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I 

Zusammenfassung 

Systematische neuroanatomische Untersuchungen sind ein wichtiger Pfeiler der 

Neurowissenschaften. Diese Arbeit untersucht die Chemoarchitektur - die Verteilung von 

Neurotransmitter-Rezeptoren und -Transportern im menschlichen Gehirn. Der Grad 

interregionaler chemoarchitektonischer Ähnlichkeit im Kortex und subkortikalen Kernen, 

wird quantifiziert und als neue Metrik „Rezeptom“ eingeführt. Hierzu wird ein frei 

zugänglicher Datensatz von Dichtekarten aus der Positronen-Emissions-Tomographie 

verwendet, der Daten von über 1200 Probanden enthält und 19 verschiedene Rezeptoren 

und Transporter abdeckt. Aus der hochdimensionalen Rezeptom-Matrix werden durch 

nichtlinearer Dimensionsreduktionsalgorhithmen sogenannte Gradienten extrahiert - 

räumliche Verteilungsmuster, die die Hauptachsen chemoarchitektonischer Varianz 

beschreiben. Drei Gradienten werden verwendet, um das Verhältnis verschiedener 

Hirnareale zueinander auf der Grundlage ihrer chemoarchitektonischen Ähnlichkeitsprofile 

zu untersuchen. Rezeptor- und Transporter-Ko-Verteilungsmuster, die für 

chemoarchitektonische Differenzierung ausschlaggebend sind, werden identifiziert. 

Funktionelle Dekodierung zeigt, dass chemoarchitektonische Gradienten Kortizes mit 

unimodaler und transmodaler Funktionalität differenzieren. Weiterhin zeigen sie 

signifikante Korrelationen zu morphologischen Veränderungen des Kortex, die mit 

psychiatrischen Störungen assoziiert sind. Darüber hinaus überlappen die 

Verteilungsmuster chemoarchitektonischer Gradienten signifikant mit denen aus 

funktioneller und struktureller Konnektivität sowie aus zytoarchitektonischen 

Differenzierungsdaten gewonnener Gradienten. Auf der Parcel-Ebene werden 

cytoarchitektonische Eigenschaften den vorher genannten Maße entlang eines 

idiotypischen-nach-paralimbischen Gradienten zytoarchitektonischer Klassen unähnlicher. 

Heteromodale Kortizes weisen eine größere Rezeptom-Heterogenität als paralimbische 

Kortizes auf. Schließlich können die Funktionsgemeinschaften subkortikaler Kerne anhand 

ihrer chemoarchitektonischen Merkmale unterschieden werden, wodurch im Kortex 

bekannte, rezeptorbasierte Struktur-Funktions-Beziehungen auch im subkortikalen Bereich 

nachgewiesen werden. Zusammenfassend nutzt diese Arbeit frei verfügbare in-vivo-Daten, 

um die neuartige neuroanatomische Perspektive des Rezeptoms zu entwickeln und zu 

untersuchen. 



 

II 

Summary 

The systematic study of anatomical features of the brain is a long-standing and important 

pillar of neuroscience. This study investigates chemoarchitecture, the distribution of 

neurotransmitter receptors and transporters in the human brain, in a systematic fashion. It 

introduces a novel neuroanatomical perspective through quantifying the degree of inter-

regional chemoarchitectural similarity in the cortex and subcortical nuclei, deriving a 

metric it terms the “receptome”. To investigate cerebral chemoarchitecture, a large-scale, 

open-access dataset of Positron Emission Tomography-derived density maps is used, 

featuring data from over 1200 subjects and covers 19 different receptors and transporters. 

From the high-dimensional receptome matrix, non-linear manifold learning techniques 

extract principal gradients, spatial patterns that cover the main axes of chemoarchitectural 

variation. Three of these gradients are subsequently employed to gain a deeper 

understanding of the relationship between different cortices based on their 

chemoarchitectural similarity profiles. Receptor and transporter co-distribution patterns that 

drive chemoarchitectural differentiation are delineated in the cortex and in subcortical 

nuclei. Functional decoding reveals that chemoarchitectural similarity gradients 

differentiate between cortices of unimodal and transmodal functionality. The gradients also 

show significant correlations to cortical morphological alterations found in psychiatric 

disorders and share spatial characteristics that significantly overlap with gradients derived 

from functional connectivity, structural connectivity, and cytoarchitectural differentiation 

data. On the parcel level, chemoarchitectural similarity dissociates from the aforementioned 

measures along an idiotypic-to-paralimbic gradient of cytoarchitectural classes. 

Heteromodal cortices show higher receptomic heterogeneity than paralimbic cortices. 

Finally, functional communities of subcortical nuclei are separated by their 

chemoarchitectural characteristics, expanding receptor-based structure-function 

relationships known in the cortex to the subcortical domain. Summarized, this study uses 

in-vivo open-access data to generate and investigate the receptome as a novel 

neuroanatomical mode. 
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1. Introduction 

1.1 Studies of brain structure and function 

The study of human brain anatomy has been paramount in understanding how the brain’s 

function is supported by its structure (2). Neuroanatomical brain mapping efforts have a rich 

history, having progressed from early histology-based systematic cartographies of the cortex 

to continuously refining our understanding of cerebral anatomy by using modern technology. 

This study introduces a novel approach to neuroanatomical mapping based on 

chemoarchitectural properties. Chemoarchitecture refers to the distribution of 

neurotransmitter transporter or receptor molecules (NTRM) in the brain. As this study has to 

be read against the background of the brain mapping subdiscipline, a short overview of main 

anatomical modes and their implications for structure-function relationships will be 

provided. 

1.1.1 Cytoarchitectural mapping 

The first systematic studies of regional cortical variability focused on histological 

characteristics. The most prominent early studies were conducted by Cécile and Oskar Vogt, 

who studied myeloarchitecture, the histological variability based on the myelin fiber content, 

and their collaborator Korbinian Brodmann, who worked on cartography of the cortex based 

on changes in the cellular and laminar composition. Brodmann published an influential 

cortical parcellation based on regional variations in cytoarchitectural characteristics in 1909 

(3), while the Vogts published a myeloachitecture-based cortical map 1919 (4). The 

cytoarchitectonic approach has enjoyed more prominence, and Brodmann’s originally 

defined 43 cortical areas are still in use in clinical terminology today. His systematic 

dissection of histological profiles was improved and expanded on in later work (5–7). Core 

findings from these early studies remain relevant – horizontally, the cerebral cortex consists 

of cytoarchitectural layers, and vertically, variations in histological composition can be used 

to detect cytoarchitectural local communities.  

Methodological advances have allowed for new levels of detail and rigorousness in brain 

mapping based on histological characteristics. Technological advancements enabled 

controlling for inter-individual differences (8) and a standardized rating of what constitutes 
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cytoarchitectural borders (9), ameliorating the inter-rater variability inherent to pure visual 

inspection and enabling a statistically testable and quantifiable assessment of variation in 

cellular composition. Advancements in histochemical staining have also been employed in 

cytoarchitectural brain mapping. Cell-type specific staining can be achieved through 

immuno-histochemistry, where targeted labeling of structures of interest is possible through 

fluorescence-labeled antibodies. For example, immuno-histochemistry has enabled a detailed 

mapping of the cerebral distribution of cholinergic neurons, touching on a neurochemical 

aspect of cytoarchitecture (10). Further differentiation can be achieved by investigating the 

transcriptional landscape of cortical areas. One of the most advanced efforts to perform 

whole-brain transcriptomic mapping in the cortical surface is the Allen Human Brain Atlas 

(11). It offers a first comprehensive analysis of the human brain transcriptome, albeit from 

relatively thick brain slices (0.5-1cm).  

The most modern approach of generating a cytoarchitectural whole-brain map was 

undertaken by the BigBrain initiative (12). In this large-scale international project, a post-

mortem adult human brain was imaged with MRI in cranio, and subsequently formalin fixed, 

sliced in sections on 20µm, Nissl stained and then histologically imaged. This combination 

of high-resolution microscopic and MRI imaging is a first step towards leveraging modern 

computing resources to reach unprecedented levels of detail on a large scale and enable the 

3D reconstruction of 2D histological slices.  

Furthermore, cyto- and myeloarchitectural proxy measures derived from MR images can 

complement histological studies by sacrificing resolution for a higher throughput and the 

ability to perform in-vivo measurements of cytoarchitecture. Cortical myelin content can be 

inferred from the ratio between T1- and T2-weighted MR images (13,14), or from 

quantitative T1 imaging (15). Measurements of cortical microstructure extracted from MR 

imaging and histological studies largely overlap, as demonstrated using BigBrain data (16). 

MRI-based cytoarchitectural measurement can therefore complement modern histological 

approaches, as these two methods show opposite distributions of strengths and weaknesses.  
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1.1.2 Imaging-based anatomical modes 

Functional Connectivity (FC) 

Functional MRI (fMRI) allows for approximate mappings of brain activity through Blood-

oxygen-level-dependent (BOLD) imaging, which exploits neurovascular coupling-based 

increased perfusion in active brain regions as a surrogate measure of neuronal activation that 

has good spatial resolution and is non-invasive (17,18). Functional activation studies have 

recapitulated previously known relationships between brain anatomy and function, regarding 

sensory (19,20), motor (21,22) and higher-order cognitive functions such as attention(23), 

cognitive control (24), memory (25), and social cognition (26). Furthermore, fMRI enables 

the study of the novel anatomical mode of functional connectivity (FC). FC establishes 

relationships between brain areas based on correlations in their time-course of activations, 

describing “temporal correlations between remote neurophysiological events” (27). 

Importantly, FC does not establish a causal relationship between regional activity patterns. 

Through FC, it is possible to discover networks of functional co-activations, both using task 

paradigms (28), as well as in fMRI scans performed in resting state, yielding intrinsic 

organizational networks. Notable FC-derived cartographies include the Yeo-Krienen 

networks of the cerebral cortex (29) or the Buckner networks of the cerebellar cortex (30). 

These functional cartographies derived from resting-state FC distinguish themselves from 

classical cytoarchitectonic mapping by establishing spatially discontinuous intercortical 

relationships, as can be exemplified by the Default Mode Network (31). As such, FC-derived 

cartography is important in developing a network-like understanding of human brain 

architecture which focuses on understanding cognitive processes as resulting from 

interactions between brain regions, rather than having a single anatomical location that is 

uniquely responsible for them - a view was already popularized by Brodmann. 

Structural Connectivity (SC) 

White matter tracts serve as physical information highways between different brain regions, 

and rich knowledge about axonal connections in animals could be derived via tract-tracing 

studies (32). As these are not possible in live humans, here, diffusion MRI (dMRI)-based 

tractography, the probabilistic reconstruction of white matter tracts through diffusivity 



 

4 
 

measurements, can be used to study the white matter connections in the human brain. 

Strucutral connectitivty (SC) is the measure of inter-areal connectedness by fiber tracks and, 

analogously to FC, enables a novel neuroanatomical perspective. Especially graph-

theoretical studies of SC networks revealed interesting insights about the organization of 

white matter connections. One striking organizational propensity of macro- and micro-scale 

structural networks is their small-world architecture (33), which is characterized by short 

path lengths and high clustering (34), with sub-network clusters communicating with each 

other through high-degree hub nodes. Hub nodes strongly interconnected amongst each other 

form the so-called rich club (35). Disturbance in hub node architectures has been found in 

patients with schizophrenia, suggesting illness-associated alterations in structural 

connectomes (36). Importantly, hub nodes are also found in FC-derived networks, and their 

locations overlap with SC-derived network hubs (37). Although an intuitive proposition 

would be that structural and functional connectivity should generally overlap, as they can be 

thought to represent “two sides of the same coin”, correlation strengths between these 

measures realistically do not exceed  r ~ 0.5 (2). Therefore, even with these measures, it is 

still an ongoing challenge to connect the structural and functional anatomy of the brain. 

