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Abstract

Genetic risk scores (GRS) summarize (parts of) the genetic makeup of individuals
with regard to a specific phenotype such as a disease status. GRS can be used
for personal risk assessment or for deriving biological mechanisms involved in the
development of the considered phenotype. It is well known that genetic variants do
not have to independently influence the considered outcome but they might also
interact with each other. GRS are commonly constructed using linear approaches
such as the elastic net or aggregating individual effect estimates of genetic variants.
Linear approaches, however, do not incorporate such gene–gene interaction effects,
unless prior knowledge about which predictors might interact is available, which
is typically not the case in genetic epidemiology.

Therefore, tree-based statistical learning methods that are able to autonomously
detect and incorporate interaction effects are investigated for their ability to con-
struct GRS in this thesis. More precisely, variants of random forests and logic
regression are evaluated against the elastic net. Simulation studies as well as a
real data application show that these tree-based methods are able to outperform
the elastic net in terms of the induced predictive ability.

Genetic risk factors can also interact with environmental risk factors in the
development of complex phenotypes. Standard statistical tests for testing the
presence of such a gene–environment (GxE) interaction effect either do not prop-
erly model the genetic risk factors or suffer from reduced statistical power due to
splitting the available data into training data sets for constructing a GRS and test
data sets for statistically testing the GxE interaction effect to avoid overfitting.
Therefore, a novel GxE interaction test is designed that utilizes bagging (bootstrap
aggregating) and OOB (out-of-bag) predictions to both construct a GRS model
and subsequently test the GxE interaction using the complete data set. Moreover,
it is proposed to employ random forests as the GRS construction procedure, as
random forests yielded high predictive performances in the first part of this disser-
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Abstract

tation due to flexibly modeling arbitrary effects. Empirical evaluations show that
the proposed GxE interaction test yields a high statistical power while controlling
the type I error rate.

A notable shortcoming of the ensemble tree methods random forests and logic
regression with bagging, that yield GRS with comparably strong associations with
the outcome, is their lack of interpretability, i.e., contrary to elastic net models,
it can no longer be easily understood how predictions are composed and which
predictors influence the outcome in which interplay and magnitude. Hence, a novel
statistical learning method is developed that constructs a single decision tree that
can split on single predictors or Boolean conjunctions/interactions of multiple
predictors. This procedure, therefore, captures gene–gene interactions on split
level, and moreover, incorporates GxE interactions by fitting regression models
in the decision tree leaves. This statistical learning method is accompanied by a
framework for measuring the importance of predictors and interactions between
predictors. In simulation studies and real data applications, it is shown that this
new method yields strongly predictive and interpretable models.
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Chapter 1

Introduction

The manifestation of complex phenotypes such as disease statuses or quantita-
tive biomarkers may be influenced by many types of risk factors, such as genetic
makeup, exposure to environmental pollutants, or lifestyle [Wild, 2005]. In ge-
netic epidemiology, point mutations in the DNA, i.e., single substitutions of base
pairs, are measured and analyzed as a common type of genetic mutation [George
Priya Doss et al., 2008]. However, the human genome consists of approximately
3.2 billion base pairs [International Human Genome Sequencing Consortium, 2001]
so that usually not all positions in the DNA are analyzed but only variants that
occur with a frequency of at least one percent. The human genome contains ap-
proximately 85 million of these more common single base-pair mutations which
are called SNPs (single nucleotide polymorphisms) [The 1000 Genomes Project
Consortium, 2015]. Therefore, analyzing the effect of SNPs on the development of
a considered phenotype creates a high-dimensional modeling problem. Moreover,
epidemiological studies such as cohort studies or case-control studies often do not
consist of more than a few thousand observations. Hence, the considered task of
modeling genetic risk factors typically involves a data set where the sample size is
a small fraction of the number of predictors (n ≪ p).

Due to this problem complexity, SNPs are often analyzed individually, i.e., sta-
tistically testing the (marginal) effect of each considered SNP on the considered
phenotype and assessing its effect size, as in GWAS (genome-wide association stud-
ies) [Uffelmann et al., 2021]. This approach is computationally efficient and allows
sharing summary statistics about the individual SNPs regarding the considered
outcome that can be used in independent studies.

These individually estimated effect sizes may be used for constructing genetic
risk scores (GRS) (also called polygenic risk scores (PRS)) that summarize multiple
genetic variants such as SNPs of individuals in a single statistic considering a
specific outcome [Lewis and Vassos, 2017]. Constructing accurate GRS allows
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1 Introduction

unveiling underlying biological mechanisms involved in the development of the
considered phenotype. Moreover, GRS can be also applied in a clinical context for
predicting disease risks and potentially advising preventive measures to reduce the
personal risk in precision medicine [Torkamani et al., 2018, Lewis and Vassos, 2020,
Wray et al., 2021]. Traditionally, GRS are constructed as weighted sums of SNPs
that are used to estimate the genetic liability to a trait [Lewis and Vassos, 2017,
Choi et al., 2020]. However, these linear models with individually estimated effect
coefficients do not take interactions or correlations between SNPs into account
which limits the modeling capability.

Therefore, one central idea of this dissertation is to generalize the GRS defini-
tion from linear models to arbitrary functions that assign a considered set of SNPs
a risk estimate. Tree-based statistical learning methods construct functions that
can autonomously detect and include interaction effects and are investigated and
refined for constructing GRS in this work. However, these flexible statistical learn-
ing procedures can be computationally intensive so that it might not be feasible
to incorporate all SNPs at once. For example, the software implementation of the
tree-based statistical learning procedure logic regression [Ruczinski et al., 2003,
Kooperberg and Ruczinski, 2023] allows a maximum of only 1,000 predictors.

To reduce the dimensionality of the problem without losing substantial infor-
mation, SNPs are often pruned based on LD (linkage disequilibrium), i.e., based
on correlation structures between SNPs, by identifying correlation clusters and
reducing each cluster to a representative SNP [see, e.g., Purcell et al., 2007]. Al-
ternatively or in addition, subsets of SNPs, e.g., all SNPs contained in a specific
gene, chromosome, or genetic pathway or all SNPs that showed significant associa-
tions with the considered outcome in prior analyses, can be considered to conduct
more specific analyses with lower dimensionality. Reducing the number of SNPs
to not more than a few hundred allows employing more sophisticated modeling
procedures that are able to capture arbitrarily complex interaction effects for con-
structing GRS.

The biological background about SNPs, environmental risk factors, and epi-
demiological studies for assessing their influences on the development of complex
diseases is provided in the following sections. Afterward, joint modeling of SNPs
in GRS is discussed in detail.
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1.1 Genetics

1.1 Genetics

Almost every cell in the human body contains a complete copy of all genetic in-
formation of an individual, the genome. The human genome is structured as chro-
mosome pairs, where, for each pair, one chromosome is inherited from the mother
and one chromosome is inherited from the father. Each chromosome contains two
intertwined DNA (deoxyribonucleic acid) strands that are chains of nucleotides.
Nucleotides consist of a phosphate group, a deoxyribose sugar, and a nitrogen
base, which can be either adenine, thymine, cytosine, or guanine. It is sufficient to
know the nitrogen bases in one DNA strand, since the other DNA strand contains
the complementary nitrogen bases so that adenine is always connected to thymine
and cytosine is always connected to guanine [Graw, 2015]. Genetic loci (singular
locus) describe specific positions in the genome.

The complete genetic material of an individual is known as its genotype. For
analyzing the influence of genetic components on the manifestation of phenotypes,
i.e., any observable characteristic of an individual such as a disease status or a
biomarker, the genotypes of multiple individuals are measured in studies. To
obtain statistically useful predictors, specific types of genetic mutation/variation
are considered. Types of genetic mutation include point mutations, where single
base-pairs are substituted, inserted, or deleted and chromosomal mutations, where
parts of a chromosome are deleted, inverted, repeated, or relocated to another
chromosome [Clancy, 2008].

In this work, single base-pair substitutions are considered. More precisely, the
influence of SNPs (single nucleotide polymorphisms), where the less common base-
pair is occurring in at least one percent of the reference population, is investigated.
SNPs are defined by a major allele, i.e., a base-pair that is more common in the
reference population, and a minor allele, i.e., a base-pair that is less common in
the reference population. As the human is a diploid organism, i.e., as the human
carries two copies of each chromosome, the minor (or the major) allele may be
present on no, exactly one, or both chromosome(s). Thus, SNPs are coded as
{0, 1, 2}, counting the number of minor allele occurrences with respect to both
chromosome copies.

For measuring SNPs of an individual, first, a saliva or blood sample containing
DNA is collected. Next, the contained DNA is isolated and amplified (i.e., dupli-
cated) to obtain more DNA molecules that can be analyzed. DNA microarrays
can then be used to assess the SNPs in the prepared sample [Graw, 2015]. DNA
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1.1 Genetics

microarrays contain short reference DNA sequences that include the considered
loci with known alleles and that bind to the sample DNA if the reference DNA
and the sample DNA are complementary. The sample DNA is, furthermore, la-
beled with fluorescent dyes to emit light signals if the sample DNA binds to the
reference DNA in the microarray. These light signals are captured to deduce the
SNPs that can be measured with the employed microarray, i.e., the SNPs for which
corresponding reference DNA is contained in the microarray [Graw, 2015].

SNPs can exhibit different modes of inheritance regarding a considered pheno-
type [Scherer et al., 2021]. A SNP is exhibiting a dominant mode of inheritance,
if the effect on the phenotype is present if the minor allele is occurring on at
least one chromosome copy, i.e., if SNP > 0. Furthermore, a SNP is exhibiting
a recessive mode of inheritance, if the effect on the phenotype is present if the
minor allele is occurring on both chromosomes copies at once, i.e., if SNP = 2.
Different modes of inheritance are also possible. However, using the two binary
variables 1(SNP > 0) and 1(SNP = 2), any other effect type may be modeled due
to SNP = 1(SNP > 0) + 1(SNP = 2).

LD (linkage disequilibrium) describes the deviation of observed joint allele fre-
quencies from expected joint allele frequencies under the assumption that the con-
sidered genetic loci are statistically independent [Slatkin, 2008]. Hence, LD can be
interpreted as a measure of correlation between different genetic loci. Genetic loci
that are physically close to each other tend to be in higher LD than loci that are far
away from each other [Ardlie et al., 2002]. LD structures can be utilized to impute
unmeasured SNPs by inferring the most plausible haplotype, i.e., combination of
genetic variants, given the measured SNPs and a reference panel of observed hap-
lotypes [Khankhanian et al., 2015, Shi et al., 2019]. Conversely, since two SNPs
can be in very high LD (e.g., exhibiting an empirical correlation r > 0.9), SNPs are
commonly pruned based on their LD, i.e., correlation clusters of SNPs are reduced
to one representative SNP per cluster to reduce the number of genetic variables
without losing too much information [Purcell et al., 2007, Calus and Vandenplas,
2018, Hüls and Czamara, 2020].

Certain parts of the DNA strands are genes (approximately one percent), which
means that, according to the central dogma of molecular biology, these DNA re-
gions encode proteins, by genes being transcribed into mRNA (messenger ribonu-
cleic acid) and mRNA being translated into proteins [Graw, 2015]. Proteins consist
of amino acids and are crucial for the structure and function of cells. Since a gene
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1.2 Environmental risk factors

modification can lead to a protein modification, especially SNPs in gene regions
are commonly analyzed.

1.2 Environmental risk factors

Not only genetic risk factors but also exposure to environmental risk factors is an
important component in the manifestation of phenotypes. As an environmental
counterpart to the genome, the exposome captures all human encounters with
environmental risk factors [Wild, 2005].

An important type of environmental exposure is the exposure to air pollutants
that are, e.g., caused by traffic. For example, it has already been shown that
air pollution exposure decreases lung function [Schikowski et al., 2005] and in-
creases the disease risk of type 2 diabetes mellitus [Eze et al., 2015]. Therefore,
in this work, exposures to the air pollutants NO2 (nitrogen dioxide), NOx (ni-
trogen monoxide NO and nitrogen dioxide NO2), PM2.5 (particulate matter with
an aerodynamic diameter of less than 2.5 µm), PM10 (particulate matter with an
aerodynamic diameter of less than 10 µm), PMcoarse (particulate matter with diam-
eters between 2.5 µm and 10 µm), and PM2.5 absorbance (reflectance of PM2.5 filters
[see, e.g., Eeftens et al., 2015]) are studied as potentially explanatory variables in
addition to genetic factors.

Exposure to environmental risk factors might be influenced by other variables
such as lifestyle indicators. These other variables might confound, i.e., distort, the
influence of the environmental variable on the outcome [Pourhoseingholi et al.,
2012, Johnston et al., 2018]. For example, the socioeconomic status of an indi-
vidual might influence the residential area, and therefore, also the air pollution
exposure (e.g., due to less traffic in the residential area). Moreover, the socioeco-
nomic status might influence the risk of a specific disease (e.g., due to being able
to afford a healthier diet). Therefore, in this example, estimated effects of air pol-
lution exposure on the disease risk might not reflect the true causal effects if the
socioeconomic status is not explicitly taken into account due to the estimated air
pollution effects partially being indirect socioeconomic effects in this case [Hajat
et al., 2021]. Hence, if causal effects should be investigated and it is suspected
that the relationship between the considered predictors and the outcome might
be confounded, potential confounding variables should be included in the model
fitting procedure to adjust for this phenomenon [Pourhoseingholi et al., 2012].
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1.3 Epidemiological studies

1.3 Epidemiological studies

For statistically assessing the influence of SNPs and environmental risk factors on
the development of diseases, epidemiological studies such as genetic association
studies are conducted in which the considered SNPs, the considered phenotype, as
well as other individual characteristics of study participants (such as environmental
exposures or lifestyle indicators) are measured [Hirschhorn et al., 2002]. An impor-
tant study type are GWAS (genome-wide association studies), where SNPs from
the whole genome are analyzed [Uffelmann et al., 2021]. EWAS (environment-wide
association studies) are the environmental counterpart to GWAS that analyze the
effects of the exposome on considered phenotypes [Patel et al., 2010].

Common study designs include case-control studies, where study participants
are chosen based on their disease statuses, and cohort studies, where study par-
ticipants are followed over time so that, e.g., initially no study participant might
have a considered disease but disease incidences could be observed in follow-up
examinations [Woodward, 2013].

In this thesis, existing and newly proposed approaches for constructing GRS
are also evaluated using data from the German SALIA (study on the influence of
air pollution on lung function, inflammation, and aging) cohort study [Schikowski
et al., 2005]. The participants of the SALIA study were recruited in the period of
1985–1994 from highly and less industrialized areas in North-Rhine Westphalia,
Germany. At its baseline examination, the study included 4874 women that were
between 54 and 55 years old. In a follow-up clinical examination that was con-
ducted in the period of 2007–2010, SNPs of study participants were measured
using the Axiom Precision Medicine Research Array GRCh37/hg19 (Affymetrix,
Santa Clara, CA, USA). Moreover, individual exposures to air pollutants such as
NO2 were estimated for different time points using land-use regression models,
that utilize geographical data and measurements from fixed monitoring sites, as
part of the ESCAPE (European study of cohorts for air pollution effects) project
[Eeftens et al., 2012, Beelen et al., 2014].

Among many disease outcomes, the presence of rheumatic diseases has been
collected and is used as the outcome of interest in this work. Thus, a data set
consisting of over 500 observations is analyzed that contains both SNP data and
the presence of rheumatic diseases.

The development of rheumatic diseases involves a complex interplay of genetic
and non-genetic risk factors [Kirino and Remmers, 2015]. Due to rheumatoid
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1.4 Constructing genetic risk scores

arthritis being the most common rheumatic disease besides osteoarthritis [Sangha,
2000, Vanhoof et al., 2002, Jokar and Jokar, 2018], SNP selections are performed
considering prior studies involving rheumatoid arthritis. For example, SNPs from
the HLA (human leukocyte antigen) class II complex are analyzed, as genetic
loci from this complex showed significant associations with rheumatoid arthritis
in prior studies [Zanelli et al., 2000, Kampstra and Toes, 2017].

1.4 Constructing genetic risk scores

GRS are usually constructed as weighted sums of SNPs using external weights that
are obtained through summary statistics from independent association studies.
Therefore, predictions on the complete considered data set can be made using
external weights, since the model, i.e., the SNP coefficients/weights, was already
determined beforehand in an independent study. External weights might, however,
not be available for the considered phenotype, genomic region, or population type
[Hüls et al., 2017b]. Hence, in this case, internal weights have to be estimated
using the available data set. For that reason, to avoid overfitting, the considered
data set has to be split into a training data set for estimating the weights and a
test data set for performing predictions and assessing the predictive performance
of the GRS. Internal weights can also be obtained by employing multiple regression
procedures such as linear or logistic regression or regularized variants such as the
elastic net [Zou and Hastie, 2005, Hüls et al., 2017a, Privé et al., 2019].

However, interaction effects between SNPs are not captured by conventional
GRS construction approaches such as GLMs (generalized linear models) unless
prior knowledge about which genetic loci might interact with each other is available
which is usually not the case, as the number of all possible interaction terms
increases exponentially with the number of predictors (see Section 1.6).

Instead of only considering linear models, GRS can be also, more generally, seen
as functions φ : X → R that assign a set of considered SNPs in the p-dimensional
space X = {0, 1, 2}p a quantitative risk estimate for the considered phenotype.
Therefore, if the considered SNPs are random variables

(︂
X1 . . . Xp

)︂T
=: X ∈ X

and the considered phenotype is a random variable Y ∈ Y ⊆ R, the problem of
constructing a GRS can be interpreted as a supervised statistical learning problem
in which the true regression function µ(x) := E[Y | X = x] has to be estimated
[Hastie et al., 2009]. For this purpose, it is assumed that a training data set
D = {(xi, yi)}n

i=1, i.e., a random sample from P⊗n
(X,Y ) which is a data set of n
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1.5 Linear statistical learning methods

observations from independent and identically distributed (iid) random vectors
(X1, Y1), . . . , (Xn, Yn) iid∼ P(X,Y ), is available.

1.5 Linear statistical learning methods

GLMs are also statistical learning methods that yield models

g(E[Y | X = x]) = β0 + β1x1 + . . . + βpxp, (1)

where g is a link function mapping the outcome domain toR, β0 is an intercept, and
β1, . . . , βp are regression coefficients. These linear models are easily interpretable,
since effect sizes can be directly read off using the regression coefficients β1, . . . , βp.
Moreover, linear hypotheses such as H0 : βj = 0 vs. H1 : βj ̸= 0 can be statisti-
cally tested, e.g., using Wald tests. However, for p ≥ n, the maximum-likelihood
estimates for β0, . . . , βp are not unique [Hastie et al., 2015].

Thus, an important extension of GLMs are regularization techniques that in-
troduce additional constraints to the optimization problem. Well-established regu-
larization methods include the lasso [Tibshirani, 1996] and ridge regression [Hoerl
and Kennard, 1970]. Instead of directly maximizing the model likelihood function,
these procedures consider the constrained optimization problem

min
(β0,β)

− 1
n

ℓ(β0, β) such that ||β||qq =
p∑︂

j=1
|βj|q ≤ R, (2)

where β :=
(︂
β1 . . . βp

)︂T
is the vector of regression coefficients, ℓ is the log-

likelihood function, R ≥ 0 is a parameter controlling the effect sizes, and q ≥ 0
defines the type of norm used for regularization.

Usually, the optimization problem from Equation (2) is phrased in its La-
grangian form

min
(β0,β)

{︄
− 1

n
ℓ(β0, β) + λ||β||qq

}︄
, (3)

where λ ≥ 0 is a penalty parameter controlling the regularization strength. For
q ≥ 1, the regularized regression optimization problems from Equations (2) and (3)
are equivalent in the sense that for each problem and R ≥ 0 there is a λ ∈ [0, ∞]
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1.6 Interaction effects

leading to the same solution and vice versa [Fu, 1998].
The lasso is a special case of Equations (2) and (3) with q = 1 and leads to

sparse solutions, i.e., it shrinks regression coefficients of unimportant predictors to
zero so that, implicitly, also a variable selection is performed [Tibshirani, 1996].
Ridge regression is also a special case of Equations (2) and (3) with q = 2. In
contrast to the lasso, ridge regression does not shrink regression coefficients to
exactly zero, i.e., it does not perform a variable selection, but ridge regression
can properly handle multicollinearity by assigning similar coefficients to highly
correlated predictors [Hastie et al., 2015].

For constructing GRS, a compromise between the lasso and the ridge regu-
larizations, the elastic net [Zou and Hastie, 2005], is often employed [Hüls et al.,
2017a, Privé et al., 2019]. The elastic net considers the optimization problem

min
(β0,β)

{︄
− 1

n
ℓ(β0, β) + λ

[︃1
2(1 − α)||β||22 + α||β||1

]︃ }︄
,

where α ∈ [0, 1] is a parameter controlling the balance between the lasso and the
ridge regularization. The elastic net combines the advantages of both regulariza-
tion types by performing a variable selection through the lasso and tending to
include or exclude groups of correlated predictors [Hastie et al., 2015]. Moreover,
the elastic net yields for α < 1 and λ > 0 a strictly convex optimization problem
which induces a unique solution for the regression parameters.

1.6 Interaction effects

GLMs or regularized variants that produce models as in Equation (1) only con-
sider marginal effects of predictors, as the effects, i.e., the coefficients β1, . . . , βp,
of predictors are constant and do not vary based on other predictors for a new
prediction. However, interaction effects between predictors, which are defined in
the following, might be also involved in the composition of the outcome.

Definition 1 (Interaction effects [Sorokina et al., 2008]). Two predictors Xi and
Xj are said to interact with each other considering the prediction function f (e.g.,
the (transformed) regression function f(X) = g(E[Y | X]) for an appropriate link
function g), if the effect of Xi depends on Xj, i.e., if ∂

∂Xi
f(X) (or finite differences

for discrete predictors) depend(s) on Xj, or vice versa.
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1.6 Interaction effects

This definition of interactions is equivalent to an interaction effect between Xi

and Xj being present, if the prediction function f cannot be decomposed into a
sum f(X) = f\i(X\i) + f\j(X\j) in which the first summand does not depend
on Xi and the second summand does not depend on Xj [Friedman and Popescu,
2008].

Moreover, this interaction definition can be generalized to interactions of ar-
bitrary order. Predictors Xj1 , . . . , Xjk

interact with each other, if f cannot be
decomposed into a sum of functions

f(X) = f\j1(X\j1) + . . . + f\jk
(X\jk

)

or equivalently (for sufficiently smooth f)

∂k

∂Xj1 . . . ∂Xjk

f(X) ̸≡ 0.

If linear models are considered, interaction effects can be included by recursively
modeling the effect coefficients, i.e., βj = ∂

∂Xj
g(E[Y | X]) in Equation (1), as

linear models of other predictors, e.g., β2(x1) = β̃0 + β̃1x1 for two predictors. This
introduction of interaction effects to GLMs and regularized procedures can be seen
as a special case of varying-coefficient models [Hastie and Tibshirani, 1993] and
would lead to models

g(E[Y | X = x]) = β0 +
p∑︂

j=1
βjxj +

p∑︂
j1=1

p∑︂
j2=j1+1

γ{j1,j2}xj1xj2

+
p∑︂

j1=1

p∑︂
j2=j1+1

p∑︂
j3=j2+1

γ{j1,j2,j3}xj1xj2xj3

+ . . . + γ{1,2,...,p}x1x2 . . . xp,

where the coefficient βj is the main effect of the predictor Xj and the coefficient
γ{j1,...,jk} is the interaction effect between the predictors Xj1 , . . . , Xjk

.
Usually, only main effects are included in GLMs, since the total number of

parameters, if all interaction terms are considered, is given by

p∑︂
k=0

(︄
p

k

)︄
= 2p,

10
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which yields already for p = 50 more than 1015 terms and parameters. However,
approaches for fitting linear models that can include pairwise interactions γ{i,j}xixj

have been proposed more recently [see, e.g., Lim and Hastie, 2015, Yu et al., 2019].
In this case of only considering second-order interactions, the number of parameters
increases quadratically with p.

1.7 Tree-based statistical learning methods

One important class of statistical learning methods that can incorporate interac-
tion effects of arbitrary order without providing prior knowledge are tree-based
methods that fit rooted trees from a graph-theoretic point of view. The following
graph-theoretic definitions can be also found in Louppe [2014].

Definition 2 (Graph, path, and tree). A (directed) graph is a pair G = (V, E),
where V is a set of nodes and E ⊆ V × V is a set of edges. A path in a graph
G = (V, E) is a sequence of nodes (t1, . . . , tm) satisfying (ti, ti+1) ∈ E for all
i ∈ {1, . . . , m − 1} and ti ̸= tj for all i ̸= j. A tree is a graph G = (V, E), where
any two nodes t1, t2 ∈ V are connected by a unique path.

The next definition introduces important types of nodes that are frequently re-
ferred to in the context of trees.

Definition 3 (Types of nodes). t2 is a child of t1 if (t1, t2) ∈ E holds (i.e, if there
is an edge from t1 to t2). In this case, t1 is a parent of t2. A node is internal if it
has at least one child. Otherwise, it is a terminal node which is also known as a
leaf.

In this work, binary trees are exclusively considered, as they are the most common
tree type that is produced by tree-based statistical learning procedures.

Definition 4 (Rooted and binary tree). A rooted tree is a tree, where one node r

has been designated as the root of this tree and all edges lead away from the root,
i.e., any path (t1, . . . , tm) either starts at the root (t1 = r) or does not contain the
root (ti ̸= r for all i ∈ {1, . . . , m}). A binary tree is a rooted tree in which all
internal nodes have exactly two children.

11



1.7 Tree-based statistical learning methods
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Figure 1: Tree-based models that describe the prediction function f(X) = X1∨(X2∧Xc
3).

In a, a decision tree is shown. In b, a logic tree is presented. Reproduced from Lau
et al. [2024].

1.7.1 Decision trees and random forests

The most widely used tree-based statistical learning method are decision trees
[Breiman et al., 1984]. Decision trees are binary trees that contain predictors in
their internal nodes and prediction values in their leaves. Edges of decision trees
are annotated with splitting rules based on the predictor in the internal node these
edges start from. Splitting rules are specified by triplets (Xj, A, Ac), where A ⊊ Xj

is a proper subset of the domain of Xj and Ac = Xj \ A is the complement of A

with respect to the domain of Xj. Therefore, a splitting rule divides the space of
a considered predictor into two disjoint subspaces.

In a decision tree, predictions are computed by evaluating the splitting rules
and following the edges based on the considered predictor observation, beginning at
the root node and advancing until a leaf is reached that holds the desired prediction
value. Figure 1a illustrates an exemplary decision tree for binary variables. At
the root node, the decision tree asks if the considered observation fulfills X1 = 0
or X1 = 1. If X1 = 1 holds, the prediction value 1 is returned. If X1 = 0 holds,
the decision tree asks further for the observed value of X2. If X2 = 0 holds, the
prediction value 0 is obtained. Otherwise, the prediction value also depends on
X3. For X3 = 0, the prediction value 1 is returned, and for X3 = 1, the prediction
value 0 is returned.

As decision trees recursively partition the predictor space, and hence, the pre-
diction values depend on sequences of predictors and usually not only single pre-
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1.7 Tree-based statistical learning methods

dictors, decision trees naturally incorporate interaction effects as defined in Section
1.6.

Decision trees are usually fitted using greedy algorithms that do not exhaus-
tively investigate all possible trees but consecutively solve local optimization prob-
lems such as CART (classification and regression trees) [Breiman et al., 1984] and
C4.5 [Quinlan, 1993]. However, due to increasing computational capabilities, de-
cision tree procedures that perform a global optimization have been recently pro-
posed as well [see, e.g., Bertsimas and Dunn, 2017, Aglin et al., 2020, Carrizosa
et al., 2021, Demirović et al., 2022].

Decision trees can be used for both classification and regression purposes. In
the classification case, leaves can either hold hard classifications, i.e., direct class
membership predictions, or soft classifications, i.e., class membership probability
estimates [Provost and Domingos, 2003]. In the context of constructing GRS, risk
estimates are especially useful.

Single decision trees, however, tend to be unstable which means that small
modifications of the training data set induce unproportionally extreme modifica-
tions of the fitted decision tree. This issue is mainly caused by the greedy fitting
algorithm that locally searches for optimal splitting rules [Murthy and Salzberg,
1995, Li and Belford, 2002].

A popular approach to reducing the variance of decision trees is to create an
ensemble of decision trees using bagging (bootstrap aggregating) [Breiman, 1996].
Bagging fits many different decision trees by providing bootstrap samples (i.e.,
data sets of size n where each observation has been drawn with replacement from
the original data set) as training data sets to the individual decision trees. Pre-
dictions are then computed by averaging the predictions of the individual decision
trees. This reduces the variance of the ensemble model, since, for M identically
distributed random variables Z1, . . . , ZM with positive pairwise correlation ρ—such
as predictions T1(x), . . . , TM(x) of M individual randomized decision trees for a
fixed predictor setting x ∈ X , the variance of the mean is equal to [Hastie et al.,
2009]

Var
⎛⎝ 1

M

M∑︂
j=1

Zj

⎞⎠ = ρ ·Var(Z1) + 1 − ρ

M
·Var(Z1). (4)

Thus, for M → ∞, the variance tends to ρ · Var(Z1). The variance reduction of
bagging is, therefore, controlled by the correlation between the individual decision
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trees and the variance of the single decision trees.
Another useful property of ensemble models fitted using bagging is the OOB

(out-of-bag) prediction mechanism. OOB predictions for a training observation
(x, y) ∈ D are computed by gathering all submodels of the ensemble that did
not use this observation for training and averaging the predictions of these sub-
models for the considered observation. This means, if the ensemble consists of M

submodels T1, . . . , TM , the OOB prediction for (x, y) is given by

ŷOOB = 1⃓⃓⃓{︂
Tj | (x, y) /∈ DTj

, j ∈ {1, . . . , M}
}︂⃓⃓⃓ M∑︂

j=1
Tj(x) · 1

(︂
(x, y) /∈ DTj

)︂
,

where DTj
is the training data set/bootstrap sample used for fitting the submodel

Tj. OOB predictions allow unbiased predictions of outcomes for observations con-
tained in the training data set that mimic test data set predictions, as the model
used for generating these predictions never saw the considered observations before
and the common overfitting problem for training data set predictions is avoided.
This is especially useful for estimating the error of an ensemble model, for esti-
mating the influence of predictors (see Section 1.10), and for testing the presence
of gene–environment interaction effects (see Section 1.9).

Random forests randomize the fitting of decision tree ensembles even more by
not only employing bagging but also randomizing the greedy search for splitting
rules [Breiman, 2001]. More precisely, random forests do not consider all predic-
tors for creating a splitting rule but draw a random subset of predictors which are
further investigated for their splitting performances. The idea is to further decor-
relate the individual decision trees to gain a higher variance reduction in Equation
(4).

However, it has to be kept in mind that the total error of prediction models
consists of its variance and its bias [Györfi et al., 2002], i.e., for a fixed predictor
observation x ∈ X , the mean squared error can be decomposed into

ED
[︂
(µ(x) − fD(x))2

]︂
= (ED [fD(x)] − µ(x))2 +VarD (fD(x))

= BiasD(fD(x))2 +VarD (fD(x)) ,

where fD is the prediction model fitted to the training data set D and the ex-
pectations and variances are taken with respect to the training data set D which
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is a random sample from P⊗n
(X,Y ). Hence, when reducing the variance, attention

has to be paid that the bias does not increase too much if the total error shall be
minimized.

Another class of decision tree ensembles are boosted decision trees [Friedman,
2001], where a particularly popular implementation is XGBoost (extreme gradient
boosting) [Chen and Guestrin, 2016]. Boosted decision trees are fitted iteratively
to the gradient of the current prediction error, i.e., addressing so-far unexplained
variation in the outcome in each iteration.

1.7.2 Logic regression

Logic regression [Ruczinski et al., 2003] is another established tree-based statistical
learning procedure that is exclusively designed for binary predictors and constructs
models

g(E[Y | X = x]) = β0 + β1L1(x) + . . . + βMLM(x),

where g is a link function and Lj(x) ∈ {0, 1} is a Boolean expression evaluated
on the (binary) predictor setting x ∈ {0, 1}p. Each Boolean expression that uses
the Boolean AND (∧) and OR (∨) operators, Boolean negations (c), and brackets
can be transformed into a logic tree and vice versa [Ruczinski et al., 2003]. A logic
tree is a binary tree that contains the Boolean AND or the Boolean OR in its
inner nodes and predictors or their negations in its leaves. To obtain a Boolean
expression from a logic tree and to compute predictions using logic regression mod-
els, leaves are combined using their parent nodes that contain Boolean operators
and recursively proceeding to combine nodes until the root is reached. The tree
structure is useful for depicting logic regression models and is also utilized in the
fitting procedure of logic regression.

Figure 1b illustrates an exemplary logic tree which is equivalent to the decision
tree depicted in Figure 1a. The leaves X2 and Xc

3 (X3 negated) are combined
using their parent node ∧ to obtain the Boolean expression X2 ∧Xc

3. This Boolean
expression is further combined with X1 using the root ∨ to obtain the prediction
model X1 ∨ (X2 ∧ Xc

3).
Logic regression models are fitted using a stochastic search algorithm, simulated

annealing [Kirkpatrick et al., 1983], that is based on Markov chains and identifies
asymptotically an optimal solution with probability one, as opposed to a greedy
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algorithm that might get stuck in a local optimum. However, the success of simu-
lated annealing is based on theoretical convergences of the Markov chains and the
temperature parameter that, in practice, cannot be guaranteed, as only finitely
many computational resources are available and the search space is usually too
big to be fully traversed. For employing simulated annealing in logic regression,
states, i.e., sets of logic trees, are slightly modified to obtain new states that are
evaluated and accepted based on their performances, i.e., based on their training
data error.

Similar to single decision trees, single logic regression models can be unstable,
i.e., exhibit a high variance, if many predictors influence the outcome or if the
signal is weak. Therefore, bagging might be applied to logic regression models
to reduce the variance and obtain a more stable ensemble model [Schwender and
Ickstadt, 2007]. Logic regression models in a bagging-based ensemble are usually
trained using a greedy search, as a greedy search requires less computation time
than a simulated-annealing-based search and the variance reduction of bagging
alleviates the weaknesses of a greedy search [Murthy and Salzberg, 1995].

1.8 Constructing genetic risk scores using tree-
based statistical learning methods

SNPs may not only exhibit main effects on the considered phenotype, but they
might also interact with each other in the manifestation of this phenotype [Gilbert-
Diamond and Moore, 2011, Ritchie and Van Steen, 2018]. These interactions are
known as gene–gene interactions and might occur between SNPs in the same gene
[Dinu et al., 2012] or between SNPs in different genes [Onay et al., 2006, Xiao
et al., 2017].

As discussed earlier in Section 1.6, interaction effects are usually not taken into
account when fitting GLMs (including regularized variants). Therefore, the tree-
based statistical learning methods previously discussed in Section 1.7 might be a
superior alternative to construct GRS, as these methods are able to autonomously
capture interaction effects.

For constructing GRS for a binary phenotype such as a disease status, random
forests have to fit probability estimation trees that hold probability estimates in
their leaves (instead of hard classifications) to obtain proper risk estimates [Provost
and Domingos, 2003]. For logic regression, all considered predictors have to be bi-
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nary. Therefore, the SNP predictors coded as {0, 1, 2} need to be (biologically
meaningfully) divided into two binary predictors for each SNP, in 1(SNP > 0)
so that the effect is present if at least one minor allele is present—coding for a
dominant mode of inheritance—and in 1(SNP = 2) so that the effect is present
if the minor allele is present on both chromosomes at once—coding for a reces-
sive mode of inheritance. On the contrary, the original SNP predictors can be
directly utilized by the random forests fitting procedure, as decision tree splits for
quantitative predictors would split a SNP either on (SNP, {0}, {1, 2}), which is
equivalent to a dominant mode of inheritance, or on (SNP, {0, 1}, {2}), which is
equivalent to a recessive mode of inheritance. The predictions of the fitted tree-
based GRS models can then be used as the GRS of an individual in the context of
precision medicine or for testing the association of the GRS with the phenotype,
i.e., validating and quantifying the predictive performance of the model.

Both random forests and logic regression have already been applied in the anal-
ysis of SNP data [Bureau et al., 2005, Kooperberg and Ruczinski, 2005, Chen et al.,
2011, Yoo et al., 2012, Dinu et al., 2012, Wright et al., 2016]. For modeling SNPs,
Kruppa et al. [2012] and Botta et al. [2014] suggest that random forests might
induce superior predictive performances compared to linear approaches. However,
in the analyses conducted by Gola et al. [2020] and Badré et al. [2021], where
genome-wide GRS are considered instead of GRS for single genes or pathways,
random forests did not induce substantially better predictive performances than
classic GRS construction approaches. Contrarily, a genome-wide GRS for systemic
lupus erythematosus constructed using random forests was able to outperform a
linear GRS [Ma et al., 2022].

Therefore, there was a lack of studies investigating under which circumstances—
such as effect sizes, sample sizes, intensities of statistical noise, or presence/absence
of interaction effects—these tree-based methods should be preferred over classical
approaches such as the elastic net in the construction of GRS.

In the master’s thesis by Lau [2020], a pilot study was conducted to investigate
if the tree-based methods random forests and logic regression are able to induce
adequate GRS compared to the elastic net in one simple simulation scenario that
considered a linear genetic model in which no interaction effects are present. In this
scenario, where the model assumptions of the elastic net are fulfilled, and hence, the
interaction detection ability of tree-based methods is not required, random forests
and logic regression were able to yield GRS with similar predictive performances
compared to the elastic net.
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Due to this positive result, the first part of this dissertation (see Lau et al.
[2022]/Chapter 2) focuses on extending the simulation scenarios and validating
the results in an application to a real data set from the SALIA cohort study
(see Section 1.3 for more details about the SALIA study). Moreover, the tree-
based methods are further refined to the problem of constructing GRS. Instead of
considering classification or regression random forests for binary risk estimation
(as proposed by Malley et al. [2012]), random forests with probability estimation
trees are evaluated. In addition, due to observed overfitting of random forests in
the construction of GRS [Lau, 2020], a random forests variant that conducts a
prior variable selection is also considered. Furthermore, ensemble logic regression
using bagging is evaluated as well.

1.9 Detecting gene–environment interaction ef-
fects

As discussed in Section 1.2, environmental risk factors may also influence the
manifestation of phenotypes. For example, the epidemiological SALIA cohort
study (that was introduced in Section 1.3) investigates the role of air pollution in
the development of chronic diseases. Often, genetic and environmental risk factors
are analyzed separately, e.g., in GWAS that investigate the influence of genetic risk
factors or in EWAS that investigate the influence of environmental risk factors.
However, genetics and the environment might not only influence the development
of phenotypes individually, but they might also interact with each other [Ottman,
1996].

These interactions are known as GxE (gene–environment) interactions and are
defined as varying environmental effects on a considered phenotype for different
genotypes. For example, an individual might be only susceptible to a pollutant if
the individual carries a specific genetic makeup, as illustrated in Figure 2, where
the environmental effect on the phenotype is only active (i.e., the slope is non-
zero) if Genotypes II or III (but not Genotype I) are present. Vice versa, exposure
to environmental risk factors might increase the disease risk effect of genotypes
[Ottman, 1996]. If only Genotypes II and III are considered in Figure 2, there
is no GxE interaction effect present, since, in this case, the environmental effects
(i.e., the slopes) are equal and only the genetic main effects (i.e., the offsets) differ
between these two genotypes.
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Figure 2: Environment–phenotype relationships for three different genotypes illustrating
present (Genotype I versus Genotypes II/III) or absent (Genotype II versus Genotype
III) gene–environment interaction effects

GxE interactions are commonly tested using GLMs

g(E[Y | G, E, C]) = β0 + β1G + β2E + β3G · E +
m∑︂

j=1
γjCj, (5)

where G is a genetic variable such as a SNP or a GRS, E is an environmental
variable such as the exposure to an air pollutant, and C =

(︂
C1 . . . Cm

)︂T
are

potential confounders such as BMI (body mass index), age, or sex that should be
adjusted for (see Section 1.2) [Hüls et al., 2017a]. In this model, a GxE interaction
is present if β3 is unequal to zero. Therefore, to statistically assess whether there
is a GxE interaction between G and E regarding Y , the statistical hypotheses
H0 : β3 = 0 vs. H1 : β3 ̸= 0 are tested, e.g., using a Wald test.

Usually, the genetic variable used in the GxE interaction testing model in
Equation (5) is a single SNP. To test a whole genomic region for interaction with
an environmental risk factor, this test is repeated for every considered SNP and
the test results are gathered by performing a correction for multiple testing (usu-
ally employing a Bonferroni correction) [Majumdar et al., 2021] and choosing the
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minimum p-value for testing the hypothesis that the considered genomic region
interacts in any way with E [Hüls et al., 2017a].

Since single SNPs are considered, correlations and interactions between SNPs
are not taken into account. Moreover, a potentially conservative adjustment for
multiple testing is performed. Hence, the statistical power, i.e., the probability of
correctly rejecting the null hypothesis/correctly detecting a GxE interaction effect,
of the single SNP test could be improved.

Therefore, a GRS that aggregates the genetic effects may be used in place of
a single SNP as the genetic variable in Equation (5) for testing the presence of a
GxE interaction [Hüls et al., 2017a]. However, if internal GRS shall be used, e.g.,
because no appropriate external weights are available, the available data set has
to be split into training data for constructing the GRS and test data for testing
the presence of a GxE interaction effect to avoid overfitting and to construct a
statistically valid testing procedure. This need for splitting the data, again, reduces
the statistical power due to less data being available for both steps.

Recently, many GxE interaction testing procedures have been proposed that
do not require a data split [Gauderman et al., 2017]. These methods include two-
stage methods that, similar to the single SNP test, first, perform individual tests
for every considered SNP, and second, use these individual test results to test the
global hypothesis that the considered genomic region interacts in any way with
the considered environmental risk factor [Hsu et al., 2012, Gauderman et al., 2013,
Lin et al., 2019].

Similar to the GRS-based GxE interaction test, SBERIA (set-based gene–
environment interaction test) first constructs a weighted sum of SNPs that is
used as the genetic variable G in Equation (5) in a second step to test the GxE
interaction [Jiao et al., 2013]. However, to avoid overfitting and also the need
for data splitting, the weights in this sum can only attain three different values,
corresponding to no significant association, a significant positive association, or a
significant negative association of the considered SNP. Therefore, these GxE in-
teraction testing approaches perform limited modeling, not taking correlations or
interactions between SNPs into account.

Another class of GxE interaction testing procedures are variance component
tests that construct a GLMM (generalized linear mixed-effects model) including
all considered SNPs, where the GxE interaction is interpreted as a random effect
for which it is tested whether its variance is equal to zero [Lin et al., 2013, 2016,
Su et al., 2016].
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None of the discussed GxE interaction testing procedures could incorporate
gene–gene interaction effects. This would, therefore, also reduce the statistical
power for detecting GxE interactions if gene–gene interactions are present, as the
genetic model would not be properly captured in this case.

To address the data splitting issue of the GRS-based GxE interaction test, we
propose in Lau et al. [2023] (see Chapter 3) a GxE interaction test that is based on
bagging for constructing the GRS model utilizing all available data and computing
GRS predictions also for all observations using the OOB prediction mechanism.
Furthermore, based on the observation that random forests can yield superior GRS
compared to the elastic net (see Lau et al. [2022]/Chapter 2), we propose in Lau
et al. [2023] using random forests as the GRS construction procedure to allow
modeling flexibility also in the context of GxE interaction testing, as random
forests can autonomously detect gene–gene interactions and naturally employs
bagging. Moreover, random forests perform already relatively well with standard
hyperparameter settings [Probst et al., 2019] so that hyperparameter optimization
(and therefore, another data split) might not be mandatory.

The proposed GxE interaction testing procedure has been implemented in the
R software package GRSxE that is publicly available on CRAN [Lau, 2023] (see
Appendix A.1).

1.10 Interpretability of tree-based statistical learn-
ing methods

The in the previous Sections 1.7–1.9 considered tree-based statistical learning
method random forests yields strongly predictive models. However, due to not
considering one single decision tree but an ensemble of many decision trees, ran-
dom forests are no longer as easily interpretable as, e.g., GLMs, where it can be
directly seen and understood how exactly predictions are calculated.

Interpretable machine learning (also called explainable artificial intelligence) is
the field that is concerned with making machine learning models understandable
for humans [Holzinger et al., 2022]. Two of the most common concepts in inter-
pretable machine learning are constructing inherently interpretable models such
as GLMs or single decision trees and post-hoc interpretation of black-box models
such as random forests or deep neural networks, e.g., by estimating the importance
of predictors in the composition of the outcome [Holzinger et al., 2022, Bordt and
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von Luxburg, 2023].
Single logic regression models are more (inherently) interpretable than random

forests, as usually not many logic trees are fitted in a model (the software imple-
mentation allows fitting a maximum of five logic trees [Kooperberg and Ruczinski,
2023]). However, if both Boolean conjunctions and disjunctions are allowed, the
resulting Boolean expressions can be hard to interpret. Moreover, interactions are
not directly revealed in such complex Boolean expressions.

Hence, to increase the interpretability of GRS without losing much predictive
ability, an idea might be to construct single decision trees with an improved fitting
procedure.

In Section 1.7.1, decision tree splits were introduced as triplets (Xj, A, Ac) for
recursively splitting the predictor space on one predictor per split. However, for
also taking interactions between predictors on split level into account, decision
tree splits can be generalized to pairs (B, Bc), where B ⊊ X and Bc = X \ B

are complementary sets in the total p-dimensional predictor space. With this
generalized split definition, decision tree splits can take multiple predictors at
once into account. One established class of decision trees that construct these
multivariate splits are oblique decision trees [Murthy et al., 1994] that split on
linear decision rules

(︂{︂
x
⃓⃓⃓

xT a < δ
}︂

,
{︂
x
⃓⃓⃓

xT a ≥ δ
}︂)︂

,

where a ∈ Rp is a (possibly sparse) p-dimensional real vector that defines together
with the decision threshold δ ∈ R a hyperplane in Rp.

These multivariate splits can describe interactions between predictors on split
level and can lead to sparser decision trees [Hada and Carreira-Perpiñán, 2022].
However, the exact type of interaction cannot be directly inferred from the linear
decision rules. One alternative might be to consider Boolean conjunctions of binary
predictors (or, more generally, products of predictors) as splitting variables to
directly reveal the interactions on split level.

In Figure 3b, such a decision tree that splits on the Boolean conjunction Xc
1∧X2

is illustrated. This decision tree is—in comparison to the standard decision tree
depicted in Figure 3a that utilizes univariate splits—sparser. Furthermore, the
interaction effect can be directly read off from the decision tree that splits on a
Boolean conjunction. Moreover, prediction value estimation becomes more robust,
as more observations can be utilized. For example, the estimates for the prediction
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Figure 3: Decision trees that describe the same prediction function. In a, a standard
decision tree using univariate splits is shown. In b, a decision tree that splits on the
Boolean conjunction of two predictors is presented. Adapted from Lau et al. [2024].

value a in the standard decision tree from Figure 3a could be very different if few
observations are available, as a is estimated twice in this tree using two independent
samples, once for (X1 = 0) ∧ (X2 = 0) and once for X1 = 1. On the contrary,
the decision tree splitting on a Boolean conjunction from Figure 3b estimates
a only once for the complete sample with Xc

1 ∧ X2 = 0 which is equivalent to
(X1 = 1) ∨ (X2 = 0).

Hence, to construct one interpretable and highly predictive GRS model, we
develop in Lau et al. [2024] (see Chapter 4) a statistical learning method for con-
structing single decision trees that is tailored to binary predictors (such as SNPs
divided into dominant and recessive modes of inheritance) and can identify splits
on conjunctions of predictors. The proposed method is called logicDT (logic de-
cision trees) and identifies influential predictors and interactions between predic-
tors using an adaptive version of simulated annealing that—in contrast to logic
regression—does not require a manual setup.

Decision tree procedures including logicDT recursively partition the predic-
tor space which is especially useful for categorical variables such as SNPs that
can attain only finitely many values, as, in this case, the true regression function
µ(x) = E[Y | X = x] can be exactly represented by a decision tree. However,
standard decision tree procedures can only approximate continuous relationships,
that are induced by quantitative predictors such as environmental exposures, by
step functions due to the prediction values being constant in decision tree leaves.
Hence, an idea might be to fit regression models in the leaves to also properly in-
corporate continuous relationships [see, e.g., Zeileis et al., 2008]. In the setting of
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fitting parametric regression models such as GLMs, regression parameters instead
of direct predictions have to be estimated in the leaves. The decision tree fitting
algorithm, therefore, has to take this advanced modeling into account when iden-
tifying splits. This would allow fitting environment-phenotype models for different
genotypes (i.e., based on splits considering single SNPs or gene–gene interactions),
and thus, also modeling GxE interactions.

Therefore, we propose in Lau et al. [2024] fitting regression models based on
quantitative covariates in the logicDT leaves to also properly model GxE inter-
action effects—as opposed to random forests that can only approximate contin-
uous relationships using step functions and logic regression that cannot include
interactions with continuous predictors. In logicDT, a splitting criterion based
on likelihood-ratio tests is employed that compares the maximized leaf regression
model likelihoods to decide if a node will be split and, if the node shall be split,
based on which predictor/term the node will be split.

Similar to logic regression, in situations where the true underlying model is
complex and many predictors influence the outcome, fitting a logicDT ensemble
using bagging might further increase the predictive performance at the cost of
no longer obtaining an inherently interpretable model. Hence, to retain some
interpretability, the fitted logicDT ensemble model might be post-hoc explained.

For deriving which predictors influence the outcome in which magnitude in
black-box models, VIMs (variable importance measures) can be employed [Breiman
and Cutler, 2003, Hastie et al., 2009]. VIMs usually compare the full model con-
taining all predictors to an informatively reduced model, where the considered
predictor is no longer connected to the outcome, e.g., by randomly permuting
the considered predictor or refitting the model without the considered predictor
[Mentch and Hooker, 2016]. Bureau et al. [2005] proposed a joint VIM as follows
that estimates the importance of multiple predictors at once by reducing the model
also by multiple predictors at once.

