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Abstract

In this thesis, we explore three structurally close frameworks for aggregating individual
(approval-based) preferences into a collective outcome, namely multiwinner elections,
participatory budgeting, and judgment aggregation. Located at the core of computational
social choice, we study aggregation mechanisms for multiagent decision-making pro-
cesses from a computational point of view, using tools and techniques from theoretical
computer science and artificial intelligence. In the respective settings, a set of agents de-
cides, which subset of predefined alternatives should appear in a collective outcome. For
this purpose, each agent provides an individual binary evaluation on whether each distinct
alternative should be selected. A constraint limits the set of feasible outcomes and a voting
rule maps the agents’ preferences to at least one feasible set of winning alternatives.

Motivated by different practical applications, the three aforementioned frameworks can
be informally distinguished as follows. In multiwinner elections, voters elect a fixed-size
committee of candidates. In participatory budgeting, citizens decide over the spending of
limited public funds on a selection of projects, each having a predefined cost for imple-
mentation. In judgment aggregation, a set of judges must come to a (logically consistent)
agreement over the truthfulness of a set of logically interconnected propositions.

Overall, the key results acquired in this thesis can be grouped into five categories: An
(i) axiomatic analysis, helps understanding the behavior of voting rules and their limi-
tations. Notably, we develop multiple impossibility results (stating that some properties
cannot be satisfied simultaneously by any voting method) and discuss potential ways to
partly escape those negative results. To select a voting rule that can realistically be used
in an election (by computing an outcome in a reasonable amount of time), it is impor-
tant to study the (ii) computational complexity of winner determination in the first place.
Our results for related decision problems range from efficiently computable algorithms
to hardness in the second level of the polynomial-time hierarchy. Contrarily, if a voting
rule is prone to some kind of (iii) manipulative interference, a high complexity for com-
puting a beneficial manipulative action might render strategic behavior infeasible. Along
with identifying the complexity for various related decision problems, we discuss ways to
prevent manipulative actions for efficiently computable rules. We uncover several (iv) re-
lationships between voting rules, linking problems that have been studied independently
closer together. Lastly, we investigate the potential impact from considering a slightly
generalized (v) ballot design.
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CHAPTER 1

INTRODUCTION

Since the very beginning of humankind, we are set in an environment, where we have
to reach collective decisions on a regular basis. Often, we need to respect conflicting
opinions, needs, and desires of complex individuals. While one can individually decide
on whether to attend a wedding, doing chores or writing a thesis (assuming there are no
opposing constraints), we need to reach a consensus when there are multiple deciders
involved. On a large scale, those questions can relate to the election of a representative by
a nation’s population, agreeing on how to spend a limited public fund by local residents,
or the verdict of guilt or innocence by a jury. But, we also encounter everyday decisions,
that need to be taken jointly, such as choosing a restaurant with colleagues, finding a
suitable movie to watch with friends, or picking a collectively enjoyed group activity.

In today’s digital and interconnected world, where machines and algorithms often act au-
tonomously on our behalf, it has become a natural part of our everyday lives to rely on
collective decisions (often made for us instead of by us). Thus, it is crucial to under-
stand and carefully choose suitable mechanisms, to make sure the final decisions are as
beneficial as possible. Consider, for example, the mobility sector, which is becoming in-
creasingly digitalized. Self-driving cars must convert a stream of (possibly contradicting)
real-time data into a set of instructions carried out by the engine each split-second [9]. Es-
pecially if moral decisions are involved (e.g., if hitting a pedestrian can only be avoided by
driving against a wall) the vehicle may become the judge of whom to endanger most [56].
Smart traffic light systems can reduce the average travel time for (most) drivers, by acting
autonomously on the current traffic situation (e.g., by prioritizing busy lanes) [176]. To
optimize the efficiency of public transport, a schedule can be planned based on the usual
routes and travel times of passengers (which act as implicit preferences) [86]. Overall,
we need to ensure that the resulting mechanisms are fair and efficient. A mathematically
grounded valuation of the underlying principles can help us to derive reliable and verifi-
able implications, which ultimately allows for a profound discussion on which mechanism
should be chosen for a specific use-case.

Luckily, questions revolving around (collective) decision-making processes and voting
have been studied extensively in the research field of social choice theory. Its origin as
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Chapter 1. Introduction

a formal and mathematical research field dates back to the 18th century1 and is usually
associated with the pioneers Jean-Charles de Borda [35] and Marie Jean Antoine Nicolas
Caritat, Marquis de Condorcet [55]. Over the years, social choice theory and related dis-
ciplines (such as game theory) have fascinated mathematicians, economists, philosophers,
and eventually computer scientists. In the early stage of research on social choice theory,
the focus was mostly on designing and analyzing specific aggregation mechanisms. The
study was increasingly complemented by a more general, axiomatic approach, initiated
by the groundbreaking impossibility result by Nobel laureate Kenneth Arrow [4] (stating
there is no aggregation method satisfying a handful of reasonable properties). Finally, just
by the beginning of this century, the subfield of computational social choice has emerged,
by studying social choice theory through a computational lens, using techniques from
computer science and artificial intelligence. In this context, computational complexity
theory [3] — a subfield of theoretical computer science that aims to quantify the com-
putational complexity associated with a problem in terms of resource requirements —
turned out to be a useful toolbox for deriving key insights. For further reading on (com-
putational) social choice, we refer to the books by McLean and Urken [129], Brandt,
Conitzer, Endriss, Lang, and Procaccia [43], and Rothe [152].

Now, to embed the title of this thesis relatable to its contents, let us briefly motivate our
primary focus and intended goals. As a foundation, we build on voting related research
fields, where a set of participants with individual preferences takes part in a collective
decision. Those fields are often studied independently and we explore three meaningful
instances, namely multiwinner elections, participatory budgeting, and judgment aggrega-
tion. Deriving individual results for each research area on a local level, we continue to
compile global implications to encourage the study on voting related fields as a collective.

Although the three aforementioned frameworks differ in motivation, use-case and nota-
tion, they share fundamental assumptions. In each framework, we consider binary valu-
ations over a set of alternatives, which are aggregated from an individual level (i.e., the
voters’ approval ballots) to at least one set of winning alternatives as collective outcome.
The aggregation process is done by using a voting rule, which (usually) must also abide
a given constraint that models, which subsets of alternatives are feasible. Of course, a
“good” voting rule should substantially reflect the voters’ preferences. Structurally, the
investigated subfields multiwinner elections, participatory budgeting, and judgment ag-
gregation are mainly distinguishable by the type of constraint that is posed on the outcome
to model feasibility.

In multiwinner elections with approval ballots [40, 81, 111], voters elect a fixed-size
committee of candidates. Therefore, a suitable constraint for feasibility must require, that
any outcome contains a predefined number of alternatives.

1Even though electoral processes and early forms of democracy can be found throughout history. For
example, in 508 B.C.E., a participatory democracy was implemented during the Athenian revolution by the
ancient Greeks [135]. In the 13th century, the Catalan philosopher Ramon Llull suggested a voting system
based on pairwise comparison [94], which is similar to modern Copeland elections [80].
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In participatory budgeting [156, 158, 8], residents specify which set of projects should
be implemented by the municipality. Further, the actual implementation of a project is
associated with a given cost, while the overall cost for realized projects should not exceed
the available funds of a participatory budgeting campaign. Hence, a suitable budgeting
constraint incorporates the projects’ costs and the given budget limit.

Lastly, in judgment aggregation [124, 71, 19], a set of judges decides over the truthfulness
of a set of (logically interconnected) allegations. Thus, the set of alternatives holds one
truth value (true or false) for each allegation and any feasible outcome should render each
allegation either true or false without resulting in a contradiction. Usually, we assume
that the judges’ opinions should also be consistent with the given logical constraint that
models feasibility.

The similarity of the three studied frameworks allows us to investigate similar questions,
whose answers can be derived using similar techniques. Overall, across all three research
fields, the key results of this thesis revolve around five recurring research goals (stated ex-
plicitly in Chapter 3). That is, we use computational complexity theory and mathematical
reasoning to uncover insights relating to (i) the axiomatic behavior of voting rules, (ii) the
computational complexity of winner determination, (iii) the computational complexity of
manipulative interference, (iv) relationships between independently studied voting rules,
and (v) the potential of improvement for voting mechanisms by considering a slightly
generalized ballot format.

Outline of this Thesis
The remainder of this thesis is organized as follows. In Chapter 2, we introduce the fun-
damental ideas and principles of computational complexity theory (see Section 2.1) and
provide an overview of multiwinner elections (see Section 2.2), participatory budgeting
(see Section 2.3), and judgment aggregation (see Section 2.4). In Chapter 3, we explore
those three separate research fields through a more abstract lens, allowing us to motivate
a total of five research goals at a higher level.

Then, each of the subsequent seven chapters is dedicated to one publication that was
developed throughout graduation. In particular, we explore “Irresolute Approval-based
Budgeting” [25] in Chapter 4, “Complexity of Manipulative Interference in Participatory
Budgeting” [22] in Chapter 5, “Time-Constrained Participatory Budgeting Under Un-
certain Project Costs” [24] in Chapter 6, “Complexity of Sequential Rules in Judgment
Aggregation” [13, 14] in Chapter 7, “Collective Combinatorial Optimisation as Judg-
ment Aggregation” [33, 34] in Chapter 8, “Distortion in Attribute Approval Committee
Elections” [21] in Chapter 9, and “Bounded Approval Ballots” [23] in Chapter 10.

Finally, we conclude in Chapter 11, by (i) summarizing to what extend we were able
to answer aspects of our initial research questions, (ii) deriving some additional results
that arise from observing all individual contributions of this thesis as a whole, as well as
(iii) discussing promising directions for future work.
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CHAPTER 2

BACKGROUND

In this chapter, we formally introduce computational complexity theory (Section 2.1),
as well as the three closely related research subfields of computational social choice,2

namely multiwinner elections (Section 2.2), participatory budgeting (Section 2.3), and
judgment aggregation (Section 2.4).

2.1 Computational Complexity Theory
In the age of digitalization we are accustomed to getting answers to seemingly complex
questions in a matter of seconds. Using highly optimized algorithms on powerful ma-
chines in an interconnected world, we are able to render hyperrealistic three-dimensional
models in real-time, simulate complex real-world phenomena (such as forecasting climate
change), or update routes for navigation on the fly by identifying latest traffic bottlenecks
via large-scale data analysis. More recently, artificial intelligence and learning-based al-
gorithms are on the rise, outperforming us in a variety of human-like tasks, such as mas-
tering the famous game of Go by playing against itself [157] or using high level natural
language processing to either simulate human interactions [127] or generate high-quality
images based on text prompts [60].

Admittedly, comprehensive advances in computation power and algorithm efficiency over
the last decades rarely let us wonder, what we can not compute. Yet, by the 1930s, even
long before commercially usable computers, it was discovered that there are problems,
which are not decidable by any algorithm (i.e., a solution is not always computable). As
most prominent example for such a problem, introduced and proven to be undecidable by
Alan Turing [169] in 1936, the halting problem asks whether a given algorithm eventually
terminates. Following this result, there has been a long history on the study of undecidable

2For further reading, see Brandt, Conitzer, Endriss, Lang, and Procaccia [43], as well as Rothe [152].
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Chapter 2. Background

problems in the field of computability theory (for further reading, we refer to the textbook
by Cooper [59]). Contrarily, moving to decidable problems (where a solution is always
computable), computational complexity theory is concerned with classifying decidable
problems in terms of resource requirements and efficiency.3 By this day, there are still
countless problems, for which it is still unknown, whether we are able to derive an answer
efficiently, i.e., by using a deterministic algorithm in a reasonable amount of time.4 To give
an intuitive example of such a problem, consider the following everyday situation.

Example E1. A smart art collector steps into a local antique shop, filled with a di-
verse and surprisingly valuable collection. Well prepared, the collector is aware of the
appraised value for all pieces, which significantly exceeds the asking price. Having a
limited budget on hand, what artworks should she purchase to maximize the potential
return of her investment?

Indeed, the problem illustrated in the above example, which is also known under the name
KNAPSACK problem [103, 84], generally portraits a computationally hard problem (for
which no known deterministic polynomial-time algorithm exists). To understand notions
of hardness for a problem, the remainder of this section introduces all necessary con-
cepts and is organized as follows. In Subsection 2.1.1, we formalize problem types for a
structural study of so-called decision problems. In Subsection 2.1.2, we introduce Turing
machines as an abstract computation model to quantify the complexity of a problem.5

This allows us to group problems into so-called complexity classes, explored in Subsec-
tion 2.1.3. Finally, in Subsection 2.1.4, we discuss a notion of hardness for complexity
classes, implying lower bounds on the resources necessary to solve a problem.

2.1.1 Problem Types and Instances
In theoretical computer science, we characterize problems by the description of a valid
input (called instance) and an expected output type (declaring what kind of solution is ex-
pected). In Example E1, a valid instance is given by a finite collection of artworks, each
associated with an appraised value and an asking price, and an available budget of funds
to spend by the collector. Although problems are in some way unique, we can group vari-
ous problems together by their expected output type. For search problems [1], as depicted
in Example E1, the output to a given instance is a solution meeting the requested require-
ments (i.e., an affordable art selection that maximizes the expected return of investment).
For optimization problems [108] the output is an optimal (usually maximum or minimum)
value (e.g., the maximum achievable expected return of investment under the given bud-

3Although this chapter provides a short introduction to computational complexity theory, we refer to the
textbooks by Arora and Barak [3], Papadimitriou [136], and Rothe [151] for an extensive overview.

4As a convention, we call functions (as well as problems) whose output can be computed by a determin-
istic algorithm in time polynomial in its input size efficiently computable or tractable.

5More precisely, the complexity of a problem refers to the complexity associated with the best perform-
ing algorithm that is able to solve the given problem.
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2.1. Computational Complexity Theory

get constraint). For counting problems [171], we are interested in the number of valid
solutions (e.g., the number of possible ways to purchase artworks yielding a maximum
expected return).

In this thesis, we mainly focus on decision problems [99, 169], where the output is al-
ways either YES or NO (e.g., describing whether there is an affordable selection of art-
works, whose expected return surpasses a desired target value). Presented in a common
notation, the decision variant of the KNAPSACK problem [84] (informally described in
Example E1) can be formally defined as follows:

KNAPSACK

Given: Two finite lists of equal length containing positive integers to specify weights
W = (w1, . . . , wm) ∈ Nm

+ and utilities U = (u1, . . . , um) ∈ Nm
+ and two

positive integers modeling a capacity and a target value C, V ∈ N+.
Question: Is there a subset of items S ⊆ [m] with

∑︁
i∈S wi ≤ C and

∑︁
i∈S ui ≥ V ?6

For a decision problem A, we say that I is an instance of A, if and only if its contents do
abide the specified input requirements. Further, we say I is a YES-instance for A (also
written as I ∈ A), if and only if the answer to the question in A is YES, given the input I.
Analogously, we refer to an instance I ̸∈ A as NO-instance for A.7 As a decision problem
A can be characterized by its YES-instances, we sometimes write A as formal language.8

That is, assuming a suitable encoding of an instance I as a finite string (called word)
over a finite alphabet consisting of unique symbols, A can be interpreted as the (possibly
infinite) collection of all words encoding YES-instances, i.e.,

A = {I | I is a YES-instance for A}.

Exploiting the duality of the output of decision problems, let us denote by A the comple-
ment of a decision problem A, containing all NO-instances. That is,

A = {I | I is a NO-instance for A}.

Extrapolating this principle of duality from instances to problems, we can group all kinds
of problems into formal languages for a more structured analysis. For example, we might
define a class of problems C, which contains all decidable decision problems. In a similar
way, for any class of decision problems C, its so-called co-class coC contains all comple-
ment problems for C, i.e.,

coC = {A | A ∈ C}.

In computational complexity theory, a classification of problems is usually done by group-
ing problems with a similar complexity (i.e.., time and/or resource requirements necessary

6For integers i, j with i ≤ j, let [i, j] = {i, i+ 1, . . . , j} and [i] = [1, i] denote interval sets.
7For example, it is easy to verify that ((1), (1), 1, 1) is a YES-instance for the KNAPSACK problem,

while ((1, 2), (2, 3), 3, 6) is a NO-instance, and ((1, 2), (2), 4) is not an instance at all, as the lists of integers
do not have matching length and one parameter is missing.

8Originated from the work by Chomsky [52]. For further reading, see the textbook by Harrison [95].
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Chapter 2. Background

to find a solution) into so-called complexity classes. As an intuitive informal example, the
complexity class P is the class of all decision problems, which can be decided by a deter-
ministic algorithm whose number of steps remains polynomial in the input size. A struc-
tured mathematical foundation to classify problems by time and resource requirements,
originated by Hartmanis and Stearns [96], relies on Turing machines. Turing machines,
introduced by and named after Alan Turing [169], are a powerful computational model
to quantify the complexity of a given problem. Following the Church-Turing thesis [53,
169], which is generally assumed to be true, any intuitively computable function (and thus
any executable algorithm) can be translated into a corresponding Turing machine and vice
versa. We formally introduce Turing machines in the upcoming subsection, to be able to
properly define all complexity classes relevant to this thesis in Subsection 2.1.3.

2.1.2 Turing Machines
To compute an output from a given input, we use an abstract computational model intro-
duced by Turing [169], namely Turing machines. A Turing machine is a simple abstract
machine equipped with the following four basic components. An infinite memory tape is
divided into single cells that can hold up to one symbol from a finite alphabet. A state reg-
ister holds the current state of the machine, chosen from a finite set of predefined states.
A head, which is always pointed at exactly one cell of the memory tape, is able to read
and overwrite its current cell’s content and optionally move to an adjacent cell. Finally,
a finite set of transition rules dictates the action of the head and the next state of the ma-
chine, based on the current content of the state register and the symbol read at the current
position of the head.9

To perform a computation, a given Turing machine starts from an initial configuration,10

where an input word is written on the memory tape with the head pointing at the leftmost
symbol, while the state register is holding an initial state. Then, the Turing machine does
one computational step at a time according to its transition rules, until eventually the ma-
chine holds and accepts the input if and only if a clearly marked accepting state is reached.
For simplicity, we assume that, if there is no transition rule explicitly defined for a symbol
and a state, the machine stays in this position forever (i.e., the current symbol, the state
register and the head’s position will remain unchanged). Moreover, if an accepting state
is unreachable from a configuration, the machine will loop forever.

We distinguish between deterministic Turing machines (DTMs), where there is exactly
one transition rule for each suitable pair (of the current state and the most recently read
symbol) and non-deterministic Turing machines (NTMs), where there can be multiple
transition rules for a configuration. For the latter, the machine branches its computational

9Note that (along with a predefined set of states and transition rules) the distinct description of an explicit
Turing machine requires further specifications, such as an initial state and a (set of) accepting state(s).

10A configuration can be interpreted as a snapshot of the machine at a given point of time, capturing the
contents of the memory tape, the head’s position and the state of the machine.
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path into multiple transitions in parallel and we assume an input is accepted by a given
NTM if and only if there is at least one path resulting in an accepting state.

In case an accepting state is reached, we can infer an output from the contents of the mem-
ory tape, allowing us to find answers for functional problems, optimization problems, or
search problems. Analogously, for counting problems the correct answer may be derived
from an NTM’s number of accepting paths. Yet, for this thesis (concerned with deci-
sion problems) it is sufficient to interpret Turing machines as decider model to determine
whether a given input word results in an accepting state.

For a Turing machine M , we denote by L(M) the formal language, containing all inputs
that result in an accepting state. That is, expecting an input word from a predefined
alphabet Σ,11

L(M) = {w ∈ Σ∗ |M reaches an accepting state on input w}.

Assuming a suitable encoding of a (decidable) decision problem A, this allows us to
express A by L(M) = A for a matching Turing machine M accepting A. In terms of
efficiency, there might be infinitely many machines accepting A. Some of which might
compute the result using fewer computational steps, require less memory, or only use
deterministic transitions. To explore the resource requirements for a Turing machine to
model a decision problem, let us briefly introduce time complexity [96] and oracle Turing
machines [170], allowing us to properly define all complexity classes that are relevant to
this thesis in the upcoming subsection.

Time Complexity
The problems encountered in this thesis mostly rely on time complexity, measured by
the number of computational steps required to decide on the acceptance of a given input
(with respect to its size). Formally, when considering a Turing machine M along with an
input word w (or analogously a decision problem A with a suitable instance I), we define
its length |w| (or |I|) as the size of the input. Note that for an alphabet Σ consisting of
|Σ| = m symbols, there are mn potential inputs with size n ∈ N0.12 Given an algorithm
or, in particular, a Turing machine M along with an input w, we quantify time by the
number of computational steps necessary to decide whether w ∈ L(M) holds.

To measure the worst-case run-time of a Turing machine, we make use of the Bachmann-
Landau notation [114]. A function f : N0 → N0 is bounded asymptotically upwards by
a function g : N0 → N0, written f ∈ O(g), if there exists a constant c ∈ R+ and a suffi-
ciently large value n0 ∈ N0, such that for all n ≥ n0 it holds that f(n) ≤ c · g(n). In
this thesis, we mainly distinguish between constant functions (O(1)), logarithmic func-
tions (O(log(n))), linear functions (O(n)), polynomial functions (O(nO(1))), and expo-
nential functions (O(cn) for c > 1).

11Σ∗ refers to the set of words, that can be formed using a finite number of letters from alphabet Σ.
12We usually assume binary encoding over the fixed alphabet Σ = {0, 1}.
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Transferring asymptotic bounds to the run-time of a Turing machine M , we say that M
has a run-time bounded by a function g, if any accepted input w ∈ Σ∗ of size |w| = n can
be decided in at most O(g(n)) computational steps. Hence, a polynomial-time bounded
Turing machine M , given any (accepted) input w ∈ L(M) of length |w| = n, always
terminates after at most O(nO(1)) steps (or loops forever in case w ̸∈ L(M)).

Although not focus of this thesis, we might similarly investigate the space complexity of
a Turing machine by measuring the number of memory cells required for a successful
computation, as suggested by Stearns, Hartmanis, and Lewis [163]. Observe that space is
limited by time, as we require one computational step to manipulate the content of a cell.

Oracle Turing Machines
An oracle Turing machine M is equipped with an additional memory tape (called ora-
cle tape) and a so-called oracle for a predefined decision problem A, written MA. By
querying its A-oracle, the Turing machine is able to decide an instance for A in one com-
putational step. More precisely, for any precomputed word w, MA can verify at any time
whether w ∈ A holds and write the answer (i.e., zero or one) onto a cell of the oracle
tape. We extend this definition by considering a class C of decision problems as an oracle
instead of a single problem.13 Then, MC may query its C-oracle to decide instances for a
fixed problem in C, inducing the language L(MC) =

⋃︁
A∈C L(M

A).

For a more evolved study on the usage of a given oracle, we may interpret the number of
queries required for a successful computation as a resource requirement. If the number
of allowed oracle queries is limited by a fixed constant k ∈ N+, we write MC[k]. If the
number of queries must be logarithmic in the input size, we write MC[log]. In a related
definition (see Kadin [101]), the oracle can only be accessed once to decide multiple
instances for a problem in C in parallel at any time of the computation, denoted by MC

|| .
Note that k queries posed sequentially (modeling one path in a binary decision tree) can
be simulated by posing 2k − 1 queries in parallel [151].

2.1.3 Complexity Classes
Finally, we are set up to formally introduce all complexity classes encountered in this
thesis. As we see at the end of this subsection, the considered classes are all contained in
the second level of the polynomial-time hierarchy [130, 164], some of which are contained
in the Boolean hierarchy over NP [47, 48]. In the following, we introduce each of the
relevant complexity classes separately, before discussing how those classes are related.

To give a more intuitive understanding, we complement formal definitions with canonical
decision problems, falling exactly into the respective classes. To do so, let us take a
short detour and define propositional logic first, to subsequently provide variations of

13Recall that a class C simply is a (possibly infinite) collection of problems.
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the famous SATISFIABILITY problem [58, 103] (usually denoted by SAT) for each of the
relevant complexity classes.

Definition (Propositional Logic). In the language of propositional logic, we consider
a set of atomic propositionsX = {x1, . . . , xn}, which can hold exactly one of two truth
values, i.e., xi ∈ {0, 1} for all i ∈ [n] (where xi = 1 implies that xi evaluates to TRUE

and xi = 0 implies that xi evaluates to FALSE). Using the connectives ¬ (negation),
∧ (conjunction), ∨ (disjunction), → (implication), and ↔ (equivalence), as well as the
constant propositions 0 and 1, we can construct more evolved propositional formulas
inductively as follows. Given a truth assignment x ∈ {0, 1}n for the atomic proposi-
tions X and two propositional formulas α and β, the following holds.

φ = ¬α is a propositional formula with φ(x) = 1− α(x).

φ = α ∧ β is a propositional formula with φ(x) = min(α(x), β(x)).

φ = α ∨ β is a propositional formula with φ(x) = max(α(x), β(x)).

Further, α → β is shorthand for (¬α)∨β and α ↔ β is short for (α → β)∧ (β → α).
Finally, a truth assignment x satisfies a propositional formula φ if and only if φ(x) = 1.

For a proportional formula φ over a set of atomic propositions X with |X| = n, let
L(φ) = {x ∈ {0, 1}n | φ(x) = 1} denote the formal language, that consists of all
satisfying truth assignments for φ. In this subsection, we present all canonical decision
problems as questions one might ask about the (not explicitly given) set of satisfying as-
signments L(φ), induced by a given formula φ. This allows for a unified perspective and
for a more profound understanding of the specific factors that contribute the complexity
of a given problem. We illustrate the respective problems compactly in Figure 2.1 (re-
spective complexity classes are defined throughout the remainder of this subsection) and
the relationships between relevant complexity classes in Figure 2.2.

The Class P
The complexity class P contains all decision problems that can be decided in deterministic
polynomial time with respect to the size of an input instance. Formally, using Turing
machines as a computational model for P, that is

P = {A | There is a polynomial-time bounded DTM M with L(M) = A}.

Note that P is closed under complement, i.e., P = coP.

A typical example for a problem in P is to decide whether a given propositional formula φ
evaluates to TRUE for a given truth assignment x ∈ {0, 1}n of the n atomic variables in φ.
Formally, the question, whether x ∈ L(φ) holds, lies in P. Indeed, it is easy to verify,
whether x satisfies φ, by sequentially resolving the connectives in φ.
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L(φ)

φφ

x ∈ L(φ)?L(φ) ̸= ∅? L(φ) = ∅?

max
x∈L(φ)

hw(x) = k? max
x∈L(φ)

hw(x) ̸= k?

max
x∈L(φ)

hw(x) odd? max
x∈L(φ)

x odd?

∃xp∀xs : xpxs ∈ L(φ)? ∀xp∃xs : xpxs ∈ L(φ)?

P
NP coNP

DP coDP

ΘP
2 ∆P

2

ΣP
2 ΠP

2

Figure 2.1. Collection of decision problems for different complexity classes, formulated
for a given propositional formula φ. Note that x is explicitly given for the problem in P;
k is a given variable for the problems in DP and coDP; and for the problems in ΣP

2 and
ΠP

2 , xp ∈ {0, 1}k (respectively xs ∈ {0, 1}n−k) has a predefined length k, specified by an
instance. Lastly, hw(x) =

∑︁
i∈[|x|] xi refers to the hamming weight of a binary string x.

The Classes NP and coNP

The complexity class NP contains all decision problems, whose YES-instances can be
verified in deterministic polynomial time. For verification, we can use a certificate of
polynomial length (called witness). As a computation model for the class NP, we consider
non-deterministic Turing machines with a polynomial run-time, i.e.,

NP = {A | There is a polynomial-time bounded NTM M with L(M) = A}.

To link both definitions closer together, note that any branch resulting in an accepting
state (in polynomial time) can be interpreted as a universal witness.

The canonical problem for the class NP is the SATISFIABILITY problem [58, 103] (SAT),
where the task is to decide, whether a given propositional formula φ is satisfiable (by
at least one truth assignment), i.e., whether L(φ) ̸= ∅ holds. It is easy to see that this
problem belongs to the class NP, as we can use any satisfying truth assignment x ∈ L(φ)

as a witness to verify that φ is satisfiable. Note that we are not able to provide a suitable
witness in case φ is unsatisfiable.

In turn, the complexity class coNP contains those problems, whose NO-instance can be
verified in deterministic polynomial time. We may analogously formulate the comple-
menting problem for SAT, namely SAT, as follows. Given a propositional formula φ,
the question is whether φ is unsatisfiable, i.e., whether L(φ) = ∅ holds. Similarly, a
NO-instance can be identified by any satisfying truth assignment x ∈ L(φ) as witness.

12



2.1. Computational Complexity Theory

The Classes DP and coDP

Any decision problem in the complexity class DP, formally introduced by Papadim-
itriou and Yannakakis [140], may be seen as intersection of an NP-problem and a coNP-
problem. In particular most DP problems can be split into two parts: An NP-question and
a coNP-question. The answer to a given DP-instance is YES if and only if the answers to
both, NP and coNP, questions are YES. Formally, that is

DP = {L1 ∩ L2 | L1 ∈ NP and L2 ∈ coNP}.
Formulating a suitable problem for DP,14 we may ask for a given satisfiable propositional
formula φ, whether the largest number of positive literals contained in a satisfying assign-
ment is equal to a given parameter k ∈ N0. Formally, if hw(x) =

∑︁
i∈[|x|] xi refers to the

hamming weight of x, we ask whether there exists an x ∈ L(φ) with hw(x) ≥ k and there
exists no y ∈ L(φ) with hw(y) > k (i.e., y ∈ L(φ) implies hw(y) ≤ k).

In turn, problems in coDP may be split in a similar way, where the answer to a given
coDP-instance is YES if and only if at least one of the two posed NP- and coNP-questions
returns YES, i.e.,

coDP = {L1 ∪ L2 | L1 ∈ NP and L2 ∈ coNP}.
For an analogous coDP problem, we may ask, whether the above does not hold. Present-
ing the resulting NP-question first, we ask if there exists an y ∈ L(φ) with hw(y) > k or
there exists no x ∈ L(φ) with hw(x) ≥ k (i.e., x ∈ L(φ) implies hw(x) < k).

The Classes ΘP
2 and ∆P

2

The class ΘP
2 = PNP[log], originally introduced by Papadimitriou and Zachos [138] (and

respectively the class ∆P
2 = PNP [164]), contains exactly those problems that can be

decided in deterministic polynomial time, while querying an NP-oracle a logarithmic
(respective polynomial) number of times. Both classes are closed under complement, i.e.,
ΘP

2 = coΘP
2 and ∆P

2 = co∆P
2 .

Natural problems in the classes ΘP
2 and ∆P

2 are decision problems where a (computation-
ally hard) optimization problem has to be solved first. Investigating a continuous search
space for the value to optimize, we may use binary search, where each search step requires
solving an NP-problem. Overall, if the space of possible values to optimize is bounded by
a polynomial (respectively, is exponential), binary search requires solving a logarithmic
(polynomial) number of NP-queries, resulting in membership to ΘP

2 (or ∆P
2 ).

Building on the results by Krentel [108], a canonical problem for ΘP
2 is to decide for

a propositional formula φ, whether a satisfying assignment with the highest number of
positive literals contains an odd number of positive literals. Formally, asking whether
maxx∈L(φ) hw(x) is odd is in ΘP

2 . For ∆P
2 , we may ask whether the lexicographically

maximum satisfying assignment is odd, i.e., whether maxx∈L(φ) x is odd.
14For related problems, see Papadimitriou and Yannakakis [140] and Papadimitriou and Wolfe [137].
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The Classes ΣP
2 and ΠP

2

The class ΣP
2 = NPNP contains all decision problems, whose YES-instances can be de-

cided by a non-deterministic algorithm with access to an NP-oracle in polynomial time.
Hence, an algorithmic model for ΣP

2 are polynomial-time bounded non-deterministic Tur-
ing machines equipped with an NP-oracle. Its co-class ΠP

2 = coΣP
2 = coNPNP respec-

tively contains the problems, whose NO-instances can be decided by such an algorithm.

As canonical problems for both classes, consider a propositional formula φ over proposi-
tional variables X = {x1, . . . , xn}, partitioned by a given parameter k ∈ [n] into two sets
Xp = {x1, . . . , xk} and Xs = {xk+1, . . . , xn} to model prefix and suffix. A question in
ΣP

2 (also known as QUANTIFIED BOOLEAN FORMULA [164, 175]) is, whether there ex-
ists a prefix xp ∈ {0, 1}k (i.e., a partial truth assignment over Xp), such that all extensions
of xp by a suffix xs ∈ {0, 1}n−k (i.e., an assignment over Xs) yield a satisfying assign-
ment xpxs ∈ L(φ). In contrast, a typical ΠP

2 -question is whether every prefix xp ∈ {0, 1}k
can be extended by a suffix xs ∈ {0, 1}n−k to a satisfying assignment xpxs ∈ L(φ).

Hierarchies over NP

For completeness, let us conclude this subsection by presenting two inductive definitions:
For the Boolean hierarchy over NP (denoted by BH(NP)), formally defined by Cai et
al. [47, 48], and the polynomial-time hierarchy (denoted by PH), introduced by Meyer
and Stockmeyer [130, 164]. This allows us to embed all previously defined complexity
classes into a larger context.

The lowest levels of the Boolean hierarchy BH(NP) are defined as BH0(NP) = P and
BH1(NP) = NP. For all k ≥ 1, the remaining levels can be defined inductively as

BH2k(NP) = {L1 ∩ L2 | L1 ∈ coNP and L2 ∈ BH2k−1(NP)} and

BH2k+1(NP) = {L1 ∪ L2 | L1 ∈ NP and L2 ∈ BH2k(NP)}.

Overall, the Boolean hierarchy BH(NP) contains the union of all complexity classes de-
scribed above, i.e.,

BH(NP) =
∞⋃︂

k=0

BHk(NP).

The polynomial-time hierarchy PH can be defined inductively in a similar way. For the
bottom level, it holds that P = ∆P

0 = ΣP
0 = ΠP

0 . From there it is sufficient to define
the (i + 1)-th level with i ≥ 0. That is, ∆P

i+1 = PΣP
i = PΠP

i ,15 ΣP
i+1 = NPΣP

i = NPΠP
i

and ΠP
i+1 = coNPΣP

i = coNPΠP
i . As an important remark, note that a polynomial-time

15As analogues for ∆P
i+1 with a bounded number oracle queries, we can define infinitely many com-

plexity classes PΣP
i [1] ⊆ PΣP

i [2] ⊆ . . . ⊆ PΣP
i [log] = ΘP

i+1 with ΣP
i ∪ ΠP

i ⊆ PΣP
i [1] and ΘP

i ⊆ ∆P
i . An

equivalent definition of ΘP
i+1 = P

ΣP
i

|| allows for a polynomial number of oracle queries in parallel [97, 46].
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bounded Turing machine equipped with a P-oracle can be simulated by the underlying
machine directly, deriving the following classes for the first level: ∆P

1 = PP = P, ΣP
1 =

NPP = NP and ΠP
1 = coNPP = coNP. Finally, the polynomial-time hierarchy PH is

defined as union of all its contained levels, i.e.,

PH =
∞⋃︂

i=0

∆P
i =

∞⋃︂

i=0

ΣP
i =

∞⋃︂

i=0

ΠP
i .

Figure 2.2 illustrates relationships between complexity classes in the polynomial-time hi-
erarchy. Classes further to the left are contained in classes further to the right, showcasing
how BH(NP) is contained in the second level of PH.

P

NP

coNP

PNP[1]
||

DP

coDP

PNP[2]
|| · · · BH ΘP

2 ∆P
2

ΣP
2

ΠP
2

ΘP
3 ∆P

3

ΣP
3

ΠP
3

· · · PH

Figure 2.2. Illustration of BH(NP) contained inside the second level of PH. Complexity
classes further to the left are contained in complexity classes further to the right.

2.1.4 Reducibility, Hardness, and Completeness
To this point, we have only investigated complexity classes from an upper bound perspec-
tive. That is, showing that a problemA is contained in a complexity class C implies thatA
can be decided by the computational model defined for C. Yet, it remains unclear whether
we can solveA using less resources, i.e., whetherA ∈ C ′ ⊂ C holds for a class C ′ with sig-
nificantly lower complexity requirements. For example, showing SAT ∈ NP reveals that
any SAT instance can be solved by a polynomial-time bounded non-deterministic Turing
machine, without giving an indication whether non-determinism is a necessary require-
ment for solving (i.e., whether even SAT ∈ P could hold). To establish lower bounds on
the computational complexity of a problem, we consider so-called reductions to show that
a problem B is at least as hard to decide as all problems of a given complexity class C.

Let us briefly motivate the concept of reductions and embed it into the larger context
of theoretical computer science. Reductions are a relatively simple, yet powerful tool
to derive valuable insights about computational aspects of a given problem. Informally,
instead of designing an algorithm for a given problem from scratch, a reduction relies
on algorithmically solving a problem A by building on the knowledge of how to solve a
problem B. In particular, this is done by specifying how to translate any instance of A
into an instance ofB, such that YES- and NO-instances are preserved. Without any further
restrictions posed on the underlying reduction, let us illustrate what implications reducing
A to B hold in the context of computability theory. If B is decidable, so must be A, as by
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Chapter 2. Background

construction we can solve A through B. By contraposition, if A is undecidable, we can
deduce that B is undecidable, too.

To meaningfully extend this idea into the context of computational complexity theory, we
pose restrictions on the available resources (e.g., time and space) of a reduction (concep-
tually similar to complexity classes). Assume we have found a reduction from A to B,
and B belongs to a complexity class C. If the reduction in question is sufficiently efficient
(i.e., has an insignificant complexity in contrast to the complexity required to solve prob-
lems in C), then A ∈ C follows immediately by construction. Vice versa, if we know that
A is hard for C (i.e., cannot be solved using significantly less resources than available by
the computational model for C), then B must be at least as hard to solve as A.

Although there are manifold reduction types,16 for this thesis we only consider polynomial-
time many-one reductions (for decision problems),17 defined as follows.

Definition (Polynomial-time many-one reduction). Let A and B be two decision prob-
lems with a suitable binary encoding for respective instances. Then A is polynomial-
time many-one reducible to B, written as A ≤p

m B, if there is a polynomial-time com-
putable function (with respect to its input’s size) f : {0, 1}∗ → {0, 1}∗, such that for all
I ∈ A it holds that

I ∈ A⇔ f(I) ∈ B.

By design, it is easy to verify that ≤p
m is a reflexive and transitive relation. Indeed, for

any decision problem, reflexivity follows by using the identity function (i.e., f(I) = I),
while transitivity follows from nesting two polynomial-time computable functions (i.e.,
f(I) = f1(f2(I))) and the fact that the number of computational steps for the resulting
composite function remains asymptotically bounded upwards by a polynomial.

Having a fixed reduction type in place, namely polynomial-time many-one reductions,
let us discuss for which complexity classes, ≤p

m is sufficiently efficient to actually derive
meaningful implications via reductions. Informally, we call a complexity class C closed
under ≤p

m, if the resources used by any such reduction cannot significantly impact (i.e.,
exceed) the resources available by C. In particular, if A ≤p

m B and C is closed under ≤p
m,

then B ∈ C implies A ∈ C. This allows us to derive implications about the lower bound
complexity of a problem, i.e., the minimum resource requirement to solve a problem.
A problem B is called C-hard, if C is closed under ≤p

m and every problem A ∈ C is
reducible to B, i.e., A ≤p

m B.18 Informally, this indicates that B is computationally at
least as hard to solve as any other problem in C. A C-hard problemB is called C-complete,
if it additionally holds that B ∈ C.

16Prominent reductions being Turing [57], metric [108], truth-table [112], or log-space reductions [113].
17Also known as Karp reductions, following the work by Karp [103].
18By transitivity of ≤p

m, C-hardness follows by showing A ≤p
m B for only one C-hard problem A.
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It turns out, that polynomial-time many-one reductions (≤p
m) are sufficiently efficient to

derive closure for all complexity classes in the scope of this thesis. In particular, for any
class C with P ⊆ C, it holds that C is closed under polynomial-time many-one reductions.
To this day, the exact inclusion relationships between countless complexity classes remain
an open problem. As most prominent representative, the question whether P ⊆ NP is
either a real inclusion or an identity is among the seven Millennium Prize Problems [58].
That means, although an NP-complete problem B might be solvable by a deterministic
polynomial-time algorithm (effectively proving P = NP), there is no known, efficient
algorithm available today to effectively solve B. In case P ⊊ NP, there will never be
such an algorithm.

We conclude this section with various references to related literature on complete prob-
lems for the complexity classes listed in Subsection 2.1.3. First of all, note that any
presented variation of the satisfiability problem, depicted in Figure 2.1, is complete for
its respective complexity class.19 As a groundbreaking starting point, both, Cook [57]
and Levin [123], independently demonstrated NP-completeness for SAT by reducing the
description of any non-deterministic Turing machine along with an input to a proposition
formula of polynomial size. Having a canonical base problem to reduce from in place,
Karp [103] used polynomial-time many-one reductions to prove NP-completeness for 20
additional problems. An extensive list of many NP-complete problems, can be found in
the textbook by Garey and Johnson [84]. Schaefer and Umans [155] provided a similar list
for the second and third levels of the polynomial-time hierarchy. Papadimitriou [139] was
the first one to present a natural complete problem for ∆P

2 , namely asking whether an opti-
mal route for a traveling salesperson problem is a unique solution. Krentel [108] provided
a list of several complete problems for ΘP

2 and ∆P
2 and showed how to derive DP-hard

problems from related optimization problems. Lastly, Wagner [172] and Lukasiewicz
and Malizia [128] showed how to construct ΘP

2 -hard problems from NP-complete prob-
lems. Notably, Hemaspaandra, Hemaspaandra, and Rothe [98] exploited the result by
Wagner, to detect the first natural ΘP

2 -complete problem in the context of computational
social choice, namely whether a distinct candidate wins a Dodgson election (named after
Charles Dodgson [67], better known under his pen name Lewis Carroll).

19 Completeness for the introduced problems in NP, ∆P
2 , and ΣP

2 follow from cited references. For DP

and ΘP
2 , let us provide a simple reduction. For every graph G = (V,E), we can find a compact formula

φ in 2-CNF, such that L(φ) models exactly the set of all cliques [84] appearing in G (by adding clause
(¬x∨¬y) for every (missing) edge {x, y} ̸∈ E). Deciding whether the size of a largest clique is equal to k

(respectively is odd) is DP-hard [140] (ΘP
2 -hard [108]). Completeness for co-classes follows immediately.
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Chapter 2. Background

2.2 Multiwinner Elections
In multiwinner elections, the goal is to elect a set of candidates based on individual vot-
ers’ preferences. Applied to real-world scenarios, the set of elected candidates may be
a committee of experts, a selection of talks at a conference or finding a set of suitable
appointments for a recurring meeting. Outside the scope of this thesis, a vast amount
of literature considers elections with ordinal (or cardinal) preferences [20, 177], which
sometimes are assumed to abide a predefined structure [70]. In this thesis, we mainly
focus on dichotomous preferences using approval ballots (formally introduced in the up-
coming subsection) and two extensions (introduced in Subsection 2.2.2).

2.2.1 Approval-based Committee Elections
In this subsection we, focus on multiwinner elections with two popular restrictions, widely
considered throughout related literature: (i) we limit feasible outcomes to be fixed-size
committees, and (ii) we assume the voters’ preferences are cast using approval ballots
(where each voter submits a set of preferred candidates).20

Formally, in multiwinner elections, we are given a set of m alternatives (also referred to
as candidates) C = {c1, . . . , cm} and a set of n agents (called voters) V = {v1, . . . , vn},
where each voter vi ∈ V casts an approval ballot Bi ⊆ C to express her individual
preference over the set of candidates. Then each multiwinner election E is characterized
by a pair E = (C, V ) and the collection E contains all possible elections E ∈ E . For a
positive integer k ∈ N+, let Pk(C) = {W ⊆ C | |W | = k} be the set of all k-committees.
Finally, an (approval-based committee) voting rule F maps an election E ∈ E along with
an integer k ∈ N+ to a non-empty set of winning k-committees F (E, k) ⊆ Pk(C).21For
illustration, consider the following example.

Example E2. For a long-distance flight, an airline offers a movie streaming service
for their passengers, which is included in the ticket price. The airline pays per movie
(instead of per stream) and each customer is asked to select those movies, she might
enjoy. To reduce cost for the airline, only three movies will be available throughout the
flight. Formally, let C = {c1, . . . , c15} be the set of movies that can be purchased by
the airline and V = {v1, . . . , v50} be the set of passengers. Each passenger vi ∈ V

submits her favorite subset of movies Bi ⊆ C. Finally, a voting rule F outputs a (set
of) recommended movie selection(s) F ((C, V ), 3) ⊆ Pk(C), which should be available
during the flight.

20For further reading on committee elections with approval-based preferences, we refer to the article by
Faliszewski, Skowron, Slinko, and Talmon [81] and the textbooks by Brams and Fishburn [40], Laslier and
Sanver [120], and Lackner and Skowron [111].

21As a convention to avoid improperly defined rules, we always assume that |C| = m ≥ k holds.
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2.2. Multiwinner Elections

Next, let us define a large class of voting rules, called Thiele methods, introduced by
Thiele [167] in 1895. Thiele methods are based on the idea of quantifying the sat-
isfaction of a voter vi ∈ V with a possible outcome W ∈ Pk(C), by mapping the
size of its intersection with her approval ballot |Bi ∩ W | to a non-decreasing value.
Following the notation by Lackner and Skowron [111], for a non-decreasing function
w : N0 → R, we define a scoring function parameterized by w as scorew : 2C × 2C → R
with scorew(Bi,W ) = w(|Bi ∩ W |) for an individual ballot Bi ⊆ C and a commit-
tee W ∈ Pk(C). A popular approach for a voting rule F to derive a set of outcomes
from the individual scores, is to maximize the utilitarian social welfare by selecting those
k-committees that maximize the sum of all voters’ satisfaction.

Let us portray three prominent examples for utilitarian Thiele methods (also appearing in
his original paper [167]): The (standard) multiwinner Approval Voting rule (AV), where
wAV is the (possibly scaled) identity function; the Chamberlin-Courant rule for approval-
ballots (CC), named after an ordinal ballot variant by Chamberlin and Courant [50], where
wCC is the unit step function; and the Proportional Approval Voting rule (PAV), where
wPAV is the harmonic series. To group functions that yield an equivalent outcome and
exclude trivial scores (i.e., w(x) = 0 for all x ∈ N+), we set w(0) = 0 and w(1) = 1.
Hence, the above utilitarian voting rules are modeled by

Fw((C, V ), k) = argmax
W∈Pk(C)

∑︂

vi∈V
w(|Bi ∩W |)

with

wAV(x) = x; wCC(x) = min(x, 1); wPAV(x) =
∑︂

j∈[x]

1

j
.

For an illustration of a multiwinner election and the (utilitarian) multiwinner Approval
Voting rule, see Figure 3.1 in Chapter 3. Analogously, we can maximize the egalitar-
ian social welfare, where the overall voters’ satisfaction is measured by their worst-off
member.22 Formally, for any scoring function score : 2C × 2C → R, let the respective
egalitarian rule be

F ((C, V ), k) = argmax
W∈Pk(C)

min
vi∈V

score(Bi,W ).

Note that mostly throughout literature, a candidate not appearing in an approval ballot is
treated as an abstention, rather than a rejection. Hence, a voter is not affected negatively
from adding a candidate she does not approve to a committee. As a prominent example
for an exception, treating dichotomous preferences as approvals and rejections, the mini-
max procedure by Brams, Kilgour, and Sanver [41] is an egalitarian rule, where a voters’
satisfaction with a committee is based on the hamming distance. More precisely, both ap-
proved candidates that are not present in a committee and rejected candidates that appear
in a committee, are associated with a unit score that should be minimized.

22Arguably, egalitarian rules should only be used if voters support a minimum number of candidates.
Considering profiles containing empty ballots, the egalitarian social welfare is always zero for any outcome.
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Relating back to our initial Example E2, a good choice for a voting rule might be the util-
itarian Chamberlin-Courant rule, which maximizes the number of passengers that enjoy
at least one movie throughout the flight. In case this number is equal to the number of
passengers, the egalitarian Approval Voting rule may maximize the number of movies,
the least satisfied voter approves of. Finally, in case the airline changes its policy and
charges their customers per stream, the utilitarian Approval Voting rule might maximize
the potential revenue. If passengers are less likely to watch multiple movies (or streaming
more movies gets increasingly discounted), the Proportional Approval Voting rule might
select a more realistic outcome to maximize the companies earnings.

2.2.2 Generalizing Approval Ballots
For some applications, approval ballots are not sufficient to capture the voters’ prefer-
ences reasonably. Yet, to reduce cognitive burden on the voters, it is preferable to keep
the simplicity coming from approval votes (e.g., in contrast to ordinal or cardinal pref-
erences). To give an example, if voters want to express trichotomous preferences (i.e.,
approval, rejection, or abstention of a candidate), we must move to a slightly generalized
ballot format, as discussed by Brams and Fishburn [40] and studied by Baumeister et
al. [26, 27]. An extension, where candidates are split into any fixed number of disjoint
sets was proposed by Baumeister, Böhnlein, Rey, Schaudt, and Selker [15]. Other ex-
amples include ranking only the set of approved candidates [42], conditional approvals
modeled by a graph [10], or using expressive languages to logically interconnect atomic
approvals [153, 100, 39].

In Chapters 9 and 10, we explore such slight generalizations of approval ballots, which
still rely on approvals. Let us continue to introduce respective ballot formats, namely
attribute approval ballots and bounded approval ballots.

Attribute Approval Ballots
Let us investigate situations, where voters care less about the actual candidates them-
selves, but rather about attributes across different domains either a candidate or an elected
committee should satisfy. For example, if we want to elect a committee that is capable
of accomplishing a set of tasks, we are less focused on who should be elected, as long
as the skills expected for success are present. For a systematic study we require a ballot
format, allowing for voters to vote on attributes, which in turn may be satisfied by single
candidates. An appropriate model has been formally introduced by Kagita, Pujari, Pad-
manabhan, Aziz, and Kumar [102] under the name attribute approval elections,23 which
is explored more detailed in Chapter 9.

23Candidates being associated with attributes has also been explored in closely related ways. In multiwin-
ner elections with diversity constraints [44], voters vote on candidates directly but any elected committee
must abide a mandatory diversification of attributes. Contrarily, in multi-attribute committee selection [117],
voters specify their target distribution (i.e., the desired diversification of attributes) as ballot format.
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2.2. Multiwinner Elections

Following Kagita, Pujari, Padmanabhan, Aziz, and Kumar [102], in attribute approval
elections, we remain in the setting of committee elections, where the task is to elect a set
of suitable fixed-size committees; and we still consider a set of candidates C and a set
of voters V . Instead of voting on candidates directly, we assume each candidate satisfies
a distinct attribute across d ∈ N+ non-overlapping categories. Formally, for j ∈ [d] let
Dj be an attribute domain with |Dj| ≥ 2 to exclude trivial domains, and Dj ∩ Dh = ∅
for all j ̸= h. Then D = D1 × . . . × Dd specifies the set of all attribute vectors and
each candidate ci ∈ C is associated with exactly one attribute for each category. This
is modeled by a function a : C → D, which maps a candidate ci to her attribute vector
a(ci) = (c1i , . . . , c

d
i ) ∈ D. Finally, each voter vi ∈ V casts her attribute approval ballot

bi = (B1
i , . . . , B

d
i ) ∈ D = 2D

1 × . . . × 2D
d , by specifying which subset of attributes

Bj
i ⊆ Dj in each categoryDj with j ∈ [d] is thought to be desirable. An attribute approval

electionE is determined by a tupleE = (D,C, V ) and E holds all such elections. Finally,
a voting rule for attribute approval elections F maps an attribute approval election E ∈ E
along with a positive integer k ∈ N+ to a set of winning k-committees F (E, k) ⊆ Pk(C).

Extending popular voting rules for candidate approval ballots to the attribute approval
setting, we study individual scoring functions f : D × 2C → Q≥0, which map a voter
vi’s attribute approval ballot bi along with a given committee W ⊆ C to a non-negative
rational number f(bi,W ) ∈ Q≥0. To give three natural examples, we generalize approval
scores and the Chamberlin-Courant scores to this setting, along with a scoring function
that explicitly relies on the composition of attributes in a given committee. In particular,
disregarding a normalization factor of 1/d, Simple Scoring (f si) maps to the (sum of) ap-
proved attributes for a voter’s ballot and a committee, Chamberlin-Courant Scoring (f cc)
maps to the number of satisfied attributes by the most appealing candidate in a given com-
mittee, and Committee Scoring (f co

Σ ) maps to the number of attributes that are satisfied by
the group as a collective. More formally, as defined in [21], that is:

Simple Scoring: f si(bi,W ) =
1

d

∑︂

c∈W

∑︂

j∈[d]
|{cj} ∩Bj

i |

Chamberlin-Courant Scoring: f cc(bi,W ) =
1

d
max
c∈W

∑︂

j∈[d]
|{cj} ∩Bj

i |

Committee Scoring: f co(bi,W ) =
1

d

⃓⃓{︁
j ∈ [d] | ∃c ∈ W with cj ∈ Bj

i

}︁⃓⃓

Let us illustrate the above individual scoring functions with a simple formal example.

Example E3. Consider an attribute approval election E = (D,C, V ) with d = 6 cat-
egories, each containing four attributes (D1 = {α1, α2, α3, α4}, D2 = {β1, β2, β3, β4},
and so on). Depicted below are voter v1’s ballot b1, as well as the attribute vectors for
each candidate of a given committee W = {c1, c2, c2}.24 Each candidate’s attribute
that also appears in v1’s ballot is highlighted to improve readability.
24Relating to Example E2, the candidates might be movies, while the attribute categories might be genre,

playtime, decade of origin, leading role, director, and rating. Then voters are more focused towards the
attributes of a movie, which can be especially relevant if the movies to choose from are unknown in advance.
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Committee W = {c1, c2, c3}

c1 α1 β3 γ2 δ1 ε2 ζ1

c2 α1 β2 γ3 δ4 ε1 ζ2

c3 α3 β4 γ2 δ2 ε2 ζ3

Ballot b1 of voter v1 ∈ V

α1

α2

β1

β2

β3

γ1 δ2

δ4

ε1

ε2

ζ3

It is easy to verify, that f si(b1,W ) = 10/6, f cc(b1,W ) = 4/6, and f co(b1,W ) = 5/6.

For modeling the overall voters’ satisfaction, we may extend individual scoring functions
in an utilitarian approach (based on summation) or egalitarian approach (based on min-
imization). For a generic individual scoring function fx (where x ∈ {si, cc, co}), this
leaves us with the following extended scoring functions fx

y ∈ {fx
Σ, f

x
min} with

fx
Σ(V,W ) =

∑︂

vi∈V
fx(bi,W ) and fx

min(V,W ) = min
vi∈V

fx(bi,W ),

which are maximized by a voting rule F x
y ((D,C, V ), k) = argmax

W∈Pk(C)

fx
y (V,W ).

Bounded Approval Ballots
Next, we consider situations, where voters might want to express a more complex pref-
erence, which cannot be captured entirely by a standard approval ballot. As a simple
example, illustrated in Figure 2.3, let residents of a multi-party building decide on where
to plant a fixed number of trees around the house. Although a person living at a corner
apartment may derive (some kind of) satisfaction from trees near her windows, she may
be indifferent about plants out of sight. In case of approval ballots she is only able to
state which positions she likes. Yet, she is not able to specify that digging up the lawn up-
front of her windows is only worthwhile for at least two trees, while there is no additional
satisfaction from more than five trees, and more than eight is just too much.

To capture the aforementioned traits — namely dependencies (at least two), substitution
effects (five is enough) and incompatibilities (more than eight is too much) — we [23]
introduce a novel ballot format as a natural generalization to approval ballots (explored in
Chapter 10). A bounded approval ballot consists of multiple so-called bounded approval
sets, each specifying a subset of approved candidates, a lower bound to model dependen-
cies, a saturation point to model substitution effects, and an upper bound to model incom-
patibilities. As we will be using a slightly different notation for the basic components of
committee elections, let us briefly redefine relevant parts. Formally, the set of alternatives
is denoted by A = {a1, . . . , am} and the set of voters by N = [n], each casting a ballot
Bi, whose format and interpretation will be described in the upcoming paragraph. As
per usual, the task is to elect a set of suitable k-committees, i.e., a non-empty subset of
Ck = {π ⊆ A | |π| = k}.
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Figure 2.3. Satisfaction derived from the bounded set Bj = ⟨Aj, 2, 4, 8⟩ and a potential
outcome π (i.e., the set of planted trees), based on the size of the intersection |Aj ∩ π|.
The set Aj = {b, . . . , l} contains those positions, that are near the (northwestern) corner
apartment. If the number of planted trees in Aj falls below the lower bound ℓj = 2 or the
above the upper bound uj = 8, no satisfaction is perceived. Otherwise, the satisfaction is
increasing steadily with every planted tree until the saturation point sj = 5 is met.

Formally, a bounded approval ballot B = (B1, . . . , Bp) is a finite list of bounded approval
sets. Each such bounded approval set Bj = ⟨Aj, ℓj, sj, uj⟩ specifies a non-empty set of
approved alternatives Aj ⊆ A and three integer bounds, modeling the lower bound ℓj , the
saturation point sj , and the upper bound uj , with 1 ≤ ℓj ≤ sj ≤ uj ≤ |Aj|. For a single
bounded approval setBj and a potential outcome π ⊆ A, it is rather easy to find a scoring
function that behaves as requested. To do so, the relationship of approved alternatives
in the committee |Aj ∩ π| to the given numerical bounds should determine the perceived
satisfaction: If |Aj∩π| < ℓj a dependency is not met and the score should evaluate to zero.
Similarly, if |Aj ∩π| > uj , the score should be zero due to incompatibility of alternatives.
If ℓj ≤ |Aj ∩ π| ≤ sj , all alternatives in Aj ∩ π are fully approved, resulting in a score of
|Aj ∩π|. If more than sj (but not more than uj) alternatives are in the intersection with π,
the satisfaction is capped at sj , as any additional candidates are seen as substitutes.

To reasonably extend those scores from bounded approval sets to full ballots, the score
for a bounded set is split equally on all contributing candidates. More precisely, for
a given committee π, each alternative a ∈ Aj ∩ π contributes to the overall score of
x ∈ {|Aj ∩ π|, sj, 0} by x/|Aj∩π| ∈ {1, sj/|Aj∩π|, 0}. Formally, an alternative’s score under
a given bounded set Bj and a committee π can be modeled by the following function φ.

φ(Bj, π) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if ℓj ≤ |Aj ∩ π| ≤ sj

sj

|Aj∩π| if sj < |Aj ∩ π| ≤ uj

0 otherwise.
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Finally, we consider four operations for assigning a joint score with respect to the full
ballot to every single candidate appearing in a committee. That is, we assign either the
minimum, maximum, average, or total score across all contained bounded sets. Formally,
when B|a = {Bj ∈ B | a ∈ Aj} refers to those bounded sets in B involving a, the
resulting scoring functions are as follows:

scoremin(B, π) =
∑︂

a∈π
min

{︁
φ(Bj, π) | Bj ∈ B|a

}︁

scoremax (B, π) =
∑︂

a∈π
max

{︁
φ(Bj, π) | Bj ∈ B|a

}︁

scoreavg(B, π) =
∑︂

a∈π

1

|B|a|
∑︂

Bj∈B|a

φ(Bj, π)

score tot(B, π) =
∑︂

a∈π

∑︂

Bj∈B|a

φ(Bj, π)

Again, a suitable voting rule should select exactly those k-committees which maximize
an underlying scoring function (e.g., one of the scoring functions presented above).
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2.3. Participatory Budgeting

2.3 Participatory Budgeting
Participatory budgeting has gained a decent amount of attention over the course of the last
decades. As a participative democratic process, residents of a municipality are involved
in deciding on what to spend public funds on. This idea was initially developed and im-
plemented in the 1980s by the Brazilian Worker’s Party in Porto Alegre [161]. Following
a prolonged story of success, participatory budgeting has been implemented all around
the globe [156, 158, 61, 62, 173].

Technically speaking, participatory budgeting can be seen as a natural generalization of
multiwinner elections, where each candidate occupies an individual (but fixed) number
of seats (i.e., positions in the committee). Shifting slightly in its use-case, the set of
alternatives mostly consists of projects, each associated with a predefined cost, which can
be funded by a limited budget of funds. To motivate this generalization, let us revisit
Example E2 and assume the airline has to pay a varying licensing fee for each movie.
Then, a selection of movies may not be limited by a fixed number of movies, but by a
fixed budget of funds which should not be exceeded by the resulting licensing cost.

For a formal overview over this research field through the lens of computational social
choice we refer to the book chapter by Aziz and Shah [8]. A yet to publish survey pa-
per by Rey and Maly [150] extensively discusses the current state of the art. Similar to
multiwinner elections, there is a densely populated literature on different ballots formats,
including cardinal [142, 30, 78] and ordinal preferences [7, 30, 78], while this thesis fo-
cuses on approval-based preferences. We define approval-based participatory budgeting
in the upcoming subsection formally.

