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1 Introduction 

1.1 The linkage of pharmaceutical research and data science 

In pharmaceutical science, as in every other scientific discipline, data evaluation is crucial for deriving 

meaningful insights. The pharmaceutical industry has increasingly emphasized data science aspects in 

recent years. This trend can undoubtedly be linked to the growing interest in the topics of continuous 

manufacturing, process analytical technology (PAT), and quality by design (QbD) [1]. 

In pharmaceutical manufacturing, the continuous production of drug products has become increasingly 

prominent within the last two decades [2]. The term ‘continuous manufacturing’ in this context 

describes the production of pharmaceuticals were the raw materials, and intermediate products are 

charged into the system over the full process time. The product on the other hand is continuously 

discharged from the process. In contrast, in batch processes, the raw materials and intermediate 

products are fed into the manufacturing devices at the beginning of the process. After the process is 

finished, the product is discharged [3]. While the subprocesses in batch manufacturing are spatially 

separated, they are only temporally separated in continuous manufacturing. Up to now, batch processes 

remain the standard method for drug production in the pharmaceutical industry, while the continuous 

processing of goods is widespread in other industries, such as the chemical or food industry. The 

innovations into the pharmaceutical manufacturing can likely be attributed to the stringent regulatory 

barriers in the pharmaceutical sector. Nonetheless, postponing modernization of production is a risk for 

drug safety [4] and cost effectiveness. Initiated by the United States Food and Drug Administration 

(FDA), international regulatory bodies and organizations have implemented continuous manufacturing 

into their guidelines [5]. One example is the Q13 guideline of the International Council for 

Harmonisation of Technical Requirements for Pharmaceuticals for Human Use [6]. Another significant 

advancement is the implementation of QbD aspects in pharmaceutical manufacturing. To ensure drug 

safety, it is essential to control the Critical Quality Attributes (CQA) of each produced batch before its 

release. In this context, the quality of a manufactured product refers to the conformity of the properties 

of the product with the pre-defined specifications. The suitability of the product for the intended 

application arises from the correct definition of the specifications. The specific CQAs  strongly depend 

on the type of drug product [7]. Ensuring these required attributes is the goal of the overall 

pharmaceutical quality management. This is typically accomplished by thoroughly testing the 

manufactured drug products using pre-defined testing procedures. This quality-by-testing approach is 

time-consuming, costly, and lacks flexibility [8]. QbD refers to ensuring drug safety through thoroughly 

planned and monitored process management aiming at the real-time release of pharmaceutical goods. 

The use of PAT is indispensable in this regard [3]. PAT includes any form of sensing technology that 

can be integrated into manufacturing processes to provide information about the resulting drug 

products, intermediates and the status of the ongoing process [9].  

As a result, the automatic and computational pre-processing and evaluation of the data, as well as the 

understanding of the properties of the data, become increasingly important. Due to the temporal 

continuity of the continuous manufacturing processes and thus the data, these possess special 

properties. Such data are referred to as time series. In the analysis of this type of data, not only classical 

statistical parameters such as mean and standard deviation of a sample are of interest, but also the 

temporal correlation of individual values [10]. The data series can be of different dimensionality and 

orders [11]. Zero-order time series are one-dimensional matrices, resulting from the acquisition of one 

measure over time. The measurement of multivariate data at multiple time points results in two- or 

three-dimensional matrices and thus first and second order time series. While in other fields of science 

time series analysis is attributed high importance, in some areas of data evaluation in the pharmaceutical 

context, preferably conventional methods are used. These conventional methods include basic 

hypothesis testing, simple or multiple linear regression or the consideration of measures of the spread 
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of the distribution of values within the data series. This may lead not only to the loss of information 

from the data, but also to incorrect conclusions about Critical Material Attributes (CMA) and Critical 

Process Parameters (CPP). While the utilization of data science aspects is common in drug design and 

development [12–15], pharmaceutical manufacturing and formulation development is still in its early 

stages in this context. Approaches demonstrate that the use of big data in the development of processes 

and formulations can be substantially beneficial [16]. Further examples of latest developments in the 

area of data handling pertain to the data fusion of different sensing systems [17], data integrity [18], 

big data handling and machine learning [19]. 

Even though there has been an increase in the formulation of biologics in recent years, which usually 

have to be parenterally administered in liquid form, the proportion of solid oral dosage forms in the 

market remains substantial [20]. Beside capsules and granules for oral intake, tablets are by the far the 

most common solid dosage form for peroral administration of active pharmaceutical ingredients (API) 

[21]. Despite the widespread practice of pharmaceutical tablet manufacturing for over 100 years, 

research on tablet fabrication processes remains incomplete. This research primarily includes the study 

of properties and behavior of bulk solids like powders or granules. Bulk solids represent systems whose 

properties are not easy to characterize. Two examples are the flowability and the particle size 

distribution, for which numerous measurement methods exist. Each of these methods yields slightly 

different values, meaning that a ‘true value’ can only be given in reference to the specific measurement 

procedure. In tablet manufacturing, the flow properties of materials are crucial, but also the material's 

behavior during the actual compression phase is of high significance. Both, the analysis of dosing 

processes of bulk solids and of the evaluation of compression of bulk solid material results in time 

series data. This current thesis aims to demonstrate the development and implementation of advanced 

evaluation procedures for pharmaceutical time series data with focus on bulk solid flow and 

compression. In the following chapters, the fundamentals of bulk solid dosing and tableting, as well as 

the data analysis procedures, are discussed. 
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1.2 Continuous feeding of bulk solids 

1.2.1 Introduction into continuous bulk solid feeding  

The terminology used in this thesis regarding bulk solids refers to the book “Powders and bulk solids 

behavior, characterization, storage and flow” [22]. A bulk solid is characterized as a collection of 

individual solid particles, with these particles forming a dispersed phase within an ambient gas medium. 

This category encompasses for example bulks of powders, granules, pellets, or tablets. 

Within the processing of bulk solids in the context of pharmaceutical continuous manufacturing, dosing 

of the solid materials is in most cases the initial step. Due to the nature of continuous production 

processes, the feeding of the material must be ensured continuously and homogeneously over the entire 

process time. Deviations in the input-stream of the powder into the later processes can influence the 

CQAs of the products [23]. For the homogeneous feeding of bulk solids, devices are used that are 

capable of continuously dispensing the stored material through a suitable mechanism. Frequently in 

continuous manufacturing processes, several of these bulk solid feeders have to be used, which feed 

either pure substances or pre-mixtures into the subsequent process [24–26]. Employing multiple dosing 

units and a continuous blender obviates the need for the cost-intensive pre-mixing of components [27]. 

Bulk solid feeders are not only found as the initial steps of continuous manufacturing lines. They can 

also be used within the production line for example to buffer the product stream between different 

processing units or to add additional components like lubricants or APIs to an intermediate product 

[28,29]. After a granulation step, extra granular components, like lubricants can be fed into the process. 

Within tablet presses, bulk solid dosing processes typically employ so-called force feeders. They use 

paddles to ensure a homogeneous transportation of the bulk solid within the feed-frame. The dies of 

the tableting machine are filled gravimetrically, depending on the density of the bulk solid within the 

feed frame. Various studies have been published investigating these types of feeders, including the 

influences of device geometries or settings [30–32]. There are also different approaches involving 

computer-aided simulation methods [33]. However, the following discussion will not consider these 

types of feeding devices. The overview is limited to pharmaceutically used continuous bulk solid 

feeders where the device doses free-falling bulk solids into a downstream process. 

Continuous bulk solid dosing devices can be divided into different classes [34]. One classification is 

based on the mechanical method to dispense the material. While belt feeders are common in other 

industrial sectors, pharmaceutical dispensers usually work with dosing screws or vibrating chutes. 

Screw-based dosing systems can be further subdivided into single-screw and twin-screw feeders. They 

represent the most important group of bulk solid feeders in the continuous manufacturing of solid oral 

dosage forms. The geometry of the screws has a decisive influence on the transport of the goods and 

have to be adapted to the material properties. In the process of selecting the appropriate screw geometry 

for bulk solid dosing, multiple factors need to be considered. In general, the higher the free volume 

within the screw channels, the higher the throughput of material per rotation of the screws. The pitch 

of the flights is directly proportional to the free volume, making it a critical parameter. Alterations, 

such as deepening or widening of the channels can change the free volume. Some materials exhibit a 

tendency for compacting within the dosing screws, which can be counteracted by progressively 

increasing the free volume along the length of the screw. This can be accomplished either by varying 

the pitch over the length of the screws or by employing a conical shaft design. Additionally, the 

geometry of the screws directly affects the maximum possible dosing accuracy [34] and the maximum 

dosing rate. The smaller the screw diameters the lower is the maximum dosing rate but the higher is 

the accuracy of the dosing process. Figure 1 provides various examples of dosing screws of two 

different types of twin-screw feeders. 
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Figure 1 a-c: Dosing screws of a diameter of 20 mm, a: wide pitch double-flight intermeshing, b: narrow pitch double-flight 

intermeshing, c: single-flight non-intermeshing, d and e: dosing screws of a diameter of 5 mm, d: double-flight 

intermeshing, e: single-flight intermeshing with conical shafts 

During the rotation of the screws, the material is released in fast frequent pulses, depending on the pitch 

of the dosing screws. These fluctuations can be reduced by the implementation of a discharge screen at 

the outlet of the dosing device. However, the utilization of such a dosing aid is often not feasible, 

primarily due to the tendency of many materials to compact within the dosing screws. The use of 

discharge screens can augment these issues, potentially leading to process interruptions. Static 

eliminators can improve the flowability of materials like colloidal silicon dioxide [29]. 

Vibration-chute-based dispensers are less common in manufacturing than in analytical equipment. 

They are frequently used, for example, in the measurement and sub-division of bulk solid samples. For 

the dosing of fine cohesive powders or low-dosed APIs a new subcategory of vibration-based feeders 

is described in the literature [35]. Similar studies describe the use of pneumatic systems [36] or scarping 

feeders [37,38]. However, up to now there is hardly any industrial application of the latter devices. 

Given the significance of screw-based dosing devices, future descriptions in the thesis will exclusively 

consider screw-based bulk solid feeders. 

Apart from the classification of feeders by the transport mechanism, a distinction can be made between 

volumetric and gravimetric devices [29]. Volumetric bulk solid feeders dose the material based on a 

fixed set value, such as the rotation speed of the screws. Prior to each dosing process, the screw speed 

must be calibrated to align with the specified dosing rate. The actual dosing rate during the feeding 

process can-not be measured with volumetric devices. Changes in the material behavior within the 

storage vessel can lead to dosing irregularities. An example is the reduced material density in the dosing 

screws, resulting from the depletion of the storage vessel over extended periods of operation. 

Gravimetric dosing devices have built-in mechanisms for measuring the mass flow of the dispenser. 

Usually, the dosing unit is located on a load cell. This internal balance continuously captures the weight 

of the device. In addition to the weight, data on screw speed and time are recorded. By calculating the 

derivative of the mass over the time, it becomes possible to calculate the flow rate of the dosed material. 

Internal controllers, usually with proportional and integral components, then enable the calculation of 

the necessary change in the setting of the screw speed. This results in the dispenser's adaptability to 

fluctuations in the process. By switching off the controller of the device, gravimetric dosing units can 

be used in a volumetric mode. Similar to volumetric feeding devices, gravimetric feeders have to be 

calibrated before every process. In the initial phase of a gravimetric dosing process the devices are 

driven in the volumetric mode. The reason for this is that at the start of the process, no data are available 
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for the controller of the device. Gravimetric feeders, therefore, initiate the process volumetrically and 

switch to gravimetric mode after a short operational period. Additionally, during long-lasting processes, 

it becomes necessary to refill the feeder's hopper. Since weight changes would directly affect the 

controller, the system switches back to volumetric mode in this instance. A value from a previously 

recorded calibration can be targeted, or running averages of the gravimetric dosage settings can be used 

for the set point during the refilling phase. Studies have shown that, particularly during the refilling 

phase, there are significant differences in the homogeneity of the dispensed bulk solid quantity 

compared to regular operation [39]. The refilling can be done either manually or automatically, e.g. 

through pneumatic conveying.  

Gravimetric feeding units are most widespread in the application in pharmaceutical manufacturing lines 

[40]. In addition to the controllability of the process, the data collection in such devices enables the 

evaluation of events within the process, the investigation of material dependencies in dosing, and the 

correlation with product properties. The accuracies of the weighing cells used can be in the range of 

conventional analytical balances. However, not only due to the complexity of the flow process of bulk 

solids but also due to artifacts caused by the movement of the mechanics or external influences, such 

as air turbulence, the analysis of data from bulk solid feeders is by far more challenging. Additionally, 

the recorded data are usually subjected to multiple internal filter functions within the device. The 

applied data filtering functions are in most cases not known to the user, which is why gravimetric bulk 

solid feeders often represent black boxes in terms of the evaluation of the internally collected data. For 

this reason, the investigation of the dosing rate for bulk solid feeders is commonly conducted using an 

external catch scale, which is placed beneath the feeder's outlet. Over the course of the dosing process, 

the bulk solid accumulates on the plate of the external scale. The increase in mass over time can be 

evaluated accordingly. Figure 2 illustrates the setup of a flat-bottom feeder and the use of an external 

catch scale. 

 

 

Figure 2: Flat-bottom dosing unit and external catch scale; sketch made using Autodesk Fusion 360 

The understanding for the tools to qualify feeder equipment is crucial for the consideration of process 

deviations caused by the dosing unit. Therefore, in the following subsection, a more detailed overview 

of the performance evaluations of bulk solid feeders will be provided. 

 



 

6 

1.2.2 Evaluation of bulk solid feeding performance 

The evaluation of bulk solid dosing processes is of high interest to ensure the uniformity of the 

continuous manufacturing processes right from the initial steps. In the literature, various approaches 

are found for the evaluation and handling of data from bulk solid dosing processes, as well as for 

experimental setups to measure these. 

One of the most important guidelines for device manufacturers of dosing units regarding the 

measurement of fluctuations in bulk solid dosing is given by the “Normenarbeitsgemeinschaft für Meß- 

und Regeltechnik in der chemischen Industrie” NAMUR NA 40 [41]. This guideline briefly describes 

simple methods for measuring the dosing quality of the devices. The dispensed material is collected 

and weighed. From samples of a specific period of time, parameters such as the mean deviation from 

the setpoint or the standard deviation of the data are calculated. 

References in the scientific literature describe setups in which an external catch scale is positioned 

under the outlet of the bulk solid feeder [23,29,39,42,43]. It is then read using a computer at a specific 

measurement frequency. This is justified with the already discussed significant noise component and 

the internal filter functions of the bulk solid doser's scale. The use of an external scale ideally allows 

minimizing the noise, as the vibrations of the device are not detected. Furthermore, there is an 

expectation that the data read from the external catch scale are processed with less aggressive black-

box filtering functions compared to internal data of dosing devices. However, this approach has two 

distinct disadvantages for application in continuous processes. Firstly, an application in the ongoing 

operation of a continuous plant is impossible since the material is collected and therefore cannot 

proceed to the next processing step. Secondly, there is the risk of measuring artifacts, which may be 

caused by the flow of the bulk solid on the external scale. 

For the evaluation of the collected data, many different approaches are described, some of which go far 

beyond the previously mentioned NAMUR NA 40. A comprehensive work by Engisch and Muzzio 

[29] details the properties of bulk solid feeding devices. The study give information about the properties 

of the collected data as well as the evaluation through the consideration of the relative standard 

deviation. Other investigations by the authors delved into detailed examination of the data [43]. They 

were able to show that the Fourier spectra of the dosing processes could be correlated with the 

properties of the materials. Also, in this study an external catch scale was used to measure the dosing 

process. An example on the evaluation of inline data of dosing devices is given by Johnson et al. [44]. 

In this study the authors propose a stochastic autoregressive-moving-average model to simulate the 

systematic deviations in the powder dosing process. With its high applicability in industrial settings 

this model is one of the most sophisticated approaches to qualify continuous dosing devices. 

The application of PAT in bulk solid dosing processes rarely is described in literature. This is most 

likely due to the highly chaotic processes that occur during the dosing of powders, which complicate 

the quantification of the dispensed material using spectroscopic methods. An example is the use of 

videometric based mass flow control on microdosing processes by Madarász et al. [45] or the 

implementation of microwave sensors in large scale powder dosing [23]. While ultrasonic-based 

measurement methods exist for assessing the flow velocity of particles in suspensions [46], there is 

limited research available on similar measurement setups for falling powders [47]. 

While investigations into continuous dosing processes often utilize short process times, the runtime on 

an industrial scale is often much longer. Studies have shown that disturbing effects may accumulate 

over extended runtimes [48]. Depending on the properties of the materials, this may even lead to a 

required process stop. Emerging errors may include the clogging of dosing screws or rat-holding 

effects. Not only can material properties influence the dosing process, but it may also occur that the 

materials undergo changes in their properties as a result of the dosing process [49]. 

