verify their 

targets using different methods, underlining the potential of phenotypical screenings in target 

detection. For example, BCL-2 inhibitor Venetoclax was described to target AML blasts efficiently 

in vitro and in xenograft models [127].  Several clinical trials followed, proving Venetoclax as safe 

and active, especially in combination with hypomethylating agents [128-130]. As a result, this 

drug was approved for a specific subset of AML patients [131]. This is one successful example to 

demonstrate the potential of HTDS. 

1.10 Study Aim 

This thesis aims to explore two distinct applications of high-throughput drug screening: 

1. Investigating Inter-individual Drug Response and Its Relationship to Clinical Adverse 

Events: 

 Utilizing a pipeline for drug screening patient-derived fibroblasts to analyze and 

distinguish inter-individual drug responses. 

 Exploring potential connections between the inter-individual drug responses 

observed in fibroblasts during high-throughput drug screening and the clinical 

adverse events experienced by each individual. 

2. Identifying Novel Treatment Agents for High- and Medium-Risk Leukemia Subgroups 

Using Leukemia Cell Lines and Patient-Derived Samples: 

 Assessing the predictive capability of selected ALL subgroups for their overall drug 

responses. 

 Employing a three-way approach to analyze high-throughput drug screening results 

for the finding new agents for high- and medium-risk leukemia subgroups: 

a. Comparing each subgroup to healthy controls. 

b. Comparing each subgroup to all other leukemia subgroups. 

c. Combining the results from both approaches. 
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2 Material and Method 

2.1 General Material 
Table 1 Common devices and consumables used. 

Devices and Consumables Supplier 

Axiovert 40C Microscope Carl Zeiss 

Fresco 21 centrifuge Thermo Fisher Scientific 

Incubator Binder 

Mechanical single- and multichannel pipettes Eppendorf 

Milli-Q Water Purification Systems Merck Milipore 

Mr. Frosty Freezing Container Thermo Fisher Scientific 

Multifuqe 4KR Thermo Fisher Scientific 

Pipetboy acu pippet aid Integra 

Vi-CELL BLU Beckman Coulter 

Vi-CELL XR Beckman Coulter 

Cell culture flasks T25/T75 and culture plates 

6-, 12-, 24-, and 96-well 

Greiner Bio-One 

Centrifuge tubes 15 ml/ 50 ml Greiner Bio-One 

Cryogenic Vials Corning 

Serological pipette 25 ml/ 10 ml/ 5ml 

(Cellstar) 

Greiner Bio-One 

-80°C Ultra freezer Thermo Fisher Scientific 

Laminar flow hood Thermo Fisher Scientific 

 

2.2 Cell Culture 

All cells were cultured at 37°C and under 5% CO2. A media consisting of DMEM GlutaMAX 

supplemented with 20% FBS and 1% Penicillin/Streptomycin was used to culture primary patient 

fibroblasts. Whereas RPMI1640 GlutaMAX media supplemented with 15% FBS, 60 µl of 55 mM 

2-Mercaptoethanol in DPBS, 3 ml of 100 mM Sodium Pyruvate, and 500 µl of 50 mg/ml 

Gentamicin was used for culturing all leukemia cell lines, primary patient samples and patient 

samples grown in a xenograft mouse model (PDX). T-cells and T-ALLs PDXs, however, were 
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cultured in T-cell Expansion Media supplemented with 50 ng/ml SCF, 10 ng/ml IL-2, 10 ng/ml IL-

7, 10 ng/ml IGF-1, and 10 ng/ml EGF [132]. Peripheral blood-derived mononuclear cells (PBMCs) 

were cultured in Mononuclear Cell Medium. Finally, CD34-positive hematopoietic stem and 

progenitor cells (HSPCs) were cultivated with a media consisting of IMDM supplemented with 

10% FBS, 25 ng/ml IL-6, 25 ng/ml SCF, and 25 ng/ml FLT3-L. All cell lines were obtained either as 

frozen stocks (DSMZ) or from cooperation partners. Short tandem repeat (STR) profiles were 

performed to ensure the cell lines' authenticity. All sample collections were approved by the 

ethics vote No. “4886R” and “2019-566-andere Forschung erstvotierend”. 

Table 2 Components of media and other reagents used for cell culture 

Component Supplier Catalog Number 

DMEM GlutaMAX Gibco 31966-021 

Fetal Bovine Serum Sigma-Aldrich 121031 

Penicilin/Streptomycin Gibco 15140-122 

RPMI Medium 1640 GlutaMAX Gibco 61870-070 

2-Mercaptoethanol Gibco 21985023 

Sodium Pyruvate Gibco 11360070 

Gentamicin Regent Solution 

50mg/ml 

Invitrogen  15710064 

LymphoONE T-cell Expansion 

Xeno-free Medium 

Takarabio WK552S 

Recombinant Human SCF PeproTech 300-18 

Recombinant Human IL-2 PeproTech 200-02 

Recombinant Human IGF-1 PeproTech 100-11 

Recombinant Human EGF PeproTech AF-100-15 

Recombinant Human IL-7 BioLegend 581904 

Recombinant Human IL-6 BioLegend 570804 

Recombinant Human FLT3-L PeproTech AF-300-19 

IMDM Iscove´s Medium Gibco 12440-053 

Mononuclear Cell Medium PromoCell C-28030 

TrypLE Express Enzyme  Gibco 12605010 

Cryo-SFM PromoCell C-29910 

DMSO Sigma-Aldrich D2438 

DPBS Sigma-Aldrich D8537 
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2.2.1 Cell Thawing 

Frozen vials were thawed in a water bath for approximately 30 seconds and then transferred 

to a centrifugal tube. Next, 10 ml of media was added before centrifuging at 400xg at room 

temperature for 5 minutes to reduce the toxic effect of the DMSO in the freezing media. 

Subsequently, the supernatant was discarded, and the cell pellet was diluted in media to 

diminish the concentration further. Afterward, the cell suspension is added in a T25 culture flask, 

laid on the side for adherent cells such as fibroblasts, positioned vertically for suspension cells 

such as cell lines, or added on feeder layers of mesenchymal stem cells (MSCs). Finally, they 

were conveyed into the incubator. After the first day of thawing, the media was replaced to 

discard the remaining DMSO. 

2.2.2 Cell Culture of Fibroblasts 

 Once the adherent fibroblasts covered the whole bottom of the flask, the cells were split 

either into one T75 culture flask or two T75 culture flasks, depending on the confluency 

percentage. Concretely, the supernatant was filled into a centrifugal tube, and 2 ml of TrypLE 

Express was filled in the T25 and 4 ml in the T75, respectively. After incubating the culture flask 

for approximately 5 minutes at 37°C, the cells were detached by gently tapping the flask. Next, 

the mixture of TrypLE and cells was added to the centrifugal tube with the media and spun down 

at 400xg at room temperature for 5 min. Finally, the supernatant was discarded, the cell pellet 

diluted in 15 ml or 30 ml of media, respectively, and added in one or two T75 cell culture flasks. 

Once two T75 cell culture flasks are fully grown, one is used for cryopreservation, while the other 

is used for HTDS and a cell pellet.  

2.2.3 Cell Culture Leukemia Cell Lines 

Cell lines were cultured vertically in small T25 culture flasks, with one exception (CCRFCREM) 

placed horizontally. New media was supplied every 3-4 days or when the media turned yellow 

while keeping the total volume in the T25 flasks as low as possible and not over 15 ml to supply 

the cells with sufficient nutrients while maintaining oxygen diffusion. Thus, cells required 

splitting once per week. Concretely, the suspension was aspirated, discarded, and new media 

was added.  
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2.2.4 Cell Culture B-ALL PDX and Primary Samples 

MSCs were cultured for at least two weeks on 6-well plates before adding the leukemia 

blasts to ensure a confluent feeder layer. Primary and PDX samples were either thawed from 

reserves stored in liquid nitrogen or directly cultured after extraction. After the last step of the 

isolation or washing, the cell pellet is dispersed in media and added to the feeder layer. At least 

twice a week, new media was added, and once a week, the whole media was changed. This was 

accomplished by centrifuging the supernatant at 90xg for 10 min at room temperature to 

minimize the cells' stress and remove apoptotic cells. During this time, a low volume of media 

was added to the wells to keep them from drying out. 

2.2.5 Cell Culture of T-ALL Samples 

The cell culture of T-ALL samples was accomplished similarly to the B-ALL cocultures. 

However, MS5-HDLL1 cells were seeded out in DMEM with 20% FBS and grown until around 

90% confluent. Subsequently, the feeder layer was treated with 10 µg/ml of Mitomycin C for 3 

hours, inhibiting further growth. After washing three times with DPBS and letting the cells 

recover for 24 hours, the T-ALL samples were thawed and added to the T-ALL media. During 

culture, the media was changed every 3-4 days. 

2.2.6 Cryopreservation and Cell Harvesting 

To make cryopreservation of cells (cryos) or pellets for further experiments, at least five 

million cells for leukemia cell line or primary leukemia or PDX grown sample and around two 

million cells for fibroblasts were withdrawn from the culture. Adherent fibroblasts or MSCs were 

detached using TrypLE Express precisely as described above. Leukemia cells cultured with a 

feeder layer were gathered using the supernatant with the blasts while preserving the adherent 

feeder layer. After obtaining, cells were spun down at 400xg, 20°C, and resuspended in freezing 

media consisting of 45% culture media, 45% FBS, and 10% DMSO. Subsequently, the suspension 

is fit into each freezing vial and finally kept in an isopropanol bath for at least 24h at -80 °C before 

transferring them to liquid nitrogen for long-term storage. On the other hand, the cell pellet is 

washed two times with 1ml of 4°C cold PBS after centrifugation at 400xg, 4°C for 5 minutes each 

time, the supernatant is discarded, and the dry cell pellet is flash frozen using liquid nitrogen.  
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2.3 Isolation of Cells from Peripheral Blood or Bone Marrow 

2.3.1 Material 
Table 3 Material needed for isolating cells from peripheral blood or bone marrow. 

Material Supplier Catalog Number 

Ficoll-Paque GE-Healthcare 17-1440-03 

Ammonium chloride lysis 

buffer 

UKD pharmacy - 

EasySep Human Cd34 

Positive Selection Kit II 

StemCell Technologies 17856 

EasySep Magnet StemCell Technologies 18000 

 

2.3.2 Isolation of Blasts and PBMCs 

Fresh primary samples had to be segmented into their components to retrieve the leukemia 

blasts before being cultured or used on the HTDS pipeline. This was performed by Ficoll-Paque 

separation. In detail, the blood or bone marrow aspirate is diluted 1:1 with PBS and slowly added 

to 15 ml of Ficoll-Paque. As a result, two layers can be seen, on the bottom, the Ficoll-Paque, 

and on top, the diluted blood or bone marrow. This is carefully transferred to a centrifuge and 

spun at 400xg for 20 minutes at room temperature, with the breaks turned to the lowest 

possible setting. After centrifuging, the following layers are visible from top to bottom: plasma 

mixed with other components, a small layer of PBMCs, followed by Ficoll-Paque, and a pellet of 

erythrocytes and granulocytes. The PBMC layer is then taken while the rest can be discarded. 

Next, the PBMC layer was diluted with 25 ml PBS and spun at 400xg for 5 minutes at room 

temperature with the brakes on. Subsequently, the cell pellet is dissolved in ammonium chloride 

for erythrocyte lysis if the pellet is visibly red. To avoid any toxic effect of ammonium chloride, 

another centrifugation washing step with PBS was performed with the same settings mentioned 

above. The resulting blasts or PBMCs could be used for culturing or further experiments. 

2.3.3 Isolation of Healthy T-cells 

A Ficoll-Paque separation of peripheral blood was carried out as described above. T-cells 

were cultured under the same conditions as the T-ALL patient samples, except feeder cells were 

not used. T-cells were cultured in the same media as T-ALL, using T-cell Expansion Media 

supplemented with 50 ng/ml SCF, 10 ng/ml IL-2, 10 ng/ml IL-7, 10 ng/ml IGF-1, and 10 ng/ml 
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EGF [132]. In a first trial experiment, a lymphocyte percentage measured by flow cytometry after 

one week of culture was over 99%, with 90% of the total being CD3-positive T-cells. However, 

further experiments have shown exhaustion of the proliferation capacity and a decrease in cell 

viability after approximately one week. Therefore, a time point for HTDS was opted for, in which 

the cells are still proliferating with the sacrifice of the relative number of T-cells measured by 

FACS. Thus, T-cells were implemented on the HTDS pipeline after three days of culturing. At this 

point, between 51% to 64% of all cells expressed CD3. In theory, after three more days of 

culturing during the HTDS, CD3 expression could be expected to be as high as in the trial 

experiment. 

2.3.4 B-cells 

Lymphoblastoid Cell Lines (LCLs) were derived from B lymphocytes of healthy donors and 

immortalized using Epstein Barr virus (EBV) at the BioBank Service, Gaslini Hospital, Genova, 

Italy, as detailed in a previous publication [133]. These B-LCLs were provided by Dr. Cazzaniga 

(Centro Ricerca M. Tettamanti, Pediatrics, University of Milano Bicocca, Monza, Italy).  

2.3.5 Isolation and Culturing of CD34+ Cells 

CD34 cells were isolated from cord blood after Ficoll-Paque separation (mentioned above) by 

incubation with a cocktail of Fc-Blockers and magnetically labeled CD34 antibodies, following 

the manufacturer’s protocol (StemCell). Hereafter, magnetically labeled cells were added to the 

separation columns. Then, in sequential washing steps, the cells not expressing CD34 are poured 

off, while the CD34-positive cells stay in the separation columns fixed to a strong magnet. After 

several washing steps, the cells were picked up in the CD34 culturing media and transferred to 

a 24-Well culture plate, where the media was changed every three days. 

A trial experiment was performed using MACS isolation, and hematopoietic stem cells could 

be expanded up to 37.8-fold. However, reproducibility was low, and cells differentiated fast, 

decreasing the amount of CD34-positive cells after one week to around 40%. Therefore, 

different kinds of media were tested, and the isolation method was changed. IMDM with 

10%FBS, 25ng/ml IL-6, 25ng/ml SCF, and 25ng/ml FLT3-L showed the highest proliferation rate. 