2.3.1 Approval-based Participatory Budgeting
Although there are several similar frameworks for participatory budgeting considering
approval ballots [6, 30, 110], we follow the formal model and notation by Talmon and
Faliszewski [166] in its irresolute variant [25].

Formally, a participatory budgeting campaign (also called budgeting scenario) is a tuple
E = (A, V, c, ℓ), consisting of the following four basic components. As analogue com-
ponents to multiwinner elections, we consider a set of m alternatives (called projects or
items) A = {a1, . . . , am} and a set of n voters V = {v1, . . . , vn}. Each voter v ∈ V

submits her approval ballot by specifying the subset of projects Av ⊆ A she would like
to see being implemented. Deviating from committee elections, each alternative a ∈ A

is associated with a positive integer cost c(a), modeled by a cost function c : A → N+.25

Lastly, a budget limit ℓ ∈ N+ dictates the overall available funds, which should not be

25To ease notation, for a set of projects B ⊆ A, we write c(B) =
∑︁

a∈B c(a).
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exceeded by any implemented bundle B ⊆ A.26 In particular, a given bundle B ⊆ A

abides feasibility if and only if c(B) ≤ ℓ holds. Some authors specify further reasonable
restrictions. For example, Benadè, Nath, Procaccia, and Shah [30] assume that a valid
ballot must also abide the given budget constraint (also called knapsack vote [30, 28]),
while often we wish for the outcome to be exhaustive [6, 166, 148], i.e., not extendable
without violating feasibility. Lastly, a common assumption is that a single project may
never exceed the budget limit, effectively restricting the cost function to c : A→ [ℓ].

To quantify the agreement of a voter with a possible outcome (i.e., a feasible bundle),
Talmon and Faliszewski [166] conceptually extend the idea by Thiele [167]. In particular,
a satisfaction function s : 2A × 2A → N0 models the individual satisfaction perceived by
a voter v ∈ V with ballot Av ⊆ A for a given bundle B ⊆ A. As the considered functions
rely on the intersection of a voter’s ballot and a bundle, let this be denoted byBv = Av∩B
as a useful notation. The authors adopt approval scores and Chamberlin-Courant scores
from multiwinner elections to the budgeting setting, to measure the satisfaction of a voter
by the quantity (|Bv|) or presence (1|Bv |>0) of projects she approves of. Additionally,
satisfaction by cost (c(Bv)) models that a voter’s happiness correlates with the amount of
funds spent on projects she likes. Formally, those functions can be modeled as follows:

Quantity: s(Av, B) = |Bv| = wAV(|Bv|)
Presence: s(Av, B) = 1|Bv |>0 = wCC(|Bv|)

Cost: s(Av, B) = c(Bv)

To derive a collective outcome based on the voters’ satisfaction, we may use similar op-
erators as for multiwinner elections. In particular, Talmon and Faliszewski [166] mostly
focus on utilitarian optimization, by either maximizing the (sum of) voters’ satisfaction
or approximate the optimal result by greedily adding either the project with the maxi-
mum additional satisfaction or the project with the best satisfaction-to-cost ratio.27 We
denote those composite rules (consisting of a satisfaction function and an aggregator) by
max rules (Rm

s ), greedy rules (Rg
s) and proportional greedy rules (Rp

s). Note that we
often interpret all those rules as irresolute [25], assuming parallel-universe tie-breaking
for (proportional) greedy rules. Additionally, we combine both greedy approaches (by
pre-computing one bundle each and outputting the better one) to study hybrid greedy
rules (Rh

s ) which yield a constant approximation factor [82].

We want to introduce one additional rule, which is becoming increasingly popular due
to its proportional distribution of funds. The Method of Equal Shares (formerly known
as Rule X) originated from a multiwinner variant by Peters and Skowron [144] and was
generalized by Peters, Pierczyński, and Skowron [142] to the setting of participatory bud-
geting. It is a sequential rule which simulates how voters might fund projects on their own,

26 To avoid confusion, it is worth noting that due to a slight inconsistency throughout literature, the term
budget refers to the budget limit ℓ in some articles, while to a bundle B ⊆ A in others.

27In related approaches, Sreedurga, Bhardwaj, and Narahari [162] use an egalitarian operator and
Fluschnik, Skowron, Triphaus, and Wilker [83] aim to maximize the Nash social welfare.
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if every participant was given her proportional share of the budget in advance. Informally,
the Method of Equal Shares aggregates as follows. Initially, the budget limit ℓ is spread
equally across the n voters, each receiving a deposit of ℓ/n. Then, each round exactly one
project is funded by its supporters (spending their individual deposits), until there is no af-
fordable project left (assuming voters do not fund any project they do not approve of). Just
as simple it is to decide, which project will be funded in any round. For every project it
is calculated how much each supporter has to pay, if the cost is distributed equally. Those
supporters that cannot afford to pay their equal share give all of their remaining budget,
while the difference must be paid by the remaining supporters. Finally, the project with
the lowest equal share (i.e., the amount the worst-off supporter has to pay) is selected,
implemented and paid for by its supporters (using a tie-breaking scheme if necessary).

2.3.2 Uncertain Project Costs
In this subsection, we formally extend the basic framework for approval-based partici-
patory budgeting, by considering uncertainty on the implementation cost of any project.
This idea was first studied in a broad stochastic model by Gomez, Insua, and Alfaro [87],
where uncertainty is posed on all parameters in a budgeting campaign. Closely related,
our framework [24] (explored in Chapter 6) is motivated by real-world applications, where
particularly the exact cost of a project is only revealed after its implementation. Therefore,
we assume the cost of a project is rather given as an estimate, coming from a probabil-
ity distribution. Furthermore, each project is associated with an implementation duration
while a given time frame (e.g., a legislation period) should not be exceeded. By con-
sidering implementation durations after which the exact cost of a project is revealed, an
algorithm can act in an online fashion and decide to implement a project after more infor-
mation (i.e., some other project’s exact cost) becomes available [82]. We illustrate this in
the following example.

Example E4. Consider a participatory budgeting campaign, where citizens decide,
which of the following projects should be implemented over the next five years.

Project a1: Bike lanes can be added to all major roads. While the cost for this can
be estimated quite precisely, its implementation is expensive and takes five years
due to legal reasons. Project a1 was approved by 200 voters.

Project a2: Solar panels can be installed on some buildings of the local university.
The installation can be done in one year, but due to supply shortages, it is unclear
whether the overall cost might explode. Project a2 was approved by 300 voters.

Project a3: The library, which was eventually closed due to structural damages, can
be restored. This process would take three years, but for each of the four main
walls there is a fifty percent chance that it has to be replaced for an additional
cost. Project a3 was approved by 400 voters.
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To exemplify the given projects’ costs, the following diagram models suitable probabil-
ity distributions for each of the three projects. A point (x, y) on the curve for project ai
marks the probability x ∈ [0, 1], that the exact cost for ai is at most y.

a1

a3

a2

a3

50,000d

100,000d

150,000d

0 1/4 1/2 3/4 11/8 3/8 5/8 7/8

Assuming a budget limit of 325,000d, there are multiple reasonable strategies. For ex-
ample, we could implement a2 and a3, as those two projects receive a total of 700
approvals. Yet, even if it turns out after one year, that the cost for a2 is at most
75,000d (meaning all three projects are affordable), we cannot begin to implement
a1 without exceeding the given time frame of five years. In a different approach, we
could implement a1 and a3 first, which receive 600 approvals. If after three years it
turns out that a3 only costs 50,000d, we can also safely implement a2. Note that this
approach has only a 1/16 chance of implementing all three projects (i.e., if no wall of
the library has to be replaced). Therefore, a third approach may begin by implementing
a1 and a2. Although those two projects only receive 500 approvals, chances are about
3/4 that a2 will be cheap enough to safely start the implementation of a3 after one year.

Formally, a budgeting scenario with uncertain cost is given by a tuple E = (A, V,˜︁c, δ, τ).
In this setting, the parameters A, V , and ℓ again model the set of alternatives, the set
of voters and the budget limit. The cost function is replaced by a total of four such
functions ˜︁c = (cmin, cmax, c, cp), where cmin(a), cmax(a) and c(a) respectively model the
lower bound, upper bound, and exact cost of a project a ∈ A. By design it holds that
c(a) ∈ [cmin(a), cmax(a)]. To model the probability distribution on the cost for a project
a ∈ A, let cp(a, y) ∈ R≥0 denote the probability that a has a cost of at most y ∈ N+.
Finally, each project a ∈ A is equipped with a duration δ(a) ∈ N+ and we assume that a
given time limit τ ∈ N+ should not be exceeded by an implementation process.

To capture an online budgeting method’s output in a suitable data structure, we use a
budgeting log to keep track of the starting time of each implemented project. More
precisely, a budgeting log L : A → N0 ∪ {⊥} is a simple function, which maps ev-
ery project to either a discrete starting time or to a distinct symbol (⊥), indicating a
project has not been implemented at all. Projects that are realized are collected by a
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set R(L) = {a ∈ A | L(a) ̸= ⊥}. Furthermore, an online budgeting method R is given a
budgeting scenario E and sequentially builds a budgeting log L as follows. Starting with
an empty budgeting log L with L(a) = ⊥ for all a ∈ A and an initial time step t = 0,
R can always start implementing a new project a ∈ A \ R(L) by setting L(a) = t or
progress in time by increasing t (which corresponds to waiting for a certain amount of
time). Any online budgeting method R has limited access to the (exact) cost function c
and may access c(a) for a project a ∈ R(L) only after implementation, i.e., at time step
t ≥ L(a) + δ(a). Finally, at any point in time, R is allowed to terminate and output its
current budgeting log L.
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2.4 Judgment Aggregation
Judgment aggregation is a powerful framework, capable to compactly model many real-
world applications, where judges share their opinion over multiple interconnected binary
issues, which should be aggregated into a feasible collective outcome. In contrast to mul-
tiwinner elections or participatory budgeting, a judge’s opinion is interpreted as a sym-
metric preference, where not voting for an issue implies a preference for its rejection. At
this point, it is worth noting that there are multiple equally expressive frameworks, each
having its own perks and drawbacks. Let us begin by formally defining “standard” (i.e.,
formula-based [124]) judgment aggregation, as described by Endriss [71] (following nota-
tion conventions by Endriss, Grandi, and Porello [73]) in the upcoming subsection. We in-
troduce a variety of consistent judgment aggregation rules in Subsection 2.4.2 and explore
recent extensions and variations of judgment aggregation in Subsections 2.4.3 and 2.4.4.

2.4.1 Formula-based Judgment Aggregation
Let us briefly introduce some notation, to simplify the upcoming definition. We call two
propositional formulas φ and ψ equivalent, denoted by φ ≡ ψ, if they admit the same
set of satisfying truth assignments L(φ) = L(ψ); whereas they are equal, denoted by
φ = ψ if the formulas are identical. We call a propositional formula φ doubly-negated if
φ = ¬¬ψ for a propositional formula ψ; and if φ is not doubly-negated, we denote by ∼φ
the complement of φ, that is, ∼φ = ψ if φ = ¬ψ (for a formula ψ) and ∼φ = ¬φ, oth-
erwise. We call a set of propositional formulas {φ1, . . . , φk} consistent, if there is a truth
assignment satisfying all formulas simultaneously, i.e.,

⋂︁
i∈[k] L(φi) ̸= ∅. Finally, two

formulas φ and ψ are independent, if the sets {φ, ψ}, {∼φ, ψ}, {φ,∼ψ} and {∼φ,∼ψ}
are all consistent.

Definition (Formula-based Judgment Aggregation). Let L be the set of all proposi-
tional formulas. In judgment aggregation, we are given a non-empty and finite agenda
Φ = {φ1,¬φ1, . . . , φm,¬φm} ⊂ L, which consists of m ∈ N issues (that is, a formula
and its complement) and must abide some basic requirements.

The agenda Φ does not contain any doubly-negated formulas, is closed under comple-
ment,28 nontrivial (i.e., contains at least two independent issues), and does not contain
any contradiction (φ ≡ 0).29 A judgment J ⊆ Φ is called complete if |{φ,∼φ}∩J | ≥ 1

for all φ ∈ Φ and complement-free if |{φ,∼φ} ∩ J | ≤ 1 for all φ ∈ Φ. By
J (Φ) ⊂ 2Φ we denote the set of all complete and consistent judgments. A set N = [n]

of n ∈ N judges takes part in a collective decision over the given agenda. There-

28Sometimes written as Φ = Φ+ ∪ Φ− with Φ− = {∼φ | φ ∈ Φ+} and Φ+ ∩ Φ− = ∅, effectively
splitting the considered issues into a positive and negative agenda.

29Note that by closure under complement, Φ may also not contain a tautology (φ ≡ 1). Some frameworks
relax the formal requirements by allowing for contradictions or trivial agendas.
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fore, each judge i ∈ N provides an individual judgment Ji ∈ J (Φ), forming a profile
P = (J1, . . . , Jn) ∈ J (Φ)n.

Finally an irresolute judgment aggregation rule F : J (Φ)n → 22
Φ

maps from a profile
of individual judgments to a collective outcome, which is a set of (aggregated) judg-
ments. If for any agenda Φ ⊂ L and any profile P ∈ J (Φ)n, all judgments in F (P )
satisfy a given property (e.g., completeness, complement-freeness, consistency), we say
that F satisfies this property, too. As a special case for irresolute rules, we define
resolute rules that output exactly one judgment as outcome by R : J (Φ)n → 2Φ.

As the arguably most intuitive example for a reasonable judgment aggregation rule, con-
sider the (strict) majority rule, which selects a single outcome based on the majority-wise
decision for each issue. Formally, for any agenda Φ and profile P ∈ J (Φ)n, the majority
rule Maj is a resolute rule and defined as

Maj(P ) = {φ ∈ Φ | |{i ∈ N | φ ∈ Ji}| > n/2}.

It is easy to see, that the majority rule is not complete, as a profile with an even number
of judges does not necessarily contain a strict majority for each issue. In fact, mod-
eling a (reasonable) complete and consistent judgment aggregation rule is not a trivial
task, as the majority-wise decision for each issue may also result in inconsistency. This
phenomenon has been initially presented by Kornhauser and Sager [107] in form of the
famous doctrinal paradox, which was formally revisited as the discursive dilemma by
List and Pettit [124] as follows.

Example E5. Three judges should decide, whether a defendant is liable for breaching
a contract. By law, the defendant is liable, if both the contract is legally binding and the
defendant did indeed violate the contract’s agreement. While the first judge comes to
the conclusion, there was no breach under a valid contract; the second judge observes
an invalid contract, which would have been breached; and the third judge thinks that
the defendant is liable by breaching a valid contract. Formally, we can model this
scenario by the following judgment aggregation setting: Let Φ+ = {c, b, c ∧ b}, where
the premises c and b respectively represent a valid contract and a breach, while its
conclusion c ∧ b models whether the defendant is liable. Then, the profile of individual
judgments P = (J1, J2, J3) is given by the following table:

c b c ∧ b
J1 1 0 0

J2 0 1 0

J3 1 1 1

Maj(P ) 1 1 0

As we see, although every individual judgment Ji ∈ P is complete and consistent, the
outcome of the majority rule Maj, i.e., the set Maj(P ) = {c, b,¬(c∧b)}, is inconsistent.
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Paradoxically, the defendant might be both, guilty and innocent, depending on whether
a majority is posed on either the premises or the conclusion. Overall, under majority-
wise aggregation per issue, the defendant must have breached a valid contract without
being liable.

At least completeness and complement-freeness can be achieved by simple, issue-wise
aggregation rules. A large class of such rules, introduced by Dietrich and List [64], are so-
called quota rules, which generalize the majority rule by defining a quota on the support
for each element of the agenda. The authors show, in case the quotas for an element and
its complement add up to n+1 (where n is the number of judges), the resulting quota rule
is complete and complement-free.

Note that, although inconsistent, using quota rules and, in particular, the majority rule
does not only appear to be rather intuitive, but the respective outcomes satisfy a variety
of desirable axiomatic properties. In fact, we may easily find a complete and consistent
judgment aggregation rule by disregarding basic requirements any reasonable judgment
aggregation rule should satisfy. For example, dropping the property of anonymity (i.e.,
all judges should be treated equally) paves the way for dictatorship, a simple rule where
a fixed judge may decide the outcome by herself.

2.4.2 Consistent Judgment Aggregation Rules
To overcome the discursive dilemma, there are countless ways to design judgment ag-
gregation rules that are complete and consistent (see List and Puppe [126]). Yet, apart
from rare exceptions, calculating the aggregated result for complete and consistent judg-
ment aggregation rules is computationally hard, including all rules that are defined in
the remainder of this chapter.30 One of the most popular rules, namely the median rule,
studied by Nehring, Pivato, and Puppe [134],31 selects exactly those complete and con-
sistent judgments that minimize the hamming distance over the individual judgments in a
profile. In an egalitarian fashion, the egalitarian median rule32 selects all judgments that
minimize the hamming distance for the worst-off judge.

A large stream of research studies majority-preserving rules, where, in case of com-
pleteness and consistency, the outcome of the majority rule is selected. In Chapter 7,
we generalize majority-preserving rules by considering arbitrary resolute, complete, and
complement-free underlying rules, whose outcome may be preserved. Formulated in this
generalized variant, we study sequential rules [13] (as suggested by List [125]), where
the acceptance of issues is decided in a predefined order.33 By default, the decision for

30For an overview of such complexity results we refer to Endriss, de Haan, Lang, and Slavkovik [75].
31The median rule has been studied under several aliases: Distance-based procedure [145, 73], proto-

type rule [131], maximum-weight subagenda rule[115, 119], max-sum rule [76], and Kemeny rule [74],
generalizing the famous rule by Kemeny [105].

32Also studied under the names dH -max rule [115] and MaxHam(ing) rule [92, 75, 36].
33Resulting rules are also studied under the name sequential priority procedure [126].
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an issue by an underlying rule is preserved, deviating only to guarantee consistency. For
the majority rule as underlying rule, the resulting aggregation method has been studied
by Peleg and Zamir [141] as sequential majority rule. If additionally, the processing
order is based on the issue-wise support by the judges, we consider the ranked agenda
rule by Lang, Pigozzi, Slavkovik, and Torre [115],34 where we consider either a fixed
tie-breaking for a resolute variant [74] or parallel universe tie-breaking for an irresolute
variant [74, 119, 118]. In a non-sequential, majority-preserving approach, the maximum
subagenda rule,35 studied by Lang, Pigozzi, Slavkovik, and Torre [115], as well as Lang
and Slavkovik [118], selects exactly those judgments, which contain an inclusion maximal
subset (with respect to consistency) of the majority outcome (or some other underlying
rule in a generalized variant). As a refinement, Lang, Pigozzi, Slavkovik, and Torre [115]
studied the maxcard subagenda rule,36 which selects exactly those complete and consis-
tent judgments, whose intersection with the majority outcome is maximized.

2.4.3 Judgment Aggregation Extensions
We continue to briefly introduce equally expressive judgment aggregation frameworks
and recent extensions. To actually compare the expressiveness across frameworks, note
that by a slight relaxation of the standard, formula-based framework, we are able to model
the set of complete and consistent judgments J (Φ) at will (by choosing the agenda Φ

accordingly). More precisely, by allowing for contradictions and trivial agendas, Dokow
and Holzman [69] showed for a universal agenda Φ = {φ1,¬φ1, . . . , φm,¬φm} (where
each formula initially only acts as placeholder) and any set of complete and complement-
free judgmentsX ⊂ 2Φ (i.e., with |{φi,∼φi}∩J | = 1 for all J ∈ X and all φi ∈ Φ), how
to construct the formulas φi ∈ L, such that J (Φ) = X holds. On a more abstract level
and with a slight abuse of notation, we may either identify each propositional formula by
a binary value to represent any judgment J by a binary string of size 2m, or identify each
issue (i.e., a formula and its complement) by a binary value to represent any complete
and complement-free judgment by a binary string of size m. Hence, following the results
of Dokow and Holzman [69], for any fixed-size binary space X ⊆ {0, 1}m, there is an
agenda Φ with J (Φ) = X .

Grandi [89] and Endriss [88] proposed an equally expressive judgment aggregation frame-
work, known as binary aggregation with integrity constraints, where the agenda consists
of propositional variables, interconnected by an external propositional formula (called
integrity constraint) any judgment must abide.37 Note that, in formula-based judgment
aggregation, it is NP-hard to verify whether a complete judgment is consistent (by corre-

34This rule is also known as Tideman (ranked pairs) rule [74] or support-based procedure [146]. Its
refinement based on the lexicographical order of the issues is known as leximax rule [132, 77].

35Also called Condorcet admissible set [134], (maximal) Condorcet rule [116, 75], or max-set rule [76].
36Called endpoint rule [131], Slater rule [74, 75], maxcard Condorcet rule [116], and max-num rule [76].
37Unrestricted expressiveness is easy to verify, as an external propositional constraint in disjunctive nor-

mal form can list every satisfying assignment as a clause.
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sponding to a SAT problem), while in binary aggregation, it can be easily done in polyno-
mial time by checking whether a given truth assignment satisfies the external constraint
(by sequentially resolving its connectives). Hence, unless P = NP, an equivalent external
constraint might result in exponential length.

Structurally building on the idea that an equivalent framework may encode constraints
more compactly, Endriss, Grandi, de Haan, and Lang [72] provided an extensive study
on the succinctness of different, equally expressive judgment aggregation frameworks.
In particular, they considered that the set of complete and consistent judgments is either
given as a binary space explicitly, modeled by a formula-based agenda, an integrity con-
straint with or without additional propositional variables, or a mixture of the last two.
They also showed that, for some judgment aggregation rules, there is a computational
complexity gap across frameworks which are not equally succinct.

Endriss [76] extended the framework by Grandi [89] and Endriss [88], by introducing
rationality and feasibility constraints to allow for non-identical input and output spaces
in judgment aggregation. This simple generalization significantly expands the scope of
judgment aggregation, enabling the simulation of ballot formats beyond the scope of basic
approval preferences. For example, to model fixed-size committee elections with ordinal
ballots, it suffices to simulate a binary relation by creating an agenda item for each (or-
dered) pair of candidates. Now, a rationality constraint may model strict rankings in the
input by requiring completeness, asymmetry, and transitivity (for a formal encoding see
Dietrich and List [63]), while feasibility may be imposed by restricting the outcome to be
a dichotomous order, partitioning the candidates into two sets of desired sizes. Particu-
larly, Chingoma, Endriss, and de Haan [51] showed how to simulate multiwinner election
rules in judgment aggregation (considering both ordinal and approval-based preferences).

2.4.4 Weighted Asymmetric Judgment Aggregation Rules
In contrast to participatory budgeting, a large stream of research considers only those
judgment aggregation rules that interpret the issues as binary and the preferences as sym-
metric. That is, each issue is treated uniformly and the rejection of an issue is treated
as an approval for its complement (instead of an abstention). Recently, Nehring and Pi-
vato [133] relaxed the former requirement to study weighted judgment aggregation rules,
while Rey, Endriss, and de Haan [149, 148] relaxed the latter requirement to study asym-
metric judgment aggregation rules.

A simple way to model weighted and/or asymmetric rules is by interpreting known rules
based on the minimization of the hamming distance as scoring rules, where the goal is
to maximize a score. Formally, scoring rules have been introduced by Dietrich [65], who
also showed that the median rule can be reformulated as a scoring rule, which assigns each
issue in the intersection of an individual judgment and a possible outcome a score of one.
To study asymmetric judgment aggregation, following Rey, Endriss, and de Haan [149,
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148], it is sufficient to restrict the contribution to the overall score to the issues of the
positive agenda. In the weighted (but symmetric) variant, studied by Nehring and Pi-
vato [133], each issue is equipped with an (e.g., real valued) weight, while the score of an
outcome and an individual judgment is given by the added weight in the intersection.

As technically explored in Chapter 8, we combine both relaxations to model weighted,
asymmetric judgment aggregation rules [34]. This allows us to encode many collective
combinatorial optimization problems (and domain-specific rules) into a general judgment
aggregation framework. By allowing for arbitrary constraints (e.g., linear equations), the
succinctness of a judgment aggregation framework can be improved.38

Formally, deviating slightly in notation from established conventions by Endriss, Grandi,
and Porello [73], an agenda A is a finite set of atomic propositions, such that A+ holds all
positive issues and A− their complements. Additionally, each issue a ∈ A is associated
with an integer weight wa ∈ N0, collected in a weight vector w. Rationality constraints
ΓR and feasibility constraints ΓF (both possibly incorporating the given weights) can
be imposed to model the set of valid input judgments BR ⊆ {0, 1}|A| and the feasible
outcomes BF ⊆ {0, 1}|A|. In this representation, a vector X ∈ {0, 1}|A| specifies an
assignment over propositional variables, where X(a) = 1 if and only if the entry of X at
position a ∈ A is set to one. For a judge i ∈ N , we represent her individual judgment as a
ballotBi ∈ BR. Finally, by restricting the weights, we are able to model scoring rules that
can be weighted (wa can differ from being zero or one for all a ∈ A) and/or asymmetric
(w¬a = 0 for all ¬a ∈ A−).

To illustrate how this generalization affects previously defined voting rules, the (weighted,
asymmetric) median rule can then be reformulated as follows:

argmax
X|X∈BF

∑︂

i∈N

∑︂

aj∈A
waj ·Bi(aj) ·X(aj)

Note that, in case of uniform weights (i.e., wa = 1 for all a ∈ A), this rule coincides
with the standard median rule. Similarly, we can generalize the egalitarian median rule
by swapping the first sum operator for a min operator. For sequential rules, including
the ranked agenda rule, it is sufficient to base the order of issues on the weighted sup-
port. Finally, considering an asymmetric setting, the Chamberlin-Courant rule for ap-
proval ballots [159] can be meaningfully translated into a judgment aggregation rule (as
for symmetric agendas a judge is only dissatisfied in case the outcome is complementing
her individual judgment). We explore this general framework in more depth in Chapter 8.

38In particular, Rey, Endriss, and de Haan [148] showed, that encoding a compact budget constraint into
propositional logic might require exponential space unless the polynomial-time hierarchy collapses.
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CHAPTER 3

MOTIVATION
AND RESEARCH QUESTIONS

The main focus of this thesis is to investigate the three closely related research fields
of multiwinner elections with approval ballots, participatory budgeting, and judgment
aggregation. Our aim is to study the respective research areas individually on a local
level, as well as through a more abstract lens on a global level. To study the latter, let us
take a step back and investigate a more general perspective on the frameworks, uncovering
the shared structure of all three independently formalized models.

Informally, in all three frameworks we are given a finite set of alternatives and a finite
number of participants, that individually specify which subset of alternatives are desired
in an outcome. Then, a voting (or aggregation) rule is used to determine which subset(s) of
alternatives should be in a collective outcome. On an abstract level, deriving a collective
decision on multiple binary alternatives from approval preferences can be represented by a
simple class of functions. Note that the decision on a fixed number ofm ∈ N binary issues
(both, on an individual level in the input and on a collective level in the output) can be
represented by a binary string of length m. Further, there might be restrictions posed for
an input string to be valid, or for an output string to be feasible. Formally, let X ⊆ {0, 1}m
be a predefined set of valid inputs and Y ⊆ {0, 1}m be a set of feasible outputs. The input
then consists of a list of n ∈ N valid binary strings X ∈ X n (each representing the
opinion of an individual agent) and the output is a set of feasible strings Y ⊆ Y . To
model the mapping of an input to an output, we consider a function F : X n → 2Y , which
concludes our general setup.39 Figure 3.1 illustrates a simple multiwinner election in this
abstract model, where five voters provide approval ballots over eight alternatives (as a list
X ∈ X 5). The task is to select suitable committees (i.e., a set Y ⊆ Y) consisting of
exactly five alternatives, using the Approval Voting rule (F with F (X) = Y ).

39A coinciding framework for binary aggregation has been formally introduced by Dokow and Holz-
man [69, 68] and studied under the name BASIC by Endriss, Grandi, Haan, and Lang [72].
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Figure 3.1. Example of a multiwinner election with eight candidates and five voters
electing a committee of size k = 5. The set of valid inputs is unrestricted, i.e., X =

{0, 1}8, and the set of feasible outputs is modeled by a fixed-size committee constraint,
i.e., Y = {y ∈ {0, 1}8 | hw(y) = 5}.40 As voting rule F we consider the standard
multiwinner Approval Voting rule (AV), which selects those k-committees that maximize
the overall (sum of) approved alternatives.

Of course, there are countless ways to choose the three main components X , Y , and F ,
in an attempt to model real-world applications realistically. It turns out that the fields of
multiwinner elections, participatory budgeting, and judgment aggregation can be solely
characterized by choosing X and Y accordingly. Let us illustrate how we can model
restricted domains for our basic setup to characterize each research field respectively. To
do so, we will describe how each pair (X ,Y) must be shaped in order to fall into one of
the respective research fields.

Multiwinner Elections

In (approval-based) multiwinner elections, there are no restrictions on how participants
may vote on a set of given alternatives A = {a1, a2, . . . , am}. Therefore, the set of valid
input strings is given by X = {0, 1}m. The goal is to select a committee of candidates
of predefined size k ∈ N+. In order to compactly model the output space, consider
Y = {y ∈ {0, 1}m | hw(y) = k}.40

Participatory Budgeting

In participatory budgeting, each alternative ai ∈ A is associated with a positive integer
cost c(ai) ∈ N+ and we are given a budget limit ℓ ∈ N+, that should not be exceeded
by the (sum of) alternatives’ costs in a feasible outcome. Therefore, the output space can
be modeled by a budget constraint using a single inequality, i.e., Y = {y1y2 . . . ym ∈
{0, 1}m | ∑︁i∈[m] yi · c(ai) ≤ ℓ}. As in multiwinner elections, the input space is usually
unconstrained, i.e., X = {0, 1}m.

40Recall that hw(y) refers to the hamming weight of y, effectively modeling the desired committee size.
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As extensively discussed in Section 2.4, there are multiple slightly different frameworks
for judgment aggregation. For the sake of simplicity, we now consider the framework
by Grandi and Endriss [88], also known as binary aggregation with integrity constraints.
Here, we consider a set of binary propositional variables P = {p1, . . . , pm}, which are
logically interconnected by a propositional formula φ as constraint over the variables in
P . Both, a voter’s valid ballot and any feasible outcome must abide the given logical
constraint, i.e., X = Y = L(φ). As any subset of {0, 1}m can be induced by a suitable
logical constraint, it is sufficient to require that X = Y ⊆ {0, 1}m. Considering the
framework with rationality and feasibility constraints by Endriss [76], inputs and outputs
may be modeled arbitrarily, i.e., X ,Y ⊆ {0, 1}m.

Relationships Between Frameworks

Let us briefly discuss relationships across all three frameworks (or recent variations) and
their implications. It is rather easy to see, that every multiwinner election corresponds
to an exhaustive participatory budgeting campaign [6].41 In turn, every (possibly ex-
haustive) participatory budgeting campaign can be encoded into the judgment aggrega-
tion framework by Endriss [76] by only restricting the set of outputs (see Rey, Endriss,
and de Haan [148]). If we consider the (binary aggregation) framework by Grandi and
Endriss [88] (as specialization of the framework by Endriss [76]), it is easy to see that
we may encode any participatory budgeting campaign, where ballots must also abide
the budget constraint (known as knapsack vote [29]). Observing those frameworks in a
generalization-to-specialization relationship allows axiomatic properties or computational
bounds to be transferred across domains. In particular, lower bounds on the complexity
for winner determination or manipulative interference are inherited upwards, while upper
bounds are inherited downwards. Similarly, the violation of an axiom transfers upwards,
while its satisfaction transfers downwards.

Having this abstract model in mind as a common umbrella for the studied, specialized
frameworks (modeled by restricting the domains X and Y accordingly), we are set to
formulate five goals this thesis intends to acquire. In particular, this thesis pursues to
(partially) answer five types of research questions. Each is discussed and motivated in
the subsequent sections to understand the relevance of the respective research goals and
their implications for practical use. However, the intention is not to find comprehensive
answers to these universal questions. Instead, our aim is to contribute valuable insights
with practical relevance, to shed light on a complex and manifold research field.

41Exhaustiveness can also be enforced artificially by considering rules which fill up unexhausted bundles.
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3.1 Axiomatic Analysis
The first set of research questions aims to uncover a deeper understanding of the behavior
and underlying constraints associated with voting rules. This is mostly done by designing
and studying desirable axiomatic properties a rule may or may not satisfy. Undeniably,
this is one of the most crucial questions to address and thus deserves an extensive dis-
cussion. In order to derive a collective decision from (possibly contradicting) individual
preferences or opinions, we are less interested in what rule to actually use, but rather in
whether an outcome is in the best interest of the voters.

Let us give just a few examples of desirable axiomatic properties a voting rule or its out-
come(s) should satisfy. We might axiomatically quantify fairness by requiring that a rule
should always act anonymous or neutral [43] (i.e., treating voters or alternatives equally),
or proportional [5, 6, 45] (i.e., ensuring a proportional representation of any preference
group in an outcome relative to its size). For safety, a rule should be robust against manip-
ulation [85, 154] (i.e., the strategic change of a voter’s preference) or control [11] (i.e., the
strategic change of an election’s specifications). Similarly, we may quantify performance
by requiring that the outcome of a rule should be exhaustive [6] (i.e., an additional alter-
native cannot be added without violating feasibility) or competitive [82] (i.e., if voters’
satisfaction with an outcome can be measured by some metric, a rule should guarantee
some kind of minimum satisfaction). Although not explicitly studied in this thesis, note
that there are many characterization results across related literature, stating that a (set of)
rule(s) can be well-defined by a set of satisfied axioms.42

We can tackle an axiomatic analysis from two directions: (i) From the perspective of
modeling, we may act result-oriented by designing (or choosing) a rule based on a set of
axiomatic properties, which are desired for a given real-world scenario. In case such a
rule does not exist due to incompatible axioms, we may approximate our modeling goals
by trading off properties. For illustration, assume there is no well performing rule which
is fair and safe (according to predefined properties). Then a relaxation of the requirements
might allow for a fair rule with performance guarantee, which is almost safe. (ii) Second,
having a rule in place, it is reasonable to either verify its justification by investigating
whether desired criteria are met, or extend the study on yet neglected properties. This
is particularly important for rules relying on a metric, stating how good a solution is.
For example, a rule that maximizes a scoring function (which is assumed to accurately
reflect the voters’ satisfaction with an outcome) has a justified efficiency per se, while an
axiomatic analysis may reveal at what cost.

Note that studying axiomatic properties in the context of our global model may have
implications across all three considered research fields. For example, if a rule violates an
axiom for multiwinner elections, the violation is implied for its generalized variants in
participatory budgeting and judgment aggregation, too. Vice versa, satisfied criteria for

42E.g., quota rules following Dietrich and List [66] or the median rule by Nehring and Pivato [133].
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an (asymmetric) judgment aggregation rule inherit downwards by choosing a multiwinner
or budgeting constraint. Overall, we summarize these types of research goals, related to
the axiomatic analysis of voting rules, compactly in Question Q1 as follows:

Question Q1 (Axiomatic Analysis). What are desirable axiomatic properties an out-
come or any rule F should satisfy in a domain-specific research field? How does either
a fixed rule F or a class of such rules behave axiomatically? Which axiomatic proper-
ties are compatible with one another, i.e., is there at least one rule that satisfies multiple
predefined axioms simultaneously?

Understanding the axiomatic behavior of voting rules is not only of pure theoretical in-
terest. In fact, its implications can significantly contribute to assessing potential risks
and chances of improvement for practical applications. First, focusing on the desired re-
sult (i.e., predetermining desirable criteria) helps finding a suitable rule, which acts as
requested. Second, designing and evaluating a rule axiomatically may improve trans-
parency, resulting in a more justifiable outcome. Hence, understanding why a result was
chosen can lead to a more credible voting process with a higher acceptance by partici-
pants.43 Third, knowing that a rule violates desired criteria can indicate potential draw-
backs. In some cases this may pave the way for creative opportunities to bypass said
violation. For example, a voting rule prone to strategic changes of given parameters may
be safe if all parameters are fixed in advance.

3.2 Complexity of Winner Determination
Having a rule in place, we are interested in the computational complexity required to de-
rive a winning outcome, based on the voters’ preferences. While it might be practically
sufficient to distinguish between efficiently computable and computationally hard rules,
our aim is to demonstrate which aspects of winner determination contribute to how much
complexity. In particular, knowing which parameters of an underlying election render a
rule hard (e.g., the number of participants) might allow to escape intractability by param-
eterization.44 Primarily, we focus on yet another aspect: As we mainly study irresolute
rules, we consider a more diverse study on the complexity of winner determination prob-
lems (in contrast to simply classifying considered rules as hard or efficiently computable).
This results in more evolved insights into the complexity for different aspects of winner
determination. In particular, as the outcome of an irresolute rules is a set, we study how
hard it is to decide whether an alternative is appearing possibly in an outcome (i.e., in at
least one) or necessarily (i.e., in all).45

43To enhance acceptance by understanding, both Cailloux and Endriss [49] and Peters, Procaccia, Pso-
mas, and Zhou [143] use a series of simple axiomatic arguments to explain the result of a voting rule.

44De Haan [93] discusses parameterized complexity and its applications to judgment aggregation.
45The existential (universal) variant is also known as credulous (skeptical) outcome determination [75].
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By our global model, lower bounds on the complexity of winner determination are inher-
ited upwards and upper bounds downwards. We summarize these research goals regarding
the complexity of winner determination in Question Q2 as follows:

Question Q2 (Winner Determination). What is the computational complexity associ-
ated with questions related to the outcome of a rule F?

With respect to practical usage, we hope for rules that adequately meet our modeling
goals while being efficiently computable. Sadly, this is often not the case. Knowing if
a rule is computationally hard allows for a mathematically grounded discussion on why
a rule might be unsuitable for a given use-case. In turn, we may relax desired modeling
requirements to receive tractability. By deriving insights in why a rule is hard to compute,
we may find it more effective to adjust the overall election instead of the underlying rule
in order to achieve our goals. For example, determining an optimal bundle in participa-
tory budgeting is hard for cost-based satisfaction [166]. Yet, if we adjust each project’s
cost upwards to the next thousandth of the budget limit, using the same rule, we can ef-
ficiently compute an outcome as a reasonable approximation (see Kellerer, Pferschy, and
Pisinger [104] for a pseudo-polynomial implementation).

3.3 Complexity of Manipulative Interference
Sadly, most voting rules are prone to strategic changes by various forms of manipula-
tive interference. Following a famous impossibility result by Gibbard [85] and Satterth-
waite [154] (based on ordinal preferences), all voting rules satisfying a short list of very
basic criteria can be manipulated by voting untruthfully. As a way to limit manipulative
interference in practice, we study whether computing a manipulator’s strategy is compu-
tationally (too) demanding. Note that many forms of manipulative interference can also
be interpreted from a more optimistic perspective: As questions about the robustness of
an alternative against any changes within a certain range. More precisely, even if not all
parameters of an election can be fixed in advance (e.g., by considering random noise in
the votes [32]), we might already determine that some alternatives must clearly appear in
any outcome, while others appear at least in some cases.

Manipulative interference has been studied extensively in various forms depending on
the underlying framework and especially the use-case.46 Informally, we often classify
manipulative interference into three distinct categories: For questions regarding manipu-
lation [12, 73] we are interested in whether a voter (or sometimes a group of voters [37])
can change her vote strategically to align the resulting outcome further with her preference
(e.g., in a constructive variant to include a preferred set of alternatives or in a destructive
variant to exclude). Relating to our general model, manipulation refers to the alteration

46For an overview, including examples in the fields of preference aggregation and judgment aggregation,
we refer to the textbook by Rothe [152].
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of one fixed entry of the input list X . For bribery [79, 18], an agent may bribe a limited
number of voters to alter their votes in an attempt to change the outcome in favor of the
briber. Formally, a fixed number of entries of X can be altered by a valid bribery attempt.
Lastly, for questions revolving around control [11, 17, 16], we assume someone in charge
of the electoral process has the power to alter the election’s structure to some degree. This
can take various forms, for example, by in- or excluding voters from submitting their bal-
lots. As a use-case oriented example in participatory budgeting, a valid control attempt
might involve changing the overall budget limit or some alternative’s cost function.

In this thesis we focus mainly on structural changes resulting from combinatorial aspects
(i.e., changing Y or F ) and consider problems regarding manipulation or bribery (i.e.,
changing X) only from a more general perspective. We summarize our research goals
related to the complexity of manipulative interference in Question Q3 as follows:

Question Q3 (Manipulative Interference). Is it possible to change the outcome in favor
of a manipulator by slightly adjusting either Y or F (or X) to a given extent? If this is
the case, how computationally demanding is it to find a successful strategy for changing
the outcome favorably?

Finding answers to these questions allows us to better evaluate the risk for a decision-
making process of being strategically influenced. If we are able to efficiently compute
an outcome, while relevant manipulative actions are hard to compute, the threat of being
manipulated is rather small (for large enough elections). If this is not the case, we may at
least hope that questions regarding manipulative interference are computationally harder
to decide than winner determination itself. Lastly, especially for problems regarding the
combinatorial structure of a decision-making process, we may often bypass those types of
control by fixing all relevant parameters in advance. Identifying respective complexities
first, we know for which parameters this is the most relevant.

3.4 Relationships Between Rules
Although the rules we consider can be interpreted as explicit functions that map any valid
input to a corresponding output, two independently formulated descriptions of the same
function may differ strongly. To give an example, consider the sequential majority rule,
introduced in Subsection 2.4.2. For the resolute variant we can reformulate its sequen-
tial description into a maximizing rule, where each formula supported by the majority is
weighted by decreasing powers of two (based on the processing order). Hence, results ob-
tained from individually studied rules that are shown to be identical can be unified. When
rules were formulated for different domains (e.g., multiwinner elections and judgment
aggregation), this allows connecting the respective fields more closely together. In other
cases, rules may relate as generalization and refinement to one another (if there is always
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an inclusion relationship between outcomes for identical inputs).47 Linking those rules
allows for a transfer of results related to computation or axiomatic properties. Lastly, in
rare cases it is not obvious that (similar) rules are indeed different, which may impact the
result in terms of the desired criteria negatively. For example, although for the median
rule in judgment aggregation we may either minimize the hamming distance or maximize
the number of approved issues, a similar approach does only hold for the egalitarian me-
dian rule if each voter approves the same number of issues. While in standard judgment
aggregation this is always the case (i.e., each individual judgment must approve exactly
half of the agenda items), in an asymmetric setting we may consider two rules that are
similar but fundamentally different.48

These examples illustrate that uncovering possible relationships between rules can be a
complex but rewarding task. We summarize our aim for a deeper understanding of the
interaction among individually studied voting rules in Question Q4 as follows:

Question Q4 (Relationships Between Rules). How do aggregation rules relate to one
other? How can we meaningfully generalize rules to different domains? Can a rule
be seen as a refinement of another rule? Are there non-obvious (dissimilarly defined)
coinciding rules, either in a closed research field or across related disciplines?

Revealing relationships between rules can yield relevant implications for real-world appli-
cations. Indeed, unifying research results by identifying related rules may allow for better
educated and more fine-grained selections of suitable voting rules. From a computational
point of view, it is of particular interest to identify complexity gaps for winner determi-
nation problems among coinciding rules of different domains. This could hold a deeper
insight in what renders a related problem hard.49 In case there is no complexity gap,
the upside from switching to a more expressive framework comes without a (significant)
computational trade-off, which is discussed extensively in Chapter 8.

3.5 Ballot Design
Going one step beyond the limits of simple approval ballots, our aim is to explore how
generalizing the input format slightly may positively impact the overall decision-making
process, without putting too much cognitive burden on the voters. Let us motivate the
choice of a ballot format from a broader perspective: To derive a collective decision from
individual preferences, we are in between two extremes. On the one hand, if voters are
able to express their preferences in detail, a potentially optimized decision comes with
a high complexity. That is, in communication of the voters’ opinions, as well as the

47For example, the maxcard subagenda rule is a refinement of the maximum subagenda rule [115, 118].
48To see that egalitarian rules (based either on the hamming distance or the number of approved alterna-

tives) do not coincide, consider a profile with two voters, respectively approving none or all alternatives.
49In a related approach, de Haan [91] identified judgment aggregation constraint types, such that winner

determination for a variety of rules become tractable.
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evaluation by a suitable mechanism. On the other hand, if we rely on a limited, but easy
to elicit, ballot format, simplicity comes with a loss of information. This in turn may result
in an uninformed decision, disregarding the voters’ actual preferences. Having this trade-
off in mind, there are many established ballot formats for different applications, such
as approving, ranking, or rating single alternatives. Yet, those formats do not allow for
expressing logical dependencies between different alternatives in an outcome. While this
can be easily implemented by approving, ranking, or rating committees instead of isolated
candidates, the ballot’s size might become exponential in the number of alternatives.

Hence, in an application-oriented approach, an important task is to find a sweet spot be-
tween both extremes. That is, finding a ballot format which can realistically (enough)
capture the voters’ preferences, while being simple (enough) to cast. We investigate this
research direction, by studying slight generalizations of basic approval ballots and sum-
marize our last research goal in Question Q5 as follows:

Question Q5 (Ballot Design). To what extent can a slightly more general ballot for-
mat, allowing participants to express their opinions in a more evolved fashion (than by
simple approvals), yield better outcomes?

By formally introducing new ballot formats, we extend the realm of choices for real-world
applications, while a subsequent theoretical evaluation of those formats can allow for an
educated decision based on the use-case. In particular, for practical use we can derive
multiple implications based on our theoretical results. If a decision-making process can
be improved significantly by allowing for a more expressive ballot format without adding
too much cognitive burden on the voters, the upside from switching to a less studied bal-
lot format might outweigh potential downsides. In situations where the benefit of more
evolved preferences is only marginal, choosing a more common ballot format along with
a well-studied voting rule might be more effective. This is of particular interest when
there is a metric present to quantify how good an outcome is based on the voters’ pref-
erences. By default, this generally holds for scoring rules, which are studied extensively
throughout this thesis.
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CHAPTER 4

IRRESOLUTE
APPROVAL-BASED BUDGETING

In this chapter, we revisit participatory budgeting with approval-based preferences, to
generalize established results to an irresolute context. Overall, we reinterpret previously
considered (resolute) rules and axiomatic properties, and introduce a new class of hybrid
rules as approximation with performance guarantee.

4.1 Summary
In this work, we extend the axiomatic analysis on voting rules for participatory budgeting
to an irresolute setting. We build on the study by Talmon and Faliszewski [166], who
introduced a formal framework for participatory budgeting with approval-based prefer-
ences. For a more valuable insight into our contribution, let us first recap the model by
Talmon and Faliszewski. The authors use three reasonable approaches to model the satis-
faction of a single voter with a given outcome (generalized from multiwinner elections),
and then use three different aggregation rules, aiming to optimize the voters’ overall sat-
isfaction. The modular setup yields a total of nine voting rules, which are interpreted as
resolute rules, using a tie-breaking scheme if necessary. In addition, they present desirable
axioms any budgeting method should satisfy, that emerge from considering a budgeting
constraint. All considered axioms relate to the robustness of voting rules. For example,
an item in the outcome should not be excluded by a reduced cost for implementation.

We revisit the given framework, reinterpreting the rules to be irresolute (assuming parallel-
universe tie-breaking). We begin by exploring computational aspects, showcasing that
two rules studied independently actually coincide. Furthermore, we show that for greedy
rules, which can be interpreted as approximations, there is no performance guarantee (i.e.,
the voters’ overall satisfaction can be inversely proportional to the satisfaction of an op-
timal solution). To circumvent that issue, we introduce a simple class of hybrid greedy
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rules by combining two slightly different approaches, yielding a constant approximation
factor. In particular, for performance guarantee, we show that our introduced hybrid rules
coincide with an approximation for the budgeted maximum coverage problem, studied by
Khuller, Moss, and Naor [106]. As an intermediate result, we connect our rules based on
maximization to restricted domains of the budgeted maximum coverage problem.

Finally, as there can be multiple outcomes due to irresoluteness, we redefine related ax-
ioms in an existential fashion50 and study the properties of all introduced rules. No-
tably, we see that performance guarantee for hybrid rules comes with a trade-off, as those
rules perform poorly axiomatically. Formal proofs, which were omitted from our publi-
cation [25] due to space constraints, are supplemented in Appendix A.1.

4.2 Reflection on Initial Research Goals
In this section, let us reflect on how this article’s key results contribute to answering four
of our initial research questions, motivated in Chapter 3. Most extensively, we addressed
Question Q1, as our axiomatic analysis provides valuable insights into how voting rules
behave in the domain of participatory budgeting in an irresolute context. We partially
dealt with Question Q2 by introducing a new class of hybrid rules, capable of identifying
a single outcome in polynomial time. Although we did not study Question Q3 through the
lens of computational complexity, the satisfaction of a particular axiom implies robust-
ness of a voting rule against appropriate (strategical) structural changes to a budgeting
campaign. In contrast, the violation of an axiom may allow for manipulative interference,
which we study more comprehensively in Chapter 5. Lastly, by (i) identifying coinciding
rules within a shared domain and (ii) linking all three max rules to (restricted domains of)
the budgeted maximum coverage problem, we addressed Question Q4.

4.3 Publication
This work has been published and presented as an extended abstract at the 19th Interna-
tional Conference on Autonomous Agents and Multiagent Systems.

[25] D. Baumeister, L. Boes, and T. Seeger. “Irresolute Approval-based Budgeting”.
In: Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems. IFAAMAS, 2020, pp. 1774–1776

50Similarly, Rey, Endriss, and de Haan [149] generalize by considering a universal quantifier instead.
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4.4 Personal Contribution
The work on this article was initiated by Tessa Seeger’s impressive bachelor’s thesis,
where Theorem 2.1 and the axiomatic analysis for all rules except for the hybrid greedy
rules were obtained and published in a preliminary version. The conception and writing
of this article was conducted jointly with Dorothea Baumeister. The remaining techni-
cal results — designing and analyzing the hybrid greedy rules axiomatically, as well as
Propositions 3.1 and 3.2 — were contributed by me.
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ABSTRACT
In participatory budgeting, citizens can take part in the decision on
which projects a city should spend money. Formally, the input is a
set of items, each having a certain cost, while agents can express
their preferences. The task is to choose a set of items respecting
a given bound. Recently Talmon and Faliszewski [10] introduced
a framework for budgeting based on approval votes. This paper
revisits the introduced methods axiomatically from an irresolute
point of view, especially showing that two of the proposed methods
coincide. The study is complemented by approximation results.
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1 INTRODUCTION
In participatory budgeting (PB), citizens are directly involved in the
process of collective decision making at municipal or even global
level. More precisely, the participants may express their preferences,
by voting on which multitude of proposals (at non-uniform cost)
public funds should be spent. We consider proposals either fully
funded or rejected, in contrast to e.g. Freeman et al. [6], where funds
may be divided non-discretely. Due to the rise of digital democracy,
such processes are relevant to a large group of people, and the for-
mal framework may be used to make decisions in different contexts.
Participatory budgeting may be interpreted as a generalization
of multiwinner elections, where each alternative occupies a fixed
amount of seats. Following this generalization, there are various
approaches to model voters’ preferences. Goel et al. [7], Fluschnik
et al. [5], and Benade et al. [4] consider assigning each alternative a
utility, while Lu and Boutilier [9] consider participation by ranking
alternatives. Benade et al. [3] evaluate multiple approaches in an
empirical study. An overview of current research on participatory
budgeting from a computational social choice perspective is given
in the book chapter by Aziz and Shah [2].

Many cities, like Paris for example, that actually conduct PB
rely on approval votes, where the voters may simply vote for some
(possibly restricted) subset of the alternatives. We will also use
approval-based preferences over the set of alternatives as it was

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

proposed by Aziz et al. [1]. In particular, we will expand the frame-
work by Talmon and Faliszewski [10], where satisfaction functions
are used to evaluate how good a budget represents voters’ prefer-
ences.

We contribute by interpreting the given model for irresolute
budgeting scenarios, where the result may be a set of feasible win-
ning budgets instead of one distinct bundle. Hence, we generalize
studied axioms to irresolute budgeting methods by slightly altering
their definition. Notably, we will show that two methods introduced
by Talmon and Faliszewski [10] actually coincide irrespective of
the used tie-breaking methods. Furthermore, we interpret rules
that rely on greedy approaches as approximations and study their
performance in contrast to optimal solutions.

The choice to focus on irresolute rules is motivated by the prac-
tical application of this framework. Although unique solutions are
desirable, ties occur naturally, and breaking ties without partic-
ipants’ consent is at risk of losing either transparency or credi-
bility. For preserving democratic deliberation, it is reasonable to
assume that the tie-breaking will be made by the municipality. In
extreme cases, breaking ties differently may result in disjunct bud-
gets, which indicates the power, that the tie-breaking authority has.
This might naturally lead to a conflict of interest when tie-breaking
is not further specified and a possible waste of resources when
tie-breaking is fixed priorly. Overall, most real-world campaigns
are conducted in multiple stages to guarantee a favorable and re-
alizable outcome. Hence, reaching a consensus that reflects the
communities’ preferences more precisely by adding a top-layer (i.e.
deliberately breaking ties) is exactly in the spirit of PB.

2 PRELIMINARIES
We adopt the framework by Talmon and Faliszewski [10]. Hence,
we consider a budgeting scenario as quadruple E = (A,V , c, ℓ), con-
sisting ofm itemsA = {a1, . . . ,am }, a function c : A → N assigning
a cost to each item, n votersV = {v1, . . . ,vn } each balloting with a
set of approved items Av ⊆ A for v ∈ V , and a budget limit ℓ ∈ N.
We denote the set of items from a budget B ⊆ A, also approved by
voter v as Bv = Av ∩ B. In this paper we use composite budgeting
methods Rr

f as defined by Talmon and Faliszewski [10], but inter-
pret them as irresolute procedures. Hence, each method Rr

f takes
any budgeting scenario E as input and outputs a nonempty set of
winning budgets Rr

f (E) ⊆ 2A \ {∅}. This is done by applying a bud-
geting rule r , respecting a satisfaction function f : 2A×2A → N. We
adopt proposed satisfaction functions f , also introduced by Talmon
and Faliszewski [10], to derive the satisfaction of a voter from her
approval ballot, focussing on either the quantity f (Av ,B) = |Bv |,
the cost of approved items that are budgeted f (Av ,B) = c(Bv )
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(where slightly abusing notation it holds c(B) = ∑
b ∈B c(b) for ev-

ery bundle B ⊆ A)), or the presence of at least one approved item
in the budget f (Av ,B) = 1 |Bv |>0.

Similarly to the satisfaction functions, we adopt the definition
of max rules, greedy rules, and proportional greedy rules, addition-
ally we introduce hybrid greedy rules. The formal definition with
respect to a given satisfaction function f is as follows.

Max rules (Rm
f ): Rm

f (E) = arg maxB⊆A
∑
v ∈V f (Av ,B), while

respecting the budget limit
∑
b ∈B c(b) ≤ ℓ.

Greedy rules (Rд
f ): Starting with B = ∅ iteratively extend B

by a ∈ A \ B, maximizing
∑
v ∈V f (Av ,B ∪ {a}), such that∑

b ∈B c(b) ≤ ℓ.
Proportional Greedy rules (Rp

f ): Similar to the greedy rule,
maximize (∑v ∈V f (Av ,B ∪ {a}) − ∑

v ∈V f (Av ,B))/ c(a) it-
eratively, starting with B = ∅.

Hybrid Greedy rules (Rh
f ): Arbitrarily selectBд ∈ Rд

f (E) and
Bp ∈ Rp

f (E) and output the budget with maximum satisfac-
tion arg max(∑v ∈V f (Av ,Bд),

∑
v ∈V f (Av ,Bp )) as Rh

f (E).
We interpret all three greedy variants as irresolute rules, by

considering every budget as winning, that may result from breaking
the ties in each iteration. We now show that two of the considered
budgeting methods coincide.

Theorem 2.1. Rд
|Bv | and Rp

c(Bv ) are equivalent, i.e. they always
output the same set of winning budgets.

Proof. First note that both above binary satisfaction functions
f respectively map to an unary function f ′, where f (Av ,B) =
f ′(Bv ). While maximizing iteratively we may ignore constant fac-
tors f ′(Bv ) carried over from previous iterations, assuming f ′ is
additive. Hence in each iteration, the greedy rule Rд

f is selecting
an item a maximizing

∑
v ∈V f ′(Av ∩ {a}) while the proportional

greedy rule Rp
f selects item a maximizing

∑
v ∈V f ′(Av ∩{a})/c(a).

Further for any f ′ with f ′(∅) = 0 it follows that∑
v ∈V

f ′(Av ∩ {a}) = |{v ∈ V | a ∈ Av }| · f ′({a}).

Note that |Bv | and c(Bv ) =
∑
b ∈Bv c(b) are indeed additive and map

to zero for Bv = ∅. By applying above implications, we conclude
that both Rд

|Bv | and Rp
c(Bv ) iterate by selecting item a maximizing

the value |{v ∈ V | a ∈ Av }|, since |{a}| = c({a})/c(a) = 1. □

This theorem holds irrespective of the used tie-breaking, since
in each iteration the same items may be chosen. Hence, also in the
setting of Talmon and Faliszewski [10], both rules are equivalent.

3 APPROXIMATION AND PROPERTIES
We interpret given greedy approaches as approximations and study
their performance in contrast to optimal solutions (i.e. max rules).

Proposition 3.1. Rд
|Bv | , R

д
1|Bv |>0

, Rp
c(Bv ), R

p
|Bv | and Rp

1|Bv |>0
do not have a constant approximation factor.

This can be shown by counter examples, where the approxima-
tion factor is inversely proportional to the budget limit. In contrast,
it can be shown that the newly introduced hybrid greedy rules have
a (1 − 1/√e)-approximation.

Proposition 3.2. For all three satisfaction functions f consid-
ered here and every Bm ∈ Rm

f (E) and Bh ∈ Rh
f (E), it holds that∑

v ∈V f (Av ,Bh )/
∑
v ∈V f (Av ,Bm ) ≥ 1 − 1/√e .

Above proposition follows by a similar (1− 1/√e)-approximation
due to Khuller et al. [8] and the insight, that each max rule can
be modeled as a special case of the budgeted maximum coverage
problem.

Now, we recap some of the proposed axiomatic properties by
Talmon and Faliszewski [10] to study them irrespective of the used
tie-breaking rule. Hence, we slightly adapt the properties in order
to handle irresolute rules.

Definition 3.3. Let E = (A,V , c, ℓ) be a budgeting scenario with
B ∈ R(E). The following axiomatic properties are satisfied by a
budgeting rule R, if for every modified budgeting scenario E ′ (as
defined below) there exists a budget B′ ∈ R(E ′), meeting a require-
ment as defined:

Limit Monotonicity: For E ′ = (A,V , c, ℓ + 1), where for all
a ∈ A it holds c(a) , ℓ + 1, we require B ⊆ B′.

Discount Monotonicity: Forb ∈ B and E ′ = (A,V , c ′, ℓ)with
c ′(a) = c(a) for every a ∈ A \ {b}, and c ′(b) = c(b) − 1, we
require b ∈ B′.

Splitting Monotonicity: For a ∈ B and every E ′, where a
is split into a set of items A′, an extended cost function
satisfying c(a) = ∑

a′∈A′ c(a′), and exactly those voters ap-
proving a, approve all items in A′, we require A′ ∩ B′ , ∅.

Merging Monotonicity: LetA′ ⊆ B, such that for eachv ∈ V
it holds either Av ∩ A′ = ∅ or A′ ⊆ Av . For E ′, where
A′ is merged into a new item a, an extended cost function
satisfying c(a) = ∑

a′∈A′ c(a′), and the voters approving a
are exactly those who approved A′, we require a ∈ B′.

Our results are consistent with those for resolute methods and
summarized in Table 1.

Table 1: Axiomatic properties of budgeting methods. Results
are generalized from Talmon and Faliszewski [10]. Devia-
tions are marked by ▲ (see Theorem 2.1), new results by ♣.

Rr
f

m д p h m д p h m д h
|Bv | 1|Bv |>0 c(Bv )

Limit M. x x x x♣ x x x x♣ x x x♣
Discount M. ✓ ✓▲ ✓ x♣ ✓ ✓ ✓ x♣ x x x♣
Splitting M. ✓ ✓ ✓ ✓♣ ✓ ✓ ✓ x♣ ✓ x x♣
Merging M. x ✓▲ x x♣ ✓ ✓ x x♣ ✓ ✓ x♣

When considering resolute methods, there are underlying as-
sumptions, which might not be resolved easily. Some of the consid-
ered axioms might be violated if the tie-breaking scheme depends
on the cost or the total quantity of items budgeted. Even the ap-
plication of linear mechanisms might not be trivial, as splitting or
merging items might interfere with the order.
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CHAPTER 5

COMPLEXITY OF
MANIPULATIVE INTERFERENCE
IN PARTICIPATORY BUDGETING

In this chapter, nested in the scope of participatory budgeting, we study the computational
complexity of (i) winner determination by complementing previous results with a more
diverse study on possible and necessary winner variants, and (ii) manipulative interference
from a generic point of view and in detail for two budgeting-specific control problems.