To assess the impact of dosing fluctuations on subsequent processes, it is crucial to consider the 

properties of these processes. Meier et al. [23] presented an approach for evaluating dosing fluctuations 
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in the context of continuous twin-screw granulation. They utilized data from an external catch scale 

and calculated the integral of dosing deviations from the setpoint over time. After dividing the absolute 

values by the setpoint, they further divided by the duration of the intervals. They used this relative 

weighted standard deviation over the time intervals for qualifying the fluctuations. However, it should 

be noted that the temporal dependency of fluctuations is lost within this approach. Moreover, the results 

are highly dependent on the sampling frequency. In the analysis of continuous blenders, more 

sophisticated approaches based for example on the convolution of dosing data are found [50]. The 

distribution of particle residence times in the mixer serves as the filter function, enabeling accurate 

predictions of the impact of powder dosing fluctuations. One issue is that analyses often rely on filtered 

internal data or offline data from an external scale. Additionally, the residence time of the material in 

the ongoing process must be known. 
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1.3 Manufacturing of tablets 

1.3.1 Introduction into the tableting process 

Tablets are defined by the European Pharmacopoeia as oral solid dosage forms, manufactured through 

an appropriate method [51]. The compression of powders and granules is the most common 

manufacturing method for tablets, even tablet manufacturing by other methods like lyophilization [52] 

or 3D printing [53] is possible. The process of tableting, in the context of this work, refers to the entirety 

of steps required to manufacture tablets from bulk solids via compression. The excipients used can 

differ significantly among the various manufacturing methods. 

Materials used for the production of tablets through compression can have effects on both the process 

and the final product. Excipients, especially intended to simplify and/or enable process management, 

include lubricants and flow regulators. Lubricants reduce frictional forces during material's 

compression and tablet's ejection from the machine [54]. Lubricants can either be used within the 

mixture of other components or be applied to the punches tools using a suitable dispersion system. In 

this context, the terms "internal" and "external" lubrication are applied to distinguish between the two 

methods. Flow regulators can be used to ensure flowability by reducing particle-particle binding forces 

in the material to be compressed, which is crucial for the tableting process. 

Excipients which are intended to influence the properties of the produced tablets are much more diverse 

[55]. Fillers are added to tablet formulations to increase the volume of the tablets, especially when the 

dosage of the API is low. Additional substances can be used to control the disintegration of tablets in 

aqueous media, influence drug release, mask the taste of bitter substances, or ensure the strength of the 

produced tablets. Materials that have a positive effect on the strength of tablets even at a low 

concentration in the mixture are referred to as binders. Binders contribute significantly to the shape 

stability of the tablet by forming strong bonds within the tablet during the compression process. 

The materials are introduced into the tablet press as a mixture. This mixture can be a purely physical 

combination of the components. This procedure is referred to as direct compression. In contrast, 

individual materials or their mixtures can be granulated before the compression step. One of the 

advantages of direct compression is the evidently lower production costs [56]. However, undesirable 

characteristics of the starting materials, such as poor flowability or weak binding strength, may 

necessitate the use of granulation steps. Additionally, improvements in content uniformity can be 

achieved with a granulation pre-processing step, as well as a reduction in dust exposure for staff. 

 

1.3.2 The compression of bulk solids into tablets 

As previously mentioned, several steps can be distinguished in the tableting process. Figure 3 depicts 

exemplarily these steps on the example of data measured on a tablet press. During the filling phase, the 

material is transferred from a feed shoe into the die (b). This occurs at a very low position of the lower 

punch, ensuring an overfill of the die. Subsequently, the lower punch moves to the dosing height (c), 

with excess material being scraped off. After this, the lower punch typically descends again, marking 

the beginning of the movement of the upper punch. The compression phase starts when the upper punch 

first contacts the solid material (d). During this phase, the material is compacted, generating binding 

forces that ensure the tablet's physical integrity. After the upper punch reaches its lowest position, the 

decompression phase begins (e). The material expands due to elastic recovery, delaying the loss of 

contact between the upper punch and the tablet. Finally, by moving the lower punch upwards, the tablet 

is ejected from the die (f). When using external lubrication devices, an additional phase occurs just 

before the filling phase (a). During this lubrication phase, the tools are sprayed with the powdered 

lubricant. 
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Figure 3: Example of data of a tableting process, black: punch displacement, red: compression pressure measured at the 

upper punch, a: external lubrication, b: die filling, c: dosing, d: compression, e: decompression, f: ejection of the tablet 

During the compression phase, the material undergoes various states [57]. The compression pressure 

can be understood as the resilience of the particles to the reduction of the volume. Initially, there are 

rearrangement processes of individual particles as the volume decreases [58]. However, as the 

compression process continues, the particles start to deform. The deformation mechanism significantly 

depend on the properties of the compressed materials and their interactions as well as on the process 

parameters [59]. Several deformation mechanisms can coexist during this phase. It is essential to 

distinguish between elastic and plastic deformation processes. Elastic deformation does not contribute 

to the strength of the resulting tablets and leads to an increase in the tablets' volume during and after 

the relaxation phase. In contrast, plastic processes refer to the irreversible deformation of the material, 

where the applied plastically energy remains in the tablet, enhancing its strength. Additionally, various 

types of particle fractures occur. Particle fragmentation increases the surface area and thus the contact 

area between the particles. The adhesive forces created during compression, arising from, mainly van 

der Waals interactions, mechanical interlocking and solid bridges [60], account for the physical 

integrity of the tablets. 

Different types of equipment are available for tablet production, with rotary tablet presses being the 

most important ones for industrial production. They are capable of producing high quantities of tablets 

per time period. These machines operate on the revolver principle, where the mentioned processes, of 

die filling, dosing, compression and tablet ejection are separated spatially rather than contemporaneous. 

The station changes and the movements of the punches are caused by the rotating circular die table. In 

comparison, compaction simulators are mainly used in formulation development and scientific 

research. With these devices, there is relative free control over the movement of the punches. This is 

made possible with the use of hydraulic systems [61] or planetary roller screws [62]. Due to the given 

controllability of the movements of the punches, compaction simulators are suitable for simulating the 

punch movements of other tablet presses. This allows for the development of drug formulations and 

processes in small batch sizes and a subsequent transfer and scale-up to an industrial tablet press 

[61,63]. Compaction simulators can also be used to perform compressions with simple compression 

profiles, which can facilitate the study of materials and processes. In rotary tablet presses, the 

displacement profile of the punches during the compression phase is determined by the diameter of the 

compression roller and the geometry of the punch head [64]. The resulting profile is characterized by 

a linear acceleration of the punches [65]. Compaction simulators can operate at constant punch 

velocities. In the following this is referred to as the V-shape compression profile. However, the use of 

compaction simulators has shown that they are susceptible for providing inaccurate compression 

profiles at high tableting speeds [65]. Modern tablet machines are often equipped with PAT that allows 
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for information about the compression pressure and the position of the punches over the process time 

[60]. The measurement of the compression pressure is possible through piezoelectric elements or by 

using strain gauges. While the displacement profile of the punches in rotary presses is usually simulated 

in-silico, the measurement of the punch movement is possible in compaction simulators [66]. 

The settings and properties of the tablet machine, as well as the characteristics of the material being 

compressed, determine the CQA of the produced tablets. Among the CQA is the resistance of the tablet 

to breakage under diametral loading, which is expressed as the tensile strength. Since one of the focuses 

of the present work in the area of compression analysis lies in the examination of material behavior 

under compression pressure and the strength of the resulting tablets, the tensile strength will be 

explained in more detail in the following. The influences of process parameters and material properties 

on the tensile strength will be discussed. Additionally, the standard measurement procedure of the 

tensile strength of flat-faced tablets will be described. Due to the high interest in pharmaceutical 

research in predicting the tensile strength of tablets, a treatise on such models will be provided. 

 

1.3.3 The tensile strength of tablets 

As previously outlined, the tensile strength is of the CQAs of pharmaceutical tablets. It does not only 

correlate with the tablet disintegration and the release of the API but also serves as a vital parameter 

for the resistance of the tablet to stresses during downstream processing or handling by the patient. 

For flat-faced tablets, the calculation of tensile strength 𝑇𝑆 has been described by Fell and Newton 

[67]. They utilized a testing procedure in which increasing lateral force is applied diametral to the tablet. 

Subsequently, the maximum force before the tablet breaks 𝐹𝑏 is divided by a factor for the geometry 

of the tablet, which derives from the bridge height ℎ𝑇 and diameter 𝑑𝑇 (Equation I), based on the 

distribution of stress in solid elastic bodies [68]. 

𝑇𝑆 =
2𝐹𝑏

𝜋𝑑𝑇ℎ𝑇
 

I 

This simple equation is notable not only for its empirical applicability in many studies [69–73] but also 

in simulation calculations [74]. More complex is the determination of the tensile strength of curved-

face tablets [75] and tablets of other shapes [76]. Therefore, flat-faced tablets are commonly studied in 

research examining the influence of material properties and process parameters on tensile strength. 

Semi-automatic tablet testers are available which do not only measure the breaking force but also the 

mass and dimensions of the tablets. Due to the destructive nature of tensile strength testing, in-line 

measurement is impossible for practical and economic reasons. Therefore, various predictive models 

have been extensively studied. Different prediction methods pursue various approaches. Numerous 

studies can be found predicting the tensile strength of tablets made from mixtures of different 

substances. [77–81]. These models are based on data of the tensile strength of tablets made from the 

respective pure materials and their mixtures. To reduce system complexity, experiments usually focus 

on two or three pure components within the mixtures. Grid-based experiments are conducted to 

investigate changes in tensile strength as the composition of the mixture varies. Subsequently, linear or 

geometric models [82] are typically used to describe the results. The investigations reveal that 

interactions between the different components can lead to significant deviations from the underlying 

models. Thus, these models have limited applicability and are only considerable for the studied 

conditions. However, for the description of the experimental spaces, they provide sufficient 

information. Beside this, the application of empirical equations for the prediction of the tensile strength 

is published [83,84]. The latter approaches primarily focus on the impact of the proportion of the 

lubricant in the power mixture on the tensile strength of the tablets. 
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Other models attempt to predict the tensile strength of tablets based on the cross-decomposition of 

material properties [85,86]. Recently, in this area, various machine learning models have been 

introduced [87–89]. Within all of this approaches, some also take into account the parameters of the 

tableting process [90,91]. Basically, the recently presented models are all connected by the requirement 

of extensive investigations of material properties or measurements of the behavior of the pure 

substances. Among all these published models, none is known that only utilizes the process parameters 

of the tablet press to predict the properties of the resulting tablets. 

Apart from these approaches, implementations of additional PAT methods can be found. This includes 

the study of ultrasound probe implementation [92], as well as spectrometric methods [93]. Non-

destructive offline measurements were proposed by Halenius et al. and Juban et al. using microscopic 

and nanoindentation procedures [94,95]. 

The prediction of the tensile strength of tablets is supported by the distinct dependence of the tensile 

strength on the maximum pressure during the compression phase. This relationship between 

compression pressure and tensile strength within one material is referred to as the tabletability. Together 

with the parameters of compressibility and compactability, tabletability describes the three-dimensional 

relationship among tensile strength, solid fraction, and compression pressure [96]. Due to the immense 

significance of these parameters on compression analysis, they will be explained in more detail in the 

following sections. 

 

1.3.4 Tabletability, compressibility, compactability 

The three terms, tabletability, compactability, and compressibility, denote two-dimensional 

correlations of the three parameters: compression pressure, solid fraction, and tensile strength (Figure 

4). 

 

 

Figure 4: Blue: Compressibility, red: compactability and green: tabletability on the example of dibasic anhydrous calcium 

phosphate (DI-CAFOS® A 150), black points in 3D space 
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Every material or mixture of materials can be characterized within this parameter space. The 

investigation of these three parameters is one major focus in research on the behavior of pharmaceutical 

powders and granules within the tableting process. Compressibility refers to the plot of the solid 

fraction against the maximum compression pressure, and it is likely the most frequently described 

parameter. Various models exist for the analysis of compressibility, for example including equations 

by Heckel [97], Kawakita [98], Johanson [99], Kuentz and Leuenberger [100], and Sun [101]. The 

different equations utilize different portions of the collected data. While the models of Kuentz- 

Leuenberger and Sun are regressed over the full range of the data of the compression phase, models 

like Heckel or Walker are only applicable in a small linear portion of the transformed data. The 

procedure for the identification of the portions within the data is frequently not described in the 

literature. This seems to be a major drawback in terms of the reproducibility of the studies. 

Compressibility can be investigated using both in-die and out-of-die procedures. The term "in-die" 

refers to the utilization of PAT to monitor the solid fraction and compression pressure throughout the 

entire compression process of a single tablet. Controversially, "out-of-die" methods involve the 

production of different tablets at varying compression pressures. While compressibility can provide 

information about the deformation behavior of the material, it is less relevant in the consideration of 

the properties of the produced tablet. On the other hand, compactibility which correlates the solid 

fraction with the tensile strength, and tabletability, which involves tensile strength and compression 

pressure, are of higher interest in the practice of formulation development and production. However, 

fewer models are available to describe the course of these dependencies. One example is the equation 

according to Ryshkewitch [102] which is applicable to describe the tensile strength of tablets in 

correspondence to their porosity. Frequently, linear portions of tabletability profile are regressed, and 

the resulting slope is evaluated. A new approach combines the equations according to Kuentz-

Leunberger and Ryshkewitch. The authors were able to demonstrate the applicability of the model for 

various materials in a range between approximately 10 and 500 MPa [103]. The evaluation of 

tabletability and compactability is only possible using out-of-die methods as the tablets must be 

destroyed to measure the tensile strength. Therefore, the shape of the compression profile, including 

both the solid fraction and the compression pressure over time, is hardly implementable in these 

evaluations. This contrasts with the understanding that the punch displacement profile during the 

compression phase plays a decisive role in the tensile strength of the resulting tablets [71]. One example 

is the influence of dwell time [104,105], which refers to the duration the punches remains at the lowest 

point in the die. The dwell time is an important feature of rotary tablet presses, resulting from the 

movement of the flat punch head on the compression roller [64]. The profiles of tabletability and 

compressibility consequently differ depending on the type and dimensions of the tablet machine used 

as the movement of the punch’s changes with the size of the compression rollers and the geometry of 

the punch heads [106].  

Although the pressure exerted on the powder during tableting could theoretically be increased 

indefinitely, the tabletability profile of various substances suggests that beyond a certain compression 

pressure threshold, tensile strength does not improve. This observation is referenced within the 

literature as overcompression. After a threshold in the compression pressure, the tabletability profile of 

substances show a plateau or even a loss in tensile strength. With the examples of sodium chloride, 

sucrose and polyethylene this behavior was first demonstrated by Adolfson and Nystrom [107]. They 

considered the increase of elastic deformation at high pressure as the reason for the occurrence of 

overcompression. For some materials they describe that at pressures of around 800 up to 1200 MPa 

capping of the tablets was visible. The lamination and capping of tablets were found to be a common 

phenomenon of overcompression [108]. Besides the compression pressure, the material properties 

[109] and the speed of the compression [110] determine hereby the resulting tablet defects. In the 

investigation of tabletability profiles and dependencies of tensile strength with process data, the 

phenomenon of overcompression must therefore be considered. This implies that either tablet defects 

are incorporated into the computational models for more accurate predictions, or that the range of 

overcompression is deliberately omitted from the analytical scope. 
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Like bulk solid dosing data, compression profiles possess the characteristics of time series. However, 

both types of data also exhibit significant differences between them. Therefore, these two data series 

are excellent for exemplifying the advanced analysis procedures under considering the properties of 

these two distinct types of data. Following the presentation of the examined processes, an overview 

about the utilization of data series will be provided in the next chapter. Subsequently, methods that are 

relevant in the analysis of databases in the context of this current work will be introduced. 
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1.4 The analysis of data and data series 

1.4.1 Properties of data series 

When examining data, not only the individual values can provide information, but also the sequence of 

the individual values. When this is the case, we refer to them as data series. The properties of data series 

can significantly differ from the properties of unordered data in several aspects. The higher the 

informational content within the sequence of data, the more information is lost if this order is not taken 

into account [10]. For this reason, permutation can serve as an important tool in the evaluation of data 

series [111–113]. For data evaluation, merely examining distribution parameters might be sufficient 

for unordered data. For instance, location and dispersion parameters, like the arithmetic mean and 

standard deviation, are widespread in the evaluation of scientific data. An example is the study of the 

API content of single-dose drug dosage formulations following the chapter “Uniformity of dosage 

units” 2.9.40 of the European Pharmacopoeia [51]. This evaluation is adequate when making a 

statement about a batch of tablets. However, if one aims to determine whether the API content 

fluctuates too widely or follows a trend over an ongoing process, more sophisticated evaluation 

procedures should be applied. 

A specific type of data series is the time series, where the sequence of data is sampled in chronological 

order. Thus, all data collected in-line or on-line using PAT can be understood as time series. Given the 

increasing significance of PAT, especially in the context of continuous manufacturing, analyzing data 

series has become of highest importance for pharmaceutical research. 