At the same time, another media could prevent the cells from differentiating better but did not 

expand the cells to numbers that could be utilized for HTDS. Lastly, the Stemcell EasySep kit was 

used, reducing the cell´s stress during isolation. 
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2.4 Viability and Cell Count Determination 

The Beckmann Vi-CELL XR or Vi-CELL BLU accomplished viability and cell count 

determinations. More precisely, 500 µl or 200 µl were removed from the cell suspension, 

respectively, and added to a counting tube. This was placed into the automated counting 

machine, which identifies the viability and cell count using the trypan blue staining method. For 

further experiments, the number of viable cells was the basis for preparations for defined 

concentrations of cell suspension. If the automated cell counting was unavailable, cells were 

diluted 1:1 in Trypan Blue and counted with a Neubauer counting chamber. The cell number was 

then calculated after counting four major squares in the following manner: 

𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡[10଺/𝑚𝑙] = ௡∗ଵ଴଴଴଴
ଶ ௠௟

; n=counted cells 

2.5 High-Throughput-Drug-Screening 

2.5.1 Materials 
Table 4 Materials used for the high-throughput-drug-screening. 

Material Supplier 

D300e Digital Dispenser Life Sciences Tecan 

Multidrop Combi Reagenzien-Dispenser Thermo Fisher Scientific 

Spark 10m Life Sciences Tecan 

384-well Low Flange White Flat Bottom 

Polystryrene TC-treated Microplate 

Corning 

1536-well White Polystyrene TC-treated 

Microplate 

Corning 

D300e dispensehead cassettes D4 Plus and T8 

plus 

Life Sciences Tecan HP 

384-well white/clear flat bottom, square 

wells microplate 

Corning 

Parafilm M Sigma-Aldrich 

CellTiter-Glo 2.0 Cell Viability Assay Promega 

Ethanol 80% Otto Fischer GmbH & Co. KG 

Multidrop small tube metal tip dispensing 

cassette 

Thermo Fisher Scientific 
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Material Supplier 

Multidrop standard tube dispensing cassette Thermo Fisher Scientific 

 

2.5.2 Aliquoting the Library 

To increase the reproducibility and to eliminate freezing-thawing cycles of compounds used 

to print several versions of the high-throughput library, all compounds were ordered freshly and 

were aliquoted in one day. Ordered in 10mM stocks in DMSO with a volume of 100 µl, 15 

aliquots of 5 µl each were produced. Moreover, the library was aliquoted on white 384-optic 

well plates using the Eppendorf research pro or Multipette combined with the combi-tips 

advanced. Additionally, the compounds were sorted from top to bottom, but every second row 

was left empty, enabling the usage of a multichannel pipette for printing the compounds on the 

plates later. Four spots were left blank, making small changes between versions possible. Finally, 

to reduce the activity loss of certain compounds through light exposure, the light of the sterile 

working bench was turned off. The whole process took approximately twelve hours, at which 

the compounds were kept at room temperature. Afterward, the plates were wrapped in 

parafilm and vacuumized, reducing evaporations before being stored at -80°C. 

2.5.3 Library Printing 

At first, either one of the stock plates with the compounds was thawed at room temperature 

in the dark or kept on ice, and the remaining compounds were added. Afterward, the computer 

connected to the Tecan D300e digital dispenser with the printing program was started. While 

for version 6.1, the stock plate stayed on the ice and was diluted right before the compounds 

were used, for the following versions, the stock plates were diluted utilizing the Multidrop combi 

dispenser and remained at room temperature for the whole printing process. The stock plate 

was diluted for all versions from 5µl of 10 mM to 2.5 mM for each compound. Each compound 

is printed in six logarithmic concentrations: 8 nM, 50 nM, 223 nM, 1 µM, 5 µM, and 25 µM. 

Additionally, 24 to 32 wells were filled with DMSO as a control. Moreover, each well is 

normalized to a volume of 40 nl with DMSO. The outer two to three wells were left empty to 

avoid the effects of evaporation. The transfer of the compounds from the stock plate to the 

printing cassettes was performed with a Multichannel pipette. However, the volume pipette 

onto the cassette was higher than required to prevent running out of the compound for the last 

plates. Also, the printing was executed throughout the night, reducing the time the compounds 

were at room temperature and avoiding potentially additional freezing-thawing cycles. As a 

result, around 60 high-throughput-drug-screening plates could be produced in each version, 
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taking about 24 hours. Ultimately, all plates are wrapped in parafilm and vacuum sealed before 

storing at -80°C. To secure the quality of each version, a HTDS with one cell line was conducted, 

and the previous version was compared with the newly printed version. 

2.5.4 Linear Range Experiments 

At the end of the HTDS, a CellTiter-Glo (CTG) Viability assay (Promega) is carried out. Since 

this assay results in a luminescent signal that takes advantage of the ATP produced by the cells 

in each well, it correlates with the viability. More precisely, the CTG reagent consists of firefly 

luciferase and luciferin- the substrate. But the reaction needs ATP, which is provided by the cells 

in this assay. Moreover, the amount of ATP correlates with the number of viable cells. Thus, this 

assay can be used to determine the viability of cells. However, cells proliferate slower at higher 

densities or the viability can even be reduced at very high or very low concentrations. Therefore, 

a linear range experiment was conducted to determine the range of densities at which the 

proliferation rate of the cell suspension can be assumed consistent without compromising the 

viability without any compounds added.  

2.5.4.1 Linear Range Experiment for Leukemia Cells 

An experiment for the cell lines was conducted with six commercially available cell lines and 

one PDX sample. Each sample was pipette onto a white 1536-well plate with 4 µl per well in 10 

different densities in triplicates. The following densities were aimed for in a dilution series 

pipetted with the Eppendorf Research Pro: 8000, 5000, 4000, 3000, 2000, 1000, 800, 600, 500, 

and 300 cells per well, respectively. Increasing reproducibility, cells were filtered before being 

utilized for the dilution series. Furthermore, for this experiment, only cell lines with a viability of 

over 85% were used while attempting to increase the experiment's validity by including cell lines 

from different subgroups of acute leukemias. In addition, media was filled in the outer wells 

with the Multidrop combi dispenser, preventing evaporation effects on the plate. After 

incubation of the plate at 37°C under 5% CO2 for 72h – similar to the actual HTDS conditions – 

the plate was removed from the incubator, and a CTG assay was performed. In detail, the 

Multidrop combi dispenser was washed with ethanol and water before 1:1 diluted CTG reagent 

with PBS was primed into the tubes. Next, the plate was filled with 4 µl of CTG reagent per well 

and shaken for 30 seconds, ensuring cell lysis. Subsequently, the plate is incubated at room 

temperature for 10 minutes in the dark to stabilize the signal before using the Tecan 10M Spark 

to measure the luminescent signal. Moreover, an integration time of 100 ms per well was 

applied. Afterward, the data was plotted in a linear regression model. Step by step, the extreme 

densities were excluded from the calculation, aiming for the highest possible R2. 
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2.5.4.2 Linear Range Experiment for Fibroblasts on 1536-well Plates 

A linear range experiment was conducted for the fibroblasts similar to the one for leukemic 

cell lines with some modifications. Firstly, only two fibroblast lines were used, one healthy and 

one primary patient. Moreover, twelve different densities – 3000, 2000, 1500, 1000, 800, 600, 

400, 300, 200, 150, 100, and 50 cells/well - were applied. All cell suspensions were prepared in 

2 ml Eppendorf tubes before seeding them onto the plate because the Multidrop combi 

dispenser was used instead of a pipette. By selecting the desired rows and placing each hose in 

a different Eppendorf tube, 30 replicates for each concentration were printed on the plates. 

Finally, the incubation and readout with the CTG assay were executed as described previously. 

2.5.4.3 Linear Range Experiment for Fibroblasts on 384-well Plates 

As the linear range experiments from the 1356-well plates could not be translated to a 

smaller format in a previous experiment by other members of the working group, a separate 

experiment was implemented, again very similar to the linear range experiment of the leukemic 

cell lines with slight modifications: Firstly, the following concentrations (cells/well) were seeded 

in six replicates with 30 µl per well: 10000, 7500, 5000, 4000, 3000, 2500, 2000, 1500, 1000, 750, 

500, and 100. Furthermore, only three fibroblast cell lines were included, of which two were 

already used in the linear range determination for 1536-well plates. Moreover, the readout was 

performed by adding 30 µl of CTG assay reagent diluted 1:4 with DPBS onto the plate and setting 

the Tecan 5M Spark to an integration time of 500 ms. The data analysis, however, was done 

similarly.  

2.5.5 High-Throughput-Drug-Screening of Fibroblasts 

At first, the cells were detached and counted as described before. Afterward, 1.25 to 1.8 

million cells were removed from the original cell suspension and centrifuged at 400xg at 20°C 

for 5 minutes. Subsequently, the cell pellet is dissolved in 10 ml of fresh culture media and 

filtered through a 40 µm cell strainer. Moreover, the Multidrop combi dispenser is started and 

washed using ethanol, followed by distilled water and DPBS. Next, the prepared cell suspension 

was primed into the tubing, and 4µl per well was seeded onto a beforehand thawed HTDS plate. 

If more than one cell line is screened at the same time, in between different cell lines, the tubing 

is cleaned using DPBS. The plate is then incubated at 37°C under 5% CO2 for 72 hours. Once this 

time was over, the Multidrop was again washed with ethanol and water before 4 µl per well of 

the CTG reagent, diluted 1:1 with PBS, was added. After shaking the plate for approximately 30 

seconds and letting the luminescent signal stabilize for 10 minutes at room temperature in the 
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dark, the Tecan 10M Spark was harnessed for measuring. Moreover, an integration time of 

100ms per well was applied.  

2.5.6 High-Throughput-Drug-Screening of Leukemia Cells 

Fundamentally speaking, the HTDS of leukemic samples was executed similarly to the one 

described for the fibroblasts. However, three modifications were implemented: Firstly, 

suspension cell lines did not have to be detached and could be harvested as described 

previously. Secondly, the cell count of the prepared suspension was raised to 0.5 million cells 

per ml for growing cell lines in culture and increased even higher to at least 1 to 1.5 million cells 

per ml for fresh samples, respectively. At last, the cells were strained using a 20 µm cell strainer. 

This had two advantages: on the one hand, the leukemic cells are smaller, and therefore low 

mesh size filters prevent cell clumps, while on the other hand, unwanted co-culture cells such 

as MSCs could be filtered out to a certain extent. 

Table 5 Display of the ALL samples screened based on their subgroups and cell origin. 

 

T-ALL KMT2Ar Ph-like BCR-ABL1 TCF3-PBX1 TCF3-HLF1
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2.5.7 Protocol Plates for Fibroblasts 

These plates were designed to recapitulate the protocol IA of the AIEOP ALL BFM 2017 

regime. Therefore, the following single drugs and combinations were tested for in technical 

triplicates: 

Table 6: Drugs and concentrations on the protocol plates for fibroblasts. 

Drug/Combination Number of 

wells  

Highest 

concentration [µM] 

Lowest 

concentration [µM] 

Prednisone 9  100 0.005 

Vincristine 9 10 0.0005 

Daunorubicin 9 100 0.005 

MetHothrexate 9 100 0.005 

L-Asparaginase 9 10 0.0005 

All combined 10 8.8 (Prednisone) 

0.028 (Vincristine) 

4.4 (Daunorubicin) 

2.0 (Methotrexate) 

4.0 (L-Asparaginase) 

0.022 (Prednisone) 

0.0007 (Vincristine) 

0.011 (Daunorubicin) 

0.005 (Methotrexate) 

0.01 (L-Asparaginase) 

Prednisone + 

Vincristine               +  

Daunorubicin 

10 30.0 (Prednisone) 

1.0 (Vincristine) 

15.0 (Daunorubicin) 

0.15 (Prednisone) 

0.005 (Vincristine) 

0.075 (Daunorubicin) 

Prednisone + 

Methothrexate  + L-

Asparaginase 

9 15.4 (Prednisone) 

3.5 (Methotrexate) 

7.0 (L-Asparaginase) 

0.022 (Prednisone) 

0.005 (Methotrexate) 

0.01 (L-Asparaginase) 

 

The plates were normalized to 1% DMSO and randomized individually. In the combination wells, 

the concentrations of the drugs to each other were steady. According to the IA protocol, the 

concentration of Prednisolone was twofold higher than Daunorubicin, while MTX was 2.2-fold 

lower, Vincristine 157.14-fold lower, and L-Asparaginase 1.1-fold lower concentrated in 

comparison to Daunorubicin. The concentration for L-Asparaginase was calculated by dividing 

the indicated IU by the specific activity of the L-Asparaginase ordered from Medchem Express. 

After printing the plates, they were stored at -20°C. The HTDS was performed as described above 
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for fibroblasts. The only modification was a cell concentration of 200 cells/well -as determined 

in the linear range experiment - in a volume of 30µl. Upon the readout, the CTG was diluted 1:4 

in DPBS and dispensed 1:1 on the plate.   

2.5.8 Data Analysis 

The raw data was sorted for each compound and normalized to the DMSO wells. A non-

linear regression model (log(inhibitor) vs. normalized response) with variable slope was applied 

in GraphPad Prism to determine the IC50 values. Furthermore, the multivariant DSS3 was 

calculated in R for a more exact comparison of different drug responses [134]. Heatmap 

visualization was also performed in R, plotting DSS values with unsupervised clustering of the 

compounds and the samples. “Euclidean” was utilized as a distance clustering computation, 

while “ward.D2” was computed for the unsupervised clustering method. [135]   

2.6 FACS Analysis 

2.6.1 Materials 
Table 7 Materials used for FACS analysis of samples. 

Materials Supplier Catalog Number (Clone) 

CytoFLEX Beckman Coulter - 

CytoFLEX Sheath Fluid Beckman Coulter B51503 

APC anti-human CD79a BioLegend 333506 (HM47) 

APC/Fire 750 anti-human 

CD10 

BioLegend 312230 (HI10a) 

FITC anti-human IgM BioLegend 314506 (MHM-88) 

Pacific Blue anti-human CD19 BioLegend 302224 (HIB19) 

PE anti-human CD179a BioLegend 347404 (HSL96) 

Alexa Flour 700 anti-Human 

CD22 

BioLegend 302520 (HIB22) 

PE/Cyanine7 anti-human 

CD20 

BioLegend 302311 (2H7) 

PE/Dazzle 594 anti-human 

CD34 

BioLegend 348209 (581) 



Material and Method 

 31 

Materials Supplier Catalog Number (Clone) 

PerCP/Cyanine 5.5 antihuman 

CD38 

BioLegend 356613 (HB-7) 

PE anti-human CD13 Beckman Coulter A07762 (SJ1D1) 

APC anti-human CD45 BioLegend 368512 (2D1) 

APC anti-human CD3 BioLegend 300312 (HIT3a) 

FITC anti-human CD4 BioLegend 317408 (OKT4) 

Pacific Blue anti-human CD8 BioLegend 344717 (SK1) 

Permeabilization buffer Thermo Fisher Scientific 00833356 

IC Fixation Buffer Thermo Fisher Scientific 00822249 

 

2.6.2 Surface Marker Staining 

105-106 Living cells were washed two times with DPBS and stun down at 400xg for 5 min at 

room temperature. After the last washing step, the supernatant was again discarded, and the 

pellet was dissolved in 100µl of DPBS. The FACS Antibody was added to this solution, and the 

mixture was incubated for at least 20min at 4°C in the dark. Afterward, the cells were again 

washed with DPBS once and immediately read out with the Cytoflex. 

2.6.3  Intracellular Staining 

After the last washing step, as described above, the pellet was dissociated in IC Fixation 

Buffer and incubated for 30 min at room temperature in the dark. After centrifuging and 

discarding the supernatant, the pellet was washed with 200µl of 1X Permeabilization Buffer. 

Afterward, the pellet was assimilated in 100µl of 1x Permeabilization Buffer and the respected 

FACS antibody. This was incubated for 30min at room temperature, protected from light. In the 

end, the sample was rewashed and diluted in the 1X Permeabilization Buffer before being read 

out with the Cytoflex immediately.  

2.7 Clinical Data Extraction 

General patient information such as age at diagnosis, diagnosis, the subtype of leukemia, 

treatment protocol, and treatment response were analyzed. However, a suitable period for data 

gathering had to be defined to determine adverse events suffered by a patient and compare it 

to the HTDS. As the first 33 days of the AIEOP BFM 2009 and 2017 protocol match each other 

and only minimal modifications are implemented for high-risk leukemias, the highest number of 
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comparable subjects could be expected for this period. However, since the following 

chemotherapy admission starts on day 36, the period was extended to that date. All guide values 

were extracted from the CTCAE v.5 as grade 3 or higher adverse events [136]. In detail, the 

following adverse events were analyzed:  

Table 8 Overview of the adverse events analyzed for each patient. All guide values were taken from the CTCAE 

V.5. Only grade 3 or higher adverse events were measured. 

