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1 Summary

Genomic selection (GS) based on single nucleotide polymorphisms (SNP) has

emerged as a powerful tool to increase the genetic gain of complex traits in breed-

ing programs of various animal and plant species. However, its optimal integration

especially in clone breeding programs, and its combination with the cross-selection

(CS) method in heterozygous and tetraploid crops to balance genetic gain and di-

versity in long-term breeding programs are still lacking. Another important aspect

a↵ecting the success of genetic gain is the degree of prediction accuracy/ability of

a GS model. The use of additional or alternative layers of omics datasets closer

to phenotypes as predictors may improve the prediction ability. The main objec-

tives of this thesis were to (1) optimize potato breeding programs incorporating

GS using computer simulation; and (2) improve the e�ciency of GS using di↵er-

ent omic datasets and structural variants as predictors compared to SNP array,

taking barley as an experimental example. Both approaches have the final goal

to further enhance the genetic gain in breeding programs. In the simulation re-

sults, implementing GS with optimal selection intensities had a higher short- and

long-term genetic gain compared to the phenotypic selection solely. In addition,

implementing GS in consecutive selection stages largely increased genetic gain

compared to using GS in one stage. Furthermore, the results of my computer

simulations suggest that the optimal selection intensities require to be adjusted

under di↵erent scenarios considering cost, selection strategies, prediction accu-

racy of the GS model, etc. When studying the long-term selection response, the

CS method considering additive and dominance e↵ects to predict progeny mean

based on simulated progenies (MEGV-O) reached the highest accuracy in predict-

ing progeny mean and the highest long-term gain among the CS methods that

only consider the progeny mean. However, it accompanied the loss of genetic vari-

ance quickly. The linear combination of usefulness criteria (UC) and genome-wide

diversity, which was called EUCD, kept the same level of genetic gain compared to

UC and MEGV-O. However, EUCD simultaneously kept a higher diversity as well

as a certain degree of genetic variance compared to UC and MEGV-O. Therefore,

these results of my thesis can provide breeders with a concrete method to improve

their potato breeding programs and are presumably also helpful for other clone

breeding programs. In the frame of the other aspect studied in this thesis, the

prediction ability of the GS model using deleterious sequence variants, structural

variants, transcriptome, and metabolome as a single predictor, was higher than
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1 Summary

using SNP array on average across the assessed traits. Optimally combining the

information of several layers of omic datasets in the GS model outperformed single

predictors alone. Therefore, the results of my thesis will open the path to perform

such analysis on a large scale segregating populations and even apply for potato

breeding programs to boost genetic gain.
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2 General Introduction

Potato (Solanum tuberosum L.) and barley (Hordeum vulgare L.) are two impor-

tant crops, ranking fourth and seventh in their world-wide production with 375

and 155 million metric tons, respectively (FAO, 2022). In response to the de-

mands of the growing global population, the shift of dietary to an increased meat

consumption, the aim to increase biofuel production, and the reduction of arable

land, makes the production of a su�cient amount of food from both crops a major

challenge in current agriculture (Fróna et al., 2019). Model calculations predict

that at least a doubling of the current production by 2050 is required (Ray et al.,

2013). Furthermore, it is expected that climate change has a negative influence on

crop production due to an increase in extreme temperatures and an alternation of

rainfall patterns (Abberton et al., 2016). Therefore, developing new varieties with

high and stable yields and stress tolerance for both crops is one of the important

missions of plant breeding. Especially for potato, a low genetic gain in the past

decades was observed (Stokstad, 2019; Ortiz et al., 2022) compared to most cereal

crops (Figure 1). This is presumably because of its tetraploid and highly het-

erozygous genome (Lindhout et al., 2011; Jansky et al., 2016). In addition, its low

multiplication coe�cient (Grüneberg et al., 2009) leads to the availability of only

few tubers per genotype for phenotypic assessment in the early breeding program

(Gopal, 2006). The evaluation of traits related to productivity or quality (target

traits) has to be postponed until the later breeding program with enough tubers,

as these traits rely on multi-location field trials and/or destructive assessment.

According to the breeder’s equation (Falconer and Mackay, 1996), the expected

genetic gain is defined as�G = i·h·�G
L

, where i is the selection intensity, h the square

root of heritability, �G the square root of genetic variance, and L the length of

breeding cycle. Straightforwardly, genetic gain can be enhanced by increasing her-

itability, selection intensity, and genetic variance or shortening breeding cycles.

Typically, heritability can be improved by increasing the number of locations,

years, and replications in the field trials. Selection intensity can be enhanced by

either increasing the testing population size or decreasing the number of selected

candidates. Genetic variance can be increased by introducing novel germplasm (Xu

et al., 2020). However, all these ways increase the required budget. To enhance

genetic gain under a fixed budget, it is necessary to incorporate new approaches

by adjusting the parameters in the breeder’s equation. Genomic selection (GS),

for example, could be one way.
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Figure 1. Trends in the production of maize, wheat, rice, potato, barley, and
sorghum over the world from 1961 to 2021.

The concept of genomic selection

GS has become a powerful tool to increase genetic gain for complex traits in both

livestock and plant breeding programs (Meuwissen et al., 2001; Desta and Ortiz,

2014). The concept of GS is to capture all e↵ects of quantitative trait loci us-

ing dense single nucleotide polymorphism (SNP) markers across an entire genome.

The GS model is first constructed by exploiting the known phenotypes and geno-

types in a training set. Then, the resulting GS model can predict estimated genetic

values (EGV) for individuals with only genotypes in an untested set. Thus, the

superior individuals based on their EGV can be preselected before their pheno-

types are measured in the field, which can potentially shorten the breeding cycles.

In addition, GS can quickly and precisely identify the individuals carrying the

most favorable alleles, especially if those traits (e.g. target trait) can not be easily

measured or assessed at early stages. Meanwhile, the use of GS can reduce phe-

notyping costs as only genotypic information is required for the untested set. If

genotyping is less costly than phenotyping, the total number of testing candidates

can be increased if the number of selected individuals is kept constant, which can

increase the selection intensity (Cobb et al., 2019). Therefore, using GS in breed-

ing programs that rely solely on phenotypic selection (PS) has the potential to

improve genetic gain.
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Figure 2. Genomic selection (GS) scheme.

Integrating genomic selection into breeding pro-

grams

Di↵erent strategies incorporating GS in a typical breeding program could a↵ect

the e�ciency of the genetic gain. However, directly testing each proposed strategy

using GS in practical plant breeding programs is a time-consuming and resource-

intensive process to make the final decision. A computer simulation study is one

of the ways to examine the feasibility of implementing GS in a breeding program.

It can consider and vary several parameters: genetic architectures of traits, selec-

tion strategies integrating GS, etc, to maximize the breeding benefits to help draw

conclusions before breeders conduct the experimental trials.

Several studies have investigated the potential of GS in many non-clonal crops

via computer simulations, including barley, wheat, maize, rice, and sorghum (Iwata

and Jannink, 2011; Marulanda et al., 2016; Gaynor et al., 2017; Muleta et al., 2019;

Tessema et al., 2020; Bernardo, 2021; Fritsche-Neto et al., 2023). While some of

them focused on the factors that a↵ect the performance of the GS model, some of

them comprehensively assessed the prospects of integrating GS into the breeding

programs. Their results showed that GS can bring more genetic gain than PS.

On the other hand, few studies have outlined the potential of GS to improve the

genetic gain in clonal breeding programs (Slater et al., 2016; Stich and Inghelandt,

2018), but they were based on empirical data. Only Werner et al. (2023) compre-

hensively investigated via simulation study di↵erent strategies to implement GS

in clone breeding programs exemplarily with genome parameters of strawberry.
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2 General Introduction

Although the results of Werner et al. (2023) indicated that GS can bring more

genetic gain compared to PS, they mainly focused on how to select the parents for

the next crosses and only introduced GS in the first clonal stage. However, the

per-se value of a clone is important to ensure the short-term selection response.

A classical clonal breeding program however, consists of multiple stages that are

named e.g. in potato as crossing (X), seedling (SL), single hills (SH), A clone (A),

B clone (B), C clone (C), D clone (D) stages, until a new variety is released. This

raises one question: at which stage should GS be implemented to reach the highest

genetic gain? Furthermore, to avoid losing the individuals carrying the beneficial

alleles, GS could be applied not only at one stage but at multiple stages whose

phenotypes for the target traits are not still available. However, these aspects have

not been studied so far. Therefore, one of the aspects I focused on in this thesis

was to evaluate the e↵ects of the implementation stage of GS on genetic gain in a

clonal breeding program.

Optimal allocation of breeding resources

Optimal allocation of resources is of fundamental importance for the e�ciency of

breeding programs (Longin et al., 2006, 2007), and requires to be checked, if major

changes are made to the breeding programs. This can lead to an optimization of

the number of genotypes that are used in the evaluated stage and selected for the

next breeding stage. In other words, selection intensity for each examined stage

can be optimized to further reach the maximum genetic gain.

The budget is composed of the cost at each breeding stage, the number of as-

sessed genotypes, the number of locations, and the number of replications. Under

the fixed economic parameters (cost for genotyping and phenotyping, the num-

ber of locations, and the number of replications), numerous possible allocations,

for example, via a grid search, require to be examined. Although the process

of optimization requires, because of its high dimensionality, high computational

resources, it can help to find an optimal compromise in the number of tested geno-

types per stage to maximize the genetic gain.

Besides the considerations of the abovementioned parameters, di↵erent selec-

tion strategies, variance components of traits, and even changes in cost and budget

lead to rearranging the optimal allocation of resources and simultaneously reach-

ing di↵erent maximal genetic gain (Longin et al., 2015; Marulanda et al., 2016).

The selection strategies include how to implement GS at di↵erent stages as well

as PS only. Therefore, each combination of parameters is a unique scenario in

the breeding program and requires to find its own optimal allocation of resources
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2 General Introduction

maximizing the genetic gain.

These abovementioned studies have investigated the optimal allocation of re-

sources either with or without incorporating GS in the breeding programs. How-

ever, they focused on the optimization of cereal breeding programs. To the best of

my knowledge, no earlier study is available about the e↵ect of the optimal alloca-

tion of resources on genetic gain in clone breeding programs either with or without

incorporating GS, compared to the standard breeding program based on PS only.