5.1 Summary
In this work, we use computational complexity theory to examine questions related to
winner determination and manipulative interference for approval-based participatory bud-
geting. This research has been initiated by Talmon and Faliszewski [166], who study these
question in its simplest form. For resolute budgeting methods, they identified (i) which
rules are hard to compute and (ii) which rules satisfy axiomatic properties that arise from
the combinatorial structure of a participatory budgeting campaign. A violation of the latter
implies a vulnerability to electoral control. As an intermediate step we [25] generalized
respective results to an irresolute setting, as discussed in Chapter 4. Overall, we extend
those results by studying both winner determination and strategic aspects in a structured
and more fine-grained fashion.

For winner determination, we study the computational complexity of a total of four de-
cision problems. In particular, we extend the study on irresolute winner determination
by possible (and necessary) winner variants, where the question is, whether at least one
(respective all) winning bundle(s) contain(s) a predefined subset of items. For rules max-
imizing an efficiently computable satisfaction function, we present a general upper bound
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scheme to derive (not necessarily tight) upper bounds for all decision problems simulta-
neously. Those results are complemented by providing a matching lower bounds for the
only hard to compute rule we consider.

To study manipulative interference from a general perspective, we introduce alteration
functions, that map from a given budgeting scenario to a set of possible scenarios after the
alteration (e.g., the strategic change of a voter’s ballot). For a given budgeting method Rs,
we study the following decision problem, formalizing the question, whether a manipulator
can include at least k items from a subset of items B♡ ⊆ A into a winning bundle, by
changing the given campaign by a valid alteration (due to a given alteration function f ).
In a destructive variant, the goal is to prevent items from being in a winning bundle.

CONSTRUCTIVE-Rs-MANIPULATIVE-INTERFERENCE (C-Rs-MI)

Given: A budgeting scenario E, a set of items B♡, an integer k, and an alteration func-
tion f .

Question: Is there a budgeting scenario E′ ∈ f(E), such that there is a winning bundle
B ∈ Rs(E

′) with |B♡ ∩B| ≥ k?

After identifying trivial upper bounds, derived from the complexity for winner determi-
nation, we explicitly study control problems that rely on the combinatorial structure given
in participatory budgeting. In particular, we study two types of alteration functions: By
setting either (i) the budget limit; or (ii) a specific item’s cost for a given budgeting cam-
paign to some value in a given interval. For the latter case, we only study whether the
specific item itself can be in- or excluded by an alteration.

For most of the considered control problems, we present polynomial-time computable
algorithms, hinting that the considered parameters should be fixed in advance to avoid
manipulative interference occuring in practice.

5.2 Reflection on Initial Research Goals

This article contributes significantly to answering two of our initial research questions,
introduced in Chapter 3. We addressed Question Q2, by (i) initiating a more diverse study
on the computational complexity for winner determination in an irresolute participatory
budgeting setting, (ii) providing a general proof scheme for upper bounds, and (iii) estab-
lishing tight bounds for the only computationally hard rule we consider. Furthermore, we
addressed Question Q3, by considering alteration functions to present a generic approach
to study manipulative interference in participatory budgeting through the lens of computa-
tional complexity. Along with an upper bound proof scheme, we studied the lower-bound
complexity for two suitable control problems in both constructive and destructive variants.
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5.3 Publication
This work has been published and presented as a full paper at the 7th International Con-
ference on Algorithmic Decision Theory.

[22] D. Baumeister, L. Boes, and J. Hillebrand. “Complexity of Manipulative Interfer-
ence in Participatory Budgeting”. In: Proceedings of the 7th International Confer-
ence on Algorithmic Decision Theory. Springer. 2021, pp. 424–439

5.4 Personal Contribution
The work on this article was initiated by Johanna Hillebrand’s remarkable bachelor’s the-
sis, where questions related to winner determination and manipulative interference were
initially studied and published in a less general way. In particular, Theorem 5 was already
shown in Johanna Hillebrand’s thesis in a similar way. All the remaining technical results
required more evolved reasoning and were contributed by me. The overall conception and
writing of this article was conducted jointly by Dorothea Baumeister and me.
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Abstract. A general framework for approval-based participatory bud-
geting has recently been introduced by Talmon and Faliszewski [17].
They use satisfaction functions to model the voters’ agreement with a
given outcome based on their approval ballots. We adopt two of their
satisfaction functions and focus on two types of rules. That is, rules that
maximize the overall voters’ satisfaction and greedy rules that iteratively
extend a partial budget by an item that maximizes the satisfaction in
each incremental step. An important task in participatory budgeting is
to study different forms of manipulative interference that may occur in
practice. We investigate the computational complexity of different prob-
lems related to determining the outcome of a given rule and give a very
general formulation of manipulative interference problems. A special fo-
cus is on problems dealing with a varying cost of the items and a varying
budget limit. The results range from polynomial-time algorithms to com-
pleteness in different levels of the polynomial hierarchy.

1 Introduction

Participatory budgeting is often implemented as a mean of making democratic
decisions. Thus, citizens can usually express their opinions on how a portion of
a city’s budget should be distributed in such a process, sometimes making new
suggestions on which projects could be realized as well. The first implementa-
tion of participatory budgeting can be found in Porto Alegre (Brazil) in 1989
as an attempt by the Workers Party to break with traditionally authoritarian
public policies (see Sintomer et al., [15]). Starting here the idea spread around
the world, taking different forms and magnitudes regarding size, budget, and
other factors. As described by Cabannes [5], integrating participatory budgeting
into a city’s form of government has yielded several positive effects. These range
from an increased accountability of politicians, due to the collective will being
rather visible, to directing larger parts of the city’s budget towards education,
health care, infrastructure, and childcare. The different stages of a participatory
budgeting cycle are described by Aziz and Shah [3]. These stages include the di-
vision into different districts, the determination of the total available budget, the
emergence of project proposals, deliberation steps, and finally the voting stage.
While Rey et al. [14] study multiple stages in one model, we will solely focus on
the last step in this paper. Here, the citizens express their preferences regarding
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the projects they want the budget to be spent on. A participatory budgeting
method then aggregates these votes in order to reach a decision about which
projects will be realized. Here we assume that each project is either fully funded
or not at all. So, in this last step we have a fixed set of projects, each associated
with a cost, and we have an overall budget limit. The total cost of the funded
projects must be within this limit. A crucial point is how the preferences of the
voters are expressed, as a decision between expressiveness and compactness of
the presentation has to be made. We follow a very simple approach by assum-
ing approval ballots, where every voter chooses for every project whether she
thinks that it should be funded or not. These individual votes are independent
of the budget limit, i.e., a voter may approve a set of projects which could not
be realized within the given budget limit (in contrast to, e.g., Goel et al. [8]).
Regarding the aggregation of the approval ballots, we follow the approach of Tal-
mon and Faliszewski [17]. As a first step, we define a satisfaction function that
returns for each voter and each possible committee the satisfaction of said voter
based on her approval ballot. Then, an (ir)resolute budgeting method chooses
a (set of) winning projects. One method is to output bundles that maximize
the sum of the voters’ satisfaction while taking into account the budget limit.
As we will see more detailed in Section 3, this may lead to winner determina-
tion problems of high complexity in some cases. A different approach commonly
used in practice is a simple greedy approach. In each iteration, the set of win-
ning projects is extended by the project that maximizes the satisfaction in each
incremental step, again respecting the budget limit. In this case, winner deter-
mination is more straightforward but depends on some tie-breaking mechanism
in every step. Combinations of different satisfaction functions and budgeting
methods have been studied by Talmon and Faliszewski [17] with respect to their
axiomatic properties, see Baumeister et al. [4] for an adaption to irresolute vari-
ants of these rules. Unfortunately, many of the desired axioms are not satisfied by
the proposed methods, which opens the possibility of manipulative interference
on participatory budgeting processes.

Due to the combinatorial structure in participatory budgeting (i.e., the set of
implemented items may not exceed the available funds), there are new types of
control to consider. The axioms proposed by Talmon and Faliszewski [17] focus
on the way a budgeting method should react to certain changes of the param-
eters. If, for example, an item’s costs are less than originally anticipated, this
should not lead to the item becoming unfunded. This is a reasonable assumption,
however budgeting methods using a cost-based satisfaction function do not sat-
isfy it. A budgeting method violating this axiom could be vulnerable to control
if a chair would be able to influence an item’s cost, in order to either exclude
it from the chosen budget or to ensure it being funded. Another axiom requests
that an increase of the budget limit may not lead to an item being excluded
from the winning budget. As this axiom is not satisfied by any of the budgeting
methods in question, this leaves the possible vulnerability to control via a change
of the budget limit in order to in- or exclude an item. In order to examine these
possible vulnerabilities to control further, we initially investigate the computa-
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tional complexity of determining a winner for the greedy and maximizing rule
in Section 3. Then we provide a general definition of manipulative interference
in Section 4 with a specific focus on problems where either the budget limit or
the cost of a specific item may be manipulated.

Related Work. Regarding traditional election problems this refers to different
variants of control. Here, an election chair alters the structure of the election to
make some distinguished candidate win or to prevent some distinguished candi-
date from winning. There is a huge amount of literature studying different kinds
of control problems in voting. For an overview, we refer to the book chapter by
Faliszewski and Rothe [6]. Related work on participatory budgeting close to our
assumptions (i.e., approval ballots, binary outcomes, and satisfaction functions)
was studied by Jain et al. [9], who considered satisfaction functions under project
interactions, and Rey et al. [13], who embedded the framework introduced by
Talmon and Faliszewski [17] into the framework of judgment aggregation. Aziz et
al. [2] considered aggregation using an axiomatic approach instead of predefined
rules. A well studied special case of approval-based participatory budgeting are
multiwinner elections, where we assume uniform cost for each candidate. Lack-
ner and Skowron [12] compare a variety of rules, that also use approval-based
satisfaction functions as a measure of the voters’ agreement with a committee.

2 Preliminaries

For a formal study of the voting step in participatory budgeting we follow the
approach of Talmon and Faliszewski [17].

Definition 1. A budgeting scenario E = (A, V, c, `) consists of a set A =
{a1, . . . , am} of m items, associated with a cost function c : A→ N+, and a set
V = {v1, . . . , vn} of n voters, where each voter v ∈ V has an associated ballot
Av ⊆ A containing a set of preferred items, and a budget limit ` ∈ N+.

Without giving a formal definition, let E denote the set of all possible bud-
geting scenarios without fixing any of the parameters (apart from mentioned
dependencies of parameters in the definition above). The goal in participatory
budgeting is to select a subset B of the items, called budget, such that the total
cost of B does not exceed the budget limit `. Slightly abusing notation we write
c(B) =

∑
a∈B c(a) to denote the total cost of some budget B ⊆ A. Moreover,

we call a budget feasible if c(B) ≤ ` and denote the set of feasible budgets by
B(E) = {B ⊆ A | c(B) ≤ `}. Feasibility is a hard constraint, but of course the
budget should take the ballots of the voters into account. Therefore, we introduce
satisfaction functions for the voters.

Definition 2. The satisfaction of a voter v ∈ V with a given budget B ⊆ A
is modeled by a satisfaction function s : 2A × 2A → N0. For simplicity, we
define Bv = Av ∩ B to be the set of items, which are both, approved by a voter
v and in a given budget B. In this paper we consider the following satisfaction
functions focussing on:
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– quantity: s(Av, B) = |Bv|, the number of budgeted approved items, and
– cost: s(Av, B) = c(Bv), sum of the cost of the budgeted approved items.

Slightly abusing notation, we write s(V,B) =
∑

v∈V s(Av, B) to denote the
overall satisfaction of the voters in V with a budget B. The presented satisfaction
functions follow different intentions and model different application scenarios.
The intuition for satisfaction by quantity is straightforward. The satisfaction of
a voter correlates with the number of implemented projects she likes. For satis-
faction by cost, we assume satisfaction correlates with the amount of funds that
are spent on preferred projects. Now, in order to compute a set of winning bud-
gets based on the voters’ preferences, we define an irresolute budgeting method
R, which maps a budgeting scenario E to a set of feasible budgets. The rules we
study use the underlying satisfaction functions we defined previously.

Definition 3. Given a budgeting scenario E = (A, V, c, `) ∈ E and a satisfaction
function s we define:

– Max rules (m): as Rm
s (E) = argmaxB∈B(E) s(V,B) , and

– Greedy rules (g): starting with B = ∅ iteratively extend B by a ∈ A \ B,
maximizing s(V,B∪{a}), until there is no item a ∈ A\B with c(B∪{a}) ≤ `.
Finally, set Rg

s(E) = {B}.

The max rules return all budgets that maximize the sum of the voters’ sat-
isfaction according to the function s. This rule is irresolute since there may be
several budgets satisfying this requirement. In contrast, the greedy rules work
iteratively. In each step one item that maximizes the sum of the voters’ satis-
faction when added to the current budget, will be added. We assume that some
tie-breaking mechanism is used in each round, such that exactly one item is
added. This leads to a resolute rule, always returning a set containing a single
budget, also referred to as the budget returned by the rule. Together with the
two satisfaction functions defined above, we consider four different rules.

Example 1. Let E = (A, V, c, `) be a budgeting scenario withA = {a1, a2, a3, a4},
V = {v, v′} with Av = A and Av′ = {a1}, c(ai) = i, and ` = 7. For the
greedy rules we break ties in favor of the item with a higher index. We have
Rm
|Bv|(E) = {{a1, a2, a3}, {a1, a2, a4}}, as both bundles yield a satisfaction of

four, while the only bundle with a higher satisfaction is A 6∈ B(E). Simi-
larly, it holds that Rm

c(Bv)
(E) = {{a1, a2, a4}} with a satisfaction of eight.

For the greedy rules we list the items in the order they are added, that is
Rg
|Bv| = {{a1, a4, a2}} (where a3 is skipped in the third iteration due to fea-

sibility), and Rg
c(Bv)

= {{a4, a3}}.

In Section 4, we will define different decision problems related to different
kinds of manipulative interference and study them from a computational point
of view. As an intermediate step, it is important to determine the complexity
for winner-determination problems first. Of course, computing a winning bundle
for the greedy rule is easy, as it is a rather simple algorithm, that tries to find a
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solution that is close to the one from the max rule. Yet, in the following section,
we will see that depending on the satisfaction function, there is little hope for
an efficient algorithm that returns at least one budget that maximizes the sum
of the voters’ satisfaction. Our results range from polynomial-time algorithms to
completeness in the polynomial hierarchy. We refer the reader to the textbook
by Arora and Barak [1] for further details on computational complexity. In the
rest of the paper, we assume that the reader is familiar with the complexity
classes NP, coNP, ∆p

2 = PNP, and Σp
2 = NPNP. Further, in this paper, for a

decision problem X, let X denote its complement, and for i, j ∈ N+ with i < j
we denote [i, j] = {i, i+ 1, . . . , j}, [i, i] = {i}, [j, i] = ∅, and [i] = [1, i].

3 Winner Determination

In this section, we investigate the computational complexity for a variety of
winner-determination problems associated with the considered budgeting rules.
We assume, that for any greedy rule, a tie-breaking is fixed priorly and applied
every round, resulting in a single final budget. Assuming that the given satisfac-
tion function s and the tie-breaking rule are efficiently computable, computing
a winning budget for a greedy rule can be done in polynomial time, since in
each round the number of possible budgets that has to be considered equals the
number of actually non-funded items. Therefore, we study decision problems
related to winner determination only for maximizing rules combined with some
efficiently computable satisfaction function s. The first problem we study asks
whether there is some feasible budget where the sum of the voters’ satisfaction
exceeds some given bound. Additionally, we focus on some desired budget B∗,
and ask whether it is a winning budget.

Rs-Budget Score (Rs-SC)

Given: A budgeting scenario E = (A, V, c, `) ∈ E and some bound t ∈ N0.
Question: Is there a budget B ∈ B(E) with s(V,B) ≥ t?

Rs-Winning Budget (Rs-WB)

Given: A budgeting scenario E = (A, V, c, `) ∈ E and some desired bud-
get B∗ ⊆ A.

Question: Is B∗ ∈ Rs(E)?

Since the max rule we consider is irresolute, we also ask whether a given bun-
dle is a subset of at least one, respectively every, winning budget. Formally the
problem Rm

s -Possibly Budgeted (Rm
s -PB) has the same input as Rm

s -WB,
but the question is whether there is some B ∈ Rm

s (E) with B∗ ⊆ B. Accord-
ingly, we ask for the problem Rm

s -Necessarily Budgeted (Rm
s -NB), whether

B∗ ⊆ B for every budget B ∈ Rm
s (E). Now, we provide general upper bounds.

Lemma 1. Consider E ∈ E, an efficiently computable satisfaction function s,
and t∗ = maxB∈B(E) s(V,B). For Rm

s -SC being a member of complexity class A,
it holds that
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(i) Rm
s -WB is in coA, and

(ii) Rm
s -PB and Rm

s -NB are in PA[O(log(t∗))], and
(iii) Rm

s -SC ∈ NP.

Proof. Consider a budgeting scenario E, a set of items B∗ ⊆ A, and a satisfaction
function s. For (i) we first may verify if B∗ is feasible and compute s(V,B∗) in
polynomial time. Then to solve Rm

s -WB we may decide in coA if every feasible
budget has an overall satisfaction of less than s(V,B∗) + 1 by solving Rm

s -SC.
For (ii) we may compute the optimal score t∗ of a winning budget by sending

O(log(t∗)) queries to an A-oracle using binary search. To solve (E,B∗) ∈ Rm
s -PB

we construct another satisfaction function s′ with s′(V,B) = 2 · s(V,B) + 1 if
B∗ ⊆ B and s′(V,B) = 2 · s(V,B) otherwise. To answer (E,B∗) ∈ Rm

s -PB, we
send a final query to our A-oracle, asking whether (E, 2t∗+1) ∈ Rs′-SC is a yes-
instance. We can use similar techniques to solve (E,B∗) ∈ Rm

s -NB, by defining
s′, such that a bundle B with B∗ 6⊆ B is assigned the slightly increased score.
Then (E,B∗) ∈ Rm

s -NB is a yes-instance if and only if (E, 2t∗ + 1) ∈ Rs′ -SC is
a no-instance. Overall we can query an A-oracle O(log(t∗)) times.

For (iii) recall that s is efficiently computable, so verifying that there is a
budget B with s(V,B) ≥ t can be done in polynomial time. ut

From the above lemma it follows that if Rm
s -SC is efficiently computable

for some satisfaction function s, then the other winner-determination problems
are also in P. Another implication is, that Rm

s -PB and Rm
s -NB are in ∆p

2 in
general, and in Θp

2 = PNP[log] for satisfaction functions, where the satisfaction
for a bundle is at most polynomial in the (binary encoded) size of the budgeting
scenario. For the rules we consider, we will see that P and ∆p

2 are suitable upper
bounds for Rm

s -PB and Rm
s -NB. Yet, there are satisfaction functions,1 for which

Rs-SC is known to be NP-complete, but for E = (A, V, c, `) and B ⊆ A, the
score s(V,B) is bounded by |A| · |V |, yielding an upper bound of Θp

2 (which is
not necessarily tight).

We continue by establishing tight bounds for the winner determination prob-
lems. Talmon and Faliszewski [17] already showed, that Rm

|Bv|-SC is solvable in
polynomial time. Following Lemma 1 we can formulate the following corollary.

Corollary 1. Rm
|Bv|-WB, Rm

|Bv|-PB, and R
m
|Bv|-NB are in P.

Next, we establish lower bounds for Rm
c(Bv)

. Talmon and Faliszewski [17]
showed NP-hardness for Rm

c(Bv)
-SC by reducing from the well known problem

Subset Sum (see Garey and Johnson [7]).

Theorem 1. Rm
c(Bv)

-WB is coNP-complete, and Rm
c(Bv)

-PB and Rm
c(Bv)

-NB are
∆p

2-complete.

Proof. We start by showing coNP-hardness for Rm
c(Bv)

-WB. We will reduce from
Subset Sum, where the input is a set of integers N = {n1, . . . , nm} ⊆ N+

1 For example the Chamberlin-Courant rule for approval ballots, studied by Skowron
and Faliszewski [16].
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and a bound n ∈ N+, and the question is, whether there is no subset S ⊆ N
with

∑
i∈S i = n. We transform an arbitrary instance (N,n) to an instance of

Rm
c(Bv)

-WB. Let A = {a1, . . . , am, b}, V = {v} with Av = A, c(ai) = 2ni for each
i ∈ [1,m], and c(b) = 2n − 1, and ` = 2n. Finally, we set B∗ = {b} and claim
that (E,B∗) ∈ Rm

c(Bv)
-WB if and only if (N,n) ∈ Subset Sum. In particular,

B∗ is a winning budget if there is no set of items, which adds up to a cost of 2n.
This is exactly the case if there is no S ⊆ N which sums up to n.

To show ∆p
2-completeness for the remaining problems, we will use the follow-

ing ∆p
2-complete problem, based on Krentel’s results [11, Thm 2.1, Thm 3.3].2

Even SubsetSum (ESS)

Given: A finite set of integers N ⊂ N+ and a distinct integer n ∈ N+.
Question: Let t =

∑
i∈S i be the largest possible value with t ≤ n over all

S ⊆ N . Is t mod 2 ≡ 0?

For an upper bound,Rm
c(Bv)

-PB andRm
c(Bv)

-NB are in∆p
2 following Lemma 1.

Since the overall satisfaction derived from a winning budget t∗ depends on the
cost, log(t∗) is polynomial in the instance size (but not logarithmical).

To show hardness, we reduce from ESS. Consider any ESS instance I =
(N,n) with N = {n1, . . . , nm}. For simplicity and without loss of generality
assume that n ≥ ni holds for every i ∈ [m]. Further, let k = |n| denote the
length of the binary representation of n. We construct a Rm

c(Bv)
-PB instance

I ′ = (E,B∗), with A = {a1, . . . , am, b1, . . . , bk} and V = {v} with Av = A. For
our cost function c, we interpret the cost c(a) of some item a ∈ A in its binary
encoding. By construction, each cost c(a) will be consisting of two different zones,
which are k bit long (to prevent carries). The front zone will be used to verify
if the maximum achievable cost is even and the end zone will be used to still
respect our bound n. For each ai we will simply set cost ni in both zones, i.e.,
c(ai) = (2k+1 + 1) · ni. For each bi we will only use the front zone to set the
i-th bit to one, i.e., c(bi) = 2i+k. We choose ` in a way that the first k bits are
set to one and the last k bits are set to the binary representation of n, that is
` = 2k+1(2k+1 − 1) + n. Finally, we set B∗ = {b1}.

To prove equivalence, note that each winning budget in I ′ has a satisfaction
of at least

∑k
i=1 c(bi) = 2k+1(2k+1 − 1) (e.g., by budgeting all bi) and at most

` (by definition). Also note, that the cost of any budget not containing any bi,
n is always either exceeded in both or neither zones simultaneously. Therefore,
any winning budget in I ′ has an equivalent cost in the last zone to the largest
possible value for I, while the front zone can always be filled up bitwise by values
bi. Finally, note, that by construction b1 is only part of a winning budget if and
only if the optimal value adds up to an even value, so its corresponding bit in
the front zone can be flipped to one by adding b1. By construction B∗ = {b1} is
necessarily and thus possibly budgeted if and only if I is a yes instance. ut
2 Also known as a Knapsack variant in related literature (see Kellerer et al. [10]).
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4 Manipulative Interference

To study problems of manipulative interference in a generic way, we consider
an alteration function f , that maps from a given budgeting scenario to a set
of possible scenarios after the alteration of specified parameters (e.g., the cost
function or the voters’ ballots). Formally, we have f : E → 2E . We assume, that
we can efficiently verify whether E′ ∈ f(E) holds. We distinguish between a
constructive and a destructive variant of manipulative interference.

Constructive-Rs-Manipulative-Interference (C-Rs-MI)

Given: A budgeting scenario E, a set of items B♥, an integer k, and an
alteration function f .

Question: Is there a budgeting scenario E′ ∈ f(E), such that there is a
winning budget B ∈ Rs(E

′) with |B♥ ∩B| ≥ k?

For Destructive-Rs-Manipulative-Interference (D-Rs-MI) the in-
put remains the same, but now we ask whether there is a budgeting scenario
E′ ∈ f(E), such that there is a winning budget B ∈ Rs(E

′) with |B♥ ∩B| < k.
Both definitions are very general. In particular, we have a set B♥ of distinguished
items. A natural restriction is the focus on a single item with |B♥| = 1. In the
constructive case we ask, whether there is a winning budget that contains at
least k of the preferred items. This again gives the freedom to choose between
having at least one to having all items in the winning budget. Accordingly, in
the destructive case we ask whether there is a winning budget where less than k
of the distinguished items are included. By setting k = 1 we obtain the special
case where we ask for a winning budget containing none of the items in B♥. A
more strict variant of constructive manipulative interference would be to require
that all winning budgets contain at least k of the preferred items. Accordingly, in
the destructive variant one could require that the condition holds for all winning
budgets. In this paper, we will however focus on the above presented variants.

For a trivial upper bound, we may guess an altered budgeting scenario E′ ∈
f(E) and a budget B ∈ B(E′) with |B♥∩B| ≥ k, and verify whether B ∈ Rs(E

′)
holds by querying an oracle to answer (E′, B) ∈ Rs-WB.

Lemma 2. Fix some alteration function f such that Rs-WB restricted to bud-
geting scenarios E′ with E′ ∈ f(E) is in A. Then
(i) C-Rs-MI and D-Rs-MI restricted to f are in NPA, and
(ii) Rs-WB restricted to f is in A.

Hence, any form of manipulative interference, like manipulation, bribery, or
control in classical voting, is bound upwards by NP, for rules, where Rs-WB can
be solved efficiently, including all greedy rules. Following Lemma 1, an upper
bound for all maximizing rules is Σp

2 . For lower bounds, we investigate specific
forms of control, as a subtype of manipulative interference, to determine how vul-
nerable the rules in question are to seemingly small changes of a given budgeting
scenario. In particular, we study the impact of influencing the budget limit or
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an item’s cost on the outcome. While initially putting their combinatorial bud-
geting methods forward, Talmon and Faliszewski [17] simultaneously proposed
several axioms a budgeting method should satisfy. As these axioms are not sat-
isfied by, in some cases any and in other cases several of the proposed rules,
we derive ways in which to exploit these particular weaknesses in order to exert
control over the results of the participatory budgeting process. We investigate
tight bounds for these specific forms of control, by studying the complexity of
Rs-MI under respective alteration functions f . Table 1 summarizes our results.

Changing the Budget Limit. The first type of control we consider is by al-
tering the budget limit, which originates from the axiom of limit monotonicity
as defined by Talmon and Faliszewski [17]. The idea is that if the budget limit is
increased, no previously budgeted item becomes unfunded. All budgeting rules
we consider violate said axiom. Thus, we define a variant of manipulative inter-
ference capturing different possibilities of taking influence on the budget limit.

Definition 4. Given L,H ∈ N+ with L ≤ H, define an alteration function
fL,H such that (A, V, c, d) ∈ fL,H(E) for every E = (A, V, c, `) and d ∈ [L,H].
The restriction of manipulative interference to such alteration functions and
k ≤ |B♥| will be denoted by Rs-Control-by-Setting-the-Budget-Limit
(Rs-CSBL).

In the constructive case C-Rs-CSBL asks whether it is possible to increase or
decrease the budget limit such that at least k of the desired items are contained
in one winning budget. In the destructive variant D-Rs-CSBL, asks whether
it is possible to obtain a winning budget containing less than k of the distin-
guished items by increasing or decreasing the budget limit. Since the rules we
consider here violate limit monotonicity, they are obviously vulnerable to this
type of control. Now, we will show that for the max rules and the quantity based
satisfaction functions both control problems are solvable in polynomial time.

Theorem 2. C-Rm
|Bv|-CSBL and D-Rm

|Bv|-CSBL are in P.

Proof. We start with the constructive variant, showing C-Rm
|Bv|-CSBL ∈ P. Let

B♥ ⊆ A be the set of items, from which we want to include at least k items, by a
successful control, in at least one winning budget. We reduce the given instance
I = (E,B♥, k, fL,H) to I ′ = (E′, B♥, k, fL,H), by modifying the set of voters.
For w = |B♥|, we clone each voter w+1 times and add one additional voter v with
Av = B♥, resulting in a set of voters V ′. This enforces, that budgets containing
more items from B♥ yield a slightly higher satisfaction in case of ties. We set
E′ = (A, V ′, c, `). It holds that I ∈ C-Rm

|Bv|-CSBL ⇔ I ′ ∈ C-Rm
|Bv|-CSBL,

because for every d ∈ [L,H] and any two budgets B ∈ Rm
|Bv|((A, V, c, d)) and

B′ ∈ Rm
|Bv|((A, V

′, c, d)) it holds that |B ∩ B♥| ≤ |B′ ∩ B♥|. Note, that for E′

the maximum achievable satisfaction for any feasible budget in B(E′) is at most
s(V ′, A) = (w + 1) · s(V,A) +w. We use dynamic programming as described by
Talmon and Faliszewski [17], to determine the minimum cost of a budget with a
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satisfaction of exactly t for each t ∈ [0, s(V ′, A)], for the budgeting scenario E′.
We may compute those values and store them in a list T . Formally, for every
t ∈ [0, s(V ′, A)], if there is no feasible budget with a satisfaction of exactly t, let
T (t) = ∞ and otherwise, let T (t) = minB′∈{B∈B(E′)|s(V ′,B)=t}c(B). Finally, we
solve C-Rm

|Bv|-CSBL by identifying if there is a value d ∈ [L,H] we can set the
budget limit to, such that there is a winning budget B with |B ∩ B♥| ≥ k. We
can search for d in a polynomial number of steps. First, we initialize to d = H
and determine the highest value t∗ with T (t∗) ≤ d. We express this value as
t∗ = (w + 1) · t1 + t2, such that t2 ∈ [0, w]. If t2 ≥ k, a control can be executed
by choosing ` = d. Otherwise, we can decrease d to d = T (t∗) − 1 and repeat
until we either found d, or stop if d < L. Note, that this procedure stops after
at most s(V ′, A) < |A| · |V ′| steps.

To show, that D-Rm
|Bv|-CSBL ∈ P also holds, we can use the same algorithm.

We deviate by slightly permutating the values for the function T , such that
bundles are preferred, that include less items from B♥. In particular, for every
t1 ∈ [0, w+1] and t2 ∈ [0, w], we set T ′((w+1) · t1+ t2) = T ((w+1) · t1+w− t2).
Again, we search for d ∈ [L,H], starting at d = H, while our condition for
identifying a yes-instance changes to t2 ≥ w − k. ut

For C-Rm
c(Bv)

-CSBL and D-Rm
c(Bv)

-CSBL tight complexity bounds are still
open. Following Lemma 2, both problems are in Σp

2 and following Theorem 1
they are ∆p

2 hard. The latter follows easily, as problems of winner-determination
can be reduced to control problems without altering the parameters at all.

A very general result holds for all additive satisfaction functions, i.e., for any
function s with s(Av, B) =

∑
a∈Av

∑
b∈B s({a}, {b}) for all Av, B ⊆ A.

Theorem 3. For additive satisfaction functions s it holds that C-Rg
s-CSBL and

D-Rg
s-CSBL are in P.

Proof. Since s is additive by assumption and not dependent on the budget limit
d ∈ [L,H], the processing order of a greedy rule Rg

s is determined prior exe-
cution, using a fixed linear tie-breaking scheme � if necessary. Without loss of
generality we assume, the set of items is labeled in this ordering. That is, for
A = {a1, . . . , am} we assume that for each 1 ≤ i < j ≤ m it holds that ei-
ther s(V, {ai}) > s(V, {aj}) or s(V, {ai}) = s(V, {aj}) and ai � aj . Further, we
denote Ai = {a1, . . . , ai} and Ed = (A, V, c, d).

We use dynamic programming to compute all values for d ∈ [L,H], such
that we can include exactly j ∈ [0, |B♥|] items from B♥, only using items from
Ai for i ∈ [0,m]. We generate a (|B♥| + 1) × (m + 1) table T , where each
column represents a processing step after investigating an item ai and each row
represents the number of items shared with B♥ in a possible (partial) solution.
More precisely, the leftmost column (i = 0) represents an initial state, column i
represents partial solutions after processing the first i items Ai, and the values
in the rightmost column (i = m) represent possible (full) solutions.

The intuition behind T (j, i) is, that the greedy rule has already executed
its first i iterations for an unknown budget limit d ∈ [L,H], such that j items
from B♥ have already been added to the (partial) budget Bi. As we might have
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added in items in some iterations, we assume that some of the budget has already
been filled by the respective items cost c(Bi). For d ∈ [L,H] and every possible
resulting partial budget Bi = Rg

s(Ed) ∩Ai containing j items from B♥, we add
d− c(Bi) ∈ T (j, i). Note that T (j, i) is empty, if there is no d ∈ [L,H] such that
Rg

s(Ed) contains exactly j items from B♥ after the first i iterations, i.e., if there
is no d ∈ [L,H] with |Rg

s(Ed)∩Ai∩B♥| = j. In particular, T (j, i) contains every
value, such that we can extend the cost c(Bi) of a partial budget Bi = Rg

s(Ed)
satisfying above conditions to retrieve the input value d. Additionally, we claim
that each T (j, i) can be represented by two discrete intervals, such that we can
encode the values for each cell efficiently (to be shown at the end of the proof).

We initialize every cell to T (j, i) = ∅ for j ∈ [0, |B♥|] and i ∈ [0,m], except
for T (0, 0) = [L,H]. Next, we populate T left-to-right and top-to-bottom, where
any cell T (j, i) is used to extend T (j, i + 1) and T (j + 1, i + 1), i.e., we only
populate to the right. By design, each cell might be populated from two different
cells; in this case we consider the union of both values. We will explain in detail
how to populate in the first iteration (i = 1) to generalize from there.

We start by investigating T (0, 0) and reduce our problem to smaller instances,
where the decision on a1 is already made and thus, we only need to consider A\A1

in following iterations. In particular, we study two main cases. In case d < c(a1)
holds, then in the first iteration we cannot add a1 to the bundle. Hence, in case
d ∈ [L, c(a1)−1], we can reduce to an instance, which considers only A\A1, i.e.,
we extend cell (0, 1) by T (0, 1) = T (0, 1)∪[L, c(a1)−1]. Otherwise, for d ≥ c(a1),
we certainly need to add a1 to the budget in this iteration. Again, we can reduce
this to an instance not considering a1, by choosing the budget limit, such that
d ≥ c(a1) holds in any case. Instead of enforcing d to have a minimum value (of
at least c(a1)), we reduce by decreasing the respective values to choose from by
c(a1). In case a1 6∈ B♥, we set T (0, 1) = T (0, 1) ∪ [0, H − c(a1)], otherwise we
also increment j, i.e., T (1, 1) = T (1, 1) ∪ [0, H − c(a1)].

More general, for some iteration, in which we investigate the cell (j, i), we
again study two seperate cases. We split T (j, i) into two disjoint sets based
on the respective items cost c(ai). That is, X = T (j, i) ∩ [0, c(ai) − 1] and
Y = T (j, i) ∩ [c(ai), H]. We extend T (j, i + 1) by X. Before extending a cell
with values from Y , we shift all values of Y by −c(ai). Formally, that is Y ′ =
{y − c(ai) | y ∈ Y }. Finally, if ai 6∈ B♥, we extend T (j, i + 1) by Y ′, otherwise
we extend T (j + 1, i+ 1) by Y ′.

After populating the table T , there is a d ∈ [L,H] with |Rg
s(Ed) ∩ B♥| = j

if and only if T (j,m) 6= ∅. Additionally, we can use backtracking on every value
d′ ∈ T (j,m), to compute a distinct value d ∈ [L,H] with |Rg

s(Ed) ∩B♥| = j.
It is left to show, that each cell of the table can be stored efficiently. Therefore,

we show, that each cell can be represented with at most two intervals I1, I2 ⊆
[0, H] with 0 ∈ I1. Of course, this claim holds for T (0, 0) = [L,H] by assumption
and for the remaining values in the leftmost column, as they are never populated.
Next, we show that, the if the claim holds for previously populated cells, then it
also holds after populating the next cell. We start with the first row. Consider
some iteration, where we are investigating cell T (0, i). For simplicity, we imagine
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the (at most) two intervals in T (0, i) to occupy respective space on the larger
interval [0, H]. We imagine this interval to be ordered left-to-right by ascending
values. In any iteration investigating T (j, i) ⊆ [0, H], we split T (j, i) at c(ai). The
left part (excluding c(ai)) is added to T (0, i+1) without any shifting operation. If
ai ∈ B♥, we use the values on the right (including c(ai)) to populate T (1, i+1),
which is not in the first row. Otherwise, we shift those values to the left by
subtracting c(ai) and add them to T (0, i + 1). If c(ai) did not intersect one of
the intervals, the claim holds. If on the other hand c(ai) did intersect an interval,
then the rightmost part is shifted to the left, such that the starting value is 0.
By assumption in T (0, i+ 1) there are now two intervals starting with 0. Thus,
those two intervals collapse to a single interval. For the remaining rows first note,
that if we split and shift any interval [0, x], the two resulting intervals both have
a starting value of 0. Subsequently, the only way there is an interval I ∈ T (j, i)
with j > 0 and 0 6∈ I, is that in some previous iteration i′ a preferred item ai′

was added, whose cost c(ai′) did not intersect the right interval in T (j−1, i′). In
particular, the right interval was shifted to the left and added to T (j, i′+1). This
especially means, that T (j − 1, i′ + 1) can only hold the left interval, which is
always sticking to 0 when using the operations of splitting and shifting. Overall,
in each column there can be at most one interval I with 0 6∈ I. ut

Changing an Item’s Cost. Another type of control is the alteration of a given
item’s cost. This is based on the axiom of discount monotonicity, introduced
by Talmon and Faliszewski [17]. The intuition is that decreasing the cost of a
budgeted item does not lead to it being not funded anymore. Using a budgeting
method that satisfies this axiom means that there is no incentive to strategize
regarding an item’s price. Otherwise, one might not take an offer that would
reduce the cost of an item, fearing that it could lead to eliminating that item from
the winning bundle. This is not desirable, as it would be a waste of resources.

Definition 5. Given a♥ ∈ A and L,H ∈ N+ with L ≤ H, define an alteration
function fL,H with (A, V, c′, `) ∈ fL,H(E) for every E = (A, V, c, `) and d ∈
[L,H] such that c′(a♥) = d and c′(a) = c(a) for all a ∈ A\{a♥}. The restriction
of manipulative interference to such alteration functions, B♥ = {a♥}, and k = 1
will be denoted by Rs-Control-by-Setting-an-Item’s-Cost (Rs-CSIC).

With the above defined restrictions, C-Rs-CSIC asks whether the cost of the
desired item a♥ can be changed within the given bounds such that a winning
budget contains a♥. In D-Rs-CSIC we ask whether we can obtain a winning bud-
get that does not contain a♥. The complexity of Rs-CSIC in both variants for
Rm
|Bv| and R

g
|Bv| follow directly from the results by Talmon and Faliszewski [17]

and Baumeister et al. [4]. As both rules satisfy discount monotonicity, the strat-
egy is to set d = L for the constructive variant and d = H for the destructive
variant. To see if the control attempt was successful, we can solve the respective
winner determination problems, which both are in P.

Corollary 2. C-Rm
|Bv|-CSIC, D-Rm

|Bv|-CSIC, C-R
g
|Bv|-CSIC, and D-Rg

|Bv|-CSIC
are in P.
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We turn to the cost satisfaction function and show that for the maximizing
rule the constructive variant of setting an item’s cost is complete for ∆p

2.

Theorem 4. C-Rm
c(Bv)

-CSIC is ∆p
2-complete.

Proof. For a lower bound, following Theorem 1, Rm
c(Bv)

-PB is ∆p
2-complete. Sub-

sequently, C-Rm
c(Bv)

-CSIC is at least ∆p
2-hard, as it coincides with Rm

c(Bv)
-PB if

we choose fL,H such that L = H = c(a♥) for the item a♥ with B♥ = {a♥}.
Next, we want to show a matching upper bound. Let A′ = A \ {a♥}, E′ =

(A′, V, c, `), and Ed = (A, V, c′, `) with c′(a♥) = d and c′(a) = c(a) for all a ∈ A′.
First we compute the overall satisfaction t∗ of a winning budget for E′, which
can be done as described in the proof of Lemma 1 by querying an NP-oracle a
polynomial number of times. Knowing the optimal score for a winning budget not
containing a♥, we can query an NP-oracle to solve C-Rm

c(Bv)
-CSIC. In particular,

we ask whether there exists d ∈ [L,H], such there exists B ∈ B(Ed) with a♥ ∈ B
and s(V,B) ≥ t∗. Finding an answer to this question is in NP. The answer is yes,
if and only if there exists a d ∈ [L,H], such that there is a budget containing a♥,
that yields a satisfaction at least as high as any bundle not containing a♥. ut

Note that the above proof does not hold for the destructive control variant,
although the lower bound holds for similar reasons. Knowing t∗, does not lead to
a bounded number of obvious NP questions. Instead, we still need to determine,
whether there exists a d ∈ [L,H], such that every feasible bundle containing a♥
yields a satisfaction of at most t∗. For the greedy rule and the cost satisfaction
function we can again show polynomial-time solvability.

Theorem 5. C-Rg
c(Bv)

-CSIC and D-Rg
c(Bv)

-CSIC are in P.

Proof. Consider any budgeting scenario E and a given item a♥, which should
be included (or excluded) into the (resolute) final outcome. Further, let Ed =
(A, V, c′, `) denote the modified budgeting scenario with c′(a♥) = d and c′(a) =
c(a) for every a ∈ A\{a♥}. We assume, that there is a linear tie-breaking scheme
� over the set of items A, which is identical for every Ed.

Note that s(V,A) =
∑

v∈V
∑

a∈B c(a) is an additive function. Hence, the
order in which the greedy rule Rg

c(Bv)
determines, whether to add an item or

not, is never changing during execution. Yet, the position of a♥ in this order
also depends on its cost c(a♥). Formally, let the position of a ∈ A in the pro-
cessing order with respect to Ed and � be denoted by pos(a,Ed,�). To solve
C-Rg

c(Bv)
-CSIC, we compute Rg

c(Bv)
(Ed) for at most |A| values d ∈ [L,H]. Ini-

tially we set d = L and compute the winning budget. If a♥ ∈ Rg
s(Ed), the input

is a yes-instance. Otherwise, we increase d to the minimum value d′, such that
pos(a♥, Ed′ ,�) < pos(a♥, Ed,�). Precisely, for the item a with pos(a,Ed,�) =
pos(a♥, Ed,�) − 1 we set d′ =

⌈∑
v∈V c(Av ∩ {a})/

∑
v∈V |Av ∩ {a♥}|

⌉
. If nec-

essary due to a tie, which is broken favoring a, d′ is additionally increased by 1.
Again, if a♥ 6∈ Rg

s(Ed′) holds, we relabel d′ to d and repeat the last step, until
we cannot increase the cost of item a♥ without exceeding our upper limit H. If
this is the case, we have successfully identified of a no-instance.
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To solve D-Rg
c(Bv)

-CSIC, we use a similar technique. Now, we initialize d = H

and decrease d to the highest value, such that the decision, whether to add a♥,
is done one step later in the processing order. We hold and output yes, if for any
such d′ it holds that a♥ 6∈ Rg

c(Bv)
(Ed′), and output no, if d′ falls below L. ut

5 Conclusions

We extended the study of winner determination problems for the considered
budgeting methods, and introduced a general form of manipulative interference.
We focussed on two restrictions, the problems of setting the budgeting limit
and setting an item’s cost. The results are summarized in Table 1. For most
of the rules the problems are solvable in P, whereas they are ∆p

2-hard for the
maximizing rule combined with the cost satisfaction function. This correlates
with the results obtained for winner determination, where the associated decision
problems are complete for coNP and ∆p

2.
When studying problems of manipulative interference, polynomial-time algo-

rithms are usually undesired, as this does not offer any protection. However, this
can also be interpreted from the perspective of robustness. In reality, the budget
limit and the cost of an item may both not be perfectly accurate, meaning that
there may be some uncertainty about parts of the budget, or that the cost is
rather an estimate. Then problems of manipulative interference give insight in
how vulnerable the actual solution may be to changes in one of these parameters.

We considered two of the axioms studied by Talmon and Faliszewski [17]. As
a task for future research, this should be extended to other axioms and other
types of control that are specific for participatory budgeting. Due to our general
formulation of manipulative interference, some of our results may still apply.
Another task would be, to close the gap between upper and lower bound for
the maximizing rule with the cost satisfaction function. The study can also be
extended to other budgeting methods. For example, a satisfaction function could
also yield dissatisfaction for rejected projects, or a voting rule could measure the
overall satisfaction by the minimum voter’s satisfaction instead of the sum.
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CHAPTER 6

TIME-CONSTRAINED
PARTICIPATORY BUDGETING

UNDER UNCERTAIN PROJECT COSTS

In this chapter, we study a more realistic model for participatory budgeting by considering
uncertain project costs and implementation durations for each project. In particular, we
initiate an axiomatic study for our framework, extend existing notions of proportionality,
and experimentally evaluate novel rules, designed to trade-off desirable properties.

6.1 Summary
In this work, we introduce a more general framework for participatory budgeting, to
model some real-world applications more realistically. We assume that the cost for imple-
menting a project is not fixed in advance, but rather given as an estimate. More precisely,
as formalized in Subsection 2.3.2, the exact cost for each project is only determined after
implementation, where the estimated cost is coming from a probability distribution with
an upper and lower bound on the maximum and minimum cost. In real-world campaigns,
projects often have to be implemented in a given time frame (e.g., a legislation period).
Therefore, each project is additionally equipped with a duration, after which the exact cost
is revealed (in case of implementation). Hence, an algorithm to decide on the implemen-
tation of projects can act in an online fashion, since after the implementation of a project
more information about the exact cost (and the expected leftover budget) is derived.
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We study our framework from an axiomatic and algorithmic point of view. First, we
identify desirable properties, any budgeting procedure with uncertain project costs should
satisfy. That is, we assume a reasonable online budgeting method should satisfy punctu-
ality (not exceeding the time frame), risk-assessment (minimize the risk of exceeding the
budget limit), limitation (limit the cost that might overshoot the budget), and exhaustive-
ness (budget should not remain unused if more projects can certainly be funded). As any
such algorithm should still perform well in terms of social welfare, we additionally study
the competitive ratio [82] of any online mechanism. That is, the worst-case ratio for the
social welfare compared with an optimal offline algorithm, where the exact cost for each
project is known in advance.

Our axiomatic analysis reveals the limits of compatibility for our axiomatic properties. In
summary: Each pair of punctuality, risk-assessment, and exhaustiveness can be satisfied
simultaneously by an online budgeting method, while it is generally impossible to satisfy
all three. Subsequently, we introduce best effort budgeting methods as a way to trade-off
incompatible axiomatic properties and evaluate these methods experimentally.

We complement our results by extending related research on proportionality [6, 142] for
participatory budgeting to our setting with uncertain cost. In particular, we generalize
related axioms to an ex ante and ex post variant and adapt the popular Method of Equal
Shares [142] to derive a possibility result. That is, assuming maximum cost when neces-
sary and exact cost when possible, our variation of the Method of Equal Shares satisfies
risk-assessment, limitation, and extended justified representation [142] in an ex post (and
thus, also ex ante) fashion.

6.2 Reflection on Initial Research Goals
In this work, we addressed three of our initial research questions, introduced in Chapter 3.
We initiated the formal study on a more general framework for participatory budgeting
with uncertain project costs and project durations. Most significantly, we addressed Ques-
tion Q1, by (i) designing novel desirable axiomatic properties for our framework, (ii) gen-
eralizing well-known proportionality axioms to the uncertain context in an ex ante and ex
post variant, and (iii) providing an extensive study on compatible and incompatible ax-
ioms. Further, we addressed Question Q2, by presenting polynomial-time computable
best effort algorithms,51 which always satisfy a compatible set of axioms, while trying
their best to also satisfy an additional, but generally incompatible, axiom. Finally, we
contributed to answering Question Q4, by generalizing the Method of Equal Shares to
our framework, in order to satisfy ex post extended justified representation.

51Depending on the probability distribution, an output can only be approximated in polynomial time by
using a sampling approach.
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6.3. Publication

6.3 Publication
This work has been published and presented as a full paper at the 31st International Joint
Conference on Artificial Intelligence.

[24] D. Baumeister, L. Boes, and C. Laußmann. “Time-Constrained Participatory Bud-
geting Under Uncertain Project Costs”. In: Proceedings of the 31st International
Joint Conference on Artificial Intelligence. ijcai.org, 2022, pp. 74–80

Parts of this article, containing additional results regarding uncertainty on the projects’ du-
rations and more evolved insights into our experimental study, were published in Christian
Laußmann’s dissertation [121].

6.4 Personal Contribution
The initial idea of this work was inspired by an informal lunch conversation between
Christian Laußmann and Jérôme Lang. Formally pursuing this idea, the conception and
writing was conducted jointly with my co-authors Dorothea Baumeister and Christian
Laußmann. Although the overall model and the axiomatic properties in Section 3 were
designed by all contributing authors in equal parts, the technical results in this section
were gathered in an insightful collaboration with Christian Laußmann by an equal share of
work. The formulation of best effort budgeting methods and their experimental evaluation
in Section 4 was mainly contributed by Christian Laußmann. In turn, the technical results
on proportionality in Section 5, including the generalizations of both respective axioms
and the Method of Equal Shares, were mostly contributed by me.
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Abstract
In participatory budgeting the stakeholders collec-
tively decide which projects from a set of proposed
projects should be implemented. This decision un-
derlies both time and monetary constraints. In re-
ality it is often impossible to figure out the exact
cost of each project in advance, it is only known
after a project is finished. To reduce risk, one can
implement projects one after the other to be able to
react to higher costs of a previous project. How-
ever, this will increase execution time drastically.
We generalize existing frameworks to capture this
setting, study desirable properties of algorithms for
this problem, and show that some desirable proper-
ties are incompatible. Then we present and analyze
algorithms that trade-off desirable properties.

1 Introduction
As an introduction, we consider the following example,
which will accompany us through our work.

Example 1. The country “Participation Island” wants to ad-
dress climate change. The government decides to provide 200
million dollars for new mobility projects that reduce emis-
sions. Climate change will not wait forever, so these projects
should be finished within the next five years. Companies send
proposals for projects that each cost at most 200 million and
can be realized within the given five years: bike sharing (BS);
an express train route (ET); electric vehicle charging stations
(EV); and development of fuel-cell vehicles (FV). The citizens
of Participation Island are asked to vote on these projects
by approving each project they like. The government then
chooses which projects should be realized according to the
voters’ preferences and the constraints on time and money.

This problem has been extensively studied in Knapsack
and participatory budgeting literature. Yet, it is not realistic.

Example 1 (continued). While it is very predictable how
much EV and BS will cost (because one knows the cost for
each station/bike and the number of stations/bikes), there is
some uncertainty about the other projects. It is known that
the train route goes through undeveloped swamps, where it is
unclear yet, how many foundations are needed. The company

which proposed the project guarantees that the costs are be-
tween 80 and 150 million. Hydrogen technologies are still in
the development and while the company is sure that they can
develop the cars, they are unsure about the exact costs. They
guarantee the costs to be between 100 and 160 million.

The exact costs of a project are usually only known after
finishing it. A common way to accommodate this uncertainty
is to submit the project application with an estimated cost.
However, if the estimation is far too expensive, the company
will probably not get the bid. On the other hand, if it is far
too low, the company is unable to realize the project and will
have to ask for additional money.1 So a more realistic ap-
proach is to provide a cost range, which moves the uncertainty
risk to Participation Island. The question is now: how should
Participation Island select projects? Of course, the limit of
200 million should not be exceeded, or at least this should
be improbable. To reduce this risk, they could implement the
projects sequentially, and wait for the exact costs before de-
ciding which project to start next. But this is a slow process,
and the time limit of five years should also not be exceeded.

Our Contribution. We develop a framework for time-
constrained participatory budgeting under uncertain project
costs based on the existing framework for approval-based
participatory budgeting by Talmon and Faliszewski [2019].
We propose desirable properties for such budgeting methods
and explore which properties can be combined and which
are incompatible. In addition, we experimentally evaluate
algorithms for uncertain project costs that sequentially start
new projects using the information of the cost of already fin-
ished projects and thus optimize the utilization of the budget.
Meanwhile, they do their best effort to satisfy as many desir-
able properties as possible. Furthermore, we analyze different
forms of proportionality for uncertain project costs.

Related Work. First, our work is related to scheduling and
project planning literature. Given a set of tasks (which may
form a bigger project), this research area is about making
a plan on how to complete all tasks while respecting their

1Depending on the contract, the company will have to pay from
own resources. However, it is common that cost estimations may be
exceeded by 10 − 20% without further consultation with the client.
And if the company has not enough own resources to pay for the
extra cost, they may become bankrupt, and the client has to pay
someone else for finishing the project.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

74

Published Article

79



dependencies and resource requirements. In the Resource-
Constrained Project Scheduling Problem the goal is to min-
imize the completion time of the last project while projects
have dependencies and resource requirements (e.g. workers),
so parallelization of projects is not always possible. A similar
problem is the Time-Constrained Project Scheduling Problem
where the goal is to minimize the amount of extra resources
needed to finish all projects in time. Both problems have been
studied with uncertain project durations (see [Ma et al., 2016]
and [Moradi and Shadrokh, 2019]). However, the resource
requirements are deterministic. Vaziri et al. [2007] analyze
project planning where the time for tasks is uncertain and can
be influenced by the resources allocated to that task.

Note that in comparison to the above problems, we do not
aim at implementing all projects and we also want to take
into account the voters’ preferences. In fact, if there is enough
budget available to implement all projects our problem is triv-
ial. Instead, we want to implement a subset of projects that
makes the stakeholders happy, while facing the budget and
the time as resource constraints. This is related to project
portfolio management where the question is which projects
should be implemented, suspended, or canceled, to serve the
overarching objective of an institution. For an introduction
to project portfolio management see [Rad and Levin, 2006,
Chapter 1]. Another difference is that projects in our model
have no dependencies on other projects, and our resources
money and time are bounded, unlike resources in scheduling.

Also related is the work of Pindyck [1993], who studies
projects that require continuous investment, and the final cost
is only known after completion. However, there is no time
constraint, no preferences, and projects can be canceled.

Another closely related field is Knapsack, as we study
maximizing the (additive) utility of a set of projects while
facing a cost constraint. For a broad overview, we refer
to the textbook by Kellerer et al. [2004], which includes a
chapter on multidimensional Knapsack problems considering
more than one resource (in our case cost and time). Setting
aside the time dimension, Knapsack has been studied under
uncertain weights similar to our model by Monaci and Pfer-
schy [2013] and Monaci et al. [2013]. Following a concept
by Bertsimas and Sim [2004], both aim to find robust solu-
tions, that perform well even if the exact weights turn out to
be unfavorable. The model by Goerigk et al. [2015] allows
for querying the exact weight of a fixed number of items in
order to find a good solution when weights are uncertain.

A collective variant of Knapsack, namely participatory
budgeting, has gained some attention in computational so-
cial choice lately. For notation, we adopt the formal partici-
patory budgeting framework for approval-based preferences,
which was introduced by Talmon and Faliszewski [2019]
and extended to irresolute budgeting rules by Baumeister
et al. [2020]. We refer to the bookchapter by Aziz and
Shah [2021] for a broad overview on participatory budget-
ing in the context of computational social choice. Gomez et
al. [2016] present a broad model considering uncertainty for
both, cost and utility, for every project. In contrast to ours,
their model is purely stochastic (a set of projects is feasible
if its expected cost is within the budget limit), and projects
are implemented all at the same time. An important stream

of research we follow is the concept of proportionality in col-
lective decision making, where every voter should be repre-
sented equally by a given solution. Aziz et al. [2018] study a
variety of axioms suitable for participatory budgeting, while
Pierczyński et al. [2021] also provide a rule with desirable
properties with respect to proportional representation. We
generalize some of their results to work with uncertain costs.

2 Preliminaries
Throughout this paper, for i, j ∈ N we write [i, j] =
{i, . . . , j} and [i] = [1, i]. Let A = {a1, . . . , am} be the
set of projects and each subset B ⊆ A is a bundle.2 In
our model we assume uncertainty about the exact cost for
every project. Therefore, each project is associated with a
total of four cost functions c̃ = (cmin, cmax, c, cp), where
cmin and cmax model lower and upper bounds on the project’s
costs, while c models the exact costs. Hence, all three func-
tions map from A to N+ and for each project a ∈ A it
holds that c(a) ∈ [cmin(a), cmax(a)]. For simplicity, we
abuse notation by denoting c(B) =

∑
a∈B c(a) as the cost

of a bundle B (analogously for cmin and cmax). By cp(a, x)
we denote the probability that project a ∈ A costs at most
x ∈ N+. Note that cp is monotonic, cp(a, cmin(a) − 1) = 0,
and cp(a, cmax(a)) = 1. Slightly abusing notation we write
cp(B, x) to denote the probability that for a given bundle B
the cost c(B) is bounded by x. Finally, each project a ∈ A
takes time δ : A→ N+ to finish, and we have an overall time
limit τ ∈ N+ at which all projects have to be finished, and a
budget limit ` (also referred to as budget)2, which is the avail-
able money to implement projects. We assume for no project
a ∈ A holds δ(a) > τ or cmax(a) > `.

The projects are evaluated by a set of voters V =
{v1, . . . , vn}. Each voter v approves a subset of projects de-
noted by appv ⊆ A. By sv(B) = |B ∩ appv| we denote the
satisfaction of voter v with bundleB, i.e. the number of items
in B approved by v.3 We define s(B) =

∑
v∈V sv(B) as the

total satisfaction of all voters. We assume s({a}) > 0 for all
a ∈ A, i.e., each project is approved by at least one voter.

Let E = (A, V, c̃, `, δ, τ ) ∈ E be a budgeting scenario with
uncertain cost, where E is the set of all such scenarios. An
online budgeting method R works in discrete time steps, and
successively builds a budgeting log L : A → N ∪ {⊥} rep-
resenting at which time step a project has been started, where
⊥ denotes that the project will not be realized. The bud-
geting method has limited access to the cost function c. If
L(a) = t∗, then c(a) is available only after the project has
been implemented, i.e. at time step t∗ + δ(a). Obviously,
the decision made at step t∗ is fixed and may not be revised
when more information is available. Formally, the output of
a budgeting method R(E) is a budgeting log. Further, the
set of realized projects for a budgeting log L is denoted by
R(L) = {a ∈ A | L(a) 6= ⊥}. On the other hand, an
offline budgeting method may access the exact cost function

2 We differ in terminology from Talmon and Faliszewski [2019],
who refer to a project selection as budget.

3Also studied by Talmon and Faliszewski [2019]. Other satisfac-
tion functions (e.g. cost based) do not fit varying costs that well.
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c. Hence, an optimal solution can be precomputed and every
project can be implemented simultaneously.

Example 1 (continued). We haveA = {BS, ET, EV, FV} with
following costs (in million), durations, and satisfactions.

a c(a) cmin(a) cmax(a) δ(a) s({a})
BS 40 37 42 1 5, 000
ET 120 80 150 4 9, 000
EV 59 59 61 1 6, 000
FV 100 100 160 5 11, 000

The budget limit is ` = 200 and we have time τ = 5. If we
knew the exact costs, we would immediately start the projects
BS, EV, and FV since with cost of 199 they fit in our budget
and have the maximum number of 22, 000 approvals. How-
ever, this bares a high risk if the cost is unknown. The projects
could also cost up to 263 which is far beyond our budget. An
online budgeting method could for instance do the following.
Start ET in the first year and wait four years until it finishes.
If we are lucky, it turns out that it costs at most 97 so that we
can safely implement both BS and EV in the remaining year. If
it costs more, we can implement at least BS or in some cases
EV. Also, the following is possible. If it is very improbable
that FV costs more than 139, we could also relatively safely
begin FV and EV simultaneously in the first year. Note that a
sequential implementation of FV and EV fails the time limit.

We assume each started project in a budgeting log will be
implemented regardless of the final cost and completion time.
It is often assumed that projects can be stopped if their cost
becomes more than their value, i.e. one cannot gain money
with the project (e.g. in [Pindyck, 1993]). We decided against
canceling for two reasons. First, in our model the “value” of a
project is not measured in the same currency as the cost; sec-
ond, the projects we have in mind cannot simply be canceled
(imagine an eternal construction site in the city center).

3 Properties of Online Budgeting Methods
A budgeting log, and thus also an online budgeting method,
has rather weak requirements. For instance, it is allowed in
a budgeting log to start arbitrarily many projects simultane-
ously, even if they will certainly exceed the budget limit; or
to start projects so late that they cannot be completed in time.
These issues are undesirable and should be avoided. In this
section, we define some desirable properties a budgeting log
(and the algorithm that generates it) should satisfy.

Definition 1. Let E ∈ E be a budgeting scenario and L be
a budgeting log with respect to E. L satisfies the following
axioms if respective conditions are met.