Definition 5 (Variable importance measure). Let ϵ(A) measure the error of a
prediction model that (informatively) only uses the predictors in A ⊆ X (where
X =

(︂
X1 . . . Xp

)︂T
is interpreted as a set {X1, . . . , Xp}). The (joint) VIM

(variable importance measure) of k ≥ 1 predictors Xj1 , . . . , Xjk
is given by

VIM(Xj1 , . . . , Xjk
) = ϵ(X \ {Xj1 , . . . , Xjk

}) − ϵ(X).
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VIMs are typically computed on holdout/test data sets to avoid overfitting of
the estimated importances. In the context of ensemble models fitted using bagging,
the prediction errors may also be computed based on OOB predictions to obtain
unbiased VIMs [Nicodemus et al., 2010, Janitza et al., 2013].

More recently, SHAP (Shapley additive explanation) values have been proposed
for measuring the attribution of predictors in prediction models [Lundberg and
Lee, 2017]. SHAP values are, as the name suggests, based on Shapley values from
game theory that additively distribute the game’s outcome among the participating
players [Shapley, 1953]. In the case of SHAP values ϕj(f, x) (j ∈ {1, . . . , p}), which
are attributions of predictors Xj to the output f(x) of a prediction function f , an
additive decomposition of the prediction

f(x) = EX [f(X)] +
p∑︂

j=1
ϕj(f, x)

is obtained [Lundberg and Lee, 2017, Loecher, 2023] that can be also interpreted
as a GAM (generalized additive model), in which the individual attribution func-
tions ϕj(f, ·) might depend on multiple predictors at once [Bordt and von Luxburg,
2023]. SHAP values have been extended to also measure the attribution of inter-
actions between predictors using the Shapley interaction index [Fujimoto et al.,
2006, Lundberg et al., 2020]. However, since SHAP values measure the attribution
of predictors by comparing direct predictions of the considered model—and do not
consider the model error (on independent test data) as conventional VIMs, pre-
dictor attributions measured using SHAP values might be high due to overfitting
and not due to an actual influence on the outcome [Loecher, 2022]. Hence, SHAP
values measure the attribution of predictors regarding model structure, whereas
classic VIM approaches measure the importance of predictors regarding predictive
performance/association with the outcome.

To quantify the effects of SNPs and certain gene–gene interactions on a consid-
ered phenotype and to obtain post-hoc interpretability of ensemble logicDT mod-
els, we also propose in Lau et al. [2024] a framework for measuring the influence
of predictors and specific interactions of predictors on the outcome—as opposed
to standard VIMs that either measure the influence of single predictors or joint
influences, and therefore, do not measure the importance of isolated interaction
effects—that can be used in conjunction with logicDT. The proposed interaction
VIM is derived by recursively splitting joint effects into main and interaction effects
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and considers a general definition of interactions, i.e., if the considered predictors
interact in any way. To also identify which specific Boolean conjunction is most
likely associated with the considered interaction effect, all possible conjunctions are
tested for their association with the outcome. As binary predictors can attain only
two different values, the logic VIM is proposed that quickly estimates the infor-
matively reduced model by considering all possible scenarios for predictors/terms
for which the importance shall be estimated.

logicDT has been implemented in the R software package logicDT that is
publicly available on CRAN [Lau, 2024] (see Appendix A.2).

1.11 Aims of this work

To summarize, this dissertation is concerned with GRS construction approaches
that employ statistical learning. As discussed in the previous sections, there are
several research gaps in this context that are addressed in this work, namely

1. incorporating gene–gene interaction effects in modeling GRS (Chapters 2–4),

2. investigating predictive performances/associations of the constructed GRS
with the considered phenotype of tree-based procedures compared to stan-
dard GRS approaches in various situations (Chapter 2),

3. utilizing complex GRS models for statistically testing the presence of GxE
interaction effects (Chapter 3),

4. identifying and properly modeling gene–gene and GxE interactions in one
single model (Chapter 4),

5. constructing a highly predictive and highly interpretable GRS model (Chap-
ter 4),

6. estimating the influence of SNPs and specific gene–gene interaction effects
on the considered phenotype (Chapter 4).

Contributing to filling these research gaps could improve GRS construction in prac-
tice so that GRS estimation in precision medicine could become more accurate.
Moreover, improving the statistical power of GxE interaction testing procedures
and improving the interpretability of constructed GRS models could lead to reveal-
ing so-far hidden biological mechanisms in the development of complex diseases.
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In Chapter 2, the first publication is presented that addresses Research Gaps 1
and 2. Chapter 3 consists of the second publication that addresses Research Gaps
1 and 3. The third publication is presented in Chapter 4 and addresses Research
Gaps 1 and 4–6. Chapter 5 concludes this dissertation and provides discussions
on potential future research.
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Chapter 2

Evaluation of tree-based
statistical learning methods for
constructing genetic risk scores

In the following, the first manuscript [Lau et al., 2022], which was published in the
journal BMC Bioinformatics, is presented and addresses Research Gaps 1 and 2.

The first simulation scenario considered in this manuscript has been also evalu-
ated in a slightly modified version in the master’s thesis Evaluation of Tree-Based
Classification and Regression Methods for Constructing Genetic Risk Scores [Lau,
2020]. However, in this paper, different variants of the tree-based GRS construc-
tion approaches are considered than in the master’s thesis (see also Section 1.8).
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Evaluation of tree‑based statistical learning 
methods for constructing genetic risk scores
Michael Lau1,2*  , Claudia Wigmann2, Sara Kress2, Tamara Schikowski2 and Holger Schwender1 

Background
The development of complex diseases depends on many factors such as genetic muta-
tions, the lifestyle, or environmental factors. Investigating the effects of genetic vari-
ants across the human genome in genome-wide association studies (GWAS) has already 
revealed relevant risk base-pair alterations [1]. Single nucleotide polymorphisms (SNPs) 
may have only a very small effect on the investigated disease. However, when considered 
jointly, SNPs might be highly relevant [2, 3]. This behavior can be due to many inde-
pendent SNPs exhibiting minor individual effects, or it can be caused by interactions of 
genetic variants, i.e., epistasis.

Abstract 

Background:  Genetic risk scores (GRS) summarize genetic features such as single 
nucleotide polymorphisms (SNPs) in a single statistic with respect to a given trait. So 
far, GRS are typically built using generalized linear models or regularized extensions. 
However, these linear methods are usually not able to incorporate gene-gene interac-
tions or non-linear SNP-response relationships. Tree-based statistical learning methods 
such as random forests and logic regression may be an alternative to such regularized-
regression-based methods and are investigated in this article. Moreover, we consider 
modifications of random forests and logic regression for the construction of GRS.

Results:  In an extensive simulation study and an application to a real data set from 
a German cohort study, we show that both tree-based approaches can outperform 
elastic net when constructing GRS for binary traits. Especially a modification of logic 
regression called logic bagging could induce comparatively high predictive power as 
measured by the area under the curve and the statistical power. Even when consider-
ing no epistatic interaction effects but only marginal genetic effects, the regularized 
regression method lead in most cases to inferior results.

Conclusions:  When constructing GRS, we recommend taking random forests and 
logic bagging into account, in particular, if it can be assumed that possibly unknown 
epistasis between SNPs is present. To develop the best possible prediction models, 
extensive joint hyperparameter optimizations should be conducted.

Keywords:  Polygenic risk scores, Epistasis, Statistical learning, Random forests, Variable 
selection, Logic regression, Bagging, Elastic net, Simulation study
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In consequence, summarizing relevant genetic effects in an individual while suf-
ficiently predicting the risk for a certain disease, potentially jointly with non-genetic 
covariables, would be highly desirable. This would, on the one hand, allow to uncover 
underlying mechanisms related to this specific disease. On the other hand, accurately 
predicting the risk of disease for an individual could have a high impact on personalized 
medicine due to potentially being able to reduce the personal risk by taking specialized 
preventive measures if an individual has a high genetic risk for a certain disease [4, 5].

One promising approach for the assessment of an individual’s risk is the development 
of genetic risk scores (GRS). For the construction of GRS, one typically selects a subset 
of relevant SNPs from a biological pathway or a gene and calculates a weighted sum of 
the selected genetic variants.

Genome-wide approaches with a selection of genetic variants from across the whole 
genome resulting from prior knowledge are also possible for building GRS [6, 7]. How-
ever, such selections typically depend on large-scale association studies in which single 
SNPs were tested individually with regard to the phenotype. Thus, interacting variants 
which do not exhibit substantial marginal effects might be left out although SNP level 
interactions might contribute to disease risk [8, 9]. In this context, an alternative to con-
ventional GWAS for identifying disease-related SNPs might be genome-wide associa-
tion interaction studies (GWAIS) [9].

The standard procedure for the computation of the GRS is the usage of exter-
nal weights [10, 11], ideally determined from independent association studies such as 
GWAS or GWAIS. However, there might be no appropriate association study for the 
regarded outcome or population available such that suitable weights have to be gathered 
in a different way.

Internal GRS weights can be estimated by regarding the problem of constructing 
GRS as a supervised statistical learning problem, where the response would be the dis-
ease status or a quantitative biological variable such as the glucose level. In this case, 
the predictors are genetic variants of the specific pathway or gene, where SNPs are usu-
ally coded by the number of minor alleles for this individual. The estimation of proper 
weights or fitted models which generalize well, i.e., which represent the whole popula-
tion reasonably well and not only the available sample, requires the partitioning of the 
whole data set into training and test data sets. Dudbridge [3] and Hüls et al. [11] found in 
their studies that a random close to one-half split generalizes well. Sufficient samples are 
necessary in the test data set for evaluating the association of the GRS with the response 
which especially holds true for gene-environment interaction (GxE) studies in which 
more parameters are to be estimated. A GxE interaction is present if, for different geno-
types, different disease susceptibilities to an environmental factor are underlying, e.g., if 
an individual has a high genetic risk for a certain disease which is enabled by an environ-
mental factor [12].

So far mainly linear methods such as generalized linear models (GLM) or regularization 
methods based on GLMs, such as the lasso [13] or one of its generalizations, the elastic net 
[14], have been used in the construction of GRS [11, 15, 16]. The elastic net offers the advan-
tage of properly handling highly correlated predictors, e.g., SNPs in linkage disequilibrium 
(LD), by employing an L2 regularization while performing a variable selection due to the 
L1 regularization. Nonetheless, these regularized linear regression methods cannot directly 
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take interactions between predictors into account (unless specific interaction terms were 
specified prior to applying them) and the assumption of an additive relationship between 
the response and the input variables has to be fulfilled. Therefore, the usage of algorithms 
which are able to develop more general models and which in fact can find and take interest-
ing interactions into account might be preferable.

The tree-based statistical learning method random forests [17] is well-known and widely 
used among a variety of use cases [e.g., [18–20]]. It builds several individual classification or 
regression trees (CART) [21], which are fitted by a non-linear recursive partitioning algo-
rithm, and combines them to one strong ensemble. For a low to moderate amount of SNPs 
( < 100 ), it has been shown that the classic random forests algorithm is able to properly 
uncover SNP interactions even when the corresponding marginal effects are negligible [22].

Another tree-based non-linear statistical learning procedure is logic regression [23] 
which mainly considers binary predictors. It searches for Boolean expressions of the input 
variables and combines multiple expressions in a GLM and already has been used in appli-
cations to SNP data [24–26]. Both tree-based methods are theoretically able to cover each 
possible prediction scenario for categorical input data. However, their model fitting tech-
niques are highly different.

To the best of our knowledge, it has barely been investigated yet whether the aforemen-
tioned statistical learning algorithms can be used as alternative procedures to conven-
tional GRS construction approaches. For random forests, some publications suggest that 
the ensemble method is able to outperform conventional linear methods such as logistic 
regression, odds ratio scores or the lasso [27, 28]. However, more recent studies which 
considered genome-wide risk scores, i.e., GRS constructed using SNPs from all over the 
genome and not just single genes or pathways, were not able to verify that random forests 
should be used over linear approaches [29, 30]. In the context of disease risk prediction, e.g., 
Yoo et al. [31] regarded random forests, logic regression, and logistic regression without 
penalization in one simple gene-gene interaction simulation study and additionally in a real 
data application. In their analyses, the tree-based algorithms could induce higher predictive 
performances than logistic regression. Nonetheless, multi-faceted analyses taking different 
realistic data scenarios into account are necessary in order to draw meaningful conclusions 
about the appropriateness of the tree-based methods for the construction of GRS.

The classic random forests and logic regression algorithms have some shortcomings. In 
particular, random forests can severely overfit the data [32] and logic regression can lead 
to highly variant models [24]. Thus, we additionally considered modifications of the classic 
algorithms to overcome these drawbacks.

In this article, we, therefore, evaluate random forests, logic regression, and extensions of 
these methods in an extensive simulation study and an application to a real data set from 
a German cohort study for the construction of GRS and compare the results to the elastic 
net.

Methods
Construction of genetic risk scores

Let Dtrain = {(xi, yi)}Ni=1 be a training data set with N observations and binary outcomes 
yi ∈ {0, 1} . Further assume that each input vector xi is a collection of p biallelic SNPs, 
i.e., taking values in the p-dimensional space {0, 1, 2}p , where 0 codes the homozygous 
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reference, 1 the heterozygous variant, and 2 the homozygous variant. Then the problem 
of constructing a GRS model consists of fitting a proper function

The target space is equal to the probability scale [0, 1], since GRS(x) should be an esti-
mate of P(Y = 1 | X = x) , i.e., the probability of being a case given some SNPs x . This 
fitting procedure is conducted on a designated training data set. Independent observa-
tions from a test data set Dtest are used to evaluate the GRS, i.e., GRS(x) for (x, ·) ∈ Dtest.

An overview of the workflow for fitting and evaluating GRS models using the statisti-
cal learning approach is given in Fig. 1.

Random forests

In random forests, multiple classification or regression trees (CART) [21] with 
injected randomness are built to form one strong ensemble. From a graph-theoretical 
point of view, decision trees are usually binary trees in which each inner knot repre-
sents a split based on a predictor and each leaf (terminal node) describes a prediction 

GRS : {0, 1, 2}p → [0, 1].

Fig. 1  Workflow of constructing and evaluating genetic risk scores
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scenario. Figure 2a illustrates an exemplary classification tree with four disjoint pre-
diction scenarios. New predictions start at the root node and follow the respective 
edge until a leaf is reached.

Decision trees are induced by a recursive greedy splitting algorithm which searches 
at each inner node for the best possible split with respect to an impurity measure. The 
impurity measure is a quantifier for the homogeneity of respective nodes. For binary 
classification trees, the Gini impurity

for empirical probabilities P(Y = c | X ∈ t) that the response Y is equal to class c given 
that the input vector X falls into the regarded node t is usually chosen.

The tree induction procedure can be locally terminated by stopping criteria. When 
a node should not be split, it is declared as a leaf and has to receive a prediction value. 
For classification trees, this is usually the class with the highest empirical probability 
in the regarded branch.

However, single decision trees suffer from the instability problem which states that 
a small noise-like modification of the training data set may lead to a disproportional 
modification of the fitted tree. This issue is mainly caused by the greedy fashion of 
choosing splits [33].

Random forests tries to address this issue. The algorithm employs bagging [34] 
which draws a bootstrap sample of the available data for each individual tree as its 
training data set. The tree fitting procedure is further randomized by adjusting the 
splitting algorithm to choose mtry ≤ p predictors from the total set of input varia-
bles at every inner node which qualify for the best split. mtry is a hyperparameter 
usually chosen as √p or p/3 which should be properly tuned in certain applications. 
Based on these randomizations, the resulting model averages the individual trees, i.e., 
for classification trees, the class which is classified most often will be chosen as the 
prediction.

i(t) = 2 · P(Y = 1 | X ∈ t)P(Y = 0 | X ∈ t)

ba

Fig. 2  Exemplary tree models for three binary input variables X1 , X2 and X3 predicting two different classes 
c0 and c1 . In a, a classification tree is shown. b depicts a logic tree describing the Boolean expression 
(Xc

1
∧ X2) ∨ (X1 ∧ X

c
3
) . Here, a true Boolean expression is identified as class c1 and c0 otherwise. Negated 

input variables/leaves are marked by white letters on a black background. Both trees are equivalent, i.e., they 
perform the same predictions for each predictor setting
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Random forests for constructing genetic risk scores

If one is aiming at constructing GRS for binary traits, one has to keep in mind that prob-
ability estimates for showing the regarded feature are needed instead of class estimates. 
Random forests based on classification trees can be used for probability estimation by 
averaging the number of trees which voted for class 1 [35]. However, if we, e.g., assume 
that the true risk for being a case would be equal to 80% and that all classification trees 
properly recognize this fact and, therefore, predict class 1 for this particular setting, the 
forest risk estimate would be given by 100% . Thus, for this reason, we consider prob-
ability estimation trees [36] which hold risk estimates in their leaves in contrast to clas-
sifications. These estimates are usually chosen as the empirical branch probabilities from 
which classification trees also draw their estimates. Random forests based on probabil-
ity estimation trees average the probability estimates of the individual trees similar to 
regression trees.

If SNP variables coded as 0, 1, or 2 are interpreted as quantitative variables, decision 
trees and random forests are able to split with respect to ({0}, {1, 2}) or ({0, 1}, {2}) , thus, 
considering both dominant and recessive modes of inheritance. Therefore, SNPs are 
directly used as input variables when employing random forests.

Random forests VIM

One issue that arose when fitting the first GRS models with random forests in our 
initial experiments was a substantial overfitting which could be observed by compar-
ing the test and training data errors. Therefore, performing an appropriate variable 
selection prior to fitting the final random forests models might reduce the overfitting 
and lead to better results for noise-intensive data. Kursa and Rudnicki [37] proposed 
an iterative variable selection approach which relies on variable importance meas-
ures (VIM) and which they called Boruta. The permutation VIM can be calculated 
using the out-of-bag observations for each tree, thus, avoiding an overfitting of the 
VIM itself. In each iteration, the Boruta approach adds for each predictor variable 
a shadow variable with the same values but randomly permutes them to destroy a 
potential predictor-response relationship for this variable. Next, a random forest on 
this extended set of input variables is fitted and the evaluated VIMs for these shadow 
variables are used to approximate the distribution of VIMs for non-influential input 
variables. The computed VIMs of the original variables are then compared to the 
VIMs of the shadow variables in statistical tests for importance. In particular, the 
maximum observed importance of all shadow variables is used to decide whether an 
original variable is temporarily classified as important. More specifically, if a varia-
ble yields an importance higher than the maximum observed importance among all 
shadow variables, it will be temporarily marked as important. Several iterations of 
creating shadow variables, fitting random forests, and computing VIMs are used to 
perform binomial tests, which regard how often the variable was temporarily marked 
as important, testing the alternative of greater or smaller VIM realizations, i.e., impor-
tant or unimportant variables. More precisely, these binomial tests are based on the 
null hypothesis that the probability of the regarded input variable yielding a higher 
VIM than the maximum VIM of all shadow variables is equal to 0.5. The significance 
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threshold of the binomial tests is set to 1%, which is also the recommended thresh-
old by the authors of the Boruta approach. Compared to other random-forest-based 
variable selection methods such as the Vita algorithm proposed by Janitza et al. [38] 
which relies on negative VIM values, the Boruta approach does not require a vast 
amount of (noninfluential) input variables.

As an alternative procedure, we also tried the variable selection method by Altmann 
et al. [39], which relies on random permutations of the response variable. However, in 
our experiments, the Boruta approach yielded more stable results in general. In particu-
lar, even when considering different significance thresholds for the approach by Altmann 
et al. [39], the Boruta procedure still could induce more stable variable selections, i.e., 
leading to variable selections that did not severely differ between independent replicates. 
This observation is in line with the analyses by Degenhardt et al. [40] who provide an in-
depth comparison of various random forests variable selection methods.

Hence, we fitted ordinary random forests with probability estimation trees and ran-
dom forests based on the Boruta variable selection which we call random forests VIM in 
the following. For random forests, we used the R package ranger [41]. For random for-
ests VIM, the R package Boruta [37], that also relies on the ranger package, was used.

Logic regression

Logic regression [23] is a tree-based statistical learning algorithm which is specifically 
tailored to binary input variables. It searches for ideal Boolean expressions of those and 
works with binary tree representations of Boolean expressions, logic trees. Logic trees 
hold the Boolean operators ∧ (AND) or ∨ (OR) in their inner nodes and contain predic-
tor variables or their negations (indicated through c ) in their terminal nodes. Figure 2b 
depicts an exemplary logic tree which is equivalent to the exemplary classification tree 
from Fig.  2a, i.e., both trees perform the same predictions for each realization of the 
three input variables. The interpretation as a Boolean expression is obtained recursively 
by combining expressions in a bottom-up fashion, yielding (Xc

1 ∧ X2) ∨ (X1 ∧ Xc
3) for the 

logic tree from Fig. 2b.
Logic trees themselves can only be used for binary classification tasks, since they 

represent logic expressions so that their output is also either 0 or 1. To generalize their 
usage for, e.g., risk prediction, Ruczinski et al. [23] proposed using logic trees L1, . . . , LM 
as predictors in a GLM

considering an appropriate link function g such as the logit function 
logit(p) = log(p/(1 − p)) for a binary response.

The total model fitting procedure consists of finding the most appropriate logic tree(s). 
In practice, for each model, a set of neighbor states is defined by simple adjustments of 
the current model. The moves used in logic regression consist of exchanging variables 
and operators, adding or removing branches, splitting or removing variables, and adding 
or removing trees. This set of moves ensures that from every state, every other possible 
state can be reached in a final number of steps. For more details, see [23].

Based upon this methodology, two model search algorithms are used in practice:

g(E[Y | X = x]) = β0 + β1L1(x) + . . . + βMLM(x)
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•	 a greedy search which evaluates each neighbor of a given state and moves to the best 
one

•	 simulated annealing [42], a stochastic search algorithm which only considers one 
random neighbor per iteration and can also move to worse states to prevent being 
stuck in a local minimum.

Model ranking is performed using a score function which is chosen to be the deviance 
for the logistic model. The model which yields the best score among all models visited in 
the search is chosen as the resulting model. Irrespective of using the greedy approach or 
simulated annealing, one should configure the model size hyperparameters, i.e., the total 
number of trees and the total number of leaves, to obtain the best fit on the entire popu-
lation. For fitting conventional logic regression models, we used the R package Logi-
cReg [43] and used simulated annealing as the search procedure.

Logic regression for constructing genetic risk scores

SNP variables coded as 0, 1, or 2 can be biologically meaningful divided into two 
binary variables, in SNPD = 1(SNP �= 0) , coding for a dominant effect, and in 
SNPR = 1(SNP = 2) , coding for a recessive effect. With these two binary variables, 
interactions can be properly expressed. For example, consider a scenario where two 
SNPs influence the disease risk in such a way that the risk is significantly increased if and 
only if for both SNPs their respective minor allele occurs at least once. With Boolean 
logic, this can be expressed as SNP1,D ∧ SNP2,D . It might also be possible that two risk-
increasing SNPs with a dominant mode of inheritance can only elevate the disease risk 
once, i.e., if both statuses occur, the risk is not increased beyond the first elevation. This 
scenario can also be expressed with Boolean logic as SNP1,D ∨ SNP2,D . Furthermore, 
SNPs in high linkage disequilibrium (LD) that are, therefore, highly correlated can also 
be properly addressed with the logical OR. One LD block might then be expressed as a 
chain of OR-concatenated SNPs, a disjunction. Thus, for the construction of GRS with 
logic regression, each SNP is divided into two binary variables prior to applying the 
procedure.

Logic bagging

As an alternative to an exhaustive search with simulated annealing, we also consid-
ered applying bagging [34] to logic regression models fitted with a greedy search. We 
call this approach logic bagging. In contrast to conventional logic regression, logic bag-
ging fits ensembles of individual logic regression models and, similar to random forests, 
predictions are made using the average of the predictions of the individual logic regres-
sion models. This approach is still computationally expensive when using an adequate 
amount of bagging iterations (e.g., 500) but reduces the variance and does not require 
the tuning of a cooling schedule. Logic bagging is implemented in the R package log-
icFS [44]. For fitting logic bagging models, the greedy search is employed mainly due to 
computational reasons. In particular, in Additional file 1: Fig. S1, the model fitting times 
are depicted. For example, for fitting and evaluating a single logic bagging model consist-
ing of 500 logic regression models fitted via simulated annealing, it would take about 
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500 · 28.82s ≈ 4h using the mean model fitting and evaluation time of 28.82s for logic 
regression.

Elastic net

The elastic net [14] is a regularized linear regression model which combines

•	 the lasso (least absolute shrinkage and selection operator) [13], i.e., L1 regularized 
regression that reduces the estimate of the regression coefficients of non-influential 
predictors to zero, therefore, excluding non-informative input variables,

•	 and ridge regression [45], i.e., L2 regularized regression for properly handling highly 
correlated predictors by assigning similar weights to such predictors.

Elastic net, hence, uses a penalty term given by

for the regression coefficients β =

β1 . . . βp

T in the fitting procedure solving the opti-
mization problem

for the log-likelihood function ℓ . In this article, binary outcomes are considered. Thus, 
the logistic regression approach for elastic net was employed.

Here,  ≥ 0 determines the strength of the regularization, i.e., for larger values of  , 
the penalty Rα(β) increases, thus, favoring coefficient vectors with smaller norms, i.e., 
more loosely fitting models. The parameter α ∈ [0, 1] configures the balance between the 
lasso and ridge regression, i.e., for α = 0 , one would perform ordinary ridge regression 
and for α = 1 , one would apply the lasso. Therefore, these two hyperparameters have to 
be tuned properly.

In practice, the model coefficients are estimated by employing coordinate descent as 
optimization algorithm to solve the minimization problem (1) and taking advantage of 
the fact that similar values of  lead to similar model coefficients for a fast fitting of dif-
ferent  settings [46]. We used the R package glmnet [46] with cross-validation for fit-
ting elastic net models.

The common procedure when constructing GRS with regularized regression proce-
dures such as elastic net is to use the {0, 1, 2} coding for each SNP in the model [11, 
16]. We, therefore, follow in our comparison this standard procedure and use the {0, 1, 2} 
coding in the elastic net.

If interaction effects between SNPs should be included in the elastic net model, they 
have to be explicitly specified prior to fitting the model. However, in practice, it is usually 
unknown which loci might interact. Including all possible interactions between SNPs 
becomes rapidly infeasible, as for a moderate amount of SNPs, the number of possible 
interaction terms might already be too high. For example, for 50 SNPs, there exist more 
than 1015 interaction terms. The standard procedure for constructing GRS with linear 
methods such as the elastic net is to only consider marginal genetic effects [16]. Thus, we 

Rα(β) :=
1

2
(1 − α)||β||22 + α||β||1

(1)min
β0,β



−
1

N
ℓ(β0,β) + Rα(β)





Page 10 of 30Lau et al. BMC Bioinformatics           (2022) 23:97 

follow in our evaluations this common procedure and do not include interactions in the 
elastic net models.

Simulation studies
The tree-based statistical learning methods random forests, random forests VIM, logic 
regression, and logic bagging were evaluated and compared to the elastic net in a simu-
lation study considering three scenarios with several different settings. All SNPs were 
drawn independently resembling LD-based pruned or clumped SNPs. All simulations 
and analyses were performed with R version 4.0.3 [47]. Data sets for all simulation sce-
narios were generated using the R function simulateSNPglm from the scrime pack-
age [48].

General workflow

The general workflow for generating the data sets for the simulation study is given as fol-
lows for each of the simulation settings, which are described in detail afterwards. 

1.	 Choose the fixed data parameters, i.e., the odds ratios, number of SNPs, sample size 
and simulation design.

2.	 For each SNP, draw a random minor allele frequency (MAF).
3.	 Randomly generate the genotypes based on the MAFs.
4.	 If continuous covariables are to be included, randomly generate the data for these 

variables.
5.	 Randomly generate the outcome according to the linear predictor.
6.	 Evaluate the fraction of cases in the generated outcome and tune the prevalence such 

that this fraction becomes approximately balanced, i.e., yielding ∼ 50% cases. This 
involves going back to step 5.

7.	 Create 100 independent data sets for a certain setting using the steps 2–5 for each 
repetition.

Simulation setups

Marginal genetic effects

In a first step, we focused on main effects, which represents the ideal case for the elastic 
net, since no interactions are considered here and the individual effects behave addi-
tively with each other. Similar to Hüls et  al. [49], we considered six SNPs influencing 
the value of the outcome, where we simulated a dominant effect for each of these SNPs. 
Thus, we first considered data sets generated from a logistic regression model

In order to draw conclusions for different realistic scenarios, we varied three parameters:

•	 the effect size, i.e., the odds ratio, of each influential SNP which can be configured by 
specifying exp(βi) [50],

(2)logit(P(Y = 1)) = β0 +
6



i=1

βi · 1(SNPi �= 0) = β0 +
6



i=1

βi · SNPi,D.
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•	 the intensity of statistical noise which we adjusted by adding non-influential SNPs to 
each data set,

•	 and the sample size of each data set.

To achieve nearly case-control study-like designs, we configured the prevalence, i.e., 
(1 + exp(−β0))

−1 [50], to result in nearly balanced data sets for each regarded odds 
ratio. The MAF was drawn randomly for each SNP and for each data set from the inter-
val [0.15, 0.45] similar to Pan et al. [51]. For each scenario, we generated 100 independ-
ent data sets, i.e., we performed 100 replications. Table 1 lists the regarded settings for 
the aforementioned simulation parameters.

Dominant interactions of SNPs

In a second simulation scenario, we additionally considered a gene-gene interaction, i.e., 
an interaction between SNPs. More specifically, we here always considered three SNPs 
with low main effects, i.e., odds ratios of 1.2 and a dominant mode of inheritance, since 
we focused on marginal effects in the first scenario. Additionally, we included an interac-
tion term between two SNPs whose odds ratio was varied. Similar to the first scenario, 
we also varied the amount of statistical noise, i.e., the number of SNPs for which no 
effect on the outcome is intended. Furthermore, we considered three sub designs that 
determine which SNPs interact. The data was generated following models such as

The indices (j, k) ∈ {(1, 2), (1, 4), (4, 5)} determine whether both interacting SNPs also do 
have marginal effects, only one of them exhibits a main effect, or if they only are influ-
ential when considered jointly. The prevalence was again configured by β0 to approxi-
mately achieve case-control-balanced study designs. The MAF was randomly chosen in 
the interval [0.15, 0.45] and the sample size was fixed to 2000 observations per data set, 
since we only considered weak marginal effects. 100 independent data sets for each set-
ting were analyzed using a cyclic scheme such as in the first simulation scenario. The 
study parameters for the second simulation scenario are summarized in Table 2.

Gene‑environment interactions

In the final simulation scenario, we added two correlated continuous variables to the 
true underlying model from which one forms a GxE interaction with a SNP. One of 

(3)logit(P(Y = 1)) = β0 +
3



i=1

βi · SNPi,D + β4 · SNPj,D · SNPk ,D.

Table 1  Parameter settings for the first simulation scenario resulting in 27 settings in total

Parameter Considered realizations

Odds ratio 1.2, 1.5, 1.8

Amount of noise SNPs 4, 14, 44

Sample size 500, 1000, 2000

Prevalence Resulting in balanced data sets

MAF Randomly chosen from [0.15, 0.45]

Repetitions 100
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these two variables exhibits a marginal effect on the outcome, while the second vari-
able only influences the outcome if a certain risk allele occurs at least once. The data 
for this scenario was generated considering the model

Similar to the gene-gene interaction simulation scenario, the effects for the first three 
SNPs were fixed to odds ratio of 1.2, 1.5, and 1.8, respectively. The interaction between 
SNP1 and SNP4 received a fixed odds ratio of 1.8, since in this analysis, the focus lies 
on the GxE interaction. The index j ∈ {2, 5} determines whether the SNP in the GxE 
interaction also exhibits a moderate marginal effect or if this SNP only influences the 
outcome in interaction with the continuous variable E2 . The odds ratios of the terms 
involving the continuous variables E1 or E2 were specified per IQR (interquartile range) 
of the respective environmental variable as it is regularly done when performing analy-
ses of GxE interactions [11]. For the continuous variable E1 , the (marginal) odds ratio 
was fixed to 1.2 per IQR. The odds ratio of the GxE interaction between SNPj and E2 was 
varied between 1.2 and 2.4. The continuous variables were generated following a multi-
variate normal distribution, i.e.,

In particular, the mean µ was set to 20, the variance σ 2 was chosen as 10 and the correla-
tion ρ between these two variables was chosen as either 0.5 or 0.9, resembling moder-
ately and highly correlated variables, respectively. The prevalence was again configured 
by β0 to approximately achieve case-control-balanced study designs. The MAF was ran-
domly chosen in the interval [0.15, 0.45] and the sample size was fixed to 2000 obser-
vations per data set as in the previous simulation scenario. The number of additional 
noise SNPs was fixed to 45. 100 independent data sets for each setting were analyzed. 
The study parameters for the third simulation scenario are summarized in Table 3. In 
GxE interaction studies, GRS are usually constructed only using the available genetic 
data [11]. Thus, we constructed the GRS without utilizing the environmental variables.

(4)
logit(P(Y = 1)) = β0 +

3


i=1

βi · SNPi,D + β4 · SNP1,D · SNP4,D

+ β5 · E1 + β6 · E2 · SNPj,D.



E1
E2



∼ N2



µ

µ



, σ 2



1 ρ

ρ 1



.

Table 2  Study parameters for the second simulation scenario resulting in 45 settings in total

Parameter Considered realizations

Odds ratio of gene-gene interaction 1.2, 1.5, 1.8, 2.1, 2.4

Amount of noise SNPs 5, 15, 45

Interacting SNPs (j, k) (1, 2), (1, 4), (4, 5)

Sample size 2000

Prevalence Resulting in balanced data sets

MAF Randomly chosen from [0.15, 0.45]

Repetitions 100
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Analysis of association and predictive strength

To evaluate and compare the different statistical learning methods in their ability to con-
struct GRS, a cyclic training-validation-test data set scheme was considered. In the i-th 
repetition of this cyclic scheme, the i-th data set Di , i ∈ {1, . . . , 100} , was used to train 
the GRS with the different statistical learning methods. For the evaluation of the perfor-
mance of these methods, the succeeding data set Di+1 if i  = 100 and D1 otherwise was 
chosen to be the independent test data set. For tuning the hyperparameters (see “Sec-
tion Hyperparameter optimization”), we chose the preceding data set, i.e., Di−1 if i  = 1 
and D100 otherwise as validation data.

Since all data sets were generated independently, the cyclic scheme is equivalent to a 
conventional training-validation-test data set approach in which each of the 100 data sets 
is once used as training set, once as test set, and once as validation set in a cyclic manner. 
Due to the high computational costs when considering many different parameter con-
figurations, hyperparameter tuning was performed by averaging the performances over 
the first 10 validation iterations for each simulation setting and each parameter setting. 
The setting which yielded the highest validation AUC across the average over these 10 
repetitions was chosen as the fixed setting for the particular simulation setting.

The standard approach for testing the association considers the GRS as a predictor in 
a conventional regression model [2]. For binary outcomes, the logistic regression model 
is fitted on the test data. The logistic regression model maps the linear predictor with 
the logistic function from (−∞,+∞) to (0, 1). Thus, the GRS (probability estimates) are 
transformed to the scale of the linear predictor by applying the inverse of the logistic 
function, the logit function. In summary, the univariate association model

is constructed using

for raw risk predictions of the fitted GRS model GRSraw.
For statistically assessing this association, we conducted Wald tests testing the alter-

native that the GRS is associated with the response. Based on these test results, we 
estimated the statistical power and the type I error rate for analyzing and comparing 
the ability of properly recognizing signals in the genetic data by the GRS construction 

(5)logit(P(Y = 1 | GRS)) = β0 + β1 · GRS





GRS(x), y


:=


logit(GRSraw(x)), y
 

 (x, y) ∈ Dtest



Table 3  Study parameters for the third simulation scenario resulting in 20 settings in total

Parameter Considered realizations

Odds ratio of GxE interaction 1.2, 1.5, 1.8, 2.1, 2.4

Amount of noise SNPs 45

Interacting GxE SNP j 2, 5

Correlation between E1 and E2 0.5, 0.9

Sample size 2000

Prevalence Resulting in balanced data sets

MAF Randomly chosen from [0.15, 0.45]

Repetitions 100
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procedures. The statistical power, which is given by the probability that the GRS is cor-
rectly recognized as influential on the response, can be estimated by the fraction of 
logistic models with statistically significant predictors under all cases which rely on the-
oretically influential genetic data. The type I error rate, i.e., the false positive rate, can be 
estimated by the fraction of significantly recognized GRS under all cases in which the 
response and the predictors are actually independent.

To compare the predictive strength of GRS, which is probably most relevant, we cal-
culated the area under the curve (AUC) with respect to the receiver operating charac-
teristic (ROC). This metric offers two main advantages over classification measures such 
as the accuracy, sensitivity, or specificity. First, it does not depend on the classification 
threshold which perhaps should be tuned. Second, the AUC can handle imbalanced data 
sets due to simultaneously regarding sensitivity and specificity. Moreover, the AUC has 
an intuitive interpretation as the probability that a random observation from the entire 
population of cases yields a higher risk estimate than a randomly chosen control from 
the population [52].

Additionally, we evaluated the classical classification metrics accuracy, sensitivity, 
and specificity. In particular, we performed hard classifications on the resulting logistic 
regression model containing the GRS using a classification threshold of 0.5, i.e., clas-
sifying an observation as a case if it is predicted that the probability of being a case is 
higher than the probability of being a control and classifying an observation as a control 
otherwise. Using these classifications, the overall accuracy, sensitivity, and specificity as 
defined, e.g., in Alberg et al. [53] were evaluated. The accuracy was not explicitly adjusted 
for the prevalence, since we generated approximately case-control-balanced data sets in 
the simulation study, thus, yielding a prevalence of 50%. However, the main purpose of 
GRS does not lie in hard classifying observations as cases or controls. Instead, GRS are 
used for estimating individual risks, e.g., in precision medicine or for uncovering bio-
logical mechanisms involved in the development of diseases. Therefore, a metric such as 
the AUC which simultaneously considers different sensitivities and specificities seems to 
be preferable in the evaluation of the performance of GRS.

Hyperparameter optimization

Certain statistical learning procedures require the optimization of hyperparameters 
using independent validation data sets. This also holds true for the algorithms consid-
ered in this article. Table 4 lists the regarded hyperparameter configurations, where each 
possible combination of these parameters has to be considered in the parameter tuning. 
A description of each of these parameters is given in Additional file  1: Section  2. For 
random forests, we fixed the number of total trees grown to 2000, which is a sufficiently 
large number of trees in our applications, since in preliminary experiments, we could 
observe that the validation AUC converged using smaller amounts of trees. Analogously, 
we fixed the number of bagging iterations for logic bagging to 500. The cooling schedule 
in logic regression was configured manually by observing the cooling behavior for dif-
ferent settings and choosing a start temperature and end temperature such that around 
90% of the proposed models were accepted at the beginning of the algorithm and close 
to no models were accepted when approaching the end temperature. The amount of sim-
ulated annealing iterations was fixed to 500000. The regularization parameter  for the 
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elastic net was automatically chosen by employing cross-validation in the respective fit-
ting processes and selecting the value which minimizes the loss.

For each considered statistical learning method, a more detailed workflow for tuning 
and training the respective models is depicted in Additional file 1: Section 3.

Results of the simulation studies

Marginal genetic effects

Figure 3 summarizes the AUC for each of the 27 regarded settings in the main effects 
simulation scenario. In Additional file 1: Fig. S2, corresponding asymptotic 95% confi-
dence intervals are depicted. Most notably, logic bagging leads in almost every scenario 
to the highest AUC. For strong effects and large data sets, ordinary logic regression 
induces similar or even better results which are comparable to the true underlying 
model. Especially for weak effects, ordinary random forests yields comparably high val-
ues for the AUC. Unsurprisingly, random forests with a prior variable selection is more 
effective in relation to the other procedures when considering a higher amount of statis-
tical noise. For less noisy data, random forests VIM cannot compete with the other tree-
based methods and shows high variations. The elastic net yields inferior results for large 
data sets and large effect sizes and also has difficulties detecting a signal for the more 
challenging scenarios, i.e., for small odds ratios and low observation counts.

The analyses of power resemble the results of the AUC comparison and are depicted 
in Additional file 1: Fig. S3. The type I error rates for the tree-based methods seem to 
randomly scatter around the prespecified significance level of 5%. However, the elastic 
net induces type I error rates of around two percent and is, therefore, quite conservative. 
The corresponding type I error rates are shown in Additional file 1: Fig. S4.

In Additional file 1: Figs. S5–S7, the results for the accuracy, sensitivity, and specificity 
are depicted. The accuracies resemble the results of the AUC evaluation, while the sen-
sitivities and specificities do not show a clear pattern between the evaluated methods. 
These figures also show that, for increasing odds ratios, the specificities increase while 
the sensitivities decrease.

Table 4  Regarded hyperparameter settings

The mentioned hyperparameter names are the names of the corresponding arguments in the respective software packages. 
For a description of the parameters, see Additional file 1: Section 2

Algorithm Hyperparameter Considered realizations

Random forests & random 
forests VIM

mtry


0.5 1 2


· ⌊√p⌋


min.node.size


0.01 0.05 0.1


· N


num.trees 2000

Logic regression & logic 
bagging

ntrees


1 2 3 4 5 6


nleaves


1 2 . . . 9 10


 (Simulation studies)


1 2 . . . 19 20


 (Real data application)

Logic regression Cooling schedule Experimental

Simulated annealing iterations 500000

Logic bagging Bagging iterations 500

Elastic net α


0.5 0.75 0.9 0.99


 Cross-validation
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We also evaluated the GRS on the training data itself to compare the degrees of 
overfitting. Here, ordinary random forests leads to the severest overfitting. For data 
with high statistical noise and small effect sizes, its AUC almost reaches 100% com-
pared to the true AUC of around 56%. The other tree-based algorithms also induce 
higher training AUCs than the true model, but not larger than random forests. In par-
ticular, a prior variable selection can indeed reduce the intensity of overfitting. The 
elastic net yields in most cases the lowest values for the AUC closely following the 
AUCs of the true model. Taking the test data analyses into account, this indicates 

N
 =

 5
00

0.
55

0.
60

0.
65

Odds Ratio

A
re

a 
un

de
r t

he
 C

ur
ve

1.2 1.5 1.8

4 Noise SNPs

0.
55

0.
60

0.
65

Odds Ratio
A

re
a 

un
de

r t
he

 C
ur

ve
1.2 1.5 1.8

14 Noise SNPs

0.
55

0.
60

0.
65

Odds Ratio

A
re

a 
un

de
r t

he
 C

ur
ve

1.2 1.5 1.8

44 Noise SNPs
N

 =
 1

00
0

0.
55

0.
60

0.
65

Odds Ratio

A
re

a 
un

de
r t

he
 C

ur
ve

1.2 1.5 1.8

0.
55

0.
60

0.
65

Odds Ratio

A
re

a 
un

de
r t

he
 C

ur
ve

1.2 1.5 1.8

0.
55

0.
60

0.
65

Odds Ratio

A
re

a 
un

de
r t

he
 C

ur
ve

1.2 1.5 1.8

N
 =

 2
00

0

0.
55

0.
60

0.
65

Odds Ratio

A
re

a 
un

de
r t

he
 C

ur
ve

1.2 1.5 1.8

0.
55

0.
60

0.
65

Odds Ratio

A
re

a 
un

de
r t

he
 C

ur
ve

1.2 1.5 1.8

0.
55

0.
60

0.
65

Odds Ratio

A
re

a 
un

de
r t

he
 C

ur
ve

1.2 1.5 1.8

Random Forests
Random Forests VIM

Logic Regression
Logic Bagging

Elastic Net
True Model

Fig. 3  Mean AUC for random forests, random forests VIM, logic regression, logic bagging, elastic net, and the 
true underlying model in the first simulation scenario considering marginal effective SNPs evaluated on the 
test data
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a mixture of underfitting and slight overfitting of the elastic net. The training data 
results can be found in Additional file 1: Fig. S8.

Dominant interaction effects of SNPs

For the analysis of the scenarios with influential interaction terms, the performances 
of the statistical learning procedures measured by the AUC are shown in Fig. 4. Addi-
tionally, asymptotic 95% confidence intervals can be found in Additional file 1: Fig. S9. 
Similar to the main effects scenarios, logic bagging induces in each scenario the highest 
values of the AUC. Also as in the other settings, random forests VIM does not gravely 
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Fig. 4  Mean AUC for random forests, random forests VIM, logic regression, logic bagging, elastic net, and the 
true underlying model in the second simulation scenario incorporating interactions of SNPs evaluated on 
the test data. The Designs 2.1, 2.2, and 2.3 describe the scenarios where both interacting SNPs also exhibit 
marginal effects, only one of both SNPs shows a marginal signal or none of them induce a main effect, i.e., (j, 
k) = (1, 2), (1, 4), or (4, 5) in Eq. (3), respectively
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suffer from noisy data compared to standard random forests, but cannot severely out-
perform its ordinary counterpart. Random forests itself seems to be the second-best 
performing method with an almost steady but close distance to logic bagging. Interac-
tions of variables without marginal effects seem to be less of an issue to conventional 
logic regression, since for Design 2.3 and larger interaction effect sizes, logic regression 
achieves comparable AUCs to random forests. For weak interaction effects, the elastic 
net can yield comparative results to random forests and the logic regression. Nonethe-
less, increasing the interaction effect also increases the discrepancy between the tree-
based approaches and the elastic net.

The results of the corresponding power and type I error analyses can be found in 
Additional file 1: Figs. S10 and S11. As in the previous simulation scenario, the compari-
son of the estimates of the statistical power resembles the corresponding analyses of the 
AUC. Again, the type I error rates for the tree-based methods seem to randomly scatter 
around 5%, whereas the elastic net leads to substantially lower error rates.

The results for the accuracy, sensitivity, and specificity can be found in Additional 
file 1: Figs. S12–S14. Similar to the marginal effects simulation scenario, the comparisons 
of the mean accuracy resemble the results of the AUC evaluation. The other two metrics 
sensitivity and specificity do not yield clear patterns between the considered procedures.

Evaluations of the GRS on the training data reveal again that conventional random for-
ests seems to induce the severest overfitting. The results of these training data set appli-
cations are summarized in Additional file 1: Fig. S15.

Gene‑environment interactions

Figure  5 depicts the predictive performances of the statistical learning procedures for 
the 20 settings in the GxE interaction simulation scenario. Corresponding asymptotic 
95% confidence intervals are shown in Additional file 1: Fig. S16. In contrast to the previ-
ous scenario, a true unique GRS model does not exist, since the GRS is based only on the 
genetic data while the true model of this scenario also consists of environmental covari-
ables. Similar to the gene-gene interaction scenario, logic bagging leads in each setting 
to the highest AUCs. Throughout all settings in this simulation scenario, logic regression 
seems to be the second best performing method yielding AUCs closely below the AUCs 
of logic bagging. Random forests and random forests VIM induce very similar results 
such that there is no clear pattern between these two methods. For weak GxE interaction 
effects, the elastic net induces comparably poor results. However, for increasing GxE 
interaction effects, the discrepancy between random forests and elastic net decreases 
such that, for an odds ratio of 2.4, the elastic net yields slightly higher AUCs than ran-
dom forests which are, however, still below the AUCs of logic bagging.

The correlation ρ of the two continuous variables does not seem to affect the GRS per-
formance in this simulation scenario. Nonetheless, the overall performance in Design 
3.1 is higher than the performance in Design 3.2. This phenomenon can be explained by 
the absence of a marginal effect of the GxE interacting SNP in Design 3.2 complicating 
the identification of this SNP.

For this simulation scenario, the statistical power for all considered methods and 
simulation settings was equal to 100%. Similar to the previous scenarios, the elastic net 
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seems to be more conservative as it induces lower type I error rates than the tree-based 
methods. The estimated type I error rates can be found in Additional file 1: Table S1.

In Additional file 1: Fig. S17–S19, the results for the accuracy, sensitivity, and specific-
ity are depicted. Similar to the power analyses, the mean accuracies of the considered 
methods are almost identical in each simulation setting. However, for weak GxE interac-
tion effects, the elastic net seems to induce the lowest mean accuracies. The results for 
the other two metrics, the sensitivity and the specificity, are also very similar.

Training data evaluations reveal again that conventional random forests tends to 
induce the severest overfitting. The training data results are depicted in Additional file 1: 
Fig. S20.

Comparison considering binary SNP codings

Additionally to considering the standard way of specifying the input variables for the 
different methods, we also evaluated the GRS construction approaches using the binary 
{0, 1} SNP coding for each method and not exclusively for logic regression and logic bag-
ging. The detailed results for the {0, 1} SNP coding and the respective simulation sce-
narios are depicted in Additional file 1: Figs. S21–S23.
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Fig. 5  Mean AUC for random forests, random forests VIM, logic regression, logic bagging, and elastic net 
in the third simulation scenario incorporating continuous input variables evaluated on the test data. The 
Designs 3.1 and 3.2 describe the scenarios where the GxE interacting SNP also exhibits a moderate marginal 
effect or where it does not induce a main effect, i.e., j = 2 or 5 in Eq. (4), respectively
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In comparison to using the {0, 1, 2} coding, the performance of random forests and 
random forests VIM decreases. This is not very surprising, since, as pointed out in the 
methodological description, decision trees and random forests consider the dominant 
and recessive modes of inheritance when using the {0, 1, 2} coding. Thus, using the {0, 1} 
coding doubles the number of input variables without supplying more information to 
random forests. The increase in the number of input variables complicates identifying 
the ideal splits when using typical settings for the hyperparameter mtry.