 

2.8 Statistical Analysis 

All analyses were conducted with GraphPad Prism Version 9 or R studio. A likelihood of a 

type one error below 5% was interpreted as significant if not otherwise mentioned.  

ALT/GPT AST/GOT gammaGT Bilirubin (total) 

>120U/l? >145U/l? >225U/l? >3mg/dl?

if yes, how many? if yes, how many? if yes, how many? if yes, how many?

if yes, highest 
value?

if yes, highest 
value?

if yes, highest 
value?

if yes, highest 
value?

Hb  Leukocytes Thrombocytes  

Hb <8g/dl 
Leukocytes 
<2.000/µl 

Thrombocytes 
<50.000/µl 

if yes, how many? if yes, how many? if yes, how many?

if yes, lowest value? if yes, lowest value? if yes, lowest value?

Serious infection 
with proof of 

germs
Pancreatitis Mucositis

yes/no?
Hospitali-zation 

necessary?
if yes, how many? if yes, how many?

Hepatotoxicity

Myelosuppression

others

Clear diagnosis?

spinal syndrome? plexopathy?
peripheral 

neuropahty?
Gullian-Barre-

Syndrome?
myasthenia?

Neurotoxicity

seizure? enzephalopathy?
cerbrovascular 

disease?
ataxia/ movement 

disorders?
cranial 

neuropathy?
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2.8.1 Analysis of Fibroblast HTDS 

Firstly, drugs that were inconsistent in the different library versions were excluded from 

further analysis. Next, drugs that showed no effect in any sample were deleted before outliers 

were detected. DSS values of over one and a half times the interquartile range added or 

subtracted to the third or first quartile were defined as outliers, respectively. Moreover, groups 

were characterized by searching for DSS values exceeding the 0.2 or 0.8 quintiles. To determine 

the significance of the groups, a non-parametric Kolmogorov-Smirnov-Test of distribution was 

conducted. Correction for the accumulation of the type one error when testing multiple 

hypotheses was done with the Bonferroni-Dunn method. At last, drugs for which outliers or 

significant groups could be calculated but showed a range between the highest and lowest value 

below 10 DSS points were eliminated. 

2.8.2 Analysis of HTDS Data from Leukemia Samples 

 The mean values of the subgroups were subtracted with the highest value of the healthy 

controls finding potential drugs for future treatment. Moreover, a non-parametric Mann-

Whitney U-test was performed between the subgroups. A score for every drug was calculated 

by awarding one point for each significant test against another subgroup, suggesting a more 

specific targeting with a higher score. Afterward, these results were combined with the 

comparison with the healthy controls. The violin plots were computed using R and the “ggplot2” 

package [137]. The Kruskal- and Wilcox-Test were performed with the “rstatix” package. The 

Bonferroni method was used to correct for multiple testing. For detecting possible drug 

combinations, spearman correlation was computed and displayed using the “corrplot” package 

in R [138]. Lastly, a Mann-Whitney-U-test – without correction for multiple testing – was 

assessed for the samples with CD13 or IgM against the non-expressing samples. 

2.8.3 Correlation of HTDS Data and Clinical Data 

DSS values were computed using the mean viability for each concentration. Furthermore, 

spearman correlation was performed and plotted using the “corrplot” package in R [138]. With 

this, the “number of AE categories” was defined as the total amount of different – above 

described- adverse events detected. On the other hand, the “total number of AE” displays the 

sum of all incidents of adverse events (AE); for example, anemia was often experienced more 

than once. In the other categories, the highest or lowest values, respectively, were used. 
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2.8.4 Heatmaps and Principal Component Analysis 

Heatmaps were calculated with R studio using the packages “ComplexHeatmap”, 

“RColorBrewer”, “dendextend”, “dendsort”, and “colorspace” [135]. The number of rows and 

columns split was manually assigned. The methods “Euclidean” and “Ward.D2” were used for 

the unsupervised clustering. The principal component analysis was also performed with R studio 

using the “ggplot2” and “factoextra” packages [139]. Scaling was not applied when calculating 

the principal component analysis. 
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3 Results 

3.1 Establishment 

3.1.1 Enhanced Methodology Improves Reproducibility in High-Throughput Drug 

Screening (HTDS)  

When first testing the library for its reproducibility between two different printing cycles, it 

appeared that significant improvement would be needed as the correlation was at only R2=0.16 

(Figure 5A).  

 

Figure 5 Visualization of the linear regression for comparing different versions of the libraries using the DSS 

values. (A) Comparing versions 5 and V5.1 with the old compounds (Equation: Y=0.2789*X + 2.580, R2=0.16). (B), (C) 

Comparison of the old library V5 with the newly ordered library V6.1. While (B) uses the unrandomized plates 
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(Equation: Y=0.5279*X + 14.31, R2=0.27), (C) implements the data from the randomized plates (Equation: Y=0.5200*X 

+ 14.84, R2=0.27). 

Two main reasons seemed to cause the low reproducibility: First, the compounds used at 

the time were thawed and frozen several times, reducing the activity each time. Secondly, to 

avoid working throughout the night, the plates were frozen in the middle of the printing round 

and thawed the next day. This decreased the activity of up to half a plate and enlarged the plate 

effect. Thus, the whole library was ordered newly and aliquoted in one day. Each aliquot was 

only used once, reducing thawing and freezing cycles. Moreover, printing was performed in one 

session. Subsequent comparison of the old and new libraries resulted in a very low correlation 

(R2=0.27), as seen in Figure 5B-C. Interestingly, some new drugs showed lower activity than in 

the old library. Possible explanations could be another company chosen and differences 

between the specific batches. Next, the plates' reproducibility and whether randomization could 

increase it were tested. While the correlation of two technical replicates showed a high 

correlation with R2=0.99, astonishingly, randomization decreased it marginally (R2
randomized=0.97; 

difference=0.02) (see Figure 6A-C).  
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Figure 6 Visualization of the linear regression for comparing technical replicates using the DSS values. (A), (B), 

and (C) display the reproducibility in one version on randomized and not randomized plates, as well as the comparison 

of unrandomized and randomized plates (Equation (A): Y=0.9849*X - 0.2239, R2=0.97; Equation (B): Y=0.9927*X + 

0.7314, R2=0.99; Equation (C): Y = 0.9762*X + 0.6886, R2=0.98). 

Since the randomization was time-consuming, technically challenging, and prone to human 

mistakes, it was decided to forgo it. After human errors caused the second printing round to be 

unusable, the protocol was further developed. Thus, the aliquot would be initially diluted and 

kept at room temperature for the printing session. The following comparison of the first and 

third versions showed a high correlation (R2=0.95), suggesting good reproducibility between 

different printing rounds (see Figure 7A). The correlation of subsequent versions using the same 

improved protocol showed values near those of technical replicates in one version (R2
V6.3-

V6.4=0.98; R2
V6.4-V6.5=0.91; R2

V6.5-V6.6=0.91) (see Figure 7A-D). Therefore, the reproducibility of the 

HTDS in one or more versions can be presumed. 
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Figure 7 Visualization of the linear regression for comparing different versions of the library and technical 

replicates using the DSS values. (A), (B), (C), and (D) show the correlation of subsequent versions of the library 

(Equation (A): Y = 0.9924*X + 1.973, R2=0.95; Equation (B): Y = 1.003*X + 0.3132, R2=0.98; Equation (C): Y = 0.9907*X 

+ 5.902, R2=0.91; Equation (D): Y = 0.9865*X + 3.282, R2=0.91). 

3.1.2 Linear Range Experiment for Fibroblasts on 1536-well Plates 

Technical issues were faced during the linear range experiment as evaporation was not 

considered beforehand. Thus, the outer three wells had to be excluded from further analysis 

resulting in an uneven number of replicates per condition. However, a good data basis can be 

assumed because the number of replicates still ranged from 14 to 38. One cell line showed an 

unusual signal decrease for two conditions. The most reasonable explanation is a technical issue 

during sample preparation. Nevertheless, the collected data suggest a linear range of fibroblasts 

up to 800 cells/well (Figure 8C). A higher cell count per well would reduce background noise and 

inaccuracies caused by small disparities during cell seeding. Therefore, a concentration of the 

high end of the linear range was chosen for the experiments. 
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3.1.3 Linear Range Experiments for Protocol-based Plates to Screen Fibroblasts 

For the 384-well plates, however, the linear range only could be assumed until 2000 

cells/well (Figure 8B). Moreover, an acceptable signal was observed for all conditions, although 

100 cells/well were barely over the set threshold of 100,000 RLU. In the first experiment, two 

different time points (72h vs. 144h) were compared with one sample. While the overall IC50 

values were lower for the longer time point, only two of the five drugs showed activity. 

Therefore, one more plate with the same sample was seeded at a lower cell count of 

200 cells/well. With these conditions, an activity of L-Asparaginase could also be noticed. Both 

Prednisone and Methotrexate were inactive, even at very high concentrations. Prednisone was 

not expected to have a cytotoxic effect on fibroblasts, while high concentrations of folic acid in 

the media presumably antagonized Methotrexate.  

3.1.4 3.1.3 Linear Range Experiments for Leukemia Blasts 

By testing leukemia cell lines and a PDX sample of different subgroups, linearity until 800 

cells/well (0.2*106 cells/ml) could be noticed (Figure 8A). Unfortunately, this experiment was 

conducted after many HTDS were already done at a higher cell count. Besides, the DMSZ advises 

not to split most cell lines below concentrations of 0.5*106 cells/ml. Thus, cells could be 

unspecific sensitive at lower concentrations. Moreover, higher numbers of cells per well reduced 

background noise - as stated above – and reduced the effect of small technical inaccuracies 

during cell seeding, which could be even more significant for fast-proliferating cells. To 

summarize, due to the increase of the concentration to 0.5*106 cells/ml, the cells are not in the 

linear range of the CTG assay but could show a more specific response with higher 

reproducibility. While in vitro grown samples were screened at this concentration, freshly 

available samples had to be seeded at a higher cell count of 1.0 to 1.5*106 cells/well to archive 

signals over the threshold of 10,000 RLU. 
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Figure 8 Figures (A-C) display the intensity of luminescent measured by RLU in relationship to the cell count 

seeded 72h before. The black line marks the cell count until a linear range is estimated by calculating the highest R2 

with at least four conditions. The dotted line marks the cell seeding concentration utilized in subsequent drug 

screenings. 
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3.2 Fibroblast HTDS 

3.2.1 HTDS of Fibroblasts Reveals an Interindividual Distinctive Drug Response 

The HTDS and subsequent analysis were performed for 41 samples from ALL patients and 

ten from patients with other malignant diseases. Non-ALL samples originated from patients with 

the following diseases: AML (one patient), Lymphoma (one Hodgkin-Lymphoma, two Burkitt-

Lymphoma), four with malignant CNS tumors (three Medulloblastoma, one Ependymoma), 

Nephroblastoma (one patient), and Neuroblastoma (one patient). Replicates for the HTDS were 

available for five samples, and mean values for each drug were calculated. Three HTDS replicates 

had to be excluded as they did not correlate with the other replicates, most likely due to 

technical issues. Thus, 51 samples were included in the analysis in total. A flowchart of the 

analysis is displayed in Figure 9. Data were available for up to 191 drugs. However, not all drugs 

were consistent for every version on which samples were screened. Therefore, drugs missing in 

at least one version were excluded from further analysis. Of the 171 drugs remaining, 37 drugs 

showed a DSS score of zero for all samples, suggesting no measurable response. For the 

remaining 134 drugs, outliers were calculated, and “sensitive”, “resistant”, and “normal 

response” groups were created. The “sensitive” group was defined as samples showing a DSS 

value higher than the 0.8 quintiles of each drug. Analogous, the “resistant group” displayed 

samples with a decreased DSS below the 0.2 quintiles. All samples between the 0.2 and 0.8 

quintiles were labeled as “normal response” for that drug. Likewise, samples outside the 1.5-

fold interquartile range added or subtracted from the third or first quartile, respectively, were 

titled outliers for this concrete drug. While for 83 drugs, “sensitive” groups could be detected, 

which were large enough to compute statistics, for only 51 drugs, “resistant” groups met the 

criteria. Next, a statistical test should be conducted to determine the independence from the 

“normal response” group. The Mann-Whitney-U-test compares the median of the ranks but not 

the actual values. However, the groups were created by ranking the values and using the 

quintiles, creating a bias for this test. Thus, the Kolmogorov-Smirnov test was chosen, comparing 

the distribution of the groups. While all resistant groups were significant (p<0.05), ten sensitive 

groups did not meet this level and were excluded. Similarly to the groups detected, for only six 

drugs, resistant outliers were observed, while 112 drugs had sensitive outliers. This could be due 

to the scale of the DSS score being limited to zero, and fibroblasts are overall quite resistant 

tissue. Although outliers or groups could be recognized for some samples, some drugs displayed 

such low DSS values that they were more susceptible to impreciseness. Thus, drugs that did not 

meet a range between the highest and lowest value of over ten DSS points were eliminated from 
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the analysis. As a result, 82 drugs contained either one of the above-described categories. 

Moreover, all samples responded to at least one drug, resulting in no samples being classified 

as “normal response” for all drugs. In total, 162 data points were considered sensitive outliers, 

440 as the significant “sensitive” group, and 151 as both sensitive outliers and the significant 

“sensitive” group. At the same time, no samples proved to be resistant outliers alone, but 423 

occurred as the significant “resistant” group and 17 as both resistant outlier and the significant 

“resistant” group. The detailed analysis results with all 82 drugs and 51 samples can be seen in 

Figure 10, with a color code for each data point. 

Using this analysis, it was shown that fibroblasts have different drug responses in the 

interindividual comparison. Next, it was necessary to demonstrate whether there is a 

relationship between this interindividual drug response and specific germline mutations or the 

clinical data. 
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Figure 9 Flowchart of the analysis. A total of 51 samples were analyzed as described. The “resistant” and 

“sensitive” groups were defined by a drug sensitivity score (DSS) value below the 0.2 quintiles or over the 0.8 quintiles. 

All other values were categorized as “normal response”. Significance was tested for with a Klomogorov-Smirnov-test 

(KS-test). Outliers were searched for with the 1.5-fold interquartile range added or subtracted from the first or third 

quartile, respectively. 

191 drugs

171 drugs

19 drugs were excluded, 
because no data was 
available for at least one 
sample due to different 
versions of the library

134 drugs

37 drugs showed no 
response in all 
samples

For 6 drugs 
resistant 
outliers could 
be detected

For 112 drugs 
sensitive 
outliers could 
be detected

For 62 drugs the 
range was over 
10 DSS points

“sensitive“, “resistant“ 
and „normal response“ 
groups were defined for 
each drug

For 51 drugs a KS-test 
between “resistant“ and 
“normal response” group 
could be computed

For 83 drugs a KS-test 
between “sensitive“ and 
“normal response” group 
could be computed

For 51 drugs 
significant groups 
could be detected

For 73 drugs 
significant groups 
could be detected

For 44 drugs the 
range was over 
10 DSS points

For 60 drugs the 
range was over 
10 DSS points

For 6 drugs the 
range was over 
10 DSS points

82 drugs



Results 

 44 

 

Figure 10 Analysis results of the fibroblast drug screening displayed in a heatmap. For each of the 82 drugs which 

showed a differential response in the analysis, the samples are classified as “significantly resistant” (blue), 

“significantly sensitive” (red), “significantly resistant and resistant outlier” (blue and green striped), “sensitive outlier” 

(yellow), “significant sensitive and sensitive outlier” (yellow and red striped), and “normal response” (grey). Samples 

that were grouped in either the “sensitive” or “resistant” group and passed the Kolmogorov-Smirnov test were then 
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classified as “significantly sensitive” and “significantly resistant”. In contrast, groups that did not pass it were changed 

to “normal response”. Two samples are marked red, which harbor a RAD21 mutation.  