Punctuality (PU): Every realized project finishes within the
given time limit. Formally, for all a ∈ A it holds that
either L(a) = ⊥ or L(a) + δ(a) ≤ τ .

α-Risk-assessment (α-RA): A (set of) project(s) may only
be started if the probability for exceeding the budget
limit is at most α. Formally, for every t ∈ [τ ], let
Ut = {a ∈ A | L(a) ≤ t < L(a) + δ(a)} be the
running yet unfinished projects, and Ft = {a ∈ A |
L(a) + δ(a) ≤ t} the finished projects. For given

α ∈ [0, 1), it holds that a set of projects S may only
be started at time t if cp(Ut ∪ S, `− c(Ft)) ≥ 1− α.

κ-Limitation (κ-LI): The budget limit may not be exceeded
by a factor greater than κ. Formally, c(R(L)) ≤ κ`.

Exhaustiveness (EX): There should be no project, which
could have been implemented even with maximum cost
without breaking feasibility. Formally, for B = R(L)
and every a ∈ A \B, it holds that c(B) + cmax(a) > `.

Note that 0-risk-assessment and 1-limitation coincide. A bud-
geting method R satisfies some axiom χ if R(E) satisfies χ
for every E ∈ E (assuming parallel universe tie-breaking).

We study punctuality as a property since it is very interest-
ing to see what kind of restriction it is, and what algorithms
are possible if we relax it. Risk-assessment and limitation
can be interpreted as follows. The client (e.g. Participation
Island) has (κ− 1)` extra money as a security — for instance
as a loan option — which should be used only if absolutely
necessary. With a good risk-assessment (i.e. small α) it is
improbable that the security is ever touched. Exhaustiveness
has two interpretations. First, voters naturally expect that ap-
proved projects are realized if there is money left to do so
safely. Second, it is common that the budget of a department
may be reduced in the next period if it is not completely spent.

Independent of the above properties we want to maximize
the satisfaction of the voters with the outcome. One key met-
ric for the analysis of online optimization algorithms is the
worst-case ratio between a solution found by an online algo-
rithm and an optimal (satisfaction maximizing) solution with
complete knowledge. This factor is known as competitive ra-
tio (CR) (see Fiat and Woeginger [1998]).
Definition 2. An online budgeting methodR is σ-competitive
(σ-CR) if there is a constant ∆ ∈ R, such that for every
E ∈ E and B` = {B ⊆ A | c(B) ≤ `} it holds that
s(R(R(E))) + ∆ ≥ 1

σ maxB∈B`
s(B).

So which combinations of properties are possible, and is
there a perfect online budgeting method? Unfortunately, the
answer is no, i.e. no method can satisfy all properties simul-
taneously for all combinations of parameters.
Theorem 3. For any fixed α < 1, no online budgeting
method simultaneously satisfies α-risk-assessment, punctual-
ity, and exhaustiveness.

Proof. Consider an odd budget limit ` ≥ 3, and A =
{a1, a2, a3, . . .}. Each project ai ∈ A has minimum cost
cmin(ai) = (`−1)/2, maximum cost cmax(ai) = (`+1)/2, and
takes time δ(ai) = τ . Note that a set of two projects exceeds
the budget limit if and only if both projects have maximum
cost. Let each project have maximum cost with probabil-
ity greater than

√
α. Due to α-risk-assessment a budgeting

method can only start one project at the first time step, say
a1. By punctuality it is impossible to start another project.
Since c(a1) = /̀2 is possible, there are instances for which
c(a1) + cmax(a2) ≤ `, thus exhaustiveness is violated.

Similar holds for κ-limitation as long as κ < m = |A|.
Theorem 4. For any fixed κ < m, there exists no online bud-
geting method simultaneously satisfying κ-limitation, punc-
tuality, and exhaustiveness.
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Proof. Consider E ∈ E with A = {a1, . . . , am}, m ≥ 3, and
` > m. Each project ai ∈ A takes time δ(ai) = τ to realize,
has cost c(ai) = 1, and maximum cost cmax(ai) = `−m. By
exhaustiveness, all projects must be realized, since for each
ai ∈ A holds c(A \ {ai}) + cmax(ai) = ` and by punc-
tuality, all projects must be started simultaneously. How-
ever, this decision has to be made without knowing the ex-
act cost. Let E′ ∈ E be equivalent to E, except for hav-
ing maximum cost as exact cost for each project. An on-
line budgeting method that implements all projects to sat-
isfy exhaustiveness and punctuality might end up spending
cmax(A) = m · (` −m). Thus, to start all projects, it cannot
be better than m·(`−m)

` =
(
m− m2

`

)
-limited. By choosing

` large, we can approach m to any fixed value κ < m.

Interestingly, for κ ≥ m, above properties are compati-
ble and can be satisfied by a 1-competitive algorithm. Since
cmax(a) ≤ ` holds for every a ∈ A, we can implement every
project at the first time step, only violating risk-assessment.

Observation 5. There exists a 1-competitive online budget-
ing method satisfying m-limitation, punctuality, and exhaus-
tiveness.

However, trading off some desirable properties, it is possi-
ble to achieve 0-risk-assessment (or equivalently 1-limitation)
together with either punctuality or exhaustiveness.

Theorem 6. There is an m-competitive online budgeting
method satisfying 0-risk-assessment (and thus 1-limitation)
and either punctuality or exhaustiveness.

Proof. First, we start the most valuable project, say a1,
which has by definition maximum cost of at most `. This
way we achieve m-competitiveness already, since s(A) ≤
m · s({a1}). If we want to achieve punctuality, we stop now.
For exhaustiveness, we sequentially add those projects, that
can be safely added without exceeding the budget.

A competitive ratio of m is bad. Yet, for fixed α this factor
cannot be improved if the projects’ cost intervals are large.

Theorem 7. For any online budgeting method that satisfies
α-risk-assessment for a fixed α < 1, the competitive ratio is
in Ω(m). If cmax(a) = cmin(a) + 1 holds for all a ∈ A, the
competitive ratio is in Ω(2).

Proof. Consider E ∈ E with A = {a1, a2, a3, . . . , am} and
a set of voters, such that each project ai ∈ A yields the
same (additive) satisfaction s(ai) = λ ∈ N+. Let ` = m,
cmin(ai) = 1 and cmax(ai) = m for every ai ∈ A. Further,
for each ai we set the probability that ai costs exactly m to
α (thus, cp(ai, ` − 1) = 1 − α). An online algorithm with
α-risk-assessment cannot start more than one project at the
same time because for every pair of projects ai 6= aj it holds
cp({ai, aj}, `) ≤ cp(ai, ` − 1) · cp(aj , ` − 1) = (1 − α)2 <
1− α. Thus it starts at most one project, for example a1. Re-
vealing c(a1) = m and c(ai) = 1 for i ∈ [2,m], an offline
algorithm may select the optimal solution B = A\{a1} with
s(B) = λ · (m − 1), while the online algorithm yields a sat-
isfaction of s({a1}) = λ. Overall we deduce a competitive
ratio of (m− 1) ∈ Ω(m).

Properties CR Ref
PU, EX, m-LI 1-CR Obs. 5
0-RA, 1-LI, PU m-CR (up to 2-CR) Thm. 6, 8
0-RA, 1-LI, EX m-CR (up to 2-CR) Thm. 6, 8

Table 1: Summary of our possibility results regarding the combina-
tion of axioms for online budgeting methods.

Property Incompatible Ref
PU {α-RA, EX}, {m′-LI, EX} Thm. 3, 4
α-RA {PU, EX} Thm. 3
m′-LI {PU, EX} Thm. 4
EX {α-RA, PU}, {m′-LI, PU} Thm. 3, 4

Table 2: Summary of our impossibility results regarding the combi-
nation of axioms for online budgeting methods (m′ < m).

For bounded uncertainty by cmax(a) = cmin(a) + 1 for all
a ∈ A, we can use a similar argument. Let ` ≥ 2 be an even
number, A = {a1, a2, a3, . . . , am} with cmin(ai) = /̀2 and
cmax(ai) = /̀2 + 1. Again, we assume equal utility of λ for
every project. We set cp(ai, /̀2) = 1 − α, so the probability
that two projects can be implemented within ` is (1− α)2 <
1 − α. Let an online budgeting method implement a1 first
(due to α-RA it cannot implement two projects). Revealing
c(a1) = /̀2+1 and c(a2) = c(a3) = /̀2, the optimal solution
is {a2, a3}, yielding a competitive ratio of 2λ

λ .

Theorems 6 and 8 show that these bounds are tight.

Theorem 8. If the uncertainty on the cost is bounded by a
small factor c∗, that is, cmax(a) − cmin(a) < cmax(a′)

m = c∗

for all a, a′ ∈ A, there is a 2-competitive method satisfying
0-risk-assessment and either punctuality or exhaustiveness.

Proof. We use the optimal offline method to retrieve an op-
timal bundle B, assuming the lower bound cost for each
project, i.e.

∑
b∈B cmin(b) ≤ `.

Case 1: If
∑
b∈B cmax(b) ≤ `, we are done.

Case 2: Otherwise, since implementing B may exceed the
budget limit, we remove the least valuable project a ∈ B
and implement B′ = B \ {a} at the first time step. It
holds that ` ≥ ∑b∈B cmin(b) ≥ ∑b∈B cmax(b) − |B|c∗ ≥∑
b∈B cmax(b)− cmax(a) =

∑
b∈B′ cmax(b), due to |B|c∗ ≤

|B| · cmax(a)
m ≤ cmax(a). On the other hand, since a is the

least valuable project in B, the satisfaction with B′ is at least
s(B′) ≥ s(B) · |B

′|
|B| = s(B) · |B|−1

|B| . The worst compet-
itive ratio of two is achieved if |B| = 2, since |B| = 1 is
already covered by case 1. We can now return B′ which sat-
isfies punctuality or we add projects to B′ until we achieve
exhaustiveness. Note that in both cases there is no risk for
exceeding the budget limit.

Table 1 summarizes the lower bound competitive ratios any
online algorithm can achieve while satisfying given axiomatic
properties, while Table 2 summarizes incompatible axioms.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

77

Chapter 6. Time-Constrained Participatory Budgeting Under Uncertain Project Costs

82



4 Best Effort Online Budgeting
The possibility and impossibility results show that there is no
perfect online budgeting method, i.e., no method satisfies all
properties and has a good competitiveness. So the only way
is to design “best effort” algorithms that trade-off properties
and have a good competitiveness in most cases.

We propose the online budgeting method Best effort ex-
haustiveness (BEE) that trades exhaustiveness against punc-
tuality, risk-assessment, and limitation. That is, the method
guarantees punctuality, α-risk-assessment, and κ-limitation
for given τ, α, κ, but not exhaustiveness. However, it tries
to be as exhaustive as possible. With small modifications, we
get the Best effort punctuality (BEP) method which trades
punctuality against exhaustiveness, risk-assessment, and lim-
itation. Both algorithms generalize a common greedy algo-
rithm for Knapsack (see [Kellerer et al., 2004]) to our setting.

We test both algorithms using real data from the Participa-
tory Budgeting Library (see [Stolicki et al., 2020]), modified
to fit our uncertainty scenario. BEE performs better in terms
of both exhaustiveness and competitiveness the more we in-
crease τ . If projects have durations in [1, 10], the performance
is already remarkably good at time limits between 20 and 30.
However, our experiments with the BEP method imply that
guaranteed exhaustiveness results in massive unpunctuality.
Also, κ-limitation plays a role for the exhaustiveness, how-
ever, the role of α-risk-assessment is negligible unless α is
almost 0.

5 Proportionality
Apart from maximizing the overall utility, another way to
satisfy voters is a proportional distribution of the realized
projects among them. There is a variety of proportionality
axioms in the literature. We focus on justified representation,
considering BPJR-L by Aziz et al. [2018] and Extended Jus-
tified Representation by Pierczyński et al. [2021]. Assuming
uncertainty over the exact projects’ costs, we provide two re-
laxations for proportionality axioms: ex ante and ex post. For
the relaxations, we assume the upper cost bound is given for
all projects (ex ante) or not implemented projects (ex post).

Definition 9. Consider a budgeting scenario E =
(A, V, c̃, `, δ, τ ) ∈ E and a bundle B ⊆ A. We define the
following axioms in different variants, distinguishable by re-
spective cost functions. Let c′ : A → N+ be a cost function.
Typically, for known exact cost, we consider c′ = c for both
of the following axioms. We study two relaxations for our set-
ting with uncertain cost. That is, for the ex ante variant, we
study c′ = cmax and for the ex post variant, for a ∈ A we
study c′(a) = c(a) if a ∈ B and c′(a) = cmax(a), otherwise.

A bundleB satisfies following axioms if the respective con-
dition holds, while a budgeting method R satisfies an axiom
if it holds for every R(R(E)) with E ∈ E .

BPJR-L: For all k ∈ [`] there exists no set of voters
V ′ ⊆ V with |V

′|
n ≥ k

` such that c′
(⋂

v∈V ′ appv
)
≥

k, but there is a set T ⊆ ⋂
v∈V ′ appv with

c′
((⋃

v∈V ′ appv
)
∩B

)
< c′(T ) ≤ `·|V ′|

n .

Extended Justified Representation (EJR): For all V ′ ⊆ V
and T ⊆ ⋂v∈V ′ appv it holds that, if c′(T ) ≤ `·|V ′|

n ,
then there exists some v ∈ V ′ with |appv ∩B| ≥ |T |.

Informally, a group of voters should not be worse off, if
they could spend their proportional share of the budget on
projects they collectively approve of. If every voter had ex-
actly `/n to spend, BPJR-L states that if a group of voters can
afford a set of unanimously approved projects T , the funds
spent on projects no one of the group approves should be
lower than `− c′(T ). EJR on the other hand states that not all
voters of a group should get less projects implemented than
they could afford with joint funds.

Other axioms can be defined analogously in an ex ante and
ex post version. In many cases stronger variants imply weaker
variants. In case of EJR, consider some bundle that satisfies
EJR. If the cost function is altered in a way that items only
become more expensive, we observe that EJR is still satisfied
(even though the price increase may now exceed the budget).
Surprisingly, similar implications do not hold for BPJR-L.
Observation 10. EJR implies ex post EJR and ex post EJR
implies ex ante EJR.
Theorem 11. BPJR-L does not imply ex post (or ex ante)
BPJR-L.

Proof. ConsiderE ∈ E with three projectsA = {a1, a2, a3},
two voters V = {v1, v2}, and ` = 3. The first two projects are
known to be unit cost in advance, i.e., c(ai) = cmax(ai) = 1
for i ∈ [2]. For a3 it holds that c(a3) = 2 and cmax(a3) = 3.
For i ∈ [2], voter vi approves both ai and a3.

First, we will show that the bundle B = {a1, a2} satisfies
BPJR-L. There are three nonempty subsets of voters V1 =
{v1}, V2 = {v2} and V3 = {v1, v2}. Let Ti =

⋂
v∈Vi

appv
and Ui =

⋃
v∈Vi

appv . For i ∈ [2] it holds that c(Ti) =

c(Ui ∩B) = 1. For V3 it holds that c(T3) = c(U3 ∩B) = 2.
Yet, ex post (and ex ante) BPJR-L is violated. For k = 3 it
holds that |V3| = kn

` , cmax(T3) = 3 = k but c(U3 ∩ B) =
cmax(U3 ∩B) = 2 < k.

Theorem 12. There is no online budgeting method satisfying
α-risk-assessment and ex post BPJR-L.

Proof. Consider two projects A = {a1, a2} with cmin(ai) =
1 and cmax(ai) = 2 for i ∈ [2]. Further, let cp(ai, 1) < 1−α
and ` = 2. If some budgeting methodR selects both projects
simultaneously, α-risk-assessment is violated. If R selects
one project a ∈ A first, revealing c(a) = 1 yields two options.
B = {a} violates BPJR-L and implementing the remaining
project violates α-risk-assessment.

To compute a feasible outcome satisfying an ex ante pro-
portionality axiom, we can assume maximum cost for each
project and compute a bundle that satisfies the strong variant
of the axiom. For the actual cost the result may not be exhaus-
tive, but we may implement it instantly. Aziz et al. [2018]
showed that a feasible outcome satisfying BPJR-L is guar-
anteed to exist (although hard to compute). Regarding EJR,
Peters and Skowron [2020] recently introduced an aggrega-
tion method for committee elections, called Rule X and Pier-
czyński et al. [2021] showed that a generalization of Rule X
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for participatory budgeting satisfies EJR (although they con-
sider cardinal utilities instead of approval based preferences).
Observation 13. There is an online budgeting method, satis-
fying 0-risk-assessment, punctuality and ex ante BPJR-L (re-
spectively ex ante EJR).

We slightly adjust Rule X to also work with uncertain cost
and show subsequently that our variant satisfies ex post EJR.
Definition 14. Rule X for uncertain cost (RX ) works as fol-
lows. Every voter v ∈ V is given a (real valued) individual
budget of bv = `/n, which they can use to implement projects
sequentially. We start with an empty bundle B = ∅ and fund
exactly one project in each iteration. The cost will be de-
ducted from supporting voters’ funds. For ρmax > 0 a project
a ∈ A \B is ρmax-affordable if the following equation holds.

∑
v∈V |a∈appv

min(bv, ρmax) = cmax(a) (1)

RX implements the project a∗ with the lowest ρmax-
affordability, waits for it to finish to obtain the exact cost,
and finally withdraws the required funds from approving vot-
ers. That is, we replace the upper cost bound cmax(a∗) in
Equation (1) with c(a∗) and calculate the ρ-affordability for
a∗. Then for every voter v ∈ V with a∗ ∈ appv , bv is set
to max(0, bv − ρ). If there is no ρmax-affordable project left,
Rule X returns the corresponding budgeting log.

By definition, RX always satisfies 0-risk-assessment (and
1-limitation) but fails punctuality. Following Pierczyński et
al. [2021], Rule X (and thusRX ) fails exhaustiveness.
Theorem 15. RX satisfies ex post EJR (and ex ante EJR).

Proof. Let E = (A, V, c̃, `, δ, τ ) ∈ E and assume that B =
R(RX(E)) violates ex post EJR. Consider the cost function
c′ with c′(a) = c(a) if a ∈ B and c′(a) = cmax(a) if a ∈
A\B. Then by assumption there is a set of voters V ′ ⊆ V and
a set of projects T ⊆ ⋂v∈V ′ appv with c′(T ) ≤ `·|V ′|

n and for
all v ∈ V ′ it holds that |appv∩B| < |T |. We investigate what
led to the violation of EJR, by simulating RX with (ex post)
knowledge of the exact cost for projects in B. We index the
elements in T \B = {t1, . . . , tk} in a way that c′(ti) ≤ c′(tj)
for all i < j. Let every voter v ∈ V ′ split her initial individual
budget bv = `/n into k + 1 piles bjv , such that for j ∈ [k] the
pile bjv =

c′(tj)
|V ′| is v’s equal share for funding tj (w.r.t. V ′).

The leftover funds b0v = `
n −

c′(T )
|V ′| will be reserved to fund

projects in B ∩ T . We execute RX again, but this time we
try to keep track of which project is financed with which pile
of funds. We will show, that after execution either some voter
v ∈ V ′ has no funds left, but at least |T | preferred projects in
the outcome, or every voter has some pile left, which could
have been used to implement a project in T \B.

By assumption, each voter v ∈ V ′ helps funding T ∩B and
at most k − 1 additional projects. We let each voter v ∈ V ′
pay for projects in T ∩ B with the leftover funds b0v . In the
following numbering we skip projects in T (each voter in V ′
has reserved funds for T ∩ B and T \ B wont be budgeted).
For each v ∈ V ′, let ajv be the j-th project, v helps funding
(in addition to T ∩B). We let v pay her share for ajv with bjv .
Note that cmax(ajv) ≤ bjv . Otherwise, either tj has a lower

ρmax-affordability and would have been funded instead, or
some voter v′ ∈ V ′ has not enough budget left to pay her
(full) share. In the latter case, consider the first iteration that
leads to some v′ ∈ V ′ being bankrupt. Then v′ has paid all
the other projects with respective dedicated piles, resulting in
at least k projects being funded (in addition to the projects
T ∩ B). This is a contradiction to EJR being violated, since
|appv′ ∩B| ≥ k+ |T ∩B| = |T |. Following cmax(ajv) ≤ bjv ,
our assumption can only hold if every voter v ∈ V ′ has at
least one pile untouched. This is a contradiction, asRX could
implement project t1 with a total of |V ′| piles.

Punctuality cannot be added without violating ex post EJR.
Theorem 16. There is no online budgeting method satisfying
α-risk-assessment, punctuality and ex post EJR.

Proof. Consider the following example with A = {a1, a2}
with cmin(ai) = 1 and cmax(ai) = 2 for i ∈ [2]. The budget
limit is set to ` = 3 and a single voter approves both projects.
We choose cp, such that cp(A, 3) < 1 − α. Finally, projects
need to be implemented at the first time step, i.e., δ(ai) =
τ for i ∈ [2]. Let B ⊆ A be the realized projects by an
online budgeting method R. We study three cases assuming
punctuality is satisfied. If |B| = 0, B clearly fails ex post
EJR. If |B| = 1, B might fail ex post EJR in case c(B) = 1.
Rmay not selectB = A while respecting α-risk-assessment,
as the probability of c(A) = 4 is greater than α.

6 Conclusions And Outlook
In a participatory budgeting campaign with uncertain costs
one has to trade-off between the desirable properties punc-
tuality, exhaustiveness, risk-assessment, limitation, but also
voter satisfaction and proportionality. In a way, this confirms
the old project management principle “fast, cheap, good, pick
two.” Being punctual and within the cost limit makes propor-
tionality or a good competitive ratio usually impossible.

In some applications, projects compete for resources like
machines or workers. Thus not all projects can run simulta-
neously (see Hans et al. [2007]). As a next step, we propose
to extend our model in that direction. Additionally, more re-
alistic satisfaction functions could model that a voter’s sat-
isfaction with a project may be affected by discovering the
exact cost. Dependencies between parameters could be espe-
cially interesting for time and money, allowing for the pos-
sibility to speed up a project by spending more money. Fi-
nally, our model only considers uncertainty in one of two re-
sources. Swapping respective functions to study uncertain
finishing times instead, we are interested in which implica-
tions still hold (although uncertainty concepts for proportion-
ality are more reasonable for the cost dimension). A more
general model may explore uncertainty of both dimensions.
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mous reviewers for their helpful comments. This work
was supported in part by the project “Online Participation,”
funded by the NRW Ministry for Innovation, Science, and
Research and by the DFG grants RO-1202/21-1 and BA-
6270/1-1.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

79

Chapter 6. Time-Constrained Participatory Budgeting Under Uncertain Project Costs

84



References
[Aziz and Shah, 2021] Haris Aziz and Nisarg Shah. Partici-

patory budgeting: Models and approaches. In T. Rudas and
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CHAPTER 7

COMPLEXITY OF
SEQUENTIAL RULES

IN JUDGMENT AGGREGATION

In this chapter, we explore a large class of (consistent) sequential judgment aggregation
rules. In particular, we study the computational complexity for winner determination and
manipulative interference, as well as their relationship to non-sequential rules.

7.1 Summary
In this work, we consider a large class of sequential judgment aggregation rules, as a
generalization of the ranked agenda rule (see Lang and Slavkovik [118]). Using any res-
olute, complete, and complement-free (but possibly inconsistent) judgment aggregation
rule K, we construct the sequential rule SK, which selects a consistent outcome as fol-
lows. Given a profile P of individual judgments and a predefined order π = (φ1, . . . , φm)

over the positive agenda Φ+, SK decides sequentially in said order π whether an agenda
item φi ∈ Φ+ or its complement should be added to the outcome. This is done by deciding
whether one of those two items must be added to the outcome in order to remain consis-
tency. If this is not the case, the underlying rule K decides on the acceptance of an issue,
i.e., {φi,∼φi} ∩K(P ) is added to the outcome. Overall, we investigate questions related
to winner determination and manipulative design from a computational complexity point
of view. We complement our results by embedding our sequential rules profoundly into
existing judgment aggregation literature, by establishing connections to other well-studied
non-sequential rules.

In particular, for winner determination we show that determining whether a given for-
mula is contained in the outcome SK(P, π) is in ∆P

2 for any efficiently computable judg-
ment aggregation rule K. For a large subclass of quota rules, introduced by Dietrich and
List [66], we show that this bound is tight.
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To study manipulative design, we explore an impossibly result by List [125], stating that
the output of anonymous sequential rules (i.e., judges are treated equally) depends on the
processing order over the issues. Hence, someone in control of this order might be able
to alter the outcome of a sequential rule strategically (to better align with her preference).
Furthermore, we study complementing problems regarding robustness. That is, asking
whether a desired subset of issues appears in the outcome regardless of the underlying
processing order. The upper bound complexity for both problems and a generic sequen-
tial rule range from a trivial polynomial-time computable algorithm to membership in the
second level of the polynomial hierarchy (depending on whether the set of desired formu-
las consists of an individual judgment or a single formula). To show that those established
bounds are tight for sequential quota rules, we formally design a novel counting technique
(inspired by the famous technique used by Cook [57]) to model a Boolean formula that
evaluates to TRUE if and only if the number of variables set to TRUE is bounded upwards
by a given parameter.

Lastly, we show that the outcome of a sequential rule does not change, if all issues sup-
ported by the underlying rule are permuted to the beginning of the processing order. This
allows us to connect our sequential rules to popular non-sequential rules, namely the max-
card subagenda rule and the maximum subagenda rule [118] (and its generalization not
based on majority support). Notably, our results on the computational complexity of ma-
nipulative design for sequential rules transfer directly to (irresolute) winner determination
problems for the (generalized) maximum subagenda rule.

7.2 Reflection on Initial Research Goals
This article contributes to answering four of our initial research questions, introduced in
Chapter 3. First, we addressed Question Q2 comprehensively, by (i) introducing sequen-
tial rules in a generic way, using any complete and complement-free rule as a blueprint,
and (ii) providing general upper bounds and matching lower bounds for a large class of
quota rules, using only two judges. Additionally, (iii) we generalized the maximum sub-
agenda rule and transferred some of our complexity results to a corresponding winner de-
termination problem. Second, we addressed Question Q3 by initiating a structured study
on manipulative design, which arises from relying on a processing order to determine the
outcome (as pointed out by List [125]). Overall, for a total of five related decision prob-
lems, we provided general upper bounds and matching lower bounds for quota rules, each
falling into a different complexity class. We briefly touched Question Q1 by observing
that the outcome of a sequential rule does not change, if the issues that are accepted by
the underlying rule are permuted to the beginning of an order. Finally, this allowed us
to deal with Question Q4 by showing that for an irresolute variant, our family of sequen-
tial rules coincides with the class of generalized maximum subagenda rules (inside the
isolated field of judgment aggregation).

88



7.3. Publication

7.3 Publication
This work has been published and presented as a full paper at the 20th International
Conference on Autonomous Agents and Multiagent Systems.
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ABSTRACT
The task in judgment aggregation is to find a collective judgment
set based on the views of individual judges about a given set of
propositional formulas. One way of guaranteeing consistent out-
comes is the use of sequential rules. In each round, the decision on
a single formula is made either because the outcome is entailed by
the already obtained judgment set, or, if this is not the case, by some
underlying rule, e.g. the majority rule. Such rules are especially use-
ful for cases, where the agenda is not fixed in advance, and formulas
are added one by one. This paper investigates the computational
complexity of winner determination under a family of sequential
rules, and the manipulative influence of the processing order on
the final outcome.
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1 INTRODUCTION
Judgment Aggregation (JA) is the task of aggregating individual
judgments over logical formulas into a collective judgment set. The
doctrinal paradox by Kornhauser and Sager [13] shows that if the
majority rule is used, the outcome may be inconsistent, even if
all underlying individual judgment sets are consistent. Since then
research related to JA has been undertaken in different disciplines.
The book chapter by Endriss [6] provides an overview of recent
research on JA in computational social choice, where for example
computer science methods are used to analyze problems originating
from social choice. The investigation of JA from a computational
complexity point of view has been initiated by Endriss et al. [10].
They focused on the winner problem, manipulation, and safety
of the agenda problems. Subsequently, e.g. Baumeister et al. [1],
Endriss and de Haan [8], and de Haan and Slavkovik [4] studied
the complexity of different JA problems.

An important task is to generate consistent collective outcomes,
that can, for example, be obtained through the use of sequential
rules, see List [17]. A sequential rule works in rounds and uses
some underlying JA rule, for example the majority rule as proposed
by Dietrich and List [5] (see also Peleg and Zamir [21]). In each
round the decision on one specific formula is made by checking

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

whether either the formulas already contained in the collective
outcome logically entail an assignment for the formula at hand,
or otherwise, the outcome of the underlying rule for this formula
will be taken. This is reasonable, since sequential procedures occur
naturally by incremental decision-making. Since many real-world
decisions (e.g. contract agreements) are binding, while reversing
may be either favorable but expensive or impracticable, reasoning
happens gradually. List [17] discusses similar use cases of such
path-dependent procedures in detail. We focus on sequential rules
that rely on underlying quota rules, where a formula is included in
the collective outcome if a certain fraction of the judges approves it.
This includes the two extreme cases where a single approval is suf-
ficient or where an approval of all judges is needed or the common
case of a majority of 2/3. Such a majority is needed for Senate votes
on a presidential Impeachment, for the College of Cardinals in the
papal conclave, or in some cases for constitutional amendments.
Political referenda are examples of more diverse quotas.

Since JA may also be used in security applications, as mentioned
by Jamroga and Slavkovik [12], it is particularly important to have
consistent collective judgment sets that are efficiently computable.
The complexity of winner determination for different JA rules has
been studied by Endriss et al. [10] for the premise-based procedure
and the distance-based procedure and by de Haan and Slavkovik [4]
for scoring and distance-based rules. Along with many other rules,
both, Endriss and de Haan [8] and Lang and Slavkovik [16], studied
winner determination for the ranked agenda rule1 and the maxcard
subagenda rule2, which are closely related to some of our results. In
this paper we investigate the computational complexity of several
problems related to winner determination for sequential JA rules
that use a specific quota rule as the underlying rule. Furthermore,
we study the problem of manipulative design, i.e., the question
whether there is an order in which the formulas should be processed
that yields some desired outcome. Additionally, we study majority-
preservation for sequential JA rules, see Lang and Slavkovik [16].
The idea for sequential rules is to maintain a maximal agreement
with the outcome of the majority rule (or any other underlying rule),
when applied sequentially. In this context we identify a correlation
between majority-preservation of sequential rules and distance
based methods (in particular the maxcard subagenda rule). Our
results range from membership in P to completeness in the second
level of the polynomial hierarchy.

Compared to previous work on the ranked agenda rule (se-
quential majority rule, where the processing order is based on
the majority support), see Endriss and de Haan [8] and Lang and

1Also known in JA as Tideman’s ranked pairs (see Endriss and de Haan [8]) and in
similar variations as support-based procedure (see Porello and Endriss [22]) or leximax
rule (see Lang et al. [15]).
2Also known in JA as Slater rule (see Endriss and de Haan [8]), max-num rule (see
Endriss [7]) or endpoint rule (for the hamming distance as metric, see Miller et al. [18]).
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Slavkovik [16], our results generalize and supplement respective
complexity results, since lower bounds hold for any quota and even
for a constant number of judges, implying para-NP-hardness. Addi-
tionally, we established matching upper bounds for all sequential
rules that rely on a complete and complement-free rule.

2 PRELIMINARIES
The technical framework mainly follows the definitions in En-
driss [6]. In JA we talk about a group [r ] of r ∈ N judges, where
[r ] denotes the set {1, . . . , r }. The judges judge over an agenda
Φ, which consists of boolean formulas in standard propositional
logic. In order to avoid double negations let ∼φ denote the com-
plement of φ, i.e., ∼φ = ¬φ if φ is not negated, and ∼φ = ψ if
φ = ¬ψ . Thereby, we assume Φ to be finite, nonempty and closed
under complement, i.e., for every φ ∈ Φ it holds that ∼φ ∈ Φ. Fur-
thermore, we assume Φ to be nontrivial, i.e., there exist at least
two formulas {φ,ψ } ⊆ Φ, such that {φ,ψ }, {∼φ,ψ }, {φ,∼ψ } and
{∼φ,∼ψ } are consistent, and we foreclose tautologies and contra-
dictions from Φ. We split the agenda Φ into two disjoint subsets
Φ+ and Φ−, where for all φ ∈ Φ+ it holds that ∼φ ∈ Φ−. Having the
agenda introduced, we define an individual judgment J ⊆ Φ as
a subset of Φ. We say that J is complete, if it holds for all φ ∈ Φ
that φ ∈ J or ∼φ ∈ J is true. We say that J is complement-free,
if it holds for all φ ∈ Φ that |{φ,∼φ} ∩ J | ≤ 1. Lastly, we define
J to be consistent, if there exists a boolean assignment for the
formulas in J , such that all formulas are satisfied at the same time.
We denote the set of all complete and consistent judgments over
Φ by J(Φ). For the set of judges [r ] we denote their profile of
individual judgments over Φ as P = (P1, . . . , Pr ) ∈ J(Φ)r . We
define a (resolute) judgment aggregation rule for an agenda Φ
and r judges, as a function R : J(Φ)r → 2Φ, mapping a profile
P ∈ J(Φ)r of individual judgments to a subset R(P) of Φ. We
say that R is complete/complement-free/consistent, if for ev-
ery profile P ∈ J(Φ)r it holds that R(P) is complete/complement-
free/consistent. Furthermore, we say that R is anonymous if it is
independent of the order of judges, i.e., R(P) = R(Pπ (1), . . . , Pπ (r ))
for all P ∈ J(Φ)r permutation π : [r ] → [r ]. Now, we define a fam-
ily of JA rules. Within the subsequent definition we define a special
case of the quota rules as defined by Dietrich and List [5].

Definition 2.1 (Quota Rules). Let Φ = Φ+∪Φ−,Φ+∩Φ− = ∅ be an
agenda, P ∈ J(Φ)r a profile of individual judgments and q ∈ [0, 1].
We define a quota rule with quota q as a JA rule Fq satisfying

(1) ∀φ ∈ Φ+ : φ ∈ Fq (P) ⇔ |{i ∈ [r ] | φ ∈ Pi }| ≥ ⌈q(r + 1)⌉ and
(2) ∀φ ∈ Φ− : φ ∈ Fq (P) ⇔ |{i ∈ [r ] | φ ∈ Pi }| ≥ ⌊(1−q)(r+1)⌋.
Since ⌈q(r + 1)⌉ + ⌊(1 −q)(r + 1)⌋ = r + 1 holds for all 0 ≤ q ≤ 1,

it follows by the results from Dietrich and List [5] that all quota
rules as previously defined are complete and complement-free. F
denotes the set of all quota rules.

For an odd number of judges the majority rule equals the quota
rule with quota q = 1/2. The difference for an even number of
judges is that in case of a tie for some formula φ the quota rule exe-
cutes some tie-breaking mechanism by choosing the corresponding
formula from Φ−, whereas the majority rule neglects completeness
and does neither include this formula nor its negation.

We study sequential judgment aggregation rules in this pa-
per. The basic idea is to ensure consistency by checking in each

round whether the formulas contained in the collective outcome al-
ready fix the value for the formula at hand. This is formally denoted
by the entailment relation, where a |= b means that the value for b
is determined by a. To begin, we define the subsequently studied
sequential JA rules in a general way.

Definition 2.2 (Sequential K-Judgment Aggregation Rule). Let K
be a complete and complement-free JA rule. Furthermore, let Φ
be an agenda, P ∈ J(Φ)r a profile and π = (φ1, . . . ,φm ) an order
over Φ+. In order to obtain the aggregated judgment SK(P, π ) of
the sequential K-judgment aggregation rule, we proceed as
follows for 1 ≤ i ≤ m:

(1) If either (φ∗1 ∧ . . . ∧ φ∗i−1) |= φi or (φ∗1 ∧ . . . ∧ φ∗i−1) |= ∼φi
holds, where φ∗j ∈ {φ j ,∼φ j } is the formula added in the
j-th iteration to SK(P, π ), we add φi or ∼φi respectively to
SK(P, π ),

(2) otherwise, we add {φi ,∼φi } ∩ K(P) to SK(P, π ).
Afterm iterations we obtain the final aggregated judgment SK(P, π ).

As an example consider an agenda Φ with Φ+ = {a,b,a ∧ b}
and three judges with J1 = {¬a,b,¬(a ∧b)}, J2 = {a,¬b,¬(a ∧b)},
and J3 = {a,b,a ∧ b}. The majority rule returns the inconsistent
judgment set {a,b,¬(a∧b)}. Now, consider the sequential majority
rule with order π = (a,a∧b,b). In the first two steps a and ¬(a∧b)
are added to the outcome by majority, then the decision for b is
entailed by the formulas already considered and ¬b is included.

Observe that by our definition (i) any output SK(P, π ) is com-
plete and consistent with respect to the agenda Φ and (ii) if K is
anonymous then SK is anonymous, too. Combining (i) and (ii) with
List’s impossibility result [17], we obtain for underlying anonymous
rules K that the resulting judgment of a sequential JA rule SK de-
pends on the processing order over Φ+. Therefore, all previously
defined (anonymous) sequential JA rules are path-dependent.

Whenever we address a sequential JA rule with respect to some
JA rule K , we assume K to be complement-free and complete.
Subsequently, we introduce one more notation to exactly express
partially aggregated judgments in order to simplify notation.

Definition 2.3 (Partially Aggregated Judgment). Let Φ be an agen-
da, P ∈ J(Φ)r a profile for r judges, π an order over Φ+ and ψ ∈
Φ. We define the partially aggregated judgment SKψ (P, π ) ⊂
SK(P, π ) as the subset of the final aggregated judgment, for which
the order π was processed until, but excludingψ or ∼ψ respectively.

Observe that for everyψ ∈ Φ eitherψ itself or ∼ψ appears in π ,
ensuring that the previous definition is well-defined. In the follow-
ing, we will focus on sequential JA rules based on quota rules. For
the remaining parts of the paper, we assume that the reader is famil-
iar with the basics of computational complexity such as the classes
P, NP, the polynomial hierarchy as well as polynomial-time many-
one reductions ≤p

m . SAT denotes the satisfiability problem and
SAT its complement. For further reading, we refer to the textbook
by Papadimitriou [20].

3 THE WINNER PROBLEM
The use of JA rules in artificial intelligence technologies raises im-
portant computational questions. As the number of judges and/or
the number of formulas in the agenda may be high, it is impor-
tant to design fast algorithms to determine the collective outcome.
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The computational study of the winner problem for JA was initi-
ated by Endriss et al [10]. They showed that it is polynomial-time
solvable for quota rules and the premise-based procedure, while it
is Θp2 -complete for the distance-based procedure. Endriss and de
Haan [8] showed that the winner problem is Θp2 -complete for some
JA rules related to known voting rules (e.g. the maxcard rule), ∆P2 -
complete for the ranked agenda rule with a fixed tie-breaking and
Σ
p
2 -complete without a fixed tie-breaking. Lang and Slavkovik [16]

defined a slightly different problem for winner determination and
obtained completeness results in Θ

p
2 (e.g. for the maxcard rule)

and Πp2 (e.g. for the ranked agenda rule without tie-breaking) for
majority-preserving rules. We will emphasize relationships to the
former results at relevant passages. The formal definition of the
winner problem for a sequential JA rule SK is as follows.

SK-Winner (SKW)
Instance: An agenda Φ, a profile P ∈ J(Φ)r , an order π over

Φ+, and a formula φ ∈ Φ.
Question: Is φ ∈ SK(P, π ) true?

In the following, we analyze the computational complexity of
this problem. We start with its upper bound.

Theorem 3.1. SK-Winner is in ∆p2 if K is efficiently computable.

Proof. Let I = (Φ, P, π ,φ) be a SKW instance and denote the
order by π = (φ1, . . . ,φm ). Without loss of generality we may
assume φ = φ j for one j ∈ {1, . . . ,m}, because if φ = ∼φk for some
k ∈ {1, . . . ,m}, we simply solve the instance I ′ = (Φ, P, π ,∼φ) and
invert its result.

First, we compute K(P) = {φ ′1, . . . ,φ ′m } in polynomial time.
Now, forφ1 we will use the result of K based on P to decide whether
to add φ1 or ∼φ1 to SK(P, π ). Furthermore, denote by φ∗1, . . . ,φ

∗
i−1

the elements added to SKφi (P, π ) in the first i − 1 iterations. Note,
that we add any φ ′i approved by K , if and only if we cannot deduce
∼φ ′i from the partially aggregated judgment. Consequently, in the
i-th iteration, we ask whether (φ∗1 ∧ . . .∧φ∗i−1) |= ∼φ ′i holds, which
is equivalent to asking whether there is no satisfying assignment for
(φ∗1 ∧ . . .∧φ∗i−1)∧φ ′i , which can be verified in coNP. Consequently,
asking an NP-oracle whether this formula is satisfiable implies that
∼φ ′i is not entailed by previously added formulas. In this case, we
may add φ ′i ∈ K(P) directly to SK(P, π ), since it is irrelevant for
our purpose whether φ ′i is deduced or added by application of K .
Therefore, we require one NP-query per iteration, except for i = 1.
In the worst case, we have j =m and must pose m − 1 consecutive
NP-queries over m iterations during our computation. Note that
m−1 is in O(|I|) and thus, we can solve I in ∆p2 . Thereby, it follows
that SKW∈ ∆p2 holds. □

In the construction above all queries rely on previous iterations
and therefore, cannot be parallelized. Hence, Θp2 membership does
not follow, which is in line with the general assumption of ΘP

2 ⊂
∆
p
2 . Now, having shown an upper bound for the computational

complexity of the general winner problem, we like to introduce
a lower bound for the computational complexity of the winner
problem with respect to quota rules from F . In order to do so, we
first introduce the ∆p2 -complete problem Odd Max Satisfiability,
as defined by Krentel [14] (see also Große et al. [11]).

Odd Max Satisfiability (OMS)
Instance: A set X = {x1, . . . , xn } of boolean variables and a

boolean formula α(x1, . . . , xn ).
Question: Is α satisfiable and xn = 1 in α ’s lexicographically

maximum satisfying assignment x1 . . . xn ∈ {0, 1}n?

Theorem 3.2. Let Fq ∈ F . Then, SFq -Winner is ∆p2 -complete.

Proof. From the previous theorem we know that SFqW ∈ ∆p2
holds, since Fq is efficiently computable, complement-free and com-
plete. Therefore, it is sufficient to show OMS ≤p

m SFq -Winner.
Let I = (X ,α) be an OMS instance with X = {x1, . . . , xn }.

We construct in time polynomial in |I | a SFqW instance I ′ =
(Φ, P, π ,φ) as follows. Thereby, we separate the construction into
two cases depending on the value of Fq ’s quota q. Due to space
constraints, we only present the proof for q ≤ 1/3, the remaining
case can be shown by a similar approach.

Assumeq ≤ 1/3. We defineΦ+ = {β1, β2,α ′,α ′∧x1, . . . ,α ′∧xn },
where β1, β2, and γ are new variables, and α ′ = (α ∧γ )∨¬β1 ∨¬β2.
Furthermore, we define the order π over Φ+ as π = (β1, β2,α ′,
α ′ ∧ x1, . . . ,α ′ ∧ xn ) and the judges’ profile P as follows.

P β1 β2 α ′ α ′ ∧ x1 . . . α ′ ∧ xn

P1 0 1 1 1 . . . 1
P2 1 0 1 1 . . . 1

We add a formulaψ ∈ Φ+ to the aggregated judgment Fq (P) if
and only if |{i ∈ [r ] | ψ ∈ Pi }| ≥ ⌈q(r + 1)⌉ holds. For r = 2 and
q ≤ 1/3 we have ⌈q(r + 1)⌉ ≤ 1, so that Fq (P) = Φ+ holds.

We set φ = α ′ ∧ xn . Furthermore, no consistency condition is
violated since α ′ can be satisfied for every individual judgment via
β1, β2, even when α is unsatisfiable. In order to prevent α ′ from
turning into a tautology when α is one, we added γ .

Now, we prove that I ∈ OMS ⇔ I ′ ∈ SFq -Winner holds. For
the direction from left to right assume that I is a yes-instance.
After the first two iterations of the SFq -rule we have SFα ′

q (P, π ) =
{β1, β2}. By assumption, there exists a satisfying assignment for
α and trivially also for ¬γ . Therefore, in the third round we can
neither entail ¬α ′ ∈ SFq (P, π ) nor α ′ ∈ SFq (P, π ). Thus, we add
α ′ by applying the Fq -rule. Consequently, after the third iteration
we have SFα

′∧x1
q (P, π ) = {β1, β2,α ′}. From this fact it follows that

SFα
′∧x1

q (P, π ) |= α ∧ γ |= α,γ holds, which is in accordance with
our assumption that α is satisfiable. Now, we would like to decide
whether to add α ′∧x1 or ¬(α ′∧x1) to SFq (P, π ). Given the current
aggregated judgment and knowing that γ ≡ true, it holds that
α ′∧x1 = [(α∧γ )∨¬β1∨¬β2]∧x1 ≡ α∧x1. Furthermore, knowing
from α ∧ γ ≡ α ′ ∈ SFq (P, π ) that α should be true, we distinguish
three cases for α ∧x1: (i) If x1 = 1 is the only option for a satisfying
assignment of α , we can deduce α ′ ∧ x1 ∈ SFq (P, π ). (ii) If x1 = 0
is the only option for a satisfying assignment of α , we can deduce
¬(α ′ ∧ x1) ∈ SFq (P, π ). (iii) If there are satisfying assignments
for α with both, x1 = 1 and x1 = 0, we must apply the Fq -rule
and obtain α ′ ∧ x1 ∈ SFq (P, π ). Note that the last option always
favors the bigger satisfying assignment, i.e., preferring x1 = 1 over
x1 = 0. We can apply the previous argument for j ∈ {1, . . . ,n}
and deduce for all formulas α ′ ∧ x j whether to add them or their
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corresponding negation ¬(α ′ ∧ x j ) to SFq (P, π ). Doing so yields a
maximum satisfying assignment for α , represented by [xi = 1] ⇔
[α ′∧xi ∈ SFq (P, π )]. By assumption, we know that xn = 1 holds for
a maximum satisfying assignment of α . Thus, α ′ ∧ xn ∈ SFq (P, π )
holds after the last iteration and therefore, I ′ ∈ SFq -Winner is
true.

For the direction from right to left assume now that I is a no-
instance. We study two separate cases.

Case 1:α is satisfiable but for its maximum satisfying assignment
xn = 0 holds. In the third iteration we add α ′ to SFq (P, π ). As
already argued in the first part of the proof, for 1 ≤ j ≤ n we add
α ′ ∧ x j to SFq (P, π ) if and only if x j = 1 holds in α ’s maximum
satisfying assignment. By assumption, we know that xn = 0 is true
in α ’s maximum satisfying assignment. Therefore, we end up with
α ′∧xn < SFq (P, π ) and can conclude that I ′ < SFq -Winner holds.

Case 2: α is not satisfiable. After the first two iterations of the
SFq -rule we have SFα ′

q (P, π ) = {β1, β2}. By assumption, in the third
iteration it holds that

α ′ = (α ∧ γ ) ∨ ¬β1 ∨ ¬β2 ≡ (false ∧ γ ) ∨ ¬β1 ∨ ¬β2 ≡ false.

Consequently, we deduce that ¬α ′ must hold and thus add ¬α ′ to
SFq (P, π ). Obviously, this leads to the fact that we add ¬(α ′ ∧ x j )
to SFq (P, π ) for 1 ≤ j ≤ n. Therefore, we have α ′ ∧ xn < SFq (P, π )
and hence, I ′ < SFq -Winner.

Finally, we have I ∈ OMS if and only if I ′ ∈ SFq -Winner and
obtain OMS ≤p

m SFq -Winner. □

Endriss and de Haan [8] showed that the winner problem for the
ranked agenda rule (with fixed tie-breaking) is ∆p2 -hard. However,
the corresponding proof requires a linear number of judges. We note
that slightly modifying our previous proof by adding a third judge,
supporting both, β1 and β2, but no other formula, allows us to reuse
the same proof (i.e., the given order π ) for the ranked agenda rule.
This yields an even stricter result for the ranked agenda’s winner
problem’s complexity, namely para-∆p2 -hardness with respect to
the number of judges.

Corollary 3.3. The winner problem for the ranked agenda rule
with fixed tie-breaking is para-∆p2 -hard when parameterized by the
number of judges.

Note that our lower bound proofs in Section 5 may be adapted in a
similar way (by adding a third judge only approving corresponding
βj ) to also handle the ranked agenda rule.

4 COUNTING TECHNIQUE
Within this section, we introduce a polynomial-time computable
technique used to construct a boolean formulaψB

k . The formula is
able to count the number of satisfied boolean variables for a given
boolean assignment T of a set of boolean variables B in the sense
that a truth assignment evaluates the formula to true if and only if
at most k ∈ N of the variables in B for T are true.

In some sense our technique generalizes the already known
technique used by Cook in his famous theorem to prove that SAT is
NP-complete, cf. [2]. Cook’s technique describes an approach how
to formulate a boolean formula for a set of boolean variables which
is true if and only if exactly one of the boolean variables is true.

Lemma 4.1. Let B = {x1, . . . , xn } be a set of boolean variables and
k ≤ n. We can construct a formulaψB

k from a set of boolean variables
B′ with |B′ | = nk in time polynomial in n, such thatψB

k evaluates to
true if and only if at most k of the n boolean variables in B are set to
true.

Proof. In a first step, we create k copies {x1
i , . . . , x

k
i } for every

boolean variable xi in B. Then, we define a boolean formula Xi for
every 1 ≤ i ≤ n as follows Xi =

[∨
j ∈[k ]

(
x
j
i ∧

∧
ℓ∈[k]\{j } ¬xℓi

)]
∨[∧

j ∈[k ] ¬x ji
]
. Consequently, Xi is satisfied if and only if at most

one of the k copies of xi is satisfied. Note that every Xi can be
constructed in time in O(n2) since |Xi | = k(k + 1) ≤ n(n + 1) holds.

In a second step, we construct k boolean formulas Yj for 1 ≤ j ≤
k as follows Yj =

[∨
i ∈[n]

(
x
j
i ∧

∧
ℓ∈[n]\{i } ¬x jℓ

)]
∨

[∧
i ∈[n] ¬x ji

]
.

Thereby, Yj is satisfied if and only if at most one of the n variables
in the j-th set of copies {x j1, . . . , x

j
n } is satisfied. Note that we can

also construct Yj in time in O(n2) since |Yj | = n(n + 1) holds.
In a third step, we define two more boolean formulas, namely

Y =
∧k
j=1 Yj and X =

∧n
i=1 Xi . Consequently, Y is satisfied if and

only if for every j, 1 ≤ j ≤ k , at most one variable in the set
{x j1, . . . , x

j
n } is satisfied. Analogously, X is satisfied if and only if at

most one of the copies for every xi , 1 ≤ i ≤ n, is satisfied. Finally,
settingψB

k = Y ∧ X obviously completes the construction.
It remains to show the correctness of the construction. To do

so, first we explain how to derive a boolean assignment T ′ for
B′ = {x1

1, . . . , x
k
1 , . . . , x

1
n, . . . , x

k
n } out of a boolean assignment T

for B = {x1, . . . , xn }. Therefore, denote by ρ(B,T ) = {x ∈ B |
T (x) = true} the set of variables set to true byT . We constructT ′
as follows. Write ρ(B,T ) = {xi1 , . . . , xim } form ≤ n. For 1 ≤ j ≤ m,
we set x (j mod k )+1

i j
to true and all other variables in B′ to false.

The formal proof of correctness is omitted due to space con-
straints. □

We will use this technique as follows. Let B = {x1, . . . , xn } be
a set of boolean variables, k ∈ N and α(B) some boolean formula
over B. At some point, we must know whether a given assignment
T satisfies α(B), while no more than k of the boolean variables in
B should be set to true. In order to decide this fact efficiently, we
first globally replace each variable xi ∈ B that appears in α by∨
j ∈[k ] x

j
i and denote the result as αk . Then, we construct a new

boolean formula α ′
k = αk ∧ψB

k and check whether α ′
k is true for

the corresponding assignment T ′. If this is the case, we know that
α(T (B)) is true, while no more than k of the n variables in B are
true for T . In order to keep our notation as simple as possible, we
write α ′ = α ∧ψB

k .

5 PROBLEMS OF MANIPULATIVE DESIGN
While the usage of sequential rules guarantees consistency, at the
same time the gradual aggregation approach leads to problems
of manipulative design for anonymous underlying rules. Follow-
ing the impossibility result by List [17], sequential quota rules are
path-dependent, i.e., the aggregated judgment is determined by
the processing order of formulas and might be altered at will if
said order is chosen accordingly. Realizing the amount of power
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a manipulator in control over the processing order has, we study
how hard it is to compute whether at least one (respectively ev-
ery) order guarantees a partial judgment to be included into the
aggregated one. Although List already proposed said approach
as Manipulation by Agenda Setting, we deviate in studying two
variants. In particular, we study the SK-Winner-Design and the
SK-Winner-Robustness problem and will show that it is more
inefficient for sequential quota rules to solve proposed problems of
manipulative design than the corresponding winner problem. The
formal definition of the Winner-Design problem is as follows for
a given sequential JA rule SK .

SK-Winner-Design (SKD)
Instance: An agenda Φ, a profile P ∈ J(Φ)r , and a set of formu-

las J ⊆ Φ.
Question: Is there an order π = (φ1, . . . ,φm ) over Φ+ such that

J ⊆ SK(P, π )?
Analogously we formulate the almost complementary decision

problem SK-Winner-Robustness (SKR). The input remains un-
changed but the question is whether J ⊆ SK(P, π ) holds for every
processing order π over Φ+. In order to determine the computa-
tional complexity of SKD and SKR, we require some notation.

Definition 5.1. Let K be a complete and complement-free JA rule,
Φ an agenda, and P ∈ J(Φ)r a profile for r judges. Furthermore,
slightly abusing notation, let π = (φ1, . . . ,φm ) be an order over
K(P) and denote by SK(P, π ) the corresponding aggregated judg-
ment. LetKπ = K(P)∩SK(P, π ) denote the set of formulas in the ag-
gregated judgment also supported by K , and Dπ = SK(P, π )\K(P)
those not supported by K . For Kπ = {k1, . . . ,kp } and Dπ =
{d1, . . . ,dm−p } let (Kπ ,Dπ ) = (k1, . . . ,kp ,d1, . . . ,dm−p ) denote
an order, where all formulas in Kπ are permuted arbitrarily at the
first p places.

This enables us to formulate the following lemma.

Lemma 5.2. Let K be a complete and complement-free JA rule, Φ
an agenda and P ∈ J(Φ)r a profile for r judges. Then, for every order
of the form π ′ = (Kπ ,Dπ ) it holds that SK(P, π ′) = SK(P, π ).

The intuition is, that we can rearrange every order π in such a
way that all formulas supported by K are at the beginning of π and
all remaining formulas follow afterwards. Hence, instead of looking
for a specific order it is sufficient to search for a consistent subset
K ⊆ K(P), such that K |= ∧

φ ∈J φ holds. Doing so enables us to
solve a SK-Winner-Design instance by setting π = (K, J , . . .).

Note that for q = 1/2, the problems SFq -Winner-Design and
SFq -Winner-Robustness are closely related to the winner deter-
mination problem for the ranked agenda rule without fixed tie-
breaking as studied by Endriss and de Haan [8] and Lang and
Slavkovik [16]. Both investigate hardness for similar decision prob-
lems, where the processing order is additionally required to be in
accordance with the number of supporting judges (i.e., for any order
π = (φ1, . . . ,φm ) over F1/2(P) it holds that |{i ∈ [r ] | φ j ∈ Pi }| ≥
|{i ∈ [r ] | φ j+1 ∈ Pi }|). We continue to study the complexity for
two widely separated cases, namely manipulative design for com-
plete judgment sets (Section 5.1) and for single formulas (Section
5.2). An overview of our results is given in Table 1.

5.1 Manipulative Design for Judgment Sets
First, let us investigate the introduced problems of manipulative
design for a given judgment which is complete and consistent.
Note that we do not consider inconsistent judgments, since those
are neither desirable nor a possible output. The ensuing theorem
derives an upper bound of coNP for a broad class of sequential JA
rules.

Theorem 5.3. For every polynomial-time computable JA rule K
that is complete and complement-free, it holds that SKD ∈ coNP
if the desired subset of formulas equals a complete and consistent
judgment J ∈ J(Φ).

Proof. We precompute K = J ∩ K(P) and D = J \ K(P) in
polynomial time. Since J ∈ J(Φ),K andD are consistent. Following
Lemma 5.2 it is sufficient to verify whether each formula in D can
be derived from K , since we then may construct an order of the
form π ′ = (K,D). Hence, we have to check whether

(∧
φ ∈K φ

)
|=(∧

ψ ∈D ψ
)
. This is equivalent to checking whether there is no

assignment satisfying
(∧

φ ∈K φ
)
∧¬

(∧
ψ ∈D ψ

)
and hence in coNP.

□

For the class of quota rules the following theorem establishes
the matching lower bound and proves coNP-hardness.

Theorem 5.4. For every quota rule Fq ∈ F and every given com-
plete and consistent judgment J ∈ J(Φ) it is coNP-complete to solve
the corresponding SFqD problem.

Proof. Recall that we assume every quota rule Fq to be complete
and complement-free for every quota q. To show coNP-hardness,
we reduce a SAT instance I = (α) to a SFqD instance I ′ = (Φ, P, J ).
We define Φq = {(α ∧ γ ) ∨ ¬β1 ∨ ¬β2, β1, β2}, where γ , β1, and β2
are new literals, and choose Φ+ = Φq for q ≤ 1/3 and Φ− = Φq
otherwise. We consider a profile consisting of two judges with
Pi = {(α ∧ γ ) ∨ ¬β1 ∨ ¬β2, βi ,¬β3−i } for i ∈ [2]. Note that by
construction it holds that Fq (P) = Φq . Lastly, we set J = P1 and
show that equivalence holds. For the direction from left to right
assume I is a yes-instance and thus, α is unsatisfiable. Choosing
the order π = ((α ∧ γ ) ∨ ¬β1 ∨ ¬β2, β1, β2) over Φq results in
SFq (P, π ) = J . For the direction from right to left assume I is a no-
instance and thus, α is satisfiable. Then, Fq (P) is already consistent
and SFq (P, π ) = Fq (P) , J holds for every order π . Together with
Theorem 5.3 we obtain coNP-completeness. □

Turning to the robustness problem, we require that the desired
judgment set J is contained in the collective outcome for every pos-
sible order. This is only possible if each of the formulas is contained
in the collective judgment set of the underlying formula.

Theorem 5.5. For every agenda Φ, profile P ∈ J(Φ)r and com-
plete and consistent judgment J ∈ J(Φ), the corresponding SKR-
instance (Φ, P, J ) is satisfiable if and only if K(P) = J for a complete
and complement-free procedure K .

Note that for efficiently computable underlying rules and partic-
ularly for sequential quota rules SFq the corresponding problem is
decidable in P.
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Table 1: Summary of complexity results for different problems regarding sequential JA rules SFq .

Winner Winner-Design Winner-Robustness Supported-Judgment
J ∈ J(Φ) φ ∈ Φ J ∈ J(Φ) φ ∈ Φ

∆
p
2 -c., Thm. 3.1, 3.2 coNP-c., Thm. 5.3, 5.4 Σ

p
2 -c., Thm. 5.7, 5.9 in P, Thm. 5.5 Π

p
2 -c., Lem. 5.6 NP-c., Thm. 5.12, 5.13

5.2 Manipulative Design for Single Formulas
Before investigating the complexity of SKD and SKR separately,
we want to point out that they are tied closely together, when
testing whether a single formula is in the aggregated judgment.

Lemma 5.6. For every complete and complement-free procedure K ,
every agenda Φ, every profile P ∈ J(Φ)r and every formula φ ∈ Φ,
it holds that (Φ, P, {φ}) ∈ SKR ⇔ (Φ, P, {∼φ}) ∈ SKD.

Above lemma follows from complement-freeness and complete-
ness and has also been shown by Lang and Slavkovik [16]. In the
following, we will only show complexity results for SKD, while
results for SKR follow directly. We continue to establish upper
bounds.

Theorem 5.7. For every polynomial-time computable, complete
and complement-free JA rule K and a judgment J = {φ} ⊂ Φ

containing a single formula, it holds that SK-Winner-Design ∈ Σp2 .

Proof. In order to solve an instance I = (Φ, P, {φ}) of the de-
cision problem SK-Winner-Design, we must determine whether
there exists an order π such that φ ∈ SK(P, π ) holds. Exploiting our
previous observations, we know from Lemma 5.2 that it is sufficient
to identify a consistent subset K ⊆ K(P) with K |= φ.