For the elastic net, the performance increases when employing the {0, 1} coding instead 
of the conventional {0, 1, 2} coding such that, in the marginal effects simulation scenario 
and in the GxE interaction scenario, the elastic net yields similar results as logic bagging 
when considering settings with stronger genetic effects. Nonetheless, in the gene-gene 
interaction simulation scenario for the Designs 2.2 and 2.3 in which at least one interact-
ing SNP does not exhibit a marginal effect, the elastic net with the {0, 1} SNP coding still 
induces inferior AUCs compared to logic bagging.

Real data application
We also compared the GRS construction approaches using a real data set from a Ger-
man cohort study, the SALIA study (Study on the Influence of Air Pollution on Lung, 
Inflammation and Aging) [54], which included in total 4874 women that were at their 
first examination between 54 and 55 years old. The participants were recruited in 1985-
1994 from highly industrialized areas and less industrialized areas in North-Rhine West-
phalia, Germany. In 2006, a follow-up questionnaire was completed by 4027 women 
which contained questions about the diagnosis of certain diseases. In a further follow-
up clinical examination conducted in 2007-2010, genetic data was also gathered. Here, 
we considered a data set consisting of 517 women from the SALIA study for which the 
presence of rheumatic diseases and genetic data are available. Furthermore, information 
about the exposure to specific air pollutants, i.e., nitrogen dioxide ( NO2 ), nitrogen oxide 
[nitrogen monoxide NO and nitrogen dioxide NO2 ] ( NOx ), particulate matter with an 
aerodynamic diameter of ≤ 2.5µm or ≤ 10µm ( PM2.5 or PM10 ), particulate matter with 
diameters of 2.5 − 10µm ( PMcoarse ), and the reflectance of PM2.5 filters ( PM2.5 absorbance ), 
is available at the time of performing the examinations in 2008. The assessment of the 
exposure to air pollution was conducted as part of the ESCAPE (European Study of 
Cohorts for Air Pollution Effects) project using land-use regression models [55, 56]. We 
used these air pollution exposures to assess GxE interactions. Information on covari-
ables such as the BMI (body mass index), age, education status, smoking status, or work-
place exposure for adjusting the final models is also available. In the questionnaire, it 
was asked whether any rheumatic disease was diagnosed. Thus, we considered preva-
lent rheumatic diseases as outcome in our analyses. Details on the SALIA study and the 
assessment of air pollution in this study are given by Krämer et al. [57] and Hüls et al. 
[58].

Selection of relevant genetic factors

In order to construct proper GRS for genes potentially having an impact on the devel-
opment of rheumatic diseases, we selected several genes which showed to be influen-
tial in a literature research. For the selection of relevant genes, we mainly focused on 
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rheumatoid arthritis, since it is the most common rheumatic disease besides osteoar-
thritis [59–61].

In around 70% to 90% of rheumatoid arthritis patients, anti-citrullinated peptide anti-
bodies (ACPA) can be detected [62]. For ACPA-positive rheumatoid arthritis, many 
identified genetic associations belong to the human leukocyte antigen (HLA) class II 
complex [63]. Thus, we selected genes from the HLA class II complex for which asso-
ciations with rheumatoid arthritis have been detected. In particular, we chose the HLA-
DRB1 gene which presumably explains a large portion of the heritability of rheumatoid 
arthritis in the HLA class II complex [63–66]. Furthermore, we included the HLA-DPB1 
and HLA-DOA genes which also might influence the risk of developing rheumatoid 
arthritis [66–68].

Since we started by including all available SNPs within the respective genes, 385 SNPs 
from the three genes formed our basis which we reduced by exploiting high states of LD. 
Using PLINK version 1.9 [69, 70], we performed LD-based clumping [71] (considering 
r2 = 0.5 ). This procedure resulted in 72 tag SNPs which were used to construct the GRS.

We also constructed genome-wide GRS based on a recent meta-analysis of GWAS 
regarding rheumatoid arthritis [72]. In this meta-analysis, only non-HLA loci were con-
sidered in contrast to the gene-based selection. 70 of the proposed SNPs were available 
in our data and were used to fit the GRS models.

Gene‑environment interaction analysis

Additionally, we also analyzed GxE interaction effects. For the risk of developing ACPA-
positive rheumatoid arthritis, GxE interactions between HLA class II alleles and smok-
ing have been discovered [73, 74]. It might be of interest if traffic-related air pollution 
also interacts with genetic risk factors in the development of rheumatoid arthritis. Thus, 
our logistic regression models for the evaluation of GRS have the shape

for the environmental variable E and covariables C1, . . . ,Cl.
The selection of potential relevant covariables was performed in two steps. First, we 

applied a stepwise logistic regression with the AIC (Akaike information criterion) as the 
selection measure. This lead to the inclusion of the age, the BMI, the current smoking 
status, and the former smoking status. Next, we regarded this selection of variables in 
the final models jointly with the GRS and air pollutants. We excluded covariables which 
worsened the models, i.e., which lead to lower AUCs. After this procedure, only the age 
was left.

Analysis of association and predictive strength

The analysis was conducted in a repeated train-test split scheme. For 100 repetitions, 
we randomly divided the whole data set into 50% training data and 50% test data similar 
to Hüls et al. [11]. The respective training data sets were further randomly divided into 
75% training data for hyperparameter tuning and 25% validation data (for the considered 
values of the hyperparameters, see “Section  Hyperparameter optimization”). The best 

(6)logit(P(Y = 1)) = β0 + β1 · GRS + β2 · E + β3 · GRS · E +
l



i=1

γi · Ci
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performing hyperparameter setting across the average of these 100 validation iterations 
was chosen.

Results of the real data application

A descriptive summary of the most important variables gathered in the data set from the 
SALIA study is given by Table 5. Most noticeably, we considered an unbalanced data set 
with 394 controls and 123 cases considering prevalent rheumatic diseases.

Univariate regression models

In the analysis of the data of the SALIA study, Table 6 summarizes the median p-values 
of GRS analyzed in univariate regression models as in Eq. (5). When testing the influence 
of the GRS on the risk of developing rheumatoid arthritis, conventional random forests 
and logic bagging are the only models achieving significance at a significance level of 5% 
for at least 50% of the evaluations.

Figure 6 summarizes the test AUC values for the tree-based statistical learning proce-
dures and elastic net induced by univariate regression models only based on the GRS. 
For the gene-based approach, most noticeably, random forests and logic bagging yield 
the highest AUCs where random forests achieves a slightly better performance than 
logic bagging. Ordinary logic regression and random forests with a prior variable selec-
tion induce similar results which cannot compete with conventional random forests and 

Table 5  Descriptive statistics of the regarded data set from the SALIA study stratified according to 
the status of rheumatic diseases

Variable Controls Cases

N 394 123

Mean age [years] ± sd 70.87 ± 3.16 71.50 ± 2.96

Mean BMI [kg/m2] ± sd 26.42 ± 3.93 27.46 ± 3.86

N Currently smoking 21 (5.44%) 5 (4.07%)

N Formerly smoking 61 (15.80%) 15 (12.20%)

Mean pack-years of smoking [years] ± sd 3.78 ± 10.92 2.85 ± 9.25

Mean NO2 [μg/m3] ± sd 26.66 ± 7.34 27.94 ± 7.69

Mean NOx [μg/m3] ± sd 41.34 ± 17.71 44.10 ± 17.68

Mean PM10 [μg/m3] ± sd 26.99 ± 2.16 27.39 ± 2.42

Mean PMcoarse [μg/m3] ± sd 9.52 ± 1.66 9.81 ± 1.84

Mean PM2.5 [μg/m3] ± sd 17.94 ± 1.38 18.23 ± 1.50

Mean PM2.5 absorbance [μg/m3] ± sd 1.47 ± 0.46 1.58 ± 0.59

Table 6  Median p-values of the Wald tests for univariate models only including the GRS built on the 
SALIA data set

Algorithm Median p value

Random forests 0.018

Random forests VIM 0.167

Logic regression 0.353

Logic bagging 0.021

Elastic net 0.512
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logic bagging. However, the elastic net yields the lowest AUCs. Here, the lower quartile 
of the AUCs yielded by the elastic net reaches 50%, i.e., the predictive performance of a 
(non-informative) constant classifier.

In addition to gene-based GRS, we also constructed genome-wide GRS based on a 
recent GWAS meta-analysis regarding rheumatoid arthritis [72]. A specific comparison 
of the predictive power between the gene-based and genome-wide approaches is sum-
marized in Fig. 6. However, for the genome-wide selection of SNPs, barely a signal can 
be observed in our sample as the AUCs on the test data sets were close to 50%. Thus, the 
genome-wide GRS construction approach was not included in subsequent analyses. The 
inferior predictive performance compared to the gene-based selection is possibly caused 
by the exclusion of HLA genes in the underlying meta-analysis. Nonetheless, the elastic 
net induces the lowest values for the AUC compared to the tree-based methods which is 
in line with our previous experiments. In contrast to the gene-based approach, random 
forests VIM yields a predictive power that can compete with ordinary random forests 
and logic bagging.

Gene‑environment interaction analysis

In the final adjusted models of the form as in Eq. (6), we regarded each air pollutant 
indicator separately and included the respective GxE interaction term. Neither the GRS 
themselves nor the GxE interaction terms are significant at a significance level of 5%. 
The concrete median p-values of the 100 repetitions for the final adjusted models can be 
found in Additional file 1: Table S2.

Figure 7 depicts the predictive performance of the considered statistical learning algo-
rithms for the induction of gene-based GRS in multivariate regression models. Analo-
gously to the univariate analysis, random forests and logic bagging yield the highest 
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application to data from the SALIA study evaluated on the test data. Results for single unadjusted models also 
considering the alternative genome-wide construction approach
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predictive power where the overall best values are reached for PM2.5 . For this air pol-
lutant, random forests achieves the best performance. The elastic net, random forests 
VIM, and logic regression yield similar performances which, again, cannot compete with 
random forests and logic bagging.

We also evaluated the GRS on the training data sets themselves. The best perform-
ing procedures random forests and logic bagging tend to heavily overfit the data as can 
be seen by the high discrepancy between the test and the training data analyses. These 
two algorithms achieve training AUCs of nearly 100% whereas the other methods lead to 
more homogeneous results. The corresponding AUCs can be found in Additional file 1: 
Fig. S24.

Smoking is a major risk factor for rheumatoid arthritis [75]. As can be seen in Table 5, 
the fractions of current smokers and former smokers in the excerpt from the SALIA 
study are higher among controls than among cases which is in contradiction to the lit-
erature. Since only 19.7% of the study participants in the data excerpt are current or 
former smokers, we conducted a sensitivity analysis excluding all current and former 
smokers from the data. Again, we are not able to identify any significant GxE interac-
tions. The resulting AUCs are very similar to the former analysis. Random forests and 
logic bagging yield the highest test AUC values, whereas elastic net induces substantially 
lower values. The concrete results can be found in Additional file 1: Fig. S25.

Discussion
In this analysis, we evaluated tree-based statistical learning approaches for the construc-
tion of GRS. We used the elastic net as a reference model and analyzed the tree-based 
statistical learning methods in a simulation study considering several scenarios, focus-
ing on marginal and epistatic genetic effects, respectively. To confirm our findings, we 
constructed and assessed GRS on a real data set from the German SALIA cohort study.
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As our analyses showed, a modification of logic regression, namely logic bagging, was 
able to outperform the reference GRS construction procedure, the elastic net, in almost 
every scenario of the simulation study.

Similarly, logic bagging lead to a comparably strong predictive performance in the 
real data application. Logic regression could only compete when considering large effect 
sizes in the simulation studies and yielded inferior results in the analysis of the SALIA 
data. This indicates that logic regression fits highly variant models which can indeed 
benefit from a variance reduction via an ensemble approach like bagging. For larger 
genetic effects, bagging does not seem to be necessary due to a more consequent identi-
fication of the underlying signal.

Random forests lead to the best predictive performance on the real data set. Consid-
ering the simulation study, in a likewise comparable scenario, i.e., small data sets, low 
marginal genetic effects, and higher amounts of statistical noise, random forests could 
induce comparably high values for the AUC as well. In the analysis of marginal genetic 
effects, random forests’ performance decreased for increasing amounts of noise. This 
phenomenon can be partly explained by the random selection scheme of predictors for 
partitioning. The input variables are drawn with equal probabilities without replace-
ment. Therefore, considering the setting with 44 noise SNPs in the first simulation sce-
nario, in a decision tree branch where already three of the six influential SNPs and no 
noise are included, the probability of regarding one of the three remaining influential 
SNPs for the next split with the standard setting mtry = ⌊

√
50⌋ = 7 is about only 39%. 

Thus, choosing a set of SNPs containing only statistical noise is more likely in this case. 
We also allowed higher settings for mtry in the hyperparameter optimization as could be 
seen in Table 4. For higher amounts of statistical noise, the higher setting for mtry could 
in fact increase the performance of random forests.

A related issue was the high amount of overfitting by random forests which could 
be observed in all three simulation scenarios as well as in the real data application. We 
addressed this by considering minimum terminal node sizes of up to 10% of the number 
of observations in each leaf and by performing a prior variable selection based on vari-
able importance measures. The former solution, i.e., the tuning of the minimum node 
size, was important to optimize the performance on the general population, since the 
standard setting is set to one observation for classification trees. However, for appropri-
ate probability estimates, Malley et al. [35] recommend choosing 10% of the total sample 
size.

The latter approach, i.e., the usage of random forests VIM, needed higher amounts of 
statistical noise and stronger marginal genetic effects to achieve test data performances 
comparable to random forests. Nonetheless, this alternative approach could substan-
tially reduce the amount of overfitting in any case. Presumably caused by weak indi-
vidual genetic effects, random forests VIM yielded an inferior predictive performance 
compared to ordinary random forests on the application to the SALIA data. However, in 
the analyses conducted by Speiser et al. [76], the random forests VIM approach utilizing 
the Boruta variable selection was able to yield lower error rates than conventional ran-
dom forests. Thus, studies specifically comparing random forests variable selection pro-
cedures with conventional random forests in low signal-to-noise ratio scenarios, such as 
applications considering SNP data, might be beneficial.
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The reference procedure, the elastic net, could not compete with logic bagging and 
random forests when considering stronger gene-gene interaction effects. Even for solely 
marginal genetic effects, the regularization procedure had difficulties achieving AUCs as 
high as the ones of logic bagging. However, for strong GxE interaction effects, the elas-
tic net could induce similar predictive performances as random forests. Before decid-
ing to choose the penalty parameter  based on the minimum cross-validation error, we 
evaluated the elastic net based on the maximum  which yielded a cross-validation error 
in the range of one standard error of the minimum error. This approach is also recom-
mended by Waldmann et al. [77] for GWAS-level amounts of SNPs and used by Hüls 
et al. [49] for the construction of GRS. However, in our applications including both the 
simulation study and the real data application, the elastic net had difficulties recognizing 
a signal at all with this approach which was presumably caused by high errors in general. 
Thus, we chose the minimizing  which enhanced our fitted elastic net models.

In practice, the conventional {0, 1, 2} SNP coding is utilized when constructing GRS 
with regularized regression approaches such as the elastic net [11, 16]. Thus, we focused 
on this standard procedure in our analyses, which lead to comparatively weak perfor-
mances. However, when splitting each considered SNP into two binary variables, i.e., 
when using the binary {0, 1} SNP coding also for the elastic net, its performance in the 
simulation study increased due to now being able to differentiate between the dominant 
and recessive modes of inheritance. Therefore, the results for the {0, 1} SNP coding sug-
gest that it might be preferable to employ the {0, 1} coding when fitting GRS using the 
elastic net. Nonetheless, logic bagging still yielded higher predictive performances than 
the elastic net in the gene-gene interaction simulation scenario when considering the 
{0, 1} coding for all procedures.

The most important advantage of the tree-based methods regarded in this article is to 
not being restricted to model assumptions such as linearity, i.e., being able to autono-
mously detect gene-gene interactions. The assumption of oversimplified genetic archi-
tectures in linear models might be the main cause for random forests and logic bagging 
outperforming the elastic net in most analyses. However, it is well known that gene-gene 
interactions also play a role in the heritability of diseases [8, 9].

Another practically interesting question would be, how well the introduced tree-based 
methods can construct GRS for significantly larger amounts of SNPs, e.g., when using 
a broader SNP selection from GWAS. Winham et al. [22] found in their studies that for 
increasing amounts of SNPs, the identification of interactions becomes more difficult 
for random forests. For logic regression, with increasing amounts of explanatory vari-
ables, the amount of possible states increases linearly, therefore, requiring more simu-
lated annealing iterations and generally deeper greedy searches and, hence, increasing 
the model fitting time. This model building time must be further increased when consid-
ering higher values for the parameters of maximum trees and maximum leaves which is 
reasonable due to potentially more influential predictors for more total input variables.

Unsurprisingly, elastic net models could be fitted and evaluated in the least amount 
of time due to their simplicity compared to the considered tree-based models. Ran-
dom forests with 2000 trees could be fitted and evaluated in less than 10  s in most 
cases. Random forests VIM needed slightly more time which was to be expected. 
Logic bagging models needed more time, however, conventional logic regression 
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models utilizing simulated annealing as search procedure consumed the most amount 
of time and needed up to 1 minute for fitting and evaluating the GRS. In Additional 
file 1: Fig. S1, the concrete times for the third simulation scenario are depicted.

For increasing odds ratios, the measured sensitivity decreases in the marginal 
effects and gene-gene interaction effect simulation scenarios, which does not seem 
to be plausible at first glance. However, this phenomenon can be explained by the 
data structure considered in this analysis and the requirement to dichotomize the 
risk predictions into two classes for estimating the sensitivity and specificity. For con-
structing GRS, discrete input variables, more exactly SNPs exhibiting three different 
outcomes, are used. Thus, the constructed and possibly true underlying GRS also fol-
low a discrete pattern depending on the SNP setting. For the marginal effects simula-
tion scenario, there are 7 distinct GRS values in the true underlying model due to Eq. 
(2). In Additional file 1: Fig. S26, a corresponding GRS distribution is depicted. Due to 
the additivity in this model, the GRS just below 0.5 occurs in approximately 30% of all 
observations. Therefore, dichotomizing the GRS at 0.5 leads to classifying only 35% of 
all observations as cases which explains the low sensitivity in this setting. Lowering 
the classification threshold to a value such as 0.45 shifts the issue to the specificity, 
since, in this case, only 35% of all observations will be classified as controls. Thus, the 
sensitivities and specificities determined in this analysis need to be interpreted with 
caution because of the discrete nature of the considered input variables.

In our real data application, we analyzed a relatively small data set containing 517 
observations with only 123 cases. The missing balance as well as the comparably low 
sample size complicated meaningful analyses, especially when considering the need 
for splitting the data set into training and test data sets. Generally, important covari-
ates such as the smoking status and the BMI were not included in the final models 
due to lowering the predictive performance. This decrease in performance was pre-
sumably caused by the low sample size and amount of cases yielding unintuitive sta-
tistics such as the higher fraction of smokers among controls.

Conclusion
As our analyses on simulated as well as on real data showed, the tree-based statis-
tical learning methods random forests and logic bagging can be valuable tools for 
constructing GRS. Especially when little prior knowledge about the gene-response 
relationships is available or if no appropriate external weights for the regarded disease 
or population are available, these two algorithms should also be taken into considera-
tion when building GRS. Regardless of the presence of gene-gene interactions in the 
heritability of a certain disease, the discussed methods have the potential to outper-
form regularized linear methods.
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In this supplementary file, additional information about the GRS construction
methods and additional results about the simulation study and the real data
application are presented. In Figure S1, model fitting and GRS prediction times
are depicted. In Section 2, the considered hyperparameters for constructing the
GRS models are described. In Section 3, we present the workflows for tuning
and fitting each regarded statistical learning procedure for constructing GRS.
Means and asymptotic 95% confidence intervals of the AUCs corresponding to
the figures in the main text are depicted in the Figures S2, S9, and S16. Concrete
estimates following statistical inference can be found in the Figures S3, S4, S10,
S11, and in Table S1. Results for the classical classification metrics accuracy,
sensitivity, and specificity are depicted in the Figures S5, S6, S7, S12, S13,
S14, S17, S18, and S19. Training data AUCs are illustrated in the Figures
S8, S15, S20, and S24. AUC comparisons when employing the binary {0, 1}
SNP coding for each method are depicted in the Figures S21, S22, and S23.
Table S2 depicts median p-values of the final adjusted models for the GRS, the
environmental factor, and their interaction term. Final results for the sensitivity
analysis excluding smokers from the SALIA data set can be found in Figure S25.
In Figure S26, an exemplary GRS distribution is depicted which explains the
observed sensitivities in the simulation study.
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1 Model fitting and GRS prediction time
We, here, present the model fitting and GRS prediction times in the third simu-
lation scenario. The times for single model constructions and evaluations in the
hyperparameter optimization process are presented, since, in the hyperparameter
optimization process, several different settings, which can have an impact on the
time, are utilized.
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Figure S1: Model fitting and GRS prediction time for random forests, random
forests VIM, logic regression, logic bagging, and elastic net for the hyperparame-
ter configuration in the third simulation scenario incorporating continuous input
variables.
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2 Hyperparameter descriptions
We, here, briefly describe the hyperparameters of each considered statistical
learning procedure that were tuned in our analyses. Table 4 in the main text
depicts the corresponding hyperparameter settings.

2.1 Random forests & random forests VIM
The parameter mtry determines the number of randomly chosen input variables
regarded at each split in each tree. The parameter min.node.size configures the
number of observations which have to belong to a certain tree node in order to
continue splitting this node. Thus, min.node.size acts as a stopping criterion for
prematurely terminating splitting of a tree branch. num.trees determines the total
number of trees to be grown in random forests. A sufficiently high number should
be chosen such that the performance will not increase substantially anymore.

2.2 Logic regression & logic bagging
For logic regression and logic bagging, ntrees and nleaves determine the model
complexity. ntrees is the maximum number of trees to be included in the model
and nleaves is the maximum number of leaves distributed over all trees.

For conventional logic regression, simulated annealing is employed as the
search algorithm which has to be tuned as well. For the number of simulated
annealing iterations, analogously to the number of trees in random forests, a
sufficiently high number should be chosen. The cooling schedule, which includes
a start temperature and an end temperature, is manually tuned such that at the
beginning of the search, almost all states are accepted, and at the end of the
search, almost no states are accepted.

For logic bagging, the number of bagging iterations has to be set to a suffi-
ciently high number, similar to num.trees and the number of simulated annealing
iterations.

2.3 Elastic net
For fitting elastic net models, the parameter α controls the balance between the
lasso and the ridge regularization. The parameter λ determines the strength of
the regularization.
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3 Tuning and training workflows
Since each statistical learning method regarded in this article requires considering
different details for properly fitting GRS models, we here briefly present the
workflows for each method.

3.1 Random forests
1. Choose a sufficiently high number of trees to be fitted, e.g., 2000

2. Tune the minimum node size and the number of randomly chosen predictors
at each split in each tree using a grid search by fitting a random forest with
probability estimation trees for each eligible setting

3. Fit a random forest with probability estimation trees using the best identi-
fied hyperparameter configuration

3.2 Random forests VIM
1. Choose a sufficiently high number of trees to be fitted, e.g., 2000

2. Tune the minimum node size and the number of randomly chosen predic-
tors at each split in each tree using a grid search by performing a variable
selection via the Boruta approach and fitting a random forest with proba-
bility estimation trees for each eligible setting

3. Perform a variable selection via the Boruta approach and fit a random forest
with probability estimation trees using the best identified hyperparameter
configuration

3.3 Logic regression
1. Split all considered SNPs into two binary variables coding for dominant

and recessive effects

2. Choose a sufficiently high number of markov chain iterations to be exe-
cuted, e.g., 500000

3. Experimentally tune the cooling schedule for simulated annealing, i.e.,
choose a start temperature such that almost all states are accepted and
choose a final temperature such that almost no states are accepted

4



4. Tune the number of trees and the total number of leaves using a grid
search by fitting a logic regression model with the logit link function for
each eligible setting

5. Fit a logic regression model with the logit link function using the best
identified hyperparameter configuration

3.4 Logic bagging
1. Split all considered SNPs into two binary variables coding for dominant

and recessive effects

2. Choose a sufficiently high number of bagging iterations to be performed,
e.g., 500

3. Tune the number of trees and the total number of leaves using a grid
search by fitting a logic bagging model with the logit link function for each
eligible setting. A logic bagging model is fitted by drawing a bootstrap
sample and fitting a logic regression model with a greedy search to this
sample for each bagging iteration.

4. Fit a logic bagging model with the logit link function using the best iden-
tified hyperparameter configuration

3.5 Elastic net
1. Tune the elastic net parameter α using a grid search by fitting an elastic net

model with the logit link function for each eligible setting. Automatically
configure the regularization parameter λ by performing an inner cross-
validation (cv.glmnet in glmnet).

2. Fit an elastic net model with the logit link function using the best identified
hyperparameter configuration
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4 Simulation studies
4.1 Marginal genetic effects
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Figure S2: Mean AUC and asymptotic 95% confidence intervals for random
forests, random forests VIM, logic regression, logic bagging, elastic net, and
the true underlying model in the first simulation scenario considering marginal
effective SNPs evaluated on the test data.
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Figure S3: Estimated power for random forests, random forests VIM, logic re-
gression, logic bagging, elastic net, and the true underlying model in the first
simulation scenario considering marginal effective SNPs evaluated on the test
data.
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first simulation scenario considering marginal effective SNPs evaluated on the
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Figure S5: Mean accuracy for random forests, random forests VIM, logic re-
gression, logic bagging, elastic net, and the true underlying model in the first
simulation scenario considering marginal effective SNPs evaluated on the test
data.
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Figure S6: Mean sensitivity for random forests, random forests VIM, logic re-
gression, logic bagging, elastic net, and the true underlying model in the first
simulation scenario considering marginal effective SNPs evaluated on the test
data.
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Figure S7: Mean specificity for random forests, random forests VIM, logic re-
gression, logic bagging, elastic net, and the true underlying model in the first
simulation scenario considering marginal effective SNPs evaluated on the test
data.
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Figure S8: Mean AUC for random forests, random forests VIM, logic regression,
logic bagging, elastic net, and the true underlying model in the first simulation
scenario considering marginal effective SNPs evaluated on the training data itself.
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4.2 Dominant interaction effects of SNPs
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Figure S9: Mean AUC and asymptotic 95% confidence intervals for random
forests, random forests VIM, logic regression, logic bagging, elastic net, and the
true underlying model in the second simulation scenario incorporating interactions
of SNPs evaluated on the test data.
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Figure S10: Estimated power for random forests, random forests VIM, logic
regression, logic bagging, elastic net, and the true underlying model in the second
simulation scenario incorporating interactions of SNPs evaluated on the test data.
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Figure S11: Estimated type I error rate for random forests, random forests VIM,
logic regression, logic bagging, elastic net, and the true underlying model in the
second simulation scenario incorporating interactions of SNPs evaluated on the
test data.
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Figure S12: Mean accuracy for random forests, random forests VIM, logic re-
gression, logic bagging, elastic net, and the true underlying model in the second
simulation scenario incorporating interactions of SNPs evaluated on the test data.
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Figure S13: Mean sensitivity for random forests, random forests VIM, logic re-
gression, logic bagging, elastic net, and the true underlying model in the second
simulation scenario incorporating interactions of SNPs evaluated on the test data.
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Figure S14: Mean specificity for random forests, random forests VIM, logic re-
gression, logic bagging, elastic net, and the true underlying model in the second
simulation scenario incorporating interactions of SNPs evaluated on the test data.
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Figure S15: Mean AUC for random forests, random forests VIM, logic regression,
logic bagging, elastic net, and the true underlying model in the second simulation
scenario incorporating interactions of SNPs evaluated on the training data itself.
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4.3 Gene-environment interactions

D
es

ig
n 

3.
1

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Odds Ratio

Ar
ea

 u
nd

er
 th

e 
C

ur
ve

1.2 1.5 1.8 2.1 2.4

ρ = 0.5

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Odds Ratio

Ar
ea

 u
nd

er
 th

e 
C

ur
ve

1.2 1.5 1.8 2.1 2.4

ρ = 0.9

D
es

ig
n 

3.
2

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Odds Ratio

Ar
ea

 u
nd

er
 th

e 
C

ur
ve

1.2 1.5 1.8 2.1 2.4

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Odds Ratio

Ar
ea

 u
nd

er
 th

e 
C

ur
ve

1.2 1.5 1.8 2.1 2.4

Random Forests
Random Forests VIM

Logic Regression
Logic Bagging

Elastic Net

Figure S16: Mean AUC and asymptotic 95% confidence intervals for random
forests, random forests VIM, logic regression, logic bagging, and elastic net in
the third simulation scenario incorporating continuous input variables evaluated
on the test data.
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Table S1: Estimated type I error rate for random forests, random forests VIM,
logic regression, logic bagging, and elastic net in the third simulation scenario
incorporating continuous input variables evaluated on the test data.

Algorithm Type I Error Rate
Random Forests 0.056
Random Forests VIM 0.052
Logic Regression 0.051
Logic Bagging 0.054
Elastic Net 0.020
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Figure S17: Mean accuracy for random forests, random forests VIM, logic regres-
sion, logic bagging, and elastic net in the third simulation scenario incorporating
continuous input variables evaluated on the test data.
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Figure S18: Mean sensitivity for random forests, random forests VIM, logic re-
gression, logic bagging, and elastic net in the third simulation scenario incorpo-
rating continuous input variables evaluated on the test data.
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Figure S19: Mean specificity for random forests, random forests VIM, logic re-
gression, logic bagging, and elastic net in the third simulation scenario incorpo-
rating continuous input variables evaluated on the test data.
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Figure S20: Mean AUC for random forests, random forests VIM, logic regres-
sion, logic bagging, and elastic net in the third simulation scenario incorporating
continuous input variables evaluated on the training data itself.
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4.4 Comparison considering binary SNP codings
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Figure S21: Mean AUC for random forests, random forests VIM, logic regression,
logic bagging, elastic net, and the true underlying model in the first simulation
scenario considering marginal effective SNPs evaluated on the test data. Here,
the binary {0, 1} SNP coding was used for each method.
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Figure S22: Mean AUC for random forests, random forests VIM, logic regression,
logic bagging, elastic net, and the true underlying model in the second simulation
scenario incorporating interactions of SNPs evaluated on the test data. Here,
the binary {0, 1} SNP coding was used for each method.
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Figure S23: Mean AUC for random forests, random forests VIM, logic regres-
sion, logic bagging, and elastic net in the third simulation scenario incorporating
continuous input variables evaluated on the test data. Here, the binary {0, 1}
SNP coding was used for each method.
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5 Real data application

Table S2: Median p-values of the Wald tests for the final age-adjusted models
built on the SALIA data set

Term Algorithm NO2 NOx PM10 PMcoarse PM2.5 PM2.5 absorbance
Random Forests 0.469 0.385 0.531 0.550 0.332 0.539
Random Forests VIM 0.485 0.432 0.416 0.470 0.404 0.449

GRS Logic Regression 0.430 0.420 0.394 0.452 0.338 0.400
Logic Bagging 0.427 0.368 0.463 0.502 0.228 0.492
Elastic Net 0.701 0.691 0.690 0.705 0.787 0.678
Random Forests 0.377 0.417 0.493 0.505 0.535 0.330
Random Forests VIM 0.432 0.432 0.501 0.444 0.489 0.296

E Logic Regression 0.243 0.273 0.267 0.330 0.235 0.125
Logic Bagging 0.378 0.388 0.485 0.539 0.513 0.249
Elastic Net 0.304 0.356 0.425 0.333 0.421 0.250
Random Forests 0.489 0.538 0.575 0.591 0.511 0.530
Random Forests VIM 0.505 0.402 0.401 0.460 0.457 0.490

GxE Logic Regression 0.467 0.404 0.417 0.432 0.440 0.407
Logic Bagging 0.563 0.511 0.512 0.575 0.444 0.480
Elastic Net 0.775 0.780 0.742 0.795 0.748 0.666
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Figure S24: AUC for random forests, random forests VIM, logic regression, logic
bagging, and elastic net in the application to data from the SALIA study eval-
uated on the training data itself. Results for the final age-adjusted models with
different air pollution indicators.
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Figure S25: AUC for random forests, random forests VIM, logic regression, logic
bagging, and elastic net in the application to data from the SALIA study evalu-
ated on the test data. Results for the final age-adjusted models with different air
pollution indicators. Current and former smokers were excluded from the base
data set as part of a sensitivity analysis.
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6 Distribution of the GRS
In the main effects simulation scenario and in the gene-gene interaction effect
simulation scenario, the classification sensitivity is relatively low in some settings.
This phenomenon can be explained by the need of dichotomizing the GRS into
cases and controls for estimating the sensitivity and the discrete structure of the
space of input variables/SNPs. To illustrate this, we present an exemplary GRS
distribution occurring in the simulation study.
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Figure S26: Histogram of the true underlying GRS for the main effects simula-
tions scenario and the setting with an odds ratio of 1.8, 44 noise SNPs, and a
sample size of N = 2000.
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Chapter 3

Efficient gene–environment
interaction testing through

bootstrap aggregating
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Efficient 
gene–environment interaction 
testing through bootstrap 
aggregating
Michael Lau 1,2*, Sara Kress 2, Tamara Schikowski 2 & Holger Schwender 1

Gene–environment (GxE) interactions are an important and sophisticated component in the 
manifestation of complex phenotypes. Simple univariate tests lack statistical power due to the need 
for multiple testing adjustment and not incorporating potential interplay between several genetic 
loci. Approaches based on internally constructed genetic risk scores (GRS) require the partitioning of 
the available sample into training and testing data sets, thus, lowering the effective sample size for 
testing the GxE interaction itself. To overcome these issues, we propose a statistical test that employs 
bagging (bootstrap aggregating) in the GRS construction step and utilizes its out-of-bag prediction 
mechanism. This approach has the key advantage that the full available data set can be used for 
both constructing the GRS and testing the GxE interaction. To also incorporate interactions between 
genetic loci, we, furthermore, investigate if using random forests as the GRS construction method in 
GxE interaction testing further increases the statistical power. In a simulation study, we show that 
both novel procedures lead to a higher statistical power for detecting GxE interactions, while still 
controlling the type I error. The random-forests-based test outperforms a bagging-based test that 
uses the elastic net as its base learner in most scenarios. An application of the testing procedures to 
a real data set from a German cohort study suggests that there might be a GxE interaction involving 
exposure to air pollution regarding rheumatoid arthritis.

Many complex diseases are influenced by both genetic and environmental risk factors. Often, their effects are 
studied individually, e.g., in genome-wide association studies (GWAS) or environmental health studies. These 
kinds of analyses, thus, study main/marginal effects of the respective risk factor type, i.e., effects independent of 
the other risk factor type. However, it is well known that the genetic make-up and environmental risk factors can 
influence the risk of disease in an interplay1. This phenomenon is known as gene–environment (GxE) interaction 
and is present if, for different genotypes, different disease susceptibilities to an environmental factor are underly-
ing. This is, for example, the case if an individual is particularly susceptible to certain environmental exposure 
if the individual carries a specific genetic variant. For example, if an individual has xeroderma pigmentosum—a 
genetic defect that decreases the ability to repair DNA damage caused by ultraviolet radiation—and is exposed 
to sunlight, the risk effect of developing skin cancer through sun radiation is magnified compared to individuals 
without this genetic defect1.

Unveiling GxE interactions leads to a better understanding of the manifestation of complex diseases. Moreo-
ver, knowing specific GxE interactions could have a high impact on precision medicine by specifically protecting 
individuals that are highly susceptible to certain environmental health effects, i.e., performing individual risk 
prevention2.

In practice, GxE interactions are tested using single SNPs (single nucleotide polymorphisms—counting the 
number of less frequent base-pair substitutions at a specific locus in the DNA) in linear or logistic regression 
models. However, testing single SNPs in parallel requires adjustment for multiple testing, which reduces the 
statistical power for detecting a GxE interaction. To avoid this problematic, a GRS-(genetic risk score)-based 
approach can also be employed for taking multiple loci at once into account3. GRS summarize genetic vari-
ants with respect to a specific phenotype to a single statistic. Their utility can, e.g., lie in uncovering biological 
relationships in the development of diseases or their utility can be clinical for individual risk prevention4–6. 
GRS can be constructed internally—by using the considered study sample also for constructing the GRS—or 
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externally—by using summary statistics of independent association studies. However, the external approach 
requires the availability of such summary statistics that match the considered outcome, the analyzed genomic 
region, and the considered population type, which might not be the case3. Moreover, by externally constructing 
GRS, only marginal genetic effects are considered, i.e., ignoring potential gene-gene interaction effects. Thus, 
we focus on the internal GRS construction approach in this article.

The GRS itself does not take any non-genetic variables into account. Thus, the variable which is used for 
interaction testing with the environmental term, the GRS, is a summary of genetic effects with respect to the 
outcome. However, for detecting GxE interactions, usually a GLM (generalized linear model) is fitted including 
potential confounders. For statistically testing the GxE interaction, typically a Wald test is employed.

The GRS approach leads to a major short coming. If an appropriate GRS model is not known beforehand, 
the available study data needs to be separated into two independent sub data sets, training data for constructing 
the GRS and test data for testing the GxE interaction. Therefore, the GxE interaction test cannot utilize the full 
available sample size, which reduces the statistical power for detecting a GxE interaction.

Several GxE interaction testing approaches have been proposed recently that avoid this data splitting 
problem7,8. Similar to the common GRS-based approach, SBERIA9 (set-based gene–environment interaction 
test) constructs a weighted sum of SNPs for testing the GxE interaction. Another class of GxE interaction tests 
is given by variance component tests that test the variance of the true interaction coefficients. The interaction 
effects are identified with random effects such that testing whether the interaction effect coefficients are zero is 
equivalent to testing if the underlying effect variance is zero7. Established methods of this class include GESAT10 
(gene–environment set association test), iSKAT11 (interaction sequence kernel association test), and MiSTi12 
(mixed effects score tests for interaction). Two-step GxE interaction testing procedures screen all considered 
SNPs and aggregate the positively screened SNPs to perform a global test for the presence of a GxE interaction 
among the considered SNPs in a second step8. The GxE interaction testing methods ADABF13 (adaptive combi-
nation of Bayes factor method), EDGxE14 (EG [environment-genotype] and DG [disease-genotype] screening 
with GxE interaction testing) and cocktail GxE interaction tests15 are such two-step procedures.

In this article, we propose a GxE interaction testing approach that overcomes the data splitting problem 
while being able to model arbitrarily complex genetic effects and avoiding the multiple testing problem of the 
single-SNP-based test. Similar to the classical GRS-based test, our test also relies on modeling the genetic effect 
on the outcome through a GRS. Our approach can incorporate the full study data set for both training the GRS 
and testing the GxE interaction while still avoiding the overfitting problem. The idea consists of constructing the 
GRS via the ensemble method bagging (bootstrap aggregating)16 and using its well-known OOB (out-of-bag) 
prediction mechanism for creating unbiased predictions on the whole training data.

Moreover, standard GRS construction methods such as the elastic net3,17 can usually only incorporate mar-
ginal genetic effects and no gene-gene interaction effects. For example, it might be possible that the environment-
response relationship is significantly altered only if specific genetic variants at two different loci are present at 
once, thus, leading to a GxE interaction involving a gene-gene interaction that cannot be covered by classical 
GRS approaches.

As prior analyses showed6, using random forests instead of elastic net leads to a higher predictive ability of the 
GRS. Thus, we also propose using random forests18 instead of elastic net as the GRS construction procedure in 
GxE interaction testing. This would yield a GxE interaction testing approach that is not restricted to simplifying 
assumptions on genetic effects and can incorporate every possible gene-gene interaction.

In this article, first, established GxE interaction testing procedures are discussed. Next, a novel testing 
approach based on bagging and OOB predictions is introduced. Moreover, an extension of this testing procedure 
using random forests is proposed. The methods are evaluated and compared to existing approaches in a simula-
tion study that considers multiple realistic scenarios. As this analysis shows, the proposed testing procedures 
yield a higher statistical power than the reference testing procedures in many scenarios. Lastly, the methods are 
applied to a real epidemiological data set from a cohort study testing a GxE interaction involving air pollution 
regarding rheumatoid arthritis.

Methods
In the following, two standard approaches and three recently proposed approaches for testing GxE interactions 
are discussed first. Afterwards, we propose two novel approaches that can be used to overcome the drawbacks 
of the initially discussed methods.

Existing methods.  First, existing methods for GxE interaction testing are discussed.

Single‑SNP‑based GxE interaction test.  The GxE interaction test based on single SNPs tests each considered 
SNP independently for a GxE interaction3. That is, for each SNPj , j ∈ {1, . . . , p} , a GLM

is fitted, where also potential confounders C =

C1 . . . Cm


 are included in the model to adjust the main effects 

of SNPj and the environmental variable E as well as their interaction effect for these variables. If a binary disease 
status is the considered outcome, logistic regression models via the link function g = logit are fitted. If the con-
sidered outcome is continuous, the identity link g = Id is used for fitting linear regression models.

In each of these models, the statistical hypothesis H0 : β3 = 0 versus H1 : β3 �= 0 is tested, i.e., whether 
there is an interaction effect of the SNP and the environmental variable E on the outcome. A Wald test is usually 

(1)g(E[Y | SNPj, E,C]) = β0 + β1SNPj + β2E + β3SNPj × E +

m

i=1

γiCi
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performed for testing this hypothesis. Alternatively, a score test or a likelihood-ratio test can be carried out for 
testing the same hypothesis19. If, e.g., it should be tested whether a gene interacts with E, its SNPs are tested and 
the test decision for the whole gene is made by adjusting the individual SNP testing results for multiple testing. 
Usually, a Bonferroni correction is carried out3,20. If, after the Bonferroni correction, for at least one SNP the null 
hypothesis could be rejected, the global null hypothesis of no GxE interaction on the gene is rejected as well.

This approach has the advantage of not having to train a model but to directly perform statistical testing. 
Moreover, it is very simple, straightforward, and computationally feasible, since the individual tests can also 
be parallelized. However, due to considering individual SNPs and performing adjustment for multiple testing, 
statistical power for detecting a GxE interaction is lost.

GRS‑based GxE interaction test.  In contrast to the single SNP test, the GRS-based GxE interaction test aggre-
gates multiple SNPs into one model and uses this model to test if there is an interaction in the considered 
genomic region3. Usually, the GRS is a linear combination of SNPs

that is either constructed internally or externally.
External GRS rely on summary statistics of independent studies and use the individual SNP effect sizes for 

determining their weights α̂1, . . . , α̂p
21,22. This approach, thus, requires the availability of appropriate study data, 

i.e., the same outcome, the same genomic region, and the same population type had to be analyzed23. Further-
more, the external approach only allows the construction of linear GRS, i.e., in general not taking interactions 
between genetic loci into account.

Alternatively, GRS can be constructed internally3,24, which means that the available data has to be divided 
into independent training and test data sets. The GRS is constructed using the training data and evaluated on the 
test data. This data splitting is crucial to avoid overfitting, i.e., to avoid detecting effects that are solely made up 
of statistical noise and are recognized due to the model adapting to this statistical noise. The internal approach 
also allows to generalize the task of constructing GRS to a statistical learning problem, in which a function is to 
be fitted that maps the SNPs to the outcome and that does not necessarily have to be linear6.

When internally constructing GRS, usually a GLM-based procedure such as the elastic net25 is utilized17,26. 
The elastic net also fits a linear model (2)—yielding the weights α̂1, . . . , α̂p and intercept α̂0—and regularizes the 
effect coefficients α =


α1 . . . αp


 . This is done by including the penalty term

in the optimization problem

in which ℓ is the log-likelihood function of the considered parameters,  is the penalty strength, and ξ ∈ [0, 1] 
is a parameter controlling the balance between the L1 penalty and the L2 penalty, i.e., the lasso penalty27 and the 
ridge penalty28, respectively. The lasso penalty leads to shrinking the coefficients of unimportant SNPs to zero 
while the ridge penalty assigns similar weights to highly correlated SNPs, which, e.g., might be the case for SNPs 
in high LD (linkage disequilibrium). Thus, the elastic net simultaneously performs a variable selection and a 
properly handling of SNPs in high LD. However, as for GLMs, only marginal SNP effects are modeled if no prior 
knowledge about which loci might interact is available, which is usually the case.

After constructing the GRS on training data, predictions GRS = α̂0 + α̂1SNP1 + . . . +OαpSNPp on independ-
ent test data are performed. These predicted values of the GRS for the subjects in the test data set are then used 
to fit the GLM

As for the single-SNP-based test, if a binary disease status is the phenotype of interest, the logit is used as link 
function g for fitting logistic regression models in both the GRS construction step and the GxE testing step. For 
continuous phenotypes, linear regression models are fitted using the identity as link function g.

For testing if the considered genomic region interacts with E regarding the outcome Y, the statistical test 
H0 : β3 = 0 versus H1 : β3 �= 0 is performed. Similar to the single-SNP-based test, this hypothesis is most com-
monly tested using a Wald test. A GxE interaction is present if H0 is rejected at a prespecified level of significance. 
In contrast to the single-SNP-based test, this test result directly reflects the desired test decision such that no 
adjustment for multiple testing has to be performed.

The drawback of this GRS-based testing approach is the requirement for splitting the available data into 
independent training and test data sets, where simulation studies suggest that a random 50:50 split should be 
used23. However, since in this case only 50% of the data can be used for actually testing the GxE interaction, 
substantial statistical power for detecting the GxE interaction is lost.

Set‑based gene–environment interaction test.  SBERIA9 is a GxE interaction test that also utilizes a weighted sum 
of SNPs, similar to the GRS-based procedure. In SBERIA, all SNPs are univariately screened for either the associ-

(2)GRS = α̂0 + α̂1SNP1 + . . . + α̂pSNPp

Rξ (α) =
1

2
(1 − ξ)||α||22 + ξ ||α||1

min
α0,α


−

1

N
ℓ(α0,α) + Rξ (α)


,

(3)g(E[Y | GRS,E,C]) = β0 + β1
GRS + β2E + β3

GRS × E +

m

i=1

γiCi .
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ation with the environmental factor or the association with the outcome. The results of this screening are used for 
constructing a weighted sum of SNPs. More precisely, this sum is constructed as GRS = w1SNP1 + . . . + wpSNPp 
with

The offset ε is usually chosen as 0.0001 and the significance threshold θ as 0.1. The GxE interaction is then 
tested as in the GRS-based test using the GLM from Eq. (3). However, in contrast to the GRS-based test, the 
weighted sum utilized in SBERIA only considers the magnitude of the genetic effects to a limited extent. None-
theless, through this limited modeling, the overfitting problem of the GRS-based testing does not arise such 
that the full data can be utilized for constructing the weighted sum and testing the GxE interaction even in low 
sample size scenarios.

Gene–environment set association test.  GESAT10 is a GxE interaction test that belongs to the class of variance 
component tests. In variance component tests, the GLM

is considered for testing the GxE interaction, where SNP =

SNP1 . . . SNPp


 is the vector of all considered SNPs, 

δ1 is the vector of corresponding main effects and δ3 is the vector of corresponding GxE interaction effects. The 
GxE interaction effects are modeled as random effects with mean zero and a common variance τ ≥ 0 . Testing 
the presence of a GxE interaction anywhere in the considered set of SNPs is now equivalent to testing H0 : τ = 0 
versus H1 : τ > 0 . In GESAT, a score test is used for testing this hypothesis. For computing the score test statistic, 
the main effects have to be estimated under the null model only incorporating main effects. In GESAT, this is 
done by applying ridge regression. The authors have shown that the score test statistic follows—under the null 
distribution of no GxE interaction—asymptotically a mixture of χ2-distributions.

Adaptive combination of Bayes factor method.  ADABF13 is a recently proposed GxE interaction testing approach 
that tries to overcome the issues of classical tests, i.e., the need for data splitting or for too conservative multiple 
testing adjustment, by considering Bayes factors. ADABF starts by individually screening all considered SNPs 
for associations with the outcome. Only the pS ≤ p SNPs passing this screening (e.g., only SNPs that are sig-
nificantly associated with respect to a level of significance of 5%) are used for testing the GxE interaction itself. 
Similar to the single-SNP-based test, individual GLMs (see Eq. (1)) are fitted for each considered SNP. Then, 
Bayes factors

are computed for each SNP and the corresponding hypothesis H0 : β3 = 0 versus H1 : β3 �= 0 of the GxE inter-
action coefficient of this SNP. Prior knowledge from previous studies is used for configuring the variance of 
the prior distributions of both the main effects and the GxE interaction effects. Since it is of interest to test the 
whole considered set of SNPs for a GxE interaction and not just single SNPs, the Bayes factors are combined 
into summary scores

with BF(l) ( l ∈ {1, . . . , pS} ) being the decreasingly sorted Bayes factors for the considered SNPs such that 
BF(1) ≥ . . . ≥ BF(pS) . These summary scores are also computed under the null distribution of no GxE interac-
tion, i.e., by randomly sampling GxE interaction effects from a multivariate normal distribution with mean zero 
(corresponding to no effect) and a covariance matrix incorporating LD (linkage disequilibrium) between the 
SNPs. Afterwards, the original summary scores and the sampled versions are compared for deriving p values 
for every k ∈ {1, . . . , pS} . Minima of these p values are computed for deriving a final p value that tests the global 
null hypothesis of no GxE interaction across all considered SNPs.

Bootstrap aggregating.  To overcome the loss in statistical power through limited modeling or data splitting, 
we propose employing bagging (bootstrap aggregating)16 for constructing the GRS in GxE interaction testing. 
Bagging is an ensemble approach that constructs B single models and combines them to one prediction model 
by averaging over the predictions of the individual models. The number of models B is chosen prior to fitting 
the model and should be set to a sufficiently high number such that more iterations do not considerably change 
the ensemble model. Each individual model is fitted by randomly drawing a bootstrap sample from the complete 
available data set, i.e., drawing N observations with replacement from a data set consisting of N observations, 
and using this sample to train the model such as a GLM via elastic net. A key property of bagging is that it 
reduces the variance of the predictions, thus, stabilizing the predictions29.