 

1.1.3 Other brain mapping efforts 

Cortical thickness variation 

The thickness of the cerebral cortex is not uniform throughout the brain. Cortical thickness 

can be measured in vivo via cranial MRI and varies inter-individually, developmentally, and 

in a normative topographical fashion (38,39). As systematical cortical thickness alterations 

can be associated with psychiatric and neurological illnesses, it can furthermore be used as a 

proxy to study disease-associated morphological changes. As large sample sizes are needed 

to assess disease-associated variations in cortical thickness with sufficient statistical power, 

the most relevant advances have been made by the Enhancing NeuroImaging Genetics 

through Meta-Analysis (ENIGMA) consortium (40), a large-scale, multi-site effort that 

collected data from over thousands of patients and controls per disease to quantify disease-

associated cortical thickness alterations in multiple neurological and psychiatric diseases 

such as epilepsy (41), major depressive disorder (42) and schizophrenia (43). Since cortical 
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thickness constitutes a proxy measure for structural cortical characteristics, such as 

cytoarchitectonic properties and neuronal density (44–46), neurobiologically meaningful 

interpretations of cortical thickness alterations are possible. The ENIGMA consortium has 

therefore expanded brain mapping into the pathological domain. 

 

fMRI-based meta-analytical approaches 

The mapping of functional brain organization using fMRI has also been realized through 

approaches other than FC. Leveraging standardized coordinate spaces used in MRI studies, 

functional activations can be summarized across multiple studies, yielding probabilistic 

meta-analytical activation maps derived from large sample sizes (47). Furthermore, meta-

analytical approaches can - rather than imbuing brain cartography data with functionally 

meaningful interpretations as the previously described brain mapping approaches - generate 

cartography data tailored to specific neurocognitive functions. Here, a prominent effort that 

combines text-mining and meta-analytical activation maps to generate term-based maps of 

functional brain activation is the neurosynth study (48). Briefly summarized, text-mining 

selects terms of interest used with a high frequency across manuscripts, subsequently extracts 

fMRI-based functional activation coordinates from the corresponding studies and associates 

these activations with the selected terms of interest. Expanding further on the term-based 

approach, terms can be algorithmically summarized into functionally contingent topics, 

performing a functionality-based dimensionality reduction of the often not ontologically 

soundly defined terms used in cognitive neuroscience (49,50). Neurosynth’s automated 

approach can generate meta-analytical functional activation maps from a large sample size 

without the need for human supervision. Drawing on the strengths of standardized coordinate 

spaces to increase sample size, meta-analytical approaches are powerful tools in 

understanding regional functional specializations in the human brain.  
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1.2 Neurotransmitter systems in the human brain 

The previous section outlined how different cartographical approaches contributed to our 

understanding of the human brain. The current study introduces a novel anatomical 

perspective based on the brain’s chemoarchitecture, a structural component with important 

ties to cytoarchitectural characteristics and functional anatomy. 

1.2.1 Neurotransmitter mapping 

Similar to other structural features of brain organization, neurotransmitter receptor 

expression has been systematically mapped in the human brain. Receptor autoradiography 

studies, which perform accurate and specific mapping of different neurotransmitter receptor 

distributions in post-mortem brain slices, have shown that receptor distributions vary 

distinctly throughout the cerebral cortex. For example, visual cortex has high GABAa 

receptor density, while no µ-opioid receptors are found there (51,52). Receptor expression 

patterns show similarities with cytoarchitectural characteristics. Horizontally, receptor 

distributions vary in a laminar fashion, partially overlapping (53,54) with cytoachitectural 

cortical layers, where the granularity of a cortical layer is an important determinant of 

receptor density profiles (55). Similarly, receptor co-distributions vary largely as a function 

of cytoarchitecturally-defined cortical areas, but can both group different histologically-

defined areas into neurochemical families or perform further subdivision of regions that show 

a homogeneous cytoarchitectural profile (54,56). Here, the subdivision of Broca’s region by 

distinct neurochemical profiles is an impressive example (57).  

Autoradiographic mapping of neurotransmitter receptors enables detailed assessments of 

regional chemoarchitectural characteristics. However, the approach is resource-heavy and 

relies on ex-vivo tissue. A complementary technique is Positron Emission Tomography 

(PET)-based receptor mapping. Here, neurotransmitter receptors are targeted with specific 

radioligands in live humans, which allows for the reconstruction of a whole-brain profile of 

receptor densities, trading resolution for scalability to larger cohorts and in-vivo 

measurements. In-vivo imaging enables the study of receptor distributions in pathological 

conditions, with scintigraphic assessment of cerebral DAT density in diagnosing Parkinson’s 

disease being a practical example. Furthermore, neurotransmitter receptor and transporter 

distributions have been studied with PET imaging in brain mapping efforts (58,59).  



 

7 
 

1.2.2 Functional relevance of neurotransmission and neurotransmitter mapping 

Autoradiography studies have established that changes in localized brain function and 

changes in receptor distributions coincide, as can be exemplified in the visual cortex (51,60). 

Measuring multiple receptor densities in the same brain area allows for the creation of 

receptor “fingerprints” – multidimensional chemoarchitectural profiles that are important 

features of functional specialization (54,60–62). As such, receptor fingerprints in motor areas 

markedly differ from those in sensory areas (63), and delineate primary from association 

cortices in multiple modalities of analysis (64,65). Consistently, areas of similar functionality 

also show similarities in receptor fingerprints. For example, areas involved in language 

comprehension share a chemoarchitectural basis (66), and resting-state FC networks show 

increased homogeneity in receptor fingerprints (67). Functionally, pharmacological 

manipulations of neurotransmitter systems induce changes in FC. For example, subjects 

treated with atomoxetine showed increased functional network segregation (68), and 

sulpiride treatment led to impaired global and local efficiency of FC networks (69). 

Furthermore, LSD-induced 5-HT2a agonism increased global connectivity of association 

cortices (70), and psilocybin-induced 5-HT2a stimulation increased global FC network 

integration (71). Importantly, the changes in functional connectivity measures were most 

pronounced in brain areas with high expression of 5-HT2a, clearly associating the underlying 

receptor architecture with functional changes. Combined, these findings add to the 

hypothesis that neuromodulation via neurotransmission is a “missing link” in brain structure-

function relationships, as disparities between structural and functional connectivity patterns 

(2,72) prompted the search for novel determinants of inter-areal functional relationships. 

Especially the pharmacological intervention studies suggest that neuromodulation could be 

a key component in understanding how a static physical wiring structure gives rise to flexible 

functionality. Therefore, a deeper understanding of how the neurotransmitter landscape is 

organized could help bridging the gap that still stands between structural and functional 

anatomy of the brain. 
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1.2.3 Relevance of neurotransmitter systems in clinical medicine 

Finally, the vast majority of psychotropic drugs interact with the cerebral neurotransmission 

landscape, but there is no general rule that links a neurotransmitter system to a clear cognitive 

function. One important determinant is the receptor type a neurotransmitter binds to, 

exemplified by how 5-HT1a and 5-HT2a receptors differentially contribute to coping in 

stressful situations (73). However, translating biochemical differences occurring after 

receptor binding into a mechanistic explanation for their differential contribution to coping 

has not been possible. Furthermore, receptor topography and organization into different 

pathways also influences receptor-mediated functions. For example, the dopamine system 

segregates into multiple well-studied pathways. The nigro-striatal pathway is essential for 

motor functions, the tubero-infundibular pathway regulates synthesis of prolactin, and the 

meso-limbic as well as meso-cortical pathways are involved in higher cognitive functions, 

such as reward processing and cognitive control. Their shared receptor architecture is of 

utmost clinical relevance, as drugs targeting the dopamine system can affect each of these 

pathways, leading to medication side effects. As such, antipsychotic treatment with D2 

antagonists can lead to extrapyramidal motor symptoms through affecting the nigro-striatal 

pathway, and to hyperprolactinemia through affecting the tubero-infundibular pathway. A 

better understanding of chemoarchitectural anatomy could therefore also hold direct clinical 

implications. 

 

1.3 Aims of this work 

This study aims at a characterization of cortical and subcortical chemoarchitectural anatomy. 

A large open-access dataset of PET-derived NTRM density maps, consisting of 19 different 

NTRM distributions collected across more than 1200 subjects is used as the primary resource. 

To generate a chemoarchitecturally-based cartography, brain regions are studied with respect 

to their interregional chemoarchitectural similarity, as measured by a covariance matrix 

termed the “receptome”. Following, principal gradient decomposition, a non-linear 

dimensionality reduction method, identifies the main axes of chemoarchitectural similarity. 

These axes provide novel perspectives on intercortical as well as intersubcortical 
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relationships and are subsequently employed to generate an overview over general principles 

of the receptome. NTRM co-distribution patterns that drive cortical and subcortical 

chemoarchitectural similarity are analyzed. Furthermore, the spatial patterns of gradients can 

be put in context with multiple other neuroanatomical modes to gain a deeper understanding 

of features that unify as well as differentiate chemoarchitectural anatomy and other 

neuroanatomical modes. This work draws on other brain mapping techniques outlined in the 

first chapter, comparing chemoarchitectural similarity to functional and structural 

connectivity as well as cytoarchitectural characteristics. To gain a functional understanding, 

receptome gradients are compared to meta-analytical brain activation maps, allowing for a 

perspective on functional and chemoarchitectural co-differentiation patterns. Similarly, 

through comparing disease-associated cortical thinning maps to receptome gradients, 

associations between chemoarchitectural anatomy and central nervous system diseases are 

investigated. Additionally, node-level clustering analyses of cytoarchitectural similarity aim 

at delineating receptome-driven communities in the cortex, which are compared to 

functionally as well as cytoarchitecturally-derived communities. Finally, next to the cerebral 

cortex, subcortical nuclei are investigated with regards to their chemoarchitecture, taking first 

steps towards an understanding of the comparatively understudied chemoarchitecture of the 

subcortex. 

This study solely re-analyses previously published data from various datasets that have 

already received ethics approval from their respective institutions. Therefore, this study is 

performed within the scope of the vote to study number 2018-317 issued on 30.10.2021 by 

the Ethics Committee at the Faculty of Medicine at Heinrich Heine University Düsseldorf to 

Prof. Dr. Simon Eickhoff. No animal experiments are performed. 
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Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences,  

Leipzig, Germany; 4McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill 

University, Montréal, Canada 

 

Abstract Chemoarchitecture, the heterogeneous distribution of neurotransmitter transporter and 

receptor molecules, is a relevant component of structure–function relationships in the human 

brain. Here, we studied the organization of the receptome, a measure of interareal 

chemoarchitectural similarity, derived from positron- emission tomography imaging studies of 19 

different neurotransmitter transporters and receptors. Nonlinear dimensionality reduction 

revealed three main spatial gradients of cortical chemoarchitectural similarity – a centro- temporal 

gradient, an occipito- frontal gradient, and a temporo- occipital gradient. In subcortical nuclei, 

chemoarchitectural similarity distinguished functional communities and delineated a striato- 

thalamic axis. Overall, the cortical receptome shared key organizational traits with functional and 

structural brain anatomy, with node-l evel correspondence to functional, microstructural, and 

diffusion MRI- based measures decreasing along a primary- to- transmodal axis. Relative to 

primary and paralimbic regions, unimodal and heteromodal regions showed higher receptomic 

diversification, possibly supporting functional flexibility. 
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Editor's evaluation 
This work provides a valuable structural and functional characterization of the neurotransmitter's 

spatial distribution heterogeneity in cortical and subcortical regions. The authors report a 

systematic description and annotation of a new ‘layer’ of brain organization that has been 

relatively poorly integrated with the wider neuroimaging literature to date. In sum, this article has 

the potential to be of great interest to a wide audience in neurosciences. 

 

Introduction 
Uncovering how the anatomy of the human brain supports its function is a long-s tanding goal of 

neuroscientific research (Suárez et al., 2020). Histological mapping studies found that brain areas 

vary substantially in cellular composition and established a link between cytoarchitectural and 

functional diversity (Brodmann, 1909; von Koskinas and Koskinas, 1925; Vogt and Vogt, 1919). 