Thus, we first calculate K(P) in polynomial time and can nonde-
terministically guess a subset K = {φ1, . . . ,φk } ⊆ K(P). Next, we
verify whether K is consistent by asking our NP-oracle whether
there exists a satisfying assignment for φ1 ∧ . . . ∧ φk . In a last
step, we must determine whether K |= φ holds. Thereby, we have
(φ1∧ . . .∧φk ) |= φ. To determine whether this formula is satisfiable
can again be solved in coNP. Consequently, we can pose a second
NP-query to find out whetherK entails φ, resulting in φ ∈ SK(P, π )
for π = (K,φ, . . .). Overall, we require a polynomial amount of non-
deterministic computation steps as well as two NP-oracle queries
to calculate an answer for I and thus, SK-Winner-Design ∈ Σp2
holds. □

Combining the former theorem with Lemma 5.6, we derive the
following corollary.

Corollary 5.8. For every complete and complement-free JA rule
K computable in polynomial time and a judgment J = {φ} ⊂ Φ, it
holds that SK-Winner-Robustness ∈ Πp2 .

In order to identify lower bounds for sequential quota rules, let
us first define the decision problem Succinct Set Cover (SSC),
which was proven to be Σp2 -complete by Umans [23]. The instance
consists of a collection of 3-DNF formulas S = {φ1, . . . ,φn } over
m variables and k ∈ N. The question is whether there is a subset
N ′ ⊆ [n] with |N ′ | ≤ k and

∨
i ∈N ′ φi ≡ true?

Theorem 5.9. For every quota rule Fq ∈ F and a judgment J =
{φ} ⊂ Φ consisting of a single formula, it holds that the problem
SFq -Winner-Design is Σp2 -complete.

Proof. Due to Theorem 5.7 it is enough to show Σ
p
2 -hardness.

We reduce Succinct Set Cover to SFq -Winner-Design. Let I =
({φ1, . . . ,φn },k) be a SSC instance. To construct I ′ = (Φ, P, {φ}),
we first introduce some auxiliary variables. Let B = {x1, . . . , xn }
be a set of boolean literals, ψB

k defined as described in Section 4
and φ ′i = (φi ∧ xi ) for 1 ≤ i ≤ n. For our construction we set
φ = ψB

k ∧
[(∨

i ∈[n] φ ′i
)
∨ γ

]
∧β1∧β2 and Φq = B∪{β1, β2}∪{ψB

k ∨
¬β1 ∨¬β2,∼φ} with new literals βj and γ . Note that by including γ ,
the agenda cannot contain any contradictions or tautologies. More
precisely, bothψB

k ,φ and their negations are satisfiable, even if every
φi is a contradiction. The judges’ profile consists of two judgments
Pi = Φq \ {βi } ∪ {¬βi } for i ∈ {1, 2} and the individual judgments’
consistency is not violated, since ∼φ is always satisfiable by any
¬βj . Finally, we set Φ+ = Φq for q ≤ 1/3 and Φ− = Φq otherwise.
By construction it holds that Fq (P) = Φq and, slightly abusing
notation, we consider any order π over Φq instead of Φ+. Clearly,
this construction can be done in polynomial time. Subsequently,
we prove I ∈ SSC ⇔ I ′ ∈ SFqD.

(⇒) Assume I is a yes-instance. Consequently, there exists a set
N ′ = {i1, . . . , im } ⊆ [n]withm ≤ k such that

∨
i ∈N ′ φi ≡ true. As

order we choose π = (β1, β2,ψB
k ∨¬β1 ∨¬β2, xi1 , . . . , xim ,∼φ, . . .),

where the order of the elements after ∼φ is irrelevant. Applying
the SFq -rule, we may add each formula in the first m + 3 iterations
by using the quota rule Fq , since ψB

k and m ≤ k variables from
B are satisfiable simultaneously, even if both βj are set to true.
Now, we show that φ = ψB

k ∧
[(∨

i ∈[n] φ ′i
)
∨ γ

]
∧ β1 ∧ β2 may be

deduced from the initial assumption by showing that each formula
in {ψB

k ,
∨
i ∈[n] φ ′i , β1, β2} can be deduced separately. First, note that

each βj trivially entails itself and β1∧β2∧
(
ψB
k ∨ ¬β1 ∨ ¬β2

)
|= ψB

k
holds. For the remaining formula it holds that∧

i ∈N ′
xi ⇒

∨
i ∈[n]

φ ′i

⇔
∨
i ∈N ′

¬xi ∨
∨
i ∈[n]

(φi ∧ xi )

⇔
∨
i ∈N ′

((¬xi ∧ φi ) ∨ (¬xi ∧ ∼φi )) ∨
∨
i ∈[n]

(φi ∧ xi )

⇔
∨
i ∈N ′

φi ∨
∨
i ∈N ′

(¬xi ∧ ∼φi ) ∨
∨

i ∈[n]\N ′
(φi ∧ xi ), (1)

where the left disjunction in (1) already is a tautology by assumption.
Consequently, it holds that SF∼φq (P, π ) ⇒ φ. Hence, we conclude
φ ∈ SFq (P, π ), resulting in I ′ ∈ SFqD.
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(⇐) Assume I is a no-instance. Consequently, there does not
exist any N ′ ⊆ [n] with |N ′ | ≤ k , such that

∨
i ∈N ′ φi ≡ true holds.

By contradiction, we assume I ′ to still be a yes-instance. Then,
there exists an order π over Φq such that

φ = ψB
k ∧


©­«
∨
i ∈[n]

φ ′i
ª®¬
∨ γ


∧ β1 ∧ β2 ∈ SFq (P, π )

holds. We deduce that β1, β2 ∈ SFq (P, π ) and ψB
k ∨ ¬β1 ∨ ¬β2 ∈

SFq (P, π ) hold as well due to consistency. Hence, at most k of the
variables xi , 1 ≤ i ≤ n, are satisfied. Let us denote the satisfied
variables by M = {xi1 , . . . , xik′ } and the unsatisfied variables by
B\M = {xik′+1 , . . . , xin }. Furthermore, we can imply the following
out of φ ∈ SFq (P, π ):

true ≡

∨
i ∈[n]

φ ′i


∨ γ ≡


∨
i ∈[n]

(φi ∧ xi )

∨ γ

≡
[ ∨
i ∈M

(φi ∧ xi )
]
∨


∨

i ∈[n]\M
(φi ∧ xi )


∨ γ

≡
[ ∨
i ∈M

(φi ∧ true)
]
∨


∨

i ∈[n]\M
(φi ∧ false)


∨ γ

≡
[ ∨
i ∈M

φi

]
∨ false ∨ γ ≡

[ ∨
i ∈M

φi

]
∨ γ .

Yet, we know that φ must have been entailed by previously added
formulas because φ < Fq (P). Hence, we conclude that for the given
order π it holds that SF∼φq (P, π ) |= (∨i ∈M φi )∨γ , although neither
γ nor any φi shares any literals with formulas from SF

∼φ
q (P, π ).

Overall, (∨i ∈M φi ) ∨ γ can only be entailed if the disjunction con-
tains a tautology. Since γ is a literal, this implies that

∨
i ∈M φi ≡

true with |M | ≤ k would be a solution to I, which is a contradic-
tion to our assumption. Therefore, such an order π cannot exist
and I ′ must be a no-instance, too. □

Again, we derive a corollary for SFqR from the previous theorem
and Lemma 5.6.

Corollary 5.10. For every quota rule Fq ∈ F and a judgment
J = {φ} ⊂ Φ, it holds that SFq -Winner-Robustness is Πp2 -complete.

Endriss and de Haan [8] investigate the complexity of existential
winner-determination for the ranked agenda rule without a fixed tie-
breaking which is shown to be Σp2 -hard. Similarly to corollary 3.3,
we may improve this result, as our proof of Theorem 5.9 can easily
be adapted (by adding a third judge only approving βj ) to also hold
for the ranked agenda rule without fixed tie-breaking.

Corollary 5.11. The winner problem for the ranked agenda rule
without fixed tie-breaking is para-Σp2 -hard when parameterized by
the number of judges.

5.3 Supported Judgment
We conclude this section by formulating a problem, which formally
relates to problems of manipulative design, although it is clearly
motivated contrarily. In terms of acceptance, it is desirable for an

aggregated judgment to be reasonable for the participating judges.
Hence, for sequential JA rules it should be preferable to choose
an order such that at least k formulas supported by a rule K are
included in the aggregated judgment.

SK-Supported-Judgment (SKSJ)
Instance: An agenda Φ with |Φ+ | =m, a profile P ∈ J(Φ)r for

r judges and an integer k ≤ m.
Question: Is there an order π = (φ1, . . . ,φm ) over Φ+ such that

|K(P) ∩ SK(P, π )| ≥ k holds?
We start by establishing a general upper bound.

Theorem 5.12. For every efficiently computable JA rule K it holds
that SK-Supported-Judgment is in NP.

The omitted proof relies on Lemma 5.2. For the class of sequential
quota rules we provide a matching lower bound by adapting the
proof of Theorem 5.4.

Theorem 5.13. For every quota rule Fq ∈ F it holds that SFq -
Supported-Judgment is NP-complete.

Lastly, we highlight the significance of Lemma 5.2 for building a
connection between our sequential rules and distance based rules.
While it is not directly obvious, for q = 1/2, SFqSJ is related to the
maxcard subagenda rule as studied by Lang and Slavkovik [16]. In
general, SKSJ coincides with asking whether there exists a complete
and consistent judgment J ∈ J(Φ), such that h(K(P), J ) ≤ m − k
(where h(K(P), J ) denotes the hamming distance between K(P)
and J ). If there exists such an order π , for the resulting outcome
SK(P, π ) it clearly holds thath(K(P), SK(P, π )) ≤ m−k . Vice versa,
if there exists a judgment J ∈ J(Φ)withh(K(P), J ) ≤ m−k , we con-
struct a valid order π following Lemma 5.2 by arbitrarily positioning
the supported formulas at the beginning. These observations may
be an interesting tool for further research on computational com-
plexity for counting problems.

6 SEQUENTIAL RULES AND THE MAXIMUM
SUBAGENDA RULE

In this section we describe how we can link the sequential JA rules
that we’ve studied to other well-known majority preserving JA
rules. Particularly, we highlight the case with the majority rule
as underlying rule to our sequential procedure. Hereby, we show
that the maximum subagenda rule3 (MSA), as defined by Lang and
Slavkovik [16], exactly outputs the set of aggregated judgments
which can also be derived by the sequential majority rule with
suitable processing orders applied. This connection enables us to
transfer some of our complexity results to related non-sequential
procedures. In order to make the most out of this connection, we
slightly generalize the MSA rule defined in [16] as described after-
wards.

Definition 6.1 (Generalized Maximum Subagenda Rule). For an
agenda Φ and a set S ⊆ Φ we define max(S, ⊆) ⊂ 2S as the set
consisting of inclusion maximal subsets of S with respect to con-
sistency. More formally, for S ′ ⊆ S it holds that S ′ ∈ max(S, ⊆)
if and only if S ′ is consistent and there exists no consistent set
3Also known in JA as maximal Condorcet rule (see Lang et al. [15]), while the outcome
is also denoted as Condorcet admissible set (see Nehring et al. [19]).
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S ′′ ⊆ S with S ′ ⊂ S ′′. For any complete and resolute JA rule K , we
define the (irresolute) generalized maximum subagenda rule
MSAK : J(Φ)r → 2J(Φ) as follows. Let P ∈ J(Φ)r be a profile of
judgments and J ∈ J(Φ) a judgment, then J ∈ MSAK (P) holds if
and only if there exists a set S ∈max(K(P), ⊆) with S ⊆ J .

The MSA rule is irresolute, i.e., it returns a set of judgments as re-
sult, and equals the definition presented by Lang and Slavkovik [16]
for K = F1/2. Having the MSA rule defined, we make the subse-
quent observation, establishing a connection between the MSA rule
and our earlier studied sequential quota JA rules.

Theorem 6.2. Let P ∈ J(Φ)r be a profile and J ∈ J(Φ) a com-
plete and consistent judgment. Then, J ∈ MSAK (P) holds if and only
if there exists an order π over Φ+ with SK(P, π ) = J .

Proof. We begin with the direction from left to right. By defini-
tion, MSAK (P) contains every complete and consistent judgment
J , such that there doesn’t exist a consistent set K ⊆ K(P) satisfying
J∩K(P) ⊂ K . Note that this especially holds for |K | = |J∩K(P)|+1,
i.e., J ∩ K(P) cannot be extended by a single formula from K(P).
Due to consistency of J there is a satisfying truth assignment for
J ∩ K(P). Yet, no such truth assignment satisfies any formula in
K(P) \ J and must thus satisfy its complement. Hence, it holds that
J ∩ K(P) must entail J \ K(P). Now, following a similar argumen-
tation as in Lemma 5.2, for π = (J ∩ K(P), J \ K(P)) we obtain
SK(P, π ) = J and therefore, the right side holds, too.

For the direction from right to left assume that there is an out-
come J = SK(P, π ) with J < MSAK (P). Note that J is consistent
by definition and hence, its intersection with K(P) is consistent,
too. By assumption, J ∩K(P) cannot be inclusion maximal in K(P)
with respect to consistency as otherwise J ∈ MSAK (P) would fol-
low. Therefore, let K ∈ max(K(P), ⊆), such that J ∩ K(P) ⊂ K ⊆
K(P) holds. Now, we construct an order π ′ where J ∩ K(P) is at
the beginning of π ′, immediately followed by K \ J ∩ K(P), and
all remaining formulas afterwards. With Lemma 5.2 it holds that
J = SK(P, π ′) is true. Yet, K ⊆ SK(P, π ′) holds as well since K is a
consistent subset of K(P) processed at the beginning of π ′. Hence
we conclude that K ⊆ J must hold, which is a contradiction to
J ∩ K(P) ⊂ K ⊆ K(P). □

The previous theorem can be applied to transfer complexity
results for our decision problems in Section 5. For complete and
resolute JA rules K , asking whether there exists an order π , such
that some condition on the output SK(P, π ) is satisfied, coincides
with asking whether there is a judgment J ∈ MSAK (P) satisfying
the same condition. In particular, for Fq = 1/2 and a single formula
φ the problem SFq -Winner-Design coincides with the existential
MSA-Winner problem, while SFq -Winner-Robustness coincides
with the universal variant.4

This observation has multiple consequences. First of all, Lang
and Slavkovik [16] showed the universal MSA-Winner problem
is Πp2 -complete, which aligns with our result from Corollary 5.10.
However, the referenced result by Lang and Slavkovik requires a
linear number of judges while two judges are sufficient for our

4Slightly abusing notation, we consider existential (∃J ∈ MSAK (P ) : {φ } ⊆ J ) and
universal variants of MSAK -Winner (∀J ∈ MSAK (P ) : {φ } ⊆ J ) for irresolute
rules.

proof. Consequently, our proof allows a stricter result than the one
by Lang and Slavkovik. On the other hand our results also hold
if we do not restrict MSA to the majority rule as underlying JA
rule. In particular, upper bounds hold for every complete, efficiently
computable, resolute rule, while hardness results hold for every of
our quota rules.

The following corollaries follow from Theorems 5.7, 5.9 and 6.2,
and only refer to existential problems, which imply related Πp2 re-
sults for the universal variants, by additionally following Lemma 5.6.

Corollary 6.3. For any complete, efficiently computable, resolute
JA rule K it holds that MSAK -Winner is in Σp2 .

Corollary 6.4. For every quota rule Fq ∈ F and even a constant
number of judges it holds that MSAFq -Winner is Σp2 -complete.

We explicitly highlight that the previous corollary holds for
q = 1/2, and thereby enhances previous results on MSA.

7 CONCLUSION
We introduced the complexity theoretic study of problems related
to sequential JA rules with a special focus on quota rules as the
underlying rule. Our results are summarized in Table 1. We obtained
completeness for a number of different complexity classes which
show that the problems differ substantially even though they are
very related. The study of sequential rules is very important since
they model real-world decision making. To ensure consistency with
the already decided formulas, it is important to solve the winner
problem. On the other hand, we studied the manipulative power a
designer of such a procedure possesses. The increase in complexity
for the case where a single formula is the desired set indicates that
the problem is actually harder than winner determination itself. As
a task for future research other problems related to sequential JA
rules have to be studied. Our study was mostly limited to the class of
quota rules as underlying procedures and this should obviously be
extended to more diverse underlying rules. De Haan [3] follows an
approach to identify new ways of representing agendas via specific
boolean formulas, such that the complexity of various problems
related to JA becomes tractable, when the agenda is represented in a
more limited way. Furthermore, he formulated the determination of
the complexity of the winner problem for until yet unconsidered JA
rules, which he hasn’t studied, as future work. In a second step, the
author suggests that one can use the tractable languages identified
in his paper to study whether the complexity of the problems for
the newly investigated JA rules can be decreased. Within our paper
we have done the first part and determined the complexity of the
winner problem for complete and consistent sequential JA rules.
As future work we like to study how the tractable languages as
defined by de Haan [3] affect our complexity results and possibly
could even enable lower bounds. These results, when enabling
tractability, might have enormous impact on the practical usage of
the sequential JA rules we studied, since they are used in various
scenarios and situations, as described earlier.
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CHAPTER 8

COLLECTIVE
COMBINATORIAL OPTIMISATION

AS JUDGMENT AGGREGATION

In this chapter, we explore a unified model for judgment aggregation, allowing for asym-
metric and/or weighted rules. We showcase how diverse collective combinatorial opti-
mization problems can be encoded into this general model and how domain specific rules
relate to known judgment aggregation rules (or their generalizations). We complement
our study with complexity results on winner determination for our generalized rules.

8.1 Summary
In this work, we merge two recent generalizations of judgment aggregation into a uni-
fied framework (formally described in Subsection 2.4.4), to study collective combina-
torial optimization problems as case studies. In particular, while Rey, Endriss, and de
Haan [149] initiated the study on asymmetric judgment aggregation rules, Nehring and
Pivato [133] considered a symmetric setting with weighted issues. We adopt and combine
both approaches to model weighted, asymmetric judgment aggregation rules, which are
expressive enough to capture many domain specific rules in various research fields.

As case studies, we show how multiwinner elections, participatory budgeting, collective
scheduling, and collective network design (along with the novel, yet unstudied, problem
of collective placement) can be encoded into our model. Then, we continue to relate
judgment aggregation rules to domain specific optimization problems, by showing that
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independently formulated rules coincide with prominent judgment aggregation rules (or
their asymmetric and/or weighted generalizations), if instantiated (i.e., restricted) to the
respective domain.

We complement our results with a study on the computational complexity of (irresolute,
existentially quantified) winner determination. In particular, although related literature for
standard judgment aggregation rules is densely populated, we close remaining gaps with
respect to weighted rules. For the Chamberlin-Courant rule, we show that outcome de-
termination becomes computationally less complex in a symmetric setting with matching
constraints on the in- and output. This may stimulate further research on the complex-
ity in relaxed judgment aggregation scenarios.52 Notably, we embed our findings into a
broader context, discussing implications that arise from existing complexity gaps between
judgment aggregation rules and their domain specific specializations.

8.2 Reflection on Initial Research Goals

This article fits nicely into the scope of this thesis, as we connect independently studied
research fields by showing how different combinatorial optimization problems, including
multiwinner elections and participatory budgeting, can be studied under a global umbrella
in a unified judgment aggregation framework. As for our initial research goals, we dealt
with three of the proposed research questions, introduced in Chapter 3. Most signifi-
cantly, we addressed Question Q4 by (i) combining recent generalizations for judgment
aggregation [149, 133] to model weighted, asymmetric rules and (ii) identifying several
instances of coinciding (judgment aggregation) rules across literature for multiwinner
elections, participatory budgeting, collective network design, and collective scheduling.
This allowed us to extend popular frameworks into a more expressing language, allow-
ing for additional constraints. To benefit from this generalization in an applied context,
we addressed Question Q2 to determine whether the shift to the more expressive frame-
work comes with an increase in computational complexity. Therefore, we complemented
known results with a complexity study for our introduced, generalized rules. To some
degree we addressed Question Q1, as our results on coinciding rules allow for a transfer
of (satisfied) axiomatic results from our judgment aggregation framework to specialized,
combinatorial optimization problems and vice versa (in case of violation).

52Let us motivate our claim with a simple additional result. De Haan [91] showed that the median rule
is tractable in case the integrity constraint on in- and output is in 2-CNF. Yet, in Footnote 19 we showed
that finding a satisfying assignment with a maximum hamming weight is at least as hard as finding a largest
clique. Now, if the rationality constraint allows a single voter to approve all positive literals, computing the
median rule must be computationally hard, as any output corresponds to a largest clique.
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8.3 Publication
This work has been accepted at a special issue of the journal Annals of Mathematics and
Artificial Intelligence, focusing on recent developments in preference handling.

[34] L. Boes, R. Colley, U. Grandi, J. Lang, and A. Novaro. “Collective Combinatorial
Optimisation as Judgment Aggregation”. In: Annals of Mathematics and Artificial
Intelligence (2023)

A preliminary version of this article has undergone a review process and was accepted for
presentation at the 13th Multidisciplinary Workshop on Advances in Preference Handling.

[33] L. Boes, R. Colley, U. Grandi, J. Lang, and A. Novaro. “Collective Combinatorial
Optimisation as Judgment Aggregation”. In: Proceedings of the 13th Multidis-
ciplinary Workshop on Advances in Preference Handling. Ed. by M. Ozturk, C.
Labreuche, P. Viappiani, and S. Destercke. Vienna, Austria, 2022

Parts of this work have also been discussed in Rachael Colley’s dissertation [54].
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This work was initiated during my inspiring research stay at the University of Toulouse
under the supervision of Umberto Grandi back in 2020. Conception, writing, and the
extensive literature review was conducted jointly in equal parts together with all my co-
authors Rachael Colley, Umberto Grandi, Jérôme Lang, and Arianna Novaro. Propo-
sition 10 was contributed by me. The remaining technical results (in particular clearly
marked propositions) were established in equal parts during rewarding debates, mostly
with my co-author Rachael Colley, and, to a notable degree, by Arianna Novaro during
the finalization of this work.
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1 Introduction

Public decisions often have a combinatorial structure. Typical examples are participatory
budgeting (choosing a set of projects to fund, given some budget constraints), collective
scheduling (collectively deciding on the order some tasks will be executed), collective net-
work design (collectively deciding on the edges of a network to connect multiple locations),
multi-winner elections (find a committee of a fixed size), and many more—including prob-
lems which have not been given much attention, yet are worth investigating.

Many of these problems, including the four examples given above, have been studied
separately while sharing many features. Their input mainly consists of individual preferences
expressed locally (on projects, on the relative order of two projects, on edges between two
nodes) rather than globally (on all sets of projects, all possible schedules or all possible
networks).1 The output is a feasible solution, i.e., a solution which abides by the constraints
and that maximises an objective expressed via a score function. What distinguishes these
problems is the nature of the constraints: the maximum budget should not be exceeded, a
schedule should be a consistent ordering, a network should be a tree, etc.

The problems mentioned above are thus structurally close, and we may ask whether they
could be seen as instances of a more general framework, consisting of a general language
for expressing preferences and constraints, general aggregation functions, and general com-
putational tools. If the answer is positive, each of these problems, their variants, as well as
novel collective combinatorial optimisation (CCO) problems, could be expressed and solved
in such a general framework without the need to study each of them separately.

We give a positive answer, and we do so by showing that judgment aggregation is such
a suitably general framework. This framework has been initially developed to study the
aggregation of binary judgments over logically interconnected issues in an agenda to gain a
collective decision (cf. the survey by Endriss, [13]). Given the type of problems that we wish
to study, we need a slight generalisation of standard judgment aggregation that can allow
for weighted agendas and/or asymmetric agendas. We show that several aggregation rules
used to solve specific problems are actually instances of existing and well-studied judgment
aggregation rules, or of some of their variants (such as weighted generalisations).

However, it is worth first clarifying what our paper is not:

(i) We do not define a brand-new framework: most aspects of the unifying framework that
we give are known from judgment aggregation; we do define weighted variants of some
well-known rules that are useful to capture CCO problems.

(i i) We do not study new problems: instead, we restate several existing problems that have
been studied independently, such that they can be analysed under a common umbrella
framework. By doing so, we do however open the possibility to define and study new
problems, such as what we will call collective placement.

1 Since the set of solutions has a combinatorial structure, expressing preferences globally requires a high
communication burden from the agents—however, using a local approach limits the types of preferences that
can be expressed.
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(i i i) Wedonot give better algorithms for specific problems: in fact, general solvers can perform
at best as well as specific solvers, and sometimes worse. Also, for several rules, the
computational complexity of solving the outcome determination problem for the general
case is higher than that of specific ones.

(iv) We do not give any axiomatisation: the axiomatisation of (judgment aggregation) rules
has been investigated per se. The properties of the rules naturally carry over to the specific
problems (although an axiomatisation of a general rule does not necessarily lead to that
of its specific instantiation).

Our contribution establishes novel and fundamental connections between several lines of
research and problems that have so far been studied separately. Identifying those connections
may lead to meaningful insights across different areas of research. In doing so, we give
an engineering flavour to judgment aggregation, a field that up until now has focused on
impossibility results, axiomatisations, and computational complexity, but not yet on concrete
applications to real-world problems.

Moreover, for some judgment aggregation rules the outcome can be computed via a
translation into integer linear programming (ILP). Of course, such a translation could be
done for each specific problem, but the existence of a general translation allows for a simpler
process in comparing models, since translating a problem to judgment aggregation can be
easier than translating it directly into an ILP.

There are twomain streams of related literature. On the one hand, we have papers studying
specific settings for collective combinatorial optimisation: these will be cited extensively
when they are introduced formally in Section 3. On the other hand, we have papers adapting
classical judgment aggregation to deal with weighted issues, which we discuss here below.

Rey et al. [36] provide efficient and exhaustive embeddings of participatory budget-
ing problems via DNNF circuits in non-weighted judgment aggregation, giving an initial
axiomatic study of asymmetric additive rules extended from known judgment aggregation
rules. Chingoma et al. [8] simulate multi-winner voting rules in judgment aggregation for
both ordinal and approval-based preferences and study their complexity. Both of these works,
however, do not generalise directly to other CCO settings. Nehring and Pivato [32] introduce
and study a setting of judgment aggregation with weighted issues: we use their definitions to
build our general framework, including themedian rule of which they give an axiomatisation.

Our paper is structured as follows. In Section 2, we give an overview of judgment
aggregation rules and their generalisations to weighted asymmetric agendas, and we also
generalise the Chamberlin-Courant voting rule for approval ballots to judgment aggregation.
In Section 3, we show how numerous collective combinatorial optimisation settings can be
expressed in weighted judgment aggregation and we prove that some of the specific rules
from these settings are in fact instances of judgment aggregation rules. In Section 4 we give a
computational study of the rules, both from a theoretical and an experimental point of view.
We conclude in Section 5.

2 Weighted asymmetric judgment aggregation

Judgment aggregation is a general framework to make collective decisions over a set of pos-
sibly interconnected issues linked by constraints. Nehring and Pivato [32] have considered
a generalisation of judgment aggregation where each issue is associated with a numerical
weight, while Rey et al. [36] have defined asymmetric judgment aggregation rules. We com-
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bine both approaches and consider agendas for which each item and its negation have weights
(which are not required to be equal).

2.1 Formal model

A set of n agents (or voters) N = {1, . . . , n} have to take a collective decision on the
acceptance of m items (projects, issues, etc.) in an agenda A. The agenda A is composed of
two sets A+ and A−, which represent the set of positive and negative issues, respectively.
Hence, A = A+ ∪ A−, where |A+| = |A−| = m/2. This means that for every a ∈ A+ there
is an a ∈ A− which represents the negation of a.

Each item of the agenda A has an associated weight wa ∈ N0 that will be used in the
aggregation by the rules.2 The weight vector w collects the weights of all the m items in the
agenda A. While in the most general setting, each weight can be any natural number or 0,
we are also interested in some specific restrictions on the weight vectors (which determine
different types of agendas) that we describe here below.

First, we can have agendas where each positive item a ∈ A+ and its corresponding
negation a ∈ A− have the same weight (what we call a symmetric agenda, i.e., wa = wa

for each a ∈ A+; although note that each positive-negative issue pair in the agenda may
have a different weight), or agendas where the negated item has weight zero (what we call
an asymmetric agenda, i.e., wa = 0 for each a ∈ A−). Second, we can have agendas where
the items’ weights are in the set {0, 1} (what we call a binary agenda) or where they are in
N0 (what we call a weighted agenda).

By combining the above cases, we derive the following four natural variants of judgment
aggregation, defined by the corresponding restrictions on the weight vector of the agenda,
whichwewill focus on in the rest of this paper. Note that an agendamay be neither symmetric
nor asymmetric (i.e., wa, wa ∈ N, yet wa �= wa).

Standard judgment aggregation (wa = wa = 1) In standard judgment aggregation,
denoted by w

sym
bin , all issues (and their negations) have equal weights. Formally, for any

a, a′ ∈ A we have that wa = wa′ . Without loss of generality, we can assume that all weights
are equal to 1, thus yielding a symmetric binary agenda.
Asymmetric judgment aggregation (wa = 1;wa = 0) For binary asymmetric agendas,
which were studied by Rey et al. [36], and which we denote by w

asym
bin , we assume that

wa = 1 for all a ∈ A+ and wa = 0 for all a ∈ A−. Intuitively, when an item’s weight is 0,
the support for this item will be discarded when computing an outcome. Thus, in the setting
by Rey et al. [36], asymmetric weights allow for rules to be biased towards the acceptance
of positive agenda items.
Weighted judgment aggregation (wa = wa ∈ N0) In symmetric weighted judgment aggre-
gation, which we denote by w

sym
we , different items of the agenda can have different weights,

yet an item and its dual must have the same weight, wa = wa ∈ N0. This was described by
Nehring and Pivato [32].
Weighted asymmetric judgment aggregation (wa ∈ N0;wa = 0) Finally, in the w

asym
we

restriction we have wa = 0 for all a ∈ A− and wa ∈ N0 for all a ∈ A+.

In addition to being able to capture standard judgment aggregation, the setting we provide
is more general in two ways: the presence of weights and the possible asymmetry between

2 Although Nehring and Pivato [32] assume real-valued weights, integer weights allow us to use compact
languages for the constraints; a further generalisation to values in R (or to negative values) for the weights is
also possible.
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issues and their negations. The latter generalisation goes slightly in the direction of belief
merging (see [28]); however, we assume that all agents report judgments on the same agenda,
unlike belief merging.3

For an agenda A and an agent i ∈ N , an agent’s ballot is a vector Bi ∈ {0, 1}m , where
each entry represents the agent’s decision on a fixed agenda item. In this context, the notation
Bi (a) refers to the entry of vector Bi ∈ {0, 1}m for issue a ∈ A. The collection of the agents’
ballots is a profile B = (B1, . . . , Bn).

Constraints can be imposed on a weighted judgment aggregation problem, either on the
collective outcome (e.g., abiding by a budget constraint) or on the individual ballots (e.g.,
approving a minimal number of items). Following Endriss [14] we call the former feasibility
constraints (denoted by�F ) and the latter rationality constraints (denoted by�R). Throughout
the paper, we will express these constraints as sets of linear (in)equalities, allowing the
constraints from many CCO settings that include numerical values to be formalised clearly.4

Moreover,BR ⊆ {0, 1}m is the set of all ballots satisfying the rationality constraints, while
BF ⊆ {0, 1}m is the set of outcomes satisfying the feasibility constraints. Since agendas
include an issue and its negation, we always assume that all ballots and all outcomes accept
either an issue or its negation (no matter the issues’ weights). Additionally, when imposing
rationality and feasibility constraints, we require that any voter’s ballot Bi ∈ {0, 1, }m must
be rational, i.e., Bi ∈ BR , and any outcome of an aggregation method X ∈ {0, 1}m must be
feasible, i.e., X ∈ BF .

An important remark tomake here is that theweightswill be used by our rules as a proxy for
the agents’ satisfaction during the aggregation step in order to identify the optimal outcomes.
However, as we shall see for the case of participatory budgeting (in Section 3.2), in some
CCO settings the weights will also determine the feasibility of the outcomes themselves: i.e.,
we could have a participatory budgeting scenario where the weights associated to projects
correspond to their costs (thus, the satisfaction of an agent is the total cost of the accepted
items they approve of), but they also appear in the constraints (i.e., the budget limit should
not be exceeded).

In the following, we sometimes use j ∈ [x, y] as a shorthand for j ∈ {x, . . . , y}, and
j ∈ [x] as a shorthand for j ∈ {1, . . . , x}.

2.2 Weighted asymmetric judgment aggregation rules

In this section we recap some well-studied rules from judgment aggregation, but we define
them generally in the sense that the agenda items can have any weight vector (recall that,
with a slight abuse of terminology, we refer to the weighted versions of the rules when the
weights are not binary).

We call a weighted asymmetric judgment aggregation rule a function F that takes as input
a rational profile B ∈ BR , set of feasibility constraints �F , and weight vectorw for the items
in an agenda A and it gives as output a set of feasible outcomes (i.e., where X ∈ BF for each
outcome X ). Observe that rules are thus irresolute, in the sense that they may return a set of
tied feasible outcomes.

3 See [19] for a comparison of belief merging and judgment aggregation.
4 Note that the constraints can be expressed inmanyways: for instance, in the standard (symmetric) framework
of binary judgment aggregation, they are usually expressed as formulas of propositional logic [23].
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2.2.1 The (weighted) median rule

The median rule finds the outcomes that globally minimise the number of changes between
the profile and the outcome or equivalently, maximise the number of agreements between
the agents’ ballots and the outcome. The weighted median rule extends the median rule by
maximising the total sum of the weights of accepted items in the outcome and each of the
agents’ ballots.

Definition 1 The (weighted) median rule takes a rational profile B, feasibility constraint �F ,
and agenda weights w and gives a set of outcomes found by:

argmax
{X |X∈BF }

∑

i∈N

∑

a j∈A

wa j × Bi (a j ) × X(a j ).

Wemay choose anyweight vector pairedwith this rule, however, when pairedwith specific
weight vectors, the function aligns with specific rules. When the agenda’s weight vector is
restricted to be unary (i.e., symmetric and binary,wsym

bin ), this rule reflects the standardmedian
rule (which we will refer to as Med); while under symmetric non-binary weights, wsym

we , we
obtain the symmetric weighted median rule defined byNehring and Pivato [32] (which we
will refer to as WMed).

Observe thatMed andWMed differ in name, yet they are the same function with different
weights being used for the aggregation. In the former, theweights of the items, for aggregation
purposes, are binary. Hence, the satisfaction of the agents is based on the cardinality of the
intersection between the outcome and voters’ ballots only. Note that this does not stop the
feasibility constraint to use the weights of the items when determining if an outcome is
feasible. In the latter, i.e.,WMed, the issues’ weights represent the satisfaction of the voters:
instead of getting one point for every item approved by both the outcome and the voters’
ballots, we now get the sum of the items’ weights which are approved by both.

2.2.2 The (weighted) egalitarian rule

The standard egalitarian rule outputs the outcomes that maximise the minimum number of
projects approved by any agent in the outcome. When the weight vector is restricted towsym

bin
it is called the dH -max rule by Lang et al. [31] and the MaxHam rule by Botan et al. [4].

Definition 2 The (weighted) egalitarian rule takes a rational profile B, feasibility constraint
�F , and agenda weights w and gives a set of outcomes found by:

argmax
{X |X∈BF }

min
i∈N

∑

a j∈A

wa j × Bi (a j ) × X(a j ).

In general, we will refer to this rule as Egal when weights are binary and asWEgal when
weights are non-binary (wasym

we or wsym
we ). Although egalitarian rules have also been studied

in belief merging (see, e.g., [18]), to the best of our knowledgeWEgal is new. Its motivation
is natural in participatory budgeting instances with few agents, where we may want to ensure
that each agent agrees with the funded projects to some minimum level.

2.2.3 The (weighted) ranked agenda rule

The ranked agenda rule was studied by Lang and Slavkovik [30] and its leximax refinement
was studied by Nehring et al. [33]. The rule iteratively considers issues following the order
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induced by the support received, rejecting an issue if its addition would break the feasibility
constraint. There are two variants of the rule, depending on whether ties are broken immedi-
ately, using a tie-breaking rule, or if all tie-breaking possibilities are considered in parallel.
For simplicity, we only consider the former variant.

Algorithm 1 The (weighted) ranked agenda rule.
1: Input: �F , B, A, w
2: � := {�F } and X := {0}|A|
3: Order the issues of A w.r.t.

∑
i∈N Bi (a) × wa in descending order

4: for each issue a j in the ordering do
5: if � and a j is consistent then
6: X(a j ) := 1 and � := � ∪ {a j }
7: end if
8: end for
9: return X

The rule follows Algorithm 1. It has as input the constraint �F , the profile of ballots B,
the agenda A, and the weight vector w; the output is an outcome X ∈ BF . On line 2, � is
initialised to be a set containing �F and the outcome vector X sets a 0 for each item. It then
orders the items in A with respect to their weighted support (using a linear tie-breaking rule
when items have equal support). Following this order of items, in the for-loop on line 4, it
first checks if the addition of this item breaks feasibility given the currently accepted items.
If feasibility is respected, then the outcome for that item is set to 1 and the item is added to
� (otherwise, its negation will be in the outcome). This algorithm can be altered to get other
ranked rules, such as the greedy Chamberlin-Courant rule (see [41]).

For a non-binary agenda, we will refer to this rule as WRank and for a binary agenda we
will refer to it as Rank.

2.2.4 The Chamberlin-Courant rule

The Chamberlin-Courant voting rule (CC) was originally introduced for ordinal preferences
by Chamberlin and Courant [7] as a way to try to ensure that all voices are present in
deliberation. We consider a variant for approval-based preferences, studied by Skowron and
Faliszewski [37] for multi-winner elections and generalised to participatory budgeting by
Talmon and Faliszewski [41].5 For approval-based preferences, an outcome shouldmaximise
the number of agents who have at least one item in the outcome that they approve of. We
define the rule here for general agendas: we say that an agent is satisfied by an outcome if
there is at least one issue with non-zero weight approved by the agent and contained in the
outcome; then, the rule outputs every outcome that maximises the number of satisfied agents.

Definition 3 The Chamberlin-Courant rule takes a rational profile B, feasibility constraint
�F , and agenda weights w and gives a set of outcomes found by:

CC(B, �F ,w)= argmax
{X |X∈BF }

∑

i∈N
min(1,

∑

a j∈A

X(a j ) × Bi (a j ) × wa j ).

5 In a related approach, Chingoma et al. [8] generalised the Chamberlin-Courant rule and the proportional
approval voting rule (PAV) to judgment aggregation, relying on weak rankings to model either dichotomous
or ordinal preferences.
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First, note that changing the weight of an issue from some non-zero number to another
non-zero number has no impact on the outcome: only changing non-zero weights to zero
and vice-versa can affect the outcome (without loss of generality non-zero weights can
be 1). Second, the rule makes particular sense for asymmetric agendas, such as those for
participatory budgeting or multi-winner elections.

2.3 Examples

We now provide an example illustrating the four rules we just introduced, both in their
weighted and binary versions.

Let N be a set of 8 voters and A+ = {i, j, k, �,m, n} be a set of 6 (positive) issues.
Each positive issue has an associated cost, modelled by vector c = (1, 2, 2, 2, 3, 4). In this
example, costs are used to determine if an outcome is feasible. Moreover, when the weights
are non-binary, theywill correspond to the issues’ costs.Wewill only consider an asymmetric
agenda, thus, the weight vectors will be restricted to be of the form w

asym
bin or wasym

we . Hence,
for each a ∈ A−, wa = 0.

The feasibility constraint states that the total cost of the collectively accepted issues is no
greater than 5. We first study the profile B given in Table 1. The line labelled sum gives the
total support for each of the issues in the profile, while the line labelled weighted sum gives
the total support for that issue times its weight.

Binary asymmetric weights We first consider the aggregation weights to be binary and
asymmetric. Thus, the aggregation weight vector w is such that wa = 1 for a ∈ A+ and
wa = 0, otherwise. Given w, we compute the rules Med, CC, and Rank: each of them
considers the amount of support each item of A+ has received, as per the sum line in the
table.

The unique outcome ofMed is accepting only i , j , and k as it has the highest total support
of 13 and all other feasible outcomes have smaller total support.

The Rank rule returns the outcome that accepts only i and m. It orders the issues with
respect to how much support they have received: i.e., i,m, j, k, n, � (breaking ties alphabet-
ically); then, it accepts i and then m as their total cost is 4. None of the remaining issues can
be added without exceeding the budget limit.

The CC rule returns the outcome that only accepts � and m as this is the only feasible
outcome in which all voters approve of at least one of the issues.

Weighted asymmetric weights We now consider a weighted asymmetric vector w′, where
w′
a = c(a) for all a ∈ A+, giving w′+ = (1, 2, 2, 2, 3, 4), i.e., the weight of each issue is its

cost, and each issue in A− has a weight of 0. The outcomes of the rules WMed and WRank
on w′ are given in Table 1 (we do not consider the CC rule on non-binary weights).

The ruleWMed returns two tied outcomes that maximise the total weighted support. The
first outcome accepts only issues j , and m, while the second accepts only issues k and m:
both have a total weighted support of 23.

The ruleWRank first orders the issues with respect to their weighted support (the numbers
in the weighted sum line), giving the order: n, m, j , k, �, i (ties are broken alphabetically).
Then, it accepts issue n with cost 4. It then must reject m, j , k, and then �, in this order, as
their acceptance would exceed the limit of 5 given by the constraint. Then issue i is added,
giving the outcome where only n and i are accepted.

Egalitarian rules For the egalitarian rules, we consider a different profile B′ given in Table 2
withN = [6], wherewe consider the same issues as before except j , i.e., A+\{ j}. Ourweight
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Table 1 Profile B from the
example given in Section 2.3

i j k � m n

cost 1 2 2 2 3 4

voter 1 1 0 1 0 1 0

voter 2 0 1 1 1 0 1

voter 3 1 1 1 0 1 1

voter 4 1 1 0 0 1 1

voter 5 1 1 0 1 0 1

voter 6 1 0 1 0 1 0

voter 7 0 0 0 1 0 0

voter 8 0 0 0 0 1 0

sum 5 4 4 3 5 4

Med 1 1 1 0 0 0

CC 0 0 0 1 1 0

Rank 1 0 0 0 1 0

weighted sum 5 8 8 6 15 16

WMed 0 1 0 0 1 0

0 0 1 0 1 0

WRank 1 0 0 0 0 1

We give the total number of approvals for each issue (sum), the weighted
number of approvals (weighted sum), and the outcome of the different
rules (including possible ties, as seen for WMed)

vectors remain the same excluding the entry corresponding to j . The cost of each issue is
given in c′ = (1, 2, 2, 3, 4), and the budget constraint remains at 5.

First consider Egal, where the weight vector has wa = 1 if a ∈ A+\{ j}, and wa = 0 if
a ∈ A−\{ j}. In this instance, the outcomes of Egal contain, for each voter, at least one issue

Table 2 Profile B′ from
Section 2.3 used to show the
outcome(s) of Egal andWEgal

i k � m n

cost 1 2 2 3 4

voter 1 1 1 0 1 0

voter 2 0 1 1 0 0

voter 3 0 1 0 1 1

voter 4 1 0 0 1 1

voter 5 1 0 1 0 1

voter 6 1 1 0 1 0

Egal 1 1 1 0 0

1 1 0 0 0

0 0 1 1 0

WEgal 0 0 1 1 0
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that they approve of. In particular, each of the 6 voters approves of either issue � or m, so
Egal returns the outcome approving these two issues (no more items can be added without
exceeding the budget limit). Then, there is only one feasible outcome accepting three issues
from the positive agenda: i , k and �. Here the least satisfied voters (voters 3 and 4) approve
exactly one issue in the outcome. Note that the outcome accepting only issues i and k is
returned by Egal, as the least satisfied voter (voter 3) also approves of only one issue.

AsWEgal is aweighted judgment aggregation rule (i.e., using a non-binaryweight vector),
we let the issues’ weights be their cost. Thus, wa = c(a) for a ∈ A+\{ j} and wa = 0 if
a ∈ A−\{ j}. Then, only the outcome accepting issues � and m is returned by WEgal, as
every agent gets at least a minimum weight of 2 (out of 5) that they approve of.

3 Collective combinatorial optimisation: five problems

In this section, we present five examples of collective combinatorial optimisation (CCO)
problems from the literature, and we model them in judgment aggregation. A CCO problem
has the following characteristics. First, a collective decision must be taken to decide which
discrete items should be accepted from a given finite set. In many examples of CCO settings,
each of the items will have a cost, which may be used by the constraints. In general, the
combinatorial nature of the problem then arises from the presence of constraints specifying
what is a feasible outcome. CCO rules will then take a rational profile of ballots and return a
feasible collective combinatorial outcome, optimising some metric of satisfaction. Note that
rationality and feasibility constraints here correspond to the specifics of the CCO setting in
question.

We show that specific rules, studied independently within each CCO setting, are instances
of the rules defined in Section 2.2. Formally, a CCO rule R is an instance of a judgment
aggregation rule R′ if there is a translation from any profile B of this specific CCO setting
into a judgment aggregation profile B′ such that the outcome of R on B is equivalent to the
outcome of R′ on B′, i.e., they correspond to the same collective decision.

3.1 Multi-winner elections

This well-studied framework models the collective selection problem of a set of candidates.
The candidates have equal weight, which can be assumed to be unitary without a loss of
generality. The agenda is A = {a, a | a is a candidate}. Furthermore, we mainly consider
CCO rules in which the agents only vote on the acceptance of the candidates, the exception
being theminimax approval rule (details are given in the following). Thus, the agenda is binary
and asymmetric, i.e., for each pair a, a ∈ A, wa = 1 and wa = 0. We thus only consider
the judgment aggregation rules with binary weights. The feasibility constraint requires that
exactly a given number k ∈ N of candidates are elected, thusBF = {X | ∑

a∈A X(a)×wa =
k}. The ballots represent the agents’ approval of the candidates: they can approve as many
candidates as they like, or exactly k candidates (BR = BF ).

The following proposition shows the correspondence between rules in the literature on
multi-winner voting and our general judgment aggregation rules. Definitions of multiwinner
voting rules can be found in the work of Lackner and Skowron [29].

Proposition 1 The following multi-winner rules are instances of their judgment aggregation
counterparts:
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i) the standard multi-winner approval voting rule, that outputs the most approved k candi-
dates, is an instance of both Med and Rank (modulo tie-breaking);

ii) the Chamberlin-Courant rule for approval ballots (see [37]) is an instance of CC;
iii) the minimax approval voting rule by Brams et al. [5], that outputs the outcomes min-

imising the maximum, over all agents i , of the Hamming distance between the outcome
and i’s ballot, is an instance of Egal with binary symmetric weights (wsym

bin ).
6

Proof For asymmetric agendas equippedwith amulti-winner constraint, themedian ruleMed
selects all subsets of candidates that maximise the (sum of the) overlap of voters’ approved
issues with the outcome. This is exactly what the multi-winner approval voting rule does.
The ranked agenda rule Rank sorts the issues by voters’ support first and then sequentially
adds the best k issues to the outcome. Considering parallel-universe tie-breaking, we derive
exactly those outcomes that are output by the median rule.

As the Chamberlin-Courant rule for approval ballots was adapted from Skowron and
Faliszewski [37] into our judgment aggregation framework, the instantiation follows by
design. Both in multi-winner elections and judgment aggregation (equipped with a multi-
winner constraint), the Chamberlin-Courant rule selects those fixed-size subsets of issues
that maximise the number of voters that approve of at least one (positive) issue.

Theminimax approval voting rule byBrams et al. [5] selects those outcomes thatminimise
the maximum Hamming distance to the voters’ approval ballots. Botan et al. [4] point out
that their judgment aggregation ruleMaxHam generalises the minimax approval voting rule.
Note that maximising the minimum support instead of minimising the maximum lack of
support is only a difference in modelling. In particular, as we consider symmetric agendas,
each agent supports exactly half of the issues (counting rejections). Thus, the Hamming
distance between a voter’s ballot and an outcome can be derived from counting the supported
issues, subtractingm/2, andmultiplying by−1 (and swappingminimisation andmaximisation
operators due to the sign change). ��

The egalitarian multi-winner rule appears to be novel—although a recent paper on par-
ticipatory budgeting proposed an asymmetric egalitarian rule [40]. The rule outputs the
committees of k candidates that maximise the minimum number of committee members
approved by any agent. It is close to the rules studied by Aziz et al. [2], who however
consider ballots to be rankings over alternatives.

3.2 Participatory budgeting

Participatory budgeting (PB) is a class of collective selection problems, generalising multi-
winner elections, where the agents approve projects to be funded by a limited resource (e.g.,
a monetary budget). A PB problem consists of a set of projects P , and each p ∈ P has a cost
cp if implemented. The PB rule will return a set of selected projects with a total cost that
must not exceed the budget limit � ∈ N.

We will now rephrase the PB problem in terms of our judgment aggregation notation
introduced in Section 2.1. The selection agenda A contains issues for each project p ∈ P
represented by ap . The agenda has asymmetric weights, i.e.,wa = 0 for every project a ∈ A.
We focus on the case where the agenda weights are either binary (wp = 1 for each ap ∈ A+)
or a weighted agenda (where wp = cp), depending on the notion of satisfaction required by
the rule.

6 The link between minimax approval voting and judgment aggregation was discussed by Grossi and Pigozzi
[24].
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Note that in participatory budgeting, the feasibility of the outcome is always determined by
the projects’ costs. Theweights, asmentioned in Section 2, are instead used in the aggregation
to quantify the voters’ satisfaction.

Regarding the feasibility of the outcomes, the cost of the collectively selected projects
must not exceed the budget limit � ∈ N. Hence,

BF = {X |
∑

a∈A+
X(a) × ca ≤ �}

are the feasible outcomes, with A+ the positive issues of A.
If there are no rationality constraints, BR = {0, 1}m , agents can approve any number

of items (regardless of their costs); if BR = BF , agents must submit their ideal allocation
under the budget limit. Related problems include collective knapsack or knapsack voting [22],
where rationality and feasibility constraints coincide, andweighted committee selection [27].

Proposition 2 The following PB rules are instances of their judgment aggregation counter-
parts:

i) themax rule with cardinality satisfaction fromTalmon andFaliszewski [41] is an instance
of Med;

ii) the generalised approval-based Chamberlin-Courant rule by Talmon and Faliszewski
[41] is an instance of CC;

iii) the max rule with cost satisfaction from Talmon and Faliszewski [41] is an instance of
WMed;

iv) the greedy rulewith cardinality satisfaction by Talmon andFaliszewski [41] is an instance
of Rank;

v) the greedy rule with cost satisfaction from Talmon and Faliszewski [41] is an instance of
WRank;

vi) the maxmin participatory budgeting rule from Sreedurga et al. [40] is an instance of
WEgal;

vi i) the individually best knapsack rule from Fluschnik et al. [20] is an instance of Med when
their utilities are binary;

vi i i) the diverse knapsack rule from Fluschnik et al. [20] is an instance of CC when their
utilities are binary.

Proof We begin with the rules by Talmon and Faliszewski [41]. The max rule with car-
dinality satisfaction and the generalised approval-based Chamberlin-Courant respectively
generalise the multi-winner rules approval voting rule and Chamberlin-Courant rule for
approval ballots, with the only difference that feasibility is determined by a participatory
budgeting constraint. Following Proposition 1, the rules are instances ofMed and CC.

In participatory budgeting, a voter’s cost-based satisfaction corresponds to the funds spent
on projects the voter approves of. The max rule with cost satisfaction selects those feasible
bundles thatmaximise the (sumof) voters’ cost-based satisfaction. This is exactlywhatWMed
for weighted asymmetric agendas doeswhen theweightsmodel the respective projects’ costs.

The greedy rule with cardinality (resp. cost) satisfaction constructs an outcome sequen-
tially. The issues are first ranked either by the sum of cardinality satisfaction (i.e., the number
of supporting voters) or the sum of cost satisfaction, then projects are selected by descend-
ing total satisfaction (with some tie-breaking rule), skipping projects that would break the
feasibility constraint. Translated to judgment aggregation with asymmetric agendas, the vot-
ers’ satisfaction with each issue is preserved. Assuming the same tie-breaking scheme is
used, (W )Rank ranks the projects in the same way as the greedy rule with cardinality (cost)
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satisfaction and issues are added to the outcome sequentially, skipping issues that break
feasibility.

The maxmin participatory budgeting rule from Sreedurga et al. [40] also assumes cost-
based voters’ satisfaction. The rule selects those outcomes that maximise satisfaction for the
least satisfied voter, analogously toWEgal.

For the remaining two rules by Fluschnik et al. [20], the voters assign each item a non-
negative integer utility. Assuming these utilities are binary, each item has an individual
voter’s utility of zero or one. Given a participatory budgeting constraint, the individually best
knapsack rule selects a subset of items that maximises the (sum of the) voters’ utilities in
an analogous way to Med. In contrast, the diverse knapsack rule maximises the number of
voters that have a non-zero utility (for non-binary utilities every voter is represented by the
utility of her most preferred item in the outcome). For binary utilities, this corresponds to
CC. ��

3.3 Collective networking

In the problem of collective networking, the agents have to design a common network—
whether the network consists of water pipelines, internet services, or travel connections
between countries. The agents specify which links they approve of, and the goal is to find
a spanning tree from such input, i.e., an undirected acyclic graph that includes all nodes,
maximising the satisfaction of the agents. This problem has been introduced and studied by
Darmann et al. [10, 11].

Given an undirected network G = (V , E) a networking agenda is the set of items A =
{ai j , ai j | (i, j) ∈ E}, where wai j = 0 for all ai j ∈ A− (i.e., the agenda has asymmetric
weights). Then, ci j is the cost of adding edge (i, j) to the outcome network. Darmann et al.
[11] consider edges with costs but no budget limit determining what is a feasible outcome,
as they assume that some central authority will fund any outcome. As for participatory
budgeting, we can consider eitherwai j = ci j orwai j = 1, depending on how the rule is going
to model the agents’ satisfaction for building such a connection.

The set of accepted edges must form a spanning tree (i.e., acyclic and connected tree),
this is reflected in the feasibility constraints—and a budget limit can also be imposed. These
constraints can be formulated as linear inequalities in many ways.7 We here focus on the
single commodity flow model by Abdelmaguid [1], where we first move from undirected to
directed graphs, andwe then forget the direction of the edges to obtain the collective spanning
tree. We have |E | variables ai j stating whether (i, j) is in the collective spanning tree, and
2|E | variables yi j and y ji in set Y for the two directions of each edge in E . Each yi j ∈ N
describes the flow going from node i to node j .

We also have |V | constraints as follows, for j ∈ V :

∑

i :(i, j)∈E
(yi j − y ji ) =

{
1 − |V |, if j = 1

1, otherwise
(1)

The first case accounts for the (artificial) root of the tree j = 1, having no in-flowing
edges. Thus, yi1 = 0 for all (i, 1) ∈ E and the out-flowing edges have a total weight of
|V | − 1. The second case ensures that in a spanning tree, the in-flowing weight exceeds the
out-flowing by one.

7 Note that without the use of linear inequalities, constraints can still be expressed compactly (only adding a
polynomial number of variables) when weights are unary (see [25]).
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Next, we ensure that directed edges correspond to the undirected edges:

yi j ≤ (|V | − 1)xi j and y ji ≤ (|V | − 1)xi j . (2)

For every (i, j) ∈ E , the constraints impose that each of yi j and y ji can carry flow only
when xi j is in the spanning tree. Finally, the tree must have |V | − 1 edges:

∑

(i, j)∈E
xi j = |V | − 1. (3)

Example 1 Four cities want to improve their train connections (illustrated in Fig. 1) and need
to decide which rails should become high-speed. Let G = (V , E) represent the cities and
candidate rails, where V = {h, i, j, k} and E = {(h, i), (h, k), (i, j), (i, k), ( j, k)}. Thus,
the agenda is A+ = {ahi , ahk, ai j , aik, a jk}, and (1, 2, 4, 3, 2) are the respective costs to
build such connections, in millions of euros. Assuming the cities themselves may submit
a preference on which connections to upgrade, h may want a faster connection with cities
i and k, where many of its citizens work, thus submitting ballot Bh = (1, 1, 0, 0, 0). A
solution would then need to choose which connections to improve, ensuring that all cities
are connected by high-speed rails (possibly abiding by a budget if previously specified).

We now show that the specific rules introduced for the collective network problem are all
instances of judgment aggregation rules.

Proposition 3 The following collective network rules are instances of their judgment aggre-
gation counterparts:

i) the maximum collective spanning tree from Darmann et al. [10] is an instance of Med;
ii) the maximin voter satisfaction problem for approval voting for spanning trees from Dar-

mann et al. [11] is an instance of Egal;
i i i) the greedy algorithm for the maximum spanning tree problem from Escoffier et al. [17]

is an instance of Rank, when restricted to approval ballots.

Proof We now show that the procedure to find the maximum collective spanning tree from
Darmann et al. [10] is an instance of Med. Finding the maximum collective spanning tree
equates to finding the spanning tree that maximises the total support. Support here is deter-
mined by the number of agents who vote on an edge in the initial graph which is included in
the spanning tree. We see that Med gives the same solution, as it returns a feasible outcome
(in the case of spanning trees, with respect to (1), (2) and (3)) such that the total support
of the issues (i.e., total support on the edges) is maximised. Thus, the maximum collective
spanning tree from Darmann et al. [10] is an instance ofMed.

We then show that the maximin voter satisfaction problem for approval voting as defined
by Darmann et al. [11] is an instance of Egal. Its scoring function for approval voting assigns

Fig. 1 Graph given in Example 1.
Each node represents a city, each
edge is an existing train
connection, and an edge’s weight
is the cost to upgrade a
high-speed connection

123

Chapter 8. Collective Combinatorial Optimisation as Judgment Aggregation

118



Collective Combinatorial Optimisation as Judgment Aggregation

a point for each edge a voter approves of in a given spanning tree. Their egalitarian operator
finds the spanning trees which maximise the minimum approval score of any agent. This
coincides with the formula given in Definition 2 with binary asymmetric weights.

We next show that the greedy algorithm for the maximum spanning tree problem from
Escoffier et al. [17] is an instance of Rank, when restricted to approval ballots. The algorithm
provided by Escoffier et al. [17] orders the items by their approval level by the scoring
function used. The items are added in this order only if they do not break feasibility. When
the setting is restricted to approval voting, i.e., the voters can give only a valuation of 1 or 0 to
every edge, this corresponds to the number of agents in support of an edge. Therefore, given
a profile of votes, both the maximum spanning tree problem from Escoffier et al. [17] and
Rank create the same ordering of the items (provided that they follow the same tie-breaking
rule). As in Algorithm 1, the items are added with respect to this ordering and are only
rejected when their addition would entail that the resulting graph is not a spanning tree (as
per (1), (2) and (3)). Hence, the greedy algorithm for the maximum spanning tree problem
from Escoffier et al. [17] is an instance of Rank. ��

3.4 Collective scheduling

Let P = {p1, . . . , pm} be a set of (at least two) jobs to be performed on a single machine,
with execution time tx for job px ∈ P . The agents submit transitive and asymmetric orderings
over P , indicating their preferred order of execution of the jobs, which is then decided by
a collective rule. Pascual et al. [35] assume that the output schedule has no gaps and is
complete (hence, BR = BF ): the setting is thus equivalent to the aggregation of orderings
of alternatives, where the alternative can have different durations (similarly to costs for
participatory budgeting).8

Let A with A+ = {ax≺y, ay≺x | px , py ∈ P} be a scheduling agenda, where ax≺y being
accepts represents the support of px being scheduled before py , whereas ay≺x represents
support of py being scheduled before px . For an agent i , who provides a complete ranking
over the projects, it holds that Bi (ay≺x ) = 1 − Bi (ax≺y), and similarly for their negations.
The agenda items are either weighted or binary and are usually asymmetric. We focus here
on the binary asymmetric setting, where the weights of all of the items in A+ are set to 1,
and those in A− are 0. In the weighted setting, many different asymmetric weight vectors
could be considered, e.g., weights corresponding to the jobs’ durations (see the discussion
at the end of this section).

Agents submit complete rankings, so their ballots must approve exactly half of the positive
agenda items in A+, i.e., either ax≺y or ay≺x for all {px , py} ⊆ P . For the full agenda A,
each agent approves half of the items (i.e., an item or its negation), even in case we want to
model a voter submitting an incomplete schedule.

The outcome X of the collective scheduling problem must be a linear order of the jobs:
thus, the feasibility constraints must impose transitivity and asymmetry of scheduled jobs.
These can be easily formulated as linear inequalities.

Example 2 A faculty is scheduling the mandatory courses P = {p1, p2, p3, p4} for the first-
year students, and the faculty members have to decide on their ordering. Then the positive
agenda is given by A+ = {a1≺2, a2≺1, a1≺3, a3≺1, a1≺4, . . .}. Professor i thinks that p2 should
come first, then p1 second, p3 third, and that p4 should come last. Hence, i approves of all

8 The connection between the aggregation of (preference) orderings over alternatives without durations and
judgment aggregation is well-known, and thus known how the rules in both settings correspond to each other
Endriss [13].
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items in {a2≺x , ax≺2 | px ∈ {p1, p3, p4}} ∪ {a1≺x , ax≺1 | px ∈ {p3, p4}} ∪ {a3≺4, a4≺3},
and reject the remaining items.