Since in every iteration a bootstrap sample is used for training the model, there is complementary data left 
that was not used for training this sub model. These data are called OOB (out-of-bag) data. Utilizing this fact, 

wj = ε +


0, if p value for SNPj > θ
−1, if p value for SNPj ≤ θ and correlation of SNPj with E (or Y) negative
+1, if p value for SNPj ≤ θ and correlation of SNPj with E (or Y) positive.

g(E[Y | SNP,E,C]) = δ0 + δ
T
1 SNP + δ2E + δ

T
3 SNP × E +

m

i=1

γiCi

BF =
P(data | H1)

P(data | H0)

Sk =

k

l=1

log(BF(l))
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unbiased predictions on the complete data set can be made. For each observation, those models are gathered 
that did not use this observation for training. These models are used to temporarily construct an ensemble and 
the OOB prediction is generated by calculating the average over these models, so that for an observation (x, y) , 
its OOB prediction ŷOOB is calculated by

where

is the set of all trained models that did not use the considered observation for training, F  is the set of all 
trained models in the ensemble, and Tf  is the training data set used for training f. Thus, the OOB prediction for 
each observation is constructed by models that never have seen this specific observation, resembling test data 
predictions.

Proposed methods.  In the following, two novel GxE interaction testing methods based on bagging are 
introduced.

GxE interaction testing through bagging.  For avoiding the data splitting problem in GxE interaction testing, we 
propose constructing the GRS using bagging, e.g., bagging using the elastic net as the base learner, and comput-
ing the OOB prediction for all individuals in the whole data set. These predictions can then be used as a predictor 
in the GLM (3) as before and the statistical hypotheses H0 : β3 = 0 versus H1 : β3 �= 0 are tested using a Wald 
test analogously to the conventional GRS-based test. Note that in contrast to the conventional GRS-based test, 
the GLM (3) is fitted and tested using all available data. Similarly, the GRS is in this case also fitted using all avail-
able observations. Therefore, neither the modeling step nor the testing step suffer from reduced sample sizes in 
this approach.

Figure 1 illustrates the proposed bagged GxE interaction testing approach considering N = 5 subjects and 
B = 5 bagging iterations/bootstrap samples (note that both numbers should actually be much higher; here, we 
only consider these small numbers for illustration purposes). First, for each out of B = 5 bagging iterations, a 
bootstrap sample is drawn from the original sample consisting of N = 5 observations and used for training the 
respective model such as a GLM through elastic net. For example, in the first iteration, the model is fitted using 
the observations 1, 3, 4, and 5. Next, for each of the N = 5 observations, those models are selected that did not 
use the respective observation for training and are used for generating the OOB predictions for the GRS. For 
example, for the first observation, the models 2 and 4 are used to predict its GRS by averaging their predictions, 
since observation 1 was not used for fitting the models 2 and 4. These predicted GRS values are then used as the 
values of the predictor to fit the GLM (3) and test whether the GxE interaction is associated with the outcome 
via its coefficient β3 using a Wald test.

The GRS can be an arbitrary summary of genetic loci. Hence, if loci from multiple genes should be tested in 
a single GxE interaction test, the bagged GRS is constructed using all considered loci at once. For example in 
the real data application, a GxE interaction is tested for an association-based SNP selection that can potentially 

ŷOOB =
1

|F(x,y)|



f ∈F(x,y)

f (x)

F(x,y) =

f ∈ F | (x, y) /∈ Tf


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Figure 1.   Exemplary GxE interaction testing workflow utilizing bootstrap aggregating. N = 5 observations and 
B = 5 bagging iterations are considered.
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lead to loci from multiple different genes and for a gene-based SNP selection that was derived by considering 
multiple genes at once.

Random‑forests‑based GxE interaction test.  Common GRS construction procedures such as the elastic net rely 
on linear modeling of genetic effects. Thus, these approaches usually model only marginal genetic effects unless 
prior knowledge about which loci might interact is available. Instead, more flexible modeling techniques such as 
random forests18, which are theoretically able to model every possible interaction, can also be used to construct 
GRS. It has been previously shown6 that these predictions can substantially outperform the standard method 
elastic net in the construction of GRS.

Therefore, we propose using random forests for the GRS construction step in testing GxE interactions. Ran-
dom forests is an extension of bagging that uses decision trees30 as its base learner. The individual decision trees 
are further randomized by selecting random subsets of the predictor set in the recursive fitting procedure. This 
additional randomization leads to an increased variance reduction. Due to employing bagging, random forests 
is a natural candidate for applying the OOB-predictions-based GxE interaction test discussed in the previous 
section. Here, the sub models that are used for computing OOB predictions are the individual randomized 
decision trees.

Ethics approval and consent to participate.  The study was conducted in accordance to the declara-
tion of Helsinki. The SALIA cohort study has been approved by the Ethics Committees of the Ruhr-University 
Bochum and the Heinrich Heine University Düsseldorf. Written informed consent was received from all par-
ticipants.

Simulation study
For examining the proposed GxE interaction testing procedures based on bagging using elastic net and on 
random forests, respectively, we compared these procedures with each other, with the two classical testing 
approaches, i.e., the single-SNP-based test and the GRS-based test using elastic net, and with three recently 
proposed GxE interaction testing procedures, namely ADABF, GESAT, and SBERIA, in a simulation study 
considering several realistic data scenarios.

Simulation setup.  In every simulation setting, 1000 independent replications were carried out, i.e., 1000 
independent data sets were generated and evaluated for each considered study setting. The samples sizes were 
varied between N = 500 , N = 1000 , and N = 2000 . 50 SNPs were simulated independently, resembling LD-
based pruned SNPs, using random minor allele frequencies in the range of [0.15, 0.45], as in the analyses con-
ducted by Lau et al.6. Similarly, dominant modes of inheritance were used for modeling the outcomes. The envi-
ronmental term was generated by fitting a log-normal distribution on recorded exposures to nitrogen dioxide 
( NO2 ) in the SALIA study32 and randomly sampling from this fitted log-normal distribution. The SALIA study 
is described in more detail in the following section, in which the data from this study is also used in a real data 
application.

For the GRS-based testing approach employing elastic net, the data sets have to be divided into training and 
test data sets. Random 50:50 splits were used as recommended by Hüls et al.23 in the context of GxE interaction 
testing. Additionally, a binary and a continuous outcome were simulated and analyzed. For the binary outcome, 
the prevalence, i.e., the probability of developing a disease without any exposure and genetic susceptibility, was 
chosen in each setting such that balanced data sets were generated, i.e., data sets, in which approximately half 
of the observations are cases and the other half are controls, which resembles (balanced) case-control studies.

The outcomes were generated following GLMs that are described in more detail below. Both the binary 
and the continuous outcomes used the same linear predictors. For the binary outcome, the inverse of the logit 
link function was used to generate case probabilities P(Y = 1 | SNP,E) for randomly sampling the simulated 
outcome. For the continuous outcome, random noise from the standard normal distribution was added to each 
linear predictor E[Y | SNP,E].

Type I error.  First, the type I error rate of the testing procedures was evaluated, i.e., the probability of falsely 
rejecting the null hypothesis, which in this case is the probability of detecting a GxE interaction although no GxE 
interaction is present. In all cases, the typically used level of significance of 5% was considered. We, thus, checked 
if the proposed tests control the type I error rate at a level of 5%.

For evaluating the type I error rate, data sets were simulated by considering the model

where SNPi,D:=1(SNPi > 0) is a SNP exhibiting a dominant mode of inheritance. In this model, thus, no GxE 
interaction is present. The marginal genetic effect sizes α1 = α2 = α3 = α4 = log(1.5) were fixed to an odds ratio 
of 1.5, resembling moderate effects. The gene-gene interaction effect was fixed to αGxG = 2 log(1.5) = log(2.25) . 
The marginal environmental effect was fixed to αE = log(1.02) . The effect size for the environmental term may 
seem rather small compared to the genetic effect sizes. However, this is due to the fact that the environmental 
factor in the SALIA study attains higher values with a median of 23.91.

Power—different GxE interaction effect intensities and sample sizes.  Next, we evaluated the statistical power of 
the proposed GxE interaction tests, where the power is the probability of correctly rejecting the null hypothesis, 
i.e., the probability of detecting a true GxE interaction.

g(E[Y | SNP,E]) = α0 + α1SNP1,D + α2SNP2,D + α3SNP3,D + α4SNP4,D + αGxGSNP1,DSNP5,D + αEE,
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For evaluating the power, the model

was used for generating the data sets.
For choosing realistic parameters, we analyzed the true underlying models. The final parameter choice 

is illustrated in Fig. 2, which depicts the desired simulation setup through the true modeling probabilities 
P(Y = 1 | SNP,E) . The three curves at the bottom almost resembling a linear relationship correspond to the case 
of only the marginal environmental effect being active, i.e., no interacting risk allele being present that increases 
the slope. Thus, these curves share the same slope. The curves above are induced by interacting risk alleles being 
present and increasing the slope. In this model, almost the whole range in the probability spectrum is covered, 
i.e., probabilities P(Y = 1 | SNP,E) of almost 100% if all risk alleles are present at once and a high exposure is 
given or probabilities P(Y = 1 | SNP,E) of around 10% if no risk alleles and no exposure are given.

The corresponding model parameters are, therefore, chosen as follows. As in the type I error evaluation, 
the marginal genetic effects were fixed to α1 = α2 = log(1.5) . The marginal environmental effect size was fixed 
to αE = log(1.01) and the effect size αGxE of the GxE interaction involving SNP3 and SNP4 was varied between 
log(1.01) , log(1.03) , and log(1.05) . The effect size 2αGxE of the GxE interaction also incorporating a GxG interac-
tion was doubled, since interaction effects are in general more difficult to capture, i.e., requiring more data or 
stronger effect sizes.

Power—main effects and different levels of statistical noise.  For analyzing the methods’ performances under the 
presence or absence of main effects and different levels of statistical noise, further simulations were conducted. 
The simulation setup considered by Lin et al.13 was used as a basis for these simulations. Thus, the outcome was 
generated using the model

Therefore, half of the interacting SNPs also exhibit main effects if the corresponding coefficients are unequal 
to zero. The number K of interacting SNPs and SNPs that may exhibit main effects was set to 10. The number 
of total SNPs was varied between 20, 50, and 100, simulating different settings of statistical noise by including 
more SNPs that have theoretically no effect on the outcome. The sample size was set to N = 2000 , since different 

(4)
g(E[Y | SNP,E]) = α0 + α1SNP1,D + α2SNP2,D + αEE

+ αGxESNP3,DE + αGxESNP4,DE + 2αGxESNP1,DSNP5,DE

(5)g(E[Y | SNP,E]) =

K

j=1

αjSNPj,D +

1.5K

j=0.5K+1

αGxEjSNPj,DE.
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Figure 2.   Design for simulating a binary phenotype. Exposure-response curves are depicted for different 
genotypes and a strong GxE interaction effect αGxE = log(1.05) in Eq. (4). The colors illustrate the GxE 
interaction intensity referring to the number of activated GxE interaction terms in Eq. (4). The utilized 
distribution of the environmental factor is shown at the top by the 25%, 50%, and 75% quantiles and the 
minimum and the maximum.
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samples sizes were already analyzed in the previously described simulation scenario. For every setting, 100 
independent replications were conducted, i.e., 100 independent data sets were generated and evaluated for each 
considered setting in this additional simulation scenario. The SNPs were simulated analogously to the previous 
simulation scenario, i.e., independently (resembling LD-based pruned SNPs) and using random minor allele 
frequencies in the range of [0.15, 0.45]. Similar to Lin et al.13, the environmental variable E was generated as a 
binary variable with P(E = 1) = P(E = 0) = 0.5.

Analogously to Lin et al.13, the GxE interaction testing procedures were evaluated in four different simulation 
settings. These simulation settings are summarized in Table 1. First, two settings with no main effects, i.e., αj = 0 
for all j ∈ {1, . . . ,K} , were evaluated. In these two settings, the effect sizes were varied. In the first setting, the 
coefficients were randomly drawn from the uniform distribution on [log(1.2), log(1.4)] for the binary outcome 
and from the uniform distribution on [0.13, 0.17] for the continuous outcome. These effect sizes resemble small 
genetic effects. In the second setting, larger genetic effects were included. Hence, coefficients from the uniform 
distribution on [log(1.4), log(1.6)] for the binary outcome and from the uniform distribution on [0.18, 0.22] 
for the continuous outcome were randomly drawn in the second simulation setting. Furthermore, two settings 
including main effects were evaluated. Here, the main effect and GxE interaction effects were randomly drawn 
according to the previously described uniform distributions. In all settings, the signs of the effect coefficients 
were randomly drawn. Thus, settings in which the main effect and the corresponding GxE interaction effect 
point in the same direction are covered as well as settings in which the main effect and the corresponding GxE 
interaction effect point in different directions are covered.

Application of the GxE interaction tests.  The application of the GRS-based GxE interaction testing 
procedures requires the choice of reasonable parameter settings for the underlying statistical learning method.

For fitting elastic net models, the strength of the penalty  ≥ 0 has to be tuned, which is usually done by 
k-fold cross-validation. In this article, 10-fold cross-validation was employed throughout all analyses. The bal-
ance parameter ξ was fixed to 0.5, as 0.5 is a reasonable value in most situations for constructing GRS3. The R31 
software package glmnet33 was used for fitting elastic net models.

For the novel bagging-based GxE interaction tests, the number B of bagging iterations has to be chosen. In 
this article, we set B = 500 , since this is a relatively high number of bagging iterations, such that more iterations 
would not considerably alter the ensemble.

For fitting random forests, the R software package ranger34 was used. For the number of random variables 
drawn for evaluating tree splits, the standard setting of random forests for a higher number of predictors was 
used, i.e., mtry was set to ⌊p/3⌋ , where p is the number of SNPs. The minimum number of observations contained 
in a terminal node (min.node.size) was set to ⌊0.05 × ntree⌋ , in which ntree is the number of observations 
one single tree uses for training. If bootstrap sampling is performed, ntree = N , in which N is the total sample 
size, holds. This setting was used to avoid too deep trees that overfit and to fit trees that hold stable risk estimates 
in their leaves, as suggested by Malley et al.35. The number of trees in a random forest (num.trees) was set to 
500, the standard setting in ranger.

ADABF tests were carried out using the standard settings and the corresponding code that is available online 
(https://​homep​age.​ntu.​edu.​tw/​~linwy/​ADABF​GE.​html). GESAT tests were conducted utilizing the R package 
iSKAT (https://​github.​com/​lin-​lab/​iSKAT-​GESAT) using its standard settings. Due to lack of publicly available 
software, the SBERIA test was implemented manually and carried out using 0.0001 as the intercept for non-
significant SNPs and 0.1 as the p value threshold, as proposed by Jiao et al.9.

Results of the simulation study.  In the following, the results of the simulation study are presented.

Type I error.  Figure 3 shows the estimated type I error rates for the considered methodologies. The red dashed 
line indicates the targeted 5% level. Both the bagged test using elastic net and random-forests-based test induce 
type I error rates that are around this level for both binary and continuous outcomes and smaller to larger data 
sets. Thus, the proposed methods seem to control the type I error. Similarly, the reference testing procedures 
based on single SNPs and elastic net regression also yield type I error rates around the 5% level. The alternative 
GxE interaction testing approaches ADABF and SBERIA induce type I error rates around 5% as well. However, 
in our simulation study, GESAT yields a type I error rate of over 10% for small samples and a binary outcome. 
Also for larger sample sizes and a binary outcome, GESAT induces higher type I error rates than the other 
methods. This issue might be caused by asymptotics that have not been reached due to the small sample size but 

Table 1.   Simulation settings for the second simulation scenario (see Eq. (5)) considering different effect sizes, 
different levels of statistical noise, and the presence or absence of main effects.

Setting Binary α1, . . . ,α10 Continuous α1, . . . ,α10 Binary αGxE6 , . . . ,αGxE15 Continuous αGxE6 , . . . ,αGxE15

1 0 0 ±[log(1.2), log(1.4)] ±[0.13, 0.17]

2 0 0 ±[log(1.4), log(1.6)] ±[0.18, 0.22]

3 ±[log(1.2), log(1.4)] ±[0.13, 0.17] ±[log(1.2), log(1.4)] ±[0.13, 0.17]

4 ±[log(1.4), log(1.6)] ±[0.18, 0.22] ±[log(1.4), log(1.6)] ±[0.18, 0.22]
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are vital to the theory of the GESAT test, in particular, for the distribution under the null hypothesis of no GxE 
interaction.

Power—different GxE interaction effect intensities and sample sizes.  In Fig. 4, the results for the power evalu-
ation of the first simulation scenario considering different GxE interaction effect intensities, different sample 
sizes, and a continuous environmental factor are shown. Unsurprisingly, the power rises with the available sam-
ple size and with the GxE effect intensity for all considered methods. For a large sample size and a strong GxE 
interaction effect, a power of 100% is reached, while for a small sample size and a weak GxE interaction effect, 
the power is around the prespecified tolerated type I error level. Therefore, the simulation design covers also 
scenarios in which the GxE interaction effect is almost undetectable and scenarios in which the GxE interaction 
should be detected, which was desired.

Regarding the comparison between the individual testing approaches, the single-SNP-based test seems to 
yield the lowest statistical power in most settings. For a continuous outcome, the GRS-based test, GESAT, and 
ADABF induce similar results. For a binary outcome, GESAT induces the highest power among these three tests. 
SBERIA yields the highest statistical power among the considered reference GxE interaction testing procedures.
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Figure 3.   Type I error rates of the single SNP test, the GRS-based test using elastic net, ADABF, GESAT, 
SBERIA, the bagged GRS-based test using elastic net, and the random-forests-based test for testing GxE 
interactions in the simulation study.
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Figure 4.   Statistical power of the single SNP test, the GRS-based test using elastic net, ADABF, GESAT, 
SBERIA, the bagged GRS-based test using elastic net, and the random-forests-based test for testing GxE 
interactions in the first scenario (see Eq. (4)) of the simulation study.
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The newly proposed proposed procedure based on bagging and using elastic net as its base learner consist-
ently achieves superior results to the reference approaches. The novel random-forests-based method induces an 
even higher statistical power than the bagging-based test that uses elastic net.

Thus, regardless of considering a binary or a continuous outcome, small or large samples, or weak or strong 
GxE interaction effects, the two tests based on bagging induce a comparatively high statistical power.

Power—main effects and different levels of statistical noise.  Considering the second simulation scenario analyz-
ing different levels of statistical noise, the presence or absence of main effects, differing effect sizes, and a dichot-
omous environmental risk factor, Fig. 5 depicts the statistical power achieved by the considered GxE interaction 
testing methodologies. The GRS-based GxE interaction test employing elastic net and the single-SNP-based test 
induce the lowest statistical power in most settings. When no main effects are present, SBERIA seems to yield 
better results than the two classical testing approaches. GESAT and ADABF induce a similar statistical power 
that is higher than the statistical power induced by the other methods—including the proposed methods—when 
considering settings with main effects and a low number of additional noise SNPs. The proposed bagging-based 
testing approaches yield a comparatively high statistical power in all settings. When considering settings without 
main effects or settings with main effects and a higher number of noise SNPs, the power of the bagging-based 
tests is particularly high.

The bagging-based test employing elastic net as its base learner seems to induce a slightly higher power than 
the random-forests-based test when considering settings without main effects. Vice versa, with main effects, 
random forests yields a slightly higher power. In general, the induced statistical power by the bagging-based tests 
is similar in this simulation scenario. The bagging-based test with elastic net presumably yields a higher power 
in this scenario (see Eq. (5)) due to considering a pure linear relationship compared to the previous scenario 
(see Eq. (4)), in which a gene-gene interaction was also present.

The proposed bagging-based tests seem to be more robust against a higher number of noise SNPs, since their 
statistical power does not severely decrease in comparison to the other procedures. Only for the first setting 
without main effects and small effect sizes, their statistical power considerably decreases for a higher number 
of noise SNPs.

Real data application
To verify the results of the simulation study and the applicability of the two proposed GxE interaction tests, a 
real data set from a German cohort study, the SALIA study (Study on the Influence of Air Pollution on Lung, 
Inflammation and Aging)32, was used for investigating GxE interactions.

At baseline, the SALIA study was conducted between 1985–1994 and included 4874 women aged between 
54 and 55 years at their baseline examination. The study region included highly and less industrialized areas 
in North Rhine-Westphalia, Germany. In 2006, 4027 study participants completed a follow-up questionnaire 
about the diagnosis of chronic diseases. A further follow-up involving clinical examinations was conducted in 
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Figure 5.   Statistical power of the single SNP test, the GRS-based test using elastic net, ADABF, GESAT, 
SBERIA, the bagged GRS-based test using elastic net, and the random-forests-based test for testing GxE 
interactions in the second scenario (see Eq. (5)) of the simulation study.
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2007–2010, where genetic data was collected. Genome-wide genotyping was performed using the Axiom Preci-
sion Medicine Research Array GRCh37/hg19 (Affymetrix, Santa Clara, CA, USA). Imputation of unobserved 
genotypes using the Haplotype Reference Consortium36 as reference panel on the Michigan Imputation Server37 
and quality controls38 were performed. Individual exposures to air pollutants such as NO2 during the first follow-
up examinations were assessed using land-use regression models as part of the ESCAPE (European Study of 
Cohorts for Air Pollution Effects) project39,40.

In the questionnaire of the first follow-up examination, the study participants were asked if they had a diag-
nosed rheumatic disease. Therefore, prevalent rheumatic diseases were considered as outcome in this article. 
Among the 560 women, 144 women stated they had a diagnosed rheumatic disease so that 416 women stated 
they did not have a rheumatic disease. Since rheumatoid arthritis is the most common rheumatic disease besides 
osteoarthritis41–43, we focused on rheumatoid arthritis.

The data set analyzed in this article was restricted to subjects with available genotype data and information 
on the presence of rheumatic diseases. Thus, the analyzed data set consists of data from 560 women.

Gene ATLAS44 was used for selecting SNPs that are significantly associated with the development of rheuma-
toid arthritis in the UK Biobank45 (data field 20002). In particular, all SNPs that reached a level of significance 
of 10−80 were selected, which resulted in 91 SNPs in total. Canela-Xandri et al.44 computed these p values by 
performing two-sided t-tests for each SNP on the residuals of linear mixed-effects models that were fitted for 
each trait and include potential confounders such as sex or age as fixed effects and a random effect adjusting for 
the population structure. The significance threshold was chosen such that about 100 SNPs were selected. 87 of 
these 91 SNPs were available in the analyzed data set from the SALIA cohort study. A detailed list of the analyzed 
SNPs can be found in Supplementary Table S1. This first SNP selection is based on single SNPs that showed a 
significant association with the disease phenotype of rheumatoid arthritis.

Moreover, we also considered a gene-based SNP selection for confirming the applicability of the proposed GxE 
interaction tests in gene-based analyses. Analogously to Lau et al.6, the three genes HLA-DRB1, HLA-DPB1, and 
HLA-DOA from the human leukocyte antigen (HLA) class II complex were chosen, since they seem to explain 
a large fraction of the heritability of rheumatoid arthritis in the HLA class II complex46–51. All available SNPs 
from these three genes were selected, which resulted first in 385 SNPs. These SNPs were then clumped based on 
LD (linkage disequilibrium)52 considering r2 = 0.5 using PLINK version 1.953. The LD-based clumping resulted 
in 72 tag SNPs. This set of 72 gene-based selected SNPs and the set of 87 association-based selected SNPs are 
disjoint such that there is no single SNP that is present in both sets.

It has already been shown that an interaction between genetic risk factors and smoking exists in the develop-
ment of rheumatoid arthritis54,55. Thus, it can be suspected that traffic-related air pollution such as NO2 might 
also be involved in a GxE interaction, which is analyzed in the following. Hence, for testing the presence of a 
GxE interaction, we considered the exposure to NO2 as the environmental variable potentially interacting with 
genetic risk factors.

Adjustment for relevant potential confounders was performed using the same set of potential confounders 
as Hüls et al.56 in their GxE interaction analysis. In particular, the genetic and environmental marginal effects 
as well as the GxE interaction effect were adjusted for subject age, socioeconomic status, BMI, smoking status, 
passive smoking, and household heating by indoor combustion of fossil fuels.

For more details about the SALIA study itself and an analysis of rheumatic diseases in the SALIA study, see 
Krämer et al.57 and Lau et al.6, respectively.

The evaluated GxE interaction methods were applied analogously to the simulation study. For application 
details, see Section “Application of the GxE interaction tests”.

Results of the real data application.  Figure 6 summarizes the results of the real data analysis consider-
ing the association-based SNP selection by the induced p values of the considered methodologies. The single-
SNP-based test yields a p value of 1 due to the Bonferroni correction, i.e., none out of the 87 SNPs yields a 
significant GxE interaction. Without the Bonferroni correction, the single-SNP-based test would yield a p value 
of 0.125, which is still not significant with respect to a level of significance of 5%. However, note that not cor-
recting for multiple testing would inflate the type I error rate, which would disqualify the single-SNP-based test 
as a valid statistical test.

The common GRS-based test employing elastic net yields a median p value of about 0.8 such that, in almost 
all repetitions, no GxE interaction was detected. However, the resulting p value heavily varies between the rep-
lications. This variance is induced by random data splits for training the GRS and testing the GxE interaction 
and by cross validation that randomly splits the respective training data set for choosing the ideal elastic net 
regularization penalty.

ADABF yields a median p value of 0.47—not indicating a GxE interaction.
GESAT and SBERIA induce p values of 0.19 and 0.24, respectively, which are substantially lower than the p 

values of the other reference testing procedures. However, the null hypothesis of no GxE interaction cannot be 
rejected with respect to a level of significance of 5%. Note that GESAT was not applied to the original set of 87 
SNPs but to a LD-based pruned (using r2 = 0.975 ) set consisting of 37 SNPs, since the GESAT software could 
not be applied to the original SNP selection, which seemed to be due to the very high LD of some of the SNPs.

The novel bagging-based test utilizing elastic net yields a median p value of about 0.12, which is not signifi-
cant with respect to a level of significance of 5%, however, considerably lower than the median p value induced 
by the common tests. In no iteration, this test could detect a GxE interaction. Nonetheless, the variance of the 
resulting p values seems to be almost completely diminished in contrast to the common elastic-net-based test 
that does not employ bagging.
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Using random forests, a median p value of about 0.004 is yielded, which is by far the lowest. In every repeti-
tion, the random-forests-based test rejects the null hypothesis of no GxE interaction. Thus, this suggests that 
there might be a GxE interaction between genetic risk factors and air pollution exposure regarding rheumatoid 
arthritis.

The results of the additional gene-based analysis are depicted in Supplementary Fig. S1. For these genes, none 
of the GxE interaction tests indicates the presence of a GxE interaction. In this analysis, random forests yields 
similar p values to ADABF and SBERIA, while the bagging-based test with elastic net as its base learner yields 
similar p values to GESAT and the single-SNP-based test.

Discussion
In this article, we proposed a novel GxE interaction testing approach utilizing bagging and its OOB prediction 
mechanism. We further proposed using random forests as the GRS construction method in GxE interaction 
testing. The main advantage of these novel tests is that they allow to utilize all subjects in both the GRS construc-
tion and the GxE interaction testing in contrast to classical procedures. Furthermore, this general approach 
allows utilizing statistical learning procedures that can model more complex patterns such as decision trees in 
random forests.

The new methods were first compared to two commonly used procedures, the single-SNP-based test and 
standard GRS-based test, and three recently proposed procedures, ADABF, GESAT, and SBERIA, in a simulation 
study considering both binary and continuous outcomes as well as different sample sizes, GxE interaction effect 
sizes, different levels of statistical noise, and the presence or absence of main effects. The analyses were started 
by evaluating the type I error rate, i.e., the probability of detecting a false GxE interaction, to see whether the 
proposed methods are valid statistical tests. Both tests could control the type I error with respect to the pre-
specified significance level. The analyses were continued by evaluating the statistical power, i.e., the probability 
of detecting a true GxE interaction. Here, it could be observed that the proposed methods could induce strong 
results compared to the reference tests in most scenarios. In particular, for small sample sizes, in presence of 
gene-gene interactions, for high intensities of statistical noise, or in absence of main effects, the proposed tests 
induced a superior statistical power compared to the other considered tests. The random-forests-based test also 
yielded a considerably higher statistical power than the bagging-based test using elastic net as its base learner in 
most settings. In a real data application, a GxE interaction regarding rheumatoid arthritis involving the exposure 
to NO2 was analyzed. The two novel methods induced the lowest p values. The random-forests-based test was 
the only test to consistently induce p values below the prespecified significance threshold, which suggests that 
there might be a GxE interaction.

5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Leve l5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level5% Significance Level
0.00

0.25

0.50

0.75

1.00

Single SNPs Elastic Net ADABF GESAT SBERIA Elastic Net [Bagged] Random Forests

Method

p−
va

lu
e

Method
Single SNPs

Elastic Net

ADABF

GESAT

SBERIA

Elastic Net [Bagged]

Random Forests

Figure 6.   p values of 1000 independent applications of the GxE interaction testing procedures to the considered 
real data set from the SALIA cohort study analyzing the association-based SNP selection containing 87 SNPs. 
For elastic net, the train/test data splits changed. For the two bagging-based tests, the bootstrap samples 
changed. For ADABF, the random sampling from the null distribution of GxE interaction coefficients changed. 
The single-SNP-based test, GESAT, and SBERIA were applied only once, since there is no randomness involved 
in the application of these tests.
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The strength of the proposed tests can be largely explained due to the increased sample size for both construct-
ing the GRS and testing the GxE interaction compared to the standard GRS-based test. However, the variance 
reducing property of bagging presumably also lead to improved GRS models that had a stronger association with 
the analyzed phenotype, which also likely increased the statistical power. A variance reduction could be seen in 
the real data application, where the bagging-based test using elastic net as its base learner considerably reduced 
the p value variance compared to the common elastic-net-based test without bagging. Here, the variance was 
reduced due to no longer requiring random train-test data splits and through bagging, reducing the variance 
induced by cross validation in fitting elastic net models. Moreover, the random-forests-based test’s superior 
performance was also caused by the ability to detect gene-gene interactions, which is usually not possible with 
elastic net, and the increased variance reduction due to further randomizing the model fitting procedure. In the 
second simulation scenario considering no gene-gene interactions, performances of both bagging-based tests 
were similar. Therefore, there seems to be no drawback of using the random-forests-based test over the bagging-
based test using elastic net as its base learner. These findings are in line with the analyses by Lau et al.6, which 
showed that the predictive performance of a GRS constructed by random forests could compete with the predic-
tive performance of a GRS constructed by elastic net, even when considering no gene-gene interaction effects.

The recently proposed GxE interaction testing approaches ADABF, SBERIA, and GESAT also do not rely 
on data splitting that is required by the conventional GRS-based GxE interaction test. However, our proposed 
bagging-based test offers the advantage of being able to capture arbitrarily complex genetic effects through the 
statistical learning procedure that is employed as base learner. In contrast to ADABF and SBERIA, our proposed 
methods do not explicitly perform variable selection before testing the GxE interaction. It might be that certain 
SNPs are excluded in the individual bagging iterations. However, these selections might only be valid for indi-
vidual iterations and not for the ensemble model such that most, if not all, variables are most likely included in 
the GRS for testing the GxE interaction in some way. Nonetheless, due to the explicit regularization performed 
by elastic net or the implicit regularization performed by random forests through randomization58, possibly unin-
formative SNPs should not considerably decrease the statistical power, as could be seen in the simulation study.

As discussed by Janitza and Hornung59 and Mitchell60, the OOB error in random forests can be biased in the 
sense that it overestimates the actual test error. To eliminate this bias, they suggest to perform subsampling with-
out replacement instead of bootstrap sampling. In this case, the number of observations in a subsample drawn 
is set to about 0.632 × N , the asymptotic number of unique observations drawn when performing bootstrap-
ping. For evaluating if sampling without replacement would further improve the performance of our proposed 
GxE interaction testing procedures, we repeated the analyses with sampling without replacement. The results 
are shown in Supplementary Fig. S2–S4 and are in line with the evaluations using sampling with replacement. 
Hence, no considerable difference could be observed.

With GxE interaction tests that perform a SNP selection prior to testing the GxE interaction itself such as the 
single-SNP-based test, the GRS-based test employing elastic net or the lasso, ADABF, or SBERIA, it is relatively 
simple to deduce which SNPs among all initially considered SNPs are likely to be responsible for a detected GxE 
interaction. With the bagging-based approach, the GRS becomes an ensemble of many models such that it is 
not obvious how to infer the subset of SNPs responsible for a detected GxE interaction. Nonetheless, in future 
research, the proposed methodology could be extended to be able to score which genetic loci influence the 
constructed model the most, e.g., by employing VIMs (variable importance measures).

In our evaluations, we used fixed hyperparameter settings for fitting random forests. However, especially 
the parameter for determining the number of random variables selected as potential splitting variables and the 
parameter for bounding the minimum number of observations contained in a single leaf can have a substantial 
impact on the performance of random forests. Thus, the statistical power of the random-forests-based test could 
potentially be further enhanced by conducting proper hyperparameter tuning.

Conclusion
As the simulation study showed, both proposed bagging-based testing procedures control the type I error, mak-
ing them valid statistical testing procedures. Moreover, the bagging-based procedures induce a high statistical 
power for detecting GxE interactions compared to established GxE interaction tests. The novel random-forests-
based test was the best GxE interaction testing method among all evaluated tests in many scenarios. In the real 
data application, the random-forests-based test detected a statistically significant GxE interaction regarding 
rheumatoid arthritis using NO2 exposure as the environmental variable.

Data availability
The simulated data sets analyzed in this article are available from the corresponding author on reasonable request.

Code availability
The proposed methods are implemented and publicly available in the R31 package GRSxE on CRAN.
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Efficient gene-environment interaction testing through bootstrap aggregating
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rsID CHROM POS REF ALT MAF TYPE R2 ER2
rs9267989 6 32219320 G T 0.178 IMPUTED 0.999
rs9268145 6 32257284 T G 0.194 GENOTYPED 1.000 0.995
rs522254 6 32273060 A G 0.194 IMPUTED 0.994
rs6910071 6 32282854 A G 0.194 GENOTYPED 0.999 0.982
rs28361060 6 32303848 G A 0.193 GENOTYPED 0.999 0.964
rs9268362 6 32333341 A G 0.193 GENOTYPED 0.998 0.965
rs2073044 6 32338986 C T 0.253 GENOTYPED 0.993 0.944
rs9268433 6 32345891 T G 0.208 IMPUTED 0.983
rs9268451 6 32349086 T C 0.208 IMPUTED 0.983
rs9268455 6 32349772 C T 0.208 IMPUTED 0.983
rs3793127 6 32371915 C T 0.209 GENOTYPED 1.000 1.000
rs3763309 6 32375973 C A 0.209 GENOTYPED 1.000 1.000
rs3763312 6 32376348 G A 0.209 IMPUTED 0.999
rs9268515 6 32379295 G C 0.169 GENOTYPED 1.000 0.985
rs9268521 6 32381374 G C 0.220 IMPUTED 0.996
rs9268522 6 32381443 A T 0.221 IMPUTED 0.995
rs9268543 6 32384801 A T 0.154 IMPUTED 0.997
rs2395163 6 32387809 T C 0.207 GENOTYPED 1.000 0.994
rs9268581 6 32396930 G A 0.206 IMPUTED 0.996
rs9268614 6 32402778 T G 0.206 GENOTYPED 1.000 1.000
rs2395175 6 32405026 G A 0.153 GENOTYPED 1.000 0.993
rs9268627 6 32405821 T C 0.206 IMPUTED 0.999
rs9268926 6 32433067 A G 0.185 IMPUTED 0.985
rs369515426 6 32542282 T G 0.182 IMPUTED 0.683
rs113322920 6 32553849 T C 0.152 IMPUTED 0.794
rs34855541 6 32559825 A G 0.142 GENOTYPED 1.000 0.995
rs36096565 6 32560025 A G 0.159 IMPUTED 0.850
rs35395738 6 32560209 T C 0.144 IMPUTED 0.900
rs34415150 6 32560477 A G 0.137 IMPUTED 0.849
rs35118762 6 32560631 C T 0.142 IMPUTED 0.986
rs34928543 6 32560695 G C 0.142 IMPUTED 0.987
rs35265698 6 32561334 C G 0.142 IMPUTED 0.984
rs34350244 6 32561465 C T 0.142 IMPUTED 0.944
rs35294087 6 32561466 A G 0.142 IMPUTED 0.977
rs34553045 6 32561565 T C 0.142 IMPUTED 0.941
rs35371668 6 32561638 C T 0.139 IMPUTED 0.889
rs34647096 6 32561681 G A 0.142 IMPUTED 0.977
rs188575117 6 32561935 A C 0.142 IMPUTED 0.923
rs2760985 6 32566398 G A 0.142 IMPUTED 0.978
rs687308 6 32567256 C T 0.142 IMPUTED 0.980
rs35117964 6 32568146 A G 0.151 IMPUTED 0.924
rs34039593 6 32570311 T G 0.142 GENOTYPED 1.000 1.000
rs2647066 6 32571122 C T 0.142 IMPUTED 0.973
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rs17425622 6 32571961 T C 0.142 IMPUTED 0.950
rs601945 6 32573415 A G 0.142 IMPUTED 0.967
rs602457 6 32573562 T C 0.142 IMPUTED 0.939
rs7760841 6 32574868 C T 0.138 IMPUTED 0.944
rs560530 6 32577222 G A 0.183 IMPUTED 0.984
rs660895 6 32577380 A G 0.183 GENOTYPED 1.000 0.999
rs532965 6 32577973 T G 0.142 IMPUTED 0.997
rs3997868 6 32578590 A G 0.183 IMPUTED 0.992
rs3997872 6 32580617 T A 0.142 IMPUTED 0.996
rs521539 6 32581973 G A 0.183 GENOTYPED 1.000 1.000
rs3129751 6 32582189 A C 0.142 IMPUTED 0.999
rs3104415 6 32582577 A C 0.324 IMPUTED 0.998
rs34656207 6 32582601 C T 0.346 IMPUTED 0.826
rs3104413 6 32582650 C G 0.142 GENOTYPED 0.999 0.972
rs3129754 6 32583046 A G 0.408 IMPUTED 0.948
rs3129756 6 32583063 A G 0.376 IMPUTED 0.801
rs6605556 6 32583099 A G 0.142 IMPUTED 0.939
rs4959106 6 32583159 T C 0.430 GENOTYPED 1.000 0.996
rs6931044 6 32583194 G T 0.408 IMPUTED 0.997
rs34850435 6 32583299 C T 0.431 IMPUTED 0.991
rs6931277 6 32583357 A T 0.142 GENOTYPED 1.000 0.993
rs6941972 6 32583529 G A 0.032 IMPUTED 0.455
rs36124427 6 32583677 T C 0.430 IMPUTED 0.997
rs1281935 6 32583820 G T 0.050 IMPUTED 0.974
rs34028938 6 32584346 C A 0.430 IMPUTED 0.990
rs510205 6 32584693 C G 0.183 IMPUTED 0.985
rs1281931 6 32587966 T C 0.051 GENOTYPED 0.996 0.851
rs9271608 6 32591588 A G 0.142 IMPUTED 0.989
rs3104375 6 32600101 G C 0.142 IMPUTED 0.953
rs1391371 6 32603798 A T 0.155 IMPUTED 0.917
rs9272417 6 32605078 A G 0.143 IMPUTED 0.934
rs9272461 6 32605609 G A 0.149 IMPUTED 0.951
rs41269945 6 32607853 A T 0.140 IMPUTED 0.873
rs17426593 6 32608077 T C 0.142 IMPUTED 0.873
rs41269955 6 32608269 G A 0.137 IMPUTED 0.854
rs34141382 6 32608478 T C 0.130 IMPUTED 0.848
rs34763586 6 32608998 T C 0.140 IMPUTED 0.862
rs34965214 6 32609545 C T 0.142 IMPUTED 0.834
rs9272785 6 32610401 G A 0.142 IMPUTED 0.844
rs28724243 6 32629347 T C 0.305 IMPUTED 0.850
rs9275222 6 32659516 A T 0.461 IMPUTED 0.988
rs4713582 6 32660051 T C 0.496 GENOTYPED 1.000 1.000
rs9275511 6 32674329 G A 0.456 IMPUTED 0.935
rs7764856 6 32680640 T A 0.326 GENOTYPED 0.999 0.984

Table S1: Information on the 87 SNPs analyzed in the real data application using the SALIA data set. rsID: Reference
SNP cluster ID; CHROM: Chromosome; POS: Reference position; REF: Reference allele; ALT: Alternative non-reference
allele; MAF: Minor allele frequency; TYPE: Variant genotyped or imputed; R2: Imputation quality (estimate of the squared
correlation between imputed genotypes and true/unobserved genotypes); ER2: Empirical R2 for genotyped variants (not
calculated for imputed variants).
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Figure S1: p-values of 1000 independent applications of the GxE interaction testing procedures to the considered real
data set from the SALIA cohort study analyzing the gene-based SNP selection containing 72 SNPs. For elastic net, the
train/test data splits changed. For the two bagging-based tests, the bootstrap samples changed. For ADABF, the random
sampling from the null distribution of GxE interaction coefficients changed. The single-SNP-based test, GESAT, and
SBERIA were applied only once, since there is no randomness involved in the application of these tests.
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Figure S2: Type I error rates of the bagging-based GxE interaction tests using sampling with or without replacement in
the simulation study
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Figure S3: Power of the bagging-based GxE interaction tests using sampling with or without replacement in the simulation
study
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Figure S4: p-values of the bagging-based GxE interaction tests using sampling with or without replacement in the real
data application
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Chapter 4

logicDT: a procedure for
identifying response-associated

interactions between binary
predictors

In the following, the third manuscript [Lau et al., 2024], which was published in
the journal Machine Learning, is presented and addresses Research Gaps 1 and 4–6.

logicDT: a procedure for identifying response-associated
interactions between binary predictors
Michael Lau, Tamara Schikowski, and Holger Schwender
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Abstract
Interactions between predictors play an important role in many applications. Popular and 
successful tree-based supervised learning methods such as random forests or logic regres-
sion can incorporate interactions associated with the considered outcome without specify-
ing which variables might interact. Nonetheless, these algorithms suffer from certain draw-
backs such as limited interpretability of model predictions and difficulties with negligible 
marginal effects in the case of random forests or not being able to incorporate interactions 
with continuous variables, being restricted to additive structures between Boolean terms, 
and not directly considering conjunctions that reveal the interactions in the case of logic 
regression. We, therefore, propose a novel method called logic decision trees (logicDT) 
that is specifically tailored to binary input data and helps to overcome the drawbacks of 
existing methods. The main idea consists of considering sets of Boolean conjunctions, 
using these terms as input variables for decision trees, and searching for the best perform-
ing model. logicDT is also accompanied by a framework for estimating the importance of 
identified terms, i.e., input variables and interactions between input variables. This new 
method is compared to other popular statistical learning algorithms in simulations and real 
data applications. As these evaluations show, logicDT is able to yield high prediction per-
formances while maintaining interpretability.
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1  Introduction

In many practically relevant applications, a proper coverage of interactions between pre-
dictors is key for constructing strong predictive models. One particularly important exam-
ple is the analysis of genetic or environmental risk factors in epidemiological and medi-
cal studies for, e.g., constructing genetic/polygenic risk scores (Che & Motsinger-Reif, 
2013; Ho et  al., 2019) that can be viewed as a function  ∶ X → Y from the p-dimen-
sional space X = {0, 1, 2}p of p SNPs (single nucleotide polymorphisms), i.e., single 
base-pair substitutions in the DNA, to the response space Y assigning a risk estimate. 
For example, for a binary outcome such as a binary disease status, a probability estimate 
P̂(Y = 1 ∣ X = x) ∈ [0, 1] of developing this disease might be a proper risk estimate. Since 
SNPs are variables with three possible outcomes counting the number of minor allele 
occurrences with respect to both chromosomes, i.e., how often the less frequent variant 
occurs in an individual, they can be easily (and biologically meaningful) divided into two 
binary variables each, i.e., in SNPD = 1(SNP ≠ 0) and SNPR = 1(SNP = 2) , coding for a 
dominant and a recessive effect, respectively. It is well-known that in the analysis of genetic 
features such as SNPs, interactions, e.g., gene-gene interactions (Che & Motsinger-Reif, 
2013) and gene-environment interactions (Ottman, 1996), play a crucial role. Especially in 
this setting, not only a high predictive ability of the resulting models, but also a high inter-
pretability for understanding which and how genetic variants influence the risk of disease 
is desirable.

Tree-based statistical learning methods such as decision trees, random forests, or 
logic regression are very popular and versatile in recognizing underlying data struc-
tures. These methods have been already applied to analyze SNP data (e.g., Bureau et al., 
2005; Winham et al., 2012; Ruczinski et al., 2004). However, these methods typically 
fail at simultaneously achieving a reliable predictive strength and a high interpretability 
of how exactly predictions are composed.

In this article, we propose the tree-based supervised learning procedure logicDT 
(logic decision trees) which is specifically tailored for properly incorporating interac-
tions between binary predictors. Continuous relationships of additional covariates and 
interactions of these covariates with the binary variables can also be covered by this 
procedure. logicDT is designed for yielding highly interpretable prediction models, 
while maintaining a high predictive ability. For measuring the influence of predictors 
and their interactions, a novel variable importance measure framework is proposed 
which, in principle, can be used in conjunction with any other learning procedure.

We start with briefly discussing similar methods and efforts on enhancing exist-
ing algorithms in Sect. 2. Then, logicDT and its extensions are presented in detail in 
Sect.  3. We additionally prove that logicDT is consistent. In Sect.  4, the novel vari-
able importance measuring framework for estimating the influence of input variables 
and their interactions is proposed. Empirical studies on simulated data as well as on 
real data follow in Sect.  5 illustrating logicDT’s properties in practice and compar-
ing logicDT to other procedures. Sections 6 and 7 contain discussions and concluding 
remarks.
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2 � Background and related work

In the following, we briefly discuss tree-based supervised learning procedures and their 
extensions.

2.1 � Decision trees and random forests

One very popular and powerful statistical learning method are decision trees. Impor-
tant implementations include classification and regression trees (CART) (Breiman et al., 
1984) and C4.5 (Quinlan, 1993). Decision trees recursively partition the predictor space 
X  considering one predictor per split into disjoint patches, to which individually a predic-
tion value will be assigned. For predicting new outcomes, one starts at the root node and 
follows the edges corresponding to the specific predictor setting until a leaf is reached. 
Figure 1a illustrates an exemplary decision tree consisting of three binary predictors in a 
binary classification scenario.

Fig. 1   Exemplary tree models for three binary input variables X1 , X2 and X3 predicting two different classes 
0/false and 1/true. In a, a classification tree is shown. b depicts a logic tree describing the Boolean expres-
sion X1 ∨ (X2 ∧ Xc

3
) , where negations are denoted by c in this article. For the logic tree, terminal nodes 

containing negated predictors are depicted as black squares containing white text. Vice versa, non-negated 
predictors are depicted as white squares containing black text. Both trees are equivalent, i.e., they perform 
the same predictions for each predictor setting. Adapted from Lau et al. (2022)
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Similar to Louppe (2014), Algorithm 1 summarizes the fitting process of decision trees. 
In Lines 11 through 14, the locally best split, i.e., the predictor and the splitting point which 
maximize the node homogeneity after splitting is identified and used for further splitting 
the tree into two subnodes. For measuring the homogeneity, an impurity measure i is used 
which assigns a node an estimate of its heterogeneity. For evaluating the strength of a split 
s partitioning the node t into two child nodes tL and tR , the impurity reduction

for the number of training observations nt falling into node t is maximized. For regression 
purposes, the impurity measure of the mean squared error

is used as the impurity measure considering the subset Dt of the training data set D to 
node t and the predicted outcome ŷt in node t. For classification or risk estimation, the Gini 
impurity

is used for classes c ∈ Y and their corresponding frequency nc,t in node t. An alternative 
popular impurity measure for classification tasks is the information gain

(1)Δi(s, t) ∶= i(t) −
ntL

nt

i(tL) −
ntR

nt

i(tR) ≥ 0

(2)iRegression(t) ∶=
1

nt


(x,y)∈Dt

(y − ŷt)
2

(3)iGini(t) ∶=

c∈Y

nc,t

nt


1 −

nc,t

nt


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that is based on the Shannon entropy (e.g., Louppe, 2014).
The partitioning of a tree branch locally stops when the training data cannot be further 

divided, i.e., if for all (x, y), (x�, y�) ∈ Dt , it either holds x = x
� or y = y� (see Line 7 of 

Algorithm 1). Usually, to prevent overfitting, additional stopping criteria are used such as 
the minimum node size, i.e., the minimum number of training observations falling into a 
leaf, or a minimum impurity reduction which has to be achieved in order to split the node. 
However, these additional stopping criteria yield hyperparameters which, thus, require 
proper tuning. Finally, the last important step is the assignment of a predicted value to a 
leaf (Line 8 of Algorithm 1). Although theoretically, this predicted value is already used 
for evaluating the splits. The prediction values are obtained by empirical risk minimization 
yielding the arithmetic mean for regression tasks. For binary risk estimation, also the arith-
metic mean of the outcome Y given the predictor values x is used if Y is coded as 0 or 1. If 
pure classifications are considered, the class with the lowest risk estimate is chosen.

A particularly popular and successful extension of decision trees are random forests 
which build ensembles of randomized decision trees yielding even higher predictive per-
formance at the cost of losing interpretability of the fitted models (Breiman, 2001). The 
randomization is performed by employing bagging (Breiman, 1996), which is described in 
more detail in Sect. 3.9, and by considering random predictor subsets for splitting at each 
node. Random forests can substantially outperform single decision trees due to the instabil-
ity issue of decision trees, which states that small noise-like changes of the training data set 
can lead to large modifications of the fitted model. This instability issue is mainly caused 
by the greedy fashion of choosing splits (Li & Belford, 2002; Murthy & Salzberg, 1995).

