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Zusammenfassung

Quantencomputer versprechen eine Vielzahl an Rechenaufgaben schneller zu lösen als herkömm-
liche Computer, unter anderem die Primfaktorzerlegung, die Suche in einer unstrukturierten
Datenbank, und die Simulation von Systemen in der Quantenchemie. Wir befinden uns momen-
tan in einer Phase in der mit bereits verfügbaren Quantensystemen tatsächlich Aufgaben gelöst
werden, welche auf einem herkömmlichen Supercomputer etliche Jahre in Anspruch nehmen wür-
den. Allerdings sind diese Aufgaben noch nicht von praktischem Nutzen. Um diese frühen Quan-
tensysteme zu verbessern sind zuverlässige und effiziente Methoden notwendig, die einerseits die
korrekte Funktionsweise verifizieren können, und andererseits in der Lage sind noch vorhandene
Fehlerquellen zu charakterisieren. Durch den laufenden Fortschritt und immer größer werdende
Systeme werden auch die Anforderungen an diese Charakterisierungs- und Verifizierungsmetho-
den stetig erhöht. Zum einen ist eine höhere Effizienz in der Anzahl an benötigten Messungen und
der Rechenzeit zur Auswertung dieser Messungen nötig, und zum anderen müssen immer kleiner
werdende Fehler noch aufgelöst werden. Um letzteres zu erreichen ist es auch vonnöten Fehler im
Messprozess durch fehlerhafte Kontrolloperationen mit einzubeziehen. Aus diesem Grund wur-
den in sich selbst konsistente Protokolle vorgeschlagen, welche nicht nur einzelne Kontrollprozesse
(Gatter) charakterisieren, sondern ein Modell des gesamten Systems mit allen Kontrolloperatio-
nen gemeinsam. Diese Herangehensweise ist unter dem Namen Gatterset-Tomographie bekannt,
und sie wurde mittlerweile zu einer Standardtechnik zur Charakterisierung und Verbesserung
von Quantensystemen. Wie zu erwarten führt das lernen eines Modells des gesamten Systems
zu hohen Kosten im Messaufwand und einer hohen Rechenzeit in der Auswertung. Aus diesem
Grund wird Gatterset-Tomographie meist sparsam in einem Experiment angewandt und auch
nur auf kleinen Subsystemen.
Der zentrale Forschungsbeitrag dieser Arbeit ist die Entwicklung eines Datenverarbeitungssys-
tems für Gatterset-Tomographie, welches mit weniger Messeinstellungen und Rechenaufwand
als zuvor möglich auskommt. Dies erreichen wir, indem wir ein komprimiertes Modell schätzen
(lernen), welches nur die relevantesten Freiheitsgrade des Systems erfasst. Da das Lernen eines
solchen Modells dem Lösen eines hoch nicht-trivialen Optimierungsproblems entspricht, entwick-
eln wir einen neuen Optimierungsalgorithmus auf der Riemann’schen Manigfaltigkeit physikalis-
cher Gatter, welches mit Hilfe von Techniken aus dem Feld des maschinellen Lernens optimale
Lösungen findet. Um den Algorithmus für Experimentatoren zugängig zu machen, entwickeln
wir ein öffentlich verfügbares Python-Paket. Auf dessen Basis demonstrieren wir die genaue
Rekonstruktion eines zwei Qubit Systems von experimentellen Daten aus einem Ionenfallen-
Experiment.
Eine weitere Aufgabe der wir uns in dieser Arbeit widmen, ist die Schätzung von physikalis-
chen Eigenschaften eines Quantenzustands, von dem angenommen wird, er lasse ich wiederholt
in einem Experiment erzeugen. Vorangegangen Arbeiten zeigten, dass man mit zufälligen Mes-
seinstellungen eine Vielzahl an physikalischen Eigenschaften gleichzeitig schätzen kann, wobei
die Anzahl an dafür benötigten Messungen unabhängig von der Systemgröße bleibt. Allerdings
wurde dabei bisher der Einfluss fehlerhafter Kontrolloperationen weitgehend außer Acht gelassen.
In dieser Arbeit analysieren wir den Effekt von Gatterabhängigen Fehlern auf Protokolle, die auf
zufälligen Messeinstellungen basieren. Von zentraler Bedeutung in unserer Analyse ist die Her-
leitung mathematischer Schranken, welche zeigen, dass diese Protokolle in den meisten Fällen eine
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inhärente Resistenz gehen Fehler aufweisen. Im Gegensatz dazu identifizieren wir auch Eigen-
schaften eines Quantensystems, deren Schätzung fehleranfällig sein kann. Insbesondere können
Fehler in den Kontrolloperationen zu einem exponentiell verstärkten Fehler in der Schätzung
führen.
In ihrer Gesamtheit tragen die Resultate in dieser Arbeit dazu bei, wichtige Charakterisierungspro-
tokolle für frühe Quantencomputer signifikant besser mit den experimentellen Anforderungen in
Einklang zu bringen.



Abstract

Quantum computers promise to solve a variety of computational problems faster than existing
classical computers, among them the factorization of prime numbers, unstructured database
search and the simulation of quantum chemistry systems. We are right in the era where ac-
tual computational advantages of current early quantum computers are demonstrated, albeit not
yet in computation tasks of practical interest. In order to continuously improve these systems,
reliable and efficient verification of their correct operation, as well as methods to characterize
remaining error sources are vital. The ongoing maturing process of quantum computers comes
with tighter demands on characterization and verification tasks. Not only is there an increased
need for efficiency in the number of measurements and classical post-processing time, but pro-
gressively smaller errors need to be resolved as well. In order to achieve the latter task and to
estimate (’learn’) properties of quantum systems in a reliable way, errors in the measurement
process due to imperfect control need to be taken into account. For this reason, self-consistent
protocols were proposed, which not only characterize individual quantum operations (gates),
but learn a mathematical a model of the system and its dynamics as a whole. This approach
is known as gate set tomography, and it has become a standard technique to characterize and
improve quantum experiments. Unsurprisingly, learning a model of the whole system comes at
a huge cost in the measurement and classical post-processing effort. For this reason it has only
been applied sparingly and to small subsystems.
The main contribution of this thesis is the development of a new data processing framework for
gate set tomography, which allows us to construct a mathematical model of a subsystem from
few random measurement settings with a reduced post-processing time compared to the previ-
ous state-of-the-art method. We achieve this by learning a compressed model, which reduces the
number of parameters that need to be learned, while still capturing the most relevant degrees of
freedom. Since the underlying optimization problem for learning a compressed gate set model is
highly non-trivial to solve, we develop a new optimization algorithm on the Riemannian manifold
of physical gate sets, which uses techniques from machine learning to arrive at an optimal point.
We make this algorithm accessible through a publicly available Python package and use it to
accurately learn a full description of a two-qubit trapped ion system.
A different task that we focus on in this thesis is the estimation of physical properties of a
quantum state, which we assume can be repeatedly prepared on the system. Previous works
showed that using randomized measurements, numerous properties of the quantum state can
be estimated, while the number of required measurements remains independent of the system
size. Thus far, errors introduced due to imperfect control in the implementation of randomized
measurements were insufficiently accounted for. In this thesis we analyze the effects of general
gate-dependent noise on the randomized measurement protocol. Central to our results are an-
alytical bounds, which show that for most properties of interest, the randomized measurement
protocol is resilient against general gate-dependent noise. However, we also find that certain
properties are more difficult to estimate, since for those properties there are noise models under
which errors are exponentially amplified in the estimation procedure.
Overall, the results of this thesis contribute to bringing important characterization protocols for
early quantum computers significantly closer to current experimental requirements.
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Chapter 1

Introduction

Since the invention of the transistor [1], we have witnessed a rapid increase in capabilities of com-
puter systems, which are nowadays omnipresent in daily life. This technological development was
made possible through the theory of quantum mechanics and its ability to explain the physics of
semiconductors. Yet it was argued since the 1980s [2] that we are thus far not harnessing the full
potential of a quantum mechanical system, since exclusively quantum effects like superposition
and entanglement remained out of our control. It is thus not surprising that high hopes are
placed on quantum computing, which is expected by many to encompass a second computer
revolution with a lasting impact on society. In fact the 1980s and 1990s saw the invention of
promising applications, like Shor’s algorithm [3], which can perform prime factorization expo-
nentially faster than best known classical algorithms, Grover’s [4] algorithm that sees a quadratic
advantage in database search and quantum key distribution [5, 6], which offers the possibility of
secure encryption without the need for assumptions on an adversary’s computing power. Apart
from standard quantum algorithms, proposed use cases for quantum computing also include the
simulation of quantum mechanical systems of interest in physics and chemistry [7]. For near
term applications, so-called variational quantum algorithms (VQEs) [8] are promising. VQEs
are quantum-classical algorithms that aim to approximate the ground state of a Hamiltonian or
to solve combinatorial optimization problems.

Quantum algorithms assume the existence of a universal quantum computer [9], i.e.
a device which can implement any unitary operation to vanishing error. It was shown that a
universal quantum computer can be realized via circuits composed of a small set of controllable
unitary operations (gates) [10]. How such gates can be implemented was first theoretically
proposed in the 1990s [11, 12] and subsequently implemented in small scale experiments [13, 14].
Even though almost 30 years have past since, we are only now seeing the demonstration of
what is termed a quantum advantage—the solution of a computational problem by a quantum
computer which can not be solved by any existing classical computer in a reasonable amount
of time [15–18]. Quantum advantage claims still come with the caveat that a faster classical
algorithm for the studied task might be devised, which has already happened for some of the
proposals [19, 20].

What slows the progress of quantum computing is the difficulty of isolating a quantum system
from the environment and performing precise control operations without unwanted side effects.
In practice, each gate applied in a circuit comes with its own noise contribution, either due to
noise induced by the realization of the gate or background noise present during the gate time.
Due to the unique properties of quantum systems such as the inability to copy a quantum state
(known as the no-cloning theorem) standard error correction techniques from classical computing
can not be directly applied and quantum error correction [21] had to be developed in its own
right. In quantum error correction, the state of a single qubit used for computation is encoded
into the state of many physical qubits. It was shown that provided errors on the physical qubits
are below a given threshold, arbitrarily large circuits can be error corrected [22]. However, this
still requires a large experimental overhead in practice, and current devices are just reaching
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2 CHAPTER 1. INTRODUCTION

the size where error correction can be demonstrated as a proof of principle [23, 24]. In the
meantime, we are stuck with what is termed noisy intermediate scale quantum (NISQ) devices
[25], which need to mitigate errors, rather than fully correct them. The term quantum device
is often used as an umbrella term that encompasses not only universal quantum computers, but
also specialized systems used for quantum cryptography, quantum sensing or other applications
that use quantum mechanical properties.

For the further development in the current NISQ era, it is of central importance to assess
the performance of quantum devices via benchmarks and to reliably learn which errors occur,
such that they can be fixed or at least mitigated. These tasks are addressed by the sub-field
of quantum characterization and benchmarking [26, 27], to which we contribute in this thesis.
Learning a mathematical description of the inner workings of a quantum device (characteriza-
tion) is complicated by several factors. First, quantum measurements are inherently probabilistic
and in order to estimate a single outcome probability or an expectation value, many repetitions
(shots) of an experiment need to be performed. Second, the number of parameters needed to
describe a quantum system grows exponentially in the number of qubits, making it impossible
to learn a full mathematical description of even moderate scale quantum systems. Third, char-
acterizing a noisy device needs to be done with control operations and measurements which are
plagued by noise themselves. It is thus difficult to assign the blame for deviations from the ideal
measurement outcomes to a specific component of a quantum experiment, since any of them
might be responsible. To solve the latter problem, self-consistent approaches were developed
that take errors in the probing operations into account [28–30] by simultaneously characterizing
the measurement mechanism, the initial state in which an experiment is prepared, as well as all
gates that are applied. This approach is known as gate set tomography (GST) and it has become
the default method for the characterization of small subsystems of 1-2 qubits. The reason for
this limitation to small systems lies again in the dimensionality of the problem: A single n-qubit
gate is described by 24n parameters, and an entire set of gates has to be learned simultaneously.
Conventional gate sets which are universal for quantum computing typically consist of single-
and two-qubit gates and learning the errors of these individual gates is already a crucial step
in understanding a system’s noise profile. What complicates things in real experiments is the
phenomenon of cross-talk : The unwanted side effects of an operation on qubits that were not
part of said operation. Characterizing cross-talk requires methods that can learn the action of
a gate on the qubits where it acts on, as well as on neighboring qubits. This makes it highly
desirable to extend gate set tomography to larger system sizes. An additional reason is that
for many platforms such as trapped ions or neutral atoms with Rydberg interactions, multiple
qubits are entangled with the use of a single unitary.

An adjacent task to device characterization is benchmarking, which aims to give quality
measures for single gates or entire quantum devices, with the aim to compare them between
different experimental platforms. Such quality measures could be computed from a mathematical
model obtained from a characterization experiment, but this is rarely done due to the demand
for scalability of a benchmarking method. Thankfully, several methods have been devised that
can assess the quality of much larger quantum systems by directly estimating a quality measure
from a constant number of data points. The most widely used is randomized benchmarking (RB)
[31, 32], which estimates a single noise parameter quantifying the average quality of a set of gates,
using measurements on random gate sequences. These sequences however require large depths
for current experiments of more than 50 qubits, and current noise levels still lead to prohibitively
large noise accumulations on long sequences. For this reason various extensions and new methods
were recently proposed, promising among them are cross entropy benchmarking (used for the first
quantum advantage demonstration [15]), quantum volume [33, 34] and randomized benchmarking
with mirror circuits [35].

Apart from learning about noise we would also like to learn about the physics of a device, for
instance through the estimation of ground state energies, correlation functions and entanglement
measures. The main challenge remains the same as for the above case of noise characterization:
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We can not learn the full state of the system efficiently. In some instances observables can be
measured directly, for instance the expectation value of a multi-qubit tensor product of Pauli
matrices can be measured using entangling gates and additional qubits. Yet this procedure comes
with its own errors, since entangling gates are still imperfect in current quantum hardware. A
unifying approach to estimating observables and higher order functions of quantum states was
introduced very recently under the names of shadow estimation [36] and randomized measure-
ments [37]. Here, the observable or property in question does not have to be known before the
experiment. Instead, a classical description of the quantum state (called the shadow) is learned
from random measurements. This description was shown to be efficiently learnable, i.e.
the number of required measurements does not scale with the system dimension. Furthermore,
many observables can be estimated to low error with high probability from the classical descrip-
tion in post-processing, provided the observables satisfy certain conditions. Although shadow
estimation has been very successful and has led to countless applications [37–43], it is thus far
still plagued by a lack of self-consistency: Errors in the measurement process could only be
accounted for in special cases [44].

In this thesis we take a significant step toward bringing the frameworks of GST and shadow
estimation closer to real world experimental requirements. With respect to GST, we introduce a
new approach that is able to reconstruct a compressed description of the quantum device. This
description reduces the number of required measurements and the computation time for classical
post-processing, while at the same time covering the physically most relevant degrees of freedom.
To be able to reconstruct the compressive model from few measurement settings and under
physicality constraints, we develop an optimization algorithm using the tensor network formalism,
optimization on Riemannian manifolds and tools from machine learning. For the optimization
method, we further derive analytic expressions of the Riemannian Hessian and geodesics on the
manifold of physical device descriptions. In numerical simulations, we demonstrate that this
approach either outperforms or matches previous state-of-the-art methods in accuracy, while
reducing the classical post-processing time. This makes it possible for us to reconstruct 3 qubit
gate sets from few random sequences. Furthermore, we develop a Python package called mGST,
which implements our algorithm and allows users to quickly analyze data via a tutorial. To
showcase a use case, we perform numerical simulations of a shadow estimation protocol under
realistic noise, and learn a compressive description of the noise model via mGST. This description
then allows us to partly correct errors in the shadow estimation protocol, reducing them by an
order of magnitude. Going beyond numerical demonstrations, we use mGST to characterize
single- and two-qubit gates in a trapped ion quantum experiment. The resulting analysis allows us
to identify different errors sources and to quantify their contribution. Furthermore, we construct
a compressed and an uncompressed error model for the two-qubit gates and show that both are
in excellent agreement, thus validating the compressive description.

Apart from the error mitigation technique for shadow estimation using mGST, we also fill
a critical gap in the theoretical understanding of the effect of noise in shadow estimation. To
show why noise can indeed be a large problem, we give analytical examples of noise models that
lead to an exponentially large bias in the standard shadow estimation protocol [36], as well as
in the most prominent noise mitigation approach [44]. We complement these examples with
tight analytical upper bounds on the bias under general noise models. The analytical upper
bounds paint a much more hopeful picture: For most observables of interest, noise does not
accumulate, in fact it averages out. Only observables with high ’magic’ - a property often used
in the literature to quantify the hardness of classical simulation - can lead to a noise accumulation
effect. We complement these results with bounds on the variance of the shadow estimator, which
tell us that for the same low magic observables, noise does not significantly change the number
of measurements needed for a given accuracy.

The content of this thesis is organized as follows.

• In Chapter 2 we start by giving an introduction to the mathematical techniques which are
essential for the understanding of our proofs.
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– Section 2.1.2 contains elementary definitions and results of representation theory, as
well a derivation of the methods used in the quantum information literature to com-
pute moments over unitary representations. These derivations form the basis of our
bounds on the variance of the shadow estimator.

– Section 2.1.3 reviews the basic definitions of matrix manifolds and summarizes key
results needed for the computation of gradients, Hessians and geodesics. The focus
lies on the use of these objects for optimization algorithms and on the complex Stiefel
manifold as the key example.

– Section 2.2 contains a background on the necessary concepts for the characterization of
quantum dynamics, namely the quantum channel formalism, tensor networks and dif-
ferent quantum channel parametrizations (Section 2.2.1), as well as distance measures
between states, between measurements and between channels (Section 2.2.2). We then
review the main frameworks employed in quantum process tomography, highlighting
the results of key works in Section 2.2.3.

– In Section 2.2.4 we review gate set tomography, its formalism, challenges and state-
of-the-art results in the literature.

– Finally, in Section 2.3 we end the theoretical background with an explanation of
shadow estimation, its central results and the concepts employed to derive them.

• Chapter 3 summarizes our results on compressive gate set tomography based largely on
our work [45]. This includes our framework in terms of a tensor network model, in which
we identify individual tensors as elements of the Stiefel manifold. We then explain the
techniques employed in our reconstruction algorithm, and the results of numerical simu-
lations on the compressive behavior of the model. We also touch on the improvements
of compressive GST in comparison to previous state-of-the-art methods and explain the
method behind our results on error mitigation for shadow estimation. Furthermore, we
show unpublished recent results on the application of our algorithm [46] to a trapped
ion experiment at the university of Siegen. This includes a discussion of gate set reports
generated in the process (see also Appendix C).

• In Chapter 4 we summarize our analytical results on the bias and variance of the shadow
estimator under gate-dependent noise, based on our work in [47]. This includes an overview
of how we derive upper bounds on the bias and variance through an intuitive observation
about the structure of the shadow estimator in terms of average noise channels. We mention
concrete examples that lead to a worst case bias, as well as additional results where we
identify a class of noise channels whose effect can be efficiently mitigated.

• Finally, in Chapter 5 we conclude by discussing the central results of this thesis and their
implications.



Chapter 2

Theoretical background

In this Chapter we first give a short explanation of representation theory, matrix manifolds, and
concepts from quantum information theory, such as quantum operations, measurements, noise
models and frequently used distance measures. Representation theory is used throughout the
quantum information literature and very prevalent in the subfield of characterization and bench-
marking. Most notably, theoretical guarantees for randomized benchmarking [32] and shadow
estimation [36] heavily rely on the calculation of moments over the unitary group. Optimiza-
tion algorithms on matrix manifolds have only recently been proposed as a tool for quantum
information tasks in Luchnikov et al. [48] around the same time our application to gate set to-
mography was formalized. The second part of this chapter provides the context for our work. In
Section 2.2.3 and Section 2.2.4 we familiarize ourselves with a variety of approaches that have
been proposed for the characterization of quantum dynamics. Section 2.3 concludes the chapter
with an introduction to the theory of shadow estimation, where we explain the protocol, show
how estimators are formed and summarized the sample complexity analysis.

2.1 Mathematical preliminaries

2.1.1 Notation

We denote a finite dimensional Hilbert space by H = C
d, where d = qn with the local dimension

q and the number of subsystems n. We also write [n] := {1, 2, . . . , n}. The space of linear
operators on H is written as L(H) and the set of quantum states is defined as S(H) := {ρ ∈
L(H) : ρ � 0,Tr[σ] = 1}. The space of linear maps L(H) 7→ L(H), whose elements are commonly
called superoperators, is denoted by L(L(H)). We occasionally use Dirac notation with rounded
brackets for elements of the vector space L(H), whereby |X) ∈ L(H) and (Y | ∈ L(H)∗. For the
inner product on L(H) we use the standard Hilbert-Schmidt inner product (Y |X) = Tr(Y †X).
We further write R

n×p (Cn×p) for the space of real (complex) n by p matrices. The vectorization
of a matrix is defined as the map vec : Cn×m 7→ C

nm : X 7→ vec(X), and we use the row major
vectorization convention, i.e.
the rows of a matrix are stacked into a vector. The Pauli-matrices are defined as usual:

σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
(2.1)

and the n-qubit Pauli group is given by Pn = 〈σX , σY , σZ〉⊗n. The Pauli group up to a global
phase is defined as Pn = Pn/〈i〉, and we can index elements of Pn by x, z ∈ F

n
2 , such that

σx,z ∝ σx1x σ
z1
z ⊗ · · · ⊗ σxnx σznz . The subset of [n] on which σx,z = σ0,0 is called the support of

a = (x, z), and we write supp(σa) and supp(a) interchangeably.
The `p-norms on C

n are defined to be ‖x‖`p := (
∑n

i=1|x|p)1/p. We will also use the `p-norms
on matrices via the identification ‖X‖`p := ‖vec(X)‖`p . Let s(X) be the vector of singular values
of a matrix X ∈ C

n×n, then the Schatten p-norms are defined as ‖X‖p := ‖s(X)‖`p . We also

5



6 CHAPTER 2. THEORETICAL BACKGROUND

call ‖X‖F = ‖X‖2 = Tr[X†X] the Frobenius norm and ‖X‖op = ‖X‖∞ = smax(X) the operator
norm. The Schatten 1-norm ‖X‖1 is also called the trace norm.

2.1.2 Representation theory

For the theory of shadow estimation (Section 2.3) as well as for our own results on the stability
of shadow estimation against noise (Chapter 4), mathematical tools from representation theory
are essential in the derivation of estimators and sample complexity bounds. In the following, we
give a brief background on representation theory with a focus on the use of Schur’s Lemma to
calculate averages over the unitary group. This section follows the standard textbook by Fulton
and Harris [49], as well as the books by Simon [50] and Goodman and Wallach [51]. For an
introduction to representation theory in the context of characterization and benchmarking see
Kliesch and Roth [27].

Let G be a compact group and V be a complex vector space, then we call a continuous
homomorphism ω : G 7→ GL(V ) a representation of G with respect to V . If a subspace Vλ ⊆ V
is left invariant under the action of ω, i.e.
ω(g)v = v for all g ∈ G and v ∈ V , then we call Vλ an invariant subspace. We write the
restriction of ω on Vλ as σλ := ω|Vλ , where σλ is called a subrepresentation of ω. We further call
a representation ω an irreducible representation (or short: irrep) if its only invariant subspaces
are the trivial ones, V and {0}.

Given two representations ω : G 7→ GL(V ) and ω̃ : G 7→ GL(W ), a linear map ϕ : V 7→ W
that satisfies ϕω(g) = ω̃(g)ϕ for all g ∈ G is called a G-equivariant map or intertwiner. If in
addition ϕ is invertible, then ω and ω̃ are said to be equivalent and ϕω(g)ϕ−1 = ω̃(g) for all
g ∈ G. For two equivalent representations we write ω ' ω̃. Note that for unitary representations
ω, ω̃ : G 7→ U(d), equivalence implies that there exists a unitary U such that UωU † = ω̃ (see [50],
Theorem II.1.2). The number mλ of equivalent subrepresentations to σλ is called the multiplicity
of σλ in ω. The set of inequivalent irreducible subrepresentations of ω will be denoted by Irr(ω).
We moreover define Comm(ω) := {ϕ : ϕω(g) = ω(g)ϕ ∀g ∈ G}, the commutant of ω.

In the following, we will consider subgroups of U(Cn) and their representations on V = C
d,

such as the unitary group U(d) or the Pauli group Pn. Apart from U(n) the perhaps most widely
used subgroup of GL(Cn) in quantum information theory is the Clifford group Cln, which can
be defined as Cln = 〈{Hi, Si}i∈[n] ∪ {CNOTi,i+1}i∈[n−1]〉, where Hi, Si are the usual Hadamard
and phase gates on qubit i and CNOTi,j is the controlled-not gate with control i and target j.

For finite groups there is a clear intuitive notion of uniformly random selection, where the
probability of selecting an element of a subset S ⊂ G is given by |S|/|G| and subsets of G are
measured via the counting measure µc(S) = |S|. For compact groups such as the unitary group,
one can extend the notion of a uniform measure by requiring invariance under group action, i.e.
µ(g) = µ(gh) = µ(hg) for all g, h ∈ G. It can be shown that there is a unique measure on U(d),
called the Haar measure, that is invariant under group action and satisfies basic finiteness and
regularity conditions.

Of interest to us in the context of quantum information are group averages of the following
form

T (X) =

∫
ω̃(g)†Xω(g)dµ(g). (2.2)

For the case of ω̃ = ω, these are known as group twirls and for ω̃ ' σλ with σλ being an
irrep of ω, they define a Fourier transform T [λ] =

∫
σ†λ(g)(·)ω(g)dµ(g) with T : Irr(G) 7→

L(H ⊗ H∗). The properties of the Fourier transform are for instance used in the theory of
randomized benchmarking (RB) [31, 32, 52–54]. To computes these group averages, we use the
following ubiquitous result of representation theory.

Theorem 1 (Schur). Given two irreducible representations σ : G 7→ GL(V ), σ̃ : G 7→ GL(W )
and an intertwining map ϕ : V 7→W such that ϕσ = σ̃ϕ, then

(i) ϕ is an isomorphism if σ ' σ̃,
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(ii) ϕ = c1 for some c ∈ C if σ = σ̃ and

(iii) ϕ = 0 else.

Proof. Let us assume there exists a v ∈ V such that ϕv = 0, then from ϕσ = σ̃ϕ we get ϕσv = 0,
meaning that the kernel of ϕ is an invariant subspace of σ and therefore either Ker(ϕ) = {0}
or Ker(ϕ) = V . We can make the analogous argument for the cokernel, that is, if there exists
a w ∈ W such that wϕ = 0, then wσ̃ϕ = 0 and Coker(ϕ) = {0} or Coker(ϕ) = W . If either
Ker(ϕ) or Coker(ϕ) are nonzero, then ϕ = 0 (case (iii)), otherwise φ is a bijection and thus an
isomorphism. If ϕ is an isomorphism, then per definition σ ' σ̃. For case (ii) we can specify the
isomorphism up to a constant by noting that if ϕ 6= 0, it has an eigenvalue c 6= 0 and it further
holds that (ϕ− c1)σ = σ(ϕ− c1). By the previous argument we again know that ϕ− c1 is either
equal to zero or an isomorphism. We can exclude the latter case, since Ker(ϕ − c1) 6= {0} by
assumption. Thus, ϕ = c1.

Corollary 2. If in addition σ and σ̃ are unitary representations, then ϕ in case (i) is itself
proportional to a unitary transformation and ϕ is unique up to a scalar.

Proof. For unitary representations ϕσ = σ̃ϕ implies σϕ† = ϕ†σ̃ and hence ϕ†ϕσ = σϕ†ϕ. Now
condition (ii) in Theorem 1 implies that ϕ†ϕ = c1 and therefore ϕ =

√
cU for some unitary U .

If we assume there exists a second intertwiner ϕ̃ satisfying ϕ̃σ = σ̃ϕ̃, then we can combine this
condition with σϕ† = ϕ†σ̃ to get ϕ†ϕ̃σ = σϕ†ϕ̃ and thus ϕ̃ ∝ ϕ.

We can now immediately recover the familiar results for unitary twirls on quantum states
over C

d given as

T (ρ) =
∫
UρU †dµ(U). (2.3)

First, note that T (ρ) commutes with all elements of U(d), since the Haar measure is invariant
under unitaries and therefore Ũ

∫
UρU †dµ(U)Ũ † =

∫
UρU †dµ(U). Since the standard unitary

representation is irreducible, T (ρ) is an intertwiner and per the second statement in Theorem 1,
we get that T (ρ) = α1. The constant α can be easily determined by noting that αd = Tr[α1] =
Tr
[∫
UρU †dµ(U)

]
= Tr[ρ]. The same holds true for the Pauli group, since its standard unitary

representation is also irreducible, and we find that

1

|Pn|
∑

U∈Pn

UρU † =
Tr[ρ]

d
1. (2.4)

To compute more complicated twirls with unitary representations that are not irreducible,
we turn to the following standard result.

Lemma 3. Let ω : G 7→ U(Cd) be a unitary representation, then there exists a set S of irreducible
representations σλ : G 7→ U(Vλ) on orthogonal subspaces Vλ ⊆ C

d such that ω can be decomposed
as

ω '
⊕

λ∈S

σλ and C
d '

⊕

λ∈S

Vλ. (2.5)

Proof. This result can be easily verified by noting that if there exists an invariant subspace V of
ω, then its orthogonal complement V ⊥ is also an invariant subspace: For all v ∈ V, ṽ ∈ V ⊥ and
g ∈ G, we have 0 = 〈ω(g)v, ṽ〉 = 〈v, ω†ṽ〉. We can thus write C

d ' V ⊕V ⊥ and ω ' ω|V ⊕ω|V ⊥ .
Since ω|V ⊥ is itself a unitary representation (but not necessarily an irrep), we can find again
an invariant subspace and its complement in V ⊥ and the result follows by iterating until all
subrepresentations are irreducible.

We now turn to a simplified version of the twirl defined in Eq. (2.2), where we deal with irre-
ducible representations: T (X) =

∫
σ(g)†Xτ(g)dµ(g). Since the Haar measure is again invariant

under left or right multiplication, σ†(g̃)T (X)τ(g̃) = T (X) for all g̃ ∈ G and X : Vτ 7→ Vσ,
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meaning T (X) are intertwiners. Schur’s Lemma now tells us that T (X) is only nonzero if σ and
τ are either equal or equivalent.

Let us first consider the general case where σ and τ are equivalent. Corollary 2 then im-
plies that T (Y ) = c(Y )U with a unique U that determines the equivalence σ = UτU †. It is
straightforward to see that c(U) = 1, since

1 =

∫
σ†(g)σ(g)dµ(g) =

∫
σ†(g)Uτ(g)U †dµ(g) = c(U)UU †.

We can then see that the map T is a projection, since T (T (Y )) = c(Y )T (U) = c(Y )c(U)U =
c(Y )U = T (Y ). Let now d = dim(V ω) = dim(V ω̃). We further know that

c(Y )d = Tr[T (Y )U †] = Tr

[∫
σ†(g)Y τ(g)U †dµ(g)

]
= Tr

[
Y

∫
τ(g)U †σ(g)†dµ(g)

]
= Tr[Y U †],

where the last equality follows from the fact that
∫
τ(g)U †σ(g)†dµ(g) = T (U)† = U †. Thus

we can write the action of T as T (Y ) = Tr[Y U†]
d U = 1

d |U)(U |Y ). If σ and τ are equal, we get
T (Y ) = 1

d |1d)(1d |Y ).
With the understanding of a twirl under irreps in place, we will now generalize it to twirls with

arbitrary unitary representations. To this end, we first identify the set of orthogonal invariant
subspaces {V ω

λ } of a given unitary representation ω with a set of orthogonal projectors Πωλ :
C
d 7→ C

d, such that ΠωλVλ = Vλ and ΠωλVλ′ = 0 for λ 6= λ′. Let us now assume we are given
two representations ω =

⊕
λ∈S σλ and ω̃ =

⊕
λ′∈S̃ τλ′ . Moreover, for Y : V ω̃

λ′ 7→ V ω
λ we define

Tλ,λ′(Y ) =
∫
σλ(g)

†Y τλ′(g)dµ(g). Lemma 3 allows us to write the general twirl of Eq. (2.2) as

∫
ω(g)†Xω̃(g)dµ(g) =

∑

λ∈S,λ′∈S̃

∫
σ†λΠ

ω
λXΠω̃λ′τλ′dµ(g) =

∑

λ∈S,λ′∈S̃

Tλ,λ′(ΠωλXΠω̃λ′).

For each pair λ, λ′ satisfying σλ ' τλ′ we now have that Tλ,λ′(ΠωλXΠω̃λ′) is an intertwiner, meaning
there is a Uλ,λ′ ∈ U(dλ) such that Tλ,λ′(Y ) = 1

dλ
|Uλ,λ′)(Uλ,λ′ |Y ). In summary, the general twirl

takes the form
∫
ω(g)†Xω̃(g)dµ(g) =

∑

λ∈S,λ′∈S̃:σλ'τλ′

1

dλ
|Uλ,λ′)(Uλ,λ′ |ΠωλXΠω̃λ′). (2.6)

For the simpler case where ω = ω̃ and all irreps are multiplicity-free, we have that Uλ,λ = 1Vλ =
Πωλ and the familiar result

∫
ω(g)†Xω(g)dµ(g) =

∑

λ∈Irr(ω)

1

dλ
|Πωλ)(Πωλ |X) (2.7)

follows. The task of computing twirls then reduces to finding bases for all invariant subspaces
of the given representations ω, ω̃. These bases then define the projectors Πωλ and Πω̃λ , as well as
any potential basis change Uλ,λ′ .

A type of twirl that is of particular importance in quantum information theory is the twirl
by the product representation ωk : U(Cd) 7→ (U(Cd))⊗k:

Tk(X) =

∫
ω†
k(g)Xωk(g)dµ(g). (2.8)

It is also known as the kth moment operator of the Haar measure, since one can write the Haar-
average of any order k polynomial in g and g∗ as

∫
Tr[Y ω†

k(g)Xωk(g)]dµ(g) for suitable matrices
X,Y and g ∈ U(Cd). To gain a basic understanding of the methods that are generally used to
compute these twirls we will now give a brief review of them, largely based on the treatment of
Roberts and Yoshida [55].
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Rather than determining all irreps and invariant subspaces of ωk by hand, one can use a du-
ality relation between product representations and the following representation of the symmetric
group: πk : Sk 7→ (U(Cd))⊗k, which is defined by

πk(g)|ψ1〉 ⊗ · · · ⊗ |ψk〉 = |ψg(1)〉 ⊗ · · · ⊗ |ψg(k)〉. (2.9)

One can immediately see that πk and ωk commute, and in fact the following also holds.

Lemma 4 (Schur-Weyl duality).

Comm(ωk) = Span({πk(g)}g∈Sk
),

Comm(πk) = Span({ωk(g)}g∈U(d)).
(2.10)

For the proof see for instance Theorem 3.3.8 in the book by Goodman and Wallach [51].
Lemma 4 implies that we can write

Tk(X) =
∑

g∈Sk

πk(g)cg(X), (2.11)

where ck are linear maps since Tk is a linear map, and therefore cg(X) = Tr[CgX] for some matrix
Cg. From the left- and right- invariance of the Haar measure it again follows that Tk(X) =

Tk(ω†
k(g)Xωk(g)) and thus also

∑
g∈Sk

πkcg(X) =
∑

g∈Sk
πkcg(ωk(g)

†Xωk(g)) and Tr[Cg′X] =

Tr[Cg′ωk(g)
†Xωk(g)] for all X ∈ L((Cd)⊗k) and all g ∈ U(Cd). Thus Cg′ ∈ Comm(ωk), and we

can again express them in terms of {πk(g)}. In summary, we have

Tk(X) =
∑

g,g′∈Sk

πk(g)Wg,g′ Tr[πk(g
′)X]. (2.12)

In order to determine the coefficient matrix Wg,g′ (known as the Weingarten matrix) we first
observe that Tk(πk(g)) = πk(g), and we also use the known identity Qg,g′ := Tr[πk(g)πk(g

′)] =
d#cycles(g·g′). We then arrive at πk(g

′′) = T (πk(g′′)) =
∑

g,g′∈Sk
πk(g)Wg,g′ Tr[πk(g

′)πk(g
′′)].

Multiplying from the left with πk(h) for h ∈ G and taking the trace, we are left with the matrix
equation Q = QWQ and assuming k ≤ d (which ensures Q is invertible), we get W = Q−1.

We now have a recipe for calculating the kth moment operator for the Haar measure, in
terms of the Weingarten matrix and the permutation operators πk(g). An explicit construction
for k = 2 and a related solution in terms of projectors onto irreducible subspaces akin to 2.7 can
be found in Kliesch and Roth [27].

The kth moment operator for the Haar measure can also be realized without taking the Haar
average over the full unitary group. If we are given an arbitrary distribution ν on U(Cd), we say
ν is a k-design if its kth moment operator coincides with the kth moment operator of the Haar
measure, i.e.

∫
ω†
k(g)Xωk(g)dν(g) =

∫
ω†
k(g)Xωk(g)dµ(g). (2.13)

It can easily be seen that a k-design is also a (k − 1)-design, since for X ∈ L((Cd)⊗(k−1)),

Trk[ω
†
k(g)X ⊗ 1ωk(g)] = ω†

k−1(g)Xωk−1(g). An important example for our purposes is the
uniform distribution over the Clifford group, for which we know that it forms a unitary 3-design
but not a unitary 4-design [56, 57].

2.1.3 Optimization on matrix manifolds

Differential geometry, or the study of smooth manifolds, is a fundamental mathematical branch
which has a wide range of uses in physics, most notably in general relativity and electromag-
netism. Another area where manifolds, and especially matrix manifolds, play a role is constraint
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optimization. In this scenario the constraint set can be cast as an embedded (Riemannian)
submanifold of R

n×m or C
n×m, resulting in optimization algorithms that produce iterates on

the manifold. One refers to this task as Riemannian optimization, which has largely risen to
prominence in the 90s and early 2000s [58–60] and is still very active [61–63]. It has also been
observed that many optimization problems in quantum information theory can be formulated in
the language of Riemannian optimization [48]. In this section we give a condensed introduction
to Riemannian optimization on matrix manifolds. This will provide the necessary background to
understand the optimization algorithm developed in Chapter 3, where we treat the set of quan-
tum channels as a Riemannian manifold. The section mostly follows the standard textbooks by
Absil et al. [59] and Boumal [64].

Manifolds and embedded submanifolds

The intuitive idea of a manifoldM is that of a topological space which can be locally identified
with an open subset of the familiar and easy to handle Euclidean space R

n. ForM to be called a
manifold, restrictions are placed on the topology ofM, namely that it is Hausdorff and second-
countable. The Hausdorff condition ensures that a convergent sequence on M has a unique
limit point, a property which is very desirable for optimization problems defined on M. Given
a subset U ∈ M, the local correspondence between U and R

n is defined via charts—bijective
functions ϕ : U 7→ R

n. For a point X ∈ U , the corresponding element ϕ(X) ∈ R
n is then called

the coordinate of X. To cover the whole set M with charts in a meaningful way, we need what
is called an atlas, i.e.
a set of charts and domains A := {(ϕi,Ui)} such that

⋃
i Ui =M. If M admits an atlas such

that for all overlapping domains Ui, Uj it holds that the coordinate change ϕi ◦ ϕ−1
j : Rn 7→ R

n

is a smooth (C∞) function, we call M an n-dimensional differentiable manifold. Note that in
principle a manifold is given by the pair (M,A) of a set and an a corresponding atlas, but since
we typically do not need to distinguish between atlases, we just omit A from the notation.

We will also require the notion of a product manifold M1 ×M2, elements of which are the
pairs (X1, X2) with X1 ∈M1 and X2 ∈M2. An atlas forM1×M2 can then be readily obtained
by combining charts of the individual atlases via ϕ1 × ϕ2 (X1, X2) = (ϕ1(X1), ϕ2(X2)).

Functions between manifolds are analyzed via charts in the following way. Consider f :
M1 7→ M2, where M1 and M2 have dimension n1 and n2 respectively. By taking charts at
points x ∈M1 and f(x) ∈M2, we can treat f locally around x via its coordinate representation
f̃ := ϕ2 ◦ f ◦ ϕ−1

1 : Rn1 7→ R
n2 . The function f is then called differentiable or smooth if f̃ is C∞

at each point. Functions between manifolds that are of importance to our problem are the cost
functions in optimization problems, i.e.
f :M 7→ R, where R is interpreted as a 1-dimensional manifold with trivial atlas.

One can also define complex manifolds, where charts are defined via ϕ : M 7→ C
n and

coordinate changes of differentiable complex manifolds ϕi ◦ϕ−1
j need to be complex differentiable

(holomorphic). The problem of complex manifolds for optimization problems is that non-constant
cost functions defined via their coordinate representations f̃ : Cn 7→ R can not be holomorphic.
This can be directly seen via the Cauchy-Riemann equations, which for a real image imply
that the derivatives with respect to the real and imaginary parts of each coordinate vanish
and therefore the function is constant. The implications for optimization problems are that
derivatives are not well-defined, and, since non-holomorphic functions are not analytic as well,
neither is the Taylor series around points in the domain.

The solution is to treat n-dimensional complex manifolds as 2n-dimensional real manifolds,
where the complex coordinates are split into real and imaginary parts. The additional structure
due to the imaginary unit i is then added via the linear map I : R2n 7→ R

2n with I2 = −1.
A real manifold with this additional structure is also called an almost complex manifold, where
every complex manifold is also an almost complex manifold, but not vice versa.

In the following we make the treatment of complex manifolds in terms of real manifolds more
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explicit by defining the notion of a submanifold and looking at the complex Stiefel manifold as an
example. But first we need to provide a few definitions. The (Fréchet) differential of a function
g : Rn 7→ R

m at position x is the linear operator Dg(x) : Rn 7→ R
m : h 7→ Dg(x)[h] that satisfies

lim
h→0

‖g(x+ h)− g(x)−Dg(x)[h]‖
‖h‖ = 0. (2.14)

For the more familiar case m = 1, Dg(x) is the gradient of g at x and Dg(x)[h] is the directional
derivative in direction h. Furthermore, the rank of g at x is defined to be the dimension of the
range of Dg(x). If the rank of Dg(x) : Rn 7→ R

m is n ≤ m for all x ∈ R
n, then g is called an

immersion. Reciprocally, if the rank of Dg(x) is m ≤ n for all x, then g is called a submersion.
These notions are readily applied to functions f :M1 7→ M2 by considering the differential of
the coordinate representation f̃ . A simple example of an immersion is the canonical immersion
(x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0).

Given two manifolds M1 and M2, where M1 ⊂ M2 as sets, we call M1 an embedded
submanifold of M2 if there exists an immersion f : X ∈ M1 7→ X ∈ M2 and the topology of
M1 is the equal to the subspace topology induced byM2. In this context,M2 is also called the
ambient space of M1. The following result given in Absil et al. [59](Proposition 3.3.3) provides
a practical condition to prove that a given manifold is an embedded submanifold:

Theorem 5 (Submersion Theorem). LetM1 andM2 be two manifolds whose dimensions satisfy
d1 > d2 and let f :M1 7→ M2 be a smooth function. If for a given point x ∈ M2 the rank of f
is equal to d2 on the whole preimage f−1(X), then f−1(X) is a closed embedded submanifold of
M1 and has dimension d1 − d2.

With this result at hand, we can now turn to an example.

The complex Stiefel manifold

The complex Stiefel manifold can be defined via the set

St(n, p) := {X ∈ C
n×p : X†X = 1p}. (2.15)

In the real case X ∈ R
n×p the hermitian conjugate is replaced by the transpose. Stiefel manifolds

turn up in optimization problems of several fields, such as signal processing, quantum chemistry
and machine learning [65–69]. In Absil et al. [59] it was shown via Theorem 5 that the real Stiefel
manifold is an embedded submanifold of the standard matrix manifold R

n×p. We will now show
in an analogous manner how the complex Stiefel manifold is an embedded submanifold of R2n×p.
For this we first define a basis on R

2n×p via the standard unit matrices {Eij , iEij}i∈[n],j∈[p], which
are orthonormal with respect to the inner product

〈X,Y 〉 := ReTr[X†Y ]. (2.16)

Any matrix in C
n×p can be represented in this basis with real coefficients, thus making it a

real vector space equivalent to taking the real and imaginary part in the standard identification
C
n ' R

2n.
If we write X ∈ C

n×p = A+iB with A,B ∈ R
n×p we get 1 = X†X = ATA− iBTA+iATB+

BTB. Let now Sym(p) be the set of real symmetric p × p matrices and Asym(p) be the set of
real antisymmetric p× p matrices. The (smooth) function f : R2n×p 7→ Sym(p)⊕Asym(p) :

f(A,B) =

(
ATA+BTB − 1
ATB −BTA

)
(2.17)

now encodes the Stiefel constraints as the (complex) Stiefel manifold is given by pairs of matrices
(A,B) that satisfy f(A,B) = 0, such that St(n, p) = f−1(0). According to Theorem 5, what we
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now have to check is that f is of full rank on f−1(0). For this we take the differential using the
rules of matrix differentiation to find that

D f(A,B)[Z1, Z2] =

(
ATZ1 + ZT1 A+BTZ2 + ZT2 B
ZT1 B +ATZ2 − (ZT2 A+BTZ1)

)
. (2.18)

If for all (A,B) and all Z̃1 ∈ Sym(p), Z̃2 ∈ Asym(p) we can find a pair Z1, Z2 ∈ R
2n×p such that

D f(A,B)[Z1, Z2] = (Z̃1, Z̃2), we know that rank of the differential is equal to the dimension
of Sym(p) ⊕ Asym(p). It can then be straightforwardly verified using ATA + BTB = 1 and
ATB − BTA = 0, that setting Z1 = 1

2(AZ̃1 + BZ̃2) and Z2 = 1
2(BZ̃1 − AZ̃2) satisfies this

condition and hence St(n, p) is an embedded submanifold of R2n×p.

The real dimension of St(n, p) can also be computed using Theorem 5 as dim(St(n, p)) =
dim(R2n×p)−dim(Sym(p)⊕Asym(p)) = 2np− (p(p+1)/2+ p(p− 1)/2) = 2np− p2. Additional
properties of the complex Stiefel manifold, such as the tangent spaces, the natural metric and
geodesics with respect to this metric are derived throughout this section and Appendix A. For
now we will first define these terms and provide the background for their derivation.

Tangent spaces

The concept of a tangent vector to a curve γ : R 7→ M : t 7→ γ(t) is well-defined for an
embedded submanifold of a vectors space, since we can add elements of M by identifying them
with elements in the parent vector space:

γ̇(0) := lim
t→0

γ(t)− γ(0)
t

, (2.19)

provided the limit exists. When the vector space structure is not available, one can generalize the
concept of a tangent vector as a linear map from the set of smooth functions FX := {f : UX 7→ R},
where X ∈ U ⊂M, to the real numbers R. Let γ(t) again be a curve onM satisfying γ(0) = X.
The tangent vector realized by the curve γ(t) is then the linear map γ̇ : FX 7→ R with

γ̇f :=
df(γ(t))

dt

∣∣∣∣
t=0

. (2.20)

This general definition can readily be reconciled with Eq. (2.19) by noting that whenever M is
a submanifold of a vector space, we get

γ̇f = D f̂(X)[Ẋ0], (2.21)

where f̂ is the extension of f on the ambient space. The interpretation of the tangent ’vector’
Ẋ is thus that it is a direction determined by the curve γ(t), either given as vector (Eq. (2.19)),
or a map (Eq. (2.20)).

The tangent space TXM of the manifold M at position X is defined to be the set of all
tangent vectors γ̇ realized by curves γ(t) with γ(0) = X. A very useful property of the tangent
space is that it is a vector space. This allows us to stretch, add and transform elements of
the tangent space, which we can then map back to the manifold in the context of iterative
optimization algorithms.

If the tangent space for a manifoldM at position X is defined via the set f−1(0) of a constant
rank function such as in Eq. (2.17), it can be determined in a simple way. Note that since the
resulting manifold is an embedded submanifold of a vector space, Eq. (2.21) and Eq. (2.20)

imply D f(X)[γ̇(0)] = df(γ(t))
dt

∣∣∣
t=0

. For any curve γ(t) onM we have that f(γ(t)) = 0 and hence

D f(X)[γ̇(0)] = 0. Therefore γ̇(0) ∈ Ker(D f(X)) and via parameter counting arguments it can
be further shown that indeed TXM = Ker(D f(X)) (see Section 3.5.7 in [59]).
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If TXM is a vector space over either the real or complex numbers, we can define an inner
product 〈·, ·〉 : TXM× TXM 7→ R. The natural choice is the restriction of the inner product
defined on an ambient vector space M̄ to the tangent space:

〈∆,Ω〉TXM := 〈∆̄, Ω̄〉M̄. (2.22)

where ∆,Ω ∈ TXM and ∆̄, Ω̄ denote their respective inclusions in M̄. The inner product is
only defined for a fixed TXM and thus depends on the position X, we will however drop the
subscript TXM since the position is usually clear from the context.

Within the ambient space M̄ one can also define the normal space NXM ofM at X, which
is the orthogonal complement of TXM:

NXM = {∆⊥ ∈ M̄ : 〈∆̄,∆⊥〉 = 0 ∀∆ ∈ TXM} (2.23)

One can further write any element of TXM̄ as ∆̄ = ∆ + ∆⊥ for some ∆ ∈ TXM and some
∆⊥ ∈ NXM. If M is a vectors space, it holds that TXM 'M and in that case every element
of M̄ itself can be written via elements of TXM and NXM. From now on we will use X for
both X ∈M and its inclusion X̄ ∈ M̄.

The inner product canonically induces a norm ‖∆‖ :=
√
〈∆,∆〉 on TXM. If the inner

product is a smooth function, then the pair (M, 〈·, ·〉) is called a Riemannian manifold and 〈·, ·〉
is called a Riemannian metric. The Riemannian metric with the induced norm gives us a tool
to measure distances on the tangent space, but we would also like to measure distances on the
manifold. One can generalize the standard way of measuring the length of a curve on Euclidean
space to a curve γ : [a, b] 7→ M on the manifold via

l(γ) :=

∫ b

a

√
〈γ̇(t), γ̇(t)〉dt, (2.24)

since 〈γ̇(t), γ̇(t)〉 is well-defined. This induces a distance between pointsX,Y ∈M via dist(X,Y ) =
inf
γ
l(γ), where γ(t) are curves that satisfy γ(a) = X and γ(b) = Y .

In analogy to the gradient defined for smooth functions over vector spaces, we can define the
Riemannian gradient as a generalization to manifolds. Given again a smooth function f :M 7→
R, the Riemannian gradient of f at position X is defined to be the unique tangent space element
G ∈ TXM that satisfies

〈G,∆〉 = D f(X)[∆] ∀∆ ∈ TXM. (2.25)

For the purpose of optimization, G gives the tangent space direction of fastest increase of the
function at position X, since

G/‖G‖ = argmax
∆∈TXM:‖∆‖=1

D f(X)[∆]. (2.26)

For the Stiefel manifold we can use the identification TXM = Ker(D f(X)) together with
Eq. (2.17) and Eq. (2.18) to determine its tangent space. The condition D f(X)[∆] = 0 ∀∆ ∈
TXM then translates into

(
ATZ1 + ZT1 A+BTZ2 + ZT2 B
ZT1 B +ATZ2 − (ZT2 A+BTZ1)

)
= 0. (2.27)

Since the characterization is much simpler in terms of complex matrices, we rewrite the condition
as

ATZ1 + ZT1 A+BTZ2 + ZT2 B + i(ZT1 B +ATZ2 − (ZT2 A+BTZ1) = 0. (2.28)

Setting X = A + iB and ∆ = Z1 + iZ2, a short calculation reveals the concise characterization
of the tangent space for the n× p complex Stiefel manifold:

TX St(n, p) = {∆ ∈ C
n×p : X†∆+∆†X = 0}. (2.29)
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Let us define X⊥ such that the matrix [XX⊥] is unitary, i.e.
[XX⊥]

†[XX⊥] = 1n. Let further Skew(p) denote the set of p× p skew hermitian matrices and
Herm(p) denote the set of p×p hermitian matrices. The standard way of parametrizing elements
of the tangent space [58, 60] is then ∆ = XS +X⊥C, where S ∈ Skew(p) and C is an arbitrary
(n−p)×p complex matrix. Since by definition of X⊥ its columns are orthogonal to the columns
of X, and it holds that X†X⊥ = 0 one can easily see that ∆ = XS +X⊥C satisfies the tangent
space condition of Eq. (2.29).

The obvious choice of metric for the Stiefel manifold would be given by the standard inner
product defined in Eq. (2.16), where the smoothness condition is satisfied if we treat 〈·, ·〉 as
a function on R

2n×p. This is however not the most natural choice for St(n, p). Note that the
standard metric is given in terms of the entries of S and C as

ReTr[∆†∆] = ReTr[(S†X†+C†X†
⊥)(XS+X⊥C)] = ReTr[S†S]+ReTr[C†C] =

∑

ij

|Sij |2+
∑

ij

|Cij |2,

where we used X†
⊥X⊥ = 1n−p and X†X⊥ = 0. As Sij = −S∗

ji, the standard metric weights
the independent variables {Sij}i>j and {Cij}i,j unevenly. One thus defines the canonical inner
product or canonical metric for the Stiefel manifold via

〈∆,Ω〉c := ReTr[∆†(1−XX†/2)Ω]. (2.30)

It is straightforward to show that 〈∆,∆〉c =
∑

i>j |Sij |2 +
∑

ij |Cij |2 and all degrees of freedom
are weighted equally. The canonical inner product also ensures that the natural basis vectors on
the tangent space {X⊥Eij , X(Eij − Eji), X i(Eij − Eji)} are orthonormal (see also [60]).

After settling for the canonical metric, we determine the normal space to TXM to be

NX St(n, p) = {XH : H ∈ Herm(p)}. (2.31)

Using ReTr[S†H] = 0 for any hermitian H and skew hermitian S, one can verify that indeed
〈XS + X⊥C,XH〉c = 0 for all S ∈ Skew(p), H ∈ Herm(p), C ∈ C

(n−p)×p. Finally, one would
also like to be able to project from the ambient space to the tangent space and to the normal
space. We define

PNX
(Y ) = X(Y †X +X†Y )/2, (2.32)

which is a projector since P 2
NX

(Y ) = PNX
(Y ) and moreover PNX

(Y ) ∈ NX St(n, p) since Y †X +

X†Y is hermitian for all X,Y . The projector onto the tangent space is then simply PTX (Y ) =
Y − PNX

(Y ).

Retractions and affine connections

We define the set of all tangent vectors to M as the tangle bundle TM =
⋃
X∈M TXM. Let

R : TM 7→ M which is a map that lets us relate elements from any given tangent space to
elements on the manifold. Let further RX = R|TXM and idX : TXM 7→ TXM : ∆ 7→ ∆. We
call R a retraction if for all X the restrictions RX are smooth functions that satisfy

(i) RX(0) = X (with 0 ∈ TXM),

(ii) For every curve γ(t) := RX(t∆) it holds that γ̇(0) = ∆.

The first condition tells us that with respect to RX , the tangent space is centered at X. The
second condition ensures that the curve traced by the retraction is faithful to the tangent space
direction at its origin, i.e.
ṘX(t∆) = idX at the origin. A retraction can also be used in an optimization algorithm to
trace a cost function f : M 7→ R through the tangent space, by defining f̃X : TXM 7→ R :
f̃X(∆) = f(RX(∆)) in a neighborhood of X. The function f̃ is then called the pullback of f .
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This is especially useful for the line search problem: Imagine you are given an update direction
∆ ∈ TXM and want to follow it until a local minimum is reached. The resulting sub-problem

t̂ = argmin
t∈R

f̃(t∆) (2.33)

leads to the optimal update step X → RX(t̂∆).
An affine connection is a structure on a tangent bundle that generalizes the directional deriva-

tive of a vector field on M and is essential to have a notion of a second order derivative on a
manifold. A vector field on M is a smooth function Ω :M 7→ TM : X 7→ Ω(X). The addition
of vector fields is defined entry-wise as (Ω1 + Ω2)(X) := Ω1(X) + Ω2(X). A vector field can be
multiplied by a scalar field f :M 7→ R via the rule (fΩ)(X) := f(X)Ω(X). Let γΩ(t) a curve
that realizes the tangent vector Ω(X) as in Eq. (2.20). Using this notion we can define

(Ωf)(X) := Ω(X)f =
df(γΩ(t))

dt

∣∣∣∣
t=0

, (2.34)

meaning (Ωf)(X) : M 7→ R is a function that assigns to each X the derivative of f in the
direction determined by the vector field Ω at X.

The directional derivative ∇Ξ on M = R
n of a vector field Ω in direction Ξ ∈ TXRn ≡ R

n

at position X is just

(∇ΞΩ)(X) = lim
t→0

Ω(X + tΞ)− Ω(X)

t
. (2.35)

On a manifold this definition is a priori ill-defined since we can neither perform the addition
X + tΞ nor Ω(X + tΞ) − Ω(X) since Ω(X + tΞ) and Ω(X) would belong to different tangent
spaces. However, the operator ∇Ξ can be generalized as follows. We first define V(M) to be the
set of smooth vector fields on TM. Then ∇ : V(M)×V(M) 7→ V(M) is an affine connection if
it satisfies the properties

(i) ∇fΩ+gΞ = f∇Ω + g∇Ξ for all f, g :M 7→ R,

(ii) ∇aΩ+bΞ = a∇Ω + b∇Ξ for all a, b ∈ R,

(iii) ∇Ξ(fΩ) = (Ξf)Ω + f∇ΞΩ.

(2.36)

The product rule (iii) can be hard to parse at first sight but becomes more clear once the spaces
each object belongs to are marked:

∇Ξ( fΩ︸︷︷︸
M7→TM

) =

M7→TM︷ ︸︸ ︷
( Ξf︸︷︷︸
M7→R

) Ω︸︷︷︸
M7→TM

+

M7→TM︷ ︸︸ ︷
f︸︷︷︸

M7→R

∇ΞΩ︸ ︷︷ ︸
M7→TM

. (2.37)

In order to specify an affine connection one can define a basis or coordinate vector field, which
associates with each point on the manifold an elementary direction on its tangent space. This
depends on the local chart, so let X ∈ U ⊂ M with a chart ϕ : M 7→ R

n defined on U .
Given a basis vector ei on R

n, we define a corresponding basis vector on TXM via the curve
γ(t) = ϕ−1(ϕ(X) + t · ei). The tangent vector Ei(X) defined by the curve then according to
Eq. (2.20) acts as

Ei(X)f =
df(γ(t))

dt

∣∣∣∣
t=0

=
d

dt
(f ◦ ϕ−1)(ϕ(X) + tei)

∣∣
t=0

= ∂i(f ◦ ϕ−1) (2.38)

Here ∂i is the partial derivative in direction ei on R
n given as ∂ig := lim

t→ 0

g(x+tei)−g(x)
t . To obtain

basis vectors on all X ∈ U ⊂M we define the vector field Ei :M 7→ TXM : X 7→ Ei(X). Upon
repeating this procedure for all basis vectors ei we get the set of vector fields {Ei}ni=1 that we use
to represent an arbitrary vector field Ω via Ω =

∑n
i=1ΩiEi. Here Ωi :M 7→ R are coordinate

functions that contain the information about the whole vector field.
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A given affine connection ∇Ξ can now be represented via the coordinate vector fields as
follows:

∇ΞΩ = ∇∑
i ΞiEi

∑

j

ΩjEj =
∑

ij

ΞiΩj∇Ei
Ej + Ξi(EiΩj)Ej , (2.39)

where we used the linearity condition (i) and the product rule (iii) in Eq. (2.36). We thus
obtained the affine connection in terms of the elementary actions ∇Ei

Ej . These can again be
expressed in our basis {Ek} and the resulting coefficients Γkij are called Christoffel symbols:

∇Ei
Ej =

∑

k

ΓkijEk. (2.40)

Using the Christoffel symbols, the action of the affine connection is expressed as

∇ΞΩ =
∑

ij

(
Ξi(∂iΩj)Ej + ΞiΩj

∑

k

ΓkijEk

)
. (2.41)

An affine connection given by Christoffel symbols is not unique in two ways. First, the underlying
chart ϕ determines the coefficients Γkij and second, there are infinitely many affine connections
that satisfy Eq. (2.36) to begin with. However, the following fundamental theorem asserts that
under reasonable additional conditions, there exists a unique affine connection.

Theorem 6 (Theorem 5.3.1 in Absil et al. [59]). There exists a unique affine connection called
the Riemannian connection on a Riemannian manifold M with a given atlas A that satisfies

(i) Γkij = Γkji

(ii) Ω〈Ξ,Θ〉 = 〈∇ΩΞ,Θ〉+ 〈Ξ,∇ΩΘ〉
(2.42)

where Ω,Ξ,Θ are vector fields on M.

The first condition ensures symmetry, i.e.
∇Ei

Ej = ∇Ej
Ei. The second condition is a product rule with respect to the Riemannian metric,

which on vector fields acts as 〈·, ·〉 : V(M) × V(M) 7→ F(M), where F(M) is the set of real
valued functions on M and 〈Ξ,Θ〉(X) 7→ 〈Ξ(X),Θ(X)〉 ∈ R.

We can also define the metric with respect to the basis {Ei}, by noting that 〈·, ·〉 is determined
via a matrix g with entries gij := 〈Ei, Ej〉. It can then be shown [59] that the Christoffel symbols
for the unique affine connection on M are related to the metric coefficients via

Γkij =
1

2

∑

l

g−1
kl (∂iglj + ∂jgli − ∂lgij). (2.43)

In case we are dealing with an embedded submanifold to a Riemannian manifold M̄, Proposition 7
below shows that evaluating the Riemannian connection amounts to evaluating the (potentially
simpler) Riemannian connection on the embedding space. Just as we saw for the Stiefel manifold,
if the embedding space M̄ is a vector space, its elements can be uniquely written as X̄ =
∆+∆⊥ = PTX (X) + PNX

(X) with ∆ ∈ TXM,∆⊥ ∈ NXM and PTX/PNX
being the projector

onto the tangent space/normal space.

Proposition 7 (Proposition 5.3.2 in Absil et al. [59]). Let ∇ and ∇̄ be Riemannian connections
on M and M̄ respectively, then ∇ can be evaluated at X ∈M as

∇Ω(X)Ξ = PTX ∇̄Ω(X)Ξ. (2.44)

Furthermore, if M̄ is a Euclidean space, then ∇Ω(X)Ξ = PTX DΞ(X)[Ω(X)] with D being the
standard directional derivative.

The latter statement provides a considerable simplification for practical purposes, since for
embedded submanifolds of a Euclidean space, only the tangent space projection needs to be
determined and no Riemannian connection needs to be derived.
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Geodesics

Geodesics are curves on a manifold that connect points via their shortest path. They are con-
sequently the most natural paths to follow in an iterative optimization algorithm on M. As we
will see shortly, Geodesics also constitute a special type of retraction, one that does not only
follow a given tangent space direction but additionally has zero curvature at the origin. They are
thus locally the most faithful to update directions computed on the tangent space. A disadvan-
tage is that there are usually other retractions which are computationally cheaper to evaluate.
In Euclidean space, geodesics are just straight lines, which coincide with curves γ(t) that have

vanishing acceleration d2

dt2
γ(t).