Thus, this is another aspect that I concentrated on in this study.

Balancing the genetic gain and diversity in the

long-term breeding programs

GS enables to improve genetic gain via increasing selection intensity or shortening

breeding cycles (Xu et al., 2020). However, it can accelerate the loss of genetic

variability in a breeding program compared to PS (Jannink, 2010; Gaynor et al.,

2017), leading to a reduction of the long-term genetic gain in the long-term breed-

ing programs (Falconer and Mackay, 1996). This is because GS can precisely select

individuals carrying favorable alleles, leading to the rapid fixation of alleles. Fur-

thermore, these selected individuals have similar genetic backgrounds. Once they

serve as candidate parents and directly intercross each other, it can be expected

that inbreeding will occur, resulting in decreased genetic variation. Therefore, not

only enhancing genetic gain but creating and preserving genetic diversity simulta-

neously must be considered in long-term breeding programs.

New genetic variability can come from (1) introducing new alleles using col-

lections of genetic resources (Sanchez et al., 2023); and (2) generating new allelic

combinations during meiotic recombinations, which occur after intercrossing two

parents. Crossing two parents is the first important step in the breeding program.

Thus, choosing appropriate new crosses for the next breeding cycle is an important

issue, and this is one aspect that I focused on in this thesis.

Some researchers have proposed approaches to balance genetic gain and di-

versity while determining desirable new crosses. The usefulness criterion (UC) is

one of the criteria used to predict the performance of a cross (Schnell and Utz,

1975), which considers the expected progeny mean (µ) and the expected response

to selection in the progenies (ih�G): µ+ ih�G.

For inbred populations generated from inbred parents or for hybrids and out-

breds in the absence of dominance e↵ects, the progeny mean can be estimated as

the mid-parental performance based on the EGV from the trained GS model. On

the other side, for heterozygous parents in diploids, if dominance e↵ects exist, so
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2 General Introduction

the progeny mean can be estimated by a formula considering the dominance e↵ects

(Werner et al., 2023; Wolfe et al., 2021). Furthermore, the progeny variance can

be estimated by the derived formulae either in inbred or outbred parents incorpo-

rating the estimated marker e↵ects from the trained GS model (Bonk et al., 2016;

Lehermeier et al., 2017; Osthushenrich et al., 2017; Wolfe et al., 2021). However,

for tetraploid species with heterozygous parents, all these formulae cannot be ap-

plied, and progeny mean cannot be accurately predicted based on the mid-parental

performance especially when dominance e↵ects exist. Fortunately, some softwares

are available, e.g. AlphaSimR (Gaynor et al., 2021), and enable to simulate virtual

progenies of a cross, which can be used to estimate the progeny mean and variance

by inferring the average and variance of the EGV. The use of simulated progenies

to estimate progeny mean and variance could improve the prediction accuracy of

progeny mean compared to mid-parental values and provide an alternative to pre-

dict progeny variance for tetraploid species with heterozygous parents, which need

to be assessed.

In addition to the UC, optimal cross selection (OCS) can select a group of

bi-parental crosses maximizing the expected progeny mean, while keeping a pre-

defined level of genetic diversity (Kinghorn et al., 2009; Gorjanc et al., 2018). The

quantification of genetic diversity is considered based on the selected individuals

who serve as parents rather than each cross itself and is commonly measured with

co-ancestry or expected heterozygosity (He) (Gorjanc et al., 2018; Allier et al.,

2019). While the OCS has been confirmed to improve genetic gain and preserve a

certain diversity (Gorjanc et al., 2018; Allier et al., 2019), it requires much more

computational time to find the optimal crosses compared to the methods based

on ranking the performance among all possible crosses. Especially for tetraploid

species and for simulation with a high number of markers, the computational bur-

den is extreme. To solve this issue, quantifying genome-wide diversity for each

cross by He is a quick method that could be directly added to the UC of a cross,

and may bring benefits to improve long-term genetic gain and preserve diversity

simultaneously. To my knowledge, no earlier studies assessed the performance of

a criterion including genome-wide diversity of a cross to determine new desirable

crosses, and therefore, this was another point that I focused on in my research.
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2 General Introduction

Another possibility to improve genetic gain: Fur-

ther increase the prediction accuracy/ability of

genomic selection

In addition to selection intensity, the degree of prediction accuracy of the GS model

is an important parameter influencing the e�ciency and success of GS in genetic

gain. The prediction accuracy is defined as the correlation between true genetic

values and EGV. However, in contrast to situation in simulation studies, the true

genetic values for traits are unknown for breeding materials in a practical breeding

program and, thus, the performance of the GS model in experimental datasets is

measured as correlations between observed phenotypes and EGV, also called as

prediction ability. Then, the prediction accuracy can be obtained by dividing the

prediction ability by the square root of heritability (Legarra et al., 2008). A higher

prediction ability/prediction accuracy indicates that the GS model can more pre-

cisely predict the true genetic values of individuals and capture more phenotypic

variation for traits. Therefore, the improvement of prediction performance for the

GS model to further increase genetic gain is an important issue, because predic-

tion accuracy can replace the square root of heritability in the breeder’s equation

(He↵ner et al., 2010).

Former studies have comprehensively investigated that prediction accuracy is

influenced by several factors such as the relationship between training set and

untested set, the size of the training set, the number of markers, statistical models,

used breeding materials, heritability of the trait, etc (Xu et al., 2020; Krishnappa

et al., 2021). The GS models used in these studies were based on SNP informa-

tion generated from SNP array or genotyping by sequence (Crossa et al., 2017) as

predictors. Besides SNP, large alternations (> 49 bp) including deletions, inser-

tions, duplications, inversions, and translocation occur in genomic sequence, and

are commonly defined as structural variants (Mahmoud et al., 2019). These struc-

tural variants can a↵ect the phenotypic variation in plants (Gabur et al., 2018). In

addition, complex biological processes such as transcription, translation, and bio-

chemical cascades resulting in various metabolites occur between DNA sequence

and phenotypes (Guo et al., 2016). Therefore, the genetic variance of traits is

expected to be captured not only solely by SNP information but also by other

predictors that are closer to the phenotypes than SNP.

With the development of molecular technologies and bioinformatic tools, cheap

and high-throughput gene expression and metabolite profiling can be used, and

accurate structure variants can be detected. Especially, the characterization of

a transcriptome based on mRNA sequencing has the advantage of extracting
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2 General Introduction

di↵erent types of information such as SNP and small INDEL (= small inser-

tions/deletions ranging from 2 to 49 bp in length, called sequence variants). Fur-

thermore, it can quantify di↵erent transcript expression (TE). In contrast, the use

of microarray can only measure gene expression (GE) and detect a significant pro-

portion of genes that are not expressed in a subset of individuals within a species,

which is called expression presence/absence variation (ePAV) and is known as dis-

pensable transcriptome (Hirsch et al., 2014; Jin et al., 2016; Weisweiler et al.,

2019).

Moreover, SNP can be categorized into two groups by using the SIFT algorithm

(Ng and Heniko↵, 2001): (1) tolerant SNP (tSNP), including SNP in non-gene cod-

ing regions as well as gene coding regions producing no change or a change in the

amino acid but still keeping a protein’s function unaltered; and (2) deleterious

SNP (dSNP) – including SNP in gene coding region involving a change in the

amino acid and a↵ecting a protein’s function. Thus, the performance of the GS

model could be improved by using di↵erent layers of datasets closer to phenotypes

as predictors than the SNP information, which could shorten the gap between

genotypes and phenotypes and even capture higher-order epistatic interactions to

precisely predict phenotypic variation of traits.

Some studies on the use of GE, ePAV, and metabolites to predict phenotypic

traits in cereals reported lower or higher prediction abilities compared to SNP infor-

mation, depending on the traits and species (Riedelsheimer et al., 2012; Guo et al.,

2016; Schrag et al., 2018; Hu et al., 2019; Weisweiler et al., 2019; Gemmer et al.,

2020; Longin et al., 2020). However, the use of dSNP, tSNP, TE, and structural

variants as a predictor has not been examined before. Furthermore, the integra-

tion of at least two di↵erent layers of omic datasets (e.g. SNP + metabolites, or

SNP + expression + metabolites, or sequence variants + ePAV + expression, etc)

could enhance the prediction ability in comparison to the use of SNP information

only (Guo et al., 2016; Schrag et al., 2018; Weisweiler et al., 2019; Longin et al.,

2020). Thus, the integration of multiple layers of omic datasets such as sequence

variants, ePAV, expression, metabolites, or even structural variants as predictors

could outperform solely SNP information to predict the phenotypic variation of

traits with GS models, and this should be evaluated.

Therefore, in this thesis, I evaluated the prediction of phenotypic variation

using di↵erent omic datasets and structural variants based on 23 diverse inbred

barley. This was considered as pilot research and could open the path towards per-

forming such analyses on the large-scale population, e.g. on segregating related

barley populations derived from the 23 inbreds studied here (Casale et al., 2022);

and even apply such models for potato breeding programs in the future, helping

the improvement of genetic gain.