Data series can be classified into many categories. For this work, the distinction between stationary and 

non-stationary series is especially significant. Within a stationary data series, the statistical measures 

of this data series are nearly constant. These data series thus have no change point. However, individual 

data points can fluctuate around a global mean. The dispersion of values can be either chaotic or in a 

certain pattern. A sinusoidal curve can therefore be considered as a stationary time series. Whether a 

time series is categorized as stationary or non-stationary depends on the observed data interval and the 

defined point of interest. This is evident from the example of different fraction of the sine function 

depicted in Figure 5. The subplot (a) depicts the sine function of y = 𝑠𝑖𝑛(x + 1.5π) over the range of 

20 𝜋 so that the character of the curve can be described as stationary. The narrower perspective (Figure 

5 b) in the range 0 to 𝜋 results in a non-stationary behavior of the data series. 

 

Figure 5: Different aspects of the sine function with 𝑦 = 𝑠𝑖𝑛(𝑥 + 1.5𝜋), a: stationary perspective and b: non-stationary 

perspective 
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In the focus of this work, the data of an ideal bulk solid dosing process can be given as an example for 

a stationary time series. Ideally, the dosing rate of the powder feeder fluctuates around a mean value, 

which in the best case is as close as possible to the target value. The fluctuations around this mean 

value can be considered almost constant over the process time. In contrast a single compression profile 

of tableting processes possesses a non-stationary characteristic. During the compression process of the 

material, the pressure increases, while simultaneously the distance between the punches decreases until 

the minimum of the distance is reached. Therefore, for these data, the location and dispersion 

parameters do not remain constant. 

In the analysis of data series, the investigation of trends, change points, and correlations are of particular 

importance. Moreover, every real measurement carries an inherent error. Disturbances might also arise, 

appearing as noise in the data. The separation between measurement error and “real” curse of the data 

series is one field of focus within the analysis of time series. For time series, uniform intervals between 

values are of high relevance. Some evaluation methods are feasible only when there are consistent 

intervals between data points. One example here is given by Fourier analysis. Therefore, previous 

interpolation of the data might be required for their assessment. Given the significance of data 

evaluation methodology in this work, a subsequent introduction into the applied methods will be 

provided. 

 

1.4.2 Fourier Analysis 

The Fourier analysis allows for the description of discrete values and continuous functions through 

their simplification [114]. The Fourier analysis is used in many fields, such as in spectral analysis or in 

signal theory [28,115–118]. An introduction to the concept of Fourier analysis will be provided in the 

following. Every continuous function can be understood as the sum of a trigonometric function. The 

continuous Fourier transformation describes the calculation of this trigonometric function from the 

initial function 𝑓(𝑥) (Equation II) [119]. 

𝑓(𝜉) = ∫ 𝑓(𝑥)𝑒−𝑖2𝜋𝜉𝑥𝑑𝑥
∞

−∞

 

II 

The “intermediate” result of this integral transformation is the complex function 𝑓(𝜉) with 𝜉 as the 

frequency of the trigonometric function. Since real data do not correspond to continuous functions but 

are discrete, this analytical mathematical function of Equation II is not applicable [120]. For the 

calculation with real data, the discrete Fourier transformation have to be applied (Equation III)  with 𝑘 

and 𝑛 as the indexes of the matrices �̂� and 𝐹. 

�̂�𝑘 = ∑ 𝐹𝑛𝑒−
𝑖2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑛=0

 

III 

In this case, 𝐹 and �̂� correspond to one-dimensional matrices of length N. �̂� contains the result of the 

Fourier transformation as complex numbers. Each row of �̂� corresponds to a sine function with the 

amplitude A and frequency 𝜉. The amplitude is calculated according to the Pythagorean theorem as the 

sum of the magnitudes of the real part 𝑎 and imaginary part 𝑏 (Equation IV). 

𝐴 =
1

𝑁
|𝑎 + 𝑖𝑏| =

1

𝑁
√𝑎2 + 𝑏2 

IV 
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The frequencies 𝜉 of the trigonometric function are determined by the sampling interval 𝑓𝑠 of the input 

data 𝐹 (Equation V). 

𝜉 = {0,
𝑓𝑠

𝑁
,

𝑓𝑠

𝑁 − 1
… ,

𝑓𝑠

2
} 

V 

Using the amplitude and the frequency, the result of the transformation can be represented in a 

spectrum. This is then referred to as the frequency domain of the data. In contrast, the original data are 

located in the time domain [10]. The Fourier analysis allows for the identification and examination of 

regularly recurring signals in the frequency domain of the data. Fourier transformation is primarily used 

in the analysis of spectral data [121], but there have also been applications in the evaluation of data 

from powder dosing processes [43]. Figure 6 gives an example of the time domain (a) and frequency 

domain (b) of the Fourier transformation of an ideal sinusoidal of the frequency of 0.019 Hz. The 

subplots c and d depict mean centered and scaled data of a dosing process of Flowlac® 100. The main 

sinusoidal of the process is of a frequency of 0.019 Hz. As the sample frequency of both data series is 

1 Hz, the upper limit of the calculated frequencies is 0.5 Hz according to Nyquist theorem [122]. 

 

 

Figure 6: Time (a and c) and frequency (b and d) domain of an ideal sinusoidal and measured data of the frequency of 

0.019 Hz. 

 

1.4.3 Change points 

In statistics, change points are defined as the change of the distribution of data points in the progress of 

data series. The detection of change points is a subfield in the evaluation of data series [123]. The 

assessment of change points in the context of pharmaceutical manufacturing heavily depends on the 

specific research question at hand. In the evaluation of ideally stationary time series, the detection of 

change points hints changes in the underlying process. In these contexts, change points can signify 

undesirable events that indicate errors in the process. When considering powder dosing while 

accounting for refilling phases, these can also be understood as change points [39]. On the example of 

the refilling of dosing units it becomes evident that the precise definition and assessment of a change 

point is depending on the process and on the conditions and objectives of the specific experiments. 
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For compression profiles, reconsidering Figure 3 the occurrence of change points in the data series is 

evident. For the computational separation of the different events like die filling, dosing, compression 

and tablet ejection change points have to be identified. The precision of the separation is of highest 

importance as small variations in the detection of the compression phase can result in significant 

changes of the detected pressure in the begin of the compression process.  

 

1.4.4 Multivariate decomposition 

The goal of multivariate decomposition is to reduce the dimensionality of a dataset and separate the 

underlying information in as few dimensions as possible. In this context, the term "information" is 

synonymous with the spread or dispersion of the data. Multivariate decomposition can be understood 

as the shadow cast by a hyperdimensional object, such that the shadow contains information about the 

actual object.  

In statistics, there are various methods that allow for the decomposition of input data. One widely used 

methodology is the Principal Component Analysis (PCA) [124]. This technique aims to reduce the 

dimensions of the input data by calculating new orthogonal dimensions known as principal components 

[125]. The principal components in PCA are vectors in the original coordinate system. The first 

principal component contains the highest proportion of information in the data. Each additional 

component contains progressively less of the total information.  The first principal component is 

calculated by fitting a regression line that minimizes the sum of the magnitudes of the Euclidean 

distances of the data to this line (Figure 7). Each subsequent principal component is defined as to be 

orthogonal to the previous ones and is also the result of the similar regression procedure. The vertical 

projections of the data onto these components serves as coordinates in the new orthogonal space. These 

projections are referred to as the scores of the PCA. The slopes of the regressed principal components 

are called the loadings. 

 

 

Figure 7: PCA regression procedure from a to c, black: data points, red: principal component, blue: projection lines of the 

data points 

One of the commonly used calculation procedures of PCA utilizes the covariance matrix 𝑐𝑜𝑣 of the 

standard normal variate scaled input data matrix 𝑋 of 𝑛 dimensions according to Equation VI . 

𝑐𝑜𝑣 =
1

𝑛 − 1
𝑋𝑋𝑇 

VI 

The following step is an Eigen analysis, resulting in the diagonal matrix of the eigenvalues Λ and the 

quadratic matrix of the eigenvectors 𝑈 of 𝑐𝑜𝑣 (Equation VII). 
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𝑐𝑜𝑣 = 𝑈Λ𝑈𝑇 

VII 

The scores of the principal components 𝑇 are subsequent calculated by the product of 𝑈 and 𝑋 

(Equation VIII) [126]. 

𝑇 = 𝑋𝑈 

VIII 

Examining the scores of the first two principal components is typically sufficient to make a valid 

statement about the correlation within the data. The influence and correlation of every input dimension 

can be evaluated in the investigation of the loadings. PCA therefore is particularly well-suited for 

obtaining an overview of large databases and visually representing the underlying connections and 

differences between various datasets. 

Although considering missing values is theoretically possible and often highlighted as an advantage of 

PCA, in practice, it comes with significant disadvantages. This can be illustrated using what is 

presumably the most modern and simplest implementation of this method. Podani et al. [127] present 

a procedure that utilizes a binary indicator matrix. The indicator matrix contains integer values of zero 

and one, where zero indicates missing values and vice versa. This indicator matrix is multiplied by the 

covariance matrix prior the Eigen analysis in the PCA regression calculation. This allows the necessary 

computational operations to be performed without all values being present in every dimension. 

However, they also describe that comparing values across different dimensions can introduce artifacts 

in data evaluation. For this reason, the omission of variables or samples is usually less problematic 

when values are missing in the input data frame. 

Beside multivariate decomposition procedures for the handling of multidimensional problems in 

pharmaceutical data, machine learning seems to provide the most promising methodology. The almost 

limitless possibilities in the set-up of machine learning models provide powerful tools in the evaluation 

of the data. The following section gives an introduction to machine learning and its application in 

pharmaceutical science. 

 

1.4.5 Machine learning 

1.4.5.1 A short introduction to machine learning 

Machine learning aims to enable computers to explore and solve problems with a high degree of 

autonomy. Applied are algorithms that can independently handle new inputs without the exact approach 

being predefined in advance. The algorithm assesses its own performance and, if necessary, modifies 

its behavior accordingly [128]. Commonly cited examples of machine learning include robotics [129] 

and autonomous driving [130]. In the context of pharmaceutics, machine learning can be applicated in 

data analysis [131], pharmaceutical formulation development [132] or process control [133]. Machine 

learning can be used here to recognize clusters in data, generate regression models, and even fully 

control production processes autonomously. 

The use of machine learning has seen significant growth in the recent past. Notable examples of this 

are disruptive innovation in the field of large language models. The architecture of large language 

models can be thereby adapted to other fields of interest, such as for clinical tasks [134] or research of 

protein structures [135]. In various areas of research, the use of machine learning is widespread. 

Examples range from physics [136], over drug discovery [137] to evolutionary biology [138]. In the 

realm of pharmaceutical research, there are widespread applications of machine learning, such as in in-

silico drug synthesis or the design of clinical trials. In the academic research related to drug 
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manufacturing, studies exist that utilize machine learning in grey-box or black-box models for process 

control [139]. However, there are few applications of machine learning for data analysis in the context 

of pharmaceutical manufacturing [87,140,141]. This might be partly due to the black-box nature of 

machine learning models. Often, empirical, semi-empirical or physics-based models are preferred. 

However, these models run the risk of oversimplifying complex relationships and risk the loss of 

information. Additionally, the size of pharmaceutical experimental databases is typically quite small. 

This limits the potential of machine learning, as there are often insufficient data available for training 

the model. 

Training machine learning models is of paramount importance for the quality of the model. This does 

not fundamentally differ from traditional statistical models, but due to the size and complexity of the 

datasets, it is more challenging to train a machine learning model. The goal of training is to generate a 

model using training data, which can then be tested using test data. The better the model performs on 

the test data the higher is the predictive power and the value of the model. 

There are various training approaches to differentiate [142]. These are characterized by different 

principles and methodologies during the training phase. In supervised learning, the model is fed by both 

input data and output data. The specific task can be either classification or regression. The goal of the 

training is to generate a model function that correlates the input variables with the output variables. In 

unsupervised learning only the input data is used in the training of the model. The aim of this method 

is to reveal previously unknown data clusters or other structures in the data and to examine connections 

between individual datasets. In a more specific sense, such models can also be listed among the 

decomposition methods previously described. The third category refers to reinforcement learning. In 

this approach, the model interacts with a reward function, which assesses and thus guides the learning 

of the model. 

The selection of the training method to be used depends on the aim of the researcher and the type of 

model being employed. Typical models are based on decision trees, random forests, support vector 

machines, Bayesian kernel machine regression or artificial neural networks. Due to the versatile 

applicability of certain neural network architectures for time series data analysis, neural networks will 

be discussed in greater detail in the subsequent chapters. 

1.4.5.2 Neural networks 

Artificial neural networks (ANNs) are computer algorithms that are rudimentarily based on the 

structure of the animal brain. They serve as a key element in the field of artificial intelligence and 

machine learning [143].  

 

 

Figure 8 a: The structure of a simple neural network, b: depiction of a basic mathematical function model for the nodes and 

the connections. 



 

20 

ANNs consist of a series of layers composed of individual nodes (Figure 8 a). These nodes from 

different layers are interconnected in various ways, creating a network. The connections between 

individual nodes represent linear functions (Figure 8 b). The parameters of this linear functions are the 

slopes and the intercept. In the context of ANNs, the slopes are referred to as the weights of the 

functions and the intercepts are called the biases. In the training phase of the network the weights and 

biases are tuned to improve the prediction of the ANN. This will be addressed in more detail in a 

following chapter. The nodes in ANNs also correspond to functions that translate the input of the node 

into an output. The functions of the nodes are called activation functions. There are different types of 

layers in an ANN. The input layer accepts the input data, and its size corresponds to the size of the 

input data matrix. The input data matrix may contain only one value or may be very large or 

multidimensional. Furthermore, a network may have multiple individual input layers. The predictive 

power of an ANN arises from the use of non-linear functions within hidden layers [144]. These are 

attached to the input layer and can exhibit various substructures. The substructure of the hidden layers 

may specialize in different types of input data. For instance, convolutional layers are commonly applied 

in the evaluation of image data [145]. An ANN can have several consecutive interconnected hidden 

layers, all of which can have different substructures. Through the combination of appropriate layers, 

powerful models emerge for detecting hidden structures and information within the data [146]. For the 

application of ANNs with multiple hidden layers the term “deep learning” is often used. The final layer 

is the output layer. This layer produces the result, such as a prediction of a value or the probabilities for 

classification into various categories. The output of an ANN, in size and dimension, is theoretically 

unlimited. 

ANNs are classified into overlapping categories based on their structures. These categories include 

convolutional networks [147], which are optimized for the analysis of grid data such as images, and 

generative adversarial networks [148] where two networks compete, leading to mutual improvements. 

Contrasting classes are formed by feedforward ANNs and recurrent ANNs. In feedforward ANNs, 

information flows unidirectionally from the input layer through the hidden layers to the output layer, 

without any feedback mechanism. In contrast, the information flow in recurrent ANNs occurs cyclically 

[149]. This enables the consideration of relationships between different data points within the input, 

making them suitable for the analysis of sequential data. They are utilized, for example, in predicting 

the trends of sequential data and their classification [150]. 

As of the author's best knowledge to this point, recurrent models have not been applied in the context 

of evaluating data from tablet manufacturing processes. Since recurrent ANNs potentially offer benefits 

in the analysis of pharmaceutical sequential data, their structure and properties will be explained in 

greater detail in a later chapter. 

1.4.5.3 Application of machine learning in pharmaceutical research  

Powered by the increase in the computational capacity over the recent decades, the application of 

machine learning in various fields of science is a growing tool in data handling and evaluation. In the 

scope of pharmaceutical science, the use of machine learning is widespread in drug discovery, 

pharmacodynamics and pharmacokinetics [137,151–153] (Figure 9 a and b). In contrast, in 

pharmaceutical development and manufacturing the application of machine learning tools is just 

starting to grow and will progress in the upcoming years. 
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Figure 9: Number of published journal papers per year listed in the literature database Scopus® by Elsevier publisher 

limited to the field of pharmacology toxicology and pharmaceutics, searched for a: “machine learning drug discovery”, b: 

“machine learning (pharmacodynamics OR pharmacokinetics)”, c: “machine learning formulation development”, d: 

“machine learning manufacturing” in article title, abstract or keywords 

For instance, deep learning was used for the prediction of the in vitro performance of pharmaceutical 

formulations [154]. In this study the authors utilized parameters of the formulations and molecular 

descriptors of the APIs for the input in ANNs to predict parameters such as the f2 value of the dissolution 

of the investigated formulations. Similar approaches have been provided by Ibric et al. [155] and Han 

et al. [155,156]. Other applications of machine learning in formulation development and 

pharmaceutical manufacturing include the field of additive manufacturing technologies [132,157–160], 

the development of nanoparticles [161,162], for avoiding of animal testing [163], or the investigation 

of food effects on bioavailability [164]. 