We start by defining the velocity vector field γ̇(t) on a curve γ : [a, b] 7→ M in a straight-
forward way by setting γ̇ : [a, b] 7→ TM : t 7→ γ̇(t), where γ̇(t) ∈ TXM is the tangent vector to
the curve at position γ(t). We can write a general vector field on a curve to be the restriction
of a vector field Ω to the curve via Ωγ(t) = Ω ◦ γ(t). For the acceleration we need a way to
quantify changes from γ̇(t) to γ̇(t+dt), but since they live on different tangent spaces, they are
not directly comparable. To remedy this issue one defines a new function D

dt : V(M) 7→ V(M)
which acts as

D

dt
(Ω ◦ γ)(t) := ∇γ̇(t)Ω. (2.45)

The map D
dt is also called the covariant derivative induced by the connection ∇. If we require

linearity D
dt(aΩ + bΞ) = aD

dtΩ + bDdtΞ ∀a, b ∈ R and the product rule D
dt(fΩ) = f ′Ω + f D

dtΩ ∀f :
[a, b] 7→ R, then it can be shown that the covariant derivative D

dt is unique. The acceleration
vector field for a curve γ(t) is then defined as

D2

dt2
γ(t) :=

D

dt
γ̇(t). (2.46)

We are thus equipped to define a geodesic, which is any curve γ : [a, b] 7→ M with vanishing
acceleration according to the covariant derivative:

D2

dt2
γ(t) =

D

dt
γ̇(t) = 0. (2.47)

This is also called the geodesic equation. Akin to Eq. (2.41), we can write the acceleration in
terms of the basis vector fields {Ei} with the velocity parametrized as γ̇(t) = (γ̇(t))iEi. We can

use Eq. (2.45) to write the acceleration as D2

dt2
γ(t) = ∇γ̇(t)γ̇(t), whereafter the product rule and

the linearity of the connection allow us to compute the acceleration as

∇γ̇(t)γ̇(t) = ∇γ̇(t)
∑

i

(γ̇(t))iEi

=
∑

i

(
(γ̈(t))iEi + (γ̇(t))i∇∑

j(γ̇(t))jEj
Ei

)

= γ̈(t) +
∑

ij

(γ̇(t))i(γ̇(t))j∇Ej
Ei

= γ̈(t) +
∑

i,j,k

Γkij(γ̇(t))i(γ̇(t))jEk.

(2.48)

In Appendix A we derive the geodesic equation for the Stiefel manifold by using the above form
on the ambient space and invoking Proposition 7. This leads to the condition

PTγ(t)

(
γ̈(t) + γ̇(t)γ̇(t)†γ(t)− γ(t)γ̇(t)†γ̇(t)− γ̇(t)γ(t)†γ̇(t)

)
= 0 , (2.49)

which we use to determine the geodesics.
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The Riemannian Hessian

For standard optimization algorithms that also take into account second order approximations
of a cost function, such as the Newton method, one requires the Hessian matrix in Euclidean
space. The Hessian can be generalized for a real valued function f at position X ∈ M via the
linear map Hf(X) : TXM 7→ TXM, with

Hf(X)[Ω] = ∇ΩGf, (2.50)

which is called the Riemannian Hessian. Here Ω ∈ TXM and Gf is the Riemannian gra-
dient (Eq. (2.25)) of f . In analogy to the Hessian in Euclidean space, the Riemannian Hes-
sian can be shown to be symmetric with respect to the Riemannian metric: 〈Hf(X)[Ω],∆〉 =
〈Ω, Hf(X)[∆]〉. Just as the Hessian matrix on R

n can be seen as a bilinear map H̄ : Rn×R
n 7→

R : H̄(u, v) 7→ uT H̄v, we can define Hess : TXM× TXM 7→ R which acts as

Hess(∆,Ω) = 〈Hf(X)[∆],Ω〉. (2.51)

A useful trick to compute the Riemannian Hessian is given by the following proposition, which
uses the derivative of the cost function along a certain type of retraction.

Proposition 8. Let R : TXM 7→M be a retraction that satisfies

D2

dt2
R(t∆)

∣∣∣∣
t=0

= 0 (2.52)

for all ∆ ∈ TXM then

Hess(∆,Ω) =
1

2

d2

dt2
[f(R(t(∆ + Ω)))− f(R(t∆))− f(R(tΩ))]

∣∣∣∣
t=0

(2.53)

For the proof see Proposition 5.5.5 and its discussion in Absil et al. [59]. An obvious example
of a retraction that satisfies Eq. (2.52) (called a second order retraction) is given by a geodesic
γ̇(t) with initial condition γ̇(0) = ∆.

2.2 Characterization of quantum dynamics

A high degree of control over quantum dynamics is a fundamental requirement to achieve a
quantum advantage in computational tasks. Although improvements of experimental control are
largely made through the experimentalists understanding of the device physics, there is a need
to validate these physical models and to find potentially unknown error contributions just from
measurement data with minimal prior assumptions.
There is generally a correlation between the stringency of assumptions made and the efficiency of
a characterization protocol. Similarly, the more expressive a theoretical model of the dynamics
is, the higher the minimal measurement and classical post-processing complexity required to
attain the parameters of the model from data. In the following we summarize many commonly
taken routes in the literature to square these counteracting requirements. While benchmarking
protocols aim to provide a single or a small number of error measures to quantify the performance
of the device dynamics, device identification or learning aims to provide a mathematical model
of the dynamics that can be interpreted regarding error sources. The obvious use is for device
calibration, but a full model can serve several other purposes. First, rigorous worst case error
measures can be computed from the mathematical model, which serve as thresholds for fault-
tolerant quantum computation [70, 71]. Second, a concrete noise model can be used to actively
design quantum circuits that mitigate said noise, for instance via probabilistic error cancellation
[72]. In Chapter 3 we further demonstrate an example of error mitigation via post-processing of
data from a noisy device. A third and often overlooked additional use of a fully characterized noise
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model is for the testing of proposed quantum algorithm or benchmarking protocols with classical
simulations. Since accurate noise models from characterization experiments are unfortunately
rare in the literature, simulations are often done with the most simplistic noise models, which
do not accurately capture real world devices.

In the following we first familiarize ourselves with the fundamentals of quantum dynamics
from a quantum information theory point of view in Section 2.2.1 and Section 2.2.2. We fur-
ther review different approaches to the characterization of quantum dynamics, starting with
quantum process tomography in Section 2.2.3 and later focusing on self-consistent approaches
in Section 2.2.4. This will serve as a basis to understand and contextualize our research on gate
set tomography which is presented in Chapter 3.

2.2.1 Quantum operations and the superoperator formalism

Textbook quantum mechanics describes dynamics on quantum systems in terms of unitary evo-
lutions on pure states |ψ〉, which are elements of the Hilbert space H. Here we instead use
the formalism deployed in quantum information theory, where the derivations presented in the
following are based on the standard works by Nielsen and Chuang [73] and Watrous [74]. In
this setting, one separates the Hilbert space into the system HS and the environment HE , where
we assume that the initial state on HS ⊗HE is given by the product state ρ0 ⊗ |E0〉〈E0|. The
environment is chosen to be in a pure state, since this case is sufficiently general for our pur-
poses. After a unitary evolution U on the combined space takes place, one ’forgets’ about the
environment by taking a partial trace, resulting in the final state

ρ =

dim(HE)∑

i=1

〈i|U(ρ0 ⊗ |E0〉〈E0|)U †|i〉, (2.54)

where {|i〉}dim(HE)
i=1 is an orthonormal basis on HE . We then define Ki := 〈i |U |E0〉 ∈ L(HS) in

order to write the final state as

ρ = C(ρ0) :=
dim(HE)∑

i=1

Kiρ0K
†
i . (2.55)

It follows that we can describe physical dynamics on the system by a linear map C : L(HS) 7→
L(HS), which is given by the set {Ki}, whose elements are commonly referred to as Kraus
operators. Since we don’t require the environment in the following, we use just use H for HS .
One can immediately see from Eq. (2.55) that 1 = Tr[ρ] = Tr[

∑
iKiρ0K

†
i ] = Tr[

∑
iK

†
iKiρ0] has

to hold for all ρ0. We thus get the condition

∑

i

K†
iKi = 1. (2.56)

Furthermore, it can directly be seen that
∑

i(Ki⊗1d′)ρ0(K†
i⊗1d′) � 0 for all positive semidefinite

matrices ρ0 ∈ H ⊗H′ and d′ = dim(H′). A linear map C that can be written in terms of Kraus
operators is thus always completely positive, i.e.
, (C⊗ id)(ρ) � 0 for all ρ � 0, with id being the identity channel. In fact, the converse also holds:
Any completely positive trace preserving linear map can be written in the form of Eq. (2.55), as
we will see below. Due to this equivalence, a completely positive trace preserving (CPT) linear
map is also called a quantum channel, since it constitutes the most general form of physical
dynamics according to the above assumptions.

Before we delve deeper, we will first familiarize ourselves with a tensor network notation for
quantum circuits, which allows for an intuitive understanding of the above concepts.

A tensor is a multilinear map T : V1⊗· · ·⊗Vr 7→ Vr+1⊗· · ·⊗Vr+s, which can be written with
respect to bases on the vector spaces V1, . . . , Vr+s. The basis coefficients T

ir+1...ir+s

i1,...ir
determine
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Figure 2.1: Basic elements of the tensor network representation. In our convention, ma-
trices are always applied to to right, i.e.
for M =

∑
i,jMij e

T
i ⊗ ej with {ei}ni=1 being the standard basis vectors, the leg corre-

sponding to the index j is always on the right and the leg corresponding to i on the left.
Vectorization is always done in row-major order, i.e.
vec(M) =

∑
i,jMij ei ⊗ ej . The green arrow indicates the rearrangement of tensor legs,

which encapsulates the isomorphism in the bottom right.

the tensor and its action on a set of vectors {v1, . . . , vn} with n ≤ r + s, which is given by

(T (v1, . . . , vn))
in+1...ir+s =

∑

i1,...in

T
ir+1...ir+s

i1,...ir
(v1)i1 · · · (vn)in . (2.57)

This is termed a contraction of T and v1, . . . , vn. To avoid excessive use of indices, these contrac-
tions can be pictorially represented in tensor network diagrams. A tensor is therein associated
with a box from which r + s lines (called ’legs’) emanate. Contractions between tensors are
represented by joining lines together. For a representation of the basic building blocks that we
need for our purposes, see Figure 2.1. These tensor network diagrams are commonly used in the
literature, and a more thorough introduction can be found for instance in Wood et al. [75].

A useful concept for understanding the structure of quantum channels is the Choi–Jamiołkowski
isomorphism, which identities a quantum channel C : L(H) 7→ L(H) with a quantum state
J (C) ∈ L(H⊗2). Let |φ+〉 = 1/

√
d
∑d

i=1|1〉 with d = dim(H). Then the Choi-state J (C) is given
as

J (C) = C ⊗ id(|φ+〉〈φ+|). (2.58)

A tensor network representation of the isomorphism given in Figure 2.2 provides a simple un-
derstanding of what the map J does: a reordering and recombining of tensor indices.

Figure 2.2: Tensor network representations for equivalent descriptions of quantum chan-
nels.

Since |φ+〉〈φ+| � 0 and C is completely positive, one can immediately see that J (C) � 0. Any
positive semidefinite matrix can be decomposed as J (C) = A†A for some matrix A ∈ L(H⊗2)
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(for instance via the Cholesky decomposition). We can now relate this decomposition of the
Choi matrix to the Kraus decomposition of the original channel C as follows. The matrix entries
of A ∈ C

d2×d2 can be reordered into a 3-legged tensor by reshaping each of its rows into a
d × d matrix. We then identify the resulting set of d2 matrices with the set of Kraus operators
{Ki}d

2

i=1. Upon reordering the indices (reversing the first step of the Choi isomorphism), we
arrive at the Kraus decomposition of C (see Figure 2.2). We have thus seen that there is a one-
to-one correspondence between completely positive linear maps and maps that admit a Kraus
decomposition.

It is important to note that the Kraus decomposition is not unique, as can be easily seen by
considering that the decomposition of J (C) is not unique: J (C) = A†A = A†U †UA. On the
level of the Kraus operators {Ki}d

2

i=1, this amounts to a reshuffling, where Ki 7→
∑

j KjUji.
We treat measurements in the usual way, by defining a positive operator valued measure

(POVM), consisting of positive operators {Ei} that satisfy
∑

iEi = 1. The probability for
obtaining outcome i given a quantum system in the state ρ is then computed via the so-called
Born rule: P[i] = Tr[Eiρ]. Positivity of Ei and

∑
iEi = 1 ensure that all probabilities are

positive and sum to one, respectively.
Just as we wrote the action of individual quantum channels via tensors, we can do so for an

entire quantum experiment. From a quantum information theory point of view, an experiment
consists of the preparation of an initial state ρ (most typically ρ = |0〉〈0|), and a sequence of m
gates followed by a POVM measurement. Figure 2.3 shows the tensor networks of an idealized
experiment with unitary dynamics, as well as a general experiment with quantum channels in
Kraus decomposition. For the latter, the tensor network diagram provides a considerably sim-
plified picture of the underlying circuit. Learning a general quantum channel becomes infeasible

Figure 2.3: Unitary quantum circuits and general circuits composed of CPT maps vi-
sualized as tensor networks. The green arrow indicates how the matrices U †

1 , . . . U
†
n are

rearranged so that the circuit acts as a product of matrices Ui ⊗ U∗
i on vec(ρ0).

very quickly for increased system size, since the number of free (real) parameters of a linear
map in C

d2×d2 is 2d4. Even the physicality constraints do not help much, since for the Kraus
decomposition we have

∑
iK

†
iKi = 1 ∈ C

d×d, which amounts to d real constraints (the diagonal
entries of 1) and d(d−1)/2 complex constraints (off-diagonal entries of 1). In total, we then have
2d4− d2 free parameters in a quantum channel given via the Kraus representation. If we further
remove the unitary freedom from the non-uniqueness of the Kraus operators we end up with
d4−d2 real parameters (see the discussion in Section 3.1). There are, however, simple physically
motivated noise models that only require one or two Kraus operators and thus have considerably
fewer free parameters. This leads us to define the Kraus rank of a quantum channel,

rK(C) = min
r

{
r ∈ N : ∃{Ki}ri=1 : C =

r∑

i=1

Ki ⊗K∗
i and

r∑

i=1

K†
iKi = 1

}
, (2.59)

which coincides with the rank of the Choi state J (C).
In the following, we highlight a different channel parametrization in terms of its action on

Pauli operators, which is sometimes more intuitive to understand and directly incorporates the
trace preservation constraint.
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The Pauli transfer matrix representation

Let X : L(H) 7→ L(H) be a linear map (also called superoperator). We use the Dirac notation for
elements of L(H) (see Section 2.1.1) to write X with respect to any orthogonal basis on L(H),
where the basis elements |Bi) satisfy (Bi |Bj) = δi,j . This could be the standard basis with
{B0 = |0〉〈0|, B1 = |0〉〈1|, . . . }, or the set of normalized Pauli matrices {σ̌a := σa/

√
d}a∈F2n

2
.

Then X can be written with respect to this basis as X =
∑

a,a′ Xa,a′ |σ̌a)(σ̌a′ |.
If a quantum channel is written in this basis as C =

∑
a,a′ Ca,a′ |σ̌a)(σ̌a′ |, the matrix C is called

the Pauli transfer matrix, or PTM for short. Since a quantum channel is hermiticity preserving,
and since any hermitian matrix admits a decomposition in the normalized Pauli basis with real
coefficients, we can see that the coefficients Ca,a′ must be real themselves: Ca,a′ = (σ̌a|C|σ̌a′) ∈ R.
The trace preservation condition is also very simple in the PTM-representation, since

1 = Tr[C(ρ)] = (1|C|ρ) =
√
d(σ̌0|C|ρ) =

√
d
∑

a

C0,a(σ̌a |ρ) = C0,0 +
√
d
∑

a6=0

C0,a(σ̌a |ρ) (2.60)

has to hold for every ρ. This implies that C0,0 = 1 and C0,a = 0 for a 6= 0, meaning the first row
of the matrix C is the first unit vector. We can thus write C as

C =




1 0 . . . 0
|
u T

|


 , (2.61)

where T ∈ R
(d2−1)×(d2−1) and u ∈ R

d2−1, with a total of d4− d2 free parameters. A channel C is
commonly called unital if it satisfies C(1) = 1, which translates to u = 0 in our parametrization.
The PTM representation can also be used to make general statements about the eigenvalues {λi}
of the channel. We first note that the eigenvalues of C are the eigenvalues of T in addition to the
eigenvalue λ0 = 1. This holds since for a block matrix as in Eq. (2.61) we have det(C − λ1d2) =
(1 − λ) det(T − λ1d2−1). Since T is a real matrix, its eigenvalues are either real or for every
complex eigenvalue the conjugate is an eigenvalue as well, i.e.
|λ|eiφ and |λ|e−iφ are both in the spectrum. Additionally, it was shown that all eigenvalues satisfy
|λi| ≤ 1 [76].

Unfortunately, the condition that C needs to be completely positive is not immediately appar-
ent in the PTM representation, as is the case for the Kraus representation. Nevertheless, many
ubiquitous channels in quantum information are particularly simple when written in terms of their
action on Pauli matrices. Prime examples are elements of the Clifford group Cln, which is the nor-
malizer of the Pauli group Pn under the familiar unitary representation: ω(g)(σa) = gσag

† ∝ σa′
for g ∈ Cln and some a′ ∈ F

2n
2 . Therefore Clifford group elements have a sparse PTM matrix:

Each row contains only one non-zero entry, which is in {−1,+1}. Elements of the Clifford group
are thus singed permutation matrices in the PTM representation.

We will now give a brief overview over noise models that are frequently encountered in
the literature. These provide us with a reference for the analysis of characterization results of
quantum processes.

Common noise processes

Unitary errors, also known as coherent errors, are unwanted unitary processes occurring during
the implementation of a gate. They can range from simple overrotations, where instead of
U = eiθH , Ũ = ei(θ+δ)H is applied, to more complex coherent errors where unwanted terms
in the Hamiltonian are present: Ũ = eiθ(H+∆). Unitary errors have a comparatively sparse
representation, since they are only given by at most d2 independent real parameters. Moreover,
they are often easier to understand in terms of a physical model of the device, and can hence be
reduced via calibration.
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Pauli channels are defined as channels that can be written as

CP (ρ) =
∑

a

paσaρσa, (2.62)

where pa ≥ 0 and
∑

a pa = 1. From this definition we can gather the PTM coefficients:

(CP )a,a′ =
∑

b∈F2n
2

pbTr[σaσbσa′σb] =
∑

b∈F2n
2

pb(−1)〈a
′,b〉Tr[σaσ

′
a] =

∑

b∈F2n
2

pb(−1)〈a
′,b〉δa,a′ . (2.63)

The matrix Cp is thus diagonal with entries in the interval [−1, 1]. The diagonal elements of any
diagonal matrix in the PTM representation are also called Pauli eigenvalues, since they satisfy
the eigenvalue equation CP |σa) = (CP )a,a′ |σa). The transformation W : Rd

2−1 7→ R
d2−1 that

maps the Pauli probabilities to the Pauli eigenvalues is called the Walsh-Hadamard transform,
given by

W =
∑

a,a′

(−1)〈a,a′〉|σa)(σ′a| with W−1 =
1

d2 − 1

∑

a,a′

(−1)〈a,a′〉|σa)(σ′a|. (2.64)

Note that even though all Pauli channels have a diagonal PTM representation, the converse is not
true, since the conditionsW−1diag(CP ) ≥ 0 and

∑
a(a|W−1diag(CP ) = 1 need to be additionally

satisfied. Pauli channels are thus a very restricted subset of possible noise processes. They are
nevertheless a useful model since they encompass common noise channels such as depolarizing,
amplitude damping and dephasing noise, are more efficiently learnable than general noise [77],
and are sufficiently general for quantum error correction [78]. Moreover, general noise in an
experiment can be reduced to Pauli noise via randomized compiling [79–81].

In the following we give a brief description of depolarizing, amplitude damping and dephasing
noise. Additional details can be found in [73]. The most prominent of the three is the depolarizing
noise, which models the loss of information about the system. The associated noise channel acts
as Dp(ρ) := (1 − p)ρ + p

d1, describing a process where with probability p, the state is replaced
by the completely mixed state. Using the twirl over the Pauli group given in Eq. (2.4), we can
give the following description of the depolarizing channel:

Dp(ρ) = (1− p)ρ+ p
1

|Pn|
∑

U∈Pn

UρU †

= (1− p)ρ+ p

4n

∑

a∈F2n
2

σaρσa

=
(
1− p(1− 4−n)

)
ρ+

p

4n

∑

a6=0

σaρσa.

(2.65)

The channels is thus represented by the d2 Kraus operators {√caσa}a∈F2n
2

with c0 = 1−p(1−4−n)
and ca = p4−n for a 6= 0.

Energy loss from a qubit (such as spontaneous emission of a photon) can be modeled by what
is called an amplitude damping channel Ead, given by the Kraus operators

K0 = |0〉〈0|+
√
1− λ|1〉〈1|, K1 =

√
λ|0〉〈1|. (2.66)

The parameter λ ∈ [0, 1] can be interpreted as the probability for the occurrence of an energy
loss event that is described by the action of K1, which takes the excited state to the ground state.
One may also consider amplitude damping as the result of more general open system dynamics
[82], where Eq. (2.66) describes a noise process on the system resulting from the presence of
memory effects in the environment, in which case λ is not necessarily confined to the interval
[0, 1]. The action of the amplitude damping channel on a single qubit density matrix is given by

Ead
((

a b
b∗ 1− a

))
=

(
1− (1− a)(1− λ) b

√
1− λ

b∗
√
1− λ (1− a)(1− λ)

)
, (2.67)
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


1 0 0 0
0 1− p 0 0
0 0 1− p 0
0 0 0 1− p







1 0 0 0
0 1 0 0
0 0 1− 2p 0
0 0 0 1− 2p







1 0 0 0
0 1− 2p 0 0
0 0 1− 2p 0
0 0 0 1




Depolarizing X-dephasing/Bit-flip Z-dephasing/Phase-flip




1 0 0 0

0
√
1− λ 0 0

0 0
√
1− λ 0

λ 0 0 1− λ







1 0 0 0
0 1 0 0
0 0 cos(δ) −sin(δ)
0 0 sin(δ) cos(δ)







1 0 0 0
0 cos(δ) −sin(δ) 0
0 sin(δ) cos(δ) 0
0 0 0 1




Amplitude damping X - Rotation Z - Rotation

Table 2.1: Examples for common single qubit noise processes in the PTM representation.

where a ∈ R, b ∈ C. This channel affects both diagonal and off-diagonal elements of the density
matrix and incorporates loss of amplitude and phase information.

A different process that only affects the off-diagonal ’phase’ information is given by the
dephasing channel Eph with Kraus operators

K0 =
√

1− p1, K1 =
√
p σz, (2.68)

for p ∈ [0, 1]. This can occur when the |0〉 and |1〉 states accumulate different phases from
interactions with the environment. As a result, we lose information about the relative phase,
since it is perturbed according to an unknown process.

A different parametrization of both amplitude damping and dephasing processes is defined
through the density matrix evolution

(
a∞ + (a− a∞) e−t/T1 b e−t/T2

b∗ e−t/T2 (1− a∞)(a∞ − a) e−t/T1
)
, (2.69)

where the parameters are called T1(T2) relaxation or T1(T2) error. The amplitude damping
channel Eq. (2.67) contains both T1 and T2 errors with

√
1− λ = et/T2(Ead) and T2(Ead) =

T1(Ead)/2. The dephasing channel only contains T2 errors, with p = (1− e−t/T2(Eph))/2.
In Table 2.1 the PTM representations of common single qubit coherent and incoherent noise

processes are shown. These matrices will be useful for the interpretation of characterization
results in quantum experiments (Section 3.2).

Representing quantum channels via their generators

Single qubit unitaries are routinely associated with rotations on the Bloch sphere, exploiting
SU(2)/Z2 ' SO(3). Given a U ∈ U(2), we can uniquely write it as U = eiH , with the Hamiltonian
H =

∑
a∈F2

2
haσa, ha ∈ R. Since we do not care about global phases, we can set h0 = 1 and

are left with a vector hhh := (h01, h10, h11), where h/‖h‖p is the rotation axis on the Bloch sphere
and 2‖h‖p corresponds to the angle of rotation around this axis. Going from matrix entries to
weights of Paulis in the Hamiltonian has the advantage that the latter parametrization is easier
to interpret in terms of the underlying physics of the experiment. One can go a step further and
describe channels in terms of generators, setting C = eL. To ensure that C is CPTP, L can be
chosen as a Lindbladian parametrized operator given by

L(ρ) = i[ρ,H] +
∑

i,j

βij

(
BiρBj −

1

2
(BjBiρ+ ρBjBi)

)
, (2.70)
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with a Hamiltonian H and a hermitian and orthonormal basis {Bi}d
2

i=1, such as the normalized
Pauli basis. In this form, coherent errors in terms of a mismatch between the implemented and
the target Hamiltonian are separated from incoherent errors caused by dissipative processes. A
caveat of this parametrization is that it only covers a subset of CPTP maps [83]. For example,
all channels of this form are necessarily divisible, which does not have to be the case for arbitrary
quantum channels.

2.2.2 Distance measures

For the purpose of the characterization and benchmarking of quantum systems, distance measures
are required to assess discrepancies between outcome probabilities of measurements, as well
as directly between the building blocks of mathematical model for quantum states, quantum
channels and POVMs. The right choice of distances measure for a given task is crucial, since
objects which are close with respect to one might be far apart with respect to another (as can be
seen when comparing average case and worst case measures). Often but not exclusively, distance
measures are induced by norms, i.e.
distα(A,B) = ‖A − B‖α for some choice of norm ‖·‖α. We will now start by defining the most
relevant distances for our purposes on probability vectors.

Distances between discrete probability distributions

Let p, q ∈ [0, 1]n with
∑

i pi =
∑

i qi = 1. The total variation distance (or trace distance/`1
distance) δd(p, q) is defined via the vector `1-norm as

δd(p, q) :=
1

2
‖p− q‖`1 = max

S⊂[n]

∣∣∣∣∣
∑

i∈S

pi − qi

∣∣∣∣∣ . (2.71)

The latter form in the above equation gives an operational interpretation: The maximal dis-
crepancy between probabilities over all events S. Another norm-induced distance is the mean
squared distance or mean squared error

L(p, q) = 1

n
‖p− q‖`2 . (2.72)

This is the preferred distance to minimize in optimization problems since, as opposed to the
total variation distance, it is differentiable with respect to p, q and strictly convex. The latter
property ensures that for a given p and a convex set C ⊂ [0, 1]n, there is only a single q ∈ C that
minimizes L(p, q).

Another distance measure on probability distributions that is relevant to us is the Kullback-
Leibler divergence

DKL(p||q) =
∑

i

pi log

(
pi
qi

)
. (2.73)

This is strictly speaking not a distance, since it does not satisfy the triangle inequality and is
not symmetric in its arguments. For our purposes we will set p to be the empirically determined
probability distribution of measurement data, i.e.
pi = ki/n, where ki is the number of times outcome i is observed out of n total measurements. If
we set q(θ) to be the probability distribution determined by a mathematical model with internal
parameters θ, then the likelihood function

L({ki}||q(θ)) =
∏

i∈[n]

qkii (2.74)

gives the probability of the event where each outcome i was observed exactly ki times. It is thus
natural to maximize L({ki}||q(θ)) over θ to obtain the model that is most likely to have produced
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the data. Since the logarithm is concave, we can just as well maximize log L({ki}||q(θ)) =∑
i ki log(qi) = n

∑
i pi log(qi(θ)), which is easier to handle. The latter is called the log-likelihood

function. It is equivalent to the Kullback-Leibler divergence up to constants, since

DKL(p||q(θ)) =
∑

i

pi log(pi)−
∑

i

pi log(qi(θ)) = c1 · log L(p||q(θ)) + c2, (2.75)

with c1 and c2 independent of θ. A strong argument for using the Kullback-Leibler divergence
is given by the Neyman-Pearson lemma. It states that the log-likelihood ratio log(pi/qi) is the
key figure to distinguish between the distributions p, q given an observation i, in the sense that
it minimizes the type II error for a fixed type I error in a hypothesis test. The Kullback-Leibler
divergence DKL(p||q) is then the expected value of log(pi/qi), assuming the observation was
drawn from the distribution p.

Distances between quantum states

Distinguishing quantum states is usually done via one of the three measures given below. Let
S(H) = {σ ∈ L(H) : σ � 0,Tr[σ] = 1} be again the state space and let ρ, σ ∈ S(H). We define

DTr(ρ, σ) :=
1

2
‖ρ− σ‖1 and F (ρ, σ) = ‖√ρ

√
σ‖21, (2.76)

where DTr(ρ, σ) is called the trace distance and F (ρ, σ) the fidelity. Since F (ρ, ρ) = 1 while
DTr(ρ, ρ) = 0, often the infidelity 1 − F (ρ, σ) is given instead. If one state is pure, the fidelity
can be simplified: F (|ψ〉〈ψ|, σ) = 〈ψ |σ |ψ〉. In quantum state tomography [84–87], the Frobenius
norm ‖ρ − σ‖F is also commonly used to distinguish states, mainly for its differentiability and
the fact that there is a closed form expression [88] for argmin

ρ∈S(H)
‖X − ρ‖F with X ∈ Herm(n).

Similar to the total variation distance between probability distributions, the trace distance
admits the following alternative form

DTr(ρ, σ) = sup
0�E�1

Tr[E(ρ− σ)]. (2.77)

It is thus the highest probability of distinguishing ρ and σ via any POVM element E, which gives
it an operational interpretation and makes it the measure of choice in most of the literature. The
trace distance is related to fidelity and Frobenius norm via the inequalities

1−
√

F(ρ, σ) ≤ DTr(ρ, σ) ≤
√
1− F(ρ, σ),

‖ρ− σ‖F ≤ DTr(ρ, σ) ≤
√
r‖ρ− σ‖F,

(2.78)

where r is the rank of ρ − σ. Note that the rank can scales with the dimension in the worst
case, while inequalities relating the trace distance and average gate fidelity contain no large
factors. Knowledge of the fidelity thus gives a usable upper bound on the trace distance even
in high dimensions, although the square root makes bounding the trace distance via the fidelity
suboptimal for mixed states.

Distances between quantum channels

The most widely reported distance measure between quantum channels C,U , where U is unitary
and C arbitrary, is the average gate fidelity defined as

Favg(U , C) =
∫

Tr[U(|ψ〉〈ψ|)C(|ψ〉〈ψ|)]dµ(ψ), (2.79)

with dµ(ψ) being the unitary invariant measure on state vectors. As the name suggests, the
average gate fidelity is the average over all quantum states of the fidelity between the pure
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state U(|ψ〉〈ψ|) and the mixed state C(|ψ〉〈ψ|), where typically U is the target gate and C
a noisy implementation. In analogy to the fidelity for states, sometimes the average error rate
r(U , C) = 1−Favg(U , C) is given. Let J (U) and J (C) be the Choi states of U and C, respectively.
Then the average gate fidelity is related to the entanglement fidelity Fe(U , C) := F(J (U),J (C)) =
Tr[U†C]/d2 (see [27, 89]) via

Favg(U , C) =
dFe(U , C) + 1

d+ 1
. (2.80)

The main selling point for the use of the average gate fidelity as a gate quality measure is that
under some assumptions [32, 90], it is linked to the decay parameter in randomized benchmarking
[31, 52, 53], which can be efficiently estimated.

A more stringent error measure is defined via the diamond norm

‖C‖� := sup
ρ∈S(H⊗H)

‖(id⊗ C)(ρ)‖1 = sup
0�E�1

sup
ρ∈S(H⊗H)

Tr[E(id⊗ C)(ρ)], (2.81)

where E ∈ L(H⊗H). The diamond distance between channels C and C̃ is then defined as 1
2‖C −

C̃‖�, where the factor 1/2 ensures that it lies in the interval [0, 1]. The operational interpretation
is straightforward: The diamond distance gives the worst case discrepancy in outcome probability
over all states and all POVM-elements between two gates acting on a subsystem. For this reason
it has traditionally been used to provide provable error thresholds, below which quantum error
correcting codes achieve fault tolerance [91]. To date there is no method known that can efficiently
estimate the diamond distance between a target gate U and its implementation. Unfortunately
the average gate fidelity does not give a useful upper bound on the diamond distance either,
since without additional assumptions, no better bound than

d+ 1

d
r(U , C) ≤ 1

2
‖C − C̃‖� ≤

√
d(d+ 1)r(U , C) (2.82)

is known. It is therefore necessary to acquire a full description of C via process or gate set
tomography first, whereafter the diamond distance can be computed via a semidefinite program
[92]. Interestingly, as Kueng et al. [71] have shown, purely unitary errors exhibit the worst case
scaling and no better bound than in Eq. (2.82) can be obtained there. It was further shown in
Wallman [93] that if we define the worst case infidelity

rmax := max
|ψ 〉〈ψ|∈S(H)

(1− 〈ψ |C(|ψ〉〈ψ|)|ψ〉) , (2.83)

then it holds that r(C) ≤ rmax ≤ (d + 1)r(C) and the bound is tight since there exist channels
C for which rmax = O(dr(C)). This implies that the dimensional factor in the upper bound of
Eq. (2.82) is due to the worst-case to average-case conversion, while only the square root scaling
with

√
r(C) is due to the different distance measure. However, for non-unitary (incoherent)

noise, a better scaling of the diamond norm bound in the infidelity can be found. First we
need to define the unitarity introduced in Wallman et al. [94], which is an efficiently estimable
quantity that measures how ’unitary’ a process is. Let C′ be a linear map that satisfies C′(1) = 0
and C′(X) = C(X) − Tr[C(X)]1/

√
d for all traceless X. Then the unitarity is defined to be the

quantity

u(C) = d

d− 1

∫
Tr
[
C′(|ψ〉〈ψ|)†C′(|ψ〉〈ψ|)

]
dµ(ψ), (2.84)

which satisfies u(U) = 1 for any unitary channel U . It was shown in [71] that if C is unital and
its unitarity scales as u(C) = (1− dr

d−1)
2 +O(r2), then 1

2‖C − C̃‖� = O(d2r). This bound is only

useful for small systems, where the factor d2 is less important than the quadratic improvement
in r. For example if d = 2 and r = 10−4, which is an average error rate routinely achieved in
current experiments. In Wallman [93], an alternative bound of the diamond distance in terms of
unitarity and infidelity is also given.
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For Pauli channels Cp (see Eq. (2.62)) the diamond norm and average gate fidelity are equiv-
alent [95]:

‖CP ‖� = (1 + 1/d) r(id, CP ) = ‖e1 − p‖`1 , (2.85)

where p is the vector of Pauli error probabilities and e1 the first unit vector.

As will be discussed in Section 2.2.4, sometimes channels are only given up to similarity
transformations TCT−1 for B ∈ C

d2×d2 . It would therefore be a desirable property of a given
distance measure to be invariant under similarity transformations in one of its arguments, i.e.
dist(U , C̃) = dist(U , T C̃T−1). Unfortunately this is not generally satisfied by the diamond dis-
tance or the average error rate. One exception is the average error rate to the identity channel,
which is computed via the entanglement fidelity (Eq. (2.80)), satisfying Fe(id, C) = Tr[1 C]/d2 =
Tr[TCT−1]/d2. One way to get around the problem is to define distance measures that only
depend on the eigenvalues of U and C, since those are invariant under similarity transformations.
One example of such an error measure is what we call the spectral 1-distance, defined by

Ds1(C, C̃) :=
1

d2
min

π∈Perm(d2)

d2∑

i=1

|λi(C)− λπ(i)(C̃)|, (2.86)

where Perm(d2) is the set of Permutations of d2 numbers. Computing the above distance can
be phrased as an instance of a linear assignment problem, for which there exist polynomial time
algorithms in the problem size d2. It is thus far not clear if the spectral 1-distance admits an
operational interpretation in general. However, for the special case where C = id and C̃ is a Pauli
channel with Pauli eigenvalues λi(C̃) ∈ [−1, 1], we get

Ds1(id, C̃) =
1

d2

d2∑

i=1

(1− λi(C̃)) = 1− p1(C̃), (2.87)

where p1(C̃) is the probability of C̃ acting as the identity.

The distances between quantum channels in process tomography protocols are also routinely
measured via distances on the corresponding Choi states, defined via either the Frobenius norm
‖J (C)− J (C̃)‖F or the trace norm ‖J (C)− J (C̃)‖1.

Distances between POVMs

Let E = {Ei}ki=1 and Ẽ = {Ẽi}ki=1 be two k-outcome POVMs. We can define the analogous
distance to the trace distance for quantum states via the so-called operational distance [96, 97]

Dop(E, Ẽ) := max
ρ∈S(H)

δd(p(ρ,E), p(ρ, Ẽ)), (2.88)

where p(ρ,E) = (Tr[ρE1], . . . ,Tr[ρEk]) is the vector of outcome probabilities of E given ρ. Since
it is defined via the total variation distance, the operational distance can also be formulated as
the maximum difference in probabilities of two events occurring, over all states. The operational
distance can be computed [97] via

Dop(E, Ẽ) = max
I⊆[n]

‖
∑

i∈I

(Ei − Ẽi)‖∞. (2.89)

Another way to define distance measures on POVMs is to consider them as measure and prepare
channels E : S(H) 7→ C

k : E(ρ) =
∑k

i=1Tr[Eiρ] |i〉〈i|. Any distance measures defined for
channels can thus be defined for POVMs, in particular the diamond distance

D�(E, Ẽ) =
1

2
‖E − Ẽ‖�. (2.90)
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Since the output state of the prepare and measure channel is essentially a classical state, we can
see that the operational distance is equivalent to the half 1→ 1 norm defined as

1

2
‖E − Ẽ‖1→1 =

1

2
max
ρ∈S(H)

‖(E − Ẽ)(ρ)‖1 = max
ρ∈S(H)

δd(p(ρ,E), p(ρ, Ẽ)). (2.91)

The diamond distance between POVMs, in contrast, treats the measurement as an action on
a larger Hilbert space and thus allows for more powerful protocols to distinguish E and Ẽ via
initial states in S(H⊗2) and entanglement between the original system and ancillas.

2.2.3 Process tomography

Quantum process tomography (QPT) considers the problem of reconstructing a mathematical
model of a quantum process from measurement data. Since a real quantum system is never
perfectly isolated from the environment, a model is naturally just an approximation to the real
dynamics in the system. Loosely speaking, every scheme that extracts a model which can be
used to predict measurement outcomes for different initial conditions can be considered QPT.
This distinguishes between tomography and certification/benchmarking, where methods in the
latter group aim to extract performance metrics which can not be used to make fine-grained
predictions.

In this section we aim to give a (non-exhaustive) overview over different approaches to QPT,
which differ in the mathematical models assumed to describe the dynamics, as well as in the
strategies to reconstruct said models. The variant which is central to the work presented in this
thesis, gate set tomography, is then explored in more detail in section Section 2.2.4.

The principal setting of QPT is that a single process is assumed to be unknown, while
arbitrary and fully known input states and measurements on the system can be realized. This
is sometimes extended to include input states and measurements on a larger system including
ancillas. Assumptions on the process are that it is (i) time stationary, (ii) context independent
and (iii) described by a quantum channel acting only on the system Hilbert space. These
conditions are essential for quantum tomography schemes, since outputs are probabilistic and
many measurement settings are required, thus tomography can only function given a sequence
of observations of an internally consistent process. The conditions can be relaxed by including
environment interactions to the model in what is termed non-Markovian tomography, which we
will summarize at the end of this section. A distinction also has to be made between coherent
and incoherent measurement strategies, where the former assumes that identical copies of a
channel can be applied to a larger quantum state, and that the output can be measured with
measurement operators that are entangled over the Hilbert spaces of different copies. This
assumes access to a large number of qubits and sufficient control to ensure the channel copies
are identical, which is hard to come by in the current era of noisy intermediate sized quantum
devices. We therefore focus on incoherent measurements, where only a single copy of the channel
is applied per measurement round.

Standard tomography of quantum channels

We first consider the textbook case where a quantum operation is modeled by a quantum channel
C : L(H) 7→ L(H) as defined in Section 2.2.1. The tomographic procedure to determine C from
repeated cycles of state preparation, the application of C and subsequent state tomography of
the output state was first formalized in 1997 [98, 99]. In the meantime, QPT has been applied
to different platforms such as nuclear magnetic resonance, photonic, trapped ion, solid state and
superconducting qubit systems [100–104]. The standard version of QPT can be summarized
as follows. Let {Bi}d

2

i=1 with Bi ∈ L(H) be an orthonormal basis for the space L(H) and

let C(ρ) =
∑

lKlρK
†
l be given in Kraus representation. If we express the Kraus operators in

this basis as Kl =
∑

i αiBi, we can write the channel action as C(ρ) =
∑

ij CijBiρB
†
j , where
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Cij = αiα
∗
j . Now suppose we can prepare the d2 operators {Bi} as input states to C, then the

action of C on these inputs can be written as

C(Bk) =
∑

ij

CijBiBkB
†
j =:

∑

l

γlkBl. (2.92)

Here
∑

l γklBl is the output state of C on the input Bk, whose coefficients γkl can be procured

via quantum state tomography. If we define BiBkB
†
j =: βijkmBm, then Eq. (2.92) becomes

∑

ij

CijBiBkB
†
j =

∑

ijm

CijβikjmBm =
∑

l

γklBl. (2.93)

Since the operators Bl form an orthonormal basis, the final equation reads

∑

ij

βkmijCij = γkm, (2.94)

which is a linear system of equations that in the vectorized form β vec(C) = vec(γ) is just solved
via vec(C) = β−1 vec(γ). An alternative but equivalent formulation is to define a measurement
map

Mij(C) := Tr[EiC(ρj)] = Pij (2.95)

with a set of POVM elements {Ei} and initial states {ρj}. The outcomes probabilities Pij are
experimentally determined by repeating the experiment for a given ρj and Ei a number of times
to collect statistics (see left side of Figure 2.4). The channel is then recovered by computing the
pseudoinverse M

+ of the linear map M to get

Ĉ = M
+(P ). (2.96)

Here the set of POVMs or the set of initial states can again be an orthonormal basis, or just any
frame on L(H).

A commonly chosen basis on L(H) is the Pauli basis P. Note that a Pauli σa with a ∈ F
2n
2 is

not a valid quantum state, but we can write it in spectral decomposition as σa =
∑

i si|ψi〉〈ψi|
with eigenstates |ψi〉 and eigenvalues si ∈ {−1, 1}. Since everything is linear,

Tr(EjC(σa)) =
∑

i

siTr(EiC(|ψi〉〈ψi|)) (2.97)

and we get the expectation value by preparing all eigenstates of σa. Other commonly considered
frames on L(H) are the set of mutually unbiased bases (MUBs) [105] and the set of symmetric
informationally complete POVMs (SIC-POVMs) [106], both of which constitute examples of
QPT with complex projective 2-designs [107, 108].

An even simpler approach is given by what is termed direct characterization [109, 110].
Using rounded braket notation (Section 2.1.1) that lets us write the identity channel as id =∑d2

i=1|Bi)(Bi|, we can express C in this basis as C =
∑d2

i,j=1(Bi |C |Bj) |Bi)(Bj |. Let Cij =
(Bi |C |Bj), then assuming we can prepare a state |Bj) (see argument above) and measure (Bi|,
we have direct access to the entry Cij .

A different but from a theoretical standpoint equivalent method to the above protocols relies
on representing C via its Choi-state J (C) [111, 112]. Since by Eq. (2.58) the Choi state is given
by the application of C to one half of a maximally entangled state, it can be prepared in an
experiment and subsequently measured (see right side of Figure 2.4). The disadvantage of this
method is that the preparation of a maximally entangled state on a larger system is experi-
mentally much more demanding than preparing and measuring states locally. Other approaches
where the channel is applied to a state on a larger Hilbert space that not necessarily require
entanglement are known as ancilla assisted QPT [113]. In these settings one can also make
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Figure 2.4: Schematic depiction of quantum process tomography with standard QPT on
the left and ancilla-assisted tomography of the Choi state on the right.

the distinction between product- and entangled measurements, where the former assumes access
to outcome probabilities Tr[(E ⊗ Ẽ)J (C)] with E, Ẽ ∈ L(H), while the latter allows access to
Tr[EJ (C)] with E ∈ L(H⊗H) including POVM elements that do not factorize. Note that

Tr(E C(ρ)) = Tr[(1⊗ E)J (C)(ρT ⊗ 1)] = Tr[(ρT ⊗ E)C], (2.98)

which implies that state tomography on the Choi state with measurement operators that fac-
torize is formally equivalent to QPT. The Choi Isomorphism thus enables us to apply protocols
developed for quantum state tomography to process tomography (see e.g. [114, 115]).

If errors due to imperfect state preparation and measurement (SPAM) are assumed to be
negligible, the main estimation error in QPT is due to what is called shot noise—the statistical
errors incurred by determining the outcome probabilities Pij = Tr[EiC(ρj)] from finitely many
repetitions (shots). The linear inversion step in Eq. (2.96) then further leads to channel estimates
Ĉ not necessarily being completely positive and trace preserving. This issue is commonly resolved
by either projecting the linear inversion estimate to the manifold of CPT-maps (see e.g. [116])
or via iterative optimization approaches that we will summarize in the following. Let f(X ) :
L(L(H)) 7→ R be a cost function such as the least-squares error

f(X ) =
n1∑

i=1

n2∑

j=1

(Tr[EiX (ρj)]− Pij)2. (2.99)

Then a physical channel estimate is given by the solution to the following optimization problem

minimize
X

f(X )

subject to X CPT⇔ J (X ) � 0,Tr(J (X )) = 1.
(2.100)

In Knee et al. [117] this problem was solved via an optimization algorithm of the log-likelihood
cost function (Eq. (2.75)) that alternates between gradient descent updates and projections
onto the set of CPT-maps. The authors further present numerical evidence that this projected
gradient descent algorithm leads to final estimates with lower trace distance error on the Choi
matrix compared to unconstrained gradient descent followed by a single final projection.

In Surawy-Stepney et al. [116] the projected least-squares method to QPT is presented and
analyzed, generalizing a previous method for state tomography developed by some of the authors.
It first solves the least-squares optimization problem of Eq. (2.99), which can be written as

X̂ = argmin
X∈L(L(H))

‖M(X )− P‖F, (2.101)

where M is again a measurement map as defined in Eq. (2.95). One can show that the pseudo-
inverse X̂ = M

+(P ) minimizes the above least-squares error, and admits a closed form solution,
which the authors derive for different scenarios: Direct or ancilla assisted tomography with
Pauli measurements or mutually unbiased measurements/input states. The significance of the
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existence of a closed form solution of the pseudoinverse is that no matrix inversion of M needs to
be performed, which would be particularly costly since given a total of N measurement settings,
M : L(L(H))) 7→ R

N can be prohibitively large. After linear inversion, the Choi matrix of
the estimate X̂ is then projected onto the set of positive unit trace matrices. Crucially, the
authors prove concrete error bounds on the Frobenius and trace norm between the estimated
and the true Choi matrix. Let us assume we are given N measurements of an n-qubit channel C,
whose Choi matrix is of rank r (Kraus rank). The scaling of the total number of measurements
N for a fixed error is also called the sample complexity. Let further g(n) be a measurement
strategy dependent scaling function which is O(3−2n) for local Pauli measurements and O(2−2n)
for mutually unbiased bases measurements, then according to [116], Theorem 1, the error bounds
are given as

P(‖J (X̂ )− J (C)‖F ≥ ε) ≤ d2 exp
(
−3Nε2g(n)

64r

)
,

P(‖J (X̂ )− J (C)‖1 ≥ ε) ≤ d2 exp
(
−3Nε2g(n)

256r2

)
.

(2.102)

For an error ε achieved with probability 1− δ, this results in a sample complexity of

N = O
(
r log(d2/δ)

g(k)ε2

)
in ‖·‖F and N = O

(
r2 log(d2/δ)

g(k)ε2

)
in ‖·‖1. (2.103)

Since the rank r of the Choi matrix can be up to d2 in general, the achieved scaling in r gives
a massive reduction in sample complexity for low rank channels. This even extends to channels
which are only approximately of low rank, as further shown in Surawy-Stepney et al. [116]. It can
moreover be argued that the error bounds for mutually unbiased bases are essentially optimal,
since they scale linearly in the number of free parameters of C, which is given by rd2.

An inconvenience about the bounds in Eq. (2.102) is that they are phrased in terms of norms
on the Choi matrix, which are not as well-motivated from an operational point of view as the
diamond distance. In a follow-up work by Oufkir [118] it was shown via the norm inequality
‖X − C‖� ≤ d2‖J (X )−J (C)‖∞ that N = O(d6 log(d2)/ε2) measurements suffice to reconstruct
a channel C within error ε in diamond norm. Even more importantly, the author also proved a
matching lower bound, which states that for ε ≤ 1/16 and d ≥ 4, N = Ω(d6/ε2) measurements
are required for reconstruction to error ε in diamond norm.

In the remainder of this section we want to give an overview of methods that, as opposed to
full tomography, reconstruct lower parameter count models which aim to reduce the measurement
overhead, while still providing a reasonably descriptive model of the dynamics.

Compressed sensing process tomography

We previously saw that for error bounds on the projected least-squares method, a low Kraus
rank r allows for substantially better bounds, even when the low rank is not explicitly enforced
in the estimate X̂ . Using the prior information that a given channel is of at most rank r and
thereby reducing the model complexity falls under the umbrella of compressed sensing (CS) [119].
CS-methods were originally developed for classical signal processing tasks, using the sparsity of
a signal in some basis to significantly reduce the sampling cost compared to lower bounds for
the general case. Note that for unitaries it holds that the Choi matrix is of unit rank, thus in
the eigenbasis of its Choi matrix, any unitary is sparse. Since quantum channels tend to aim for
the implementation of a unitary map, we can usually assume that if the implementation error is
low, the resulting channel is also sparse. In the following, we call a tensor s-sparse, if at most s
of its entries are nonzero.

The first account of using compressed sensing for QPT was not framed for low Kraus rank
channels, but sparsity in a known basis by Kosut [120]. This could for instance be the Pauli
basis in which Clifford gates are sparse, since they contain only one nonzero entry per row. This
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approach can be formalized as follows. Let channels X be parametrized in the basis where we
assume our target channel to be sparse, then the compressed sensing formulation of the QPT
estimation problem in Eq. (2.100) is given by

X̂ = arg min
X∈CPT

‖X‖`1 subject to ‖M(X )− P‖F ≤ ε . (2.104)

Here the `1-norm minimization leads to a sparse solution, since the `1-norm is the convex relax-
ation of the sparsity measure

∑
ij X 0

ij , i.e.
the number of non-zero elements of X . This approach was later equipped with performance
guarantees [121] via a common technique in compressed sensing, which relies on the restricted
isometry property (RIP) of the measurement map M that we define in the following. We say M

satisfies the RIP with isometry constant δs if

1− δs ≤
‖M(X1)−M(X2)‖2F
‖X1 −X2‖2F

≤ 1 + δs (2.105)

for all channels X1,X2 that are s-sparse. Intuitively this condition ensures that for channels that
are close in Frobenius norm, their measurements with respect to M are also close in Frobenius
norm. Once a RIP is proven for a given constant δs, standard bounds are applied in Shabani
et al. [121] to show that only O(s log(d4/s)) measurement settings are required to recover an
s-sparse channel C in Frobenius norm. This also extends to approximately s-sparse channels in
the sense that the additional error incurred is quantifiable as

‖X̂ − C‖F ≤
c1√
s
‖Cs − C‖`1 + c2ε, (2.106)

where Cs is the best s-sparse approximation to C, c1, c2 are constants and ε is the shot noise
error. The main disadvantage to this approach via sparse matrices is that the basis in which
the channel is sparse has to be known in advance. Additionally, a measurement operator has
to be constructed that satisfies the RIP with respect to this basis. Even if such a measurement
operator can be constructed, it is not clear whether the prescribed measurements are easily
implementable in practice.

This problem was remedied by concurrent works on quantum state tomography via com-
pressed sensing that also apply to process tomography [122–124]. Here the concept of sparsity is
applied more naturally to the quantum setting, by considering low rank density matrices and low
rank Choi matrices. The recovery guarantees use a different variant of RIP, where the isometry
constant δr is rank-dependent, and it holds that

1− δr ≤
‖M(X)‖F
‖X‖F

≤ 1 + δr. (2.107)

for all rank r matrices X. Crucially, RIP can be achieved in this setting for low Kraus rank
r with easily implementable local Pauli measurements that lead to a guaranteed recovery with
O(rd2 log(d)) settings [124]. However, as was discussed before, local Pauli measurements of
the Choi matrix which determine Tr[σa ⊗ σa′J (C)] = Tr(σaC(σa′)) require the preparation of d
eigenstates of σa′ (see Eq. (2.97)). This problem effectively introduces an additional factor of d in
the number of measurement settings, meaning (not including shot noise) a total of O(rd3 log(d))
settings are required in practice. It needs to be emphasized that the number of settings does not
correspond to the sample complexity, since the number of required shots for each setting might
also scale with d. In Flammia et al. [124] the sample complexity for process tomography was not
analyzed, but we can extrapolate it based on the given sample complexity for quantum states.
In analogy to Eq. (2.106), the incurred error due to the rank condition not being strictly satisfied
can be quantified as

‖ρ̂− ρ‖1 ≤ c‖ρr − ρ‖`1 + ε, (2.108)
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where again c is a constant, ε is due to shot noise and ρr is the best rank r approximation
to ρ. Disregarding the model mismatch error ‖ρr − ρ‖`1 , it was further shown that the total
sample complexity for learning a quantum state via Pauli measurements to error ‖ρ̂ − ρ‖1 ≤
ε, is O(r2d2 log(d)/ε2). With the extra dimensional factor from the preparation of Pauli-
eigenstates, and the Choi matrix being of dimension d2, this would suggest a sample complexity
of O(r2d5 log(d)/ε2) for learning a Choi-matrix in trace distance.

A direct compressed sensing method for QPT without the use of maximally entangled states
was developed by Kliesch et al. [125]. To define the measurement setting used therein, we first
define a complex projective k-design as a probability distribution ν that reproduces kth order
moments of the Haar measure µ on the complex unit sphere

∫
(|ψ〉〈ψ|)⊗kdν(ψ) =

∫
(|ψ〉〈ψ|)⊗kdµ(ψ). (2.109)

The definition is analogous to the definition of unitary k-designs in Eq. (2.13), and it can be seen
that a unitary k-design induces a complex projective k-design since we can write |ψ〉 = U |0〉 for
some U and dν(ψ) = dν(U). The protocol in [125] then uses random measurement settings given
by pairs (E, |ψ〉〈ψ|) where |ψ〉 is drawn form a complex projective 4-design and E = UE0U

†

with U drawn from a unitary 4-design with E0 fixed, traceless and of unit spectral norm. Apart
from the standard compressed sensing approach of minimizing the trace norm (as in Eq. (2.104)),
minimization of the diamond norm

X̂ = arg min
X∈HT

‖X‖� subject to ‖M(X )− P‖F ≤ ε (2.110)

is also analyzed, where HT ⊂ L(L(H)) is the space of hermiticity and trace preserving superop-
erators. Furthermore, a CPT-constrained least-squares problem with objective function defined
in Eq. (2.101) is also considered. Interestingly, in numerical tests the CPT-constrained least-
squares, HT-constrained diamond norm and HT-constrained `1 minimization reach the same high
success probability P(‖X̂ − C‖F ≤ 10−5) for a low number of measurement settings. In contrast,
without HT constraint, diamond norm minimization outperforms `1 norm minimization. A su-
perior performance for the diamond norm as opposed to the trace norm for general compressed
sensing problems has also been demonstrated analytically and numerically in Kliesch et al. [126].
Note that compressed sensing estimation problems such as the one defined in Eq. (2.110) are
instances of convex optimization problems and can thus be recast as semidefinite programs and
solved via standard libraries.

Using the 4-design properties it was further shown that for the measurement ensemble defined
above, learning a rank r channel in Frobenius norm, i.e.
‖X̂ − C‖F ≤ ε, can be done with a total sample complexity of O(rd5/ε2) [125]. Other works on
QPT in a CS-setting include [127, 128] where a focus is set on reconstructing unitary (r = 1)
channels.

Another intriguing approach is given in Roth et al. [129], which, generalizing earlier results
by Kimmel et al. [130], introduces robustness to state preparation and measurement errors to
the compressed sensing QPT setting. The general idea is that access to average gate fidelities
(AGFs) F(U , C) for many unitaries U , provides enough information about C for a reconstruction,
provided C is unital. This approach can already be motivated by noting that any unital channel
can be written as C(ρ) =

∑
i αiUi(ρ), where Ui are unitary channels and αi ∈ R,

∑
i αi = 1 [131].

In fact, Roth et al. [129] show that if the set {Ui}Ni=1 forms a unitary 2-design, then

C(ρ) = 1

N

∑

i

α̃iUi(ρ) with α̃i = d(d+ 1)(d2 − 1)(F(Uk, C)− 1/d) + 1 (2.111)

for any unital channel C (see also Scott [132]). For unitary channels, it was shown that the
required number of AGFs is essentially optimal and given by O(d2). Combined with efficient
protocols to estimate the average gate fidelities [43, 133], this leads to a total sample complexity
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of O(d4/ε2) for reconstruction in Frobenius norm, which was shown to be optimal for rank 1
measurements (such as AGFs) on the Choi state. Alternatively, the AGFs can be bounded [130]
via interleaved randomized benchmarking [134, 135], which is robust to state preparation and
measurement errors. The reason that the average gate fidelities can not directly be determined
via RB is that interleaved RB gives access to F(CE ,U), where E is the gate-independent noise
channel assumed to act on Clifford gates applied in RB. Standard randomized benchmarking gives
access to F(E , id) which can then be used to bound F(C,U). The original bounds were later
improved in Carignan-Dugas et al. [136]. It must also be noted that randomized benchmarking
actually measures a decay parameter, which can be linked to the average gate fidelity in a specific
gauge (see Section 2.2.4) [90]. This gauge, however, can not always be chosen such that the noise
is described by a CPT map [32]. The AGF has further been linked to RB decay parameters
by Helsen et al. [32] via additional parameters, which are however as of yet not experimentally
accessible in an efficient manner. Another practical issue that arises with the estimation of AGFs
through RB is that many of the channels U , for which F(C,U) needs to be known, have a small
value of F(C,U). The resulting exponential decay in the RB data is thus rapid and hard to fit.

Pauli channel tomography and spectral tomography

Pauli channels as defined in Eq. (2.62) constitute a ubiquitous and well-motivated subclass of
channels, which are defined by d2−1 real parameters as opposed to the O(d4) parameters of a full
quantum channel. In the work by Flammia and Wallman [77], the authors give provably sample
efficient and SPAM-robust protocols for learning Pauli-noise with custom version of RB over the
Pauli group. The protocol uses initial states and measurements in a stabilizer basis with varying
lengths of random Paulis in between. As opposed to the two-outcome POVM of standard RB,
each stabilizer measurement provides n outcome bits, where the outcome probability for each
bit string is given by a sum of exponential decays. A central idea of the protocol is then the
isolation of the exponential decays via filter functions, allowing for the estimation of up to 2n

decay parameters from a single measurement setting (see also Helsen et al. [137]). We will give
an overview of the results in the following. Let ω(g) be the unitary channel given by the adjoint
action of Pauli g ∈ Pn and ω̃(g) = ω(g)Λ(g) be a noisy implementation. The protocol in [77]
works under the usual assumptions of time-stationary and context-independent noise, where in
addition the noise needs to be gate-independent, i.e.
ω̃(g) = ω(g)Λ for a fixed Λ and all g ∈ Pn. Furthermore, the noise Λ is assumed to be weak in
the sense that the Pauli-twirled noise channel

∑

g∈Pn

ω(g)Λω†(g) := ΛPtw (2.112)

satisfies ‖id − ΛPtw‖op ≤ c. Note that the Pauli twirl is the projection of Λ to the set of Pauli
channels. Let now p be the vector of Pauli error probabilities of the channel Λop, where its first
element p0 is the probability of no error occurring. Then the p can be estimated up to relative
error

‖p̂− p‖`2 ≤ O(ε)(1− p0), (2.113)

using O(nd/ε2) samples with high probability. The relative error scaling is particularly advanta-
geous since in current experiments, Pauli-gates can often be implemented with very high fidelities
in which case (1 − p0) → 0. Thus small errors can still be resolved without prohibitively many
samples. Although the scaling in the dimension is optimal, estimating all Pauli error probabilities
still requires exponentially many samples. The authors then further give two settings in which a
constant number of samples is required. The first setting considers the task of estimating only the
Pauli error probabilities with respect to a subset S ∈ P of Paulis with |S| = s, like for instance
all Paulis with limited support. The guarantees is then given as: ‖p̂|S − p|S‖`∞ ≤ O(ε)(1 − p0)
with high probability given O(log(s) log(s/ε2)/ε4) samples.
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The second setting uses the ansatz that p can be factorized as over subsets C ∈ [d2] of
Pauli-probabilities via

p(a) =
1

Z

∏

j

φj(a|Cj
), (2.114)

where φj : a|Cj
7→ R

+, a ∈ Z
2n
2 and Z is a normalization constant. A probability distribution

factorized in this way is also called a Gibbs random field or factor graph model. The latter
name stems from the identification of the sets Cj and the indices i ∈ [d2] with a bipartite graph,
each index and each set Cj are represented by a vertex and edges (i, j) are present if i ∈ Cj . A
bounded degree factor graph of degree k is then a graph where each Cj is at most connected to k
indices. Note that an immediate ansatz model for the factor graph can often be made according
to the proximity of qubits or their connectivity in terms of multi-qubit gates. To determine
the error distribution p, only the factor potentials φj corresponding to each set Cj have to be
determined. The sample complexity for estimating a factor graph model is then shown to be
polynomial, i.e.
‖p̂ − p‖`1 ≤ O(ε)‖e1 − p‖`∞ is achievable with high probability using O(n2 log(n)/ε2) many
samples.

In a follow-up work by Harper et al. [138], the protocol was extended to the task of learning
noise channels which are twirled over the local Clifford group. Twirling a single qubit channel Λ
over the Clifford group according to Eq. (2.7) results in

∑

g∈Cl1

ω(g)Λω†(g) = Tr[ΛΠ0]Π0 +
1

3
Tr[ΛΠad]Πad, (2.115)

where Π0 = |1)(1| and Πad =
∑

a6=0|σ̌a)(σ̌a| are projectors onto the irreps of Cl1. Similarly,
twirling an n-qubit channel over the Clifford group leads to a sum over the irreps of Cln1 , and the
resulting channel is described by 2n parameters. In Harper et al. [138] it is then demonstrated
how these can be learned in an analogous way to the 4n Pauli error probabilities using a factor
graph model. The authors further show how the learned factor graph model can be used to
compute correlations between the error probabilities of different qubits, which enables them to
provide an informative visualization of the average crosstalk on a device of 14 superconducting
qubits.

Remaining practical shortcomings of these methods are first the strong assumption of gate-
independent noise, as well as the problem that the factor graph has to be known beforehand and
is not learned in the procedure. In a later work by Rouzé and Stilck França [139], the second
shortcoming was solved by a method that can learn the factor graph efficiently using O(log(n))
samples. Even though it is as of yet unclear from a theoretical point of view how to interpret
the reconstructed error probabilities for experiments where the noise is generally gate-dependent
(or even time- and context-dependent), these methods offer a scalable estimation of error rates
and crosstalk. They are thus a very promising benchmarking tool for increasingly larger devices,
while the error correlations as a measure of crosstalk can aide in device calibration.

Since a Pauli channel is diagonal in the Pauli-basis, learning it amounts to learning all its
eigenvalues. For general channels the eigenbasis is not known beforehand, and the question arises
if all the eigenvalues of a general channel can still be learned efficiently, i.e.
with a sample complexity that scales linearly in the number of eigenvalues. In Helsen et al. [140]
a SPAM-robust method to estimating the eigenvalues, termed spectral quantum tomography, was
introduced. It builds on the observation that if a channel C given by the PTM matrix C is
diagonalizable via C = V DV †, it holds that

∑

a∈F2
2n

(σa |Ck |σa) = Tr(Ck) =

d2∑

i=1

λki . (2.116)

This gives a prescription on how to measure the signal g(k) :=
∑d2

i=1 λ
k
i : Choose a Pauli σa,

prepare eigenstates of σ and measure Ck applied to each eigenstate in the basis of σa to reconstruct
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(σa |Ck |σa). State preparation and measurement noise can w.l.o.g be modeled by noise channels
|σ̃a) = Λprep|σa) and (σ̃a| = (σa|Λmeas. The noisy measurement of Ck is therefore equivalent to
the noise-free measurement of ΛmeasCkΛprep and

Tr(ΛmeasCkΛprep) = Tr(ΛprepΛmeasCk) =
d2∑

i=1

αiλ
k
i =: g̃(k), (2.117)

where αi are SPAM parameters. After repeating the measurement for all d2 Paulis and different
values of k, one has access to the series (g̃(k1), . . . , g̃(kK)). Standard signal analysis techniques
such as ESPIRIT [141] can then reconstruct the eigenvalues from this series. Although SPAM-
robust with easy to implement measurements, the protocol needs d Pauli eigenstates to determine
each of the d2 − 1 values (σ̃a |Ck |σ̃a), which leads to the total number of measurement settings
Kd(d2 − 1).