If deep trees are grown, both single decision trees and random forests can overfit (Hastie 
et  al., 2009; Tang et  al., 2018). For certain, not necessarily realistic scenarios (e.g., no 
subsampling combined with totally randomized trees in which the splits are chosen inde-
pendent of the outcome or too extreme subsampling in which the subsample size remains 
constant, but the sample size approaches infinity), Tang et al. (2018) proved that random 
forests with deeply grown trees are inconsistent.

If shallow trees are grown, fruitful splits might be left out. Furthermore, decision trees 
and random forests struggle uncovering interactions effects, if the interacting variables only 
exhibit negligible marginal effects (Wright et al., 2016). Moreover, due to the prediction 
values of the leaves being constant for finitely many predictor scenarios in conventional 
decision trees and random forests, continuous function relationships can only be approxi-
mated by step functions. However, for example, in the analysis of genetic and environmen-
tal risk factors of certain diseases, in which random forests are frequently used (Winham 
et al., 2012; Bellinger et al., 2017), a continuous influence of an environmental factor on 
the disease risk is reasonable.

There are a variety of modifications to decision trees and random forests which try to 
overcome the issues mentioned above. These methods, however, address individual issues. 
In the following section, we will discuss some of these modifications.

iEntropy(t) ∶= −

c∈Y

nc,t

nt

log2


nc,t

nt


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2.2 � Extensions of decision trees and random forests

For improving the ability on detecting interactions, one well-known approach is the 
usage of multivariate splits, i.e., splits based on multiple variables at once, e.g., by using 
linear combinations of the predictors. Exemplary methods of this class are oblique deci-
sion trees (Murthy et al., 1994) and oblique random forests (Menze et al., 2011), where 
a particular implementation of the latter is, e.g., SPORF (Sparse Projection Oblique 
Randomer Forests; Tomita et al., 2020). For binary predictors as considered in this arti-
cle, these multivariate linear splits can be used for creating Boolean conjunctions of 
predictors, thus, potentially splitting on an interaction. However, methods that try to 
linearly separate the current feature space based on the (binary) class label in each split-
ting node (such as the method proposed by Menze et al., 2011) are only suited to classi-
fication tasks. Another recent modification is interaction forests (Hornung & Boulesteix, 
2022) which directly searches for interaction splits at each node. An overview over such 
interaction-focused modifications of decision trees and random forests is, e.g., given by 
Hornung and Boulesteix (2022).

The greedy search algorithm employed in classic decision tree fitting procedures (such 
as in CART) is fast and scales to high-dimensional problems. However, as the greedy 
search conducts local searches for splits, it requires detectable marginal effects to identify 
interaction effects. For example, if X1 and X2 interact with each other, X1 or X2 have to be 
individually identified first as splitting variables. Due to increasing computational capabili-
ties, optimal decision trees have been proposed by Nijssen and Fromont (2010) and Bert-
simas and Dunn (2017) to perform a global optimization. In the former method, namely 
DL8 (decision trees from lattices), dynamic programming is utilized to fit decision trees. In 
the latter method, namely OCT (optimal classification trees), the decision tree fitting prob-
lem is phrased as a mixed-integer optimization problem. More recently, alternative optimal 
decision tree algorithms that utilize dynamic programming such as DL8.5 (Aglin et  al., 
2020a) and MurTree (Demirović et al., 2022) and optimal decision tree fitting procedures 
that incorporate multivariate splits such as WODT (Yang et  al., 2019) and SVM1-ODT 
(Zhu et al., 2020) have been proposed. A review of optimal decision tree fitting procedures 
is, e.g., given by Carrizosa et al. (2021).

Blockeel and De Raedt (1998) proposed combining decision trees with logic program-
ming. Their method is called TILDE (top-down induction of logical decision trees). At 
each inner node, a Boolean conjunction is responsible for further partitioning the input 
data. Model fitting is performed in a greedy fashion very similar as in C4.5 (Quinlan, 
1993). However, the space of eligible splits, over which the greedy search is applied, has to 
be defined by the user by utilizing background knowledge and, e.g., specifying which vari-
ables may be part of the same conjunction. Another important difference between TILDE 
and other decision tree algorithms is that TILDE uses logic programs for specifying data 
examples. This is in contrast to the statistical learning setup considered in this article. We 
consider the standard setting, in which data are given in a tabular format and relevant back-
ground knowledge about the relationships of certain variables is not available.

Rule extraction methods aim at increasing the interpretability of tree ensemble meth-
ods while keeping their predictive strength. They start by fitting a tree ensemble such as 
random forests and try to extract the most important prediction rules from the individual 
decision tree paths. These prediction rules are then gathered in rule lists yielding the final 
model, in which predictions are made according to which rules hold true. One of the first 
and most established rule extraction methods is RuleFit (Friedman & Popescu, 2008), 
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which fits a boosted ensemble of decision trees and selects the most important rules using 
the lasso (Tibshirani, 1996). Alternative rule extraction methods include node harvest 
(Meinshausen, 2010) and SIRUS (Stable and Interpretable Rule Set, Bénard et al., 2021), 
which both fit random forests for generating the models from which the rules are to be 
extracted.

For modeling continuous regression models in the leaves, typically, GLMs are employed 
such as in MOB (model-based recursive partitioning, Zeileis et al., 2008). An overview on 
several GLM-based approaches is, e.g., given by Rusch and Zeileis (2013). However, the 
right parametric model might not be known prior to fitting models so that a more flexible 
non-linear regression model might be preferable. Moreover, these methods do not lay a 
focus on properly handling interactions between the splitting variables.

2.3 � Logic regression

Logic regression (Ruczinski et al., 2003) is another tree-based supervised learning method. 
It has been specifically developed for analyzing SNP data and is, therefore, frequently used 
in such analyses (e.g., Ruczinski et al., 2004; Zhi et al., 2015). Logic regression is focussed 
on binary predictors and tries to identify Boolean combinations of the predictors that shall 
explain the variation in the outcome. These Boolean expressions can also be presented as 
logic trees, i.e., trees holding predictors (or their negations) in their leaves and recursively 
combining them with the Boolean AND-operator (denoted by ∧ in the following) or the 
Boolean OR-operator (denoted by ∨ in the following) using inner nodes. Figure 1b illus-
trates an exemplary logic tree corresponding to the Boolean expression X1 ∨ (X2 ∧ Xc

3
) . If a 

true logic tree is identified with class 1 and a false logic tree is identified with class 0, this 
tree is equivalent to the classification tree from Fig. 1a.

To generalize the usage of logic regression to regression purposes, logic trees are 
embedded in GLMs, i.e., a model of the form

is considered for a link function g and logic trees L1,… , Lm . In general, every possible 
logic regression model can be transformed into an equivalent decision tree, and vice versa 
(Ruczinski et al., 2003). However, logic trees tend to be more sparse, i.e., by using Boolean 
logic, logic trees can describe the same prediction model with fewer nodes than decision 
trees in certain scenarios. For example, even in the simple prediction model depicted in 
Fig. 1, the logic tree consists of five nodes, whereas seven nodes are required in the CART 
tree to represent the Boolean expression. Note that this tree sparsity property holds true for 
binary classification scenarios in which a hard classification task instead of a more general 
class probability estimation task is considered.

The fitting procedure in logic regression is performed by a global stochastic search over 
all possible models, i.e., logic trees L1,… , Lm and their GLM coefficients 0,… , m , where 
these GLM coefficients are determined by fitting a GLM using the considered logic trees 
as predictors in each step of the global stochastic search. In particular, simulated annealing 
(Kirkpatrick et  al., 1983) is employed using simple modifications of the current model/
state, i.e., adding or removing branches, exchanging variables or operators, and splitting or 
removing variables. Alternatively, a greedy local search always moving to the best neigh-
bor state can be employed. However, this faster search comes without any guarantees of 
finding a globally optimal state. For evaluating the current state, a score function such as 

g([Y ∣ X = x]) = 0 + 1L1(x) +⋯ + mLm(x)
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the mean squared error for linear regression or the deviance for logistic regression is used. 
For a detailed description and discussion of logic regression, see Ruczinski et al. (2003).

Single logic regression models tend to be unstable, if the signal is weak or if many 
predictors are actually predictive. One approach to tackle this problem is to apply bagging 
to logic regression models (Schwender & Ickstadt, 2007). However, similar to random for-
ests, these models are no longer easily interpretable.

Even single logic regression models can be hard to interpret due to possibly complex 
logic tree structures. Typically, one is interested in the statistical interaction of predictors, 
which can be defined as the effect of the presence of certain predictor settings at once, i.e., 
using Boolean conjunctions, since conjunctions of input variables directly reveal the spe-
cific type of interaction that is considered (Chen et al., 2011). By De Morgan’s laws, if a 
Boolean disjunction needs to be represented, the negation of the conjunction containing the 
negations of the input terms can be used, i.e., making disjunctions obsolete if all negations 
are available.

Logic regression can only take quantitative covariables additively into account by add-
ing them to the linear predictor of the GLM containing the logic trees as single terms. 
Thus, no interactions between the binary predictors and quantitative predictors can be 
included. Similarly, interactions between logic trees themselves can also not be captured, 
thus, relying on the additive structure of the individual terms. If, for example, the scale of 
an underlying linear predictor is unknown, being able to also model interactions between 
the terms can be beneficial. Consider, e.g., the regression function

On the squared scale, the terms X1 and X2 ∧ Xc
3
 do not interact. However, on the original 

scale, if both terms are true at once, the linear predictor is adjusted by an additional 2.

3 � Logic decision trees

To overcome the issues mentioned in the last section, we propose a novel method, called 
logicDT (logic decision trees), which combines decision trees and an improved version of 
the Boolean term search of logic regression.

We define logic decision trees to be decision trees that can use Boolean conjunctions 
of input variables as splitting variables, which is in contrast to standard decision tree pro-
cedures. Logic decision trees may be used for regression purposes, in which—similar to 
regression trees—each leaf holds a direct estimate of the outcome, or for classification pur-
poses, in which—similar to probability estimation trees (Provost & Domingos, 2003; Mal-
ley et al., 2012)—each leaf holds an estimate of the class membership probability. As dis-
cussed in Sect. 3.5, logic decision trees may also contain regression models in their leaves 
for modeling continuous relationships.

Allowing Boolean conjunctions of input variables as splitting variables, firstly, sim-
plifies the resulting decision tree. If we, e.g., consider an outcome that is only altered if 
Xc

1
∧ X2 holds, then creating a tree stump (i.e., a decision tree consisting of only one split) 

splitting on Xc
1
∧ X2 would be sufficient when using logicDT, whereas a common decision 

[Y ∣ X] =

 ⋅ 1(X1) +  ⋅ 1(X2 ∧ Xc

3
)
2

= 2
⋅ 1(X1) + 2 ⋅  ⋅  ⋅ 1(X1 ∧ X2 ∧ Xc

3
) + 2

⋅ 1(X2 ∧ Xc
3
).
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tree only using single input variables for splitting would require a split on X1 and another 
split on X2 in the branch in which X1 = 0 holds (see Fig. 2).

Secondly, this makes the prediction values in some leaves more robust. In our example, 
the common decision tree in Fig. 2a would further distinct between X1 = 1 and Xc

1
∧ Xc

2
= 1 , 

while the tree in Fig. 2b uses one shared prediction, thus, utilizing more observations for creat-
ing the prediction value. Thirdly, due to the greedy search employed in standard decision tree 
splitting approaches, the interaction might not be found due to potentially negligible marginal 
effects of, in our example, X1 or X2 leading to splitting on other variables or not splitting at all, 
if a stopping criterion is triggered.

In the following subsections, logicDT is presented in detail.

3.1 � Preliminaries

Let X = (X1,… , Xp) be a p-dimensional random vector of binary input variables taking val-
ues in the p-dimensional space X = {0, 1}p and let Y be a target random variable taking val-
ues in the space Y . Let D = {(x1, y1),… , (xn, yn)} be a training data set with independent 
and identically distributed observations from the joint probability distribution of (X, Y) . Then 
the corresponding statistical learning task can be formulated as estimating the true regressor 
(X,Y)[Y ∣ X = ⋅ ] by a function  ∶ X → Y using the training data set D (e.g., Hastie et al., 
2009).

In this article, Boolean conjunctions between binary input variables are denoted using the 
Boolean ∧ (AND) and negations of binary input variables are denoted using a superscript c 
(complement), i.e., Xc

j
= 1 − Xj.

logicDT is aimed at identifying response-associated interactions, where two input variables 
Xi and Xj are defined to interact with each other with respect to the outcome Y, if the effect 
of one input variable (i.e., the partial derivative/finite differences of [Y ∣ X] with respect to 
one input variable) depends on the other input variable (Sorokina et  al., 2008). Therefore, 
if there is no interaction between Xi and Xj , the regression function (X) = [Y ∣ X] can be 
decomposed into a sum (X) = ⧵i(X⧵i) + ⧵j(X⧵j) , where ⧵i denotes leaving out the ith entry 
of the vector of input variables (Friedman & Popescu, 2008). This definition can be directly 
generalized to (statistical) interactions of arbitrary order. If there is no interaction between 
X(1),… , X(k) ,  can be decomposed into a sum of functions, in which no summand is a func-
tion of all considered variables X(1),… , X(k) simultaneously.

In this article, we mainly focus on binary input variables. Therefore, every function 
 ∶ X → Y mapping from a p-dimensional space of binary input variables to a real number 
can be expressed as a sum of the form

Fig. 2   Decision trees for split-
ting on Xc

1
∧ X2 . In a, a standard 

decision tree splitting on single 
input variables is shown. In b, a 
Boolean conjunction is used for 
splitting
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where (c) denotes potentially negating the considered variable and kj,i is the index of the ith 
variable in the jth summand. Hence, binary input variables X(1),… , X(k) interact with each 
other (with respect to Y), if  cannot be decomposed without using a Boolean conjunction 
that simultaneously includes X(1),… , X(k) . Boolean disjunctions are not considered in log-
icDT, since, by De Morgan’s laws, Boolean disjunctions can be expressed using Boolean 
conjunctions and negations.

3.2 � Core methodology of logicDT

The aim of logicDT is to identify important input variables and Boolean conjunctions of 
input variables to perform accurate predictions of the outcome. An input variable or a 
Boolean conjunction of input variables will be in the following referred to as a term. A set 
of terms will be referred to as a state. Examples of possible states would be

In logicDT, states are obtained by a global stochastic search procedure that is introduced 
later in this section.

Logic decision trees are induced by identifying a state and exclusively using the terms 
contained in this state as input variables for fitting a conventional decision tree. For exam-
ple, the three terms Xc

1
∧ X2 , X5 , and X9 ∧ Xc

14
∧ Xc

42
 are used as input variables to induce a 

decision tree, if the corresponding state {{Xc
1
∧ X2}, {X5}, {X9 ∧ Xc

14
∧ Xc

42
}} is considered. 

Hence, creating a logic decision tree based upon a state is a two-stage procedure. First, the 
original training data set is transformed into a tree training data set using the terms of the 
considered state. Next, using this tree training data set, a decision tree is fitted.

For a set consisting of m terms

the original training data set is transformed into a tree training data set by constructing a 
n × (m + 1) data matrix containing the m different predictors or conjunctions and the out-
come. For example, if a training data set is given by

 and the state s = {{X1}, {X2 ∧ Xc
3
}} is identified by the global stochastic search, the tree 

training data set, which is directly used for fitting the decision tree, is given by

(X) = 0 +

m
j=1

j ⋅ 1


X
(c)

kj,1
∧⋯ ∧ X

(c)

kj,pj


,

{{X73}} or {{Xc
1
∧ X2}, {X5}, {X9 ∧ Xc

14
∧ Xc

42
}}.


X
(c)

k1,1
,… , X

(c)

k1,p1


,… ,


X
(c)

km,1
,… , X

(c)

km,pm


,
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Since each term is a binary variable itself, there is only one possible split of the data based 
on this term. Thus, the tree fitting procedure only needs to consider one split per input 
term, which makes the identification of the best local split particularly fast. For evaluat-
ing potential node splits and selecting the split, the conventional node impurity splitting 
criterion from Eq. (1) is used. For regression tasks, the MSE (mean squared error) impurity 
(see Eq. (2)) is used, and for classification tasks, the Gini impurity (see Eq. (3)) is used.

After the tree corresponding to the current state has been fitted, its performance on the 
training data is evaluated by passing all observations through the tree and calculating a 
score that measures the training data error, where the score is chosen so that a smaller value 
of the score corresponds to a better fit. For regression purposes, the MSE is employed. For 
risk estimation/classification purposes, probability estimation trees (Provost & Domingos, 
2003; Malley et al., 2012) are grown that directly hold class probability estimates in their 
leaves by using empirical probabilities, i.e., using proportions of class occurrences. Thus, 
for scoring a state in the risk estimation/classification setting, the deviance is used, which 
is also known as the cross entropy or the negative binomial log-likelihood.

Alternatively, the negative area under the curve with respect to the receiver operating 
characteristic (AUC) might be used. However, the AUC does not capture the magnitude of 
the risk estimate in contrast to the deviance. Another alternative is the Brier score, which is 
the mean squared error between the risk estimate and the actual outcome.

For identifying an ideal state, logicDT performs a global search over all eligible states. 
The search is performed by using the current state to construct a decision tree, evaluat-
ing the performance of this tree, modifying the current state, and repeating this procedure. 
Modifications of logicDT states are called neighbors and are implicitly defined by slightly 
altering a given state. Figure 3 illustrates the possible state modifications/neighbor states 
using exemplary states. In the center of this figure, the current state is depicted. The pos-
sible state changes include

•	 exchanging or negating single variables (see, e.g., the replacement of X2 by X4 in the 
top and the negation of X2 in the bottom of Fig. 3),

•	 adding or removing single variables from a term (see, e.g., the addition of X8 in the top 
right and the removal of Xc

3
 in the bottom right of Fig. 3),

•	 adding or removing logic terms consisting of exactly one variable (see, e.g., the addi-
tion of X10 in the top left and the removal of X2 in the bottom left of Fig. 3).

To avoid tautologies and uninformative terms, some specific alterations are prohib-
ited. More precisely, the same variable should not occur more than once in a single term 
and the same term should not occur more than once in the proposed state.

The search is initialized by finding the single input variable that minimizes the score 
function, e.g., {{X73}} . Using this initial state, a global optimization procedure employ-
ing simulated annealing (Kirkpatrick et al., 1983) is carried out for finding the state that 
minimizes the score function, i.e., now permitting all possible states potentially consist-
ing of more than one term.

(4)
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Simulated annealing is a stochastic optimization algorithm that, given a current state, 
randomly selects one of its neighbor states, evaluates its score, and uses the score differ-
ence between these two states for determining the probability of transitioning to the pro-
posed neighbor state. For a state s and a proposed neighbor state s , the score function  , 
and the current temperature t, this state acceptance probability is given by

Thus, if a state with a better score is proposed, the transition is carried out with probability 
1. However, worse states may also be accepted with the acceptance probability ∈ (0, 1) to 
avoid getting stuck in local minima. The main idea of simulated annealing is slowly lower-
ing the temperature t such that the acceptance probability of worse states tends to 0 and in 
the end, the globally optimal state is identified.

In logicDT, a fully automatic simulated annealing schedule governing the tem-
perature lowering is employed. If desired, the cooling schedule can be changed, e.g., 
by decreasing or increasing the parameter  , that controls the magnitude of the tem-
perature decreases, for performing a finer or coarser stochastic search. The number of 
search iterations is, thus, (implicitly) controlled by  and stopping criteria for terminat-
ing the search procedure. Alternatively, a fixed geometric cooling schedule can also be 
employed in logicDT. However, we recommend using the adaptive cooling schedule for 
fitting logicDT models. More details on the simulated-annealing-based search in log-
icDT are given in Appendix 1.

(5)((s), (s�), t) ∶= min


1, exp


(s) − (s�)

t


.

Fig. 3   Exemplary state modifications of the reference state {{X1, Xc
3
, X5}, {X2}} depicted in the center
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The proposed state modifications ensure that the modifications lead to a Markov 
chain that fulfills aperiodicity and irreducibility when performing a global search via 
simulated annealing. These properties ensure that simulated annealing asymptotically 
leads with probability 1 to a globally optimal state (Van Laarhoven & Aarts, 1987). 
More details on these Markov properties are given in Appendix 2.

3.3 � The logicDT algorithm

In Algorithm 2, the logicDT procedure is presented.

In Line 2, the initial state is obtained by choosing the single input variable that mini-
mizes the score. That is, for each input variable, a decision tree using only this input 
variable, i.e., a decision tree stump, is fitted and evaluated. The input variable Xj that 
leads to the minimum score is chosen as the initial state {{Xj}} . Alternatively, a random 
state or an empty state could also be used as the initial state.

In Lines 3 and 8, the current state is used for transforming the original training data 
set D into a tree training data set that can be directly used by a learning procedure using 
the identified terms as input variables. See Eq. (4) for an example on how a tree train-
ing data set is obtained from the original data set consisting of the values of the input 
variables.

If no leaf regression models for continuous covariables shall be fitted, the decision 
trees are constructed using Algorithm 1 (see Lines 4 and 9 of Algorithm 2). If leaf regres-
sion models are to be fitted (see Sect.  3.5 for more details), the splitting criterion from 
Sect.  3.5.2 is used in place of the impurity reduction criterion and the corresponding 
regression models are fitted in each leaf in contrast to single prediction values.

In Lines 5 and 10 of Algorithm 2, the training data score is calculated by passing all 
training observations through the fitted decision tree, performing predictions using 
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leaf regression models if these were fitted, and comparing the predictions with the true 
outcomes.

In Line 7, the current state is modified by randomly performing one of the state modifi-
cations proposed in Sect. 3.2, where the state modification is randomly drawn from a uni-
form distribution over all possible state modifications of the current state.

This proposed modified state is then evaluated in Line 11, i.e., it is randomly accepted 
with the acceptance probability from Eq. (5).

The global search is carried out until a stopping criterion is true. More details on the 
search algorithm itself are discussed in Appendix 1.

logicDT is implemented in the R package logicDT (Lau, 2023) available on CRAN.

3.4 � Controlling the complexity of logicDT models

For restricting the complexity of logicDT models and regularizing them, the maximum 
number _ of terms and the total maximum number _ of variables con-
tained in a state should in practice be properly tuned to avoid overfitting or underfitting. 
Since some (potentially very long) conjunctions might correspond to no or very few obser-
vations, similar to the stopping criterion in decision trees, a minimum conjunction size, 
defining the minimum number of observations falling into this conjunction and its nega-
tion, can be specified in logicDT to exclude practically useless terms. Furthermore, one 
may prohibit the removal (and the addition) of whole terms in order to guarantee a cer-
tain number of terms. This might, e.g., be useful if a pure variable selection should be 
performed so that the maximum number of total variables is set to the maximum number 
of terms. In this case, the initial state should be chosen such that it already includes the 
desired number of terms.

logicDT aims to identify the optimal set of predictors and conjunctions with regard to the 
predictive ability. Thus, post-pruning of the fitted decision trees is not necessary, since the 
model complexity is already covered by the model size hyperparameters and the ideal split-
ting terms are already identified by the global search, which is similar to logic regression and 
in contrast to standard decision trees. However, the following two stopping criteria for locally 
terminating the splitting of a branch are used to filter out completely unnecessary splits.

One of the stopping criteria is the minimum number of observations in the respective 
leaves. If a split would lead to child nodes from which at least one of the children contains 
less than the prespecified number of observations, this split is prohibited. This criterion 
is particularly useful for regression and risk estimation purposes, where a stable estimate 
needs a certain amount of observations.

As second stopping criterion, the minimum (scaled) impurity reduction is considered. A 
split is discarded, if it does not reach the required impurity reduction, i.e., if

holds for the impurity reduction Δi(s, t) defined in Eq. (1) and the complexity parameter 
cp ≥ 0 . For continuous outcomes, cp will be scaled by the empirical variance s2

Y
 of the out-

come Y to ensure the right scaling, i.e., cp ← cp ⋅ s2
Y
 . Since the impurity measure for con-

tinuous outcomes is the mean squared error, this can be interpreted as controlling the mini-
mum reduction of the normalized mean squared error (NRMSE—normalized root mean 
squared error—to the power of two).

The hyperparameter optimization in logicDT is discussed in more detail in Sect. 3.6.

nt

n
⋅ Δi(s, t) ≤ cp,
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3.5 � Quantitative covariables

Decision trees are particularly suitable models for binary input data, since there is only a 
finite number of possible predictor scenarios in this case, i.e., every possible prediction 
function (including the true regression function [Y ∣ X] ) can be expressed using a decision 
tree. Quantitative predictors often induce a continuous relationship to the outcome that 
cannot be properly expressed with piecewise constant functions such as decision trees or 
random forests. In standard decision-tree-based methods, continuous variables are included 
as possible splitting candidates in the decision tree fitting process. This approach is very 
intuitive for merely considering all available data. However, as mentioned above, this does 
not allow to cover continuous relationships.

3.5.1 � Leaf regression models

For properly including quantitative covariables in logicDT models, we propose, similar 
to MOB (model-based recursive partitioning, Zeileis et al., 2008), to fit regression mod-
els in the leaves that result from splits exclusively using the binary terms. This approach 
allows to fit individual curves for each binary term setting, thus, also covering interactions 
between the binary predictors and the quantitative covariable.

In principle, any kind of regression model such as linear or non-linear regression mod-
els could be fitted in the leaves depending on the application. Moreover, multiple regres-
sion models could also be fitted, if multiple covariables need to be considered.

For properly evaluating logicDT states, regression models need to be fitted in each deci-
sion tree and used to generate the training data predictions for computing the score, i.e., 
the regression models should be fitted in each iteration of the search procedure of logicDT. 
If, however, the computational burden is too high for, e.g., fitting non-linear regression 
models in each leaf of each decision tree, we recommend using linear models for the search 
and non-linear regression models for the final fit. In this case, the functional relationship is 
still taken into account in the search process and the final model utilizes the desired type of 
regression model. For a fast model fitting with a binary outcome, logistic regression curves 
through LDA (linear discriminant analysis) might be fitted that have a closed-form solution 
(Hastie, Tibshirani, and Friedman, 2009), and therefore, do not require an iterative optimi-
zation procedure such as standard logistic regression.

3.5.2 � Splitting criterion

If regression models should be fitted in each leaf, functional trends have to be analyzed 
instead of simple leaf means. Therefore, we propose evaluating splits based on a likeli-
hood-ratio test for comparing nested models as an alternative to the conventional node 
impurity splitting criterion specified in Eq. (1). More precisely, linear regression or LDA 
models, which can be determined particularly quickly, are fitted for each eligible split and 
resulting child node. Since we consider simple regression models, each model consists of 
two parameters (offset and slope) such that the difference in parameters of two submodels 
versus one joint model is given by 2 ⋅ 2 − 2 = 2 . Thus, the likelihood-ratio test statistic
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is—under the null hypothesis of equal model parameters in both subnodes—asymptotically 
2-distributed with 2 degrees of freedom following Wilks’ theorem (Wilks, 1938). Here, 
Lreduced denotes the maximized likelihood of the reduced model (i.e., the fitted joint regres-
sion model using one node) and Lfull denotes the maximized likelihood of the full model 
(i.e., the model consisting of two individually fitted sub-regression models resulting in two 
nodes).

With the test statistic from Eq. (6), we, hence, test

where t is the node that shall be splitted, X(t) is the subvector of input variables that are 
used as splitting variables in ancestor nodes of t, x(t) is the corresponding binary vector 
containing the predictor setting at node t, Xs is the binary predictor that shall be evaluated 
for splitting the node, and E is (are) the continuous covariable(s). We, thus, test with this 
likelihood-ratio test whether the split on Xs leads to different prediction models in the cur-
rent tree branch. E.g., for one continuous covariable, the model

is used for testing the null hypothesis H0 ∶ 0 = 1 = 0 , which is equivalent to the above 
null hypothesis, using the identity as link function g for a continuous outcome and the logit 
function as link function g for a binary outcome.

Using this new splitting criterion, likelihood-ratio tests for all eligible splits at a certain 
node are performed to appropriately rank eligible splits and to interpretably quantify the 
strength of a split. The split that achieves the lowest p-value is used, if this p-value is below 
a prespecified significance threshold such as  = 50% . Here, we propose to use a very lib-
eral (high) threshold to avoid to miss fruitful splits. If no split can provide such a p-value, 
the node in question is declared as a terminal node so that this splitting criterion can also 
act as a stopping criterion.

Figure 4 illustrates an exemplary logicDT model with two terms and three variables in 
total. The current set of terms on the left induces the decision tree on the right by fitting a 
decision tree using the terms as potential splitting variables. The quantitative covariable E 
is used for evaluating the splits in likelihood-ratio tests and for fitting the regression mod-
els in the leaves. Therefore, in the root node, the terms SNP3Dc ∧ SNP2D and SNP1D are 
both evaluated as splitting candidates by fitting regression models using E as the predictor. 
Since SNP3Dc ∧ SNP2D yields a lower p-value than SNP1D in the likelihood-ratio test 
splitting criterion, the term SNP3Dc ∧ SNP2D is used for splitting the root node. The fit-
ted tree is then evaluated as a whole using a score function (see Sect. 3.2). Afterwards, the 
state is slightly modified using the modifications proposed in Sect. 3.2 and the procedure is 
repeated.

3.6 � Hyperparameter optimization

For maximizing the performance of logicDT, it is necessary to optimize the model com-
plexity parameters that act as regularization parameters. These parameters are

(6)−2 log(Λ) ∶= −2 log


Lreduced

Lfull



H0 ∶ [Y ∣ X(t) = x(t), Xs, E] = [Y ∣ X(t) = x(t), E]

vs. H1 ∶ [Y ∣ X(t) = x(t), Xs, E] ≠ [Y ∣ X(t) = x(t), E],

g([Y ∣ X(t) = x(t), Xs, E]) = 0 + 1 ⋅ E + 0 ⋅ 1(Xs) + 1 ⋅ 1(Xs) ⋅ E
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•	 _—the total maximum number of variables contained in the model,
•	 _—the maximum number of conjunctions/terms in the model,
•	 —the minimum number of observations per leaf in the resulting decision 

tree,
•	 —the minimum of observations contained in a conjunction and its negation.

In general, _ ≥ _ has to be fulfilled. Furthermore, we recommend impos-
ing _ ≤ 2 ⋅ _ in cases in which marginal effects still seem to be domi-
nant and it is not justifiable that only high-order interaction terms compose the main influ-
ence on the outcome. This restriction is useful due to the standard learning issue that more 
complex models usually fit the training data better. Moreover, it reduces the set of eligi-
ble hyperparameter configurations to be evaluated speeding up the hyperparameter tuning 
process.

Specifically for fitting single logicDT models (via simulated annealing), it is advisable 
to remove the ability of removing whole conjunctions from the model in the search pro-
cedure. This ensures that the final model consists of exactly _ terms and that no 
extensively complex conjunctions make up the model. This also allows for a simple vari-
able selection of marginal effects by additionally restricting _ = _.

The purpose of  is to ensure that each leaf contains enough observations for 
concluding meaningful models, i.e., stable means, or if a continuous covariable is included, 
regression models. A proper value for  avoids evaluating models with uninform-
ative conjunctions, i.e., conjunctions for which a split does not imply meaningful infor-
mation due to a low number of observations. Note that for the observed values, it holds 
obs ≤ obs , since the decision tree can further split the space. Thus, in 
practice,  and  can be set to the same value. Similar to Malley et al. 
(2012) who regarded probability estimation trees, we recommend a value between 1% and 
10% of the total number of training observations for obtaining stable leaf estimates.

Fig. 4   An exemplary logicDT model/state. On the left hand side, the set of terms is depicted with an addi-
tional quantitative covariable which is excluded from the search over the set of terms. On the right hand 
side, the resulting decision trees which uses the binary predictors and identified conjunctions as input/split-
ting variables. Since in this case also a quantitative variable is supplied, the leaves are continuous functions 
instead of single point estimates
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Using these parameter restrictions, a grid search evaluating all possible parameter com-
binations is then carried out (based on validation data) in order to identify the best setting. 
In Sect. 5, hyperparameter optimization following this scheme is performed.

3.7 � Consistency of logicDT

In this section, we now study theoretical properties of logicDT, more precisely, the con-
sistency of logicDT. For this purpose, we consider the core logicDT methodology, i.e., 
only permitting binary predictors. Without loss of generality, we assume a continuous out-
come. Binary risk estimation/binary classification can be viewed as a special case using the 
Brier score as score function in an empirical risk minimization framework. The following 
theorem states that logicDT is strongly consistent. The proof of this theorem is given in 
Appendix 2.

Theorem 1  (Consistency of logicDT) Suppose  ∶ {0, 1}p → Y is a p-dimensional regres-
sion function and that the outcome Y with

is bounded. Then, logicDT fitted via simulated annealing is strongly consistent, i.e., almost 
sure convergence

holds for fitted logicDT models Tn to training data sets Dn = {(x1, y1),… , (xn, yn)}.

The following remark provides an application of Theorem 1 to hard classifications, in 
which the misclassification rate is evaluated.

Remark 1  For the binary classification/risk estimation case, alternatively to considering the 
Brier score, the excess misclassification rate is bounded by

for the classifiers 𝜑̂Tn
(x) = 1(Tn(x) ≥ 0.5) and the Bayes classifier ∗ (see, e.g., Theo-

rem 1.1, Györfi et al., 2002).

Thus, the misclassification rate of the best possible classifier ∗ will be asymptotically 
almost surely attained by logicDT.

Note that Theorem 1 holds as long as the proposed hyperparameters are properly chosen 
so that the true underlying model satisfies the chosen hyperparameters. More precisely, 
_ and _ need to be sufficiently big and  and  need to 
be sufficiently small.

[Y ∣ X] = (X)

(X,Y)


((X) − Tn(X))2

 a.s.
�������������������→
n→∞

0

0 ≤ ℙ(X,Y)(𝜑̂Tn
(X) ≠ Y) − ℙ(X,Y)(𝜑

∗(X) ≠ Y)

≤ 2


𝔼(X,Y)


(𝜇(X) − Tn(X))2

 a.s.
�������������������→
n→∞

0



951Machine Learning (2024) 113:933–992	

1 3

3.8 � Computational complexity of logicDT

In this section, we study the computational complexity of logicDT, which is mainly con-
trolled by the complexities of conducting a simulated-annealing-based search and fitting 
decision trees. A guarantee for obtaining a globally optimal model is only given if infi-
nite iterations (or iterations in the magnitude of the size of the complete search space) are 
carried out in the simulated-annealing-based search (Van Laarhoven & Aarts, 1987). In 
practice, this is because of the size of the search space, typically, infeasible. Therefore, this 
asymptotic search is in practical applications approximated using a finite number of itera-
tions (for more details on the search process, see Appendix 1). Therefore, we assume that 
the number of search steps is given by a finite number M.

Using the complexities of simulated annealing, decision tree fitting, and tree training 
data set transformation and using Algorithm 2, the computational complexity of logicDT is 
given in the following theorem. The proof of this theorem is given in Appendix 3.

Theorem  2  (Computational complexity of logicDT) Suppose M is the number of search 
steps performed, n training observations are given, and the hyperparameters _ , 
_ ,  are fixed. Then, the computational complexity of logicDT is given by

Using Theorem 2, results about appropriate numbers M of search iterations based on 
the Markov chain length (i.e., the number of search iterations for a fixed temperature), and 
assumptions on the hyperparameter choices, the following corollary states that the com-
putational complexity of logicDT is polynomial in p. The corresponding proof is, again, 
provided in Appendix 3.

Corollary 1  (Polynomial complexity of logicDT) Assume that the parameters _ 
and _ both scale linearly with p and that the parameter  is constant 
(with respect to n which is the worst-case scenario in which the logic decision tree may be 
arbitrarily deep). Further assume that the Markov chain length is fixed. Then, the computa-
tional complexity of logicDT is given by

If instead the Markov chain length is chosen in the magnitude of the number of neighbor 
states per state (as suggested by Aarts & Van Laarhoven, 1985), the computational com-
plexity of logicDT is given by

3.9 � Bagged logicDT

If a single model consisting of relatively few variables cannot explain the whole variation 
in the outcome from the whole set of predictors or if the predictive power is of higher inter-
est than the interpretability of the model, ensemble models consisting of several simpler 
models might be a preferable choice.

O


Mn

_ + _

n




.

O

n2p2 log(p)


.

O

n2p4 log(p)


.
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A particularly simple, yet effective approach is bagging (Breiman, 1996), in which for a 
given number of bagging iterations (e.g., 500), a single model is fitted on a random subset 
of the original training data set. The random subsets are typically generated via bootstrap-
ping, i.e., performing random draws from the original training data with replacement n 
times. The resulting model is the ensemble of all models. Predictions are performed by 
averaging the predictions of the individual models. The number of iterations should, as in 
random forests, be chosen such that more iterations cannot reduce the generalization error 
substantially anymore.

Since sufficient bagging iterations are also desired in logicDT, simulated annealing with 
a proper amount of iterations itself might just be too slow. Moreover, the main issue of 
greedy search approaches, i.e., that a globally optimal state could be missed due to being 
stuck in a local optimum, might be diminished through considering different subsets of the 
training data set and stabilizing the model over them. In other words, the variance stabiliz-
ing property of bagging might be sufficient to account for the drawbacks of a greedy search 
(Murthy & Salzberg, 1995).

For the usage of logicDT in an ensemble framework, we, therefore, propose a greedy 
search for fitting individual logicDT models. In this greedy search, the same state modi-
fications as in the simulated-annealing-based search are used (see Sect.  3.2). In contrast 
to simulated annealing, the greedy search deterministically chooses the best neighbor in 
each iteration. Thus, for each current state, all its neighbors are evaluated and the neighbor 
with the lowest score amongst all neighbors is chosen as new state. Note that for increas-
ing numbers of predictors and increasing numbers of allowed terms and total variables, 
the number of eligible neighbors per state increases quadratically, thus, slowing down the 
greedy search. For handling higher-dimensional data, a randomization of the greedy search 
might be a solution which we, however, did not consider in this article.

Another very useful property of bagging is that in the fitting of an individual model 
not all observations from the training data are employed. The not considered observations 
called oob (out-of-bag) observations can, therefore, be used to estimate the generalization 
error, similar to using independent test data. This estimate is called the oob error and is 
obtained by only using models that were not built using the considered observation. More 
precisely, the oob error is calculated by averaging over the oob errors of the observations, 
where the oob error of an observation can be computed by only choosing the models which 
did not use this observation for training and by temporarily constructing an ensemble from 
this subset of models for predicting the outcome of this observation. In particular, for the 
estimation of variable importance measures (VIMs), bagging and oob observations are 
very beneficial. As discussed in the following section, we, therefore, also use them in the 
construction of the VIM considered in logicDT.

4 � Variable importance measures

In many applications, it is useful to measure the influence of the input variables or their 
interactions on the prediction of an outcome. Variable importance measures (VIMs) 
directly try to quantify this influence. Typically, this influence is estimated by comparing 
two models, namely

•	 the original full model containing the term of interest and
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•	 a kind of informatively reduced model, in which the term of interest no longer plays an 
informative role.

Then, the difference between the prediction errors of these two models is computed and 
is taken as an estimate of how the prediction based on the model improves if the term is 
properly included, where the prediction errors are, e.g., given by the mean squared error in 
regression tasks or 1 − AUC in binary risk estimation tasks.

4.1 � Computation of VIMs

Let (X̃) be a prediction error measure capturing the performance of a fitted model infor-
matively using only the input variables in X̃ ⊆ X , interpreting the random vector of input 
variables X = (X1,… , Xp) as a set X = {X1,… , Xp} . Then, the importance of an input vari-
able Xi is given by

Here, (X ⧵ Xi) describes the prediction error of the reduced model informatively excluding 
the variable Xi and (X) describes the prediction error of the original full model.

Bagging allows the unbiased estimation of VIMs on the full training data set by per-
forming oob predictions. Moreover, bagging also has the advantage that multiple poten-
tially different models are explored stabilizing the VIMs themselves. Thus, for estimat-
ing VIMs in logicDT, bagging is used and the discussed VIMs are computed on the oob 
observations.

4.1.1 � Permutation VIM and removal VIM

One particularly popular approach for estimating the reduced model is the permutation 
VIM used in random forests (Breiman, 2001). In this approach, for estimating the impor-
tance of a certain input variable, its corresponding observations are randomly permuted 
and predictions with this random permutation are performed. Typically, the VIM data set is 
permuted multiple times in the specific predictor and the average prediction error of these 
permutations is compared against the original error.

As an alternative, the reduced model can also be directly fitted using a reduced training 
data set from which the predictor of interest was removed (Mentch & Hooker, 2016). In the 
following, we call this approach the removal VIM.

4.1.2 � Logic VIM

For binary predictors, we additionally propose a specific third procedure for computing 
VIMs. The idea of this logic VIM is based on considering each possible predictor setting 
of the input variable of interest equally, i.e., for a binary predictor X1 ∈ {0, 1} , the error 
of the reduced model is estimated by performing predictions fixing X1 = 0 , performing 
predictions fixing X1 = 1 and averaging these predictions before computing the error. Thus, 
for each observation, the prediction of the reduced model considers both possible decision 
tree paths, one for X1 = 0 and one for X1 = 1 , equally and is generated without knowledge 
about X1.

(7)VIM(Xi) = (X ⧵ Xi) − (X).
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4.2 � Adjustment for interactions

In standard VIM procedures such as the permutation VIM in random forests, only impor-
tances of single input variables are considered. In the context of logicDT, we measure the 
importance of terms, i.e., of identified single input variables or conjunctions of several 
input variables. For instance, if the resulting model consists of {{X1}, {X2 ∧ Xc

3
}} , we are 

interested in specifying the importance of X1 as well as the importance of the term X2 ∧ Xc
3
 . 

This is achieved by considering terms such as X2 ∧ Xc
3
 as single input variables, i.e., by 

directly considering a tree training data set as in Eq. (4).
Since decision trees can handle interactions themselves, it might be possible that, e.g., 

X1 as well as the interaction X1 ∧ Xc
2
 exhibit strong effects on the outcome. However, due 

to the strong marginal effect, only the single predictors X1 and X2 might be included in the 
logicDT model, complicating the estimation of the importance of the interaction.

Hence, we propose a novel VIM adjustment procedure for interactions that quantifies the 
importance of interactions that were not identified by a supervised learner such as logicDT. 
This VIM adjustment approach presented in the following does not depend on logicDT, but 
enables logicDT to appropriately estimate interaction importances. Therefore, they could, in 
principle, be applied to all black-box models for estimating interaction importances.

The idea behind the VIM adjustment procedure is based on considering several predictors 
at once, i.e., the reduced model results from reducing multiple variables in one step. Compar-
ing the performances of this reduced model and the original model yields a joint VIM of the 
set of predictors (Bureau et al., 2005). Analogously to Eq. (7), the joint VIM is obtained by

Since this joint VIM still includes the marginal effects of the individual predictors and 
their sub-interactions of an order lower than the order of the actual interaction influencing 
the outcome, we propose the interaction VIM that corrects for any effects contained in the 
regarded interaction. This interaction VIM of Xi1

∧⋯ ∧ Xik
 is given by

where Z ∶= {Xi1
,… , Xik

} is the set of input variables in the considered interaction. In our 
notation, ∧ denotes the interaction importance, while commas represent the joint impor-
tance. By VIM(A ∣ X ⧵ Z) , the VIM of A considering the predictor set excluding the vari-
ables in Z , i.e., the improvement of additionally considering A , while regarding only the 
predictors in X ⧵ Z , is denoted. The interaction importance captures the importance of a 
general meaning of interaction, i.e., it considers whether some variables do interact in any 
way and quantifies the effect of the joint presence of these variables adjusted for single 
occurrences. For a predictor set Ã ∶= {Xj1

,… , Xjl
} ⊆ Z , the restricted joint VIM, i.e., the 

VIM of Ã considering only the predictors X ⧵ Z in the reduced model, is, following Eq. (8), 
given by

Excluding all variables in Z composing the interaction in the respective reference models 
is crucial for isolating the effects that should be adjusted for. If, e.g., a two-way interaction 
X1 ∧ X2 is studied, its interaction VIM (9) is given by

(8)VIM(Xi1
,… , Xik

) = (X ⧵ {Xi1
,… , Xik

}) − (X).

(9)
VIM(Xi1

∧⋯ ∧ Xik
) = VIM(Xi1

,… , Xik
∣ X ⧵ Z)

−


{j1,…,jl}⊊{i1,…,ik}

VIM(Xj1
∧⋯ ∧ Xjl

∣ X ⧵ Z),

(10)VIM(Ã ∣ X ⧵ Z) = (X ⧵ Z) − (Ã ∪ (X ⧵ Z)).
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If, e.g., VIM(X1 ∣ X ⧵ X1)
(7),(10)
= VIM(X1) would be used instead of 

VIM(X1 ∣ X ⧵ {X1, X2}) in Eq. (11), the whole importance of X1 , that also contains the 
interaction with X2 , would be subtracted from the joint importance not isolating the inter-
action importance that should be estimated.

Recursively applying Eq. (11) to the general case in Eq. (9) yields

Utilizing Eq. (10), this formula for the interaction VIM can also be written in terms of pre-
diction errors  , i.e., as

This formula can be used for efficiently computing the interaction VIM by directly consid-
ering prediction errors.

The interaction VIM (9) is similar to the interaction effect statistic proposed by Fried-
man and Popescu (2008), which utilizes the same effect decomposition and is based on 
the explained variance of partial dependence functions instead of VIMs. Friedman and 
Popescu (2008) theoretically justified this effect decomposition by showing that their sta-
tistic is zero, if the null hypothesis of no present interaction effect holds true. For exam-
ple, for analyzing a two-way interaction X1 ∧ X2 , Friedman and Popescu (2008) evaluate 
FX1,X2

− FX1
− FX2

 , in which F
⋅
 denotes partial dependence functions of the considered 

input variables. This term is analogous to the interaction VIM in Eq. (11) for X1 ∧ X2 with 
the difference that VIMs, i.e., performance metrics, are used instead of partial depend-
ence functions. Moreover, the input feature effect decomposition utilized by the proposed 
interaction VIM is also used by the Shapley interaction index (Lundberg et al., 2020; Fuji-
moto et al., 2006). However, in machine learning applications, Shapley values are based on 
direct predictions of the fitted model instead of performance metrics such as VIMs.

For all three procedures for constructing VIMs mentioned in Sect. 4.1, the reduced joint 
model can be intuitively constructed.

In the permutation VIM, the input variables of interest, i.e., the input variables par-
ticipating in the interaction for which the interaction VIM should be computed, are simply 
permuted together by, e.g., permuting the values of each input variable separately.

For the removal VIM, the set of input variables of interest is removed as a whole from 
the total set of input variables.

The logic VIM proposed in Sect. 4.1.2 performs uninformative predictions of an input 
variable by considering both possible decision tree paths for an observation and averaging 
the prediction. To generalize the logic VIM to multiple input variables at once for comput-
ing the interaction VIM, all possible predictor settings x ∈ {0, 1}p for the p input variables 
that shall be informatively excluded are used to generate predictions. These 2p predictions 
are averaged to create the prediction of the reduced model.

In logicDT, the logic VIM is used in conjunction with the proposed adjustment for inter-
action effects. Quantifying the importance of specific conjunctions, that are, e.g., identified 
by logicDT, will be discussed in the following section. In Sect. 5, the permutation VIM, 
the removal VIM, and the logic VIM are evaluated in empirical studies.

(11)
VIM(X1 ∧ X2) = VIM(X1, X2 ∣ X ⧵ {X1, X2})

− VIM(X1 ∣ X ⧵ {X1, X2}) − VIM(X2 ∣ X ⧵ {X1, X2}).

VIM(Xi1
∧⋯ ∧ Xik

) =


{j1,…,jl}⊆{i1,…,ik}

(−1)k−l
⋅ VIM(Xj1

,… , Xjl
∣ X ⧵ Z).

VIM(Xi1
∧⋯ ∧ Xik

) =


{j1,…,jl}⊆{i1,…,ik}

(−1)l+1
⋅ 𝜖(X ⧵ {Xj1

,… , Xjl
}) − 𝜖(X).
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4.3 � Adjustment for conjunctions

The VIM adjustment approach introduced in Sect. 4.2 only captures the importance of a 
general meaning of interactions, i.e., it just considers the question whether some variables 
do interact in some way. Since logicDT is aimed at identifying specific conjunctions (and 
also determines the values of a VIM for them, if the conjunctions have been identified by 
logicDT), a further adjustment approach is proposed that tries to identify the specific con-
junction leading to an interaction effect. For example, if the importance of the interaction 
between X1 and X2 was quantified using the interaction adjustment proposed in Sect. 4.2, 
the approach presented in the following assigns a Boolean conjunction to this importance, 
e.g., the Boolean conjunction X1 ∧ Xc

2
 . The proposed procedure is, again, applicable to any 

kind of supervised learning model. However, due to considering Boolean conjunctions, the 
input variables for which the importance should be quantified need to be binary.

This approach considers each possible conjunction of the identified interaction and 
chooses the conjunction that leads to the most severe deviation in the outcome, i.e., the 
conjunction with the strongest effect on the outcome. The VIM of this conjunction is the 
corresponding interaction VIM derived in Sect. 4.2.

The idea of this method is to consider the values of the outcome for each possible sce-
nario of the interacting variables, e.g., for X1 ∧ (Xc

2
∧ X3) , where we assume that the terms 

X1 and Xc
2
∧ X3 were identified by logicDT. In this example, thus, two interacting terms 

are regarded, i.e., the 22 = 4 possible scenarios X1 = 0 or X1 = 1 in combination with 
Xc

2
∧ X3 = 0 or Xc

2
∧ X3 = 1 are considered. For each setting, the corresponding outcome 

values are compared to the outcome values of the complementary set, i.e., the set in which 
the considered conjunction is equal to zero. This means that in the considered example the 
four statistical tests

with

potentially negating the subterms, are performed for i ∈ {1, 2, 3, 4} . For continuous out-
comes, Welch’s t-test is performed for comparing the means between these two groups, 
i.e., the group in which the considered conjunction is equal to one and the group in which 
the considered conjunction is equal to zero. For binary outcomes, Fisher’s exact test is per-
formed for testing different underlying case probabilities. The combination with the lowest 
p-value is chosen as the explanatory term for the interaction effect. E.g., in the above exam-
ple, if the smallest p-value results from considering X1 = 0 and (Xc

2
∧ X3) = 1 , the term 

Xc
1
∧ (Xc

2
∧ X3) is chosen as the conjunction responsible for the interaction effect.