10



2 General Introduction

Objectives of this thesis

The objectives of my thesis were to optimize breeding programs incorporating

GS, especially in potato, as well as to improve the e�ciency of GS using di↵erent

omic datasets and structural variants as predictors compared to SNP array taking

barley as an example. Both have the final goal to further enhance the genetic gain

in breeding programs. In particular, the objectives were to:

1. investigate under a fixed budget and in comparison to PS how the weight

of GS relative to PS, the stage of implementation of GS, the correlation

between traits (auxiliary trait assessed in early generations and target trait),

the variance components, and the prediction accuracy a↵ect the short-term

genetic gain of the target trait in potato breeding programs;

2. determine the optimal allocation of resources maximizing the short-term

genetic gain of the target trait for each selection strategy and for varying

cost scenarios in potato breeding programs;

3. assess how di↵erent cross-selection methods implementing GS a↵ect both

short- and long-term genetic gains in potato breeding programs compared to

strategies using phenotypic values only;

4. make recommendations to breeders on how to implement GS incorporat-

ing an appropriate cross-selection method in potato breeding programs to

improve genetic gain while preserving genetic diversity;

5. assess the prediction ability for the yield-related phenotypic traits using dif-

ferent omic datasets and structural variants as single predictors compared to

SNP array in barley;

6. explore the predictive performance when using sequence variants, gene ex-

pression, and ePAV from simulated 3’end mRNA sequencing of di↵erent

lengths as predictors in barley;

7. investigate the improvement in prediction ability when combining multiple

omic datasets / structural variants information to predict phenotypic varia-

tion in barley breeding programs.
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Abstract
Genomic selection (GS) is used in many animal and plant breeding programs to
enhance genetic gain for complex traits. However, its optimal integration in clone
breeding programs, for example potato, that up to now relied on phenotypic selec-
tion (PS) requires further research. In this study, we performed computer simulations
based on an empirical genomic dataset of tetraploid potato to (i) investigate under a
fixed budget how the weight of GS relative to PS, the stage of implementing GS, the
correlation between an auxiliary trait and the target trait, the variance components,
and the prediction accuracy affect the genetic gain of the target trait, (ii) determine
the optimal allocation of resources maximizing the genetic gain of the target trait, and
(iii) make recommendations to breeders how to implement GS in clone and especially
potato breeding programs. In our simulation results, any selection strategy involving
GS had a higher short-term genetic gain for the target trait than Standard-PS. In addi-
tion, we showed that implementing GS in consecutive selection stages can largely

Abbreviations: ↵
k
, weights of genomic selection relative to phenotypic selection; A, A clone stage; B, B clone stage; C, C clone stage; D, D clone stage;

EGV, estimated genetic values; �G, genetic gain; GS, genomic selection; i, intensity of selection; L, location; LSD, least significant difference; N, number of
tested clones; NGS, number of genotyped clones; Optimal-GS, GS strategies with optimum allocation of resources; Optimal-PS, standard potato breeding
program relying exclusively on PS with optimum allocation of resources; p, selected proportion; PA, prediction accuracy; PS, phenotypic selection; PTa (t) ,
phenotypic value of the auxiliary (target) trait; QTL, quantitative trait loci; r, genetic correlations between the two traits; SH, single hills stage; SL, seedling
stage; SNP, single nucleotide polymorphism; Standard-PS, standard potato breeding program relying exclusively on PS; Standard-GS, standard potato
breeding program incorporating with GS; Ta, auxiliary traits; Tt , target trait; TGV, true genetic value; VC, variance components.
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enhance short-term genetic gain and recommend the breeders to implement GS at
single hills and A clone stages. Furthermore, we observed for selection strategies
involving GS that the optimal allocation of resources maximizing the genetic gain of
the target trait differed considerably from those typically used in potato breeding pro-
grams and, thus, require the adjustment of the selection and phenotyping intensities.
The trends are described in our study. Therefore, our study provides new insight for
breeders regarding how to optimally implement GS in a commercial potato breeding
program to improve the short-term genetic gain for their target trait.

1 INTRODUCTION

Potato (Solanum tuberosum L.) is with respect to the pro-
duction volume one of the most important food crops in the
world after sugarcane, maize, wheat, and rice (http://www.
fao.org/faostat/en/). However, in contrast to other crops, only
a low genetic gain was observed for yield in the past decades
(Stokstad, 2019; Ortiz et al., 2022). The selection gain is, com-
pared to the one in homozygous diploid species, limited by the
high heterozygosity and tetraploidy of potato (Lindhout et al.,
2011; Jansky et al., 2016). In addition, potato has a low mul-
tiplication coefficient (Grüneberg et al., 2009), which leads
to the availability of only one or few tubers per genotype for
phenotypic evaluation at early stages in the breeding program
(Gopal, 2006). This delays the evaluation of traits related to
productivity (such as tuber yield) or quality, as they rely on
multi-location field trials and/or destructive assessment, and
these can only be performed after one to several multiplica-
tion steps. As a consequence, only traits which can be assessed
based on a low number of plants can be considered in the
early stages of potato breeding programs. In contrast, target
traits whose evaluation requires many plants and/or environ-
ments can only be selected for in later stages of the breeding
program. Instead, early indirect selection on the auxiliary trait
can be performed. However, the correlation between the latter
and the target trait shows a high range of variability depend-
ing on the considered traits, and can even be negative. This
can limit the benefit of the early indirect selection on the
auxiliary trait. Furthermore, the evaluation of target traits in
potato is more expensive compared to their evaluation in non-
clonal crops as a considerably lower level of mechanization
is currently possible. Therefore, clone and especially potato
breeding programs would highly benefit from the possibil-
ity to select for target traits at early stages of the breeding
program, for example, with the implementation of genomic
selection (GS).

GS proved to enhance genetic gain for complex traits in
both animal and plant breeding programs (Meuwissen et al.,
2001; Desta & Ortiz, 2014). This is because GS allows to
predict the performance of target traits without phenotypic
evaluation in early stages. The selection on target traits at

early stages using estimated genetic values (EGV) avoids dis-
carding those individuals with desirable alleles for the trait,
which will increase the genetic gain per year. In addition,
the performance prediction of target traits without pheno-
typic evaluation in early stages has the potential to reduce the
length of the breeding cycle. One parameter that influences
the potential of GS is the prediction accuracy.

Several empirical studies have explored the potential of
implementing GS in potato breeding for different traits by
determining the prediction accuracy (Slater et al., 2016; Sver-
risdóttir et al., 2017; Enciso-Rodriguez et al., 2018; Endelman
et al., 2018; Stich & Van Inghelandt, 2018; Sverrisdóttir et al.,
2018; Caruana et al., 2019; Byrne et al., 2020; Gemenet et al.,
2020; Sood et al., 2020; Wilson et al., 2021). Different degrees
of prediction accuracies from low to high depending on the
studied traits have been reported, which could be caused by
the different genetic architectures, prediction models, but also
the considered genetic material. However, only few studies
evaluated the effect of GS on the genetic gain for the stud-
ied traits. One of them was Slater et al. (2016), who estimated
that the genetic gain after implementing GS for complex traits
was higher than that of phenotypic selection (PS). The results
of Stich and Van Inghelandt (2018) suggested that for some
traits GS leads to a higher gain of selection than PS even
without reducing the cycle length. However, no earlier study
considered directly the aspect that PS and GS need to be com-
pared at a fixed budget. Furthermore, when implementing GS
in a clone breeding program, the selected proportion of PS
on the early trait will be partially shifted to GS on the tar-
get trait. This shift can be realized to different degrees and
the resulting selected proportion for PS or GS might influ-
ence the efficiency of the selection strategy. Therefore, for the
implementation of GS in clone breeding programs not only
the prediction accuracy of the GS model but also its relative
weight to PS has to be examined. Furthermore, these aspects
are influenced by the correlation between the early and the tar-
get trait and also the variance components of the considered
trait have an influence on the genetic gain. However, the influ-
ences of these parameters and their interaction on the genetic
gain in clone breeding programs have not been investigated
until now.
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Werner et al. (2023) investigated different strategies to
implement GS in clone breeding programs exemplarily with
genome parameters of strawberry. They evaluated the per-
formance of a breeding program that introduced GS in the
first clonal stage and mainly focused on how to select par-
ents for the next crosses and drive population improvement to
enhance long-term genetic gain. However, in a classical clone
breeding program, there are several stages where GS could be
implemented and their effect on the gain of selection have not
been studied so far.

Another aspect that needs to be decided during the imple-
mentation of GS in clone or potato breeding programs is the
number of stages in which GS is applied. Once the clones are
genotyped for the first GS application, the possibility of re-
using the same EGV to perform GS in two or more stages is
given. A similar idea was proposed by Spindel et al. (2015) for
a rice breeding program but has neither been assessed by the-
oretical considerations nor by computer simulations nor any
empirical experiments. To the best of our knowledge, no ear-
lier study has investigated at which stage and in how many
selection stages GS should be implemented in clonal crops to
maximize the short-term genetic gain under a given budget.

Optimum allocation of resources under a given budget
is essential to improve the efficiency of breeding programs
(Longin et al., 2006). However, most studies on the imple-
mentation of GS in breeding programs neglected this effect.
Longin et al. (2015) and Marulanda et al. (2016) assessed this
point for cereal breeding programs. However, to the best of
our knowledge, no earlier study is available about the effect
of the implementation of GS on the optimum allocation of
resources in clone breeding programs.

The objectives of this study were to (i) investigate under a
fixed budget how the weight of GS relative to PS, the stage
of implementation of GS, the correlation between traits (aux-
iliary trait assessed in early generations and target trait), the
variance components, and the prediction accuracy affect the
short-term genetic gain of the target trait in potato breeding
programs compared to PS, (ii) determine the optimal alloca-
tion of resources maximizing the short-term genetic gain of
the target trait in each selection strategy and for varying cost
scenarios, and (iii) make recommendations to breeders how
to implement GS in clone breeding programs.

2 MATERIALS AND METHODS

2.1 Empirical basis of the computer
simulations

Our simulations were based on an empirical genomic dataset
of tetraploid potato. This empirical genomic dataset com-
prised 19,649,193 sequence variants revealed in a diver-
sity panel of 100 tetraploid potato clones (Baig et al. in

Core Ideas
÷ Genomic selection strategies can improve the

genetic gain of clone breeding programs versus
phenotypic selection.

÷ Implementing genomic selection in consecutive
selection stages can largely enhance short-term
genetic gain.

÷ Optimal implementation of genomic selection
requires changes in the allocations of resources.

preparation). The unphased sequence variants included sin-
gle nucleotide polymorphism (SNP) and insertion/deletion
(InDel) polymorphisms. Sequence variants with a minor allele
frequency <0.05 and missing rate >0.1 were removed. The
100 clones were used as parents of the simulated progenies
and will be called parental clones hereafter.

The progenies were simulated using AlphaSimR (Gaynor
et al., 2021). For this, the genetic map information of all
genomic variants was estimated using a Marey map (for
details see Method S1 and Figure S1). Subsequently, the
genomic information for each variant served as input for
the simulations.

2.2 Simulation of initial population

To stick to the size of commercial breeding programs (Breed-
ers personal communication, Table 1) an initial population of
300,000 clones was simulated like described here under. From
all possible crosses in the half-diallel among the 100 parental
clones, 300 were randomly selected. For each of these 300
crosses, 1000 F1 progenies were simulated using AlphaSimR.
The two steps of this procedure (the random selection of 300
crosses and the simulation of their progenies) were repeated
1000 times independently.