Learning channel properties with classical shadows

The classical shadow formalism, which we describe in Section 2.3, can be applied to channel
estimation tasks as follows. Consider an experimental protocol where a random sequence of
gates g = (U1, . . . ,Ul) is applied to a fixed initial state ρ, followed by a POVM {Ei}. Let
p(i, g) = Tr[EiUl ◦ · · · ◦ U1(ρ)] and assume the unitaries are classically efficiently representable,
such as for instance multi-qubit Cliffords. Then the set

{p(i1, g1), . . . p(iN , gN )} (2.118)

is called a gate set shadow [43]. It can be interpreted as a classical model of the device, where
term ’classical’ refers to the fact that each Ei and gi is represented with poly(n) parameters. A
key difference between shadow based methods and standard QPT is that in most cases the goal
is not the reconstruction of a channel, but the simultaneous estimation of channel properties
such as average gate fidelities or crosstalk metrics [43].

A different scenario is considered in Huang et al. [142], where the goal is to estimate Tr[OC(ρ)]
with a fixed channel C over a distribution of input states, for different observables. The classical
shadow from which these expectation values are estimated is given by

{(
Ek =

n⊗

i=1

|soutik 〉〈soutik |, ρk =
n⊗

i=1

|sinik 〉〈sinik|
)}N

k=1

, (2.119)

where |sik〉 are stabilizer states and thus classically efficiently representable. Let a bounded
observable be defined as an observable that can be written as the sum over local observables,
such that only a constant number of these local observables have support on any given qubit.
Using sophisticated proof techniques, it was shown in Huang et al. [142] that for any distribution
pinv over quantum states that are invariant under single qubit unitaries, an average prediction
error

E
ρ∼pinv

|〈̂O〉ρ − Tr[OC(ρ)]|2 ≤ ε (2.120)

is achieved with high probability using 2O(log(ε−1) log(n)) samples.
Two concurrent works by Kunjummen et al. [143] and Levy et al. [144] give a more direct

generalization of classical shadow to quantum processes by the standard identification of a target
channel and its Choi state. This results in an analogous bound to shadow estimation for states,

in that the prediction errors |〈̂Oi〉ρi − Tr[OiC(ρi)]| ≤ ε over any set {Ωi = ρTi ⊗ Oi}Mi=1 of
observable-state combinations can be realized with probability 1− δ using

log(2M/δ)

ε2
4nmax

i∈[M ]
‖Ωi − Tr[Ωi]1/2‖2shadow (2.121)



38 CHAPTER 2. THEORETICAL BACKGROUND

many samples. A definition of the shadow norm can be found in Section 2.3. The key difference
to classical shadows for states is the additional exponential factor 4n, which makes the method
not scalable.

Hamiltonian and Lindbladian tomography

Parametrizing a unitary gate via its generating Hamiltonian and a general CPT map via a time-
dependent or time-independent Lindbladian Eq. (2.70) directly provides a physical model which
is easier to relate to an experimental setup and its control. Although it is possible to construct a
Lindblad parametrization of a CPT map determined via GST or QPT (see e.g. [145]), most works
consider the problem of directly reconstructing Hamiltonians or Lindbladians from measurement
data. This has the advantage that sparse models are often well-motivated. For instance if a
Hamiltonian is given as

H =
∑

a∈F2n
2

haσa, (2.122)

it can be argued in many scenarios that a system is described by at most k-local interactions,
i.e.
only coefficients ha with supp(a) ≤ k are non-vanishing. Several recent works have proposed
algorithms to efficiently estimate the Hamiltonian parameters or more generally the parameters
of a Lindbladian [146–152]. The Lindbladian parameters can be accessed from the time evolution
according to the master equation

ρ̇ = L(ρ) = i[ρ,H] +
∑

a,a′∈F2n
2

βa,a′

(
σaρσa′ −

1

2
(σa′σaρ+ ρσa′σa)

)
, (2.123)

where we have written the dissipative terms with respect to the Pauli basis. The time derivative
of an observable expectation value is thus given by

d

dt
Tr[Oρ] = Tr[OL(ρ)]. (2.124)

One can further choose a set of probe states and observable combinations {(Oi, ρi)}Ni=1 for which
the time derivatives dTr[Oiρi]/dt are estimated. As seen from the parametrization of H and the
dissipative terms, each estimated time derivative is a linear function of the parameters ha and
βa,a′ . If the set of probe settings {(Oi, ρi)}Ni=1 is informationally complete, L can thus be deter-
mined by solving a system of linear equations. In Stilck França et al. [148], dTr[Oiρi(t)]/dt was
estimated for a time series t1, . . . , tl and a low order polynomial in t was fitted to the resulting
data. From this polynomial, the time derivative can be accurately extracted. The authors were
able to prove that a total sample count of O(ε−2poly log(n, ε−1)) suffices to estimate all param-
eters of a local Lindbladian to errors |β̂a,a′ − βa,a′ | ≤ ε and |ĥa − ha| ≤ ε with high probability
using local Pauli measurements and Pauli eigenstates. It was further shown in numerical exam-
ples that the time derivative based on polynomial interpolation can greatly outperform methods
that use a finite differences approach to determine derivatives.

It is also worth mentioning the work by Huang et al. [151], where a Heisenberg scaling in
learning the parameters of a Hamiltonian was achieved, meaning that only O(poly log(ε−1))
measurements and time evolutions for times no longer than O(ε−1) are used in the protocol.
The method builds on robust phase estimation [153], which can estimate gate parameters up
to error 1/N , where N is the number of times the gate is applied. Moreover, the protocol only
uses single qubit Cliffords, local measurements and works in a SPAM robust fashion, although it
assumes the ability to interleave Cliffords in a time evolution, which is a higher degree of control
than what is assumed in most other works and difficult to achieve in practice.
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Tensor network models

Using low bond dimension tensor network models to drastically reduce the number of parameters
required to represent a quantum states has been an established method in quantum information
and condensed matter physics [154, 155] under the name of matrix product states or tensor trains.
The tensor network formalism has also been used to great effect in quantum state tomography
[85, 156, 157], with extensions to ancilla assisted QPT [158]. It has recently been applied to
standard QPT and to models of non-Markovian dynamics, for both of which we give a brief
overview in this section. Representing quantum circuits as tensor network is furthermore a
central idea of the original work presented in this thesis (see Chapter 3 and Appendix A).

In Torlai et al. [159] the Choi matrix J (C) of a channel acting on an n-qubit system is
parametrized via k tensors {Ai}ni=1 of dimensions rK,i×rS,i×4. Here i labels the qubit subsystems
and the number rK,i can be understood as a local Kraus rank, while the rank rS,i is the Schmidt
rank of the bipartition of the first i subsystems versus the rest of the system. The ranks rS,i thus
quantify how entangling the gate is along the bipartition, with rS,i = 1 for gates that factorize
along the subsystem boundary. The resulting parametrization of J (C) reads

J (C) =
rS,1∑

l1=1

· · ·
rS,n∑

ln=1

rK,1∑

k1=1

· · ·
rK,n∑

kn=1

n∏

i=1

(Ai)
i′1,j

′
1

li−1,li,ki
(A∗

i )
i1,j1
li−1,li,ki

, (2.125)

where l0 and ln+1 are dummy indices. The graphical representation of the tensor network is
given in Figure 2.5. As can be understood from the decomposition shown in the Figure, the

Figure 2.5: Tensor network factorization the Choi matrix over Kraus-indices (horizontal)
and subsystem-indices (vertical).

parametrization automatically yields a positive Choi state. Choi states J (C) written in this
parametrization have also been studied under the name of locally purified density operators
[160]. Torlai et al. [159] then use a gradient descent algorithm and techniques from supervised
learning the find an optimal fit to the log-likelihood cost function (Eq. (2.75)), evaluated on
measurement outcome probabilities. Trace preservation is achieved by adding a penalty term to
the cost function which goes to zero for trace preserving models. The input states are randomly
chosen Pauli eigenstates, whereas the POVM is the uniform POVM over all Pauli-eigenstates,
i.e.
the set of POVM elements {

1

6n

n⊗

i=1

1

2
(1+ (−1)xiσa)

}

a∈(Z2
2\0)

n, x∈{0,1}n

. (2.126)

Since it is a priori not clear what the correct Kraus and Schmidt ranks are, progressively higher
ranks have to be fitted to the data until a desired level of convergence in the cost function
is reached. The method is numerically tested to generate estimates of channels on up to 10
qubits. The key takeaway is that although the method remains heuristic, low reconstruction
errors measured by the infidelity are achievable with greatly reduced measurement overhead as
compared to full tomography, which would for 10 qubits require a total of 240 measurement
settings and thus be entirely infeasible.
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Tensor networks have also recently been employed to the growing field of non-Markovian
quantum process tomography [161–166]. What is termed non-Markovianity in the literature typ-
ically refers to dynamics arising from initial conditions where the initial state of system and envi-
ronment are entangled, as opposed to the assumption in Eq. (2.54). Thus far we have described
the QPT setting where gates are assumed to be time-stationary and independent of previous
control operations and measurements. Furthermore, state preparation as well as measurement
were largely assumed to be controllable. In the non-Markovian setting, none of these assumptions
are made, since unitary dynamics on entangled system-environment states incorporate the men-
tioned effects of time- and context dependence. This could manifest in straightforward ways such
as slow drifts in time, or in more complex system-environment interactions where gates applied
at an earlier time step affect the background noise at a later time step in a circuit. Modelling
additional degrees of freedom arising from these effects greatly increases the computational cost
of tomography procedures, and simplified models that capture the most relevant correlations
via tensor networks are essentially required to make reconstruction practical. In White et al.
[167], the authors introduce such an ansatz model, which we briefly explain in the following. Let
H = HS ⊗HE be the combined Hilbert space of system and environment, which is assumed to
be in the initial state ρ0 at the beginning of the experiment. The core component of the model
is a so-called process tensor, which is simply a multilinear map Tl that takes in an ordered set
of l control operations described by CPT maps (Al−1, . . . ,A0) and produces an output state.
Note that in this formulation, the process tensor already incorporates the fixed initial state ρ0.
Experimentally accessible outcome probabilities for a given POVM {Ei} are then given as

pj(Al−1, . . . ,A0) = Tr[EjTl(Al−1, . . . ,A0)]. (2.127)

In Figure 2.6 the action of the process tensor is visualized. Standard non-Markovian tomography
assumes the control operations to be known, meaning they can be used to probe the process
tensor. In [167] they are learned in a self-consistent manner, with a formalism based on fiducial
sequences adapted from the GST literature (see Section 2.2.4). The process tensor incorporates
correlations between the control sequences, background correlations in the environment and the
influence of control on the environment. Since for high fidelity implementations of quantum
circuits most of the correlations are by now fairly small, a tensor network decomposition of T
with small bond dimensions can in practice be expected explain experimental data well. The

Figure 2.6: Contraction of the process tensor with CPT maps Ai, where black bonds
represent the physical indices, red dashed bonds are due to correlations across time steps
between control operations, while dashed green bonds are due to interactions between the
environment and the control operations.

model is then fit to measurement data by standard local optimization on the log-likelihood cost
function with regularization to ensure causality and trace preservation. In numerical simulations,
the method is shown to produce significantly lower generalization errors than non-self-consistent
process tensor tomography, quantified by how measured output states for different sequences
deviate from predicted output states using the estimated model. A low bond dimension tensor
network was also applied to reconstruct the process tensor of four qubits across four time steps
(l = 4) from experimental data of a superconducting qubit device. In comparison, GST is
typically restricted to two qubits [168] or three qubits (Chapter 3). The achievement of self-
consistent process tensor tomography on 4-qubit processes, albeit with a low bond dimension
model, is thus quite significant and speaks for the usefulness of tensor network parametrizations
for the characterization of quantum dynamics.
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2.2.4 Gate set tomography

A common drawback of most QPT protocols is the lack of device independence and self-consistency.
Consider a standard QPT experiment where an initial state is prepared, the gate in question
applied and a POVM measured. Typically, there is an initial state and a measurement that is
native to the experiment, for instance preparation in the ground state and a measurement in the
computational basis. The full set of initial states and measurements required for QPT then have
to be prepared using specific operations. In the simplest case only local Clifford unitaries need
to be applied to prepare eigenstates of the Pauli matrices, but many protocols required general
stabilizer states or a more specialized set of states. But even local Clifford unitaries, which are of
high fidelity in most modern experiments, can limit the accuracy of QPT. For instance if these
local Cliffords each come with small depolarizing noise, then in QPT this noise would turn up
in the tomographic reconstruction of the gate in question. This limits the accuracy of QPT,
even for single qubits, where the target gate if often of the same quality as the gates used for
state preparation and measurement. The same holds true for multi qubit QPT with methods
that require general stabilizer states, which in turn need global Clifford unitaries to be prepared.
Global Cliffords generally require O(n2) entangling gates to implement. This leads to high state
preparation and measurement errors in current experiments, where two qubit gates are often
much noisier than their single qubit counterparts. Moreover, most recent attempts to make
QPT SPAM-robust use variations of RB, where some of the gates are assumed to be trusted, or
only average noise parameters are learned.

An alternative solution is given by self-consistent process tomography protocols [28–30, 169,
170], which circumvent the SPAM noise problem by simultaneously learning all system param-
eters. This includes the native initial state, the native POVM and all gates applied during the
protocol. The assumptions made on the experiment are otherwise the same as in QPT: time
stationary and Markovian dynamics.

Let G = (G1, . . .Gk) be the tuple of gates to be used for self-consistent process characteri-
zation. Let further (ρj)j and (Ei)i be tuples of initial states and POVM elements, respectively.
The gates are usually chosen to be native gates of the experimental platform, but can in principle
be composed of arbitrary circuits. The task to self-consistently estimate the system parameters

X = ((Ei)i,G, (ρj)j) (2.128)

is then termed Gate Set Tomography (GST) after the work by Blume-Kohout et al. [30] and
subsequent advancements by the same group [168, 171], which includes a comprehensive Python
package called pyGSTi [172, 173]. Because GST as implemented in pyGSTi is by far the dominant
self-consistent QPT method, the term GST has become genericized and is often used for both,
the pyGSTi implementation and self-consistent QPT in general.

The experimental model of GST for a given gate set and an experiment with the native
POVM given by E = (E1, . . . , EM ) is summarized in Figure 2.7. A GST experiment is defined
by a predetermined set of gate sequences I ⊆

⋃L
l=1[k]

l, where we allow varying sequence lengths
up to a maximum of L. The GST estimation problem is given by

minimize
G,E,ρ0

f(G, E, ρ0|p̂)

subject to Gi CPT, ρ0 ∈ S, Ei ≤ 0,
∑

i

Ei = 1,
(2.129)

where p̂ = (p̂s(j))s∈I, j∈[M ] is the full matrix of outcome probabilities. We write the minimizers of

f as Ĝ = (Ĝ1, . . . , Ĝk), Ê and ρ̂0. Previously discussed cost functions such as the sum of squares or
the Kullback-Leibler divergence depend on the Born rule probabilities ps,j(G, E, ρ0) = Tr[Ej Gs1◦
· · · ◦ GsL(ρ0)]. Those are arbitrary degree polynomials in the gate parameters, for instance the
sequence set I might contain the sequence (1, 1, . . . , 1) for which ps,j = Tr[Ej G◦L1 (ρ0)].

There are several factors which complicate the GST estimation problem. First and foremost,
the cost function is non-convex and can be riddled with local minima and saddle points, requiring
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QPU(s1, s2, ..., sL) {1, . . . ,M}

	
repeat

{p̂s(1), . . . , p̂s(M)}

Figure 2.7: The measurement scenario considered in GST: A gate sequence described
by a tuple of gate indices s = (s1, . . . , sL) is send to the black box quantum processing
unit (QPU). The QPU returns the measurement outcome in the native POVM, and the
process is repeated for the same gate sequence. After sufficient statistics are gathered,
outcome probability estimates for the given sequence are given by the observed outcome
frequencies.

iterative optimization methods together with a good starting point to find the global minimum.
Second, the physicality constraints have to be incorporated, which is usually done via projection,
regularization, or as in Chapter 3, via manifold optimization. The third problem is that the gate
set and the set of sequences have to be chosen to ensure tomographic completeness. In other
words the measurement map p : (G, E, ρ0) 7→ [0, 1]|I|×M has to be injective, meaning that no
distinct (G, E, ρ0) produce the same measurement data. In practice this problem is eased by the
fact that one has a reasonably founded belief on what process each gate should implement and
sequences can be designed accordingly.

In the following we will summarize the approaches taken in the literature to tackle the GST
estimation problem, with a focus on the standard GST implementation pyGSTi. In what is
called linear GST [168, 174] the route of standard QPT is followed, i.e.
we aim to get access to (Ei |Gj |ρk), where both {Ei} and {ρk} span L(H). For simplicity we
now assume that the native measurement is described by a two-outcome POVM {E0,1 − E0}.
Let circ(G) be the set of all circuits composed of elements of G, then G can generate spanning
sets {Ei} and {ρk} if there exist Fout

i ∈ circ(G) and F in
k ∈ circ(G) such that

(Ei| = (E0|Fout
i and |ρk) = F in

k |ρ0). (2.130)

The circuits Fout
i and F in

k are commonly called fiducials. Oftentimes state preparation fiducials
F in
k and measurement fiducials Fout

i coincide, for instance if ρ0 = E0. Let us now assume we
are given sets of exactly d2 of each, state preparation and measurement fiducials. A linear GST
experiment estimates the probabilities

pijk = (E0 |Fout
i GjF in

k |ρ0) =
∑

l,m

(E0|Fout
i |l)(l|Gj |m)(m|F in

k |ρ0) =
∑

l,m

Ail(Gj)l,mBmk, (2.131)

where for the last equality we defined A =
∑

i = |i)(E0|Fout
i and B =

∑
k = F in

k |ρ0)(k| for some

orthonormal basis {|i)}d2i=1 of L(H). It can then be straightforwardly shown that the matrices
A,B defined in this way satisfy Eq. (2.131). The matrix A has just the measurement effects
(E0|Fout

i as its rows, while B has the initial states Fk|ρ0) as its columns. These matrices thus
define a measurement map in the same way as in process tomography (Eq. (2.95)), with the
difference that now they are unknown. From directly measuring the fiducial sequences without
an inserted gate set in the middle, we gain access to

(E0 |Fout
i F in

k |ρ0) = (AB)ik, Rk := (E0 |F in
k |ρ0) and Li := (E0 |Fout

i |ρ0). (2.132)
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Here AB is the just gram matrix of the set of POVM vectors (Ei| and the initial state vectors |ρi).
Let Pj be the matrix with entries (Pj)ik = pijk. If A and B are invertible, we can reconstruct
the full gate set up to a similarity transformation:

(AB)−1Pj = B−1A−1AGjB = B−1GjB. (2.133)

Since B is unknown, we do not obtain a single estimate of Gj , but an equivalence class B−1GjB
for B ∈ GL(d2). This is known as gauge freedom in the GST literature and fundamentally
unavoidable in self-consistent tomography.

An analogous argument can be made to reconstruct ρ0 and E0 up to the gauge matrix B.
Let R =

∑
k|k)(E0|F in

k |ρ0) and L =
∑

i(E0|Fout
i |ρ0)(i|. Then we find that

(AB)−1R = B−1A−1A|ρ0) = B−1|ρ0), L = (E0|B. (2.134)

We will now discuss the gauge freedom in detail before we define tomographic completeness
in the context of linear GST.

The gauge problem of gate set tomography

A gauge freedom is present in any circuit model of a quantum experiment where no prior infor-
mation is given. The only way to gather information about the system is then via measurement
outcomes governed by the Born-rule. One can immediately see that the following equality

p(E) = (E |GL · · · G1 |ρ) = (E |B−1BGLB−1BGL−1 · · ·B−1BG1B−1B |ρ) (2.135)

holds and the probability p(E) of observing outcome E is the same for any invertible matrix
B. In Figure 2.8 the gauge freedom is depicted for the tensor network representation of a GST
experiment. In the theory of matrix product states, this gauge freedom is also well known and

E0
. . .G G G

s1s2sL

ρ0

B B−1

Figure 2.8: The gauge freedom depicted in the tensor network representation of a GST
experiment where individual gates Gs1 , . . . , GsL are represented as channels.

used to bring the matrix product state into a canonical form [175]. Without any restrictions the
set of gauge transformations is equal to the group GL(d2). Note that any physicality constraints
on the gates do restrict the gauge, since if Gi is CPT, B−1GB is not necessarily CPT for all
B ∈ GL(d2). In Rudnicki et al. [176] it was shown using the PTM representation of a channel
from Eq. (2.61), that for B−1GB to be trace preserving for any Gate G, the gauge matrix also
has to be in block from

B =

(
1 0
u T

)
(2.136)

in the Pauli basis, where u ∈ R
d2−1 and T ∈ R

d2−1×d2−1. In other words, B has to be trace
preserving as well and the set of gauge matrices in Eq. (2.136) again form a group. Furthermore,
in [45] we show that if the gate set is universal, i.e.
any pure state can be prepared via an arbitrarily long sequence of gates from the gate set, then
gauge transformations that preserve the CPT condition are limited to unitary and anti-unitary
channels. In practice the gauge problem becomes more complicated, since B does not need
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to map all possible CPT maps to CPT maps, but only those accessible through sequences of
noisy gates {G̃1, . . . , G̃k} performed in the experiment. This is due to the fact that if the gates
{B−1G̃1B, . . . , B−1G̃kB} are CPT, so is any sequence B−1G̃sB, since

B−1G̃sB = B−1G̃sL . . . G̃s1B = B−1G̃sLB · · ·B−1G̃s1B. (2.137)

Consider the example where B = Λp, the depolarizing channel. Since Λp commutes with any
unital CPT map, we have for all unital gates in the gate set that Gi = Λ−1

p GiΛp. But if the
initial state ρ0 is pure, then its gauge transformed version Λ−1

p |ρ0) would lie outside the Bloch
sphere and be unphysical. However, Λp is a valid gauge transformation if ρ0 is mixed and satisfies
Λ−1
p |ρ0) ∈ S(H).

Gauge transformations for noisy gate sets that preserve physicality conditions do not generally
have a group structure and even vary at different points in the parameters space of the gate set
(see Nielsen et al. [168]). A gate set at the boundary of the CPT constraint region then has fewer
allowed gauge directions than a gate set in the interior, just as we saw with the depolarizing
channel example.

An argument can be made that since gauge transformations do not change measurement
outcomes, the quality of gate sets should be assessed in a completely gauge invariant manner. For
example a unitary gauge freedom is just a basis change on the Hilbert space, and from the point of
view of quantum information processing, we do not care in which basis an algorithm is run, as long
as everything is consistent. However, typically there is a very specific target implementation, and
we are interested in whether the actual gates, as measured by GST, correspond to the target. In
Section 2.2.2 we saw that typical distance measures like the average gate fidelity and the diamond
distance are not gauge invariant. Furthermore, in order to detect overrotations or other noise
sources for calibration purposes, the GST estimate has to be given in the gauge of the target
gate set. This means that after an initial GST estimate is given, another optimization step is
required called the gauge fit:

B̂ = argmin
B

(
k∑

i=1

‖B−1ĜiB − Gtargeti ‖F + ‖B−1|ρ̂)− |ρ)target‖F + ‖(Ê|B − (E|target‖F
)
,

(2.138)
where B can be restricted to different gauge sets depending on physicality constraints. Different
norms could be chosen to measure the distance in gauge optimization, but the Frobenius norm
is sufficient in practice [30]. An alternative to gauge optimization at the end of a GST protocol
is to add the gauge error Eq. (2.138) as a regularization term in the cost function of the GST
estimation problem Eq. (2.129). This route was taken in Sugiyama et al. [177], where the authors
prove that giving the regularization term a decreasing weight throughout the optimization does
not lead to a bias, or more concretely: The final estimate also minimizes the unregularized cost
function in the infinite sample limit.

But what can be said about the quality of a gate set in a gauge invariant way? In Section 2.2.2
we introduced the spectral 1-distance, a measure that depends only on the spectrum of a channel
and is thus gauge invariant. Other measures that depend on the spectrum could be defined
analogously. The most direct route is to compare gate sets on the space of Born probabilities,
which are naturally gauge invariant. Assume we are given ps,j(G, E, ρ) and ps,j(G̃, Ẽ, ρ̃), where
the probabilities can be calculated either from a classically stored gate set or determined in a
quantum experiment. Then the gate sets can be compared with either the sum of squares error
(Eq. (2.72)), the total variation error (Eq. (2.71)), the Kullback-Leibler divergence (Eq. (2.73))
or any other distance measure between probability distributions. A normalized variant of the
total variation error called the mean variation error (MVE) was proposed in Lin et al. [178]
together with an estimation protocol. The MVE is the main gauge invariant error measure we
use in Chapter 3. In addition, worst case variants of the aforementioned distance measures can
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be considered, for example

max
s,j
|ps,jG, E, ρ)− ps,j(G̃, Ẽ, ρ̃)| and max

s,j
ps,j(G, E, ρ) log

(
ps,j(G, E, ρ)

ps,j(G̃, Ẽ, ρ̃

)
. (2.139)

To quantify how a target implementation differs from its experimental implementation, a direct
approach is to compute the circuit probabilities of the target circuits (up to the system size limit
of classical computation) and compare them to the experimentally estimated probabilities. This
is often done in current experiments via cross entropy benchmarking [179, 180]. There the cross
entropy difference

∆H = H0 −
∑

j

pj(Ũ) log
(

1

pj(U)

)
, (2.140)

for a classically simulated unitary circuit U and its implementation Ũ is given. Here H0 is the
cross entropy of uniform sampling, i.e.
the implementation outputs measurement outcomes uniformly at random. Given a set of mea-
surement outcomes {j1, . . . , jm} for a fixed circuit U , the cross entropy difference can be empir-
ically estimated via

∆̂H = H0 −
1

m

m∑

i=1

log

(
1

pji(U)

)
= ∆H +O(1/

√
m). (2.141)

A related variant defines the linear cross entropy fidelity FXEB = d
∑

i pji(Ũ)/m− 1 as a quality
metric for Ũ , and this measure was used for the first quantum advantage demonstration [15].

Tomographic completeness

The question now arises as to how the fiducials need to be chosen in order for linear GST to
be tomographically complete. First we observe that for the method to work, we need that the
Gram matrix AB is invertible. Since it holds that rank(AB) ≤ min(rank(A), rank(B)), it follows
that if AB is invertible, A and B have to be invertible as well. That means even though the
fiducials are in general not known, we can immediately check for tomographic completeness by
determining if the experimentally measured gram matrix AB is invertible. In Sugiyama et al.
[177] the authors formally prove informational completeness up to gauge under the following
conditions: The set of measurement effects {(E0|Fout

i }i=1 and the set of states {F in
k |ρ0)}k are

both frames of L(H) and the outcomes

xdataijk (G, E0, ρ0) = (pijk(G, E0, ρ0), (AB)ik(G, E0, ρ0), Rk(G, E0, ρ0), Li(G, E0, ρ0)) (2.142)

are measured for all fiducials i, k and gates j in the gate set. Furthermore, the gates in G and
G̃ are assumed to be invertible. For these measurements to be informationally complete up to
gauge we need that

xdataijk (G, E0, ρ0) = xdataijk (G̃, Ẽ0, ρ̃0) (2.143)

holds if and only if the gate sets (G, E0, ρ0) and (G̃, Ẽ0, ρ̃0) are in the same gauge equivalence
class. We already confirmed the forward direction by noting that gauge equivalent gate sets
produce the same measurement data. The idea in Sugiyama et al. [177] to proof the other
direction will be given in the following. Let F in

i , Fout
i be the fiducials for gates G and let F̃ in

i ,
F̃out
i be the fiducials for G̃. First since both sets of states and measurement effects are frames,

(E0 |Fout
i F in

k |ρ0) = (Ẽ0 |F̃out
i F̃ in

k |ρ̃0) (2.144)

implies that there exists a unique invertible matrix B such that

F in
k |ρ0) = BF̃ in

k |ρ̃0) and (E0|Fout
i B−1 = (Ẽ0|F̃out

i . (2.145)
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We can use this and Eq. (2.143) to write

(E0 |Fout
i GjF in

k |ρ0) = (Ẽ0 |F̃out
i G̃jF̃ in

k |ρ̃0) = (E0 |Fout
i B−1G̃jBF in

k |ρ0). (2.146)

Since again the measurements (E0|Fout
i and states F in

k |ρ0) form frames, it must hold that

B−1G̃jB = Gj (2.147)

for all gates j ∈ [k]. Now we know that the gates are gauge equivalent and the states and
measurement effects prepared by the fiducials are gauge equivalent. It remains to show that also
ρ0, E0 and ρ̃0, Ẽ0 are gauge equivalent. This is easily verified, since F in

k is itself a sequence of
gates in G and thus by Eq. (2.147) and Eq. (2.145) we can write

F in
k |ρ0) = B−1F̃ in

k B|ρ0) = BF̃ in
k |ρ̃). (2.148)

Since we assumed the gates are invertible, then the gate sequences F̃ in
k are also invertible and the

above equation gives us B|ρ0) = |ρ̃0). An analogous argument leads to (E0|B−1 = (Ẽ0|, which
ends the informational completeness proof.

The full gate set tomography procedure in pyGSTi

After a tomographically complete setting is identified, and linear GST is performed, several
additional steps are taken in the standard GST implementation pyGSTi [168, 173]. The first has
to do with enforcing physicality constraints, since a linear GST estimate is not constrained to be
CPT. This is done via a CPT projection step. Since the output of linear GST is a linear inversion
estimate, it minimizes the least-squares error to the data. However, it is often desirable to find
the minimum of a more well-motivated cost function, such as the log-likelihood error Eq. (2.75).
Consequently, the result of the CPT projection step is subsequently used as an initial point for
the non-convex optimization problem given by the log-likelihood cost function. The linear GST
estimate thus serves the purpose of a good initialization, which can significantly ease finding
the global minimum of the optimization problem. Furthermore, the similarity of the linear GST
sequence design and standard QPT allows for a straightforward experiment design with provable
informational completeness and experimental verification through checking invertibility of the
Gram matrix. This is in contrast to random experiment designs, which although expected to
ensure informationally completeness if enough sequences are given, are difficult to analyze and
thus far do not come with informational completeness proofs.

An essential technique in pyGSTi is the use of carefully designed long sequences and the
ensuring protocol which uses a linear GST estimate as a starting point and then optimizes the
log-likelihood on long sequences is called long sequence GST. The principal motivation behind
long sequences is error amplification. Consider a single qubit Bloch rotation ei(ϕ/2+δ)σx , where
ϕ is the desired rotation angle and δ is a calibration error. Repeating the unitary M times leads
to a rotation given as eiMϕ/2σxeiMδσx . This means that if a protocol can estimate the rotation
angle Mδ up to accuracy O(1), it can estimate δ up to accuracy O(1/M). This is termed as
Heisenberg scaling of the error, and gives a considerable advantage compared to the O(1/

√
N)

shot noise scaling where N is the number of samples. The trade-off is that longer sequences have
to be applied, which can only be done until the total circuit time reaches the coherence time of
the experiment, i.e.
MtGate ≈ T2. Note also that not every gate parameter in a given gate G is equally amplified by
just measuring gate sequences (E0 |Fout

i GMj F in
k |ρ0). In general, if G = GidealΛ and Λ commutes

with Gideal, then we get GM = (Gideal)MΛM and errors are amplified as desired. A GST experi-
ment design which includes sequences that amplify every non-gauge parameter in all the gates is
then termed amplificationally complete. As reported in Nielsen et al. [168], simply applying ran-
dom long sequences does not yield the desired Heisenberg scaling and thus the GST sequences
have to be determined for each gate set. With a properly designed sequence set, Heisenberg
scaling is reliably observed for different gate sets in numerical simulations.
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In principle pyGSTi is flexible towards different gate parametrizations, but as per default
physicality constraints are preserved by parametrizing the gate models via the Lindblad parametriza-
tion (Eq. (2.70)). Since long sequences lead to cost functions which are high degree polynomials
in the gate parameters, simply optimizing the log-likelihood on all long sequence GST data is
daunting. Therefore, pyGSTi uses an optimization pipeline where a local approximation of the
log-likelihood function is first optimized on short sequences, and progressively longer sequences
are added with the previous estimate as a starting point. The initial starting point is naturally
given by the CPT projected linear GST estimate. Only in the last step is the log-likelihood
maximized on the full data (see illustration in [171]). Finally, gauge optimization to the target
gate set is performed in order to compare gate set estimates to the experimental implementation.

In a well calibrated experiment, one expects the implemented gates to be close to the target
gates, and the latter can therefore be used as an initialization. This circumvents the computation
steps required for the initial linear GST estimate: Inversion of the Gram matrix and projection
onto the model class.

Alternative self-consistent tomography protocols

We have thus far described the most widespread protocol, pyGSTi, as well as regularized self-
consistent tomography [177] and the broader scope of non-Markovian process tomography [167].

In Gu et al. [181], the GST estimation problem Eq. (2.129) is considerably simplified by
only taking the linear approximation of outcomes probabilities in terms of error terms into
account, a framework that builds on the earlier work by Merkel et al. [28]. To make this more
precise, consider a noisy initial state and a noisy POVM given by |ρ̃0) = (id + Ein)|ρ0) and
(Ẽ0| = (E0|(id + Eout), as well as noisy gates G̃i = (id + Ei)Gi and let

max{‖Ein, ‖E1‖, . . . , ‖Ek‖, ‖Eout‖‖} < ε. (2.149)

The linear approximation of an experiment with the gate sequence s is given by the first two
terms in

(Ẽ0 |G̃sL · · · G̃s1 |ρ̃0) = (E0 |GsL · · · Gs1 |ρ0)

+ (E0|
(
Eout +

L∑

i=1

GsL · · · EsiGsi · · · Gs1 + Ein
)
|ρ0)

+O(ε2).

(2.150)

Let again ps = (E0 |GsL · · · Gs1 |ρ0) and p̃s(Ẽ0 |G̃sL · · · G̃s1 |ρ̃0). Given a vector of measured
probabilities p̃, we see that

p̃− p = M(Eout, {Ei}, Ein) +O(ε2), (2.151)

where M is a linear map that depends on the set I and the target gates. The method in Gu et al.
[181] then boils down to drawing a random set of sequences that is informationally complete,
determining MI and measuring p̃. The parametrizations of the error channels can then in linear
approximation be given by M

−1
I (p̃) and the resulting method is termed randomized linear GST.

Based on results of different 5 qubit superconducting devices, where single- and two-qubit noise
channels were estimated, randomized linear GST performs comparable to pyGSTi, while using
a simpler experimental design and reduced post-processing time. However, as expected from
a linear approximation, prediction errors on long circuits are shown to be larger compared to
results from pyGSTi.

In Evans et al. [182] a related model is used, where the noise is not linearized around the
identity, but around a previous noise model given by channels {Λout, {Λi},Λin}. The noise
channels are further treated as random variables with means {Λ̄out, {Λ̄i}, Λ̄in}, where the real
noise process is assumed to be close to the mean. For gate noise, this results in G̃i = ΛiGi =
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(Λ̄i + Ei)Gi where ‖Ei‖ is again assumed to be small. This leads to an analogous first order
model to the one described in Eq. (2.150), where ideal gates Gi are replaced by their average
noise implementation Λ̄iGi. Let θ be the vector comprising all parameters of the noise channels
{Eout, {Ei}, Ein}. The authors use the linear approximation together with Bayesian estimation to
update a prior noise distribution after each sequence probability ps is measured. The updates
are performed according to the Bayes rule

P(ps|θ) ∝ P(θ|ps)P(θ), (2.152)

where the noise parameters θ are drawn from a multivariate Gaussian distribution. The ability
to update the noise distribution after each measured sequence allows for an online approach, in
which progressively more accurate gate set estimates are given during the gathering of sequence
data. An interesting way of obtaining the prior distribution is also demonstrated in Evans et al.
[182], where data from a previous RB experiment is used to get a prior that is consistent with the
average gate fidelities obtained as a result of RB. Furthermore, individual sequences measured
during RB can be used for individual updates according to Eq. (2.152). In an experimental
demonstration, the Bayesian tomography method was then shown to be sufficiently fast for the
characterization of two-qubit noise in a spin qubit system, with the approximation errors due
to the linearization being generally lower than the shot noise error. However, since each update
step for two qubit was reported to take about 1− 4 seconds and a much larger set of sequences
than needed for tomographic completeness was used, the proposed Bayesian tomography protocol
appears to be more costly than pyGSTi or randomized linear GST.

A third recent work which is very relevant for GST is the one by Huang et al. [183], where a
comprehensive framework for self-consistent tomography is given from the perspective of learning
theory. Most notably the first theoretical guarantee for a self-consistent algorithm was given. Let
the system parameters again be given by the set {Ei,Gj , ρk}, where the initial states and POVM
elements are prepared without using the unknown gates Gi. The authors make a distinction
between learning an intrinsic description and learning extrinsic behavior of a device. An intrinsic
description means that there exists a unitary or anti-unitary transformation U such that the
estimates {Êi, Ĝj , ρ̂k} satisfy

‖ρ̂k − U(ρk)‖1 ≤ ε
‖Êi − U†(Ei)‖1 ≤ ε
‖Ĝj − UGiU†‖� ≤ ε

(2.153)

for all i, j, k and for some ε > 0. In contrast, an extrinsic description must simply satisfy that it
can predict any circuit outcome probabilities from the gate set up to a given sequence length L
to error ε.

It is then shown in Huang et al. [183] that for a universal gate set, i.e.
a gate set that contains a pure state, a universal set of unitaries and a non-trivial POVM,
an intrinsic description can indeed be learned up to arbitrary precision. However, the specific
algorithm is by no means efficient and involves a lengthy procedure to (i) identify all gates in the
gate set which are perfect unitaries, (ii) composing these unitaries to sample from an approximate
unitary 2-designs, (iii) finding a pure state in the set {ρi} via the use of the unitary 2-design,
(iv) generating a particular basis on L(H) from the pure state and the 2-design and finally, (v)
measuring the POVM elements and gates in this basis.

To learn extrinsic behavior of a gate set, a more practical constructive proof is given. It
starts with the assumption which is natural for GST, that we have identified a set of sequences
such that we can generate frames on L(H) from initial states and POVMs, in complete analogy
to the formalism of fiducials which we have seen previously. The experimental design is thus
similar to standard linear GST. By meticulously keeping track of all the errors incurred during
the estimation of individual gate set elements and the use of appropriate inequalities, a sample
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complexity was given for learning the extrinsic behavior. The result is summarized in the fol-
lowing theorem, where we define k as the number gates, r as the number of states and M as the
number of POVM elements in the gate set.

Theorem 9 (Theorem 4 in [183]). Assuming knowledge of sequences that prepare a frame on the
set of states and POVM elements, the algorithm in [183] can predict Tr[EiGs(ρj)] for all Ei, ρj
and all gate sequences s up to length L with a sample complexity of O((L2k + r +M)/ε2) up to
logarithmic factors with high probability.

The algorithm used in the proof is more of theoretical nature and has thus far not been
implemented or numerically tested. Furthermore, the total sample complexity with all constants
and logarithmic terms involved is likely far higher than the number of samples for which an
ε-error in predictions is observed using existing gate set tomography protocols. It thus remains
for future work to combine the proof techniques of Theorem 9 with an efficient algorithm to
obtain a practically usable GST protocol with theoretical guarantees.

Another interesting result in Huang et al. [183] is that even if two gate sets are not related
by a unitary or anti-unitary gauge transformation and if their ideal versions are tomographically
complete, simple noise models can render them indistinguishable via measurements. The example
given was a single qubit gate set consisting of theH,S and T -gate, acting on a perfect 0-state with
a perfect computational basis measurement. By writing all possible circuit outcomes comprised
of the {H,S, T} gate set under Pauli noise as polynomials of the Pauli-noise parameters and the
ideal gate actions, it was shown that bit flip noise and dephasing noise on the Hadamard gate
leads to the exact same polynomials. Thus, those two noise models can not be distinguished
in a GST experiment. This provides a realistic example of a relevant gauge freedom which lies
outside the set of unitary or anit-unitary gauge class.

It can further be argued [168, 183] that GST does not reconstruct the true physical description
of the device, even if its assumptions are satisfied. The first reason is that due to sampling error,
only a gate set estimate that explains the outcomes with respect to shot noise is given, not
the true outcomes. Second and more importantly, due to gauge freedom GST only extracts a
joint physical description of the device that does not have to correspond to the true description.
Thus, GST can only be seen as a model to accurately predict outcomes for arbitrary circuits and
consequently the quality of GST estimates should only be judged by their predictive power.

2.3 Estimating quantum state properties with randomized mea-

surements

The need to efficiently estimates properties of a quantum state is central for many applications
of quantum computing as well as for the understanding of the system’s physics. Properties of in-
terest include for instance correlation functions, entanglement entropies, the energy with respect
to a Hamiltonian, or the fidelity to a target state. If the quantum state whose properties are to
be studied can be repeatedly prepared, quantum state tomography would give full information
about the system, but the required number of measurement settings and the space to store the
result increase exponentially in the system size. Very recently [36, 38], a formalism was developed
that can simultaneously estimate exponentially many properties of a quantum state, while the
number of required measurement samples only scales linearly in the number of observables and
is independent of the system size. This is known as the classical shadows or shadow estimation
formalism after the works by Aaronson [184] and Huang et al. [36] or alternatively as the ran-
domized measurement formalism after Elben et al. [37]. The experimental procedure is given by
the simple loop:

(i) prepare a copy of the state,

(ii) select a random unitary,
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(iii) measure in the computational basis.

These steps are then repeated until sufficiently many samples for a desired target accuracy are
obtained. The measurement loop describes a single shot scenario, where each setting defined by
the random unitary is only measured once (unless the same unitary is drawn again by chance).
What turns this simple measurement protocol into a highly successful technique is the construc-
tion of an efficient estimator for different state properties, with theoretical guarantees on the
sample complexity that match fundamental lower bounds [36].

The utility of shadow estimation has immediately been demonstrated in experiments [39, 40],
and a large amount of applications and generalizations were developed in short order. Among
these are improved Monte Carlo simulations [42], machine learning [41] and quantum process
tomography [43, 142–144]. Another promising application lies in variational quantum algorithms,
which are hybrid classical algorithms that require the preparation of a quantum state and the
estimation of its energy with respect to a given Hamiltonian at each iteration. Via the use of
classical shadows, there now exist highly optimized methods for this task [185, 186].

In this section we give an introduction to the formalism, following the language of classical
shadows in the work by Huang et al. [36].

We write the computational basis projectors as |x〉〈x| = Ex ≡ |Ex) for x ∈ F
n
2 . After a com-

putational basis measurement is applied, the post-measurement state |Ex) described by n bits
can be stored efficiently. For a given state ρ, we define px(ρ) = (Ex |ρ) to be the outcome prob-
ability of obtaining x. The expectation value over the post-measurement state is consequently
given by

Ex|Ex) =
∑

x∈Fn
2

|Ex)px(ρ) =
∑

x∈Fn
2

|Ex)(Ex |ρ) =:M |ρ). (2.154)

The linear map M is called the Z-basis measurement operator. In the shadow estimation pro-
tocol, a random unitary operation ω(g) = g(·)g† from a group G is applied before each Z-basis
measurement. This is equivalent to measuring in the basis {ω(g)†|Ex)}x∈Fn

2
and storing the post

measurement state as a tuple (g, x). For the storage to be efficient, we require g to have an ef-
ficient classical representation, which is the case for the most widely studied instances, where G
is either the local or the global Clifford group. Let g be drawn from G according to the measure
µ. The expectation value over the post measurement state is then given by

Eg∼µ

∑

x∈Fn
2

ω(g)†|Ex)(Ex|ω(g)|ρ) =: S|ρ), (2.155)

where we call S the frame operator for the given measurement process. The reason for the
nomenclature is that we can regard all measurement settings labeled by (g, x) as a single POVM
with elements {µ(g)g†|x〉〈x|g}g∈G,x∈Fn

2
, which for suitable µ forms a frame on L(H).

Assuming in round i of the protocol, gate gi was drawn and the outcome xi ∈ F
n
2 was recorded.

The classical shadow of the sate ρ for a protocol with N measurement rounds is defined to be
the set of states

{S−1ω(gi)
†|Exi)}i∈[N ]. (2.156)

The average over this set of states gives an unbiased estimator of ρ, since

Eg,x
1

N

N∑

i=1

S−1ω(gi)
†|Exi) =

1

N

N∑

i=1

S−1
Eg

∑

x∈Fn
2

ω(g)†|Ex)(Ex|ω(g)|ρ) = S−1S|ρ) = |ρ). (2.157)

We can hence obtain an unbiased estimator for any observable O via the average

ôN =
1

N

N∑

i=1

(O|S−1ω(gi)
†|Exi). (2.158)
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In Huang et al. [36], the median of means estimator was used instead of the mean, which provides
better concentration for heavy tailed distributions [187]. It is computed by splitting the data
into K batches of size N/K (assuming N is divisible by K), calculating the mean of each batch,
and finally forming the median over all batch means.

In Helsen and Walter [188] it was shown that for µ(g) being the Haar measure on the unitary
group, the mean can be used instead of the median of means without sacrificing efficiency. The
same holds true for uniform sampling from the local Clifford group Cl×n1 [189], while for uniform
sampling from the n-qubit Clifford group Cln, Helsen and Walter [188] show that the distribution
of the random variables (O|S−1ω(gi)

†|Exi) is heavy tailed and hence using the median of means
is warranted.

In order for the estimator in Eq. (2.158) to be practical, we need an efficient method to
compute the inverse of the frame operator S ∈ C

d2×d2 . If the gates g are drawn from a group G,
we see that the frame operator is just the group twirl given by

S =

∫
ω(g)†Mω(g)dµ(g). (2.159)

To derive an analytical expression for S we can use Schur’s Lemma as shown in Section 2.1.2,
where the resulting expression is given in terms of projectors onto the invariant subspaces of the
representation ω (see Eq. (2.7)). The invariant subspaces of the representation ω(g)(X) = gXg†

are known to be span({σ0}) and span({σa}a∈F2n
2 \0), both with multiplicity 1. The projectors

onto these subspaces are given by Π0 = |σ̌0)(σ̌0| and its complement

Πad =
∑

a∈F2n
2 \0

|σ̌a)(σ̌a|, (2.160)

where we wrote normalized Pauli matrices as σ̌a (see Section 2.1.1). Using

M =
∑

x∈Fn
2

|x)(x| = (|σ̌0)(σ̌0|+ |σ̌z )(σ̌z|)⊗n (2.161)

it is straightforward to verify that the frame operator for sampling form the Haar measure over
U(2n) is given by

S = Π0Tr[Π0M ] +
1

d2 − 1
ΠadTr[ΠadM ]

= |σ̌0)(σ̌0|+
1

d+ 1

∑

a∈F2n
2 \0

|σ̌a)(σ̌a|

= |σ̌0)(σ̌0|+ (d+ 1)−1(id− |σ̌0)(σ̌0|),

(2.162)

where id is the identity channel. The same holds true for uniform sampling over the Clifford
group Cln. Since the frame operator is diagonal in the Pauli basis, its inverse is easily computed
as S−1 = |σ̌0)(σ̌0|+ (d+ 1)(id− |σ̌0)(σ̌0|) = d|σ̌0)(σ̌0|+ (d+ 1)id = (d+ 1)id− |σ0)(σ0|. As a
result, the classical shadows (Eq. (2.156)) are just given as

{(d+ 1)ω(gi)
†|Exi)− |σ0)}i∈[N ]. (2.163)

For a protocol that samples uniformly over the local Clifford group, the frame operator factorizes
in the same way as the Z-basis measurement map in Eq. (2.161), and the classical shadow consists
of local shadows, where each is given by Eq. (2.156) with d = 2. Apart from the local or global
Clifford group, random shallow circuits have been proposed for shadow estimation, where the
frame operator is either calculated analytically or numerically [190–193].

The sample complexity bounds for classical shadows are reviewed in the following. We call a
measure ν over U(d) informationally complete if for all states ρ 6= ρ̃ there exists a g ∈ U(d) and
a x ∈ F

n
2 for which ν(g) 6= 0 and (x|ω(g)|ρ) 6= (x|ω(g)|ρ̃). We further define the traceless part of

an observable as O0 = O − Tr(O)1/d.
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Theorem 10 (Theorem 3 in Huang et al. [36]). Consider a list of observables Oi, . . . , OM , and
let ε > 0, δ ∈ [0, 1], as well as

K = 2 log(2M/δ) and N =
34

ε2
max
i∈[M ]

‖O0,i‖2shadow,ν . (2.164)

Then the median of means estimator ôi of NK classical shadows obtained via an informationally
complete measure satisfies

|ôi − Tr[Oρ]| ≤ ε (2.165)

for all i ∈ [M ] with probability 1− δ.

The sample complexity depends on the observable, as well as the measure ν, according to
which unitaries are drawn in each round. This dependence is governed by the so-called stabilizer
norm, defined as

‖O‖shadow,ν := max
ρ∈S(H)


Eg∼ν

∑

x∈Fn
2

(Ex |ω(g)|ρ)(Ex |ω(g)†S−1 |ρ)2



1/2

. (2.166)

The Theorem further shows that the number of samples only scales logarithmically in the number
of observables to be estimated. This is to be understood in terms of the failure probability δ, in
the sense that achieving error ε on M observables with probability 1−δ requires the same number
of samples as the estimation of a single observable to error ε with probability 1 − δ/M . Since
the error for the median of means estimator scales logarithmically in δ, we also get a logarithmic
scaling in M . The theorem is furthermore agnostic to the list of observables, provided they have
low shadow norm, which implies they can be chosen after the data acquisition phase. It was
further shown that the sample complexity in Theorem 10 matches fundamental lower bounds up
to constant factors [36].

For efficient estimators, we require the squared shadow norm to be independent of the system
dimension. Two main examples are given in the original work [36]. The first considers uniform
sampling from the global Clifford group, where it is shown that ‖O0,i‖2shadow,ν ≤ 3‖O‖22. observ-
ables with constant 2-norm include all pure states, resulting in the efficient estimation of pure
state fidelities 〈ψ |O |ψ〉 and entanglement witnesses [194]. The second example considers uniform
sampling from local Clifford group, for which it is shown that ‖O0,i‖2shadow,ν ≤ 4|supp(O)|‖O‖2∞,
where |supp(O)| is the number of qubits on which O acts non-trivially. Shadows obtained from
the local Clifford group can thus be used to estimate local observables efficiently. An example of
a relevant observable where the sample complexity of both the local and global Clifford protocol
becomes exponential is given by a Pauli observable σa with |supp(a)| = n. The shadow norm
bounds in this case suggest a scaling of ‖O‖22 = 2n for global Cliffords and a scaling of 4n for
local Cliffords.1

An obstacle that was not taken into account in the original works is the presence of noise,
which can make a crucial difference for current and near term quantum devices. In Chen et al.
[44], a modified protocol called robust shadow estimation was proposed, which makes use of an
additional calibration experiment to mitigate the noise-induced estimation bias. In the noise
model of robust shadow estimation, each gate is only affected by a constant (left-sided) noise
channel Λ, such that φ(g) = Λω(g) for all g ∈ G. The resulting noisy frame operator takes the
form

S̃ = Eg∼µω(g)
†
∑

x∈Fn
2

|Ex)(Ex|Λω(g), (2.167)

where it can be seen that Λ effectively incorporates measurement noise. This noise model can
be easily analyzed using Schur’s Lemma, since the noisy frame operator is just a twirl of the
channel MΛ over the group G. In analogy to Eq. (2.162) we get

1The scaling for tensor products of 1-local observables can actually be improved to 3
k [36].
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S̃ = Π0Tr[Π0MΛ] +
1

d2 − 1
ΠadTr[ΠadMΛ] = |σ̌0)(σ̌0|+

Tr[ΠadMΛ]

d2 − 1
(id− |σ̌0)(σ̌0|), (2.168)

where Λ is assumed to be CPT. The noisy frame operator thus only depends on the single
parameter f := Tr[ΠadMΛ]/(d2 − 1), which is estimated in Chen et al. [44] via the following
procedure. In each round, the state |0) is prepared, a random gate ω(g) is applied, and the
resulting state is measured in the computational basis, yielding an outcome x ∈ F

n
2 . For each

round i ∈ [N ], a single shot estimator of f given by

f̂ (i) =
d(Exi |ω(gi)|0)− 1

d2 − 1
(2.169)

is stored. It can then be shown via familiar representation theory results that Ef̂ (i) = f . After the
calibration experiment, the noisy frame operator is known and an improved shadow estimation
protocol where S−1 is replaced by S̃−1 = |σ̌0)(σ̌0| + f̂−1(id − |σ̌0)(σ̌0|) can be performed. A
modified procedure is also given to estimate the noisy frame operator for shadow estimation
with the local Clifford group, where the two irreducible representations of each local Clifford
group lead to 2n irreducible representation of the n-fold tensor product. As a consequence, the
noisy frame operator depends on 2n parameters in this case, each of which can be estimated
efficiently. The robust shadow estimation protocol comes with concrete theoretical guarantees.
For the global Clifford protocol, the bias of the robust shadow estimator ôRS is bounded as

|EôRS − Tr[Oρ]| ≤ (ε+ r)‖O‖∞, (2.170)

provided O(ε−2(Tr[MΛ]/d)−2) samples are used in the calibration procedure and the state |0)
can be prepared with infidelity at most r. Note that (Tr[MΛ]/d)−2 = O(1). An analogous bound
is given for the local Clifford protocol [44].

In Chapter 4 and [47], we consider a less restricted noise model and show that this can lead
to problems for both the vanilla shadow estimation protocol and for robust shadows.



Chapter 3

Compressive gate set tomography

As motivated in Section 2.2.4, GST allows for the self-consistent characterization of a set of quan-
tum gates, initial state preparation and measurement operators and has become a standard tool
for the improvement of current NISQ devices. Previous works on GST however each have serious
shortcomings. The standard implementation pyGSTi [168] uses a large amount of measurement
settings and post-processing time. This makes GST difficult to implement on platforms with
long single shot measurements times, while the classical post-processing time limits the use of
GST two at most two-qubit gates. Other recent proposals [181, 182] simplify the post-processing
problem by assuming only small deviations between a prior theoretical model and the experi-
mental implementation, thus limiting themselves to near perfect implementations and relaxing
the notion of self-consistency. With compressive GST [45] we take a different approach: Instead
of assuming prior knowledge about the concrete gate implementation, we offer the possibility to
reconstruct a low complexity approximation to the gates implemented in an experiment, where
complexity is quantified by the Kraus rank. This is physically well-motivated and allows us to
significantly reduce the data acquisition and post-processing time.

In this chapter, we give an overview of our work done on compressive GST. The material
presented here mostly follows the publication [45], which is also included in Appendix A. Char-
acterization results presented in this chapter are obtained through our manifold optimization
algorithm for GST called mGST, which is derived in [45] and implemented in our Python pack-
age [46]. We start by explaining the framework of the compressive GST approach in Section 3.1
where we also showcase its performance via numerical simulations. Thereafter, in Section 3.2 we
present recent and unpublished results on the use of mGST to characterize single- and two-qubit
gates in an ion trap experiment. Finally, in Section 3.3, we present an error mitigation scheme
for shadow estimation that uses GST results, which was also part of [45].

3.1 The compressive GST framework and algorithm

Our starting point is a gate set as defined in Eq. (2.128), where w.l.o.g. we assume that there is
a fixed initial state ρ that is prepared in each experiment. The gate set is thus given by

X = ((E1, . . . , EM ), (G1, . . .Gk), ρ) . (3.1)

As discussed in Section 2.2.4, experimental access to gate set parameters is gained through
outcome probabilities, which are, up to shot noise, entries of the probability tensor given by

pi,s1,...,sL = (Ei |GsL · · · Gs1 |ρ). (3.2)

In this formulation GST is a tensor completion problem, as it solves the question of how many
entries are required to reconstruct the full tensor. Tensors with low rank can be provably re-
constructed from a number of entries that is far lower than the total dimension of the tensor
[195, 196]. In our case low rank is to be understood in the spirit of matrix product states: Each

54
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tensor can be decomposed into a product of matrices with fixed dimension, which can be seen
in the tensor network picture of a gate sequence on the left side of Figure 3.1. However, in our
case the matrix dimensions are still of size d2 and decreasing them would amount to reducing
the size of the Hilbert space, which is not expected to yield a meaningful approximation. As we
have seen in Section 2.2.3, the natural low rank structure of quantum gates is given through the
Kraus decomposition, since the ideal implementation is of rank 1 and typical noise models are
of low rank or at least approximately of low rank. In our formulation we therefore treat GST as
a completion problem of a structured tensor with low Kraus bond dimensions.

We regard the set of gates (G1, . . . ,Gk) as a single tensor of size k× d2× d2, and we write its
Kraus decomposition as

Gi( · ) =
rK∑

l=1

Kil( · )K†
il, (3.3)

with Ki ∈ C
rK×d×d. We can similarly approximate initial state and POVM elements to be almost

pure, i.e.
of low matrix rank: Ej = A†

jAj and ρ = BB† with Aj ∈ C
rE×d and B ∈ C

d×rρ . The resulting
tensor pj,s1,...,sL is depicted on the right side of Figure 3.1.

Figure 3.1: Low rank factorization of the sequence tensor to be estimated via GST.

This factorization is possible since gates, initial state and POVM are assumed to be posi-
tive. We hence naturally incorporate all positivity constraints. What is still left are the trace
constraints, i.e.
unit trace of the state, trace preservation of the gates and the POVM condition

∑M
j=1Ej = 1.

Trace preservation for all gates is satisfied if
∑rK

l=1K
†
ilKil = 1 for all i ∈ [k]. We can rewrite these

equations by stacking the matrices Kil together along the l-index, for example {Kil ∈ C
d×d}rKl=1

turns into Ki ∈ C
rKd×d. The trace preservation constraints are thus simply given by the equations

K†
iKi = 1, meaning each Kraus tensor K lives on a complex Stiefel manifold (see Section 2.1.3).

An analogous argument can be made for the state and for POVM elements, and the resulting
constraints are summarized in Table 3.1. This realization allows us to combine the manifold

POVM State Gates

Constraint
∑

j Ej = 1 Tr(ρ) = 1 GiCPT
Factorization

∑
j A

†
jAj = 1 Tr(BB†) = 1

∑rK
l=1K

†
ilKil = 1

Stiefel element A†A = 1 vec(B)† vec(B) = 1 K†
iKi = 1

Manifold St(rEM,d) St(rρd, 1) St(rKd, d)

Table 3.1: Physicality constraints reformulated as constraints to complex Stiefel mani-
folds.

optimization techniques reviewed in Section 2.1.3 with the compressed sensing model of a low
rank gate set.

To get a rough estimate of the number of unique sequences that need to measured, we can
count the parameters of a gate set with a single initial state, a POVM with M elements and a
set of k gates. First, note that a d × d complex Hermitian matrix is given by d2 real numbers.
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The same holds for a d × d unitary matrix, since it can be defined via a hermitian generator.
Subtracting the unit trace constraint, we therefore have d2−1 free parameters for the initial state
without any low rank approximation. In the following we assume all gates have the same Kraus
rank rK . The matrix of Kraus operators Ki corresponding to gate i has 2d2rK real parameters
given by the real and imaginary part of each entry. The Stiefel manifold constraint K†K = 1 gives
us d real constraints for the diagonal of 1 and d(d−1)/2 complex constraints for the off-diagonal
elements. Moreover, we can apply an rK × rK unitary to the Kraus index of K without changing
the measurement outcomes. This corresponds to applying a unitary and its inverse along the
vertical indices in Figure 3.1. This unitary freedom removes another r2K real parameters from K
so that we are left with

2d2rK − 2d(d− 1)/2− d− r2K = d2(2rK − 1)− r2K (3.4)

parameters. For the special case of full Kraus rank rK = d2 this leads to d4−d2 real parameters,
which coincides with the number of real parameters used to describe the Pauli transfer matrix
of a gate. For the POVM-tensor A ∈ C

MrE×d the condition A†A = 1 gives us d2 constraints.
Additionally, since each POVM element is factorized via Ei = A†

iAi, there is a unitary freedom
for each i ∈ [M ], removing Mr2E parameters. Therefore, the POVM with rank rE elements
is described by 2dMrE − d2 −Mr2E real parameters, which reduces to Md2 − d2 for full rank

POVMs. Since the rank of
∑M

i=1Ei with each Ei of rank rE is at most MrE , while 1 is of rank
d, a valid POVM needs to satisfy MrE ≥ d. For the initial state parametrization ρ = BB† with
B ∈ C

d×rρ , we need 2drρ − r2ρ parameters. Finally, when we consider a unitary gauge freedom
we remove another d2 real parameters. In summary, for a gate set with k gates this leads us to
a total of

k(d2(2rK − 1)− r2K)︸ ︷︷ ︸
gates

+ d(2MrE − d)−Mr2E︸ ︷︷ ︸
POVM

+2drρ − r2ρ︸ ︷︷ ︸
state

− d2︸︷︷︸
gauge

(3.5)

free parameters which can be probed through experiments. As an example, for a two qubit
system with d = 4, k = 6,M = 4, rK = rE = rρ = 2 this amounts to 292 parameters, while the
same system with full ranks (rK = 16, rE = rρ = 4) is described by 1488 parameters.

With an understanding of our chosen parametrization, we now turn to the question of how
these parameters can be learned from measurement data. Let p̂j,s be the outcome probabilities
estimated from repeated measurements of the circuits s ∈ I and let f(A,K, B|p̂) be a cost
function that quantifies the discrepancy between model predictions pj,s(A,K, B) and estimated
probabilities p̂j,s. We choose this to be the least-squares error (Eq. (2.99)) for our main GST
algorithm, with the option to improve the final least-squares estimate further by running a
subsequent likelihood error (Eq. (2.75)) optimization. The estimation problem for compressive
GST is thus given by

minimize
A,K,B

f(A,K, B|p̂)

subject to A ∈ St(rEM,d), Ki ∈ St(drK , d), B ∈ St(drρ, 1).
(3.6)

Here the choice also arises as to whether we want to jointly optimize on the full product manifold
St(rEM,d)× St(rKd, d)

×k × St(rρd, 1) or take an alternating minimization approach. Through
trial and error, we found that jointly optimizing over the product manifold of gates and al-
ternating between POVM, gates and initial state leads to fast convergence on single- and two
qubit examples. The resulting main routine of the optimization algorithm mGST is given in
Algorithm 1. Since the literature on optimization algorithms for the complex Stiefel manifold
is sparse and the GST estimation problem involves a non-convex cost function given by the
higher order polynomial f(A,K, B|p̂), we formulate our own tailored optimization procedure to
find update directions. It combines the saddle free Newton method of Dauphin et al. [197] with
second order optimization on the complex Stiefel manifold. To formulate this method, we first
derive the geodesic equation and prove that a geodesic ansatz formed by generalizing the real
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Algorithm 1: mGST - main routine

input: Data {p̂j,s}j∈[M ], s∈I , Ranks rK , rE , rρ, batch size κ, initialization (A0,K0, B0),
stopping criterion

1 i← 0
2 repeat

3 Select batch J ⊂ I of size |J | = κ at random
4 Ai+1 ← update Ai with objective f( · ,Ki, Bi|p̂j,s) along geodesic on St(MrE , d)

5 Ki+1 ← update Ki with objective f(Ai+1, · , Bi|p̂j,s) along geodesic on St(rKd, d)
×k

6 Bi+1 ← update Bi with objective f(Ai+1,Ki+1, · |p̂j,s) along geodesic on St(drρ, 1)
7 i← i+ 1

8 until stopping criterion is met ;
9 return (Ai,Ki, Bi)

valued case satisfies this equation. Equipped with an expression for the geodesic, we derive the
Riemannian Hessian via the use of Proposition 8. The full calculations can be found in Appendix
A.