3.2.2 RAD21-Mutated Fibroblasts are Resistant to Anthracyclines 

To test the analysis and its relation to germline variants, two cohort patients with known 

germline variants in the RAD21 gene were drug screened and analyzed. Both samples are 

marked red in Figure 10. Here, the sample F24 showed resistance to Mitoxantrone, 

Daunorubicin, Bortezomib, BIIB021 – an HSP90 inhibitor –, Dactinomycin, and Obatoclax, as well 

as some kinase inhibitors, such as Volasertib, SY-1365-THZ1 (CDKi), Lestaurtinib, Buparlisib, 

MLN0128 (mTORi), AT9283 (JAKi), and Ponatinib. In contrast, the sample was more sensitive to 

Cytarabine, Tacedinaline, NVP-HSP990 (HSP90i), Sunitinib, and Axitinib. The other sample 

carrying a mutation in the same gene exhibited a less resistant profile overall with sensitivity 

towards Abemaciclib, AZD6738 (ATM/ATRi), and Teniposide while expressing decreased activity 

towards Cobimetinib. However, although both samples did not inherit the same mutation, the 

drugs for which both samples expressed similar reactions are more interesting in understanding 

the role of germline variants in the gene of interest. Both samples were resistant to Epirubicin, 

Idarubicin, Doxorubicin, Fedratinib, Staurosporin, and Homoharringtonine. These results 

indicate that these mutations impact fibroblast signaling cascades, while no exact pathway 

seemed particularly affected. Nevertheless, both samples were resistant to at least three 

anthracyclines, and F24 was resistant to all anthracyclines and Mitoxantrone. Only the sensitivity 

of F23 to Teniposide does not fit the overall resistance toward topoisomerase inhibitors.  

To test these hypotheses in another model, HEK293T cells that overexpressed RAD21 and 

carried either of the mutations were drug screened again and compared to the overexpression 

alone and the wild-type cells. Interestingly, the overexpression of RAD21 had the greatest 

impact on the response to anthracyclines and other drugs, as the difference between the wild-

type cells and the overexpression of RAD21 was the highest (see Figure 11). Moreover, only 

Staurosporine presented a higher sensitivity in the mutations while achieving DSS values more 

closely to the wild-type cell line. All the other drugs responded roughly the same in the mutation 

and overexpression alone cell lines.  

In conclusion, both RAD21-mutated fibroblasts exhibited inherent resistance to 

anthracyclines. However, the outcomes observed in RAD21-mutated fibroblasts could not be 

reproduced in HEK293T models with (wt or mut) RAD21 overexpression. It appears that the 

enforced RAD21 expression in HEK293T cells has a high impact on the drug screening profiles, 

underscoring the need for improved (inducible) models to replicate the germline variants. 
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Figure 11 Bar graphs of the drug screenings of HEK293T wild type cells (HEK293T), RAD21 overexpression 

(HEK293T rad21 wt), or RAD21 overexpression and either one of two mutations (HEK293T rad21 p.298S and HEK293T 

rad21 p.298A). Representative Drugs were chosen for the anthracyclines. A Kruskal-Wallis test was performed for 

each graph individually (A: p=0.01; B: p=0.33; C: p=0.32), followed by a Dunn´s-multiple comparison test. (p>0.05=ns; 

p<0.05=*) 
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3.3 Fibroblast Drug Screening and Clinical Data 

3.3.1 Patient Characteristics 

Table 9 shows the patient characteristics of the cohort used to search for connections 

between the drug screening of fibroblasts and the clinical data. Clinical data were available for 

43 patients. For four of these patients, no HTDS data were available, but they were included on 

the protocol-based plates. Patient samples of this cohort were randomly selected to be screened 

on the protocol-based plates. 

Table 9 Characteristics of patients investigated for the combination of drug screening and clinical data. 

Characteristics N (%)  

[high-throughput 

format] 

N (%)  

[protocol-based 

plates] 

Total patients 39 25 

Males 22 (56.4%) 14 (56%) 

Females 17 (43.6%) 11 (44%) 

Age (in years)   

Mean 5.90 5.32  

Standarddeviation 4.45 4.25 

Range 1.7-17 0.3 – 15.4 

ALL Subtype   

B-ALL 35 (89.7%) 21 (84%) 

High 

hyperdiploid 

9 (23.1%) 5 (20%) 

ETV6-RUNX1 8 (20.5%) 3 (12%) 

KMT2Ar 1 (2.6%) 2 (8%) 

TCF3-PBX1 1 (2.6%) 1 (4%) 

BCR-ABL1 1 (2.6%) 1 (4%) 

Others/unknown 15 (38.5%) 9 (36%) 

T-ALL 4 (10.3%) 4 (16%) 

CNS Status   

1 33 (84.6%) 19 (76%) 
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Characteristics N (%)  

[high-throughput 

format] 

N (%)  

[protocol-based 

plates] 

2 (a and b) 4 (10.3%) 2 (8%) 

3 0 (0.0%) 1 (4%) 

Not assessable 2 (5.1%) 3 (12%) 

Treatment Protocol   

AIEOP BFM 2009 24 (61.5%) 15 (60%) 

AIEOP BFM 2017 14 (35.9%) 9 (36%) 

EsPhALL-2017 1 (2.6%) 1 (4%) 

Prednisone response   

Good (<1000 blasts/µl) 35 (89.7%) 23 (92%) 

Poor (>1000 blasts/µl) 4 (10.3%) 2 (8%) 

 

3.3.2 Occurrence and Severity of Adverse Events Differ Between Patients 

There are notable differences in the frequency of adverse events in the first 36 days of the 

AIEOP BFM protocols. The most common effects of the treatment included myelosuppression 

with an incidence of 83-93% depending on the cell lineage, followed by increased liver markers 

(13-62%, depending on marker), serious infections, and mucositis with 9.3% each. While no 

patient was diagnosed with a pancreatitis, only three had neurotoxicity. Only two patients 

underwent the therapy up to day 36 without any depression of cell lineages in the peripheral 

blood above grade three or higher, defined by the CTCAE v.5. Interestingly, these two patients 

also did not suffer any other side effects that were investigated. Furthermore, one more patient 

only experienced leukocytopenia, while the hemoglobin and thrombocyte levels never 

decreased below the threshold. Six patients only had reductions in two of the three cell lineages. 

In contrast, 34 patients went through adverse events grade three or higher for all three cell 

lineages at least once. Therefore, patients with lower myelotoxicity seemed to have lower 

toxicity overall. Supporting this hypothesis, no serious infections or neurotoxicity occurred in 

patients with lower myelotoxicity. Moreover, only three of these patients suffered from 

hepatotoxicity - defined as two markers elevated above grade three. In contrast, in the group of 

patients with all lineages decreased, 18 patients experienced hepatotoxicity, four had serious 

infections, three suffered from neurotoxicity, and four suffered mucositis. Thus, the 
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myelosuppression's magnitude could indicate severe adverse events such as serious infections 

or hepatotoxicity. A detailed graph of all 43 patients and each adverse event analyzed can be 

found in Figure 12. As differences in both the frequency of adverse events and the HTDS could 

be observed, a connection between both was searched for. 

 

F2
4

F0
6

F0
1

F4
2

F1
7

F3
6

F0
3

F0
4

F0
5

F1
3

F3
3

F5
2

F5
3

F0
2

F0
7

F3
7

F2
5

F1
4

F3
9

F1
9

F2
8

F4
4

F3
5

F0
8

F1
1

F1
5

F1
6

F1
8

F5
4

F4
0

F2
6

F2
0

F3
0

F3
1

F3
2

F5
1

F3
8

F2
7

F3
4

F5
5

F4
5

F1
0

F2
9

Pr
ob

ab
ili

ty

ALT/GPT  
Increased

no no no no yes no yes no no no no no no yes yes yes no no yes yes yes no yes yes yes yes yes yes no yes yes yes no yes yes yes yes yes yes yes yes yes yes 62,8

AST/GOT 
Increased no no no no no no no no no no no no no no no no no no no yes no no yes yes no no yes yes no yes yes yes no yes yes no yes yes yes no yes yes yes 37,2

gammaGT 
Increased

no no no no no no no no no no no no no no no no yes no no no no no no no yes no no no yes no no no yes no no no no no yes yes no yes yes 18,6

Bilirubin 
(total) 
Increased

no no no no no no no no no no no no no no no no no yes no no yes no no no yes no no no no no no no no no no yes no no no yes no no yes 14,0

Seizure no no no no no no no no no no no no no no no no no no no no no no no no no yes no no no no no no no no no no no no no no no no yes 4,7

Encephalo-
pathy

no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no yes no no no no no yes 4,7

Cerebro-
vascular 
Disease

no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no 0,0

Ataxia no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no 0,0

Cranial 
Neuro-pathy

no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no 0,0

Spinal 
Syndrom

no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no 0,0

Plexopathy no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no 0,0

Peripheral 
Neuro-pathy

no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no yes 2,3

Gullian-
Barre-
Syndrom

no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no 0,0

Myasthenia no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no no 0,0

Adverse Event occurred
Adverse Event did not occur

Clinical Data

H
ep

at
ot

ox
ic

ity
N

eu
ro

to
xi

ci
ty



Results 

 50 

 

Figure 12 A heatmap giving an overview of the adverse events from day 1 to 36. For each patient, “red” marks 

the occurrence of the adverse event, while blue is awarded otherwise. The probability of each adverse event was 

calculated by dividing the number of patients that suffered from this by the total number of patients and multiplying 

by 100. In contrast, the number of adverse events is calculated using the number of different categories of adverse 

events that occurred. 

3.3.3 Drug Screening and Adverse Events 

3.3.3.1 Interindividual Drug Response in HTDS and Adverse Events do not Correlate 

Firstly, a connection between the adverse events until day 36 and the HTDS was searched 

for. Only two of the five drugs administered in the protocol demonstrated a response in the 

HTDS of fibroblasts, so a rather unsatisfactory fit for this model was already expected. In the 

analysis, the sensitive group for Vincristine was not upheld as significant; therefore, only three 

outliers could be detected. As a result, only Daunorubicin was eligible for the analysis in 

connection with adverse events. Thus, the three groups - “resistant”, “normal response”, and 

“sensitive” – which resulted from the analysis were compared in their incidence of adverse 

events. For 43 patients, data for adverse events were available. For four of these, no high-

throughput data were analyzed, and they were excluded. Therefore, 20 patients showed a 

normal response, ten were classified as resistant, and nine as sensitive. No apparent trend was 

noted when comparing these groups for the incidence of each adverse event analyzed (see 

Figure 13). Although serious infections were only seen in the normal response and sensitive 

group, the overall incidence was low and thus susceptible to inaccurateness. Moreover, the 
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incidence of elevated markers for hepatic injury and hepatotoxicity overall did not follow a trend 

for the three HTDS groups. Similarly, the myelosuppression and the three cell lineages were not 

more often abnormal in the sensitive group than in the resistant. Neurotoxicity and mucositis 

even occurred only in the resistant and normal response groups.  

Concluding, no connection was evident between the HTDS and the adverse events of 

patients during the first 36 days. However, as only one of five drugs could be investigated, the 

validity of this model was greatly compromised. Thus, a plate was designed based on the BFM 

2017 treatment regime protocol IA. 

 

Figure 13 Bar graph of the probability of each adverse event compared to the response to Daunorubicin in the 

high throughput drug screening. Response to Daunorubicin was analyzed as described above. The probability is also 

noted on top of each bar. Hepatotoxicity was defined as at least two markers being elevated above the threshold, 

while for myelosuppression, all three lineages had to be reduced. Neurotoxicity was seen as at least one neurological 

adverse event in the period. 

3.3.3.2 Drug Screening Based on Therapy Protocol Falls Short in Predicting Adverse 

Events 

Based on the treatment protocol, the newly designed plates included ten wells with all five 

drugs in the same fold concentration to each other. This was seen as the most logical 
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combination to evaluate the overall adverse events throughout the first 36 days. A total of 25 

samples could be screened on these plates. A score was calculated for the adverse events, which 

awards one point for each category of adverse events that occurred. For example, a patient with 

anemia, mucositis, and increased ALT would be assigned a score of three points. Subsequently, 

a linear regression model was calculated for the DSS values of the all-drugs-combined 

combination and the score for adverse events. The graph of the linear regression is displayed in 

Figure 14A. The equation was calculated as 𝑌 = 0.8733 ∗ 𝑋 + 33.76. However, the R2 was only 

0.0563, and the 95% confidence interval for the slope ranged from -0.6689 to 2.416. Thus, the 

slope did not significantly differ from zero, and a correlation between the adverse events and 

the DSS value of the drug screening could not be assumed. Moreover, a correlation matrix was 

calculated with the DSS and IC50 values from the drug screening, the number of categories of 

adverse events (see above), and the overall number of adverse events – which was calculated 

by adding up the occurrences of each adverse event –, as well as the most extreme value for 

each adverse event if it was evaluated. Again, this matrix displayed a low correlation between 

the experimental and clinical data (see Figure 14B). As described above, the degree of 

myelotoxicity was observed to interrelate with the overall extent of severe adverse events. Thus, 

the DSS scores for patients with all three cell lineages decreased were compared to those for 

which only up to two were abnormal (see Figure 15A). In line with the other test, the mean DSS 

values were not significantly different (Mann-Whitney-U test p=0.98). Furthermore, the mean 

DSS values of patients with hepatotoxicity, neurotoxicity, or serious infections were equal to 

those with low or no myelotoxicity (Kruskal-Wallis test p=0.98, see Figure 15B).  

To summarize these results, no apparent correlation between the drug screening of 

fibroblasts and the patient’s clinical data was evident. 
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Figure 14 (A) A correlation graph of the number of adverse events and the DSS value of all drugs combined on 

the protocol-based plates. The equation was calculated as Y = 0.8733*X + 33.76 with a 95% confidence interval 

of -0.6689 to 2.416 for the slope (dotted lines) and an R2=0.05. (B) A correlation matrix of drug screening data (DSS 

and IC50) of the protocol-based plates and the clinical data (number of adverse events (AEs), cumulative AEs (all 

occurrences of adverse events added up), and the lowest or highest parameters respectively, for the hepatotoxicity 

and myelosuppression markers). 
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Figure 15 (A) Scatter plot of the DSS values of patients suffering from low/no or high myelosuppression. High 

myelosuppression was defined as all three lineages decreased. A Mann-Whitney-U-test was performed between the 

groups (p-value shown in the graph). (B) A scatter plot of the DSS values of patients suffering from low/no 

Myelotoxicity (less than three lineages decreased), Hepatotoxicity (at least two markers elevated), Neurotoxicity (at 

least one neurological adverse event), or a serious infection. A Kruskal-Wallis test was performed with a p=0.98 and 

a follow-up test with Dunn´s multiple comparisons (p-values shown in the graph). 
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3.3.3.3 Drug Screening Based on Therapy Protocol Falls Short in Predicting Therapy 

Response 

At last, the MRD data for the 25 patients were analyzed. Three patients showed an MRD of 

10-3 or higher, seven of around 10-4, and eleven of 10-5 or lower, which was classified as negative. 