Next to cellular composition, the brain’s chemoarchitecture, the distribution of neurotransmitter 

receptor and transporter molecules (NTRM) across the cortical mantle, is a similarly important 

mode of brain neurobiology. Neurotransmitter receptors show a heterogeneous distribution 

throughout the cortex, closely related to both vertical (laminar) and horizontal cyto- and 

myeloarchitectural composition,  



 

 
 

as shown using postmortem autoradiographical receptor labeling 

(Eickhoff et al., 2007; Zilles and Amunts, 2009). Receptor 

distributions recapitulate histology- defined cortical areas, but also 

organize different cortical areas into neurochemical families and 

further subdivide homogeneous cytoarchitectural regions (Zilles and 

Amunts, 2009; Zilles and Palomero- Gallagher, 2001). Changes in 

localized brain function are reflected by changes in receptor 

distributions, as demonstrated in the changes of multiple receptor 

densities at the border between primary (V1) and secondary (V2) 

visual cortex (Eickhoff et al., 2008; Zilles et al., 2004). Crucially, brain 

areas sharing similar functionalities also display similarities in the 

density profiles of multiple neurotransmitter receptor types, the so- 

called receptor ‘fingerprint’ (Zilles and Amunts, 2009; Zilles et al., 

2004; Zilles et al., 2002; Morosan et al., 2005). For example, 

receptor fingerprints delineate sensory from association cortices 

(Dehaene et al., 2005) and provide a common molecular basis of 

areas involved in language comprehension (Zilles et al., 2015), 

strongly indicating receptor fingerprints as key features supporting 

functional specialization. Therefore, dissecting the brain’s 

chemoarchitectural landscape could be crucial in understanding 

structure–function links in the human brain. Comprehensive analysis 

of receptor fingerprints has mostly been limited to autoradiography 

experiments in postmortem brain slices. Recently, multisite efforts 

agglomerated large- scale open- access datasets of whole-b rain 

NTRM density distributions derived from positron- emission 

tomography studies, enabling the in vivo study of chemoarchitecture 

(Hansen et al., 2022; Dukart et al., 2021). Using this resource, 

Hansen et al. delineated associations between NTRM density profiles 

and oscillatory neural dynamics, meta-a nalytical studies of 

functional activation, as well as disease- associated cortical 

abnormality maps. Importantly, they showed that brain regions in 

the same resting-s tate functional connectivity (FC) networks as well 

as structurally connected brain regions display increased 

chemoarchitectural similarities (Hansen et al., 2022), replicating 

structure– function relationships evident from autoradiography 

studies (Zilles and Amunts, 2009). 

These findings, along with the implications of receptor fingerprints 

in functional specialization, warrant the study of whole-b rain, in vivo 

imaging-derived chemoarchitectural anatomy of the brain.  An 

improved understanding of organizational principles of the 

neurotransmission landscape could prove critical for basic 

neuroscience, but also benefit clinical medicine. NTRMs are highly 

relevant in mental health care, as an extensive body of research links 

alterations in NTRM expression and distribution patterns to 



 

 
 

psychiatric diseases (Nautiyal and Hen, 2017; Seeman, 2013; Quah 

et al., 2020; Lydiard, 2003). Additionally, most psychotropic drugs 

manipulate the brain’s neurotransmission landscape and are 

effective and reliable pillars in the treatment of psychiatric diseases 

(Cipriani et al., 2018; Huhn et al., 2019; Soomro et al., 2008; Geddes 

and Miklowitz, 2013), although their mechanisms of action are often 

incompletely understood. Complementary, clinical phenotypes are 

associated with alterations in multiple neurotransmitter systems 

(Moncrieff et al., 2022; Kaltenboeck and Harmer, 2018; Kesby et al., 

2018). Characterizing the spatial organization of chemoarchitectural 

features could therefore provide novel avenues toward 

understanding the neurobiology of psychiatric diseases (Dean and 

Keshavan, 2017; Harrison et al., 2018; Luvsannyam et al., 2022; 

Pauls et al., 2014). 

We furthermore aim to study the anatomy of subcortical 

chemoarchitecture as the question stands if the relationship 

between receptor fingerprints and functional specialization observed 

in the cortex could be generalized to subcortical nuclei (Zilles and 

Amunts, 2009; Zilles et al., 2015). Since cortical disparities between 

functional and structural connectivity could be partly explained by 

subcortical ascending neuromodulatory projections (Bell and Shine, 

2016; Shine, 2019), a clearer understanding of subcortical 

chemoarchitecture and its relationship to cortical chemoarchitecture 

could provide a novel perspective on whole- brain structure–function 

relationships (Forstmann et al., 2017). 

Here, we leverage the aforementioned resource published by 

Hansen et al. to generate and characterize the ‘receptome,’ a 

neuroanatomical measure that reflects the interregional similarities 

of brain regions based on their NTRM fingerprints. To study the 

spatial organization of chemoarchitectural similarity, we employ an 

unsupervised dimensionality reduction technique to generate 

principal gradients, which are low- dimensional representations of 

the organizational axes in the cortical and subcortical receptome. 

Using these gradients, we identify NTRM distributions that drive 

regional receptor (dis)similarity. Several follow- up analyses shed 

light upon the relationship to organizational axes in structural 

connectivity (SC), as measured using diffusion MRI (Yeh et al., 2021), 

microstructural profile covariance (MPC) (Paquola et al., 2019), and 

resting-s tate functional connectivity (rsFC) (Logothetis, 2008). 

Finally, we performed meta- analytic decoding of chemoarchitectural 

gradients to assess their relations to topic- based functional brain 

activation (Yarkoni et al., 2011) and investigated their relationship to 

radiological markers of disease (Thompson et al., 2014). We 



 

 
 

performed various analyses to evaluate the robustness of our 

observations. 

Results 
Organization of the cortical receptome (Figure 1) 
To assess cortical chemoarchitecture, we leveraged a large publicly 

available dataset of PET- derived NTRM densities, containing 19 

different NTRM from a total of over 1200 subjects (Hansen et al., 

2022). After parcellating the receptor maps into 100 parcels 

according to the Schaefer atlas (Schaefer et al., 2018), we calculated 

a Spearman rank correlation matrix of parcel- level NTRM densities, 

the receptome. The receptome represents node-l evel interregional 

similarities in NTRM fingerprints. Next, we employed nonlinear 

dimensionality reduction techniques by leveraging diffusion map 

embedding to delineate the main organizational axes of cortical 

chemoarchitectural similarity. A schematic introducing the different 

NTRM and the workflow is outlined in Figure 1A. See Table S1 for a 

detailed overview of the PET NTRM density maps. 

Diffusion embedding- derived gradients showed high 

correspondence to axes derived by linear dimensionality reduction 

techniques (Figure 1—figure supplement 1A). The first 11 

components explained significantly more variance compared to 

gradients decomposed from receptomes generated from randomized 

NTRM density maps (Figure 1—figure supplement 1B). We chose to 

focus on the first three gradients, which explained 15, 14, and 13% of 

relative variance, respectively, due to a marked drop in variance 

explained after these three components (Figure 1A). The first 

receptome gradient (RC G1) described an axis stretching between 

somato- motor regions and inferior temporal and occipital lobe. The 

second receptome gradient (RC G2) spanned between a temporo-o 

ccipital and a frontal anchor. Finally, the third receptome gradient 

(RC G3) was differentiated between the occipital cortex and the 

temporal lobe (Figure 1B). 

To determine which NTRM distributions drive the main axes of 

cortical chemoarchitectural similarity, we performed Spearman rank 

correlations between a parcel’s associated gradient value and its 

NTRM fingerprint, meaning density profiles of all NTRM in that parcel 

(Figure 1C). Note that the gradient value of a parcel is a measure of 

where on the gradient axis the parcel is located, from which 

similarity to parcels with similar values, and dissimilarity to parcels 

with dissimilar values, is inferred. Thus, a receptor with higher 

density in parcels with negative values and lower density in parcels 



 

 
 

with positive values will be negatively correlated to the gradient. RC 

G1 was primarily driven by the anticorrelation between distributions 

of 5- HTT, 5- HT4, 5- HT2a, and GABAa with the distributions of 

VAChT, H3, NAT, and Α4Β2. RC G2 separated 5-H TT, DAT, NMDA, 

D1, and GABA distributions from α4β2, 5- HT1b, CB1, H3, and MU. 

RC G3 showed significant negative correlations to GABAa 

distributions and significant positive correlations to D1, 5- HT1a, CB1, 

MU, 5- HT4, and VAChT. 

Organization of the subcortical receptome (Figure 2) 
Following our analysis of cortical NTRM similarity, we investigated 

the chemoarchitecture of subcortical nuclei. We selected the 

caudate nucleus, putamen, nucleus accumbens, pallidal globe, 

thalamus, and amygdala as regions of interest (ROIs). To gain an 

understanding of how different the cerebral cortex and subcortical 

nuclei are in their chemoarchitectural composition, we performed a 

multidimensional scaling projection of cortical and subcortical NTRM 

density profiles that were z-s cored across both compartments 

(Figure 2—figure supplement 1A). Subcortical nuclei were shown to 

be largely separate from cortical structures, with the exception of 

amygdala. NTRM density profiles z- scored only within subcortical 

nuclei were used in subsequent analyses. 

First, to investigate whether NTRM fingerprints in subcortical 

nuclei were associated with functional specialization, as observed in 

cortical areas, we performed agglomerative hierarchical clustering on 

the z-s cored mean NTRM density profiles of subcortical ROIs per 

hemisphere (Figure 2A). Subcortical chemoarchitecture was largely 

symmetrical between hemispheres, as indicated by the immediate 

clustering of structures with their counterpart from the other 

hemisphere. The main hierarchical branch separated putamen, 

accumbens nucleus, caudate nucleus (the striatum), and pallidum 

from amygdala and thalamus. Thalamus and striatum had 

considerable differences in NTRM co- expression patterns. α4β2, 

NAT, 5-H TT, and NMDA showed strong co- expression in thalamus 

but not in striatum,  



 

 
 

 

Figure 1. Organization of the cortical receptome. (A) Analytic workflow of receptome generation and gradient decomposition. Node-l 

evel neurotransmitter receptor and transporter molecule (NTRM) fingerprints are derived from PET images of 19 different NTRM (in 

the top left, italic font denotes transporters). The fingerprints are then Spearman rank correlated to capture node- level similarity in 

chemoarchitectural composition, generating the receptome matrix. Next, to determine similarity between all rows of the receptome 

matrix, we used a normalized angle similarity kernel to generate an affinity matrix. Finally, we employ diffusion embedding, a 

nonlinear dimensionality reduction technique, to derive gradients of receptomic organization. (B) Receptome (RC) gradients projected 

on the cortical surface. Top: first receptome gradient (RC G1); middle: second receptome gradient (RC G2); bottom: third receptome 

gradient (RC G3). (C) Spearman rank correlations of cortical receptome gradients with individual NTRM densities. Top: first receptome 

gradient; middle: second receptome gradient; bottom: third receptome gradient. Saturated blue coloring corresponds to statistically 

significant correlations at p < 0.05. 

The online version of this article includes the following figure supplement(s) for figure 1: 

Figure supplement 1. Cortical receptome gradients. 



 

 
 

Figure supplement 2. Robustness of receptome gradients. 

 

Figure 2. Organization of subcortical chemoarchitecture. (A) Hierarchical agglomerative clustering of neurotransmitter receptor and 

transporter molecule (NTRM) densities in subcortical structures. aTHA: anterior thalamus; pTHA: posterior thalamus. (B) Spearman rank 

correlations of the first subcortical receptome gradient with individual NTRM densities. Saturated blue coloring corresponds to 

statistically significant correlations at p < 0.05.  