Proposition 4 The following collective scheduling rules are instances of their judgment
aggregation counterparts:

i) the utilitarian aggregation rule with swap distance from Pascual et al. [35] is an instance
of Med;

ii) the egalitarian aggregation rule with swap distance fromPascual et al. [35] is an instance
of Egal.

Proof These rules consider the weight vector to be binary and asymmetric for the items in
A.

Pascual et al. [35] already make the connection between the Kemeny rule and their utili-
tarian aggregation rule with swap distance, which is known to be equivalent toMed.

As for the egalitarian aggregation function with swap distance, this rule gives a score for
each agent i ∈ N and possible outcome, which is one negative point for each item that an
agent wanted and is not accepted. By a slight abuse of notation, we can define for agent
i ∈ N this score as

∑
a j∈A −Bi (a j ) × (1 − X(a j )), where Bi (a j ) ∈ {0, 1} represents if i

accepts issue a j or not, and X(a j ) represents if a j is accepted or not in possible outcome X .
The rule returns those outcomes such that the minimum value Z of this score for any agent

(i.e., the value such that all agents have at least this score) is maximal. All agents approve
the same number of items in collective scheduling, i.e., k = ∑

a∈A Bi (a) for every i ∈ N .
The value of Z can be at worst the number of approvals in any ballot and at best 0. Since
every voter approves exactly k items of the agenda, we can add k to every agent’s summation,
k + ∑

a j∈A −Bi (a j ) × (1 − X(a j )) ≥ Z + k = Z ′, for Z ′ ∈ [0, k]. By rearranging this
inequality, we see that this is equivalent to

∑
a j∈A X(a j ) × Bi (a j ) for i ∈ N , which is

equivalent to maximising the least number of agreements between each agent’s ballot and
the outcome, which is exactly what Egal does. ��

Pascual et al. [35] also study, among others, a tardy measure of satisfaction, which paired
with their utilitarian or egalitarian rules resembleWMed andWEgal, respectively. However,
they are not instances of our judgment aggregation rules, as they rely on information specific
to each agent: namely, a due date which may be different for each agent (thus requiring an
individual weight function). Although these kinds of rules cannot be modelled in weighted
judgment aggregation, and since each item of a scheduling agenda refers to a pair of jobs
(to their preferred ordering), one way to incorporate non-binary weights would be to assign
the duration of the second job as the weight of the item: i.e., the weight of w(ax≺y) = ty and
w(ax≺y) = 0.9

Moreover, if agents are allowed to submit partial schedules, we could integrate this
into our model by letting them disapprove both the four elements of a pair of projects
ax≺y, ay≺x , ax≺y, ay≺x . This could allow for the modelling of being indifferent between
the ordering of px and py .

3.5 Collective placement

Not only does our general framework allow us to give a unifying treatment to many known
problems, but it can also be used to tackle novel applications. Due to the applications being

9 Note that thiswould also require adding extra items to the agenda representing the starting job in the ordering,
e.g., a0≺x , a0≺x for each project px ∈ P , in order to take into account the duration of this starting job as well.
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novel, they have not been studied independently and thus do not currently have a specific
framework. Consider a situation in which agents collectively decide both which projects to
accept and also how a given resource will fund them: e.g., selecting events and the rooms
where they can take place, pieces of furniture to purchase and where to place them in a room,
which tasks to accomplish and by which worker, and so on. The items in a placement agenda
thus represent whether a project is funded and by which part of the resource.

Formally, let P = {p1, . . . , pm} be a set of projects (e.g., events, tasks), where pi ∈ P
requires ci ∈ N+ parts of a given resource (e.g., rooms, workers) to be implemented. Given
a resource divisible into � separate parts, a placement agenda contains a total of � ·∑pi∈P ci
elements, where each item aki, j ∈ A+ can be read as funding project pi ’s j th part with the

kth part of the resource. Thus, for each pi ∈ P , for all k ∈ [�] and each j ∈ [ci ] we have
aki, j ∈ A+, where wa = 0 for all a ∈ A−.

Feasibility constraints impose that a resource part is only used once in an outcome X (5),
that a project part is only funded once (4), and either every part of the project is funded or
none of it is (6).

Formally, for each pi ∈ P and j ∈ [ci ] we introduce:

�∑

k=1

X(aki, j ) ≤ 1 (4)

For each k ∈ [�] we have:
∑

pi∈P

ci∑

j=1

X(aki, j ) ≤ 1 (5)

Furthermore, we introduce binary variables pi that evaluate to one when project pi has
been accepted and zero otherwise. Therefore, for each pi ∈ P:

ci∑

j=1

�∑

k=1

X(aki, j ) = ci · pi (6)

These constraints define a basic setup where projects may not be funded by consecutive
parts of the resource.

Example 3 A company is refurbishing the floor of one of its buildings. Ten rooms will be
built with the following constraints: 6 rooms for office space, at most two toilets, at most one
common room and at most 5 meeting rooms (but possibly none). The employees are asked
to vote on possible refurbishment plans. The resource is thus composed of 10 discrete blocks
(the rooms), and the corresponding placement agenda items are akoffice, j for j ∈ [6], akcommon, j
for j = 1, aktoilets, j for j ∈ [2], akmeeting, j for j ∈ [5], with k ∈ [10]. An employee whose
favourite floor plan is to put the six offices together first, then a toilet, and then 3 meeting
rooms will thus vote akoffice,k = 1 for k ∈ [6], a7toilets,1 = 1, a7+ j

meeting,j = 1 for j ∈ [3], and
also vote 0 on all other issues (and 1 on their negations), signalling also that they are not
interested in having a common room on the floor. Of course, a nice user interface could help
to visualise a vote and translate it into a ballot for this placement agenda.
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4 Identifying computational complexity gaps

In the previous section,we saw that our general judgment aggregation framework is expressive
enough to capture a variety of different settings. Therefore, it is a good candidate as a
declarative language for collective combinatorial optimisation problems because it describes
the problems in logical terms, and their algorithmic resolution is taken care of by a general
solver. Moreover, we showed that many domain-specific CCO rules across the literature
can be simulated by known judgment aggregation rules—either directly or with a slight
generalisation to weighted and/or asymmetric agendas.

Shifting to a general framework allows for the use of additional constraints on the output
to study variants of classical problems without modelling a new framework. As an example,
Rey et al. [36] showed that by modelling participatory budgeting in judgment aggregation
they can consider multiple resources, project dependencies or quotas on project types. Yet,
this shift may come with a computational complexity gap. When there is such a gap, large
instances may not become easily solvable when expressed directly in the general language
using a general solver (yet, they could still be solved approximately; and small instances can
be solved easily in spite of the gap). On the other hand, if there is no such gap, then generality
comes for free.

This section is devoted to comparing the complexity of outcome determination for judg-
ment aggregation rules and domain-specific CCO rules. Endriss et al. [16] give a complexity
overview for standard (binary, symmetric) rules. We complement their results by classifying
the complexity of the weighted counterparts of these rules and identifying the presence or
absence of complexity gaps to outcome determination for multi-winner elections and partic-
ipatory budgeting. We do not consider collective scheduling and collective network design
here, as few complexity results are known.

We focus our study of outcome determination on the credulous (i.e., existentially quanti-
fied) version of the decision problem—the results for the skeptical (i.e., universally quantified)
variants are similar, replacing classes by their co-class.

F-Credulous-Outcome-Determination (F-Cred)

Given: An agenda A with associated weight vector w, a set of rationality and feasibility constraints
modelling BR and BF , a profile B ∈ BR

n , and a distinct issue from the agenda a∗ ∈ A.
Question: Is there a feasible outcome B ∈ F(B, �F ,w), such that B(a∗) = 1?

We are now set to discuss the complexity of computing the outcome of the rules we
introduced in Section 2.2, both in the general case and in two restricted cases of participatory
budgeting andmulti-winner elections. Table 3 summarises our results.We do not consider the
complexity in theweighted setting formulti-winner elections since theweights for candidates
are binary (by definition of the setting). Our findings show that for WMed, WEgal and CC
(and we conjecture also for Egal), there is no increase in complexity when moving from
specific CCO problems to our general formulation. This is not true forMed and Rank, whose
application to participatory budgeting or multi-winner elections can be run in polynomial
time. Interestingly, the restriction of the median rule Med to constraints whose consistency
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Table 3 In this table we compare each of the rules used throughout the paper with respect to different settings:
namely, judgment aggregation, multi-winner elections, and participatory budgeting

Rule Judgment Aggregation Multi-winner Participatory
with arbitrary weights in N0 Elections Budgeting

Med �
p
2-c

� P P♠,�

WMed �
p
2-c

�⊕ - �P
2 -c

�

Egal �
p
2-c

� coNP-h� coNP-h�

∈ �P
2
� ∈ �P

2
�

WEgal �P
2 -c

�⊕� - �P
2 -c

�⊕�

(W )Rank �P
2 -c

♣ P P

CC �P
2 -c

♥ �P
2 -c

♥ �P
2 -c

♥

For each rule and setting, we give the computational complexity of the (credulous) outcome determination
decision problem. ♣[15]; �[16]; ♠[41]; ♥[39]; �[3]—hardness proof forWMed in PB holds for one voter, the
extension of this result to other settings can be seen in ⊕Proposition 5 and �Proposition 6; unmarked results
are obviously polynomial-time computable

can be checked in polynomial-time is hard,10 but its application to participatory budgeting
and multi-winner elections is easy.

Proposition 5 For the weighted asymmetric median rule (considering wasym
we ), WMed-Cred

is �
p
2-complete. For the binary restriction (wsym

bin or w
asym
bin ), Med-Cred is �

p
2-complete.

For participatory budgeting constraints, WMed-Cred is �
p
2-complete for weighted agendas

(wasym
we ) and in p for binary agendas (wasym

bin ); it is in p for multi-winner elections.

Proof For the upper �
p
2 and �

p
2 bounds, the proofs are routine. The median rule outputs

judgments maximising a given value. We first identify the optimal score k∗ using binary
search, which needs a polynomial (resp. logarithmic) number of NP-oracle calls for weighted
(resp. binary) agendas. In a final query, we may ask whether this maximal value is reached
for some feasible outcome X ∈ BF where X(a∗) = 1.

For participatory budgeting (and its unit-weight variant multi-winner elections), Talmon
and Faliszewski [41] show that computing an outcome with the median rule (see Proposi-
tion 2) can be done in polynomial time; the result in an irresolute variant for Cred follows
[3].

For the lower bounds, for the (weighted, asymmetric) participatory budgeting agenda,
Baumeister et al. [3] showed thatWMed-Cred for the weighted median rule is�

p
2-hard, even

for settings with a single voter. We described in Section 3.2 how participatory budgeting can
be encoded into our model. Hence, we can use the same reduction as Baumeister et al. [3],
yielding�

p
2-hardness. Finally,Med-Cred for the binary median rule is known to be�

p
2-hard

even for symmetric agendas (see [16]). The hardness result extends to asymmetric agendas
since we can simulate a symmetric agenda with an asymmetric agenda (for each issue in the
negative agenda we add a corresponding issue to the positive agenda, whose values must be
kept consistent with the rationality and feasibility constraints). ��
Proposition 6 For the weighted asymmetric agenda (wasym

we ), WEgal-Cred is �
p
2-complete.

For the binary restriction (wasym
bin or wsym

bin ), Egal-Cred is �
p
2-complete.

10 de Haan [25] showed that hardness already holds for Horn formula constraints for binary symmetric
agendas.
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For participatory budgeting, WEgal-Cred is�
p
2-complete for weighted agendas (w

asym
we );

for binary agendas (wasym
bin ) Egal-Cred is in �

p
2 and coNP-hard for participatory budgeting

and multi-winner election constraints.

Proof Some of the proofs for membership and hardness are similar to the proof of Propo-
sition 5 for the (weighted) median rule. For the upper bound, we can also optimise a value
which is bounded upwards to decide credulous outcome determination. Analogously, we
need a polynomial number of NP-queries for weighted agendas and a logarithmic number of
NP-queries for binary agendas. For the lower bounds, we begin with weighted agendas. Note
that when the profile consists of a single voter B = (B1), then for any constraint �F and any
weight vector w, it holds that WMed(B, �F ,w) = WEgal(B, �F ,w). Hence, for single-
voter profiles, we can reduceWMed-Cred for the weighted median rule toWEgal-Cred for
the egalitarian rule. In the proof of Proposition 5, the reduction for the weighted median rule
only uses a single voter; thus, we can use the same reduction, resulting in �

p
2-hardness. The

result holds in particular for participatory budgeting constraints.
For the binary restriction, Egal-Cred is �

p
2-complete (see [16]), which for symmetric

agendas still holds even if no feasibility constraint is given (see [25]). Hardness transfers
to asymmetric agendas, as we can simulate symmetric agendas with asymmetric agendas.
For multi-winner elections and participatory budgeting, �

p
2 membership follows the same

structure, while coNP-hardness comes from a straightforward reduction of the complement
of the NP-complete problem Exact Cover by 3- Sets (see [21]). We assume that we
are deciding whether a finite set of elements cannot be covered exactly (i.e., each element
once) by a distinct selection of k 3-element subsets. We can reduce each element to a voter
and each 3-element subset to a candidate, approved by the voters representing the contained
elements. If we add another candidate, not approved by any voter, this candidate is in a
winning committee of size k if and only if there is no exact cover. ��

We also classify the weighted version of the ranked agenda rule: the results follow mainly
from the literature.

Proposition 7 For the rank rule (with immediate tie-breaking),WRank-Cred is�p
2-complete,

even for symmetric weights, wsym
bin or wsym

we . For participatory budgeting and multi-winner
elections, which are modelled with wasym

we and wasym
bin weights, respectively, WRank-Cred is

in p.

Proof The upper bound forWRank-Cred for the (weighted, asymmetric) ranked agenda rule
can be derived by executing the rule, and then verifying if a given agenda item is in the final
outcome. This can be done by ordering the agenda items by descending weighted support
(using a fixed tie-breaking) and querying an NP-oracle in (at most) each of the m iterations
(one for each item). ForWRank-Cred the answer is yes, if the distinct agenda item is also in
the outcome. The bounds are inherited from the binary, symmetric version, whose decision
problem Rank-Cred is �

p
2-complete (see [15]).

For the (weighted) WRank rule there is a complexity gap between judgment aggregation
and CCO problems, where we can find efficiently whether a subset of items can be extended
to a feasible outcome (e.g., participatory budgeting). For a linear tie-breaking, we solve its
decision problem by executing the rule and checking whether some item is in the outcome
(which can be done in polynomial time if we can check the constraint efficiently). Note that
Rank(B, �F ,w) ∈ Med(B, �F ,w) holds for multi-winner elections. ��

Finally, Sonar et al. [39] showed �
p
2-completeness for CC with approval ballots in multi-

winner elections. For asymmetric agendas, the lower bound inherits to judgment aggregation,
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while the upper bound can be shown analogously to the upper bound of Med-Cred in the
proof of Proposition 5.

Proposition 8 CC-Cred is �
p
2-complete with either wasym

bin or wasym
we weights.

In classical judgment aggregation, where the agenda is symmetric and every rational
judgment is feasible, the CC rule becomes degenerate, because the only time an agent is not
happy with an outcome is when it is the complement of their ballot. Although the usability of
the Chamberlin-Courant rule is limited for symmetric agendas, we still provide tight bounds
for CC-Cred on symmetric weights.

In the following proofs, we denote by X the complement of a vector X , i.e., a vector
where all 0s and 1s have been swapped and by CCscore(B) the number of voters who are
simultaneously satisfied by a given outcome X ∈ CC(B). Also, for any vector X we denote
Occur(X , B) the number of occurrences of X in B, i.e., the number of voters i such that
Bi = X . We start with the following observation.

Observation 9 For an arbitrary agenda A with symmetric weightswsym
we , and assuming�R =

�F , then

1. CCscore(B) = n − minX∈BR Occur(X , B).
2. If CCscore(B) = n then X ∈ CC(B) if and only if X ∈ BR and Occur(X , B) = 0, that

is, for each i ∈ N , Bi �= X.
3. If CCscore(B) < n, then for all X ∈ CC(B) there is some i∈N with Bi = X.

Proof For point 1, note that we have CC(B) = argminX∈BR
Occur(X , B) by definition.

Therefore, CCscore(B) = n − minX∈BR Occur(X , B).
For point 2, assume CCscore(B) = n. Then, point 1 is minX∈BR Occur(X , B) = 0, i.e.,

there exists a feasible vector X such that for all i , Bi �= X .
For point 3, assume CCscore(B) < n. Then, by point 1, for each X ∈ BR , we have

Occur(X , B) > 0, which means that there is an i ∈ N such that Bi = X . ��
We can now prove that credulous outcome determination becomes coDP-complete, where

coDP = {L∪L ′ | L ∈ NP, L ′ ∈ coNP} (see [34]). Less formally, DP (resp. coDP) is the class
of decision problems that can bewritten as the intersection (resp. the union) of a problem inNP
and a problem in coNP. A canonical DP-complete problem is Sat- Unsat by Papadimitriou
and Yannakakis [34]: an instance (φ, ψ) of the problem consists of two boolean formulas φ

and ψ , and the question is whether φ is satisfiable while ψ is unsatisfiable.

Proposition 10 If �R = �F and the agenda weights are restricted by wsym
bin or wsym

we , CC-
Cred is coDP-complete.

Proof We begin with the upper bound. Observation 9 gives us an algorithm for computing
CC(B): if there is X ∈ BR such that for all i , Bi �= X , then output all such vectors X ; else
output argmini∈N Occur(Bi , B). Therefore, there exists a feasible outcome X ∈ CC(B)

such that X(a∗) = 1 if (at least) one of these two conditions is met:

1. There is X ∈ BR such that for all i , Bi �= X , and X(a∗) = 1.
2. There is no X ∈ BR such that for all i , Bi �= X , and there is an i with Bi (a∗) = 1 such

that Occur(Bi , B) ≤ Occur(Bj , B) for all j .

The set of all instances meeting condition 1 (resp. 2) is a problem in NP (resp. coNP),
therefore CC-Cred restricted to agenda weights in wsym

bin or wsym
we is in coDP.
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For the lower bound, we reduce the DP-complete problem Sat- Unsat to the complement
ofCC-Cred, mapping yes-instances of Sat- Unsat to no-instances ofCC-Cred and vice-
versa. Given any Sat- Unsat instance (φ, ψ), we construct an instance for the complement
of CC-Cred as follows.

Let X (respectively, Y ) contain all variables appearing in φ (respectively, ψ) and their
negations. We assume without loss of generality that X and Y are disjoint, i.e., X ∩ Y = ∅
and set the agenda to be A = X ∪ Y ∪ {a∗, a∗, b, b}, where a∗ and b are newly introduced
variables; thus, m = |X | + |Y | + 4. The rationality and feasibility constraint is defined as
�R = �F = α ∨ β ∨ γ ∨ δ, where α = a∗ ∧ φ ∧ b, β = a∗ ∧ ψ ∧ b, γ = ∧

a∈A+ a and
δ = ∧

a∈A− a. 11 Note that a vote on all positive literals satisfies only γ , while its complement
only satisfies δ. The profile B consist of three voters, for simplicity we give their votes on A+:
B+ = ({1}m/2, {1}m/2, {0}m/2), whereby {1}m/2 we denote for simplicity an agent approving
all the items in A+ and by {0}m/2 an agent approving all the items in A−. We claim that a∗ is
not in any outcome of CC(B) if and only if (φ, ψ) is a yes-instance.

Without considering further satisfying assignments that do not appear in the profile B,
issue a∗ will be a temporary winner (i.e., it appears in the judgment whose complement
occurs in the profile the least number of times). There is only one way that prevents a∗ from
being in any outcome: i.e., if there exists a judgment X ∈ BF with X(a∗) = 0 and X �= {0}m ,
while there exists no judgment X ∈ BF with X(a∗) = 1 and X �= {1}m . By construction,
this can only hold if and only if α is satisfiable and β is unsatisfiable. It is easy to see that
α is satisfiable if and only if φ is satisfiable, while β is unsatisfiable if and only if ψ is
unsatisfiable. ��

5 Conclusion

We have four main take-home messages: (i) when looking for a declarative language to
express various CCO problems, judgment aggregation is a good candidate; (ii) however, we
need a slight generalisationwhere issues are weighted, andweightsmay be asymmetric—this
generalisation allows for specific CCO problems to be seen through the lens of judgment
aggregation; (iii) several rules studied for specific CCO problems, namely participatory
budgeting, multi-winner elections, collective scheduling, and collective network design, are
instances of the general settings—this shows strong connections between two specific ‘sister’
rules, that are instances of the same general rules and share common normative properties;
(iv) in about half of the cases considered, the generalisation does not come with a complexity
increase.

In the Appendix we present an experimental case study intended to show the applicability
of our proposed general judgment aggregation framework.We report on experiments using an
ILP solver to compute the result of collective networking problems, comparing the running
time of three of the proposed rules in different graph configurations and vote generation
models.

11 Observe that we can adapt the construction of the constraints to be linear inequalities rather than proposi-
tional formulas.Assumeφ andψ are in conjunctive normal form (CNF), forwhichSat- Unsat is stillDP-hard.

Then, formulas α, β, γ and δ are also in CNF. For any two formulas ϕ1 = ∧n
i=1 c

i
1 and ϕ2 = ∧m

j=1 c
j
2 in

CNF, we can transform ϕ1 ∨ ϕ2 into CNF in polynomial time. By repeatedly using laws of distributivity, the
resulting CNF formula contains a clause for every pair of clauses (one from each of the two formulas), i.e.,

ϕ1 ∨ ϕ2 ≡ ∧n
i=1

∧m
j=1(c

i
1 ∨ c j2 ). Hence, we can transform �F into CNF using space that is polynomial in

the size of �F . Finally, we can express any formula in CNF as ILP constraints by adding an inequality for
each of its clauses (the sum of its variables’ values must be at least one).
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Appendix: General solvers

Our general framework of weighted asymmetric judgment aggregation can not only be used
for theoretical comparisons of rules for specific CCO settings but also to obtain a modular
implementation of the rules: by simply plugging in the constraints, one can focus on a
particular application. Although there is no specific solver forweighted asymmetric judgment
aggregation, integer linear programming (ILP) is an ideal choice for such a solver. Each rule
given in this paper (see Section 2.2) can be translated into an ILP formulation, as shown in
the following subsection.

To the best of our knowledge, this is the first ILP formulation for judgment aggregation
rules—prior to this, the only other implementations have used answer set programming [26]
and SAT solvers [9]. One of the benefits of using the ILP formalism is the ability to rely on
its vast literature and efficient solvers. Furthermore, we conjecture that many more judgment
aggregation rules (and their weighted extensions) can be expressed as an ILP, which may not
be straightforward when using other solvers that do not use cardinal weights (such as SAT
solvers, where weights might have to be simulated). A benefit of ILP solvers is that many
are efficient, and constraints are expressed compactly as sets of inequalities. Moreover, the
use of JA as a general model for CCO problems can be motivated by the natural translation
of the rules into ILP. This is unlike some of the other general solvers where the translations
of the rules are far more involved.

Note that the constraints for theCCOproblemsdescribed inSection 3 are already presented
as sets of linear inequations, allowing us to study those in ILP directly.

Integer Linear Program Formulations forWeighted Asymmetric Judgment
Aggregation Rules

We give an ILP formulation for each of our studied rules. In the following, each agenda item
a j ∈ A is given as binary variable a j ∈ {0, 1} and we assume that we are given a (possibly
empty) feasibility constraint �F as a set of linear inequalities.

The (weighted) median rule

Following Definition 1, we can formulate WMed as the following ILP.

Maximise
∑
a j∈A

n∑
i=1

wa j × Bi (a j ) × a j

Subject to �F

∀a j ∈ A : a j ∈ {0, 1}
∀a j , a j ∈ A : a j = 1 − a j

(A1)

The (weighted) egalitarian rule

To express the egalitarian rule in ILP we use an additional variable Z , which represents the
lowest score of any agent (and thus should be maximised). This maximisation is done subject
to the feasibility constraints (�F ) and the intersection of the outcome assignment over the
agenda A with respect to each agent’s ballot, which must be greater than or equal to Z . A
similar ILP formulation in the context of participatory budgeting was given by Sreedurga et
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al. [40].
Maximise Z
Subject to �F

for i ∈ N : ∑
a j∈A wa j ×Bi (a j )×a j ≥ Z

∀a j ∈ A : a j ∈ {0, 1}
Z ∈ [0,∑a∈A+ wa]

∀a j , a j ∈ A : a j = 1 − a j

(A2)

The (weighted) ranked agenda rule

Note that Rank andWRank can be computed efficiently for easy-to-solve constraints (e.g., a
participatory budgeting constraint). Nevertheless, we provide an ILP formulation to compute
the outcome in general. In a pre-processing step, we compute the order in which decisions
over the agenda are made, i.e., descending by the agents (weighted) support, where ties are
broken alphabetically. For a ∈ A, let πa be the number of items that are ranked after a in
that order. Then, for the ILP formulation ofWRank it is sufficient to ensure that it is always
preferred to include issues that are processed earlier over all issues that are processed later.

Maximise
∑

a j∈A
∑n

i=1 2
πa j × a j

Subject to �F

∀a j ∈ A : a j ∈ {0, 1}
∀a j , a j ∈ A : a j = 1 − a j

(A3)

The Chamberlin-Courant rule

For an ILP formulation of the Chamberlin-Courant rule, we take inspiration from Talmon
and Faliszewski [41]—see also [38] for a translation of the multi-winner election variant into
ILP. We need an extra variable ci for each agent i ∈ N that will model their satisfaction. In
particular, ci will be set to 1 if there is a project in the outcome which the agent approves.

Maximise
∑n

i=1 ci
Subject to �F

∀i ∈ N : ∑
a j∈A

Bi (a j ) × a j × wa j ≥ ci

∀i ∈ N : ci ∈ {0, 1}
∀a j ∈ A : a j ∈ {0, 1}

∀a j , a j ∈ A : a j = 1 − a j

(A4)

A Case Study for General Solvers: Collective Networking

In this section, we provide a case study for the implementation of the collective networking
problem (described inSection 3.3)without a budget constraint, comparing the processing time
of three (binary) rules: themedian rule (Med), the egalitarian rule (Egal), and theChamberlin-
Courant rule (CC). We do not study the (weighted) ranked agenda rules, as they are solvable
in polynomial time (if it can be checked in polynomial time whether a partial assignment
can be extended to a full assignment satisfying the given constraint). The implementation
used the open-source GNU Octave software [12], and its standard ILP solver glpk, using
two-phase primal simplex method. Our implementation is modular: i.e., the same set-up can
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be altered to account for any CCO problem by changing the problem-specific components
(the agenda, the constraints, and the CCO rule).

Recall that in the collective networking problem, we have a graph G = (V , E) and
the agents vote on the edges E in the corresponding agenda, while the rule has to find a
collective spanning tree. Regarding the constraints, we allow for any possible ballot and we
only impose that the outcome must be a spanning tree, thus �F is composed of the ILP
constraints expressed in (1), (2) and (3).

We generate the underlying network in the form of 49 connected graphs G = (V , E)with
number of nodes varying between 6 and 8, i.e., V ∈ [6, 8]. For each value of V we generate

connected graphs with E ∈
[
|V | − 1, |V |(|V |−1)

2

]
: i.e., the graphs vary from being trees (for

|E | = |V | − 1) to being complete (for |E | = |V |(|V |−1)
2 ). Each graph is randomly generated

as follows, for a given |V | and |E | = e.
We initially let S and S′ be two sets such that one element v0 of V is in S (i.e., v0 ∈ S) and

S′ = V \{v0}. The set S and S′ can be seen as the set of connected and unconnected nodes,
respectively. The algorithm iteratively chooses, at random, an item (vi , v j ) ∈ S × S′, moves
v j from S′ to S, and adds (vi , v j ) to the set of edges E . When S′ is empty, we randomly add
e − (|V | − 1) extra edges from (V × V ) \ E .

We let |N | = 100. On each generated graph G we create 10 base profiles. Each base
profile (bp), is an n × E matrix, where for each i ∈ N we have that bpi ∈ (0, 1]E : that
is, for each item of the agenda a real number between 0 and 1 is assigned to represent the
acceptance rate of an issue by an agent. Each base profile is then transformed into 9 new
profiles as follows, under the variant of the p-impartial culture model presented by [6].
According to this model, when generating approval voting ballots, one can assume that every
agent independently approves each item of the agenda with probability p. Therefore, for each
base profile (generated for each graph) we create 9 profiles, one for every p ∈ {0.1, . . . , 0.9}.
If the value of an entry b in the base profile is such that b ≤ p, then in the created profile the
agent’s preference on this issue will be an approval, and an abstention otherwise.

Therefore, for each of our generated graphs (a total of 49 graphs), we created a total of 90
profiles originating from 10 base profiles and the 9 probabilities from our p-impartial culture
assumption. Thus, we ran the three CCO rules on 4410 instances. We then run the ILP solver
on each profile and its related graph to find an outcome for the three rules: Med,Egal and
CC.

For each generated problem instance we measured the processing times of computing the
outcome of three rules, given varying levels of the p-impartial culture and number of nodes
in the underlying initial network.12

We begin by comparing the run-times of the three CCO rules with respect to four levels
of acceptance, p ∈ {0.2, 0.4, 0.6, 0.8} and varying the number of nodes in the graph (we
only highlight four of our nine values of p). Figure 2 shows, for each value of p, the mean
processing times over all profiles and all generated networks varying the number of nodes of
the network V ∈ {6, 7, 8}. In Fig. 2 we use a log2-scale on the y-axis due to the exponential
increase in processing times.

If we focus onCC, we observe that the run-time is inversely proportional to the acceptance
level p, confirming the intuition that finding a collective spanning tree with CC is more
difficult with sparse ballots.

TheMed rule is slower to compute than the other rules for almost all p values (with some
exceptions for small values of p against CC). Observe that without additional constraints

12 The experiments ran on an Intel i7 processor at 4.2 GHz with 4 physical and 8 logical cores and 32 GB of
memory. At any time, six instances were computed in parallel.
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Fig. 2 Mean processing time for the Med,Egal and CC rules applied on the spanning tree problem. The x
axis represents the number of nodes in the graph (from 6 to 8); the y axis represents the mean processing time
(milliseconds) on a logarithmic scale (log2-scale). Each figure shows the mean results for a specific level of
acceptance p ∈ {0.2, 0.4, 0.6, 0.8}

Fig. 3 Mean processing time (seconds) for theMed, Egal and CC rules applied on the spanning tree problem,
for p ∈ {0.1, . . . , 0.9}, on a complete graph with 8 nodes
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on the budget, the Med rule is equivalent to finding the maximum spanning tree where the
weights of the edges are determined by how many voters approved them. Therefore, the
complexity of computing the outcome of Med is proportional to N · p, i.e., the weights of
the edges. A future step would be to check if the same increase in run-time can be observed
for the related rule WMed.

Finally, the run-time of Egal increases steadily with the number of nodes when p =
0.2, 0.4, while for p = 0.6, 0.8 it increases at a much quicker rate. This can be explained
by referring back to (A2), where we see that Egal maximises the value of variable Z , whose
upper bound is the minimum number of items that any agents has approved. Therefore, when
p is low, so is the upper bound on Z , reducing the search space; while when p is high there
are more values which Z can take.

The same experiments for networks with 9 or more nodes resulted in some of the instances
not completing before the chosen time-out of 1200 seconds. The observed behaviour varied
with each rule: for Med the non-completing instances corresponded to the graphs that were
close to being complete, whereas for Med and Egal the pattern was more complex, and it
seemed to depend on both the structure of the graph as well as the profile of individual ballots.

Figure 3 presents the mean run-times of the three chosen rules for varying levels of
acceptance p, starting from a fixed complete network with |V | = 8 and |E | = 28. Each bar
represents the mean run-time for 10 different profiles, for a total of 90 instances. The figure
highlights the exponential increase in running time of Egal, and confirms the observation
that CC is easy on complete graphs.
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CHAPTER 9

DISTORTION IN
ATTRIBUTE APPROVAL

COMMITTEE ELECTIONS

In this chapter, we explore attribute approval elections and distortion. Formally, for sev-
eral voting rules relying on attribute approval ballots, we investigate the decline of the
voters’ satisfaction, that is possibly arising from considering derived preferences, given
in the form of either approval ballots, weak ordinal rankings, or cardinal preferences.

9.1 Summary
In this article, we extend a recent study on attribute approval elections [102], to measure
whether the considered, slightly more expressive ballot format for multiwinner elections
can derive better decisions. For this, we consider specific use-cases, where each candidate
is associated with exactly one attribute (e.g., a quality criteria) for a variety of different
categories. Then, instead of approving candidates directly, a voter’s attribute approval
ballot specifies, which subset of attributes are desired for each category. The considered
model is introduced formally in Subsection 2.2.2.

A modular setup provides a total of six aggregation rules, generalizing popular voting
mechanisms for approval-based preferences to the attribute approval context. As a first
step, to measure the potential upside of voting on attributes instead of candidates, we
introduce derivation methods to model reasonable ways voters might have voted, when
given a more common ballot format. Assuming the appeal of a candidate is connected
to the satisfaction of underlying quality criteria, we consider the following derivation
methods. For cardinal preferences, we assume it is reasonable for voters to assign each
candidate a score linear in the number of satisfied attributes. For (weak) ordinal pref-
erences, a (weak) ranking is induced by cardinal preferences. And for approval ballots,
voters might approve those candidates, where the number of satisfied attributes surpasses
a given threshold.
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As a second step, we formally introduce a measure of distortion53 for attribute approval
elections and a given derivation method. That is, we study the worst-case factor, by
which the voters’ overall satisfaction may decline, if ballots are cast in different (derived)
preference formats, but aggregated using attribute approvals.

Lastly, along with supplementing formal proofs, which were omitted due to space in our
publication [21], we complement our study by two aspects in Appendix A.2. On the one
hand, we present a formal encoding to model weighted attribute approval elections and
briefly discuss how our results on distortion extend to this weighted generalization. On
the other hand, we investigate the limits of expressiveness for attribute approval ballots.
Formally, for an individual scoring function and any attribute approval election with a suf-
ficiently large number of distinct attributes any candidate may satisfy, we study what kind
of weak linear rankings over the set of k-committees can be induced by a voter’s ballot.

9.2 Reflection on Initial Research Goals
In this article, we addressed three of our initial research questions, introduced in Chap-
ter 3. Most notably, this work is exactly in the scope of Question Q5, as we studied how
the more expressive ballot format of attribute approval ballots may (or may not) lead to
better decisions. For different derivation methods, we showed that the distortion for an at-
tribute approval election rule and a given derivation method may range from unbounded,
over linear in the number of attribute categories or committee size, to undistorted. Overall,
this is an indication for when it may be beneficial to switch to the more expressive ballot
format. We addressed Question Q4 by generalizing prominent voting rules for approval
preferences. As pointed out by Kagita, Pujari, Padmanabhan, Aziz, and Kumar [102],
we can easily model candidate approval ballots by having only one category, which holds
exactly one unique attribute for each candidate. Hence, lower bounds on the computa-
tional complexity are inherited from the candidate approval setting, implicitly addressing
Question Q2 to some degree.

9.3 Publication
This work has been published and presented as an extended abstract at the 22nd Interna-
tional Conference on Autonomous Agents and Multiagent Systems.

[21] D. Baumeister and L. Boes. “Distortion in Attribute Approval Committee Elec-
tions”. In: Proceedings of the 22nd International Conference on Autonomous
Agents and Multiagent Systems. IFAAMAS, 2023, pp. 2649–2651

53Distortion, introduced by Procaccia and Rosenschein [147], is usually studied when cardinal values
capture the voters’ preferences exactly, while ballots are cast in a less expressive format (see also [2, 38]).
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9.4 Personal Contribution
This work has been initiated by my supervisor Dorothea Baumeister, as an academic
interest she considered to pursue for a considerable time. The conception, development
of our notion for distortion, and writing of this article was done jointly in equal parts by
Dorothea Baumeister and myself. All technical results are my contributions under the
noteworthy guidance of Dorothea Baumeister.
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ABSTRACT
In attribute approval elections, the task is to select sets of winning
candidates, while each candidate satisfies a variety of attributes
in different categories (e.g., academic degree, work experience, lo-
cation). Every voter specifies, which attributes in each category
are desirable for a candidate, whereas each candidate might satisfy
only some of the attributes. In this paper, we study questions of
distortion in attribute approval committee elections. We introduce
different methods to derive approval ballots, ordinal preferences, or
cardinal preferences from a given attribute approval ballot. Then
for a given voting method, assuming only a derived preference
is provided, we compute the ratio of the voters’ satisfaction for
the worst possible committee, with the satisfaction of the actual
winning committee, given the attribute approval ballots.
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1 INTRODUCTION
Many different situations require the selection of a committee. For
example a committee of people, but also a selection of movies on
a plane, or the selection of dishes in a menu. See Faliszewski et al.
[7] for a detailed discussion on different types of committee elec-
tions. Common ways to represent preferences in such elections are
approval votes or rankings over the candidates, see Zwicker [13].
These preferences focus on single candidates, hence in committee
elections the voters are not able to represent their opinion about
possible outcomes, i.e. committees, of the election. Only if the num-
ber of candidates is small, it may be feasible to elicit preferences
over all different committees. There are approaches to compactly
represent complex preferences like CP-nets studied by Boutilier
et al. [4], however they require expert knowledge. Another aspect
is, that in the composition of the committee, the attributes of a
candidate may be more important than the person (or object) itself.
For an expert committee, the voter may want to ensure knowledge
in some specific field, rather than a specific person to be present.
Thus we study committee elections by focusing on the attributes of
the candidates. Different vote representations and corresponding
aggregation methods have received little attention so far (see [3],

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

[11], [8] and [2]). We adopt the approach of Kagita et al. [9] and
assume that there are different categories and each candidate has
an attribute for each of them. The voters do not vote directly on
the candidates, but approve a set of attributes for each category.
The decision on single attributes may be easier for voters than to
decide between a high number of candidates or committees. For
winner determination we follow the approach by Kagita et al. [9],
and aggregate the votes on the attributes to derive a decision on the
candidates. In particular, we generalize voting rules for committee
elections with candidate approvals to the attribute approval setting.
We study the question, whether preferences on attributes of the
candidates may provide better results than other commonly used
types of preferences. We consider fixed-size committee elections
where the candidates are associated with attributes from different
categories and the votes are sets of approved attributes for each
category. We investigate for six different rules on how these ballots
may be aggregated to elect a committee. Then we define a notion
of distortion, which measures how much the loss of information
— from casting approval ballots, rankings, or cardinal preferences
instead of attribute approval preferences — may affect the voters’
satisfaction with the outcome negatively. This concept was formally
introduced by Procaccia and Rosenschein [12] for underlying car-
dinal preferences, where distortion was measured with respect to a
social choice function that aggregates derived ordinal preferences.
In contrast, we consider underlying attribute approval preferences
and measure the distortion between elections that have identically
derived (e.g., ordinal) preferences. Closely related to our work is
the study of so-called diversity constraints (see [6] and [10]), where
the candidates have attributes, and the final committee has to fulfill
certain requirements regarding the attributes.

2 PRELIMINARIES
For an integer 𝑖 let [𝑖] = {1, 2, . . . , 𝑖} and for a set𝐶 let P(𝐶) denote
the power set of 𝐶 and P𝑘 (𝐶) = {𝑊 ⊆ 𝐶 : |𝑊 | = 𝑘} the set of all
𝑘-committees with respect to 𝐶 . We follow Kagita et al. [9], who
initiated a study on selecting committees using attribute approvals.

Definition 1. Let E be the set of all attribute approval elections.
A single such election is given by a tuple (𝐷,𝐶,𝑉 ) ∈ E, with

• 𝐷 = 𝐷1 × . . . × 𝐷𝑑 , where 𝐷1, . . . , 𝐷𝑑 for 𝑑 ∈ N are attribute
domains. We assume |𝐷 𝑗 | ≥ 2 and 𝐷 𝑗 ∩ 𝐷ℎ = ∅ for all 𝑗 ≠ ℎ.

• 𝐶 = {𝑐1, . . . , 𝑐𝑚} is a set of𝑚 candidates, where each candidate
is associated with attributes from different categories, i.e., each
candidate 𝑐𝑖 ∈ 𝐶 satisfies exactly one attribute 𝑐 𝑗𝑖 ∈ 𝐷 𝑗 for
each domain 𝑗 ∈ [𝑑]. Let 𝑎 : 𝐶 → 𝐷 be a function, which maps
from a candidate 𝑐𝑖 to her attribute vector 𝑎(𝑐𝑖 ) = (𝑐1

𝑖 , . . . , 𝑐
𝑑
𝑖 ).

• 𝑉 = {𝑣1, . . . , 𝑣𝑛} is a set of 𝑛 voters, each 𝑣𝑖 ∈ 𝑉 is associated
with her ballot, represented as a vector 𝑏𝑖 = (𝐵1

𝑖 , . . . , 𝐵
𝑑
𝑖 ) ∈ D,
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with D = P(𝐷1)× . . .×P(𝐷𝑑 ), i.e., each voter specifies which
subset of attributes she approves of in each attribute category.

A voting rule 𝐹 maps an election 𝐸 = (𝐷,𝐶,𝑉 ) ∈ E along with a
positive integer 𝑘 ∈ N>0 to a nonempty set of winning 𝑘-committees,
i.e., 𝐹 (𝐸, 𝑘) ⊆ P𝑘 (𝐶). We assume that |𝐶 | ≥ 𝑘 always holds.

We study voting rules, where the output is a set of 𝑘-committees
that maximize the overall satisfaction of the voters. An individual
scoring function 𝑓 models any single voter’s individual agreement
(called satisfaction or score) of her attribute approval ballot 𝑏𝑖 ∈
D with a given committee 𝑊 ⊆ 𝐶 , such that 𝑓 (𝑏𝑖 ,𝑊 ) ∈ Q≥0.
Examples for individual scoring functions are Simple Scoring ( 𝑓 si ),
Chamberlin-Courant Scoring ( 𝑓 cc ), and Committee Scoring ( 𝑓 co ):

𝑓 si (𝑏𝑖 ,𝑊 ) = 1
𝑑

∑︁
𝑐∈𝑊

∑︁
𝑗 ∈[𝑑 ] |{𝑐

𝑗 } ∩ 𝐵
𝑗
𝑖 |

𝑓 cc (𝑏𝑖 ,𝑊 ) = 1
𝑑

max
𝑐∈𝑊

∑︁
𝑗 ∈[𝑑 ] |{𝑐

𝑗 } ∩ 𝐵
𝑗
𝑖 |

𝑓 co (𝑏𝑖 ,𝑊 ) = 1
𝑑

���{ 𝑗 ∈ [𝑑] : ∃𝑐 ∈𝑊 with 𝑐 𝑗 ∈ 𝐵
𝑗
𝑖

}���
To obtain voting rules for attribute approval ballots we extend a

given individual scoring function 𝑓 from single ballots to extended
scoring functions for voter profiles, considering two prominent ap-
proaches. Given a set 𝑉 of voters and a 𝑘-committee𝑊 we either
maximize the utilitarian welfare 𝑓Σ (𝑉 ,𝑊 ) = ∑

𝑣𝑖 ∈𝑉 𝑓 (𝑏𝑖 ,𝑊 ) or
the egalitarian welfare 𝑓min (𝑉 ,𝑊 ) = min𝑣𝑖 ∈𝑉 𝑓 (𝑏𝑖 ,𝑊 ). Finally,
for each individual scoring function 𝑓 𝑦 ∈ {𝑓 si, 𝑓 cc, 𝑓 co} paired with
an extension 𝑥 ∈ {Σ,min}, a voting rule 𝐹

𝑦
𝑥 maximizes the score

of an extended scoring function 𝑓
𝑦
𝑥 , outputting a set of winning 𝑘-

committees, i.e., 𝐹 𝑦𝑥 (𝐸, 𝑘) = arg max𝑊 ∈P𝑘 (𝐶) 𝑓
𝑦
𝑥 (𝑉 ,𝑊 ). The mod-

ular setup provides six extended scoring functions and thus six
voting rules1 𝐹 si

Σ , 𝐹 cc
Σ , 𝐹 co

Σ , 𝐹 si
min, 𝐹 cc

min, and 𝐹 co
min.

Preference Derivation Methods. In many natural situations at-
tribute approval ballots (in combination with a scoring function)
model the underlying preferences realistically. If voters can only
express their preferences in more common forms, it is reasonable to
assume a voter either (i) assigns a utility to each candidate linear in
the number of satisfied attributes, (ii) weakly ranks the candidates
based on the number of satisfied attributes, or (iii) approves those
candidates that satisfy a threshold amount of attributes.

Definition 2. Let 𝐸 = (𝐷,𝐶,𝑉 ) ∈ E and 𝑏𝑖 = (𝐵1
𝑖 . . . . , 𝐵

𝑑
𝑖 ) be

the attribute approval ballot of voter 𝑣𝑖 ∈ 𝑉 . We study the following
preference derivation methods for different types of preferences.

Cardinal Preference Ballots: 𝔠 : D×𝐶 → Q, where 𝔠(𝑏𝑖 , 𝑐) =
1
𝑑 |{ 𝑗 ∈ [𝑑] : 𝑐 𝑗 ∈ 𝐵

𝑗
𝑖 }| is the cardinal preference, voter 𝑣𝑖 as-

sociates with candidate 𝑐 ∈ 𝐶 .
Ordinal Preference Ballots: 𝔬 : D → P(𝐶 × 𝐶), such that

𝔬(𝑏𝑖 ) =≿𝑏𝑖 is a weak ranking over𝐶 with 𝑐 ≻𝑏𝑖 𝑐 ′ if 𝔠(𝑏𝑖 , 𝑐) >
𝔠(𝑏𝑖 , 𝑐 ′) and 𝑐 ∼𝑏𝑖 𝑐 ′ if 𝔠(𝑏𝑖 , 𝑐) = 𝔠(𝑏𝑖 , 𝑐 ′) for all 𝑐, 𝑐 ′ ∈ 𝐶 .

Candidate Approval Ballots: 𝔞𝜏 : D → P(𝐶), such that
𝔞𝜏 (𝑏𝑖 ) = {𝑐 ∈ 𝐶 : 𝔠(𝑏𝑖 , 𝑐) ≥ 𝜏

𝑑 } is the set of preferred candi-
dates for a given threshold 𝜏 ∈ [𝑑].

With Δ(𝐸), for a preference derivation method Δ ∈ {𝔠,𝔬, 𝔞𝜏 }, we
refer to the election (𝐶,𝑉 ′), where each voter 𝑣𝑖 ∈ 𝑉 with attribute
approval ballot 𝑏𝑖 is substituted by 𝑣 ′𝑖 ∈ 𝑉 ′ with derived ballot Δ(𝑏𝑖 ).
1𝐹 si

Σ has also been studied by Kagita et al. [9] under the name Approval Voting.

Table 1: Summary of our results on distortion for each scoring
rule 𝑓

𝑦
𝑥 paired with a derivation method Δ. Entry ∞ indicates

unbounded distortion, while 1 indicates no distortion.

Δ 𝑓 si
Σ 𝑓 cc

Σ 𝑓 co
Σ 𝑓 si

min 𝑓 cc
min 𝑓 co

min
𝔞𝜏 ∞ ∞ ∞ ∞ ∞ ∞
𝔞1 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑

𝔠 1 1 min(𝑘, 𝑑) 1 1 min(𝑘, 𝑑)
𝔬 𝑑 𝑑 ∞ ∞ ∞ ∞

3 DISTORTION
In our setting distortion measures how much the voters’ satisfaction
can decline, if we derive the voters’ preferences using a (possibly)
less expressive method instead of attribute approvals. If the distor-
tion is high, the potential upside for voting on attributes is huge.
In contrast, if the distortion is low, there is no downside in voting
on candidates directly. We are interested in the distortion associ-
ated with a preference derivation method and an extended scoring
function. That is the maximum factor the satisfaction can be higher
by considering attribute ballots instead of other common forms of
ballots. In contrast to related work on distortion (see [12], [5] and
[1]) we do not assume an underlying cardinal utility for each can-
didate, but that the attribute approvals capture the voters’ opinions
entirely.

Definition 3. Let Δ be a preference derivation method, which
maps from an attribute approval election (𝐷,𝐶,𝑉 ) to an election
(𝐶,𝑉 ′). Further, let 𝑓

𝑦
𝑥 be an extended scoring function and 𝜎Δ :

E → P(E) be a function with 𝜎Δ (𝐸) = {𝐸 ′ ∈ E : Δ(𝐸) = Δ(𝐸 ′)}
for every 𝐸 ∈ E. That is, 𝜎Δ (𝐸) is the set of attribute elections, that
yield ballots equivalent to 𝐸 if the votes are derived using Δ. In the
following, for E ′ ⊆ E, let W(E ′, 𝑘) =

⋃
𝐸′∈E′ 𝐹

𝑦
𝑥 (𝐸 ′, 𝑘), be the

collection of all winning 𝑘-committees for all elections in E ′. For a
fixed attribute approval election 𝐸 = (𝐷,𝐶,𝑉 ) ∈ E, the distortion
associated with Δ, 𝑓

𝑦
𝑥 , and 𝐸 is given by

dist(Δ, 𝑓 𝑦𝑥 , 𝐸) = max
𝑊 ′∈W(𝜎Δ (𝐸),𝑘)

max𝑊 ∈P𝑘 (𝐶) 𝑓
𝑦
𝑥 (𝑉 ,𝑊 )

𝑓
𝑦
𝑥 (𝑉 ,𝑊 ′)

In case only the denominator is zero, we say the distortion is un-
bounded. The overall distortion for Δ and 𝑓

𝑦
𝑥 (not depending on a

specific election) is given by dist(Δ, 𝑓 𝑦𝑥 ) = max𝐸∈E dist(Δ, 𝑓 𝑦𝑥 , 𝐸).
The intuition for dist(Δ, 𝑓 𝑦𝑥 , 𝐸) is, that 𝐸 represents the undis-

torted voters’ preferences, i.e., their attribute-based preferences. If
the voters’ preferences were instead cast by Δ with a loss of informa-
tion (e.g., approval ballots), there is no way to determine which of
the attribute approval elections in 𝜎Δ (𝐸) coincides with the voters’
actual ballots. If we pick an election 𝐸 ′ = (𝐷 ′,𝐶,𝑉 ′) ∈ 𝜎Δ (𝐸), then
a winning committee𝑊 ′ ∈ 𝐹

𝑦
𝑥 (𝐸 ′, 𝑘) maximizes the satisfaction

for𝑉 ′. Yet, the set of voters𝑉 might be dissatisfied with𝑊 ′, that is,
𝑓
𝑦
𝑥 (𝑉 ,𝑊 ′) could be much lower than the score of a winning com-

mittee. We use a given extended scoring function 𝑓
𝑦
𝑥 as a metric to

evaluate the satisfaction of the voters with a committee. Our results
are summarized in Table 1.
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CHAPTER 10

BOUNDED APPROVAL BALLOTS:
BALANCING EXPRESSIVENESS

AND SIMPLICITY FOR
MULTIWINNER ELECTIONS

In this chapter, we design and explore a novel ballot format and suitable scoring functions,
allowing voters to express incompatibilities, dependencies, and substitution effects. In an
extensive axiomatic analysis we evaluate the adequacy of our modelization and comple-
ment our findings by studying what kind of linear orders over committees may be induced
by a ballot paired with a scoring function.

10.1 Summary
In this article, we introduce a new ballot format as a generalization of approval ballots,
to allow voters to specify incompatibilities, dependencies, and substitution effects be-
tween alternatives. A formal description of the considered model can be found in Subsec-
tion 2.2.2. To recap informally, a bounded approval set is modeled by a set of approved
candidates, accompanied by (i) a (numeric) lower bound to specify minimum candidates
expected to be in the committee to receive any satisfaction, (ii) a saturation point to spec-
ify after how many candidates the satisfaction does not increase anymore, and (iii) an
upper bound after which the satisfaction with a committee drops back to zero. Interpret-
ing bounded sets accordingly, we consider a scoring function to quantify the agreement of
a bounded approval set with a given committee as depicted above. Yet, to allow for more
evolved interconnected preferences over the set of alternatives, a voter’s bounded approval
ballot may contain more than one bounded approval set. To measure the satisfaction of
a voter with an outcome based on her ballot (possibly containing contradicting bounded
approval sets), we distribute the score for each bounded set equally on all contributing
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candidates. Finally, having a score per candidate calculated for each bounded set, the
overall score for a candidate in a bounded approval ballot is gathered from considering
either the minimum, maximum, average, or total satisfaction across all bounded approval
sets. Additionally, we study a simple rule, which extends approval voting by assigning
those candidates a unit score that are beneficial in at least one bounded set.

After briefly showing, that all resulting rules (selecting committees receiving a maxi-
mum score) are hard to compute, we continue with an extensive axiomatic analysis to
evaluate the adequacy of our modelization. To meet our initial goals in mind, a voting
rule should act just as the standard Approval Voting rule (AV) when possible, while in-
compatibilities, substitution effects, and dependencies should be taken into account when
necessary. To satisfy the former, the score assigned to a ballot under a given committee
should be (i) bounded upwards by the approval score for all alternatives appearing across
all bounded sets, (ii) coincide with the approval score if no dependency, substitution, or
incompatibility is present, and (iii) zero if and only if all bounded sets contain a vio-
lated dependency or incompatibility. In turn, to satisfy the latter, a violated dependency
or incompatibility should not increase the score, while adding a substitute to a commit-
tee should not affect the score at all. Additionally, we consider desirable monotonicity
axioms to evaluate the behavior associated with given scoring functions. Specifically,
neither extending a bounded ballot with a non-conflicting bounded set, nor adding a suit-
able candidate, should decrease the score of a given committee. Likewise, expressing a
bounded set in a (logically) equivalent statement using multiple ballots should not inter-
fere with the score at all.

Overall, we establish a complete axiomatic analysis by demonstrating for each scoring
function which axioms are either satisfied or violated. As none of our considered scoring
functions accomplishes to satisfy all considered axioms, we subsequently were able to
show that some of our axiomatic properties are indeed incompatible with one another.
As a way to escape this impossibility result, we show that four of our scoring functions
coincide in case bounded sets within a bounded ballot do not overlap. As a result, given
this restriction, all axiomatic properties are satisfied simultaneously. Alternatively, we
illustrate how weakening our axioms may also lead to almost fulfilling our modeling
goals, by considering a rather artificial scoring function.

To complement our axiomatic results, we evaluate the expressiveness of our novel ballot
format, coming from two different angles. On the one hand, we study the limits of what
a voter’s ballot can express under a given scoring function, by showing which kind of
ordinal rankings over k-committees can be induced in theory (focusing on dichotomous,
trichotomous, or arbitrary rankings). On the other hand, we present natural examples to
showcase how the overall satisfaction may increase significantly by considering bounded
ballots instead of approval ballots.

Lastly, to test our theoretical results empirically in real-world elections, we developed the
web-application GoodVotes, which is now maintained under the name GoodVoteX [122].
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10.2 Reflection on Initial Research Goals
In this article, we focused on four of our initial research questions, introduced in Chap-
ter 3. Most obviously, we explored Question Q5 by introducing bounded approval ballots,
as a way to extend standard approval ballots to capture incompatibilities, dependencies,
and substitution effects. Particularly, we studied how expressive these types of ballots
are compared to weak rankings over the set of all fixed-size committees, or to approval
ballots. We significantly addressed Question Q1, as we initiated an extensive axiomatic
analysis for bounded ballots. To escape an incompatibility result (showing that all initial
modeling goals can not be met by a scoring function simultaneously), we demonstrated
possible ways to weaken axioms or restrict the types of valid ballots slightly to satisfy all
considered axioms. As an intermediate result, we showed that in case the bounded sets in
a ballot do not overlap, four of our scoring rules coincide, contributing to Question Q4.
We partially dealt with Question Q2, by designing reasonable scoring functions to model
respective rules and briefly showing that all considered rules are computationally hard.

10.3 Publication
This work has been published and presented as a full paper at the 22nd International
Conference on Autonomous Agents and Multiagent Systems, along with the prototype
application GoodVotes.

[23] D. Baumeister, L. Boes, C. Laußmann, and S. Rey. “Bounded Approval Ballots:
Balancing Expressiveness and Simplicity for Multiwinner Elections”. In: Pro-
ceedings of the 22nd International Conference on Autonomous Agents and Multi-
agent Systems. IFAAMAS, 2023, pp. 1400–1408

Parts of this article, containing more evolved insights into the GoodVotes web-application,
were published in Christian Laußmann’s dissertation [121].

10.4 Personal Contribution
This work was initiated by Simon Rey’s research stay at Düsseldorf in early 2022. The
design and formalization of the ballot format and suitable scoring functions was developed
in productive meetings by all authors in equal parts. Similarly, the conception and writing
of the article was done by an equal share of work by all participating authors. As for the
technical results: The axiomatic analysis (Section 3) was mostly conducted by Christian
Laußmann and Simon Rey, the comparison to approval ballots (Section 4.2) was analyzed
by Christian Laußmann, while the study on the limits of expressiveness (Section 4.1) was
primarily contributed by me. The preliminary web-application GoodVotes was designed
and developed by Christian Laußmann.
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ABSTRACT
Approval ballots have been celebrated for many voting scenar-
ios [16], in particular because of the low cognitive burden they put
on the voters. This however, comes at the cost of expressiveness
that can be problematic when voters have sophisticated preferences.
We consider voters who, in addition to usual approval, may wish to
express incompatibilities, dependencies, and/or substitution effects
between the alternatives. We introduce, and evaluate a new type
of ballot—bounded approval ballots—which captures these effects
while being almost as easy as regular approval ballots to cast.
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1 INTRODUCTION
Let us focus on the case study of Goodman’s Pipes and Tubes Ltd., a
company that is about to elect its expert committee. The committee
consists of four people who advise the board on business strategy
questions. The following six candidates are up for election: Anna
and Chris are two of the leading engineers in the company; Ben
from the human resources; Diana from the legal department; Elena
from the advertisement department; the external craftsman Frank;
and Gustavo who is responsible for material purchases. The three
board members Rob, Su, and Tim have the following opinions.

Rob: “I’m happy with Anna’s, Chris’, Elena’s, Frank’s, and Gus-
tavo’s work. They are reliable, work hard, and have been
around long enough, so each of them will improve the com-
mittee with their own expertise. ”

Su: “We are an engineering company. Expertise on materials,
production, and craftsmanship should be our focus, so there
should be one, or better two of Anna, Chris, Frank, and
Gustavo. Having more of them is also fine, although I don’t

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

see a big advantage for that. I think there should also be
expertise from Diana in the committee. However, Diana and
Chris shouldn’t be together because they argue a lot. ”

Tim: “I am pretty sure that Chris, Gustavo, Ben, and Diana will do
a good job. However, every time I discuss something with
either Ben or Diana, the other one is angry because they
say that the legal department and the human resources must
work closely together. So if we give one of them a seat in
the committee, the other one must also get a seat, or else we
can just as well give no seat to either of the two. ”

The committee selection example above is a canonical instance
of multiwinner elections [11]. In this context, the most common
way of asking one’s opinion is to use approval ballots: the voters
indicate which of the alternatives they approve of [15]. Rob would
for instance express his preference by approving of Anna, Chris,
Elena, Frank, and Gustavo. However, Su’s and Tim’s statements
cannot be expressed as approval ballots. It is true that Su in principle
approves of Anna, Chris, Diana, Frank, and Gustavo. However, by
using an approval ballot she cannot state that two of them are
just as good as three, nor that Diana and Chris are incompatible.
Similarly, Tim cannot express in an approval ballot that either Ben
and Diana must be in the committee, or neither of them. Our goal
is to find a ballot format to account for the type of preferences
illustrated above, i.e., approvals, incompatibilities, substitutions,
and dependencies. Obviously, very expressive ballot formats (e.g.
rankings over subsets of alternatives) could be used to express those,
and even more complicated, preferences. This approach is however
not satisfactory. Indeed, we believe that more expressive ballots
should still be practical, i.e., not imposing a high cognitive burden on
the voters, and scaling reasonably well as the number of alternatives
increases. Moreover, even though some voters can be interested
in submitting complex ballots, only proposing complex ballots can
prevent some others to participate. We thus want to develop ballot
formats that still allow for simple ballots to be submitted.

Contribution. To achieve the goals described above, we introduce
bounded approval ballots. A bounded approval ballot is a collection
of bounded approval sets: sets of approved alternatives that are
enriched with three bounds: a lower bound (minimum number of
alternatives that have to be selected), a saturation point (number
of selected alternatives after which no additional satisfaction is
derived), and an upper bound (maximum number of alternatives
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that should be selected). Approval ballots are still valid (with simple
reformatting) and treated exactly as in usual multiwinner approval
voting to be convenient for the voters who don’t want to take the
effort to submit a more complicated ballot. Moreover, for voters
who want to submit more sophisticated ballots (incompatibilities,
substitutions and dependencies) the cognitive burden is no higher
than setting some bounds for the ballot.