5 � Experiments

In the following, we evaluate the performance of logicDT on simulated and real data con-
sidering classification and regression problems and compare logicDT with other similar 
methods. More precisely, we compare logicDT and bagged logicDT with conventional 

H0 ∶ 

Y ∣ Ci = 1


= 


Y ∣ Ci = 0



vs. H1 ∶ 

Y ∣ Ci = 1


≠ 


Y ∣ Ci = 0


,

C1 = X1 ∧ (Xc
2
∧ X3), C2 = Xc

1
∧ (Xc

2
∧ X3),

C3 = X1 ∧ (Xc
2
∧ X3)

c, C4 = Xc
1
∧ (Xc

2
∧ X3)

c
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decision trees (Breiman et al., 1984), DL8.5 (Aglin et  al., 2020a), random forests (Brei-
man, 2001), gradient boosting (Friedman, 2001), logic regression (Ruczinski et al., 2003), 
logic regression with bagging (Schwender & Ickstadt, 2007), MOB (model-based recursive 
partitioning, Zeileis et  al., 2008), interaction forests (Hornung & Boulesteix, 2022), and 
RuleFit (Friedman & Popescu, 2008). Since DL8.5 (as similar openly available optimal 
decision tree algorithms such as MurTree proposed by Demirović et  al., 2022) are cur-
rently only implemented for classification tasks, DL8.5 is only applied to the considered 
classification tasks. All analyses are carried out using R (R Core Team, 2022), except for 
the application of DL8.5, which is performed using the Python implementation of Aglin 
et al. (2020b).

5.1 � Simulation study

We, first, consider the situation of genetic association studies in which single genes/genetic 
pathways are analyzed and typically not more than a few tens of SNPs (single nucleotide 
polymorphisms) are considered. Afterwards, we consider a more complex setting with 
more SNPs to evaluate if logicDT is also applicable to high-dimensional problems.

5.1.1 � First simulation setup

We analyze the performance of logicDT and the other supervised learning procedures first 
in four different simulation scenarios in which we consider binary predictors and

•	 a binary outcome (such as a disease status) without an additional continuous covari-
able,

•	 a binary outcome with a continuous covariable,
•	 a continuous outcome (such as the blood pressure) without a continuous covariable, 

and
•	 a continuous outcome with a continuous covariable.

Our simulations are based on the problem of analyzing risk factors in genetic epidemiol-
ogy. Thus, the generated input variables can be interpreted as SNPs that count the number 
of minor alleles at a specific locus, i.e., the number of occurrences of a less frequent base-
pair substitution at a specific location in the DNA. Due to humans being diploid organ-
isms, i.e., carrying two complete sets of chromosomes, SNPs can take the values 0, 1, or 
2. Similar to, e.g., logic regression, for the application of logicDT to SNP data, each SNP 
is divided into the binary input variables SNPD = 1(SNP ≠ 0) and SNPR = 1(SNP = 2) , 
coding for a dominant and a recessive effect, respectively, such that no information is lost. 
Conventional decision trees also implicitly divide SNPs into dominant and recessive effects 
by considering SNPs as numerical variables such that a split can occur on ({0}, {1, 2}) or 
on ({0, 1}, {2}) . Combined with the greedy search of decision trees over all possible splits, 
this is equivalent to directly considering the binary variables SNPD and SNPR (Lau et al., 
2022).

The genotypes of the SNPs are generated independently, resembling sets of SNPs 
from which, as often done in practice, highly correlated SNPs have been removed using 
linkage-disequilibrium-based pruning (see, e.g., Purcell et al., 2007). The distributions of 
the SNPs are defined via the MAF (minor allele frequency), i.e., the proportion of minor 
allele occurrences, yielding the binomial distribution Bin(2, MAF) for each SNP. For all 
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simulated SNPs, we consider a MAF of 0.25. For each data set, 50 SNPs are generated so 
that X = (SNP1,… , SNP50) . However, in the considered scenarios described below, only a 
small fraction influences the outcome such that most input variables act as noise regarding 
the outcome.

For the analysis of the influence of a continuous covariable, an environmental varia-
ble (e.g., an air pollution indicator) is generated following a truncated normal distribution 
(truncated at zero, since values below zero often do not occur in practice). In particular, the 
environmental term E is generated by considering a N(20, 100)-distributed random vari-
able E and setting values below zero to zero so that E = max(0, E�) . The truncated values 
might, e.g., be interpreted as measurements below a detection limit.

Since DL8.5 can only incorporate binary input variables, E is dichotomized into a 
binary variable by considering Ebin = 1(E > 20) for fitting and evaluating DL8.5 models, 
where the cutoff 20 is chosen due to 𝔼[E] = ℙ(E� > 0)𝔼[E� ∣ E� > 0] ≈ 20.

For the first simulation scenario considering a binary outcome without any continuous 
covariables, the outcome is generated following the model

Therefore, SNP1 exhibits a moderate marginal effect and SNP2 and SNP3 interact with 
each other. The linear predictor on the right-hand side is squared which means that, on 
the scale of the total linear predictor, the term 1(SNP1 > 0) interacts with the term 
1(SNP2 > 0 ∧ SNP3 = 0) . Thus, this resembles a situation in which it might be useful to 
be able to model interactions between interactions, since the underlying scale of the linear 
predictor is unknown prior to the analyses, which is usually the case in practice. The inter-
cept of −0.4 ensures that the resulting data sets are approximately balanced, i.e., that the 
fraction of cases is approximately equal to 50%.

In the second scenario, a gene-environment interaction is introduced such that the out-
come in this case is modeled by

Thus, the environmental variable only influences the outcome, if the term 
1(SNP2 > 0 ∧ SNP3 = 0) holds true. This kind of gene-environment interaction might be 
reasonable for substances that are usually harmless, but might cause, e.g., allergic reactions 
in individuals with a certain genetic makeup.

Analogously to the first scenario, the third scenario consists of data sets in which the 
outcome is modeled by

Here and in the following scenario, random noise generated from N(0, 1) is added to the 
linear predictor.

As in the second scenario, the fourth scenario follows the underlying model

logit(ℙ(Y = 1 ∣ X)) = −0.4 +
�√

log(1.5) ⋅ 1(SNP1 > 0)

+
√

log(2) ⋅ 1(SNP2 > 0 ∧ SNP3 = 0)
�2

.

logit(ℙ(Y = 1 ∣ X, E)) = − 0.45 + log(2) ⋅ 1(SNP1 > 0)

+ log(3) ⋅
E

20
⋅ 1(SNP2 > 0 ∧ SNP3 = 0).

[Y ∣ X] = −0.4 +
�√

log(1.5) ⋅ 1(SNP1 > 0)

+
√

log(2) ⋅ 1(SNP2 > 0 ∧ SNP3 = 0)
�2

.
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For each simulation scenario, 100 independent data sets are generated. For each data set, 
it is assumed that this is the only data set available. Thus, for each replication, the data set 
is randomly divided into a training, a validation, and a test data set. Thus, for the evalu-
ation of logicDT and comparable methods, we perform 100 independent evaluations. In 
many practical applications such as in the construction of genetic risk scores, there is 
only data for a relatively small number of observations available. Hence, in our simula-
tions, the randomly generated data sets consist of 1000 observations each. From each of 
these data sets, 0.7 ⋅ 1000 = 700 randomly chosen observations are used as the interme-
diary data set for training and validating the model and the remaining 300 observations 
yield the test data set for the final evaluation. The intermediary data set is further randomly 
divided into 0.25 ⋅ 700 = 175 observations for choosing the best set of hyperparameters 
and 0.75 ⋅ 700 = 525 observations for training in the hyperparameter optimization. After 
the optimal hyperparameter setting has been identified, the final models are trained on the 
intermediary data set consisting of 700 observations.

The predictive performance of logicDT and the comparable methods is assessed using 
the AUC for binary outcomes and using the complement of the NRMSE (normalized root 
mean squared error) for continuous outcomes on test data predictions.

5.1.2 � Hyperparameter optimization

As described in Sect. 3.6, the model complexity parameters _ (maximum number 
of total variables) and _ (maximum number of conjunctions) of logicDT should 
be tuned. In this application, we prohibit removing complete conjunctions to ensure that 
the models consist of exactly _ conjunctions. Furthermore, the minimum num-
ber  of observations belonging to a leaf and the minimum number  of 
observations belonging to a conjunction and its negation are tuned using the same value, 
respectively. This ensures that the trees are grown to the ideal depth and prevents that mod-
els using uninformative conjunctions are evaluated.

For bagged logicDT models, _ and _ are tuned using the same param-
eter setting and allowing the removal of complete conjunctions in contrast to fitting single 
logicDT models.

In Table 1, the considered hyperparameter settings for logicDT, bagged logicDT, and 
the comparable tree-based statistical learning methods are summarized. For logicDT, the 
hyperparameter settings proposed in Sect. 3.6 are considered. For the regarded comparable 
methods, common hyperparameter choices are considered and the best performing one is 
chosen. For all methods except for gradient boosting and RuleFit, a grid search among all 
proposed settings is performed, due to relatively few plausible settings. For gradient boost-
ing and RuleFit, a sequential Bayesian hyperparameter search is carried out (Bergstra et al., 
2011; Wilson, 2021), since a finetuning of the learning rate parameter (for a fixed number 
of boosting iterations) is required. Additionally, the subsample fraction and the minimum 
node size, which can also be considered as continuous hyperparameters, have to be con-
figured jointly in gradient boosting and RuleFit. For this sequential search, 100 different 
settings are evaluated.

[Y ∣ X, E] = − 0.75 + log(2) ⋅ 1(SNP1 > 0)

+ log(4) ⋅
E

20
⋅ 1(SNP2 > 0 ∧ SNP3 = 0).
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For logicDT, Fig.  5 shows the validation data performances for the considered set-
tings of _ and _ combined with the respective best setting for 
/ . For each scenario, the highest performance is yielded by _ = 3 and 
_ = 2 corresponding to the true underlying simulation models. Generally, the fol-
lowing pattern can be observed. For many _ settings, the maximizing setting is 
given by _ = _ + 1 , which is due to the fact that in this case, additionally 
to single variables as terms, a conjunction of two variables is contained in the model.

For most considered hyperparameter settings, the validation performance does not seem 
to vary too severely between similar settings, which indicates that a slight hyperparameter 
misspecification might not substantially impair the predictive performance of the resulting 
logicDT model.

Fig. 5   Predictive performances of different hyperparameter settings for the parameters _ (maxi-
mum number of variables) and _ (maximum or exact number of terms) in logicDT in the sim-
ulation study considering four different scenarios. The performance for binary outcomes is measured by 
the AUC and the performance for continuous outcomes is measured by the complement of the NRMSE 
(normalized root mean squared error). Results on validation data sets for the best respective setting of the 
parameter / in the set {1%, 5%, 10%} . The evaluated hyperparameter settings are listed 
in Table 1. Justifications for evaluating these settings are given in Sect. 3.6
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5.1.3 � Predictive performance

Figure 6 depicts the performances of logicDT, the comparable methods, and the true under-
lying model in the simulation study, where the performance of the true model was assessed 
by performing predictions using the true regression functions presented in Sect. 5.1.1.

In the first simulation scenario considering a binary outcome without an environmental 
covariable, most notably, standard logicDT and bagged logicDT lead to the best perfor-
mances, i.e., the largest AUC values, which almost coincide with the performance of the 
true model. Among the comparable methods, logic bagging seems to be the best method.

For the second scenario in which also a gene-environment interaction is considered, 
logicDT, bagged logicDT, gradient boosting, logic regression, and logic bagging induce 
similar results superior to the remaining methods. Here, logicDT and logic regression seem 
to produce slightly better results than the other procedures.

Fig. 6   Predictive performances of logicDT and the comparable methods in the simulation study consider-
ing four different scenarios. The performance for binary outcomes is measured by the AUC and the per-
formance for continuous outcomes is measured by the complement of the NRMSE (normalized root mean 
squared error)



964	 Machine Learning (2024) 113:933–992

1 3

For the third and fourth simulation scenarios considering a continuous outcome without 
or with an environmental covariable, logicDT and bagged logicDT yield the highest pre-
dictive performances close to the true underlying models. When considering no environ-
mental covariable, logic bagging seems to be the best method among the comparable meth-
ods. MOB yields the highest performance among the comparable methods when including 
an environmental covariable.

5.1.4 � Variable importance

Using the VIMs and adjustment approaches for interactions and conjunctions proposed 
in Sect. 4, we computed variable importances in the four different simulation scenarios. 
We fitted bagged logicDT models on the 100 complete sub data sets for each scenario. 
The VIMs themselves were computed using out-of-bag data. For properly summarizing 
the 100 repetitions, means of the 100 repetitions were computed. A term not occur-
ring in one repetition received a VIM of zero. Additionally, asymptotic 95% confidence 
intervals for these means  were calculated by 𝜇̂ ± 1.96 ⋅ �se , where se is the estimated 
standard error. For binary outcomes, the AUC was used for determining VIMs, while 
for continuous outcomes, the MSE was employed.

Figure 7 depicts the determined VIMs. For all four scenarios and all three considered 
measures, the true influential input variables SNP1D, SNP2D, SNP3D receive the high-
est importance values. Theoretically non-influential terms comprised of variables not 
influencing the outcome were assigned importance values close to zero in all cases. In 
the first simulation scenario, the logic VIM and the removal VIM both assign the tri-
plet SNP1D ∧ SNP2D ∧ SNP3Dc the highest importance among all interactions. The 
permutation VIM favors the sub-conjunction SNP2D ∧ SNP3Dc of this triplet. Both 
interpretations are correct regarding the true model in their own sense, since the term 
SNP2D ∧ SNP3Dc interacts with SNP1D due to squaring the linear predictor.

In the remaining three scenarios, all VIMs assign the term SNP2D ∧ SNP3Dc 
the highest importance among all interactions. However, in the third scenario con-
sidering, as in the first scenario, the square of the linear predictor, the conjunction 
SNP1D ∧ SNP2D ∧ SNP3Dc and additionally sub-conjunctions receive importance 
values greater than zero. In the last scenario considering a continuous outcome and an 
influential environmental covariable, the interaction SNP2D ∧ SNP3Dc received the 
highest importance overall for all three importance measures.

In the first three scenarios, the three single input variables yield the highest impor-
tances. This is due to the fact that the VIM of single input variables coincides with the 
standard definition of VIMs, i.e., the difference in error when informatively removing a 
single input variable. Thus, the VIM of a single input variables captures all of its effects, 
including effects of interaction in which this input variable participates. In the fourth 
scenario, the two-way interaction SNP2D ∧ SNP3Dc seems to be identified in almost 
every logicDT application so that the single input variables SNP2D and SNP3D receive 
lower importances due to being identified less often. Hence, the importances should be 
compared in groups corresponding to the interaction order, i.e., marginal importances 
should be compared to each other, two-way interactions should be compared to each 
other, and so forth.

In summary, all measures yield very similar and plausible results. The determination 
of the logic VIM is considerably faster than the determination of the removal VIM and 
the permutation VIM, since the model does not have to be refitted and predictions do 
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Fig. 7   Logic, removal, and permutation VIMs yielded by bagged logicDT models for the four scenarios in 
the simulation study. Adjustment for interactions and conjunctions was performed. Means and asymptotic 
95% confidence intervals for the 100 repetitions are presented. Negations of input variables are denoted 
using a minus sign in the front
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not have to be performed for a high number of permutations for computing the logic 
VIM. Instead, for a term consisting of k variables, only 2k predictions have to performed 
and compared to the original prediction.

5.1.5 � Second simulation setup

To investigate if logicDT is also suitable in scenarios in which a larger amount of input 
variables is considered and more input variables influence the outcome, we evaluate 
logicDT and the comparable methods in additional simulations. Two scenarios are 
investigated, one considering a binary outcome and one considering a continuous out-
come, that are both simulated according to the linear model

where g is the logit function for the binary outcome and the identity function for the contin-
uous outcome. This model was chosen, since it exhibits a more complex structure, as nine 
SNPs influence the outcome as main effects, two-way interactions, three-way interactions, 
or gene-environment interactions. In total, 1000 SNPs (i.e., 2000 binary input variables 
coding for dominant and recessive modes of inheritance for these SNPs) and one continu-
ous covariable were simulated for data sets with sample size n = 1000 . The input variables 
are simulated analogously to the ones in Sect. 5.1.1. Both scenarios are, again, evaluated 
based on 100 independent replications, i.e., 100 random data sets, which are analogously to 
Sect. 5.1.1 divided into training, validation, and test data sets.

5.1.6 � Predictive performance

In Fig.  8, the predictive performance of logicDT and the comparable methods in the 
application to the two additional simulation scenarios are depicted. Both scenarios seem 
to be relatively complex, since the discrepancy between the predictive performance of 
the true model and the fitted models is larger than, e.g., in the previously conducted 
simulations.

For the binary outcome, the best performance is induced by gradient boosting, 
closely followed by logicDT, bagged logicDT, random forests, logic regression, and 
logic bagging. Out of these methods, logicDT and logic regression are the only methods 
that yield interpretable models. Conventional decision trees, DL8.5, MOB, and RuleFit 
lead to lower AUCs.

For the continuous outcome, the best results are induced by logicDT, bagged log-
icDT, gradient boosting, logic regression, logic bagging, and RuleFit. The other inter-
pretability-focused methods, namely conventional decision trees and MOB, yield lower 
predictive performances.

(12)

g([Y ∣ X, E]) = − 0.25 + log(2) ⋅ 1(SNP1 > 0) + log(2.5) ⋅
E

20
⋅ 1(SNP2 > 0)

− log(1.5) ⋅ 1(SNP3 = 2) − log(1.5) ⋅ 1(SNP4 = 0)

+ log(3) ⋅
E

20
⋅ 1(SNP5 > 0) ⋅ 1(SNP6 = 2)

− log(3) ⋅ 1(SNP7 > 0) ⋅ 1(SNP8 = 0) ⋅ 1(SNP9 < 2),
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Hence, logicDT seems to be also applicable and yielding comparatively high predic-
tive performances, when considering scenarios with larger numbers of input variables 
(here, 2000 binary input variables) and influential input variables.

5.1.7 � Variable importance

In Fig. 9, the estimated variable importances by bagged logicDT in the application to 
the two additional simulation scenarios are displayed. Since a relatively complex sce-
nario is considered, not every influential term is identified. Nonetheless, for the binary 
outcome and each considered VIM type, each term with a strongly positive variable 
importance is truly influential in the underlying data-generating model (12). Moreover, 
for both the binary and the continuous outcome and all VIM types, the two-way interac-
tion SNP8Dc ∧ SNP7D is correctly identified.

For the continuous outcome and the permutation VIM, the five top-ranking impor-
tances correspond to truly influential terms. However, the terms showing the next 
highest importances corresponding to theoretically non-influential terms such as 
(SNP8Dc ∧ SNP7D)c ∧ SNP2D indicate that these terms are influential as well due to their 
importance confidence intervals fully being above zero. This issue of falsely identified 
terms seems to be alleviated when employing the logic VIM or the removal VIM due to 
less non-influential terms that yield VIM confidence intervals fully above zero when using 
these VIMs. This, thus, indicates that the logic VIM and the removal VIM in conjunction 
with the adjustment for interactions can also be employed in more complex scenarios with 
a larger number of input variables.

Fig. 8   Predictive performances of logicDT and the comparable methods in the simulation study consider-
ing two more complex scenarios. The performance for the binary outcome is measured by the AUC and the 
performance for the continuous outcome is measured by the complement of the NRMSE (normalized root 
mean squared error)
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5.2 � Real data application

We have also applied logicDT and the comparable statistical learning methods to sev-
eral real data sets, from which the data set of the SALIA study is of particular inter-
est. Therefore, we consider, first, in the following subsections this study and the per-
formance of logicDT and the comparable methods in their application to the data from 
the SALIA study. Afterwards, we summarize the results of the analyses of the other 
data sets in Sect. 5.2.4. A more detailed discussion of these evaluations can be found in 
Appendix 4.

5.2.1 � SALIA study

logicDT was applied to a real data set from a German cohort study called the SALIA 
study (Study on the Influence of Air Pollution on Lung, Inflammation and Aging, 
Schikowski et  al., 2005). The results of logicDT were compared to the results of the 
methods also considered in the comparisons in Sect. 5.1. The data set consists of data 
from 517 women, from which 123 had a rheumatic disease so that 394 women did not 
show a rheumatic disease. For these women, data from 77 SNPs from the HLA-DRB1 
gene, which presumably plays a major role in the heritability of rheumatoid arthritis 
(Clarke & Vyse, 2009), are available. For more details about the SALIA study itself and 

Fig. 9   Logic, removal, and permutation VIMs yielded by bagged logicDT models for the two more com-
plex scenarios in the simulation study. Adjustment for interactions and conjunctions was performed. Means 
and asymptotic 95% confidence intervals for the 100 repetitions are presented. Negations of input variables 
are denoted using a minus sign in the front
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an analysis of rheumatic diseases in the SALIA study, see Krämer et al. (2010) and Lau 
et al. (2022), respectively.

The analysis was performed using a similar scheme as in the simulation study. For 
100 independent repetitions, training, validation and test data sets were randomly drawn 
from the total data set. Hyperparameter optimization was performed using, again, the 
parameter values summarized in Table 1.

5.2.2 � Predictive performance

In Fig. 10, the performances of logicDT and the comparable methods in their application to 
the SNP data from the SALIA study are shown. This figure reveals that all evaluated statisti-
cal learning procedures induce similarly high AUCs, except for conventional decision trees, 
DL8.5, and RuleFit, which show inferior predictive performances. RuleFit seems to have 
issues to detect a signal in the data set at all, despite optimizing its hyperparameters.

We would like to point out that logicDT is the only other procedure than conventional 
decision trees, DL8.5, logic regression, and RuleFit that yields easily interpretable predic-
tion models. In contrast to these models, logicDT still leads to comparatively high predic-
tive performances. Single logic regression models yield similar AUCs as logicDT. How-
ever, due to logic regression models including complex terms consisting of mixtures of 
Boolean conjunctions and disjunctions, logic regression models tend to be harder to inter-
pret than logicDT models.

Figure  11 shows the fitted logicDT model on the complete SALIA data. This tree is 
still relatively easy to interpret, i.e., it is easy to understand how predictions are made and 
which interactions are involved in the prediction. In comparison, the fitted logic regression 
model on the complete SALIA is given by

Fig. 10   Predictive performances of logicDT and the comparable methods in the evaluation of the SALIA 
data
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For this model, it is not trivial which interactions are involved in the prediction and how 
predictions for ℙ(Y = 1 ∣ X) are constructed.

5.2.3 � Variable importance

Figure 12 illustrates the measured variable importances in the application to the SALIA data 
for the three proposed VIM approaches using bagged logicDT models. In the top row, the 
importances for the top 5 single input variables are depicted. In the second and third row, the 
importances for the top 5 two-way and three-way interactions are shown, respectively.

For verifying whether the terms identified by logicDT really have an influence on the out-
come of interest, i.e., the rheumatic disease status, we considered for each identified term X in 
Fig. 12 a logistic regression model

and performed statistical hypothesis tests testing whether the respective term has an influ-
ence on the outcome, i.e., testing H0 ∶ 1 = 0 vs. H1 ∶ 1 ≠ 0 using a Wald test. For each 

logit(ℙ(Y = 1 ∣ X)) = − 1.14

− 19.63 ⋅ 1((rs113608847D ∧ (rs113505515Dc ∨ rs9270143R))

∧ (rs1060176D ∨ (rs28724138Rc ∧ rs17884945Rc)))

− 2.91 ⋅ 1((rs34578704Dc ∧ rs34084957D)

∨ ((rs41288045R ∨ rs9269814Dc) ∨ rs72844253R))

+ 1.41 ⋅ 1((rs113322920D ∨ rs36101847R) ∧ rs17879702Dc).

(13)logit(ℙ(Y = 1 ∣ X = x)) = 0 + 1x

Fig. 11   Fitted logicDT model on the complete SALIA data
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set of five identified terms, we evaluated how many terms lead to significant coefficients 
in the model from Eq. (13) using a significance level of  = 5% and adjusting for multiple 
testing using the method by Benjamini and Hochberg (1995).

Table 2 shows the results for this post-hoc analysis. None of the identified single input 
variables proves to be significant. However, for the logic VIM, four of the five identified 
two-way interactions and all five three-way interactions seem to have a significant influ-
ence on the outcome. For the more computationally intensive removal and permutation 
VIMs, the results seem to be inferior, since only two of the five two-way interactions are 
significant, and three or four of the five three-way interactions, respectively, are significant.

Note that the VIMs of the single input variables depicted in Fig. 12 are considerably 
higher than the VIMs of the interaction terms, yet the single input variables were not sig-
nificant. As discussed in the simulation study in Sect. 5.1.4, this is due to the fact that the 
VIMs for single input variables also capture the importance of interactions that contain the 
input variable of interest. Thus, if a single input variable is part of many interactions, this 

Fig. 12   Logic, removal, and permutation VIMs yielded by bagged logicDT models in the evaluation of the 
SALIA data—divided into VIMs of single input variables, two-way interactions and three-way interactions. 
Adjustment for interactions and conjunctions was performed. Means and asymptotic 95% confidence inter-
vals for the 100 repetitions are presented. Negations of input variables are denoted using a minus sign in the 
front

Table 2   Numbers of identified terms from Fig. 12 that were significant with respect to  = 5% using a false 
discovery rate adjustment

Significant terms/5 Logic VIM Removal VIM Permutation VIM

Single Input Variables 0 0 0
Two-Way Interactions 4 2 2
Three-Way Interactions 5 3 4
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inflates its importance value without leading to a significant main effect of the variable. For 
example, the most influential input variable across all three VIM calculation approaches, 
rs1060176D, is in every considered situation part of one identified interaction term.

5.2.4 � Additional real data evaluations

logicDT and the comparable methods are also evaluated in additional experiments using 
24 real data sets from various application fields. The main result is that logicDT induces 
high predictive performances among single-model procedures in the application to these 
additional real data sets. Among the ensemble methods, bagged logicDT also induces 
for most data sets relatively high predictive performances. More details on the analyses 
of the additional real data sets can be found in Appendix 4.

6 � Discussion

In this article, we have presented a statistical learning procedure called logicDT that 
is specifically tailored to finding interactions between binary input variables and that 
can also take continuous covariables into account by fitting regression models in the 
decision tree branches. In contrast to, e.g., logic regression, all possible interactions of 
the binary input data with this continuous covariable can be included in the prediction 
model as well as interactions between interactions of the binary input data. logicDT is 
aimed at maximizing both predictive power and interpretability motivated by applica-
tions in genetic epidemiology.

As a simulation study as well as real data applications show, logicDT is able to ful-
fill these objectives and yields comparable or better predictive performances as simi-
lar methods, while maintaining interpretability, which is lost when applying most other 
approaches. Moreover, through simulated annealing and theory on decision trees, theo-
retical success of logicDT, i.e., that the true underlying regression function is asymp-
totically attained, could be proven.

For maximizing the predictive performance regardless of being able to interpret how 
exactly predictions are made, bagging can be applied to logicDT, yielding performances 
as state-of-the-art algorithms such as random forests or gradient boosting.

Through different VIMs and VIM adjustment approaches for measuring the impor-
tances of interactions and specific conjunctions, highly predictive bagged logicDT mod-
els are still very useful for deriving which variables influence the outcome in interaction 
with which other variables. In comparison to standard VIM approaches, the proposed 
interaction VIM is able to capture influences of interactions and is not restricted to 
single input variables. Note that the proposed VIM adjustment approaches can also be 
applied to other statistical learning procedures, e.g., black-box methods such as deep 
neural networks or random forests, since no restricting assumptions on the model fitting 
procedure itself are made in these approaches.

Fitting logicDT models is computationally intensive due to the global search via sim-
ulated annealing, and takes, in particular, more time than fitting conventional decision 
trees that employ a greedy algorithm. However, as could be seen in the simulation study 
and the real data applications, logicDT consistently outperformed conventional decision 
trees considering the predictive performance. Moreover, logicDT still does not seem to 
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be slower than other interpretability-focused methods such as logic regression or Rule-
Fit. A model fitting time evaluation of logicDT and other procedures in the simulation 
study and real data application can be found in Appendix 5.

logicDT was designed for interpretable modeling in low- to mid-dimensional problems, 
e.g., considering single genes, pathways, or selections of SNPs that were significantly 
influencing the outcome in prior analyses. However, in theory, logicDT can be applied 
to problems with an arbitrarily large number p of input variables. Nonetheless, as shown 
in Sect. 3.8, the computational complexity of logicDT is polynomial in p under certain 
assumptions. Moreover, in practice, only finitely many computational resources are avail-
able. In simulations considering 1000 SNPs (i.e., p = 2000 input variables due to splitting 
each SNP into two binary variables) and a more complex underlying model, logicDT still 
induced relatively high predictive performances (see Sect. 5.1.5). Hence, we recommend 
applying logicDT in  situations with p ≤ 2000 . For comparison, in the software imple-
mentation of logic regression, where also a stochastic search algorithm is employed, the 
authors allow a maximum of p = 1000 input variables (Kooperberg & Ruczinski, 2022).

The main issue of conventional decision trees is its instability issue, i.e., that small 
modifications of the training data set imply unproportionally severe alterations of the fit-
ted model. This behavior is mainly induced by the greedy fitting algorithm (Li & Belford, 
2002; Murthy & Salzberg, 1995). logicDT aims at identifying the globally optimal set of 
predictors and interactions responsible for the variation in the outcome. Thus, only impor-
tant predictors are used for fitting the decision tree and interactions are already covered by 
single splits. Therefore, the instability issue should be diminished by logicDT.

The search procedure in logicDT utilizes the training data both for fitting decision trees 
and scoring them for guiding the search, which might suggest that this might lead to over-
fitting. However, both training trees based on states and evaluating states are part of the 
logicDT fitting procedure and the balance of overfitting and underfitting is controlled by 
the hyperparameters tuned using independent validation data (see Sect.  3.6). Moreover, 
established statistical modeling approaches such as stepwise linear regression or logic 
regression also employ the full training data set for both fitting the models and guiding 
the search. Nonetheless, one idea might be to further split the available training data into 
training data for fitting the decision tree based on the considered state and inner validation 
data for scoring the state’s performance. However, due to the need for further splitting the 
available data, less observations are available for both the tree fitting step and the scoring 
step, leading to a decreased performance (on independent test data) compared to the origi-
nal algorithm in empirical experiments (see Appendix 6). Moreover, the resulting model 
should not heavily rely on the data split used for this inner validation. Hence, ideally, mul-
tiple data splits—fitting and scoring multiple trees for one state and averaging the results as 
in (inner) cross-validation—should be used, leading to an increased computational burden.

Bagged logicDT was designed for situations in which a larger number of input vari-
ables influences the outcome or variable/interaction term importances shall be measured. 
In the simulation study conducted in Sect.  5.1.1, bagged logicDT performed similarly 
well compared to logicDT due to single logic decision trees being able to fully capture 
the considered underlying models. In additional simulations considering scenarios with 
larger numbers of influential input variables (see Sect. 5.1.5) and real data evaluations (see 
Appendix 4), bagged logicDT was able to achieve higher predictive performances in com-
parison to logicDT. Nevertheless, in these additional analyses, logicDT induced strong per-
formances compared to other single-model methods.

For bagged logicDT, one idea to further increase its performance might be to further ran-
domize the search similar to random forests. This could be realized by selecting a random 
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sample of the neighbor states to be evaluated in each iteration of the greedy search, which is 
similar to randomly sampling potential splitting variables in random forests. However, this 
would create another hyperparameter—the number of randomly drawn candidate neighbor 
states—that potentially should be tuned and could depend on the total number of neighbor 
states that can change for each considered state.

logicDT is motivated by applications in genetic epidemiology in which mainly binary input 
data is analyzed. Although not considered in this article, it is possible to generalize logicDT to 
numerical input data by considering numerical interactions 

∏
j Xj instead of Boolean conjunc-

tions 
⋀

j Xj , where in the case of binary input data, these two definitions coincide.
The development of logicDT was, more precisely, motivated by the problem of construct-

ing genetic risk scores that are usually built based on linkage-disequilibrium-based pruned 
SNPs, i.e., SNPs that can be interpreted as independent variables (So & Sham, 2017; Dud-
bridge & Newcombe, 2015). Therefore, throughout this manuscript, the assumption was made 
that there are no strong correlations between the considered input variables. In future research, 
logicDT and the interaction VIM could be analyzed and potentially adjusted for settings in 
which strong correlations between input variables exist so that, ideally, input variables (highly) 
correlated with truly predictive input variables do not diminish the importance of these truly 
predictive input variables.

If, additionally, a quantitative variable such as a quantitative environmental variable is con-
sidered, logicDT uses this covariable to fit regression models in the leaves of the decision tree. 
Since logicDT splits, in the context of genetic epidemiology, on genetic variants, a gene-envi-
ronment is present if and only if the leaf regression models differ more than by fixed offsets 
describing marginal effects of the genetic variants. Thus, in future research, logicDT could be 
expanded for statistically testing the presence of a gene-environment interaction in the consid-
ered subregion of the DNA.

Moreover, the proposed interaction importance measuring methodology could also be 
expanded for statistically testing if certain single input variables or interaction terms signifi-
cantly influence the outcome. This can, e.g., be used in the context of genetic epidemiology, 
testing the presence of gene-gene interactions. For implementing this testing procedure, the 
variable importance testing framework proposed by Watson and Wright (2021) might be 
applied to the importance measures proposed in this manuscript.

7 � Conclusion

logicDT yields highly interpretable decision trees with superior predictive performances com-
pared to other single-model procedures such as standard decision trees by being able to detect 
interaction effects between binary predictors on split level. Fitting ensembles of logicDT mod-
els through bagging can further increase the predictive performance if many predictors have 
effects on the outcome. The novel VIM adjustment procedure can be applied to these logicDT 
ensembles to derive which input variables influence the outcome in which interplay and mag-
nitude—also measuring the importance of interaction effects between input variables.

Appendix 1: Simulated‑annealing‑based search procedure

The main methodology of logicDT, for which consistency is proven, employs simulated 
annealing as its search algorithm. In applications of logicDT, we suggest using an adap-
tive cooling schedule that requires no temperature tuning at all, which is in contrast to 
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a geometric cooling schedule that is, e.g., used in logic regression. An adaptive cooling 
schedule automatically tunes the cooling behavior of simulated annealing, i.e., the start 
temperature, the temperature lowering steps or the Markov chain lengths, and the end 
temperature. Using an adaptive cooling schedule simplifies the application of simulated 
annealing, since these parameters do not have to be fine-tuned manually.

The start temperature is generally chosen such that at the beginning of the algorithm 
essentially a random walk is performed. For finding an appropriate initial temperature, 
a brief random walk over the state space (e.g., visiting 10,000 states) is carried out in 
logicDT and the state scores are recorded. Since the acceptance function

in simulated annealing is chosen so that better or equal states are automatically accepted, 
the temperature only influences the acceptance behavior of proposed worse states. Thus, 
only moves leading to worse states are used to estimate a temperature at which, e.g., 90% 
of the worse states are accepted.

We employ the homogeneous version of simulated annealing that runs through many 
consecutive homogeneous Markov chains. In practice, we limit the number of iterations 
per chain to, e.g., 1000 and adaptively choose the next temperature in a way that equi-
librium of the next chain can be easily reattained. More precisely, we employ the tem-
perature lowering scheme proposed by Huang et al. (1986) that is given by

where t is the current temperature, t is the new temperature of the next Markov chain, 
and (t) is the standard deviation of the scores observed in the finished Markov chain (see 
also, e.g., Van Laarhoven & Aarts, 1987). Here,  ∈ (0, 1] is a parameter controlling the 
speed of the total algorithm, which means that a higher value of  leads to larger decreases 
in the temperature t, and hence, to less total iterations. Consequently, a value closer to 0 
leads to a finer search, requiring more iterations. Generally, more iterations are preferable 
for approximating the theoretical asymptotic search. However, in practice, we recommend 
using a value of  ∈ [0.01, 0.1] for performing at least a few hundred thousand iterations.

For stopping the stochastic search, we evaluate the fraction of accepted states yield-
ing a different score than the previous one, i.e., ignoring two neighbor states that yield 
the exact same score. If, e.g., for five consecutive chains the fraction of this adjusted 
state acceptance ratio is below 1%, the search is terminated. Alternatives include using 
the total number of chains instead of restricting to consecutive ones or using, similar 
to Triki et  al. (2005), the standard deviation of the scores in a chain. For very small 
temperatures, simulated annealing should only move to better or equal states in terms of 
the score function. Thus, if an ideal state is reached, the score should no longer change, 
leading to a standard deviation of the score of 0.

Similar to the cooling schedule proposed by Triki et  al. (2005), in the beginning 
of the search, the lowering of the temperature will also be triggered, if a threshold of 
accepted states in a single Markov chain is reached. This threshold might, e.g., be set to 
50% of the total Markov chain length and prevents the search from focusing too long on 
the initial near random walk type of search, but instead focusing on the middle part of 
simulated annealing.

((s), (s�), t) = min


1, exp


(s) − (s�)

t



t� = t ⋅ exp


−

t

(t)


,
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The theory of simulated annealing is based on two convergences, namely

•	 the convergence of the individual Markov chains, i.e., reaching equilibrium or the 
respective stationary distribution,

•	 the convergence of the temperature to 0, i.e., approaching an infinitesimal low tempera-
ture.

In practice, since limited computing resources are available, there is no guarantee that sim-
ulated annealing finishes in a global minimum. Thus, it might be possible that a globally 
optimal state is visited in the initial exploration of the state space, but due to relatively few 
iterations another local optimum is reached afterwards and is not abandoned anymore. We, 
therefore, let the algorithm also remember the best visited state so far in the search.

Due to noninformative terms or noninformative predictors in a conjunction, it might 
be possible that two neighbor states yield the exact same score. In this case, generally the 
simpler model is preferred. Thus, when the search is finished, each term is inspected for 
variables and conjunctions that do not improve the score and these variables or conjunc-
tions are removed from the model. Furthermore, if a new neighbor is proposed that leads 
to exactly the same score as the current state, this new neighbor is accepted in simulated 
annealing, regardless of the current temperature.

Visiting a single state multiple times can also occur due to the random nature of simu-
lated annealing itself. To account for this behavior in the searching procedure, a hash table 
containing sorted linked lists of the specific states and their respective scores is used for 
remembering already visited states. Thus, if a state is reached multiple times, the predictor 
transformation and the decision tree fitting do not have to be repeated.

Appendix 2: Consistency proof

In this appendix, we prove Theorem 1 that was stated in Sect. 3.7. For proving this theo-
rem, some preliminary results are necessary that are proven in the following lemmata. We 
start by proving that simulated annealing leads to an optimal solution in logicDT.

Lemma 1  The Markov chains constructed in logicDT fulfill the prerequisites of simulated 
annealing such that the stationary distributions t = limq→∞ ℙ(Qt(q) = ⋅) exist and it holds 
that

for the set Rs of neighbor states of state s and the set Ropt of optimal states.

Proof  For establishing convergence of the individual (finite and homogeneous) Markov 
chains to their stationary distributions, it is sufficient to prove their irreducibility and ape-
riodicity (e.g., Theorem 1 in Section 3.1.2, Van Laarhoven & Aarts, 1987).

The Markov chains Qt in simulated annealing are generally based on the transition 
probabilities

lim
t↘0

t(s) =

⎧⎪⎨⎪⎩

�Rs�∑
s�∈Ropt

�Rs� �
, s ∈ Ropt

0, s ∉ Ropt
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for s ≠ s and all q ∈ ℕ , where ((s), (s�), t) describes the acceptance probability depend-
ing on the scores (⋅) of the states and (s, s�) yields the generation probability of s given 
state s. In logicDT, the standard acceptance function

is used together with the uniform distribution for the generation probability

Since 𝛾(𝜖(s), 𝜖(s�), t) > 0 for every pair of states s, s and t > 0 and the choice of the moves, 
i.e., modifications of states, proposed in Sect. 3.2 ensure that each state can be reached from 
any other state in a finite number of steps, the Markov chains in logicDT are irreducible.

Aperiodicity is fulfilled, if for all states s the greatest common divisor (gcd) of

is equal to 1. This property would be directly fulfilled, if the chains would be reflexive, i.e., 
fulfilling 𝜏(s, s, t) > 0 for each state s. However, since it might be the case that a state has 
only neighbors exhibiting better scores, leading to ((s), (s�), t) = 1 for each s� ∈ Rs , the 
probability of staying in state s can be equal to 0, as, for the probability of proposing the 
current state, it holds that (s, s) = 0 by choice of  . Therefore, three different cases for 
states s have to be considered.

Case 1: s has a neighbor state s with 𝜖(s�) < 𝜖(s) . In this case, the probability (s, s�, t) 
of changing to state s is positive. The probability (s�, s, t) of returning to s is posi-
tive as well, which is due to 𝛾 > 0 . Furthermore, the probability (s�, s�, t) of remaining 
in s is also positive, since, if s is generated by (s�, ⋅) , s will be accepted with prob-
ability 𝛾(s�, s, t) < 1 because of 𝜖(s) − 𝜖(s�) > 0 and the choice of  in Eq. (14). Thus, 
𝜏2(s, s, t) > 0 and 𝜏3(s, s, t) > 0 hold true yielding the greatest common divisor of 
gcd(2, 3) = 1.
Case 2: s has at least one neighbor state s with 𝜖(s�) > 𝜖(s) , but no neighbor s with 
𝜖(s��) < 𝜖(s) . In this case, it holds that ((s), (s�), t) ∈ (0, 1) , and thus, 

Case 3: For all neighbor states s of s, it holds that (s�) = (s) . Here, we have 

 and therefore, 𝜏2(s, s, t) > 0 . Let s be another state with (s��) ≠ (s) . Such a state 
has to exist, since otherwise each state would have the exact same score. The state 
s can be chosen such that, due to the irreducibility, there exists a sequence of states 
(s, s1, s2,… , sn, s��) , in which each succeeding state is a neighbor of its predecessor, with 



s, s�, t


∶= ℙ


Qt(q + 1) = s� ∣ Qt(q) = s


= 


(s), (s�), t


⋅ 


s, s�



(14)((s), (s�), t) = min


1, exp


(s) − (s�)

t



(15)(s, s�) =


1

Rs , s� ∈ Rs

0, s� ∉ Rs.


n ∈ ℕ ∣ 𝜏n(s, s, t) ∶= ℙ(Qt(1 + n) = s ∣ Qt(1) = s) > 0



𝜏1(s, s, t) = 𝜏(s, s, t) > 0.

((s), (s�), t) = ((s�), (s), t) = 1,
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 for any n ∈ ℕ . Thus, it follows (sn) ≠ (s��).
Case 3.1: 𝜖(sn) > 𝜖(s��). Due to 𝜖(s��) − 𝜖(sn) < 0 and Eq. (14), it follows 𝛾(s��, sn, t) < 1 , 
and hence, 𝜏(s��, s��, t) > 0 . Using the state sequence (s, s1,… , sn, s��, s��, sn,… , s1, s) , 
it becomes obvious that 2n+3(s, s, t) is positive. Furthermore, it follows that 
gcd(2, 2n + 3) = 1 , as 2n + 3 is odd.
Case 3.2: 𝜖(sn) < 𝜖(s��). Analogously to Case 3.1, it follows that 𝜏(sn, sn, t) > 0 . Using 
the state sequence (s, s1,… , sn, sn,… , s1, s) , the probability 2n+1(s, s, t) has to be posi-
tive so that gcd(2, 2n + 1) = 1 , since 2n + 1 is odd.

Thus, aperiodicity is given so that the individual limiting distributions exist.
Applying Theorem 2 from Section 3.1.3 of Van Laarhoven and Aarts (1987) to the con-

structed Markov chains using the choices for  in Eq. (14) and  in Eq. (15) directly shows 
that the stationary distributions converge to a distribution that exactly has the set of optimal 
states as its support. 	�  ◻

Now we have to show that the empirical risk minimization (ERM), which is per-
formed by simulated annealing, is asymptotically equivalent to a true risk minimization 
in logicDT.

Lemma 2  (ERM consistency of logicDT) Let the outcome Y be bounded. Then, logicDT is 
strongly consistent with respect to empirical risk minimization, i.e.,

where Remp(T) =
1

n

∑n

i=1
L(yi, T(xi)) is the empirical risk, Rtrue(T) = (X,Y)[L(Y , T(X))] is 

the true risk, and L(y, ŷ) = (y − ŷ)2 is the squared error loss.

Proof  By assumption, Y is bounded. Thus, as the predictions of decision trees are generated 
by means of observed values, the predictions are bounded by the same bound. Furthermore, 
the L2 loss is bounded likewise. Let this bound be given by B > 0 , i.e., L(y, ŷ) ∈ [0, B].

In order to prove distribution-independent ERM consistency, it is necessary 
and sufficient that the VC (Vapnik and Chervonenkis) dimension is finite (Vapnik, 
2000), where the VC dimension is defined as the maximum number m of data points 
z1,… , zm ∶= (x1, y1),… , (xm, ym) that can be shattered by a binary loss function 
L(y, T(x)) ∈ {0, 1} . For m ∈ ℕ , there thus exists a sample z1,… , zm such that for all pos-
sible 2m binary outcomes ∈ {0, 1}m there exists a prediction function T in the consid-
ered space that divides the sample according to the label setting using the loss function 
L(y, T(x)) . In the general regression setting, the VC dimension is defined as the VC dimen-
sion of the indicators 1(L(y, T(x)) ≥ ) , where  ∈ [0, B] is interpreted as part of the func-
tion space for the determination of the VC dimension so that for each outcome setting a 
function T and a value for  have to be found.

For deriving the VC dimension of logicDT, note that the prediction values for each pre-
dictor setting can be chosen independently, i.e., it is only necessary to consider for how 
many data points the data can be shattered along one single predictor setting. In the case 
of not fully grown trees with shared leaves for different possible predictor settings (for 
example, a tree stump only splitting on X1 ∈ {0, 1} such that T((X1, 0)) = T((X1, 1)) ), the 

(s) = (s1) = (s2) = ⋯ = (sn)

sup
T

Remp(T) − Rtrue(T)


a.s.
�������������������→
n→∞

0,
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prediction values are not necessarily independent of each other. However, in this case, the 
number of shatterable data points decreases compared to the independent prediction case 
so that this case does not have to be considered with regard to the VC dimension. Thus, it 
is sufficient to consider one single predictor X ∈ {0, 1} , since the shattering behavior only 
has to be analyzed independently for each setting.

Figure  13 depicts the shatterability for two and three data points, respectively. Two 
observations on one axis, as depicted here for X = 0 , can be shattered by properly position-
ing the corresponding prediction value a = T(0) and choosing an adequate  so that

i.e., choosing a and  such that red crosses are "far away" from a and black crosses are 
"close" to a.

For three data points, there is only one problematic labeling: If three different observations 
are considered that lie on one axis, one data point has to be the middle point. This middle 
point cannot be classified as 1/red while classifying the outer points as 0/black. This is due 
to the fact that the middle point needs to be far away from the prediction b = T(1) to achieve 
this labeling, while the surrounding points need to be close to b, which is not possible.

Thus, for each prediction axis/tree branch, two is the maximum number of points that 
can be shattered. Since for p predictors there are 2p possible predictor settings and two data 
points can be shattered for each setting, the VC dimension VC of logicDT is equal to

1((y − a)2 ≥ 𝛽) =


Red ×, (y − a)2 ≥ 𝛽
Black ×, (y − a)2 < 𝛽,

VC = 2 ⋅ 2p = 2p+1.

Fig. 13   VC dimension illustration for logicDT models. Here, one binary predictor X ∈ {0, 1} is consid-
ered. For X = 0 , all 22 = 4 classifications for two data points are depicted. For X = 1 , all 23 = 8 classifica-
tions for three data points are shown. Black crosses indicate 1(L(y, T(x)) ≥ ) = 0 . Red crosses indicate 
1(L(y, T(x)) ≥ ) = 1 . a and b are the (fixed) predictions T(0) = a , T(1) = b such that the corresponding 
classification pattern can be achieved, i.e., there exists an appropriate  . f depicts the situation in which an 
appropriate prediction value, and thus, an appropriate tree cannot be constructed
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For bounded loss composition functions L◦T̃ ∶ X × Y → [0, B] with T̃(x, y) ∶= (y, T(x)) , 
where L is in here given by L(y, ŷ) = (y − ŷ)2 so that (L◦T̃)(x, y) = (y − T(x))2 , a uniform 
bound

involving the growth function G holds for all 𝜀 > 0 (see Equation (3.10), Vapnik, 2000). 
This growth function G is bounded by a function of the VC dimension. In particular, for 
n > VC , it holds that

(see Equation (3.23), Vapnik, 2000).
For proving almost sure convergence of (16), i.e., for proving

it suffices to show that the corresponding series converges (see, e.g., Corollary 1, Sec-
tion 1.11.1, Vapnik, 1998), i.e., that

Using (17), the right-hand side of (16) is bounded by

Using the ratio test for checking the convergence of series, the ratio of two consecutive 
summands is given by

Thus, for this ratio Rn+1
n

 , it follows that there exists a number ñ ∈ ℕ so that for all n > ñ 
it holds Rn+1

n
< 1 . Therefore, the series converges and almost sure convergence in (18) is 

established. 	�  ◻

(16)ℙ


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Now it has to be shown that the true regression function can be fitted by logicDT so 
that the risk minimizing logicDT function asymptotically becomes the true regression 
function.

Lemma 3  (Each model is possible in logicDT) Let  ∶ {0, 1}p → Y be a p-dimensional 
regression function with Y ⊆ ℝ . Then,  can be fitted by logicDT, i.e.,  ∈ L with L being 
the class of all logicDT models.