2.3 Simulation of true genetic and
phenotypic values

2.3.1 Target trait (Tt)

In our study, a genetically complex target trait representing
the weighted sum of all market relevant quantitative traits
was considered and will be named Tt hereafter. A random
set of 2000 sequence variants were considered as quantitative
trait loci (QTL) for Tt . The true additive effects of the 2000

[Correction added on 25 May 2023, after first online publication: Sen-
tence changed from “...was repeated 1000 times independently.” to “...were
repeated 1000 times independently.”]
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T A B L E 1 Dimensioning of a standard potato breeding program that exclusively relies on phenotypic selection.

Stage Number of clones Number of locations Phenotyping cost per clone and plot (€ ) Cost per stage (€ )
Seedling 300,000 1 1.4 420,000
Single hills 100,000 1 1.4 140,000
A clone 10,000 1 1.4 14,000
B clone 1500 2 25 75,000
C clone 300 3 25 22,500
D clone 60 4 25 6000
Sum 677,500

QTL were drawn from a gamma distribution (cf. Hayes &
Goddard, 2001) with k = 2 and ✓ = 0.2, where k and ✓ are
shape and scale parameters, respectively. To control the
degree of dominance � between 0 and 1 for each QTL, the
ratios of dominance to additive effect were produced from
a beta distribution with the two shape parameters a = 2 and
b = 2. The true dominance effect at each QTL was then
calculated by multiplying the true additive effect by the QTL
specific � (Figure S2). For each QTL, all possible genotype
classes were AAAA, AAAB, AABB, and BBBB, which were,
respectively, coded from 0, 1, 2, 3, and 4 for additive effect;
and 0, 1, 1, 1, and 0 for dominance effect. Finally, the true
genetic value for Tt (TGVTt ) was calculated for each clone
by summing up the true additive and dominance effects at the
2000 QTL.

In order to simulate phenotypic values, two ratios of vari-
ance components (VC) were assumed for Tt : �2G : �2

GùL :
�2✏ = 1 : 1 : 0.5 (VC1) and 1 : 0.5 : 0.5 (VC2), where �2

G

denoted the genotypic variance, �2
GùL the variance of interac-

tion between genotype and location, and �2✏ the error variance.
The genotypic variance was estimated by the sample vari-
ance of TGVTt in the initial population. The phenotypic value
for the target trait was then calculated as PTt = TGVTt + ✏Tt ,
where ✏Tt was the non-genetic value following a normal
distribution N(0, �2✏Tt ), with

�2✏Tt =
�2
GùL
L
j

+
�2✏

L
j
R
j

(1)

representing the non-genetic variance, in which L
j

was the
number of locations at stage j, and R

j
the number of repe-

titions at stage j. We set the number of replications to one
(R

j
= 1) in each location (cf. Melchinger et al., 2005).

2.3.2 Phenotypic trait assessed in early
generations of the breeding program (Ta)

The weighted sum of the auxiliary traits measured in the
first three generations of the breeding program will be

referred to as Ta hereafter. To control the genetic corre-
lations between Ta and Tt (r), the true genetic values for
Ta were generated by TGVTa = TGVTt + ✏r , where ✏r was
the residual value following a normal distribution N(0, �2✏r ),
with

�2✏r =
1

n * 2
1 * r2
r2

n…
i=1

(TGVTt(i) * TGVTt )
2 (2)

determined by the degree of r, where n was the number of
clones for the initial population, TGVTt(i) the TGV for Tt of
the i

th clone, and TGVTt the average of TGVTt in the initial
population. Then, the phenotypic value for Ta was calculated
as PTa = TGVTa + ✏Ta , where ✏Ta was a non-genetic value

following a normal distribution N(0,
1*H2

Ta
H

2
Ta

�2
GTa

), in which

H
2
Ta

was the broad-sense heritability for Ta, and �2
GTa

the
genetic variance of Ta and estimated by the sample variance
of TGVTa in the initial population. In this study, H2

Ta
was set

as 0.6.

2.4 Simulation of estimated genetic values

In this study, we assumed that a GS model was trained
for Tt on earlier cycles of the breeding program, and that
this model has the prediction accuracy PA. The estimated
genetic values (EGV) of Tt obtained from the GS model
were estimated by EGVTt = TGVTt + ✏PA, where ✏PA was
the residual value following a normal distribution N(0, �2✏PA),
with

�2✏PA = 1
n * 2

1 * PA2

PA2

n
®…

i=1
(TGVTt(i) * TGVTt )

2 (3)

determined by the level of PA, where n
® was the number of

genotyped clones (= NGS), TGVTt(i) the TGV of the target
trait at the i

th genotyped clone, and TGVTt the average of
TGVTt on all NGS genotyped clones.
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WU ET AL. 5 of 14The Plant Genome

F I G U R E 1 The standard clone breeding program examined in this study that relies exclusively on phenotypic selection. 1–p5 are the selected
proportions from SL to SH, SH to A, A to B, B to C, and C to D, respectively, where SL, SH, A, B, C, and D represent the stages of seedling, single
hills, A, B, C, and D clones. Ta represented the integral of early measured traits and Tt the integral of the target traits. The yellow marked stages are
those that were examined in our study.

2.5 Selection strategies

2.5.1 Standard breeding program

A standard potato breeding program relying exclusively on
PS (Standard-PS) was considered as benchmark (Figure 1).
To simplify the comparison between PS and GS strategies,
we considered in this study six testing stages in the potato
breeding program. The six testing stages were seedling, sin-
gle hills, and A, B, C, and D clone stages, abbreviated in
the following as SL, SH, A, B, C, and D, respectively. The
number of tested clones (N) and locations (L) for each test-
ing stage are shown in Table 1. The selected proportions from
SL to SH (p1), SH to A (p2), A to B (p3), B to C (p4), and
C to D (p5) were set to 1

3 , 0.1, 0.15, 0.2, and 0.2, respec-
tively, as estimates from typical commercial potato breeding

programs (Breeders personal communication). The selection
in the early stages (SL, SH, and A) was based on the pheno-
typic value of the auxiliary trait PTa , and for the late stages
(B, C, and D) on the phenotypic value of the target trait PTt
(Figure 1).

2.5.2 Breeding programs involving genomic
selection

Three GS strategies were evaluated in which GS was imple-
mented at the (1) seedling, (2) single hills, and (3) A clone
stage, abbreviated as GS-SL, GS-SH, and GS-A, respectively.
All selection steps of the GS strategies were similar to those
of the standard breeding program except the following modi-
fications (Figure 2). Here, the strategy GS-SL will be taken
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6 of 14 WU ET AL.The Plant Genome

F I G U R E 2 Graphical illustration of the standard as well as the six selection strategies that include genomic selection that were examined in
our study. 1–p5 are the selected proportions from SL to SH, SH to A, A to B, B to C, and C to D, respectively, where SL, SH, A, B, C, and D
represent the stages of seedling, single hills, A, B, C, and D clones. ↵

k
is the proportion of clones selected by PS to be genotyped in stage k and N

k
is

the number of clones of the respective stage.

as an example for the description. In the seedling stage,
N1 clones were evaluated for PTa . From these N1 clones,
the NGS ones with a higher PTa were genotyped. ↵1 was
defined as ratio of NGS to N1, that is, the proportion of
clones selected by PS to be genotyped. Then, N2 clones were
selected based on the EGVTt in the NGS genotyped clones
for the single hills stage. Afterward, the selection process in
the following stages was the same as in Standard-PS. For the
other two GS strategies, GS-SH and GS-A, the selection was
performed accordingly. For each stage k in which GS was
applied, the corresponding ↵

k
was larger than p

k
, where p

k

(= Nk

Nk+1
) was the selected proportion between the two stages

to which GS was applied. k was set to 1, 2, and 3 for the
strategies (1) GS-SL, (2) GS-SH, and (3) GS-A, respectively
(Figure 2).

To evaluate whether adopting the same GS model for selec-
tion on Tt in several stages improves the short-term genetic
gain compared to using GS only once, we evaluated three
additional strategies (Figure 2):

(4) GS-SL:SH—GS was applied not only at seedling stage
but also at single hills stage;

(5) GS-SH:A—GS was applied not only at single hills stage
but also at A clone stage; and

(6) GS-SL:SH:A—GS was applied at seedling, single hills,
and A clone stages.

For these three GS strategies, genotyping of NGS clones
only took place when GS was used for the first time. When GS
was used a second or third time, the same EGVTt for the tested
clones from the initial GS model were used for the selection.

2.6 Economic settings and additional
quantitative genetic parameters

In this study, the costs for phenotypic evaluation of Ta and
Tt in one environment were assumed to be 1.4 and 25 €,
respectively. The costs for genotypic evaluation per clone
were assumed as 25 € (Table 1). To compare the short-term
genetic gain of Tt (�G) between Standard-PS and several GS
strategies, the budget across different selection strategies was
fixed to 677,500 €. Therefore, the number of tested clones
in seedling stage (N1) must be adjusted/reduced when intro-
ducing GS into a breeding program to compensate for the
additional genotyping cost. In the first part of the simulations,
the selected proportions were fixed to those of Standard-PS.
This was realized in our study by randomly sampling the
reduced N1 from the initial population with an equal sample
size for each cross population.

We were interested in how different values of r, PA, VC,
and L influence �G. Therefore, three different levels of r (-
0.15, 0.15, and 0.3), PA (0.3, 0.5, and 0.7), and two different
ratios of VC for Tt (see above) were examined in our simula-
tions. The selection of clones based on Tt that was assessed
in field experiments in more than one location happened at
B and C clone stages. Thus, we varied the number of loca-
tions from 2 to 4 and 3 to 6 in increments of 1 for B and C
clone stages, respectively, and designated them as L4 and L5.
Furthermore, to investigate how different levels of ↵

k
affect

�G, we varied ↵
k

from 0.4 to 0.9 in increments of 0.1 for the
strategies GS-SL, GS-SL:SH, and GS-SL:SH:A, and from 0.2
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WU ET AL. 7 of 14The Plant Genome

to 0.9 in increments of 0.1 for the other strategies.�G was cal-
culated as the difference in mean genetic values of Tt between
the D clone and the seedling stage (cf. Longin et al., 2015;
Marulanda et al., 2016).