By the standard assumption in GST and QPT that the underlying dynamics change negligibly
between different shots, we know that the measurement outcomes for a given sequence follow a
multinomial distribution. Hence, the estimation error for p̂i,s given a fixed number of shots is
known. We use this information to define a stopping criterion that lets the algorithm terminate
if the least-squares error approaches the expected least-squares error given the shot noise. If
the algorithm converges to a local minimum that does not satisfy the convergence criterion we
restart it with a new random initialization. For the random gate initialization, we first form
a random Hermitian matrix H ∈ C

rKd×rKd with real and imaginary part of each independent
entry drawn from the normal distribution with zero mean and unit variance. Taking only the
first d columns of eiH gives us a random element of St(rKd × d). Initial state and POVM are
handled analogously.

We implement Algorithm 1 in Python, using the package Numba for compiling performance-
critical functions into optimized machine code. The full Python package [46] contains an example
notebook included in Appendix D, where the principal use of the algorithm for a qubit and a
qutrit example is showcased.

The performance of mGST is studied in numerical simulations in our article [45], where
the plots in Figure 3.3 originate from. In these plots the promise of our compressed sensing
approach can be observed: For a given generalization error accuracy (measured by the MVE),
a low rank model requires fewer measurement settings. This behavior is clearly visible for the
single qubit case, while for two qubits we observe that the rank 1 optimization runs into local
minima significantly more often for a lower sequence count. This leads to a competing effect to
the compressed sensing advantage of low rank: It is possible to obtain a low error estimate for
fewer sequences, but the post-processing time increases. For the plots in Figure 3.2 we limit the
maximal algorithm runtime, and hence the results indicate what error can be achieved with both
a limited measurement and a limited classical computation effort.

The question also arises as to what happens when there is a model mismatch, in the sense
that the true gate is not of low rank. In Figure 3.3 we analyze the case where there is a large
amount of depolarizing noise, which is of full rank. We see that using the unitary (rK = 1)
approximation, the algorithm terminates at a high cost function value, indicating a poor fit to
the data. Up to 103 shots per sequence, the shot noise error dominates the model mismatch error,
and ranks 2− 4 fit the data equally well. The benefit of using the full rank rK = 4 only becomes
apparent for a large number of shots, which speaks for the adequacy of lower rank models in
realistic scenarios where the number of shots is limited.

In [45] we further extensively compare mGST to pyGSTi for different noisy single qubit gate
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Figure 3.2: Mean variation error (MVE) between the GST estimate X̂ and the true gate
set X , evaluated on random sequences which are not in the data set. The XYI model is
comprised of π/2 Bloch rotations around the X and Y axes on the Bloch sphere, as well
as the identity gate. The XYICNOT model consists of the same X and Y rotations on
two qubits, as well as the CNOT gate. Sequence probabilities p̂i,s were estimated from
1000 shots for each sequence. Data points are the median over 10 repetitions, where each
repetition uses a new random sequence set.
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Figure 3.3: Final cost function over the number of samples. The gates are each subject
to depolarizing noise with magnitude p = 0.1 and small random overrotations, while the
measurement is subject to depolarizing noise with p = 0.001. Bands indicate the limits
of the 25th and 75th percentile out of all data for a fixed sample count, while markers
indicate the median.

sets in the short sequence regime. We find that the achieved accuracy is identical for standard
settings, while mGST fares better for high amplitude damping noise and generally for random
gate sets. Furthermore, mGST uses a low number of random sequences and uses less classical
post-processing resources due to the low rank approximation. This allows us to perform GST in
numerical simulations for a 3 qubit example. For the same example and the same measurements,
pyGSTi did not produce any outcome within 4 1/2 days of computing time, and we therefore
deem pyGSTi unsuccessful for this task.

Throughout the numerical simulations in [45] and the application of mGST for the charac-
terization of gates in ion traps which will be presented in Section 3.2, compressive GST emerges
as a very practical alternative to previous GST implementations. Additionally, there remain
a few opportunities for improvement: First, long error amplification sequences as described by
Nielsen et al. [168] could be incorporated in the optimization to achieve a 1/L scaling in the
final error. Second, the proof methods for recovery guarantees in Huang et al. [183], which came
out after our work, could also inspire recovery guarantees for compressive GST in the random
sequence setting. And third, a reduction in post-processing time could be achieved by avoiding
the computation of the Hessian for the Newton method, but it remains to be shown that this
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can be done without sacrificing the convergence properties of the algorithm. Improvements are
currently also underway to the python package, where we aim to increase the user-friendliness
by fully automating the running of mGST and the generation of report files such as the ones
shown in Appendix C. Thus far, the package is to be used via a python script or in a Jupyter
notebook, and in Appendix D we include the tutorial notebook from the mGST package, which
comes with running instructions and basic examples.

3.2 Characterizing quantum gates on a trapped ion system using

mGST

In this section we summarize unpublished results of compressive GST performed on the linear
Paul trap in the group of Prof. Wunderlich at the University of Siegen. GST was performed in
the context of a joint research project (MIQRO) with the aim of developing a universal ion trap-
based quantum computer. The experiment uses 171Yb+ ions which are trapped with an axial
frequency of 89 kHz and are Doppler cooled to form a Coulomb crystal. Qubits are encoded in the
hyperfine states of the ground state 2S1/2, forming a Spin 1/2 system. Along the trapping axis a
static magnetic field gradient of 17T/m is applied, resulting in different addressing frequencies
of each qubit near 12.64GHz. This allows for individual single qubit operations on each qubit.
Entangling operations use pairwise spin interactions according to the Hamiltonian

H =
∑

i 6=j

Jijσ
(i)
z ⊗ σ(j)

z , (3.7)

where Jij is the coupling strength between qubits at sites i and j. This interaction is present
due to the magnetic field gradient, and is therefore termed magnetic gradient induced coupling
(MAGIC). the resulting By encoding the qubits in different hyperfine levels, the sign of the
coupling strength can be changed or spin-spin couplings can be entirely suppressed, leading to
modifiable interaction graphs. For a more detailed description of the experimental setup and its
prospect for quantum computing see Piltz et al. [198].

In order to reliably assess the performance of the system and characterize error sources, we
perform GST with varying Kraus ranks on single- and a two-qubit subsystem. Since the overall
number of shots is very limited, mostly due to the cooling time required to prepare the initial
state, a method that can reconstruct a gate set from few sequences is needed in this scenario.

To quantify the effect of shot noise, we use non-parametric bootstrapping to get error bars
on our estimates. The idea behind bootstrapping is as follows. Assume we are given outcome
probabilities p̂]j,s for POVM elements j ∈ [M ] after sequences s are applied, where each sequence

is measured m times to estimate p̂]j,s. Since we assume that the underlying experiment does
not change between shots and outcomes are given by the Born rule, each shot represents an
independent draw from the multinomial distribution (p1,s, . . . pM,s) with replacement. In non-

parametric bootstrapping we take (p̂]1,s, . . . p̂
]
M,s) obtained from the experiment and draw m new

samples from it. Using these samples we get a new empirical distribution p̂11,s, . . . p̂
1
M,s. This

process is then repeated N times such that we have a list of artificially created datasets, on
each of which we run the full GST procedure. From all N GST estimates obtained in this way,
a confidence interval in, say, the average gate fidelity, is given by the interval in which 95% of
average gate fidelities computed from the N artificial datasets lie.

The advantages of bootstrapping are its simplicity and the fact that all potential inaccura-
cies incurred during GST, i.e. from not fully converged fits or suboptimal results of the gauge
optimization, are accounted for. The main disadvantages of bootstrapping is that it is time-
consuming. Furthermore, we observe that for a low number of shots per sequence, artificial
datasets (p̂i1,s, . . . p̂

i
M,s) do not admit as good a fit with a physical gate set model compared to

the original dataset (p̂]1,s, . . . p̂
]
M,s).
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For all results presented in this section, we obtain physical estimates of the gate sets using
mGST [46] and a subsequent gauge optimization is done via the gauge optimizer in the pyGSTi
[172] package. As discussed in Section 2.2.4, the set of allowed gauge operations is different for
each point in parameter space and as of yet there is no gauge optimization algorithm that takes
the full gauge set into account. We therefore take what appears to be the prudent approach and
only gauge-optimize over the unitary group, which is expected to cover most gauge operations
for near-unitary gates and leads at worst to a suboptimal gauge choice.

We represent gate estimates via Pauli transfer matrices (Eq. (2.61)), for which common single
qubit noise models are defined in Table 2.1. For rank 1 (unitary) gate estimates Ûi we compute
the Hamiltonians as Ĥi = i log(eiϕÛi) where the principal logarithm is chosen. The Hamiltonians
are then represented in the Pauli basis as

Hi =
∑

a∈F2n
2

ci,aσa = ϕ1+
αi

2

∑

a6=0

ni,aσa, (3.8)

where we set ni,a = ci,a/‖ci‖`2 and αi = ‖ci‖`2 . For a single qubit, this allows us to interpret the
vector ni as the rotation axis on the Bloch sphere and αi as the rotation angle. The additional
phase ϕ is just a global phase and can thus be ignored. For more than one qubit where the
Bloch sphere picture does not apply, we can interpret αini,a as the total rotation angle of the σa
interaction and compare it to the target angle.

To analyze noise contributions for arbitrary Kraus ranks, we use the left-error model Gi =
ΛiU target

i . Note that there always exists a left noise channel that satisfies this condition, but the
representation is not unique, as one could analogously define right-sided or two-sided noise. In
reality, different interactions happen simultaneously, and the resulting process does not generally
factorize into a target unitary interaction and a noise map. The left sided noise model nonetheless
provides valuable information and is commonly used in the literature. Now let E(p) be a given
noise model with parameter p such as for instance dephasing noise. To assess how dominant the
contribution of E(p) is, we find the noise parameter p that best describes Λi via the minimization
problem

min
p

‖E(p)− Λi‖F. (3.9)

For the purpose of the trapped ion system analyzed here, local Z-dephasing noise given by
E(p)(ρ) = (1− p)1+ pσZρσZ (see also Table 2.1) is the most relevant.

3.2.1 Single qubit GST

The gate set used for single qubit GST is given by

G =
(
Idle(T ), Idle(2T ), e−iπ

2
σx , e−iπ

2
σy , e−iπ

4
σx , e−iπ

4
σy

)
, (3.10)

together with the initial state ρ = |0〉〈0| and the computational basis measurement E0 =
|0〉〈0|, E1 = |1〉〈1|. The idle gates of different lengths were added to characterize the back-
ground noise present when no control operation is applied. Here the gate time T is the same
overall time to apply the π/2 Bloch rotation given by e−iπ

4
σx . To perform GST on this gate set,

we use 200 random sequences of lengths L = 0, . . . , 24, where each gate in each sequence is drawn
uniformly at random from G. In Table 3.2, key gate quality measures which were computed from
rK = 4 mGST estimates are shown.

During one day of measurement acquisition, an average of 190 shots per sequences were used
to estimate the outcome probabilities (p̂]1,s, . . . p̂

]
M,s). We generally find average gate fidelities

between 0.9957 and 0.9998. The bootstrapping error bars indicate that due to the relatively
low number of shots, average gate fidelities can only be estimated up to an error of 0.005 and a
higher number of shots is required to reliably certify average gate fidelities of 0.999 or higher. We
further compute the diamond distance to the target gates, which is generally more sensitive to
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Average gate fidelity

Favg(Ui, Ĝi)
Diamond distance

1
2 ||Ui − Ĝi||�

Unitarity

u(Ĝi)

Idle-short 0.9992 [0.9971,0.9999] 0.0165 [0.0116,0.0265] 0.9972 [0.9890,1.0000]
Idle-long 0.9950 [0.9924,0.9978] 0.0197 [0.0136,0.0309] 0.9807 [0.9716,0.9923]
Rx(pi) 0.9998 [0.9968,0.9999] 0.0081 [0.0045,0.0200] 0.9995 [0.9877,1.0000]
Ry(pi) 0.9998 [0.9981,0.9999] 0.0180 [0.0108,0.0288] 1.0000 [0.9933,1.0000]

Rx(pi/2) 0.9988 [0.9970,0.9997] 0.0209 [0.0116,0.0284] 0.9964 [0.9891,1.0000]
Ry(pi/2) 0.9957 [0.9934,0.9988] 0.0174 [0.0147,0.0276] 0.9834 [0.9744,0.9960]

Table 3.2: Gate quality measures for the standard experimental setup tested on the
15th of January 2024. Confidence intervals encompass 95th percent of results over 50
bootstrapping runs.

coherent errors [71]. If we use the diamond distance to compare the results presented in Table 3.2
to results of an improved experimental setup Table 3.3, we can more reliably certify an across
the board improvement for in the implementation of the X- and Y-rotations.

Average gate fidelity

Favg(Ui, Ĝi)
Diamond distance

1
2 ||Ui − Ĝi||�

Unitarity

u(Ĝi)

Idle-short 0.9977 [0.9961,0.9990] 0.0207 [0.0150,0.0281] 0.9918 [0.9859,0.9972]
Idle-long 0.9972 [0.9948,0.9979] 0.0221 [0.0185,0.0287] 0.9897 [0.9810,0.9931]
Rx(pi) 0.9989 [0.9969,0.9999] 0.0048 [0.0029,0.0123] 0.9958 [0.9880,0.9999]
Ry(pi) 0.9991 [0.9977,1.0000] 0.0060 [0.0039,0.0129] 0.9965 [0.9911,1.0000]

Rx(pi/2) 0.9994 [0.9980,1.0000] 0.0069 [0.0040,0.0155] 0.9977 [0.9919,1.0000]
Ry(pi/2) 0.9986 [0.9960,0.9999] 0.0079 [0.0053,0.0158] 0.9944 [0.9843,0.9997]

Table 3.3: Gate quality measures for the improved experimental setup using a digital up-
converter, tested on the 11th and 12th of January 2024. Confidence intervals encompass
95th percent of results over 50 bootstrapping runs.

For the error measures shown in Table 3.2 and Table 3.3, we require a full rank estimate of
the gates. To learn about coherent errors we can run mGST for rk = 1 to obtain the best unitary
approximations to each gate, while saving on post-processing time.

Rotation angle /π Axes tilt vs. target (in ◦) Axes estimation error (in ◦)

Idle-short 0.0105 [0.0067,1.9903] – 27.2264
Idle-long 0.0110 [0.0095,1.9896] – 7.3257
Rx(pi) 0.9994 [0.9949,0.9999] 0.1603 0.0498
Ry(pi) 0.9990 [0.9965,0.9999] 0.2884 0.0961

Rx(pi/2) 0.5051 [0.4989,0.5089] 0.2031 0.5884
Ry(pi/2) 0.5005 [0.4966,0.5024] 0.4722 0.6220

Table 3.4: Single qubit rotation angle and axes tilt for the digital up-converter setup,
with errors computed from the 95th percentile over 50 bootstrapping runs.

In Table 3.4 we summarize the results using the single qubit gate parametrization via the
Bloch rotations outlined in Eq. (3.8). We observe that the rotation angles and rotation axes of
the π/2 rotations agree with the ideal angles within error bars. For the π rotations, a slight
underrotation and a slight axis tilt is observed.

The corresponding full reports, which include Hinton diagrams of all gates in the Pauli basis
and state preparation/measurement in the standard basis as well as additional quality measures,
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can be found in Appendix C.

3.2.2 Two qubit GST

For the two qubit GST experiment we choose the gate set

G =
(
14, e

−iπ
4
σx ⊗ 12, e

−iπ
4
σy ⊗ 12,12 ⊗ e−iπ

4
σx ,12 ⊗ e−iπ

4
σy , e−iπ

4
σz⊗σz

)
, (3.11)

again in combination with the initial state |00〉 and the POVM given by projectors onto the
computational basis states. The σz ⊗ σz rotation used as the entangling gate has a gate time
of 3.0147ms, which is about two orders of magnitude longer than gate times for single qubit
rotations. In Table 3.5, gate quality measures resulting from a full rank mGST estimate are
shown. The dataset used for mGST consists of 360 measured sequences with an average of 118
shots per sequence, where sequences are drawn uniformly at random up to a maximum length
of 16. Additionally, effective local dephasing parameters computed according to Eq. (3.9) are

Favg(Ui, Ĝi)
1
2 ||Ui − Ĝi||� u(Ĝi)

Dephasing probability
of Λi for qubit 1

Dephasing probability
of Λi for qubit 2

Idle 0.9649 0.1270 0.9140 0.0075 0.0301
Rx(pi/2):0 0.9927 0.0308 0.9815 0.0024 0.0050
Ry(pi/2):0 0.9786 0.0766 0.9466 0.0105 0.0114
Rx(pi/2):1 0.9967 0.0442 0.9934 0.0018 0.0012
Ry(pi/2):1 0.9746 0.0788 0.9371 0.0143 0.0115

e−iπ
4
Z⊗Z 0.6852 0.5056 0.4164 0.1481 0.2597

Table 3.5: Gate quality measures for the two qubit full rank reconstruction.

added, since we find local dephasing noise to be the principal noise source in the experiment.
The single qubit gates are modeled as two qubit gates in the optimization to also detect potential
cross talk errors, and average gate fidelities are thus expected to be higher than for the single
qubit gates studied in Table 3.3. We find that the local σx rotations have notably higher fidelities
and lower diamond distances than the σy rotations. The observation that σy rotations have a
lower unitarity hints at the fact that the error discrepancy is due to incoherent noise. And
indeed, the local dephasing probabilities are noticeably higher on the σy rotations.
The Pauli transfer matrix of the entangling gate is shown in Figure 3.4. The associated left
noise channel reveals a pattern on its diagonal which is well explained by the tensor product of
local dephasing channels. Looking at the dephasing probabilities of the entangling gate shown in
Table 3.5, we see that they are more than a magnitude higher than the dephasing probabilities
of single qubit gates. Thus, the comparatively low average gate fidelity of 0.685 is mostly due to
dephasing noise. Additionally, there is an overrotation present, which can be seen by considering
the anti-diagonal of the matrix ĜU−1 and noting that the pattern corresponds to the ideal σz⊗σz
rotation. Through the computation of the Hamiltonian for the rK = 1 fit, we also find that the
angle of the σz⊗σz is 0.592π and thus higher than the target of π/2. In terms of other unwanted
rotations, the most dominant is a local Z rotation on the first qubit with a rotation angle of
−0.08π. The error pattern produced by the local Z rotation is also consistent with the pattern
observed in the top right and bottom left of the plot for ĜU−1.

Since the number of free parameters for an rK = 16 two qubit gate set is much larger than
the number of sequences measured, the question arises whether our estimates give an accurate
model of the true gates. Two arguments can be made in favor. First, we observe that no
overfitting occurs, i.e. the cost function does not converge to a lower error than what is expected
for the given shot noise. Second, we expect the true gates to be of low Kraus rank, especially
the high fidelity single qubit gates. Therefore, the data should be consistent with a sparse, low
parameter count model. In Table 3.6 we include the largest eigenvalues {λi} of the Choi matrices
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Figure 3.4: Pauli transfer matrix plots for the estimate Ĝ, whose target implementation
is U = e−iπ

4
σz⊗σz . On the left is the full rank mGST reconstruction, in the center the

ideal unitary gate and on the right the left noisy gate ĜU−1. The area of each square tile
represents the magnitude of the matrix entry, while the color coding represents both the
magnitude and the sign.

of our estimates Ĝ, sorted from highest to lowest. The eigenvalues provide information about
the approximate Kraus rank. More precisely, if we keep only the k largest Kraus operators
K1,K2, . . . ,Kk, the Frobenius norm error incurred by approximating the Choi matrix is given
by ‖J (Ĝ)|rK=k − J (Ĝ)‖F =

∑
i>k λ

2
i .

λ1 λ2 λ3 λ4 λ5 λ6 λ7

Idle 0.95819 0.03885 0.00288 0.00006 0.00001 0.00000 0.00000
Rx(pi/2):0 0.99130 0.00679 0.00153 0.00035 0.00003 0.00000 0.00000
Ry(pi/2):0 0.97445 0.02083 0.00458 0.00010 0.00004 0.00000 0.00000
Rx(pi/2):1 0.99688 0.00250 0.00059 0.00003 0.00000 0.00000 0.00000
Ry(pi/2):1 0.96982 0.02335 0.00486 0.00161 0.00031 0.00004 0.00000

e−iπ
4
Z⊗Z 0.62867 0.21909 0.09275 0.03678 0.01879 0.00364 0.00024

Table 3.6: Eigenvalues of the Choi state for the two qubit full rank reconstruction.

In Table 3.6 we see that for single qubit gates the magnitude of the eigenvalues rapidly
decays. For the entangling gate we find a slower decay, while nonetheless the contribution after
the 4−5 largest eigenvalues becomes negligible. Thus far mGST uses the same predefined Kraus
rank for all gates, but the above results suggest that choosing the rank on a per-gate basis or
even adaptively could yield accurate estimates while further saving on computation time. More
information about the mGST estimates and quality measures can again be found in the full
report (Appendix C).

3.3 Improving shadow estimation with compressive GST

The classical shadow estimation protocol which we reviewed in Section 2.3 promises the scalable
estimation of many observables at once and is thus very promising for current and near future
quantum device consisting of hundreds of qubits. In addition to the theoretical error bounds
under noise which we derive in Chapter 4, we develop a simple method in [45] to mitigate the
effects of noise using compressive GST. Let φ(g) be the (noisy) implementation of a gate g and
let ω(g) be the unitary target implementation. Then according to Eq. (2.158), the expectation
value for the shadow estimate ô of a given observable O on the state ρ is given by

E[ô] = (O|S−1
E

[
φ(g)†|Ex)

]
= (O |S−1S̃ |ρ), (3.12)
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where S is the ideal frame operator and S̃ its noisy counterpart. In the protocol, S̃ directly
depends on the experiment through φ(g), while S−1 is known beforehand and applied in post-
processing. It is immediately clear that if we have information about the noise, we can construct

an estimate ˆ̃S and use this operator instead for the post-processing step, resulting in a lower

error incurred by the inversion: ‖ ˆ̃S−1S̃ − id‖ < ‖S−1S̃ − id‖.
The specific shadow estimation protocol we consider here is the easiest to implement exper-

imentally, where random Pauli bases measurements are used. We assume they are facilitated
with the native computational basis measurement and the gate set G = (Id, H,HS) where H
is the Hadamard gate and S is the phase gate. The action of H enables a measurement in the
eigenbasis of σx, while the action of HS enables a measurement in the eigenbasis of σy. The
resulting noisy frame operator is defined as

S̃ :=
1

3n

∑

g∈Gn

∑

x∈{0,1}n

ω(g)|Ex)(Ex|φ(g), (3.13)

which for arbitrary global noise is a matrix in C
d2×d2 . In order for S̃ to be efficiently invertible,

we assume that noisy implementations φ(g) = ω(g)Λ(g) act only locally on two qubit pairs,
which means we can factorize the frame operator as

S̃ =

n/2⊗

i=1

S̃i,i+1, (3.14)

where we have w.l.o.g. taken n to be even. In Figure 3.5, circuits used in the shadow estimation
protocol with the above noise assumption are illustrated.

Λ(g1)

ω(g1)

Λ(g2)

Z

ω(g2) Z

...

Λ(gn−1)

ω(gn−1)

Λ(gn)

Z

ω(gn) Z

φ(gn)




|ψ〉

Figure 3.5: Circuit diagram for the noise model consisting of two qubit noise channels
Λi acting on isolated two-qubit pairs.

Using compressive GST on these two-qubit pairs, the 2-local noise channels Λ(gi) can be
estimated with n/2 additional GST experiments. In an experimental setting this would be done
once, before any data for shadow estimation is taken.

In the following, an overview of the numerical simulations done in our publication [45] is
given. As an observable we take the 10-qubit Heisenberg Hamiltonian

H =
1

2

10∑

j=1

(σjxσ
j+1
x + σjyσ

j+1
y + σjzσ

j+1
z − σjz) (3.15)
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Figure 3.6: Relative error for the ground state energy estimate produced by standard
shadow estimateion (red) and error mitigated shadow estimation using mGST (blue).
The boxes extend from the 25th to the 75th percentile of data, while the whiskers extend
from the 5th to the 95th percentile. Along the x-axis the total number of samples for
the shadow estimation protocol are varied. The dotted lines represent the infinite-sample
limit.

with periodic boundary conditions. For the noise model we consider random two qubit unitaries
given by eiγK , where K is drawn from the Gaussian unitary ensemble. The noise parameter γ
is selected for to get average gate fidelities of Favg(ω(gi), φ(gi)) = 0.99 ± 0.001. In Figure 3.6,
standard shadow estimation results are compared to error mitigated results which use compressive
GST estimates of Kraus rank rK = 2. We see that for a low number of samples (10−3), shot noise
is still dominant and no reduction in relative error can be observed. Already for 104 samples, we
observe considerable improvements in relative error using GST estimates. It is also important to
note that for the given noisy model, the relative error for standard shadow estimation does not
decrease when adding more samples, since the error is entirely dominated by the bias resulting
from imperfect gates.

We further observe in Figure 3.6 that the relative error for infinitely many samples in the
GST-assisted setting is limited to about 10−4. This is due to the fact that the GST-estimates
are finite sample estimates themselves, where we use 400 random sequences with 104 shots per
sequence in the simulations. In the full article (Appendix A), the bias reduction is further studied
not only for the ground state, but also for random states and all eigenstates of the Hamiltonian.
We find a bias reduction between half an order of magnitude (for random states) and one order
of magnitude (for Hamiltonian eigenstates) on average.

In summary, we presented a new error mitigation scheme which makes use of GST estimates
and demonstrated in numerical simulations that significant error mitigation can be achieved in a
practically relevant scenario. Implementing the mitigation protocol for real quantum hardware,
for instance to estimate the energy of experimentally prepared states with respect to a quantum
chemistry Hamiltonian, it thus a promising next step. The protocol can also be generalized to
include different locality structures of noise channels, and in contrast to mitigation via robust
shadows [44], the local noise channels are allowed to be fully general.



Chapter 4

Shadow estimation under

gate-dependent noise

The ability to efficiently extract information about the final state of a quantum system is central
for quantum computing as well as for gaining an understanding about the physical properties of
the system. In Section 2.3 we reviewed a very promising recent development known as shadow
estimation, which uses randomized measurements to efficiently obtain a classical model of the
quantum state, from which many properties of the state can be estimated simultaneously. Even
though the model is ’classical’, in the precise sense that we can efficiently store it on a classical
computer, we can use it to accurately predict uniquely quantum properties of the quantum
state in the experiment, for instance the entanglement between subsystems. Due to its practical
promise, shadow estimation has seen huge interest since the original works in 2019. Surprisingly
though, there was very little theoretical understanding about the behavior of shadow estimation
under noise. The original work [36] did not consider any type of noise, while later works [44, 199,
200] limit themselves to a simple gate-independent noise model. There are also noise mitigation
methods which go beyond gate-independent or readout noise like our own work [45] or the work
by Jnane et al. [201], which uses a probabilistic error cancellation method. Yet those methods
require a model of the noise occurring in the experiment, which is either simplified, or costly to
obtain.

This chapter gives an overview of our results on shadow estimation under general gate-
dependent noise, where we follow the preprint [47], which is also included in Appendix B. We
are mostly concerned with the estimation bias. Let ô be the estimator of the expectation value
of an observable O for the state ρ, then the bias is defined as |E[ô] − Tr(Oρ)|. We first present
two propositions, which show how a theoretical understanding of gate-dependent noise is funda-
mentally required to build trust in the shadow estimator.

Proposition 11. Gate-dependent noise can lead to a bias of Ω(2n/4) on the shadow estimate of
a pure state fidelity on an n-qubit state.

An explicit example realizing this error scaling is given in [47]. We see that the bias resulting
from noisy operations in the implementation of randomized measurements can amplify exponen-
tially in the systems size in the worst case. What is also worrying is that ’robust shadows’ [44],
a method that provably mitigates noise for gate-independent errors, can itself introduce a bias
which scales exponentially in the system size under gate-dependent noise.

Proposition 12. ‘Robust classical shadows’ can introduce a bias of up to eΩ(n) while the standard
classical shadows yield unbiased estimators.

These propositions are based on explicit examples, and there is still the hope that they
represent a worst case scaling, which can be avoided in everyday scenarios. To see if this is
indeed the case, we derive general bounds on the bias.

66
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Recall from Section 2.3 that a single shot shadow estimator is given by

ô := (O |S−1ω(g)† |Ex) , (4.1)

where x ∈ {0, 1}n is the computational basis measurement outcome, and ω(g) is a random basis
change operation. We assume that g is sampled randomly from the Clifford group Cln according
to a probability distribution p. This definition covers most random measurement protocols of
classical shadows, such as uniform sampling from the global Clifford group Cln, uniform sampling
from the local Clifford group Cl×n

1 , shallow Clifford circuits, random Pauli basis measurements
and matchgate 3-designs. Such a protocol is called informationally complete if the frame operator

S = E
g∼p

[ω(g)†
∑

x

|Ex)(Ex|ω(g)] , (4.2)

is invertible (see Definition in Eq. (2.155)). The noise model we consider is time-stationary and
context independent, and we write the noisy implementation of a gate g as φ(g) = ω(g)Λ(g),
where ω(g) is the ideal implementation and Λ(g) is a gate-dependent CPT map. Note that any
quantum channel φ(g) can be written in this form. To derive our main results we first give the
following Lemma.

Lemma 13. Consider an informationally complete Clifford-based shadow estimation protocol.
Then, the shadow estimator’s expected value is given by

E[ô] =
1

d
(O|

∑

a∈Pn

|σa)(σa|Λ̄a|ρ), (4.3)

where the quantum channels Λ̄a are averages over noise channels Λ(g) applied in the protocol.

We recall that d−1
∑

a∈Pn
|σa)(σa| is just the identity channel. In effect, the protocol does

not see the correct Pauli basis coefficients (σa |ρ), but only the basis coefficients of perturbed
states: (σa |Λ̄a(ρ)).

For the formulation of our main theorem, we also need what is called the stabilizer norm

‖O‖st :=
1

d

∑

a∈Pn

|(σa |O)| , (4.4)

which interestingly also turns up in the resource theory of magic, where low stabilizer norm
observables and states lead to lower upper bounds on the computing time for a classical simulation
of the system [202].

Theorem 14. Consider an informationally complete Clifford-based shadow estimation protocol
and let O be any observable. Then the estimation bias is bounded as

|E[ô]− Tr(Oρ)| ≤
{
‖O‖st · εmax for arbitrary noise,

min {‖O‖2, ‖O‖st} · εmax for Pauli noise,

where εmax ≤ 1 is a worst-case error measure over all gates.

In the research paper [47] we show that εmax can either be taken as the maximum diamond
norm error over unitaries in the protocol, or the maximum diamond norm error over the average
noise channels Λ̄a. The utility of the bound depends on the stabilizer norm, which ranges
from ‖O‖st = 1 for stabilizer states and Pauli observables to ‖O‖st = O(d) for magic states.
Thankfully, low stabilizer norm observables encompass important use cases like fidelity estimation
with respect to a stabilizer state, correlations functions and the energy estimation of a local
Hamiltonian. When dealing with Pauli noise, the bound can be also formulated in terms of
the Hilbert-Schmidt norm ‖O‖2, which satisfies ‖|ψ〉〈ψ|‖2 = 1 for all ψ ∈ H (including magic
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states). We know that the bound for arbitrary noise is essentially tight, since the example used
to proof Proposition 11 is for a high stabilizer norm observable where ‖O‖st scales as 2n/4.

Apart from control over the bias, the sample complexity of shadow estimation also has to
remain controlled under noise in order for the protocol to be applicable in practice. The sample
complexity is fully determined by the variance V[ô] of the estimator, and in the following we also
present bounds on the variance for informationally complete shadow estimation protocols based
on either the local or the global Clifford group.

Theorem 15. Let O0 be the traceless part of the observable O. Then, the variance of shadow
estimation for uniform sampling from the global Clifford group is bounded by

Vglobal[ô] ≤
2(d+ 1)

(d+ 2)
‖O0‖2st +

d+ 1

d
‖O0‖22 .

For uniform sampling from the local Clifford group, the variance is bounded by Vloc[ô] ≤ 4k‖Oloc‖2∞
for k-local observables O = Oloc ⊗ 1

n−k and by Vloc[ô] ≤ 3supp(σa) for Pauli observables O = σa.

The proof extensively uses the representation theory tools which we describe in Section 2.1.2.
For comparison, the noise-free bound given in [36] is given by Vglobal[ô] ≤ 3‖O‖22, while the
noise-free bound for local Cliffords is exactly the same as in Theorem 15. Consequently, only
the variance for the global Clifford group depends on the stabilizer norm, but in contrast to
Theorem 14, it is not clear whether this bound is tight. In the paper we also give a variance
bound on arbitrary informationally complete Clifford-based protocols in analogy to how the
bound on the bias is formulated, but it depends on properties of the frame operator for the given
distribution p and has to be evaluated separately for each protocol.

In Proposition 12 we already saw that there exist gate-dependent noise models for which
the robust shadow estimation protocol can increase the bias dramatically. However, for certain
reasonable gate-dependent noise models that were studied numerically in the literature [44, 203],
robust shadows was shown to perform well. We thus wanted to see if a general statement can
be made, i.e. if there is class of noise models (larger than gate-independent noise), for which the
method still works. This led us to study analytically what happens in robust shadow estimation
when the noise is gate-dependent. We found that under Pauli noise, robust shadows effectively
corrects for the average Pauli-noise. We then show that if the Pauli-noise is sufficiently isotropic,
robust shadow estimation still works with high probability, for any state and observable.

What we learn from the results summarized here is that there are scenarios in which shadow
estimation and robust shadow estimation are not well-behaved, and care needs to be taken in an
experiment to avoid them. Fortunately, as we show in Theorem 14 and Theorem 15, for most
use cases the standard shadow estimation protocol is inherently stable against the effects of gate-
dependent noise. Furthermore, our results on robust shadows under gate-dependent Pauli noise
provide the basis for future error mitigation protocols that take more general noise models into
account. We also expect our proof techniques to be useful for the study of other Clifford-based
protocols in terms of their robustness against noise.



Chapter 5

Conclusion

To further reduce errors in current quantum devices and to learn from the quantum states they
prepare, we need characterization methods that work even with imperfect device control. In this
thesis we have concerned ourselves with two crucial tasks, the characterization of gate sets and
the estimation of state properties via shadow estimation. We have identified limits in previous
approaches, namely the inefficiency of GST and the lack of noise resilience guarantees for shadow
estimation. To be equipped with the right tools to tackle these problems, we have given a theo-
retical background of several key ideas. First, we have familiarized ourselves with selected results
from representation theory and from the study of matrix manifolds, as well as theoretical foun-
dations of characterization tasks: Quantum operations, tensor networks, distance measures and
the shadow estimation formalism. Additionally, we have taken a shot at summarizing the most
influential ideas from the vast literature of quantum process tomography, of which compressed
sensing and self-consistent methods are important for our own research.

In Chapter 3 we have presented our compressive GST algorithm and showed that it can
accurately learn low rank approximations of gates in an experiment. Our algorithm uses fewer
measurement settings and less classical computing time than previous methods, while only re-
quiring random measurements and thus circumventing the need to design measurement settings
on a per-case basis. This is all made possible with manifold optimization techniques as well as
several problem-specific heuristic methods, showing that with the right tools, difficult optimiza-
tion problems can be tamed in practice. In the application of our algorithm to a real world
experiment, we have seen how low rank models are really well suited to capture realistic noise,
even exceeding our expectations. We have for instance seen how an entangling gate with substan-
tial noise contributions can still be accurately represented with just the 2-3 highest magnitude
Kraus operators. These results validate our low rank model and have allowed us to provide
helpful advice to experimentalists regarding error sources.

We have further numerically demonstrated how compressive GST can be used to mitigate
errors in shadow estimation, leading to an increase in accuracy of an order of magnitude or higher
for realistic noise models. This idea of mitigating errors uses full knowledge of local noise models
obtained from GST and could be promising for error mitigation in other protocols as well.

To fill a gap in the understanding of shadow estimation under noise, we have presented theo-
retical guarantees on its bias and variance in Chapter 4. These guarantees show that the protocol
is inherently noise-resilient, but only for the estimation of observables with a low stabilizer norm.
For a high stabilizer norm, for instance in the task of estimating the fidelity to a magic state,
we have shown that gate-dependent errors can accumulate and lead to an exponential bias. This
suggests an interesting connection: observables with high magic, which is often regarded as a
measure of ’quantumness’ due to the difficulty to classically simulate systems with magic states
or magic observables, are also the ones which are most susceptible to noise in the estimation
protocol.

We have also analyzed previous error mitigation methods and shown that worryingly, they
can themselves increase the bias in the presence of gate-dependent noise. To show when these
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protocols can still be trusted, we have given more general conditions than in previous works for
when this unwanted behavior does not occur.

There are several promising follow-up directions to our works. Regarding the analysis of error
mitigation protocols under gate-dependent noise, we have only been able to show that they still
work under unstructured Pauli noise. We believe that this can be generalized to larger classes of
noise models using our proof techniques. Regarding compressive GST, we are currently working
on further decreasing the classical computation time of our algorithm through the elimination of
unnecessary gauge parameters and through avoiding the computation of the Hessian matrix when
applicable. It would further be of high interest for compressive GST and the GST literature in
general if theoretical guarantees for the learnability of gate sets with randomized measurements
could be formulated.



BIBLIOGRAPHY 71

Bibliography

[1] J. Bardeen and W. H. Brattain, The transistor, a semi-conductor triode, Phys. Rev. 74,
230 (1948).

[2] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467 (1982).

[3] P. Shor, Algorithms for quantum computation: discrete logarithms and factor-
ing, Proceedings 35th Annual Symposium on Foundations of Computer Science
10.1109/sfcs.1994.365700 (1994).

[4] L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing (1996) pp. 212–219,
arXiv:quant-ph/9605043 [quant-ph] .

[5] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin
tossing, Theoretical computer science 560, 7 (2014).

[6] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. En-
glund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari,
M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Advances in quan-
tum cryptography, Advances in Optics and Photonics 12, 1012 (2020), arXiv:1906.01645
[quant-ph].

[7] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan,
T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis, and A. Aspuru-Guzik, Quan-
tum chemistry in the age of quantum computing, Chemical Reviews 119, 10856 (2019),
arXiv:1812.09976 [quant-ph].

[8] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean,
K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Variational quantum algorithms, Nat. Rev.
Phys. 3, 625 (2021), arXiv:2012.09265 [quant-ph].

[9] D. E. Deutsch, Quantum computational networks, Proceedings of the royal society of Lon-
don. A. mathematical and physical sciences 425, 73 (1989).

[10] A. Y. Kitaev, Quantum computations: algorithms and error correction, Russian Math.
Surv. 52, 1191 (1997).

[11] A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Conditional Quantum Dynamics and
Logic Gates, Phys. Rev. Lett. 74, 4083 (1995), arXiv:quant-ph/9503017 [quant-ph].

[12] J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett.
74, 4091 (1995).

[13] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Demonstration
of a fundamental quantum logic gate, Phys. Rev. Lett. 75, 4714 (1995).

[14] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. Lancaster, T. Deuschle, C. Becher,
C. F. Roos, J. Eschner, and R. Blatt, Realization of the cirac–zoller controlled-not quantum
gate, Nature 422, 408 (2003).

[15] Google AI Quantum and Collaborators, Quantum supremacy using a programmable super-
conducting processor, Nature 574, 505 (2019), arXiv:1910.11333 [quant-ph].

[16] Q. Zhu, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan,
M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H.-L. Huang, Y.-H. Huo, L. Li, N. Li,
S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang,



72 CHAPTER 5. CONCLUSION

S. Wang, D. Wu, Y. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying,
J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou,
C.-Y. Lu, C.-Z. Peng, X. Zhu, and J.-W. Pan, Quantum computational advantage via 60-
qubit 24-cycle random circuit sampling, Science Bulletin 67, 240 (2022), arXiv:2109.03494
[quant-ph].

[17] L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. Bulmer, F. M.
Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, et al., Quantum computational advantage
with a programmable photonic processor, Nature 606, 75 (2022).

[18] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. Van Den Berg, S. Rosenblatt, H. Nayfeh,
Y. Wu, M. Zaletel, K. Temme, et al., Evidence for the utility of quantum computing before
fault tolerance, Nature 618, 500 (2023).

[19] F. Pan, K. Chen, and P. Zhang, Solving the Sampling Problem of the Sycamore Quantum
Circuits, Phys. Rev. Lett. 129, 090502 (2022), arXiv:2111.03011 [quant-ph].

[20] T. Begušić and G. Kin-Lic Chan, Fast classical simulation of evidence for the utility of
quantum computing before fault tolerance, arXiv:2306.16372 [quant-ph] (2023).

[21] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quan-
tum computation, Nature 549, 172 (2017), arXiv:1612.07330 [quant-ph].

[22] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error rate,
in 29th ACM Symp. on Theory of Computing (STOC) (New York, 1997) pp. 176–188.

[23] L. Postler, F. Butt, I. Pogorelov, C. D. Marciniak, S. Heußen, R. Blatt, P. Schindler,
M. Rispler, M. Müller, and T. Monz, Demonstration of fault-tolerant Steane quantum error
correction, arXiv:2312.09745 [quant-ph] (2023).

[24] D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz, S. Ebadi, M. Cain,
M. Kalinowski, D. Hangleiter, J. P. Bonilla Ataides, N. Maskara, I. Cong, X. Gao, P. Sales
Rodriguez, T. Karolyshyn, G. Semeghini, M. J. Gullans, M. Greiner, V. Vuletić, and
M. D. Lukin, Logical quantum processor based on reconfigurable atom arrays, Nature 626,
58 (2024), arXiv:2312.03982 [quant-ph].

[25] B. Cheng, X.-H. Deng, X. Gu, Y. He, G. Hu, P. Huang, J. Li, B.-C. Lin, D. Lu, Y. Lu,
C. Qiu, H. Wang, T. Xin, S. Yu, M.-H. Yung, J. Zeng, S. Zhang, Y. Zhong, X. Peng,
F. Nori, and D. Yu, Noisy intermediate-scale quantum computers, Frontiers of Physics 18,
21308 (2023), arXiv:2303.04061 [quant-ph].

[26] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and
E. Kashefi, Quantum certification and benchmarking, Nature Reviews Physics 2, 382 (2020),
arXiv:1910.06343 [quant-ph].

[27] M. Kliesch and I. Roth, Theory of quantum system certification, PRX Quantum 2, 010201
(2021), arXiv:2010.05925 [quant-ph].

[28] S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A. D. Córcoles, B. R. Johnson,
C. A. Ryan, and M. Steffen, Self-consistent quantum process tomography, Phys. Rev. A 87,
062119 (2013), arXiv:1211.0322 [quant-ph].

[29] C. Stark, Self-consistent tomography of the state-measurement Gram matrix, Phys. Rev. A
89, 052109 (2014), arXiv:1209.5737 [quant-ph].

[30] R. Blume-Kohout, J. King Gamble, E. Nielsen, J. Mizrahi, J. D. Sterk, and P. Maunz,
Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion
qubit, arXiv:1310.4492 [quant-ph].



BIBLIOGRAPHY 73

[31] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer,
R. Ozeri, S. Seidelin, and D. J. Wineland, Randomized benchmarking of quantum gates,
Phys. Rev. A 77, 012307 (2008), arXiv:0707.0963 [quant-ph].

[32] J. Helsen, I. Roth, E. Onorati, A. Werner, and J. Eisert, General framework for randomized
benchmarking, PRX Quantum 3, 020357 (2022), arXiv:2010.07974 [quant-ph].

[33] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, Validating
quantum computers using randomized model circuits, Phys. Rev. A 100, 032328 (2019),
arXiv:1811.12926 [quant-ph].

[34] R. Blume-Kohout and K. C. Young, A volumetric framework for quantum computer bench-
marks, Quantum 4, 362 (2020), arXiv:1904.05546 [quant-ph].

[35] T. Proctor, S. Seritan, K. Rudinger, E. Nielsen, R. Blume-Kohout, and K. Young, Scalable
Randomized Benchmarking of Quantum Computers Using Mirror Circuits, Phys. Rev. Lett.
129, 150502 (2022), arXiv:2112.09853 [quant-ph].

[36] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum sys-
tem from very few measurements, Nature Physics 16, 1050–1057 (2020), arXiv:2002.08953
[quant-ph].

[37] A. Elben, S. T. Flammia, H.-Y. Huang, R. Kueng, J. Preskill, B. Vermersch, and P. Zoller,
The randomized measurement toolbox, Nat. Rev. Phys. 10.1038/s42254-022-00535-2 (2022),
arXiv:2203.11374.

[38] A. Elben, R. Kueng, H.-Y. R. Huang, R. van Bijnen, C. Kokail, M. Dalmonte, P. Calabrese,
B. Kraus, J. Preskill, P. Zoller, and B. Vermersch, Mixed-state entanglement from local
randomized measurements, Phys. Rev. Lett. 125, 200501 (2020), arXiv:2007.06305 [quant-
ph].

[39] T. Zhang, J. Sun, X.-X. Fang, X.-M. Zhang, X. Yuan, and H. Lu, Experimental quan-
tum state measurement with classical shadows, Phys. Rev. Lett. 127, 200501 (2021),
arXiv:2008.05234 [quant-ph].

[40] G. Struchalin, Y. A. Zagorovskii, E. Kovlakov, S. Straupe, and S. Kulik, Experimental
estimation of quantum state properties from classical shadows, PRX Quantum 2, 010307
(2021), arXiv:2008.05234 [quant-ph].

[41] H.-Y. Huang, R. Kueng, G. Torlai, V. V. Albert, and J. Preskill, Provably efficient machine
learning for quantum many-body problems, Science 377, eabk3333 (2022), arXiv:2106.12627
[quant-ph].

[42] W. J. Huggins, B. A. O’Gorman, N. C. Rubin, D. R. Reichman, R. Babbush, and J. Lee,
Unbiasing fermionic quantum Monte Carlo with a quantum computer, Nature 603, 416
(2022), 2106.16235 [quant-ph].

[43] J. Helsen, M. Ioannou, J. Kitzinger, E. Onorati, A. H. Werner, J. Eisert, and I. Roth,
Shadow estimation of gate-set properties from random sequences, Nature Communications
14, 5039 (2023), arXiv:2110.13178 [quant-ph].

[44] S. Chen, W. Yu, P. Zeng, and S. T. Flammia, Robust shadow estimation, PRX Quantum
2, 030348 (2021), arXiv:2011.09636 [quant-ph].

[45] R. Brieger, I. Roth, and M. Kliesch, Compressive gate set tomography, PRX Quantum 4,
010325 (2023), arXiv:2112.05176 [quant-ph].



74 CHAPTER 5. CONCLUSION

[46] R. Brieger, I. Roth, and M. Kliesch, Python implementation of mGST, a compressive gate
set tomography algorithm, https://github.com/rabrie/mGST (2021).

[47] R. Brieger, M. Heinrich, I. Roth, and M. Kliesch, Stability of classical shadows under gate-
dependent noise, arXiv:2310.19947 [quant-ph] (2023).

[48] I. A. Luchnikov, M. E. Krechetov, and S. N. Filippov, Riemannian geometry and automatic
differentiation for optimization problems of quantum physics and quantum technologies,
New Journal of Physics 23, 073006 (2021), arXiv:2007.01287 [quant-ph].

[49] W. Fulton and J. Harris, Representation theory , Vol. 129 (Springer Science & Business
Media, 2013).

[50] B. Simon, Representations of finite and compact groups, 10 (Am. Math. Soc., 1996).

[51] R. Goodman and N. R. Wallach, Representations and invariants of the classical groups
(Cambridge University Press, 2000).

[52] J. Emerson, R. Alicki, and K. Życzkowski, Scalable noise estimation with random unitary
operators, J. Opt. B 7, S347 (2005), arXiv:quant-ph/0503243.

[53] E. Magesan, J. M. Gambetta, and J. Emerson, Characterizing quantum gates via random-
ized benchmarking, Phys. Rev. A 85, 042311 (2012), arXiv:1109.6887.

[54] M. Heinrich, M. Kliesch, and I. Roth, General guarantees for randomized benchmarking
with random quantum circuits, arXiv:2212.06181 [quant-ph] (2022).

[55] D. A. Roberts and B. Yoshida, Chaos and complexity by design, Journal of High Energy
Physics 10.1007/JHEP04(2017)121, arXiv:1610.04903 [quant-ph].

[56] Z. Webb, The Clifford group forms a unitary 3-design, arXiv:1510.02769 [quant-ph].

[57] H. Zhu, R. Kueng, M. Grassl, and D. Gross, The Clifford group fails gracefully to be a
unitary 4-design, arXiv:1609.08172 [quant-ph].

[58] A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogo-
nality constraints, SIAM Journal on Matrix Analysis and Applications 20, 303 (1998),
arXiv:physics/9806030 [physics.comp-ph].

[59] P. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds
(Princeton University Press, 2009).

[60] J. H. Manton, Optimization algorithms exploiting unitary constraints, IEEE Trans. Signal
Process. 50, 635 (2002).

[61] G. Bécigneul and O.-E. Ganea, Riemannian Adaptive Optimization Methods, arXiv e-prints
(2018), arXiv:1810.00760 [cs.LG].

[62] J. Li, L. Fuxin, and S. Todorovic, Efficient Riemannian Optimization on the Stiefel Mani-
fold via the Cayley Transform, arXiv e-prints (2020), arXiv:2002.01113 [cs.LG].

[63] N. Boumal, P. A. Absil, and C. Cartis, Global rates of convergence for nonconvex optimiza-
tion on manifolds, arXiv e-prints (2016), arXiv:1605.08101 [math.OC].

[64] N. Boumal, An introduction to optimization on smooth manifolds (Cambridge University
Press, 2023).

[65] S. Wisdom, T. Powers, J. R. Hershey, J. Le Roux, and L. Atlas, Full-capacity unitary recur-
rent neural networks, in Adv. Neural Inf. Process. Syst., Vol. 29 (2016) arXiv:1611.00035
[stat.ML] .



BIBLIOGRAPHY 75

[66] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger,
A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year
update, Journal of Neural Engineering 15, 031005 (2018).

[67] E. Chiumiento and M. Melgaard, Stiefel and grassmann manifolds in quantum chemistry,
Journal of Geometry and Physics 62, 1866 (2012).

[68] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, Alternating minimization algorithms for
hybrid precoding in millimeter wave mimo systems, IEEE Journal of Selected Topics in
Signal Processing 10, 485 (2016).

[69] F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, Mu-mimo communications with mimo
radar: From co-existence to joint transmission, IEEE Transactions on Wireless Communi-
cations 17, 2755 (2018).

[70] E. Knill, Quantum computing with realistically noisy devices, Nature 434, 39 (2005),
arXiv:quant-ph/0410199.

[71] R. Kueng, D. M. Long, A. C. Doherty, and S. T. Flammia, Comparing experiments to the
fault-tolerance threshold, Phys. Rev. Lett. 117, 170502 (2016), arXiv:1510.05653 [quant-
ph].

[72] K. Temme, S. Bravyi, and J. M. Gambetta, Error Mitigation for Short-Depth Quantum
Circuits, Phys. Rev. Lett. 119, 180509 (2017), arXiv:1612.02058 [quant-ph].

[73] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cam-
bridge University Press, 2010).

[74] J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).

[75] C. J. Wood, J. D. Biamonte, and D. G. Cory, Tensor networks and graphical calculus for
open quantum systems, Quant. Inf. Comp. 15, 0579 (2015), arXiv:1111.6950 [quant-ph].

[76] K. Życzkowski and I. Bengtsson, On Duality between Quantum Maps and Quantum States,
Open Systems & Information Dynamics 11, 3 (2004).

[77] S. T. Flammia and J. J. Wallman, Efficient estimation of Pauli channels, ACM Transac-
tions on Quantum Computing 1, 1 (2020), arXiv:1907.12976 [quant-ph].

[78] S. J. Beale, J. J. Wallman, M. Gutiérrez, K. R. Brown, and R. Laflamme, Quantum error
correction decoheres noise, Phys. Rev. Lett. 121, 190501 (2018).

[79] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via ran-
domized compiling, Phys. Rev. A 94, 052325 (2016), arXiv:1512.01098 [quant-ph].

[80] A. Hashim, R. K. Naik, A. Morvan, J.-L. Ville, B. Mitchell, J. M. Kreikebaum, M. Davis,
E. Smith, C. Iancu, K. P. O’Brien, I. Hincks, J. J. Wallman, J. Emerson, and I. Sid-
diqi, Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting
Quantum Processor, Physical Review X 11, 041039 (2021), arXiv:2010.00215 [quant-ph].

[81] M. Ware, G. Ribeill, D. Ristè, C. A. Ryan, B. Johnson, and M. P. da Silva, Experimental
Pauli-frame randomization on a superconducting qubit, Phys. Rev. A 103, 042604 (2021),
arXiv:1803.01818 [quant-ph].

[82] G. García-Pérez, M. A. C. Rossi, and S. Maniscalco, Ibm q experience as a versatile ex-
perimental testbed for simulating open quantum systems, npj Quantum Information 6, 1
(2020), arXiv:1906.07099 [quant-ph].



76 CHAPTER 5. CONCLUSION

[83] M. M. Wolf and J. I. Cirac, Dividing quantum channels, Commun. Math. Phys. 279, 147
(2008), math-ph/0611057.

[84] M. Guţă, J. Kahn, R. Kueng, and J. A. Tropp, Fast state tomography with optimal error
bounds, Journal of Physics A Mathematical General 53, 10.1088/1751-8121/ab8111 (2020),
arXiv:1809.11162 [quant-ph].

[85] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett, O. Landon-
Cardinal, D. Poulin, and Y.-K. Liu, Efficient quantum state tomography, Nat. Commun.
1, 149 (2010), arXiv:1101.4366 [quant-ph].

[86] A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi, Provable
compressed sensing quantum state tomography via non-convex methods, npj Quant. Inf. 4,
36 (2018), arXiv:1711.02524 [quant-ph].

[87] F. G. S. L. Brandão, R. Kueng, and D. Stilck França, Fast and robust quantum state to-
mography from few basis measurements, arXiv e-prints 10.48550/arXiv.2009.08216 (2020),
arXiv:2009.08216 [quant-ph].

[88] J. A. Smolin, J. M. Gambetta, and G. Smith, Efficient Method for Computing the
Maximum-Likelihood Quantum State from Measurements with Additive Gaussian Noise,
Phys. Rev. Lett. 108, 10.1103/PhysRevLett.108.070502 (2012), arXiv:1106.5458 [quant-
ph].

[89] M. A. Nielsen, A simple formula for the average gate fidelity of a quantum dynamical
operation, Phys. Lett. A 303, 249 (2002), arXiv:quant-ph/0205035.

[90] T. Proctor, K. Rudinger, K. Young, M. Sarovar, and R. Blume-Kohout, What randomized
benchmarking actually measures, Phys. Rev. Lett. 119, 130502 (2017), arXiv:1702.01853
[quant-ph].

[91] A. W. Cross, D. P. DiVincenzo, and B. M. Terhal, A comparative code study for quantum
fault-tolerance, Quant. Inf. Comp. 9, 0541 (2009), arXiv:0711.1556 [quant-ph].

[92] J. Watrous, Simpler semidefinite programs for completely bounded norms, Chicago J. Theo.
Comp. Sci. 2013, 1 (2013), arXiv:1207.5726.

[93] J. J. Wallman, Bounding experimental quantum error rates relative to fault-tolerant thresh-
olds, arXiv:1511.00727 [quant-ph] (2015).

[94] J. Wallman, C. Granade, R. Harper, and S. T. Flammia, Estimating the coherence of noise,
New J. Phys. 17, 10.1088/1367-2630/17/11/113020 (2015), arXiv:1503.07865 [quant-ph].

[95] E. Magesan, Characterizing noise in quantum systems (2012), PhD thesis.

[96] F. B. Maciejewski, Z. Zimborás, and M. Oszmaniec, Mitigation of readout noise in near-
term quantum devices by classical post-processing based on detector tomography, Quantum
4, 257 (2020), arXiv:1907.08518 [quant-ph].

[97] Z. Puchała, L. Pawela, A. Krawiec, and R. Kukulski, Strategies for optimal single-shot dis-
crimination of quantum measurements, Phys. Rev. A 98, 042103 (2018), arXiv:1804.05856
[quant-ph].

[98] I. L. Chuang and M. A. Nielsen, Prescription for experimental determination of the dy-
namics of a quantum black box, Journal of Modern Optics 44, 2455 (1997), arXiv:quant-
ph/9610001 [quant-ph].



BIBLIOGRAPHY 77

[99] J. F. Poyatos, J. I. Cirac, and P. Zoller, Complete Characterization of a Quantum Process:
The Two-Bit Quantum Gate, Phys. Rev. Lett. 78, 390 (1997), arXiv:quant-ph/9611013
[quant-ph].

[100] Y. S. Weinstein, T. F. Havel, J. Emerson, N. Boulant, M. Saraceno, S. Lloyd, and D. G.
Cory, Quantum process tomography of the quantum Fourier transform, J. Phys. Chem.
121, 6117 (2004), arXiv:quant-ph/0406239 [quant-ph].

[101] J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. James, N. K. Langford, T. C. Ralph, and
A. G. White, Quantum Process Tomography of a Controlled-NOT Gate, Phys. Rev. Lett.
93, 080502 (2004), arXiv:quant-ph/0402166 [quant-ph].

[102] M. Howard, J. Twamley, C. Wittmann, T. Gaebel, F. Jelezko, and J. Wrachtrup, Quantum
process tomography and Linblad estimation of a solid-state qubit, New Journal of Physics
8, 33 (2006), arXiv:quant-ph/0601167 [quant-ph].

[103] M. Riebe, K. Kim, P. Schindler, T. Monz, P. O. Schmidt, T. K. Körber, W. Hänsel,
H. Häffner, C. F. Roos, and R. Blatt, Process Tomography of Ion Trap Quantum Gates,
Phys. Rev. Lett. 97, 220407 (2006), arXiv:quant-ph/0609228 [quant-ph].

[104] R. C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank,
H. Wang, J. Wenner, M. Steffen, A. N. Cleland, and J. M. Martinis, Quantum process
tomography of a universal entangling gate implemented with Josephson phase qubits, Nature
Physics 6, 409 (2010), arXiv:0910.1118 [quant-ph].

[105] A. Klappenecker and M. Roetteler, Mutually Unbiased Bases are Complex Projective 2-
Designs, arXiv e-prints , quant-ph/0502031 (2005), arXiv:quant-ph/0502031 [quant-ph].

[106] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, Symmetric information-
ally complete quantum measurements, Journal of Mathematical Physics 45, 2171 (2004),
arXiv:quant-ph/0310075 [quant-ph].

[107] A. Bendersky, F. Pastawski, and J. P. Paz, Selective Efficient Quantum Process Tomogra-
phy , arXiv:0801.0758 [quant-ph] (2008).

[108] C. T. Schmiegelow, A. Bendersky, M. A. Larotonda, and J. P. Paz, Selective and effi-
cient quantum process tomography without ancilla, Phys. Rev. Lett. 107, 100502 (2011),
arXiv:1105.4815 [quant-ph].

[109] M. Mohseni and D. A. Lidar, Direct Characterization of Quantum Dynamics, Phys. Rev.
Lett. 97, 10.1103/PhysRevLett.97.170501 (2006), arXiv:quant-ph/0601033 [quant-ph].

[110] M. Mohseni and D. A. Lidar, Direct characterization of quantum dynamics: General theory,
Phys. Rev. A 75, 10.1103/PhysRevA.75.062331 (2007), arXiv:quant-ph/0601034 [quant-
ph].

[111] G. M. D’Ariano and P. Lo Presti, Quantum Tomography for Measuring Experimentally the
Matrix Elements of an Arbitrary Quantum Operation, Phys. Rev. Lett. 86, 4195 (2001),
arXiv:quant-ph/0012071 [quant-ph].

[112] D. W. Leung, Choi’s proof as a recipe for quantum process tomography, Journal of Mathe-
matical Physics 44, 528 (2003), arXiv:quant-ph/0201119 [quant-ph].

[113] J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat, R. T. Thew, J. L.
O’Brien, M. A. Nielsen, and A. G. White, Ancilla-Assisted Quantum Process Tomography,
Phys. Rev. Lett. 90, 193601 (2003), arXiv:quant-ph/0303038 [quant-ph].



78 CHAPTER 5. CONCLUSION

[114] C. Granade, J. Combes, and D. G. Cory, Practical Bayesian tomography, New Journal of
Physics 18, 033024 (2016), arXiv:1509.03770 [quant-ph].

[115] C. Granade, C. Ferrie, and S. T. Flammia, Practical adaptive quantum tomography, New
Journal of Physics 19, 113017 (2017), arXiv:1605.05039 [quant-ph].

[116] T. Surawy-Stepney, J. Kahn, R. Kueng, and M. Guta, Projected Least-Squares Quantum
Process Tomography, Quantum 6, 844 (2022), arXiv:2107.01060 [quant-ph].

[117] G. C. Knee, E. Bolduc, J. Leach, and E. M. Gauger, Quantum process tomography
via completely positive and trace-preserving projection, Phys. Rev. A 98, 062336 (2018),
arXiv:1803.10062 [quant-ph].

[118] A. Oufkir, Sample-Optimal Quantum Process Tomography with Non-Adaptive Incoherent
Measurements, arXiv e-prints , arXiv:2301.12925 (2023), arXiv:2301.12925 [quant-ph].

[119] S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing (Springer,
2013).

[120] R. L. Kosut, Quantum Process Tomography via L1-norm Minimization, arXiv:0812.4323
[quant-ph] (2008).

[121] A. Shabani, R. L. Kosut, M. Mohseni, H. Rabitz, M. A. Broome, M. P. Almeida, A. Fedrizzi,
and A. G. White, Efficient measurement of quantum dynamics via compressive sensing,
Phys. Rev. Lett. 106, 100401 (2011), arXiv:0910.5498 [quant-ph].

[122] D. Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE Trans. Inf.
Th. 57, 1548 (2011), arXiv:0910.1879 [cs.IT].

[123] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, Quantum state tomography
via compressed sensing, Phys. Rev. Lett. 105, 150401 (2010), arXiv:0909.3304 [quant-ph].

[124] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, Quantum tomography via compressed
sensing: error bounds, sample complexity and efficient estimators, New J. Phys. 14, 095022
(2012), arXiv:1205.2300 [quant-ph].

[125] M. Kliesch, R. Kueng, J. Eisert, and D. Gross, Guaranteed recovery of quantum processes
from few measurements, Quantum 3, 171 (2019), arXiv:1701.03135 [quant-ph].

[126] M. Kliesch, R. Kueng, J. Eisert, and D. Gross, Improving compressed sensing with the
diamond norm, IEEE Trans. Inf. Th. 62, 7445 (2016), arXiv:1511.01513 [cs.IT].

[127] C. H. Baldwin, A. Kalev, and I. H. Deutsch, Quantum process tomography of unitary and
near-unitary maps, Phys. Rev. A 90, 012110 (2014), arXiv:1404.2877 [quant-ph].

[128] S. Kimmel and Y. K. Liu, Phase retrieval using unitary 2-designs, in 2017 Interna-
tional Conference on Sampling Theory and Applications (SampTA) (2017) pp. 345–349,
arXiv:1510.08887 [quant-ph] .

[129] I. Roth, R. Kueng, S. Kimmel, Y. K. Liu, D. Gross, J. Eisert, and M. Kliesch, Recover-
ing quantum gates from few average gate fidelities, Phys. Rev. Lett. 121, 170502 (2018),
arXiv:1803.00572 [quant-ph].

[130] S. Kimmel, M. P. da Silva, C. A. Ryan, B. R. Johnson, and T. Ohki, Robust extraction
of tomographic information via randomized benchmarking, Phys. Rev. X 4, 011050 (2014),
arXiv:1306.2348 [quant-ph].

[131] C. B. Mendl and M. M. Wolf, Unital quantum channels - convex structure and revivals of
Birkhoff’s theorem, Comm. Math. Phys. 289, 1057 (2009), arXiv:0806.2820 [quant-ph].



BIBLIOGRAPHY 79

[132] A. J. Scott, Optimizing quantum process tomography with unitary 2-designs, Journal of
Physics A Mathematical General 41, 055308 (2008), arXiv:0711.1017 [quant-ph].

[133] I. Roth, Ph.D. thesis, Freie Universität Berlin.

[134] J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. P.
Home, E. Knill, D. Leibfried, and D. J. Wineland, Randomized benchmarking of multiqubit
gates, Phys. Rev. Lett. 108, 260503 (2012), arXiv:1203.3733 [quant-ph].