Related Work. Multiwinner voting (as a special case of voting in
combinatorial domains [8]) has become a widely studied research
area over the past years. We refer to Faliszewski et al. [11] for
an overview of multiwinner voting rules and typical applications.
Interestingly, the two most often used ballot types are approval
ballots and ordinal ballots (rankings). Most of the research in the
field focuses on the development of voting rules for such ballots
(for example to guarantee fairness [1, 7]) rather than on the design
and the study of these ballot types. Closest to what we are trying
to achieve here are conditional preferences, where the preferences
of a voter are conditioned on the status of a given variable. Several
proposals have been discussed to express those opinions, the most
famous probably being conditional approval ballots [3], conditional
preference networks [5], and lexicographic preference trees [4]. A
stream of research for combinatorial auctions focuses on modeling
complex utility functions using expressive languages [9]. Sand-
holm [18] studies bidding languages, where atomic bids are joined
with logical connectives (allowing for substitution and incompati-
bility effects), while Hoos and Boutilier [6, 13] interconnect bids and
logical formulas over the alternatives. However, all these bidding
languages are rather complicated to express, at least compared to
the very simple approval ballot format. Finally, several proposals
have been made to extend approval ballots, mainly in the context
of participatory budgeting, a generalization of multiwinner elec-
tions [2]. Jain et al. [14] partition the alternatives into categories
to model interactions among them. Fairstein et al. [10] incorporate
individual partitions of the alternatives to study substitution effects
(in a slightly different way than we do).

2 PRELIMINARIES
A multiwinner election consists of a set of𝑚 alternatives (also called
candidates) A = {𝑎1, . . . , 𝑎𝑚}, a profile 𝔅 = (𝑩1, . . . ,𝑩𝑛) which
is a list of ballots 𝑩𝑖 of 𝑛 voters N = {1, . . . , 𝑛}, and an integer
𝑘 ∈ {1, . . . ,𝑚}. We denote by C𝑘 = {𝜋 ⊆ A | |𝜋 | = 𝑘} the set of
all 𝑘-sized committees. The outcome of an irresolute multiwinner
election is a set of winning committees {𝜋1, 𝜋2, . . .} ⊆ C𝑘 . The ballot
format is described in the next section. We will use ⊕ to denote
the concatenation operator between two lists. The subtraction of
list 𝐵 from list 𝐴 will be denoted through 𝐴 ⊖ 𝐵 (where for each
element in 𝐵 the first occurrence of the element in 𝐴 is removed).
We sometimes omit the brackets around a list of length one.

2.1 Bounded Approval Ballots
We now introduce bounded approval ballots, our generalization of
approval ballots to allow for submitting more complex preferences.

Definition 1 (Bounded Sets and Ballots). Given a set of alternatives
A, a bounded (approval) set is a tuple 𝐵 𝑗 =

〈
𝐴 𝑗 , ℓ 𝑗 , 𝑠 𝑗 , 𝑢 𝑗

〉
such that

𝐴 𝑗 ⊆ A and ℓ 𝑗 , 𝑠 𝑗 , 𝑢 𝑗 , respectively the lower bound, the saturation

point, and the upper bound, are all integers such that 1 ≤ ℓ 𝑗 ≤ 𝑠 𝑗 ≤
𝑢 𝑗 ≤ |𝐴 𝑗 |. A bounded (approval) ballot 𝑩𝑖 , for voter 𝑖 ∈ N , is a list
𝑩𝑖 = (𝐵1

𝑖 , . . . , 𝐵
𝑝
𝑖 ) of bounded sets.

A bounded set indicates that from all the alternatives in 𝐴 𝑗 , at
least ℓ 𝑗 but no more than 𝑢 𝑗 have to be selected; while after 𝑠 𝑗
alternatives have been selected from 𝐴 𝑗 , the voter will not enjoy
any additional satisfaction from selecting more alternatives.1 This
way, we achieve all of our initial modeling goals:

• Standard approval ballots can be expressed by setting ℓ 𝑗 = 1,
𝑠 𝑗 = 𝑢 𝑗 = |𝐴 𝑗 |: the more alternatives from 𝐴 𝑗 the better;

• Incompatibilities can be expressed by bounded sets with an
upper bound 𝑢 𝑗 = 1: Selecting multiple alternatives from
𝐴 𝑗 is not desired by the voter because these alternatives are
incompatible, but selecting one is desirable;

• Substitution can be expressed by bounded sets with ℓ 𝑗 = 𝑠 𝑗 =
1 and 𝑢 𝑗 = |𝐴 𝑗 |: Selecting one alternative from 𝐴 𝑗 is desired
but additional alternatives are substitutes;

• Dependencies can be expressed by bounded sets where ℓ 𝑗 =
|𝐴 𝑗 |: All alternatives from 𝐴 𝑗 rely on each other, and are
only useful for the voter if all of them are present.

We illustrate these ballots on the example from the introduction.

Example 1. Rob only wants to provide an approval ballot that can
be expressed by a simple bounded approval ballot consisting of only
one bounded set: ⟨{Anna, Chris, Elena, Frank, Gustavo}, 1, 5, 5⟩.

Su’s preference is more involved. The incompatibility between
Diana and Chris can be expressed by ⟨{Diana, Chris}, 1, 1, 1⟩. Fur-
ther, with ⟨{Anna, Chris, Frank, Gustavo}, 1, 2, 4⟩, we can express
that one—or better two—of Anna, Chris, Frank, and Gustavo should
be included but there is no further benefit for three or four. Su’s
ballot would thus consist of these two bounded sets.

Tim states that from Ben and Diana either both or none should
be included, which can be expressed as ⟨{Ben, Diana}, 2, 2, 2⟩. Fur-
thermore, both Chris and Gustavo are approved, which can be
expressed as ⟨{Chris, Gustavo}, 1, 2, 2⟩. △

Finally, we introduce one useful notation: for a ballot 𝑩 and an
alternative 𝑎 ∈ A, we denote by 𝑩 |𝑎 = {𝐵 𝑗 ∈ 𝑩 | 𝑎 ∈ 𝐴 𝑗 } the
bounded sets in 𝑩 involving 𝑎.

2.2 Scoring with Bounded Approval Ballots
We eventually want to aggregate the ballots that the voters submit-
ted in order to determine a winning committee. In the following
we provide different scoring functions which map profiles and com-
mittees to real numbers. These can then be used to define rules
by simply selecting the committee with the highest score. We will
investigate properties of the scoring functions later.

Definition 2 (Scoring Function). A scoring function score is a func-
tion taking as input a bounded approval ballot 𝑩 and a committee 𝜋 ,
and returning a real value score(𝑩, 𝜋). We extend scoring functions
to profiles s.t. for every profile 𝔅, score(𝔅, 𝜋) = ∑

𝑩∈𝔅 score(𝑩, 𝜋).
To capture the semantics of bounded sets described above, for

a committee 𝜋 and a bounded set 𝐵 𝑗 =
〈
𝐴 𝑗 , ℓ 𝑗 , 𝑠 𝑗 , 𝑢 𝑗

〉
, we want

scoring functions to behave as depicted below.
1We assume that all alternatives in 𝐴 𝑗 are approved in the sense that for each 𝑎 ∈ 𝐴 𝑗

there is a committee in which the voter would like 𝑎 to be part of.
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ℓ 𝑗 𝑠 𝑗 𝑢 𝑗 |𝐴 𝑗 ∩ 𝜋 |
0

sc
or

e

The area represents that 𝜋 violates a dependency or incompatibil-
ity stated in 𝐵 𝑗 . Thus, 𝜋 should score 0. The area represents that
each element in 𝜋 is independently approved according to 𝐵 𝑗—each
contributes to the total score. Finally, the area represents that the
elements in 𝜋 show substitution effects according to 𝐵 𝑗—additional
items contribute no additional score.

Assuming neutrality, i.e., that all alternatives are treated the
same, we introduce a function that should be interpreted as the
average score of the alternatives appearing in 𝐵 𝑗 . When within
the lower bound and the saturation point, each alternative from
𝐴 𝑗 ∩ 𝜋 fully contributes to 𝐵 𝑗 ’s score, i.e., they score 1 each. If the
saturation point is exceeded, the 𝑠 𝑗 points are equally split among
the alternatives. If the lower or the upper bound is violated, all the
alternatives score 0. The formal definition of this function 𝜑 is:

𝜑 (𝐵 𝑗 , 𝜋) =



1 if ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗

𝑠 𝑗

|𝐴 𝑗∩𝜋 | if 𝑠 𝑗 < |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑢 𝑗

0 otherwise.

Example 2. Consider the following bounded set from Su’s ballot:
𝐵 𝑗 = ⟨{Anna,Chris, Frank,Gustavo}, 1, 2, 4⟩. For 𝜋 = {Anna, Ben,
Chris, Diana} we have𝜑 (𝐵 𝑗 , 𝜋) = 1. That is, according to 𝐵 𝑗 each al-
ternative in 𝜋∩𝐴 𝑗 is fully approved, so in total 𝜋 has two approvals—
one for Anna and one for Chris. For 𝜋 ′ = {Anna, Ben,Chris, Frank}
the saturation bound is exceeded, so we have 𝜑 (𝐵 𝑗 , 𝜋 ′) = 2

3 . △

Scoring functions are defined for bounded approval ballots (and
profiles of them), and not for bounded sets as 𝜑 is defined. If each
ballot consists of only one bounded set, this would be straightfor-
ward. However, as soon as there are several bounded sets, we need
to aggregate the score of the individual bounded sets. Several usual
operators can be considered here: averaging, taking the minimal or
the maximal value, or simply summing up the scores. This results
in the following scoring functions, all based on 𝜑 .

scoremin (𝑩, 𝜋) =
∑︁
𝑎∈𝜋

min
(
𝜑 (𝐵 𝑗 , 𝜋) | 𝐵 𝑗 ∈ 𝑩 |𝑎

)

scoremax (𝑩, 𝜋) =
∑︁
𝑎∈𝜋

max
(
𝜑 (𝐵 𝑗 , 𝜋) | 𝐵 𝑗 ∈ 𝑩 |𝑎

)

scoreavg (𝑩, 𝜋) =
∑︁
𝑎∈𝜋

1
|𝑩 |𝑎 |

∑︁
𝐵 𝑗 ∈𝑩 |𝑎

𝜑 (𝐵 𝑗 , 𝜋)

scoretot (𝑩, 𝜋) =
∑︁
𝑎∈𝜋

∑︁
𝐵 𝑗 ∈𝑩 |𝑎

𝜑 (𝐵 𝑗 , 𝜋)

Note that the semantics we developed is respected when each ballot
consists of a single bounded set. Note further, that the functions
coincide when each alternative is part of at most one bounded set
per ballot, i.e., when |𝑩 |𝑎 | ≤ 1 for all 𝑎 ∈ A and every ballot 𝑩.

In addition to these four scoring functions, we also study another
one that is not based on 𝜑 : scoreapp . It is a natural generalization of

the approval score, as it counts the number of alternatives in 𝜋 for
which there exists at least one bounded set 𝐵 𝑗 for which the lower
bound is exceeded in 𝜋 , but not the saturation point:

scoreapp (𝑩, 𝜋) = |{𝑎 ∈ 𝜋 | ∃𝐵 𝑗 ∈ 𝑩 |𝑎 s.t. ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 }|.
Since, scoreapp completely disregards substitution effects, it will not
exactly fit the framework we detailed above. It will be shown to
provide interesting axiomatic results still.

Before moving on to the axiomatic analysis, let us briefly discuss
the computational complexity of the scoring functions. For all of
them, finding a committee with maximal score cannot be done in
polynomial-time, unless P = NP. For the 𝜑-based rules it is easy to
see that we can simulate the (approval version of the) Chamberlin–
Courant rule with them by submitting a single bounded set per
voter, where each bounded set has a saturation point of one and
an upper bound involving all approved alternatives. The observa-
tion then follows from the fact that Chamberlin–Courant winner
determination is NP-hard [19]. In the case of scoreapp , we can use
the NP-hard problem Exact Cover by 3-Sets (see Garey and John-
son [12]) to show the claim. These downsides are, unfortunately,
unavoidable when working with more expressive ballot formats.

3 ADEQUACY OF THE MODELIZATION
Following the classical method of social choice [20], we develop an
axiomatic theory to investigate the behavior of scoring functions.

3.1 Axiomatic Theory
We encode, by the means of axioms, the idea that bounded approval
ballots allow voters to express the different statements we are inter-
ested in; and that the scoring functions comply with the semantics
we are aiming for.

We first define two axioms enforcing that a violated incompati-
bility or dependency should not increase the score.

Definition 3 (Incompatibility Adequacy). A scoring function score
satisfies incompatibility adequacy if for every 𝐴 ⊆ A, and all ballots
𝑩 and 𝑩′ = 𝑩 ⊕ ⟨𝐴, 1, 1, 1⟩, the following holds:

• score(𝑩, 𝜋) ≤ score(𝑩′, 𝜋) for every 𝜋 with |𝜋 ∩𝐴| = 1;
• score(𝑩, 𝜋) ≥ score(𝑩′, 𝜋) for every 𝜋 with |𝜋 ∩𝐴| ≠ 1.

Definition 4 (Dependency Adequacy). A scoring function score
satisfies dependency adequacy if for every 𝐴 ⊆ A, and all ballots 𝑩
and 𝑩′ = 𝑩 ⊕ ⟨𝐴, |𝐴|, |𝐴|, |𝐴|⟩, the following holds:

• score(𝑩, 𝜋) ≤ score(𝑩′, 𝜋) for every 𝜋 with 𝐴 ⊆ 𝜋 ;
• score(𝑩, 𝜋) ≥ score(𝑩′, 𝜋) for every 𝜋 with 𝐴 ⊈ 𝜋 .

Our next axiom concerns properly modeling substitution. Infor-
mally, if according to all bounded sets an item 𝑎★ is considered a
substitute w.r.t. 𝜋 , then adding 𝑎★ to 𝜋 should not change the score.

Definition 5 (Substitution Adequacy). A scoring function score
satisfies substitution adequacy if for every ballot 𝑩 and committee
𝜋 for which there exists an alternative 𝑎★ ∈ A \ 𝜋 such that for all
bounded sets 𝐵 𝑗 ∈ 𝑩 |𝑎★ , it is the case that 𝑠 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑢 𝑗 − 1,
we have score(𝑩, 𝜋) = score(𝑩, 𝜋 ∪ {𝑎★}).

Next, we ensure that a scoring function treats approval ballots
correctly, i.e., that it behaves as the usual approval score for standard
approval ballots.
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Definition 6 (Approval Adequacy). A scoring function score sat-
isfies approval adequacy if for every ballot 𝑩 and committee 𝜋 the
following two conditions hold:

(1) score(𝑩, 𝜋) ≤ |
( ⋃
𝐵 𝑗 ∈𝑩

𝐴 𝑗

)
∩ 𝜋 |;

(2) score(𝑩, 𝜋) = |
( ⋃
𝐵 𝑗 ∈𝑩

𝐴 𝑗

)
∩ 𝜋 | whenever ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗

for all 𝐵 𝑗 ∈ 𝑩.

The final adequacy axiom requires the scoring function to return
0 if and only if there is a good reason to do so.

Definition 7 (Zero Adequacy). A scoring function score satisfies
zero-adequacy if for every ballot 𝑩 and committee 𝜋 we have:

score(𝑩, 𝜋) = 0 iff ∀𝐵 𝑗 ∈ 𝑩, |𝐴 𝑗 ∩ 𝜋 | > 𝑢 𝑗 or |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗 .

We further introduce monotonicity axioms enforcing the scoring
rules to be well-behaved in a dynamic environment.

The first one says that adding a bounded set which does not
conflict with a committee 𝜋 should not decrease the score of 𝜋 .

Definition 8 (Ballot-Size Monotonicity). Let 𝑩 be a ballot and 𝜋 a
committee. A scoring function score satisfies ballot-size monotonicity
if for every bounded set 𝐵 = ⟨𝐴, ℓ, 𝑠,𝑢⟩ such that ℓ ≤ |𝐴 ∩ 𝜋 | ≤ 𝑢, we
have score(𝑩, 𝜋) ≤ score(𝑩 ⊕ 𝐵, 𝜋).

Ballot-splitting monotonicity says that expressing an equivalent
statement with one large ballot, or several smaller ones, should
result in the same score.

Definition 9 (Ballot-Splitting Monotonicity). A scoring function
score satisfies ballot-splitting monotonicity if for every committee 𝜋
and every ballot 𝑩 for which there exists a bounded set 𝐵 𝑗★ ∈ 𝑩 such
that ℓ 𝑗

★ ≤ |𝐴 𝑗★∩𝜋 | ≤ 𝑠 𝑗
★

, then, for 𝑩′ = (𝑩⊖𝐵 𝑗★) ⊕ (⟨{𝑎}, 1, 1, 1⟩ |
𝑎 ∈ 𝐴 𝑗★ ∩ 𝜋), we must have score(𝑩, 𝜋) = score(𝑩′, 𝜋) .

Finally, score monotonicity requires the score not to decrease
when adding a suitable alternative to the committee.

Definition 10 (Score Monotonicity). A scoring function score sat-
isfies score monotonicity if for every ballot 𝑩 and committee 𝜋 for
which there exists an alternative 𝑎★ ∈ A\𝜋 such that for all bounded
sets 𝐵 𝑗 ∈ 𝑩 |𝑎★ it is the case that ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑢 𝑗 − 1, we have
that score(𝑩, 𝜋) ≤ score(𝑩, 𝜋 ∪ {𝑎★}).

3.2 Axiomatic Behavior of Scoring Functions
Now that we have introduced a complete axiomatic theory, we
investigate the performance of the scoring functions we introduced
regarding those axioms. We start with scoreavg .

Theorem 3. The scoring function scoreavg satisfies approval, incom-
patibility, dependency, and zero adequacy, as well as ballot-splitting
monotonicity. It fails ballot-size monotonicity, score monotonicity, and
substitution adequacy.

Proof. Let 𝑩 be a ballot and 𝜋 a committee.
Approval Adequacy (✓) For every alternative 𝑎 ∈ 𝜋 , scoreavg
scores the average fulfillment of the relevant bounded sets. The
fulfillment being a number between 0 and 1, the average also is
between 0 and 1. We thus have scoreavg (𝑩, 𝜋) ≤ | (⋃𝐵 𝑗 ∈𝑩 𝐴 𝑗 ) ∩ 𝜋 |.

Now assume that ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 for all 𝐵 𝑗 ∈ 𝑩. Then, for
all 𝐵 ∈ 𝑩, we have 𝜑 (𝐵, 𝜋) = 1. Each alternative in 𝜋 then scores 1,
meaning that scoreavg (𝑩, 𝜋) = | (⋃𝐵 𝑗 ∈𝑩 𝐴 𝑗 ) ∩ 𝜋 |. ◦
Substitution Adequacy (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎1, 𝑎2},
and 𝑩 = (⟨{𝑎1, 𝑎2}, 1, 2, 2⟩ , ⟨{𝑎1, 𝑎3}, 1, 1, 2⟩). Note that 𝑎3 fulfills
the conditions required for 𝑎★ in the definition of substitution
adequacy (Definition 5). On the one hand, we have scoreavg (𝑩, 𝜋) =
2/2 + 1/1 = 2. On the other hand, for 𝜋 ′ = {𝑎1, 𝑎2, 𝑎3}, we have
scoreavg (𝑩, 𝜋 ′) = 1+1/2

2 + 1/1 + 1/2
1 = 9/4 > 2. ◦

Incompatibility Adequacy (✓) Let 𝑩′ = 𝑩 ⊕ ⟨𝐴, 1, 1, 1⟩ be the
ballot with added incompatibility.

First assume |𝜋 ∩𝐴| ≠ 1. It is clear that for each 𝑎 ∈ 𝐴, |𝑩′
|𝑎 | =

1+ |𝑩 |𝑎 | > |𝑩 |𝑎 | holds, i.e., the normalization factor decreases. This
decrement together with 𝜑 (⟨𝐴, 1, 1, 1⟩ , 𝜋) = 0 results in a decreased
score contribution of 𝑎 and thus scoreavg (𝑩, 𝜋) > score(𝑩′, 𝜋).

Now assume that 𝜋 ∩𝐴 = {𝑎} for some 𝑎 ∈ A. We distinguish
three cases. (1) If 𝑩 |𝑎 = ∅, then score(𝑩′, 𝜋) = scoreavg (𝑩, 𝜋) + 1 >

scoreavg (𝑩, 𝜋). (2) If 𝑩 |𝑎 ≠ ∅ and for all 𝐵 𝑗 ∈ 𝑩 |𝑎 , ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤
𝑠 𝑗 holds. Then clearly scoreavg (𝑩, 𝜋) = score(𝑩′, 𝜋). (3) Finally,
assume 𝑩 |𝑎 ≠ ∅ but for some 𝐵 𝑗 ∈ 𝑩 |𝑎 either |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗

or 𝑠 𝑗 < |𝐴 𝑗 ∩ 𝜋 |. Let 𝛼 =
∑
𝐵 𝑗 ∈𝑩 |𝑎 𝜑 (𝐵 𝑗 , 𝜋) and 𝛽 = |𝑩 |𝑎 |. By

assumption, 𝛼 < 𝛽 holds. Note that 𝛼/𝛽 is the contribution of 𝑎 to
the score of ballot 𝑩. Moreover, 𝛼+1/𝛽+1 is the contribution of 𝑎 to
the score of 𝑩′. Since for any 0 ≤ 𝛼 < 𝛽 we have 𝛼/𝛽 < 𝛼+1/𝛽+1, we
immediately obtain scoreavg (𝑩, 𝜋) < score(𝑩′, 𝜋). ◦
Dependency Adequacy (✓) Let 𝑩′ = 𝑩 ⊕ ⟨𝐴, |𝐴|, |𝐴|, |𝐴|⟩ be the
ballot with added dependency.

First, assume 𝐴 ⊈ 𝜋 . Trivially, if 𝐴 is disjoint with the other
bounded sets, then scoreavg (𝑩, 𝜋) = score(𝑩′, 𝜋). Otherwise, note
that for each 𝑎 ∈ 𝐴 that also occurs in another bounded set, we have
|𝑩′

|𝑎 | = 1 + |𝑩 |𝑎 | > |𝑩 |𝑎 |. The normalization factor thus decreases,
and since 𝜑 (⟨𝐴, |𝐴|, |𝐴|, |𝐴|⟩ , 𝜋) = 0, the contribution of 𝑎 to the
score also decreases. Overall, scoreavg (𝑩, 𝜋) > score(𝑩′, 𝜋) holds.

Now assume 𝐴 ⊆ 𝜋 . For each element 𝑎 ∈ 𝐴 we distinguish
three cases. (1) If 𝑩 |𝑎 = ∅, then clearly 𝑎 increases the total score
by 1. (2) If 𝑩 |𝑎 ≠ ∅ and for all 𝐵 𝑗 ∈ 𝑩 |𝑎 , ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗

holds, then 𝑎 contributed 1 to the total score in 𝑩 and also in 𝑩′ so
nothing changes. (3) Finally, assume 𝑩 |𝑎 ≠ ∅ but for some 𝐵 𝑗 ∈ 𝑩 |𝑎
either |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗 or 𝑠 𝑗 < |𝐴 𝑗 ∩ 𝜋 |. Let 𝛼 =

∑
𝐵 𝑗 ∈𝑩 |𝑎 𝜑 (𝐵 𝑗 , 𝜋)

and 𝛽 = |𝑩 |𝑎 |. By assumption, 𝛼 < 𝛽 holds. Note that 𝛼/𝛽 is the
contribution of 𝑎 to the score of ballot 𝑩. Moreover, 𝛼+1/𝛽+1 is the
contribution of 𝑎 to the score of 𝑩′. Since for any 0 ≤ 𝛼 < 𝛽 we
have 𝛼/𝛽 < 𝛼+1/𝛽+1, we have scoreavg (𝑩, 𝜋) < score(𝑩′, 𝜋). ◦
Zero Adequacy (✓) Note that we always have scoreavg (𝑩, 𝜋) ≥ 0.
Moreover, scoreavg (𝑩, 𝜋) = 0 iff 𝜑 (𝐵 𝑗 , 𝜋) = 0 for all 𝐵 𝑗 ∈ 𝑩, which
holds iff for all 𝐵 𝑗 ∈ 𝑩, either |𝐴 𝑗 ∩ 𝜋 | > 𝑢 𝑗 or |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗 . ◦
Ballot-Size Monotonicity (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎1, 𝑎2},
and 𝑩 = (⟨{𝑎1, 𝑎2}, 1, 2, 2⟩). Observe that we have scoreavg (𝑩, 𝜋) =
1/1 + 1/1 = 2. Now, let 𝑩′ = 𝑩 ⊕ ⟨{𝑎1, 𝑎2, 𝑎3}, 1, 1, 3⟩. We would
then get scoreavg (𝑩′, 𝜋) = 1+1/2

2 + 1+1/2
2 = 3/2 < 2. This shows that

ballot-size monotonicity is not satisfied. ◦
Ballot-Splitting Monotonicity (✓) Assume 𝐵 𝑗★ ∈ 𝑩 is a set with
ℓ 𝑗

★ ≤ |𝐴 𝑗★ ∩ 𝜋 | ≤ 𝑠 𝑗
★ . Let 𝑩′ = (𝑩 ⊖ 𝐵 𝑗★) ⊕ (⟨{𝑎}, 1, 1, 1⟩ | 𝑎 ∈

𝐴 𝑗★∩𝜋). Note that |𝑩 |𝑎 | = |𝑩′
|𝑎 | for all 𝑎 ∈ 𝜋 . So overall splitting the
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ballot has no effect on the normalization factor. Now, it is clear from
the assumption that 𝜑 (𝐵 𝑗★, 𝜋) = 1. In 𝑩′, for each of the newly
created bounded set 𝐵′𝑗★𝑖 , we have 𝜑 (𝐵′𝑗★𝑖 , 𝜋) = 1, too. Overall,
nothing changes and scoreavg satisfies splitting monotonicity. ◦
Score Monotonicity (✗) Let A = {𝑎1, 𝑎2, 𝑎3}, 𝜋 = {𝑎2, 𝑎3}, and
𝑩 = (⟨{𝑎1, 𝑎2}, 1, 1, 2⟩ , ⟨{𝑎1, 𝑎3}, 1, 1, 2⟩). Note that 𝑎1 fulfills the
conditions required for 𝑎★ in the definition of score monotonicity
(Definition 10). We have scoreavg (𝑩, 𝜋) = 1/1 + 1/1 = 2. However,
scoreavg (𝑩, 𝜋 ∪ {𝑎1}) = 1/2+1/2

2 + 1/2 + 1/2 < 2. This shows that score
monotonicity is not satisfied. □

Interestingly, the scoreavg scoring function fails substitution ade-
quacy. As we shall see, this is due to its normalization factor. Indeed,
scoretot will not suffer this drawback, but suffers some others.

Theorem 4. The scoring function scoretot satisfies substitution, in-
compatibility, dependency, and zero adequacy, as well as ballot-size
monotonicity, score monotonicity, and ballot-splitting monotonicity,
but it fails approval adequacy.

Proof. Let 𝑩 be a ballot and 𝜋 a committee.
Approval Adequacy (✗) Let A = {𝑎1, 𝑎2}, 𝜋 = {𝑎1}, and 𝑩 =
(⟨{𝑎1}, 1, 1, 1⟩ , ⟨{𝑎1, 𝑎2}, 1, 2, 2⟩). We have scoretot (𝑩, 𝜋) = 2 which
is a clear violation of approval adequacy. ◦
Substitution Adequacy (✓) Consider a bounded approval ballot
𝑩, a committee 𝜋 and an alternative 𝑎★ ∈ A \ 𝜋 as in the definition
of substitution adequacy (Definition 5). Let 𝐵 = ⟨𝐴, ℓ, 𝑠,𝑢⟩ be an
arbitrary bounded set from 𝑩 such that 𝑎★ ∈ 𝐴. By the definition
of 𝑎★, we know that 𝑠 ≤ |𝐴 ∩ 𝜋 | ≤ 𝑢 − 1. Hence, the contribution
of 𝐵 to scoretot (𝑩, 𝜋) is 𝑠 𝑗 . Now, for 𝜋 ′ = 𝜋 ∪ {𝑎★} we have 𝑠 + 1 ≤
|𝐴 ∩ 𝜋 ′ | ≤ 𝑢. Hence, the contribution of 𝐵 to scoretot (𝑩, 𝜋 ′) is
also 𝑠 𝑗 . This applies to any bounded set including 𝑎★. Since the
contributions of sets which don’t include 𝑎★ are also unchanged,
we have scoretot (𝑩, 𝜋) = scoretot (𝑩, 𝜋 ′). ◦
Incompatibility Adequacy (✓) Note that by adding a bounded
set to a ballot the score cannot decrease. Further, if for the added
ballot 𝐵 𝑗 , it holds that𝑢 𝑗 < |𝜋∩𝐴 𝑗 |, the score does not increase. ◦
Dependency Adequacy (✓) Note that by adding a bounded set
to a ballot the score cannot decrease. Further, if for the added ballot
𝐵 𝑗 holds ℓ 𝑗 > |𝜋 ∩𝐴 𝑗 |, the score also does not increase. ◦
Zero Adequacy (✓) Note that we always have scoretot (𝑩, 𝜋) ≥ 0.
Moreover, scoretot (𝑩, 𝜋) = 0 iff 𝜑 (𝐵 𝑗 , 𝜋) = 0 for all 𝐵 𝑗 ∈ 𝑩, which
holds iff for all 𝐵 𝑗 ∈ 𝑩, either |𝐴 𝑗 ∩ 𝜋 | > 𝑢 𝑗 or |𝐴 𝑗 ∩ 𝜋 | < ℓ 𝑗 . ◦
Ballot-Size Monotonicity (✓) Note that by adding a bounded
set 𝐵 𝑗 to a ballot the score cannot decrease. If for a committee 𝜋
holds ℓ 𝑗 ≤ |𝐴 𝑗 ∩𝜋 | ≤ 𝑢 𝑗 , the score will even strictly increase. Thus,
scoretot satisfies ballot-size monotonicity. ◦
Ballot-Splitting Monotonicity (✓) Note that replacing 𝐵 𝑗 with
ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 by the bounded sets (⟨{𝑎}, 1, 1, 1⟩ | 𝑎 ∈ 𝐴 𝑗 ∩ 𝜋)
means replacing a bounded set which contributes |𝐴 𝑗 ∩ 𝜋 | to the
total score by |𝐴 𝑗 ∩ 𝜋 | many bounded sets which contribute 1 to
the total score (w.r.t. 𝜋 ). This means no change for the score, i.e.,
ballot-splitting monotonicity is satisfied. ◦
Score Monotonicity (✓) Let 𝑎★ be the alternative described in
the definition. For bounded sets 𝐵 𝑗 with ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 − 1 it
is immediate that the score contributions of alternatives in 𝐴 𝑗 ∩ 𝜋

are the same in scoretot (𝑩, 𝜋) and scoretot (𝑩, 𝜋 ∪ {𝑎★}), and 𝑎★’s
contribution counts on top. In bounded sets 𝐵 𝑗 with 𝑠 𝑗 ≤ |𝐴 𝑗 ∩𝜋 | ≤
𝑢 𝑗 − 1 (i.e., where 𝑎★ is a substitute) we know that the contribu-
tion of 𝐵 𝑗 to scoretot (𝑩, 𝜋) is 𝑠 𝑗 . This contribution is unchanged in
scoretot (𝑩, 𝜋 ∪ {𝑎★}). Thus, we can conclude that scoretot (𝑩, 𝜋) ≤
scoretot (𝑩, 𝜋 ∪ {𝑎★}). □

It turns out that also the other𝜑-based scoring functions scoremin
and scoremax are not perfect from an axiomatic point as detailed in
Table 1. The formal proofs are omitted due to space constraints.

Theorem 5. The scoring function scoremin satisfies approval, incom-
patibility, dependency, and zero adequacy, as well as ballot-splitting
monotonicity, but it fails substitution adequacy, ballot-size mono-
tonicity, and score monotonicity.

Theorem 6. The scoring function scoremax satisfies substitution,
incompatibility, dependency, and zero adequacy, as well as ballot-size
monotonicity, score monotonicity, and ballot-splitting monotonicity,
but it fails approval adequacy.

Let us finally consider scoreapp . It fails several axioms, including
substitution adequacy, as it completely ignores substitution effects.

Theorem 7. The scoring function scoreapp satisfies approval, in-
compatibility, and dependency adequacy, as well as ballot-size and
ballot-splitting monotonicity. It fails substitution and zero adequacy,
and score monotonicity.

Proof. Approval adequacy follows directly from the definition
of scoreapp . For ballot-size monotonicity, note that adding a bounded
set never decreases the score. To prove the satisfaction of the other
axioms, consider arbitrary ballot 𝑩 and committee 𝜋 .
Incompatibility Adequacy (✓) When we add bounded set 𝐵 𝑗 =
⟨𝐴, 1, 1, 1⟩ to 𝑩, the score cannot decrease as already stated above.
However, it can increase only if there is some 𝑎 ∈ 𝜋 with 𝑎 ∈ 𝐴 𝑗

and 1 = ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑢 𝑗 = 1, i.e., if |𝐴 ∩ 𝜋 | = 1. If |𝐴 ∩ 𝜋 | ≠ 1 it
cannot increase. ◦
Dependency Adequacy (✓) When we add a bounded set indicat-
ing dependency 𝐵 𝑗 = ⟨𝐴, |𝐴|, |𝐴|, |𝐴|⟩ to 𝑩, the score again cannot
decrease. However, it can increase only if there is some 𝑎 ∈ 𝜋 with
𝑎 ∈ 𝐴 𝑗 and |𝐴| = ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑢 𝑗 = |𝐴|, i.e., if 𝐴 ⊆ 𝜋 . If 𝐴 ⊈ 𝜋
it cannot increase. ◦
Ballot-Splitting Monotonicity (✓) Let 𝐵 𝑗 ∈ 𝑩 be a suitable set
according to the definition of ballot-splitting monotonicity. Note
that since ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 , each 𝑎 ∈ 𝐴 𝑗 ∩ 𝜋 contributes 1 to the
score. By adding ⟨{𝑎}, 1, 1, 1⟩ to the ballot, each 𝑎 still contributes 1
to the score. However, for each𝑏 ∈ 𝜋\𝐴 there is no new bounded set
concerning 𝑏, so they score just as before, too. All other alternatives
in A score 0 just as before. Thus, the score is unchanged. ◦

Now we turn to the counterexample showing that substitution
adequacy, zero adequacy, and score monotonicity are failed. Con-
sider A = {𝑎1, 𝑎2, 𝑎3} and 𝑩 = (⟨{𝑎1, 𝑎2}, 1, 1, 2⟩). Let 𝜋 = {𝑎1}.
Note that 𝑎2 is a suitable substitute. Let 𝜋 ′ = 𝜋 ∪ {𝑎2}. Since
scoreapp (𝑩, 𝜋) = 1 > scoreapp (𝑩, 𝜋 ′) = 0, substitution is failed. We
also see that a score of 0 is possible even though all upper and lower
bound are respected for the committee 𝜋 ′. Thus, zero adequacy is
failed. Finally, since adding 𝑎2 to 𝜋 decreased the score though the
bounds are respected, score monotonicity is also failed. □
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3.3 Impossibility and Possibility Results
The fact that scoreavg , scoremin, scoremax , and scoreapp fail substitu-
tion but satisfy approval adequacy, and that scoretot satisfies sub-
stitution but fails approval adequacy, is actually a hint at a bigger
result: it is impossible to satisfy both approval adequacy and sub-
stitution adequacy at the same time.
Theorem 8. No scoring function satisfies approval adequacy and
substitution adequacy simultaneously.

Proof. Let score be a scoring function that satisfies approval
adequacy and substitution. Throughout the proof, we will consider
an instance with three alternatives: A = {𝑎1, 𝑎2, 𝑎3}. Let us first
look at the following profile 𝔅 composed of the single voter’s ballot:

𝑩 = (⟨{𝑎1, 𝑎3}, 1, 1, 2⟩ , ⟨{𝑎2, 𝑎3}, 1, 1, 2⟩) .
For 𝜋1 = {𝑎3} approval adequacy implies score(𝑩, 𝜋1) = 1. Note that
𝑎1 is a suitable substitute for 𝜋1 as defined in Definition 5. Thus, for
𝜋 ′

1 = {𝑎1, 𝑎3} must hold score(𝔅, 𝜋 ′
1) = score(𝔅, 𝜋1) = 1 in order

for score to satisfy substitution. Interestingly, alternative 𝑎2 is a
suitable substitute for 𝜋 ′

1. Thus, for 𝜋 ′′
1 = {𝑎1, 𝑎2, 𝑎3} substitution

entails that score(𝔅, 𝜋 ′′
1 ) = score(𝔅, 𝜋 ′

1) = 1. Consider now the
committee 𝜋2 = {𝑎1, 𝑎2}. Approval adequacy on 𝑩 and 𝜋2 implies
score(𝑩, 𝜋2) = 2. Alternative 𝑎3 is a suitable substitute here, thus,
for 𝜋 ′

2 = {𝑎1, 𝑎2, 𝑎3} we have score(𝔅, 𝜋 ′
2) = score(𝔅, 𝜋2) = 2. Since

𝜋 ′
2 = 𝜋 ′′

1 , the contradiction between is immediate. □

This impossibility is quite stringent as it prevents us from model-
ing what we had in mind in the first place. One way to circumvent
it is to restrict the ballots. For instance, whenever bounded sets
are not overlapping, i.e., no alternative appears in more than one
bounded set per ballot, then all 𝜑-based scoring functions coincide
and thus satisfy both substitution and approval adequacy (and also
any axiom that is satisfied by at least one of them).
Theorem 9. For every ballot 𝑩 such that for any two bounded sets
𝐵 𝑗 and 𝐵 𝑗 ′ in 𝑩, we have 𝐴 𝑗 ∩𝐴 𝑗 ′ = ∅, scoremin, scoremax , scoreavg ,
and scoretot coincide and thus all satisfy approval, substitution, in-
compatibility, dependency, and zero adequacy, as well as ballot-size,
ballot-splitting, and score monotonicity.

Another approach to “escape” the impossibility would be to
weaken the axioms. We first investigate weak-substitution adequacy
that requires the score not to improve when adding a substitute to
the committee—instead of simply scoring the same.
Definition 11 (Weak-Substitution Adequacy). A scoring function
score satisfies weak-substitution adequacy if for every ballot 𝑩 and
committee 𝜋 for which there exists an alternative 𝑎★ ∈ A\𝜋 such that
for all bounded sets𝐵 𝑗 ∈ 𝑩 |𝑎★ , it is the case that 𝑠 𝑗 ≤ |𝐴 𝑗∩𝜋 | ≤ 𝑢 𝑗−1,
we have score(𝑩, 𝜋) ≥ score(𝑩, 𝜋 ∪ {𝑎★}) .
It is clear that substitution adequacy implies weak substitution
adequacy. Furthermore, it is easy to see that weak-substitution
adequacy together with score monotonicity implies substitution
adequacy. We can conclude that no scoring function can satisfy
score monotonicity, weak-substitution, and approval adequacy at
the same time. Finally, note that the counterexamples used to show
that scoreavg , scoremin, and scoremax fail substitution adequacy also
show that these scoring functions fail weak-substitution adequacy.
We can however prove that scoreapp satisfies it.

Table 1: Summary of our axiomatic analysis. Suits show the
impossibility that all axioms with same suit are combined.

scorex min max avg tot app

App. Adeq. ♣ ♠ ✓ ✓ ✓ ✗ ✓

Subst. Adeq. ♣ ✗ ✗ ✗ ✓ ✗

Incomp. Adeq. ✓ ✓ ✓ ✓ ✓

Dep. Adeq. ✓ ✓ ✓ ✓ ✓

Zero Adeq. ✗ ✓ ✓ ✓ ✗

Weak-Subst. Adeq. ♠ ✗ ✗ ✗ ✓ ✓

Weak-App. Adeq. ✓ ✓ ✓ ✗ ✓

Ballot-Size Mon. ✗ ✓ ✗ ✓ ✓

Ballot-Split. Mon. ✓ ✓ ✓ ✓ ✓

Score Mon. ♠ ✗ ✗ ✗ ✓ ✗

Proposition 10. The scoring function scoreapp satisfies weak-sub-
stitution adequacy.

Proof. Consider a substitute 𝑎★ ∈ A\𝜋 with 𝑠 𝑗 ≤ |𝐴 𝑗 ∩𝜋 | < 𝑢 𝑗

for all 𝐵 𝑗 ∈ 𝑩 |𝑎★ . If 𝑎★ is added to 𝜋 , it holds that |𝐴 𝑗 ∩(𝜋∪{𝑎★}) | =
|𝐴 𝑗 ∩ 𝜋 | + 1 for all 𝐵 𝑗 ∈ 𝑩 |𝑎★ and |𝐴 𝑗 ∩ (𝜋 ∪ {𝑎★}) | = |𝐴 𝑗 ∩ 𝜋 | for
all other 𝐵 𝑗 . Together with the fact that 𝑎★ is a substitute follow
the following two facts. (1) If for an alternative 𝑎 ∈ 𝜋 exists no
set 𝐵 𝑗 ∈ 𝑩 |𝑎 s.t. ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 there is also no set 𝐵 𝑗 ∈ 𝑩 |𝑎
s.t. ℓ 𝑗 ≤ |𝐴 𝑗 ∩ (𝜋 ∪ {𝑎★}) | ≤ 𝑠 𝑗 . (2) There is no set 𝐵 𝑗 ∈ 𝑩 |𝑎★ s.t.
ℓ 𝑗 ≤ |𝐴 𝑗 ∩ (𝜋 ∪ {𝑎★}) | ≤ 𝑠 𝑗 . Thus, the score does not increase. □

We now consider weakening approval adequacy. The impos-
sibility result is largely based on the fact that bounded sets are
overlapping. One could thus weaken approval adequacy to require
scoring functions to coincide with the usual approval score only
when bounded sets are not overlapping.

Definition 12 (Weak-Approval Adequacy). A scoring function score
satisfies weak-approval adequacy if for every ballot 𝑩 and committee
𝜋 the following two conditions hold:

(1) score(𝑩, 𝜋) ≤ |
( ⋃
𝐵 𝑗 ∈𝑩

𝐴 𝑗

)
∩ 𝜋 |;

(2) score(𝑩, 𝜋) = |
( ⋃
𝐵 𝑗 ∈𝑩

𝐴 𝑗

)
∩ 𝜋 | whenever it holds that both

ℓ 𝑗 ≤ |𝐴 𝑗 ∩ 𝜋 | ≤ 𝑠 𝑗 and 𝐴 𝑗 ∩𝐴 𝑗 ′ = ∅ for all 𝐵 𝑗 , 𝐵 𝑗 ′ ∈ 𝑩.

Note that approval adequacy implies weak-approval adequacy.
Can we find a scoring function satisfying both weak-approval

and substitution adequacy at the same time? Yes, we could use
the following scoring function, that essentially forbids overlapping
ballots:

score(𝑩, 𝜋) =
{

scoretot (𝑩, 𝜋) if 𝐴 𝑗 ∩𝐴 𝑗 ′ = ∅ ∀𝐵 𝑗 , 𝐵 𝑗 ′ ∈ 𝑩

0 otherwise.

It is clear that this function satisfies substitution adequacy since
scoretot does (for the first case), and any constant scoring function
does as well (for the second case). Weak-approval adequacy is also
trivially satisfied. Indeed, the above scoring function scores non-0
only for profiles satisfying the second condition of weak-approval
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adequacy. This scoring function is quite artificial but proves pos-
sibility. We did not find an intuitively appealing scoring function
that would satisfy both weak-approval and substitution adequacy.

4 EXPRESSIVENESS OF BOUNDED APPROVAL
BALLOTS

We now want to study how expressive bounded approval ballots are.
Because the way they are defined, we cannot discuss expressiveness
of bounded approval ballots on their own, but need to consider them
together with some scoring function.

In the following, we first study which kind of weak ordinal
rankings over subsets of alternatives a bounded approval ballot—
paired with a scoring function—can induce. Then, we show that the
additional expressiveness can be crucial for the voters’ satisfaction,
when compared to standard approval ballots.

4.1 Limits to Expressiveness
For a given scoring function score, we study the limits of what a
bounded approval ballot 𝑩 can express. We work under the assump-
tion that voters have ordinal preferences over committees and we
measure expressiveness through the type of rankings over commit-
tees that can be induced by the scoring function, when ranking all
committees based on their score for the ballot 𝑩. Formally, every
voter 𝑖 ∈ N is equipped with a weak ranking over committees in
C𝑘 denoted by ⪰𝑖 . We represent a weak ranking ⪰ over C𝑘 as an
ordered partition ⪰= (𝐶1

⪰,𝐶
2
⪰, . . .) of C𝑘 where 𝐶1

⪰ contains the
most preferred committees, and so on. The rank of a committee 𝜋

in ⪰—denoted by rank⪰ (𝜋)—is the value 𝑗 ∈ N such that 𝜋 ∈ 𝐶
𝑗
⪰ .

For a given scoring function score and bounded approval ballot 𝑩,
let ⪰score

𝑩 be the weak order over C𝑘 such that for all 𝜋, 𝜋 ′ ∈ C𝑘 ,
𝜋 ⪰score

𝑩 𝜋 ′ if and only if score(𝑩, 𝜋) ≥ score(𝑩, 𝜋 ′). A scoring
function can represent such a ranking ⪰ over C𝑘 if there exists a
bounded approval ballot 𝑩 such that ⪰score

𝑩 and ⪰ coincide. Every-
thing is now set for us to delve into expressiveness. Our findings
are summarized in Table 2. We start with arbitrary orders over C𝑘 .

Proposition 11. The scoring functions scoreavg and scoretot can
represent any arbitrary weak order ⪰ over C𝑘 for any 𝑘 ≥ 2, while
scoremin, scoremax , and scoreapp cannot.

Proof. Let ⪰ be an arbitrary ranking over C𝑘 . To show that
scoretot can represent ⪰ we construct a ballot 𝑩 as follows. For every
𝜋 ∈ C𝑘 , we add to 𝑩 as many copies of ⟨𝜋, 𝑘, 𝑘, 𝑘⟩ as

(𝑚
𝑘

)−rank⪰ (𝜋).
Since for 𝜋, 𝜋 ′ ∈ C𝑘 , it holds that scoretot (⟨𝜋, 𝑘, 𝑘, 𝑘⟩ , 𝜋 ′) is 𝑘 if
𝜋 = 𝜋 ′ and zero if 𝜋 ≠ 𝜋 ′, the result then follows.

For scoreavg , we extend the ballot described above, to bypass
normalization, by enforcing that each alternative appears in an
equal number of bounded sets. In particular, for all 𝜋 ∈ C𝑘 , we
add sufficiently many copies of ⟨𝜋, 𝑘 − 1, 𝑘 − 1, 𝑘 − 1⟩ to 𝑩, such
that every 𝜋 ∈ C𝑘 appears in exactly

(𝑚
𝑘

)
bounded sets in 𝑩. This

ensures that each alternative appears in exactly 𝛾 =
( 𝑚
𝑘−1

) · (𝑚
𝑘

)
bounded sets. We thus have 𝛾 · scoreavg (𝑩, 𝜋) = scoretot (𝑩, 𝜋) for
all 𝜋 ∈ C𝑘 . The claim is thus derived from the above.

The claim for scoremax and scoreapp follows from Proposition 12
(see below). For scoremin, we can use a counting argument. Assume
⪰ is a strict ranking over C𝑘 , i.e., we have |⪰| = (𝑚

𝑘

)
. We claim

that for any fixed ballot 𝑩, scoremin (𝑩, 𝜋) can take at most
(𝑘2+𝑘+1

𝑘

)

Table 2: Expressiveness of the scoring functions.

scorex min max avg tot app

Arbitrary ✗ ✗ ✓ ✓ ✗

Trichotomous ✓ ✗ ✓ ✓ ✗

Dichotomous ✓ ✓ ✓ ✓ ✓

different values for different 𝜋 ∈ C𝑘 . This is because for a given
bounded set 𝐵 = ⟨𝐴, ℓ, 𝑠,𝑢⟩, the size of the image of 𝜑 (𝐵, 𝜋), where
𝜋 is the input, is at most 𝑘2 + 2. Indeed, 𝜑 (𝐵, 𝜋) can be either 0, 1
or 𝑠 𝑗/|𝐴 𝑗∩𝜋 | and that there are 𝑘2 possible values for the latter (as
if 𝑠 𝑗 > 𝑘 , then 𝜑 (𝐵, 𝜋) ∈ {0, 1}). For all 𝑘 alternatives in 𝜋 , scoremin
takes the minimum of the relevant 𝜑 (𝐵, 𝜋) and then sum them up.
The final score is then the sum of 𝑘 (not necessarily distinct) values
from a set of 𝑘2 + 2 ones. Hence, the number of possible values for
scoremin (and any 𝜋 ∈ C𝑘 ) is bounded upwards by the number of
multisets with cardinality 𝑘 , taken from a set of size 𝑘2+2. The latter
is well known to be

(𝑘2+𝑘+1
𝑘

)
, which is smaller than |⪰| = (𝑚

𝑘

)
as

soon as𝑚 > 𝑘2 + 𝑘 + 1. This concludes the counting argument. □

To understand where the limit in expressiveness lies for scoremin,
scoremax , and scoreapp we focus on specific classes of orders over C𝑘 .
A weak order ⪰ is said to be dichotomous if |⪰| = 2, and trichotomous
if |⪰| = 3. We show that scoremin can capture the former, while
scoremax and scoreapp can only capture the latter.

Proposition 12. The scoring function scoremin can represent any
trichotomous weak order ⪰ over C𝑘 for any 𝑘 ≥ 2, while scoremax
and scoreapp cannot.

Proof. To represent a trichotomous order ⪰= (𝐶1
⪰,𝐶

2
⪰,𝐶

3
⪰) over

C𝑘 with scoremin, we construct a ballot 𝑩 as follows. First, we add
⟨{𝑎}, 1, 1, 1⟩ for each 𝑎 ∈ A to 𝑩. For now, any committee 𝜋 ∈ C𝑘
would have a score of 𝑘 . We diminish the score of all committees
𝜋 ∈ 𝐶2

⪰ by adding ⟨𝜋, 1, 𝑘 − 1, 𝑘⟩ to𝑩. Note that this does not impact
the score of any committee 𝜋 ∈ 𝐶1

⪰ . For any 𝜋 ∈ C𝑘 , it now holds
that each 𝑎 ∈ 𝜋 receives a score of one if and only if there is no
⟨𝜋, 1, 𝑘 − 1, 𝑘⟩ ∈ 𝑩, and 𝑘−1/𝑘 otherwise. Finally, for any 𝜋 ∈ 𝐶3

⪰ ,
we add ⟨𝜋, 1, 𝑘 − 1, 𝑘 − 1⟩ to 𝑩, so that all these committees score 0.
We thus have three levels of score: 𝑘 for committees in 𝐶1

⪰ , 𝑘−1/𝑘
for committees in 𝐶2

⪰ and 0 for committees in 𝐶3
⪰ .2

For scoremax , consider A = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑘 = 2 and the order ⪰
such that 𝐶1

⪰ = {{𝑎, 𝑏}, {𝑐, 𝑑}}, 𝐶2
⪰ = {{𝑎, 𝑑}, {𝑏, 𝑐}} and 𝐶3

⪰ =
{{𝑎, 𝑐}, {𝑏, 𝑑}}. Consider an arbitrary ballot 𝑩. It is important to
note that in this case, the score of a committee would always be
a multiple of 1/2 (because 𝜑 (𝐵, 𝜋) ∈ {0, 1/2, 1} for all 𝐵 and 𝜋 ). If
scoremax (𝑩, {𝑎, 𝑐}) = scoremax (𝑩, {𝑏, 𝑑}) = 0, then 𝑩 may not con-
tain a bounded set with a lower bound of 1. Hence, the remaining
committees can all either receive a score of 0 or 2, which cannot lead
to a trichotomous order. Next, it is easy to see, that no committee
{𝑥,𝑦} ∈ C𝑘 can achieve a score of 1/2. The only way 𝑥 can receive
a score of 1/2, is with ⟨{𝑥,𝑦}, 1, 1, 2⟩ and then 𝑦 necessarily yields
a score of at least 1/2, too. Hence, in order to achieve said order-
ing, it must hold that scoremax (𝑩, {𝑎, 𝑐}) = scoremax (𝑩, {𝑏, 𝑑}) = 1
and scoremax (𝑩, {𝑎, 𝑑}) = scoremax (𝑩, {𝑏, 𝑐}) = 3/2. For the latter to
2Note that this would not work for 𝑘 = 1 as in this case, scoremin (𝑩, 𝜋 ) can only take
two values—0 or 1—for any 𝑩 and 𝜋 .
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hold (i.e., an alternative to yield a score of 1/2), both ⟨{𝑎, 𝑑}, 1, 1, 2⟩
and ⟨{𝑏, 𝑐}, 1, 1, 2⟩ must be added to the ballot. This is a contradic-
tion, because then {𝑎, 𝑐} yields a score of two.

For scoreapp the situation is similar to scoremax . To see that we
are not able to represent trichotomous preferences, we can use
the same counterexample, where only the first case applies. In
particular, for trichotomous rankings and 𝑘 = 2 we can always
assume that the score for the least preferred committees must be
zero, as scoreapp (𝑩, {𝑥,𝑦}) ∈ {0, 1, 2} holds by design. □

Proposition 13. The scoring functions scoremax and scoreapp can
represent any dichotomous weak order ⪰ over C𝑘 .

Proof. To represent any dichotomous order ⪰ with scoremax or
scoreapp , we may add the bounded set ⟨𝜋, 𝑘, 𝑘, 𝑘⟩ ∈ 𝑩 to the ballot,
for each committee 𝜋 ∈ 𝐶1

⪰ . For both scoring functions, the score
for a committee 𝜋 would then be 𝑘 if 𝜋 ∈ 𝐶1

⪰ or 0 otherwise. □

4.2 Comparison to Approval Ballots
Bounded approval ballots are our proposal to provide voters more
expressive ballots. It is clear that simple approval ballots cannot
express more than bounded approval ballots, since the latter gener-
alizes the former. But are approval ballots really so much weaker
than bounded approval ballots? In the following we illustrate that
approval ballots—even strategic ones—can lead to much worse re-
sults for the voters than bounded approval ballots.

Bounded approval ballots also impose a restriction on the pref-
erences that can be expressed. This is why classical measures like
distortion [17] cannot be used here to compare bounded and stan-
dard approval ballots. We will instead show with the following
examples that (i) standard approval ballots are not sufficiently ex-
pressive, compared to bounded ones, especially in cases where
communication between the voters is impossible, and (ii) the loss
of expressiveness can largely impact on the voters’ satisfaction.

Example 14. (Pure Substitution) Assume that for every voter 𝑖 , their
preferences are defined such that there exists a set of alternatives
𝐴𝑖 ⊆ A for which 𝑖 is unsatisfied whenever 𝜋 ∩ 𝐴𝑖 = ∅ and fully
satisfied as soon as 𝜋 ∩𝐴𝑖 ≠ ∅. Note that 𝑖’s preferences can easily
be expressed by a single bounded set ⟨𝐴𝑖 , 1, 1, |𝐴𝑖 |⟩. Now, if voter 𝑖
were asked to submit a standard approval ballot, the only reasonable
ballot to submit would be 𝐴𝑖 .

Let the number of voters 𝑛 be such that 𝑛 is divisible by 𝑘 , and
let A = {𝑎1, . . . , 𝑎𝑘2 }. Consider the profile 𝔅 of bounded approval
ballots in which 𝑛/𝑘 voters submit ⟨{𝑎1, . . . , 𝑎𝑘 }, 1, 1, 𝑘⟩, 𝑛/𝑘 voters
submit ⟨{𝑎𝑘+1, . . . , 𝑎2𝑘 }, 1, 1, 𝑘⟩, and so on. If standard approval bal-
lots were used, the first group of voters would approve {𝑎1, . . . , 𝑎𝑘 },
the second group {𝑎𝑘+1, . . . , 𝑎2𝑘 }, and so on. Overall, all alternatives
would be approved by the same number of voters. Thus, if we were
to select a committee of size𝑘 that maximizes the social welfare3, for
a suitable tie-breaking rule4, {𝑎1, . . . , 𝑎𝑘 } would be selected using
standard approval ballots. This fully satisfies the first voter block,
but no other voters. In the case of bounded approval ballots, we have
3For a profile of standard approval ballots (𝐴𝑖 )𝑖∈N , the social welfare for a committee
𝜋 is defined as

∑
𝑖∈N |𝐴𝑖 ∩𝜋 |. For a profile of bounded approval ballots 𝔅 with scoring

function score, the social welfare of a committee 𝜋 is defined as
∑

𝑖∈N score (𝔅, 𝜋 ) .
4Note that we could also add an extra voter to the first group to make tie-breaking
unnecessary. However, the result would then only hold asymptotically for large 𝑛.

score(𝔅, {𝑎1, . . . , 𝑎𝑘 }) = 𝑛/𝑘, but score(𝔅, {𝑎𝑘 , 𝑎2𝑘 , . . . , 𝑎𝑘2 }) = 𝑛
for any𝜑-based scoring function score. Thus, {𝑎𝑘 , 𝑎2𝑘 , . . . , 𝑎𝑘2 } may
satisfy all voters. △

The example above shows that already for preferences incorpo-
rating approval and substitution, it is possible that only a fraction
of the voters that could be fully satisfied are satisfied in simple
approval voting. This becomes even worse with incompatibilities.

Example 15. (Pure Incompatibility) Assume that for every voter
𝑖 , their preferences are defined such that there exists a set of alter-
natives 𝐴𝑖 ⊆ A for which 𝑖 is unsatisfied whenever |𝜋 ∩ 𝐴𝑖 | ≠ 1
and fully satisfied otherwise. Note that voter 𝑖’s preferences can be
expressed by a bounded set ⟨𝐴𝑖 , 1, 1, 1⟩.

Let 𝑛 ≥ 3, 𝑘 = 2, and A = {𝑎, 𝑏, 𝑐, 𝑑}. Assume that the first
𝑛 − 1 voters submit the ballot ⟨{𝑎, 𝑏}, 1, 1, 1⟩, and the last voter sub-
mits ⟨{𝑐, 𝑑}, 1, 1, 1⟩. It is clear that according to each of our scoring
functions the committees maximizing the social welfare are {𝑎, 𝑐},
{𝑎, 𝑑}, {𝑏, 𝑐}, or {𝑏, 𝑑}. Each of them fully satisfies all voters. Under
standard approval ballots it is reasonable to assume that the first
𝑛 − 1 voters would submit either {𝑎}, {𝑏}, or {𝑎, 𝑏}, and the last
one either {𝑐}, {𝑑}, or {𝑐, 𝑑}. Then, unless the first 𝑛 − 1 voters
all approve of only 𝑎 or only 𝑏 (which is unlikely if communica-
tion is impossible), the committee {𝑎, 𝑏} would maximize the social
welfare. Note that it satisfies no voter at all. △

As voters cannot express incompatibilities in approval ballots, it
is possible that all voters dislike the outcome, but there exists an
outcome fully satisfying every voter. This massive difference comes
solely from the bit of extra information in the bounded ballots.

5 CONCLUSIONS
We proposed bounded approval ballots as an extension to standard
approval ballots. Bounded ballots are cognitively simple to use, and
provide a reasonable surplus in expressiveness. Voters can easily
express not only approval, but also substitution effects, incompat-
ibilities, and dependencies between alternatives. We believe that
these are the most common inter-alternative effects which voters
want to express in multiwinner voting. Voters have indeed a high
incentive to provide the extra information in bounded approval bal-
lots, as it may greatly improve their satisfaction with the outcome.

We defined several scoring functions to evaluate bounded ap-
proval ballots. Our axiomatic study discovered that maintaining
a behavior similar to that of standard approval ballots and simul-
taneously capturing substitution effects is generally impossible.
This however seems to be a general problem that is not specific to
bounded approval ballots. The most convenient way to circumvent
the impossibility is to require bounded sets within a voter’s ballots
to be disjoint.

Of course, we want our ballot format to be used and tested in
real elections. This will be the ultimate test to find out whether the
ballot format is both simple and expressive enough to provide a real
benefit for the voters. To allow interested research teams to make
their own tests, we provide a prototype web-application in the
following GitHub repository: github.com/claussmann/GoodVotes.
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CHAPTER 11

CONCLUSION

In this thesis, we studied the isolated research fields multiwinner elections, participatory
budgeting, and judgment aggregation, as well as their relationships to one another. We
identified five reoccurring research goals in Chapter 3, revolving around axiomatic anal-
ysis (Q1), complexity of winner determination (Q2), complexity of manipulative interfer-
ence (Q3), relationships between rules (Q4), and ballot design (Q5). Reflecting back on
our initial research goals, we contributed to partly answering our predefined questions a
total of 23 times, spread over seven articles. Instead of repeating each contribution in-
dividually,54 let us rearrange our individual findings into a more holistic overview. To
do so, we first recap our results for each of our five research questions, one at a time.
In particular, in the upcoming Section 11.1 we briefly summarize, how addressing each
of those universal questions from different angles across multiple publications has led to
partial answers from quite multifaceted perspectives. Subsequently, in Section 11.2 we
complement our results, by showcasing how synergetic effects for selected results across
our works may lead to further valuable insights and novel implications. Lastly, we suggest
possible directions for future research in Section 11.3.