(C) Gradient decomposition of the subcortical receptome. Left: percentage of variance explained by components following gradient 

decomposition.  
Middle: value distribution of the first subcortical receptome gradient across subcortical structures. CAU: caudate nucleus; PUT: 

putamen; NAc:  
accumbens nucleus; GP: pallidal globe; AMY: amygdala; THA: thalamus. Right: subcortical projection of the first subcortical receptome 

gradient. (D) Gradients of the subcortico- cortical receptome projected to the cortical surface and to subcortical nuclei. 

The online version of this article includes the following figure supplement(s) for figure 2: 

Figure supplement 1. Subcortical receptome. 

Figure supplement 2. Robustness of agglomerative hierarchical clustering – subcortex. 

 



 

 
 

while D1, D2, DAT, 5-H T4, 5-HT6, M1, and VAChT were strongly co- 

expressed in striatum, but not in  thalamus. 

Then, we analyzed chemoarchitectural similarity in subcortical 

nuclei through constructing a receptome by voxel- wise Spearman 

rank correlations of NTRM density profiles in the subcortical ROIs. To 

discern how subcortical nuclei can be reconstructed based on 

chemoarchitectural similarity, we employed the Leiden community 

detection method (Traag et al., 2019), a greedy optimization 

algorithm that opts to minimize variance within and maximize 

variance between communities.  

Subcortical receptome clustering exhibited high stability across the 

resolution parameter sample space (Figure 2—figure supplement 

1A). Receptomic clustering discerned three dominant communities, 

the first mainly capturing the striatal structures (putamen, caudate, 

NAc) and the pallidal globe, the second mainly capturing the 

thalamus, and the third mainly capturing the amygdala (Figure 2—

figure supplement 1A). We then used diffusion embedding to derive 

low- dimensional gradient embeddings of the subcortical receptome 

to discern its main organizational axes. The first subcortical 

receptome gradient (sRC G1), explaining 23% of relative variance, 

was anchored between the striatum and the thalamus (Figure 2C). 

Note that proximity of structures was not a major determinant of 

sRC G1 values, demonstrated by voxels of the caudate nucleus and 

thalamus that were proximal to each other but showed diverging sRC 

G1 values. The second gradient, explaining 17.5% of relative 

variance, and third gradient, explaining 12% of relative variance, 

described ventral- dorsal and medial- lateral trajectories, 

respectively (Figure 2—figure supplement 1). The first subcortical 

receptome gradient showed significant positive correlations to NAT, 

α4β2, and 5- HT2a densities, and significant negative correlations to 

5-H T6, D1, M1, 5-HT4, D2, DAT, VAChT, H3, and mGluR5  

distributions (Figure 2B). 

Lastly, we were interested in the relationship between the 

subcortical and cortical receptomes. We created a subcortico-c 

ortical NTRM covariance matrix and applied diffusion embedding to 

delineate the gradients of subcortico- cortical chemoarchitectural 

similarity (Figure 2D). The first and second cortical gradients 

correlated significantly with all subcortico- cortical receptome 

gradients, while the third cortical gradient only correlated 

significantly to the third subcortico-c ortical gradient (Figure 2— 

figure supplement 1D). 



 

 
 

Relationship of the cortical receptome to brain functional 

processing and disease (Figure 3) 
After characterizing the cortical and subcortical receptomes, we 

sought to investigate the relationship of chemoarchitectural 

similarity to hallmarks of brain functional processing and 

dysfunction. To assess brain functional processing, we used topic- 

based meta- analytical maps of task- based functional brain 

activation. This approach associates data-d riven semantic topics 

with localized brain activity (e.g. ‘primary somatomotor’ is associated 

with activation in the precentral gyrus). Using the Neurosynth 

database (Yarkoni et al., 2011), we calculated Spearman rank 

correlations between normalized activation maps and receptome 

gradients while accounting for spatial autocorrelation (Figure 3B). 

Negative correlations imply a relationship between topic-b ased 

functional activations mainly located in parcels with negative 

gradient values. RC G1 showed strong positive correlations with 

meta-a nalytical topics of sensory- motor function (topics 2, 17, and 

32) and control (topics 16 and 20). Its strongest negative correlations 

were to topics capturing facial and emotion recognition (topic 40) as 

well as categorizing and abstract functions (topic 38). RC G2 

displayed positive correlations to topics of control (topics 16, 20, and 

48) and memory (topic 9), differentiating them from topics of facial 

and emotion recognition (topic 40) and categorizing and abstract 

functions (topic 38), with which it showed negative correlations. 

Lastly, RC G3 showed positive correlations of note to topics related 

to language and speech (topics 6 and 46) compared to negative 

correlations to topics of attention and task performance (topics 15 

and 47), memory (topic 9), and mental imagery (topic 41). 

Secondly, we investigated the association between 

chemoarchitectural organization and neurodevelopmental 

conditions or disorders. We leveraged disease- related cortical 

thickness alterations, a radiological marker of structural 

abnormalities, derived via a standardized multisite effort (Thompson 

et al., 2014). Cortical thickness was quantified by Cohen’s d case-v s.-

control effect size and accessed through the ENIGMA toolbox 

(Larivière et al., 2021). We selected autism spectrum disorder (ASD) 

(van Rooij et al., 2018), attention-d eficit hyperactivity disorder 

(ADHD) (Hoogman et al., 2019), bipolar disorder (BPD) (Hibar et al., 

2018), DiGeorge syndrome (22q11.2 deletion syndrome) (DGS) (Sun 

et al., 2020), epilepsy (EPS) (Whelan et al., 2018), major depressive 

disorder (MDD) (Schmaal et al., 2017), obsessive compulsive 

disorder (OCD) (Boedhoe et al., 2018), and schizophrenia (SCZ) (van 

Erp et al., 2018) to cover a broad spectrum of diseases (Figure 3C). 



 

 
 

Receptome gradients captured disease- specific cortical thickness 

alteration patterns. RC G1 showed positive correlations to the 

cortical thickness profile of OCD, while RC G2 had negative 

correlations to cortical thickness alterations in BPD. Both OCD and 

BPD were primarily associated with cortical thinning, thus, cortical 

thickness in OCD was reduced where RC G1 values were positive,  

 

Figure 3. Cortical receptome gradients in term-b ased functional activation and disorder. (A) Cortical receptome gradients projected to 

the cortical surface. (B) Functional decoding of cortical receptome gradients. Wordclouds display positive and negative correlations of 

receptome gradients and topic- based functional activation patterns. Word sizes encode absolute correlation strength, word colors are 

matched to the respective gradient poles. Only statistically significant correlations (p<0.05) are displayed. Left: RC G1; middle: RC G2; 

right: RC G3. (C) Disease decoding of cortical receptome gradients. Surface plots: effect size (Cohen’s d) of cortical thickness alterations 



 

 
 

in central nervous system disorders in patients vs. controls. Bar plots: Spearman rank correlations of receptome gradients and cortical 

thickness alterations. Saturated blue coloring corresponds to statistically significant correlations at p < 0.05. Left: RC G1; middle: RC G2; 

right: RC G3. 

 

 

Figure 4. Multimodal contextualization of the cortical receptome. (A) Correlation strengths of cortical receptome gradients to 

functional connectivity (FC), structural connectivity (SC), microstructural profile covariance (MPC), and BigBrain gradients. Coloring is 

scaled to absolute values. Surface- projected gradients are displayed next to their respective rows and columns. Asterisks indicate 

statistically significant correlations at p < 0.05. (B) Coupling of the cortical receptome to SC, FC, and MPC. Left: surface projection of 

coupling strengths. Right: coupling strengths across cytoarchitectural classes. (C) Surface projection of Mesulam cytoarchitectural 

classes. (D) Modular stability of receptome clustering in Mesulam cytoarchitectural classes, reflecting the heterogeneity of receptomic 

profile. 

The online version of this article includes the following figure supplement(s) for figure 4: 



 

 
 

Figure supplement 1. Contextualization of receptome gradients in hierarchical brain 

organization. Figure supplement 2. Robustness of agglomerative hierarchical 

clustering – cortex. 

and BPD- associated reductions in cortical thickness were located 

where RC G2 values were negative. RC G3 did not show significant 

associations with cortical disease profiles. (Figure 3C). 

Interrelationship between the cortical receptome and 

structural, functional, and cytoarchitectural organization 

(Figure 4) 
Finally, we investigated the relationship of cortical 

chemoarchitectural similarity to other measures of cortical 

organization. We first analyzed whether functional brain networks 

(Thomas Yeo et al., 2011) significantly aligned along receptome 

gradients by comparing gradient value distributions inside functional 

networks against 1000 random gradient maps generated via 

variogram matching (Figure 4— figure supplement 1). RC G1 showed 

alignment to the somato- motor network that forms its positive 

anchor. RC G2 was aligned to default mode and control networks, 

which are located in the positively anchoring regions, and the visual 

network, which is located on the opposite side of the gradient. 

Lastly, RC G3 was aligned with limbic and visual networks, which are 

located at opposite poles of the gradient. 

Then, we aimed to perform a broad multimodal contextualization 

of cortical chemoarchitectural anatomy. As autoradiography studies 

connect receptor distributions to cytoarchitectural characteristics 

(Zilles and Amunts, 2009), we compared cortical receptomic 

organization to MPC, an MRI- derived proxy measure of cortical 

microstructure (Foit et al., 2022), and a gradient of cytoarchitectural 

variation from the BigBrain project (Paquola et al., 2019; Amunts et 

al., 2013) (BB G1). Additionally, we explored the relationships of 

cortical chemoarchitectural similarity to diffusion MRI tractography- 

derived SC, and functional MRI- derived resting-s tate FC, as previous 

results linked chemoarchitectural similarity to the physical and 

functional interconnectedness of brain regions (Hansen et al., 2022). 

We first aimed to compare gradients between these architectural 

modalities and focused on the first two gradients of SC and FC, and 

the first gradient of MPC due to the respective amounts of variances 

explained. RC G1 showed strongest overlaps to SC G1 and FC G1 as 

these gradients shared either anterior-p osterior or visual- to- 

somatomotor trajectories (Figure 4A). Additional weaker correlations 

were observed with BB G1 and MPC G1, which represent the main 

axes of cortical cytoarchitectural similarity (Paquola et al., 2019), 



 

 
 

and FC G2, which separates unimodal from association cortices 

(Margulies et al., 2016). Functional network decoding revealed that 

RC G1 separates visuo- limbic from somatomotor cortices (Figure 4—

figure supplement 1). Similar to the first receptome gradient, RC G2 

correlated significantly to SC G1 and FC G1, while separating visuo- 

limbic from control networks (Figure 4—figure supplement 1). RC G3 

showed the strongest correlations to SC G2, which separated 

occipital from temporal cortex. Further significant correlations 

existed with FC G1, MPC G1, and BB G1. Functional network 

decoding placed visual and limbic networks on opposite ends of RC 

G3 (Figure 4—figure supplement 1). 

After comparing main anatomical axes, we investigated node-l 

evel similarities between the receptome and FC, SC and MPC. We 

performed row- wise correlations of the receptome matrix to each 

other matrix (Figure 4B). The resulting correlation coefficients 

expressed the strength of coupling between two measures. 

Generally, coupling strength of the receptome to the other measures 

decreased along a sensory- fugal gradient of laminar differentiation, 

an influential theoretical framework that attributes cognitive 

processing complexity to cortical areas using cytoarchitectural 

classes (Mesulam, 1998). Average coupling strength across 

cytoarchitectural classes was significantly different across all metrics. 

RC- SC decoupling along the sensory-f ugal gradient (Kruskal–Wallis’ 

h = 24.43, p<0.001) was driven by significantly stronger coupling in 

idiotypic relative to heteromodal and paralimbic cortices (post hoc 

Dunn’s test with Bonferroni correction p<0.001). RC- FC coupling 

strengths in idiotypic cortices were significantly increased relative to 

unimodal, heteromodal, and paralimbic cortices (h = 16.68, p<0.001; 

Dunn’s test p<0.02). Last, RC-M PC decoupling across 

cytoarchitectural classes (h = 9.16, p<0.05) was primarily reflected by 

decreased coupling in heteromodal versus idiotypic regions (Dunn’s 

test p<0.02). 