[135] E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan, J. M. Chow, S. T. Merkel, M. P.
da Silva, G. A. Keefe, M. B. Rothwell, T. A. Ohki, M. B. Ketchen, and M. Steffen, Efficient
measurement of quantum gate error by interleaved randomized benchmarking, Phys. Rev.
Lett. 109, 080505 (2012), arXiv:1203.4550 [quant-ph].

[136] A. Carignan-Dugas, J. J. Wallman, and J. Emerson, Bounding the average gate fidelity of
composite channels using the unitarity, New J. Phys. 21, 053016 (2019), arXiv:1610.05296
[quant-ph].

[137] J. Helsen, X. Xue, L. M. K. Vandersypen, and S. Wehner, A new class of efficient random-
ized benchmarking protocols, npj Quant. Inf. 5, 71 (2019), arXiv:1806.02048 [quant-ph].

[138] R. Harper, S. T. Flammia, and J. J. Wallman, Efficient learning of quantum noise, Nat.
Phys. 10.1038/s41567-020-0992-8 (2020), arXiv:1907.13022 [quant-ph].

[139] C. Rouzé and D. Stilck França, Efficient learning of the structure and parameters of local
Pauli noise channels , arXiv:2307.02959 [quant-ph] (2023).

[140] J. Helsen, F. Battistel, and B. M. Terhal, Spectral quantum tomography, npj Quantum
Information 5, 74 (2019), arXiv:1904.00177 [quant-ph].

[141] T. Sarkar and O. Pereira, Using the matrix pencil method to estimate the parameters of a
sum of complex exponentials, IEEE Antennas and Propagation Magazine 37, 48 (1995).

[142] H.-Y. Huang, S. Chen, and J. Preskill, Learning to Predict Arbitrary Quantum Processes,
PRX Quantum 4, 10.1103/PRXQuantum.4.040337 (2023), arXiv:2210.14894 [quant-ph].

[143] J. Kunjummen, M. C. Tran, D. Carney, and J. M. Taylor, Shadow process tomog-
raphy of quantum channels, Phys. Rev. A 107, 10.1103/PhysRevA.107.042403 (2023),
arXiv:2110.03629 [quant-ph].

[144] R. Levy, D. Luo, and B. K. Clark, Classical shadows for quantum process tomogra-
phy on near-term quantum computers, Physical Review Research 6, 10.1103/PhysRevRe-
search.6.013029 (2024), arXiv:2110.02965 [quant-ph].

[145] E. Onorati, T. Kohler, and T. S. Cubitt, Fitting time-dependent Markovian dynamics to
noisy quantum channels , arXiv:2303.08936 [quant-ph] (2023).

[146] D. Hangleiter, I. Roth, J. Fuksa, J. Eisert, and P. Roushan, Robustly learning the Hamilto-
nian dynamics of a superconducting quantum processor, arXiv e-prints , arXiv:2108.08319
(2021), arXiv:2108.08319 [quant-ph].

[147] W. Yu, J. Sun, Z. Han, and X. Yuan, Robust and Efficient Hamiltonian Learning, Quantum
7, 1045 (2023), arXiv:2201.00190 [quant-ph].

[148] D. Stilck França, L. A. Markovich, V. V. Dobrovitski, A. H. Werner, and J. Borregaard,
Efficient and robust estimation of many-qubit Hamiltonians, Nature Communications 15,
311 (2024), arXiv:2205.09567 [quant-ph].



80 CHAPTER 5. CONCLUSION

[149] A. Gu, L. Cincio, and P. J. Coles, Practical Hamiltonian learning with unitary dynamics
and Gibbs states , arXiv:2206.15464 [quant-ph] (2024).

[150] F. Wilde, A. Kshetrimayum, I. Roth, D. Hangleiter, R. Sweke, and J. Eisert, Scalably
learning quantum many-body Hamiltonians from dynamical data, arXiv e-prints (2022),
arXiv:2209.14328 [quant-ph].

[151] H.-Y. Huang, Y. Tong, D. Fang, and Y. Su, Learning Many-Body Hamiltonians with
Heisenberg-Limited Scaling, Phys. Rev. Lett. 130, 200403 (2023), arXiv:2210.03030 [quant-
ph].

[152] H. Li, Y. Tong, H. Ni, T. Gefen, and L. Ying, Heisenberg-limited Hamiltonian learning for
interacting bosons, arXiv e-prints , arXiv:2307.04690 (2023), arXiv:2307.04690 [quant-ph].

[153] S. Kimmel, G. H. Low, and T. J. Yoder, Robust calibration of a universal single-qubit
gate set via robust phase estimation, Phys. Rev. A 92, 062315 (2015), arXiv:1502.02677
[quant-ph].

[154] F. Verstraete, V. Murg, and J. Cirac, Matrix product states, projected entangled pair states,
and variational renormalization group methods for quantum spin systems, Adv. Phys. 57,
143 (2008), arXiv:0907.2796 [quant-ph].

[155] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete, Matrix product states and
projected entangled pair states: Concepts, symmetries, theorems, Rev. Mod. Phys. 93,
045003 (2021), arXiv:2011.12127 [quant-ph].

[156] T. Baumgratz, D. Gross, M. Cramer, and M. B. Plenio, Scalable reconstruction of density
matrices, Phys. Rev. Lett. 111, 020401 (2013).

[157] B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand,
A. S. Buyskikh, A. J. Daley, M. Cramer, M. B. Plenio, R. Blatt, and C. F. Roos, Efficient
tomography of a quantum many-body system, Nature Physics 13, 1158 (2017).

[158] M. Holzäpfel, T. Baumgratz, M. Cramer, and M. B. Plenio, Scalable reconstruction of uni-
tary processes and hamiltonians, Phys. Rev. A 91, 042129 (2015), arXiv:1411.6379 [quant-
ph].

[159] G. Torlai, C. J. Wood, A. Acharya, G. Carleo, J. Carrasquilla, and L. Aolita, Quantum pro-
cess tomography with unsupervised learning and tensor networks, Nature Communications
14, 2858 (2023), arXiv:2006.02424 [quant-ph].

[160] A. H. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J. Eisert, and S. Montangero,
Positive tensor network approach for simulating open quantum many-body systems, Phys.
Rev. Lett. 116, 237201 (2016), arXiv:1412.5746 [quant-ph].

[161] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M. Paternostro, and K. Modi, Non-
markovian quantum processes: Complete framework and efficient characterization, Phys.
Rev. A 97, 012127 (2018), arXiv:1512.00589 [quant-ph].

[162] G. A. L. White, F. A. Pollock, L. C. L. Hollenberg, C. D. Hill, and K. Modi, From many-body
to many-time physics, arXiv e-prints 10.48550/arXiv.2107.13934 (2021), arXiv:2107.13934
[quant-ph].

[163] G. A. L. White, F. A. Pollock, L. C. L. Hollenberg, K. Modi, and C. D. Hill, Non-Markovian
Quantum Process Tomography, PRX Quantum 3, 10.1103/PRXQuantum.3.020344 (2022),
arXiv:2106.11722 [quant-ph].



BIBLIOGRAPHY 81

[164] Z.-T. Li, C.-C. Zheng, F.-X. Meng, H. Zeng, T. Luan, Z.-C. Zhang, and X.-T. Yu, Non-
Markovian Quantum Gate Set Tomography , arXiv:2307.14696 [quant-ph] (2023).

[165] C. Guo, Reconstructing non-Markovian open quantum evolution from multiple time mea-
surements, Phys. Rev. A 106, 10.1103/PhysRevA.106.022411 (2022), arXiv:2205.06521
[quant-ph].

[166] C. Giarmatzi, T. Jones, A. Gilchrist, P. Pakkiam, A. Fedorov, and F. Costa, Multi-
time quantum process tomography of a superconducting qubit , arXiv:2308.00750 [quant-ph]
(2023).

[167] G. A. L. White, P. Jurcevic, C. D. Hill, and K. Modi, Unifying non-Markovian
characterisation with an efficient and self-consistent framework, arXiv e-prints
10.48550/arXiv.2312.08454 (2023), arXiv:2312.08454 [quant-ph].

[168] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and R. Blume-Kohout,
Gate set tomography, Quantum 5, 557 (2021), arXiv:2009.07301 [quant-ph].

[169] C. Stark, Simultaneous estimation of dimension, states and measurements: Computation
of representative density matrices and POVMs, arXiv:1210.1105 [quant-ph].

[170] M. Takahashi, S. D. Bartlett, and A. C. Doherty, Tomography of a spin qubit in a double
quantum dot, Phys. Rev. A 88, 022120 (2013), arXiv:1306.1013 [quant-ph].

[171] R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J. Mizrahi, K. Fortier, and
P. Maunz, Demonstration of qubit operations below a rigorous fault tolerance threshold
with gate set tomography, Nat. Commun. 8, 14485 (2017), arXiv:1605.07674 [quant-ph].

[172] E. Nielsen, R. Blume-Kohout, L. Saldyt, J. Gross, T. L. Scholten, K. Rudinger, T. Proctor,
J. K. Gamble, and A. Russo, pygstio/pygsti: Version 0.9.9.3 (2020).

[173] E. Nielsen, K. Rudinger, T. Proctor, A. Russo, K. Young, and R. Blume-Kohout, Probing
quantum processor performance with pyGSTi, Quantum Sci. Technol. 5, 044002 (2020),
arXiv:2002.12476 [quant-ph].

[174] D. Greenbaum, Introduction to quantum gate set tomography, arXiv:1509.02921 [quant-ph]
(2015).

[175] G. De las Cuevas, J. I. Cirac, N. Schuch, and D. Perez-Garcia, Irreducible forms of ma-
trix product states: Theory and applications, Journal of Mathematical Physics 58, 121901
(2017), arXiv:1708.00029 [quant-ph].

[176] L. Rudnicki, Z. Puchala, and K. Zyczkowski, Gauge invariant information concerning quan-
tum channels, Quantum 2, 60 (2018), arXiv:1707.06926 [quant-ph].

[177] T. Sugiyama, S. Imori, and F. Tanaka, Self-consistent quantum tomography with regular-
ization, Phys. Rev. A 103, 062615 (2021).

[178] J. Lin, B. Buonacorsi, R. Laflamme, and J. J. Wallman, On the freedom in representing
quantum operations, New Journal of Physics 21, 023006 (2019), arXiv:1810.05631 [quant-
ph].

[179] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant,
B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z. Chen, A. Fowler,
B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov, E. Lucero,
J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White,
H. Neven, and J. M. Martinis, A blueprint for demonstrating quantum supremacy with
superconducting qubits, Science 360, 195 (2018), arXiv:1709.06678 [quant-ph].



82 CHAPTER 5. CONCLUSION

[180] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner,
J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices,
Nature Physics 14, 595 (2018), arXiv:1608.00263 [quant-ph].

[181] Y. Gu, R. Mishra, B.-G. Englert, and H. K. Ng, Randomized linear gate-set tomography,
PRX Quantum 2, 030328 (2021), arXiv:2010.12235 [quant-ph].

[182] T. J. Evans, W. Huang, J. Yoneda, R. Harper, T. Tanttu, K. W. Chan, F. E. Hudson, K. M.
Itoh, A. Saraiva, C. H. Yang, A. S. Dzurak, and S. D. Bartlett, Fast Bayesian tomography
of a two-qubit gate set in silicon, Phys. Rev. Applied 17, 024068 (2022), arXiv:2107.14473
[quant-ph].

[183] H.-Y. Huang, S. T. Flammia, and J. Preskill, Foundations for learning from noisy quantum
experiments , arXiv:2204.13691 [quant-ph] (2022).

[184] S. Aaronson, Shadow tomography of quantum states, in Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing (2018) pp. 325–338, arXiv:1711.01053
[quant-ph] .

[185] A. Gresch and M. Kliesch, Guaranteed efficient energy estimation of quantum many-
body Hamiltonians using ShadowGrouping, arXiv e-prints , arXiv:2301.03385 (2023),
arXiv:2301.03385 [quant-ph].

[186] A. Dutt, W. Kirby, R. Raymond, C. Hadfield, S. Sheldon, I. L. Chuang, and A. Mezza-
capo, Practical Benchmarking of Randomized Measurement Methods for Quantum Chem-
istry Hamiltonians, arXiv:2312.07497 [quant-ph] (2023).

[187] G. Lugosi and S. Mendelson, Mean estimation and regression under heavy-tailed
distributions–a survey, Found Comput. Math. 19, 1145–1190 (2019), arXiv:1906.04280
[math.ST].

[188] J. Helsen and M. Walter, Thrifty Shadow Estimation: Reusing Quantum Circuits and
Bounding Tails, Phys. Rev. Lett. 131, 240602 (2023), arXiv:2212.06240 [quant-ph].

[189] A. Zhao, N. C. Rubin, and A. Miyake, Fermionic Partial Tomography via Classical Shad-
ows, Phys. Rev. Lett. 127, 110504 (2021), arXiv:2010.16094 [quant-ph].

[190] M. Arienzo, M. Heinrich, I. Roth, and M. Kliesch, Closed-form analytic expressions
for shadow estimation with brickwork circuits, Quantum Inf. Comp. 23, 961 (2023),
arXiv:2211.09835 [quant-ph].

[191] C. Bertoni, J. Haferkamp, M. Hinsche, M. Ioannou, J. Eisert, and H. Pashayan,
Shallow shadows: Expectation estimation using low-depth random Clifford circuits,
arXiv:2209.12924 [quant-ph].

[192] A. A. Akhtar, H.-Y. Hu, and Y.-Z. You, Scalable and flexible classical shadow tomography
with tensor networks, Quantum 7, 1026 (2023), arXiv:2209.02093 [quant-ph].

[193] M. Ippoliti, Y. Li, T. Rakovszky, and V. Khemani, Operator Relaxation and the Optimal
Depth of Classical Shadows, Phys. Rev. Lett. 130, 230403 (2023), arXiv:2212.11963 [quant-
ph].

[194] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep. 474, 1 (2009), arXiv:0811.2803
[quant-ph].

[195] B. Huang, C. Mu, D. Goldfarb, and J. Wright, Provable low-rank tensor recovery,
Optimization-Online 4252, 455 (2014).



BIBLIOGRAPHY 83

[196] H. Rauhut, R. Schneider, and Z. Stojanac, Low rank tensor recovery via iterative hard
thresholding, Linear Algebra and its Applications 523, 220 (2017), arXiv:1602.05217 [cs.IT].

[197] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization, in Ad-
vances in Neural Information Processing Systems , Vol. 27 (2014) arXiv:1406.2572 [cs.LG]
.

[198] C. Piltz, T. Sriarunothai, S. S. Ivanov, S. Wo lk, and C. Wunderlich, Versatile microwave-
driven trapped ion spin system for quantum information processing, Science Advances 2,
e1600093 (2016), arXiv:1509.01478 [quant-ph].

[199] D. E. Koh and S. Grewal, Classical shadows with noise, Quantum 6, 776 (2022),
arXiv:2011.11580 [quant-ph].

[200] V. Vitale, A. Rath, P. Jurcevic, A. Elben, C. Branciard, and B. Vermersch, Estimation
of the quantum Fisher information on a quantum processor, arXiv:2307.16882 [quant-ph]
(2023).

[201] H. Jnane, J. Steinberg, Z. Cai, H. Chau Nguyen, and B. Koczor, Quantum Error Mitigated
Classical Shadows, (2023), arXiv:2305.04956 [quant-ph].

[202] J. R. Seddon, B. Regula, H. Pashayan, Y. Ouyang, and E. T. Campbell, Quantifying
Quantum Speedups: Improved Classical Simulation From Tighter Magic Monotones, PRX
Quantum 2, 010345 (2021), arXiv:2002.06181 [quant-ph].

[203] A. Zhao and A. Miyake, Group-theoretic error mitigation enabled by classical shadows and
symmetries, (2023), arXiv:2310.03071 [quant-ph].



Chapter 6

Appendix

A Paper - Compressive gate set tomography

Title: Compressive gate set tomography

Authors: Raphael Brieger, Ingo Roth, Martin Kliesch

Journal: PRX Quantum

Publication status: Published

Contribution by RB: First author (input approx 85%)

A summary of this publication is presented in Chapter 3.
The initial idea to revisit the problem of gate set tomography in a tensor network picture

was brought forward by IR and jointly discussed by all authors. I derived all analytical results
and developed all code for the optimization algorithm in python, with suggestions from my co-
authors in periodic discussions. I wrote an initial draft of the manuscript, whereafter parts of the
introduction and main text were added or rewritten by IR and MK. IR further contributed about
half of Appendix E. Finally, the manuscript was proofread by all authors and several paragraphs
in the main text were jointly edited.

84



Compressive gate set tomography

Raphael Brieger,1, ∗ Ingo Roth,2, 3 and Martin Kliesch1, 4, †

1Institute for Theoretical Physics, Heinrich Heine University Düsseldorf, Germany
2Quantum Research Centre, Technology Innovation Institute, Abu Dhabi, UAE

3Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Germany
4Institute for Quantum-Inspired and Quantum Optimization, Hamburg University of Technology, Germany

Flexible characterization techniques that provide a detailed picture of the experimental imperfec-

tions under realistic assumptions are crucial to gain actionable advice in the development of quantum

computers. Gate set tomography self-consistently extracts a complete tomographic description of

the implementation of an entire set of quantum gates, as well as the initial state and measurement,

from experimental data. It has become a standard tool for this task but comes with high require-

ments on the number of sequences and their design, making it experimentally challenging already

for only two qubits.

In this work, we show that low-rank approximations of gate sets can be obtained from signifi-

cantly fewer gate sequences and that it is sufficient to draw them at random. This coherent noise

characterization however still contains the crucial information for improving the implementation.

To this end, we formulate the data processing problem of gate set tomography as a rank-constrained

tensor completion problem. We provide an algorithm to solve this problem while respecting the

usual positivity and normalization constraints of quantum mechanics. For this purpose, we combine

methods from Riemannian optimization and machine learning and develop a saddle-free second-

order geometrical optimization method on the complex Stiefel manifold. Besides the reduction in

sequences, we demonstrate numerically that the algorithm does not rely on structured gate sets or an

elaborate circuit design to robustly perform gate set tomography. Therefore, it is more flexible than

traditional approaches. We also demonstrate how coherent errors in shadow estimation protocols

can be mitigated using estimates from gate set tomography.
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I. INTRODUCTION

The precise characterization of digital quantum devices
is crucial for several reasons: (i) to obtain ‘actionable ad-
vice’ on how imperfections on their implementation can
be reduced, e.g. by experimental control, (ii) to tailor ap-
plications to unavoidable device errors so that their effect
can be mitigated, and (iii) to benchmark the devices for
the comparison of different physical platforms and imple-
mentations. There is already a wide variety of protocols
to characterize components of a digital quantum com-
puting device with a trade-off between the information
gained about the system and the associated resource re-
quirements and assumptions of the scheme [1, 2].

One particular important requirement for practical
characterization protocols for quantum gates is their ro-
bustness against errors in the state preparation and mea-
surement (SPAM). There are two general approaches
that SPAM-robustly characterize the implementation of
entire gate sets of a quantum computer. On the low com-
plexity side there is randomized benchmarking (RB) [3–5]
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and variants thereof [6], that typically aim at determin-
ing a single measure of quality for an experiment, though
with the exception of RB tomography protocols [7–10].
Yet for the targeted improvement of individual quantum
operations, protocols which provide more detailed infor-
mation beyond mere benchmarking are crucial.

This is the motivation of self-consistent gate set to-
mography (GST) [11–18]. GST estimates virtually all
parameters describing a noisy implementation of a quan-
tum computing device simultaneously from the measure-
ments of many gate sequences. This comprises tomo-
graphic estimates for all channels implementing the gate
set elements, the initial state(s) and the measurement(s).
The full tomographic information can then be used to
compute arbitrary error measures for verification and to
provide advice on error mitigation and device calibra-
tion [15, 19–23]. Concomitant with the massive amount
of inferred information and minimal assumptions, these
protocols come with enormous resource requirements in
terms of the necessary number of measurement rounds
and the time and storage consumption of the classical
post-processing. Standard GST, as described, e.g. by
Nielsen et al. [18], uses many carefully designed gate se-
quences in the experiment and a sophisticated and chal-
lenging data processing pipeline in post. To arrive at
physically interpretable estimates, i.e. completely posi-
tive and trace preserving (CPT) maps, additional post-
processing is required. The massive amount of specific
data consumed by standard GST limits its practical ap-
plicability already for two-qubit gate sets. The focus of
Nielsen et al. [18] and their implementation pyGSTi lies
on so-called long sequence GST, a method to improve an
initial GST estimate by using gate sequences in which
a building block is repeated many times. The resulting
error amplification of the building block is then used to
significantly improve the accuracy of the GST estimate
at the cost of larger measurement effort. In our work we
focus on short sequences and the problem of finding an
initial estimate without assuming any prior knowledge on
the gate set and minimal experimental requirements.

The most important diagnostic information for a quan-
tum computing device is often already contained in a low-
rank approximation of the processes, states and measure-
ments. Coherent errors are typically the ones that can
be corrected by experimental control and are of interest
for refining calibration models. The strength of incoher-
ent noise on the other hand is arguably well-captured
by average error measures as provided by RB outputs.
Moreover, current fault tolerance thresholds often rely
on worst-case error measures for which no good direct
estimation technique exists [24–27] and coherent errors
in particular hinder their indirect inference from average
error measures [28–30]. For standard state and process
tomography, it was realized that low-rank assumptions
can crucially reduce the sample complexity, the required
number of measurements and the post-processing com-
plexity [9, 31–40] as well as improve the stability against
imperfections in the measurements [41] using compressed

sensing techniques [42–44].

In this work, we take a fresh look at the data pro-
cessing problem of GST from a compressed sensing per-
spective and regard it as a highly-structured tensor com-
pletion problem. We develop a reconstruction method,
called mGST, that exploits the geometric structure of
CPT maps with low Kraus ranks. In numerical simula-
tions we demonstrate that our structure-exploiting mGST
approach (i) allows for maximal flexibility in the design
of gate sequences, so that standard GST gate sequences
and random sequences work equally well, and (ii) ob-
tains low-rank approximations of the implemented gate
set from a significantly reduced number of sequences and
samples. This allows us to successfully perform GST
with gate sets and sequences that are not amenable to
the standard GST implementation pyGSTi [17, 45]. As
one example, while the sequence design of pyGSTi uses
at least 907 specific sequences to reconstruct a two-qubit
gate set, we numerically demonstrate low-rank recon-
struction from 200 random sequences of maximal length
` = 7 with runtimes of less than an hour on a standard
desktop computer. Thus, compressive GST significantly
lowers the experimental resource requirements for maybe
the most prominent use-cases of GST making it a tool
that can be more easily and routinely applied. At the
same time, for the default gate sets and sequences from
the standard GST implementation, the novel algorithm
matches state-of-the-art results. The runtime and stor-
age requirements of mGST still scale exponentially in the
number of qubits as does the amount parameters of the
gate set it identifies. This limits the feasibility of the
classical post-processing of compressive GST to gate sets
acting on only a few qubits without further assumptions.
Nonetheless, we demonstrate that coherent errors and de-
polarizing noise of a 3-qubit gate set can be completely
characterized, from as little as 128 sequences of length
` = 7 on desktop hardware in a few hours.

To give a novel example of how information about co-
herent errors can be used, we simulate a 10 qubit sys-
tem and perform GST on neighboring 2-qubit pairs. The
resulting gate set estimates then allow us to calibrate
the post-processing step of the shadow estimation pro-
tocol [46], which is widely used for the sample efficient
estimation of observables. More concretely, we find in
simulations with moderate coherent errors that shadow
estimates of the ground state energy of a 10 qubit Heisen-
berg Hamiltonian are heavily biased when knowledge of
the noisy gate implementation is limited. Information
from GST on 2 qubit pairs allows us to reduce this bias
by about an order of magnitude.

Our mGST reconstruction method relies on manifold
optimization over complex Stiefel manifolds [47–53] in
order to include the low-rank CPT constraints. Such con-
straints emerge in several optimization problems [54–57]
with applications in machine learning [52, 58], quantum
chemistry [59], signal processing in wireless communica-
tion [60, 61] and more recently in the quantum informa-
tion literature, see e.g. [62–64]. In order to deal with
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the non-convex optimization landscape we adopt a sec-
ond order saddle-free Newton method [65] to this setting.
This involves the derivation of an analytic expression for
geodesics, as well as an expression for the Riemannian
Hessian in the respective product manifolds. Another im-
portant motivation for phrasing GST as a randomly sub-
sampled tensor completion problem is to bring it closer
to potential analytical recovery guarantees common for
related tensor completion problems [66–73], opening up
a new research direction.

Finally, being able to perform GST from random se-
quences enables one to use the same type of data for
different increasingly refined characterization tasks from
filtered RB [6], cross-entropy benchmarking (XEB) [74]
and RB tomography [7–9] to GST. Unifying these ap-
proaches, random gate sequences can be regarded as the
‘classical shadow’ of a gate set from which many proper-
ties can be estimated efficiently [75]. Compressive gate
set tomography provides more detailed diagnostic infor-
mation and only requires to further increase the amount
of data without changing the experimental instructions.

With randomized linear GST [76] and fast Bayesian
tomography [77] related alternatives to tackle the GST
data processing problem have been proposed. Here, the
gates are assumed to be well-approximated by an a priori
known unitary followed by a noise channel that is either
linearized around the identity [76] or around a prior noise
estimate [77]. This allows for a treatment of the outcome
probabilities as approximately linear functions. The re-
sulting scheme already works for random sequence data
but comes at the expense of much stronger assumptions
compared to the compressed sensing approach taken with
mGST.

The rest of the paper is structured into three parts. In
the following section, we formalize the data processing
problem of GST as a constrained reconstruction prob-
lem. In Section III, we formulate the data processing
problem as a geometric optimization task and derive the
mGST algorithm. In Section IV we demonstrate the per-
formance of the novel algorithm in numerical simulations
and compare our results with the standard GST process-
ing pipeline of pyGSTi.

II. THE DATA PROCESSING PROBLEM OF
GATE SET TOMOGRAPHY

In GST a quantum computing device is modeled as
follows. The device is initialized with a state ρ ∈ S :=
{σ ∈ H : σ � 0,Tr[σ] = 1} on a finite dimensional
Hilbert space H = Cd. Subsequently, a sequence of noisy
operations from a fixed gate set (Gi)i∈[n] can be applied,
where we use the notation [n] := {1, 2, 3, . . . , n}. The
noisy operations Gi : L(H) → L(H) are CPT maps on
L (H), the set of linear operators on H. We define [n]∗` :=⋃`

k=0[n]
k such that i ∈ [n]∗` defines a gate sequences with

length of at most ` and associated CPT map Gi := Gi` ◦
· · ·◦Gi1 , the concatenation of the gates in the sequence i.

In the end, a measurement is performed described by a
positive operator valued measure (POVM) with elements
(Ej)j∈[nE ], satisfying

∑
j Ej = 1 and 0 � Ej � 1 for

all j ∈ [nE ]. The full description of the noisy quantum
computing device is, thus, given by the triple

X = ((Ej)j∈[nE ], (Gi)i∈[n], ρ) (1)

of a quantum state, a physical gate set and a POVM.
Let I ⊆ [n]∗` be the set of accessible gate sequences with
nseq := |I| denoting the number of sequences. The prob-
ability of measuring outcome j upon applying a gate se-
quence i ∈ I is

pj|i(X ) = Tr[Ej Gi(ρ)] . (2)

By (pi(X ))j := pj|i(X ) we denote the corresponding vec-
tor and, moreover, often omit the argument X . While be-
ing a fairly general description, this gate set model relies
on a couple of assumptions:

(i) the physical system needs to be well-characterized
by a Hilbert space of fixed dimension,

(ii) the system parameters need to be time independent
over different experiments, and

(iii) a gate’s action is independent of the gates applied
before and after (Markovianity).

There exist multiple descriptions of quantum comput-
ing devices within the gate set model that yield the
same measurement probabilities on all sequences. Be-
low, we provide a more detailed description of this free-
dom in terms of gauge transformations. These are linear
transformations that, when simultaneously applied to all
gates, input state and POVM elements, leave the mea-
surement statistics (2) invariant.

The task of GST is to infer the device’s full description
(1) from measured data. To this end, one estimates the
output probabilities for a set of different sequences I ⊂
[n]∗l by repeatedly performing the measurements of the
corresponding sequences. Thus, we can state the data-
processing problem of GST as follows.

Problem (GST data-processing). Let X be a gate set
and I ⊂ [n]∗l a set of sequences. Given empirical esti-
mates {yj|i}i∈I,j∈[nE ] of {pj|i(X )}i∈I,j∈[nE ], find the de-
vice description X = ((Ej)j∈[nE ], (Gi)i∈[n], ρ) up to the
gauge freedom.

Note that GST aims at solving an identification prob-
lem. That is, for sufficiently much data, find the unique
device description of the device compatible with the data.
In particular, the input data {p̂j|i}i∈I,j is required to
uniquely single out the device description. This is re-
lated but distinct from the corresponding learning task
to find a description that generalizes on unseen data.

A. Compressive gate set description

At the heart of our approach is to capture this data-
processing problem as a highly structured tensor com-
pletion problem. The structure allows us to reduce the
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required size and structural assumption of the set I, in
order to determine X . It is instructive to visualize the
problem with tensor network diagrams. The gate set can
be viewed as a tensor of five indices and the action of
gate i on the initial state ρ can be visualized as

Gi(ρ) = G

i

ρ , (3)

where each leg represents an open index and the join-
ing of legs represents summation of the corresponding
indices; see e.g. [78, Chapter 5.1] for more information
on the tensor network notation. Neglecting the finite
statistics in estimating the probabilities, the GST data-
processing problem can, thus, be rephrased as the prob-
lem of completing the translation-invariant matrix prod-
uct state (MPS) [79–81] or tensor-train [82]

pj|i = Tr[Ej Gil ◦ · · · ◦ Gi2 ◦ Gi1(ρ)] = (4)

E

j

. . .G G G

i1i2il

ρ

from access to a couple of its entries. By the following
assumptions one can introduce more structure. First, we
assume the elements of the device description X to satisfy
the physicality assumptions regarding normalization and
positivity. Second, the assumption that they have low-
rank approximations yields additional compressibility of
X .

In more detail, physically implementable gate sets are
completely positive and trace preserving if and only if
they admit a Kraus decomposition [83], i.e. the i-th gate
implementation can be written as

Gi(ρ) =

rK∑

l=1

KilρK†

il (5)

for each i ∈ [n], where rK is the (maximum) Kraus rank
of the CPT maps {Gi}. We use the notation that K
denotes the tensor containing all Kraus operators of all
gates and Ki contains the Kraus operators for gate i. In
terms of tensor network diagrams the decomposition is
represented as

G

i

=

i

K

K∗

. (6)

Moreover, the trace preservation constraints

rK∑

l=1

K†

ilKil = 1 ∀i (7)

require Ki viewed as a matrix in CrKd×d to be an isom-
etry, i.e.

Ki

K∗

i

= . (8)

Constraints on a low Kraus rank rK can be naturally
enforced in this parametrization by reducing the row di-
mension of Ki. The initial state and POVM elements
are constrained to be positive matrices, which we hence
parameterize as

Ej = A†

jAj , ρ = BB† (9)

with Aj ∈ CrE×d and B ∈ Cd×rρ , where rE and rρ are
the matrix ranks. For the matrices Aj to form a valid
POVM, they have to satisfy a similar condition to the
Kraus operators,

rE∑

j=1

A†

jAj = 1 , (10)

while the initial state is of unit trace if

‖B‖F = 1 . (11)

With the physicality constraints incorporated, mea-
surement outcome probabilities are given in terms of ten-
sor network diagrams as

pj|i = Tr[Ej Gil ◦ · · · ◦ Gi2 ◦ Gi1(ρ)] = (12)

E

j

. . .G G G

i1i2il

ρ

=

il i1i2

K KK

K∗ K∗K∗

. . .

. . .

j

A

A∗

B

B∗

.

Thus, we arrive at a compressive device descrip-
tion Xc = (A,K, B) that considerably reduces the
amount of parameters compared to the triple X =
((Ej)j∈[nE ], (Gi)i∈[n], ρ) when choosing small dimensions
rρ, rK , and rE . Correspondingly, we can adapt the GST
data processing task to demand only a compressive de-
vice description.

Problem (Compressive GST data processing). Let X
be a gate set and I ⊂ [n]∗l a set of sequences. Given
empirical estimates {yj|i}i∈I,j∈[nE ] of {pj|i(X )}i∈I,j∈nE
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and ranks rρ, rK , and rE, find the compressive device de-
scription Xc = (A,K, B) of dimension rρ, rK and rE re-
spectively, so that the normalization constraints (7), (10),
and (11) are satisfied.

As before, the set of sequences needs to be large enough
so that this identification problem is well-defined. Again
a desired compressive device description Xc can only be
determined up to gauge freedom. Note that for the iden-
tification problem to be well-defined, it is not required
that the true gate set X that generated the data is of
low-ranks itself. As one usually aims to implement unit
rank states, unitary gates, and basis measurements, i.e.,
for rρ = rK = rE = 1, it can be expected however that
a compressive device description Xc is often also a good
approximation to the true gate set. Moreover, coherent
errors are arguably the most relevant, since they give
actionable advice on error mitigation and are comple-
mentary to the incoherent error measures provided by
randomized benchmarking experiments. By choosing the
ranks in Xc, a problem specific decision can be made that
balances the information gained with the computational
and sample complexity of model reconstruction.
Since the pj|i(X ) are high degree polynomials in the gate
set parameters, the compressive GST data processing
problem is different from compressed sensing for stan-
dard state and process tomography, where the map from
the model parameters to the outcome probabilities is lin-
ear.
Next, we discuss another unique problem of GST, the
gauge freedom, more explicitly and introduce relevant
error measures for gates sets X .

B. Gauge freedom and gate set metrics

So far we have not made explicit what ‘finding a device
description’ actually means. What is well studied in the
GST and RB literature [6, 14, 16, 84–86], is that with-
out additional prior assumptions, there is a freedom in
representing a device in the gate set model. In particu-
lar, this freedom needs to be considered when defining a
metric for gate sets [84] w.r.t. which we want to recover
the device description.

Gauge freedom refers to the following observation. The
observable measurement probabilities pj|i of the form (4)
are invariant under the transformation

ρ 7→ T −1(ρ) (13)

Gi 7→ T −1 ◦ Gi ◦ T ∀i (14)

Ej 7→ T †(Ej) ∀j (15)

for any invertible super operator T : L(H) → L(H) ,
where T † denotes the adjoint of T w.r.t. the Hilbert-
Schmidt inner product. This invariance is also the well-
known gauge freedom of MPS [87].

If the gate set is universal and the initial state is pure
then the gauge transformation T has to be either a uni-

tary or anti-unitary channel. This statement can be seen
as follows.

In our case the Gi are constrained to be CPT. Hence,
G 7→ T −1(G)T has to map CPT maps to CPT maps.
Similarly, T −1ρ has to be a density operator and
{T †(Ej)}j a valid POVM.

A more explicit condition on T can be obtained by
considering gauge action on entire sequences. For all se-
quences i, we have

pj|i = Tr[EjT ◦ T −1 ◦ Gi(ρ)]

where Gi(ρ) is a positive operator if the gates Gi are CPT.
Now T −1Gi(ρ) has to be positive as well for all sequences
i. Thus if the gate set is universal, the map T −1 has
to be positive and trace preserving for all states. An
analogous statement can be made for T †, by considering

that T †G†

i
(Ej) has to be positive-definite for all POVM

elements Ej . This implies that T has to be a positive
map as well.

It has been shown that any positive invertible map T
with a positive inverse can be written either as T (ρ) =
PUρU†P † or T (ρ) = PUρTU†P † for U ∈ GL(d,C) and
P � 0 [88, Theorem 2]. The condition that T needs to be
trace preserving then yields P = 1, as can be seen from
the Kraus decomposition. Hence, T is indeed either a
unitary or anti-unitary channel.

We note that the map ρ 7→ UρTU† is positive but not
completely positive. However, it has the property that
T −1GiT is CPT whenever Gi is CPT. This can be seen
by observing that the Choi matrix of T −1GiT is given by
(U∗ ⊗ U)Choi(Gi)

T (UT ⊗ U†), which is positive definite
for Gi being CPT.

However, actual gate set implementations are noisy
and hence not universal in the sense that they cannot
prepare any pure state. Therefore, in practice, the gauge
freedom can be larger [18]. For instance, if all gate im-
plementations are given by unital channels then an ad-
ditional freedom exists: depolarizing noise can be com-
muted through the circuit. Therefore, it can be dis-
tributed arbitrarily among initial state, gates, and mea-
surement. Meaningful distance measures for gate sets
should have the same gauge freedom as the GST data.
The problem of finding gauge invariant distance has been
studied by Lin et al. [84]. For individual gate sequences,
any measure that compares only the ideal and observed
outcome probabilities is naturally gauge invariant. The
authors thus propose to use the total variation error, a
natural error measure to compare probability distribu-
tions, for individual gate sequences. Let

pj|i(Ej ,Gi, ρ) := Tr[EjGi(ρ)] (16)

denote the probabilities of measuring the jth output of
the POVM with elements Ej after applying the sequence
i of gates in Gi to the state ρ. The total variation error

for sequence i between two gate sets X̂ =
{
(Êj), Ĝ, ρ̂

}
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and X = ((Ej),G, ρ) is defined as

δdi(X̂ ,X ) :=
1

2

∑

j

∣∣∣Tr
[
Ê†

j Ĝi(ρ̂)
]
− Tr

[
E†

jGi(ρ)
]∣∣∣ . (17)

The mean variation error (MVE) is defined as [84]

MVEI(X̂ ,X ) := Ei∼I

[
δdi(X̂ ,X )

]
(18)

w.r.t. a set of sequences I, where i ∼ I means that i is
drawn uniformly from I. Often, we omit the subscript I
in the following. The MVE corresponds to taking the nat-
ural worst case error measure over the measurement out-
comes (the total variation distance) and averaging it over
the available gate sequences. Often I is chosen as the set
of all gate sequences up to some length `. Then the expec-
tation value (18) contains a sum over exponentially many
terms. However, since they are all non-negative, they can
be estimated sampling efficiently via Monte Carlo sam-
pling [84].

A closely related error measure is the mean squared
error (MSE)

LI(X̂ ,X ) := Ei∼I

∑

j∈[nE ]

(
Tr

[
Ê†

j Ĝi(ρ̂)
]
− Tr

[
E†

jGi(ρ)
])2

,

(19)
which averages the squared deviation over all sequences
and POVM elements.

III. GST DATA PROCESSING VIA
RIEMANNIAN OPTIMIZATION

In the previous section, we defined the compressive
GST data processing problem and introduced metrics for
the quality of reconstruction. We now turn to devising a
concrete algorithm for the data processing problem. To
this end, we formulate the reconstruction problem as a
constraint optimization problem of a loss-function for the
data fitting. A natural candidate for the loss-function is
the MVE restricted to the set of measured sequences.
As a proxy we instead minimize the MSE which depends
smoothly on the gate set and is, therefore, more suitable
for local optimization. In terms of the compressive device
description, the MSE (19) can be written as

LI(A,K, B|y) := 1

|I|
∑

i∈I

∑

j

(
pj|i(A,K, B)− yj|i

)2

(20)
where yj|i is the empirical estimate of Tr[EjGi(ρ)]. Cor-
respondingly, the compressive GST data processing prob-

lem can be cast as the constraint optimization problem:

minimize
A,K,B

LI(A,K, B|y)

subject to

rK∑

l=1

K†

ilKil = 1 ∀i ∈ [n],

rE∑

j=1

A†

jAj = 1 ,

‖B‖F = 1 .

(21)

The constraints restrict the objective variables to em-
bedded matrix manifolds. Therefore, algorithms for the
optimization problem can be derived by generalizing
standard optimization algorithms for functions on the
Euclidean space to the geometric structure of these man-
ifolds.

A. The complex Stiefel manifold

In order to formulate our main reconstruction al-
gorithm we need to understand the matrix manifold
that encompasses the physicality constraints mentioned
in Section II A. We start by summarizing the elemen-
tary properties of these manifolds, to then derive a
parametrization of geodesics and the Riemannian Hes-
sian, thereby extending what was previously done for
their real counterparts in Ref. [48]. For a comprehen-
sive introduction to optimization on matrix manifolds we
refer to the book by Absil, Mahony and Sepulchre [89].

Let (Kl)l∈[r] be the Kraus operators of a fixed gate.
By stacking them along their row dimension to a new
matrix K ∈ Cdr×d, we can write the CPT constraint as
K†K = 1. In the following we set D = dr. The set

St(D, d) := {K ∈ CD×d : K†K = 1d} (22)

is called the D × d complex Stiefel manifold. This man-
ifold is the set of isometries of the Euclidean space and
contains the special cases of the sphere St(D, 1) and the
unitary matrices U(D) = St(D,D). We regard it here as
a submanifold of Cdr×d.

The tangent space of St(D, d) at K is given by

TK St(D, d) = {∆ ∈ CD×d : K†∆ = −∆†K} . (23)

The canonical inner product of ∆1,∆2 ∈ TK St(D, d) can
be defined as

〈∆1,∆2〉K = Re
{
Tr(∆†

1Γ∆2)
}

(24)

with Γ = 1 − 1
2KK†. Another choice is the standard

Hilbert-Schmidt inner product of the embedding matrix
space. However, the advantage of the canonical inner
product is that it weights all degrees of freedom on the
tangent space equally. The Stiefel St(D, d) together with
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the metric given by (24) is a Riemannian manifold. The
normal space is defined by

NK St(D, d) =
{
∆

⊥
∈ CD×d : 〈∆,∆

⊥
〉K = 0

∀∆ ∈ TK St(D, d)
}
.

The projector onto the normal space at position K is
given by

PN (X) = K(K†X +X†K)/2 (25)

for X ∈ Cdr×d and we can write the projector onto the
tangent space at K as

PT (X) = X − PN (X) . (26)

We wish to optimize the MSE over St(D, d). In analogy
to the optimization over U(n) in [47], we will move along
geodesics, which are the locally length minimizing curves.
In Appendix A we show that within St(D, d), a geodesic
starting at Kt=0 ≡ K and going in the direction ∆ ∈
TK St(D, d) can be written as

Kt(K,∆) =
(
K Q

)
exp

[
t

(
K†∆ −R†

R 0

)](
1

0

)
, (27)

with Q,R given by the QR decomposition of (1−KK†)∆.

Note that K̇t|t=0 = ∆. Often simpler curves that just

satisfy K0 = K and K̇t|t=0 = ∆ are used instead of the
geodesic in order to save computation time [89]. How-
ever, computing the exponential of the 2d-dimensional
matrix in Eq. (27) provides no bottleneck in our sce-
nario as the inversion of the 2nd2rK-dimensional Hessian
is more costly (see Section IV F).

In order to identify the Riemannian gradient and Hes-
sian, we generalize results from the real case [48] to the
complex case. Then we use the second order Taylor
approximation of the objective function, which will be
given below in terms of the MSE (19) along geodesics
(see Appendix B). The same treatment can be applied
to the POVM given by the matrices Aj from the de-
composition (9), where we define A as the matrix ob-
tained from stacking the Aj along their row dimension.
The physicality constraint on A is then equivalent to
A ∈ St(dnE , rE) with nE being the number of POVM ele-
ments and rE their maximal rank. Finally, the constraint
‖B‖2F = vec(B)† vec(B) = 1 on the initial state (9) can
also be captured by the Stiefel manifold via the require-
ment vec(B) ∈ St(d rρ, 1), where vec(B) ∈ Cd rρ is the
vectorization of B ∈ Cd×rρ .

B. The mGST estimation algorithm

With a better understanding of the underlying mani-
fold structure we can now formulate a concrete optimiza-
tion approach to tackle the estimation problem (21). The
least squares cost function (19) is a polynomial of order
at most the sequence length squared in the parameters of

G, with a highly degenerate global minimum due to the
gauge freedom. In analogy to the alternating minimiza-
tion techniques which are successful for matrix product
state completion [66, 90, 91] we alternate between up-
dates on A,K and B. Each update would naively be
done via a local optimization approach such as gradient
descent. However, we observe that following the gradi-
ent direction on the respective manifolds is problematic
around saddle points, which are frequently encountered
in our optimization problem. In principle the gradient di-
rection points away from saddle points, yet the norm of
the gradient can be arbitrarily small. There are different
approaches in the literature to deal with this problem.
For instance information about the curvature can be in-
cluded [65] or, if a saddle point is encountered, random
update directions can be chosen to escape the area of
vanishing gradient [50, 92]. We find that the so-called
saddle free Newton (SFN) method [65] yields consider-
ably better results than first order methods. There the
update direction is given by − |H|−1

g with H being the
Hessian and g the gradient and the absolute value |H|
define by spectral calculus. An instructive way to see
why this leads to a speedup is to write the Hessian H as
H =

∑
i λi |vi 〉〈vi |, where vi is the eigenvector to eigen-

value λi. The update direction of the SFN method then
reads −|H|−1g = −∑

i |λi|−1 |vi 〉 〈vi|g〉. Since the vec-
tors |vi 〉 form a basis, this can be interpreted as a rescal-
ing of |g 〉 by |λi|−1 in the directions |vi 〉. As with the
standard Newton method, this leads to a large rescaling
if the curvature in a particular direction is small, result-
ing in large steps even close to the saddle point. Taking
the absolute value of the eigenvalues then ensures that
saddle points are repulsive. For numerical stability it is
beneficial to introduce a damping term that offsets the
eigenvalues of H that are very close to zero before the
inversion.

Algorithm 1 describes a single step of the damped
saddle-free Newton method with damping parameter λ
and is a generalization of the original SFN method [65]
to manifolds.

Algorithm 1: SFN update

input: Curve parametrization Yt(Y0,∆), objective

function LI(Yt), damping parameter λ
1 Compute the gradient G and Hessian H of LI(Yt)

at Y0.

2 Determine the update direction

(

∆

∆
∗

)

= (|H|+ λ1)−1

(

G∗

G

)

.

3 Determine the step size τ = argmin
t

LI (Yt(Y0,∆)).

return Yτ (Y0,∆)

Algorithm 1 is formulated in a way that is compatible
with an update in Euclidean space as well as an update
on the Stiefel manifold. In Euclidean space we update
along the curve Yt( · , · ) : CD×d × CD×d → CD×d with
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Yt(Y0,∆) = Y0 + t∆ for an update direction ∆. On
the Stiefel manifold we have Yt( · , · ) : St(D, d) × T →
St(D, d) with the curve given by the geodesic (27) and
T being the tangent bundle on St(D, d). The step size
is determined by locally optimizing over the parameter
t using standard gradient free optimizers. We derive an
expression for the Hessian on the Stiefel manifold in Ap-
pendix B. In Appendix C, we also provide a detailed
discussion and expressions for the optimization in com-
plex Euclidean space.

Algorithm 2: mGST

input: Data {yj|i}i∈I, j∈[nE ], batch size κ, Kraus

rank rK , initialization (A0,K0, B0), stopping

criterion

1 i← 0
2 repeat
3 Select batch J ⊂ I of size |J | = κ at random

4 Ai+1 ← update Ai with objective LJ( · ,Ki, Bi;y)
along geodesic on St(dnE , d)

5 Ki+1 ← update Ki with objective

LJ(A
i+1, · , Bi;y) along geodesic on St(rKd, d)×n

6 Bi+1 ← update Bi with objective

LJ(A
i+1,Ki+1, · ;y) along geodesic on St(d2, 1)

7 i← i+ 1

8 until stopping criterion is met at i = i∗;

9 return (Ai∗ ,Ki∗ , Bi∗)

Algorithm 2 describes the main mGST routine. It can
be run with different choices of smooth objective func-
tions, and we use the MSE (19) by default. In our nu-
merics we often find that optimizing the log-likelihood
function after the MSE can improve estimates (see Ap-
pendix D for a discussion).

The algorithm alternates updates on A, K and B. Up-
dates are performed using Algorithm 1 on the tangent
spaces of the respective Stiefel manifolds. In order to
achieve good convergence, we run the optimization with
mGST in two consecutive steps: we start from a random
initialization and perform a coarse grained optimization
with a small batch size κ, i.e. only using κ many random
gate sequences from I for each update step. The batching
of data results in lower computation time for the deriva-
tives and adds a factor of randomness to the optimiza-
tion, which avoids getting stuck at suboptimal points to a
certain degree. We terminate the first optimization loop
when the objective function LI(A

i,Ki, Bi|y) is smaller
than an early stopping value δ, which is obtained from
the data as follows.

For a number of m samples per sequence the outcome
probabilities of each sequence for the true gate set are
given by

yj|i = kj|i/m , (28)

where kj|i is the number of times outcome j is measured
upon applying the gate sequence i. Due to Born’s rule,
kj|i is distributed according to the multinomial distribu-
tion M(m, (p1|i, . . . , pnE |i)) with probabilities {pj|i}j and

m trials. We estimate the expectation value of the objec-
tive function from the values yj|i. This provides us with
a rough estimate for how low the objective function value
can become, given the sample counts kj|i. Then we set
the early stopping value to be twice that estimate,

δ := 2Ek̃j|i∼M(m,(yj|i))

1

|I|
∑

i∈I

∑

j

(
yj
i
− k̃j|i/m

)2

. (29)

Hence, we require the objective function on the full data
set to be close to its expectation value for the measured
probabilities yj|i obtained from m samples.

While computationally inexpensive the mini-batch
stochastic optimization does not converge to an optimal
point on the full data set I. In a second optimization
loop, we initialize the mGST algorithm with the result
from the first run and use all the data for the updates.
Formally, we choose the batch size κ = |I| and, thereby,
make the random batch selection obsolete. We perform
these more costly update steps until the change in objec-
tive function reaches a desired relative precision ε,

LI(A
i,Ki, Bi|y)− LI(A

i−1,Ki−1, Bi−1|y) ≤ δε (30)

or a maximal number of iterations is exceeded.
The first optimization run is initialized with a ran-

dom gate set parameterized by A0,K0 and B0 (see Sec-
tion II A). For the random initialization we make use of
the Gaussian unitary ensemble (GUE). A matrix H be-
longs to the GUE if H = (M+M†)/2, where M is a com-
plex Gaussian matrix, i.e, real and imaginary part of each
Mij are independently drawn from N (0, 1), the normal
distribution with zero mean and unit variance. In this
case we write H ∼ GUE. For A0 and each gate in K0 we
take the first d columns of eiH with H ∼ GUE to obtain a
random isometry K0. For B0 we take a complex Gaussian
matrix and normalize it such that Tr[B0†B0] = 1.

Importantly, due to the nature of non-convex optimiza-
tion, several initializations can be needed to converge to
a satisfactory minimum.

IV. NUMERICAL ANALYSIS

In this section, we evaluate the performance of mGST
in different scenarios in numerical simulations. In partic-
ular, we compare its performance to the state-of-the-art
implementation for gate set tomography, pyGSTi [18], in
the regimes where both methods can be applied.

For pyGSTi to be applicable one has to use structured
gate sequences inspired by standard quantum process
tomography. In Section IV A we evaluate the perfor-
mance of mGST and pyGSTi on minimal measurement
sequences and different models to find that mGST ben-
efits from flexibility in the sequence design and a fully
general model parametrization. Section IV B numeri-
cally validates the expected inverse square-root scaling
of the reconstruction error with the number of measure-
ment samples per sequence for different noise regimes.
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Figure 1. mean variation error (MVE) comparison between mGST (with log-likelihood cost function and rK = 4) and pyGSTi

showing the dependence on the number of sequences, the number of samples per sequence and the gate set on a single qubit.

The number of sequences used by mGST in the range 10-58 are drawn uniformly at random, while the sequences for pyGSTi

need to follow the pyGSTi fiducial design and are limited to the fixed sequence counts (18 and 39). We choose independently

drawn random fiducials for each instance. The 92 sequences used by both mGSTand pyGSTi are taken from the standard pyGSTi

sequence design for the XYI-model. All sequence are of length ` = 7. The MVE depicted in each square is the median result for

10 instances, each with random statistical measurement noise and a random sequence drawn from the uniform distribution. In

the random channel scenario, a new random channel is used for each instance. The XYI-model is a simple unitary model used

in the GST literature and the weak damping model consists of amplitude damping noise on each gate with Γ = 0.94, while the

strong damping model uses Γ = −0.6. A complete description of the models used can be found in the main text. Each model

has additional depolarizing noise of strength p = 0.01 on the initial state.

Section IV C numerically determines the required num-
ber of random sequences to accurately reconstruct sim-
ple and random gate set models with mGST for different
Kraus ranks. In Section IV D we follow up with a nu-
merical demonstration of unitary noise characterization
for a three-qubit gate set using a priori knowledge in the
initialization. Finally, in Sections IV E and IV F we dis-
cuss the choice of initialization and hyperparameters, as
well as the runtime of mGST.

For a model of n gates reconstructed from m measure-
ments of sequence length `, we validate the performance
of mGST by computing the MVE (18) over all possi-
ble n` sequences, or 104 random sequences of length ` if
n` > 104. Usually m � min(n`, 104) and the MVE can
be thought of as a generalization error on the predicted
output probabilities of the gate set estimate. The gate
sets studied in this section all use the same target initial
state |0 〉〈0 | and computational basis measurement, al-
though with different levels of noise applied to them. For
instance, we often use global depolarizing noise, which
acts on a quantum state ρ as ρ 7→ (1 − p)ρ + p1/d. For
the numerics presented here, we use a maximum of 100
reinitializations (if not stated otherwise). A discussion of
the required number of initializations is given in Section
IV E. A Python implementation of mGST and a short

tutorial can be found on GitHub [93].

A. Gate set and measurement structure

We compare mGST and pyGSTi for the minimal num-
ber of sequences doable with each method and for
gate sets of different conditionings, without using the
compression capabilities of mGST yet. We find that
mGST is more flexible in the sequence design and model
parametrization, while generating estimators with lower
mean variation errors in several regimes.

The traditional strategy for GST, akin to standard
quantum process tomography, is to generate a frame for
L(H), measure each gate in that frame and generate an
estimate for each gate by applying the pseudo-inverse of
the measurement operator.

This is particularly important for the first reconstruc-
tion step in pyGSTi where the sequences that generate
the frame are called fiducials. The strategy of pyGSTi is
to obtain an initial estimate via the pseudo-inverse, fol-
lowed up by local optimization of a particular cost func-
tion [18]. In contrast, we perform mGST using random
initializations and, thereby, not rely on designated fidu-
cial sequences.
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Figure 1 compares mGST to pyGSTi focusing on the
regime of very few gate sequences, showing what is
needed in terms measurement effort to obtain low mean
variation errors for different gate sets. In order to test
pyGSTi in the regime of low sequence counts, we replace
the 5 standard fiducial sequences with 2 or 3 fiducial se-
quences drawn uniformly at random, thereby reducing
the total sequence number from 92 to 18 or 39 sequences.
Since mGST is compatible with any sequences design, we
use between 10 and 58 random sequences for mGST to
explore the low sequence count region.

The first gate set we study is the so-called XYI model,
the standard single qubit example in the pyGSTi package
[45]. The XYI model consists of the identity gate, a π/2
X-rotation and a π/2 Y-rotation on the Bloch sphere,
with initial state |0 〉〈0 | and measurement in the com-
putational basis. Results for the ideal XYI-model can
be seen on the left in Figure 1, with mGST and pyGSTi
performing identically for 92 sequences. Comparing the
results for 18 sequences we find that mGST does not con-
verge on more than 50% of trials, which reflects in the
median MVE being above 10−1, while pygsti achieves
lower median errors. Comparing the 38 and 39 sequence
medians however, we find that mGST yields lower error
models than pyGSTi.

The subsequent models analyzed successively deviate
from the simple unitary XYI-model and highlight the ver-
satility of our manifold approach. Since the full CPT
parametrization used in our optimization (21) is agnos-
tic to any special gate set properties we expect it to
perform well for all possible CPT maps as gate imple-
mentations. For instance, for random and specific non-
Markovian channels. pyGSTi on the other hand uses a
parametrization of Lindblad type and is therefore based
on a more limited model space.

To illustrate this comparison, we perturb the XYI-
model by adding amplitude damping noise to each
gate. The amplitude damping channel can be writ-

ten in terms of the Kraus operators K1 =

(
1 0
0 Γ

)
and

K2 =

(
0

√
1− |Γ|2

0 0

)
, which arise e.g. from the Jaynes-

Cummings model of a qubit system interacting with a
quantized bosonic field [94]. How well mGST and pyGSTi
perform on a model with Γ = 0.94 can be seen in the cen-
ter left block of Figure 1 (XYI + Weak damping). We
find generally similar performance, with mGST being a
bit more accurate on 38 sequences, and a bit less accurate
on 92 sequences with 106 samples.

Increasing the interaction time between qubit and
environment leads to memory effects and strong non-
Markovianity of the amplitude damping channel at Γ =
−0.6. This scenario is shown in the center right plot of
Figure 1, and we see that while the accuracy of mGST is
the same as before, the model parametrization of pyGSTi
cannot fit the model with MVEs below 10−2, indepen-
dent of the sequence or sample count.

For the last comparison (rightmost block in Figure 1)
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Figure 2. Reconstruction of the XYI gate set for differ-

ent levels of depolarizing noise with strength p and unitary

noise with strength γ on each gate. The unitary noise is

given by eiγH with H ∼ GUE. Additional depolarizing

noise with p = 0.01 is applied before measurement. The

mGST-algorithm is run on the log-likelihood cost function

with rK = 4 (max.), which is the same as for pyGSTi. As

gate sequences we used again the standard pyGSTi fiducial

sequences, with the number of measurements per sequence

between 102 and 108. The lines connect data points of which

each is the median over 10 runs. For each run a new random

overrotation is drawn and new measurements are simulated.

The measurement sequences are the 92 sequences provided

by the pyGSTi software, with a maximum sequence length of

` ≤ 7.

we look at the performance for random full Kraus rank
channels. Each channel is constructed by drawing a
Haar random d3 × d3 unitary and then taking its first d
columns. The resulting d3 × d matrix is an isometry and
therefore constitutes a valid set of Kraus operators. Note
that this construction is different from the previous con-
struction of random channels via the Gaussian unitary
ensemble. The results show that mGST can reconstruct
these models from low sequence counts, while pyGSTi
does not yield good estimators. Using the standard se-
quence design of 92 sequences, mGST and pyGSTi have
identical accuracy again, suggesting that random chan-
nels are typically well within the model space of pyGSTi
after all. These demonstrations show that mGST is in-
deed flexible in the sequence design with state-of-the-art
performance for arbitrary gate set implementations.

B. Number of samples per sequence

The probability associated to every sequence is esti-
mated from a finite number of samples. Here, we study
the resulting effect on the reconstruction accuracy as
measured by the MVE more closely.

For a high number m of samples per sequence, each
probability yj

i
in the objective function is estimated with

an error of order 1/
√
m. Therefore, we expect the MVE

to also decrease as 1/
√
m if the algorithm converges to
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the global minimum. This scaling was observed to hold
true for pyGSTi [18]. In order to be able to compare the
scaling of mGST directly to the one of pyGSTi, we use a
standard pyGSTi setting: The gate set is the XYI-model
(with π/2-rotations) and the gate sequences are the stan-
dard pyGSTi sequences for this model with a maximum
sequence length of ` = 7.

We add noise to the gate set by varying the amount
of depolarizing noise with strength p on each gate and
also overrotating each gate by a random unitary. The
random unitaries are given by eiγH with H ∼ GUE. In
particular, this means that H can be bounded on average
as follows. We can write H = (M1+MT

1 +i(M2−MT
2 ))/2

with Mi being independent Gaussian matrices. Next, we
use Gordon’s theorem for Gaussian matrices (see e.g. [95,

Theorem 5.32]), which tells us that E ‖M1‖
∞

≤ 2
√
d.

The relevant magnitude of the random generator H is
then in expectation upper bounded as

E ‖H‖
∞

≤ 2E ‖M1‖
∞

≤ 4
√
d . (31)

State preparation and measurement are assumed to be
noise-free in this setup, however for a fixed sequence
length the depolarizing noise per gate is equivalent to
a global depolarizing channel applied before measure-
ment, since it commutes with the unitary gates. Figure 2
depicts the resulting MVE-scaling of the reconstruction
where data was generated using different numbers of sam-
ples per sequence m.

We observe that mGST follows the expected scaling in
m, matching the scaling of pyGSTi for different levels of
unitary and depolarizing noise.

C. Number of sequences

The arguably most challenging experimental require-
ment of GST is the number of measurement settings (se-
quences) that are required for a successful gate recon-
struction. One of the main motivations of compressive
GST is to employ structure constraints, i.e. to reduce
the number of degrees of freedom of the reconstruction
problem, in order to reduce the required number of mea-
surements. Instead of reconstructing arbitrary quantum
channels we aim at reconstructing low-rank approxima-
tions of the gate set elements. In addition, we expect
that by using the mGST algorithm, compressive recov-
ery is possible from already a ‘few’ randomly selected
sequences. We here numerically demonstrate that this is
indeed the case.

The top row of Figure 3 shows the median perfor-
mance in MVE against the number of randomly chosen
sequences for different Kraus ranks. On the left are the
results for the single qubit XYI model as defined in Sec-
tion IV A. On the right are the results for the XYICNOT
gate set that is based on the identity, CNOT and Pauli-X
and -Y rotations on each qubit individually, with rotation
angle π/2.

We observe a phase transition in the MVE that indi-
cates a minimal number of sequences that are required
for the successful reconstructions of the gate sets. As ex-
pected, constraining the reconstruction to a lower Kraus
rank indeed reduces the amount of required sequences in
the reconstruction in most cases.

An intriguing exception is the rK = 1 reconstruction of
the two qubit gate set that exhibits the worst reconstruc-
tion performance compared to higher rank constraints.
We suspect that this is due to the optimization problem
being more dependent on the initialization for rK = 1.
In more general settings, it has been observed that the
optimization over matrix-product states with fixed Kraus
rank can be unstable and using rank-adaptive optimiza-
tion techniques yield much better performance [96, 97].
This motivates to use a slightly higher rank in the opti-
mization than the expected rank of an effective approxi-
mation of the gate set. In accordance with this intuition,
we find that it is beneficial to constrain the optimiza-
tion to rK = 2 in order to achieve an accurate unit-rank
approximation. The same effect is also observed in the
single qubit example when taking a detailed look at the
number of required initializations (see section IV E) , yet
less pronounced. In the bottom row of Figure 3 we show
the recovery rates for random unitary models, with the
reconstruction now using a fixed Kraus rank of rK = 2.
Note that there are three sources of randomness present
in the data, first the Haar-random unitary gates, then the
random drawing of gate sequences and finally the random
initialization of the algorithm. Each shade of green cor-
responds to one random gate set, and the recovery rate
tells us how many of the 10 random sequence sets lead to
a successful reconstruction, given a budget of 33 initial-
izations. We find that the random single qubit gate sets
all have similar recovery rates, with a successful recon-
struction possible from nseq = 20 to nseq = 30 sequences,
and a high rate of recovery at nseq = 100 sequences.
In the two qubit case a different picture emerges, where
two of the random gate sets show a high recovery rate
at nseq = 200 sequences (akin to the XYICNOT-model),
while the least favorable random gate set was only recov-
erable at nseq = 500 sequences. This shows that random
gate sets for two qubits can have very different condition-
ing.

Sequence number comparison to pyGSTi

Comparing the number of random sequences needed
for mGST and the number of sequences for pyGSTi is not
straightforward. The standard pyGSTi data-processing
pipelines crucially relies on specific, fixed sequence con-
struction. For this reason pyGSTi cannot be applied to
the type of data that we use here. We can however com-
pare the number of random sequences with the number
of deterministic sequences that the standard implemen-
tation of pyGSTi uses. For the single qubit XYI-model,
the minimal number of sequences given in the pyGSTi
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Figure 3. Median error of mGST run on the least squares cost function, plotted over the number of sequences for a single qubit

model (top left) and a two-qubit model (top right). Each data point is the median over the results from 10 different random

sequences. The measurement data for the XYI - and the XYICNOT gate set is taken from a noisy version with depolarizing

noise of strength p = 0.001 on each gate, depolarizing noise with strength p = 0.01 before measurement, as well as independent

random unitary rotations eiγH with γ = 0.001 and H ∼ GUE on each gate.