2.7 Optimum allocation of resources

In the below described simulations, we relaxed the restric-
tions of the above described simulations that the selected
proportions were fixed to those of Standard-PS. To determine
the optimum allocation of resources maximizing �G under a
given budget, a general linear cost function to aggregate all
costs across all stages in the breeding program was created:

Budget =
6…

j=1
N
j
ù costpheno(j) ù L

j
+ NGS ù costgeno

=
5…

j=1

N6

⇧5
k=jpk

costpheno(j)Lj
+ N6costpheno(6)L6

+
N6costgeno↵m

⇧5
k=mpk

,

(4)

where N
j

was the number of clones at stage j, costpheno(j)
the cost for phenotypic evaluation at stage j, NGS the num-
ber of genotyped clones, and costgeno the genotyping cost (for
details see Method S2). In addition, p

k
was the selected pro-

portion from stage j(m) to stage j(m) + 1, where m was the
stage in which GS was applied first. For more details, m = 1
referred to GS-SL, GS-SL:SH, and GS-SL:SH:A; m = 2 for
GS-SH and GS-SH:A; and m = 3 for GS-A. The GS strate-
gies with optimum allocation of resources will be named
Optimal-GS hereafter.

The optimum allocation was determined by a grid search
across the permissible space of p2 to p5 and ↵

k
for a set of

given input parameters. The latter included the number of
tested clones at D clone stage (N6), the GS strategy, the phe-
notyping and genotyping costs, L, r, VC of Tt , H2

Ta
, and the

total budget. We set N6 to 60. In the grid search, any p
k

var-
ied between 0.1 and 0.5 in increments of 0.05 to avoid too
strong/weak selections. ↵

k
was chosen as described above.

Consequently, in each permissible allocation, p1 was com-
pletely determined by Equation (4) under the constrained
budget and the given input parameters. Subsequently, the
mean genetic gain across 1000 simulation runs was cal-
culated for each permissible allocation of the grid search.
To obtain reliable estimates of the optimal allocation of
resources, we performed a least significant difference (LSD)
test on �G across all permissible allocations of the grid
search within a specific scenario. We selected the signifi-
cant group showing the maximum �G among all permissible

sets and then considered the average of the allocations as
optimal result.

The above described simulations required for some grid
search sets (those with low p1 to p3 but high p4 and p5) with
more than 300,000 clones in the seedling stage. Thus, the size
of the initial population was increased to 900,000 clones.

To investigate whether an increase of phenotyping cost of
Ta and the genotyping cost have an influence on the optimal
allocation of resources, we considered three different pheno-
typing costs for Ta (0.7, 1.05, and 1.4 €), and three different
genotyping costs (15, 25, and 40 €).

3 RESULTS

The mean genetic gain (�G) and genetic variance (�2
G

) of
the target trait at D clone were assessed considering different
values of r, PA, ↵

k
, as well as different selection strategies.

To easily compare among the examined strategies, the bud-
get, the selection proportion between stages p1–p5 and the
number of test locations were fixed according to those of the
Standard-PS strategy.

Increasing r and PA either individually or simultaneously
led to a higher �G (Figure 3 and Figure S3). Regardless of
PA and r, any selection strategy incorporating GS was supe-
rior to the Standard-PS strategy with respect to �G (Figure 3).
Low or negative values for r and high PA increased this ten-
dency even more. The least improvement of �G relative to
Standard-PS was observed across all scenarios for the strategy
GS-SL. The strategies GS-A and GS-SH resulted in consid-
erably higher values for �G relative to PS and under the
scenarios with low r but high PA, the latter strategy was
significantly superior to the former.

Implementing GS in successive stages (GS-SL:SH, GS-
SH:A, and GS-SL:SH:A) had an advantage over the strategies
using GS one time, except for the scenario with the lowest PA
(=0.3) but the highest r (=0.3). The ranking of performance
among these strategies was GS-SL:SH:A > GS-SH:A > GS-
SL:SH. The difference among these strategies was lower, if r
increased or PA decreased.

For all GS strategies, higher ↵
k

values led to reductions
in the number of clones available in the seedling stage
(Figure S4), but increased �G (Figure 3). For all except eight
scenarios, the highest �G was observed if ↵

k
was at its max-

imum (0.9). The remaining scenarios in which the maximum
�G were observed for ↵

k
=0.7 or 0.8 instead of 0.9, how-

ever, showed �G values that were not significantly different
from the �G values observed for ↵

k
=0.9 (data not shown).

Only for GS-SL:SH:A an exception was observed from this
trend, namely that the maximal �G was observed for ↵

k
=0.5

for the scenario with r=0.3 and PA=0.3. In accordance with
the above described observations regarding the differences
among selection strategies, also the differences among�G for
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8 of 14 WU ET AL.The Plant Genome

F I G U R E 3 Genetic gain (�G, left) and genetic variance (�2
G

, right) for the target trait on average across 1000 simulation runs at D clone stage
for different weights of genomic selection (GS) relative to phenotypic selection (↵

k
), different selection strategies, different correlations between the

traits (r = -0.15, 0.15, and 0.3), prediction accuracies (PA = 0.3, 0.5, and 0.7), and for the ratio of variance components VC1
(�2

G
: �2

GùL : �2✏ = 1 : 1 : 0.5) The details regarding the selection strategies are shown in Figure 2.

the different levels of ↵
k

were low for the scenarios with high
r and/or low PA.

In all the above described simulations of the selection
strategies that exploit GS in several stages, ↵

k
was the same

for each stage in which GS was applied. However, for these
strategies, we also evaluated whether varying ↵

k
had an influ-

ence on �G. For the strategies GS-SL:SH and GS-SH:A, a
higher �G was observed with an increase of both ↵

k
val-

ues (that is, ↵1 and ↵2 or ↵2 and ↵3) (Figure S5). The
combination of two ↵

k
values that resulted in the highest

�G was 0.84 and 0.79 or 0.86 and 0.86 for the respective
strategies. A similar trend was observed for GS-SL:SH:A
(Figure S6). However, for the scenarios with high r (=0.3),
intermediate values of ↵1 were sufficient to result with high
values of ↵2 and ↵3 in the maximal values of �G of 0.4–0.5
(Table S1).

The effect of variation of selection strategies, ↵
k
, r, and

PA on the genetic variance were opposite to their effect on
genetic gain (Figure 3). The scenarios with a higher genetic
gain showed a lower genetic variance.

We also investigated the effects of different ratios of vari-
ance components (VC1 and VC2) and number of locations
for phenotypic evaluation (L4 and L5) on �G. The ranking of
the selection strategies with respect to �G was not affected
by the studied ratios of VC (Figure 3 and Figure S7). When
�2
GùL was halved (i.e., VC2 vs. VC1), �G increased from

3% to 8% depending on the selection strategies, PA, r, and
↵
k

(Figure S8). Although increasing L caused a decrease in
the number of clones that are available at the seedling stage
to compensate for additional phenotyping costs, �G signifi-

cantly increased with increasing number of locations that were
used for the evaluation of B and C clones (Figure 4). This trend
was independent of selection strategies, PA, r, and ↵

k
. In all

scenarios, the highest�G was observed with the highest num-
ber of locations in the B and C clone stages, that is, L4 = 4 and
L5 = 6. In these cases, �G was increased by 8% compared to
Standard-PS with (L4,L5) = (2, 3).

The optimal allocation of resources was assessed via a
grid search across p1–p5 and ↵

k
, k À [1, 3] in a scenario with

VC1, budget, L, and N6 as in the Standard-PS scenario. The
optimum allocation of resources led also for the PS to an
increase of �G (Optimal-PS) compared with the Standard-
PS (Figure 5). On average across all evaluated scenarios, the
strategy GS-SL had the worst performance out of the strate-
gies incorporating GS. In a scenario with r < 0 and PA >

0.5, any selection strategy with GS revealed a higher �G
than the Optimal-PS. The strategy GS-SL:SH:A only outper-
formed the other selection strategies if r = -0.15. In contrast,
the strategy GS-SH:A or GS-A resulted in the highest �G if
r was >-0.15. On average across all the examined scenarios,
the strategy GS-SH:A resulted in the highest and most stable
�G values.

With the exception of one specific scenario, a high ↵
k

was
required for each selection strategy to reach the maximal �G
value (Table 2, Tables S2 and S3). This exception was the
strategy GS-SL in case of a positive r for which ↵

k
rang-

ing from 0.21 to 0.61 resulted in the maximal �G values.
Furthermore, to achieve maximum �G values, the selected
proportions for the last two stages (p4 and p5) were low (0.17)
on average across all scenarios. The level of the optimal p

k
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WU ET AL. 9 of 14The Plant Genome

F I G U R E 4 Genetic gain for the target trait (�G) on average across 1000 simulation runs at the D clone stage for six different selection
strategies with genomic selection (GS) for varying numbers of locations in the B and C clone stages (L4 and L5) and different weights of genomic
selection (GS) relative to phenotypic selection (↵

k
) when the correlation between the two traits was set to 0.15 and prediction accuracy was set to 0.5.

F I G U R E 5 Genetic gain of the target trait (�G) after optimally allocated resources for different correlations between the traits (r = -0.15, 0.15,
and 0.3) and different prediction accuracies (PA = 0.3, 0.5, and 0.7). The presented �G values are the average of the genetic gains from the grid
search sets that revealed no significant (p < 0.05) difference compared to the set with maximum genetic gain.

was influenced by the level of r as well as by the stage in
which GS was implemented. In general, high optimal p1 val-
ues were observed with a negative correlation in comparison
with the scenarios with a positive correlation. Furthermore,
we observed for all strategies with implementation of GS that
the selection proportion for that stage in which GS was applied
was lower than the one observed at the same stage in the other

strategies. This trend was more pronounced for scenarios with
high PA. For instance, p2 (p3) for the strategy GS-SH (GS-A)
was on average across all scenarios about 0.25 (0.21) lower
than the one for the strategies excluding GS-SH (GS-A) with
0.42 (0.45).