As previous decoding results hinted at a relationship between 

cortical hierarchy and chemoarchitectural characteristics, we last 

explored cortical receptomic heterogeneity in the context of 

cytoarchitectural classes (Mesulam, 1998). To this end, we leveraged 

the Leiden community detection algorithm to discover cortical 

communities of chemoarchitectural similarity. We observed that new 

communities primarily formed in the frontal cortex when sampling 

the resolution parameter space, indicating more unique NTRM 

fingerprints in the frontal cortex. To capture how stably receptomic 

communities recapitulate cytoarchitectural classes when increasing 

the number of receptomic communities detected, we developed the 



 

 
 

modular stability score (see ‘Materials and methods’). A 

cytoarchitectural class largely covered by a single receptomic 

community and not increasingly fracturing with an increase in the 

overall number of communities has a high modular stability score. 

Overall, paralimbic cortices exhibited modular stability similar to 

idiotypic cortices, while heteromodal and unimodal regions were less 

stable (Figure 4D), suggesting that idiotypic and paralimbic cortices 

contain a more homogeneous receptomic profile, while heteromodal 

and unimodal cortices have a more diverse chemoarchitectural 

landscape. We made similar observations studying the relationship 

of receptomic communities to networks of resting- state functional 

connectivity (Thomas Yeo et al., 2011; Figure 4—figure supplement 

1). 

Robustness analysis 
Owing to the spatial resolution of PET NTRM imaging, we chose to 

present our main findings in the coarse resolution of 100 Schaefer 

parcels. To assess validity, we replicated our analyses in Schaefer 

parcellations 200–400 (Schaefer et al., 2018). Selecting a finer 

granularity than 400 parcels was not reasonable due to the limited 

resolution of PET images (Moses, 2011). Receptome gradients 

showed good replicability across parcellations (Figure 1—figure 

supplement 2), although an increase in parcellation granularity 

shifted one extreme in RC G1 and RC G2 toward the temporal poles. 

Notably, for granularities of 200 and 400 parcels, there is a 

component ranking switch meaning that the pattern captured by RC 

G1 in the main results is captured by RC G2 in the replication, and 

vice versa. As gradients of rsFC, SC, and MPC also change as a 

function of parcellation granularity, we repeated the correlation 

analyses across different parcellations. The shift toward the temporal 

pole in RC G1 and G2 led to a clearer separation between one 

receptome gradient that strongly correlated to SC G1, and another 

one that significantly correlated to FC G2 in parcellation granularities 

200 and 300 (Tables S2A–D). We additionally replicated 

agglomerative hierarchical clustering using different linkage methods 

(Figure 2—figure supplement 2, Figure 4—figure supplement 2). 

Discussion 
In the present work, we investigated the chemoarchitectural 

anatomy of the human cerebral cortex and subcortex through 

quantification of interregional chemoarchitectural similarity, 

leveraging PET imaging- derived neurotransmitter transporter and 

receptor density maps of 19 different molecules. Furthermore, we 



 

 
 

aimed to associate chemoarchitecture with imaging- derived markers 

of brain function and dysfunction, as well as other neuroanatomical 

modes. In sum, we introduce and thoroughly characterize 

chemoarchitectural similarity as an additional layer of macro-s cale 

brain organization and present novel structure–function associations 

in the human brain. 

A cornerstone technique of our study was the use of a nonlinear 

dimensionality reduction technique to derive gradients of the 

receptome, a matrix of interregional chemoarchitectural similarity. 

For the cortex, we characterized three receptome gradients, which 

together explain 42% of relative variance in cortical 

chemoarchitectural similarity, allowing for an insight into the main 

anatomical axes that account for nearly half of the cortical 

receptome’s differentiation. The first receptome gradient, RC G1, 

described an axis stretching between somato- motor regions, where 

it aligned significantly with the functional somato- motor network, 

and inferior temporal and occipital lobe. RC G1 combined key 

features of structural and functional organization, and established 

similar relationships between cortices as the organization of 

structural connections, captured by SC G1, which is likely driven by 

the distance-d ependent nature of cortical wiring (Markov et al., 

2013). It also captured meaningful variations in cytoarchitecture and 

functional organization, although these correlations were 

inconsistent across parcellation granularities. Anchoring cortices of 

RC G1 on the one end were involved in somato- motor and control 

functions, and facial recognition and abstraction functions on the 

other end, as revealed by topic-b ased functional activation 

decoding. Finally, RC G1 correlated significantly with cortical 

thickness alterations patterns associated with OCD. Taken together, 

the first receptome gradient captures the differences in 

chemoarchitectural composition between the somatomotor regions 

and the remaining cortex, with the most pronounced divergence 

outlined against visual and limbic cortices. This chemoarchitectural 

divide is most apparent in the NTRM distribution patterns of 5- HTT, 

5- HT4, 5- HT2a, GABAa and M1 on the one side, which show high 

density in the temporal and occipital cortices, and NAT, α4β2, H3 and 

VAChT on the other site, which have high pericentral and in the 

frontal densities. RC G1 furthermore connects NTRM density profiles 

to morphological changes in OCD, where the relationship to 

serotonin signaling is particularly interesting. Selective serotonin 

reuptake inhibitors (SSRIs) target 5-H TT and are the preferred 

pharmacological intervention to treat OCD (Soomro et al., 2008; 

Lissemore et al., 2018). Genetically, 5-H T2a and 5- HTT variants have 

been identified as risk factors for the development of OCD (Taylor, 



 

 
 

2013), and OCD patients showed aberrant peripheral 5- HTT and 5- 

HT2a functionality (Delorme et al., 2005). In addition, there is 

emerging evidence that GABA signaling abnormalities are related to 

the development of OCD (Pauls et al., 2014), although conclusive 

evidence is lacking. 

The second receptome gradient, RC G2, spanned between 

temporo- occipital and frontal anchors, separating the 

chemoarchitectural composition of visual and limbic networks from 

attention and control networks. This gradient separated 5- HTT, DAT, 

NMDA, D1, and GABAa from MU, H3, CB1, 5- HT1b, and α4β2. It 

correlated significantly to FC G1 and SC G1. Topic- based functional 

activation decoding revealed that RC G2 spanned between regions 

linked to abstraction as well as facial and emotion recognition on the 

one end and regions involved in control and memory on the other 

end. Moreover, it associated cortical morphological alterations in 

BPD with features of NTRM fingerprints, where 5- HTT, DAT, and 

NMDA co- expression is of note. These NTRM have been implicated 

in genesis and treatment of BPD (Ghasemi et al., 2014; Ashok et al., 

2017; Pinsonneault et al., 2011; Rao et al., 2019). Lastly, the third 

receptome gradient, RC G3, was anchored between occipital and 

temporal cortices. It separated GABAa density distribution patterns 

from D2, 5-H T1a, CB1, MU, 5- HT4, and VAChT. It correlated 

significantly to SC G2, FC G1, and gradients of cytoarchitectural 

differentiation. Functional topic-b ased decoding revealed that it 

separated regions involved in auditory and language processing from 

regions involved in attention, memory, and mental imagery. The 

separation of visual from limbic cortices distinguished RC G3 from 

the other two receptome gradients, where limbic and visual cortices 

were closely aligned. 

As both RC G1 and RC G2 outline meaningful relationships 

between NTRM density profiles and disease morphology, 

chemoarchitectural similarity could provide novel perspectives in the 

understanding of the neurobiological basis underlying psychiatric 

diseases. Investigating NTRM fingerprints rather than focusing on 

single molecules could shed light on the enigmatic mechanism of 

actions of psychotropic drugs, especially when taking into account 

that most take effect through binding multiple types and classes of 

receptor molecules (Sullivan et al., 2015; Moraczewski and Aedma, 

2022; Thase, 2008). However, our results also replicate associations 

between OCD and BPD and 5-H TT density patterns uncovered using 

different methodology on the same dataset, further indicating a 

relevance of this singular molecule in these diseases (Hansen et al., 

2022). Moreover, both RC G1 and RC G2 capture variations in 



 

 
 

chemoarchitectural similarity between unimodal and transmodal 

regions. A separation of sensory from association cortices using their 

architectural features is possible in multiple modes of architecture 

(Paquola et al., 2019; Margulies et al., 2016). The relevance of 

receptor fingerprints in differentiating sensory from association 

areas is in line with recent work that employed component analysis 

to autoradiography-d erived receptor densities (Goulas et al., 2021). 

This correspondence across methodological approaches is important 

as PET imaging is of considerably lower resolution and cannot pick up 

on cortical layering as an important determinant of NTRM density 

(Zilles and Amunts, 2009). Gradient- based analysis indicated that 

visual and limbic cortices are relevant anchors in cortical 

chemoarchitectural similarity axes as they are polar at either one (RC 

G1 and G2) or both anchors of a gradient (RC G3). Hierarchical 

clustering of average NTRM densities separated both the visual and 

limbic network from other functional networks, mirroring clustering 

results obtained via autoradiography (Zilles and Palomero- 

Gallagher, 2017), and indicating more homogeneous 

chemoarchitectural compositions in these regions that, importantly, 

show little overlap between them. Summarizing the 

interrelationships of receptome gradients and brain structure and 

function, our results suggest that receptor similarity is organized in a 

fashion that combines organizational principles of cytoarchitectural, 

structural, and functional differentiation, although interrelationships 

to structural and functional connectivity and cytoarchitectural 

variation present themselves differently across parcellation 

granularities. Incorporating receptor similarity as a novel layer in 

studies of structure–function relationships could be crucial to discern 

a governing set of rules in hierarchical brain architecture (García- 

Cabezas et al., 2019). 

Analysis of architectural correspondence on the node level 

showed significant decoupling of SC and FC from chemoarchitectural 

similarity, particularly in heteromodal and paralimbic regions, 

whereas primary areas showed the strongest coupling. This suggests 

that both structure–function as well as interstructural relationships 

dissociate in regions conveying more abstract cognitive processes 

such as attention, cognitive control, and memory (Spreng et al., 

2009; Smallwood et al., 2012; Smallwood et al., 2021; Langner et 

al., 2018). Previous work showed that structural and functional 

connectivity is more closely linked in unimodal cortices and exhibits 

gradual decoupling toward transmodal cortices, a phenomenon that 

is hypothesized to be instrumental for human flexible cognition 

(Preti and Van De Ville, 2019; Liu et al., 2022; Valk et al., 2022). 

Replicating this observation for chemoarchitectural similarity 



 

 
 

suggests that diversification of NTRM fingerprints may be equally 

important to enable flexible cognitive functions (Suárez et al., 2020). 

We corroborate this hypothesis through clustering analysis, where 

functional networks involved in more abstract cognitive functions 

and heteromodal cortices show greater receptomic diversity, 

meaning a wider spread of receptor fingerprints represented in 

them. This is consistent with associative areas showing high 

segregation into subareas based on their receptor architecture 

(Amunts et al., 2010). High receptomic diversity might be a disease 

vulnerability factor as recent work has shown that cortical thickness 

alterations across different diseases are most pronounced in 

heteromodal cortices (Hettwer et al., 2022). However, it has to be 

noted that primary regions show a lesser degree of interindividual 

neuroanatomical variability compared to heteromodal regions, which 

could be a possible methodological confound influencing our finding 

of sensory- to- fugal architectural decoupling (Mueller et al., 2013). 

Notably, our results exemplify a chemoarchitectural divide between 

heteromodal and paralimbic cortices as the latter showed NTRM co- 

distribution homogeneity similar to idiotypic cortices. A mechanistic 

explanation might be that, next to memory and emotion (RajMohan 

and Mohandas, 2007), olfactory areas are also located in paralimbic 

cortices, adding a sensory component to their function (Courtiol and 

Wilson, 2017). Additionally, recent work has indicated a 

differentiation between heteromodal and paralimbic regions, where 

the former show decreased heritability and cross-s pecies similarity 

(Valk et al., 2022). Further work may focus on uncovering the 

developmental mechanisms underlying the differentiation between 

structure and function of these transmodal zones, also taking into 

account its diverging chemoarchitecture. 