On the bottom left the recovery rates for the reconstruction of different models of 3 Haar random unitaries are shown. For

each gate set the average over 10 draws of random sequences is shown. A gate set is classified as recovered if the MVE falls

below 0.03. The bottom right depicts the recovery rate for random two qubit gate sets of the form G = {14,12 ⊗ U1,12 ⊗
U2, U1⊗12, U2⊗12, U12} where U1 and U2 are Haar random single qubit unitaries and U12 is a Haar random two qubit unitary.

Additionally, each single qubit and two qubit gate contains depolarizing noise of strength p = 0.001 and depolarizing noise of

strength 0.01 is applied before measurement. The recovery rate is averaged over 10 random sequence draws. For all gate sets

the sequences are drawn uniformly at random with sequence length ` = 7 and m = 1000 samples per sequences. The maximum

number of initializations are 80, 33, 17 and 10 for Kraus ranks 1, . . . , 4 respectively. They are chosen such that the maximal

computation time is equal among different ranks.

implementation is nseq = 92. This is significantly larger
than the number of random sequences at which the phase
transition of mGST in Figure 3 appears. However, the
nseq = 92 sequences are overcomplete by design, and
we find that pyGSTi can also reconstruct the XYI model
with nseq = 48 sequences. Yet we find the same sequence
design not to be successful for three Haar-random sin-
gle qubit gates, indicating that the choice of sequences
is well-tailored to the XYI-model. The reduction in se-
quences becomes more pronounced for the two-qubit gate
set studied in the top right of Figure 3. For this gate set,
the minimal number of gate sequences that pyGSTi uses is
nseq = 907, which is significantly larger than what mGST
needs.

D. Characterizing unitary errors using prior
knowledge

In the previous section we demonstrated compressive
gate set tomography for one- and two-qubit gate sets us-
ing agnostic random initializations. A major obstacle in
going beyond reconstructing entire two-qubits gate sets
even compressively on desktop hardware is that besides
run-time and storage also the number of required random
initializations until proper convergence grows in princi-
ple with the number of qubits. This is due to longer
sequences being required for tomographic completeness,
leading to a higher order polynomial in the cost function.
This situation can be remedied by using prior knowledge,
such as the target gate set, for the initialization. In this
case, a gate set in the vicinity of the initial point will be
found which is in better agreement with the data. In a
conceivable experimental scenario the gates are more or
less known due to the physical setup and previous bench-
marking rounds, but further calibration requires infor-
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Figure 4. Average diamond distance between 3-qubit rotated

target gates Groti and their unitary (rK = 1) mGST estima-

tors Ĝi as a function of the number of sequences. The 0-

sequence data marks the average diamond distance between

initialization Gi and Groti . The rotated gates Groti are related

to their counterparts Gi by independent random (global) over-

rotations on each gate, given by exp(iγH)) with H ∼ GUE
and γ = 0.05, leading to E ‖γH‖∞ ≤ 2

√
2/5. The data is sim-

ulated from the gates Groti with depolarizing noise of strength

p = 0.01 on each gate and the measurements are taken from

random sequences of length ` = 7, with m = 105 samples per

sequence.

mation about present coherent errors. The use of prior
knowledge can be seen as a situational tool to further
reduce runtime when applicable, but for general purpose
verification and characterization no initial point is to be
assumed for compressive GST with the mGST algorithm.
To showcase the characterization of unitary errors using
prior knowledge, we take a three-qubit gate set that is
the direct generalization of the previous two-qubit XY-
ICNOT model, by adding the local X- and Y-rotations
as individual gates to the 3rd qubit and adding a CNOT
between qubits 2 and 3. We then apply a global random
rotation to each gate individually, as well as depolarizing
noise on each gate. From random sequences of fixed se-
quence length we can then, in theory, fit the noisy model
perfectly via an rK = 1 approximation, as the depolariz-
ing channels commute with the unitary gates and can be
pulled into initial state or measurement. In Figure 4 we
see that mGST is indeed able to precisely reconstruct the
rotated gates, as shown by the average diamond norm
error. We chose a comparatively high number of 105

samples per sequence to showcase that high accuracy can
indeed be realized using this method: for instance, only
256 sequences are enough to achieve an average diamond
norm distance of around 0.007 between the reconstructed
unitary gates and the true unitary gates, which include
overrotations. The fact that these overrotations were
modelled as being global on all 3 qubits suggests that
we can efficiently characterize unitary crosstalk as well,
by capturing the effect of single and two qubit gate on
their neighbours within a three qubit region.

E. Implementation details and calibration

We now provide more details on the simulations, the
criteria for successful recovery and the required num-
ber of initializations. To simulate measurements on a
gate sequence i, we first compute the outcome proba-
bilities pj|i from Eq. (16) of the POVM elements ac-
cording to the model gate set in question. Afterwards
we draw m samples from the multinomial distribution
M(m, (p1|i, . . . , pnE |i)), where

∑
j pj|i = 1. Let kj|i be

the number of times outcome j occurred for sequence i.
Then Algorithm 2 optimizes the objective function (20)
on the estimated probabilities yj|i = kj|i/m.

For the single qubit examples the batch size κ = 50 was
chosen, while for the two qubit example we use κ = 120.
The choice of batch size determines the number of values
summed over in Eq. (20). Therefore, the computation
time of the objective function and its derivatives scales
linearly in κ, making a small batch size favorable. How-
ever, it cannot be set too small, otherwise the update
directions become highly erratic, and no convergence is
reached. A general rule of thumb is to set the batch
size close to the number of free parameters in the model.
Another hyperparameter is the damping value λ for the
saddle-free Newton method described in Algorithm 1.
We find that a fixed value of λ = 10−3 leads to the best
results across the models tested.

Judging whether mGST recovers a gate set by look-
ing at the attained objective function value can only be
done if the set of measured sequences is informationally
complete. Then there is a unique (up to gauge) global
minimum in the least squares minimization problem and
the minimum corresponds to the true gate set in the limit
of infinitely many samples per sequence.

In Figure 5 we take a look at the correlation between
the final least square objective function value L(X̂ ,y)

and the mean variation error MVE(X̂ ,X ). We see that
for a low number of sequences (10-20), a low objective
function value does not imply a low MVE, yet for higher
numbers of sequences, an objective function value below
10−3 implies an MVE around 10−2. For sufficiently many
sequences, the gray line indicating our success criterion
clearly separates two clusters of points, meaning that no
intermediate quality fits are found in our model space.
In this sequence regime either the algorithm converges
to a fit as good as the sample count allows, or it does not
converge at all. Therefore, restarting the algorithm when
an initialization turns out to be bad yields practically
optimal results. A thorough analysis of the probability
of obtaining an informationally complete set of random
sequences is left for future work.

To give an intuition on how many initializations are re-
quired for mGST to converge, we can take a look at data
from a modified XYI-model with gates {1, eiα2 σy , ei

α
2
σx},

simulating more difficult gate set conditioning. Fig-
ure 6 shows histograms for the number of reinitializations
needed for convergence. The data combines the results
for α between π/18 and π/2, with depolarizing noise of
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experimental efforts [15, 19, 21–23]. Coherent error esti-
mates can often be directly corrected for by adjusting or
optimizing the control. We expect that the more econom-
ically accessible compressive estimates from mGST can
be used in place of traditional GST estimates in the above
applications, in particular when complemented with RB
estimates of incoherent noise effects. However, it is be-
yond the scope of this work to demonstrate mGST in a
full engineering cycle of a quantum computing device.

To still showcase the value of GST estimates, we sketch
another novel application that can be demonstrated with-
out simulating a whole engineering cycle. Generally
speaking, noise characterizations can be used to miti-
gate noise-induced biases in other quantum characteriza-
tion protocols by adapting the classical post-processing
[98, 99]. Given a device that can repeatedly prepare a
quantum state, a fundamental characterization task is to
estimate the expectation values of observables from mea-
surements. In particular, an informationally complete
measurement allows one to estimate arbitrary observ-
ables from the same data in the post-processing. Such
an informationally complete measurement can be imple-
mented on a quantum computing device by measuring in
sufficiently many random bases, the prototypical exam-
ple being measurements in random Pauli bases. Ref. [46]
showed how to derive optimal guarantees with exponen-
tial confidence for estimating multiple observables simul-
taneously using a median-of-means estimator and ex-
plicit bounds on the variance for random basis measure-
ment that constitute unitary 3-designs. They introduced
the term ‘classical shadow’ to refer to the elements of a
dual frame of the informationally complete POVM cor-
responding to observed samples, see Appendix E for a
brief summary. Importantly, one can often arrive at high
precision estimates of observables long before one has
measured all the informationally complete bases in multi
qubit systems.

In practice however, implementing a random bases
measurement, say, by applying a unitary rotation fol-
lowed by a computational bases measurement will suf-
fer from noise from the gates and read-out. This has
motivated the development of robust variants of shadow
estimation that either make use of simple depolarizing
noise-models of known strength [100] or perform a sep-
arate RB-style experiment that estimates the depolariz-
ing noise-strength induced by a gate-independent channel
acting between the rotation and the measurement [101].
Using GST estimates provides a complimentary, flexible
approach to mitigate even highly gate-dependent noise
with finite correlations in shadow estimation.

We demonstrate how GST estimates on 2-qubit pairs
can be used to calculate noise-robust classical shadow
estimators in post-processing. Our robust estimation
scheme consists of two distinct stages each consisting of
multiple steps: (I) calibration stage: (i) the local chan-
nels implementing each combination of two local gates
are reconstructed with mGST; ii) the gauge of these gate
estimates is matched to the gauge in which the ideal gates

and the observables are given. For this step we use the
gauge optimization provided by the pyGSTi package [45].
(iii) From the gauge-optimized channel estimates, we nu-
merically calculate the effective measurement map when
implementing random Pauli measurements with the char-
acterized noisy gates-set.

(II) After calibration, the second stage is a shadow es-

timation protocol consists of two separate phases: (i) the
data acquisition by repeatedly measuring the unknown
state of the quantum device in a randomly selected Pauli
basis; (ii) the classical post-processing where estimators
of the observables are calculated using the data. We use
the inverse of the effective measurement map from the
calibration stage to calculate the empirical estimators.
We give a more detailed description of the individual
steps of the procedure in Appendix E.

Using an empirically estimated effective measurement
map instead of the ideal theoretical result is the essential
modification compared to standard shadow estimation.
In this way, we also ‘invert’ the effect of the noise on
our estimator. The right column of Figure 7 shows an
effective measurement map implemented with imperfect
gates.

As a proof of concept, we chose the following simple but
practically relevant setup: Random local Pauli basis mea-
surements are implemented by native measurements in
the computational basis after rotating with a Hadamard
gate H (if the Pauli-X basis is to be measured) or a phase
gate S followed by a Hadamard gate (for measurement
in the Pauli-Y basis). Since throughout the protocol the
S-gate only turns up before application of the Hadamard
gate, we treat the sequence HS as a single gate.

We assume that the dominant noise associated with
the single qubit rotations of each local gate in the ex-
periment stays confined to two neighboring qubits. This
assumption makes both the gate set estimation and the
post-processing of the shadow estimation highly scalable.

Figure 7 shows the results of our scheme in simula-
tions of the energy estimation of a Heisenberg Hamil-
tonian on a 10-qubit system. We observe that a using
the estimated effective measurement map instead of the
ideal theoretical one significantly reduces the relative er-
ror |(Ê−E)/E| between the estimated energy Ê and the
true energy E of a given state. There are two contribu-
tions to the relative error in a shadow estimation proto-
col: First, the statistical fluctuation from the random-
ness of both the Pauli basis selection and the single shot
measurements. Second, the systematic bias introduced
in the post-processing due to imperfect implementations
of the measurements. The histograms in Figure 7 show
the infinite measurement limit of the relative error and
thus directly reflect the bias. We observe that for a fixed
noise model, the magnitude of the bias depends heavily
on the selected initial state, with relative errors being dis-
tributed over two orders of magnitude. When comparing
the most likely errors between standard shadow estima-
tion and GST-mitigated shadow estimation we find that
using GST data leads to a reduction in relative error by
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Figure 7. Energy estimation for the 10 qubit Hamiltonian H = 1
2

∑10
j=1(σ

j
xσ

j+1
x + σj

yσ
j+1
y + σj

zσ
j+1
z − σj

z) with periodic

boundary conditions. The top left shows the sample dependence of the relative accuracy |(Ê − E)/E| for estimating the

ground state energy. The colored blocks extend from the 1st quartile to the 3rd quartile around the median (black line) of the

data (50 repetitions per sample value). The whiskers extend from the 5th to the 95th percentile and the dashed lines indicate

the infinite sample expectation values. On the bottom left two histograms are shown that compare the theoretical infinite

sample energy estimates Ê∞ (biases) for 1000 random pure states and for all 1024 eigenstates of the Hamiltonian, respectively.

All simulations were done with noisy Clifford gates, whose average gate fidelity to their ideal counterparts is at 0.99±10−3. On

the top right the Pauli transfer matrix of a two-qubit effective measurement map M\ under this noise model is shown. The

bottom right plot displays the difference between M\ and its noise-free counterpart M. Gate estimates for GST-mitigated

shadow estimation were produced with mGST (rK = 2), using 400 random sequences equally distributed among sequences

lengths {6, 7, 8, 9} with 104 samples per sequence. The noise in the simulations is given by two-qubit random unitary noise

eiγK with K ∼ GUE. The error parameter is γ = 0.14 on H and on HS, leading to the aforementioned average gate fidelities

of ∼ 0.99. For the bottom left histogram, random pure state were generated as U |0 〉, with U drawn according to the Haar

measure.

half an order of magnitude for random pure states and
an order of magnitude for eigenstates of the Hamiltonian.
The simulation of the protocol in the top left of Figure 7
includes statistical fluctuations and showcases how esti-
mates spread for different sample counts when the ground
state energy is estimated. We find that from 104 samples
on, the GST-mitigated protocol yields significantly more
accurate estimate.

VI. CONCLUSION AND OUTLOOK

We have revisited the data processing task of GST from
a compressed sensing perspective regarding it as a highly

structured and constrained tensor completion problem.
In this formulation, we can naturally require the recon-
structed gate set to be physical and, moreover, of low
rank. Compressive gate set tomography, thus, aims at
extracting considerably fewer parameters of the gate set.
At the same time we have argued that the low-rank ap-
proximation to the implementation of a gate set contains
the most valuable information about experimental im-
perfections for the practitioner.

The set of Kraus-operators of a low-rank gate can be
regarded as isometries that make up the complex Stiefel
manifold. This observation has motivated the solution
of the compressive GST data processing problem via ge-
ometrical optimization on the respective product mani-
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folds. We have devised the optimization algorithm mGST
that performs an adapted saddle-free Newton method on
the manifold. To this end, we have derived the Rieman-
nian Newton equation, Hessian equation and geodesic
curves.

In numerical experiments we have studied the perfor-
mance of the mGST algorithm. We have compared it to
pyGSTi, the state-of-the-art approach to the GST data
processing problem, in settings where both algorithms
can be applied and using full rank mGST estimates. We
have found that in these settings mGST matches the per-
formance of pyGSTi, while offering a larger model space,
more flexibility in the sequence design and allowing for
low rank assumptions. Moreover, we have demonstrated
numerically that making use of the low-rank constraints
significantly reduces the required number of measured
sequences and the run-time of the reconstruction algo-
rithm for a standard single and two qubit model. Im-
portantly, we have found that we can successfully recon-
struct generic unitary channels and depolarizing noise
of one- and two-qubit gate sets from random gate se-
quences. This reduces the demands of GST both for ex-
periments and classical post-processing: the data that
compressive GST requires is virtually identical with the
experimental data produced by randomized benchmark-
ing experiments. The classical post-processing of mGST
for a low-rank reconstruction of two qubit gate sets takes
only minutes even on desktop hardware, compared to
over an hour with pyGSTi. We expect that this speedup
and the low number of sequences required can lift 2-qubit
GST from being a protocol that is unpractical in many
situations to one that is routinely applied, thus enabling
it to be used in the engineering cycle for the design and
calibration of gate sets.

Furthermore, compressive GST makes it feasible to
perform self-consistent tomography on 3-qubit systems.
Making use of often available prior knowledge about an
initialization can further reduce the computing time. We
demonstrated this by performing tomography of unitary
errors for 3-qubit gate sets, using only a small number of
random gate sequences, and with the post-processing still
running on desktop hardware in a few hours. We expect
that even going slightly beyond three qubits is feasible
by simply using more computing power. We leave it to
future work to further tweak the numerical implemen-
tation in order to improve the scalability of the classical
post-processing. We also expect that progressively longer
sequences can be added at the end of our optimization
method, much in the same fashion as in pyGSTi, in or-
der to further improve reconstruction accuracy of gate
set estimates.

To demonstrate the use of compressive GST for er-
ror mitigation, we have introduced one novel application
where low-rank mGST reconstructions are used to alle-
viate the effect of coherent errors in classical shadow
estimation. The protocol uses a set of gates to im-
plement basis changes before the measurement. We
have demonstrated that with tomographic information

on these gates through two-qubit compressive GST, more
accurate ground state energy estimates are obtained in
practically relevant regimes. This constitutes just one
example where the full information of a low rank GST
estimate is used to correct errors, and we expect that the
reduced runtime requirements of mGST enable frequent
use of GST for error diagnosis and mitigation.

Finally, besides making GST more applicable and flex-
ible in practice, our reformulation is motivated by bring-
ing it closer to theoretical recovery guarantees quantify-
ing a required and sufficient number of random sequences
for accurate reconstruction. Regarding the data process-
ing of GST as a translation-invariant matrix-product-
state/tensor-train completion problem makes it more
amenable to prove techniques from compressed sensing.
For example, establishing local convergence guarantees
for mGST would allow one to quantify the assumptions on
the experimental implementation that justify certain ini-
tialization of the algorithm. We hope that our work can
serve as a foundation and inspiration in the quest of es-
tablishing mathematically rigorous guarantees for GST.
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VII. APPENDIX

In this appendix, we provide the mathematical details required for the saddle-free Newton method within the
Riemannian optimization framework, see Appendices A, B, and C. Moreover, we compare the dependence of the
mGST MVE on the choice of objective function (mean squared error vs. maximum likelihood) in Appendix D.

A. Geodesics on the Stiefel manifold

Edelman, Arias, and Smith [48] derived the geodesic on the real Stiefel manifold by solving the respective geodesic
equation. We now show that the simple generalization given in Eq. (27) is indeed the correct geodesic in the complex
case. For a curve Kt ≡ K(t) the general geodesic equation is [89, Chapter 5.4, Proposition 5.3.2]

PT (Kt)

(
K̈t + CKt

(K̇t, K̇t)
)
= 0 , (32)

where the Christoffel symbol CKt
depends on the chosen metric. Here, we use the canonical metric

〈∆1,∆2〉K = Re
{
Tr(∆†1Γ∆2)

}
=: g(∆1,∆2) (33)

with Γ = 1− 1
2KtK

†

t . Using the Einstein summation convention, the Christoffel symbol at K can be computed as

(
Ck

Kt

)
ij
=

1

2
g−1kl

(
∂glj
∂Kti

+
∂gli
∂Ktj

− ∂gij
∂Ktl

+ c.c.

)
, (34)

where Ck
Kt

is the k-th component of the Christoffel symbol at Kt with respect to a basis {Ek, E
∗

k}k∈[Dd] on the ambient

space C
D×d.

Lemma 1. The geodesic equation on the complex Stiefel manifold St(D, d) equipped with the canonical metric for the

curve Kt : R → St(D, d) is given by

PT (Kt)

(
K̈t + K̇tK̇

†

tKt −KtK̇
†

t K̇t − K̇tK
†

t K̇t

)
= 0 . (35)

Proof. By noting that Γ−1 = 1 + KtK
†

t we can determine the function g−1(∆1,∆2) via the condition

g(g−1(∆1, · ),∆2) = Tr
[
∆†1∆2 +∆2∆

†

1

]
, meaning the inverse g−1 would recover the standard symmetric inner product

on TK St(D, d). One can quickly verify that g−1(∆1, · ) = Γ−1∆1 satisfies this condition.

We determine the derivatives of g needed for the Christoffel symbol by explicitly writing out g as

g(∆1,∆2) = Tr

[
∆†1

(
1− 1

2
KtK

†

t

)
∆2 +∆†2

(
1− 1

2
KtK

†

t

)
∆1

]
, (36)

from where we can find the derivatives by K and K∗ as

∂gij
∂Ktl

=
∂g

∂Ktl

(Ei, Ej) = −1

2
Tr

[
E†iElK

†Ej + E†jElK
†Ei

]
, (37)

∂g

∂K∗tl
(Ei, Ej) =

(
∂g

∂Ktl

(Ei, Ej)

)
∗

(38)

= −1

2
Tr

[
E†iKE†l Ej + E†jKE†l Ei

]
. (39)
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With these derivatives we can calculate

Ck
Kt

(K̇t, K̇t) =
(
Ck

Kt

)
ij
(K̇t)i(K̇t)j (40)

=
1

2
g−1kl

(
∂glj
∂Kti

+
∂gli
∂Ktj

− ∂gij
∂Ktl

+ c.c.

)
K̇tiK̇tj (41)

=
1

2

(
∂g

∂Kti

(
g−1(Ek, · ), K̇t

)
K̇ti +

∂g

∂Ktj

(
g−1(Ek, · ), K̇t

)
K̇tj −

∂g

∂Ktl

(
K̇t, K̇t

)
(g−1(Ek, · ))l + c.c.

)

(42)

= −1

2
Re

{
Tr

[
2E†kΓ

−1K̇tK
†

t K̇t + 2K̇†t K̇tK
†

tΓ
−1Ek − 2K̇†tΓ

−1EkK
†

t K̇t

]}
(43)

= −Re
{
Tr

[
K̇tKtK̇

†

tΓ
−1Ek + K̇†t K̇tK

†

tΓ
−1Ek −K†t K̇tK̇

†Γ−1Ek

]}
(44)

=

〈(
K†t K̇tK̇

†

t − K̇†t K̇tK
†

t − K̇†tKtK̇
†

t

)
†

, Ek

〉
(45)

=
〈
K̇tK̇

†

tKt −KtK̇
†

t K̇t − K̇tK
†

t K̇t, Ek

〉
, (46)

where we have used that (Γ−1)† = Γ−1 and ReTr[X] = ReTr[X†]. We now first write out the geodesic equation (32)
on the ambient space,

〈K̈t, Ek〉+ Ck
Kt

(K̇t, K̇t) = 〈K̈t, Ek〉+
〈
K̇tK̇

†

tKt −KtK̇
†

t K̇t − K̇tK
†

t K̇t, Ek

〉
= 0 ∀Ek , (47)

(48)

which is equivalent to

K̈t + K̇tK̇
†

tKt −KtK̇
†

t K̇t − K̇tK
†

t K̇t = 0 . (49)

To arrive at the geodesic equation (27), it remains to project the above equation onto the tangent space. Indeed,
with the explicit form of the geodesic equation from Lemma 1 we can show that the immediate generalization from
the geodesic in the real case [48] gives a valid geodesic for the complex case.

Lemma 2. The curve given by

Kt =
(
K Q

)
exp

(
t

(
A −R†

R 0

))(
1

0

)
(50)

is a geodesic on St(D, d), determined through the initial conditions Kt=0 = K and K̇t=0 = ∆, with Q,R given by the

QR decomposition of (1−KK†)∆ and A = K†∆.

Proof. We recall that the ambient space splits into the tangent space and its orthogonal complement, the normal
space. Therefore, the condition that the projection of the left-hand side onto the tangent space in Eq. (35) vanishes

is equivalent to demanding that it lies solely in the normal space. If it is in the normal space, K†t applied from the
left will yield a Hermitian matrix. We will now show that this is indeed the case. For that we first need to determine
the first and second derivatives of Kt:

K̇t =
(
K Q

)
exp

(
t

(
A −R†

R 0

))(
A −R†

R 0

)(
1

0

)
(51)

= KtA︸︷︷︸
K̇1

+
(
K Q

)
exp

(
t

(
A −R†

R 0

))(
0
1

)
R

︸ ︷︷ ︸
K̇2

, (52)

K̈t =
(
K Q

)
exp

(
t

(
A −R†

R 0

))(
A −R†

R 0

)2 (
1

0

)
(53)

= K(t)(A2 −R†R)︸ ︷︷ ︸
K̈1

+
(
K Q

)
exp

(
t

(
A −R†

R 0

))(
0
1

)
RA

︸ ︷︷ ︸
K̈2

. (54)
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We immediately see that K†t K̈1 = A2 − R†R, which is Hermitian, as A is skew Hermitian. We will now show that

K†t K̈2 = 0 starting with

K†t K̈2 =
(
1 0

)
exp

(
−t

(
A −R†

R 0

))(
K†

Q†

)(
K Q

)
exp

(
t

(
A −R†

R 0

))(
0
1

)
RA (55)

=
(
1 0

)
exp

(
−t

(
A −R†

R 0

))(
1 K†Q

Q†K 1

)
exp

(
t

(
A −R†

R 0

))(
0
1

)
RA (56)

=
(
1 0

)
exp

(
−t

(
A −R†

R 0

))((
1 0
0 1

)
+

(
0 K†Q

Q†K 0

))
exp

(
t

(
A −R†

R 0

))(
0
1

)
RA (57)

=
(
1 0

)
exp

(
−t

(
A −R†

R 0

))(
0 K†Q

Q†K 0

)
exp

(
t

(
A −R†

R 0

))(
0
1

)
RA . (58)

To simplify the last expression, we set

(
U00 U01

U10 U11

)
= exp

(
t

(
A −R†

R 0

))
(59)

and obtain K†t K̈2 = (U†00K
†QU11 + U†10Q

†KU01)RA. From the series representation of the matrix exponential we

gather that U11 = 1+R ·X for some matrix X. Moreover U10 = RX̃ and U†10 = X̃†R† for some X̃, leading to

K†t K̈2 = (U †00K
†Q+ U†00K

†QRX + X̃†R†Q†KU01)RA = 0 , (60)

since K†QR = K†(1−KK†)∆ = 0.

This shows that the K̈t lies in the normal space, leaving us with the terms in the geodesic equation (35) that depend

only on K̇t:

K†t (K̇tK̇
†

tKt −KtK̇
†

t K̇t − K̇tK
†

t K̇t) = K†t K̇tK̇
†

tKt − K̇†t K̇t − (K†t K̇t)
2

= (A+K†t K̇2)(A+K†t K̇2)
† − (A†A+A†K†t K̇2 + K̇†2KtA+ K̇†2K̇2)

− (A+K†t K̇2)
2

= AA† −A†A− K̇†2K̇2 −A2 .

The last line follows from K̇2A = K̈2 and our previous observation that K†t K̈2 = 0, which implies that K†t K̇2 = 0 as

well. The remaining term K̇†2K̇2 can be computed similarly to K†t K̈2 and we obtain

K̇†2K̇2 = R†
(
0 1

)
exp

(
−t

(
A −R†

R 0

))(
1 K†Q

Q†K 1

)
exp

(
t

(
A −R†

R 0

))(
0
1

)
R (61)

= R†
(
0 1

)
exp

(
−t

(
A −R†

R 0

))((
1 0
0 1

)
+

(
0 K†Q

Q†K 0

))
exp

(
t

(
A −R†

R 0

))(
0
1

)
R (62)

= R†R+R†
(
0 1

)
exp

(
−t

(
A −R†

R 0

))(
0 K†Q

Q†K 0

)
exp

(
t

(
A −R†

R 0

))(
0
1

)
R (63)

= R†R+R†(U †11Q
†KU01 + U †01K

†QU11)R (64)

= R†R+R†
(
(1+X†R†)Q†KU01 + U †01K

†Q(1+RX)
)
R (65)

= R†R , (66)

where we used again that K†QR = R†Q†K = 0 in the last line.

We can now put all the terms obtained by multiplying Eq. (49) with K†t from the left together and find

K†t

(
K̈t + K̇tK̇

†

tKt −KtK̇
†

t K̇t − K̇tK
†

t K̇t

)
= A2 −R†R−AA† −A†A−R†R−A2 (67)

= −2R†R−A†A−AA† . (68)

We see that these remaining terms are Hermitian and therefore the left-hand side of Eq. (49) is in the normal space.
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B. Complex Newton equation

In this section, we derive the Riemannian Hessian operator and solve the Hessian equation to obtain an update
direction on the tangent space, which we can follow along the geodesic defined in Eq. (27). This can be done for each
gate individually, or simultaneously over all gates, in which case we operate on the Cartesian product St(D, d)×n of
single Stiefel manifolds. We consider the latter case, whereby we obtain the single Stiefel Newton equation (Eq. (77))
as a byproduct. The method is based on the real case [48]. See also [49] for a recent treatment of second order
optimization on the complex Stiefel manifold, where instead of following geodesics, each optimization step is done in
Euclidean space followed by a projection onto the manifold.

First let us make a general observation that will be useful at several points.

Lemma 3 ([49], Theorem 14). Let f : TK St(D, d) → C be a C-linear function and let 〈 · , · 〉K be the canonical metric

on St(D, d) as defined in Eq. (24). Then the solution to

Re {f(∆)} = 〈X,∆〉K ∀∆ ∈ TK St(D, d) (69)

is given by X = F ∗ −KFTK ∈ TK St(D, d), where F is chosen such that f(∆) = Tr(FT∆).

Proof. It is straightforward to see that X ∈ TK St(D, d) by applying the projector onto the tangent space: PTK
(X) =

F ∗ −KFTK − 1
2K(K†F ∗ + FTK) + 1

2K(FTK +K†F ∗) = F∗ −KFTK .

To show that X solves Eq. (3), we will use that K†∆ is skew Hermitian, as well as the fact that ReTr[HS] = 0 for
any skew Hermitian matrix S and Hermitian matrix H. Plugging X = F ∗ −KFTK into Eq. (3) we obtain

〈X,∆〉K = ReTr[X†(1− 1

2
KK†)∆]

= ReTr[(FT −K†F ∗K†)(1− 1

2
KK†)∆]

= ReTr

[(
FT − 1

2
(FTK +K†F ∗)K†

)
∆

]

= ReTr[FT∆]− ReTr[herm(FTK)K†∆]

= ReTr[FT∆] .

Our goal is to simultaneously update all gates along the geodesic
⊕n

i=1 Ki(t) ∈ St(D, d)×n, with the single Stiefel

geodesics Ki(t) being given by Eq. (27). We define the initial directions as ∆i = K̇i(0). The first step to identify the
Riemannian gradient and Hessian is to compute the second order Taylor series expansion of L in t at t = 0. Using
(Ki)lm ≡ Kilm and Einstein notation we find

L(K1 ⊕ · · · ⊕ Kn;K∗1 ⊕ · · · ⊕ K∗n) = L|t=0 + 2 Re

{
∂L

∂Kilm

∂Kilm

∂t

}∣∣∣∣
t=0

· t

+ 2 Re

{
∂2L

∂Kjop∂Kilm

∂Kjop

∂t

∂Kilm

∂t
+

∂2L
∂K∗jop∂Kilm

∂K∗jop
∂t

∂Kilm

∂t
+

∂L
∂Kilm

∂2Kilm

∂t2

}∣∣∣∣∣
t=0

· t2/2 +O(t3) .

(70)

We have ∂Kilm

∂t

∣∣
t=0

= (∆i)lm and define (L
Ki
)lm := ∂L

∂Kilm
, so that we can write ∂L

∂Kilm

∂Kilm

∂t
= Tr(LT

Ki
∆i) and

∂L
∂Kilm

∂Kilm

∂t
=: L

Ki
[∆i]. In a similar fashion we define L

KjKi
[∆j ,∆i] :=

∂2
L

∂Kjop∂Kilm

∂Kjop

∂t
∂Kilm

∂t
, where L

KjKi
[·, ·] is a

bilinear function, which is symmetric per definition via the second derivative. For more details on how to compute
these derivatives for the objective function used in the main text, see Appendix C.

Before determining the relevant terms for the update on St(D, d)×n we first consider the gradient and Hessian, as
well as the Newton equation for a single variable K ∈ St(D, d), leaving all others constant.
The Riemannian gradient G ∈ TK St(D, d) can be identified from the first order term in the Taylor expansion via its
definition [49]

2 ∗ Re {LK [∆]} = 〈G,∆〉K ∀∆ ∈ TK St(D, d) . (71)

The solution for G in the canonical metric (24) is given by

G = 2
(
L∗K −KLT

KK
)
, (72)

as per Lemma 3.
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Lemma 4. The Riemannian Hessian Hess : TK St(D, d) × TK St(D, d) → R of a function L : St(D, d) → R with

respect to the canonical metric on St(D, d) is given by

Hess(∆,Ω) = 2Re {LKK [∆,Ω] + LK∗K [∆∗,Ω]}
+Re

{
Tr

[
LT
K(∆K†Ω+ ΩK†∆)

]
− Tr

[
LT
KK(∆†ΠΩ+ Ω†Π∆)

]}
.

(73)

Proof. According to [89, Proposition 5.5.5], we can compute Hess(∆,Ω) via

Hess(∆,Ω) =
1

2

d2

dt2
[L(K(t(∆ + Ω)))− L(K(t∆))− L(K(tΩ))]|t=0 (74)

where K(t∆) satisfies K̇(t∆)|t=0 = ∆ (see [48] for a discussion of the real case). The individual terms in Eq. (74)
can be determined from our general Taylor approximation in Eq. (70), i.e. with i = j = 1, if we take K = K1. The

term ∂L
∂K

[
∂2K(t∆)

∂t2

]∣∣∣
t=0

contains second derivatives of the geodesic given in Lemma 2, which we write out next. K̈(t)

is given by

K̈(t) =
(
K Q

)
exp

(
t

(
A −R†

R 0

))(
A −R†

R 0

)2 (
1

0

)

=
(
K Q

)
exp

(
t

(
A −R†

R 0

))(
A2 −R†R

RA

)
.

It follows using QR = (1−KK†)∆ =: Π∆ and A = K†∆ from the definition of the geodesic, that

K̈(0) = K(A2 −R†R) +QRA

= K(A2 −R†Q†QR) + Π∆K†∆

= K(K†∆K†∆−∆†Π†Π∆) + Π∆K†∆

= K(K†∆K†∆−∆†Π∆) +∆K†∆−KK†∆K†∆

= ∆K†∆−K∆†Π∆ .

Putting the terms together, we arrive at

d2

dt2
L(K(t∆))|t=0 = 2Re {LKK [∆,∆] + LK∗K [∆∗,∆]}+Re

{
Tr

[
LT
K(∆K†∆−K∆†Π∆)

]}
. (75)

The terms involving LKK and LK∗K satisfy LKK [∆,Ω] = LKK [Ω,∆] and LK∗K [∆∗,Ω] = LK∗K [Ω∗,∆], by the
symmetry of second derivatives. Using this symmetry property we obtain the full Hessian (74), which turns out to be

Hess(∆,Ω) = 2Re {LKK [∆,Ω] + LK∗K [∆∗,Ω]}
+Re

{
Tr

[
LT
K(∆K†Ω+ ΩK†∆)

]
− Tr

[
LT
KK(∆†ΠΩ+ Ω†Π∆)

]}
,

(76)

where it is helpful to note that Eq. (76) is related to Eq. (75) via a symmetrization of the LK term.

Theorem 5. Let vec(∆) be the row major vectorization of ∆ ∈ TK St(D, d). Furthermore, let T and L̃KK be defined

by T vec(X) = vec(XT ) and LKK(∆, · ) = L̃T
KK vec(∆). Then the solution ∆ of the linear equation in vec(∆) and

vec(∆∗) given by

(
L̃†K∗K − (K ⊗KT )T L̃T

KK − 1

2
1⊗ (KTLK)− 1

2
(KLT

K)⊗ 1− 1

2
Π⊗ (L†KK∗)

)
vec(∆) (77)

+

(
L̃†KK − (K ⊗KT )T L̃T

K∗K +
1

2
(L∗K ⊗KT )T +

1

2
(K ⊗ L†K)T

)
vec(∆∗) = −1

2
vec(G) (78)

is the update direction along the geodesic given in Lemma 2 for the complex Newton method of a real function L at

position K ∈ St(D, d).

Proof. The update direction ∆ for the standard Newton method [48] is determined through the equation

Hess(∆,Ω) = −〈G,Ω〉K ∀Ω ∈ TK St(D, d) , (79)
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which can be solved by rewriting the left-hand side as Hess(∆,Ω) = 〈f(∆),Ω〉K (for some yet to be determined f)
and setting Ω = PT (X) with arbitrary matrix X. This leads us to

〈f(∆), PT (X)〉K = −〈G,PT (X)〉K (80)

〈PT (f(∆)), X〉K = −〈G,X〉K ∀X ∈ C
D×d ; (81)

in the second line the scalar product is extended from the canonical scalar product initially defined on TK St(D, d) to
C

D×d and we will use the same notation for both. The second line follows from the fact that any matrix X can be
decomposed as X = PT (X)+PN (X) and from 〈A,B〉K = 0 for A ∈ TK St(D, d) and B ∈ NK St(D, d). To determine
f(∆) we split it into three terms f(∆) = fKK(∆) + fK∗K(∆) + fK(∆), where fKK(∆), fK∗K(∆) and fK(∆) depend
only on LKK ,LK∗K and LK respectively (compare Eq. (76)).
We first look at the term 2Re {LKK [∆,Ω]} = 2Re

{
Tr

(
LKK [∆, · ]TΩ

)}
, where LKK [∆, · ] is in C

D×d.

To solve 2Re
{
Tr

(
LKK [∆, · ]TΩ

)}
= 〈fKK(∆),Ω〉K for all Ω ∈ TK St(D, d) and to find fKK we use Lemma 3 and

obtain

fKK(∆) = 2
(
LKK [∆, · ]∗ −KLKK [∆, · ]TK

)
. (82)

The same argument can be made for the LK∗K term, leading to

fK∗K(∆∗) = 2
(
LK∗K [∆∗, · ]∗ −KLK∗K [∆∗, · ]TK

)
. (83)

To identify fK(∆) we rewrite the second line in (76) as follows:

Re
{
Tr

[
LT
K(∆K†Ω+ ΩK†∆)

]
− Tr

[
LT
KK(∆†ΠΩ+ Ω†Π∆)

]}

= Re
{
Tr

[(
LT
K∆K† +K†∆LT

K − LT
KK∆†Π− (Π∆LT

KK)†
)
Ω
]}

!
= Re

{
Tr

[
fK(∆)†ΓΩ

]}
,

where we used Re
{
Tr

[
AB†

]}
= Re

{
Tr

[
A†B

]}
. Thus we find

fK(∆) =
[(
LT
K∆K† +K†∆LT

K − LT
KK∆†Π− (Π∆LT

KK)†
)
Γ−1

]
†

= 2K∆†L∗K + Γ−1L∗K∆†K −Π∆K†L∗K −Π∆LT
KK

by using Π = Π†, ΠΓ−1 = Γ−1Π = Π, K†Γ−1 = 2K†.
Eq. (81) implies PT (f(∆)) = −G, and it remains to compute PT (fK(∆)), as PT (fKK(∆)) = fKK(∆) and
PT (fK∗K(∆∗)) = fK∗K(∆∗) (see Lemma 3). After a straightforward computation using Γ−1 = 1 + KK†,ΠΓ−1 =
Π, PT (ΠZ) = PT (Z), as well as K†Π = ΠK = 0, we get

PT (fK(∆)) = −Π∆K†L∗K − 2 skew(∆LT
K)K − 2K skew(LT

K∆) , (84)

with skew(A) = (A−A†)/2.
Finally, by plugging Eqs. (82), (83) and (84) into Eq. (81), we obtain the Newton equation

LKK [∆, · ]∗ −KLKK [∆, · ]TK + LK∗K [∆∗, · ]∗ −KLK∗K [∆∗, · ]TK (85)

−1

2
Π∆K†L∗K − skew(∆LT

K)K −K skew(LT
K∆) = −G/2 . (86)

This is a linear equation in ∆ and ∆∗ that can be solved via rewriting it as an equation in vec(∆). Using row-major

vectorization with vec(AXB) = (A ⊗ BT ) vec(X), the matrices T and L̃KK defined by T vec(X) = vec(XT ) and

LKK(∆, · ) = L̃T
KK vec(∆), we arrive at the final equation for the single gate case

(
L̃†K∗K − (K ⊗KT )T L̃T

KK − 1

2
1⊗ (KTLK)− 1

2
(KLT

K)⊗ 1− 1

2
Π⊗ (L†KK∗)

)
vec(∆)

+

(
L̃†KK − (K ⊗KT )T L̃T

K∗K +
1

2
(L∗K ⊗KT )T +

1

2
(K ⊗ L†K)T

)
vec(∆∗) = −1

2
vec(G) .
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Now for the simultaneous optimization over all gates on St(D, d)×n, the Hessian as defined in Eq. (74) is determined
by including all terms in Eq. (70). The Newton equation reads

Hess(∆1 ⊕ · · · ⊕∆n; Ω1 ⊕ · · · ⊕ Ωn) = −
n∑

i=1

〈Gi,Ωi〉Ki
(87)

for all Ωi ∈ T
Ki

St(D, d). The terms in Eq. (70) where i = j are obtained from the single variable case. The mixed
variable terms f

KiKj
(∆i) and f

K

∗
i
Kj

(∆∗i ) still need to be determined. Analogous to Eq. (83) we need to solve

2Re
{
Tr

(
L
K

∗
i
Kj

[∆∗i , · ]TΩj

)}
= 〈f

K

∗
i
Kj

(∆i),Ωj〉Kj
∀Ωj ∈ T

Kj
St and

2Re
{
Tr

(
L
KiKj

[∆i, · ]TΩj

)}
= 〈f

KiKj
(∆i),Ωj〉Kj

∀Ωj ∈ T
Kj

St .

We can use Lemma 3 again and obtain

f
K

∗
i
Kj

(∆i) = 2
(
L∗
K

∗
i
Kj

[∆i, · ]−KjLK∗
i
Kj

[∆∗i , · ]TKj

)
and

f
KiKj

(∆i) = 2
(
L∗
KiKj

[∆∗i , · ]−KjLKiKj
[∆i, · ]TKj

)
,

which satisfy f
K

∗
i
Kj

(∆∗i ) ∈ T
Kj

St(D, d) and f
KiKj

(∆i) ∈ T
Kj

St(D, d). The full Newton equation on St(D, d)×n in
vectorized form then reads

n⊕

i=1

(
L̃†
K

∗
i
Ki

− (Ki ⊗KT
i )T L̃T

KiKi
− 1

2
1⊗ (KT

i LKi
)− 1

2
(KiLT

Ki
)⊗ 1− 1

2
Π⊗ (L†

Ki
K∗i )

)
vec(∆i)

+
n⊕

i=1

∑

j:j 6=i

(
L̃†
K

∗
j
Ki

− (Ki ⊗KT
i )T L̃T

KjKi

)
vec(∆j)

+
n⊕

i=1

(
L̃†
KiKi

− (Ki ⊗KT
i )T L̃T

K

∗
i
Ki

+
1

2
(L∗
Ki

⊗KT
i )T +

1

2
(Ki ⊗ L†

Ki
)T

)
vec(∆∗i )

+
n⊕

i=1

∑

j:j 6=i

(
L̃†
KjKi

− (Ki ⊗KT
i )T L̃T

K

∗
j
Ki

)
vec(∆∗j )

= −1

2

n⊕

i=1

vec(Gi) .

(88)

We are now faced with an equation of the type Ax+Bx∗ = c, a solution to which can be obtained by solving
(
A B
B∗ A∗

)(
x

x∗

)
=

(
c

c∗

)
. (89)

Eq. (88) is an equation on the tangent space and can be solved by finding a basis therein. However, in order to avoid
a basis change at every step, we choose to solve it on the ambient space by setting ∆i = PTi

(∆i) and ∆∗i = P ∗Ti
(∆∗i ).

The matrix equation for the update directions ∆i is now given by




HG←∆

⊕
i PTi

HG←∆∗

⊕
i P
∗

Ti

H∗G←∆∗

⊕
i P
∗

Ti
H∗G←∆

⊕
i PTi




︸ ︷︷ ︸
=:H




vec(∆1)
. . .

vec(∆n)
vec(∆∗1)

. . .
vec(∆∗n)




= −1

2




vec(G1)
. . .

vec(Gn)
vec(G∗1)

. . .
vec(G∗n)




, (90)

where the sub matrices HG←∆ and HG←∆∗ can be identified from Eq. (88).
The update directions for the saddle-free Newton method 1 are calculated by applying

(|H|+ λ1)
−1

(91)

to the right-hand side of Eq. (90). In practice, we use 1
2 (H + H†) as the Hessian, since there exist more efficient

methods for diagonalizing a Hermitian matrix compared to an arbitrary matrix.
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C. Complex Euclidean gradient and Hessian

∂p~i
∂K∗ =

K

il i2 i1

K K

K∗ K∗

. . .
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+ · · · +

il il−1 i1

. . .

. . .

KK K

K∗ K∗

j

A

A∗

j

A

A∗

B

B∗

B

B∗

Figure 8. Tensor network representation of first derivative.

To compute the Riemannian Hessians for optimization on the Stiefel manifolds the complex Euclidean gradients and
Euclidean Hessians are needed. We shall here go into more detail of their derivations for the least squares objective
function. This section also goes into detail as to how the terms L

KK
, L
K

∗
K

and their conjugates from Appendix B
are calculated.

As the tensor network whose contraction yields pj|i in the cost function (20) is parameterized in terms of matrix
variables and their conjugates, we use Wirtinger calculus for the derivatives and treat the conjugate variables as
independent. A method for finding all the relevant terms in the Hessian for a scalar function of complex matrix
variables is outlined, e.g. in Ref. [102], and we will summarize it in the following. See also Ref. [103] for a short
derivation of the complex derivative and Hessian in the context of optimization in complex Euclidean space.

Our objective function is in general not analytic, as is the case with real valued functions of complex variables.
This can be seen for the simplest case with one unitary gate U and ρ = E = |0 〉〈0 |, where L = |〈0|U |0〉|4 = |U00|4 =
(U00 ∗ U∗00)

2. However the derivatives w.r.t. the real and imaginary parts of the matrix variables exist and one can
define formal derivatives for f : CM×N × C

M×N → R via

∂f(Z,Z∗)

∂Z
:=

∂f(Z,Z∗)

∂Re[Z]
− i

∂f(Z,Z∗)

∂Im[Z]
,

∂f(Z,Z∗)

∂Z∗
:=

∂f(Z,Z∗)

∂Re[Z]
+ i

∂f(Z,Z∗)

∂Im[Z]
,

where ∂f(Z,Z∗)
∂Z

∈ C
M×N with

(
∂f(Z,Z∗)

∂Z

)
ij

= ∂f(Z,Z∗)
∂Zij

. These formal derivatives have nice properties, for instance

∂f(Z,Z∗)
∂Z∗ is the direction of maximum increase of f and ∂f(Z,Z∗)

∂Z∗ = 0 identifies a stationary point of f , see e.g. Ref. [102,
Theorems 3.2 and 3.4]. Furthermore, the product rule and the chain rule apply as they do for real valued matrix
variables.

As laid out in Ref. [102, Lemma 5.2], we can write the second order Taylor series of f as

f (Z + dZ,Z∗ + dZ∗) = f (Z,Z∗) +

(
∂

∂ vec(Z)
f (Z,Z∗)

)
d vec(Z) +

(
∂

∂ vec(Z∗)
f (Z,Z∗)

)
d vec (Z∗) (92)

+
1

2

[
d vecT (Z∗) d vecT (Z)

] [ fZZ∗ fZ∗Z∗

fZZ fZ∗Z

] [
d vec(Z)
d vec (Z∗)

]
+ r (dZ, dZ∗) , (93)

where the higher order contribution r (dZ, dZ∗) satisfies

lim
(dZ,dZ∗)→0

r (dZ, dZ∗)

‖(dZ, dZ∗)‖2F
= 0 . (94)

The second order derivatives are defined via

fZZ = =
∂

∂ vec(Z)T
∂

∂ vec(Z)
f(Z,Z∗, . . . ; y) ,

and similarly fZ∗Z∗ , fZ∗Z and fZZ∗ . The vectorization is to be understood as joining together of indices in a

fixed order. For instance vec : C
n×d2

×d×d → C
nd4

vectorizes K, where the individual d-dimensional legs are
the matrix indices of the Kraus operators, and the d2 index numbers the different Kraus operators. Note that
vec

(
∂
∂Z

f(Z,Z∗, y)
)
= ∂

∂ vec(Z)f(Z,Z
∗, y).
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For the optimizations over A, K, and B, we need the first and second derivatives of L by the respective variables
and their conjugates. Let Z ∈ {A,A∗,K,K∗, B,B∗} and Y ∈ {Z,Z∗}. Then

∂

∂Z
L(Z, . . . ; y) = 2

m

∑

i

(pi(Z, . . . )− yi)
∂pi
∂Z

,

∂

∂Y

∂

∂Z
L(Z, Y, . . . ; y) = ∂

∂Y

2

m

∑

i

(pi(Z, Y, . . . )− yi)
∂pi
∂Z

=
2

m

∑

i

∂pi(Z, Y, . . . )

∂Y

∂pi(Z, Y, . . . )

∂Z
+

2

m

∑

i

(pi(Z, Y, . . . )− yi)
∂2pi(Z, Y, . . . )

∂Y ∂Z
,

meaning that derivatives of the objective function reduce to the derivatives of the tensor p. Taking the derivative of
a tensor network w.r.t. one of its constituent tensors can be easily done in the pictorial representation by removing
the respective tensor. For instance, ∂pi

∂K∗ can be calculated as shown in Figure 8, using the product rule. Care has to

be taken for the order of open indices when removing a tensor. In practice, we do not calculate the full tensor ∂p
∂K∗ of

size n` and only compute ∂pi

∂K∗ for i ∈ I, since usually |I| � n`.

D. Mean variation error dependence on the choice of objective function
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Figure 9. Effect of optimizing the log-likelihood function after the least squares objective function. The results of only the least

squares optimization are denoted by mGST-lsq and those of additional log-likelihood optimization by mGST-lsq-mle. The left
plot shows the least squares objective function L(X̂ ,X ) on the data sequences (used for estimation), as well as on all sequences

of a given length l (here l = 7). The right plot uses the MVE, again on data sequences or all sequences.

The underlying gate set is given by the XYI model with depolarizing noise of strength p = 0.01 on each gate and p = 0.01 on

the initial state, as well as random unitary rotations eiγH with H ∼ GUE and γ = 0.01 on each gate. To ensure mGST-lsq is

fully converged, we set the desired relative precision to ε = 10−5 in the convergence criterion, cp. Eq. (30).

A well motivated alternative to the least squares objective function defined in Eq. (20) is the likelihood function

LI(A,K, B|y) :=
∏

i∈I

∏

j∈[nE ]

pj|i(A,K, B)kj|i , (95)

where yj|i = kj|i/m denotes again the relative number out of m times outcome j was measured for sequence i, see
also Eq. (28). The likelihood function at a given model parametrization (A,K, B) and for measurement results y is
precisely the probability of observing y, given the model probabilities p(A,K, B). To simplify the optimization, often
the logarithm of the likelihood function is chosen, since it shares the same maxima. This log-likelihood function,
which is also used in the final optimization procedure of pyGSTi [18] is then given by

logLI(A,K, B|y) := m
∑

i∈I

∑

j

yj|i log
[
pj|i(A,K, B)

]
. (96)

110 CHAPTER 6. APPENDIX



27

In Figure 9 we show the effects of augmenting mGST (which is by default run on the least squares objective function
for numerical reasons) with the log-likelihood function after a least squares estimate was found. To do this, we use
Algorithm 2 with the negative log-likelihood function (96) as objective function.

We observe that for the XYI-gate set, which we use to compare mGST and pyGSTi in the main text, optimizing the
log likelihood function decreases the mean variation error on the data sequences as well as on all sequences of the same
length. The improvement is stronger for fewer samples and becomes negligible at around 106 samples. Interestingly,
log-likelihood optimization also improves the least squares error on all sequences, at the cost of slightly increasing
it on the data sequences. This indicates that in the sample count range of 102 − 106, optimizing the log-likelihood
function leads to less overfitting.

E. Noise-mitigation of shadow estimation with GST characterization

In Section V we numerically demonstrated how the results of a low-rank GST experiment can be used to correct
estimation protocols based on inverting an informationally complete POVM. Such protocols are recently referred to
as shadow estimation [46]. We now give a short mathematical description of the method and explain how low rank
GST estimates can be included in a scalable way.

In the following, we use bra-ket notation also for the space of linear operators L(H) and its dual space as defined
by the canonical isomorphism induced by the Hilbert Schmidt inner product (O|ρ ) = Tr(O†ρ). The quantum channel
of a unitary U is written by the corresponding calligraphic letter, e.g. U |ρ ) ≡

∣∣UρU †
)
.

We consider the task of estimating the expectation value of multiple observables in an unknown quantum state that
we can repeatedly prepare on a quantum device. Being able to measure an informationally complete POVM {Πx}
on the state, one can construct an estimator for an observable O. Informationlly completeness is equivalent to, in
mathematical terms, the POVM constituting a frame for L(H), and the associated frame operator M =

∑
x|Πx)(Πx|

being invertible, see e.g. Ref. [104]. We can calculate the canonical dual frame to the POVM as |Π̃x) = M−1 |Πx ).
By construction we have the frame duality relation

∑

x

|Π̃x)(Πx| = IdL(H) . (97)

Thus, for any state ρ,

(O |ρ) =
∑

x

(O |Π̃x)(Πx |ρ) . (98)

By Born’s rule, repeated measurements of the POVM yield i.i.d. samples Ω = (x1, . . . , xm) from the distribution with
density pρ(x) = (Πx |ρ). Given Ω we can calculate the empirical mean estimator

ô =
1

|Ω|
∑

x∈Ω

(O |Π̃x) , (99)

and by (98), E[ô] = (O |ρ).
The sequence of dual frame elements (Π̃x1

, . . . , Π̃xm
) given by the measured samples Ω has been called the classical

shadow of ρ in Ref. [46].

A practical implementation of an informationally complete POVM on a digital quantum computer can be realized
with measurements in randomly selected bases from a sufficiently large group. To be explicit, we will consider the
simplest and perhaps most well-known example: the measurement in a randomly chosen multi-qubit Pauli-basis. The
POVM can be implemented by applying a random (different) local Clifford rotation on every qubit and measuring
in the computational basis. For informational-completeness it is sufficient to choose the rotations uniformly from
the set C = {Id, H,HS}, where H is the Hadamard gate and S the phase gate. In our notation, we consider
POVM effects Πx = Πg,b = ⊗lΠgl,bl indexed by Cn × {0, 1}n that are the tensor products of the local POVM effects

Πgl,bl = 1
3g
†

l |bl 〉〈bl | gl with gl ∈ C. Let {σ̂k | k ∈ {0, 1, 2, 3}} denote the Pauli matrices normalized in Frobenius
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norm. The frame operator is given by

3nM =
1

3n


 ∑

U∈{1,H,HS}

U†( |σ̂0 ) (σ̂0 |+ |σ̂3 ) (σ̂3 |)U



⊗n

(100)

=
1

3n

(
3 |σ̂0 ) (σ̂0 |+

∑

i

|σ̂i ) (σ̂i |
)
⊗n

(101)

=




1 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 1

3




⊗n

, (102)

where the matrix in the last line is represented in the Pauli-basis. Since M−1 acts on qubit l as M−1
l (X) =

3X − Tr(X)1 for any X, we find Π̃gl,bl =
⊗n

i=1

(
3g†l |bl 〉〈bl | gl − 1

)
[46].

Ref. [46] showed that when using random Pauli basis measurements, the variance of the mean estimator for es-
timating local observables does not scale with the system size. Using a median-of-means estimator to boost the
confidence, Ref. [46] further establishes that the expectation value of M different k-local observables can be estimated
to ε-additive precision from O(log(M)4k/ε2) state copies.

Experimental implementations of the POVM are prone to errors, effectively implementing a noisy POVM with
effects Π\

x. In the envisioned implementation here, noise sources effect the implementation of the gates C and the
noise induces a bias in the estimator for the observables. However, if the noise is characterized to some extent we can
correct the estimators for this bias. To this end, let M\ be the (half-sided) noisy frame operator M\ =

∑
x|Πx)(Π

\
x|.

If we know M\ in the classical post-processing, we can calculate a dual frame to (Π\
x| by |Π̃\

x) = M\−1 |Πx ). Note
that using the ‘half-sided noisy’ frame operator instead of the frame operator of the noisy POVM yields an expression
of a dual frame in terms of the ideal POVM and not the noisy POVM. Using {Π̃\

x} instead of the ideal dual-frame in
(99) yields unbiased estimators of observables even in the presence of noise, thus, effectively mitigating the noise.

This motivates our approach to noise mitigated shadow estimation. Having extracted a noise model via gate set
tomography, we can numerically estimate M\ and, thus, construct (approximately) unbiased estimators. Our method
is summarized in Protocol 1 below.

Protocol 1: GST-mitigated shadow estimation

input: Target observable O, native local gate set G with C ⊆ G
1 Perform 2-qubit-mGST on implementation of G for qubit pairs (1, 2), . . . (n− 1, n)
2 Gauge optimize mGST estimators to unitary target gates

3 for i ∈ [N ] do
4 Select setting g ∈ C⊗n uniformly at random

5 Measure Ug |ρ ) in the standard basis

6 Save setting g and outcome b

7 end

8 Construct M\ from mGST gate estimates

9 Compute single shot estimators
{

ôi = (O |M\−1 |Πg,b )
}N

i=1

10 return Ô = mean or median-of-means({oi})

GST

Cl.

Shadows

data

acquisition

Combined

post

processing

The results in Section V demonstrate our scheme numerically in simple but already practically relevant settings that
we describe in the following. When the multi-qubit unitaries and computational basis measurement implementing
the POVM factorize into local tensor products, so does the ideal frame operator M and the dual frame (shadow).
But due to correlated gate-dependent noise, M\ might not exhibit this computationally tractable structure. Fur-
thermore, characterizing the implementation of exponentially many multi-qubit unitaries and the basis measurements
without additionally assumption is infeasible. In practice, however, noise-induced correlations and crosstalk might
still predominantly affect a limited number of qubits simultaneously. For example, when noise predominantly af-
fects neigboring qubits, we can use the implementation X of a gate set including C × C on neighboring qubits

extracted via mGST to calculate M\. To this end, let G(i,i+1)
g1,g2 denote the two-qubit process implementing the gate

g1 × g2 on qubit i and i + 1. For simplicity we ignore errors in the computational basis measurement. We set
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Π
\,(i,i+1)
(g1,g2),(b1,b2)

= 1
9 (G

(i,i+1)
g1,g2 )† |b1, b2 〉〈b1, b2 | (G(i,i+1)

g1,g2 )† and numerically calculate

M\
i,i+1 =

∑

g1,g2∈C,b1,b2∈{0,1}

|Πg1,b1)|Πg2,b2 )(Π
\,(i,i+1)
(g1,g2),(b1,b2)

| . (103)

This amounts to calculating a 16 × 16 matrix in the Pauli-basis that can be easily inverted. The noise-mitigated
single-shot estimators, thus, read

(O |Π̃\
g,b) = (O|

n/2⊗

i=1

(M \
2i,2i+1)

−1|Πg2i,b2i)|Πg2i+1,b2i+1
) . (104)

With this expression at hand, the rest of the protocol consists of computing the mean or median-of-means from a
collection of single shot estimators, following the standard method of shadow estimation [46].

Ref. [101] proposes a complimentary approach for robust shadow-estimation, also inferring an approximation of
the noisy frame operator from a separate calibration experiment. Under the assumption of gate-independent noise,
the authors derive a 2n parameter expression for M\ as a Pauli-noise channel and devise (SPAM-robust) RB-style
experiments to learn arbitrarily many of its parameters, where each parameter corresponds to an irreducible repre-
sentation of the local Clifford group. We find, in the gate-dependent noise model used here, that the frame operators
significantly deviate from being a Pauli-noise channel. For this reason, this particular setting is more amenable to
GST-mitigated shadows than to the protocol of Ref. [101]. The plots on the left in Figure 7 show that already a
typical n = 2 frame operator with gate-dependent noise does not adhere to being diagonal in Pauli basis.

Ultimately, we envision that different robust and self-consistent noise and error characterization protocols, such as
mGST for local coherent errors and RB for incoherent noise strength in different irreducible representations, can be
combined to arrive at accurate and scalable estimates of the effective frame operator in the presence of noise.
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ACRONYMS

RB randomized benchmarking . . . . . . . . . . . . . . 1

CPT completely positive and trace preserving . . 2

GST gate set tomography . . . . . . . . . . . . . . . . . . . . 2

GUE Gaussian unitary ensemble . . . . . . . . . . . . . . 8

MPS matrix product state . . . . . . . . . . . . . . . . . . . 4

MVE mean variation error . . . . . . . . . . . . . . . . . . . . 6

MSE mean squared error . . . . . . . . . . . . . . . . . . . . . 6

POVM positive operator valued measure . . . . . . . . . 3

SFN saddle free Newton . . . . . . . . . . . . . . . . . . . . . 7

SPAM state preparation and measurement . . . . . . 1

XEB cross-entropy benchmarking . . . . . . . . . . . . . 3
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Expectation values of observables are routinely estimated using so-called classical shadows—the

outcomes of randomized bases measurements on a repeatedly prepared quantum state. In order to

trust the accuracy of shadow estimation in practice, it is crucial to understand the behavior of the

estimators under realistic noise. In this work, we prove that any shadow estimation protocol involv-

ing Clifford unitaries is stable under gate-dependent noise for observables with bounded stabilizer

norm—originally introduced in the context of simulating Clifford circuits. For these observables,

we also show that the protocol’s sample complexity is essentially identical to the noiseless case. In

contrast, we demonstrate that estimation of ‘magic’ observables can suffer from a bias that scales

exponentially in the system size. We further find that so-called robust shadows, aiming at mitigating

noise, can introduce a large bias in the presence of gate-dependent noise compared to unmitigated

classical shadows. Nevertheless, we guarantee the functioning of robust shadows for a more general

noise setting than in previous works. On a technical level, we identify average noise channels that

affect shadow estimators and allow for a more fine-grained control of noise-induced biases.

I. INTRODUCTION

Efficient estimation of observables is crucial for quan-
tum experiments and devices. Classical shadows [1] uti-
lize measurements in randomized bases to perform many
relevant estimation tasks on states that are repeatedly
prepared in an experiment. A key feature is that one can
choose the observables after the collection of the measure-
ment data and only adapt the classical post-processing
accordingly. For this reason, the approach is highly flex-
ible and has many applications [2–7].

The central step in the estimation is to invert ‘the over-
all measurement process’ classically. This inversion can
be calculated analytically for measurement bases that are
uniformly random, either local or global, Clifford rota-
tions of the computational bases. For these cases, tight
sampling complexity bounds in terms of certain norms
of the observables have been derived [1]. Most exten-
sions of this paradigm still involve Clifford gates, such
as random Clifford circuits [8–10] or Clifford matchgates
[11]. In these cases, the inversion is performed using a
combination of analytical and numerical techniques.

These calculations crucially rely on the assumption
that the unitary gates that perform the basis rotations
are perfectly implemented on the quantum device—an
assumption that inevitably needs to be relaxed when us-
ing classical shadows for precise estimation in practice.
This has motivated several works [12–17] studying the
noise robustness of classical shadows. Using a restricted

∗ raphael.brieger@hhu.de

noise model, it has been shown that the effect of noise
on the estimator can be either estimated independently,
e.g. by a separate calibration experiment [12] or inferred
using symmetries of the prepared state [16]. Once the ef-
fect is known, it can then be mitigated in post-processing.
The derivations of these robust classical shadows assume
that the noise in the system is described by the same

channel acting directly before the measurement in each
round. This gate-independent noise model is well-suited
to capture the effect of read-out noise affecting the com-
putational basis measurement. However, it is difficult to
justify this model for gate noise in realistic experimental
setups. Gate-dependent noise models can significantly
complicate the mitigation [18]. It is an open question of
how stable classical shadows and their robust extensions
are under gate-dependent noise. As a matter of concern,
the inversion of the effective measurement process typ-
ically involves factors that scale exponentially with the
system size (or locality of the observable). Thus, even
small errors in the gates could in large biases in the esti-
mators. We give an explicit example where this is indeed
the case. This raises serious doubts about the accuracy of
shadow estimation in practice, especially when the mea-
surement bases require entangling gates.