A Kruskal-Wallis test was conducted between these groups, but no difference could be detected 

with a p=0.7472 (see Figure 16). Thus, no connection between drug screening and treatment 

response was observable.  

 

 

Figure 16 Bar graph of DSS values in the context of the clinical MRD at timepoint one. A Kruskal-Wallis test was 

performed (p=0.75) with Dunn´s multiple comparisons as a follow-up. (p>0.05=ns)  
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3.4 Healthy Cells and Leukemia Blasts Can be Distinguished by Drug 

Response Profiles  

A total of 131 samples were implemented into the HTDS pipeline. The fibroblasts of the 

germline study represent the biggest group and were described above in depth. They are 

followed by 14 samples of T-ALL and ten samples of KMT2Ar leukemias. Other high- and 

medium-risk subgroups considered large enough for further analysis included the Ph-like (six 

samples) and TCF3-PBX1 (six samples) groups. The BCR-ABL1 subgroup, with its three samples, 

was only included as a reference and proof-of-concept. Although the TCF3-HLF1 group only 

contains four samples, it was included. Therefore, the data must be seen as preliminary. Six 

different B-cell samples were screened as healthy controls, together with three different 

samples of PBMCs, T-cells, and CD34-positive hematopoietic stem cells. The leukemia samples 

included 35 commercially available cell lines, 28 patient-derived xenografts (PDX), and three 

originated as primary samples directly from the patient.  

Unhierarchical clustering of all samples revealed a sorting according to the overall sensitivity 

of each sample, as visible in Figure 17. Divided into four groups, the most resistant cluster only 

consists of fibroblasts. In the second cluster, most samples are fibroblasts, and other healthy 

samples are included. In detail, the PBMCs, T-cells, and B-cells are all included in this cluster. 

Only one B-cell sample, which showed hyperdiploidy in tests performed by cooperation 

partners, clustered with other leukemia samples. Interestingly, four leukemia samples were also 

paired with the healthy samples. Two of these samples were BCR-ABL1 positive chronic myeloid 

leukemia (CML) cell lines, one was a TCF3-HLF1 positive PDX, and one was a primary sample of 

an unknown subtype. Furthermore, the CMLs and the PDX sample were very sensitive to 

Dasatinib, Bafetinib, Bosutinib, Rebastinib, Ponatinib, Randotinib, and Nilotinib, unlike the 

healthy controls. In contrast, the primary patient sample displayed a very resistant phenotype, 

which could explain the pairing with the healthy samples. The third and fourth clusters include 

all remaining leukemia samples. Nevertheless, the CD34-positive hematopoietic stem and 

progenitor cells (HSPCs) were also assigned to the most sensitive fourth cluster. PDX, cell lines, 

and primary samples clustered – aside from the fibroblasts – independent from their type. This 

is important, as it reduces the potential bias caused by different origins of the samples. Especially 

as each ALL subgroup consists of different ratios of cell lines, PDX, and primary samples. 
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Figure 17 Heatmap visualization of DSS values from the drug screenings performed on the high throughput 

pipeline. The side marked with “Patient” displays the different samples that were unsupervised clustered in the four 

most prominent groups, while on the “Inhibitor” side, the drugs are represented. A boxplot was added with the 

distribution of DSS values for each drug. Whiskers display the highest and lowest values. The origin and subtypes are 

annotated on the left side in a color code.  
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3.4.1 Established Genetic Subgroups of ALL Fail to Predict Overall Drug 

Responses 

Although the subgroups are based on similar genetic sequencing data and thus 

transcriptome, it was yet to show, that these translate into similar drug response profiles. 

Therefore, the relevance of the subgroup for the drug response was analyzed.  

The HTDS data were analyzed with an unhierarchical clustering and principal component 

analysis. In both analyses, the fibroblasts clustered differently from all the other samples, 

proofing the concept of this analysis. Surprisingly, both analyses demonstrated no apparent 

connection between the subgroup and overall drug response. The principal component analysis 

in Figure 18 shows no evident relationship between ALL subgroups and clusters. Although some 

subgroups tended to cluster differently, single samples of these subgroups were always 

projected far from their groups. Moreover, the cell origin – cell line, PDX, or primary sample – 

and the library version also clustered seemingly randomly, as seen in Figure 19. In the 

unhierarchical clustering used in the heatmap in Figure 17, no subgroups were clustering 

together, while healthy samples showed a different drug response profile. Thus, creating the 

impression that the subgroups do not predict the drug response overall very well. Therefore, 

better biomarkers for the drug response are needed.  

In conclusion, the known genetic subgroups did not show similar drug response patterns, 

implying the need for new biomarkers for drug response. 
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Figure 18 Visualization of a principal component analysis (PCA) of the DSS values from the high-throughput drug 

screening. DSS values for each drug were not scaled to one variance when the PCA was computed. (A) PCA of all 121 

samples screened. The color of the names was assigned according to the subgroup of each sample. Ellipses display 

the confidence region of the median for each group. (B) PCA of all AML and ALL samples screened. Again colors were 

assigned to each subgroup individually, and the ellipse form displays the confidence region of the median for each 

group.  

A       

B       
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Figure 19 Visualization of a principal component analysis (PCA) of the DSS values from the high-throughput drug 

screening. DSS values for each drug were not scaled to one variance when the PCA was computed. (A) Display of the 

PCA of all ALL, AML, and healthy samples excluding fibroblasts. Colors were assigned according to the sample origin 

(cell line, primary, PDX, or EBV-transformed). Again, ellipses form the confidence region of the median for each 

version. (B) Display of all ALL, AML, and healthy samples excluding fibroblasts with colors according to the plate 

version on which the sample was screened. Again, ellipses form the confidence region of the median for each origin. 

A       

B       
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3.5 Distinct Drug Response Profiles of B-ALL Based on Their Differentiation 

Status 

In the search for biomarkers to more accurately predict the drug response, a lineage-specific 

profile could be noticed by looking at the HTDS profiles of the healthy cells in Figure 17 and more 

clearly in Figure 24. Moreover, CD34-positive HSPCs showed a very different profile. Thus, 

suggesting an influence of both lineage and differentiation status on the drug response. To test 

whether this hypothesis could be transferred to B-ALL samples and could therefore represent a 

biomarker for drug response, the FACS profiles of leukemic cell lines screened on the library 

were researched in the DMSZ database. Groups large enough for statistical analysis could be 

generated for two markers. These two markers were CD13 and cytoplasmatic IgM. CD13 is 

generally considered a myeloid marker and symbolizes an earlier differentiation state of 

lymphoblastic blasts. In comparison, cytoplasmatic IgM expression is a marker of immature B-

cells. Both markers were searched for on B-ALL samples and cell lines using FACS. Accordingly, 

the HTDS data was analyzed. 

3.5.1 CD13-positive B-ALLs are Sensitive to FLT3 Inhibitors 

The CD13 expression was measured with flow cytometry, and signals of 103.1 were 

considered positive. Of the 26 B-ALL cell lines and PDX samples tested, five were positive, 17 

were negative for CD13, and three showed ambiguous results and were excluded from further 

analysis. To search for potential differences in drug response, a non-parametric Mann-Whitney-

U test was conducted. A correction for multiple testing was not performed, as new hypotheses 

were meant to be generated. As there were findings where only one drug of a class showed a 

difference in response, it was considered more susceptible to a type I error. In contrast, results 

with multiple drugs of one target or pathway were seen as more promising. Furthermore, all 

FLT3 targeting drugs included in the analysis showed increased activity in the CD13-expressing 

samples. Thus, suggesting a specific target for these drugs in CD13-positive B-ALLs. Furthermore, 

downstream targets of FLT3 also seemed upregulated. MTOR inhibitors Everolismus, 

Rapamycin, Temsirolimus, and JAK inhibitors like Momelotinib or Gandotinib, and the drugs 

targeting the RAS/RAF/MEK/ERK pathway Tipifarnib, Sorafenib, Regorafenib, all showed an 

increased response. Lastly, other kinase inhibitors described to inhibit FLT3, like Ponatinib or 

Fedratinib displayed a higher DSS value.  

In conclusion, these data suggest an increased vulnerability either towards FLT3 directly or 

downstream targeting drugs for ALL of earlier precursor origin, expressing CD13. 
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Figure 20 Bar graphs of the representative drugs that showed higher DSS values for samples expressing CD13. P-

values were calculated with a Mann-Whitney U test. (p<0.05=*, p<0.005=**) 

3.5.2 Cytoplasmatic-IgM-positive B-ALLs are Sensitive towards Classical 

Chemotherapy 

The cytoplasmatic IgM (cyIgM) expression was also measured with FACS analysis. Moreover, 

intracellular staining was performed on B-ALL samples with five positive; 14 were determined 

negative, and seven showed ambiguous data. A Mann-Whitney-U-test without Bonferroni-Dunn 

correction manifested 5-Azacytidine as a potential candidate. Furthermore, other classical 

chemotherapeutics like antimetabolites, antimitotics, and topoisomerase inhibitors showed an 

increased response. CD13-positive cells showed decreased vulnerability to Idarubicin. The more 

differentiated cyIgM-expressing cells displayed higher DSS values for all topoisomerase 

inhibitors. Some TKIs were also calculated as possible treatment options. These included the 

PI3Ki Dactolisib, the JAKi AT9283, and the TKis Bosutinib, Dasatinib, and Saracatinib. Moreover, 

four drugs targeting the RAS/RAF/MEK/ERK pathway presented increased DSS value, suggesting 

a potential therapeutic option for this kind of leukemia. Lastly, Paclitaxel, Bexarotene (retinoid 

inhibitor), Homoharringtonine (ribosome inhibitor), and two PARP inhibitors (Olaparib, 

Rucaparib) were all revealed as potential hits.  

Therefore, a more differentiated status of the leukemic blasts could be targeted by applying 

classical chemotherapeutics and different kinase inhibitors. 
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Figure 21 Bar graphs of the representative drugs that showed higher DSS values for samples expressing 

cytoplasmatic IgM. P-values were calculated with a Mann-Whitney U test. (p<0.05=*, p<0.005=**, p<0.0005=***) 

3.6 Possible Combinations 

As modern chemotherapy consists of multidrug regimes, potential drug combinations are 

searched for. Thus, a Spearman correlation for all ALL samples together was performed. Only a 

high correlation (>0.5) was accepted as a potential combination. Therefore, here are only hits 

with high correlations with multiple drugs of one target reported. The mentioned combinations 

are not synergistic but more likely to be active in the same samples. A simplified overview of the 

correlations between drug classes can be found in Figure 22, but Spearman correlation 

coefficients are displayed lower as the average for each drug class was computed. 

3.6.1 Classical Chemotherapeutics 

One might expect classical chemotherapeutics to present with a high correlation to each 

other. However, this could only be partially observed. In particular, antimetabolites correlated 

strongly with antimitotics and topoisomerase inhibitors. Regarding targeted inhibitors, 

antimitotics and Polo-like kinase displayed the best correlation. For all topoisomerase inhibitors, 

Homoharringtonine was found to be the best correlative drug.  

3.6.2 Targeted Inhibitors 

Interestingly, no strong negative correlation could be found. This could be a surprise, as one 

could expect an upregulation of one pathway if the other is downregulated. Thus, the drugs 
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against the first would show increased activity, while the second would be more resistant, 

resulting in a negative correlation. Anyhow, Aurora A inhibitors strongly correlated to drugs 

targeting Polo-like kinase and ATM/ATR. FLT3 inhibitors displayed a high Spearman coefficient 

to the multikinase inhibitor Staurosporin. Lastly, kinase inhibitors targeting different pathways 

show a low correlation to other drugs, as they often showed very different activity even within 

one sample. 

 

Figure 22 Correlation matrix of the Spearman correlation of all drugs and ALL samples. The Spearman correlation 

coefficient was averaged for each compound class. Only high correlations with a Spearman R over 0.5 were accepted 

as a potential combination. The number of compounds in each class is labeled behind the name of the compound 

class. 

  



Results 

 65 

3.7 Subgroup Analysis 

This analysis intended to find new possible drugs to repurpose for certain high- and medium-

risk ALL subgroups. Although this thesis could demonstrate a low correlation between the 

established subgroups and their drug response, the analyses only considered the broad-

spectrum drug response. Therefore, single drugs or drug classes only represented by a few drugs 

in the used library could still be a possible candidate to treat these high- and medium-risk 

subgroups more effectively. To increase the certainty of the results a three-step approach was 

taken, as can be seen in Figure 23. First, subgroups are compared to healthy samples to find 

drugs with a therapeutic window. Secondly, samples are compared to each other. As a result, 

drugs that show specific effects for one subgroup are detected. At last, the results of the first 

two steps are compared to find the best drugs for each subgroup. 

 

Figure 23 Overview of the analysis of the high- and medium-risk subgroups of acute lymphoblastic leukemia. 

First, the least toxic drug is searched for by comparing each sample to healthy controls. The most specific drug is 

defined by comparing each subgroup to the others and searching for drugs that show increased activity in one 

subgroup compared to the others. At last, both analyses are compared to find the potentially least toxic and most 

specific drugs for each subgroup. 

3.7.1 Determining Drug Response Profiles of Healthy Controls  

3.7.1.1 HTDS Profiles of Different Healthy Cells Reveal a Cell-Type-Specific Response 

As described above, various healthy samples were drug screened to indicate potential toxic 

effects for each drug. However, since severe and life-threatening adverse events are often in 
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connection to myelosuppression, and not all tissues are available or could be managed to be 

screened, the focus was set on blood cells. As acute leukemias are dysregulated blood 

progenitor cells, these tissues are the most interesting for a direct comparison. Thus, healthy 

PBMCs, T-cells, EBV-immortalized B-cells, and CD34-positive HSPCs from healthy donors were 

screened. In addition, the healthy fibroblast tissues that had already been screened were 

included in this analysis. As the number of fibroblast samples would have overshadowed the 

other samples, Figure 24 only displays the mean values for each drug. Interestingly, it can be 

immediately noticed that HSPCs showed the most sensitive phenotype. This was unexpected, as 

HSPCs typically offer a very resistant phenotype, allowing chemotherapy to kill tumor cells while 

sparing healthy stem cells. However, as these HSPCs differentiate and proliferate, they become 

susceptible to chemotherapy. Nevertheless, despite being the most sensitive entity overall, 

there were a few drugs, for example, Venetoclax – a BCL-2 inhibitor – and QNZ– an NF-kappaB 

inhibitor, for which the CD34-positive HSPCs were resistant. Then again, PBMCs and T-cells 

displayed a similar drug profile, while B-cells and fibroblasts were clustered together. B-cells 

showed the most heterogeneous profile of the different cell entities. The methodical EBV 

immortalization cannot be ruled out as an interference factor. Moreover, the B-cell sample “3” 

was the most resistant, while the B-cell sample “1” was the most sensitive B-cell line. Although 

B-cell sample “4” was displayed in the heatmap for completeness, it was excluded from further 

analysis since our collaborators found a hyperdiploid chromosomal set in other experiments. It 

is uncertain whether PBMCs grew during the HTDS, but T-cells, B-cells, and CD34-positive HSPCs 

proliferated in vitro.  