Finally, we could expand a chemoarchitecturally driven structure–

function relationship observed in the cortex (Morosan et al., 2005; 

Dehaene et al., 2005; Zilles et al., 2015; Zilles and Palomero- 

Gallagher, 2017) to subcortical nuclei. Hierarchical agglomerative 

clustering of NTRM fingerprints revealed a meaningful separation of 

subcortical structures based on their functionality, exemplified by 

the differentiation of striatal structures (putamen, accumbens, and 

caudate nuclei) and pallidal globe from thalamus. Striatum and 

pallidal globe constitute the basal ganglia, which, together with the 

thalamus, form the cortico-b asal ganglia- thalamic loop. Here, basal 

ganglia are implicated in motor functions and complex signal 

integration, while the thalamus orchestrates the communication 

between large-s cale cortical networks (Bell and Shine, 2016; Hwang 

et al., 2017; Lanciego et al., 2012). This functional divide is not only 

reflected in NTRM fingerprints, but also in receptomic Leiden 



 

 
 

clustering and gradient decomposition, where the first subcortical 

receptomic gradient describes a striato- thalamic axis. We observed 

partial similarity in NTRM fingerprint composition driving subcortical 

and cortical chemoarchitectural similarity. While differences in co-d 

istribution patterns of 5- HT4 and M1 from α4β2 and NAT were 

relevant in both cortex and subcortex, the two areas differ in other 

relevant NTRM co-d istribution patterns. For example, 5-HTT and  

α4β2 distributions in the cortex are prominently anticorrelated but 

show similar distributions in subcortial nuclei. Irrespective of 

individual NTRM co- expressions, a general similarity in subcortical 

and cortical receptome organization is indicated by overlapping 

cortical and subcortico-c ortical receptome gradients. Considering 

similarities and differences in NTRM fingerprints could be important 

when investigating the modulating influence of subcortico- cortical 

projections on functional brain networks (Bell and Shine, 2016; 

Janacsek et al., 2022). 

Limitations 
It is of note that the resource we used to comprise the receptome, 

while extensive, does not exhaustively cover all cerebral 

neurotransmitter systems. Important molecules such as the α2 

noradrenaline receptor, which is an important drug target in the 

central nervous system (Smith and Elliott, 2001; Alam et al., 2013), 

are missing from our dataset. Our findings must be viewed with the 

incompleteness of our primary resource in mind. Additionally, we 

want to point out that in assessing chemoarchitectural anatomy we 

decided to study ionotropic receptors, metabotropic receptors, and 

transporters within a shared framework as they exert influence over 

each other in complex synaptic signaling processes. For example, D1 

and D2 signaling influence NMDA signaling through cAMP-m ediated 

posttranslational modification of the receptor, directly acting upon 

its neuromodulatory potential (Neve et al., 2004). Similarly, 

neuromodulation through presynaptic transporters is conjunct with 

receptor expression. For example, the neuromodulatory potency of 

5-H TT depends on the postsynaptic availability of serotonin 

receptors, which would mediate the effect an inhibition of these 

molecules via a drug, such as Fluoxetine. We therefore argue that 

when studying the co- expression of molecules involved in 

neurotransmission, incorporating different receptor types and 

transporters is crucial, even though these molecules convey different 

functionalities and are not interchangeable. Regarding our primary 

resource, while PET scans were performed on healthy participants, 

information on medication and medical history was not available for 

all participants. Therefore, we cannot control for potential 



 

 
 

medication or disease effects. Additionally, the comparatively low 

spatial resolution of PET imaging is exacerbated by the group-a 

verage nature of our dataset. This especially limits the ability to 

investigate subcortical structures. For example, the thalamus 

consists of more than 60 nuclei with distinct cellular composition and 

diverging functionality (Fama and Sullivan, 2015), important 

properties we cannot pick up on. Other important subcortical 

structures, for example, the subthalamic nuclei, cannot be 

confidently studied due to their size, limiting our whole- brain 

perspective to larger subcortical nuclei. A more detailed analysis of 

the subcortical receptome will require methods with higher 

resolution (Gaudin et al., 2019). Furthermore, we want to point out 

that, although we employ structural and functional measures to 

contextualize our findings about chemoarchitectural anatomy, our 

results do not allow claims about the influence of these anatomical 

axes of brain function, or their interaction with structural brain 

elements. The correlative nature of our results enables both a richer 

and multifaceted characterization of chemoarchitectural anatomy as 

well as the formulation of hypotheses about the role of 

chemoarchitecture in functional specialization, but no causal 

inferences about how chemoarchitecture influences brain structure 

and function can be derived from them. Dissecting how 

manipulations in the chemoarchitectural landscape influence 

structure and function goes beyond the descriptive scope of the 

current work. 

In sum, our work outlines the organization of chemoarchitectural 

similarity across the cortex and subcortical structures, yielding an 

additional layer of brain organization associated with structural and 

functional measures of brain organization in both health and disease. 

Considering this layer in future studies could prove important in 

answering how flexible cognition is supported by its physical 

substrates. Meeting this ultimate goal will provide new avenues to 

understand, treat, and prevent psychiatric diseases and lessen both 

the personal and societal burden posed by mental illnesses. 

Materials and methods 
Receptor similarity matrix generation 
To investigate cortical and subcortical receptor similarity, we made 

use of an open-a ccess PET MRI dataset described previously 

(Hansen et al., 2022). The associated receptors/transporters, tracers, 

number of healthy participants, ages, and original publications, for 

which we refer to full methodological details, are listed in Table S1. 



 

 
 

In brief, images were acquired in healthy participants using best 

practice imaging protocols recommended for each radioligand 

(Nørgaard et al., 2019) and averaged across participants before 

being shared. Images were registered to the MNI152 template 

(2009c, asymmetric). No medication history of participants was 

available. The accuracy and validity of receptor density as derived 

from the PET images have been confirmed using autoradiography 

data, and the mean age of participants was shown to have negligible 

influence on tracer density values (Hansen et al., 2022). The cortical 

receptor density maps were parcellated to 100, 200, 300, and 400 

regions based on the Schaefer parcellation (Schaefer et al., 2018), 

averaging the intensity values per parcel. Subcortical NTRM densities 

were extracted using a functional connectivity-d erived topographic 

atlas (Tian et al., 2020). For tracers where more than one study was 

included, a weighted average was generated. This resulted in a 

parcel × 19 matrix of format (parcel × receptor). The intensity values 

were z- score normalized per tracer. We then performed parcel × 

parcel Spearman rank correlation of receptor densities, yielding the 

receptome, a matrix of interregional NTRM similarity. 

Gradient decomposition 
To assess the driving axes of cortical and subcortical architectural 

covariance organization, we employed gradient decomposition using 

the brainspace python package (Vos de Wael et al., 2020). Gradients 

are low-d imensional manifold representations that allow for the 

characterization of main organizational principles of high- 

dimensional data (Margulies et al., 2016). To calculate gradients of 

cortical NTRM covariance, rsFC, and MPC, the full matrix was used. 

SC gradients were separately calculated for intrahemispheric 

connections in both hemispheres using procrustes analysis to align 

the gradients to increase comparability and subsequently 

concatenated. We excluded interhemispheric connections due to 

their biased underdetection in dMRI fiber tracking, which would 

result in gradient decomposition primarily detecting asymmetric 

interhemispheric axes that are unlikely to possess neurobiological 

relevance, but rather reflect the aforementioned bias (Royer et al., 

2022). To calculate the gradients, the respective input matrices were 

thresholded at 90% and, using a normalized angle similarity kernel, 

transformed into a square non-n egative affinity matrix. We then 

applied diffusion embedding (Coifman and Lafon, 2006), a nonlinear 

dimensionality reduction technique, to extract a low-d imensional 

embedding of the affinity matrix. Diffusion embedding projects 

network nodes into a common gradient space, where their distance 

is a function of connection strengths. This means that nodes closely 



 

 
 

together in this space display either many suprathreshold or few 

very strong connections, while nodes distant in gradient space 

display weak to no connections. In diffusion embedding, a parameter 

α controls the influence of sampling density on the underlying 

manifold (where α = 0 equals no influence and α = 1 equals maximal 

influence). Similar to previous work (Margulies et al., 2016), we set 

α to 0.5 to retain global relations in the embedded space and 

provide robustness to noise in the original matrix. 

Structural, functional, and microstructural profile covariance 

data generation 
To contextualize receptor similarity organization, we aimed to 

compare it to SC, resting- state FC, and MPC. The diversity pertaining 

to age and sociodemographic variables of the subjects in the PET 

dataset made the selection of matched reference subjects for FC, SC, 

and MPC analysis infeasible. Instead, we opted for the construction 

of group- consensus FC, SC, and MPC matrices collected from the 

same healthy individuals, obtained, and processed in a reproducible 

pipeline to ultimately provide comparability of the receptome to SC, 

FC, and MPC measures of reference nature. We therefore chose the 

Microstructure Informed Connectomics (MICA-M ICs) dataset (Royer 

et al., 2022) to obtain FC, SC, and MPC data. MRI data was acquired 

at the Brain Imaging Centre of the Montreal Neurological Institute 

and Hospital using a 3T Siemens Magnetom Prisma-F it equipped 

with a 64- channel head coil from 50 healthy young adults with no 

prior history of neurological or mental illnesses (23 women; 29.54 ± 

5.62 y). No medication history was available. For each participant, (1) 

a T1-w eighted (T1w) structural scan, (2) multi- shell diffusion-w 

eighted imaging (DWI), (3) resting- state functional MRI (rs- fMRI), 

and (4) a second T1-w eighted scan, followed by quantitative T1 

(qT1) mapping. Image preprocessing was performed via micapipe, an 

open-a ccess processing pipeline for multimodal MRI data (Cruces et 

al., 2022). Individual functional connectomes were generated by 

averaging rs- fMRI time series within cortical parcels and cross- 

correlating all nodal time series. Individual structural connectomes 

were defined as the weighted count of tractography- derived whole- 

brain streamlines. To estimate individual microstructural profile 

covariance, 14 equivolumetric surfaces were generated to sample 

vertex- wise qT1 intensities across cortical depths and subsequently 

averaged within parcels. Parcel- level qT1 intensity values were 

cross-c orrelated using partial correlations while controlling for the 

average cortical intensity profile. The resulting values were log-t 

ransformed to obtain the individual MPC matrices (Paquola et al., 

2019). 



 

 
 

To generate the group-a verage matrix of each modality, 

precomputed and pre-parcellated matrices  of 50 individual subjects 

were used. As no PET data was available for the medial wall, the 

rows and columns representing it in all SC, FC, and MPC matrices 

were discarded. For SC and FC matrices additionally, rows and 

columns containing values for subcortical regions were discarded as 

well as no analysis of subcortical SC and FC was intended. To 

generate the group-c onsensus MPC matrix, parcel values across the 

subjects were averaged. To generate the group-c onsensus FC matrix, 

the subject matrices underwent Fisher’s r-t o- z transformation, and 

subsequently, parcel values across the subjects were averaged. To 

generate the group-c onsensus SC matrix, individual matrices were 

log- transformed and parcel values across subjects were averaged. 

Afterward, we applied distance- dependent thresholding to account 

for the over-r epresentation of short- range and under- 

representation of long- range connections in non- thresholded 

group-c onsensus SC matrices (Betzel et al., 2019), and the resulting 

thresholded matrix was used in subsequent analyses. 

Coupling analysis 
To investigate the coupling between receptor similarity and FC, SC, 

and MPC, we performed row-w ise Spearman rank correlation 

analyses of the nonzero elements of the respective matrices. 