The effects of different phenotyping and genotyping
costs on the maximum �G were assessed exemplarily for
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10 of 14 WU ET AL.The Plant Genome

T A B L E 2 Optimum allocation of resources to maximize genetic gain of the target trait (�G) for the different selection strategies and
correlations between the two traits (r = -0.15, 0.15, and 0.3). The prediction accuracy was 0.5 and the phenotyping cost of early measured trait 1.4
€ and genotyping cost 25 €. p1 to p5, ↵

k
, and N1 are the selected proportion per stage, the weight of genomic selection relative to phenotypic

selection, and the number of clones at the seedling stage, respectively. For description of selection strategies see text.

Correlations Selection strategies �G 1 SD�G
2 p1 p2 p3 p4 p5 ↵k N1

*0.15 PS 57.87 (g) 5.04 0.39 0.36 0.31 0.10 0.10 - 152,995.09
GS-SL 58.86 (f) 5.18 0.30 0.50 0.50 0.16 0.23 0.87 23,709.50
GS-SH 61.38 (e) 5.56 0.44 0.29 0.50 0.13 0.19 0.88 43,099.80
GS-A 63.43 (c) 5.88 0.46 0.48 0.21 0.10 0.20 0.90 67,708.00
GS-SL:SH 62.61 (d) 5.71 0.38 0.45 0.50 0.17 0.21 0.90 22,501.43
GS-SH:A 64.70 (b) 6.03 0.48 0.38 0.37 0.14 0.19 0.90 40,018.33
GS-SL:SH:A 66.05 (a) 6.22 0.43 0.47 0.47 0.16 0.20 0.90 21,914.47

0.15 PS 67.54 (b) 6.45 0.28 0.38 0.38 0.10 0.10 - 170,906.06
GS-SL 64.82 (d) 6.06 0.16 0.50 0.50 0.16 0.21 0.40 50,256.67
GS-SH 67.79 (b) 6.44 0.24 0.23 0.50 0.16 0.19 0.74 93,815.07
GS-A 70.18 (a) 6.75 0.32 0.45 0.19 0.13 0.18 0.82 108,386.59
GS-SL:SH 66.19 (c) 6.21 0.39 0.44 0.50 0.16 0.20 0.86 23,237.68
GS-SH:A 69.96 (a) 6.76 0.19 0.38 0.39 0.16 0.18 0.89 95,290.54
GS-SL:SH:A 67.76 (b) 6.50 0.41 0.46 0.46 0.16 0.21 0.86 23,206.52

0.3 PS 71.42 (b) 7.05 0.23 0.39 0.42 0.10 0.10 - 178,386.46
GS-SL 68.24 (d) 6.54 0.13 0.49 0.49 0.17 0.20 0.28 65,661.65
GS-SH 71.31 (b) 6.94 0.17 0.18 0.49 0.18 0.21 0.66 135,331.14
GS-A 73.43 (a) 7.18 0.22 0.41 0.16 0.17 0.19 0.77 159,402.35
GS-SL:SH 67.79 (d) 6.46 0.33 0.39 0.49 0.18 0.21 0.68 30,172.78
GS-SH:A 73.12 (a) 7.15 0.13 0.37 0.37 0.17 0.19 0.86 123,779.24
GS-SL:SH:A 68.93 (c) 6.62 0.40 0.44 0.44 0.16 0.20 0.75 26,376.25

1The letters in parentheses after �G represent the significance groups (p < 0.05) across these selection strategies within a specific correlation.
2
SD�G is the standard deviation of �G across 1000 simulation runs.

strategy GS-SH:A and for intermediate levels of PA (=0.5)
and r (=0.15) (Table 3). �G increased by 1%, if the costs
of phenotyping Ta reduced from 1.4 to 0.7 €. An increase of
�G of 4 % was observed if the genotyping costs were reduced
from 40 to 15 €.

4 DISCUSSION

GS has been implemented in many commercial crop breed-
ing programs nowadays (Krishnappa et al., 2021). How-
ever, implementation of GS in clonally propagated species
is lagging behind, despite the expected advantages. This
might be on one side because genomic resources are less
developed in clonally propagated species compared to species
bred as hybrids or inbred lines. Furthermore, a lower number
of breeding methodological studies is dedicated to clon-
ally propagated crops compared to inbred or hybrid species.
Therefore, we evaluated the prospects to integrate GS into
commercial potato breeding programs and assessed which
parameters are crucial for its implementation.

4.1 Comparison of selection strategies

We have studied the implementation of GS in a standard clone
breeding program with minimal changes of the breeding pro-
gram. This procedure was chosen as we expect that this will be
the way how commercial clone breeding programs will deal
with this possibility or challenge. However, we are aware that
GS might result in even higher gains of selection if applied in
a less conservative setting where the possibilities of reducing
the length of breeding cycles are exploited. In addition, we
assumed in this study that a GS model has been trained for
the target trait on earlier cycles of the breeding program, and
thus, the prediction accuracy was given. However, to keep this
accuracy at a high level, the GS model should be re-trained
and updated at each new breeding cycle. One possibility is
that the clones selected as parents are used to update the GS
model. These aspects will be considered in a companion study.

In this study, all evaluated selection strategies that make
use of GS resulted in higher �G compared to the Standard-PS
strategy if other parameters such as budget, variance compo-
nents and selected proportions were held constant (Figure 3).
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WU ET AL. 11 of 14The Plant Genome

T A B L E 3 Optimum allocation of resources to maximize genetic gain of the target trait (�G) across different cost scenarios when genomic
selection was applied in single hills and A clone stages (GS-SH:A). The correlation between the two traits was 0.15 and the prediction accuracy 0.5.
p1 to p5, ↵

k
, and N1 are the selected proportion per stage, the weight of genomic selection relative to phenotypic selection, and the number of clones

at the seedling stage, respectively.

CostTa
1 Cost 1

geno �G 2 SD�G
3 p1 p2 p3 p4 p5 ↵k N1

0.70 15 72.33 (a) 7.08 0.17 0.34 0.34 0.14 0.16 0.87 171,397.94
0.70 25 70.76 (c) 6.87 0.15 0.37 0.37 0.15 0.18 0.87 133,082.10
0.70 40 69.11 (e) 6.66 0.12 0.41 0.40 0.16 0.20 0.89 106,152.00
1.05 15 71.85 (ab) 7.00 0.20 0.35 0.36 0.14 0.17 0.88 135,898.99
1.05 25 70.39 (cd) 6.83 0.16 0.38 0.38 0.16 0.17 0.88 113,093.84
1.05 40 68.61 (ef) 6.57 0.15 0.40 0.41 0.18 0.19 0.87 87,752.05
1.40 15 71.39 (b) 6.95 0.23 0.35 0.37 0.14 0.17 0.88 110,223.57
1.40 25 69.96 (d) 6.76 0.19 0.38 0.39 0.16 0.18 0.89 95,290.54
1.40 40 68.41 (f) 6.52 0.17 0.41 0.41 0.16 0.21 0.90 76,796.40

1 CostTa
is the phenotyping cost of early measured trait, and Costgeno the genotyping cost per clone.

2The letters in parentheses after �G represent the significance groups (p < 0.05) across these cost scenarios.
3
SD�G is the standard deviation of �G across 1000 simulation runs.

This is in accordance with the theory about indirect selec-
tion response. This theory suggests that GS strategies should
be superior to the Standard-PS if PA > r �HTa , keeping the
intensity of selection for GS (iEGVTt

) and PS (iTa) equal.
Furthermore, the theory suggests that this trend should be
even more pronounced, if iTa < iEGVTt

. This is what we
have observed in our simulations, namely that the difference
between �G of GS and PS was increased, if ↵

k
increases.

Among the examined strategies using GS in only one stage,
the ranking with respect to maximum �G was GS-SH > GS-
A > GS-SL, independently of PA, r, and ↵

k
(Figure 3). The

observation that GS-SH resulted in a higher �G than GS-
A can be explained by superiority of early selection on Tt
because thereby one can avoid discarding clones with top
performance for Tt in the early stages. Our observation of
an increased advantage of GS-SH over GS-A if r decreased
confirmed this explanation.

Following this argumentation, one could have expected
GS-SL to be the strategy with the highest �G, especially if
r is negative. This is because a direct selection of seedlings
for EGVTt should be more efficient than selecting them based
on PTa that negatively correlated with TGVTt . Therefore,
the observation of GS-SL as the most disadvantageous GS
method (Figure 3) was surprising at a first glance. However,
in this strategy after one step of GS all further selection steps
are exclusively made based on PTa and this hampers the selec-
tion of those individuals with beneficial alleles for Tt . Thus,
the individuals with the highest TGVTt that were selected by
GS in the seedling stage are probably discarded in the follow-
ing selection steps from single hills to B clone stages. Another
explanation for the observation of GS-SL as the most disad-
vantageous GS method is that the selection of the seedling
stage based on GS leads to a dramatic reduction of population
size in the seedling stage to keep the budget constant despite

the burden of high genotyping costs (Figure S4). Our observa-
tions suggest that alternative prediction and selection methods
to GS need to be developed for the first stage of clone breeding
programs that result in a much lower cost per clone in order
to exploit the potential of predictive breeding.

Among all examined selection strategies, those that applied
GS several times are for all combinations of ↵

k
, VC, and L

superior to the ones using GS in only one stage of the breed-
ing program (Figure 3), even without recalibrating the GS
model. This superiority is most probably due to the possi-
bility to select several times on EGVTt without having extra
genotyping costs.

Among the strategies that used GS multiple times, the high-
est �G was observed for the strategies GS-SL:SH:A and
GS-SH:A (Figure 3). The ranking of these two strategies
was influenced by the genetic situation. GS-SL:SH:A outper-
formed GS-SH:A under low r and high PA. Therefore, we
advice using GS-SL:SH:A in a very favorable GS environ-
ment (high PA and low r), and GS-SH:A in a favorable PS
environment (low PA and high r).

In the scenario discussed in the previous paragraph, the
selection intensities of the individual stages were kept equal
to those of the Standard-PS strategy. However, theoreti-
cal considerations suggest that the implementation of GS
requires an adaptation of the selection intensities as well
as the phenotyping intensities. These are discussed in the
next paragraph.

4.2 Optimal allocation of resources

We observed a significantly higher �G for the Optimal-PS
compared to the Standard-PS strategy (Figure 5). Smaller
values for p4 and p5 (i.e., higher selection intensities) in
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Optimal-PS (0.10) were observed compared to those in
Standard-PS (0.20) (Table 2, Tables S2 and S3). This can
be explained by the fact that at the B and C clone stages,
the selection is exclusively based on PTt in a direct selection.
Therefore, when increasing the selection intensities in these
stages, �G is increasing as well.