Concluding, healthy cells of different cell types show a unique drug response profile in the 

HTDS. Surprisingly, the CD34-positive HSPCs showed the most sensitive profile. 
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Figure 24 Heatmap visualization of the DSS values from the drug screenings of healthy samples. Only the 50 

drugs with the highest variance were plotted. The Data for the PBMCs are mean values of three replicates, while the 

fibroblast equals the mean value of 51 samples. The boxplot again shows the distribution of DSS values with the 

highest and lowest scores marked by the whiskers. A color code for the cell type was added to the left. 

3.7.1.2 Comparison of High- and Medium-Risk Subgroups against Healthy Samples 

Reveal Drugs with a Possible Therapeutic Window 

A value for each drug was calculated as a reference from the screenings of healthy 

samples. This was done using the highest value for each drug of the screenings of PBMCs, T-

cells, B-cells, and CD34-positive cells. This approach is very conservative. However, taking the 

mean or median would not have made sense, as these samples responded differently for each 

drug. The resulting reference DSS values are then subtracted from each sample individually, 

thereby calculating the differential DSS (dDSS). A separate one-sample Wilcoxon test with zero 

as the hypothetical value was conducted for each subgroup and drug. A relevant effect was 

assumed if the dDSS was above 10 points. The results can be seen in Figure 25. 
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Figure 25 Graph displaying the results of the One-Sample Wilcoxon test. All compounds with a p-value <0.05 are 

shown, except for the BCR-ABL1 subgroup where all compounds with a median over zero are shown. The error bars 

show the 95%-confidence interval of the median. The x-axis displays the differential drug sensitivity score (dDSS) 

between the samples of each subgroup subtracted with the highest value of the healthy controls for each compound. 

A negative dDSS would mean a higher toxicity towards healthy than leukemia cells and therefore, the drug would be 

classified as toxic. A dDSS over zero would predict a potential therapeutic window for this drug, as the anti-leukemic 

effect is higher than the toxic effect against healthy cells. 
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In the BCR-ABL1 subgroup, 19 drugs presented no response in all samples. Therefore, no 

test was computed for them. The remaining 151 drugs were not significantly different from zero. 

However, due to the low number of samples, drugs with an actual median of over zero were 

also looked at. All nine TKi showed an increased response compared to the healthy samples as 

a proof-of-concept. Moreover, the 95% confidence interval for only two of the nine drugs 

included zero. At the same time, six of them proposed a relevant effect with the confidence 

interval exceeding the threshold of ten DSS points. Aside from the TKis, one Aurora Kinase 

inhibitor and one PARP inhibitor had a median over zero. 

Eighteen drugs showed no response in T-ALL samples, so no test was calculated. Fifty-three 

drugs did not significantly differ from zero, while 99 did. However, of these 99 drugs, only four 

showed higher sensitivity in the T-ALL samples. Included in these are two HDAC inhibitors 

(Belinostat, Quisinostat), one Proteasome inhibitor (Carfilzomib), and at last, an AKT inhibitor 

(Ipatasertib). All drugs except for Carfilzomib showed a possible relevant effect of ten DSS points. 

Two drugs (Belinostat and Ipatasertib) included negative values in their 95% confidence interval, 

suggesting a potential toxic effect. 

While all KMT2Ar samples did not respond to 21 drugs, 101 significantly deviated from zero 

in at least one sample. However, only ten drugs were superior in the activity in the KMT2Ar 

samples compared to the healthy control samples. Again a total of five HDAC inhibitors were 

found in that list. The effect compared to healthy probes was also considered possibly relevant, 

as all included the threshold of ten DSS points in the 95% confidence interval. Interestingly, this 

subgroup also seems vulnerable to glucocorticoids. Carfilzomib was already detected in the T-

ALL subgroup as a potential treatment option and presented activity in the KMT2Ar group as 

well. The remaining two drugs included one CDK7 inhibitor and one ERK inhibitor.  

In the TCF3-PBX1 subgroup, no test could be computed for 21 samples, as no response was 

seen. Moreover, of the 83 significant drugs, only four presented with a positive actual median. 

Interestingly, the two subgroups these four drugs belong to are the glucocorticoids on one side 

and the HDAC inhibitors on the other.  

In the Ph-like group, only one of these drugs demonstrated a higher response in Ph-like ALL 

than in the controls. This drug was again Carfilzomib. Nevertheless, the effect measured with 

the 95% confidence interval did not suggest a relevant effect of ten DSS points.  
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The TCF3-HLF1 subgroup showed a positive actual median for 13 drugs, but the 95% 

confidence interval could not exclude the null hypothesis. A reason for this could be the low 

overall number of samples in this group.  

3.7.2 Comparing Subgroups to each other Reveals the most Specific Drugs 

In the search for more specific targets or treatment options, a score was calculated for each 

drug and subtype by awarding one point for every significant Mann-Whitney-U test between 

the subgroups. Therefore, higher scores suggest a more specific target for the investigated 

subgroup. The highest possible score is 5. The best hits for each subtype can be seen in Figure 

26. 
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Figure 26 Heatmap displaying the score calculated by Mann-Whitney-U-tests. For each significantly higher DSS 

value between the subgroups was assigned one point for the specific drug and subgroup. Therefore, a higher score 

or a darker red in the heatmap resembles a higher specificity for that subgroup. Only drugs with a score of 3 or higher 

for at least one subgroup are displayed here. The color annotation shows the mechanisms of action for each drug. 
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As a proof-of-concept, all TKis presented with high scores, as seven of nine compounds 

achieved a score of four and the other two a score of three. However, the best hit for this 

subgroup was an experimental SHP2 inhibitor (SHP099). Other drugs targeting the same proteins 

or pathways scored three points (Regorafenib) or one point (Dabrafenib, Sorafenib, Binimetinib, 

Pimasertib), respectively. Nevertheless, the small sample size of this group could have biased 

these scores and reduced their validity. 

For the T-ALL group, the most specific target was the Polo-like kinase, as both inhibitors 

included in the analysis had the highest score for this subgroup with three points. Both BCL-2 

inhibitors and drugs targeting the PI3K/AKT/mTOR or RAS/RAF/MEK/ERK pathway showed high 

specificity for one drug (three points), while others of the group only scored one point. 

Interestingly, drugs currently used in treatment, such as Methotrexate or Vincristine, as well as 

other drugs from their groups, scored two points and, therefore, medium specificity.  

The most specific hits for KMT2Ar ALL included FLT3 and growth hormone receptor 

inhibitors, as Sunitinib and Gilteritinib scored the highest possible value. Other drugs with the 

same target also presented high specificity. Other potential candidates included HDAC and 

kinase inhibitors targeting the JAK/STAT and PI3K/AKT/mTOR pathway. 

The best results for the TCF3-PBX1 samples were achieved by the topoisomerase inhibitors, 

as well as other classical chemotherapeutics like antimetabolites and antimitotics. Moreover, 

the samples demonstrated a vulnerability against kinase inhibitors, as Staurosporine had one of 

the highest scores, and other TKis also presented with lower scores. Lastly, HDAC and BET 

bromodomain inhibitors scored low to medium-high values.  

Both the Ph-like and TCF3-HLF1 samples showed a very resistant drug response. Therefore, 

the highest score achieved by both subgroups was two. The best result of the Ph-like group was 

the BCL-2 inhibitor Venetoclax. Several Aurora kinase inhibitors scored two points for the TCF3-

HLF1 subgroup. 

3.7.3 Least Toxic and Most Specific Drugs for each Subgroup 

In this step, both prior analyses are combined. Thus, the most specific and possibly least 

toxic drug is identified. 
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3.7.3.1 BCR-ABL1 

As expected, the combined strategy once again demonstrated that TKIs exhibit excellent 

specificity against the BCR-ABL1 subgroup, with minimal toxicity against the healthy control 

group. (see Figure 27A). Furthermore, MK-5108, an Aurora A inhibitor, presented with a score 

of two compared to other cell lines while predicting a possible treatment window, although 

toxicity could not be ruled out (see Figure 27B). On the contrary, the SHP2 inhibitor (SHP099), 

identified as the most specific hit in the BCR-ABL1 subgroup from the previous strategy, 

exhibited significant toxicity when tested against healthy samples. Nevertheless, directing 

efforts towards targeting SHP2 could hold promise as an approach for combating BCR-ABL1 B-

ALL cells, although there may be a requirement for enhancing its toxicity profile. 
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Figure 27 Violin plot of the three best drugs for both analyses for the BCR-ABL1 subgroup. The y-axis represents 

the drug response using the drug sensitivity score. A higher value means higher sensitivity. On the x-axis, each 

subgroup is represented and each subgroup has an individual color. The global p-value using a Kruskal-Test is given 

in the top right corner of the graph. Pairwise comparison was performed with a Wilcoxon test and corrected with the 

Bonferroni method. Only p-values < 0.05 are displayed on the graph. (A) Violin plot of the tyrosine kinase inhibitor 

(TKi) Ponatinib.  (B) Violin plot of the Aurora A inhibitor MK-5108.  
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3.7.3.2 T-ALL 

The Polo-like kinase inhibitors presented the most prominent treatment option for this 

group, as they scored the highest points compared to other subtypes and – although not 

significantly – even demonstrated a possible therapeutic window (see Figure 28A-B). However, 

further research must investigate whether the toxicity is manageable and whether the effect is 

worth it. Moreover, the BCL-2 inhibitor Obatoclax could also display an option, as the score was 

high, and a positive effect compared to healthy samples could not be ruled out. The currently 

used antimitotic Vincristine was also found as a target. Less specific but still suitable options 

included HDAC and Proteasome inhibitors. 
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Figure 28 Violin plot of the three best drugs for both analyses for the T-ALL subgroup. The y-axis represents the 

drug response using the drug sensitivity score. A higher value means higher sensitivity. On the x-axis, each subgroup 

is represented and each subgroup has an individual color. The global p-value using a Kruskal-Test is given in the top 

right corner of the graph. Pairwise comparison was performed with a Wilcoxon test and corrected with the Bonferroni 

method. Only p-values < 0.05 are displayed on the graph.  (A) Violin plot of the PLK inhibitor Volasertib. (B) Violin plot 

of the PLK inhibitor BI2536.  
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3.7.3.3 KMT2Ar 

Although KMT2Ar leukemias seemed to have specific vulnerabilities to growth factor and 

FLT3 targeting drugs, both groups of drugs could not achieve higher DSS values in the blasts than 

the healthy samples (see Figure 29A). Either the drugs need to be more specific, or these 

proteins could not be as crucial for blast survival in this group. In contrast, HDAC inhibitors 

showed medium to high specificity and positive median values for the dDSS. Hence, this specific 

subgroup, with a notable mention of the drug Entinostat, emerged as a promising potential 

target (see Figure 29B). Notably, Proteasome inhibitors and glucocorticoids displayed lower 

scores but exhibited increased effectiveness against KMT2Ar leukemia cells compared to healthy 

controls. 
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Figure 29 Violin plot of the three best drugs for both analyses for the KMT2Ar subgroup. The y-axis represents 

the drug response using the drug sensitivity score. A higher value means higher sensitivity. On the x-axis, each 

subgroup is represented and each subgroup has an individual color. The global p-value using a Kruskal-Test is given 

in the top right corner of the graph. Pairwise comparison was performed with a Wilcoxon test and corrected with the 

Bonferroni method. Only p-values < 0.05 are displayed on the graph. (A) Violin plot of the FLT3 inhibitor Lestaurtinib. 

(B) Violin plot of the HDAC inhibitor Entinostat. 
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3.7.3.4 TCF3-PBX1 

Interestingly, the HTDS identified classical chemotherapeutics like antimitotics, 

antimetabolites, and anthracyclines as the best hits for both analyses (see Figure 30A-B). 

However, targeted approaches with HDAC inhibitors, BET bromodomain inhibitors, PARP 

inhibitors, and Bosutinib seemed promising.  
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Figure 30 Violin plot of the three best drugs for both analyses for the TCF3-PBX1 subgroup. The y-axis represents 

the drug response using the drug sensitivity score. A higher value means higher sensitivity. On the x-axis, each 

subgroup is represented and each subgroup has an individual color. The global p-value using a Kruskal-Test is given 

in the top right corner of the graph. Pairwise comparison was performed with a Wilcoxon test and corrected with the 

Bonferroni method. Only p-values < 0.05 are displayed on the graph. (A) Violin plot of the antimitotic Vincristine. (B) 

Violin plot of the anthracycline Daunorubicin. 
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3.7.3.5 Ph-like 

The comparison to healthy samples as well as to other subtypes, the Ph-like group displayed 

a heterogenous phenotype with an overall resistant drug response. Therefore, only two drug 

classes with low specificity and possibly fewer toxic effects could be identified. These are the 

HDAC and Proteasome inhibitors. Furthermore, MLN-9708 (Proteasome inhibitor) and CI-994 

(HDAC inhibitor) promised the best compromise of toxicity and specificity.  

3.7.3.6 TCF3-HLF1  

The only overlap for this subtype was for three TKis, Bosutinib, Bafetinib, and Rebastinib. 

However, once again, the low sample size demonstrated an issue in finding more and better 

targets for this subtype.  
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4 Discussion 

Within this thesis, new treatment options for high-risk ALL using HTDS were presented. The 

screening was done with commercially available leukemia cell lines and patient-derived 

Fibroblast and leukemia samples.  

4.1 Acute Lymphoblastic Leukemia Model 

Commercially available cell lines are easy to culture and robust to external factors, 

predisposing them for the use of drug target finding. Even more, multiomics data is widely 

available for these samples, allowing the connection of multiple layers of phenotypical 

screenings. However, a study comparing gene expression data of the NCI-60 cell lines and 

patient-derived glioblastoma samples could detect differences between both groups. Thus, 

questioning the sole use of commercially available cell lines for disease modeling [140]. 

Furthermore, the necessity of long in vitro cultivation could have an impact on its own, as new 

genetic mutations occur over time [141, 142]. Patient-derived leukemia samples, in contrast, 

recapitulate different aspects of the original disease. These include the preservation of clonal 

heterogeneity, genetic profiles, and other characteristics such as growth, disease outcome, and 

even metastasis in solid tumors [143-146]. Even during the in vitro culture of patient-derived 

samples, the self-renewal and leukemia-initiating potential is preserved [147]. However, these 

methods are time-consuming, and the culture is often unsuccessful. Since only successful in vitro 

cultured samples were implemented on this pipeline, a survivorship bias must be considered. 

However, implementing freshly available PDX and primary samples counteracted this to a 

certain degree. Although both models have advantages and disadvantages, integrating both can 

complement each other. At best, this results in a more diverse and hopefully more clinically 

relevant model [144]. 

4.2 High-Throughput Drug Screening 

HTDS also has its limitations. The integration of routine in vitro drug sensitivity screenings in 

treatment protocols was done with varying success in different studies. The German CoALL 07-

03 study displayed a low correlation between the in vitro and in vivo drug response [148]. The 

long-term outcome and response in the predecessor study CoALL 06-97 came to a similar result. 

With the short-term response looking promising, the long-term response correlated low with 

the in vitro response [149]. Thus, in vitro drug testing was abolished for future trials. In both 

studies, only chemotherapeutics currently used in treatment protocols were tested. In contrast, 
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a trial implementing drug testing and other molecular profiling to tailor individualized and 

targeted treatments for relapsed and refractory acute myeloid leukemias could induce clinical 

response [150]. Even though long-term remission was not achieved, this data encourages 

applying in vitro drug sensitivity scoring to finding new targets, at least in relapsed and refractory 

leukemia. Other studies tried to implement Drug Sensitivity Scoring into clinical decision-making 

with more success. SpheroNeo – a study about breast cancer –and others investigating 

hematologic malignancies could translate their in vitro results into treatment approaches [125, 

150-152]. A recent study analyzing retrospectively over 800 samples of children with ALL could 

demonstrate correlations between in vitro drug response and clinical outcome [153]. 