Proof  Since  takes only binary predictors as its input,  can be expressed as

for values g0, gj ∈ Y and distinct conjunctions Cj(X) ∶= X
(c)

kj,1
∧⋯ ∧ X

(c)

kj,pj

 , where these con-
junctions are distinct in the sense that for a given x ∈ {0, 1}p it holds that 1(Cj(x)) = 1 is 
true for at most one j ∈ {1,… , m} . Let Dn be a noise-free training data set that fully resem-
bles  , i.e.,

with the additional restriction that each conjunction scenario Cj and the null scenario with 
Cj = 0 for all j have to occur at least once in Dn . Using a proper logicDT state, i.e., a set of 
conjunctions that distinguish between the conjunctions that compose  , the corresponding 
fitted logic decision tree assigns the ideal values g0 or g0 + gj to its leaves. Thus, the result-
ing model is equal to  . 	�  ◻

Now the lemmata can be assembled for proving Theorem 1.

Proof of Theorem 1  Simulated annealing operates on a finite state space, which is also the 
case for logicDT. In logicDT, simulated annealing leads with probability 1 to an ideal 
model on the training data (see Lemma 1), i.e.,

for a temperature t ≥ 0 , the homogeneous Markov chains Qt , and the set of optimal states 
Ropt . More specifically, the stationary distribution t = limq→∞ ℙ(Qt(q) = ⋅) converges for 
t ↘ 0 to a specific distribution on Ropt , namely

where Rs is the set of neighbor states of state s. Thus, if this final stationary distribution is 
reached, an optimal model has to be attained due to the finiteness of the state space.

(X) = g0 +

m
j=1

gj ⋅ 1


X
(c)

kj,1
∧⋯ ∧ X

(c)

kj,pj



Dn ⊆


(x, y) ∶


y = g0 + gj ∧ j ≠ 0 ∧ 1(Ci(x)) = 1(i = j) ∀i



∨


y = g0 ∧ 1(Ci(x)) = 0 ∀i



lim
t↘0

lim
q→∞

ℙ(Qt(q) ∈ Ropt) = 1

(19)lim
t↘0

t(s) =

� �Rs�∑
s�∈Ropt

�Rs� � , s ∈ Ropt

0, s ∉ Ropt,
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For proving consistency of random forests with respect to the number of observa-
tions, Scornet et al. (2015) studied a theoretical random forest with an infinite number of 
trees due to the pointwise almost sure convergence resulting from the law of large num-
bers. Similarly, we assume that the convergences in simulated annealing have occurred, 
and therefore, an empirical-risk-minimizing logicDT model is given due to the station-
ary distribution in Eq. (19). The CART methodology ensures that, for a given predictor/
conjunction setting, the empirical-risk-minimizing decision tree is grown, if the tree is 
allowed to fully develop, i.e., not using any stopping criteria, since the prediction val-
ues are obtained by empirical risk minimization in the respective leaves (Breiman et al., 
1984).

Note that this model will be in the set Ropt of empirical risk minimizing models, if the 
original predictor model consisting of the input variables X1,… , Xp is included in the con-
sidered state space. However, if the true underlying model  is not a linear function of the 
individual predictors, the original model {{X1},… , {Xp}} and equivalent extensions may 
be excluded from the state space while maintaining consistency. Thus, this theorem shows 
that logicDT models different from the original CART are consistent as long as the true 
function exhibits an adequate structure.

Let Tn be the empirical risk minimizer and  be the true regression function. Applying 
Lemma 10.1 from Györfi et al. (2002) yields

where the supremum and the infimum are determined over all logicDT models T.
Using Lemma 2, ERM consistency is established, i.e.,

where the almost sure convergence occurs with respect to the training data distribution 
ℙDn

= ℙ
⊗n

(X,Y)
 . Therefore, the first term on the right-hand side of (20) converges almost 

surely to zero.
Lemma 3 states that logicDT can lead to every possible regression function  . Thus, it 

follows

so that the second term on the right-hand side of (20) vanishes.
Hence, in total, we obtain

which was to be shown. 	�  ◻

(20)
(X,Y)


((x) − Tn(x))

2

≤ 2 sup

T


1

n

n
i=1

(yi − T(xi))
2 − (X,Y)


(Y − T(X))2


+ inf

T
(X,Y)


((X) − T(X))2


,

sup
T

Remp(T) − Rtrue(T)
 = sup

T


1

n

n
i=1

(yi − T(xi))
2 − (X,Y)


(Y − T(X))2


a.s.

�������������������→
n→∞

0,

inf
T
(X,Y)


((X) − T(X))2


= (X,Y)


((X) − (X))2


= 0

(X,Y)


((X) − Tn(X))2

 a.s.
�������������������→
n→∞

0,
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Appendix 3: Computational complexity proof

In this appendix, we prove Theorem 2 and Corollary 1 that were stated in Sect. 3.8.

Proof of Theorem 2  Following Algorithm 2, logicDT modifies the current state, creates a 
tree training data set, and fits and evaluates a decision tree based on this tree training data 
set to decide if the newly proposed state is accepted in every search iteration. Hence, the 
computational complexities of these individual steps have to be determined.

State modifications are performed randomly by modifying one variable in the current 
state. Therefore, the complexity of state modifications is given by O(1).

Tree training data sets are obtained by computing Boolean conjunctions using the vari-
ables in the considered term for each term in the considered state and each training obser-
vation (see Sect. 3.2). Since a state contains at most _ variables, transforming a 
training data set into a tree training data set amounts to a complexity of O(n ⋅ _).

Decision trees are fitted by recursively screening all p input variables for the best split 
(see Algorithm 1). This screening amounts to a complexity of O(np) for n training observa-

tions and p input variables and it is performed for at most 


n




− 1 inner nodes (cor-

responding to the worst-case scenario of an unbalanced tree in which the observations are 
perfectly divided into leaves of sample size  ). Thus, the (worst-case) complexity 
of fitting decision trees is given by O(n2p∕) . This complexity remains valid for 
the case in which one additional continuous covariable is included due to univariate linear 
regression/LDA models being fitted and evaluated using closed-form solutions (i.e., each 
fitting/evaluation of these univariate regression models amounts to a complexity of O(n)).

Since a maximum of _ input variables are used for fitting a logic decision tree, 
the tree fitting (and scoring) complexity in logicDT is given by O(n2_∕) . 
Therefore, using the aforementioned complexities, the computational complexity of log-
icDT is given by

which was to be shown. 	�  ◻

Proof of Corollary 1  The number M of search steps that are conducted in similar simulated-
annealing-based search procedures is in the magnitude of O(L log(S)) (Van Laarhoven 
& Aarts, 1987), where L is the number of iterations performed per Markov chain and S is 
the search space. Since the search space considered in logicDT consists of sets of possible 
Boolean conjunctions that include at most _ conjunctions and at most _ 
input variables, the magnitude of this search space is given by

The first factor amounts for all selections of input variables or their negations of size 
_ , while the second factor amounts for the number of possibilities to assign 
the variables to terms. The rationale behind the second factor is assigning each of the 
_ variables a number in {1,… , _} that specifies to which term the vari-
able belongs. Hence, it follows that

O


M


n ⋅ _ + n2 _




= O


Mn


_ + _

n




,

S ∈ O((2p)_
⋅ __).

M ∈ O(L ⋅ _(log(p) + log(_))).
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Since, by assumption, the parameters _ and _ both scale linearly with p 
and the parameter  is constant, it follows with Theorem 2 that the computational 
complexity of logicDT is given by

If it is assumed that the Markov chain length L is fixed, the computational complexity of 
logicDT becomes

The number of neighbor states per state in logicDT is in the magnitude of O(_ ⋅ p) , 
since each variable in the state might be exchanged by another variable. Therefore, if 
instead the Markov chain length L is chosen in the magnitude of the number of neighbor 
states per state, the computational complexity of logicDT is given by

	�  ◻

Appendix 4: Additional real data evaluations

In the following, logicDT, bagged logicDT, and the comparable methods are evaluated 
on 24 real data sets that were also analyzed in Aglin et al. (2020a) and Demirović et al. 
(2022). These data sets exclusively contain binary input variables and binary outcomes 
and were obtained from CP4IM1 that provides (modified) data sets from the UCI Machine 
Learning Repository2 that were modified by dichotimizing continuous variables into binary 
variables.

In Table  3, the dimensions of the considered data sets are summarized. Similar to 
Sect. 5, each method was applied to each data set 100 times using random splits into train-
ing, validation, and test data sets.

Figure 14 shows the predictive performance (as, again, measured by the AUC) of log-
icDT and the comparable methods in their applications to the 24 additional real data sets. 
This figure shows that logicDT achieves for most data sets a superior performance com-
pared to conventional decision trees and DL8.5. logicDT seems to be on par with logic 
regression, since, in most cases, both methods yield similar results and, in the remaining 
cases, sometimes logicDT and sometimes logic regression induce better performances 
(see, e.g., the results from the applications to the vehicle and zoo-1 data set).

Ensemble methods that produce less interpretable models such as random forests, gradi-
ent boosting, and logic bagging yield better performances compared to logicDT for most 
data sets. However, when also considered logicDT in an ensemble framework, i.e., when 
considering bagged logicDT, then the performances are on a similar level as the other 
ensemble methods.

O

L ⋅ n2p2 log(p)


.

O

n2p2 log(p)


.

O

n2p4 log(p)


.

1  CP4IM: https://​dtai.​cs.​kuleu​ven.​be/​CP4IM/.
2  UCI Machine Learning Repository: https://​archi​ve.​ics.​uci.​edu.
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Appendix 5: Computation times

For the simulation study conducted in Sect. 5.1.1 and the application to the SALIA data 
conducted in Sect.  5.2, model fitting and prediction times were recorded. The calcu-
lations were performed using an Intel Xeon Gold 6346 CPU running on 3.6GHz. For 
the time measurement, no parallel computing was performed to reflect realistic single 
model evaluation times.

In Table 4, the mean model fitting and prediction times over ten replications is sum-
marized. logicDT seems to be faster than logic regression, which also employs a sto-
chastic search algorithm. In the application to the SALIA data, a more complex setting 
consisting of five terms was identified for logicDT compared to three terms for logic 
regression, which might explain the higher fitting time of logicDT compared to logic 
regression in the real data application.

Due to the computationally intensive global search, logicDT takes more time than 
comparable methods that employ greedy fitting algorithms such as conventional deci-
sion trees, random forests, gradient boosting, and MOB. Nonetheless, logicDT seems to 

Table 3   Dimensions of the 24 
real data sets used for evaluating 
logicDT and the comparable 
methods

n denotes the sample size and p the number of input variables in the 
respective data set. n1 and n0 denote the numbers of observations with 
Y = 1 and Y = 0 , respectively, since binary outcomes are considered

Data set n p n1 n0

anneal 812 93 625 187
audiology 216 148 57 159
australian-credit 653 125 357 296
breast-wisconsin 683 120 444 239
diabetes 768 112 500 268
german-credit 1000 112 700 300
heart-cleveland 296 95 160 136
hepatitis 137 68 111 26
hypothyroid 3247 88 2970 277
ionosphere 351 445 225 126
kr-vs-kp 3196 73 1669 1527
letter 20,000 224 813 19,187
lymph 148 68 81 67
mushroom 8124 119 4208 3916
pendigits 7494 216 780 6714
primary-tumor 336 31 82 254
segment 2310 235 330 1980
soybean 630 50 92 538
splice-1 3190 287 1655 1535
tic-tac-toe 958 27 626 332
vehicle 846 252 218 628
vote 435 48 267 168
yeast 1484 89 463 1021
zoo-1 101 36 41 60
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vehicle vote yeast zoo−1

segment soybean splice−1 tic−tac−toe

lymph mushroom pendigits primary−tumor

hypothyroid ionosphere kr−vs−kp letter

diabetes german−credit heart−cleveland hepatitis

anneal audiology australian−credit breast−wisconsin
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Fig. 14   Predictive performance of logicDT and the comparable methods in the evaluation of 24 real data 
sets
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be faster than RuleFit. DL8.5 was faster than logicDT in the simulation study. For the 
real data application, DL8.5 was substantially slower than logicDT.

Bagged logicDT models take more time to be evaluated than bagged logic regression 
models. This is, in particular, due to the fact that the hyperparameter optimization for 
logic bagging identified  = 3 with  = 3 as the best setting for the simu-
lation scenario with a binary outcome and an environmental covariable, i.e., a linear 
model involving three predictors, while bagged logicDT fits trees of depth of up to three 
in every greedy search step. This explanation also holds true for the other three sce-
narios and the real data application, since the hyperparameter optimization also yielded 
simpler settings for logic bagging compared to bagged logicDT.

Interaction forests are similarly fast as bagged logicDT and logic bagging in the sim-
ulation study. In the application to the SALIA data, interaction forests are comparably 
fast, since the hyperparameter optimization yielded for the number of randomly drawn 
input variable pairs per split  = 4 , which is smaller than in the considered simu-
lation study scenarios.

Unsurprisingly, for most methods, the computation time increases when also con-
sidering a continuous (environmental) covariable in comparison to not including a 
continuous (environmental) covariable. For some methods, this trend does not seem to 
be true, for example for logic regression, since the mean computation decreases when 
additionally considering a continuous covariable for a continuous outcome. However, 
this phenomenon is presumably caused by the identified hyperparameter setting, which 
is  = 4 with  = 8 for the continuous outcome scenario without a con-
tinuous covariable, corresponding to a rather complex model, and  = 2 with 
 = 3 for the continuous outcome scenario including a continuous covariable, 
corresponding to a rather simple model.

Table 4   Mean model evaluation times in seconds for the simulation study conducted in Sect. 5.1.1 and the 
real data application conducted in Sect. 5.2

The first line of the simulation scenario name corresponds to the considered outcome type (binary or con-
tinuous) and the second line corresponds to whether a continuous environmental covariable was incorpo-
rated (no E or E)

Algorithm Simulation scenario/study

Binary No E Binary E Continuous No E Continuous E SALIA

logicDT 29.334 87.615 12.826 33.414 38.727
logicDT–Bagging 260.063 307.279 82.151 770.853 1960.524
Decision Tree 0.184 0.183 0.184 0.179 0.186
DL8.5 2.907 3.571 – – 700.399
Random Forests 5.704 6.440 6.875 7.133 1.980
Gradient Boosting 3.012 2.901 3.440 3.559 2.434
Logic Regression 27.004 206.816 33.671 22.710 15.803
Logic Bagging 82.584 40.730 57.809 63.202 575.047
MOB – 0.513 – 0.479 –
Interaction Forests 82.682 344.738 322.515 501.945 40.416
RuleFit 77.568 96.647 71.394 78.370 92.420
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Appendix 6: Inner validation

An idea to further robustify logicDT against overfitting might be to separate the decision 
tree fitting and evaluation steps in the search procedure by splitting the available training 
data into independent data sets for these two steps. We refer to this approach as inner vali-
dation, due to validating the states on independent validation data and the fitting procedure 
being nested in an outer validation that evaluates the performance of resulting logicDT 
models for tuning hyperparameters (see Sect.  3.6). This approach is similar to a nested 
cross-validation, which is, however, typically used for estimating unbiased prediction 
errors (see, e.g., Varma & Simon, 2006).

The trained logicDT model should not be heavily depending on the data split used such 
that a k-fold cross-validation approach is employed that randomly splits the training data 
into k approximately equally sized data sets D1,… , Dk . For every j ∈ {1,… , k} , k − 1 of 
these data sets Dj ( j� ∈ {1,… , k}⧵j ) are combined to one data set and used for training the 
decision trees (Line 9 in Algorithm 2) and the remaining data set Dj is used for computing 
the score (Line 10 in Algorithm 2). The total score of the state used to guide the search is 
then obtained by averaging the k scores.

In Fig. 15, the predictive performances of logicDT are summarized that were obtained 
using the aforementioned inner validation approach with 5-fold cross-validation in the sim-
ulation study presented in Sect. 5.1.1. For the binary outcome scenarios, the performance 
is worse compared to standard logicDT. For the continuous outcome scenarios, the perfor-
mance is identical.

The performance loss can presumably be explained by the need to further split the avail-
able training data so that both the tree training step and the score computation step have to 
use less observations as opposed to standard logicDT. Moreover, the inner validation also 
leads to an increased computational burden due to fitting k trees in comparison to fitting a 
single tree in each search iteration. Therefore, the outer validation for hyperparameter opti-
mization seems to be sufficient to balance the amount of underfitting and overfitting.
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Chapter 5

Discussion

5.1 Summary

In this dissertation, tree-based statistical learning methods have been investigated
and developed for constructing GRS with a focus on identifying and modeling
gene–gene and GxE interaction effects.

First, it was evaluated in which situations and how the tree-based methods
random forests and logic regression can be used in place of the standard (internal)
GRS construction procedure employing the elastic net. As could be seen in Chapter
2, random forests with probability estimation trees and ensemble logic regression
(with bagging) achieved in nearly all scenarios—including scenarios in which no
interaction effects are present—superior GRS regarding the association with the
outcome compared to the elastic net. This pattern could not only be observed
in simulation studies but was also confirmed in a real data application to data
from the SALIA study. Hence, it can be concluded that random forests or logic
regression with bagging can be generally used as a substitute to the elastic net for
constructing GRS if the predictive performance shall be maximized.

Next, based on the observation that common GRS-based GxE interaction tests
lose statistical power by dividing the available data set into two disjoint sub data
sets, a novel GxE interaction test has been developed that utilizes bagging and
OOB predictions to avoid these data splits, and therefore, uses the complete data
set for both constructing a GRS model and statistically testing the presence of
a GxE interaction effect. Moreover, it was proposed to employ random forests
as the GRS modeling procedure, as random forests can incorporate gene–gene
interaction effects, induced relatively strongly predictive GRS models in Chap-
ter 2, and already perform relatively well with standard hyperparameter settings
[Probst et al., 2019]. The proposed GxE interaction test as well as established pro-
cedures were evaluated in simulation studies and a real data set from the SALIA
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study. As Chapter 3 showed, both bagging-based GxE interaction tests, that ei-
ther employ random forests or elastic net for GRS construction, are valid statistical
testing procedures and are able to induce a high statistical power in most scenar-
ios. Therefore, it can be concluded that the newly proposed bagging-based GxE
interaction tests should be employed in place of the standard GRS-based test.
Especially if it is suspected that gene–gene interaction effects are involved, the
random-forests-based test should be used that might be directly applied without
extensive hyperparameter tuning.

Finally, going back to the problem of constructing GRS, the downside of the
well-performing methods random forests and logic regression with bagging is the
lack of interpretability, i.e., understanding the fitted GRS model and how pre-
dictions are made. Hence, logicDT, a statistical learning method that constructs
a single decision tree and aims for high predictive performance while maintain-
ing interpretability, has been developed. In contrast to standard decision trees,
logicDT may split on predictors or Boolean conjunctions of predictors and performs
a global stochastic search for the optimal set of splitting variables. By allowing
splits on conjunctions of predictors, logicDT detects and reveals gene–gene inter-
action effects. Moreover, leaf regression models can be fitted for also detecting
and properly modeling GxE interaction effects using an appropriate split detec-
tion mechanism that takes this advanced modeling into account. As could be seen
in Chapter 4, it was proven that logicDT is a strongly consistent statistical learn-
ing procedure, i.e., logicDT asymptotically identifies the true regression function
µ(x) = E[Y | X = x]. Furthermore, logicDT induced high predictive perfor-
mances in comparison to other interpretability-focused procedures in simulation
studies, an application to data from the SALIA study, and additional real data sets
from various application fields. Therefore, logicDT is able to fulfill its objectives
by fitting highly predictive and interpretable classification or regression models
that might be also used in application contexts other than GRS construction.

As could be also seen in Chapter 4, ensemble logicDT (with bagging) can
achieve even higher predictive performances if the true underlying model is com-
plex and consists of many influential predictors. Hence, to obtain an interpretable
machine learning model from this highly predictive ensemble and to quantify spe-
cific genetic effects, an interaction VIM has been also proposed that estimates the
importances of single predictors and interaction effects between predictors. This
interaction VIM first captures the importance of general interactions between pre-
dictors (i.e., if a considered set of predictors interacts in any way considering the
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outcome) and identifies the most plausible Boolean conjunction responsible for this
interaction effect. In principle, the interaction VIM could be used in conjunction
with any supervised statistical learning method and is, thus, not limited to appli-
cations to logicDT models. Moreover, for the considered case of binary predictors,
the logic VIM has been proposed that can be computed particularly fast. The em-
pirical experiments conducted in Chapter 4 also showed that the interaction VIM
yields in conjunction with the logic VIM reasonable estimates for the importances
of predictors.

5.2 Outlook

This work focused on the analysis of SNP selections from genes, pathways, or prior
studies resulting in mid-dimensional problems with not more than a few hundred
SNPs. However, it might be also interesting to model larger SNP selections, e.g., all
genotyped SNPs. This requires computationally efficient methods which becomes
a particularly complex problem if flexible modeling by incorporating interaction
effects is desired. As was shown in Chapter 4, the computational complexity of
logicDT with simulated annealing scales polynomially with the number of predic-
tors. An alternative idea might be to employ gradient boosting with greedily fitted
logicDT models as base learner. Restricting the tree depth to one would lead to
fitting tree stumps that potentially split on interaction terms. Such an ensemble of
simple logicDT models could be interpreted as a linear interaction model in which
effect sizes and interaction effects could be directly read off. Hence, in future work,
this type of ensemble logicDT model could be investigated for its applicability to
high-dimensional problems.

In Chapter 3, a novel GxE interaction testing procedure was presented. In
Chapter 4, logicDT was proposed that can measure the influence of gene–gene in-
teraction effects and model GxE interaction effects. A possible direction of future
research might be to implement statistical testing into logicDT so that it can be
statistically tested if certain SNPs affect the considered outcome or if gene–gene
or GxE interaction effects are present. For assessing marginal SNP effects and
gene–gene interaction effects, an idea might be to estimate the null distribution
of variable importances for unimportant predictors/terms. This could be realized,
e.g., using random permutations as done by Kursa and Rudnicki [2010] or employ-
ing knockoffs [Candès et al., 2018] as proposed by Watson and Wright [2021]. For
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statistically testing the presence of a GxE interaction, it could be utilized that a
GxE interaction is exactly present if the leaf regression models in logicDT differ
more than by their offsets (which can be interpreted as genetic main effects). For
example, a likelihood-ratio test could be carried out for testing a difference in slope
of the environmental variable for different genotypes.

The tree structure of logicDT leads to identifying different phenotype risk mod-
els for different genotypes. These phenotype risk models in the leaves may be
constant or describe influences of non-genetic variables such as environmental ex-
posures or lifestyle indicators. By including potential confounders as additional
covariates in the leaf regression models, estimated effects of environmental risk
factors can be adjusted for confounding. Moreover, as the effects of SNPs might
be confounded as well, e.g., due to population structure [Yashin et al., 2016], the
inclusion of covariates that confound genetic effects could lead to fitting sparser
decision trees by discarding non-causal splits that are only deemed important if no
information about the confounders is included. However, in practice, data of con-
founders might not be available or confounders might be completely unknown. In
this case, one idea might be to consider GLMMs as leaf regression models, where
random effects account for unknown confounders [Listgarten et al., 2010, Sul et al.,
2018]. Hence, logicDT might be investigated and potentially extended for the abil-
ity to control for (known or unknown) confounding effects and to produce causal
models in future research.

All considered analyses put an emphasis on binary (e.g., disease statuses) or
continuous (e.g., quantitative biomarkers) outcomes. In future work, it could
be investigated whether the tree-based methods random forests and logic regres-
sion could be also used for constructing GRS for other outcome types such as
longevity/survival GRS [Timmers et al., 2019, Tesi et al., 2020] or GRS for mul-
tivariate/correlated outcomes [Bahda et al., 2023]. For both random forests and
logic regression, there are versions for survival analysis [Ruczinski et al., 2003,
Ishwaran et al., 2008, Tietz et al., 2019]. However, only for random forests, there
exist so far extensions to multivariate outcomes [see, e.g., Segal and Xiao, 2011].
Moreover, logicDT could be extended to other outcome types similarly to random
forests extensions.

Recently, risk scores have not only been constructed for the genome but also
for other omics types including the transcriptome considering RNA-(ribonucleic
acid)-based risk scores [Alaterre et al., 2021], the proteome considering individual
protein levels [Ganz et al., 2016], and the epigenome considering individual DNA
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methylation states [Hüls and Czamara, 2020]. In contrast to GRS, the predictors
of these alternative risk scores are usually measured on a continuous scale. Thus,
logic regression could no longer be applied to construct these alternative risk scores.
logicDT could be generalized to also consider continuous predictors for splitting
the decision tree by generalizing the interaction notion from Boolean conjunctions
to products of predictors or by considering conjunctions of (binary) decision rules
such as (Xi < a) ∧ (Xj ≥ b). Hence, logicDT could be also potentially used for
constructing the discussed alternative risk scores, possibly integrating multiple risk
factor types into one interpretable model.

For linear regression, estimating interaction effects between predictors at a high
statistical power requires a substantially larger sample size than solely estimating
marginal effects [Gelman et al., 2020]. The same holds true for decision trees,
since they recursively partition the predictor space so that fewer observations fall
into leaves of deeper trees/longer conjunction chains. Moreover, effect sizes of in-
dividual SNPs on the development of complex diseases are usually relatively small
[Stringer et al., 2011]. Hence, for reliably detecting gene–gene or GxE interaction
effects—especially when considering cohort studies and relatively uncommon dis-
eases or uncommon genetic variants, large sample sizes are required. In this work,
data sets with not more than 2000 observations were considered. The analyzed
data sets from the SALIA cohort study had a maximum of 560 observations. In
future studies, it could be investigated whether the conventional tree-based meth-
ods random forests and logic regression and the newly proposed tree-based GxE
interaction test as well as logicDT also perform well compared to standard linear
approaches when considering larger sample sizes. Moreover, the proposed tree-
based methods might be applied to data from (much) larger studies such as the
UK Biobank (n ≈ 500,000) [Sudlow et al., 2015] or the German National Cohort
(NAKO; genetic data not yet available; n ≈ 200,000 planned) [German National
Cohort (GNC) Consortium, 2014] to construct GRS or to detect gene–gene or GxE
interaction effects in the development of considered phenotypes.

5.3 Conclusion

In conclusion, several contributions have been made to improve GRS construction
and applicability in this dissertation. For maximizing the predictive ability of GRS,
tree-based statistical learning methods should be employed. If interpretability is

176



5.3 Conclusion

also crucial, logicDT can be used for obtaining a highly predictive and compre-
hensible GRS model that can also quantify specific genetic effects using the novel
interaction VIM. GxE interaction testing becomes more efficient by employing
bagging in GRS construction, and hence, utilizing all data for both modeling and
statistical testing.
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Appendix A

Software packages

A.1 GRSxE

In the following, the most important functions from the R software package GRSxE
are presented using their manual pages. In the GRSxE package, we have imple-
mented methods for testing GxE interaction effects—including the novel bagging-
based test that was proposed in Chapter 3/Lau et al. [2023]. The GRSxE package
is publicly available on CRAN at https://CRAN.R-project.org/package=GRSxE
[Lau, 2023].

Package: GRSxE
Title: Testing Gene-Environment Interactions Through Genetic

Risk Scores
Version: 1.0.1
Description: Statistical testing procedures for detecting GxE (gene-

environment) interactions. The main focus lies on GRSxE
interaction tests that aim at detecting GxE interactions
through GRS (genetic risk scores). Moreover, a novel test-
ing procedure based on bagging and OOB (out-of-bag) pre-
dictions is implemented for incorporating all available ob-
servations at both GRS construction and GxE testing [Lau
et al., 2023].

License: MIT
Imports: glmnet, ranger, stats, utils
Author: Michael Lau [aut, cre]

<https://orcid.org/0000-0002-5327-8351>
Maintainer: Michael Lau <michael.lau@hhu.de>
Repository: CRAN
Date/Publication: 2023-10-30 14:00:05 UTC
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GRSxE Testing gene-environment interactions

Description

Fitting and evaluating GRS (genetic risk scores) for testing the presence of
GxE (gene-environment) interactions.

Usage

GRSxE(
X,
y,
E,
C = NULL,
test.type = "bagging",
B = 500,
replace = TRUE,
subsample = ifelse(replace, 1, 0.632),
test.ind = sample(nrow(X), floor(nrow(X)/2)),
grs.type = "rf",
grs.args = list()

)

Arguments

X Matrix or data frame of genetic variables such as SNPs usually
coded as 0-1-2.

y Numeric vector of the outcome/phenotype. Binary outcomes
such as a disease status should be coded as 0-1 (control-case).

E Numeric vector of the environmental exposure.

C Optional data frame containing potentially confounding vari-
ables to be adjusted for.

test.type Testing type. The standard setting is "bagging", which em-
ploys its OOB (out-of-bag) prediction mechanism such that the
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full data can be used for both training the GRS and testing the
GxE interaction. Alternatively, this can be set to "holdout",
which requires splitting the available data into a training data
set and test data set. For that, test.ind needs to be set to the
data indices used for testing.

B The number of bagging iterations if test.type = "bagging" is
used. Also used as the number of trees grown in the random
forest if grs.type = "rf" is set.

replace Should sampling with or without replacement be performed?
Only used if test.type = "bagging" is set.

subsample Subsample fraction if test.type = "bagging" is used.

test.ind Vector of indices in the supplied data for testing the GxE in-
teraction. Only used if test.type = "holdout" is set. The
standard setting corresponds to a random 50:50 training-test
split.

grs.type Type of GRS to be constructed. Either "rf" for a random
forest or "elnet" for an elastic net.

grs.args Optional list of arguments passed to the GRS fitting procedure.

Details

The GRS is usually constructed through random forests for taking gene-gene
interactions into account and using its OOB (out-of-bag) prediction mecha-
nism. Alternatively, a classical GRS construction approach can be employed
by fitting an elastic net. Bagging can also be applied to fit multiple elastic net
models to also be able to perform OOB predictions.

The advantage of OOB predictions is that they allow the GRS model to be
constructed on the full available data, while performing unbiased predictions
also on the full available data. Thus, both the GRS construction and the GxE
interaction testing can utilize all observations.

If desired, sampling can be performed without replacement in contrast to the
classical bagging approach that utilizes bootstrap sampling.

Potentially confounding variables can also be supplied that will then be ad-
justed for in the GxE interaction testing.
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This function uses a GLM (generalized linear model) for modelling the marginal
genetic effect, marginal environmental effect, the GRSxE interaction effect,
and potential confounding effects. The fitted GLM is returned, which can be,
e.g., inspected via summary(...) to retrieve the Wald test p-values for the
individual terms. The p-value corresponding to the G:E term is the p-value for
testing the presence of a GRSxE interaction.

Value

An object of class glm is returned, in which G:E describes the GRSxE term.

References

• Lau, M., Kress, S., Schikowski, T. & Schwender, H. (2023). Efficient gene–
environment interaction testing through bootstrap aggregating. Scientific
Reports 13:937. doi:10.1038/s41598-023-28172-4

• Lau, M., Wigmann C., Kress S., Schikowski, T. & Schwender, H. (2022).
Evaluation of tree-based statistical learning methods for constructing ge-
netic risk scores. BMC Bioinformatics 23:97. doi:10.1186/s12859-022-
04634-w

• Breiman, L. (1996). Bagging predictors. Machine Learning 24:123–140.
doi:10.1007/BF00058655

• Breiman, L. (2001). Random Forests. Machine Learning 45:5–32.
doi:10.1023/A:1010933404324

• Friedman J., Hastie T. & Tibshirani R. (2010). Regularization Paths for
Generalized Linear Models via Coordinate Descent. Journal of Statistical
Software 33(1):1–22. doi:10.18637/jss.v033.i01

Examples

# Generate toy data

set.seed(101299)

maf <- 0.25

n.snps <- 10

N <- 500

X <- matrix(sample(0:2, n.snps * N, replace = TRUE,

prob = c((1-maf)^2, 1-(1-maf)^2-maf^2, maf^2)),
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ncol = n.snps)

colnames(X) <- paste("SNP", 1:n.snps, sep="")

E <- rnorm(N, 20, 10)

E[E < 0] <- 0

# Generate outcome with a GxE interaction

y.GxE <- -0.75 + log(2) * (X[,"SNP1"] != 0) +

log(4) * E/20 * (X[,"SNP2"] != 0 & X[,"SNP3"] == 0) +

rnorm(N, 0, 2)

# Test for GxE interaction (Wald test for G:E)

summary(GRSxE(X, y.GxE, E))

# Generate outcome without a GxE interaction

y.no.GxE <- -0.75 + log(2) * (X[,"SNP1"] != 0) +

log(4) * E/20 + log(4) * (X[,"SNP2"] != 0 & X[,"SNP3"] == 0) +

rnorm(N, 0, 2)

# Test for GxE interaction (Wald test for G:E)

summary(GRSxE(X, y.no.GxE, E))

GxE Testing individual gene-environment interactions

Description

Function for testing univariate GxE interactions, e.g., using single SNPs or a
GRS.

Usage

GxE(G, y, E, C = NULL)

Arguments

G Numeric vector of a genetic variable such as a GRS (genetic
risk score) or a SNP coded as 0-1-2.

y Numeric vector of the outcome/phenotype. Binary outcomes
such as a disease status should be coded as 0-1 (control-case).
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E Numeric vector of the environmental exposure.

C Optional data frame containing potentially confounding vari-
ables to be adjusted for.

Details

This function uses a GLM (generalized linear model) for modelling the marginal
genetic effect, marginal environmental effect, the GxE interaction effect, and
potential confounding effects. The fitted GLM is returned, which can be, e.g.,
inspected via summary(...) to retrieve the Wald test p-values for the individ-
ual terms. The p-value corresponding to the G:E term is the p-value for testing
the presence of a GxE interaction.

Value

An object of class glm is returned, in which G:E describes the GxE term.

References

• Lau, M., Kress, S., Schikowski, T. & Schwender, H. (2023). Efficient gene–
environment interaction testing through bootstrap aggregating. Scientific
Reports 13:937. doi:10.1038/s41598-023-28172-4
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A.2 logicDT

In the following, the most important functions from the R software package logicDT
are presented using their manual pages. In the logicDT package, we have imple-
mented the statistical learning procedure logicDT and the novel interaction VIM
that were both proposed in Chapter 4/Lau et al. [2024]. The logicDT package is
publicly available on CRAN at https://CRAN.R-project.org/package=logicDT
[Lau, 2024].

Package: logicDT
Title: Identifying Interactions Between Binary Predictors
Version: 1.0.4
Description: A statistical learning method that tries to find the best set

of predictors and interactions between predictors for mod-
eling binary or quantitative response data in a decision
tree. Several search algorithms and ensembling techniques
are implemented allowing for finetuning the method to the
specific problem. Interactions with quantitative covariables
can be properly taken into account by fitting local regres-
sion models. Moreover, a variable importance measure for
assessing marginal and interaction effects is provided. Im-
plements the procedures proposed by Lau et al. [2024].

License: MIT
Imports: glmnet, graphics, stats, utils
Author: Michael Lau [aut, cre]

<https://orcid.org/0000-0002-5327-8351>
Maintainer: Michael Lau <michael.lau@hhu.de>
Repository: CRAN
Date/Publication: 2024-01-19 13:10:02 UTC
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calcAUC Fast computation of the AUC w.r.t. to the ROC

Description

This function computes the area under the receiver operating characteristic
curve.

Usage

calcAUC(preds, y, fast = TRUE, sorted = FALSE)

Arguments

preds Numeric vector of predicted scores

y True binary outcomes coded as 0 or 1. Must be an integer
vector.

fast Shall the computation be as fast as possible?

sorted Are the predicted scores already sorted increasingly? If so, this
can slightly speed up the computation.

Value

The AUC between 0 and 1

calcNRMSE Calculate the NRMSE

Description

Computation of the normalized root mean squared error.

Usage

calcNRMSE(preds, y, type = "sd")
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Arguments

preds Numeric vector of predictions

y True outcomes

type "sd" uses the standard deviation of y for normalization. "range"
uses the whole span of y.

Value

The NRMSE

cooling.schedule Define the cooling schedule for simulated annealing

Description

This function should be used to configure a search with simulated annealing.

Usage

cooling.schedule(
type = "adaptive",
start_temp = 1,
end_temp = -1,
lambda = 0.01,
total_iter = 2e+05,
markov_iter = 1000,
markov_leave_frac = 1,
acc_type = "probabilistic",
frozen_def = "acc",
frozen_acc_frac = 0.01,
frozen_markov_count = 5,
frozen_markov_mode = "total",
start_temp_steps = 10000,
start_acc_ratio = 0.95,
auto_start_temp = TRUE,
remember_models = TRUE,
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print_iter = 1000
)

Arguments

type Type of cooling schedule. "adaptive" (default) or "geometric"

start_temp Start temperature on a log10 scale. Only used if auto_start_temp
= FALSE.

end_temp End temperature on a log10 scale. Only used if type = "geometric".

lambda Cooling parameter for the adaptive schedule. Values between
0.01 and 0.1 are recommended such that in total, several hun-
dred thousand iterations are performed. Lower values lead to a
more fine search with more iterations while higher values lead
to a more coarse search with less total iterations.

total_iter Total number of iterations that should be performed. Only used
for the geometric cooling schedule.

markov_iter Number of iterations for each Markov chain. The standard
value does not need to be tuned, since the temperature steps
and number of iterations per chain act complementary to each
other, i.e., less iterations can be compensated by smaller tem-
perature steps.

markov_leave_frac
Fraction of accepted moves leading to an early temperature
reduction. This is primarily used at (too) high temperatures
lowering the temperature if essentially a random walk is per-
formed. E.g., a value of 0.5 together with markov_iter = 1000
means that the chain will be left if 0.5 · 1000 = 500 states were
accepted in a single chain.

acc_type Type of acceptance function. The standard "probabilistic"
uses the conventional function exp((Scoreold − Scorenew)/t) for
calculating the acceptance probability. "deterministic" ac-
cepts the new state, if and only if Scorenew − Scoreold < t.

frozen_def How to define a frozen chain. "acc" means that if less than
frozen_acc_frac · markov_iter states with different scores
were accepted in a single chain, this chain is marked as frozen.
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"sd" declares a chain as frozen if the corresponding score stan-
dard deviation is zero. Several frozen chains indicate that the
search is finished.

frozen_acc_frac
If frozen_def = "acc", this parameter determines the fraction
of iterations that define a frozen chain.

frozen_markov_count
Number of frozen chains that need to be observed for finishing
the search.

frozen_markov_mode
Do the frozen chains have to occur consecutively ("consecutive")
or is the total number of frozen chains relevant ("total")?

start_temp_steps
Number of iterations that should be used for estimating the
ideal start temperature if auto_start_temp = TRUE is set.

start_acc_ratio
Acceptance ratio that should be achieved with the automati-
cally configured start temperature.

auto_start_temp
Should the start temperature be configured automatically? TRUE
or FALSE

remember_models
Should already evaluated models be saved in a 2-dimensional
hash table to prevent fitting the same trees multiple times?

print_iter Number of iterations after which a progress report shall be
printed.

Details

type = "adapative" (default) automatically choses the temperature steps by
using the standard deviation of the scores in a Markov chain together with
the current temperature to evaluate if equilibrium is achieved. If the standard
deviation is small or the temperature is high, equilibrium can be assumed
leading to a strong temperature reduction. Otherwise, the temperature is
only merely lowered. The parameter lambda is essential to control how fast
the schedule will be executed and, thus, how many total iterations will be
performed.
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type = "geometric" is the conventional approach which requires more fine-
tuning. Here, temperatures are uniformly lowered on a log10 scale. Thus, a
start and an end temperature have to be supplied.

Value

An object of class cooling.schedule which is a list of all necessary cooling
parameters.

getDesignMatrix Design matrix for the set of conjunctions

Description

Transform the original predictor matrix X into the conjunction design matrix
which contains for each conjunction a corresponding column.

Usage

getDesignMatrix(X, disj)

Arguments

X The original (binary) predictor matrix. This has to be of type
integer.

disj The conjunction matrix which can, e.g., be extracted from a
fitted logicDT model via $disj.

Value

The transformed design matrix.
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logicDT Fitting logic decision trees

Description

Main function for fitting logicDT models.

Usage

## Default S3 method:
logicDT(

X,
y,
max_vars = 3,
max_conj = 3,
Z = NULL,
search_algo = "sa",
cooling_schedule = cooling.schedule(),
scoring_rule = "auc",
tree_control = tree.control(),
gamma = 0,
simplify = "vars",
val_method = "none",
val_frac = 0.5,
val_reps = 10,
allow_conj_removal = TRUE,
conjsize = 1,
randomize_greedy = FALSE,
greedy_mod = TRUE,
greedy_rem = FALSE,
max_gen = 10000,
gp_sigma = 0.15,
gp_fs_interval = 1,
...

)
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## S3 method for class 'formula'
logicDT(formula, data, ...)

Arguments

X Matrix or data frame of binary predictors coded as 0 or 1.

y Response vector. 0-1 coding for binary responses. Otherwise, a
regression task is assumed.

max_vars Maximum number of predictors in the set of predictors. For the
set [X1 ∧ Xc

2, X1 ∧ X3], this parameter is equal to 4.

max_conj Maximum number of conjunctions/input variables for the de-
cision trees. For the set [X1 ∧ Xc

2, X1 ∧ X3], this parameter is
equal to 2.

Z Optional matrix or data frame of quantitative/continuous co-
variables. Multiple covariables allowed for splitting the trees. If
leaf regression models (such as four parameter logistic models)
shall be fitted, only the first given covariable is used.

search_algo Search algorithm for guiding the global search. This can either
be "sa" for simulated annealing, "greedy" for a greedy search
or "gp" for genetic programming.

cooling_schedule
Cooling schedule parameters if simulated annealing is used. The
required object should be created via the function cooling.schedule.

scoring_rule
Scoring rule for guiding the global search. This can either
be "auc" for the area under the receiver operating character-
istic curve (default for binary reponses), "deviance" for the
deviance, "nce" for the normalized cross entropy or "brier"
for the Brier score. For regression purposes, the MSE (mean
squared error) is automatically chosen.

tree_control
Parameters controlling the fitting of decision trees. This should
be configured via the function tree.control.

gamma Complexity penalty added to the score. If gamma > 0 is given,
gamma · ||m||0 is added to the score with ||m||0 being the total
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number of variables contained in the current model m. The
main purpose of this penalty is for fitting logicDT stumps in
conjunction with boosting. For regular logicDT models or bagged
logicDT models, instead, the model complexity parameters max_vars
and max_conj should be tuned.

simplify Should the final fitted model be simplified? This means, that
unnecessary terms as a whole ("conj") will be removed if they
cannot improve the score. simplify = "vars" additionally tries
to prune individual conjunctions by removing unnecessary vari-
ables in those. simplify = "none" will not modify the final
model.

val_method Inner validation method. "rv" leads to a repeated validation
where val_reps times the original data set is divided into val_frac·
100% validation data and (1 − val_frac) · 100% training data.
"bootstrap" draws bootstrap samples and uses the out-of-bag
data as validation data. "cv" employs cross-validation with
val_reps folds.

val_frac Only used if val_method = "rv". See description of val_method.

val_reps Number of inner validation partitionings.
allow_conj_removal

Should it be allowed to remove complete terms/conjunctions
in the search? If a model with the specified exact number of
terms is desired, this should be set to FALSE. If extensive hy-
perparameter optimizations are feasible, allow_conj_removal
= FALSE with a proper search over max_vars and max_conj is
advised for fitting single models. For bagging or boosting with
a greedy search, allow_conj_removal = TRUE together with a
small number for max_vars = max_conj is recommended, e.g.,
2 or 3.

conjsize The minimum of training samples that have to belong to a
conjunction. This parameters prevents including unnecessarily
complex conjunctions that rarely occur.

randomize_greedy
Should the greedy search be randomized by only considering
√

Neighbour states neighbors at each iteration, similar to ran-
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dom forests. Speeds up the greedy search but can lead to infe-
rior results.

greedy_mod Should modifications of conjunctions be considered in a greedy
search? greedy_mod = FALSE speeds up the greedy search but
can lead to inferior results.

greedy_rem Should the removal of conjunctions be considered in a greedy
search? greedy_rem = FALSE speeds up the greedy search but
can lead to inferior results.

max_gen Maximum number of generations for genetic programming.

gp_sigma Parameter σ for fitness sharing in genetic programming. Very
small values (e.g., 0.001) are recommended leading to only pe-
nalizing models which yield the exact same score.

gp_fs_interval
Interval for fitness sharing in genetic programming. The fitness
calculation can be computationally expensive if many models
exist in one generation. gp_fs_interval = 10 leads to per-
forming fitness sharing only every 10th generation.

... Arguments passed to logicDT.default

formula An object of type formula describing the model to be fitted.

data A data frame containing the data for the corresponding formula
object. Must also contain quantitative covariables if they should
be included as well.

Details

logicDT is a method for finding response-associated interactions between binary
predictors. A global search for the best set of predictors and interactions
between predictors is performed trying to find the global optimal decision trees.
On the one hand, this can be seen as a variable selection. On the other hand,
Boolean conjunctions between binary predictors can be identified as impactful
which is particularly useful if the corresponding marginal effects are negligible
due to the greedy fashion of choosing splits in decision trees.

Three search algorithms are implemented:

• Simulated annealing. An exhaustive stochastic optimization procedure.
Recommended for single models (without [outer] bagging or boosting).
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• Greedy search. A very fast search always looking for the best possible
improvement. Recommended for ensemble models.

• Genetic programming. A more or less intensive search holding several
competetive models at each generation. Niche method which is only rec-
ommended if multiple (simple) models do explain the variation in the
response.

Furthermore, the option of a so-called "inner validation" is available. Here,
the search is guided using several train-validation-splits and the average of the
validation performance. This approach is computationally expensive but can
lead to more robust single models.

For minimizing the computation time, two-dimensional hash tables are used
saving evaluated models. This is irrelevant for the greedy search but can heavily
improve the fitting times when employing a search with simulated annealing
or genetic programming, especially when choosing an inner validation.

Value

An object of class logicDT. This is a list containing

disj A matrix of the identified set of predictors and conjunctions
of predictors. Each row corresponds to one term. Each entry
corresponds to the column index in X. Negative values indicate
negations. Missing values mean that the term does not contain
any more variables.

real_disj Human readable form of disj. Here, variable names are di-
rectly depicted.

score Score of the best model. Smaller values are prefered.

pet Decision tree fitted on the best set of input terms. This is a list
containing the pointer to the C representation of the tree and
R representations of the tree structure such as the splits and
predictions.

ensemble List of decision trees. Only relevant if inner validation was used.

total_iter The total number of search iterations, i.e., tested configurations
by fitting a tree (ensemble) and evaluating it.
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prevented_evals
The number of prevented tree fittings by using the two-dimensional
hash table.

... Supplied parameters of the functional call to logicDT.

Saving and Loading

logicDT models can be saved and loaded using save(...) and load(...). The
internal C structures will not be saved but rebuilt from the R representations if
necessary.

References

• Lau, M., Schikowski, T. & Schwender, H. (2024). logicDT: A procedure
for identifying response-associated interactions between binary predictors.
Machine Learning 113(2):933–992. doi:10.1007/s10994-023-06488-6

• Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. (1984). Classifi-
cation and Regression Trees. CRC Press. doi:10.1201/9781315139470

• Kirkpatrick, S., Gelatt C. D. & Vecchi M. P. (1983). Optimization by
Simulated Annealing. Science 220(4598):671–680.
doi:10.1126/science.220.4598.671

Examples

# Generate toy data

set.seed(123)

maf <- 0.25

n.snps <- 50

N <- 2000

X <- matrix(sample(0:2, n.snps * N, replace = TRUE,

prob = c((1-maf)^2, 1-(1-maf)^2-maf^2, maf^2)),

ncol = n.snps)

colnames(X) <- paste("SNP", 1:n.snps, sep="")

X <- splitSNPs(X)

Z <- matrix(rnorm(N, 20, 10), ncol = 1)

colnames(Z) <- "E"

Z[Z < 0] <- 0

y <- -0.75 + log(2) * (X[,"SNP1D"] != 0) +
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log(4) * Z/20 * (X[,"SNP2D"] != 0 & X[,"SNP3D"] == 0) +

rnorm(N, 0, 1)

# Fit and evaluate single logicDT model

model <- logicDT(X[1:(N/2),], y[1:(N/2)],

Z = Z[1:(N/2),,drop=FALSE],

max_vars = 3, max_conj = 2,

search_algo = "sa",

tree_control = tree.control(

nodesize = floor(0.05 * nrow(X)/2)

),

simplify = "vars",

allow_conj_removal = FALSE,

conjsize = floor(0.05 * nrow(X)/2))

calcNRMSE(predict(model, X[(N/2+1):N,],

Z = Z[(N/2+1):N,,drop=FALSE]), y[(N/2+1):N])

plot(model)

print(model)

# Fit and evaluate bagged logicDT model

model.bagged <- logicDT.bagging(X[1:(N/2),], y[1:(N/2)],

Z = Z[1:(N/2),,drop=FALSE],

bagging.iter = 50,

max_vars = 3, max_conj = 3,

search_algo = "greedy",

tree_control = tree.control(

nodesize = floor(0.05 * nrow(X)/2)

),

simplify = "vars",

conjsize = floor(0.05 * nrow(X)/2))

calcNRMSE(predict(model.bagged, X[(N/2+1):N,],

Z = Z[(N/2+1):N,,drop=FALSE]), y[(N/2+1):N])

print(model.bagged)

# Fit and evaluate boosted logicDT model

model.boosted <- logicDT.boosting(X[1:(N/2),], y[1:(N/2)],

Z = Z[1:(N/2),,drop=FALSE],
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boosting.iter = 50,

learning.rate = 0.01,

subsample.frac = 0.75,

replace = FALSE,

max_vars = 3, max_conj = 3,

search_algo = "greedy",

tree_control = tree.control(

nodesize = floor(0.05 * nrow(X)/2)

),

simplify = "vars",

conjsize = floor(0.05 * nrow(X)/2))

calcNRMSE(predict(model.boosted, X[(N/2+1):N,],

Z = Z[(N/2+1):N,,drop=FALSE]), y[(N/2+1):N])

print(model.boosted)

# Calculate VIMs (variable importance measures)

vims <- vim(model.bagged)

plot(vims)

print(vims)

# Single greedy model

model <- logicDT(X[1:(N/2),], y[1:(N/2)],

Z = Z[1:(N/2),,drop=FALSE],

max_vars = 3, max_conj = 2,

search_algo = "greedy",

tree_control = tree.control(

nodesize = floor(0.05 * nrow(X)/2)

),

simplify = "vars",

allow_conj_removal = FALSE,

conjsize = floor(0.05 * nrow(X)/2))

calcNRMSE(predict(model, X[(N/2+1):N,],

Z = Z[(N/2+1):N,,drop=FALSE]), y[(N/2+1):N])

plot(model)

print(model)
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logicDT.bagging Fitting bagged logicDT models

Description

Function for fitting bagged logicDT models.