Leiden clustering 
To evaluate whether NTRM similarity intrinsically structures the 

cortical surface and subcortical structures, we applied the Leiden 

clustering algorithm (Traag et al., 2019). This clustering analysis 

enables an assessment of how similarity in chemoarchitecture forms 

anatomical communities, akin to approaches used to reveal resting- 

state functional networks (Thomas Yeo et al., 2011) or parcellations 

(Schaefer et al., 2018). The Leiden algorithm is a greedy optimization 

method that aims to maximize the number of within-g roup edges 

and minimize the number of between-group edges, with  the 

resulting network modularity being governed by the resolution 

parameter ɣ. To incorporate anticorrelations, we used a negative- 

asymmetric approach, meaning that we aimed to maximize positive 

edge weights within communities and negative edge weights 

between communities. To search the feature space, we chose a ɣ 

range of 0.5–10 in increments of 0.05 for cortical data, calculating 

1000 partition solutions per ɣ. For subcortical structures, we chose a 

ɣ range of 1–10 in increments of 0.5, calculating 250 partitions per ɣ. 

To assess partition stability, we calculated the z-r and score for every 

partition with every other partition per ɣ value and chose the 



 

 
 

partition with the highest mean z-r and score, indicating highest 

similarity to all other partitions for the given ɣ (Steinley, 2004; 

Pedregosa et al., 2023). Additionally, we calculated the variance of z- 

rand scores between partitions per ɣ. A high mean z- rand score and 

a low z- rand score variance indicated a stable partition solution. 

Modular stability 
To assess the overlap of cytoarchitectural classes and receptomic 

clustering, we developed the modular stability score. This metric 

captures how far a predefined ROI, in our case, a functional network 

or a cytoarchitectural class, matches a Leiden clustering- derived 

receptomic community. It is calculated as Cmax ×(Cin ÷1 Ctot)× s, where C 

max is the biggest proportion of the ROI is taken up by one 

clustering-d erived receptomic community, Cin is the number of 

different receptomic communities represented inside the ROI, Ctot is 

the total number of receptomic communities formed at the given 

resolution parameter, and s is the relative size of the ROI. An ROI 

that is covered by one receptomic community to a large degree and 

does not contain a relatively large number of receptomic 

communities, as measured by the proportion of communities inside 

the region of interest divided by the total number of communities, 

will display a high modular stability score. As larger ROIs will have a 

higher number of communities inside them by chance, we normalize 

by the relative size of the ROI. We then employ the modular stability 

score to quantify to what degree predefined ROIs break up into 

different receptomic communities as the clustering- derived network 

modularity increases as we sample the resolution parameter space. 

Note that this experimental score has not been used and verified for 

validity under other conditions. 

Meta-analytic decoding 
To assess the relationship between cortical receptome gradients and 

localized brain functionality, we leveraged meta- analytical, topic- 

based maps of functional brain activation, derived from the 

Neurosynth database (Tor D., 2011). Using Nimare, we calculated 

topic- based activation maps of the Neurosynth v5- 50 topic release 

(https://neurosynth.org/analyses/topics/v5-topics-50/), a set of 50 

topics extracted from the abstracts in the full Neurosynth database 

as of July 2018 using Latent Dirichlet Analysis (Poldrack et al., 2012). 

We parcellated the resulting continuous, non-t hresholded activation 

maps and performed parcel- wise Spearman rank correlations with 

the cortical receptome gradients. 

https://neurosynth.org/analyses/topics/v5-topics-50/
https://neurosynth.org/analyses/topics/v5-topics-50/


 

 
 

Disorder impact 
To assess the relationship between receptome gradients and various 

neurological and psychiatric diseases, we used publicly available 

multisite summary statistics of cortical thinning published by the 

ENIGMA Consortium (Thompson et al., 2014). Covariate-a djusted 

case- vs.-control differences, denoted by across- site random- effects 

meta- analyses of Cohen’s d-v alues for cortical thickness, were 

acquired through the ENIGMA toolbox python package (Larivière et 

al., 2021). Multiple linear regression analyses were used to fit age, 

sex, and site information to cortical thickness measures. Before 

computing summary statistics, raw data was preprocessed, 

segmented, and parcellated according to the Desikan- Killiany atlas in 

FreeSurfer (http://surfer.nmr.mgh.harvard.edu) at each site and 

according to standard ENIGMA quality control protocols (see 

http://enigma.ini.usc.edu/protocols/imaging- protocols). To assess a 

diverse range of cerebral illnesses, we included eight diseases in our 

analysis: ASD (van Rooij et al., 2018), ADHD (Hoogman et al., 2019), 

BPD (Hibar et al., 2018), DiGeorge- syndrome (22q11.2 deletion 

syndrome) (DGS) (Sun et al., 2020), EPS (Whelan et al., 2018), MDD 

(Schmaal et al., 2017), OCD (Boedhoe et al., 2018), and SCZ (van Erp 

et al., 2018). Sample sizes ranged from 1272 (ADHD) to 9572 (SCZ). 

Summary statistics were derived from adult samples, except for ASD, 

where all age ranges were used. 

Hierarchical clustering 
To discern a similarity hierarchy of subcortical structures and cortical 

networks based on mean NTRM density, we performed 

agglomerative hierarchical clustering. Initially, a set of n samples 

consists of m clusters, where m = n. In an iterative approach, the 

samples that are most similar are combined into a cluster, where 

after each iteration, there are m – # iteration clusters (Nielsen, 

2016). This process is repeated until m = 1. We use Euclidean 

distance to assess the distance between clusters and use the 

WPGMA method to select the closest pair of subsets (Sokal et al., 

1958). 

Null models 
Assessment of statistical significance in brain imaging data may be 

biased when not accounting for spatial autocorrelation of brain 

imaging signals (Alexander-B loch et al., 2018; Váša and Mišić, 

2022). To generate permuted brain maps that preserve spatial 

autocorrelation in parcellated data, we resorted to variogram 

matching (VGM) (Burt et al., 2020). Here, we randomly shuffle the 

input data and then apply distance- dependent smoothing and 

rescaling to recover spatial autocorrelation. To assess the 

http://surfer.nmr.mgh.harvard.edu/
http://enigma.ini.usc.edu/protocols/imaging-protocols
http://enigma.ini.usc.edu/protocols/imaging-protocols
http://enigma.ini.usc.edu/protocols/imaging-protocols
http://enigma.ini.usc.edu/protocols/imaging-protocols


 

 
 

significance when comparing surface-p rojected data, we applied 

spin permutation (Alexander- Bloch et al., 2018) to generate 

randomly permuted brain maps by random-a ngle spherical rotation 

of surface- projected data points, which preserves spatial 

autocorrelation. Parcel values that got rotated into the medial wall, 

and values from the medial wall that got rotated to the cortical 

surface, were discarded (Markello and Misic, 2021). In each 

approach, we generated 1000 permuted brain maps. 
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unpublished data. Table adapted from Hansen et al., 2022. 

• Supplementary file 2. Table S2A. Replication of multimodal 

receptome gradient contextualization through correlation using a 

Schaefer granularity of 100 parcels. 

• Supplementary file 3. Table S2B. Replication of multimodal 

receptome gradient contextualization through correlation using a 

Schaefer granularity of 200 parcels. 

• Supplementary file 4. Table S2C. Replication of multimodal 

receptome gradient contextualization through correlation using a 

Schaefer granularity of 300 parcels. 

• Supplementary file 5. Table S2D. Replication of multimodal 

receptome gradient contextualization through correlation using a 

Schaefer granularity of 400 parcels. 
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https://doi.org/10.7554/eLife.83843.sa1
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• MDAR checklist  

Data availability 
All data and software used in this study is openly accessible. PET data 

is available here. FC, SC and MPC data is available here. ENIGMA data 

is available through enigmatoolbox. Meta- analytical functional 

activation data is available through Neurosynth. The code used to 

perform the analyses can be found here. 

The following previously published datasets were used: 

Author(s) Year Dataset title Dataset URL Database and Identifier 

Hansen JY, Shafiei G, 2022 
Markello RD, Smart K,  
Cox SML, Nørgaard  
M 

Mapping neurotransmitter https:// github. com/  GitHub, hansen_receptors 

systems to the structural  netneurolab/ hansen_ and functional organization 

receptors of the human neocortex 

 Continued on next page 

 Continued 

Author(s) Year Dataset title Dataset URL Database and Identifier 

Royer J, Rodríguez- 
Cruces R, Tavakol S,  
Larivière S, Herholz  
P, Li Q, Vos de  
Wael R, Paquola C,  
Benkarim O, Park BY,  
Lowe AJ, Margulies  
D, Smallwood  
J, Bernasconi  
A, Bernasconi  
N, Frauscher B,  
Bernhardt BC 

2021 MICA- MICs: a dataset for  
Microstructure- Informed  
Connectomics 

https:// n2t. net/  
ark:/ 70798/  
d72xnk2wd397j190qv 

Canadian Open  
Neuroscience  
Platform, 70798/ 

d72xnk2wd397j190qv 
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3 Discussion 

The aim of this work was to investigate the anatomy of the human neurotransmission 

landscape in the cerebral cortex and subcortical nuclei through the measure of the receptome, 

assessing its potential functional relevance, and constructing relationships with other brain 

organizational modes. Overlaps to meta-analytical activation studies and radiological 

markers of disease were studied. Furthermore, the cortical organization of 

chemoarchitectural similarity was compared to neuroanatomical findings in functional and 

structural connectivity, and markers of cytoarchitectural differentiation. Hereby, the novel 

anatomical mode of chemoarchitectural similarity was both introduced and characterized 

with respect to other brain mapping modalities. 

 

3.1 Principal gradients in brain organization 

In analyzing the receptome, this study relied heavily on the spatial patterns yielded by 

principal gradient decomposition (74), a non-linear dimensionality reduction technique 

employing diffusion embedding (75). Principal gradient decomposition is a meaningful 

approach to study brain organization. First, the non-linearity of diffusion embedding enables 

the discovery of relationships between brain areas that conventional linear techniques, such 

as Principal Component Analysis (PCA), are technically not able to resolve. However, this 

distinction between linear and non-linear methods was of no relevance for the present study, 

as the principal axes of the receptome derived when using either PCA or diffusion embedding 

dimension reduction techniques were close to indistinguishable. Furthermore, modern brain 

mapping studies often produce high-dimensional outputs, which introduces additional 

challenges in data storage and handling, computation, and in the analyses itself (76). Principal 

gradient decomposition can serve as a succinct dimensionality reduction method through 

generating low-dimensional manifolds that capture important relationships between different 

brain areas from an originally high-dimensional metric. Correspondingly, the technique has 

been used to investigate main organizational axes across multiple different modalities of 

hierarchical brain organization (16,74,77–80).  
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3.2 The organization of cortical chemoarchitecture 

3.2.1 Cortical anatomy as defined by chemoarchitectural similarity gradients 

The main axes of cortical chemoarchitectural differentiation described in this work create a 

novel perspective on the relationship between different regions of the human cortex. The first 

receptome gradient formed an axis that spans from inferior temporal and occipital lobes 

towards the pericentral gyri. The second receptome gradient similarly grouped temporal and 

occipital lobes, as they formed one pole where the gradient was anchored, and transposed 

these lobes against frontal and prefrontal lobes. The previously introduced grouping between 

the temporal and occipital lobes was however split up by the third receptome gradient, which 

firmly placed these two lobes at opposing poles.  

Looking deeper into the role of occipital and temporal lobes, visual and limbic functional 

networks showed significant alignment to the third receptome gradient. Hierarchical 

agglomerative clustering of functional networks based on their average NTRM density 

profiles distinguished both visual and limbic networks from other functional networks, 

complementing autoradiography-derived clustering results (55). This suggests a more unique 

chemoarchitecture in these areas and may indicate that the chemoarchitectural profiles of 

visual and limbic networks (standing in for occipital and temporal cortices) are each 

considerably different from the rest of the cortex but show no great overlap with each other. 