Nevertheless, the evidence for implementing this technique as a diagnostic test for single 

patients is insufficient, while potential could be in introducing targeted inhibitors into regular 

clinical use. However, this method has not only been used for treatment stratification of 

individual patients but was also successful in finding new possible targets for subgroups or 

diseases.  

Looking at the hallmarks of cancer proposed by Hanahan and Weinberg, Tognon et al. 

describe the limitations of different methods comprehensively [119, 154]. With the methods 

implemented in this thesis, the categories proliferation, replicative immortality, and evading cell 

death could be investigated. However, invasion into other tissues – such as the CNS –, genetic 

instability, immune evasion, and deregulated metabolism could not be addressed. Furthermore, 

toxicity, tolerance, and pharmacological properties in vivo, such as admission, distribution, 

metabolism, and excretion, could not be modeled. Moreover, drug effects caused by immune 

modulation cannot be modeled with the method used in this thesis. The tumor-

microenvironment also impacts drug response and is not studied in this thesis [155]. Thus, here 

described targets need further validation by biomolecular assays, higher sample sizes for each 

group, and, most importantly, in vivo xenograft models.  

4.3 Protocols for Culturing Healthy Samples for HTDS 

This study implemented a modified protocol from Yost et al. They described the expansion 

of T-cells in vitro [132]. The HTDS of PBMCs and T-cells presented a similar drug response profile 

in this thesis. As the amount of PBMCs declines over time, the time point for the HTDS executed 

in this paper could have been chosen too early, and the number of T-cells could have been higher 

than initially measured. Moreover, by modifying the protocol published by Kraus et al. CD34-

positive HSPCs could be isolated and expanded [156]. Existing protocols for the study of 

hematotoxicity show a high correlation with clinical response [157, 158]. Nevertheless, the 
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HSPCs had the most sensitive drug response profile of all healthy cells in this thesis. This was 

counterintuitive, as they usually are very resistant, thus allowing chemotherapy to eradicate the 

malignant cells while sparing the HSPCs. An essential mechanism for chemotherapy resistance 

of HSPCs is quiescence. This G0 cell cycle state is carefully regulated, impacting several cell 

functions [159]. Important for this state, as well as regeneration of HSPCs after stress, were 

found to be megakaryocytes [160]. As these are not present in the in vitro culture and the HSPCs 

were activated, proliferated, and partially differentiated in vitro, these protective functions 

could have gotten lost. Another theory could be that the origin of the HSPCs impacted the drug 

response. No difference between cord blood-derived HSPCs – as used here – and adult mobilized 

HSPCs concerning the FasL-mediated cell death and downstream targets were reported [161]. 

But other distinctions cannot be ruled out and must be tested in the future. In summary, these 

cells could represent the fast-proliferating common progenitor into which HSPCs differentiate 

more accurately. These cells are mainly affected by chemotherapy and cause severe side effects 

if depleted. In addition, implementing healthy controls into the HTDS of tumor samples is an 

effective way of evaluating the toxicity of anticancer drugs [162]. It is a strength of this work. 

However, the focus of the healthy samples remained on blood cells. Other organ systems as the 

liver, myocardia, neural system, kidney, and epithelia, needed to be evaluated for a more holistic 

view.  

4.4 Fibroblast HTDS 

This work proposed an analysis to convert the HTDS data of fibroblasts into a quinary code 

(resistant outlier, resistant, normal response, sensitive, sensitive outlier). In future steps, these 

results were meant to be combined with Whole Exome Sequencing data for the fibroblasts and 

clinical data of the patients. Exploring the influence of mutations in fibroblasts seems tempting 

since the mutational burden is lower than in malignant cells carrying complex karyotypes and 

aberrations. Furthermore, fibroblasts are easy to obtain and culture in vitro. 

In a proof-of-concept experiment, the results of the HTDS performed on the fibroblasts 

could not be replicated on the HEK293T cell line. This cell line, however, has a near triploid 

karyotype which could have affected the drug response as well. In addition, RAD21 

overexpression has been shown to have an impact on itself. Thus, the model has strong 

weaknesses. This highlights the importance of investigating mutational effects on drug response 

in different cell models and tissue types.  
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4.5 Fibroblast Drug Screening and Clinical Data 

This thesis includes a study on the connection between in vitro and clinical drug toxicity. 

There was no correlation between the in vitro drug response of healthy tissue and the frequency 

or severity of adverse events in the respective patient. 

Only three of the five drugs examined showed a cytotoxic influence on the fibroblasts. 

Prednisone and Methotrexate did not induce apoptosis in fibroblast in this thesis. In general, it 

is unlikely that Prednisone could have a cytotoxic effect on fibroblasts, but Methotrexate should 

have. A possible explanation could be the enrichment of folic acid in the culture media. Folic 

acid acts as an antidote to Methotrexate, rescuing cells. By reducing the concentration of folic 

acid in the media, in vitro models to study Methotrexate toxicity have been described [163]. 

These technical limitations create a bias, which could have affected the correlation. 

Regarding the clinical data, difficulties were faced when defining and measuring toxicity. 

While different drugs can lead to a range of adverse effects, the challenge arises when these 

compounds are combined in a treatment regimen, making it difficult to attribute a specific 

toxicity to the particular drug responsible. Thus, several toxicities of different organ systems had 

to be compared and quantified. Moreover, as the clinical data were analyzed retrospectively, 

the number of records varied heavily between patients. Thus, a bias cannot be ruled out by 

patients or parents who consult the ambulance for different degrees of toxicities. Accordingly, 

some patients will visit the hospital when experiencing slight adverse effects, while others will 

wait longer or seek advice from a resident pediatrician. 

With the above-described challenges, no correlation could be found between the clinical 

and experimental data. A similar approach to modeling donor-specific, broad-spectrum 

toxicities in an oncological cohort has not been published yet. Nevertheless, two studies could 

recapitulate cardiac response to drugs in vitro on healthy donors [164, 165]. One study was 

published following a similar approach but investigating the cardiac side effects of Doxorubicin 

in a breast cancer cohort [166]. All these studies could identify a connection between in vitro 

and clinical data but were questioned by Blinova et al. Blinova et al. failed to recreate the first 

two papers with a randomly selected healthy cohort [167]. Compared to the presented 

experiments, these authors used induced pluripotent stem cells, which were then differentiated 

into cardiomyocytes. Therefore, the cells affected by the adverse reactions were also tested in 

the experiments, as opposed to simulating toxicities of various organ systems and tissues with 

one cell type, like fibroblasts. Although it still stands to question whether clinical toxicity can be 

reproduced or predicted by personalized in vitro drug screening, further experiments should 
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focus more on one organ system or tissue at a time. This could be a promising approach as 

myelotoxicity is often observed during chemotherapy and is relatively simple to measure. 

4.6 Drug Response Profiles of ALL Subgroups 

Contrary to the assumption that the samples would group according to their subtype, in the 

unsupervised clustering of all HTDSs, the samples didn´t. A recently published multiomics 

approach also described this finding. They could detect a high concordance in drug screening 

and mass spectrometry clustering, but the correlation towards the RNA sequencing was low. 

[168]. In addition, a study published by the St. Jude Children's Hospital investigated the drug 

response of over 800 patients to 18 drugs. They also described a low correlation between 

genetic subtypes and their drug response profile [153]. This thesis complements these findings 

by demonstrating similar results with fewer samples but a more extensive library of drugs. 

Further, this underlines the need for new predictive biomarkers for drug response. HTDS can 

play a crucial method in this search. 

4.7 Differentiation and Drug Response 

Earlier studies demonstrated a connection between drug response and the differentiation 

stage in the myeloid and the lymphoid lineage [169-171]. As flow cytometry is a widely available 

method and plays a central role in diagnosing leukemia, it seems reasonable to investigate these 

markers with respect to drug response.  

4.7.1 CD13 Expression in B-ALL 

This work evaluated the connection between the myeloid marker CD13 and drug response. 

Earlier studies in T-ALL showed reduced cytotoxic effect of Daunorubicin and Azacytidine if CD13 

is expressed on blasts [172]. The impact of expressing myeloid antigens such as CD13 on the 

clinical outcome of patients is debated in the literature. On the one hand, many studies suggest 

no significant or relevant association between the co-expression of myeloid markers on B-ALL 

and the outcome of the patient [173-176]. On the other hand, a few trials identified CD13 

expression as an independent risk factor for poorer outcomes [177-180]. These studies have 

focused mainly on pediatric cohorts. CD13 was accepted more mutually in adult patients as an 

indicator for a worse outcome [181, 182]. Although the clinical significance of CD13 expression 

remains unclear, Saxena et al. detected CD13 also in healthy B-cells. This marker was shortly 

expressed by B-cells maturing from the pre-B to the immature B-cell stage [183]. Likewise, they 

found CD13 expression negatively correlated with cytoplasmatic IgM expression, with no sample 
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co-expressing both markers. Taking together, this data suggests that leukemogenesis takes part 

at an earlier differentiation stage as CD13 is expressed.  

The data of this thesis proposes FLT3 as a possible target for this subset. Moreover, 

pathways that are downstream targets of FLT3 displayed a vulnerability in CD13 expressing B-

ALLs in this work, underlining the possibility of targeting this subset effectively. Early T-cell-

precursor ALLs expressing CD13 have been shown to harbor FLT3 mutations often [184]. In 

summary, CD13 expression in B-ALL could correlate with a more immature B-cell status and 

implies the use of kinase inhibitors, which should be investigated in further studies.  

4.7.2 cyIgM Expression in B-ALL 

Besides CD13, cytoplasmatic IgM expression and its correlation to drug response were 

investigated. As described above, Saxena et al. proposed cyIgM expression as a more mature 

marker of B-cell development [183]. Moreover, pre-B-cell leukemia was first characterized in 

1978 with the unique immunophenotype of cytoplasmatic IgM expression [185]. Other authors 

also suggest cyIgM as a marker for pe-B-ALLs [186]. As the presented data suggest a higher 

sensitivity towards classical chemotherapeutics, a better outcome would be expected. While the 

first describer claimed these patients responded well to chemotherapy, other authors could not 

prove this hypothesis [185, 187]. Nevertheless, this biomarker could mark a subset of ALLs that 

responded well to current treatment and should be further investigated. If this theory cannot 

be upheld, the investigation of kinase inhibitors targeting especially the RAS pathway as an 

alternative could be explored.  

Concluding, here presented are two immunophenotype markers that demonstrated a 

possible relationship between differentiation and drug response. Flow cytometry is robust and 

relatively cost-efficient compared to sequencing and other methods. Therefore, the correlation 

between immunophenotype and drug response should be investigated further. 

4.8 New Agents for High- and Medium-Risk ALLs 

This thesis presented new potential therapeutic options for high- and medium-risk subtypes 

of ALL. 

4.8.1 BCR-ABL1 

The BCR-ABL1 subgroup was used as a proof-of-concept group. Nevertheless, the statistical 

value is limited by their sample size, which is very small (n=3). This can be seen as a weakness of 
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the displayed data. The small sample size was also reflected in the statistical analysis, where only 

a few drugs showed a consistent response. These inhibitors have been approved by both the 

FDA and EMA for treating a variety of BCR-ABL1 positive hematologic malignancies and are 

regularly used for that cause. This was seen as a proof-of-concept for the method. The 

experimental SHP2 inhibitor SHP099 has also been effective in this work. The role of SHP2 in the 

leukemogenesis of BCR-ABL1 positive ALL has been well described [188]. Nevertheless, Aurora 

A inhibitors have also been proposed in this thesis  with the sample size restriction  as a possible 

target. Especially the inhibitor MK-0457 was seen as potent in this subgroup [189]. In a phase 

I/II clinical trial, this compound also demonstrated encouraging results regarding response rates 

[190]. A subsequent phase II trial could not validate these findings but was limited by many drop-

out patients [191]. Cheetham et al. proposed an inhibitory effect of MK-0457 on the ABL kinase 

[192]. However, additional assessment and optimization are required for a more comprehensive 

understanding of its potential. 

4.8.2 T-ALL 

Polo-like kinases (PLK) emerged as a promising target for T-ALL in this study. Previous 

research has indicated a proapoptotic effect when the PLK pathway is inhibited, as 

demonstrated in several studies [193, 194]. The only pediatric phase I trial conducted using the 

PLK inhibitor Volasertib failed to demonstrate convincing responses but did not show severe 

side effects [195]. However, this trial only included a small number of ALL patients, while the 

subset of T-ALLs was not published. Other trials in adult cohorts with AML came to similar 

conclusions [51]. In addition, Oliveira et al. could not find an association between prognosis and 

PLK mRNA expression. Even more, the expression was not elevated compared to healthy bone 

marrow samples [196]. Anyhow, the here demonstrated data suggest a possible therapeutic 

window and selective inhibition of T-ALL samples. Therefore, further investigations should be 

conducted. 

BCL-2 has been suggested before as a potent target for T-ALL and other ALL subgroups [123]. 

However, clinical experience in utilizing Venetoclax for T-ALL is limited to case reports or series 

but provides encouraging evidence with good tolerability and response [197, 198].  

This particular subgroup included the largest number of samples included in the screenings. 

However, with only one PDX sample available, it is crucial to validate the observations described 

here with a more extensive set of patient-derived samples. Consequently, additional research is 

warranted to investigate the potential utility of PLK and BCL-2 inhibitors in the context of T-ALL. 
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4.8.3 KMT2Ar 

This subgroup underwent screening with the second-largest sample size, with nearly half of 

these samples originating either directly from patients or as PDX models. Nevertheless, KMT2A 

rearrangements can involve various gene partners, this subgroup exhibits heterogeneity in its 

biological characteristics and drug response.  

FLT3 has been proposed as a target for this high-risk leukemia, as high levels show a dismal 

prognosis [199]. Furthermore, KMT2Ar leukemias display higher levels of FLT3 overall compared 

to other subgroups and were already described as sensitive towards kinase inhibitors [200]. 

However, a recent clinical study could not support the addition of Lestaurtinib to standard 

chemotherapy in general. But sub-analysis revealed a benefit for patients with a sensitivity 

towards Lestaurtinib in vitro [201]. Thus, biomarkers are needed to predict response to these 

drugs. 

The data presented here implied using HDAC inhibitors for several ALL subgroups. It was 

also suggested that KMT2Ar ALL was most specifically inhibited by the compounds. The same 

results were published before and even replicated in mouse models [202-204]. Considering the 

in vitro data indicating the potential for histone deacetylase inhibitors (HDACi) to enhance the 

sensitivity of currently employed drugs, combining these agents appears to be a logical course 

of action. [205]. However, in a recent study, the enthusiasm for combining it with currently used 

agents was reduced by the emergence of severe toxicities. [206]. Thus, new protocols have to 

be created that improve toxicity while still providing a promising improvement of outcome.  

Like the HDAC inhibitors, the Proteasome inhibitors provided evidence for therapeutic use 

in vitro [207]. But toxicities also seemed to restrict the direct clinical implication (NCT02419755, 

NCT02553460) [208].  