To improve readability throughout this chapter, we refer to Chapters instead of publica-
tions. Recall that we studied “Irresolute Approval-based Budgeting” [25] in Chapter 4,
“Complexity of Manipulative Interference in Participatory Budgeting” [22] in Chap-
ter 5, “Time-Constrained Participatory Budgeting Under Uncertain Project Costs” [24]
in Chapter 6, “Complexity of Sequential Rules in Judgment Aggregation” [13, 14] in
Chapter 7, “Collective Combinatorial Optimisation as Judgment Aggregation” [33, 34]
in Chapter 8, “Distortion in Attribute Approval Committee Elections” [21] in Chapter 9,
and “Bounded Approval Ballots” [23] in Chapter 10.

54Detailed discussions on each contribution can be found in Sections 4.4, 5.4, 6.4, 7.4, 8.4, 9.4, and 10.4,
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Chapter 11. Conclusion

11.1 Summary of Results
To recap, we addressed our initial isolated research questions as follows.

Question Q1: Axiomatic Analysis
We addressed Question Q1 in five publications, coming from five different angles. (i) In
Chapter 4 we extended the axiomatic study for participatory budgeting to an irresolute
context. (ii) In Chapter 7 we showed that the outcome for sequential judgment aggregation
rules does not change, when issues supported by an underlying rule are permuted to the
beginning of a processing order. (iii) In Chapters 6 and 10 we designed and studied use-
case specific axiomatic properties to evaluate the behavior and adequacy of our respective
models. (iv) In Chapter 8 we connected prominent judgment aggregation rules to its
specializations inside the realms of multiwinner elections and participatory budgeting,
allowing for an implicit transfer of axioms. Finally, (v) in Chapters 6 and 10 we were able
to prove impossibility results, which were shown to be escapable through approximation,
a weakening of axioms, or structural assumptions over the given preferences.

Question Q2: Complexity of Winner Determination
We addressed Question Q2 to varying degrees in all seven publications and tackled it
mostly from two directions. In all chapters, we explicitly or implicitly answered ques-
tions regarding the computational complexity of determining an outcome of a voting rule.
Although in some chapters, we only closed an open gap in related literature, in other
chapters (i.e., Chapters 4, 6, 7, 9, and 10), we also introduced some of the investigated
rules in the first place.

Question Q3: Complexity of Manipulative Interference
We addressed Question Q3 rather straightforwardly in three publications. To a prelimi-
nary degree, we studied questions revolving around the general existence of manipulative
control actions in participatory budgeting in Chapter 4. We extended this study in Chap-
ter 5, by complementing complexity results and providing a general upper bound proving
scheme for related problems of manipulative interference. In Chapter 7, we studied the
complexity associated with strategically altering the outcome of a sequential rule by con-
trolling the underlying processing order.

Question Q4: Relationships Between Rules
We addressed Question Q4 in six publications, showcasing how relationships between
rules appear in many forms, both within and across related research fields. Overall, our
findings can be grouped into three different categories. (i) Within specific research fields,
we showed in Chapter 4 that two separately studied rules in participatory budgeting coin-
cide. Interestingly, we were able to demonstrate a similar result in Chapter 7, connecting
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11.2. Further Implications

two large classes of sequential and non-sequential judgment aggregation rules. In Chap-
ter 10, we showed that different scoring rules for bounded approval ballots collapse to
the same function, in case bounded sets do not overlap. (ii) Across related disciplines,
our most significant results were obtained in Chapter 8. In particular, we showed that
many rules, studied independently in different research fields, can be simulated by well-
known judgment aggregation counterparts. In Chapter 4 we showed that three prominent
rules for participatory budgeting based on maximization coincide with restricted domains
of the budgeted maximum coverage problem [106]. Further, (iii) some rules introduced
in this thesis are generalizations of prominent aggregation methods. The frameworks
in Chapters 9 and 10 rely on preference formats, which extend common approval ballots.
Respective rules modeled for those frameworks generalize voting rules for approval-based
preferences in a similar way. In Chapter 6 we generalized the Method of Equal Shares to
also work with uncertain project costs. Lastly, in Chapter 8 we studied a natural exten-
sion for standard judgment aggregation to study weighted, asymmetric rules. Along with
a set of generalized rules, we also showed that applying the Chamberlin-Courant rule to
a symmetric setting is not particularly useful.

Question Q5: Ballot Design

Clearly, we addressed Question Q5 in Chapters 9 and 10.55 It is worth mentioning that
underlying assumptions and suitable use-cases for the two separate frameworks differ
strongly. For attribute approval elections we consider situations, where each alternative
is equipped with distinct and quantifiable quality criteria. Furthermore, the voters’ pref-
erences are not explicitly given over the set of candidates, but more about the qualities
desired to be present in a committee. In contrast, considering bounded approval ballots,
the voters’ preferences are more centered towards candidates. Yet, voters are able to spec-
ify more evolved preferences to express doubts about the composition of a committee.

11.2 Further Implications
To showcase how some seemingly unrelated results are interconnected, let us discuss what
(further) implications we may derive from looking at the collection of articles contained
in this thesis.

We showed in Chapter 7, that for the ranked agenda rule it is ΣP
2 -complete to decide,

whether there is a tie-breaking order, such that a distinct issue appears in the outcome
(even for a constant number of judges). In Chapter 8 we showed that the (asymmet-
ric) ranked agenda rule, instantiated to a participatory budgeting setting, coincides with
an efficiently computable greedy rule. Finally, in Chapter 5 we showed that problems

55Note that the framework for participatory budgeting with uncertain project costs, studied in Chapter 6,
does not fall into this question. Yet, an interesting direction for further research would be to consider
conditional approvals in this model (linked to the exact cost of a project).

159



Chapter 11. Conclusion

of manipulative interference are generally in NP for efficiently computable rules (such
as greedy rules), including a not explicitly studied variant of control by setting the tie-
breaking order. We conclude, there is a complexity gap for this form of manipulative
interference, when moving from participatory budgeting to judgment aggregation.

Of course, our results on manipulative interference in Chapter 5 interact with the ax-
iomatic analysis in Chapter 4, by complementing computational aspects. Vice versa, by
providing general upper bound schemes for rules and axiomatic properties yet to study,
we provide a foundation for systematically studying problems of winner determination
and manipulative interference.

For some isolated results, we can already derive implications across different frameworks
by themselves, by changing the perspective into a more global view. Take for example
our general upper bound proof schemes in Chapter 5. The scheme for winner determi-
nation does not rely on the overall combinatorial constraint in participatory budgeting.
Hence, for voting rules that select an outcome based on maximizing an efficiently com-
putable scoring function, this result translates to other collective combinatorial optimiza-
tion problems, such as multiwinner elections or judgment aggregation. Connecting this
observation to our generalized voting rules for attribute approval elections (see Chap-
ter 9), we can easily derive Θp

2 (or ∆p
2 for the weighted extension) as upper bound on the

existential, irresolute winner determination problem (for all studied rules). Analogously,
we may establish general upper bounds for our rules in Chapter 10 in the framework for
bounded approval ballots.

As pointed out by Kagita, Pujari, Padmanabhan, Aziz, and Kumar [102], for attribute ap-
proval elections we can easily model (standard candidate) approval ballots by considering
only one category, which holds exactly one unique attribute for each candidate. Hence,
generalized rules defined in Chapter 9 coincide with their specializations, when restricted
to common approval ballots. Although we did not study the attribute approval framework
from a computational point of view, the latter allows us to transfer hardness results di-
rectly. As an example, Sonar, Dey, and Misra [160] showed that in multiwinner elections,
it is Θp

2-hard to decide whether a given candidate is part of at least one outcome by the
Chamberlin-Courant rule. This hardness inherits directly to one of our attribute approval
rules. Similarly, coNP-hardness can be derived for the egalitarian approval voting rule,
following our computational results in Chapter 8.

By a modular definition, this generality regarding upper bounds in Chapter 5 also holds
for manipulative interference. The usage of an alteration function can easily be incorpo-
rated into similar settings. Further, if the number of valid alterations is a constant, finding
a suitable manipulative action cannot be significantly harder than the determination of an
outcome (by brute-forcing over a constant number of manipulative actions). Note that
we may also restrict the search space for an alteration function artificially through param-
eterization. Therefore, relevant implications can be derived easily using parameterized
complexity (see de Haan [93] for further reading).
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11.3. Closing Remarks and Future Work

Our axiomatic results for the hybrid greedy rules in Chapter 4 indicate that outputting the
most appealing result across multiple rules may interfere with keeping desirable proper-
ties. Even if all underlying rules satisfy an axiomatic property stating ’if a condition is
met, then an implication must hold’, switching between rules might lead to edge cases,
where only one satisfies the condition in the first place (while switching rules may prevent
the implication to unfold).

In some articles, we already utilized prior results. For example, in Chapter 7, we first
established an axiomatic result related to sequential judgment aggregation rules, namely
that permuting supported issues to the beginning of a processing order does not change the
outcome. Subsequently, this allowed us to identify a connection to non-sequential rules.

Recall that in Chapter 8, we used an instantiation result to inherit a matching lower bound
of ∆P

2 on the complexity for winner determination from our work on participatory budget-
ing in Chapter 5 to (weighted, asymmetric) judgment aggregation. Further, the identified
relationships between different rules can be transitive. By exploiting that the applied re-
duction relies on only one voter, the result immediately transferred from the weighted
median rule to the weighted egalitarian median rule (as both rules coincide in case there
is only one voter).

Similarly, in Chapter 4 we showed that two rules for participatory budgeting (based on
maximization) coincide with restricted domains of the budgeted maximum coverage prob-
lem. In Chapter 8, we also showed that exactly those budgeting rules are instances of
well-studied judgment aggregation rules. Hence, results on axiomatic properties and com-
putational complexity may be unified for a more complete picture in all three fields.

11.3 Closing Remarks and Future Work

As closing remarks, we discuss promising directions for future work. To motivate our
choice of suggested topics as outlook, let us begin with an analogy.

Imagine the vast field of theoretical computer science as an infinite dark space.
Eventually, exceptional minds acquired universal results, which shine as tiny stars
and illuminate their surroundings. At first, the emitted light was just strong enough
to not navigate in the pitch black. Over the years, computer science has become
one of the most active research fields. With every new result, the fuzzy boundary
between what we can and cannot see is pushed a little further away. The key results
of this thesis are no different. Building on a bright history of profound research in
the area, the main problems investigated in this thesis were fortunately all in plain
sight. Albeit little, the additional room illuminated by each new result is just enough
to see several exciting follow-up questions.
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Chapter 11. Conclusion

The publications contained in this thesis, are fairly multifaceted. Although any key result
on its own may stimulate the investigation of specific follow-up problems, let us turn
our attention to those directions whose potential insights might shine the brightest. In
particular, we suggest to pursue the following two lines of research for future work.

First, one of the arguably most important task in computational social choice is, to un-
derstand the axiomatic behavior of aggregation rules (we discuss the importance of this
task extensively in Section 3.1). Most significantly, (im)possibility [4] and characteriza-
tion [66, 133] results act as landmarks in the assessment of what we can and cannot model.
Apart from deriving respective results from scratch, in some cases we might be able to
incorporate well-known facts from related research into a new context. By identifying
relationships between (seemingly different) rules, research results may be extended or
unified (see Section 3.4). Recall from Chapter 3, that multiwinner elections, participatory
budgeting, and judgment aggregation can be perceived as frameworks for aggregating a
list of fixed-size binary strings into a set of such binary strings (abiding some constraint).
Following this simplicity, we strongly conjecture there are similar frameworks with sur-
prisingly diverse use-cases throughout both, theoretical research and practical applica-
tion. Hence, identifying those intersections for frameworks and rules can be a rewarding
research direction with the potential to tie various fields of research closer together.

Second, a huge part of this work revolves around determining the computational com-
plexity of problems relating to winner determination or manipulative interference (see
Sections 3.2 and 3.3). Yet, we analyzed related questions mostly from the angle of worst-
case (time) complexity. Although respective lower and upper bounds can be a crucial
indicator of whether or not a problem is generally solvable in practice, we need to di-
versify this study for a more complete picture. As an example, let us briefly discuss
prominent approaches from related literature for dealing with a computationally hard vot-
ing rule. Elkind, Lackner, and Peters [70] argue, that there are many elections where the
voters’ ballots abide a structure (e.g., a reasonable voter would only approve a continu-
ous interval of candidates if they can be ordered by a left-right political spectrum). In
turn, a restriction of the space of possible ballots might admit an efficiently computable
algorithm. Interestingly, structured preferences may increase the complexity for manipu-
lative interference in some cases, if the ballots must remain structured (e.g., after a valid
bribery attempt [109]). A similar approach, focusing on the output instead of the input,
is to further refine the set of feasible outcomes by restricting the constraint language. For
example, de Haan [91] shows that several (generally hard) problems regarding winner
determination in judgment aggregation become tractable if the constraint for feasibility
is a Horn formula or in 2-CNF. Yet another way to escape hardness, is by limiting the
remaining parameters (see de Haan [93] for an application of parameterized complexity
to judgment aggregation). For example, Talmon and Faliszewski [166] mention, there is
an implementation for one of their voting rules for participatory budgeting, that is only
exponential in the number of projects (and thus efficiently computable if this number
is a constant). Overall, studying computational aspects for related questions from more
diverse directions may hold significant implications for practical applications.
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APPENDIX

OMITTED PROOFS AND
SUPPLEMENTARY RESULTS

In this appendix, we complement our works that have only been published as an ex-
tended abstract by providing formal proofs for our claims, as well as investigating some
additional results. In particular, this relates to our work on “Irresolute Approval-based
Budgeting” [25] (see Chapter 4) and our work on “Distortion in Attribute Approval Com-
mittee Elections” [21] (see Chapter 9).

A.1 Irresolute Approval-based Budgeting
In this section, we supplement our publication [25], by providing missing proofs (that
were omitted due to space constraints). As an intermediate result, we formally link the
budgeted maximum coverage problem by Khuller, Moss, and Naor [106] to our rules
based on maximization to adopt an approximation result.

Approximation Results

Proposition 3.1 (in [25]). Rg
|Bv |, R

g
1|Bv |>0

, Rg
c(Bv)

, Rp
|Bv |, R

p
1|Bv |>0

, and Rp
c(Bv)

do not
have a constant approximation factor.

Proof. Let us begin with the rules Rg
|Bv | and Rg

1|Bv |>0
. Consider a budgeting scenario

E1 = (A, V, c, ℓ) with A = {a0, a1, . . . , aℓ} and V = {v, v′, v1, v2, . . . , vℓ}. The cost
function is given by c(a0) = ℓ and c(ai) = 1 for every i ̸= 0, and the voters’ approval
ballots by Av = Av′ = {a0} and Avi = {ai} for all i ∈ [ℓ]. Then for max rules we obtain
Rm

|Bv |(E1) = Rm
1|Bv |>0

(E1) = {{a1, . . . , aℓ}} with a total satisfaction of ℓ, while given
greedy rules select the most expensive item in the first iteration, resulting in Rg

|Bv |(E1) =

Rg
1|Bv |>0

(E1) = {{a0}} with a total satisfaction of 2. Choosing ℓ arbitrarily large reveals,
that the considered greedy rules cannot achieve a constant approximation factor.
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We continue with Rg
c(Bv)

, by modifying the above budgeting scenario E1 as follows.
By replacing each voter vi ∈ V \ {v, v′} with ℓ identical clones, we obtain a budget-
ing scenario E2, where the max rule Rm

c(Bv)
results in a winning budget Rm

c(Bv)
(E2) =

{{a1, . . . , aℓ}} with a total satisfaction of ℓ2, while the greedy rule Rg
c(Bv)

selects the
most expensive item in the first iteration, resulting in Rg

c(Bv)
(E2) = {{a0}} with a total

satisfaction of 2ℓ. Again, ℓ can be chosen arbitrarily large.

Next, we show the claim for the remaining rules Rp
|Bv | and Rp

1|Bv |>0
. Let E3 = (A, V, c, ℓ)

be a budgeting scenario with A = {a1, a2}, V = {v0, . . . , vℓ+1}, c(a1) = 1 and c(a2) =
ℓ, and Avi = {a1} if i ≤ 1 and Avi = {a2} otherwise. Then for max rules we get
Rm

|Bv |(E3) = Rm
1|Bv |>0

(E3) = {{a2}} with a total satisfaction of ℓ, while the proportional
greedy rules select item a1, since it has the better satisfaction-to-cost ratio, resulting in
Rp

|Bv |(E3) = Rp
1|Bv |>0

(E3) = {{a1}} with a total satisfaction of 2.

Finally, for Rp
c(Bv)

we modify the budgeting scenario E3, such that a1 receives two ap-
provals and a2 receives one approval. It is easy to see, that {a2} maximizes the cost-based
satisfaction (with a value of ℓ), while {a1} is selected by the proportional greedy rule with
a satisfaction of two.

To show correctness for Proposition 3.2 in [25] (i.e., all three hybrid rules modeling a
(1 − 1/

√
e)-approximation), we illustrate how each of the max rules coincides with

a restricted version of the budgeted maximum coverage problem by Khuller, Moss, and
Naor [106], who present according approximation results. Formally, the search problem
BUDGETMAXCOVER is defined as follows.

Definition. The budgeted maximum coverage problem, denoted BUDGETMAXCOVER,
consists of a tuple M = (S, X, c, w, L), where X = {x1, . . . , xn} is a set of elements
associated with a weight function w : X → N, S = {S1, . . . , Sm} is a collection of
non-empty subsets of X associated with a cost function c : S → N, and L ∈ N is a
budget limit. The task is to output a set S ′ ⊆ S with

∑︁
S′∈S′ c(S ′) ≤ L, maximizing∑︁

x′∈X′ w(x′), whereX ′ =
⋃︁

S′∈S′ S ′ is the set of elements covered by S. Slightly abus-
ing notation we also write c(S ′) and w(S ′), but explicitly point out, elements covered
by multiple sets are only weighted once.

By M(c, w, λ) we denote all BUDGETMAXCOVER instances (S, X, c, w, L) where any
element x ∈ X is contained in at most λ sets. Excluding trivial instances, we define 1 ≤
λ ≤ n. Slightly abusing notation we will denote unit cost and unit weight problems as
M(1, w, λ) and M(c, 1, λ), implying that the given weight (respectively cost) function
always maps to a constant value of one. Additionally, we denote by M(c, c, 1) the
instances where the weight of any element is equivalent to the cost of its containing set.

Subsequently, we will show that the max rules presented in Section 2 in [25] coincide with
restricted domains of the BUDGETMAXCOVER problem. Here, equivalence means that
the set of winning bundles according to the max rule equals the maximizing subsets in
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the corresponding budgeted maximum coverage instance. Note that the unit cost and unit
weight problem M(1, 1, n) has been shown to be equivalent to the approval-based variant
of the Chamberlin-Courant voting rule (see Chamberlin and Courant [50]) by Skowron
and Faliszewski [159]. Since the budgeting method focusing on presence Rm

1|Bv |>0
is a

generalization of said voting rule, our approach will be quite similar and only differ in
expanding both problems by a cost function.

Proposition. The budgeting method Rm
1|Bv |>0

coincides with the unit weight budgeted
maximum coverage problem M(c, 1, n), while Rm

|Bv | coincides with M(c, 1, 1), and
Rm

c(Bv)
coincides with M(c, c, 1).

Proof. For Rm
1|Bv |>0

and any budgeting scenario E = (A, V, c, ℓ), we may construct a
unit weight budgeted maximum coverage instance M = (S, V, c, w, ℓ) ∈ M(c, 1, n),
where the collection S = {S1, . . . , Sm} represents the set of items A = {a1, . . . , am}
with Si = {v ∈ V | ai ∈ Av}. Slightly abusing notation we imply identical costs
c(ai) = c(Si). Vice versa, we may also reverse above construction to construct any
budgeting scenario E from any BUDGETMAXCOVER instance M ∈ M(c, 1, n). Slightly
abusing notation we claim Rm

1|Bv |>0
(E) = BUDGETMAXCOVER(M), where items in A

and sets in S have a one-to-one relation. By construction, for every B ⊆ A and B ⊆ S
with ai ∈ B ⇔ Si ∈ B it follows that c(B) = c(B). Additionally, voter v ∈ V is
covered by B if and only if Bv ̸= ∅. Equivalence follows, since each satisfied voter in E
contributes to the total satisfaction by exactly a value of one, just as each covered element
in M contributes to the total weight with a weight of exactly one. Since any bundle B
and its counterpart B yield the exact same score in respective frameworks, B is a winning
bundle in E if and only if B is a winning bundle in M .

For Rm
|Bv | and Rm

c(Bv)
along with any budgeting scenario E = (A, V, c, ℓ), note that we

can replace each voter v ∈ V with |Av| voters, each approving exactly one element of Av,
without changing the overall satisfaction with any given bundle B ⊆ A. By restricting
the construction for Rm

1|Bv |>0
by assuming λ = 1, it follows easily, that Rm

|Bv | is equivalent
to M(c, 1, 1). By additionally setting the weight function to the cost function, i.e., setting
w(v) to c({v}) for all v ∈ V , we derive equivalence of Rm

c(Bv)
to M(c, c, 1).

We identified that all presented max rules are special cases of BUDGETMAXCOVER

Hence, approximation algorithms for BUDGETMAXCOVER may be used for the max
rules as well. We refer to an optimized (1 − 1/e)-approximation by Khuller, Moss,
and Naor [106] for further reading. Alongside, the authors provide a (1 − 1/

√
e)-

approximation for BUDGETMAXCOVER, which compares a proportional greedy solution
to the first iteration of a greedy algorithm. By construction, this result is inherited by our
hybrid greedy rules.
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Axiomatic Analysis
Now, let us provide formal proofs for the axiomatic analysis of the hybrid greedy rules.
For ease of reading, we split the results across multiple propositions.

Limit Monotonicity

Proposition. All three hybrid greedy rules violate limit monotonicity.

Proof. First, let us demonstrate that it is be sufficient to present a counterexample for
Rh

c(Bv)
(while the results for the remaining hybrid greedy rules follow immediately). We

replace each voter v ∈ V with c(Av) substitutes, such that for each item a ∈ Av exactly
c(a) substitutes vote only for a. The overall score derived for any bundle and |Bv| (or
1|Bv |>0) coincides with the initial (cost-based) satisfaction for the unmodified election.
Hence, a violation of limit monotonicity transfers from Rh

c(Bv)
to Rh

|Bv | and Rh
1|Bv |>0

.

Now, consider a budgeting scenario E = (A, V, c, ℓ), with A = {a1, a2, a3}, c(a1) =

c(a2) = 5 and c(a3) = 6, V = {v1, v2, v3}, Av1 = A, Av2 = {a1, a3} and Av3 = {a1},
and ℓ = 10. It is easy to see that Rh

c(Bv)
(E) = {{a1, a2}}, as a1 must be selected both by

a greedy and proportional greedy rule. If the budget limit is increased to ℓ′ = 11, the only
winning bundle is Rh

c(Bv)
(E ′) = {{a1, a3}}.

Discount Monotonicity

Proposition. All three hybrid greedy rules violate discount monotonicity.

Proof. For Rh
|Bv | and Rh

1|Bv |>0
, consider a budgeting scenario E, consisting of four items

A = {a1, a2, a3, a4} with c(a1) = 5, c(a2) = c(a3) = 1, and c(a4) = 3, and a budget
limit ℓ = 7. A total of 15 voters approve a single item each, such that a1 is approved
by five voters, a2 and a3 are approved by three voters each and a4 is approved by the
remaining four voters. By construction each bundle B admits the same satisfaction under
both scoring functions, i.e.,

∑︁
v∈V |Bv| =

∑︁
v∈V 1|Bv |>0. Now, the only winning bundle

{a1, a2, a3} with a total satisfaction of 11 is a greedy solution. Yet, when reducing the
cost of a1 to c(a1) = 4, the only winning bundle {a2, a3, a4} is a proportional greedy
solution with a total satisfaction of ten (while the only greedy solution is {a1, a4} with a
satisfaction of only nine). Since the discounted item a1 is only budgeted in the original
scenario, discount monotonicity is violated.

For Rh
c(Bv)

, the counterexample for Rg
c(Bv)

, provided by Talmon and Faliszewski [166] in
an extended version [165], also holds for the hybrid rule with cost-based satisfaction.
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Splitting Monotonicity

Proposition. The hybrid rules Rh
c(Bv)

and Rh
1|Bv |>0

violate splitting monotonicity.

Proof. To see that Rh
c(Bv)

does not satisfy splitting monotonicity, consider a budgeting
scenarioE, consisting of three items a1, a2, and a3 with c(a1) = 5 and c(a2) = c(a3) = 8,
a budget limit of ℓ = 8, and three voters, two of them approving every item and one
voter approving a1 only. While for the given budgeting method {a2} is among the set
of winning bundles, when splitting a2 into two items with equal cost of four, the only
winning bundle is {a3}.

For Rh
1|Bv |>0

we provide a larger counter example, presented as the following table. There
are six items A = {a1, . . . , a6} and two sets of ten voters (each). The left side of the
table shows ten voters, three of them approving a1 and a2, three approving a2 and a3,
and four of them approving a1, a2, and a3. Analogously, on the right side there is one
voter approving a4, one approving a6, and respectively four voters each approving either
{a4, a5} or {a5, a6}. The budget limit is ℓ = 8 and costs are listed in the table below.

a1 a2 a3 a4 a5 a6 ℓ

c(ai) 2 6 2 1 5 1 8

3 3 1

3 3 4 4

4 4 4 4 4

1

Note that {a2, a4, a6} is the only greedy solution and {a4, a6, a1, a3} is the only propor-
tional greedy solution. Since both bundles have a total satisfaction of twenty, we arbitrar-
ily pick the greedy bundle containing a2 for Rh

1|Bv |>0
. Subsequently, we may split a2 into

two pieces at equal cost of three. In the modified instance, there are two greedy solutions,
both containing a split of a2 and item a5, resulting in a total satisfaction of eighteen. Con-
currently, {a4, a6, a1, a3} is still the only proportional greedy solution with strictly higher
satisfaction of twenty. Obviously, the latter does not contain a split of a2.

Proposition. The hybrid rule Rh
|Bv | satisfies splitting monotonicity.

To see that Rh
|Bv | satisfies splitting monotonicity, we will demonstrate a slightly stronger

result. Subsequently, we will show that the following claim implies the above proposition.

Claim C1. For any budgeting campaign E = (A, V, c, ℓ), let E ′ be a modified cam-
paign, where a distinct item a∗ ∈ A is split into A∗. Then, for x ∈ {g, p} and all
Bx ∈ Rx

|Bv |(E) with a∗ ∈ Bx it holds that Bx \ {a∗} ∪ A∗ ∈ Rx
|Bv |(E

′).
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Proof. For both greedy rules, consider a winning bundle Bx ∈ Rx
|Bv |(E) with a∗ ∈ Bx.

There must be at least one tie-breaking order, such that Bx is the (resolute) winning bun-
dle. When splitting a∗ into A∗, we adapt the tie-breaking order by replacing a∗ with A∗

(where the relative order of items in A∗ may be arbitrary). Note that each item in A∗ is
exactly as appealing as a∗ itself (scoring a satisfaction of one for each approving voter).
Hence, if we execute the greedy rule Rg

|Bv | on the modified election E ′ (given the mod-
ified tie-breaking order), items are added in the same order as in the original election,
resulting in bundle Bg \ {a∗} ∪ A∗. For the proportional greedy rule Rp

|Bv |, the argument
is similar. By splitting, the cost for each item in A∗ is reduced from the original cost of
item a∗. Therefore, each item in A∗ is even more appealing with respect to a proportional
selection method. Overall, items in A∗ may be selected earlier, while the available budget
limit cannot be exhausted to the point that later added items (from Bp) are prevented from
being implemented (since c(Bp) = c(Bp \ {a∗} ∪ A∗) holds).

Lemma. Claim C1 implies splitting monotonicity for Rh
|Bv |.

Proof. Finally, we prove that the correctness of Claim C1 implies splitting monotonicity.
LetE = (A, V, c, ℓ) be a budgeting campaign withBh ∈ Rh

|Bv |(E) and a∗ ∈ Bh. Note that
Bh must have been chosen among a greedy solution Bg ∈ Rg

|Bv |(E) and a proportional
greedy solutionBp ∈ Rp

|Bv |(E). If bothBg andBp contain a∗, the claim obviously implies
splitting monotonicity. Therefore, assume B,B′ ∈ {Bg, Bp} with a∗ ∈ B and a∗ ̸∈ B′

(by construction it follows that B = Bh). Following Claim C1, if a∗ is replaced by A∗,
then B \ {a∗} ∪A∗ is a winning bundle for one of the underlying (greedy or proportional
greedy) rules. In order to violate splitting monotonicity, all outcomes aggregated by the
other rule must yield a strictly higher score, without containing at least one item of A∗. If
this is the case for the modified election, then this must have already been the case in the
original election. Yet, we deduced that the score associated with B′ cannot be higher than
the score for B, because B was picked by the hybrid greedy rule. Hence, by contradiction
splitting monotonicity must be satisfied.

Merging Monotonicity

Proposition. All three hybrid greedy rules violate merging monotonicity.

Proof. For Rh
|Bv |, consider a budgeting scenario with six items A = {a1, . . . , a6}, a cost

function with c(ai) = 1 for all i ̸= 6 and c(a6) = 3, a budget limit ℓ = 3, and two voters
V = {v1, v2}, where v1 approves all items and v2 approves a6 only. Then,{a6} is the
only winning budget aggregated by the greedy rule and {a1, a2, a3} is a winning budget
aggregated by the proportional greedy rule. Due to a higher satisfaction, {a1, a2, a3} is
a winning budget for Rh

|Bv |. Now, when we merge a1 and a2 into a single item, the only
winning bundle {a3, a4, a5} does not contain the merged item.
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For Rh
1|Bv |>0

, consider a budgeting scenario with five items A = {a1, . . . , a5}, c(ai) = 1

for all i ̸= 5 and c(a5) = 3, a budget limit ℓ = 3, and four voters V = {v1, . . . , v4} with
Av1 = Av2 = {a2, a3, a4, a5}, Av3 = {a1, a5} and Av4 = {a1}. Then, it is easy to verify
that {a1, a2, a3} is a winning bundle, while merging a2 and a3 into a single item, the only
winning bundle is {a1, a4}.

For Rh
c(Bv)

, consider a budgeting scenario, such that A = {a1, . . . , a5} with c(a1) = 2,
c(a2) = c(a3) = 3, and c(a4) = c(a5) = 4, V = {v1, v2} with Av1 = A and Av2 = {a1},
and ℓ = 8. Note that there are multiple winning bundles, two of them being a greedy
solution Bg = {a4, a5} and a proportional greedy solution Bp = {a1, a5}, both having
a total satisfaction of eight. Being part of a winning bundle, we may merge a4 and a5.
Yet, the only winning bundle in the modified budgeting campaign is a proportional greedy
solution {a1, a2, a3} with a total satisfaction of ten.

A.2 Distortion in Attribute Approval
Committee Elections

In this section, we complement our publication [21], by providing missing proofs (that
were omitted due to space constraints), as well as supplementary results. For the ease of
reading, we assign alphanumerical labels only to those observations and theorems, which
are referenced explicitly.

Results on Distortion
Let us formally establish tight bounds on the distortion for each pair of our proposed
derivation methods and extended scoring functions. As a useful tool, let us first present
two simple observations.

Observation O1. For E ∈ E , a voter vi ∈ V , and any committee W ⊆ C it holds that
f si(bi,W ) ≥ f co(bi,W ) ≥ f cc(bi,W ). In case |W | = 1 holds, those scores coincide.

Observation O2. For each E ∈ E with |V | = 1, some individual scoring function
f y ∈ {f si, f cc, f co}, and a committee W ⊆ C it holds that f y

Σ(V,W ) = f y
min(V,W ).
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Candidate Approval Ballots

Theorem. For f si
Σ , f co

Σ , f cc
Σ , f si

min, f co
min and f cc

min the distortion associated with threshold-
approvals (aτ ) is unbounded for τ ̸= 1. This even holds for singlewinner attribute
approval elections (i.e., k = 1) with only two candidates (|C| = 2), two categories
(d = 2), and one voter (|V | = 1).

Proof. For τ = 0, the result follows immediately from the fact that W(σa0(E), k) =

Pk(C) holds for all E = (D,C, V ) ∈ E . In particular, for some specific E, where only
exactly one k-committee yields a positive score, the distortion becomes unbounded.

For τ = 2, consider a singlewinner attribute approval election E = (D,C, V ) with
D = D1 × D2 and Dj = {aj1, aj2} for j ∈ [2], C = {c1, c2}, and V = {v1}. Fur-
ther let a(c1) = (a11, a

2
2), a(c2) = (a11, a

2
1) and b1 = ({a12}, {a22}). Therefore it holds that

f si(b1, {c1}) = 1
2

and f si(b1, {c2}) = 0. Clearly, {{c1}} = F si
Σ(E, 1) is the only win-

ning committee. Yet, it holds that a2(b1) = ∅. Therefore, we may construct an election
E ′, where the attribute vectors associated with c1 and c2 are interchanged, resulting in
{{c2}} = F si

Σ(E
′, 1). Hence, it holds that {c2} ∈ W(σa2(E), 1), but f si

Σ(V, {c2}) = 0.
Following Observations O1 and O2, the result transfers to all of our scoring functions. For
any τ > 2, the proof can be adapted by extending the number of attribute categories.

For τ = 1, the distortion is bounded by the number of the attribute domains, as shown in
the subsequent theorems.

Theorem T1. For f si
Σ , f co

Σ and f cc
Σ , the distortion associated with threshold-approvals

(aτ ) is in Θ(d) for τ = 1.

Proof. Let us first establish the upper bound O(d) for all three scoring functions. Con-
sider any two attribute approval elections E = (D,C, V ) ∈ E and E ′ = (D′, C, V ′) ∈ E
with a1(E) = a1(E

′). Further, for any extended scoring function fΣ ∈ {f si
Σ, f

co
Σ , f

cc
Σ }, let

W ∈ FΣ(E, k) and W ′ ∈ FΣ(E
′, k).

We start by exploring f si
Σ . Let each voter vi ∈ V with ballot bi be represented by a voter

v′i ∈ V ′ with ballot b′i. As E and E ′ induce equivalent candidate approval ballots, if
derived from a1, exactly one of the following conditions holds for every candidate c ∈ C

and every pair of voters vi, v′i. Either c ̸∈ a1(bi) ∪ a1(b
′
i) or c ∈ a1(bi) ∩ a1(b

′
i), implying

that either f si(bi, {c}) = f si(b′i, {c}) = 0 or both f si(bi, {c}) > 0 and f si(b′i, {c}) > 0.
Having a committee W ′ that yields a maximum score for V ′, we can determine a lower
bound for the overall score that voters V associate with W ′, i.e., f si

Σ(V,W
′) is at least:

∑︂
v′i∈V ′

|{c ∈ W ′ | f si(b′i, {c}) > 0}|/d

=
∑︂

vi∈V
|a1(bi) ∩W ′|/d
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In contrast, an upper bound on the score for W ∈ F si
Σ(E, k) is given by f si

Σ(V,W ) ≤∑︁
vi∈V |a1(bi) ∩W |, bounding the distortion by d.

For f cc
Σ (V,W ′) and f cc

Σ (V,W ), a voter’s satisfaction with a committee that contains a
candidate she approves is at least 1/d and at most one. On the other hand, a voter who is
not represented at all in the outcome yields a satisfaction of zero. We derive a lower bound
on the satisfaction of V with W ′ and an upper bound on the score for W ∈ F si

Σ(E, k) as
follows, with a distortion of at most d:

f cc
Σ (V,W ′) ≥ |{vi ∈ V | a1(bi) ∩W ′ ̸= ∅}|/d
f cc
Σ (V,W ) ≤ |{vi ∈ V | a1(bi) ∩W | ≠ ∅}|

We can determine lower and upper bounds for f co
Σ (V,W ′) and f co

Σ (V,W ) analogously. As
for f cc

Σ the satisfaction for a voter with a given committee is at least 1/d and at most one if
at least one preferred candidate is present, and zero otherwise. Using the same reasoning
as before, the distortion is at most d.

For the lower bound Ω(d), consider E∗ = (D,C, V ) ∈ E with one voter V = {v1},
two candidates C = {c1, c2} and k = 1. Following Observation O2, it is sufficient to
argue for f si

Σ . From the perspective of v1, let c1 satisfy one category and c2 every category,
i.e., f si(b1, {c1}) = 1/d and f si(b1, {c2}) = 1. Then {c2} is a winning committee with
f si
Σ(V, {c2}) = 1. It holds that a1(b1) = C and we can construct a modified election, such

that c1 satisfies all the categories and c2 satisfies only one category. In this modified elec-
tion, the only winning committee is {c1}, but v1 approves all candidates in both candidate
approval elections (derived using a1). Overall it holds that {c1} ∈ W(σa1(E

∗), 1) with
score f si

Σ(V, {c1}) = 1/d = f si
Σ(V, {c2})/d. Thus, the distortion is at least d.

Theorem. For f si
min, f co

min and f cc
min, the distortion associated with threshold-approvals

(aτ ) with τ = 1 is in Θ(d).

Proof. The proof builds on the previous proof of Theorem T1 and is therefore only
sketched. Again, we begin with the upper bound. For f y

x ∈ {f co
min, f

cc
min}, note that the

satisfaction of the voters V with a committee W ′ is either zero (if at least one voter is
dissatisfied) or greater than zero. By the arguments presented in the previous proof, if W ′

is a winning committee in an election E ′, then W ′ has a positive score if and only if W ′

also yields a positive score in E with a1(E) = a1(E
′). Now, for a fixed voter, consider

the bounds on the scores for committees, which yield a score greater than zero. For f co
min,

and f cc
min the minimum score is 1/d and the maximum score is 1, yielding a distortion of

at most d. For f si
min and any voter, the number of approved candidates in W ′ divided by

d is a lower bound on the score of any winning committee in E. Again, this score can
be at most d times higher, if the candidates in W ′ only satisfy one attribute for the least
satisfied voter.
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For the lower bound, the election E∗ from the previous proof of Theorem T1 can be used
for f si

min, f co
min and f cc

min following Observation O1.

Cardinal Preferences

For each b ∈ D and c ∈ C, it holds that c(b, c) = f si(b, {c}) = f cc(b, {c}) by definition.
Thus, we derive the following observation.

Observation. The distortion for cardinal preferences, derived using method c, along
with f si

Σ , f si
min, f cc

Σ and f cc
min is one.

Yet, the score for f co cannot be broken down to single candidates. Hence, we investigate
the distortion for cardinal preferences (derived by using c), paired with f co

Σ or f co
min.

Theorem T2. The distortion for f co
Σ and cardinal preferences (c) is in Θ(min(k, d)).

Proof. We start with the upper bound O(min(k, d)). Consider any attribute approval
election E = (D,C, V ) ∈ E . Note that for any voter vi ∈ V , the satisfaction with a given
committee W ′ ∈ Pk(C) is bound downwards by

f co(bi,W
′) ≥ max

c∈W ′
c(bi, c). (EQ1)

The intuition is, that for vi there can be a candidate c ∈ W ′, who satisfies the most cate-
gories and all the other candidates c′ ∈ W ′ \ {c} only satisfy attributes in the same cate-
gories as c. LetE ′ = (D′, C, V ′) ∈ E be an attribute approval election with c(E) = c(E ′).
For any winning committee W ∈ F co

Σ (E, k) in the initial election E, we can deduce a
lower bound (t ∈ Q) for the score of any winning committee in E ′ using Equation (EQ1):

f co
Σ (V ′,W ′) ≥ f co

Σ (V ′,W ) ≥
∑︂

vi∈V
max
c∈W

c(bi, c) = t

Therefore, any winning committee W ′ ∈ F co
Σ (E ′, k) with respect to E ′ has a score of at

least t. Using the same argument from Equation (EQ1) again in the other direction, it
follows that f co

Σ (V,W ′) ≥ t. Hence, the distortion for f co
Σ and election E is at most

dist(c, f co
Σ , E) ≤ max

W∈F co
Σ (E,k)

∑︁
vi∈V min(

∑︁
c∈W c(bi, c), 1)∑︁

vi∈V maxc∈W c(bi, c)
. (EQ2)

The denominator follows directly from our previous steps. The intuition for the numerator
is, that for any voter vi ∈ V the satisfaction with a given committee is capped in two
different ways. It is (i) capped by one, i.e., if a maximizing committee W satisfies every
category for vi, and it is (ii) capped by

∑︁
c∈W c(bi, c), i.e., the theoretical maximum of

satisfied categories, if no two candidates c, c′ ∈ W satisfy a joint category for vi (divided
by d for normalization).
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Finally, we can determine an upper bound on the distortion based on given parameters. If
d ≤ k, the distortion is maximal for an election E, where each voter approves of exactly
one attribute for every candidate of two different committees W,W ′, while the satisfied
attributes overlap in W ′, but complement each other in W . The resulting distortion is
dist(c, f co

Σ , E) ≤ d. For d > k, the distortion is maximal in an election, where each voter
approves of at most λ ≤ ⌊d/k⌋ attributes for every candidate of two committees W,W ′

in a similar way (i.e., covering W and overlapping in W ′). In this case the distortion is
given by dist(c, f co

Σ , E) ≤ λk/d
λ/d

≤ k.

For the lower bound Ω(min(k, d)), we construct an attribute approval election E∗ =

(D,C, V ) ∈ E as follows. Let d = k, C = {c1, . . . , c2k} and each candidate ci has a
unique attribute cji for all j ∈ [d]. Let V = {v}, such that there is only one voter with
ballot b = (B1, . . . , Bk) ∈ D. For a distinct k-committeeW = {c1, . . . , ck}, we construct
b in a way, such that for each j ∈ [1, k−1] it holds thatBj = {cjj} andBk =

⋃︁
i∈[k,2k]{cki }.

That is, with respect to the ballot b, every candidate satisfies exactly one attribute, but
f co(V,W ) = 1 and f si(V,C \W ) = 1/d. Obviously, we can construct a similar election
E ′ with c(E∗) = c(E ′), where the opposite holds, such thatC\W is a winning committee.
Overall the distortion dist(c, f co

Σ , E
∗) is at least d = k = min(k, d).

Theorem. The distortion for f co
min and cardinal preferences (c) is in Θ(min(k, d)).

Proof. The proof follows directly by modifying the previous proof of Theorem T2. For
the upper bound the result also holds by replacing the sum operator in Equation (EQ2),
resulting in dist(c, f co

min, E) being at most

max
W∈F co

min(E,k)

minvi∈V min(
∑︁

c∈W c(bi, c), 1)

minvi∈V maxc∈W c(bi, c)
.

The case study for d ≤ k and d > k is also very similar to the previous proof. First note,
that in an election E with maximal distortion, there cannot exist a voter which is com-
pletely dissatisfied with a winning committee (since we are considering the min operator,
resulting in a satisfaction of zero in both elections). By the same arguments presented
in the previous proof, there is also no unsatisfied voter in any winning committee of an
election E ′ ∈ σc(E). More precisely, f co

min(V,W
′) ≥ 1/d for all W ′ ∈ W(σc(E)).

Now, for the case study consider the least satisfied voter v ∈ V for an election E =

(D,C, V ). For d ≤ k it is easy to see, that the distortion can be at most d, since
f co
min(V,W ) ≤ 1 for all W ∈ Pk(C). For d > k, let W ′ ∈ W(σc(E)) be a commit-

tee, such that f co
min(V,W

′) is minimal. We know that

f co
min(V,W

′) ≥ min
vi∈V

max
c∈W ′

c(bi, c) = t,

which is the number of approved attributes, the worst off voter assigns to her best candi-
date. In a different committee W , the satisfaction for the worst off voter, can be at most
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t · k, if the approved attributes overlap in W ′, but complement each other in W . Latter
results in a distortion of at most k. The overall distortion is in O(min(k, d)) for f co

min.

Following Observation O2, the lower bound result for f co
Σ in the proof of Theorem T2 also

holds for f co
Σ , i.e., E∗ also yields a distortion of at least min(k, d) for f co

Σ .

Ordinal Preferences

Theorem T3. The distortion for f si
Σ and ordinal preferences (o) is in Θ(d).

Proof. For the upper bound, consider E = (D,C, V ) and E ′ = (D′, C, V ′) with o(E) =

o(E ′) and let W ∈ F si
Σ(E, k) and W ′ ∈ F si

Σ(E
′, k). We construct a suitable lower bound

on the satisfaction forW ′ (perceived by V ) of f si
Σ(V,W

′) ≥ ℓ1+ℓ2, in two steps. First, for
every voter vi ∈ V , any candidate c ∈ C yields a score of at least 1/d ·∑︁j∈[d] |Bj

i ∩{cj}|,
which is bounded downwards by the number of attributes satisfied by the least favorite
candidate (which admits the lowest score). That is,

ℓ1 =
k

d
·
∑︂

vi∈V
min
c∈C

∑︂

j∈[d]
|Bj

i ∩ {cj}|.

Secondly, for vi ∈ V , candidates that are not covered by ℓ1 (candidates not appearing last
in the linear ranking) yield an additional score of at least 1/d, i.e., at least one additional
attribute must be satisfied. Hence, we derive

ℓ2 =
1

d

∑︂

vi∈V
|{c′ ∈ W ′ | ∃c ∈ C with c′ ≻bi c}|.

The intuition is, that every candidate, which is not at the last position of a linear ranking,
must admit at least 1/d points. This lower bound ℓ = ℓ1+ℓ2 holds for any electionE ′ ∈ E
with o(E) = o(E ′).

In contrast, a generous upper bound is f si
Σ(V,W ) ≤ ℓ1 + d · ℓ2, i.e., candidates positioned

last yield a total score of at least ℓ1, while candidates that are not at the last position of
a ranking, can at most admit d/d additional points, each. Overall, for any E,E ′ with
o(E) = o(E ′), and W ∈ F si

Σ(E, k) and W ′ ∈ F si
Σ(E

′, k), it holds that

dist(o, f si
Σ, E) ≤

f si
Σ(V,W )

f si
Σ(V,W

′)
≤ ℓ1 + ℓ2 · d

ℓ1 + ℓ2
≤ d.

For the lower bound, consider an election E∗ ∈ E with two voters V = {v1, v2}, two
candidates C = {c1, c2}, and k = 1. Further, let c1 and c2 not share any attribute.
We construct the voters’ ballots b1 and b2 in a way, that c(b1, c1) = 1/d, c(b1, c2) = 0,
c(b2, c1) = 0, and c(b2, c2) = 1. Clearly it holds that {c2} is a winning committee with
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f si
Σ(V, {c2}) = 1. On the other hand, consider an election E ′ = (D,C, V ′). This time, the

voters’ ballots b′1 and b′2 are swapped, i.e., constructed by setting c(b′i, cj) = c(b3−i, c3−j)

for i, j ∈ [2]. Note that o(E∗) = o(E ′) holds, but {c1} is a winning committee in E ′ with
f si
Σ(V, {c1}) = 1/d. Hence, dist(o, f si

Σ) ≥ dist(o, f si
Σ, E

∗) = d.

Theorem. The distortion for f cc
Σ and ordinal preferences (o) is in Θ(d).

Proof. The proof is similar to the previous proof of Theorem T3. The election E∗ used
for the lower bound also yields a distortion of at least d, following Observation O1.

For the upper bound, we consider the elections E and E ′ from the previous proof. Again,
we obtain a lower bound ℓ ≤ f cc

Σ (V,W ′), consisting of ℓ = ℓ1 + ℓ2, which for f cc
Σ and

some W ′ ∈ F cc
Σ (E ′, k) are given by

ℓ1 =
1

d
·
∑︂

vi∈V
min
c∈C

∑︂

j∈[d]
|Bj

i ∩ {cj}| and

ℓ2 =
1

d
|{vi ∈ V | ∃c′ ∈ W ′ and ∃c ∈ C with c′ ≻bi c}|.

Overall, ℓ1 is the sum of the scores of all voters, any candidate will yield at the last position
of respective ordinal rankings. On the other hand, ℓ2 is the number of voters, that prefer at
least one candidate in W ′ to at least one other candidate in their ordinal ranking (divided
by d). Latter models, that a candidate not ranked last must yield an additional score of at
least 1/d. Again, a generous upper bound is given by f cc

Σ (V,W ) ≤ ℓ1 + d · ℓ2. We derive
a distortion of at most d.

For the remaining scoring functions, the distortion is unbounded.

Theorem. For distortion f co
Σ and ordinal preferences (o) is unbounded.

Proof. Consider an attribute approval election E = (D,C, V ) ∈ E with k = 3, d =

3, and C = {c1, . . . , c5} such that every candidate ci has a unique attribute cji in each
category j ∈ [3]. There is only one voter V = {v1}, casting ballot b1 ∈ D with b1 =

({c11}, {c22}, {c31, c32}), inducing the following ordinal preference:

o(b1) : c1 ∼b1 c2 ≻b1 c3 ∼b1 c4 ∼b1 c5

Obviously, it holds that W = {c1, c2, c3} is a winning committee with f co
Σ (V,W ) = 1.

We construct E ′ ∈ E with o(E) = o(E ′), by only replacing the set of voters with V ′ =
{v′1}, casting the ballot b′1 = ({c11, c12, c13}, {c21, c22, c24}, {c35}). Note that o(b′1) = o(b1) and
W ′ = {c3, c4, c5} is a winning committee in E ′ with f co

Σ (V ′,W ′) = 1. Yet, in the initial
election E it holds that f co

Σ (V,W ′) = 0. Hence, the distortion is unbounded.
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Theorem. For f si
min, f co

min and f cc
min the distortion associated with ordinal preferences,

derived by o, is unbounded, even if restricted to singlewinner elections (i.e., k = 1)
with d = 2, |C| = 2, and |V | = 2.

Proof. We modify the lower bound proof of Theorem T3. In particular, in election E∗

we only consider the first d = 2 categories and modify the voters’ ballots, such that
c(b1, c1) = 1, c(b1, c2) = 1/2, c(b2, c1) = 0 and c(b2, c2) = 1/2. The resulting ordinal
preferences are given by o(b1) : c1 ≻b1 c2 and o(b2) : c2 ≻b2 c1. E

′ is constructed by
the same method as in the proof of Theorem T3, by approving different attributes without
changing the ordinal preferences of the voters. Finally, {c2} is a winning committee in
E∗ and {c1} is a winning committee in E ′. Yet, f si(b2, {c1}) = 0 and f si(bi, {c2}) > 0

for i ∈ [2]. Extending the individual scoring to f si
min, it holds that f si

min(V, {c2}) > 0

and f si
min(V, {c1}) = 0, resulting in unbounded distortion. Following Observation O1, the

proof also holds for f co
min and f cc

min.

Extension to Weighted Attribute Approval Elections
In this section, let us illustrate how our results on distortion formally extend to weighted
elections. We consider two cases. Either each category j ∈ [d] is associated with a
global weight wj ∈ Q≥0, such that 0 ≤ wj ≤ 1 and

∑︁
j∈[d]w

j = 1, or for a voter
vi ∈ V , each j ∈ [d] is associated with an individual weight wj

i ∈ Q≥0, satisfying
analogous conditions. Our results can be transferred to weighted elections, by encoding
the weights into the elections. This can be done by duplicating categories and adapting the
candidates and voters accordingly. Formally, we simply encode weights into an election
E = (D,C, V ) ∈ E as follows.

For global weights, let λ ∈ N+ be the smallest value, such that for all j ∈ [d], it holds
that λ ·wj ∈ N0 is a non-negative integer. We construct E ′ ∈ E , by duplicating respective
attribute categories. That is, for wj = 0, we remove the j-th category Dj from D (and
also from the candidates’ attribute vectors and the voters’ ballots). Forwj > 0, we replace
Dj with λ · wj identical clones (again, also for C and V ). Extending derivation methods
accordingly, the distortion scales by replacing d with λ · d for the lower bound results
(assuming there is at least one weight wj with λ · wj = 1). Considering some arbitrarily
small weight wj < ϵ, the distortion for almost all rules and all derivation methods can
become arbitrarily bad.

For individual weights, recall that we assume normalization, i.e., for a voter vi ∈ V ,
each j ∈ [d] is associated with an individual weight wj

i , such that 0 ≤ wj
i ≤ 1 and∑︁

j∈[d]w
j
i = 1. We can extend an election E = (D,C, V ) ∈ E in a similar way. Let

λ ∈ N+ be the smallest value such that λ · wj
i ∈ N0 holds for all vi ∈ V and all j ∈ [d].

This time we construct E ′ ∈ E , by replacing every category Dj by λ identical clones
and extend respective candidates. For the set of voters, let vi cast a modified ballot b′i as
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follows. If Bj
i are the attributes voter vi approves of in the j-th category in the original

ballot bi, then the approving set Bj
i is replaced in b′i with a combination of λ · wj

i clones
of Bj

i and λ · (1 − wj
i ) empty sets (i.e., not approving any attribute). Informally, this

relates to replacing each category by λ clones (resulting in λ · d categories overall), while
each voter is allowed to pose λ non-empty entries in her ballot. For normalization, the
scoring functions can be slightly altered, by multiplying respective scores by the number
of categories in the unweighted election d.

Expressiveness
Lastly, we investigate how expressive attribute approval ballots are. In particular, attribute
approval ballots (as well as candidate approvals, cardinal preferences, and ordinal pref-
erences) induce a weak linear order over the set of k-committees, which also depends
on an underlying individual scoring function. For example, if a voter’s satisfaction with
a committee is measured by the presence of at least one approved candidate, any can-
didate approval ballot induces a dichotomous preference over all k-committees. We are
interested in how well attribute approval ballots are able to model arbitrary rankings over
fixed-size committees, given that there is a sufficiently large number of unique attributes
for the candidates. The results in this section are formally about votes and individual
scoring functions. In order to simplify notation, we will present them in the introduced
concept of elections with a focus on a particular voter vi. Further, for a given set C, let
ω(Pk(C)) be the collection of all weak rankings over the set of k-committees Pk(C).

Definition. Let (D,C, V ) ∈ E be an election, f an individual scoring function, and bi
an attribute approval ballot of some voter vi ∈ V . Then ≿f

i ∈ ω(Pk(C)) denotes the
weak linear order induced by f and bi, such that for every two committees W,W ′ ∈
Pk(C) it holds that W ≻f

i W
′ ⇔ f(bi,W ) > f(bi,W

′) and W ∼f
i W

′ ⇔ f(bi,W ) =

f(bi,W
′). If clear from context, f is omitted.

Simple Scoring and Other Additive Scoring Functions

Theorem T4. For f si, any candidate set C, and k ∈ {1,m−1,m} there is an attribute
approval election (D,C, V ) ∈ E , such that for every weak ranking ≿∈ ω(Pk(C)),
there exists a ballot bi ∈ D, inducing ≿ (i.e., ≿i =≿). For k ∈ {2, . . . ,m − 2}, there
is no such election and ballot for any additive individual scoring function f .

Proof. We study four cases. For k = m, the only k-committee is C. Trivially, there is
only one order over sets with one element.

For k = 1, consider an election (D,C, V ) with d = m categories. Further, let each
category j ∈ [m] have (at least) m attribute specifications aj1, . . . , a

j
m, such that each

candidate has an unique attribute in each category, i.e., cji = aji for all i, j ∈ [m]. To
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induce a weak ranking ≿ over 1-committees, we construct a ballot bi = (B1
i , . . . , B

m
i ) as

follows. For each candidate c ∈ C, let t(c) = |{c′ ∈ C | {c} ≿ {c′}}| be the number of
1-committees (i.e., candidates), {c} is weakly preferred to in ≿. Then for every c ∈ C,
ballot bi shares exactly t(c) attributes with c, e.g., for each j ∈ [t] it holds that cj ∈ Bj

i .
Note that t(c) models the Borda score (see [177, 35, 90]) for each candidate c ∈ C.
More precisely, with respect to the ballot bi, c satisfies exactly the number of attributes
equivalent to its Borda score in ≿. Hence, ≿i =≿ holds by construction.

For k = m−1, we can build on the previous construction. Imagine any (m−1)-committee
C ′ ∈ Pm−1(C) as C ′ = C \ {c} for some distinct candidate c. Hence, there is a one-to-
one relationship between a ranking ≿′ ∈ ω(Pm−1(C)) and a ranking ≿∈ ω(P1(C)). We
simulate the removal of a candidate by assigning each candidate a value of m minus her
Borda score. Then, we have b′i = (B1

i
′
, . . . , Bm

i
′) such that for all j ∈ [m] it holds

that Bj
i

′
= Dj \ Bj

i . Note that for c, c′ ∈ C with C \ {c} ≿′ C \ {c′} it holds that
f si(b′i, C \ {c}) = f si(b′i, C)− (m− t(c)) ≥ f si(b′i, C)− (m− t(c′)) = f si(b′i, C \ {c′}),
resulting in ≿i =≿′.

For k ̸∈ {1,m − 1,m} and any additive individual scoring function f , there is always
a weak linear ranking ≿∈ ω(Pk(C)) over a set of candidates C, such that there is no
election (D,C, V ) ∈ E and ballot bi ∈ D with ≿i =≿. Consider the following coun-
terexample with m = 4 and k = 2. For C = {a, b, x, y} assume there is a ballot bi,
inducing ≿i =≿ with

≿ : {a, b} ≻ {a, x} ∼ {a, y} ∼ {b, x} ∼ {b, y} ∼ {x, y}.

By additivity for f , it follows that f(bi, {b}) > f(bi, {x}) from {a, b} ≻i {a, x}, but also
f(bi, {b}) = f(bi, {x}) from {b, y} ∼i {x, y}, which is a contradiction. The example
can easily be extended by adding additional m′ candidates and increasing k by at most
m′. Still, there is no ballot bi such that ≿i models a preference, such that exactly one
committee is preferred to all other committees.

Chamberlin-Courant Scoring

Theorem. For f cc, any candidate set C, and k ∈ {1,m} there is an attribute approval
election (D,C, V ) ∈ E , such that for every weak ranking ≿∈ ω(Pk(C)), there exists
a ballot bi ∈ D, inducing ≿ (i.e., ≿i=≿). For k ∈ {2, . . . ,m− 2} and f cc, there is no
such election. and ballot.

Proof. The cases k = m and k = 1 follow for the same reasons as described in the proof
of Theorem T4. For k ̸∈ {1,m} we construct a counterexample (D,C, V ) ∈ E with
C = {a, b, c} and k = 2. Let ≿i =≿ be a strict linear ranking over 2-committees, e.g.,

≿ : {a, b} ≻ {b, c} ≻ {a, c}.

192



A.2. Distortion in Attribute Approval Committee Elections

For some ballot bi to induce ≿i, it holds that {a, b} ≻i {b, c} implies f cc(bi, {a}) >
f cc(bi, {b}), while {b, c} ≻i {a, c} implies f cc(bi, {b}) > f cc(bi.{a}), resulting in a con-
tradiction. Clearly, we can extend this counterexample to also hold for m > 3 and any
k ̸∈ {1,m}.

Committee Scoring

Theorem. For f co, any candidate set C, and any weak ranking ≿∈ ω(Pk(C)), there
is an attribute approval election (D,C, V ) and a ballot bi ∈ D with ≿=≿i.

Proof. For any fixed set of candidates C = {c1, . . . , cm} and any committee size k, the
number of k-committees is a constant t = |Pk(C)| =

(︁
m
k

)︁
. We construct (D,C, V ) and

assume there is a finite, but sufficiently large, number of categories d. Further, in each
category Dj for j ∈ [d], there are m attribute specifications, such that each candidate
has a unique property in each category, i.e.,

⋃︁
c∈C{cj} = Dj . As an intermediate step,

we construct a ballot bi, such that for a specific k-committee W ∈ Pk(C), it holds that
f co(bi,W ) = t−1

d
and for all W ′ ∈ Pk(C) with W ′ ̸= W it holds that f co(bi,W

′) =
t−2
d

. That is, W has a strictly higher score than any other committee and the difference
is 1

d
. This can be realized by the following ballot bi. Consider t − 1 categories, each

representing a committee W ′ ∈ Pk(C) \ W . For some j ∈ [d], let Bj
i represent W ′.

Then Bj
i =

⋃︁
c∈C\W ′{cj}, i.e., the j-th category of ballot bi is satisfied by any candidate

that is not in W ′. Hence, for every committee W ′′ ∈ Pk(C), there exists a candidate
c ∈ W ′′ with cj ∈ Bj

i if and only if W ′′ ̸= W ′. Latter especially holds for W , yielding
a score of t−1

d
. We can extend bi, by setting up more blocks of t − 1 attribute categories.

For example, if the score of a committee W should be z
d

higher than that of any other
committee W ′ ̸= W , it is sufficient to set up z · (t − 1) categories. Accordingly, we can
set up the score of any other committee in relation to all other committees. By simulating
cardinal values for each committee (using relative scores due to a lack of normalization),
we can easily induce any weak ranking ≿=≿i.
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