In this work, we prove that shadow estimation
with Clifford circuits is intrinsically stable under gate-
dependent noise for observables with bounded stabilizer

norm. This includes stabilizer states, Pauli observables,
and large classes of linear combinations thereof. The
stabilizer norm [19], also known as 1

2 -stabilizer Rényi

entropy [20], is a well-known resource measure in the
resource theory of magic states and can be used to
bound the runtime of classical stabilizer-based simulation

B. PAPER - STABILITY OF CLASSICAL SHADOWS UNDER GATE-DEPENDENT NOISE119



2

methods [21]. We formally capture the effect of gate-
dependent noise by identifying noise channels averaged
over unions of cosets of Clifford subgroups. This allows
us to obtain a more fine-grained control of the estimation
bias in terms of the stabilizer norm. For uniform sam-
pling from the local and global group, we further show
that the sampling complexity of shadow estimation is also
stable under gate-dependent noise for the same class of
observables.

For the robust classical shadows of Ref. [12], we find
that the average noise channels can conspire to cause a
larger bias in the robust estimator than in the simple
direct estimator. The bias of the robust estimator can
even scale exponentially with the system size. Taking
a closer look at the necessary structure for this situa-
tion to appear, we can further show the stability of the
robust shadow estimator for a strictly more general gate-
dependent noise model than in Ref. [12], which we call
isotropic Pauli noise.

II. STABILITY OF SHADOW ESTIMATION

The goal of a general shadow estimation protocol is to
estimate expectation values of observables in the same
unknown n-qubit quantum state ρ. To this end, the pro-
tocol applies a randomly drawn unitary g from a set G
with probability p(g) to an unknown quantum state ρ
and measures in the computational basis measurement,
resulting in some output x ∈ Fn

2 . For an observable O,
one can then evaluate a function ô(g, x) defining an unbi-
ased estimator for the expectation value E[ô] = Tr(Oρ).
For this to work for any observable O, the operators
{g|x〉〈x|g†}g,x have to form an informationally complete
positive operator valued measure (POVM).

To give more details, we first introduce some nota-
tion. We define Ex := |x〉〈x| and use ω(g) to denote the
unitary channel ω(g)(A) = gAg†. Round brackets are
used to denote inner and outer products of linear opera-
tors in analogy to the usual Dirac notation. In particu-
lar, (A|B) = Tr(A†B) denotes the Hilbert Schmidt inner
product and |A)(B| is the superoperator C 7→ (B |C)A.
With this notation, we define the measure-and-prepare
channel M :=

∑
x∈F

n
2
|Ex)(Ex| in the computational ba-

sis. Being an informationally complete POVM, the op-
erators {ω(g)(Ex)}g,x are a frame, i.e. a spanning set for
the vector space of linear operators, hence the associated
frame operator

S := E
g∼p

[
ω(g)†Mω(g)

]
(1)

is invertible. With this notation, we define the estimator
ô(g, x) := (O |S−1ω(g)† |Ex) of a given observable O, and
a straightforward calculation shows that, indeed, E[ô] =
(O |S−1S |ρ) = (O |ρ) = Tr(Oρ).

The frame operator S can often be analytically cal-
culated and inverted for uniform sampling from certain

subgroups G ⊂ U(d) where d = 2n. A prominent ex-
ample for such a subgroup is the Clifford group Cln, de-
fined as the subgroup of U(d) that is generated by the
Hadamard gate, the phase gate, and the controlled-NOT
gate. Since Cln is a unitary 2-design, its frame operator is
proportional to the identity on the subspace of traceless
matrices and has eigenvalue 1

d+1 [1].
Gates in an actual experiment, however, suffer from

noise and imperfections. A fairly general and common
noise model replaces ω(g) by its noisy implementation
φ(g) = ω(g)Λ(g) where Λ(g) is an arbitrary noise channel
that depends on g. Note that introducing an additional
noise channel on the left of ω is equivalent to our model.
The existence of such an implementation map φ requires
the noise to be Markovian and time-stationary, but it
can be otherwise arbitrary. The noisy frame operator of
a shadow estimation protocol is then given by

S̃ := E
g∼p

[ω(g)†Mω(g)Λ(g)] . (2)

In the presence of noise, the standard shadow estimator
is biased. This can be readily seen for a traceless observ-
able O0 and uniform sampling from the Clifford group
Cln, for which S−1(O0) = (d+1)O0. The expected value
then reads:

E[ô0] = (O0|S−1S̃|ρ) = (O0 |ρ) + (d+ 1)(O0 |S − S̃ |ρ).

Due to the exponentially large factor d+1 applied in post-
processing, one runs the risk of dramatically amplifying
errors. In particular, a first straightforward attempt at
controlling the noise-induced bias yields a bound of the
following form (c.f. Appendix A):

|E[ô]− 〈O〉| ≤ (d+ 1)max
g∈G

‖id− Λ(g)‖
�
. (3)

Here, we quantify the error of the implementation by
the maximum diamond distance of the noise channel to
the identity channel over all gates. Equation (3) is the
first example of a bound controlling the bias of shadow
estimation. These bounds take the general form of

bias ≤ κ(d)× implementation error.

We say that the estimation is stable if scaling function κ
is constant, i.e. κ ∈ O(1). For using shadow estimation in
practice noise stability is an essential requirement. How-
ever, Eq. (3) suggests that shadow estimation can in fact
be unstable. Indeed, we can give the following example:

Proposition 1. Let O = (|H 〉〈H|)⊗n with the magic

state |H〉 = 1
√

2
(|0〉 + eiπ/4|1〉) and consider shadow es-

timation with local Clifford unitaries. There exists a

state ρ and implementation map φε(g) = (1 − ε)ω(g) +
εω(g)Λ(g) such that |E[ô]− 〈O〉| = κ ε with κ ∈ Ω(d1/4).

We prove the propositon in Appendix A by an explicit
construction. The construction uses noise channels Λ(g)
that are coherently undoing the basis change of ω(g).
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This result brings us to the central question of our
work: Are there any classes of stable shadow estimation

settings? Perhaps surprisingly, we can answer this ques-
tion positively for large classes of observables in the case
that all unitaries are taken from the Clifford group.

In this setting, a careful analysis of the noisy frame
operator (2) allows us to improve the naive estimates
significantly. To this end, it is convenient to work in the
orthogonal operator basis given by the Pauli operators

σa = σa1
⊗· · ·⊗σan

, i.e. (σa |σa′) = d δa,a′ . We choose to
label them by binary vectors a ∈ F2n

2 with the convention
σ00 = 1, σ01 = X, σ11 = Y , σ10 = Z. The following
technical result on the form of noisy frame operator S̃
then serves as a basis for our main results.

Lemma 2. Suppose G ⊂ Cln. The noisy frame operator

(2) takes the form

S̃ =
1

d

∑

a∈F
2n
2

sa|σa)(σa|Λ̄a, (4)

where sa ∈ (0, 1] are the eigenvalues of the noise-free

frame operator S and Λ̄a are quantum channels depend-

ing on Λ. Furthermore, if the Λ(g) are Pauli noise chan-

nels, then Λ̄a|σa) = λ̄a|σa) where λ̄a ∈ [−1, 1].

A proof of the lemma is given in Appendix A. The
channels Λ̄a are averages of gate-dependent noise chan-
nels Λ(g) for g sampled from specific subsets of G
and approach the identity for weak noise. Their form
for the global and local Clifford groups is further dis-
cussed in Appendix B. In analogy to the channel aver-
ages Λ̄a, the parameters λ̄a are averaged Pauli eigenval-
ues of individual Pauli noise channels Λ(g). The proofs
builds on the simple observation that in Eq. (2), each
term ω†(g)Mω(g) is always a sum over Pauli projectors
d−1|σa)(σa|, and noise channels Λ(g) associated to the
same projector can be grouped together.

Our main stability result uses the stabilizer norm of
the observable O [19], defined as

‖O‖st :=
1

d

∑

a∈F
2n
2

|(σa |O)| , (5)

which is proportional to the `1-norm of an operator in
the Pauli basis. We will also use the Hilbert-Schmidt

norm ‖O‖2 :=
√
(O |O) of an operator O. We now pro-

vide a proof that shadow estimation of observables with
constant stabilizer norm is stable against gate-dependent
noise.

Theorem 3. Suppose G ⊂ Cln. The estimation bias is

bounded by

|E[ô]− 〈O〉| ≤ ‖O‖st max
a∈F

2n
2

‖id− Λ̄a‖�

≤ ‖O‖st max
g∈Cln

‖id− Λ(g)‖
�

(6)

for arbitrary gate-dependent noise and

|E[ô]− 〈O〉| ≤ min {‖O‖2, ‖O‖st} max
a∈F

2n
2

|1− λ̄a|

for gate-dependent Pauli noise.

Proof. From Lemma 2 we immediately obtain the noise-
free frame operator S = d−1

∑
a sa|σa)(σa| by setting

Λ̄a = id for all a. It then follows that S−1S̃ =
d−1

∑
a|σa)(σa|Λ̄a. We expand O in the Pauli basis as

(O| = d−1
∑

a∈F
2n
2
(O |σa)(σa|. In the following, ‖ · ‖1 and

‖ · ‖
∞

denote the nuclear and spectral norm, respectively.

The bias |〈O〉 − (O|S−1S̃|ρ)| = |(O|(id − S−1S̃)|ρ)| can
then be bounded as follows:

|(O|(id− S−1S̃)|ρ)| = 1

d

∣∣∣
∑

a

(O |σa)(σa|(id− Λ̄a|ρ)
∣∣∣

≤ 1

d

∑

a

|(O |σa)||(σa|(id− Λ̄a|ρ)|

≤ 1

d

∑

a

|(O |σa)|‖(id− Λ̄a)(ρ)‖1

≤ max
a

‖id− Λ̄a‖� ×
1

d

∑

a

|(O |σa)| ,

where we used triangle and matrix Hölder inequality, as
well as ‖σa‖∞ = 1 and ‖(id−Λ̄a)(ρ)‖1 ≤ ‖id−Λ̄a‖�. The
result (6) then follows from the definition of the stabilizer

norm. For Pauli noise, Lemma 2 implies that S−1S̃ =
d−1

∑
a|σa)(σa|λ̄a. The bias then becomes

|〈O〉 − (O|S−1S̃|ρ)| = 1

d
|(O|

∑

a

|σa)(σa|(1− λ̄a)|ρ)|

≤ max
a

|1− λ̄a|
1

d

∑

a 6=0

|(O |σa)(σa |ρ)|.

We can bound the last line by either maxa |1 −
λ̄a|‖O‖2‖ρ‖2 ≤ maxa |1 − λ̄a|‖O‖2 via the Cauchy-
Schwarz inequality, or by |(σa |ρ)| ≤ 1 for all a and all
states ρ. The latter leads to d−1

∑
a 6=0 |(O |σa)(σa |ρ)| ≤

d−1
∑

a 6=0(O |σa) = ‖O‖st.

Theorem 3 holds for any informationally complete
shadow estimation protocol based on Clifford gates, in-
cluding uniform sampling from the global or local Clif-
ford group, as well as for alternative proposals such as
brickwork circuits [9, 10]. In comparison to Eq. (3), the
scaling factor d + 1 is replaced by the stabilizer norm
‖O‖st. The latter is a magic measure [19], equivalent
to the 1

2 -stabilizer Rényi entropy [20], and can be un-
derstood as a quantification of the ‘non-stabilizerness’ of
the observable O. In particular, ‖O‖st = O(1) for many
interesting examples such as Pauli observables or stabi-
lizer states. Furthermore, ‖O‖st is also well-behaved for
non-stabilizer observables, as long as their Pauli support
(and coefficients) is not too large. For instance, consider
a k-local Hamiltonian

∑
e∈E he on a hypergraph (V,E)

with maximum degree D, i.e. each he =
∑

a h
a
eσa is a lin-

ear combination of at most 3k Pauli matrices supported
on the hyperedge e. Thus, the number of local terms is
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|E| ≤ |V |D = nD, and assuming |ha
e | ≤ 1, the stabi-

lizer norm satisfies ‖H‖st ≤ nD3k. Finally, the stabi-
lizer norm is multiplicative under tensor products and,
hence, simple to compute for product observables, but
may be harder to evaluate for more general O. To this
end, it might be worth mentioning that ‖O‖st can be up-
per bounded by higher stabilizer Rényi entropies [20] and
the so-called robustness of magic [22].

Interestingly, the classical post-processing of shadow
estimation involves the evaluation of ô(g, x) =
(O |S−1ω(g)† |Ex). This evaluation can be a computa-
tionally hard problem, even for uniform sampling from
the (local or global) Clifford group where the difficult
bit reduces to evaluating expectation values on stabi-
lizer states. This computational task is well-studied and
can be solved in classical runtime O(‖O‖2st) [21, 23].
Therefore, a compelling observation is that observables

with bounded magic allow for both efficient classical post-

processing and stable estimation.
Compared to the arbitrary noise case, the Pauli noise

bound in Theorem 3 is both stronger in the error mea-
sure and in the dependence on the observable. Concern-
ing the latter, the bound by ‖O‖2 is favorable when O
is a quantum state or an entanglement witness, since
then ‖O‖2 ≤ 1. The error scaling for Pauli noise is also
strictly better which can be seen as follows: 1− λ̄a is an
eigenvalue of the diagonal superoperator id − Λ̄a, hence
|1 − λ̄a| ≤ ‖id − Λ̄a‖∞. Since Λ̄a is a Pauli channel, we
have ‖id − Λ̄a‖∞ ≤ ‖id − Λ̄a‖� (see Lemma 12 in Ap-
pendix C) and thus maxa |1 − λ̄a| ≤ maxa‖id − Λ̄a‖�.
To ensure that noise is well described by Pauli channels,
randomized compiling [24–26] can be used for each gate
in the shadow estimation procedure.

Finally, another question that arises in regard to The-
orem 3 is whether the given bounds are tight, especially
whether the error can really scale with ‖O‖st. If so, we
would essentially recover our naive bound in Eq. (3) for
highly magic observables with ‖O‖st = 2O(n). In fact,
the already discussed example in Proposition 1 also sat-
urates the bound in Theorem 3 since ‖|H 〉〈H|⊗n‖st =

‖|H 〉〈H|‖nst =
(

1+
√

2
2

)n
≥ 2n/4 (c.f. Appendix F).

A remaining open question is the effect of gate-
dependent noise on the protocol’s sample complexity. A
potential instability of the latter can also render shadow
estimation infeasible in practice. The required number
of samples can be bounded using the variance of the es-
timator V[ô] = E[ô2] − E[ô]2. In the presence of gate-
dependent noise, we show that the second moment E[ô2]
can be written in terms of Pauli projectors and average
noise channels, akin to Lemma 2. We find the following
explicit variance bound for the local and global Clifford
group:

Theorem 4. The variance of shadow estimation for uni-

form sampling from the global Clifford group under gate-

dependent noise is bounded by

Vglobal[ô] ≤
2(d+ 1)

(d+ 2)
‖O0‖2st +

d+ 1

d
‖O0‖22 .

For uniform sampling from the local Clifford group, the

variance is bounded by Vloc[ô] ≤ 4k‖Oloc‖2
∞

for k-local
observables O = Oloc ⊗ 1

n−k and by Vloc[ô] ≤ 3supp(σa)

for Pauli observables O = σa.

The proof thereof, and more details are given in Ap-
pendix D. For global Cliffords, the variance in Theorem 4
is governed by the squared stabilizer norm ‖O0‖2st and the
squared Hilbert-Schmidt norm ‖O0‖22. Let us compare
our result to the noise-free result in Ref. [1]. Therein,
the variance bound has a similar form, where however the
stabilizer norm is replaced by the spectral norm, leading
to a stronger bound since ‖O‖

∞
≤ ‖O‖st. In the presence

of noise, we can only recover a similar result for observ-
ables with ‖O‖st = O(‖O‖

∞
). Our findings indicate that

the sample complexity of the protocol for highly magical
observables with ‖O‖st = 2O(n) may no longer be con-
trolled. Intriguingly, we exactly recover the noise-free
variance bound of Ref. [1] for the local Clifford group,
meaning that the sample complexity for many impor-
tant use cases is not adversely affected by gate-dependent
noise. Finally, for more general sampling schemes, we ex-
pect that variance results from the noiseless case can be
extended to gate-dependent noise, but may again scale
with the observable’s stabilizer norm.

III. BIAS MITIGATION

Modifications to the original shadow estimation pro-
tocol, coined robust shadow estimation (RSE) [12], have
already been proposed with the goal of mitigating noise-
induced biases. Their performance guarantees rely on
the assumption of gate-independent (left) noise and their
success under more general noise models is unclear. Intu-
itively, one may hope that RSE mitigates the ‘dominant
contributions’ of an otherwise complicated noise model
and therefore generally improves the shadow estimate.
We demonstrate in the following that RSE can however
increase the bias rather than reduce it when the noise
model assumption is violated. In the worst case, gate
errors can even be amplified exponentially in the number
of qubits.

Proposition 5. Under gate-dependent local noise

φε(g) = (1− ε)ω(g) + ε ω(g)Λ(g), robust shadow estima-

tion with the global Clifford group can introduce a bias

|E[ô]− 〈O〉| ≥ |〈O0〉( 12 (1 + ε)n − 1)|.

As we show, this situation generally requires the effect
of the noise to be aligned with the support of the observ-
able or the state under scrutiny. More precisely, we prove
Proposition 5 in Appendix E by constructing an explicit
noise model consisting of local bit-flip errors.

In numerical simulations [12, 16], simple gate-
dependent noise models are found to be sufficiently well-
behaved in order for RSE to reduce the estimation bias.
To explain these findings, we investigate the influence of
gate-dependent Pauli noise on RSE in more detail. The
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general form of the frame operator given in Lemma 2
allows us to derive more precise conditions on the appli-
cability of RSE and to lay the groundwork for a better
understanding of related mitigation approaches, see Ap-
pendix F. In particular, we identify a strictly more gen-
eral noise model than gate-independent left noise [27] for
which RSE works as intended and the bias is strongly
suppressed in the number of qubits. We call this gate-
dependent noise model isotropic Pauli noise. Here, the
average Pauli eigenvalues λ̄a are allowed to fluctuate ran-
domly around a mean value in a rotation-invariant fash-
ion in the space of eigenvalues. This model is motivated
by the intuition that complicated noise processes and the
effective averaging introduced by shadow estimation can
be well approximated by normally distributed eigenval-
ues. We formulate this finding as follows.

Proposition 6. The bias of robust shadow estimation is

strongly suppressed in the number of qubits for isotropic

Pauli noise.

If there is reason to believe that the effective noise is
not well approximated by isotropic Pauli noise, unmit-
igated shadow estimation should be trusted over RSE,
due to its controlled bias (Theorem 3).

IV. CONCLUSION AND OUTLOOK

In order to trust the accuracy of shadow estimation
in practice, it is vital to understand its behavior un-
der realistic noise assumptions. Indeed, due to dimen-
sional factors in the estimators, small gate imperfections
can result in large biases of the estimator. Overcoming
the restrictions of previous work, we develop a theory
for classical shadows based on Clifford unitaries under
general gate-dependent, time-stationary, and Markovian
noise. In particular, our results apply to global and lo-
cal Clifford unitaries as well as random Clifford circuits
and matchgate 3-designs. We find that shadow estima-
tion is, perhaps surprisingly, robust for large classes of
observables, including convex combinations of Pauli ob-
servables and stabilizer states. More precisely, we show
that the estimation bias scales with the strength of the
gate noise, as well as the observable’s stabilizer norm.
Thus, a bounded stabilizer norm guarantees noise-robust
estimates of expectation values. Intriguingly, this is also
the class of observables for which one may expect that
the classical post-processing in shadow estimation can be
done efficiently using stabilizer techniques. In contrast,
highly ‘magic’ observables can lead to a strong, even ex-
ponential, amplification of noise errors as we illustrate at
the example of a magic state. Furthermore, we derive
explicit variance bounds for the local and global Clifford
groups which guarantee sample efficiency for the same
observables as in the noiseless case. For global Cliffords,
we again require that the observable’s stabilizer norm
is bounded, while the variance for local Cliffords is un-
changed under noise. Finally, we show that the intrin-

sic stability of classical shadows under gate-dependent
noise can even outperform ‘robust classical shadows’; a
noise mitigation scheme which relies on a more restricted
noise model. Nevertheless, we extend the regime in which
robust shadows work reliably to certain gate-dependent
noise models, which we call isotropic Pauli noise.

We regard our work as an important step towards
understanding the performance of randomized protocols
with Clifford unitaries under gate-dependent noise. In
particular, our results can provide guidance in devising
further approaches to mitigate noise in classical shadows,
provide crucial justification and identify caveats.
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Appendix A: The frame operator under gate-dependent right noise

We draw gates from a set G and aim for the target implementation ω(g)(ρ) = gρ g† acting as unitaries g ∈ U(d) on
density operators ρ. We assume that there is a corresponding hardware implementation φ : G → CPT(H) that takes
each gate g to some completely positive and trace preserving (CPT) map φ(g) on H.

Proposition 7 (Direct worst-case error bound). Consider an observable O0 that, w.l.o.g., we assume to be traceless.

The bias of shadow estimation with uniform sampling from a unitary 2-design is bounded as

∣∣∣(O0|S−1S̃|ρ)− (O0 |ρ)
∣∣∣ ≤ (d+ 1) E

g∈G
‖φ(g)− ω(g)‖

�
. (A1)

Proof. For uniform sampling from a unitary 2-design (such as the Clifford group), the inverse of the ideal frame
operator acts as (O0|S−1 = (d + 1)(O0| [1]. Let µ be the uniform probability measure on G, for instance the
normalized Haar measure on U(d) or Cln. The error due to noise in the frame operator is then given by

∣∣∣(O0|S−1S̃|ρ)− (O0|S−1S|ρ)
∣∣∣ = (d+ 1)(O0|

[∫
ω(g)†Mφ(g)dµ(g)−

∫
ω(g)†Mω(g)dµ(g)

]
|ρ) (A2)

≤ (d+ 1)‖
∫

ω(g)†Mφ(g)dµ(g)−
∫

ω(g)†Mω(g)dµ(g)‖
�

(A3)

= (d+ 1)‖
∫

ω(g)†M(φ(g)− ω(g))dµ(g)‖
�

(A4)

≤ (d+ 1)

∫
‖ω(g)†M‖

�
‖φ(g)− ω(g)‖

�
dµ(g) (A5)

= (d+ 1)

∫
‖φ(g)− ω(g)‖

�
dµ(g) , (A6)

where we used the submultiplicativity of the diamond norm and that ‖C‖
�
= 1 for any quantum channel C, in

particular for C = M .

For trace preserving φ(g), one can quickly verify that |(O|S−1S̃|ρ)− (O |ρ)| = |(O0|S−1S̃|ρ)− (O0 |ρ)|, where O0 is
the traceless component of O. This bound suggests an error amplification by a dimensional factor d + 1. However,
the bound cannot be tight since the triangle inequality from Eq. (A4) to Eq. (A5) can only be saturated in the trivial
zero-error case φ(g) = ω(g). Indeed, in the following, we show that much stronger bounds for sampling measurement
unitaries from the Clifford group can be derived. The defining property of Clifford unitaries that they map the Pauli
group onto itself plays a central role: even in the presence of noise, the frame operator can be written in a more
amenable form when looking at its Pauli transfer matrix.

In the following, we denote by Pn the set of n-qubit Pauli operators. The action of Clifford group elements on M
via the representation ω is given by

ω(g)(σa) = (−1)ϕa(g)Ξa(g) , (A7)

with functions ϕa : Cln → F2 and Ξa : Cln → Pn defined for a ∈ F2n
2 . Moreover, we write σ̌a = σa/

√
d for the

normalized Pauli operators such that (σ̌a |σ̌b) = δa,b. In the following, we denote by Zz ≡⊗n
i=1 Z

zi with z ∈ Fn
2 the

diagonal Pauli operators and set Z1 ≡ Ze1 with e1 = (1, 0, . . . , 0). We write again Žz = Zz/
√
d for their normalized

versions. Moreover, one can easily verify that M is given in terms of the diagonal Paulis as

M =
∑

x∈F
n
2

|Ex)(Ex| =
∑

z∈F
n
2

|Žz )(Žz| . (A8)

Lemma 2. Suppose G ⊂ Cln. The noisy frame operator (2) takes the form

S̃ =
1

d

∑

a∈F
2n
2

sa|σa)(σa|Λ̄a, (4)

where sa ∈ (0, 1] are the eigenvalues of the noise-free frame operator S and Λ̄a are quantum channels depending on

Λ. Furthermore, if the Λ(g) are Pauli noise channels, then Λ̄a|σa) = λ̄a|σa) where λ̄a ∈ [−1, 1].
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Proof. We show the statement by a direct calculation:

S̃ =
∑

g∈G

p(g)ω(g)†
∑

z∈F
n
2

|Žz )(Žz|ω(g)Λ(g) (A9)

=
∑

g∈G

∑

z∈F
n
2

p(g)(−1)ϕa(g)|Ξ̌z(g))(Ξ̌z(g)|(−1)ϕa(g)Λ(g) (A10)

=
∑

g∈G

∑

z∈F
n
2

p(g)|Ξ̌z(g))(Ξ̌z(g)|Λ(g) (A11)

=
∑

a∈F
2n
2

|σ̌a)(σ̌a|
∑

z∈F
n
2

∑

g∈Ξ−1
z (σa)

p(g)Λ(g) (A12)

=
∑

a∈F
2n
2

sa|σ̌a)(σ̌a|
∑

z∈F
n
2

∑

g∈Ξ−1
z (σa)

p(g)

sa
Λ(g) (A13)

=
∑

a∈F
2n
2

sa|σ̌a)(σ̌a|Λ̄a , (A14)

where sa :=
∑

z∈F
n
2

∑
g∈Ξ−1

z (sa)
p(g) and Λ̄a :=

∑
z∈F

n
2

∑
g∈Ξ−1

z (σa)
p(g)
sa

Λ(g).

For Pauli noise parameterized by Λ(g) = |1̌)(1̌|+∑a 6=0 λa(g)|σ̌a)(σ̌a|, the term (σ̌a|Λ̄a simplifies to

(σ̌a|Λ̄a =
∑

z∈F
n
2

∑

g∈Ξ−1
z (σa)

p(g)

sa
(σ̌a|Λ(g) =

∑

z∈F
n
2

∑

g∈Ξ−1
z (σa)

p(g)

sa
λa(g)(σ̌a| =: λ̄a(σ̌a| . (A15)

The frame operator for Pauli noise then becomes S̃ =
∑

a∈F
2n
2

saλ̄a|σ̌a)(σ̌a|. One can quickly verify that the set {p(g)
sa

|
g ∈ Ξ−1

z (σa), z ∈ Fn
2} corresponds to a normalized probability distribution by definition of sa. Thus, each Λ̄a is an

average over noise channels and thereby, a quantum channel itself. The condition λ̄a ∈ [−1, 1] follows from the general
property of Pauli eigenvalues λa(g) ∈ [−1, 1].

Crucially, these average channels depend on a and are taken over preimages of σa. The most immediate example
where Lemma 2 can be applied is shadow estimation with the global Clifford group for uniform sampling, i.e. p(g) =
1/|Cln|. In this case, we have sa = 1/(d + 1) for a 6= 0 and s0 = 1 [1]. Furthermore, each Λ̄a is an average over
|Cln|/(d+1) right noise channels Λ(g), and a characterization of the sets over which averages are taken can be found
in Appendix B.

For trace-preserving noise, the identity component in S̃ can be treated differently since, for any channel Λ(g), the
trace-preservation condition is equivalent to (1|Λ(g) = (1| and, thus, (1|Λ̄a = (1|. Moreover, since the adjoint unitary
action ω(g) for each gate g is trace-preserving, it holds that (1|ω(g)|Zz) = (1|Zz) = d δ0,z. As Ξ−1

z (1) is defined
to be precisely the set of all gates that map Zz to 1, it turns out that Ξ−1

z (1) = ∅ for z 6= 0 and Ξ−1
z (1) = Cln

for z = 0. Thus, for any probability distribution p(g) over Cln, it holds true that s0 =
∑

z∈F
n
2

∑
g∈Ξ−1

z (1) p(g) =∑
g∈Ξ−1

0 (1) p(g) =
∑

g∈Cln
p(g) = 1.

For clarity of presentation, we restate the main Theorem and its proof here.

Theorem 3. Suppose G ⊂ Cln. The estimation bias is bounded by

|E[ô]− 〈O〉| ≤ ‖O‖st max
a∈F

2n
2

‖id− Λ̄a‖�

≤ ‖O‖st max
g∈Cln

‖id− Λ(g)‖
�

(6)

for arbitrary gate-dependent noise and

|E[ô]− 〈O〉| ≤ min {‖O‖2, ‖O‖st} max
a∈F

2n
2

|1− λ̄a|

for gate-dependent Pauli noise.

Proof. From Lemma 2 we see that the ideal frame operator with Λ(g) = id for any g ∈ G is given by

S =
∑

a∈F
2n
2

sa|σ̌a)(σ̌a|
∑

z∈F
n
2

∑

g∈Ξ−1
z (σa)

p(g)

sa
id =

∑

a∈F
2n
2

sa|σ̌a)(σ̌a| , (A16)
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and its inverse is S−1 =
∑

a∈F
2n
2

1
sa
|σ̌a)(σ̌a|. Therefore the effective operation performed by the shadow estimation

protocol is S−1S̃ =
∑

a∈F
2n
2
|σ̌a)(σ̌a|Λ̄a. We can now bound the absolute error as follows:

∣∣(O |ρ)− (O|S−1S̃|ρ)
∣∣ =

∣∣∣(O|
(
id−

∑

a

|σ̌a)(σ̌a|Λ̄a

)
|ρ)
∣∣∣ (A17)

=
∣∣∣
∑

a

(O |σ̌a)(σ̌a|(id− Λ̄(a))|ρ)
∣∣∣ (A18)

≤
∑

a

|(O |σ̌a)| |(σ̌a|(id− Λ̄a|ρ)| (A19)

≤
∑

a

|(O |σ̌a)| ‖σ̌a‖∞‖(id− Λ̄a)(ρ)‖1 (A20)

≤
∑

a

|(O |σ̌a)| ‖σ̌a‖∞‖id− Λ̄a‖� (A21)

≤ max
a

‖id− Λ̄a‖�
∑

a

|(O |σ̌a)|√
d

(A22)

= max
a

‖id− Λ̄a‖�‖O‖st , (A23)

where from (A19) to (A20) we used the matrix Hölder inequality. From (A21) to (A22) we used ‖σ̌a‖∞ = ‖σa‖∞/
√
d =

1/
√
d and ‖(id− Λ̄a)(ρ)‖1 ≤ ‖id− Λ̄a‖� [28]. Finally, we used (O |σ̌a) = (O |σa)/

√
d and the definition of the stabilizer

norm in Eq. (5).
It remains to prove the bound for Pauli noise, where we use that (σ̌a|Λ̄a = λ̄a(σ̌a| as seen in Eq. (A15). This leads

to S−1S̃ =
∑

a∈F
2n
2

λ̄a|σ̌a)(σ̌a| and id − S−1S̃ =
∑

a∈F
2n
2
(1 − λ̄a)|σ̌a)(σ̌a|. Consequently, we can bound the bias for

Pauli noise as

∣∣(O |ρ)− (O|S−1S̃|ρ)
∣∣ =

∣∣∣(O|
∑

a∈F
2n
2

(1− λ̄a)|σ̌a)(σ̌a |ρ)
∣∣∣ (A24)

≤ max
a

|1− λa|
∑

a 6=0

|(O |σ̌a)(σ̌a |ρ)| (A25)

≤ max
a

|1− λa|‖O‖2‖ρ‖2 (A26)

≤ max
a

|1− λa|‖O‖2 . (A27)

From Eq. (A25) to Eq. (A26), the Cauchy-Schwarz inequality has been used, and the last line follows from the

fact that ‖ρ‖2 ≤ 1. We can alternatively bound Eq. (A25) by using |(σ̌a |ρ)| ≤ 1/
√
d to come by maxa|1 −

λa|
∑

a |(O |σ̌a)(σ̌a |ρ)| ≤ maxa|1− λa|
∑

a |(O |σ̌a)|/
√
d = maxa|1− λa|‖O‖st.

As mentioned in the discussion of Theorem 3 in the main text, the error bound for Pauli noise is as strong as
one could hope for in the case where O has unit rank. The maximum error on Pauli eigenvalues is bounded by
the diamond norm for Pauli channels and ‖O‖2 relates to the largest expectation value over all input states via

‖O‖2 ≤
√
rankO‖O‖

∞
. In general we have ‖O‖st ≤

√
d‖O‖2, meaning that the bound in terms of ‖O‖2 can be

stronger by a factor of
√
d compared to the bound in terms of ‖O‖st. We will now give an explicit example showing

that, at least for local Clifford shadow estimation, the bias can scale exponentially in the system size.

Proposition 1. Let O = (|H 〉〈H|)⊗n with the magic state |H〉 = 1
√

2
(|0〉+ eiπ/4|1〉) and consider shadow estimation

with local Clifford unitaries. There exists a state ρ and implementation map φε(g) = (1 − ε)ω(g) + εω(g)Λ(g) such

that |E[ô]− 〈O〉| = κ ε with κ ∈ Ω(d1/4).

Proof. In the following we use a noise model Λ(g) =
⊗n

i=1 Λi(gi). Recall from Eq. (A7) that the local Cliffords gi act

as ω(gi)(Z) = (−1)ϕZ(gi)ΞZ(gi). Then, we define

Λi(gi) =

{
ω(gi)

†ω(X) if ϕZ(gi) = 1

ω(gi)
† if ϕZ(gi) = 0 ,

(A28)

where ω(X)(ρ) = XρX. The frame operator inherits the ε-dependence from φε, and we write S̃ε ≡ S̃(φε).
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Let us first consider the case ε = 1. Since we can write the Z-basis measurement operator as M =
∑

z∈F
n
2
|Žz )(Žz| =

(|1̌)(1̌|+ |Ž )(Ž|)⊗n, the frame operator factorizes for the above local noise model:

S̃1 =
1

|Cl×n
1 |

∑

g∈Cl×n
1

ω(g)†
∑

z∈F
n
2

|Žz )(Žz|ω(g)Λ(g) (A29)

=
n⊗

i=1


 1

|Cl1|
∑

gi∈Cl1

ω(gi)
†

(
|1̌)(1̌|+ |Ž )(Ž|

)
ω(gi)Λi(gi)


 . (A30)

The action of a local Clifford operation gi can be written as ω(gi)
†|Z) = (−1)ϕZ(gi)|ΞZ(gi)) with ϕZ(gi) ∈ F2. By

inserting Λi(gi) we get

S̃1 =
n⊗

i=1


|1̌)(1̌|+ 1

|Cl1|
∑

gi∈Cl1

(−1)ϕZ(gi)|Ξ̌Z(gi))(Ž|(−1)ϕZ(gi)


 =


|1̌)(1̌|+ 1

3

∑

a∈F
2
2\{0}

|σ̌a)(Ž|




⊗n

. (A31)

With this error model, each measurement is done in the Z-basis, and the sign cancels with the sign ac-
quired in post-processing from the action of ω(gi)

†. Since the ideal frame operator is given by S = S̃0 =
⊗n

i=1

(
|1̌)(1̌|+ 1

3

∑
a 6=0|σ̌a)(σ̌a|

)
, we find that S−1S̃ =

(
|1̌)(1̌|+∑a 6=0|σ̌a)(Ž|

)
⊗n

. The expectation value of an

observable O on the initial state E0 =
[

1
√

2

(
1̌+ Ž

)]⊗n

is consequently given by

(O|S−1S̃1|E0) =
1√
d
(O|


|1̌) +

∑

a∈F
2
2\{0}

|σ̌a)




⊗n

(A32)

=
1√
d

∑

a∈F
2n
2

(O |σ̌a) . (A33)

It remains now to compute S̃ε for the implementation map φε(g) = (1− ε)ω(g) + εω(g)Λ(g). For this we note that

S̃ε = E
g
[ω†(g)M((1− ε)ω(g) + εω(g)Λ(g))] (A34)

= (1− ε)E
g
[ω†(g)Mω(g)] + εE

g
[ω†(g)Mω(g)Λ(g))] (A35)

= (1− ε)S̃0 + εS̃1. (A36)

Therefore the bias is given by |E[ô]− 〈O〉| = |(1− ε)〈O〉+ ε(O |S−1S̃1 |E0)− 〈O〉| = ε|∑a∈F
2n
2
(O |σ̌a)/

√
d− 〈O〉|.

So far the calculation was independent of the observable, and we now consider the magic state O = (|H 〉〈H|)⊗n.
From the definition of |H〉 we can read off 〈O〉 = |〈H |E0〉|2n = 1

d
. Furthermore, one can show that |H 〉〈H| =

1
√

2

[
1̌+ 1

√

2
(X̌ + Y̌ )

]
, and we get

(O |S−1S̃1 |E0) =


1
2

∑

a∈F
2
2

((1̌|+ 1
√

2
((X̌|+ (Y̌ |)|σ̌a)



n

=

[
1 +

√
2

2

]n
. (A37)

Since the entries of O = (|H 〉〈H|)⊗n in the Pauli basis are positive, the stabilizer norm of O is by Eq. (A33) exactly

the just derived expression, ‖O‖st =
[
1+

√

2
2

]n
≥ 2n/4. By putting everything together, we arrive at the desired result

|E[ô]− 〈O〉| = |‖O‖st − 1/d|ε = κε.

Whether the same error scaling with ‖O‖st can also occur for Clifford-based shadow estimation protocols other than
uniform sampling from the local Clifford group remains open. To understand for instance the difference between local
and global Cliffords, we can look at the above example in terms of average error channels. What allows the errors to
accumulate in Proposition 1 is the fact that for local noise, the local noise averages Λ̄X , Λ̄Y , Λ̄Z are each taken over
disjoint subsets over the local Clifford group and, thus, an error model exists such that they can be independently
chosen. For uniform sampling from the global Clifford group this is not the case anymore. As shown in the next
section, each of the d2 − 1 average noise channels Λ̄a is an average over |Cln|/(d+ 1) channels Λ(g), therefore the Λ̄a

cannot all be independent.

B. PAPER - STABILITY OF CLASSICAL SHADOWS UNDER GATE-DEPENDENT NOISE127



10

Appendix B: Explicit calculation of the noise average for the Clifford group

In the following, we write CNOTi,j for the controlled-NOT gate with control qubit i and target qubit j. More
generally, given a 2-qubit unitary U , we write Ui,j for its application on the ordered qubit pair (i, j). Moreover, SWAP
is the 2-qubit SWAP gate and Pn = 〈Pn〉 denotes the n-qubit Pauli group.

Lemma 8. Let N :=
⋃n−1

i=1

{∏i
j=1 Uj+1,j |U ∈ {SWAP,CNOT}

}
∪ 1. Then the following holds:

M =
∑

z∈F
n
2

|Žz )(Žz| = |1̌)(1̌|+
∑

g∈N

ω(g)†|Ž1)(Ž1|ω(g) . (B1)

Proof. To see this we first note that SWAP and CNOT2,1 are given as

CNOT2,1 =



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 , SWAP =



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

Since Z(1,0) = diag(1, 1,−1,−1), Z(0,1) = diag(1,−1, 1,−1) and Z(1,1) = diag(1,−1,−1, 1) are all diagonal and the
adjoint actions of SWAP and CNOT2,1 permute diagonal elements, one can quickly verify that ω(SWAP)|Z(1,0)) =
|Z(0,1)) and ω(CNOT2,1)|Z(1,0)) = |Z(1,1)). Consecutively applying either CNOT2,1 or SWAP along the qubit chain

to Z1 generates all Zz with z ∈ Fn
2\{0, e1}. One can also see that |N | = 1 +

∑n−1
i=1 2i = 2n − 1, which is the number

of non-identity terms in Eq. (B1).

Lemma 9. The stabilizer of |Z1)(Z1| under the action g 7→ ω†(g)( · )ω(g) with g ∈ Cln is given by Ste1 ≡ StZ1 =
Cln−1 ·HWn · 〈S1, {CZ1,i,CNOT1,i}i∈{2,...,n}〉.
Proof. Since Z1 is just the identity on qubits 2, . . . , n, any adjoint action by a unitary acting only on qubits 2, . . . , n
leaves Z1 invariant. This holds, in particular, for id⊗ω(g) with g ∈ Cln−1. For g ∈ Pn we know that ω(g)†|σa) = ±|σa)
for any a ∈ F2n

2 and, thus, ω†(g)|σa)(σa|ω(g) = |σa)(σa|. The remaining Clifford group elements that can stabilize
|Z1)(Z1| act only on qubit 1 or between qubit 1 and qubits 2, . . . n. Since Z1 is diagonal in the computational basis, this
includes all diagonal Cliffords which we did not already count in Cln−1, namely 〈S1,CZ1,i>1〉. In addition, identical
diagonal elements of Z1 can be permuted and one can easily verify that, for instance, ω(CNOT)|Z(1,0)) = |Z(1,0)).

To show that this is indeed the complete stabilizer, note that the orbit of |Z1)(Z1| corresponds to all non-identity
Pauli strings and thus has size 4n − 1. Hence, we have |Cln|/|Ste1 | = 4n − 1, where

|Cln| = 22n+32n
2

n∏

i=1

(4i − 1), |Pn| = 22n+2 . (B2)

The order of the above defined group Cln−1 · Pn · 〈S1, {CZ1,i,CNOT1,i}i∈{2,...,n}〉 can be computed by observing that
we can simply compute the cardinalities of the first and last factor up to Pauli operators, and multiply those by |Pn|.
Since CNOT normalizes diagonal Clifford unitaries, 〈S1,CZ1,i,CNOT1,i〉 = 〈S1,CZ1,i〉 o 〈CNOT1,i〉 is a semidirect
product and 〈S1,CZ1,i〉 is Abelian. We have 2n−1 possibilities of applying CZ1,i and CNOT1,i and the S-gate has
order 4, hence |〈S1,CZ1,i,CNOT1,i〉/〈Z1〉| = 2 · 2n−12n−1 = 22n−1. Putting everything together, we find

|Cln−1 · Pn · 〈S1, {CZ1,i,CNOT1,i}i∈{2,...,n}〉| = |Cln−1/Pn−1| × |Pn| × |〈S1,CZ1,i,CNOT1,i〉/〈Z1〉| (B3)

= 2(n−1)2+1
n−1∏

i=1

(4i − 1)× 22n+2 × 22n−1 (B4)

= 22n+32n
2 1

4n − 1

n∏

i=1

(4i − 1) (B5)

=
|Cln|
4n − 1

, (B6)

which shows the claim.

Let ga be any element of Cln that satisfies ω†(ga)|Z1)(Z1|ω(ga) = |σa)(σa| for a 6= 1. The stabilizer of |σa)(σa|
can then simply be written as Sta = gaSte1 . Moreover, the stabilizers gaSte1 are exactly the left cosets of Ste1 and,
thus, Cln =

⋃
a 6=0 gaSte1 , where gaSte1 and ga′Ste1 are pairwise disjoint for a 6= a′.
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Proposition 10. The frame operator for shadow estimation with uniform sampling from the n-qubit Clifford group

is given by

S̃ = |1̌)(1̌|+ 1

d+ 1

∑

a 6=0

|σ̌a)(σ̌a| E
h∈N

E
h′

∈Ste1

Λ(h−1h′ga), (B7)

where ga can be any element of Cln satisfying ω†(ga)|Z1)(Z1|ω(ga) = |σa)(σa|.

Proof. With the use of Lemma 8 and Lemma 9 we can successively rewrite the frame operator as follows:

S̃ =
1

|Cln|
∑

g∈Cln

ω†(g)
∑

z∈F
n
2

|Žz )(Žz|ω(g)Λ(g) (B8)

= |1̌)(1̌|+ 1

|Cln|
∑

h∈N

∑

g∈Cln

ω(hg)†|Ž1)(Ž1|ω(hg)Λ(g) (B9)

= |1̌)(1̌|+ 1

|Cln|
∑

g∈Cln

ω(g)†|Ž1)(Ž1|ω(g)
∑

h∈N

Λ(h−1g) (B10)

= |1̌)(1̌|+ 1

|Cln|
∑

g∈Cln/Ste1

ω(g)†|Ž1)(Ž1|ω(g)
∑

h∈N ,h′
∈Ste1

Λ(h−1h′g) (B11)

= |1̌)(1̌|+ 1

|Cln|
∑

a 6=1

|σ̌a)(σ̌a|
∑

h∈N ,h′
∈Ste1

Λ(h−1h′ga). (B12)

Since |Ste1 | = |Cln|
4n−1 and |N | = d− 1, we can rewrite the last line in terms of the channel averages as

1

|Cln|
∑

h∈N ,h′
∈Ste1

Λ(h−1h′ga) =
1

(d+ 1)(d− 1)|Ste1 |
∑

h∈N ,h′
∈Ste1

Λ(h−1h′ga) (B13)

=
1

d+ 1
E

h∈N

E
h′

∈Ste1

Λ(h−1h′ga) . (B14)

This result ties back to the general form derived in Lemma 2 via Ξ−1
b (a) = h−1

b Ste1ga and sa = 1
d+1 . We will now

turn to the local Clifford group and determine the factors sa, as well as the compositions of Λ̄a. The result will take
a simpler form for local noise, which we define as noise that factorizes as Λ(g) =

⊗n
i=1 Λ

(i)(gi) on all g ∈ Cl×n
1 . We

also define the support of a ∈ F2n
2 as |supp(a)| = |{i ∈ [n] : ai 6= 0}|.

Proposition 11. Let G(a) ⊆ Cl1 be defined by

G(a) =

{
Cl1 a = 0

St(Z)ga a ∈ (F2∗
2 ) .

(B15)

Then the frame operator for the n-qubit local Clifford group is given by

S̃ =
∑

a∈F
2n
2

1

3| supp(a)|
|σ̌a)(σ̌a|Λ̄a , (B16)

where Λ̄a = Eg1∈G(a1) · · ·Egn∈G(an) Λ(g1, . . . , gn) for global noise and Λ̄a = Eg1∈G(a1) Λ
(1)(g1) ⊗ · · · ⊗

Egn∈G(an) Λ
(n)(gn) =

⊗n
i=1 Λ̄ai for local noise.

Proof. Since the local Clifford group also satisfies the conditions in Lemma 2 it remains to show that the av-
erages Λ̄a take the above form and that the coefficients are sa = 1

3| supp(a)| . We will now explicitly proof the
case n = 2, from which the result for an arbitrary system size can be straightforwardly generalized. In this

case M =
(
|1̌)(1̌|+ |Ž )(Ž|

)
⊗2

=
∑

z1,z2∈F2
|Žz1 )(Žz1 | ⊗ |Žz2 )(Žz2 |. For Cl1 × Cl1, the product representation

ω(g1, g2) = ω(g1) ⊗ ω(g2), and implementation map φ(g1, g2) = (ω(g1) ⊗ ω(g2))Λ(g1, g2), the frame operator be-
comes
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S̃ =
1

|Cl1|2
∑

g1,g2∈Cl1

∑

z1,z2∈F2

(
ω(g1)

†|Žz1 )(Žz1 |ω(g1)⊗ ω(g2)
†|Žz2 )(Žz2 |ω(g2)

)
Λ(g1, g2) (B17)

=
1

|Cl1|2
∑

g2∈Cl1

∑

a1∈Z4

∑

z2∈F2

(
|σ̌a1 )(σ̌a1 | ⊗ ω(g2)

†|Žz2 )(Žz2 |ω(g2)
) ∑

z1∈F2

∑

g1∈Ξ−1
z1

(a1)

Λ(g1, g2) (B18)

=
1

|Cl1|2
∑

a1∈Z4

|σ̌a1
)(σ̌a1

| ⊗
∑

a2∈Z4

|σ̌a2 )(σ̌a2 |
∑

z1,z2∈F2

∑

g1∈Ξ−1
z1

(a1)

∑

g2∈Ξ−1
z2

(a2)

Λ(g1, g2). (B19)

Since ω(g)†|1)(1|ω(g) = 1 for all g ∈ Cl1 and ω(g)†|σa)(σa|ω(g) 6= 1 for all a 6= 0 and g ∈ Cl1, we know that
Ξ−1
0 (1) = Cln, Ξ−1

0 (σa) = ∅ as well as Ξ−1
a (1) = ∅. Moreover, if we apply Proposition 10 to the case n = 1, we see

that N = {1} and Ξ−1
1 (σa) = St1ga. The cosets G(a 6= 0) = St1ga are disjoint for a ∈ {X,Y, Z} and of order |Cl1|/3.

We then get

S̃ =
∑

a1,a2∈Z4

|G(a1)|
Cl1

|G(a2)|
Cl1

|σ̌a1
)(σ̌a1

| ⊗ |σ̌a2
)(σ̌a2

| E
g1∈G(a1)

E
g2∈G(a2)

Λ(g1, g2) (B20)

=
∑

a1,a2∈Z4

1

3| supp(a)|
|σ̌a1)(σ̌a1 | ⊗ |σ̌a2)(σ̌a2 | E

g1∈G(a1)
E

g2∈G(a2)
Λ(g1, g2). (B21)

The last line follows from

|G(a)|
|Cl1|

=

{
1 a = 0

1/3 a ∈ (F2∗
2 ),

(B22)

which we can write as |G(a1)|
|Cl1|

= 3−|supp(a1)| whereafter |G(a1)||G(a2)|
|Cl1|2

= 3−|supp(a)|. For local noise, we get

E
g1∈G(a1)

E
g2∈G(a2)

Λ(g1, g2) = E
g1∈G(a1)

Λ(1)(g1)⊗ E
g2∈G(a2)

Λ(2)(g2) = Λ̄a1 ⊗ Λ̄a2 . (B23)

The n-qubit local Clifford group result then follows.

A different locality structure of the noise channels Λ(g) (other than fully local noise) will lead to the corresponding
locality structure on the average noise channels. For instance, if all noise channels factorize along a bipartition of the
set of qubits, the average noise channels will inherit this factorization.

Appendix C: A norm inequality for Pauli channels

In the following we consider Pauli channels that act as Λ(ρ) =
∑

b∈F
2n
2

pbσbρσb, with pb ∈ [0, 1] and
∑

b pb =

1. The corresponding superoperators are known to be diagonal in the Pauli basis and to have eigenvalues λa =∑
a∈F

2n
2
(−1)[a,b]pb where [a, b] = 0 if σa and σb commute and [a, b] = 1 otherwise.

Lemma 12. Let Λ and Λ′ be Pauli channels, then it holds that ‖Λ− Λ′‖
∞

≤ ‖Λ− Λ′‖
�
.

Proof. Let Λ and Λ′ be given by the probability distributions p and p′, respectively, hence their eigenvalues are
λa =

∑
a∈F

2n
2
(−1)[a,b]pb and λ′

a =
∑

a∈F
2n
2
(−1)[a,b]p′b. Since Λ and Λ′ are both diagonal in the Pauli basis, we have

‖Λ−Λ′‖
∞

= maxa|λa−λ′

a|. It then follows that maxa|λa−λ′

a| = maxa|
∑

b(−1)[a,b](pb−p′b)| ≤
∑

b |pb−p′b| = ‖Λ−Λ′‖
�
,

where the last step uses a well-known relation for the diamond distance of Pauli channels [29].

Since the channel average over Pauli channels is again a Pauli channel, the above statement holds in particular for
Λ̄a and the identity operation, ‖id− Λ̄a‖∞ ≤ ‖id− Λ̄a‖�.
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Appendix D: Variance bounds for gate-dependent noise

To bound the variance of the estimator, V[ô] = E(ô2)− E(ô)2, we compute the second moment

E(ô2) = (O ⊗O|(S−1)⊗2
∑

x∈F
n
2

∑

g∈G

p(g)ω(g)†⊗2|Ex ⊗ Ex)(Ex|ω(g)Λ(g)|ρ) . (D1)

It will come in handy again to express the map M3 :=
∑

x∈F
n
2
|Ex ⊗ Ex)(Ex| in the normalized Pauli basis. By using

that (Ex |σa) = 0 if σa is not diagonal and (Ex |Zz) = (−1)x·z, one can readily show that

M3 =
1√
d

∑

z,z′
∈F

n
2

|Žz ⊗ Žz′)(Žz+z′ | = 1

d2

∑

z,z′
∈F

n
2

|Zz ⊗ Zz′)(Zz+z′ | . (D2)

Here and in the following, addition of binary vector such as z+z′ is within the binary field F2, i.e. to be taken modulo
2. In the absence of noise, one can show that the relevant operator in Eq. (D1) can be written as

S3 :=
∑

g∈G

p(g)ω(g)†⊗2M3ω(g) =
1√
d

∑

a,a′
∈F

2n
2 :

[a,a′]=0

sa,a′ |σ̌a ⊗ σ̌a′)(σ̌a+a′ | , (D3)

for suitable constants sa,a′ ∈ R. Under noise, we show that the analogous operator

S̃3 :=
∑

g∈G

p(g)ω(g)†⊗2M3ω(g)Λ(g) (D4)

can be brought in a similar form to Eq. (D3) where the noise enters linearly and from the right. We then obtain an
analogous statement for the variance as for the expectation value in Lemma 2:

Lemma 13. Consider a shadow estimation protocol with random sampling from the Clifford group according to an

arbitrary probability distribution p that ensures informational completeness. Let sa,a′ be as in Eq. (D3) and let sa and

sa′ be as in Lemma 2. Then, the second moment for an observable O and a state ρ can be written as

E(ô2) =
1√
d

∑

a,a′
∈F

2n
2 :

[a,a′]=0

sa,a′

sasa′

(O |σ̌a)(O |σ̌a′)(σ̌a+a′ |Λ̄a,a′ |ρ) , (D5)

where Λ̄a,a′ are suitable averages of the gate noise channels Λ(g).

Proof. For the target implementation of Clifford unitaries, we can again write the action of ω†(g) ⊗ ω†(g)(·)ω(g) on
|Zz) ⊗ |Zz′)(Zz+z′ | in terms of ϕa : Cln → F2 and Ξa : Cln → Pn. It also holds that (Zz+z′ |ω(g) = (gZzg

†gZz′g†| =
(Ξz(g)Ξz′(g)|(−1)ϕz(g)+ϕz′ (g), where the Pauli operators Ξz(g) and Ξz′(g) commute. Therefore, we get

ω†(g)⊗ ω†(g)|Zz ⊗ Zz′)(Zz+z′ |ω(g) = (−1)ϕz(g)+ϕz′ (g)|Ξz(g)⊗ Ξz′(g))(Ξz(g)Ξz′(g)|(−1)ϕz(g)+ϕz′ (g)

= |Ξz(g)⊗ Ξz′(g))(Ξz(g)Ξz′(g)| .

Note that if σa = Ξz(g) and σa′ = Ξz′(g) for suitable a, a′ with [a, a′] = 0, then σaσa′ = (−1)β(a,a
′)σa+a′ for a suitable

binary function β. Since S̃3 depends only linearly on the right noise channels Λ(g) we can proceed in analogy to

Lemma 2 and rewrite S̃3 as

S̃3 =
∑

g∈G

p(g)ω(g)†⊗2M3ω(g)Λ(g)

=
1

d2

∑

g∈G

p(g)
∑

z,z′
∈F

n
2

|Ξz(g))⊗ |Ξz′(g))(Ξz(g)Ξz′(g)|Λ(g)

=
1

d2

∑

a,a′
∈F

2n
2 :

[a,a′]=0

|σa ⊗ σa′)(σaσa′ |
∑

z,z′
∈F

n
2

∑

g∈Ξ−1
z (a)∩Ξ−1

z′
(a′)

p(g)Λ(g)

=
1√
d

∑

a,a′
∈F

2n
2 :

[a,a′]=0

sa,a′ |σ̌a ⊗ σ̌a′)(σ̌a+a′ |
∑

z,z′
∈F

n
2

∑

g∈Ξ−1
z (a)∩Ξ−1

z′
(a′)

p(g)

ra,a′

Λ(g) ,
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where sa,a′ = (−1)β(a,a
′)ra,a′ and ra,a′ =

∑
z,z′

∈F
n
2

∑
g∈Ξ−1

z (a)∩Ξ−1

z′
(a′) p(g). We can now define average channels

Λ̄a,a′ :=
∑

z,z′
∈F

n
2

∑
g∈Ξ−1

z (a)∩Ξ−1

z′
(a′)

p(g)
ra,a′

Λ(g) and write S̃3 as

S̃3 =
1√
d

∑

a,a′
∈F

2n
2 :

[a,a′]=0

sa,a′ |σ̌a ⊗ σ̌a′)(σ̌a+a′ |Λ̄a,a′ . (D6)

The second moment of ô is then

E(ô2) = (O ⊗O|S−1 ⊗ S−1S̃3|ρ) =
1√
d

∑

a,a′
∈F

2n
2

[a,a′]=0

sa,a′

sasa′

(O |σ̌a)(O |σ̌a′)(σ̌a+a′ |Λ̄a,a′ |ρ) (D7)

In analogy to Theorem 3, we obtain the following bound on the deviation of the second moment from its value in
the absence of noise.

Proposition 14. In the setting of Theorem 3, assume that |sa,a′ |/(sas′a) ≤ C for all a 6= a′ with (O |σa) 6= 0 and

(O |σa′) 6= 0. Then, we have

|E(ô2)− E(ô2noise-free)| ≤ C‖O‖2st max
a,b∈F

2n
2

‖id− Λ̄a,b‖� ≤ C‖O‖2st max
g∈G

‖id− Λ(g)‖
�
, (D8)

where ônoise-free is the shadow estimator in the absence of any noise and Λ̄a,b are suitably averaged noise channels.

Proof. We have the following expression for sa,a′ :

sa,a′ =
√
d (σ̌a ⊗ σ̌a′ |S3|σ̌a+a′) =

√
d
∑

x∈F
n
2

∑

g∈G

p(g)(σ̌a|ω(g)†|Ex)(σ̌a′ |ω(g)†|Ex)(Ex|ω(g)|σ̌a+a′) . (D9)

First, note that if a = a′, then σ̌a+a = σ̌0 = 1/
√
d and hence

sa,a =
∑

x∈F
n
2

∑

g∈G

p(g)(σ̌a|ω(g)†|Ex)
2 =

∑

x∈F
n
2

∑

g∈G

p(g)(σ̌a|ω(g)†|Ex)(Ex|ω(g)|σ̌a) = (σ̌a|S|σ̌a) = sa , (D10)

using that all matrix coefficients are real. By assumption, |sa,a′ |/(sas′a) ≤ C for all non-zero terms, and thus we find

|E(ô2)− E(ô2noise-free)| = |(O ⊗O|S−1 ⊗ S−1(S̃3 − S3)|ρ)|

=
1√
d

∣∣∣
∑

a,a′
∈F

2n
2

[a,a′]=0

sa,a′

sasa′

(O |σ̌a)(O |σ̌a′)(σ̌a+a′ |Λ̄a,a′ − id|ρ)
∣∣∣

≤ C

d2

∑

a 6=a′

|(O |σa)||(O |σa′)| ‖Λ̄a,a′ − id‖
�
+

1

d2

∑

a

|(O |σa)|2
sa

Tr
[
(Λ̄a,a′ − id)(ρ)

]

≤ C ‖O‖2st max
a,a′

‖Λ̄a,a′ − id‖
�
,

using that Λ̄a,a′ is trace preserving.

An open question is whether we have |sa,a′ |/(sas′a) = O(1) for general distributions p on the Clifford group. The
best general upper bound we could find is d, but we think that this is too pessimistic for practically relevant cases.
For uniform sampling from a Clifford subgroup, we can – in principle – get an analytical handle on the sa,a′ (and sa)
using Schur’s lemma and information about the irreps of the subgroup. This can help to improve on Proposition 14,
as we illustrate in Appendix D1 and Appendix D 2 at the case of the local and global Clifford groups.
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1. The global Clifford group

For the global Clifford group Cln, the representation ω is composed of two irreducible representation and can be
decomposed as ω = τ0⊕τ1. The noiseless second moment operator S3 for uniform sampling from Cln then decomposes
as (see also Ref. [30, App. C]):

S3 =
1

|G|
⊕

i∈F2

⊕

j∈F2

⊕

k∈F2

∑

g∈G

τi(g)
† ⊗ τj(g)

†M3τk(g) .

By Schur’s lemma, the operator

Πijk =
1

|G|
∑

g∈G

τi(g)
† ⊗ τj(g)

†(·)τk(g) (D11)

is an orthogonal projector which is only non-zero if the irrep τk is contained in τi⊗τj . It is straightforward to see that
Πijk is thus zero for (ijk) = (001), (100), (010). More generally, rankΠijk is equal to the multiplicity of τk in τi ⊗ τj .
Thus, Πijk is rank one for (ijk) = (000), (101), (011), (110) and rank two (one) for (ijk) = (111) if n > 1 (n = 1) [30,
Eq. (97)]. The rank one cases can be straightforwardly computed by finding a superoperator Iijk in the range of Πijk

and projecting M3 onto Iijk, i.e.

Πijk(M3) =
Tr(I†ijkM3)

Tr(IijkI
†

ijk)
Iijk

The rank two case was already computed in Ref. [30, App. C.1]. Evaluating S3 in this way results in the following
Lemma.

Lemma 15. For uniform sampling from the global Clifford group, the coefficients sa,a′/(sasa′) in the second moment

are given by

sa,a′

sasa′

=





1 a = 0 ∨ a′ = 0

d+ 1 a 6= 0 ∧ a′ 6= 0 ∧ a = a′

2(d+1)
d+2 (−1)β(a,a

′) a 6= 0 ∧ a′ 6= 0 ∧ a 6= a′ ∧ [a, a′] = 0

0 else.

(D12)

Proof. We will first determine the superoperators Iijk and calculate each individual contribution to S3.

(i) We can choose I000 = |1̌⊗ 1̌)(1̌| with Tr(I†000I000) = 1 and

Tr(I†000M3) =
1√
d

∑

z,z′
∈F

n
2

(1̌|Žz)(1̌|Žz′)(Žz+z′ |1̌) = 1√
d
.

The first term in S3 is thus

Tr(I†000M3)

Tr(I†000I000)
I000 =

1√
d
|1̌⊗ 1̌)(1̌| . (D13)

(ii) Next we look at (ijk) = (011), (101). Note that
∑

a 6=0|σ̌a)(σ̌a| is the projector onto the traceless subspace and

hence left invariant by τ †1 (g)(·)τ1(g) for all g ∈ G. Consequently I011 =
∑

a 6=0|1̌⊗σ̌a)(σ̌a|, I101 =
∑

a 6=0|σ̌a⊗1̌)(σ̌a|
are valid choices with Tr(I†011I011) = Tr(I†101I101) = d2 − 1. For the overlap with M3 we find

Tr(I†011M3) =
1√
d

∑

z,z′
∈F

n
2

∑

a 6=0

(1̌|Žz)(σ̌a |Žz′)(Žz+z′ |σ̌a)

=
1√
d

∑

z,z′
∈F

n
2

∑

a 6=0

δz,0δz′,aδz+z′,a

=
1√
d

∑

z′
6=0

1

=
1√
d
(d− 1) .

B. PAPER - STABILITY OF CLASSICAL SHADOWS UNDER GATE-DEPENDENT NOISE133



16

The same result can be obtained for Tr(I†101M3), and we get the contributions

Tr(I†011M3)

Tr(I†011I011)
I011 =

1√
d(d+ 1)

∑

a 6=0

|1̌⊗ σ̌a)(σ̌a| ,
Tr(I†101M3)

Tr(I†101I101)
I101 =

1√
d(d+ 1)

∑

a 6=0

|σ̌a ⊗ 1̌)(σ̌a| . (D14)

(iii) The (110) case is treated in [30, App. C.1a] using

I110 =
[
F − |1̌⊗ 1̌)

]
(1̌|,

where F is the flip operator on the first two tensor factors. To compute Tr(I†110M3), we first remember the
property of the flip operator that Tr(Fσ̌a ⊗ σ̌b) = (σ̌a |σ̌b) = δa,b, which leads us to

Tr(I†110|σ̌a ⊗ σ̌b)(σ̌c|) =
[
Tr(Fσ̌a ⊗ σ̌b)− (1̌|σ̌a)(1̌|σ̌b)

]
(1̌|σ̌c) = (δa,b − δa,0δb,0)δc,0 .