For the prediction of the CQAs of tablets using machine learning tools various studies can be found 

[87,156,165,166]. Akseli et al. [166] presented a neural network with the input of various parameters 

of the tablets. These included the geometry, porosity, weight and results from ultrasound measurements 

of the tablets. From these parameters they predicted the disintegration times and the breaking forces of 

the tablets. Djuris et al. [87] presented a comparable study. They utilized neural networks for regression 

and classification tasks to predict various measures of the tableting process, including the tensile 

strength of the tablets, the elastic recovery or the ejection force. For the input parameters the 

compression load, the content of APIs and excipients, and a nominal parameter were used. The nominal 

parameter was used to distinguish between co-processed excipients and physical mixtures of the 

components. On a test data set of around 15 data points, representing 15 % of the total data content, 

they demonstrated after an iterative training process of 20 neural networks high predictability of the 

optimal networks. Paul et al. [165] investigated the phenomenon of capping of tablets with multivariate 

decomposition and decision tree-based machine learning. A list of various measures of the material 

properties and descriptors of the tableting process including the plasticity or the die-wall pressure were 

utilized as input parameters. The data set of this study consists of 253 different measurements. Han et 

al. [156] applied two different ANNs for the prediction of the disintegrating time based on molecular 

descriptors of the API, API content and encoded categorial input for the excipients. In these examples, 

generating the input dataset involves significant experimental effort. The utilization of pre-existing data 

from the manufacturing process is not found in machine learning for tablet manufacturing. 

The former examples are intended to demonstrate the diversity of application possibilities for machine 

learning within the field of pharmaceutical science. Understanding the properties of neural networks is 

crucial for avoiding errors during application, particularly in the training of the models. This will be 

elaborated upon in the following chapter. 
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1.4.5.4 Supervised training of artificial neural networks 

ANNs have to be trained using sufficiently large databases. As this work focuses on the application of 

supervised learning, the discussion will be limited to this method. In practice, prior to the training of 

the model, the collected data is usually grouped into two categories. The training data is used to train 

the network, while the test data is utilized to evaluate the predictability of the trained model [167]. The 

split of the data into a training dataset and a test dataset can be done according to various criteria. Often, 

a random division is made. 

Stochastic gradient descent is used for the training of most ANNs [168]. It describes the iterative 

statistical process of optimizing a loss function. The loss function is a function that evaluates the output 

of the ANN in relation to the observation. It can be simplistically understood as a grading method for 

the neural network. A commonly used loss function for regression problems is the sum of squared 

residuals 𝑆𝑆𝑅. It is defined as the sum of the differences between the model's predictions 𝑝 and the 

observed values 𝑜 to the power of two, depending on the weights and biases of the network. Instead of 

the sum the mean of the squared residuals can be used. The cross-entropy of prediction and observation 

is a typical loss function for classification tasks in ANNs. The gradient of the loss function is its 

derivative with respect to the change in a weight or a bias. In the initial step before training the network, 

the weights are usually set randomly according to the standard normal distribution. The biases are 

typically set to zero. For each weight and bias, the gradient is calculated. This gradient is then multiplied 

by a predetermined learning rate and serves as a correction term for the respective weight and bias by 

being added to them. This process is demonstrated in the following for a simple ANN with one hidden 

layer utilizing the Rectified Linear Unit (ReLU) as activation function as depicted in Figure 8 B. The 

gradient of the sum of the squared residuals regarding the second weight of the model w2 is calculated 

according to Equation IX with 𝑦𝑖 as the result of the ReLU activation function. The observation is given 

by 𝑜𝑖 and the prediction by 𝑝𝑖, where 𝑖 denotes the index up to the size of the data set n. 

𝑑 𝑆𝑆𝑅

𝑑 𝑤2
= ∑ −2(𝑜𝑖 − 𝑝𝑖)

𝑛

𝑖=1

𝑦𝑖 

IX 

With a learning rate α, 𝑤2 is corrected in this learning step according to Equation X. 

𝑤2,𝑡𝑟𝑎𝑖𝑛𝑒𝑑 = 𝑤2 + 𝛼
𝑑 𝑆𝑆𝑅

𝑑 𝑤2
 

X 

The training of the neural network mostly is conducted in the direction from the output layer towards 

the input layer. This procedure is called the backpropagation [169]. In this example, 𝑤2 and 𝑏2 are 

trained before 𝑤1 and 𝑏1. Based on this procedure the term backpropagation is used. This training is 

conducted in epochs, during which the training data are used multiple times in smaller batches to 

optimize the weights and biases. The training continues until a certain endpoint is reached. This 

endpoint can be set to a specific number of epochs or based on a set limit for the loss function. To track 

the predictive power of the neural network during training, an additional split of the data is often made 

within each batch. A portion of the training dataset, often around 90 %, is used for training the weights 

and biases, while the remaining data is exclusively utilized to evaluate the current state of the network. 

This is performed by applying the loss function to this validation data set. The value of the loss function 

for the validation data can also be used as an endpoint for the training. 

The activation functions used in the network are of particular significance for training. This can be 

illustrated using the ReLU function, which is used in this example [170]. The ReLU function returns a 

value of zero for inputs less than zero. This introduces a threshold potential for the node. The output 

behavior of ReLU leads to a potential problem in training the neural network. If the input to the ReLU 
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function of a layer is less than zero, then its output will be zero. This output is then multiplied during 

backpropagation, resulting in a term for the gradient equal zero. Consequently, the corresponding 

weights and biases do not receive any further training. This problem is referred to as the "dying ReLU" 

problem, and it can cause nodes of the network to become non-responsive [171]. To address this 

problem, the leaky ReLU function can be employed [172]. This function has a linear slope αleak for 

negative inputs, chosen to be slightly different from zero, and is the same as the ReLU function for 

positive inputs (Figure 10). By modifying the activation function in this way, the failure of the 

respective nodes can be prevented. 

 

 

Figure 10: black: Rectified Linear Unit (ReLU) function and red: leaky ReLU with αleak = 0.1 for −2 ≤ 𝑥 ≤ 2 

Another method to prevent the failure of nodes is known as dropout [173]. In this technique, specific 

nodes are randomly omitted during the training phase of the computation. The proportion of these 

omitted nodes relative to all the nodes in the layer is determined by the dropout rate. As a result, other 

nodes may receive new types of inputs, enabling them to restore them. Moreover, employing dropout 

can reduce the computation time of networks, diminish overfitting of training data, and lessen co-

adaptations between multiple nodes. The term "co-adaptations" refers to the occurrence of identical 

outputs from nodes when they interact similarly with the input. This, in turn, reduces the overall 

complexity and increases the power of prediction of the network. 

In the training of neural networks, practitioners often rely on pre-defined algorithms that are optimized 

for high computational speeds. An example of this is the Adaptive Moment Estimation optimization 

algorithm [174], which is frequently used in practice [175–177]. The correct selection of algorithms 

allows the use of optimized hardware for the specific computing systems. The use of graphics 

processing units is often preferred over central processing units in this context. 

The aim of the training of an ANN is to optimize the predictability of the model. Due to the complexity 

of the underlying architecture, the use of an appropriate test dataset, along with the meticulous 

examination of predictions through the analysis of residuals, is essential. 

1.4.5.5 Recurrent neural networks 

Recurrent ANNs, as previously described, are characterized by the fact that the flow of information 

within the network partially occurs in cycles. This enables the network to store states of various inputs 

and combine them, allowing recurrent neural networks to specialize in handling sequential data [142]. 

The networks gain a sort of memory for previously processed input through their structure. In this 

memory process, the input is a data series of length k. The individual values of the data series are fed 

sequentially into the recurrent layer. The output of the first input into the recurrent layer is then 

multiplied by a weight. The result serves as a weighting for the second input of the layer. This is 

continued in a chain process up to the last element of the data series. During this process, each 

individual output of each input can also passed on to the subsequent layers. This type of layer can also 
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be represented in what is known as an "unrolled network". It represents the chronological component 

of a recurrent layer, separated in different virtual nodes. It must be noted that in reality, only one node 

exists, and the input are fed into it sequentially. A simple form of an unrolled recurrent network is 

shown in Figure 11. The first input of the data series 𝐼1 is fed into the layer and results in the output 𝑝1. 

For the second input, the 𝑦1 value of the first input is multiplied with the weight of the recurrent 

“memory” w3 and considered in the calculation for 𝑝2. The similar procedure is performed for 𝑝3 

regarding the value 𝑦2. 

 

 

Figure 11: Unrolled recurrent layer with a data series of length 3 as the input and ReLU activation function 

Since the calculation of each output of the recurrent layer can be understood as a multiplication of the 

previous outputs, the phenomenon of ‘exploding gradients’ or ‘vanishing gradients’ can easily occur. 

This situation takes place with longer data series of length 𝑘 if the value of w3 is different to one. The 

weight of 𝑤3 enters then the result of the last input with 𝑤3
𝑘. During the backpropagation in training, 

if 𝑤3 > 1, a large factor for 𝑤3
𝑘 will prevent the calculation of small changes in the weights. There will 

be large changes in the weights and biases, and their optima cannot be found. This is referred to as the 

‘exploding gradients’ phenomenon [178]. A similar situation can occur if 𝑤3 is smaller than one. In 

this case, for long data series, the rate of change of the weights may approach zero. Again, the 

optimization of the weights and biases becomes impossible. This latter situation is known as the 

‘vanishing gradient’ problem. 

Various approaches have been described to address this issue, and they can be applied either 

individually or in combination [179]. One solution is to limit the size of the gradients to a specific 

maximum value. Additionally, the initially chosen values for the weights of the recurrent layers can 

have a significant influence on the progress during training. However, the highest degree of 

improvement is achieved through the use of special architectures of the recurrent layers. In this method, 

the recurrent layer is equipped with gates, which enable the network to ‘decide’ whether an output 

should be retained or discarded. Of particular importance in this context of gated neural networks is the 

long short-term memory (LSTM) architecture [180], which will be explained in detail in the following 

section. 

1.4.5.6 Long short-term memory 

Long short-term memory (LSTM) networks are a type of recurrent neural networks that were developed 

to solve the problem of vanishing and exploding gradients. LSTMs manage this by implementing 

special structures called gates, which regulate the flow of information, allowing for more stable training 

and enhanced performance in capturing long-range dependencies within the data. 

The LSTM layer combines two different types of structures (Figure 12). One is designed to act as short-

term memory, while the other serves the function of long-term memory. The long-term memory is 
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facilitated by a structure called the ‘cell state’. The cell state does not possess its own weights or biases, 

contributing to the layer's resistance to both vanishing and exploding gradients. The value for the cell 

state is given in Figure 12 as 𝑚𝐿,𝑖. The so-called ‘hidden state’ represents the short-term memory, 

denoted as 𝑚𝑆,𝑖 in Figure 12. The cell state and hidden state are interconnected through three gates. The 

forget gate enables for abolishing parts of the information in the cell state, achieved through the 

utilization of the sigmoid activation function. The result, which lies between zero and one, is multiplied 

with the current value in the cell state, potentially reducing it. The input gate, on the other hand, permits 

the addition of new information to the long-term memory. It utilizes two separate blocks: one 

employing the tanh activation function and the other a sigmoid activation function. The multiplied 

result of both blocks is then added to the cell state. The last gate is the output gate, where information 

from the cell state and hidden state converges. Both sigmoid and tanh functions are used again in this 

gate. The output of this gate serves as the new value for the short-term memory and/or as the output of 

the layer. In contrast to the cell state, the individual gates do possess weights and biases that can be 

trained. These weights and biases are depicted with 𝑤 and 𝑏. The input in the layer (𝐼𝑖) influences all 

three gates. 

 

 

Figure 12: Long short-term memory (LSTM) layer, red box: forget gate, green boxes: input gate, blue boxes: output gate, 

multiplication operations for results of activation functions are given as ×, additions as + 

The utilization of the forget gate and the input gate prevents the amplification of long-term memories 

within the network by multiplication operations. Instead, the long-term memory is given by an addition 

of the different values of the cell state. This solves the problem of both vanishing and exploding 

gradients. This flexibility in the architecture allows for more nuanced control over the information flow 

within the network, and can be tailored to specific tasks or objectives, enhancing the overall 

effectiveness of the model. 

LSTM layers are frequently used in models that work with sequential data. These applications can 

include, but are not limited to, series forecasting [181,182], the creation of artificial music [183], the 

recognition and generation of handwriting and speech [184,185], or 

pharmacokinetic/pharmacodynamic modeling [186]. Due to the demonstrated exceptional suitability 

of LSTM-based networks for processing sequential data, they hold promise for a benefit in their 

application on compression profiles.  
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1.5 Aims of the thesis 

As described in the preceding chapter, the investigation of experimental data from the processing of 

powders and granules, especially in view of their serial character, promises new perspectives in the 

description of processes and material parameters. The recent developments in data science and 

computational capacity provide powerful tools for advanced methods for data analysis. The aim of the 

present work is to utilize suitable data handling procedures to examine data from bulk solid feeding 

and compression processes to get novel insights into the ‘hidden’ information within the data. The 

developed and applied methods should be suitable for the in-line analytics of the processes, without the 

need for implementation of additional PAT. Regarding the need to handle ever-increasing amount of 

data, focus was placed on the development of algorithms and computer-assisted evaluation methods 

which reduce the individual source of human error.  

The following overview presents a sequence of the individual targets of the work: 

• Since the examination of fluctuations in pharmaceutical processes is of interest, the focus in 

the first part of the work was set on the study of these deviations. The first target was to achieve 

a better understanding of the properties of the stationary data series from bulk solid feeding 

devices. A secondary aim in this project was the investigation of the suitability of external 

catch scales as a characterization method for powder dosing units. 

 

• The investigation of compression profiles in pharmaceutical tableting requires appropriate data 

handling and the establishment of a well-maintained database. Constructing such a database 

was the primary objective of the second project phase. Of particular importance here was the 

handling of raw experimental data and the extraction of the compression phases of the tableting 

processes. Within this context, a program was to be created that automatically applies the pre-

processing and standard in-die analysis methods to the data from the compression phases. More 

in-depth examinations aimed to demonstrate the suitability of the database for subsequent 

steps. This includes the investigation on the correlation between compression descriptors of 

starting materials and their blends. 

 

• The final aim of this work was to calculate properties of tablets by exclusively utilizing the in-

die data from compression cycles. To achieve this, methods had to be found in order to collect, 

organize, reduce, and evaluate the data. Subsequently, a model should be derived that, by 

exploiting the serial information in the data, could be used to calculate the tensile strength of 

the produced tablets. 
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1.6 Outline of the thesis 

This work consists of four publications in peer reviewed scientific journals. In the second chapter, a 

new method for the evaluation of stationary time series is introduced and it’s use-case demonstrated. 

The new analytical procedure serves to quantify the chaotic portion in data and provides the opportunity 

to characterize such data. Additionally, the method works with the data of the internal dosing unit of 

gravimetric bulk solid dispensers, which is why it can theoretically be employed in-line. The 

application of this technique is demonstrated on the example of bulk solid dosing data of two different 

materials. Through this exemplary application, it is shown that the data from external scales, used to 

catch the dosed material, may display strong artifacts that tremendously complicate the evaluation of 

bulk solid dosing processes.  

The further chapters of this work deal with the non-stationary data series of tableting processes. The 

third chapter describes the examination of a constructed database, which should serve as a foundation 

for later investigations. Here, the compression of 12 raw materials at various machine settings is 

investigated in detail using multivariate decomposition. Beside the demonstration of the reliability of 

the data, the automatic pre-processing and evaluation of the data is the focus of this study within this 

thesis. Methods are applied that enable reproducible and precise detection of the typical data patterns 

of the compression phase of the tableting process. Understanding the influence of tableting parameters 

and material properties on the data enables a targeted expansion of the database. This is explained in 

chapter four. This chapter investigates binary mixtures of pharmaceutical excipients for tableting. The 

influence of the component ratios on different parameters could be clarified, and several trends are 

described. This work is further incorporated by the additional expansion of the data in chapter 5. This 

chapter also deals with the extension of the data by including ternary and quaternary mixtures, as well 

as the construction of an artificial neural network. The architecture of the network is described in detail, 

and the influence of individual structures is explained. An overview of the training of the model, as 

well as the prediction of the tensile strength of the tablets in the database, is provided. It is shown that 

the prediction accuracy of the network is uniformly precise and correct across different tablet masses 

and materials. Furthermore, a new method has been developed and explained that allows determining 

the compression profiles of different substances using a single compression cycle per material. The 

successful application of the novel method across a wide and realistic range of compression parameters 

is demonstrated. The final section of the work contains the discussion about the conducted studies and 

the outline for experiments and future improvements. 
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2 Classification of deviations in pharmaceutical continuous 

bulk solid dosing 

 

Pretext 

The evaluation of fluctuations of pharmaceutical processes in the steady state is not only of scientific 

interest but also a focus for the understanding of critical parameters and the control of production lines. 