Rather than being grouped on one gradient pole in the first and second receptome gradient 

because they are so similar to one another, occipital and temporal cortices are polar because 

both are highly distinct from the rest of the cortex, However, they are also very different 

amongst themselves, exemplified by their separation through the third receptome gradient. 

 

3.2.2 Functional decoding of chemoarchitectural similarity axes 

The present work also touches upon functional implications of the main cortical 

chemoarchitectural similarity axes, both through associating receptome gradients with 

networks of resting-state functional connectivity (as already mentioned for the third gradient 

in the previous section), as well as the gradient’s association with topic-based meta-analytical 

decoding maps. The first cortical receptome gradient was significantly aligned to the somato-



 

13 
 

motor network on its pericentral pole. Correspondingly, it differentiated somato-motor and 

control functions from facial recognition and abstraction functions. Regarding the second 

cortical receptome gradient, the present study discovered a significant alignment to the 

control (or fronto-parietal) network and the default mode network on the frontal anchor, as 

well as a significant alignment to the visual network at the temporo-occipital anchor. It 

opposed facial recognition, emotion recognition and abstraction functions to memory and 

control functions. Next to the already mentioned significant alignments to the visual and 

limbic functional networks, the third cortical receptome gradient distinguished regions 

involved in language and auditory processing from areas associated with mental imagery, 

memory, and attention. 

Summarized, chemoarchitectural similarity differentiates along multiple dimensions of 

cognitive functionality. However, one common theme seems to be the placement of primary 

and transmodal regions at opposing gradient ends, a finding already observed in 

autoradiography studies (65). Correspondence across methodologies and scales of resolution 

strengthens the validity of this finding. Similar results could also be found studying 

chemoarchitecture in macaques, suggesting that co-occurrence of regional functional and 

chemoarchitectural specialization is an evolutionary conserved phenomenon (81). 

Furthermore, systematic distinctions between primary and transmodal regions are also found 

in cytoarchitectural and FC-based studies (16,77), distinguishing their anatomical differences 

as an important feature across multiple domains of organization. 

 

3.2.3 Disease-related aspects of chemoarchitecture 

This work also associated chemoarchitecture with pathological markers, comparing cortical 

receptome gradients to disease-associated cortical thinning patterns. Here, the first receptome 

gradient showed significant correlations to cortical thickness changes observed in obsessive-

compulsive disorder, and the second receptome gradient showed significant correlations to 

alterations of cortical thickness found in patients with bipolar disorder.  

Through gradients, transporter and receptor co-distribution profiles can be associated with 

disease-related alterations in cortical morphology. For the first receptome gradient’s 
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association to obsessive-compulsive disorder, a relationship the gradient creates to the 

serotonin system is of note, as it is both targeted in its psychopharmacological treatment, as 

well as implicated in the pathogenesis of obsessive-compulsive disorder. Generally, 

pharmacological interventions in OCD focus heavily on the serotonin system (82), an 

important example being Selective Serotonin Reuptake Inhibitors (SSRIs), which target 5-

HTT (83,84). Regarding pathogenesis, genetic 5-HT2a and 5-HTT variants constitute risk 

factors for developing obsessive-compulsive disorder (85), and on the protein level, altered 

5-HTT and 5-HT2a functionality in peripheral cells was found in patients with obsessive-

compulsive disorder (86).  

For the second cortical receptome gradient’s association to bipolar disorder, the co-

distribution profiles of 5-HTT, DAT and NMDA generated through the gradient are notable, 

since alterations in these molecules have been found in patients with bipolar disorder. 

Regarding the glutamatergic NMDA receptor, increased glutamate levels have been detected 

in patients with bipolar disorder, especially in the frontal cortex (87). Furthermore, several 

single nucleotide polymorphisms in NMDA receptor subunit genes were significantly 

enriched in bipolar disorder patient cohorts, and alterations in NMDA receptor binding and 

mRNA expression of its subunits were reported in multiple cerebral locations in patients with 

bipolar disorder (88). Similarly, DAT single nucleotide polymorphisms were significantly 

enriched in patients with bipolar disorder (89), and alterations in dopaminergic 

neurotransmission could be linked to manic and depressive symptoms in bipolar disorder 

(90). Finally, changes in 5-HTT receptor binding and genetic 5-HTTLPR polymorphisms 

have been associated with bipolar disorder genesis (91,92). However, the presented findings 

that link the aforementioned receptors and transporters to bipolar disorder are sparse. Future 

studies are needed to investigate and clarify the roles of 5-HTT, NMDA and DAT in bipolar 

disorder, and to address conflicting results. 

As NTRM co-distribution patterns with plausible links to disease phenotypes could be 

identified through chemoarchitectural similarity gradients, this study proposes that a 

chemoarchitecturally-driven perspective could provide new avenues to understanding the 

neurobiological basis of psychiatric and neurological diseases, as has already been shown in 

recent work studying Parkinson’s disease (93). Using chemoarchitectural fingerprints could 
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account for most psychotropic drugs binding to a variety of receptor and transporter 

molecules, potentially opening novel paths to a better understanding of 

psychopharmacological treatments (94–96). Leveraging chemoarchitecture as an anatomical 

aspect with a clear conceptual connection to clinical medicine could furthermore serve as a 

bridge into translating more findings from imaging-based neuroanatomy into clinical 

practice. Especially in psychiatry, a satisfactory translation has not been possible to date. 

Here, arguably the only relevant finding from imaging-based anatomy that got translated into 

guideline-based clinical practice thus far is in the domain of repetitive transcranial brain 

simulation, where fMRI-based brain mapping identified stimulation targets in the treatment 

of depression (97,98). 

 

3.3 Chemoarchitecture as an anatomical layer 

The current study suggests that chemoarchitectural similarity is organized in a way that 

partially overlaps with principles of structural, functional, and cytoarchitectural 

differentiation. This partial overlap is also observed when comparing these other modes 

amongst each other. For example, the first principal gradients of microstructural profile 

covariance and functional connectivity correlate at about r ~ 0.5, and show increasing 

dissociation towards transmodal cortices as opposed to primary cortices (16). Similarly, 

overlaps between functional and structural connectivity are a topic of rich and ongoing 

investigations, since their partial overlap poses fundamental questions regarding signal 

transmission and processing in the brain (2,72).  

It is therefore reassuring to find that chemoarchitecturally-derived cortical topologies show 

similar partially overlapping characteristics to other measures of hierarchical brain 

organization. From a theoretical standpoint, it can also be argued that this partial overlap can 

be expected. Studying hierarchical macro-scale brain organization is only sensible when 

axiomatically assuming that this hierarchical organization is also instrumental in enabling 

brain functionality. However, single organizational measures thus far fail to explain brain 

functionality to a sufficient degree. Finding complete or near-perfect overlaps between 

different hierarchical organizational measures would thus, as it would introduce only 
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negligible to no amounts of information, stand against the assumption that hierarchical 

organization is a key feature in enabling brain functionality. The partial overlaps, where, for 

example, a sensory-to-association axis of spatial differentiation seems to be given in multiple 

measures, suggest that there are clear governing principles that underlie general hierarchical 

organization. Notwithstanding, unique differentiations in every anatomical layer are likely 

just as important in understanding how the multi-layer, multi-scale composition of the brain 

holds the key to deciphering its functionality. Therefore, incorporating – among other 

measures -  chemoarchitectural similarity in future studies of structure-function relationships 

could be crucial in discerning general rules that hierarchical brain architecture adheres to 

(99). Regarding these general rules, as the subcortical analyses showed that functional 

communities of subcortical nuclei can be discerned using chemoarchitectural characteristics 

across multiple modes of analysis, a structure-function relationship between 

chemoarchitecture and functional specialization known in the cortex (55,62,64,66) could be 

expanded to subcortical structures. Combined with the general similarity in cortical and 

subcortical receptomic architecture indicated by the considerable overlaps between cortical 

and cortico-subcortical receptome gradients, this generalized structure-function relationship 

could be important to consider in future studies investigating how subcortico-cortical 

connections modulate functional brain networks (100,101). 

  

3.4 Limitations 

There are important limitations to be kept in mind when reading this study. Foremost, it has 

to be pointed out that not the whole cerebral neurotransmission landscape could be used to 

assess chemoarchitectural similarity, with relevant molecules, such as the AMPA glutamate 

receptor, not being part of the primary PET dataset. Future work should expand this study of 

chemoarchitectural similarity through including more NTRM density maps. Similarly, due 

to the necessary data not being present in the primary PET dataset, it was not possible to 

control for effects of current or prior use of medication or previous illnesses. Although 

NTRM density maps were obtained from healthy participants, density profiles of certain 

neurotransmitter receptors and transporters can be influenced by both prior psychiatric 

illnesses as well as prior medication, especially with psychotropic drugs (102,103). As 
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psychotropic substances also include nicotine, alcohol, and recreational drugs in general, it 

would also be desirable to control for effects of substance consumption. The findings of the 

present study have to be interpreted while keeping the limitations pertaining to the primary 

resource in mind. 

Furthermore, the group-averaged datasets employed in this study obfuscate inter-individual 

differences as an important anatomical and functional aspect that inhomogeneously affects  

different cortical regions, limiting the transferability of the findings onto the single-subject 

level especially in transmodal regions (104). 

Moreover, analytical decisions have to be kept in mind. In data preprocessing, PET density 

maps were parcellated according to a functional connectivity-derived atlas, the Schaefer 

parcellation scheme (105), where vertices are grouped according to pre-defined shared 

functional connectivity characteristics. While parcellation is a useful dimensionality 

reduction approach and introduces comparability between different architectural metrics, it 

is not guaranteed that grouping NTRM density maps based on a functional connectivity atlas 

is appropriate (106). Future studies might consider using a parcellation derived from 

cytoarchitectural characteristics (16), as neurotransmitter receptors and transporter have been 

shown to vary considerably as a function of cytoarchitectural differentiation (54). 

Additionally, the conscious decision was made to not differentiate between transporters, 

ionotropic or metabotropic receptors in creating the receptome, since these molecules 

reciprocally influence each other’s neuromodulatory propensities. As metabotrobic signaling 

can directly influence the neuromodulatory potential of ionotropic receptors (107), and the 

neuromodulatory potential of presynaptic transporters is directly related to  postsynaptic 

receptor availability, this work makes the argument that, to approximate synaptic signaling 

complexity in studies of neurochemical anatomy, the incorporation of different receptor types 

as well as transporters is crucial (1). 

Finally, a general limitation of anatomical studies which hypothesize functional implications 

of the anatomical findings also applies to the present work - the explorative and non-

interventional design, where no experiments are performed to validate or falsify a hypothesis. 

In this work, functional and structural brain anatomical measures were used to contextualize 
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findings about cortical chemoarchitecture. However, no claims pertaining to causal 

influences of chemoarchitectural differentiation on functional or structural brain aspects can 

be made – rather, the contextualization enables a multifaceted and rich characterization of 

chemoarchitectural anatomy. While hypotheses regarding the relationship between 

chemoarchitectural features and human functional brain specialization can be extrapolated 

from the results in this work, establishing a causal rather than a covariance relationship needs 

a different study design (1). 

 

3.5 Conclusion and outlook 

This work outlines the chemoarchitecture of the human cerebral cortex and subcortical 

structures. It demonstrates meaningful connections to other structural features of brain 

organization, as well as to functional organization and specialization, and outlines plausible 

relationships between receptor and transporter co-distribution patterns and morphological 

alterations found in psychiatric diseases. Furthermore, it finds that relationships between 

chemoarchitectural anatomy and functional specialization observed in the cortex are also 

apparent in subcortical nuclei. This study therefore introduces a novel layer of brain structure 

that shows meaningful connections to other structural as well as functional features in healthy 

and diseased brains. Incorporating chemoarchitectural similarity in future studies of brain 

structure-function relationships might thus provide an important advance towards 

understanding how the brain’s seemingly static structure enables functional flexibility. 

Deciphering this structure-function relationship could prove crucial in a deeper 

understanding of psychiatric and neurological brain diseases, and open new pathways to their 

prevention and treatment. 
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