Interestingly, most KMT2Ar samples screened for this thesis were sensitive to 

Glucocorticoids. This stands in contrast to publications defining this subgroup as resistant to 

these drugs. Moreover, other authors' proposed sensitivity towards Cytarabine was also not 

observed in this work [94, 95]. 

4.8.4 TCF3-PBX1 

In line with recent clinical findings supporting TCF3-PBX1 as an intermediate risk group, the 

samples were more sensitive to classical chemotherapeutics, such as topoisomerase inhibitors, 
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antimetabolites, and antimitotics, compared to their counterparts with a dismal prognosis which 

were investigated here [92].  

Several kinase inhibitors were proposed in this work. FLT3 inhibitors could have an effect 

through an interaction between HOXA9 and TCF3-PBX1, described in a murine model before 

[209].  

PARP inhibitors showed a good response in this subgroup. These drugs are typically used for 

BRCA1/2 mutated cancers. Smith et al. described an apoptosis pathway activated by the TCF3-

PBX1 oncogene in hematopoietic cells, which resulted in PARP inactivation and was suppressed 

by BCL-2 [210]. Whether this pathway is affected by PARP inhibitors can only be speculated, 

mainly as BCL-2 inhibitors worked well in this group. Another hypothesis is that genomic 

instability mediates PARP sensitivity in acute leukemias [211]. Since compounds targeting PARP 

seem active in vitro, the mechanism should be further explored.  

BET bromodomain and multi-kinase inhibitors, such as Bosutinib, have not been described 

yet with a focus on this subtype. Therefore, these could be noteworthy drugs. 

4.8.5 Ph-like 

With many possible activating kinase alterations, this group is very heterogeneous and 

responds poorly to current therapy regimes [212, 213]. In this thesis, similar results were 

presented. Only a few drugs could be found consistently active against this group. These drugs 

were HDAC and Proteasome inhibitors and therefore did not target any signaling pathways 

directly. Both classes have been described as active against ALL several times but have yet to be 

further investigated with a focus on this subtype [214, 215]. As Bortezomib was newly added to 

the current AEIOP BFM 2017 protocol, clinical data could be available in the future on the 

efficiency of proteasome inhibitors for Ph-like ALLs. Establishing biomarkers for active signaling 

pathways is essential to guide targeted therapies for effectively addressing the heterogeneity 

within this subgroup. 

4.8.6 TCF3-HLF1 

Although the number of samples screened for this subtype was deficient, a recent study 

supports the here described finding of Aurora kinase inhibitors as potent drugs for TCF3-HLF1 

ALLs [216]. In addition, multi-kinase inhibitors such as Bosutinib and Ponatinib have yet to be 

researched further and could be agents for this very rare subtype. 
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4.9 Combinations 

Combinational partners could be suggested by correlating the response of different drugs 

to each other. While this method does not state anything about synergism, additive effect, or 

antagonism, current therapy protocols implement drugs with different targets. This reduces the 

occurrence of resistance by attacking different targets at once. Therefore, to find drugs that 

statistically could work together well, the correlation was computed.  

The most prominent result was that no high negative correlation was found. This opposes 

results indicating divergent pathways in B-cell leukemia [217]. Aside from that, many here 

illustrated correlations were defined as synergistic by other authors, especially for targeted 

therapies in hematological or solid malignancies [218-224]. Larger sample sizes are needed for 

the not-yet-described combinations to uncover potential combinations, and antagonistic effects 

must be ruled out. 

4.10 Closing Remarks and Outlook 

Throughout this thesis, different targeted inhibitors were suggested for high- and medium-

risk ALL. While PLK inhibition specifically targeted T-ALL, FLT3 inhibition showed a good response 

against KMT2Ar ALL. By comparing these responses to a set of healthy controls these results are 

more likely to be sustained in further experiments. Nevertheless, further in vitro and in vivo 

experiments are needed to validate these findings. Moreover, the established subgroups did not 

predict the overall drug response well, highlighting the need for reliable biomarkers for drug 

response. A first experiment suggested surface antigens as possible biomarkers, as CD13 

expression in this B-ALL cohort predicted a FLT3 vulnerability, while cytoplasmatic IgM 

expressing B-ALL were sensitive to classical chemotherapeutics. These results also need further 

validation in different cohorts, while larger studies are needed to suggest further biomarkers. 

Lastly, different combinations of targeted inhibitors and classical chemotherapeutics were 

suggested through the correlation of their response. Further studies are needed to unveil if 

these combinations are beneficial for patients through synergistic effects. 

Concluding, this work investigated different ways of utilizing in vitro HTDS in personalized 

precision oncology. While this method could help implement new targeted therapies into clinical 

practice and reduce side effects in the future, it failed to recreate toxicities in vitro. Moreover, 

this study underlines the need for new and practical biomarkers for drug response to pave the 

way for precision oncology in the daily clinical routine. However, with continued advances in the 



Discussion 

 92 

field of drug screening, future efforts in both approaches could lead to a more effective and 

safer treatment of childhood ALL. 
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6 Appendix 
Supplementary Table 1: Drugs used in the High Throughput Drug Screening consistent over the different versions 

of the library and therefore used for all analyses. Data on whether these drugs are EMA and FDA-approved were 

gathered on the 15th of August 2023 using the website of the BfAM 

(https://portal.dimdi.de/amguifree/am/search.xhtml) or the orange book 

(https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm) respectively. 

 

 

# Drug MoA EMA approved? FDA approved? # Drug MoA EMA approved?FDA approved?
1 5-Azacytidine Antimetabolites Yes Yes 86 Foretinib FLT3i No No
2 5-Fluorouracil Antimetabolites Yes Yes 87 Dovitinib FLT3i No No
3 6-Mercaptopurine (Monohydrate)Antimetabolites Yes Yes 88 Crenolanib FLT3i No No
4 6-Thioguanine Antimetabolites Yes Yes 89 Pexidartinib FLT3i No Yes
5 Clofarabine Antimetabolites Yes Yes 90 Lestaurtinib FLT3i No No
6 Cytarabine (Hydrochlorid)Antimetabolites Yes Yes 91 Quizartinib FLT3i No Yes
7 Cyclocytidine HCL Antimetabolites No No 92 KW-2449 FLT3i No No
8 Fludarabine (phosphate)Antimetabolites Yes Yes 93 Pacritinib FLT3i No Yes
9 Nelarabine Antimetabolites Yes Yes 94 Gilteritinib FLT3i Yes Yes
10 Gemcitabine Antimetabolites Yes Yes 95 Buparlisib PI3K/AKT/mTORi No No
11 Methotrexate Antimetabolites Yes Yes 96 Idelalisib PI3K/AKT/mTORi Yes Yes
12 Pentostatin Antimetabolites Yes Yes 97 Pictilisib GDC-0941 PI3K/AKT/mTORi No No
13 Cladribine Antimetabolites Yes Yes 98 GSK2636771 PI3K/AKT/mTORi No No
14 Dacarbazine Antimetabolites Yes Yes 99 Alpelisib PI3K/AKT/mTORi Yes Yes
15 Vinblastine (sulfate) Antimitotics Yes Yes 100 Dactolisib (BEZ235) PI3K/AKT/mTORi No No
16 Vincristine (sulfate) Antimitotics Yes Yes 101 GSK2110183 (Afuresertib) PI3K/AKT/mTORi No No
17 Busulfan Alkylating agents Yes Yes 102 ARQ-092 (Miransertib) PI3K/AKT/mTORi No No
18 Carmustine Alkylating agents Yes Yes 103 Ipatasertib (GDC-0068) PI3K/AKT/mTORi No No
19 Cyclophosphamide (Clafen) (Monohydrate)Alkylating agents Yes Yes 104 Deforolimus PI3K/AKT/mTORi No No
20 Lomustine Alkylating agents Yes Yes 105 Everolimus PI3K/AKT/mTORi Yes Yes
21 Cisplatin Alkylating agents Yes Yes 106 Rapamycin PI3K/AKT/mTORi Yes Yes
22 Oxaliplatin Alkylating agents Yes Yes 107 Temsirolimus PI3K/AKT/mTORi Yes Yes
23 Procarbazine (Hydrochloride)Alkylating agents Yes Yes 108 PF-04691502 PI3K/AKT/mTORi No No
24 Thio-TEPA Alkylating agents Yes Yes 109 INK 128 (Sapanisertib) PI3K/AKT/mTORi No No
25 Temozolomide Alkylating agents Yes Yes 110 BMS-911543 JAKi No No
26 Chlorambucil Alkylating agents Yes Yes 111 AT9283 JAKi No No
27 Bendamustine (hydrochloride)Alkylating agents Yes Yes 112 Baricitinib (phosphate) JAKi Yes Yes
28 Mechlorethamine hydrochlorideAlkylating agents Yes Yes 113 CYT387 (Momelotinib) JAKi No No
29 Epirubicin (hydrochloride)Topoisomerase inhibitors Yes Yes 114 Ruxolitinib JAKi Yes Yes
30 Etoposide Topoisomerase inhibitors Yes Yes 115 Tofacitinib (citrate) JAKi Yes Yes
31 Idarubicin (hydrochloride)Topoisomerase inhibitors Yes Yes 116 Fedratinib JAKi Yes Yes
32 Mitoxantrone Topoisomerase inhibitors Yes Yes 117 Gandotinib JAKi No No
33 Teniposide Topoisomerase inhibitors No Yes 118 Tipifarnib Ras/Raf/MEK/ERKi No No
34 Daunorubicin (Hydrochloride)Topoisomerase inhibitors Yes Yes 119 Lonafarnib Ras/Raf/MEK/ERKi Yes Yes
35 Doxorubicin (hydrochloride)Topoisomerase inhibitors Yes Yes 120 Salirasib Ras/Raf/MEK/ERKi No No
36 Amsacrine (Hydochlorid)Topoisomerase inhibitors Yes No 121 Dabrafenib (Mesylate) Ras/Raf/MEK/ERKi Yes Yes
37 Dexamethasone GC/GCR complex Yes Yes 122 Sorafenib (Tosylate) Ras/Raf/MEK/ERKi Yes Yes
38 Prednisone GC/GCR complex Yes Yes 123 Regorafenib Ras/Raf/MEK/ERKi Yes Yes
39 Prednisolone (Acetate)GC/GCR complex Yes Yes 124 Vemurafenib Ras/Raf/MEK/ERKi Yes Yes
40 Belinostat HDACi No Yes 125 LGX818 (Encorafenib) Ras/Raf/MEK/ERKi Yes Yes
41 CI-994 (Tacedinaline) HDACi No No 126 Cobimetinib Ras/Raf/MEK/ERKi Yes Yes
42 Panobinostat HDACi Yes Yes 127 MEK162 (Binimetinib) Ras/Raf/MEK/ERKi Yes Yes
43 Romidepsin HDACi No Yes 128 Selumetinib Ras/Raf/MEK/ERKi Yes Yes
44 Quisinostat HDACi No No 129 Trametinib Ras/Raf/MEK/ERKi Yes Yes
45 Tubastatin A (Hydrochloride)HDACi No No 130 PD0325901 Ras/Raf/MEK/ERKi No No
46 Givinostat (ITF2357) HDACi No No 131 PD184352 Ras/Raf/MEK/ERKi No No
47 Vorinostat HDACi No Yes 132 Pimasertib Ras/Raf/MEK/ERKi No No
48 Entinostat HDACi No No 133 SHP099 Ras/Raf/MEK/ERKi No No
49 Ricolinostat HDACi No No 134 SCH772984 Ras/Raf/MEK/ERKi No No
50 Pracinostat HDACi No No 135 GDC-0994 (Ravoxertinib) Ras/Raf/MEK/ERKi No No
51 Abexinostat HDACi No No 136 Losmapimod Ras/Raf/MEK/ERKi No No
52 EPZ-6438 ( Tazemetostat)EZH2i/HMTasei No Yes 137 Zanubrutinib BTKi Yes Yes
53 GSK126 EZH2i/HMTasei No No 138 Tirabrutinib BTKi No No
54 GSK343 EZH2i/HMTasei No No 139 Spebrutinib BTKi No No
55 GSK 525762A BET bromodomain; No No 140 Ibrutinib BTKi Yes Yes
56 Paclitaxel BET bromodomain; Yes Yes 141 Imatinib Bcr-Abl/Tki Yes Yes
57 JQ1 BET bromodomain No No 142 Radotinib Bcr-Abl/Tki No No
58 Bortezomib Proteasome inhibitor Yes Yes 143 Nilotinib Bcr-Abl/Tki Yes Yes
59 MLN-9708 (Ixazomib) (Citrate)Proteasome inhibitor Yes Yes 144 Ponatinib Bcr-Abl/Tki Yes Yes
60 Carfilzomib Proteasome inhibitor Yes Yes 145 Bosutinib Bcr-Abl/Tki Yes Yes
61 Ganetespib HSP90i No No 146 Dasatinib Bcr-Abl/Tki Yes Yes
62 PUH71 HSP90i No No 147 Rebastinib Bcr-Abl/Tki No No
63 AUY922 (LUMINESPIB) HSP90i No No 148 Saracatinib Bcr-Abl/Tki No No
64 NVP-HSP990 HSP90i No No 149 Bafetinib Bcr-Abl/Tki No No
65 EC144 HSP90i No No 150 Staurosporin Multiple protein kinase inhibitor No No
66 PF-04929113 HSP90i No No 151 BSI-201 (Iniparib) PARPi No No
67 BIIB021 HSP90i No No 152 Olaparib PARPi Yes Yes
68 Alisertib Aurora Kinase A inhibitor No No 153 Rucaparib (phosphate) PARPi Yes Yes
69 Aurora A Inhibitor I Aurora Kinase A inhibitor No No 154 Veliparib (dihydrochloride) PARPi No No
70 MLN8054 Aurora Kinase A inhibitor No No 155 Venetoclax Bcl-2i Yes Yes
71 MK-5108 Aurora Kinase A inhibitor No No 156 Obatoclax Bcl-2i No No
72 Danusertib Aurora Kinase A inhibitor No No 157 Y-27632 (Dihydrochloride) ROCK No No
73 Barasertib Aurora Kinase A inhibitor No No 158 QNZ (EVP4593) NF-κBi No No
74 Volasertib PLKi No No 159 Omaveloxolone NF-κBi No Yes
75 BI2536 PLKi No No 160 Enasidenib IDH2i No Yes
76 LEE011 (Ribociclib) CDKi Yes Yes 161 Ivosidenib IDH1i No Yes
77 Abemaciclib CDKi Yes Yes 162 Birinapant XIAPi and cIAP1i No No
78 Dinaciclib CDKi No No 163 Tariquidar P-glycoprotein; No No
79 SY-1365-THZ1 CDKi No No 164 Enzastaurin PKC; No No
80 Cabozantinib VEGFRi Yes Yes 165 KYA1797K wnt/catenin No No
81 Erlotinib EGFRi Yes Yes 166 Selinexor CRM1 inhibitor Yes Yes
82 Gefitinib (Hydrochlorid)EGFRi Yes Yes 167 AZD6738 (Ceralasertib) ATM/ATRi No No
83 Sunitinib PDGFRi Yes Yes 168 Omacetaxine Mepesuccinate (Homoharringtonine) Ribosom Inhibtor No Yes
84 Axitinib VEGFRi Yes Yes 169 Actinomycin D Antibacterial Yes Yes
85 Midostaurin FLT3i Yes Yes 170 BAY 80-6946 (Copanlisib) PI3K/AKT/mTORi No Yes

https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm
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