Usage

## Default S3 method:
logicDT.bagging(X, y, Z = NULL, bagging.iter = 500, ...)

## S3 method for class 'formula'
logicDT.bagging(formula, data, ...)

Arguments

X Matrix or data frame of binary predictors coded as 0 or 1.

y Response vector. 0-1 coding for binary responses. Otherwise, a
regression task is assumed.

Z Optional matrix or data frame of quantitative/continuous co-
variables. Multiple covariables allowed for splitting the trees. If
leaf regression models (such as four parameter logistic models)
shall be fitted, only the first given covariable is used.

bagging.iter
Number of bagging iterations

... Arguments passed to logicDT

formula An object of type formula describing the model to be fitted.

data A data frame containing the data for the corresponding formula
object. Must also contain quantitative covariables if they should
be included as well.

Details

Details on single logicDT models can be found in logicDT.
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Value

An object of class logic.bagged. This is a list containing

models A list of fitted logicDT models

bags A list of observation indices which were used to train each model

... Supplied parameters of the functional call to logicDT.bagging.

plot.logicDT Plot a logic decision tree

Description

This function plots a logicDT model on the active graphics device.

Usage

fancy.plot(x, cdot = FALSE, ...)

## S3 method for class 'logicDT'
plot(

x,
fancy = TRUE,
x_scaler = 0.5,
margin_scaler = 0.2,
cex = 1,
cdot = FALSE,
...

)

Arguments

x An object of the class logicDT

cdot Should a centered dot be used instead of a logical and for de-
picting interactions?

... Arguments passed to fancy plotting function
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fancy Should the fancy mode be used for plotting? Default is TRUE.

x_scaler Scaling factor on the horizontal axis for deeper trees, i.e., x_scaler
= 0.5 means that the horizontal distance between two adjacent
nodes is halved for every vertical level.

margin_scaler
Margin factor. Smaller values lead to smaller margins.

cex Scaling factor for the plotted text elements.

Details

There are two plotting modes:

• fancy = FALSE which draws a tree with direct edges between the nodes.
Leaves are represented by their prediction value which is obtained by the
(observed) conditional mean.

• fancy = TRUE plots a tree similar to those in the rpart (Therneau and
Atkinson, 2019) and splinetree (Neufeld and Heggeseth, 2019) R pack-
ages. The trees are drawn in an angular manner and if leaf regression
models were fitted, appropriate plots of the fitted curves are depicted in
the leaves. Otherwise, the usual prediction values are shown.

Value

No return value, called for side effects

References

• Therneau, T. & Atkinson, B. (2019). rpart: Recursive Partitioning and
Regression Trees. https://CRAN.R-project.org/package=rpart

• Neufeld, A. & Heggeseth, B. (2019). splinetree: Longitudinal Regression
Trees and Forests. https://CRAN.R-project.org/package=splinetree
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predict.logicDT Prediction for logicDT models

Description

Supply new input data for predicting the outcome with a fitted logicDT model.

Usage

## S3 method for class 'logic.bagged'
predict(object, X, Z = NULL, type = "prob", ...)

## S3 method for class 'logic.boosted'
predict(object, X, Z = NULL, type = "prob", ...)

## S3 method for class 'logicDT'
predict(

object,
X,
Z = NULL,
type = "prob",
ensemble = FALSE,
leaves = "4pl",
...

)

## S3 method for class 'genetic.logicDT'
predict(

object,
X,
Z = NULL,
models = "best",
n_models = 10,
ensemble = NULL,
leaves = "4pl",
...

)
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Arguments

object Fitted logicDT model. Usually a product of a call to logicDT.

X Matrix or data frame of binary input data. This object should
correspond to the binary matrix for fitting the model.

Z Optional quantitative covariables supplied as a matrix or data
frame. Only used (and required) if the model was fitted using
them.

type Prediction type. This can either be "prob" for probability esti-
mates or "class" for (hard) classification of binary responses.
Ignored for regression.

... Parameters supplied to predict.logicDT

ensemble If the model was fitted using the inner validation approach, shall
the prediction be constructed using the final validated ensemble
(TRUE) or using the single final tree (FALSE)?

leaves If leaf regression models (such as four parameter logistic mod-
els) were fitted, shall these models be used for the prediction
("4pl") or shall the constant leaf means be used ("constant")?

models Which logicDT models fitted via genetic programming shall be
used for prediction? "best" leads to the single best model
in the final generation, "all" uses the average over the final
generation and "n_models" uses the n_models best models.

n_models How many models shall be used if models = "n_models" and
genetic programming was employed?

Value

A numeric vector of predictions. For binary outcomes, this is a vector with
estimates for P (Y = 1 | X = x).

202



A.2 logicDT

splitSNPs Split biallelic SNPs into binary variables

Description

This function takes a matrix or data frame of SNPs coded as 0, 1, 2 or 1, 2,
3 and returns a data frame with twice as many columns. SNPs are splitted
into dominant and recessive modes, i.e., for a SNP ∈ {0, 1, 2}, two variables
SNPD = (SNP ̸= 0) and SNPR = (SNP = 2) are generated.

Usage

splitSNPs(data)

Arguments

data A matrix or data frame only consisting of SNPs to be splitted

Value

A data frame of the splitted SNPs

tree.control Control parameters for fitting decision trees

Description

Configure the fitting process of individual decision trees.

Usage

tree.control(
nodesize = 10,
split_criterion = "gini",
alpha = 0.05,
cp = 0.001,
smoothing = "none",
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mtry = "none",
covariable = "final_4pl"

)

Arguments

nodesize Minimum number of samples contained in a terminal node.
This parameter ensures that enough samples are available for
performing predictions which includes fitting regression models
such as 4pL models.

split_criterion
Splitting criterion for deciding when and how to split. The de-
fault is "gini"/"mse" which utilizes the Gini splitting criterion
for binary risk estimation tasks and the mean squared error
as impurity measure in regression tasks. Alternatively, "4pl"
can be used if a quantitative covariable is supplied and the
parameter covariable is chosen such that 4pL model fitting
is enabled, i.e., covariable = "final_4pl" or covariable =
"full_4pl". A fast modeling alternative is given by "linear"
which also requires the parameter covariable to be properly
chosen, i.e., covariable = "final_linear" or covariable =
"full_linear".

alpha Significance threshold for the likelihood ratio tests when us-
ing split_criterion = "4pl" or "linear". Only splits that
achieve a p-value smaller than alpha are eligible.

cp Complexity parameter. This parameter determines by which
amount the impurity has to be reduced to further split a node.
Here, the total tree impurity is considered. See details for a
specific formula. Only used if split_criterion = "gini" or
"mse".

smoothing Shall the leaf predictions for risk estimation be smoothed? "laplace"
yields Laplace smoothing. The default is "none" which does not
employ smoothing.

mtry Shall the tree fitting process be randomized as in random forests?
Currently, only "sqrt" for using √

p random predictors at each

204



A.2 logicDT

node for splitting and "none" (default) for fitting conventional
decision trees are supported.

covariable How shall optional quantitative covariables be handled? "constant"
ignores them. Alternatively, they can be considered as split-
ting variables ("_split"), used for fitting 4pL models in each
leaf ("_4pl"), or used for fitting linear models in each leaf
("_linear"). If either splitting or model fitting is chosen, one
should state if this should be handled over the whole search
("full_", computationally expensive) or just the final trees
("final_"). Thus, "final_4pl" would lead to fitting 4pL mod-
els in each leaf but only for the final tree fitting.

Details

For the Gini or MSE splitting criterion, if any considered split s leads to

P (t) · ∆I(s, t) > cp

for a node t, the empirical node probability P (t) and the impurity reduction
∆I(s, t), then the node is further splitted. If not, the node is declared as a leaf.
For continuous outcomes, cp will be scaled by the empirical variance of y to
ensure the right scaling, i.e., cp <-cp * var(y). Since the impurity measure
for continuous outcomes is the mean squared error, this can be interpreted
as controlling the minimum reduction of the normalized mean squared error
(NRMSE to the power of two).

If one chooses the 4pL or linear splitting criterion, likelihood ratio tests testing
the alternative of better fitting individual models are employed. The corre-
sponding test statistic asymptotically follows a χ2 distribution where the de-
grees of freedom are given by the difference in the number of model parameters,
i.e., leading to 2 · 4 − 4 = 4 degrees of freedom in the case of 4pL models and
to 2 · 2 − 2 = 2 degrees of freedom in the case of linear models.

For binary outcomes, choosing to fit linear models for evaluating the splits
or for modeling the leaves actually leads to fitting LDA (linear discriminant
analysis) models.
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Value

An object of class tree.control which is a list of all necessary tree parameters.

vim Variable Importance Measures (VIMs)

Description

Calculate variable importance measures (VIMs) based on different approaches.

Usage

vim(
model,
scoring_rule = "auc",
vim_type = "logic",
adjust = TRUE,
interaction_order = 3,
nodesize = NULL,
alpha = 0.05,
X_oob = NULL,
y_oob = NULL,
Z_oob = NULL,
leaves = "4pl",
...

)

Arguments

model The fitted logicDT or logic.bagged model
scoring_rule

The scoring rule for assessing the model performance. As in
logicDT, "auc", "nce", "deviance" and "brier" are possible
for binary outcomes. For regression, the mean squared error is
used.
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vim_type The type of VIM to be calculated. This can either be "logic",
"remove" or "permutation". See below for details.

adjust Shall adjusted interaction VIMs be additionally (to the VIMs
of identified terms) computed? See below for details.

interaction_order
If adjust = TRUE, up to which interaction order shall adjusted
interaction VIMs be computed?

nodesize If adjust = TRUE, how many observations need to be discrim-
inated by an interaction in order to being considered? Similar
to conjsize in logicDT and nodesize in tree.control.

alpha If adjust = TRUE, a further adjustment can be performed trying
to identify the specific conjunctions responsible for the interac-
tion of the considered binary predictors. alpha specifies the
significance level for statistical tests testing the alternative of a
difference in the response for specific conjunctions. alpha = 0
leads to no further adjustment. See below for details.

X_oob The predictor data which should be used for calculating the
VIMs. Preferably some type of validation data independent of
the training data.

y_oob The outcome data for computing the VIMs. Preferably some
type of validation data independent of the training data.

Z_oob The optional covariable data for computing the VIMs. Prefer-
ably some type of validation data independent of the training
data.

leaves The prediction mode if regression models (such as 4pL models)
were fitted in the leaves. As in predict.logicDT, "4pl" and
"constant" are the possible settings.

... Parameters passed to the different VIM type functions. For
vim_type = "logic", the argument average can be specified as
"before" or "after". For vim_type = "permutation", n.perm
can be set to the number of random permutations. For vim_type
= "remove", empty.model can be specified as either "none"
ignoring empty models with all predictive terms removed or
"mean" using the response mean as prediction in the case of an
empty model. See below for details.
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Details

Three different VIM methods are implemented:

• Permutation VIMs: Random permutations of the respective identified
logic terms

• Removal VIMs: Removing single logic terms

• Logic VIMs: Prediction with both possible outcomes of a logic term

Details on the calculation of these VIMs are given below.

By variable importance, importance of identified logic terms is meant. These
terms can be single predictors or conjunctions between predictors in the spirit
of this software package.

Value

A data frame with two columns:

var Short descriptions of the terms for which the importance was
measured. For example -X1^X2 for Xc

1 ∧ X2.

vim The actual calculated VIM values.

The rows of such a data frame are sorted decreasingly by the VIM values.

Permutation VIMs (Breiman & Cutler, 2003)

Permutation VIMs are computed by comparing the the model’s performance
using the original data and data with random permutations of single terms.

Removal VIMs

Removal VIMs are constructed by removing specific logic terms from the set
of predictors, refitting the decision tree and comparing the performance to
the original model. Thus, this approach requires that at least two terms were
found by the algorithm. Therefore, no VIM will be calculated if empty.model
= "none" was specified. Alternatively, empty.model = "mean" can be set to
use the constant mean response model for approximating the empty model.
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Logic VIMs (Lau et al., 2024)

Logic VIMs use the fact that Boolean conjunctions are Boolean variables them-
selves and therefore are equal to 0 or 1. To compute the VIM for a specific
term, predictions are performed once for this term fixed to 0 and once for
this term fixed to 1. Then, the arithmetic mean of these two (risk or regres-
sion) predictions is used for calculating the performance. This performance is
then compared to the original one as in the other VIM approaches (average
= "before"). Alternatively, predictions for each fixed 0-1 scenario of the con-
sidered term can be performed leading to individual performances which then
are averaged and compared to the original performance (average = "after").

Validation

Validation data sets which were not used in the fitting of the model are prefered
preventing an overfitting of the VIMs themselves. These should be specified
by the _oob arguments, if neither bagging nor inner validation was used for
fitting the model.

Bagging

For the bagging version, out-of-bag (OOB) data are naturally used for the
calculation of VIMs.

VIM Adjustment for Interactions (Lau et al., 2024)

Since decision trees can naturally include interactions between single predictors
(especially when strong marginal effects are present as well), logicDT models
might, e.g., include the single input variables X1 and X2 but not their in-
teraction X1 ∧ X2 although an interaction effect is present. We, therefore,
developed and implemented an adjustment approach for calculating VIMs for
such unidentified interactions nonetheless. For predictors Xi1 , . . . , Xik

=: Z,
this interaction importance is given by

VIM(Xi1 ∧ . . . ∧ Xik
) = VIM(Xi1 , . . . , Xik

| X \ Z)

−
∑︂

{j1,...,jl} ⊂
̸= {i1,...,ik}

VIM(Xj1 ∧ . . . ∧ Xjl
| X \ Z)
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and can basically be applied to all black-box models. By VIM(A | X \ Z), the
VIM of A considering the predictor set excluding the variables in Z is meant,
i.e., the improvement of additionally considering A while regarding only the
predictors in X\Z. The proposed interaction VIM can be recursively calculated
through

VIM(Xi1 ∧Xi2) = VIM(Xi1 , Xi2 | X \Z)−VIM(Xi1 | X \Z)−VIM(Xi2 | X \Z)

for Z = Xi1 , Xi2 . This leads to the relationship

VIM(Xi1 ∧ . . . ∧ Xik
) =

∑︂
{j1,...,jl}⊆{i1,...,ik}

(−1)k−l · VIM(Xj1 , . . . , Xjl
| X \ Z).

Identification of Specific Conjunctions (Lau et al., 2024)

The aforementioned VIM adjustment approach only captures the importance
of a general definition of interactions, i.e., it just considers the question whether
some variables do interact in any way. Since logicDT is aimed at identifying
specific conjunctions (and also assigns them VIMs if they were identified by
logicDT), a further adjustment approach is implemented which tries to iden-
tify the specific conjunction leading to an interaction effect. The idea of this
method is to consider the response for each possible scenario of the interacting
variables, e.g., for X1 ∧(Xc

2 ∧X3) where the second term Xc
2 ∧X3 was identified

by logicDT and, thus, two interacting terms are regarded, the 22 = 4 possible
scenarios {(i, j) | i, j ∈ {0, 1}} are considered. For each setting, the corre-
sponding response is compared with outcome values of the complementary set.
For continuous outcomes, a two sample t-test (with Welch correction for poten-
tially unequal variances) is performed comparing the means between these two
groups. For binary outcomes, Fisher’s exact test is performed testing different
underlying case probabilities. If at least one test rejects the null hypothesis
of equal outcomes (without adjusting for multiple testing), the combination
with the lowest p-value is chosen as the explanatory term for the interaction
effect. For example, if the most significant deviation results from X1 = 0 and
(Xc

2 ∧ X3) = 1 from the example above, the term Xc
1 ∧ (Xc

2 ∧ X3) is chosen.
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P. Fischer, C. Galassi, R. Gražulevičienė, J. Heinrich, B. Hoffmann, M. Jerrett,
D. Keidel, M. Korek, T. Lanki, S. Lindley, C. Madsen, A. Mölter, G. Nádor,
M. Nieuwenhuijsen, M. Nonnemacher, X. Pedeli, O. Raaschou-Nielsen, E. Pate-
larou, U. Quass, A. Ranzi, C. Schindler, M. Stempfelet, E. Stephanou, D. Su-
giri, M.-Y. Tsai, T. Yli-Tuomi, M. J. Varró, D. Vienneau, S. v. Klot, K. Wolf,
B. Brunekreef, and G. Hoek. Development of land use regression models for
PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas;
results of the ESCAPE project. Environmental Science & Technology, 46(20):
11195–11205, 2012. doi:10.1021/es301948k.

M. Eeftens, H. C. Phuleria, R. Meier, I. Aguilera, E. Corradi, M. Davey, R. Ducret-
Stich, M. Fierz, R. Gehrig, A. Ineichen, D. Keidel, N. Probst-Hensch, M. S.
Ragettli, C. Schindler, N. Künzli, and M.-Y. Tsai. Spatial and temporal vari-
ability of ultrafine particles, NO2, PM2.5, PM2.5 absorbance, PM10 and PM-
coarse in Swiss study areas. Atmospheric Environment, 111:60–70, 2015. ISSN
1352-2310. doi:10.1016/j.atmosenv.2015.03.031.

I. C. Eze, L. G. Hemkens, H. C. Bucher, B. Hoffmann, C. Schindler, N. Künzli,
T. Schikowski, and N. M. Probst-Hensch. Association between ambient air
pollution and diabetes mellitus in europe and north america: Systematic review
and meta-analysis. Environmental Health Perspectives, 123(5):381–389, 2015.
doi:10.1289/ehp.1307823.

J. H. Friedman. Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5):1189–1232, 2001. doi:10.1214/aos/1013203451.

J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. The
Annals of Applied Statistics, 2(3):916 – 954, 2008. doi:10.1214/07-AOAS148.

W. J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Compu-
tational and Graphical Statistics, 7(3):397–416, 1998. doi:10.2307/1390712.

215

https://doi.org/10.1371/journal.pone.0043035
https://doi.org/10.1021/es301948k
https://doi.org/10.1016/j.atmosenv.2015.03.031
https://doi.org/10.1289/ehp.1307823
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/07-AOAS148
https://doi.org/10.2307/1390712


Bibliography

K. Fujimoto, I. Kojadinovic, and J.-L. Marichal. Axiomatic characterizations of
probabilistic and cardinal-probabilistic interaction indices. Games and Eco-
nomic Behavior, 55(1):72–99, 2006. doi:10.1016/j.geb.2005.03.002.

P. Ganz, B. Heidecker, K. Hveem, C. Jonasson, S. Kato, M. R. Segal, D. G.
Sterling, and S. A. Williams. Development and validation of a protein-based
risk score for cardiovascular outcomes among patients with stable coronary heart
disease. JAMA, 315(23):2532–2541, 2016. doi:10.1001/jama.2016.5951.

W. J. Gauderman, P. Zhang, J. L. Morrison, and J. P. Lewinger. Finding novel
genes by testing G×E interactions in a genome-wide association study. Genetic
Epidemiology, 37(6):603–613, 2013. doi:10.1002/gepi.21748.

W. J. Gauderman, B. Mukherjee, H. Aschard, L. Hsu, J. P. Lewinger, C. J. Pa-
tel, J. S. Witte, C. Amos, C. G. Tai, D. Conti, D. G. Torgerson, S. Lee, and
N. Chatterjee. Update on the state of the science for analytical methods for
gene-environment interactions. American Journal of Epidemiology, 186(7):762–
770, 2017. doi:10.1093/aje/kwx228.

A. Gelman, J. Hill, and A. Vehtari. Regression and Other Stories. Cambridge
University Press, Cambridge, UK, 2020. doi:10.1017/9781139161879.

C. George Priya Doss, C. Sudandiradoss, R. Rajasekaran, P. Choudhury, P. Sinha,
P. Hota, U. P. Batra, and S. Rao. Applications of computational algorithm tools
to identify functional SNPs. Functional & Integrative Genomics, 8:309–316,
2008. doi:10.1007/s10142-008-0086-7.

German National Cohort (GNC) Consortium. The German National Cohort: aims,
study design and organization. European Journal of Epidemiology, 29(5):371–
382, 2014. doi:10.1007/s10654-014-9890-7.

D. Gilbert-Diamond and J. H. Moore. Analysis of gene-gene interac-
tions. Current Protocols in Human Genetics, 70(1):1.14.1–1.14.12, 2011.
doi:10.1002/0471142905.hg0114s70.

D. Gola, J. Erdmann, B. Müller-Myhsok, H. Schunkert, and I. R. König.
Polygenic risk scores outperform machine learning methods in predicting
coronary artery disease status. Genetic Epidemiology, 44(2):125–138, 2020.
doi:10.1002/gepi.22279.

216

https://doi.org/10.1016/j.geb.2005.03.002
https://doi.org/10.1001/jama.2016.5951
https://doi.org/10.1002/gepi.21748
https://doi.org/10.1093/aje/kwx228
https://doi.org/10.1017/9781139161879
https://doi.org/10.1007/s10142-008-0086-7
https://doi.org/10.1007/s10654-014-9890-7
https://doi.org/10.1002/0471142905.hg0114s70
https://doi.org/10.1002/gepi.22279


Bibliography

J. Graw. Genetik. Springer-Verlag Berlin Heidelberg, 6th edition, 2015.
doi:10.1007/978-3-662-44817-5.

L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free The-
ory of Nonparametric Regression. Springer, New York, NY, USA, 2002.
doi:10.1007/b97848.

S. S. Hada and M. A. Carreira-Perpiñán. Sparse oblique decision trees:
A tool to interpret natural language processing datasets. In 2022 Inter-
national Joint Conference on Neural Networks (IJCNN), pages 1–8, 2022.
doi:10.1109/IJCNN55064.2022.9891903.

A. Hajat, R. F. MacLehose, A. Rosofsky, K. D. Walker, and J. E. Clougherty.
Confounding by socioeconomic status in epidemiological studies of air pollution
and health: Challenges and opportunities. Environmental Health Perspectives,
129(6):065001, 2021. doi:10.1289/EHP7980.

T. Hastie and R. Tibshirani. Varying-coefficient models. Journal of the
Royal Statistical Society. Series B (Methodological), 55(4):757–796, 1993.
doi:10.1111/j.2517-6161.1993.tb01939.x.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Science & Business Media,
New York, NY, USA, 2009. doi:10.1007/978-0-387-84858-7.

T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity:
The Lasso and Generalizations. Chapman and Hall/CRC, New York, NY, USA,
2015. doi:10.1201/b18401.

J. N. Hirschhorn, K. Lohmueller, E. Byrne, and K. Hirschhorn. A comprehensive
review of genetic association studies. Genetics in Medicine, 4(2):45–61, 2002.
doi:10.1097/00125817-200203000-00002.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estima-
tion for nonorthogonal problems. Technometrics, 12(1):55–67, 1970.
doi:10.1080/00401706.1970.10488634.

A. Holzinger, R. Goebel, R. Fong, T. Moon, K.-R. Müller, and W. Samek. xxAI -
beyond explainable artificial intelligence. In International Workshop on Extend-
ing Explainable AI Beyond Deep Models and Classifiers, pages 3–10. Springer
International Publishing, 2022. doi:10.1007/978-3-031-04083-2_1.

217

https://doi.org/10.1007/978-3-662-44817-5
https://doi.org/10.1007/b97848
https://doi.org/10.1109/IJCNN55064.2022.9891903
https://doi.org/10.1289/EHP7980
https://doi.org/10.1111/j.2517-6161.1993.tb01939.x
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1201/b18401
https://doi.org/10.1097/00125817-200203000-00002
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1007/978-3-031-04083-2_1


Bibliography

L. Hsu, S. Jiao, J. Y. Dai, C. Hutter, U. Peters, and C. Kooperberg. Powerful cock-
tail methods for detecting genome-wide gene-environment interaction. Genetic
Epidemiology, 36(3):183–194, 2012. doi:10.1002/gepi.21610.

A. Hüls, K. Ickstadt, T. Schikowski, and U. Krämer. Detection of gene-
environment interactions in the presence of linkage disequilibrium and noise
by using genetic risk scores with internal weights from elastic net regression.
BMC Genetics, 18:55, 2017a. doi:10.1186/s12863-017-0519-1.

A. Hüls, U. Krämer, C. Carlsten, T. Schikowski, K. Ickstadt, and H. Schwender.
Comparison of weighting approaches for genetic risk scores in gene-environment
interaction studies. BMC Genetics, 18:115, 2017b. doi:10.1186/s12863-017-0586-
3.

A. Hüls and D. Czamara. Methodological challenges in construct-
ing DNA methylation risk scores. Epigenetics, 15(1-2):1–11, 2020.
doi:10.1080/15592294.2019.1644879.

International Human Genome Sequencing Consortium. Initial sequencing
and analysis of the human genome. Nature, 409(6822):860–921, 2001.
doi:10.1038/35057062.

H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. Random survival
forests. The Annals of Applied Statistics, 2(3):841–860, 2008. doi:10.1214/08-
AOAS169.

S. Janitza, C. Strobl, and A.-L. Boulesteix. An AUC-based permutation variable
importance measure for random forests. BMC Bioinformatics, 14:119, 2013.
doi:10.1186/1471-2105-14-119.

S. Jiao, L. Hsu, S. Bézieau, H. Brenner, A. T. Chan, J. Chang-Claude,
L. Le Marchand, M. Lemire, P. A. Newcomb, M. L. Slattery, and U. Pe-
ters. SBERIA: Set-based gene-environment interaction test for rare and com-
mon variants in complex diseases. Genetic Epidemiology, 37(5):452–464, 2013.
doi:10.1002/gepi.21735.

R. Johnston, K. Jones, and D. Manley. Confounding and collinearity in regres-
sion analysis: a cautionary tale and an alternative procedure, illustrated by
studies of British voting behaviour. Quality & Quantity, 52:1957–1976, 2018.
doi:10.1007/s11135-017-0584-6.

218

https://doi.org/10.1002/gepi.21610
https://doi.org/10.1186/s12863-017-0519-1
https://doi.org/10.1186/s12863-017-0586-3
https://doi.org/10.1186/s12863-017-0586-3
https://doi.org/10.1080/15592294.2019.1644879
https://doi.org/10.1038/35057062
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1186/1471-2105-14-119
https://doi.org/10.1002/gepi.21735
https://doi.org/10.1007/s11135-017-0584-6


Bibliography

M. Jokar and M. Jokar. Prevalence of inflammatory rheumatic diseases in a
rheumatologic outpatient clinic: analysis of 12626 cases. Rheumatology Re-
search, 3(1):21–27, 2018. doi:10.22631/rr.2017.69997.1037.

A. S. Kampstra and R. E. Toes. HLA class II and rheumatoid arthritis: the bumpy
road of revelation. Immunogenetics, 69(8):597–603, 2017. doi:10.1007/s00251-
017-0987-5.

P. Khankhanian, L. Din, S. J. Caillier, P.-A. Gourraud, and S. E. Baranzini. SNP
imputation bias reduces effect size determination. Frontiers in Genetics, 6, 2015.
doi:10.3389/fgene.2015.00030.

Y. Kirino and E. F. Remmers. Genetic architectures of seropositive and seroneg-
ative rheumatic diseases. Nature Reviews Rheumatology, 11(7):401–414, 2015.
doi:10.1038/nrrheum.2015.41.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-
nealing. Science, 220(4598):671–680, 1983. doi:10.1126/science.220.4598.671.

C. Kooperberg and I. Ruczinski. Identifying interacting SNPs using
Monte Carlo logic regression. Genetic Epidemiology, 28(2):157–170, 2005.
doi:10.1002/gepi.20042.

C. Kooperberg and I. Ruczinski. LogicReg: Logic Regression, 2023. R package
version 1.6.6.

J. Kruppa, A. Ziegler, and I. R. König. Risk estimation and risk prediction using
machine-learning methods. Human Genetics, 131(10):1639–1654, 2012.

M. B. Kursa and W. R. Rudnicki. Feature selection with the Boruta package.
Journal of Statistical Software, 36(11):1–13, 2010. doi:10.18637/jss.v036.i11.

M. Lau. Evaluation of tree-based classification and regression methods for con-
structing genetic risk scores. Master’s thesis, Mathematical Institute, Heinrich
Heine University, Düsseldorf, 2020.

M. Lau. GRSxE: Testing Gene-Environment Interactions Through Genetic Risk
Scores, 2023. URL https://CRAN.R-project.org/package=GRSxE. R package
version 1.0.1.

219

https://doi.org/10.22631/rr.2017.69997.1037
https://doi.org/10.1007/s00251-017-0987-5
https://doi.org/10.1007/s00251-017-0987-5
https://doi.org/10.3389/fgene.2015.00030
https://doi.org/10.1038/nrrheum.2015.41
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1002/gepi.20042
https://doi.org/10.18637/jss.v036.i11
https://CRAN.R-project.org/package=GRSxE


Bibliography

M. Lau. logicDT: Identifying Interactions Between Binary Predictors, 2024. URL
https://CRAN.R-project.org/package=logicDT. R package version 1.0.4.

M. Lau, C. Wigmann, S. Kress, T. Schikowski, and H. Schwender. Evaluation
of tree-based statistical learning methods for constructing genetic risk scores.
BMC Bioinformatics, 23:97, 2022. doi:10.1186/s12859-022-04634-w.

M. Lau, S. Kress, T. Schikowski, and H. Schwender. Efficient gene–environment
interaction testing through bootstrap aggregating. Scientific Reports, 13:937,
2023. doi:10.1038/s41598-023-28172-4.

M. Lau, T. Schikowski, and H. Schwender. logicDT: a procedure for identifying
response-associated interactions between binary predictors. Machine Learning,
113(2):933–992, 2024. doi:10.1007/s10994-023-06488-6.

C. M. Lewis and E. Vassos. Prospects for using risk scores in polygenic medicine.
Genome Medicine, 9:96, 2017. doi:10.1186/s13073-017-0489-y.

C. M. Lewis and E. Vassos. Polygenic risk scores: from research tools to clinical
instruments. Genome Medicine, 12:44, 2020. doi:10.1186/s13073-020-00742-5.

R.-H. Li and G. G. Belford. Instability of decision tree classification algorithms. In
Proceedings of the Eighth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, page 570–575, New York, NY, USA, 2002.
Association for Computing Machinery. doi:10.1145/775047.775131.

M. Lim and T. Hastie. Learning interactions via hierarchical group-lasso regu-
larization. Journal of Computational and Graphical Statistics, 24(3):627–654,
2015. doi:10.1080/10618600.2014.938812.

W.-Y. Lin, C.-C. Huang, Y.-L. Liu, S.-J. Tsai, and P.-H. Kuo. Polygenic
approaches to detect gene–environment interactions when external informa-
tion is unavailable. Briefings in Bioinformatics, 20(6):2236–2252, 2019.
doi:10.1093/bib/bby086.

X. Lin, S. Lee, D. C. Christiani, and X. Lin. Test for interactions between a genetic
marker set and environment in generalized linear models. Biostatistics, 14(4):
667–681, 2013. doi:10.1093/biostatistics/kxt006.

220

https://CRAN.R-project.org/package=logicDT
https://doi.org/10.1186/s12859-022-04634-w
https://doi.org/10.1038/s41598-023-28172-4
https://doi.org/10.1007/s10994-023-06488-6
https://doi.org/10.1186/s13073-017-0489-y
https://doi.org/10.1186/s13073-020-00742-5
https://doi.org/10.1145/775047.775131
https://doi.org/10.1080/10618600.2014.938812
https://doi.org/10.1093/bib/bby086
https://doi.org/10.1093/biostatistics/kxt006


Bibliography

X. Lin, S. Lee, M. C. Wu, C. Wang, H. Chen, Z. Li, and X. Lin. Test for rare vari-
ants by environment interactions in sequencing association studies. Biometrics,
72(1):156–164, 2016. doi:10.1111/biom.12368.

J. Listgarten, C. Kadie, E. E. Schadt, and D. Heckerman. Correction
for hidden confounders in the genetic analysis of gene expression. Pro-
ceedings of the National Academy of Sciences, 107(38):16465–16470, 2010.
doi:10.1073/pnas.1002425107.

M. Loecher. Debiasing MDI feature importance and SHAP values in tree en-
sembles. In International Cross-Domain Conference for Machine Learning and
Knowledge Extraction, pages 114–129. Springer International Publishing, 2022.
doi:10.1007/978-3-031-14463-9_8.

M. Loecher. Debiasing SHAP scores in random forests. AStA Advances in Statis-
tical Analysis, 2023. doi:10.1007/s10182-023-00479-7.

G. Louppe. Understanding Random Forests: From Theory to Practice. Disser-
tation, University of Liège, Department of Electrical Engineering & Computer
Science, 2014.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions.
In Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17, page 4768–4777, Red Hook, NY, USA, 2017. Curran
Associates Inc.

S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal, and S.-I. Lee. From local explanations to global
understanding with explainable AI for trees. Nature Machine Intelligence, 2:
56–67, 2020. doi:10.1038/s42256-019-0138-9.

W. Ma, Y.-L. Lau, W. Yang, and Y.-F. Wang. Random forests algorithm boosts
genetic risk prediction of systemic lupus erythematosus. Frontiers in Genetics,
13, 2022. doi:10.3389/fgene.2022.902793.

A. Majumdar, K. S. Burch, T. Haldar, S. Sankararaman, B. Pasaniuc, W. J.
Gauderman, and J. S. Witte. A two-step approach to testing overall effect of
gene–environment interaction for multiple phenotypes. Bioinformatics, 36(24):
5640–5648, 2021. doi:10.1093/bioinformatics/btaa1083.

221

https://doi.org/10.1111/biom.12368
https://doi.org/10.1073/pnas.1002425107
https://doi.org/10.1007/978-3-031-14463-9_8
https://doi.org/10.1007/s10182-023-00479-7
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.3389/fgene.2022.902793
https://doi.org/10.1093/bioinformatics/btaa1083


Bibliography

J. D. Malley, J. Kruppa, A. Dasgupta, K. G. Malley, and A. Ziegler. Proba-
bility machines: consistent probability estimation using nonparametric learn-
ing machines. Methods of Information in Medicine, 51(1):74–81, 2012.
doi:10.3414/ME00-01-0052.

L. Mentch and G. Hooker. Quantifying uncertainty in random forests via confi-
dence intervals and hypothesis tests. Journal of Machine Learning Research, 17
(26):1–41, 2016. URL http://jmlr.org/papers/v17/14-168.html.

S. K. Murthy and S. Salzberg. Decision tree induction: How effective is the greedy
heuristic? In Proceedings of the First International Conference on Knowledge
Discovery and Data Mining, KDD’95, page 222–227. AAAI Press, 1995.

S. K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique
decision trees. Journal of Artificial Intelligence Research, 2:1–32, 1994.
doi:10.1613/jair.63.

K. K. Nicodemus, J. D. Malley, C. Strobl, and A. Ziegler. The behaviour of
random forest permutation-based variable importance measures under predictor
correlation. BMC Bioinformatics, 11:110, 2010. doi:10.1186/1471-2105-11-110.

V. Ü. Onay, L. Briollais, J. A. Knight, E. Shi, Y. Wang, S. Wells, H. Li, I. Rajen-
dram, I. L. Andrulis, and H. Ozcelik. SNP-SNP interactions in breast cancer
susceptibility. BMC Cancer, 6:114, 2006. doi:10.1186/1471-2407-6-114.

R. Ottman. Gene–environment interaction: Definitions and study design. Preven-
tive Medicine, 25(6):764–770, 1996. doi:10.1006/pmed.1996.0117.

C. J. Patel, J. Bhattacharya, and A. J. Butte. An environment-wide associa-
tion study (EWAS) on type 2 diabetes mellitus. PLOS ONE, 5(5):1–10, 2010.
doi:10.1371/journal.pone.0010746.

M. A. Pourhoseingholi, A. R. Baghestani, and M. Vahedi. How to control con-
founding effects by statistical analysis. Gastroenterology and Hepatology from
Bed to Bench, 5(2):79–83, 2012. URL https://journals.sbmu.ac.ir/ghfbb/
index.php/ghfbb/article/view/246.

F. Privé, H. Aschard, and M. G. B. Blum. Efficient implementation of pe-
nalized regression for genetic risk prediction. Genetics, 212(1):65–74, 2019.
doi:10.1534/genetics.119.302019.

222

https://doi.org/10.3414/ME00-01-0052
http://jmlr.org/papers/v17/14-168.html
https://doi.org/10.1613/jair.63
https://doi.org/10.1186/1471-2105-11-110
https://doi.org/10.1186/1471-2407-6-114
https://doi.org/10.1006/pmed.1996.0117
https://doi.org/10.1371/journal.pone.0010746
https://journals.sbmu.ac.ir/ghfbb/index.php/ghfbb/article/view/246
https://journals.sbmu.ac.ir/ghfbb/index.php/ghfbb/article/view/246
https://doi.org/10.1534/genetics.119.302019


Bibliography

P. Probst, M. N. Wright, and A.-L. Boulesteix. Hyperparameters and tuning
strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9
(3):e1301, 2019. doi:10.1002/widm.1301.

F. Provost and P. Domingos. Tree induction for probability-based ranking. Ma-
chine Learning, 52(3):199–215, 2003. doi:10.1023/A:1024099825458.

S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender,
J. Maller, P. Sklar, P. I. De Bakker, M. J. Daly, and S. Pak C. PLINK: A tool
set for whole-genome association and population-based linkage analyses. The
American Journal of Human Genetics, 81(3):559–575, 2007. doi:10.1086/519795.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers Inc., San Mateo, California, USA, 1993.

M. D. Ritchie and K. Van Steen. The search for gene-gene interactions in genome-
wide association studies: challenges in abundance of methods, practical consid-
erations, and biological interpretation. Annals of Translational Medicine, 6(8):
157, 2018. doi:10.21037/atm.2018.04.05.

I. Ruczinski, C. Kooperberg, and M. LeBlanc. Logic regression. Jour-
nal of Computational and Graphical Statistics, 12(3):475–511, 2003.
doi:10.1198/1061860032238.

O. Sangha. Epidemiology of rheumatic diseases. Rheumatology, 39(suppl_2):3–12,
2000. doi:10.1093/rheumatology/39.suppl_2.3.

N. Scherer, P. Sekula, P. Pfaffelhuber, and P. Schlosser. pgainsim: an R-package
to assess the mode of inheritance for quantitative trait loci in GWAS. Bioinfor-
matics, 37(18):3061–3063, 2021. doi:10.1093/bioinformatics/btab150.

T. Schikowski, D. Sugiri, U. Ranft, U. Gehring, J. Heinrich, H.-E. Wichmann,
and U. Krämer. Long-term air pollution exposure and living close to busy
roads are associated with COPD in women. Respiratory Research, 6:152, 2005.
doi:10.1186/1465-9921-6-152.

H. Schwender and K. Ickstadt. Identification of SNP interactions using logic re-
gression. Biostatistics, 9(1):187–198, 2007. doi:10.1093/biostatistics/kxm024.

M. Segal and Y. Xiao. Multivariate random forests. WIREs Data Mining and
Knowledge Discovery, 1(1):80–87, 2011. doi:10.1002/widm.12.

223

https://doi.org/10.1002/widm.1301
https://doi.org/10.1023/A:1024099825458
https://doi.org/10.1086/519795
https://doi.org/10.21037/atm.2018.04.05
https://doi.org/10.1198/1061860032238
https://doi.org/10.1093/rheumatology/39.suppl_2.3
https://doi.org/10.1093/bioinformatics/btab150
https://doi.org/10.1186/1465-9921-6-152
https://doi.org/10.1093/biostatistics/kxm024
https://doi.org/10.1002/widm.12


Bibliography

L. S. Shapley. A value for n-person games. In Contributions to the Theory of
Games, Volume II, pages 307–317. Princeton University Press, Princeton, NJ,
USA, 1953. doi:10.1515/9781400881970-018.

S. Shi, N. Yuan, M. Yang, Z. Du, J. Wang, X. Sheng, J. Wu, and J. Xiao. Com-
prehensive assessment of genotype imputation performance. Human Heredity,
83(3):107–116, 2019. doi:10.1159/000489758.

M. Slatkin. Linkage disequilibrium – understanding the evolutionary past and
mapping the medical future. Nature Reviews Genetics, 9(6):477–485, 2008.
doi:10.1038/nrg2361.

D. Sorokina, R. Caruana, M. Riedewald, and D. Fink. Detecting statistical interac-
tions with additive groves of trees. In Proceedings of the 25th International Con-
ference on Machine Learning, ICML ’08, page 1000–1007, New York, NY, USA,
2008. Association for Computing Machinery. doi:10.1145/1390156.1390282.

S. Stringer, N. R. Wray, R. S. Kahn, and E. M. Derks. Underestimated effect
sizes in GWAS: Fundamental limitations of single SNP analysis for dichotomous
phenotypes. PLOS ONE, 6(11):1–7, 2011. doi:10.1371/journal.pone.0027964.

Y.-R. Su, C.-Z. Di, L. Hsu, Genetics, and E. of Colorectal Cancer Consortium. A
unified powerful set-based test for sequencing data analysis of GxE interactions.
Biostatistics, 18(1):119–131, 2016. doi:10.1093/biostatistics/kxw034.

C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey,
P. Elliott, J. Green, M. Landray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Sil-
man, A. Young, T. Sprosen, T. Peakman, and R. Collins. UK Biobank:
An open access resource for identifying the causes of a wide range of com-
plex diseases of middle and old age. PLOS Medicine, 12(3):1–10, 2015.
doi:10.1371/journal.pmed.1001779.

J. H. Sul, L. S. Martin, and E. Eskin. Population structure in genetic studies:
Confounding factors and mixed models. PLOS Genetics, 14(12):1–22, 2018.
doi:10.1371/journal.pgen.1007309.

N. Tesi, S. J. van der Lee, M. Hulsman, I. E. Jansen, N. Stringa, N. M. van
Schoor, P. Scheltens, W. M. van der Flier, M. Huisman, M. J. T. Reinders, and
H. Holstege. Polygenic risk score of longevity predicts longer survival across an

224

https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1159/000489758
https://doi.org/10.1038/nrg2361
https://doi.org/10.1145/1390156.1390282
https://doi.org/10.1371/journal.pone.0027964
https://doi.org/10.1093/biostatistics/kxw034
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1371/journal.pgen.1007309


Bibliography

age continuum. The Journals of Gerontology: Series A, 76(5):750–759, 2020.
doi:10.1093/gerona/glaa289.

The 1000 Genomes Project Consortium. A global reference for human genetic
variation. Nature, 526(7571):68–74, 2015. doi:10.1038/nature15393.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.
doi:10.1111/j.2517-6161.1996.tb02080.x.

T. Tietz, S. Selinski, K. Golka, J. G. Hengstler, S. Gripp, K. Ickstadt, I. Ruczinski,
and H. Schwender. Identification of interactions of binary variables associated
with survival time using survivalFS. Archives of Toxicology, 93(3):585–602, 2019.
doi:10.1007/s00204-019-02398-6.

P. R. Timmers, N. Mounier, K. Lall, K. Fischer, Z. Ning, X. Feng, A. D. Bretherick,
D. W. Clark, eQTLGen Consortium, X. Shen, T. Esko, Z. Kutalik, J. F. Wilson,
and P. K. Joshi. Genomics of 1 million parent lifespans implicates novel pathways
and common diseases and distinguishes survival chances. eLife, 8:e39856, 2019.
doi:10.7554/eLife.39856.

A. Torkamani, N. E. Wineinger, and E. J. Topol. The personal and clinical util-
ity of polygenic risk scores. Nature Reviews Genetics, 19(9):581–590, 2018.
doi:10.1038/s41576-018-0018-x.

E. Uffelmann, Q. Q. Huang, N. S. Munung, J. De Vries, Y. Okada, A. R. Martin,
H. C. Martin, T. Lappalainen, and D. Posthuma. Genome-wide association
studies. Nature Reviews Methods Primers, 1:59, 2021. doi:10.1038/s43586-021-
00056-9.

J. Vanhoof, K. Declerck, and P. Geusens. Prevalence of rheumatic diseases in a
rheumatological outpatient practice. Annals of the Rheumatic Diseases, 61(5):
453–455, 2002. doi:10.1136/ard.61.5.453.

D. S. Watson and M. N. Wright. Testing conditional independence in
supervised learning algorithms. Machine Learning, 110:2107–2129, 2021.
doi:10.1007/s10994-021-06030-6.

C. P. Wild. Complementing the genome with an “exposome”: The outstand-
ing challenge of environmental exposure measurement in molecular epidemiol-

225

https://doi.org/10.1093/gerona/glaa289
https://doi.org/10.1038/nature15393
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1007/s00204-019-02398-6
https://doi.org/10.7554/eLife.39856
https://doi.org/10.1038/s41576-018-0018-x
https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1136/ard.61.5.453
https://doi.org/10.1007/s10994-021-06030-6


Bibliography

ogy. Cancer Epidemiology, Biomarkers & Prevention, 14(8):1847–1850, 2005.
doi:10.1158/1055-9965.EPI-05-0456.

M. Woodward. Epidemiology: Study Design and Data Analysis. Chapman and
Hall/CRC, Boca Raton, FL, USA, 2013. doi:10.1201/b16343.

N. R. Wray, T. Lin, J. Austin, J. J. McGrath, I. B. Hickie, G. K. Mur-
ray, and P. M. Visscher. From basic science to clinical application of
polygenic risk scores: A primer. JAMA Psychiatry, 78(1):101–109, 2021.
doi:10.1001/jamapsychiatry.2020.3049.

M. N. Wright, A. Ziegler, and I. R. König. Do little interactions get lost in dark
random forests? BMC Bioinformatics, 17:145, 2016. doi:10.1186/s12859-016-
0995-8.

Y. Xiao, M. A. Taub, I. Ruczinski, F. Begum, J. B. Hetmanski, H. Schwen-
der, E. J. Leslie, D. C. Koboldt, J. C. Murray, M. L. Marazita, and T. H.
Beaty. Evidence for SNP-SNP interaction identified through targeted sequenc-
ing of cleft case-parent trios. Genetic Epidemiology, 41(3):244–250, 2017.
doi:10.1002/gepi.22023.

A. I. Yashin, I. Zhbannikov, L. Arbeeva, K. G. Arbeev, D. Wu, I. Akushe-
vich, A. Yashkin, M. Kovtun, A. M. Kulminski, E. Stallard, I. Kulmin-
skaya, and S. Ukraintseva. Pure and confounded effects of causal SNPs on
longevity: Insights for proper interpretation of research findings in GWAS of
populations with different genetic structures. Frontiers in Genetics, 7, 2016.
doi:10.3389/fgene.2016.00188.

W. Yoo, B. A. Ference, M. L. Cote, and A. Schwartz. A comparison of logistic
regression, logic regression, classification tree, and random forests to identify
effective gene-gene and gene-environmental interactions. International Journal
of Applied Science and Technology, 2(7):268, 2012.

G. Yu, J. Bien, and R. Tibshirani. Reluctant interaction modeling. arXiv, 2019.
doi:10.48550/ARXIV.1907.08414.

E. Zanelli, F. C. Breedveld, and R. R. P. de Vries. Hla class II association with
rheumatoid arthritis: Facts and interpretations. Human Immunology, 61(12):
1254–1261, 2000. doi:10.1016/S0198-8859(00)00185-3.

226

https://doi.org/10.1158/1055-9965.EPI-05-0456
https://doi.org/10.1201/b16343
https://doi.org/10.1001/jamapsychiatry.2020.3049
https://doi.org/10.1186/s12859-016-0995-8
https://doi.org/10.1186/s12859-016-0995-8
https://doi.org/10.1002/gepi.22023
https://doi.org/10.3389/fgene.2016.00188
https://doi.org/10.48550/ARXIV.1907.08414
https://doi.org/10.1016/S0198-8859(00)00185-3


Bibliography

A. Zeileis, T. Hothorn, and K. Hornik. Model-based recursive partition-
ing. Journal of Computational and Graphical Statistics, 17(2):492–514, 2008.
doi:10.1198/106186008X319331.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67
(2):301–320, 2005. doi:10.1111/j.1467-9868.2005.00503.x.

227

https://doi.org/10.1198/106186008X319331
https://doi.org/10.1111/j.1467-9868.2005.00503.x


Eidesstattliche Versicherung

Ich versichere an Eides statt, dass die Dissertation von mir selbstständig und ohne
unzulässige fremde Hilfe unter Beachtung der Grundsätze zur Sicherung guter wis-
senschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf erstellt worden
ist.

Michael Lau, Februar 2024, Düsseldorf

228


	Abbreviations
	Introduction
	Genetics
	Environmental risk factors
	Epidemiological studies
	Constructing genetic risk scores
	Linear statistical learning methods
	Interaction effects
	Tree-based statistical learning methods
	Decision trees and random forests
	Logic regression

	Constructing genetic risk scores using tree-based statistical learning methods
	Detecting gene–environment interaction effects
	Interpretability of tree-based statistical learning methods
	Aims of this work

	Evaluation of tree-based statistical learning methods for constructing genetic risk scores
	Efficient gene–environment interaction testing through bootstrap aggregating
	logicDT: a procedure for identifying response-associated interactions between binary predictors
	Discussion
	Summary
	Outlook
	Conclusion

	Software packages
	GRSxE
	logicDT

	Bibliography
	Eidesstattliche Versicherung