Therefore, we can write I110 in the Pauli basis as I110 =
∑

a 6=0|σ̌a ⊗ σ̌a)(1̌|, from where one can deduce the

normalization Tr(I†110I110) = d2 − 1. For the overlap with M3 we have

Tr(I†110M3) =
1√
d

∑

z,z′
∈F

n
2

(
δz,z′ − δz,0δz′,0

)
δz+z′,0 =

d− 1√
d

.

The contribution to S3 is then given as

Tr(I†110M3)

Tr(I†110I110)
I110 =

1√
d(d+ 1)

∑

a 6=0

|σ̌a ⊗ σ̌a)(1̌| . (D15)

(iv) Lastly we take a look at I111, which was also determined in [30, App. C.1b], where it was shown that

Tr(I111M3) =
Tr(I

(1)
ad M3)

d3(d2 − 1)(d2 − 4)
(I

(1)
ad + I

(2)
ad ) (D16)

with

I
(1)
ad =

∑

a 6=0,b6=0
a 6=b

|σa ⊗ σb)(σaσb| , I
(1)
ad =

∑

a 6=0,b6=0
a 6=b

|σa ⊗ σb)(σbσa| . (D17)

Using σaσb = (−1)[a,b]σbσa and the above definition we find that

I
(1)
ad + I

(2)
ad = 2

∑

a 6=0,b6=0
a 6=b,[a,b]=0

|σa ⊗ σb)(σaσb| , (D18)

as well as

Tr(I
(1)†
ad M3) = d

∑

z,z′
∈F

n
2

∑

a 6=0,b6=0
a 6=b,[a,b]=0

(−1)β(a,b)δz,aδz′,bδz+z′,a+b = d
∑

z 6=0,z′
6=0

z 6=z′

1 = d(d− 1)(d− 2) .

The contribution to S3 is thus

Tr(I†111M3)

Tr(I†111I111)
I111 =

2

d2(d+ 1)(d+ 2)

∑

a 6=0,a′
6=0

a 6=a′,[a,a′]=0

|σa ⊗ σa′)(σaσa′ | (D19)

=
2√

d(d+ 1)(d+ 2)

∑

a 6=0,a′
6=0

a 6=a′,[a,a′]=0

(−1)β(a,a
′)|σ̌a ⊗ σ̌a′)(σ̌a+a′ | . (D20)
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By comparing the prefactors of different terms from S3 given in Eq. (D13), Eq. (D14), Eq. (D15) and Eq. (D20)
with Eq. (D3), we can read off the coefficients sa,a′ :

sa,a′ =





1 a = 0 ∨ a′ = 0
1

d+1 a 6= 0 ∧ a′ 6= 0 ∧ a = a′

2
(d+1)(d+2) (−1)β(a,a

′) a 6= 0 ∧ a′ 6= 0 ∧ a 6= a′ ∧ [a, a′] = 0

0 else.

(D21)

For the second moment E(ô) we need the fractions
sa,a′

sas′a
, which using sa = (d+ 1)−1 for a 6= 0 and s0 = 1 are found

to be

sa,a′

sasa′

=





1 a = 0 ∨ a′ = 0

d+ 1 a 6= 0 ∧ a′ 6= 0 ∧ a = a′

2(d+1)
d+2 (−1)β(a,a

′) a 6= 0 ∧ a′ 6= 0 ∧ a 6= a′ ∧ [a, a′] = 0

0 else.

(D22)

2. The local Clifford group

For the local Clifford group, we begin by arguing that for uniform sampling and without the presence of noise, the
frame operator factorizes. First note that the Z-basis measurement operator factorizes as

M3 =
1√
d


 ∑

z,z′
∈F2

|Žz ⊗ Žz′)(Žz+z′ |




⊗n

. (D23)

Consequently, we find:

S3 =
d−1/2

|Cl⊗n
1 |

∑

g∈Cl⊗n
1

ω†(g)⊗2M3ω(g) (D24)

=
1√
d


 1

|Cl1|
∑

g∈Cl1

∑

z,z′
∈F2

ω†(g)⊗2|Žz ⊗ Žz′)(Žz+z′ |ω(g)




⊗n

(D25)

=
1√
d


 ∑

a,a′
∈F

2
2

sa,a′ |σ̌a ⊗ σ̌a′)(σ̌a+a′ |




⊗n

, (D26)

where we used Eq. (D3) for the case n = 1 in the last line. Since S also factorizes for the local Clifford group, one can

easily verify that S−1 ⊗ S−1S3 = 1
√

d

(∑
a,a′

∈F
2
2

sa,a′

sasa′
|σ̌a ⊗ σ̌a′)(σ̌a+a′ |

)
⊗n

. The coefficients were already determined

in Eq. (D22) and for n = 1 we can simplify them to get (the third case cannot occur):

sa,a′

sas′a

n=1
=





1 a = 0 ∨ a′ = 0

3 a 6= 0 ∧ a′ 6= 0 ∧ a = a′

0 else.

(D27)

For n > 1 qubits, recall that we label Pauli operators as σa = σa1 ⊗ · · · ⊗ σan where ai ∈ F2
2. The coefficients are

then found as products of the above single qubit coefficients:

sa,a′

sas′a
=

n∏

i=1

sai,a
′
i

saisa′
i

=

{
0 ∃i ∈ supp(a) ∩ supp(a′) : ai 6= a′i
3| supp(a)∩supp(a′)| else.

(D28)
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3. Variance bound

Theorem 4. The variance of shadow estimation for uniform sampling from the global Clifford group under gate-

dependent noise is bounded by

Vglobal[ô] ≤
2(d+ 1)

(d+ 2)
‖O0‖2st +

d+ 1

d
‖O0‖22 .

For uniform sampling from the local Clifford group, the variance is bounded by Vloc[ô] ≤ 4k‖Oloc‖2
∞

for k-local
observables O = Oloc ⊗ 1

n−k and by Vloc[ô] ≤ 3supp(σa) for Pauli observables O = σa.

Proof. The variance is given by V[ô] = E[ô−E[ô]]2 and O = O0+Tr(O)1/d as before. We have (1 |S−1ω†(g)|Ex) = 1

and (1 |S−1S̃ |ρ) = (1|ρ) = 1 since the involved superoperators and the noise is trace preserving. We then find:

ô(g, x)− E[ô] = (O |S−1ω†(g)|Ex)− (O |S−1S̃ |ρ) = (O0 |S−1ω†(g)|Ex)− (O0 |S−1S̃ |ρ) = ô0(g, x)− E[ô0] (D29)

and the variance only depends on the traceless part V(ô) = V(ô0). We will now bound the variance for the global
Clifford protocol in terms of the second moment: V[ô0] = E[ô20] − (E[ô0])

2 ≤ E[ô20]. To rewrite the second moment
given in Eq. (D5), we first note that Λ̄a,a′ = Λ̄a′,a which can be seen from its definition and from sa,a′ = sa′,a. The
second moment for a traceless observable O0 can then be written as

E(ô20) =
1√
d

∑

a 6=0,a′
6=0:

[a,a′]=0

sa,a′

sasa′

(O0 |σ̌a)(O0 |σ̌a′)(σ̌a+a′ |Λ̄a,a′ |ρ) (D30)

=
1√
d

2(d+ 1)

d+ 2

∑

a 6=0,a′
6=0

a 6=a′,[a,a′]=0

(−1)β(a,a
′)(O0 |σ̌a)(O0 |σ̌a′)(σ̌a+a′ |Λ̄a,a′ |ρ) + d+ 1√

d

∑

a 6=0

(O0 |σ̌a)
2(1̌|Λ̄a,a|ρ) . (D31)

(D32)

We can bound the sums by using |(σ̌a+a′ |Λ̄a,a′ |ρ)| ≤ 1
√

d
to get

E(ô20) ≤
2(d+ 1)

d(d+ 2)

∑

a 6=0,a′
6=0

a 6=a′,[a,a′]=0

|(O0 |σ̌a)(O0 |σ̌a′)|+ d+ 1

d
‖O0‖22 (D33)

≤ 2(d+ 1)

d(d+ 2)

∑

a 6=0

|(O0 |σ̌a)|
∑

a′
6=0

|(O0 |σ̌a′)|+ d+ 1

d
‖O0‖22 (D34)

=
2(d+ 1)

d+ 2
‖O0‖2st +

d+ 1

d
‖O0‖22 . (D35)

To bound the second moment for the local Clifford group, we start at the general form for Clifford protocols given
in Eq. (D5) and use again that |(σ̌a+a′ |Λ̄a,a′ |ρ)| ≤ 1

√

d
. This leads us to

E(ô2) =
1√
d

∑

a,a′
∈F

2n
2 :

[a,a′]=0

sa,a′

sasa′

(O |σ̌a)(O |σ̌a′)(σ̌a+a′ |Λ̄a,a′ |ρ) ≤ 1

d

∑

a,a′
∈F

2n
2 :

[a,a′]=0

sa,a′

sasa′

|(O |σ̌a)(O |σ̌a′)| . (D36)

We first consider k-local Pauli observables P = σb1 ⊗ · · · ⊗ σbn , where bi = 0 on n − k sites. Then, Eq. (D36)
factorizes and using Eq. (D27) we find that

E(ô2P ) ≤
1

d

n∏

i=1

∑

ai,a
′
i∈F

2
2:

[ai,a
′
i]=0

sai,a
′
i

saisa′
i

|(σbi |σ̌ai)(σbi |σ̌a′
i
)| = 1

d

n∏

i=1

∑

ai,a
′
i∈F

2
2:

[ai,a
′
i]=0

sai,a
′
i

saisa′
i

d δai,biδa′
i,bi

= 3k . (D37)

The proof for k-local observables O = Oloc ⊗ 1
⊗(n−k) is almost identical to the proof without noise given in Huang

et al. [1], and we repeat the relevant steps here. Akin to Eq. (D37) we find that

E(ô2) ≤ 1

2k

∑

a,a′
∈F

2k
2 :

[a,a′]=0

sa,a′

sasa′

|(Oloc |σ̌a)(Oloc |σ̌a′)| . (D38)
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In the following, we drop the condition [a, a′] = 0 in the sum since we have sa,a′ = 0 for [a, a′] 6= 0. Let F2∗
2 = F2

2 \ {0}
label the single-qubit non-identity Paulis and define a partial order on F2k

2 such that a ≤ b iff for all i ∈ [k] either
ai = bi or ai = 0 holds. By Eq. (D28), pairs a, a′ ∈ F2k

2 which do not coincide on their common support do not
contribute to the sum in Eq. (D38). For the remaining pairs, we can always find a b ∈ (F2∗

2 )k such that a ≤ b
and a′ ≤ b. We can thus replace the sum in Eq. (D38) as

∑
a,a′

∈F
2k
2

→
∑

b∈(F2∗
2 )k

∑
a≤b

∑
a′

≤b if we take care of

potential over counting. To this end, note that we are free to choose bi for every index i where ai = a′i = 0 and
there are in total k − |supp(a) ∪ supp(a′)| = k − |supp(a)| − |supp(a′)| + |supp(a) ∩ supp(a′)| of such indices. Using
sa,a′

sasa′
= 3|supp(a)∩supp(a′)|, we find:

1

2k

∑

a,a′
∈F

2k
2

sa,a′

sasa′

|(Oloc |σ̌a)(Oloc |σ̌a′)| = 1

2k

∑

b∈(F2∗
2 )k

∑

a≤b

a′
≤b

3|supp(a)|+|supp(a′)|

3k
|(Oloc |σ̌a)(Oloc |σ̌a′)| (D39)

=
1

2k3k

∑

b∈(F2∗
2 )k


∑

a≤b

3|supp(a)||(Oloc |σ̌a)|




2

. (D40)

With
∑

a≤b 3
|supp(a)| = 4k for all b ∈ (F2∗

2 )k [1] and the Cauchy-Schwarz inequality, this can be simplified as follows:

1

2k3k

∑

b∈(F2∗
2 )k


∑

a≤b

3|supp(a)||(Oloc |σ̌a)|




2

≤ 1

2k3k

∑

b∈(F2∗
2 )k

∑

a≤b

3|supp(a)|
∑

a′
≤b

3|supp(a
′)|(Oloc |σ̌a′)2 (D41)

=
4k

2k

∑

b∈(F2∗
2 )k

∑

a′
≤b

3|supp(a
′)|

3k
(Oloc |σ̌a′)2 . (D42)

Note that in the last line, the number of times each a′ ∈ F2k
2 appears in the double sum is given by 3k−|supp(a′)|

and therefore
∑

b∈(F2∗
2 )k

∑
a′

≤b
3|supp(a

′)|

3k
f(a′) =

∑
a′

∈F
k
4
f(a′) for arbitrary summands f(a′). This leads us to the final

result

4k

2k

∑

b∈(F2∗
2 )k

∑

a′
≤b

3|supp(a
′)|

3k
(Oloc |σ̌a′)2 =

4k

2k

∑

a′
∈F

2k
2

(Oloc |σ̌a′)2 = 2k‖Oloc‖22 ≤ 4k‖Oloc‖2
∞

. (D43)

Appendix E: Robust shadow estimation under gate-dependent noise

A prominent noise mitigation technique for shadow estimation are the robust classical shadows developed by Chen
et al. [12]. Robust classical shadows rely on the assumption of gate-independent left-noise, i.e.

φ(g) = Λω(g) (E1)

for a g-independent channel Λ. In this case, the frame operator can be written as S̃ =
∑

λ∈Irr(G) fλΠλ, where Irr(G)

is the set of irreducible representations of the group G and Πλ are projectors onto invariant subspaces. For the
global Clifford group and trace preserving noise, this reduces to S̃ = |1̌)(1̌|+ f

∑
a 6=0|σ̌a)(σ̌a|, meaning that a single

parameter f needs to be estimated in order to have full knowledge of S̃, which allows for the mitigation with S̃−1 in
post-processing. In Chen et al. [12], f is determined by the median of means of the single shot estimator

f̂(g, x) := (d(Ex|ω(g)|E0)− 1)/(d− 1) (E2)

where for each round |0〉 state is prepared, a random operation g ∈ G is applied and the result x is stored. It is then

shown that the expectation value for gate-independent left noise satisfies E[f̂(g, x)] = f .
We will now show how gate-independent left noise can be written in our gate-dependent right noise model and the

effect it has on the noisy frame operator. This provides an understanding as to how left- and right noise interrelate
and shows consistency of our formalism with previous works on gate independent noise [12, 13]. The assumption (E1)
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translates to φ(g) = ω(g)ω†(g)Λω(g) = ω(g)Λ(g) for Λ(g) = ω†(g)Λω(g). The average noise channels Λ̄a of Lemma 2
for uniform sampling from the global Clifford group are given by

Λ̄a =
(d+ 1)

|Cln|
∑

z∈F
n
2

∑

g∈Ξ−1
z (a)

Λ(g) =
(d+ 1)

|Cln|
∑

z∈F
n
2

∑

g∈Ξ−1
z (a)

ω†(g)Λω(g). (E3)

We know that for every g ∈ Ξ−1
z (a), hg ∈ Ξ−1

z (a) with h ∈ Pn, since

ω†(hg)|Žz )(Žz|ω(hg) = ω†(g)ω†(h)|Žz )(Žz|ω(h)ω(g) = ω†(g)|Žz )(Žz|ω(g). (E4)

This means that the average in Eq. (E3) contains an average 1
|Pn|

∑
h∈Pn

ω†(g)Λω(g), which is commonly referred to

as a Pauli twirl and the result is a Pauli channel (see e.g. [31]). In the following we will restrict ourselves to a 6= 0
where we will need the inverse relation

(d+ 1)

|Cln|
∑

z∈F
n
2

∑

g∈Ξ−1
z (a)

ω(g)|σ̌a)(σ̌a|ω(g)† =
(d+ 1)

|Cln|
∑

z∈F
n
2

|Ξ−1
z (a)||Žz )(Žz| =

1

d− 1

∑

z∈F
n
2

|Žz )(Žz| , (E5)

which can be verified using Proposition 10. The diagonal entries of Λ̄a for a 6= 0 can then be determined by

(d+ 1)

|Cln|
∑

z∈F
n
2

∑

g∈Ξ−1
z (a)

(σ̌a|ω(g)†Λω(g)|σ̌a) =
(d+ 1)

|Cln|
∑

z∈F
n
2

∑

g∈Ξ−1
z (a)

Tr
[
Λω(g)|σ̌a)(σ̌a|ω(g)†

]
(E6)

=
1

d− 1
Tr


Λ

∑

z∈F
n
2 \0

|Žz )(Žz|


 . (E7)

In summary, the average channels Λ̄a are diagonal since they are Pauli channels, and they all share the same diagonal
elements (σ̌a|Λ̄a|σ̌a), which are independent of a. Note that (1̌|Λ|1̌) = 1 for trace preserving or unital noise and let

f = Tr
[
Λ
∑

z∈F
n
2 \0

|Žz )(Žz|
]
/(d− 1) = (Tr[ΛM ]− 1)/(d− 1). Then the noisy frame operator is given by

S̃ = |1̌)(1̌|+ 1

d+ 1

∑

a 6=0

|σ̌a)(σ̌a|Λ̄a = |1̌)(1̌|+ f

d+ 1

∑

a 6=0

|σ̌a)(σ̌a| (E8)

which is the result of [12] for the global Clifford group.

We will now turn our attention back to gate-dependent noise with the following lemma. First, we define Z
n :=

{00, 01}n, the index set for diagonal Paulis.

Lemma 16. The mitigation parameter in the robust shadow estimation protocol for uniform sampling over the global

Clifford group under gate-dependent Pauli noise is given by

E
g,x

[f̂(g, x)] =
1

d+ 1
E

a∈Zn
\0
λ̄a . (E9)

Proof. We need to compute the expectation value of the single shot estimator f̂(g, x) = d·(Ex|ω(g)|E0)−1
d−1 . In the first

step we rewrite the expectation value of (Ex|ω(g)|E0).

E
g,x

(Ex|ω(g)|E0) =
1

|Cln|
∑

g∈Cln

∑

x∈F
n
2

(Ex|ω(g)|E0)(Ex|ω(g)Λ(g)|E0)

=
1

|Cln|
∑

g∈Cln

∑

x∈F
n
2

(E0|ω(g)†|Ex)(Ex|ω(g)Λ(g)|E0)

= (E0|S̃|E0) .

By noting that |E0) =
(

1
√

2
(|1̌) + |Ž))

)
⊗n

= 1
√

d

∑
z∈F

n
2
|Ž(z)) we have (E0|S̃|E0) =

1
d

∑
z,z′

∈F
n
2
(Ž(z)|S̃|Ž(z′)). With

the use of Lemma 2 and sa = 1/(d+ 1) for a 6= 0 and s0 = 1, we find:

E
g,x

(Ex|ω(g)|E0) =
1

d
+

1

d(d+ 1)

∑

a∈Zn
\0

λ̄a .
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It follows that

E
g,x

f̂(g, x) =
dEg,x(Ex|ω(g)|E0)− 1

d− 1
=

1

(d+ 1)(d− 1)

∑

a∈Zn
\0

λ̄a =
1

d+ 1
E

a∈Zn
\0
λ̄a (E10)

Since Eq. (E9) shows that for Pauli noise E[f̂(g, x)] always contains the factor 1/(d+ 1), we define the mitigation

parameter as f̂m := (d+ 1)E[f̂(g, x)]. The final estimate of the robust shadow estimation procedure is then given by

E[ôRS ] := (O|
(
|1̌)(1̌|+ d+ 1

f̂m

∑

a 6=0

|σ̌a)(σ̌a|
)
S̃|ρ) . (E11)

We will now show that whether the robust shadow estimation strategy succeeds for gate-dependent noise is highly
dependent on the initial state, the observable and the noise present in the experiment. As can be seen via a simple
example, the error can actually be dramatically increased if the noise is not of left gate-independent form.

Proposition 5. Under gate-dependent local noise φε(g) = (1 − ε)ω(g) + ε ω(g)Λ(g), robust shadow estimation with

the global Clifford group can introduce a bias |E[ô]− 〈O〉| ≥ |〈O0〉( 12 (1 + ε)n − 1)|.
Proof. Consider the local bit flip channel Λ(g) = X for all g ∈ Cln and let Λε be the bit flip channel with error
probability ε, i.e. Λε = (1−ε)id+εΛ. Its process matrix is given by Λε = |1̌)(1̌|+|X̌ )(X̌|+(1−2ε)(|Y̌ )(Y̌ |+|Ž )(Ž|). If
this Pauli channel acts on all qubits before each Clifford gate, then the global implementation map is φε(g) = ω(g)Λ⊗n

ε .

Since this right noise channel is gate-independent, per Lemma 2 we get S̃ = (|1̌)(1̌| + 1
d+1

∑
a 6=0|σ̌a)(σ̌a|) · Λ⊗n

ε and

S−1S̃ = Λ⊗n
ε . The robust shadow mitigation parameter Eg,x f̂(g, x) is per Lemma 16 given by

E
g,x

f̂(g, x) =
1

(d− 1)(d+ 1)

∑

a∈Z\0

(σ̌a|Λ⊗n
ε |σ̌a) (E12)

=
1

(d− 1)(d+ 1)


∑

z∈F
n
2

1n−|z|(1− 2ε)|z| − 1


 (E13)

=
1

(d− 1)(d+ 1)

(
n∑

i=1

(
n

i

)
1n−i(1− 2ε)i − 1

)
(E14)

=
1

(d+ 1)(d− 1)
(d(1− ε)n − 1) . (E15)

In the robust shadow estimation procedure, the inverse frame operator is then given by

S−1
RS = |1̌)(1̌|+ (d+ 1)

d− 1

d(1− ε)n − 1

∑

a 6=0

|σ̌a)(σ̌a|, (E16)

and the expected outcome is

E[ôRS] = (O|S−1
RS S̃|ρ) =

Tr(O)

d
+

d− 1

d(1− ε)n − 1

∑

a 6=0

(O |σ̌a)(σ̌a|Λ⊗n
ε |ρ) . (E17)

Consequently, errors on Y-type and Z-type Pauli observables are partially mitigated while previously absent errors
on X-Pauli observables are introduced. In particular, for the stabilizer state O = (|+〉〈+|)⊗n = 1

√

d

∑
x|X̌x), we find

that E[ô] = 〈+|ρ|+〉, meaning the standard shadow estimate is unbiased. Moreoever, we have (O|Λ⊗n
ε = (O| and thus

E[ôRS]−
Tr(O)

d
=

d− 1

d(1− ε)n − 1

(
(O |Λ⊗n

ε |ρ)− Tr(O)

d

)
=

d− 1

d(1− ε)n − 1
〈O0〉 , (E18)

using the unitality of Λ⊗n
ε and 〈O0〉 = (O0 |ρ). Hence,

E[ôRS]−
Tr(O)

d
=

d− 1

d(1− ε)n − 1
〈O0〉 >

d− 1

d(1− ε)n
〈O0〉 ≥

d− 1

d
(1 + ε)n〈O0〉, (E19)

where we assumed d(1− ε)n − 1 > 1. Therefore |E[ôRS]− 〈O〉| ≥ |〈O0〉|(d−1
d

(1 + ε)n − 1) ≥ |〈O0〉( 12 (1 + ε)n − 1)|.
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Figure 1. Parameter regions where robust shadow estimation increases the bias (hatched) and regions where it decreases the

bias (plain). Perfect mitigation is achieved on the green dashed line.

Appendix F: Bias mitigation conditions

In this section, we derive sufficient conditions for the robust shadow protocol to work even in the presence of
gate-dependent Pauli noise. The ultimate aim is to determine under which conditions the estimation bias decreases,
i.e., |E[ôRS] − 〈O〉| ≤ |E[ô] − 〈O〉|. Here, we characterize conditions of overcorrection (Figure 1) and prove that
istropic Pauli noise is well-conditioned in the sense that robust shadow estimation ‘works well’ (Proposition 20). Let
λ̄ =

∑
a 6=0 λ̄a/(d

2 − 1) be the mean of λ̄a (excluding λ0) and O0, ρ0 be the traceless parts of O and ρ respectively.

We further define D(∆) to be the diagonal channel in Pauli basis with values ∆a on the diagonal. The following
observation provides insight onto how the bias for gate-dependent Pauli noise is determined by a single parameter
feff .

Observation 17. Let the average Pauli eigenvalues {λ̄a} be parameterized as λ̄a = λ̄ + ∆a for a 6= 0, and λ0 = 1

(trace preserving noise). Then the bias is determined by the quantity λ̄+ (O0|D(∆)|ρ0)
〈O0〉

=: feff as

|E[ôRS]− 〈O〉| = |〈O0〉| · |1− f̂−1
m feff | and |E[ô]− 〈O〉| = |〈O0〉| · |1− feff | . (F1)

Why this holds is shown in the proof of Proposition 18 below. The difference to the case of left gate-independent

noise lies in the additional term (O0|D(∆)|ρ0)
〈O0〉

that quantifies how Pauli noise aligns with the signal (O0 |ρ0). Perfect

bias mitigation is achieved for f̂m = feff . If the additional term is small, then a feasible strategy is to just estimate λ̄
and use it as a mitigation parameter. This is essentially what robust shadow estimation does, albeit by only taking

the average over a ∈ Z
n since f̂−1

m = Ea∈Zn λ̄a.

In Figure 1 areas in parameter space corresponding to |〈ÔRS〉 − 〈O〉| ≤ |〈Ô〉 − 〈O〉| are visualized. Here, we allow

|f̂m| > 1, which is not the case if f̂m is estimated according to the robust shadow estimation protocol, but still

instructive for large (O0|D(∆)|ρ0)
〈O0〉

. We can see that for feff ≤ 0 and feff ≥ 2, the error is always reduced by setting

f̂m → ∞, meaning we return ôRS = 0.
This is the case for (O0|D(∆)|ρ0) � 〈O0〉, i.e. large error alignment and small true expectation value 〈O0〉. In the

most relevant parameter regime of 0 ≤ feff ≤ 1, we obtain the condition f̂ ≥ feff
2−feff

that safeguards against introducing

new errors due to overcorrection. A formal treatment of the success criteria for robust shadow estimation is given in
the following proposition. We denote the canonical inner product by 〈γ,∆〉 :=∑a γ

∗

a∆a.

Proposition 18. Let ÔRS be the robust shadow estimate on O =
∑

a(σ̌a |O)|σ̌a), ρ =
∑

a(σ̌a |ρ)|σ̌a) with mitigation

parameter fm ∈ [−1, 1] and let γa = (O |σ̌a)(σ̌a |ρ) for a 6= 0. Under gate-dependent Pauli noise parameterized as

λ̄a = λ̄+∆a with λ1 = 1, it holds that |E[ôRS]− 〈O〉| ≤ |E[ô]− 〈O〉| iff

(
feff ≥ 0 ∧ fm ≥ feff

2− feff

)
∨

(
feff < 0 ∧ fm ≤ feff

2− feff

)
(F2)

for feff := λ̄+ [γ,∆]
〈O0〉

.

Proof. The error of non-mitigated shadow estimation under Pauli noise is given in Eq. (A24), from which we gather
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that

|E[ô]− 〈O〉| =

∣∣∣∣∣∣
∑

a 6=0

(O |σ̌a)(σ̌a |ρ)|1− λa|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

a 6=0

γa|1− λa|

∣∣∣∣∣∣
=
∣∣〈γ,1− λ̄1−∆〉

∣∣ (F3)

per the assumption that λ1 = 1 and λa 6=0 = λ̄ + ∆a, where 1 is the vector of which all entries are 1. When the

mitigation factor is included we obtain ˆ̃S−1S̃ = |1̌)(1̌|+∑a 6=0 f
−1
m λa|σ̌a)(σ̌a|, and the mitigated error becomes

|E[ôRS]− 〈O〉| =

∣∣∣∣∣∣
∑

a 6=0

γa(1− f−1
m λa)

∣∣∣∣∣∣
=
∣∣〈γ,1− f−1

m λ̄1− f−1
m ∆〉

∣∣ . (F4)

Since 〈γ,1〉 =
∑

a 6=0 γa is by definition the expectation value of the traceless part of the observable, 〈O0〉, we can
simplify the error terms by looking at the relative errors:

|E[ô]− 〈O〉|
|〈O0〉|

=

∣∣∣∣1−
(
λ̄+

〈γ,∆〉
〈O0〉

)∣∣∣∣ = |1− feff | (F5)

and

|E[ôRS]− 〈O〉|
|〈O0〉|

=

∣∣∣∣1− f−1
m

(
λ̄+

〈γ,∆〉
〈O0〉

)∣∣∣∣ = |1− f−1
m feff | . (F6)

To determine when |E[ôRS] − 〈O〉| ≤ ε holds, we have to look at four cases corresponding the signs of feff and fm.
We also assume that |fm| ≤ 1 since |λ̄| ≤ 1 for any physical noise model.

(i) feff and fm are of opposite sign:

In this case we have that f−1
m feff ≤ 0 and therefore

|E[ô]− 〈O〉| = |1− feff | ≤ 1 + |feff | ≤ 1 + |f−1
m feff | = |1− f−1

m feff | = |E[ôRS]− 〈O〉| (F7)

and the error mitigation technique always increases the error.

(ii) feff ≤ 0 and fm ≤ 0:

Let fm ≤ feff
2−feff

, then f−1
m ≤ 2−feff

feff
and −f−1

m feff ≤ feff − 2. Therefore, |E[ôRS] − 〈O〉| = |1 − f−1
m feff | ≤

|− 1+ feff | = |E[ô]−〈O〉| and error mitigation is achieved. The condition is tight, since fm > feff
2−feff

leads in the

same fashion to |E[ôRS]− 〈O〉| ≥ |E[ô]− 〈O〉|.

(iii) feff > 0 and fm > 0:

Let now fm ≥ feff
2−feff

. We obtain f−1
m ≥ 2−feff

feff
and −f−1

m feff ≤ feff − 2, as −feff is negative. Thus, again

|E[ôRS]−〈O〉| = |1− f−1
m feff | ≤ |− 1+ feff | = |E[ô]−〈O〉| and errors are mitigated. The condition is again tight,

as fm > feff
2−feff

leads to |E[ôRS]− 〈O〉| ≥ |E[ô]− 〈O〉|.

To make a statement about feff , without assuming explicit knowledge of the noise model and the prepared state,
we treat ∆ as a random vector. The following lemma gives a concentration inequality for the well known fact that in
high dimensions, a uniformly distributed random vector on the unit sphere is almost orthogonal to any given fixed
vector with high probability.

Lemma 19 (Adapted from [32]). For an arbitrary normalized vector x ∈ Rk and a random vector g which is uniformly

distributed on the unit sphere, holds that P(|〈x, g〉| ≥ t
√

k−1
) ≤ e−t2/2 .

Proof. If g is uniformly distributed, then also the random vectors Og for O ∈ SO(k) are distributed uniformly. This
implies that P(|〈x, g〉| ≥ t

√

k−1
) is independent of x and w.l.o.g. we choose x to be the first canonical basis vector,

x = e1.

The surface area of a k-dimensional unit sphere with radius r is given by AS(k, r) =
2πk/2rk−1

Γ( k
2 )

. Since g is uniformly

distributed on the unit sphere, the probability that |〈e1, g〉| = |g1| is larger than t
√

k−1
is given by the ratio of the
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surface area of two spherical caps of height 1 − t
√

k−1
to the surface area AS(k, 1) of the unit sphere. The base of

these caps has radius a =
√

1− t2

k−1 , and we can bound the surface area of the two caps by the surface are of the full

sphere of radius a as 2ACAP(k, a) ≤ AS(k, a). This leads us to the bound

P

[
|〈e1, g〉| ≥

t√
k − 1

]
=

2ACAP(k, r)

AS(k, 1)
≤ AS(k, a)

AS(k, 1)
=

(
1− t2

k − 1

) k−1
2

≤ e−t2/2. (F8)

We choose this bound for simplicity, slightly stronger versions can be found in e.g. Dasgupta and Gupta [33]
and references therein. An example of uniformly distributed vectors on the sphere is given by normalized standard
Gaussian vectors where each entry is drawn from the 0-mean and unit variance normal distribution N (0, 1).

If the term 〈γ,∆〉

〈O0〉
in feff = λ̄+ 〈γ,∆〉

〈O0〉
is small, then it is sufficient to estimate λ̄ to correct the bias. In Proposition 20

below, we show that this is the case under reasonable assumptions.

Proposition 20 (Restatement of Proposition 6). Let 〈O0〉 ≥ C1 and ‖O‖2 < C2. If ∆ is a random vector such that

∆/‖∆‖`2 is uniformly distributed on the unit sphere and ‖∆‖`2 ≤ O(d) with high probability, then feff = E[f̂m] +

O(1/
√
d) with high probability.

Proof. If ∆ is uniformly distributed on the unit sphere, then its entries ∆a are zero mean random variables. Therefore,

E[f̂m] = λ̄+
1

d− 1

∑

a∈Zn
\1

E[λ̄a] = λ̄+
1

d− 1

∑

a∈Zn
\1

E[∆a] = λ̄ (F9)

and it remains to bound 〈γ,∆〉

〈O0〉
. We write the inner product as 〈γ,∆〉 = ‖γ‖`2‖∆‖`2 〈γ̌, ∆̌〉 with γ̌, ∆̌ normalized.

Then we know from Lemma 19 for k = d2 − 1 that

P

[
|〈γ̌, ∆̌〉| ≥ t√

d2 − 2

]
≤ e−t2/2. (F10)

From the assumption that ‖∆‖`2 ≤ O(d) and the union bound leads to ‖∆‖`2 |〈γ̌, ∆̌〉| ≤ O(1) with high probability.

Since |(ρ|σ̌a)| ≤ 1/
√
d for any quantum state ρ, we further have that ‖γ‖`2 ≤ ‖O‖2/

√
d ≤ C/

√
d and thus 〈γ,∆〉

〈O0〉
=

O(1/
√
d) with high probability.

Proposition 20 formalizes the intuition that in large systems noise is unlikely to be malicious, i.e. a randomly
distributed noise vector ∆ is unlikely to align with the signal γ.

The Pauli eigenvalue average λ̄ can also be related to the average gate fidelity of the frame operator S̃. Using the
know relation FAvg(S̃) = (d−1 Tr[S̃] + 1)/d+ 1 and Tr[S̃] = 1 +

∑
a 6=0 λa/(d+ 1) [34]. A quick rearrangement yields

λ̄ = (dFAvg(S̃))(d+1)/(d− 1), suggesting that an estimate of the average gate fidelity FAvg(S̃) would also give us an
estimate of λ̄.

For a detailed bound in terms of a given error probability δ, we now look to the example of a Gaussian random
noise vector. This random vector provides a concrete example for a noise distribution that satisfies the requirements
of Proposition 20.

Proposition 21. Let ∆ be a Gaussian random vector of length k = d2 − 1 with i.i.d. entries from N (0, σ2) and γ be

an arbitrary real vector of the same dimension. It holds that

P

[
|〈γ,∆〉| ≤ σ2‖γ‖`2g(δ)

√
k

k − 1

(
1 +

g(δ)√
k

+
g2(δ)

k

)]
≥ 1− δ ,

where g(δ) =
√

log(2/δ).

Proof. We begin with a bound for ‖∆‖2`2/σ4 = ‖X‖2`2 =
∑k

i=1 x
2
i , where now xi ∼ N (0, 1) and therefore ‖X‖2`2

is a Chi-squared distributed random variable. We can then use the Laurent-Massart inequality which states that
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P(‖X‖2`2 − k ≥ 2
√
kt + 2t) ≤ e−t. We hence obtain P(‖X‖`2 ≥

√
k
√

1 + 2
√
t/k + 2t/k) ≤ e−t, and we can use√

1 + 2
√
t/k + 2t/k ≤ 1 +

√
t/k + t/k. By fixing the failure probability to e−t = δ/2 we arrive at

P

[
‖X‖`2 ≥

√
k(1 +

√
log(2/δ)

k
+

log(2/δ)

k
)

]
≤ δ

2
(F11)

and

P

[
‖∆‖`2 ≥ σ2

√
k(1 +

g(δ)√
k

+
g2(δ)

k
)

]
≤ δ

2
. (F12)

Our aim is to bound the inner product 〈γ,∆〉, which we will write as ‖γ‖`2‖∆‖`2 〈γ̌, ∆̌〉, with γ̌, ∆̌ normalized.

This allows us to use Lemma 19 for e−t2/2 = δ/2, and we arrive at

P

[
|〈γ,∆〉| ≥ ‖γ‖`2‖∆‖`2

g(δ)√
k − 1

]
≤ δ/2 . (F13)

Combining this bound with the bound (F12) for ‖∆‖`2 via the union bound completes the proof.
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C Full reports of compressive GST on a trapped ion system

This section contains GST reports based on results of mGST applied to trapped ion qubits, see
Section 3.2. The reports shown here represent only a subset of reports generated throughout
the collaboration with quantum optics group at the university of Siegen and supplement the
discussion in Section 3.2. Throughout the reports, the number of free parameters up to gauge
transformations is listed and should be compared with the number of sequences used. The
coloring indicates whether the sequences are expected to be informationally complete, simply
based on the parameter counting argument.



Single qubit GST report
(Dated: February 21, 2024)

I. SETUP

• Date of the experiment: 11.01.2014 & 12.01.2024 (DUC).

• Number of sequences: 200.

• Average shots per sequence: 413.

• Rank: 1 (unitary).

• Number of free parameters: 36.

• Gate set:

X =
(
11,12, σx, σy, e

i
π
4
σx , ei

π
4
σy
)

(1)

• Unitary model:

U = exp


 iα

2

∑

a∈{X,Y,Z}

na σa


 . (2)

II. ERROR MEASURES

Table I. Rotation angle and axes tilt with errors corresponding to the 95th percentile over 50 bootstrapping runs.

Rotation angle /π Axes tilt vs. target (in ◦) Axes estimation error (in ◦)

Idle-short 0.0105 [0.0067,1.9903] – 27.2264

Idle-long 0.0110 [0.0095,1.9896] – 7.3257

Rx(pi):0 0.9994 [0.9949,0.9999] 0.1603 0.0498

Ry(pi):0 0.9990 [0.9965,0.9999] 0.2884 0.0961

Rx(pi/2):1 0.5051 [0.4989,0.5089] 0.2031 0.5884

Ry(pi/2):1 0.5005 [0.4966,0.5024] 0.4722 0.6220

Table II. Normalized rotation axes coefficient. Errors correspond to the 95th percentile over 50 bootstrapping runs.

Idle-short Idle-long Rx(pi):0 Ry(pi):0 Rx(pi/2):1 Ry(pi/2):1

α/π 0.011 [0.007,1.990] 0.011 [0.009,1.990] 0.999 [0.995,1.000] 0.999 [0.996,1.000] 0.505 [0.499,0.509] 0.500 [0.497,0.502]

nX -0.434 [-0.552,0.667] 0.584 [-0.587,0.784] 1.000 [-1.000,1.000] -0.000 [-0.005,0.007] -1.000 [-1.000,-1.000] -0.008 [-0.018,-0.000]

nY -0.369 [-0.575,0.699] -0.517 [-0.629,0.816] 0.002 [-0.008,0.006] 1.000 [-1.000,1.000] -0.003 [-0.012,0.003] -1.000 [-1.000,-1.000]

nZ 0.822 [-0.604,0.976] 0.626 [-0.579,0.824] -0.001 [-0.004,0.006] -0.005 [-0.009,0.008] 0.001 [-0.007,0.007] -0.001 [-0.010,0.008]
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Table III. Gate quality measures of the unitary approximation with errors corresponding to the 95th percentile over 50 boot-

strapping runs. Disclaimer: This are not the true average gate fidelities/diamond distance of the gates, just of their unitary

approximation. The real quality measures can only be deduced from the full rank reconstruction.

Average gate Fidelity Diamond distances

Idle-short 0.9998 [0.9996,0.9999] 0.0165 [0.0092,0.0236]

Idle-long 0.9998 [0.9997,0.9999] 0.0173 [0.0149,0.0228]

Rx(pi):0 1.0000 [0.9999,1.0000] 0.0029 [0.0016,0.0116]

Ry(pi):0 1.0000 [0.9999,1.0000] 0.0053 [0.0023,0.0107]

Rx(pi/2):1 1.0000 [0.9999,1.0000] 0.0084 [0.0031,0.0146]

Ry(pi/2):1 1.0000 [0.9999,1.0000] 0.0059 [0.0031,0.0131]

Table IV. State and measurement quality measures with errors corresponding to the 95th percentile over 50 bootstrapping runs.

Final cost Mean TVD: estimate - data Mean TVD: target - data POVM - diamond dist. State - trace dist.

0.0011 [0.0006,0.0015] 0.0292 [0.0194,0.0329] 0.0332 [0.0338,0.0383] 0.0107 [0.0030,0.0228] 0.0159 [0.0127,0.0391]

III. GATE AND SPAM PLOTS
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Figure 1. Left: Process matrix of gate 0 in Pauli basis; Right: Target.
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Figure 2. Left: Process matrix of gate 1 in Pauli basis; Right: Target.
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Figure 3. Left: Process matrix of gate 2 in Pauli basis; Right: Target.
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Figure 4. Left: Process matrix of gate 3 in Pauli basis; Right: Target.
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Figure 5. Left: Process matrix of gate 4 in Pauli basis; Right: Target.
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Figure 6. Left: Process matrix of gate 5 in Pauli basis; Right: Target.

0 1

0

1

ρ̂

0 1

0

1

0 1

0

1

0 1

0

1Ê
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Single qubit GST report
(Dated: February 21, 2024)

I. SETUP

• Date of the experiment: 11.01.2014 & 12.01.2024 (DUC).

• Number of sequences: 200.

• Average shots per sequence: 413.

• Rank: 4.

• Number of free parameters: 180.

• Gate set:

G =
(
11,12, σx, σy, e

i
π
4
σx , ei

π
4
σy
)

(1)

• Left noise model: Given the reconstructed channels Ĝ1, . . . , Ĝk corresponding to unitary target gates U1, . . . ,Uk,
the left noise channel Λi for gate i is given by

Λi = ĜiU−1

i (2)

such that Ĝi = ΛiUi.

• Local dephasing channel: Λdephase(ρ) = (1− p)ρ+ p σzρσz

II. ERROR MEASURES

Table I. Gate quality measures with errors corresponding to the 95th percentile over 50 bootstrapping runs.

Average gate fidelity

Favg(Ui, Ĝi)

Diamond distance
1
2
||Ui − Ĝi||�

Unitarity

u(Ĝi)

Idle-short 0.9977 [0.9961,0.9990] 0.0207 [0.0150,0.0281] 0.9918 [0.9859,0.9972]
Idle-long 0.9972 [0.9948,0.9979] 0.0221 [0.0185,0.0287] 0.9897 [0.9810,0.9931]
Rx(pi):0 0.9989 [0.9969,0.9999] 0.0048 [0.0029,0.0123] 0.9958 [0.9880,0.9999]
Ry(pi):0 0.9991 [0.9977,1.0000] 0.0060 [0.0039,0.0129] 0.9965 [0.9911,1.0000]

Rx(pi/2):1 0.9994 [0.9980,1.0000] 0.0069 [0.0040,0.0155] 0.9977 [0.9919,1.0000]
Ry(pi/2):1 0.9986 [0.9960,0.9999] 0.0079 [0.0053,0.0158] 0.9944 [0.9843,0.9997]

Table II. State and measurement quality measures with errors corresponding to the 95th percentile over 50 bootstrapping runs.

Final cost Mean TVD: estimate - data Mean TVD: target - data POVM - diamond dist. State - trace dist.

0.0004 [0.0006,0.0009] 0.0152 [0.0186,0.0223] 0.0332 [0.0346,0.0390] 0.0195 [0.0155,0.0257] 0.0146 [0.0089,0.0192]
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III. GATE AND SPAM PLOTS
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Figure 1. Process matrix in the Pauli basis with entries in [−1, 1]. Left side: GST reconstruction, center: ideal gate, right side:
error channel (ideally the identity).
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Figure 2. Process matrix in the Pauli basis with entries in [−1, 1]. Left side: GST reconstruction, center: ideal gate, right side:
error channel (ideally the identity).
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Figure 3. Process matrix in the Pauli basis with entries in [−1, 1]. Left side: GST reconstruction, center: ideal gate, right side:
error channel (ideally the identity).

C. FULL REPORTS OF COMPRESSIVE GST ON A TRAPPED ION SYSTEM 151



3

I X Y Z

I

X

Y

Z
G

a
te

:
R

y
(p

i)
:0

Ĝ
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Figure 4. Process matrix in the Pauli basis with entries in [−1, 1]. Left side: GST reconstruction, center: ideal gate, right side:
error channel (ideally the identity).
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Figure 5. Process matrix in the Pauli basis with entries in [−1, 1]. Left side: GST reconstruction, center: ideal gate, right side:
error channel (ideally the identity).
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Figure 6. Process matrix in the Pauli basis with entries in [−1, 1]. Left side: GST reconstruction, center: ideal gate, right side:
error channel (ideally the identity).
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Two qubit GST report
(Dated: February 23, 2024)

I. SETUP

• Date of the experiment: 05.02.2024.

• Number of sequences: 360.

• Average shots per sequence: 116.

• Rank: 16.

• Number of free parameters: 1488.

• Target gate set:

X =
(
1, e−i

π
4
σx ⊗ 1, e−i

π
4
σy ⊗ 1,1⊗ e−i

π
4
σx ,1⊗ e−i

π
4
σy , e−i

π
4
σz⊗σz

)
. (1)

• Left noise model: Given the reconstructed channels Ĝ1, . . . , Ĝk corresponding to unitary target gates U1, . . . ,Uk,
the left noise channel Λi for gate i is given by

Λi = ĜiU−1

i (2)

such that Ĝi = ΛiUi.

• Local dephasing channel: Λdephase(ρ) = (1− p)ρ+ p σzρσz

II. ERROR MEASURES

Table I. Gate quality measures

Average gate fidelity

Favg(Ui, Ĝi)

Diamond distance
1
2
||Ui − Ĝi||�

Unitarity

u(Ĝi)
Dephasing probability

of Λi for Qubit 1
Dephasing probability

of Λi for Qubit 2

Idle 0.9649 0.1270 0.9140 0.0075 0.0301
Rx(pi/2):0 0.9927 0.0308 0.9815 0.0024 0.0050
Ry(pi/2):0 0.9786 0.0766 0.9466 0.0105 0.0114
Rx(pi/2):1 0.9967 0.0442 0.9934 0.0018 0.0012
Ry(pi/2):1 0.9746 0.0788 0.9371 0.0143 0.0115
Rzz(pi/2) 0.6852 0.5056 0.4164 0.1481 0.2597

Table II. Eigenvalues of the Choi state: The number of nonzero eigenvalues gives the Kraus rank.

0 1 2 3 4 5 6

Idle 0.95319 0.04671 0.00010 0.00000 0.00000 0.00000 0.00000
Rx(pi/2):0 0.99980 0.00020 0.00000 0.00000 0.00000 0.00000 0.00000
Ry(pi/2):0 0.98114 0.01871 0.00015 0.00000 0.00000 0.00000 0.00000
Rx(pi/2):1 0.99646 0.00354 0.00000 0.00000 0.00000 0.00000 0.00000
Ry(pi/2):0 0.96671 0.03304 0.00026 0.00000 0.00000 0.00000 0.00000

e−iπ
4
Z⊗Z 0.67117 0.22288 0.10595 0.00000 0.00000 0.00000 0.00000
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Table III. State and measurement quality measures

Final cost Mean TVD: estimate - data Mean TVD: target - data POVM - diamond dist. State - trace dist.

0.0017 0.0609 0.1050 0.0293 0.0303

III. GATE AND SPAM PLOTS
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Figure 1. Left: Process matrix of gate 0 in Pauli basis; Right: Target.
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Figure 2. Left: Process matrix of gate 1 in Pauli basis; Right: Target.
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Figure 3. Left: Process matrix of gate 2 in Pauli basis; Right: Target.
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Figure 4. Left: Process matrix of gate 3 in Pauli basis; Right: Target.

156 CHAPTER 6. APPENDIX



4

II IX IY IZ X
I

X
X

X
Y

X
Z

Y
I

Y
X

Y
Y

Y
Z

Z
I

Z
X

Z
Y

Z
Z

II

IX

IY

IZ

XI

XX

XY

XZ

YI

YX

YY

YZ

ZI

ZX

ZY

ZZ

G
a
te

:
R

y
(p

i/
2
):

1

Ĝ
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ĜU−1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 5. Left: Process matrix of gate 4 in Pauli basis; Right: Target.
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ĜU−1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6. Left: Process matrix of gate 5 in Pauli basis; Right: Target.
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Ê
1

0
0

0
1

1
0

1
1

00

01

10

11

0
0

0
1

1
0

1
1

00

01

10

11

0
0

0
1

1
0

1
1

00

01

10

11

Ê
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Figure 7. Left column: real part of state and measurement in standard basis, right column: magnified errors to ideal imple-
mentation 10 · (ρ̂− ρideal) and 10 · (Êi − Ei,ideal).
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Ê
1

0
0

0
1

1
0

1
1

00

01

10

11

0
0

0
1

1
0

1
1

00

01

10

11

0
0

0
1

1
0

1
1

00

01

10

11

Ê
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Figure 8. Left column: imaginary part of state and measurement in standard basis, right column: magnified errors to ideal
implementation 10 · (ρ̂− ρideal) and 10 · (Êi − Ei,ideal).

C. FULL REPORTS OF COMPRESSIVE GST ON A TRAPPED ION SYSTEM 159



Basic examples

March 13, 2024

1 Single qubit/qutrit examples and algorithm usage
In this notebook we use simulated measurements to show how the mGST algorithm is used. We
make sure all the necessary functions are available by running the following python scripts.

[1]: import numpy as np
import random
import matplotlib.pyplot as plt
import numba
import time
from scipy.linalg import expm
from mGST import additional_fns, low_level_jit, algorithm, compatibility

The latest package versions tested are: numpy==1.21.6 pygsti==0.9.10 numba==0.55.1

You can check your versions via the following command:

[2]: print('\n'.join(f'{m.__name__}=={m.__version__}' for m in globals(
).values() if getattr(m, '__version__', None)))

numpy==1.21.6
numba==0.55.1

1.0.1 First, let’s create a random unitary gate set and de昀椀ne the parameters that we
need:

[3]: pdim = 2 # physical dimension
r = pdim**2 # matrix dimension of the gate superoperators
l = 8 # maximum number of gates in each measurement sequence (sequence length)
d = 4 # number of gates in the gate set
rK_true = 1 # rank of simulated gates used for testing
rK = 1 # rank of the mGST model estimate
n_povm = 2 # number of POVM-elements

We can use some of the functions we imported to generate a random gate set. The function
randKrausSet_Haar(d,r,rK_true) generates d sets of Kraus operators, where each set is found
by taking a Haar random unitary and using a subset of its columns the generate an isometry of
shape (rK_true*pdim) x (pdim). For an initial state and a POVM element we can simply take a
computational basis elements.

1
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[4]: K_true = additional_fns.randKrausSet_Haar(
d, r, rK_true) # tensor of random Kraus operators

X_true = np.einsum('ijkl,ijnm -> iknlm', K_true, K_true.conj()
).reshape(d, r, r) # tensor of superoperators

K_depol = additional_fns.depol(pdim, 0.02) # Kraus-rep of depolarizing channel
G_depol = np.einsum('jkl,jnm -> knlm', K_depol, K_depol.conj()).reshape(r, r)
# |10> initial state with depolarizing noise
rho_true = G_depol@np.array([[1, 0], [0, 0]]).reshape(-1).astype(np.complex128)

# Computational basis measurement:
E1 = np.array([[1, 0], [0, 0]]).reshape(-1)
E2 = np.array([[0, 0], [0, 1]]).reshape(-1)
E_true = np.array([E1, E2]).astype(np.complex128) # Full POVM

Next up we need some gate sequence instructions and simulated measurements. Each gate is
identi昀椀ed by an index between 0 and d-1, meaning a gate sequences can most simply be represented
by a list of gate indices. We write a full set containing N many sequence instructions as a numpy
array J of shape N x d. The resulting state after each sequences is measured meas_samples-
times with a POVM consisting of n_povm many alements. Therefore we will have n_povm-many
estimated probabilites per sequences and we can collect all results in a numpy array y of shape
n_povm x N.

[5]: N = 100 # Number of sequences
meas_samples = 1e5 # Number of samples per sequences
# generate random numbers between 0 and $d^l - 1$
J_rand = np.array(random.sample(range(d**l), N))
# turn random numbers into gate instructions
J = np.array([low_level_jit.local_basis(ind, d, l) for ind in J_rand])
y = np.real(np.array([[E_true[i].conj()@low_level_jit.contract(X_true,␣↪j)@rho_true for j in J]

for i in range(n_povm)])) # obtain ideal output probabilities
# simulate finite sampling statistics
y_sampled = additional_fns.sampled_measurements(y, meas_samples).copy()

For our 昀椀rst test we use an initialitation where the state preparation and measurement are random,
but the gate are just rotated versions of the ideal gates.

[6]: delta = .1 # unitary noise parameter

# Generate noisy version of true gate set
K0 = np.zeros((d, rK, pdim, pdim)).astype(np.complex128)
for i in range(d):

U_p = expm(delta*1j*additional_fns.randHerm(pdim)
).astype(np.complex128) # unitary noise

K0[i] = np.einsum('jkl,lm', K_true[i], U_p)
X0 = np.einsum('ijkl,ijnm -> iknlm', K0, K0.conj()).reshape(d, r, r)
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rho0 = additional_fns.randpsd(r).copy() # random initial state
A0 = additional_fns.randKrausSet(1, r, n_povm)[0].conj() # random POVM␣↪decomposition
E0 = np.array([(A0[i].T.conj()@A0[i]).reshape(-1)

for i in range(n_povm)]).copy()

Now it’s time to run mGST on the data set. Note that if the algorithm is run for the 昀椀rst time
on a new machine it can take up to a few minutes to compile the low level functions (such as
derivatives). The main function is called run_mGST, for information it’s variables and outputs we
can call the help(run_mGST):

[7]: bsize = 50 # The batch size on which the optimization is started
K, X, E, rho, res_list = algorithm.run_mGST(y_sampled, J, l, d, r, rK, n_povm,␣↪bsize, meas_samples, method='SFN',

max_inits=10, max_iter=30, final_iter=10,
target_rel_prec=1e-4, init=[K0, E0, rho0])

plt.semilogy(res_list) # plot the objective function over the iterations
plt.tight_layout(rect = [.2,.2,.8,.8])
plt.show()
print('Mean variation error:', additional_fns.MVE(X_true, E_true, rho_true, X,␣↪E,

rho, d, l, n_povm)[0]) # output the final mean variation error

Starting optimization…
67%| | 20/30 [00:04<00:02, 4.49it/s]

Optimization successful, improving estimate over full data…
50%| | 5/10 [00:01<00:01, 3.48it/s]
#################

Convergence criterion satisfied
Final objective function value 1.9344087733601114e-06 with # of

initializations: 1
Total runtime: 5.909569263458252
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Mean variation error: 0.0005429049138832866

1.0.2 A note on hyperparameters

bsize: This controls the “batch size”, meaning how many of the total sequences are sampled per
initialization step. This is done until a good estimate is reached, which is afterwards improved on
the dull set of sequences. A too small value of bsize leads to chaotic jumping in the parameter
space without convergence, while a too large value leads to longer runtimes. Generally, the more
free parameters a model has, the higher the batch size needs to be. Good heuristic values are: bsize
= 50 for a single quabit gate set of 3 gates, bsize = 80 for a single qutrit gate set of 6 gates. bsize
= 120 for a two qubit gate set of 6 gates.

max_inits: Controls the maximum number of reinitializations, this can be increased if the al-
gorithm doesn’t converge. The target Kraus rank rK can have a large in昀氀uence on the required
number of initializations and we 昀椀nd that in many cases rK=2 requires fewer initializations than
rK=1 (See also discussion in https://arxiv.org/abs/2112.05176).

max_iter: Maximum number of iterations spend on the batch optimization per initialization.
Generally values around 150-200 are a good trade o昀昀 between leaving enough iterations to converge
if an optimal value can be reached from the given initialization, and not spending too much time
on a bad initialization.

昀椀nal_iter and target_rel_prec: If the convergence criterion is satis昀椀ed, a maximum of 昀椀-
nal_iter - many iterations on the full dataset are performed to fully converge. If the iteration on
iteration improvement on the objective function is less than target_rel_prec * delta, where delta
is the convergence threshold, then the 昀椀nal iteration loop is terminated and a the resulting gate
set estimate is returned. If computation time is not an issue and higher precision of the estimator
is desired, then target_rel_prec can be decreased and 昀椀nal_iter increased.

1.1 XYI gate set {Id, �� �2 ��, �� �2 ��} from random initialization
The XYI gate set is a minimal gate set that is tomographically complete when applied to the|0 >< 0| state and constitutes a standard example for gate set tomography. In this example we don’t
give an initialization to mGST, resulting in a random initialization to be generated automatically.
As a result, more than one initialization attempt might be necessary to converge to a satisfying
objective funtion value. We can tweak the number of allowerd initializations with the max_inits
parameter.

[8]: from pygsti.modelpacks import smq1Q_XYI as std
mdl_datagen = std.target_model().depolarize(0.01).randomize_with_unitary(

0.01) # use pygsti-function to add noise
X_true, E_true, rho_true = compatibility.pygsti_model_to_arrays(

mdl_datagen, basis='std') # turn pygsti model object into numpy arrays

pdim = 2
r = pdim**2

l = 7
d = 3

4

D. TUTORIAL NOTEBOOK FOR THE MGST PYTHON PACKAGE 163



n_povm = 2
rK = 2

[9]: sequence_count = 100
meas_samples = 1e3
J_rand = np.array(random.sample(range(d**l), sequence_count))
J = np.array([low_level_jit.local_basis(ind, d, l) for ind in J_rand])
y = np.real(np.array([[E_true[i].conj()@low_level_jit.contract(X_true, j)

@ rho_true for j in J] for i in range(n_povm)]))
y_sampled = additional_fns.sampled_measurements(y, meas_samples).copy()

For the following run we set the parameter “testing = True”, which plots the objective function
over the number of iterations for every initialization attempt. This helps in 昀椀nding problems, for
instance if max_iter was set too low to allow convergence, the plot will show continued decrease of
the objective function up until the iteration limit, without reaching the success threshold. Another
problem that can come up is model mismatch, for instance if rK is set to 1, but the actual gate set
can not be well approximated by a Rank 1 Channel. Then the default success criterion might be
too stringent, since no gate set in the Rank 1 model class can attain a low enough error. This can
be 昀椀xed by setting the optional variable “threshold_multiplyer” to a higher value (the default ist
threshold_multiplyer = 3).

[10]: bsize = 50
t0 = time.time()
K, X, E, rho, res_list = algorithm.run_mGST(y_sampled, J, l, d, r, rK, n_povm,␣↪bsize, meas_samples, method='SFN',

max_inits=5, max_iter=100, final_iter=10,
target_rel_prec=1e-4, testing=True)

print('Mean variation error:', additional_fns.MVE(
X_true, E_true, rho_true, X, E, rho, d, l, n_povm))

Starting optimization…
15%| | 15/100 [00:04<00:23, 3.69it/s]
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Initialization successful, improving estimate over full data…
100%| | 10/10 [00:03<00:00, 3.00it/s]

#################
Convergence criterion satisfied
Final objective function value 0.00016605459935186234 with # of

initializations: 1
Total runtime: 7.849793910980225

Mean variation error: (0.005836489826679743, 0.028832392621800873)

1.2 GST on a 3-level system
This example considers a qutrit gate set made up of a qutrit Hadamard gate, as well as X- and
Z-gate de昀椀ned on two-level subspaces. The gate set was previously used for gate set tomography
in https://arxiv.org/pdf/2210.04857.pdf

[11]: pdim = 3
r = pdim**2
l = 8
d = 6
rK = 2
n_povm = 3

[12]: w = np.exp(1j*2*np.pi/3)
K_true = np.zeros((6, 1, 3, 3)).astype(np.complex128)
K_true[0] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) # Identity
K_true[1] = np.array([[1, 1, 1], [1, w, w**2], [1, w**2, w]]

)/np.sqrt(3) # Hadamard
# Single qubit X-gate on the {|100>, |010>} subspace
K_true[2] = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
# Single qubit X-gate on the {|010>, |001>} subspace
K_true[3] = np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0]])
K_true[4] = np.array([[1, 0, 0], [0, w, 0], [0, 0, 1]]

6

D. TUTORIAL NOTEBOOK FOR THE MGST PYTHON PACKAGE 165



) # Phase gate on the |010> state
K_true[5] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, w]]

) # Phase gate on the |001> state

We can also be more creative with the noise model and generate random noise channels that have
vartiable distance to the identity channels:

[13]: # Gate set tensor consisting of all gate superoperators
X_ideal = np.einsum('ijkl,ijnm -> iknlm', K_true,

K_true.conj()).reshape(d, r, r)
# Generates Kraus representations of random channels; The parameter a controls␣↪the distance from the identity channel
K_Lambda = additional_fns.randKrausSet(d, r, 9, a=0.2)
X_id = np.array([np.eye(r) for _ in range(d)]) # Identity channels

Lambda = np.einsum('ijkl,ijnm -> iknlm', K_Lambda, K_Lambda.conj()
).reshape(d, r, r) # Gate set tensor of noise channels

# Noise channels applied to the ideal gates
X_true = np.einsum('ijk,ikl -> ijl', X_ideal, Lambda)

K_depol = additional_fns.depol(pdim, 0.02) # Kraus-rep of depolarizing channel
G_depol = np.einsum('jkl,jnm -> knlm', K_depol, K_depol.conj()).reshape(r, r)
# |100> initial state with depolarizing noise
rho_true = G_depol@np.array([[1, 0, 0], [0, 0, 0],

[0, 0, 0]]).reshape(-1).astype(np.complex128)

# Computational basis measurement:
E1 = np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]]).reshape(-1)
E2 = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]).reshape(-1)
E3 = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]]).reshape(-1)
E_true = np.array([E1, E2, E3]).astype(np.complex128) # Full POVM

[14]: # A handy function to test whether a gate set satisfies all positivity and␣↪normalization constraints:
additional_fns.is_positive(X_true, E_true, rho_true)

Gate 0 positive: True
Gate 0 trace preserving: True
Gate 1 positive: True
Gate 1 trace preserving: True
Gate 2 positive: True
Gate 2 trace preserving: True
Gate 3 positive: True
Gate 3 trace preserving: True
Gate 4 positive: True
Gate 4 trace preserving: True
Gate 5 positive: True
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Gate 5 trace preserving: True
Initial state positive: True
Initial state normalization: (1.0000000000000002+0j)
POVM valid: True

[15]: N = 300 # Number of sequences
meas_samples = 1e3 # Number of samples per sequences
# generate random numbers between 0 and $d^l - 1$
J_rand = np.array(random.sample(range(d**l), N))
# turn random numbers into gate instructions
J = np.array([low_level_jit.local_basis(ind, d, l) for ind in J_rand])
y = np.real(np.array([[E_true[i].conj()@low_level_jit.contract(X_true,␣↪j)@rho_true for j in J]

for i in range(n_povm)])) # obtain ideal output probabilities
# simulate finite sampling statistics
y_sampled = additional_fns.sampled_measurements(y, meas_samples).copy()

[16]: bsize = 80 # The batch size on which the optimization is started
K, X, E, rho, res_list = algorithm.run_mGST(y_sampled, J, l, d, r, rK, n_povm,␣↪bsize, meas_samples, method='SFN',

max_inits=10, max_iter=300, final_iter=30,
target_rel_prec=1e-4)

plt.semilogy(res_list) # plot the objective function over the iterations
plt.tight_layout(rect = [.2,.2,.8,.8])
plt.show()
print('Mean variation error:', additional_fns.MVE(X_true, E_true, rho_true, X,␣↪E,

rho, d, l, n_povm)[0]) # output the final mean variation error

Starting optimization…
100%| | 300/300 [03:44<00:00, 1.33it/s]
Run 0 failed, trying new initialization…
21%| | 62/300 [00:45<02:55, 1.36it/s]

Initialization successful, improving estimate over full data…
100%| | 30/30 [00:58<00:00, 1.94s/it]
#################

Convergence criterion satisfied
Final objective function value 0.00010438760324681996 with # of

initializations: 2
Total runtime: 328.79967641830444
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Mean variation error: 0.008863883369235678
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