Since the dosing of powders and bulk solids usually presents the first process unit in continuous 

production of oral solid dosage forms, the analysis of the available data of dosing processes is of highest 

importance for the understanding of the later processes. The consideration of the flow properties of the 

dosed materials, the complex and chaotic processes in flowing bulk solids, as well as externally caused 

fluctuations play a role in the evaluation of such data. The uniformity of the material flow into the 

downstream processes like tableting influences the homogeneity of the products. The investigation in 

the improvement of continuous dosing processes were therefore focused in the first chapter for this 

work. Result of the studies about powder dosing was an analytical procedure, utilizing the frequency 

domain of time series, to evaluate the chaotic character of processes. On the example of continuous 

material feeding the benefit of novel perspectives on the data was demonstrated and lead to a deeper 

understanding for properties of pharmaceutical process related data series. This publication concluded 

the work on data series of a stationary characteristic. After the completion of the work, the focus was 

shifted from powder dosing processes to non-stationary compression profiles, which display entirely 

different properties in various aspects. These studies will be addressed in the next three chapters. 

 

The following research paper was published in volume 412 of “Powder Technology” in the year 2022 

with the number 118003. The first author developed the idea to characterize the behavior of fluctuations 

in dosing processes. Julian Quodbach supported with ideas to the design of collection vessels and the 

comparison with the external balance. The experimental investigations were conducted by Stefan 

Klinken. He developed the Software and performed the evaluation of the data. He developed the 

evaluation method from scratch. The first draft and the main part of the final manuscript was written 

by Stefan Klinken. Julian Quodbach supported with reading and editing of the draft. 

author / co-author idea 

[%] 

study design 

[%] 

experimental 

[%] 

evaluation 

[%] 

manuscript 

[%] 

Stefan Klinken 90 80 100 100 75 

Julian Quodbach 10 20 0 0 25 
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Sums of amplitudes analysis – A new non-parametric classification method for time series 

deviation evaluation in pharmaceutical processes 

Stefan Klinken and Julian Quodbach 

Institute of Pharmaceutics and Biopharmaceutics, 

Heinrich Heine University, Duesseldorf 

Powder Technol. 2022, doi.org/10.1016/j.powtec.2022.118003 

 

Abstract 

The evaluation of various types of data and the understanding of their properties is the backbone of 

scientific work. Time series data are abundant in the investigation of manufacturing processes. Since 

they result from measurements of parameters over time, time series have distinctive statistical 

characteristics. Focused on bulk solid dosing, the authors illustrate the potential for misinterpretations 

if these characteristics are ignored in data evaluation. The sums of amplitudes analysis (SAA) is 

developed, based on discrete Fourier transformations as a novel non-parametric statistical method for 

description of time series. Subsequently, the authors use the SAA to investigate bulk solid dosing data. 

In this process, artifications of data of external catch scales, commonly used for the evaluation of bulk 

solid dosing, are found, and discussed. 
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3 Acquisition and multivariate decomposition of data of 

pharmaceutical tableting processes 

 

Pretext 

This publication was created as part of a collaboration with a research project of the topic of 

"Mechanical deformation behavior of materials during compression." In this project 12 starting 

materials were tableted using a compaction simulator. The materials were selected to range over a range 

of chemical entities, including cellulose and its derivatives, α-lactose, anhydrous dibasic calcium 

phosphate, carrageenan, and starches. Furthermore, various grades of lactose, anhydrous dibasic 

calcium phosphate and corn starch were included in the study. The different types possess varying 

particle size distributions, and/or particle shapes. Corn starch was examined in both a native and pre-

gelatinized grade. Various settings of the tableting machine were investigated including different tablet 

weights, two different punch tip geometries and two compression speeds. The aim of the study was the 

investigation of correlations and collinearities of compressibility and tableting parameters including for 

example the energies of the force-displacement, the tabletability, the coefficients of the equations 

according to Heckel, Kawakita or Kuentz-Leuenberger or the solid fraction of the tablets. To handle 

the database of more than 3000 tableting cycles, an algorithmic computational approach was developed 

in context of this study. The self-developed computer program EvTab was used for the preprocessing 

of the raw data, as well as for the in-die based evaluation procedures. This algorithmic approach serves 

not only as the solution in the handling of this large database, but also as the basement for later 

developed methods. This evaluation procedures are addressed in Chapter 5. The start point of each 

compression process was analyzed using an iterative change point detection algorithm. The information 

about the location and dispersion of the compression pressure of the upper punch during the ejection 

phase served as the calibration set for this change point detection at each data series. From the maximum 

of the compression pressure each compression profile was screened in reverse order until the 

compression pressure was lower than the mode of calibration plus one standard deviation. Following 

this approach, the beginning of each compression cycle was detected without manual adjustments with 

sufficient precision. Evaluations for the different in-die analyses were carried out using algorithms with 

minimal need for manual adjustments. The linear portions of the plots according to Heckel, Walker, 

Kawakita and Johanson were accurately captured through an iterative process of linear regression 

models. Within this process the portion of the linear regression was varied within predefined limits. 

The limits were based on the respective compressibility descriptors. 

The study demonstrates that the scattering of the different measures is considerably low in the triplicates 

of each factor-level combination. Therefore, the applicability of the developed algorithms is 

demonstrated over a broad range of data settings. It is shown that the slopes of the tabletability profiles 

have collinear components with the 𝑎𝑏 parameter of the Kawakita equation. Negative correlations of 

the tabletability were shown with C-1 of the Kuentz-Leuenberger equation and 𝐾 of the Johanson 

compressibility model. This indicates that the course and shape of the of the compression profiles 

contain information about the tablet properties like the tensile strength. The different materials form 

clusters in the data space which are almost perfect to separate in 2 orthogonal dimensions. This indicates 

that the differences within compression profiles seems to be significant for the clear separation of the 

materials and their tablet properties. As the axis along which the materials can be distinguished is 

collinear with the loading of the slope of the tabletability profile in the PCs one and two, the prediction 

of the tensile strength based on the compression profiles of the substances appeared to be feasible. This 

target was focused as the aim of subsequent studies in context of this thesis. 

As expected, punch pressure had the most significant impact on the variance in the data, while tablet 

compression speed, punch geometry, and tablet mass had a less pronounced influence. As the highest 

data density was within the settings of 8 mm punches this punch geometry was selected for following 
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studies. The optimal compression speed was found with 3 mm s-1 as higher compression speeds 

correlate with the occurrence of fluctuations in the data. In context of this thesis, the study provided the 

access to a well described and sufficient large database of compression data. The wide range of 

materials, compressions pressures, punch geometries and compressions speeds enabled the selection of 

the most reliable settings for the following studies. The subsequent expansion of the database, described 

in the following chapters, thus utilized these optimal settings. The developed algorithms showed their 

applicability within the scope of this published investigation. They were partially used in subsequent 

studies. 

 

The following research paper was published in volume 637 of “International Journal of Pharmaceutics” 

in the year 2023 with the number 122890. The first author Sabrina Berkenkemper performed the 

experiments in lab according to the designed study. The idea for this paper and the study design was 

developed mainly by Stefan Klinken and Sabrina Berkenkemper in equal parts. Peter Kleinebudde 

assisted with ideas for the study design and handling of the data. The software utilized for the whole 

project was written in Python code by Stefan Klinken. This includes main parts of the evaluation of the 

data. Sabrina Berkenkemper performed manual evaluations and sorting of the data. She wrote main 

parts of the manuscript assisted by Stefan Klinken. Within the reviewing process, Stefan Klinken 

conducted additional computer assisted investigations on the behavior of Suns and Kuentz-Leuenberger 

constants to explain the exclusion of data. Peter Kleinebudde supported with reviewing and editing of 

the manuscript. 
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Abstract 

Numerous studies elucidated material behavior based on compression analyses. Especially 

compressibility, compactibility and tabletability were in the focus of these investigations. In the present 

study, a comprehensive multivariate data analysis was performed using principal component analysis 

method. Twelve pharmaceutically used excipients were selected for direct compression tableting and 

subsequent evaluation of several compression analyses. Material properties, tablet properties, tableting 

parameters and parameters from compression analyses were used as input variables. The materials 

could successfully be grouped using principal component analysis. Of the tableting parameters, the 

compression pressure showed the greatest influence on the results. The tabletability was found to be 

the most important compression analysis in the material characterization. Compressibility and 

compactibility only played a minor role in the evaluation. Some important insights have been gained 

for a deeper understanding of the tableting process using the multivariate approach to evaluate the 

variety of compression data. 
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4 Investigations on the compression of binary mixtures 

 

Pretext 

The applicability of the algorithms to preprocess and evaluate the data of compression processes was 

shown in Chapter 3 on a data base of pure pharmaceutical excipients. Hereby, the procedures were 

successfully shown within various settings of the tableting process including different punch speeds, 

tablet masses and punch geometries. In the current chapter the database was expanded to binary 

mixtures of four different materials. In the study, hydroxypropyl cellulose and microcrystalline 

cellulose were included as plastic substances, while dibasic calcium phosphate and lactose were chosen 

as brittle materials. The four binary mixtures were described in terms of compressibility, tabletability 

and compactability. Through varying parameters of the three properties and comparing compression 

profiles, it was demonstrated that the different mixtures were clearly distinguishable based on the 

compressibility parameters. Additionally, the different parameters of the Kawakita, Heckel, Kuentz-

Leuenberger and Walker equations showed different dependencies to the change of the composition of 

the mixtures. This clearly indicates that none of them would be sufficient to solely describe the shape 

of the compression profiles. Based on this observation the focus was on the application of non-

parametric approaches for the description of the shape of compression profiles. Moreover, the primary 

aim of the study was achieved by identifying parameters that were linearly dependent on the mixing 

ratios of the substances. 

For the current work, the expansion of the database through the study was of particular importance as 

the application of neural networks requires the access to sufficiently large databases. Additionally, it 

was demonstrated that the algorithm-based evaluation and processing of data is also applicable to new 

unknown data series. Again, the spread of the six measurements at every factor-level combination was 

demonstrated to be considerable low. Due to the subsequent renewed demonstration of the 

distinguishability of substances based on tableting parameters and compression profiles, the next step 

involved the use of machine learning based regression models to calculate tablet properties from the 

compression profiles. This will be addressed in the subsequent chapter, during which the underlying 

database will additionally undergo a final expansion. 

 

The following research paper was published in volume 424 of “Powder Technology” in the year 2023 

with the number 118571. The idea to investigate the compression behavior of mixtures was initialized 

by Stefan Klinken and Sabrina Berkenkemper in equal parts. Peter Kleinebudde provided additional 

ideas and suggestions on the topic. The lattice of the design was set up by Stefan Klinken while Sabrina 

Berkenkemper planed the practical investigation including e.g. machine settings, investigation 

procedures. Main parts of the analysis and manuscript work were carried out by Sabrina Berkenkemper. 

Stefan Klinken supported in the computational based evaluation of the results and the discussion of the 

results in the manuscript. Peter Kleinebudde supported with reviewing and editing of the manuscript. 
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Abstract 

One of the most important dosage forms remains tablets. Predicting the tableting behavior of 

formulations is a major goal in the development of those dosage forms. Resources and consequently 

costs can be saved if time-consuming experiments for empirical formulation development are 

eliminated. Predicting the properties of a mixture from the properties of the materials it is composed of 

has been studied many times. To simplify this approach, binary mixtures were tableted in this work. 

Both pure materials and mixtures in different compositions were characterized with respect to their 

compressibility and tablet properties. The aim was to investigate different compressibility descriptors 

for their suitability to predict the tableting behavior of binary mixtures. For this, linear mixing rule for 

weight and volume fractions was applied to predict the properties of the mixture from the corresponding 

starting materials. Compressibility analysis, Walker equation and rearrangement index of Kawakita 

analysis showed promising results. A linear relationship between the compression parameter and the 

composition of the binary mixture was found for the three parameters. These descriptors can be used 

as a foundation to describe more complicated mixtures in the future. 
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5 Prediction of tensile strength of tablets using LSTM 

networks on compression profiles 

 

Pretext 

The insights gained in the chapters 3 and 4 about compression profiles and their utilization for 

predicting properties of the powder mixture or the produced tablet were fundamental for the application 

in the following study. The scope of this publication was to evaluate patterns in the compression profiles 

and using them to predict the tensile strength of tablets produced from different excipients and mixtures. 

A particular challenge was dealing with compression profiles of different temporal lengths and different 

degrees of compaction. The LSTM architecture was utilized to design a recurrent neural network to 

model the correlation between the shape of compression profiles and the tensile strength of the tablets. 

A masking method for missing values was implemented to handle the different length of the data series, 

where the missing data points were end-padded with a value of zero. This enabled the future processing 

of the model via graphics processing units. Based on a consolidated database of more than 1200 

tableting cycles, the model was trained and tested. The data was utilized from portions of the databases 

obtained in the chapters 3 and 4. Data of ternary and quaternary mixtures as well as data of two more 

pure components were additionally investigated in this study. After demonstrating sufficient prediction 

of the tensile strength of individual tablets, a method was developed that allows for the prediction of 

the tabletability profile of a substance over a wide range of compression pressures. This method was 

demonstrated on the example of 12 starting materials. The procedure allows in range of the 

interpolation of the data base material independent predictions of the tensile strength of tablets. Only 

data from a single compression process per material were required to calculate the complete 

tabletability profile of the respective substance. The model presented is, to the author's best knowledge, 

the first model that uses methods of natural language processing to describe the shape of compression 

profiles. Utilizing an LSTM-based neural network enables remarkably accurate predictions of tensile 

strength for tablets, covering a broader range of materials than ever before in published literature. The 

investigation suggests that, due to the inherent information, compression profiles could be used to 

calculate the tensile strength of tablets made from materials unknown to the model. At this time, the 

presented model stands alone in the literature for its suitability in in-die determination of tensile 

strength, exclusively utilizing data from compression pressure, punch movement, and process time. 

The demonstrated method underscores the potential advantages of considering characteristics of data 

series via machine learning approaches when analyzing data of pharmaceutical manufacturing 

processes. 

 

The following research paper was published in volume 645 of “International Journal of Pharmaceutics” 

in the year 2023 with the number 123280. This work was mainly carried out by Stefan Klinken. Jill de 

Bisshop performed the compression experiments and analyzed the tablets. The idea to predict the 

strength of tablets from the shape of compression profiles was developed by Stefan Klinken following 

experiments to describe the course of such curves via MVDA. He independently developed the design 

of the study. Both the underlying software and the evaluation were carried out by Stefan Klinken based 

on a variety of Python packages. The written elaboration was also undertaken by him. Jill de Bisshop 

read the manuscript but had no influence on its content. 
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Abstract 

This publication's objective was to predict the tensile strength of tablets using an analysis of process 

data comprising compression pressure, sampling timestamps, and punch positions. A recurrent neural 

network, specifically designed with Long Short-Term Memory layers, was utilized to accommodate 

the time-series characteristics of the data. A dataset from 344 tablet compression cycles was employed 

for model training, after which the model demonstrated a predictive ability with a coefficient of 

determination of 0.954 on test data from 804 tableting cycles. The foundational database incorporated 

data from both pure substances and mixtures consisting of up to four components compressed at various 

compression pressures and with three different tablet masses. Interestingly, the prediction errors did 

not exhibit any significant correlation with specific materials, mixtures, maximum compression 

pressures, or tablet weights. With the aid of the model, it was possible to calculate the entire tabletability 

profile of twelve substances from just a single compression process each. Models of this nature bear 

promising potential for future application in the research and development of formulations as well as 

in production processes to predict tensile strength. 
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6 Discussion and outlook 

6.1 The future of data analysis in bulk solid dosing 

The sum of amplitudes analysis introduced in chapter 2 can serve as an example for the examination of 

stationary time series which exhibit a high level of noise. Within this publication, it was demonstrated 

that commonly used methods for characterizing powder dosing have the disadvantage that 

measurement artifacts are likely to occur. These artefacts are prominent in the application of the most 

utilized qualification method for powder dosing devices. The use of an external catch balance to 

measure the dosed powder over time produces data which not only reflects the fluctuations in the dosing 

but also slipping effects of the powder cone on the balance. The presented analytical procedure was 

shown to be capable of the reproducible identification of this artefacts in the data. Nonetheless, the 

impact of this study on the industrial application of screw-based bulk solid feeders is limited. 

In this regard, multiple factors have to be named which reduce the impact of the presented study. 

Notably, one of the less influential factors in this publication is the limited range of investigated 

materials. Furthermore, a comprehensive exploration of the impact of diverse process parameters was 

not included in the investigation. However, the foremost determinant limiting factor appears to be the 

question of whether fluctuations in powder dispensers, a topic frequently discussed in the literature at 

few-seconds intervals, possess meaningful industrial implications. Examinations concerning the 

blending behavior of continuous powder mixers with respect to input fluctuations reveal that the 

residence time distribution of the material is the filter function of the fluctuations of input [187]. 