The correlation between Ta and Tt also influences the opti-
mal selection intensity. We observed a higher p1, that is, a
lower selection intensity, when r= -0.15 compared to the sce-
nario with positive values for r (Table 2, Tables S2 and S3).
This can be interpreted such that in cases of a negative r, iTa
needs to be reduced to avoid discarding too many clones based
on PTa that have a high TGVTt .

Furthermore, p
k

values were lower for those stages of the
breeding program at which GS was applied compared to the
same stage in a selection strategy without GS (Table 2, Tables
S2 and S3). The explanation for this observation can be that
a low number of clones are enough to identify those with
the best TGVTt if the more precise GS is applied. This find-
ing illustrates that either an increased prediction accuracy or
iEGVTt

or both simultaneously can enhance �G.
We observed for most considered simulation scenarios no

significant difference of �G between the Optimal-GS strate-
gies and Standard-GS strategies (Figures 3 and 5). However,
this comparison was not the purpose of our study. The simula-
tions with varying selection intensities required to fix the final
number of clones (N6). We have decided to fix N6 to that of the
Standard-PS in order to allow a fair comparison of�G. In con-
trast, the purpose of the simulations of the standard strategies
(PS but also GS) was based on keeping the selection intensi-
ties fixed between PS and GS strategies. The latter, however,
results in considerably lower numbers of clones at the D clone
stage (N6) which increases �G (cf. Longin et al., 2006).

The ranking of the optimized selection strategies with
respect to �G was with the exception of GS-SH and GS-A
identical to the one observed for the Standard-GS strategies
(Figure 5). One explanation for the rank change of GS-SH and
GS-A might be the stronger selection applied at A clone stage
in GS-A compared to GS-SH (Table 2, Tables S2 and S3).
This indicates that a higher selection intensity in a later stage
can improve �G more than an earlier selection on EGVTt .

4.3 Impact of novel technical developments
in the field of genomics or phenomics on the
selection strategy

Another possibility to increase the selection intensity for
improvement of short-term genetic gain is to generate more
selection candidates while keeping the number of selected
individuals constant (Cobb et al., 2019). Under a fixed bud-
get, a reduction of either genotyping or phenotyping costs

could increase the population size. With the development
of high-throughput phenotyping and genotyping techniques,
both their costs could gradually decrease (Araus & Cairns,
2014; Ragoussis, 2009). Consequently, we considered three
different levels of phenotyping and genotyping costs and
investigated how they affect the genetic gain in the context of
optimal allocation of resources with the strategy GS-SH:A.
The reduction of cost increased the population size at the
seedling stage as well as enhanced the selection intensities
p2 and p3 (when implementing GS), and p4 and p5 (direct
selection on Tt). The increasing �G value observed in our
study with a decrease in either genotyping or phenotyping cost
(Table 3) confirmed this hypothesis. Furthermore, our find-
ings are in line with a former study in wheat (Marulanda et al.,
2016), which showed an increased �G and a higher num-
ber of test candidates as the cost for hybrid seed production
or double haploids decreased. In summary, changes in cor-
relation between the two selected traits, prediction accuracy,
stage of implementation, and costs for genotyping and phe-
notyping have a crucial influence on the optimal allocation of
resources to maximize the short-term genetic gain, accentuat-
ing the necessity for clone and especially potato breeders to
regularly and carefully re-adjust their selection strategy.

4.4 Impact of GS on genetic variance

Not only the genetic gain is important for the evaluation of
the GS strategy, but also the genetic variance reduction of Tt .
As expected, all the selection strategies showed a decrease in
the genetic variance after selection (Figure S9). This tendency
increased when GS was implemented. This is in accordance
with former studies (Gaynor et al., 2017; Muleta et al., 2019)
which showed a greater loss of genetic variance over time
using GS compared to PS. In our study, the genetic vari-
ance decreased particularly at the stage of implementation
(k), but not to the same extent for all strategies (Figure 3
and Figure S9). This trend can be explained by the Bulmer
effect (Bulmer, 1971), which reduces the proportion of genetic
variance due to linkage disequilibrium between trait coding
polymorphisms (Van Grevenhof et al., 2012). This is in accor-
dance with results of Jannink (2010), who showed that GS
can accelerate the fixation of favorable alleles for Tt com-
pared to PS resulting in a loss of genetic variance for the trait.
The reduction of genetic variance, however, limits the �G
for long-term improvement. Therefore, maintaining diversity
of the population in the breeding materials is one possibil-
ity to slow down this drawback to improve long-term genetic
gain in breeding programs (Gorjanc et al., 2018). However,
for commercial breeding programs a balance between short-
and long-term gain of selection is required, which needs
further research.
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4.5 Conclusions

The present study demonstrated that implementing GS in a
typical clone breeding program improves the gain of selec-
tion even without exploiting the possibilities to reduce the
length of the breeding cycles. Furthermore, we showed that
the integration of GS in consecutive selection stages can
largely enhance the gain from selection compared to the
use in only one stage. In detail, the strategy GS-SL:SH:A
is highly recommended if the correlation between Ta and
Tt is negative. Otherwise, GS-SH:A can be the most effi-
cient strategy. However, with the consideration of optimal
resource allocation, the superiority of multiple GS over sin-
gle GS is not obvious anymore and their ranking depends on
PA and r. Furthermore, we observed that the implementation
of GS in potato breeding programs requires the adjustment
of the selection intensities as well as the phenotyping inten-
sities compared to those typically used in breeding programs
exploiting exclusively PS. Finally, we outlined how to adjust
the selection intensities in potato breeding programs after
implementing GS.
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SUPPORTING INFORMATION

Method S1: The establishment of the Marey map

The Marey map (Chakravarti, 1991) was established from two public datasets: i.

Bourke et al. (2015) – genetic map of 3,273 markers; ii. Vos et al. (2015) – physical

position of 3,273 markers. First, the markers with unknown physical positions and

linkage group discrepancies between both datasets were removed. As a result, 3,206

markers were retained for further analyses. Second, the position of the genetic map

with inverse order against the physical map was adjusted within each homolog of a

chromosome and within each parent. Third, in order to increase the power of the

cubic smoothing spline, we aggregated the SNP information of the four homologs and

two parents by shifting the position of the genetic map with the known centromere

information. The centromere information was taken from Table S2 of Bourke et al.

(2015). The resulting Marey map, physical position (Mb) against genetic position

(cM), was shown in Figure S1. Then, a cubic smoothing spline was used to fit the

coordinates of the Marey map for each chromosome. To avoid the computational bur-

den, we randomly selected from all possible variants one every 2.5 kilobases resulting

in 287,858 sequence variants. Their genetic map positions were predicted based on

the fitted cubic smoothing spline.

Method S2: The derivation of cost function

The initial cost function can be expressed by

Budget =
6X

j=1

Nj ⇥ costpheno(j) ⇥ Lj +NGS ⇥ costgeno,

where we let N1-N5 replace by related to N6 and the selected proportions, then

N1 =
N6

p1p2p3p4p5
, N2 =

N6
p2p3p4p5

, N3 =
N6

p3p4p5
, N4 =

N6
p4p5

, and N5 =
N6
p5
. Furthermore,
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NGS can be also replaced by related to N6, the selected proportions, and the propor-

tion of selected clones to genotype (↵m), where m was the stage that GS was applied

first. For more details, m = 1 referred to GS-SL, GS-SL:SH and GS-SL:SH:A; m = 2

for GS-SH and GS-SH:A; and m = 3 for GS-A. That is, NGS = N6↵m

⇧5
k=mpk

. Therefore,

the initial cost function can be modified by

Budget =
5X

j=1

N6

⇧5
k=j

pk
costpheno(j)Lj +N6costpheno(6)L6 +

N6costgeno↵m

⇧5
k=m

pk
.
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Figure S1: Marey map based on the aggregated SNP information of the four homologs

and two parents for each chromosome.
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Figure S5: Genetic gain for the target trait (�G) on average across 1,000 simulation runs at the D clone stage for di↵erent correlations

between the traits (r=-0.15, 0.15, and 0.3), and prediction accuracies (PA=0.3, 0.5, and 0.7) in the selection strategies GS-SL:SH

(left) and GS-SH:A (right) for all combinations of weight of genomic selection relative to phenotypic selection (↵k). This evaluation

was based on VC1 (�2
G
: �2

G⇥L
: �2

✏ = 1 : 1 : 0.5).
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Figure S6: Genetic gain for the target trait (�G) across 1,000 simulation runs at the

D clone stage for di↵erent correlations between the traits (r=-0.15, 0.15, and 0.3) and

prediction accuracies (PA=0.3, 0.5, and 0.7) in the selection strategy GS-SL:SH:A for

all combinations of weight of genomic selection relative to phenotypic selection (↵k,

where k = 1, 2, 3).This evaluation was based on VC1 (�2
G
: �2

G⇥L
: �2

✏ = 1 : 1 : 0.5).
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Figure S7: Genetic gain (�G, left) and genetic variance (�2
G
, right) for the target trait on average across 1,000 simulation runs at

D clone stage for di↵erent weights of genomic selection relative to phenotypic selection (↵k), di↵erent selection strategies, di↵erent

correlations between the traits (r=-0.15, 0.15, and 0.3), prediction accuracies (PA=0.3, 0.5, and 0.7), and for the ratio of variance

components VC2 (�2
G
: �2

G⇥L
: �2

✏ = 1 : 0.5 : 0.5). The details regarding the selection strategies are shown in Figure 2.
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Figure S8: Genetic gain for the target trait (�G) on average across 1,000 simulation

runs at D clone stage under di↵erent ratios variance components for the target trait

(�2
G

: �
2
G⇥L

: �
2
✏ ): (1) 1 : 1 : 0.5 (VC1) and (2) 1 : 0.5 : 0.5 (VC2), di↵erent

selection strategies, di↵erent correlations between the traits (r=-0.15, 0.15, and 0.3),

and prediction accuracies (PA=0.3, 0.5, and 0.7) when the weight of genomic selection

relative to phenotypic selection (↵k) was 0.9. Error bars represent the standard error

of the genetic gain across 1,000 simulation runs.