Theoretical investigations suggest that the consideration of the residence time distribution is crucial in 

the assessment of fluctuations of the powder dosing in all kind of pharmaceutical manufacturing 

processes [188]. This convolution of input and filter function results in a smoothed scattering of the 

output. In numerous pharmaceutical processes involving bulk solid dosing, the median residence times 

typically span from 10 seconds to several minutes, often accompanied by distribution widths exceeding 

30 seconds [23,189–192]. Assuming that input fluctuations are likewise filtered by the residence time 

in these processes, fluctuations within the frequency range of a few seconds are likely negligible. 

Nevertheless, it is crucial to acknowledge that potential effects, particularly in processes characterized 

by extremely short residence times, such as twin-screw wet granulation, or in scenarios featuring 

pronounced variations in powder dosing, cannot be conclusively dismissed. Consequently, conducting 

measurements for this purpose may represent a prospective avenue for subsequent research in this 

thesis. In particular, Fourier spectrum-based studies of various materials must be questioned based on 

these findings [43]. It is unclear whether the detected fluctuations are due to fluctuations in the powder 

dosing or caused by slippage processes of the powder cone on the external balance. Differences in the 

quality of dosing processes may thus be merely differences in the measurements, representing data 

artifacts.  

These controversies clearly show that a measurement method is necessary which can be used in-line 

and is not subject to material-dependent artifacting. Microwave resonance seems to be a suitable 

technology for this purpose. It is surprising that, despite the first publication about this topic [193], no 

further studies on this topic have been conducted. Besides the possibility of in-line implementation, 

this technology promises another advantage. As described in the publication underlying chapter 2, the 

current assessment of bulk solid dosing using internal or external balances results in derivative time 

series. The weight is measured, and the dosing rate is calculated as the temporal derivative of the data. 

This entails a limitation for the sample frequency. As the measurement intervals become shorter, the 

denominator of the ratio in the calculation of the derivative also decreases. For very short measurement 

intervals, the denominator approaches zero, resulting in an increase of the calculated fluctuations. 

Therefore, measurements at different sample frequencies are only hardly comparable. Microwave 

technology measures the density in the sensor field, which is directly a measure of the quantity of the 

falling powder over time and thus not mathematically dependent on the measurement interval. The 
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application of this technology for external quantification of powder feeders or for in-line monitoring of 

dosing processes appears to be very promising. It is already shown that microwave resonance 

technology is able to predict masses of tablets in a range of 355 - 380 mg in an high accuracy with a 

coefficient of determination of 0.97 in an industrial relevant setting [194]. This finding indicates that 

reproducible and precise measurements of small mass variations in the sensor field are achievable with 

this technology. However, the signal of the microwave resonance sensor is dependent on the 

surrounding temperature [195] and on the humidity of the air [196]. These parameters would need to 

be additionally recorded and calibrated in order to calculate a compensation term for the mass flow 

rate. The use of resonance microwave sensors would allow monitoring the dosing with very high 

sampling rates. Higher sampling rates offer the possibility to precisely work out actual differences 

between the dosing of different materials. The presented methodology of SAA for data analysis can 

then be one part in the toolbox to gain an accurate understanding of the properties of the collected data. 

The SAA is part of a multitude of metrics for the sequence of time series, representing parameters for 

the entropy of the time series [197–199]. Particularly, comparing the SAA with the permutation 

entropy, introduced by [111], or with the Fourier entropy [200] would be of highest interest. Future 

work could reveal the advantages and disadvantages of the methods in the application to data from 

pharmaceutical processes. 

 

6.2 Advancements in the regression of compression profiles 

The evaluation of compression processes presented in this work has made a decisive advance in 

information extraction from compression profiles in comparison to the former literature. As described 

in the introduction of this thesis, the description of the course of compression profiles in the domains 

of pressure and distance between punches is frequently conducted using least-square regression-based 

models. The resulting compressibility models do not account the temporal dimension of the 

compression processes. Within chapter 3 the punch speed was identified as a less influential parameter 

on the compression profiles and the properties of the tablets. Even through the findings of Tye et al. 

[71] suggest the presence of an effect of the tableting speed on the tabletability, the compactability of 

the materials was not influenced. Similar findings are given by Haware et al. [201]. In contrast, 

investigations on the compression of paracetamol indicate that the speed of the compression process 

influences the elastic energy and therefore the capping tendency of the produced tablets [202,203]. The 

consideration of the temporal component of compression processes therefore seems to be relevant for 

some materials. Consequently, the neglect of this aspect can be seen as a minor disadvantage of the 

described bivariate models. 

The advantage of the parametric regression models lies within their simplicity. They typically consist 

of only a few coefficients. However, this advantage is also the major weakness of the models. The 

coefficients are frequently not orthogonal, as demonstrated in chapter 3 [204]. The presented correlation 

matrix indicates that coefficients within the same model often correlate. In combination with the 

simplicity of the models, this reduces the flexibility of the regression to describe the local structure 

within the data. Historically, this can be justified since most measurements were typically performed 

using out-of-die methodology. An out-of-die investigation under a considerable effort, only results in 

a few points describing the compression profiles. Consequently, models with a higher count of 

coefficients were impractical due to the limited degrees of freedom. With the widespread application 

of PAT for measuring punch pressure and punch positions, high-resolution compression curves are now 

available. Therefore, the only remaining justification for using models with fewer coefficients is their 

ease of interpretation. However, considering the variety of the processes which can take place during 

the compression of bulk solids [78], it seems that models with only a few coefficients may be too 

simplistic. 
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It must be mentioned that the describability of the curves by the compressibility regression models is 

dependent on the material. The data on Heckel, Kawakita, and compressibility analysis according to 

Johanson in chapter 4 clearly show that some curves can be described over large ranges by the linear 

models. Curves of other materials show significant deviations from linear trajectories, and thus a poorer 

describability by the models [205]. Similar observations can also be made in the supplementary 

materials of chapter 3. Here, some curves show good describability by the Kuentz-Leuenberger 

equation, while others exhibit significant deviations [204]. 

Another insight extracted from chapter 3 is that the regression results of the different models for the 

compressibility of substances can contain orthogonal information. For this reason, not just one of the 

models can be used to describe the same information about the compressibility of the substances. As 

an example, the slope of the Walker equation and the reciprocal of the intercept of the Kawakita 

equation can be mentioned. In respect to the described variance of around 60 % in the two-dimensional 

biplot of the study, it can be assumed that further orthogonal information of the compression parameters 

exists. The results of a similar study by Dai et al. [206] with a explained variance of approximately 55 

% gives a comparable conclusion. For some parameters this seems to be addressable to the different 

portions of the data on which the models are applicated. As already mentioned in the introduction of 

this thesis, the portion of the data which is described differs between the different models. Therefore, 

it is not surprising that the information obtained from the parameters of the models is partially 

orthogonal. The present work utilizes algorithmic detection of the portions for the different models and 

increases thereby the reproducibility of the evaluation methods. 

The consideration of the disadvantages of the mentioned models resulted in the application of a 

recurrent neural network in this presented work. With this, it was possible to describe the compression 

profiles of the substances. Additionally, the information from the compression profiles could be utilized 

predicting tensile strength of the resulting tablets. The introduced LSTM model consists of around 

40,000 trainable coefficients. Beside the detection of the first contact of the upper punch with the 

powder, no further change point detection algorithm was needed for the pretreatment of the data. The 

recurrent architecture of the model enables a precise regression of the time series data and the 

exploitation of the underlying autocorrelation within the data. To the authors best knowledge, no other 

published study describes a precise regression of the compressibility and the tabletability over a broad 

range of materials. The methodology presented here is most comparable to the study by Lee et al [90]. 

They used a cross-decomposition method via projection to latent structures by partial least square 

regression to calculate tensile strength based on interpolated compression profiles. The interpolation of 

the curves in this study is possible because the x-data have an almost identical range. This directly 

prevents the application of the method to substances with significantly different compression behaviors. 

Also, a comparison of different masses or multiple punch speeds is not feasible with this model. They 

compared two different models. One model was interpolated over time, while the other model 

interpolated the force respective to the displacement of the punches. Both models achieved no 

noteworthy predictive quality, with a coefficient of determination ranging between 0.4 and 0.8. 

Additionally, no cross-validation of the results was conducted, which makes the statistical significance 

of the outcomes questionable. 

Considering that the compression profiles of different substances sometimes show clear differences, it 

seems surprising that only a few studies deal with the prediction of tablet properties from these profiles. 

Characteristics of compression curves can intuitively be attributed to specific tabletability profiles. This 

becomes apparent from the examples of substances with very high tabletability, such as 

microcrystalline cellulose or hydroxypropyl cellulose, in comparison to substances with lower 

tabletability like carrageenan or lactose. These examples are highlighted in the data of chapter 3 and 4 

of this work [204,205]. Another indication of the relationships between compressibility parameters and 

the tabletability of substances is provided by the correlations shown in the study in chapter 3. Here, for 

example, a collinearity between the reciprocal intercept of the Kawakita equation and the tabletability 

could be demonstrated. However, a mathematical regression of such relationships is challenging 

without suitable, straightforward parametric methods. Furthermore, a major demand in the field of 
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research on pharmaceutical compressions is to employ models with a physical basis. However, the 

study in chapter 5 clearly demonstrates that a method which takes into account the complexity of the 

processes occurring during compression surpasses the methods previously published. 

The demonstrated model can be understood as a prototype. It certainly represents the first model that 

could enable a material-independent in-die prediction of the tensile strength of tablets. In contrast to 

methods using ultrasound, near infrared, or other spectrometric measurements, the presented model is 

not calibrated for a specific composition of substances. Furthermore, it is not limited to a particular 

mixture system, such as linear or geometric models based on pure substances for calculating binary 

mixtures. A further advancement in predicting tabletability is the demonstrated curve striping of the 

compression profiles. Since the descending part of the compression curve is not considered, the LSTM-

based model is able to calculate any tensile strength below the measured maximum compression 

pressure. This makes this method suitable for predicting the current tensile strength of the tablet in real-

time during the compression of a material. This is of enormous value in the development of 

pharmaceutical formulations. 

The application of artificial intelligence in scientific data analysis faces primarily two major critiques. 

First, there is the complaint about the black box nature of the models. Often, the predictions made by 

the models are difficult to verify, and it is usually unclear how each part of the input contributes to the 

output. The second critique concerns the complexity of the models and the associated need for large 

amounts of data. 

In a comparison of the work presented here and models from the literature, the difference in the size of 

the data used is clear. For instance, the model by Lee et al. [90] utilizes 108 data series for training the 

model. Another study for tensile strength calculation supported by cross-decomposition by Casian et 

al. [207] used 60 data points for calibration. Jin et al. [86] even utilized only 32 data points in their 

cross-decomposition. In contrast, the model presented in this work utilizes 344 data points, which is 

between three and ten times the data volume of comparable studies. However, the diversity of data in 

this work is much greater than in the models known from the literature. Additionally, it must be 

emphasized again that the model presented here, unlike other comparable methods, appears to allow 

for meaningful extrapolations between materials and does not require material-dependent calibration. 

The study by Djuris et al. [87] suggests that for less complex neural networks for predicting the tensile 

strength of tablets, significantly fewer data points are required for successfully training of the data. The 

conclusion from the comparison within the literature is that the fear of an enormous experimental effort 

for the training of artificial intelligence in the realm of compression analysis seems to be unfounded. 

Aside from the required amount of data, the second point of criticism the black box nature of neural 

networks has to be addressed. The introduced curve-stripping method of compression profiles made it 

possible to precisely estimate the tabletability profiles of substances from just a single compression 

process. The question of the influence of different portions of curves can thus be easily answered. The 

entirety of the curve up to a certain point contributes to the predicted strength. This does not only 

include the pure values but also the order and correlations of the values. The exact influence of each 

data point can therefore be precisely explained for this model, with the influence of each point clearly 

depending on every data point before and after it. This consideration significantly reduces the black-

box character of the model. 

However, the database of underlying materials is severely limited. Beside limitations in the 

compression profiles and the punch geometries the database lacks for mixtures that correspond to real 

formulations. The inclusion of APIs or excipients with different deformation behavior, as well as the 

investigation of real formulations, may potentially require an increase in the complexity of the model. 

In this context it will be crucial to strike a balance between the diversity and size of the underlying 

database and the complexity of the model to avoid overfitting of the training data. Possible extensions 

of the model include the use of attention mechanisms such as multi-head attention layers [208]. The 

comparison of the recurrent structure with one-dimensional convolutional networks would be of high 
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interest to enable further improvements of the model. One-dimensional temporal convolutional 

networks employ an architecture distinct from recurrent networks to analyze autocorrelation in time 

series data. This architecture demonstrated an improved performance on time series data in comparison 

to LSTM based networks [209]. 

Further extensions of the demonstrated methodology include the use of data from rotary tablet presses. 

Rotary tablet presses represent production scaled tableting machines and are, therefore, highly relevant 

for the transfer of the method's use from formulation development to industry relevant process 

monitoring. In this context, three main limitations arise. Firstly, the speeds of compression processes 

in rotary tablet machines are much faster. The punch speeds can easily exceed 300 mm s-1 [65]. The 

second limitation is based on the lesser instrumentation of these machines with PAT. While most 

modern rotary tablet presses are equipped with force measurement instrumentation, the measurement 

of the punch displacement is less common. When data on punch displacement are available, they are 

usually results of simulations rather than measured values. Additionally, the recording frequency is 

often lower than the 10 kHz used in this work. Usually, an encoder is used to trigger data collection at 

fixed angles of the rotor [66]. This results in a constant number of data points for each compression 

process. Consequently, relative to the force-time profile of the data, the density of data points decreases 

as the machine runs slower. However, the reduced number of datapoints is likely not a significant 

hurdle. The data shown in chapter 5 were reduced by a decade, corresponding to a sample frequency 

of 1 kHz. The absence of punch displacement data presents a more substantial problem. Future studies 

have to investigate whether simulations are sufficient to adequately replace the data of the displacement 

of the punches. 

 

 



 

42 

7 Summary 

The advent of new technologies and trends in the development and manufacturing of pharmaceutical 

dosage forms has led to increased availability of data to describe the processes and properties of 

produced goods. Values from individual measurements do not only provide relevant information about 

processes, but the correlation of values within and between data series also contributes to the overall 

information contained in the data. The applicated methodology generally falls under the term of time 

series analysis. In this current work the focus was laid on the subprocesses in the direct compression of 

bulk solids into tablets. Beside the compression process the powder dosing of the bulk solid materials 

was investigated. In this context a novel method for the qualification of powder dosing units was 

developed. The new procedure allows for the systematic analysis of deviations in stationary time series 

of the feed rate over time. The determination between chaotic events and systematic deviation from 

running mean of the time series was done based on permutations and subsequent transformation in 

frequency domain of the data. During this procedure artefacts within commonly used data were shown 

and discussed. 

In the context of the compression step of materials in direct compression a database was created. It was 

analyzed regarding various features including measures of the compressibility, tabletability and 

compactability of the materials, as well as changes of these properties in mixtures of excipients. In two 

separated studies the diversity and reliability of the database was demonstrated successfully. In the first 

investigation about pure pharmaceutical excipients different compression speeds, geometries of the 

tooling and target tablet masses were analyzed. It was shown within this study that the accuracy of the 

compression speed of the compaction simulator was heterogeneous over the range of the analyzed 

range. It was concluded that the punch speed of 3 mm s-1 seemed to be most applicable. Therefore, in 

the future expansions of the database this punch speed was targeted. The multivariate approach revealed 

that the tensile strength of tablets seemed to be correlated with certain shape of the compression profiles 

of the substances. Mainly the 𝑎𝑏 parameter in the Kawakita equation was found to highly correlate with 

the hardness of the produced tablets. The prediction of the tensile strength of tablets based on their 

compression profiles was therefore set as the target of this project. As the evaluation of pure 

components is of academic interest but of less practical impact an expansion of data to binary mixtures 

was done. It was shown that small changes of the portions within the mixtures can results in sharp 

changes of compression descriptors or tablet properties, while others were of higher correlation with 

the change of the composition. The differences in the behavior within the descriptors of the 

compressibility over the change of the mixtures composition indicated that the utilization of multiples 

descriptors of the compression profiles would be best for the prediction of the tensile strength. The 

inclusion of ternary and quaternary systems in following studies further increased the diversity of the 

database towards settings comparable to industrial application. In the context of database management, 

the development of algorithmic data handling approaches was the key challenge in all these projects. 

The final study presented in this work finalized the application of time series analysis in data of 

processes, related to direct compression. Based on the tools in natural language processing a LSTM 

layer based neural network was designed to analyze the curve shape of the compression profiles in the 

database. After a detailed descripted training procedure, the model was used to calculate the tensile 

strength of more than 800 tablets of various composition with a coefficient of determination 0.954. The 

detailed evaluation of residuals revealed no systematic correlation of errors in the model’s prediction 

and properties of the materials investigated. The power of the model was demonstrated in the 

development of a procedure to calculate the tabletability profile of substances or mixtures based on a 

single compression process. Hereby an iterative curve stripping procedure was utilized for the 

generation of sub curves of the single compression profile. The applicability of the method was shown 

on 12 of the pure materials. 

This thesis demonstrated the application of methodology of the field of statistics and data science in 

the evaluation of data of pharmaceutical processes in the production of tablets. It was shown that the 
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proper data handling and database maintenance as well as the assurance of the interoperability of the 

data, combined with suitable analyzing tools yields promising results on pharmaceutical data. The 

highlight of this work certainly is the material independent prediction of the tensile strength of tablets 

based on in process data. This method provides the first tool described in the literature to investigate 

the tabletability and compactability of materials solely based on inline data from the tableting process. 

The understanding of bulk solid dosing processes is still increasing and the study within this work 

demonstrates that external calibration of dosing devices can lead in severe artefacts in the data. One 

focus of future research in this field must therefore be on the development of PAT based systems 

improve the monitoring and control of bulk solid dosing processes. 

As the benefit from machine learning increases with the increase in the amount of data, the expansion 

of the database is a substantial part of future studies. The aim of this work will be to include various 

settings and machine parameters ranging from punch geometries overcompression speed to various 

compression profiles. The investigation of industrially relevant mixtures of bulk solids will improve 

the applicability of the model. Improving the architecture of the model and increasing its complexity, 

including addition of layers, convolutional structures or multi-head attention, may potentially 

demonstrate further improvement of the predictability.  
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8 Zusammenfassung 

Neue Technologien und Trends in der Entwicklung und Herstellung von Arzneiformen führen zu einer 

erhöhten Verfügbarkeit von Daten, welche den Prozess oder die Produkteigenschaften beschreiben. 

Dabei enthalten nicht nur die einzelnen aufgenommenen Werte Information. Die Abfolge von 

Einzelwerten kann aufgrund der Abhängigkeiten zwischen den Werten zusätzliche Information 

beinalten. Besonders die chronologische Abfolge von Werten ist von Wichtigkeit in der Betrachtung 

pharmazeutischer Prozesse. Diese besondere Form der Datenreihen wird als Zeitreihen bezeichnet. Die 

Wichtigkeit in ihrer korrekten Auswertung wird durch die Zunahme von kontinuierlichen 

Herstellungsverfahren in der pharmazeutischen Industrie mehr und mehr bedeutsam für die 

pharmazeutische Forschung. In der Auswertung der Daten kann durch Berücksichtigung von Auto- und 

Kreuzkorrelation die Beschreibung von Prozessen verbessert werden. Zusammengefasst finden sich 

diese Methoden meist unter dem Begriff der Zeitreihenanalyse. Von besonderem Fokus für die gezeigte 

Arbeit waren Prozesse im Kontext der Herstellung von Tabletten durch Direkttablettierung. Dabei 

wurde vor allem die kontinuierliche Dosierung und die Verpressung von Haufwerken fokussiert. Am 

Beispiel der kontinuierlichen Pulverdosierung wurde eine neue Methode zur Charakterisierung von 

Datenreihen vorgestellt. Mithilfe dieser ist es möglich die Systematik gemessener 

Prozessschwankungen zu ermitteln und zu vergleichen. Die Methode basiert auf einer 

Permutationsanalyse und anschließender Fouriertransformation der gemessenen Datenreihe. Die 

Summe der Amplituden der Frequenzdomäne der Daten und der Permutationen wurde im Verhältnis 

betrachtet. Es konnte gezeigt und diskutiert werden, dass dieses Verhältnis Informationen über den 

Anteil der chaotischen Schwankungen an den Prozessvariationen hat. Systematische Variationen, etwa 

gleichförmige Änderungen oder sinusoidale Schwankungen, können dann quantifiziert werden. Diese 

Methode bietet eine neue Möglichkeit in der Beschreibung von Prozessdaten. Durch die Anwendung 

der entwickelten Methode konnten Artefakte, die durch die externe Vermessung von 

Pulverdosiervorgängen entstanden, beschrieben werden. Das Auffangen von Pulver auf einer externen 

Waage resultiert in der Bildung eines Pulverkegels. Dabei kann abrutschendes Material an diesem 

Kegel zu detektierten Schwankungen in den Daten der Waage führen. Es konnte gezeigt werden, dass 

zwei unterschiedliche Materialien, ähnlich guter Fließeigenschaften sehr unterschiedliche Artefakte 

erzeugen. Diese Artefakte sind von Interesse, da die externe Untersuchung von Pulverdosiergeräten 

weit verbreitet ist. Die neue Evaluation der Daten ist ein Beispiel für die Nutzbarmachung von 

Korrelationsinformationen in stetigen Datenreihen im pharmazeutischen Kontext. 

In der weiteren Arbeit werden Datenreihen untersucht, die keinen stetigen Charakter besitzen. Im 

Kontext der Herstellung von Tabletten wurden in drei aufeinander aufbauenden Studien 

Kompressionsprofile von Reinstoffen und physikalischen Mischungen analysiert. In einer ersten Studie 

wurden 12 verschiedene Substanzen mittels eines Kompaktionssimulators verpresst. Es wurden 

Substanzen in die Studie inkludiert, welche stark unterschiedliche Kompressionseigenschaften 

aufweisen. Neben sehr plastisch verformbaren Substanzen wie Hydroxypropylcellulose oder 

mikrokristalliner Cellulose oder stark elastischem Carrageenan finden sich auch spröde Stoffe wie 

Lactose und dibasisches Calciumphosphat in der Datenbank. Um auch Einflüsse unterschiedlicher 

Qualitäten chemisch gleicher Materialien zu untersuchen, wurden vier unterschiedliche dibasische 

Calciumphosphate und drei Typen von Lactose in die Datenbank aufgenommen. Um die optimalen 

Parameter für die weiteren Untersuchungen zu finden, wurden mehrere Einstellungen untersucht. Dabei 

wurden Tablettenmassen von 150, 200 und 250 mg, Tablettiergeschwindigkeiten zwischen 3, 30 und 

300 mm s-1 und 8 sowie 11,26 mm Stempeldurchmesser eingeschlossen. Um die Eigenschaften der 

eingeschlossenen Daten genauer zu beschreiben, wurde in der in dieser Arbeit vorgestellten Studie eine 

multivariate Dekomposition unterschiedlicher Deskriptoren von unter anderem der Kompressibilität, 

Tablettierbarkeit und Kompaktierbarkeit der Materialien vorgenommen. Es konnte gezeigt werden, 

dass viele Kompressionsdeskriptoren ähnliche Anteile von Informationen liefern. Als Nebenergebnis 

der Studie konnten langsame Tablettiergeschwindigkeiten von 3 mm s-1 als geeignet für die optimale 

Differenzierung der Substanzen identifiziert werden, da höhere Geschwindigkeiten zu starken Fehlern 

der Stempelbewegung des Kompaktionssimulators führten. Die Tablettenmasse wurde als weniger 
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wichtiger Einflussfaktor auf die Kompressionsparameter bestimmt. Von besonderem Interesse für diese 

Arbeit war die Erkenntnis, dass der Kompressibilitätsparameter 𝑎𝑏 der Kawakitagleichung 

Kollinearität mit der Tablettiebarkeit der Substanzen aufweist. Eine Verbindung des 

Kompressionsprofils mit der Festigkeit der entstehenden Tabletten wurde aus diesem Grund vermutet. 

In einer weiteren Studie im Rahmen dieser Arbeit wurden die durchgeführten Untersuchungen auf 

binäre Mischungen ausgeweitet. Hierbei wurden zwei plastische und zwei sprödbrüchige Substanzen 

inkludiert. Einer der Hauptaspekte der publizierten Studie lag auf der Anwendung linearer 

Gesetzmäßigkeiten für Kompressionsparameter. Zudem konnte gezeigt werden, dass die 

Kompressionsprofile unterschiedlicher Mischungen eindeutige Unterschiede aufweisen. Auch wurde 

demonstriert, dass die verschiedenen Kompressionsdeskriptoren in unterschiedlicher Weise von der 

Zusammensetzung der Mischungen abhängig sind. Die Berücksichtigung der Parameter von nur einer 

der in der Literatur viel beschriebenen Gleichungen, etwa nach Heckel oder Kawakita schien nicht 

ausreichend zu sein, um die Kompressionsprofile zu charakterisieren. Die nichtparametrische 

Beschreibung der Profile der Kompressionsvorgänge wurde aus diesem Grund als wichtiger Aspekt in 

der Konstruktion eines Modells für die Druckfestigkeit einbezogen. Die Untersuchungen wurden bei 

einer Geschwindigkeit von 3 mm s-1 und Stempeln von 8 mm Durchmesser durchgeführt. Die 

erhaltenen Ergebnisse dienten als Grundlage für folgende Studien zu komplexeren Mischungen von bis 

zu vier Komponenten. 

Der Transfer der gesammelten Erfahrungen zur Datenvorbearbeitung von Kompressionsdaten und 

Kompressionsprofilen wurde in der letzten Studie dieser Arbeit zusammengetragen. Im Rahmen dieser 

Studie wurden 14 Einzelkomponenten sowie binäre, ternäre und quaternäre Mischungen untersucht. 

Das Ziel der Untersuchung war die Generierung eines Modells zur Vorhersage der Tablettenfestigkeit 

anhand der Form der Kompressionsprofile. Für diesen Zweck wurde ein rekurrentes neuronales 

Netzwerk erstellt. Dieses ist, aufgrund der eingesetzten Schichtstruktur geeignet einen hohen Teil der 

Gesamtinformation aus Datenreihen nutzbar zu machen. Um Fehler im Training zu vermeiden, wurden 

spezielle Architekturen, wie Dropout oder die leaky-ReLu Funktion eingesetzt. Als Kernelement 

dienten Long-Short-Term-Memory-Schichten. Mithilfe des neuronalen Netzwerks und einem 

Trainingsdatensatz von 344 Kompressionszyklen konnte die Bruchfestigkeiten eines Testdatensatzes 

von mehr als 800 Tabletten mit einem Regressionskoeffizienten von 0,954 vorhersagt werden. Anhand 

einer ausführlichen Diskussion der Residuen der Regression konnte gezeigt werden, dass Parameter, 

wie etwa die Materialart, Tablettenmasse oder der maximale Kompressionsdruck, keinen Einfluss auf 

die Richtigkeit des Vorhersageergebnises zu haben scheinen. Basierend auf diesem Modell wurde eine 

neue Methode zur in-die Bestimmung der Tablettierbarkeit und Kompaktierbarkeit von Materialien 

entwickelt. Für diese muss ein Material bis zu einem vorher definierten Druck verpresst werden. Durch 

Abschälen des Kompressionsprofils können dann Subkurven generiert werden, welche anschließend, 

nach einem Datenvorbereitungsschritt, als Input ins neuronalen Netzwerk dienen. Am Beispiel von 12 

der untersuchten Materialien konnte die Anwendbarkeit der Methode erfolgreich demonstriert werden. 

Die erhaltenen Tablettierbarkeitsplots zeigten eine hohe Richtigkeit der Vorhersage über eine breite 

Spanne von Kompressionsdrücken. Zwischen 50 MPa bis zu teilweise 600 MPa konnten sehr gute 

Interpolationen erreicht werden. Für die meisten Materialien waren Extrapolationen niedrigerer 

Kompressionsdrücke nicht möglich. Durch die angewendeten Methoden wurden Grundlagen für die 

in-line Messung der Bruchfestigkeit von Tabletten gelegt, auch wenn die Applikation in laufenden 

Prozessen sicherlich weitere Arbeit erfordern wird. 

Zukünftige Forschungen, welche sich an dieser Arbeit orientieren, sollten zwei Kernaspekte aufgreifen. 

Zum einen ist die externe Kalibrierung von Dosierdaten fehleranfällig und naturgemäß für ein 

Prozessmonitoring ungeeignet. Aus diesem Grund ist die Erforschung von PAT im Bereich der 

Druchflussratenmessung von fallenden Haufwerken ein essenzieller Fokus für die pharmazeutische 

Herstellung. 

Im Bereich der Kompressionsanalyse von Pulvern sollten die Datenbanken des neuronalen Netzwerks 

ausgebaut werden. Hierzu sind zum einen unterschiedliche Maschinentypen, Stempelgeometrien und 
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Geschwindigkeiten von großer Relevanz. Auf der anderen Seite ist die Untersuchung 

industrierelevanter Pulvermischungen zukünftig zu leisten. Darunter fällt die Implementierung von 

Daten von Arzneistoffen, Schmiermitteln, Zerfallshilfsmitteln, sowie von vorprozessierten 

Zwischenprodukten wie Granulaten. 
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10 Appendix 

10.1 Sums of amplitudes code snippet 

10.1.1 Sums of amplitudes calculation 

    def FibonacciNumberCalculation(X): 

        sqrt_of_five = np.sqrt(5) 

        alpha = (1 + sqrt_of_five) / 2 

        beta = (1 - sqrt_of_five) / 2 

        fibonacci_numbers = np.rint((alpha ** X) - (beta ** X)) / sqrt_of_five 

        return np.abs(np.around(fibonacci_numbers, decimals=0)).astype(int) 

 

    def SumsOfAmplitudesAnalysisStepPermutation(Time, Y_Values): 

        MinimumSpectraLength = 10 

        RandomCurvesIteration = 25 

        sample_rate = 1 / Time.diff().mean() 

        seeds = FibonacciNumberCalculation(np.arange(2, (RandomCurvesIteration + 1))) 

        Y_Values_normalized = Y_Values - np.mean(Y_Values) 

        window_sizes = np.arange((MinimumSpectraLength - 1), np.size(Time, 0)) 

        last_value_in_SAA = np.array(Time.iloc[(MinimumSpectraLength - 1):]) 

        SAA_permutation = np.empty([np.size(window_sizes), np.size(seeds)]) 

        SAA_data = np.empty([np.size(window_sizes)]) 

        for i in trange(len(seeds)): 

            seed = seeds[i] 

            index1 = np.where(seeds == seed)[0] 

            np.random.seed(seed) 

            for j in window_sizes: 

                index2 = np.where(window_sizes == j)[0] 

                permuted_Y_Values = np.random.permutation(Y_Values_normalized[:j]) 

                amplitudes_permutation = 2.0 / j * np.abs(fft(permuted_Y_Values)[0:j // 2]) 

                amplitudes_data = 2.0 / j * np.abs(fft(np.array(Y_Values_normalized)[:j])[0:j // 2]) 

                SAA_permutation[index2, index1] = amplitudes_permutation.sum() 

                SAA_data[index2] = amplitudes_data.sum() 

        SAA_permutation = SAA_permutation.mean(axis=1) 

        SAA_data = SAA_data / sample_rate 

        SAA_permutation = SAA_permutation / sample_rate 

        SAR = SAA_data / SAA_permutation 

        SAA_output = pd.DataFrame({'window size': window_sizes + 1, 

                                   'Process time / s': last_value_in_SAA, 
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                                   'data SAA': SAA_data, 

                                   'permutation SAA': SAA_permutation, 

                                   'SAR': SAR}) 

        return SAA_output 
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10.2 EvTab 2.0 code snippets 

10.2.1 Change point detection for the compression phase in EvTab code 

        def separate_compression_cycle(X): 

            noise_start = X.shape[0] - next(x for x, val in enumerate(X.iloc[::-1, 1]) if val < 0) 

            noise_mean = np.nanmean(X.iloc[noise_start:, 3]) 

            noise_std = np.nanstd(X.iloc[noise_start:, 3], ddof=1) 

            noise = noise_mean + noise_std 

            index_maxmimum = X.iloc[:, 3].idxmax() 

            start_intern = index_maxmimum - next(x for x, val in enumerate(X.iloc[index_maxmimum::-1, 3]) if val < noise) 

            stop_intern = index_maxmimum + next(x for x, val in enumerate(X.iloc[index_maxmimum:, 1]) if val >= 0) 

            return X.iloc[start_intern:stop_intern, :] 

10.2.2 Algorithm for the Heckel equation regression 

            def HeckelCalculation(): 

                def CheckErrorsInDensity(X1): 

                    if (X1 > true_density).any(): 

                        list_indexes = [x for x, val in enumerate(X1) if val - true_density >= 0] 

                        in_die_density.drop(list_indexes, axis=0, inplace=True) 

                        pressure.drop(list_indexes, axis=0, inplace=True) 

                        return True 

                    else: 

                        return False 

 

                X.reset_index(inplace=True, drop=True) 

                pressure = X['Upper punch force'] 

                in_die_density = float(df_test.iloc[i_intern, -1]) / ( 

                        X['Distance between punches'] * square_of_die_radius * np.pi) 

                sigmoid_master_intern = CheckErrorsInDensity(in_die_density) 

                deg_densification = in_die_density / true_density 

                ln_rec_epsilon = np.log(1 / (1 - deg_densification)) 

                ln_rec_epsilon = ln_rec_epsilon.loc[~(pressure < 1)] 

                pressure = pressure.loc[~(pressure < 1)] 

                return pd.DataFrame({'Pressure': pressure, 

                                     'ln(1/e)': ln_rec_epsilon}), sigmoid_master_intern 

 

            def HeckelFit(): 

                df_data_heckel = df_data_intern.copy() 

                df_data_heckel = df_data_heckel.iloc[:df_data_heckel.dropna().iloc[:, 0].idxmax(), :] 

                df_data_heckel.reset_index(inplace=True, drop=True) 
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                interpolation_steps = 10000 

                interpolation = interp1d(df_data_heckel.iloc[:, 0], 

                                         df_data_heckel.iloc[:, 1], 

                                         kind='linear') 

                x_uniform = np.linspace(df_data_heckel.iloc[:, 0].min(), 

                                        df_data_heckel.iloc[:, 0].max(), 

                                        interpolation_steps) 

                df_data_heckel = pd.DataFrame({'x': x_uniform, 

                                               'y': interpolation(x_uniform)}).to_numpy() 

 

                window_length = int(interpolation_steps // 3) 

                if (window_length % 2) == 0: 

                    window_length += 1 

                df_data_heckel = np.append(df_data_heckel, 

                                           scipy.signal.savgol_filter(df_data_heckel[:, 1], 

                                                                      window_length=window_length, 

                                                                      polyorder=2)[:, None], 

                                           axis=1) 

                first_derivative = np.round(np.diff(df_data_heckel[:, 2], n=1) / np.diff(df_data_heckel[:, 0], n=1), 3) 

                mode_first_derivative = scipy.stats.mode(first_derivative)[0] 

                index_start = next(x for x, val in enumerate(first_derivative) if val == mode_first_derivative) 

                if index_start == 0: 

                    index_start = 1 

                index_end = first_derivative.shape[0] - next(x for x, val in enumerate(first_derivative[::-1]) if val == mode_first_derivative) 

                if index_end == first_derivative.shape[0] - 1: 

                    index_end = first_derivative.shape[0] - 2 

                Reg_K = linregress(df_data_heckel[index_start:index_end, 0], 

                                   df_data_heckel[index_start:index_end, 1]) 

                return Reg_K, df_data_heckel[index_start:index_end, 0] 

10.2.3 Algorithm for force-displacement diagrams 

            def CalculateForces(): 

                pressure_upper = X['Upper punch force'] 

                force_upper_inner = pressure_upper * square_of_die_radius * np.pi 

                pressure_lower = X['Lower punch force'] 

                force_lower_inner = pressure_lower * square_of_die_radius * np.pi 

 

                return force_upper_inner, force_lower_inner 

            def DetectStart(): 
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                return next(x for x, val in enumerate(X['Upper punch force']) if val > 1) 

            def DetectEnd(force_intern): 

                try: 

                    return next(x for x, val in enumerate(force_intern) if val <= 0) 

                except StopIteration: 

                    return force_intern.shape[0] - 1 

            def E_1_Integration(X_int, Y_int): 

                integral = 0 

                for i_int in range(X_int.shape[0]): 

                    if i_int == 0: 

                        integral += Y_int[i_int] * X_int[i_int] / 2 

                    else: 

                        integral += (Y_int[i_int] + Y_int[i_int - 1]) * (X_int[i_int] - X_int[i_int - 1]) / 2 

                return integral 

            def E_2_Integration(X_int, Y_int): 

                integral = 0 

                for i_int in range(1, X_int.shape[0]): 

                    integral += (Y_int[i_int] + Y_int[i_int - 1]) * (X_int[i_int] - X_int[i_int - 1]) / 2 

                return abs(integral) 

            def CalculateEnergies(force, dist): 

                force.reset_index(inplace=True, drop=True) 

                dist.reset_index(inplace=True, drop=True) 

                compression_force = force[:dist.idxmax()] 

                compression_distance = dist[:dist.idxmax()] 

                elastic_force = force[dist.idxmax():] 

                elastic_distance = dist[dist.idxmax():] 

                elastic_force.reset_index(inplace=True, drop=True) 

                elastic_distance.reset_index(inplace=True, drop=True) 

                end = DetectEnd(elastic_force) 

                elastic_force = elastic_force[:end] 

                elastic_distance = elastic_distance[:end] 

                E_ges = force.max() * dist[force.idxmax()] / 2 

                E_3 = E_2_Integration(elastic_distance, elastic_force) 

                E_2 = E_1_Integration(compression_distance, compression_force) - E_3 

                E_1 = E_ges - E_3 - E_2 

                df_result_intern = pd.concat([compression_distance, compression_force], axis=1) 

                df_result_intern = pd.concat([df_result_intern, pd.concat([elastic_distance, elastic_force], axis=1)], axis=0) 

                return [E_1, E_2, E_3], df_result_intern 
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10.2.4 Algorithm for the Walker equation regression 

            def WalkerFit(x_main, y_main): 

                interpolation_steps = 10000 

                interpolation = interp1d(x_main, 

                                         y_main, 

                                         kind='linear') 

                x = np.linspace(np.nanmin(x_main), 

                                np.nanmax(x_main), 

                                interpolation_steps) 

                y = interpolation(x) 

                window_length = int(y.shape[0] // 3) 

                if (window_length % 2) == 0: 

                    window_length += 1 

                y_smoothed = scipy.signal.savgol_filter(y, 

                                                        window_length=window_length, 

                                                        polyorder=3) 

                if np.nanmax(x) <= 1 or list_materials[selector] == 'HPC': 

                    start_intern = np.where(x > 0)[0][0] 

                elif np.nanmax(x) > 1: 

                    start_intern = np.where(x > 1)[0][0] 

                stop_intern = np.argmax(x) 

                x = x[start_intern:stop_intern] 

                y_smoothed = y_smoothed[start_intern:stop_intern] 

                y = y[start_intern:stop_intern] 

                first_derivative = np.round(np.diff(y_smoothed, n=1) / np.diff(x, n=1), 1) 

                mode_first_derivative = scipy.stats.mode(first_derivative)[0] 

                index_start = next(x for x, val in enumerate(first_derivative) if val <= mode_first_derivative) 

                if index_start == 0: 

                    index_start = 1 

                index_end = first_derivative.shape[0] - next(x for x, val in enumerate(first_derivative[::-1]) if val <= mode_first_derivative) 

                if index_end == first_derivative.shape[0] - 1: 

                    index_end = first_derivative.shape[0] - 2 

                Reg_K = linregress(x[index_start:index_end], 

                                   y[index_start:index_end]) 

                return Reg_K, x[index_start:index_end] 

10.2.5 Algorithm for the Kawakita equation regression 

            def FittingLoop(pressure, P_C): 

                pressure_limit_1 = 10 

                interpolation = interp1d(pressure, 
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                                         P_C, 

                                         kind='linear') 

                pressure = np.linspace(pressure.min(), 

                                       pressure.max(), 

                                       250) 

                P_C = interpolation(pressure) 

                try: 

                    start = next(x for x, val in enumerate(pressure) if val >= pressure_limit_1) 

                    end = np.argmax(pressure) 

                except: 

                    start = next(x for x, val in enumerate(pressure) if val >= 1) 

                    end = np.argmax(pressure) 

 

                while True: 

                    X1 = pressure[start:end] 

                    Y1 = P_C[start:end] 

                    n = end - start 

                    r_sq = 1 - ((n - 1) / (n - 2)) * (1 - linregress(X1, Y1).rvalue ** 2) 

                    if X1.shape[0] <= 11: 

                        return X1, Y1 

                    if r_sq >= 0.999: 

                        return X1, Y1 

                    list_optimum = [r_sq] 

                    try: 

                        start_1 = start + 1 

                        if start_1 < end: 

                            X1 = pressure[start_1:end] 

                            Y1 = P_C[start_1:end] 

                            n = end - start_1 

                            list_optimum.append(((n - 1) / (n - 2)) / (1 - linregress(X1, Y1).rvalue ** 2)) 

                        else: 

                            list_optimum.append(0) 

                    except IndexError: 

                        list_optimum.append(0) 

                    try: 

                        start_1 = start - 1 

                        if start_1 >= 0: 

                            X1 = pressure[start_1:end] 

                            Y1 = P_C[start_1:end] 

                            n = end - start_1 
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                            list_optimum.append(((n - 1) / (n - 2)) / (1 - linregress(X1, Y1).rvalue ** 2)) 

                        else: 

                            list_optimum.append(0) 

                    except IndexError: 

                        list_optimum.append(0) 

                    try: 

                        end_1 = end + 1 

                        if end_1 <= X1.shape[0]: 

                            X1 = pressure[start:end_1] 

                            Y1 = P_C[start:end_1] 

                            n = end_1 - start 

                            list_optimum.append(((n - 1) / (n - 2)) / (1 - linregress(X1, Y1).rvalue ** 2)) 

                        else: 

                            list_optimum.append(0) 

                    except IndexError: 

                        list_optimum.append(0) 

                    try: 

                        end_1 = end - 1 

                        if end_1 > start: 

                            X1 = pressure[start:end_1] 

                            Y1 = P_C[start:end_1] 

                            n = end_1 - start 

                            list_optimum.append(((n - 1) / (n - 2)) / (1 - linregress(X1, Y1).rvalue ** 2)) 

                        else: 

                            list_optimum.append(0) 

                    except IndexError: 

                        list_optimum.append(0) 

 

                    if list_optimum[0] == max(list_optimum): 

                        X1 = pressure[start:end] 

                        Y1 = P_C[start:end] 

                        return X1, Y1 

                    if list_optimum[1] == max(list_optimum): 

                        start += 1 

                    if list_optimum[2] == max(list_optimum): 

                        start -= 1 

                    if list_optimum[3] == max(list_optimum): 

                        end += 1 

                    if list_optimum[4] == max(list_optimum): 

                        end -= 1 
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10.3 LSTM-based neural network code snippets 

10.3.1 Change point detection for the compression phase in LSTM code 

        def separate_compression(X): 

            mode_pressure = sc.stats.mode(X.iloc[:, 3].round(1))[0][0] 

            X.iloc[:, 0] *= 1e-3 

            x_argmax = np.argmax(X.iloc[:, 3]) 

            idx_start = np.where(X.iloc[:x_argmax, 3].round(1) <= mode_pressure)[0][-1] 

            idx_end = np.where(X.iloc[x_argmax:, 3].round(1) <= mode_pressure)[0][0] + x_argmax 

            return X.iloc[idx_start:idx_end, :] 

10.3.2 LSTM model architecture 

        def BuildTensorflowModel(list_inputs, list_outputs): 

            input_layer_compression = tf.keras.layers.Input(shape=list_inputs[0].shape[1:]) 

            masked_compression = tf.keras.layers.Masking(mask_value=0.0)(input_layer_compression) 

            x = tf.keras.layers.LSTM(units=64,  activation='tanh', recurrent_activation='sigmoid')(masked_compression) 

            x = tf.keras.layers.Dense(256, activation=keras.layers.LeakyReLU(alpha=0.01))(x) 

            x = tf.keras.layers.Dropout(0.2)(x) 

            x = tf.keras.layers.Dense(32, activation=keras.layers.LeakyReLU(alpha=0.01))(x) 

            output = tf.keras.layers.Dense(1, activation=None)(x) 

            return tf.keras.Model(inputs=input_layer_compression, outputs=output) 

10.3.3 LSTM model training 

        X_train, X_test, y_train, y_test = train_test_split(data_compression, info['Tensile Strength'], train_size=0.3, shuffle=True) 

        tf_model = BuildTensorflowModel([X_train], 1) 

        tf_model.compile(loss='mean_squared_error', optimizer='Adam', metrics='accuracy') 

        tf_model.fit(x=X_train, y=y_train, epochs=100, batch_size=20, verbose=2, use_multiprocessing=True, validation_split=0.2) 



 

68 

Eidesstattliche Versicherung 

Ich versichere an Eides statt, dass die vorliegende Dissertation von mir selbstständig und ohne 

unzulässige fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter wissenschaftlicher 

Praxis an der Heinrich-Heine-Universität in Düsseldorf“ verfasst worden ist. 

 

 

______________________ 

  Stefan Klinken 

 



 

69 

Danksagung 

Ein besonderer Wegweiser in jeder Promotionsarbeit ist sicherlich der Doktorvater oder die 

Doktormutter. Jörg, ich danke dir, dass du mir die Möglichkeit gegeben hast, an diesem Institut zu 

forschen, neue Einsichten zu erlangen und meine Dissertationsschrift zu verfassen. Ich habe sehr viel 

von dir gelernt und freue mich darauf, das auch in der Zukunft noch zu dürfen. Deinem Vertrauen in 

mich, in Bezug auf die Ermöglichung des DFG-Projektes, und deiner Geduld während meines 

Schreibens der Thesis, danke ich besonders. Mein Dank gilt Herrn Professor Kleinebudde für die 

Verfassung des zweiten Gutachtens zu dieser Arbeit. Ich danke ihm zudem für die vielen Denkanstöße 

in Bezug auf meine Arbeiten und meine statistischen Ausflüge. Sowohl Jörg als auch Herrn 

Kleinebudde möchte ich für die Entzündung meines wissenschaftlichen Feuers danken. 

Julian, obwohl wir sicherlich einige Reibungspunkte hatten, möchte ich dir danken, dass du mir in 

meinem Drang, Neues zu tun, keine zu engen Grenzen gesetzt hast und meine Entfaltungen, auch die 

absolut sinnlosen Ansätze, in gewisser stoischer Gelassenheit betrachtet hast. Auch von dir und durch 

dich konnte ich sehr viel lernen. 

Ich danke der Kooperation mit Sabrina beim Aufbau der Datenbank. Die gemeinsame Arbeit hat mir 

sehr darin geholfen, meinen Forschungsschwerpunkt zu finden. Unser beider Dissertationen haben 

hierdurch enorm profitiert. 

Verbunden in tiefer Freundschaft danke ich Valentinë und Marcel. Ihr habt die natürlichen Sorgen der 

Promotion und des Lebens gemildert und in vielem, arbeitsbezogen und privat, in unvergleichbarer 

Weise Unterstützung geleistet. Ich danke euch sehr und werde dies alles stets in besonderer Erinnerung 

halten. Leonie, dir danke ich in Liebe. Deine Hilfe auf den letzten Metern, deine Geduld, deine 

Zusprache, alles, was unser ist und was noch kommen wird, erfüllt mich mit großer Dankbarkeit. Du 

hast zu dieser Arbeit beigetragen, und auch du wirst die deine mit besonderem Erfolg beenden. Ard, 

deiner Freundschaft, absoluten Aufrichtigkeit, Geradlinigkeit und der Hilfe in vielen Dingen danke ich 

sehr. Du warst sicherlich ein Vorbild in einigen Aspekten meiner Promotion. Philipp und Olga haben 

meinen Dank für die Freundschaft, welche uns verbindet. Olga, man kann sagen, dass durch dich und 

die E-Tongue meine erste Berührung mit multivariater Analyse zustande kam. Danke auch dafür. 

Raphael trug viel zum Knospen meiner Faszination für Daten bei. Laura möchte ich danken für die 

kurzen, aber heiteren Zeiträume an unserem Institut und auf den gemeinsamen Dienstreisen. 

Ich danke meinen Freunden und Kaligatoren Chris, Frede, Kim, Micha und Sixt. Niemals vergesse ich 

die sich wiegende Krone der Buche über unseren Köpfen und die Zeit, die uns immer verbinden wird. 

Habt Dank für jedes Licht in schwieriger Stunde. 

Michael, ich freue mich in jedem kommenden Semester auf unsere fünf gemeinsamen Plaudertermine 

mit Publikum. Der kurzen Zeit mit Björn möchte ich danken. Auch wenn diese vorliegende Arbeit nicht 

von dir beeinflusst ist, so leistest du mir doch viel Unterstützung in spektroskopischen und weiteren 

Aspekten. 

Ich bin dankbar, als Doktorandensprecher des Institutes in einer schwierigen Phase tätig gewesen zu 

sein. Diese Erfahrung erteilte mir Lektionen, die ich nicht missen möchte. Ebenso erfüllt es mich mit 

Freude, dass ich die Möglichkeit hatte und haben, werde Studierenden meine wissenschaftliche Passion 

näherzubringen. Allen Projektpartnern danke ich für die Kooperationen, den erfolgreichen und den 

gescheiterten. Ich freue mich, vielen Kommilitonen Unterstützung leisten gekonnt zu haben und über 

die Früchte, die geerntet wurden. Arne, mein Dank gebührt dir, auch wenn ich nicht immer mit deiner 

bedingungslosen, rücksichtsvollen Art d'accord ging. Herausheben möchte ich Jill, welche mit 

besonderem Interesse ein Thema, welches andere in die Flucht geschlagen hätte, auf sich genommen 

hat. Zudem möchte ich meinen WPPlern und Nazgol danken. 

Meine Eltern sowie Christina, Cäcilia und Monika haben mir mehr als nur die grundlegenden 

Werkzeuge des Lebens mit auf den Weg gegeben. Ohne diese hätte ich ihn nicht gehen können. Mein 

Dank und meine Liebe sind bei euch. 