3 Wu et el. (2023) in The plant genome

42



11

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

● ● ●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

● ●
●

●

●

●

PA=0.3 PA=0.5 PA=0.7
r=−0.15

r=0.15
r=0.3

SL SH A B C D SL SH A B C D SL SH A B C D

500

1000

1500

2000

2500

3000

500

1000

1500

2000

2500

3000

500

1000

1500

2000

2500

3000

Stages

σ
G2

Selection strategies

●

●

●

PS

GS−SL

GS−SH

GS−A

GS−SL:SH

GS−SH:A

GS−SL:SH:A

●

No GS

One−time GS

Multiple−times GS

Figure S9: Genetic variance for the target trait (�2
G
) on average across 1,000 simulation runs

in the corresponding stage for di↵erent correlations between the traits (r=-0.15, 0.15, and

0.3), prediction accuracies (PA=0.3, 0.5, and 0.7) and di↵erent selection strategies, where the

weight of genomic selection relative to phenotypic selection (↵k) was 0.9. This evaluation was

based on VC1 (�2
G
: �2

G⇥L
: �2

✏ = 1 : 1 : 0.5).
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Table S1: The combination of the three di↵erent weights of genomic selection relative

to phenotypic selection (↵1, ↵2 and ↵3) to reach the highest genetic gain for the target

trait (�G) across 1,000 simulation runs in the strategy GS-SL:SH:A for the di↵erent

correlations between the two traits (-0.15, 0.15, and 0.3) and prediction accuracies

(0.3, 0.5, and 0.7).

Correlation Prediction accuracy ↵1 ↵2 ↵3 �G SD�G

-0.15

0.3 0.90 0.90 0.90 65.73 10.03

0.5 0.90 0.90 0.90 72.57 10.94

0.7 0.90 0.90 0.90 79.89 10.81

0.15

0.3 0.90 0.70 0.80 68.12 10.54

0.5 0.80 0.90 0.90 74.97 10.23

0.7 0.90 0.80 0.90 81.78 10.62

0.30

0.3 0.40 0.60 0.80 70.73 8.82

0.5 0.40 0.90 0.90 76.91 9.22

0.7 0.50 0.80 0.90 83.06 9.39
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Table S2: Optimum allocation of resources to maximize genetic gain of the target trait (�G) for

the di↵erent selection strategies and correlations between the two traits (r=-0.15, 0.15, and 0.3).

The prediction accuracy was 0.3 and the phenotyping cost of early measured trait 1.4 e and

genotyping cost 25 e. p1 to p5 , ↵k, and N1 are the selected proportion per stage, the weight

of genomic selection relative to phenotypic selection, and the number of clones at the seedling

stage, respectively.

Correlations Selection strategies �G 1 SD�G
2

p1 p2 p3 p4 p5 ↵k N1

-0.15

PS 57.87 (d) 5.04 0.39 0.36 0.31 0.10 0.10 - 152,995.09

GS-SL 57.21 (e) 5.04 0.43 0.50 0.50 0.12 0.21 0.82 23,100.40

GS-SH 60.05 (c) 5.41 0.48 0.48 0.50 0.10 0.15 0.85 34,911.00

GS-A 61.63 (b) 5.55 0.44 0.50 0.30 0.10 0.15 0.90 61,078.00

GS-SL:SH 59.94 (c) 5.40 0.45 0.48 0.50 0.15 0.20 0.90 21,365.00

GS-SH:A 62.89 (a) 5.92 0.47 0.50 0.50 0.10 0.15 0.90 34,214.00

GS-SL:SH:A 62.59 (a) 5.81 0.48 0.49 0.49 0.14 0.21 0.90 21,157.25

0.15

PS 67.54 (a) 6.45 0.28 0.38 0.38 0.10 0.10 - 170,906.06

GS-SL 63.86 (c) 6.02 0.21 0.49 0.49 0.12 0.19 0.29 60,100.60

GS-SH 66.18 (b) 6.30 0.25 0.37 0.49 0.12 0.15 0.67 88,054.48

GS-A 68.08 (a) 6.52 0.28 0.42 0.35 0.12 0.13 0.79 109,402.09

GS-SL:SH 64.23 (c) 6.02 0.43 0.48 0.50 0.13 0.18 0.67 26,926.30

GS-SH:A 67.60 (a) 6.50 0.19 0.48 0.47 0.12 0.17 0.84 92,069.85

GS-SL:SH:A 65.13 (b) 6.19 0.46 0.49 0.49 0.14 0.16 0.72 24,930.00

0.3

PS 71.42 (a) 7.05 0.23 0.39 0.42 0.10 0.10 - 178,386.46

GS-SL 67.56 (b) 6.59 0.16 0.49 0.49 0.12 0.19 0.21 73,846.80

GS-SH 69.74 (b) 6.83 0.17 0.33 0.49 0.13 0.17 0.59 126,127.77

GS-A 71.37 (a) 7.01 0.20 0.40 0.35 0.12 0.15 0.74 146,599.75

GS-SL:SH 66.46 (c) 6.35 0.40 0.43 0.49 0.13 0.18 0.55 32,437.41

GS-SH:A 70.58 (b) 6.91 0.14 0.44 0.43 0.13 0.17 0.75 118,439.54

GS-SL:SH:A 66.84 (c) 6.37 0.44 0.46 0.45 0.14 0.17 0.59 29,865.59

1
The letters in parentheses after �G represent the significance groups (P < 0.05) across these selection strategies

within a specific correlation.

2 SD�G is the standard deviation of �G across 1,000 simulation runs.
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Table S3: Optimum allocation of resources to maximize genetic gain of the target trait (�G) for

the di↵erent selection strategies and correlations between the two traits (r=-0.15, 0.15, and 0.3).

The prediction accuracy was 0.7 and the phenotyping cost of early measured trait 1.4 e and

genotyping cost 25 e. p1 to p5 , ↵k, and N1 are the selected proportion per stage, the weight

of genomic selection relative to phenotypic selection, and the number of clones at the seedling

stage, respectively.

Correlations Selection strategies �G 1 SD�G
2

p1 p2 p3 p4 p5 ↵k N1

-0.15

PS 57.87 (e) 5.04 0.39 0.36 0.31 0.10 0.10 - 152,995.09

GS-SL 61.66 (d) 5.46 0.14 0.50 0.50 0.28 0.26 0.90 25,193.54

GS-SH 63.81 (c) 5.69 0.45 0.15 0.50 0.20 0.20 0.85 48,549.75

GS-A 65.73 (b) 5.95 0.46 0.47 0.16 0.10 0.25 0.90 73,034.40

GS-SL:SH 65.66 (b) 5.97 0.24 0.37 0.50 0.26 0.25 0.90 24,744.58

GS-SH:A 67.78 (a) 6.26 0.47 0.25 0.35 0.20 0.22 0.90 44,532.00

GS-SL:SH:A 69.43 (a) 6.50 0.32 0.40 0.40 0.24 0.24 0.90 24,197.36

0.15

PS 67.54 (e) 6.45 0.28 0.38 0.38 0.10 0.10 - 170,906.06

GS-SL 66.45 (f) 6.07 0.13 0.50 0.50 0.24 0.24 0.61 36,392.38

GS-SH 70.49 (c) 6.59 0.25 0.11 0.50 0.25 0.23 0.82 89,212.15

GS-A 73.05 (a) 6.89 0.30 0.43 0.10 0.21 0.20 0.85 124,176.68

GS-SL:SH 68.75 (d) 6.42 0.25 0.35 0.50 0.26 0.25 0.87 25,501.81

GS-SH:A 73.15 (a) 6.96 0.18 0.25 0.26 0.26 0.25 0.90 109,503.21

GS-SL:SH:A 71.21 (b) 6.77 0.32 0.39 0.39 0.26 0.24 0.90 24,407.98

0.3

PS 71.42 (c) 7.05 0.23 0.39 0.42 0.10 0.10 - 178,386.46

GS-SL 69.26 (e) 6.44 0.11 0.49 0.49 0.22 0.23 0.46 46,171.65

GS-SH 73.84 (b) 6.98 0.15 0.10 0.49 0.28 0.25 0.78 136,380.42

GS-A 76.29 (a) 7.23 0.22 0.39 0.10 0.23 0.22 0.85 172,683.82

GS-SL:SH 70.22 (d) 6.59 0.22 0.30 0.50 0.29 0.27 0.76 29,922.56

GS-SH:A 76.45 (a) 7.28 0.13 0.23 0.24 0.30 0.28 0.88 137,357.44

GS-SL:SH:A 71.91 (c) 6.82 0.29 0.37 0.37 0.27 0.25 0.83 26,728.49

1
The letters in parentheses after �G represent the significance groups (P < 0.05) across these selection strategies

within a specific correlation.

2 SD�G is the standard deviation of �G across 1,000 simulation runs.
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ABSTRACT

Di↵erent cross-selection (CS) methods incorporating genomic selection (GS) have

been used in diploid species to improve long-term genetic gain and simultaneously

preserve diversity. However, their application to highly heterozygous and tetraploid

crops, for example, potato, is lacking up to now. The objectives of our study were

to (i) assess how di↵erent CS methods incorporating GS with or without consider-

ation of genetic variability a↵ect both short- and long-term genetic gains compared

to strategies using phenotypic values (PS); and (ii) investigate the interaction ef-

fects between di↵erent genetic architectures and CS methods on long-term genetic

gain. In our simulation results, implementing GS with optimal selection intensities

(Optimal-GS) had a higher short- and long-term genetic gain compared to PS strate-

gies. The CS method considering additive and dominance e↵ects to predict progeny

mean based on simulated progenies (MEGV-O) had the highest accuracy and reached

the highest long-term gain among the assessed CS methods based on solely progeny

mean. Compared to UC and MEGV-O, the linear combination of usefulness criteria

(UC) and genome-wide diversity (called EUCD) kept the same level of genetic gain

but simultaneously kept a higher diversity as well as a certain degree of genetic vari-

ance. However, the choice of the most appropriate weight to account for diversity in

EUCD depends not only on the genetic architecture of the target trait but also on

the breeder’s breeding objectives. Therefore, these results can provide breeders with

a concrete method to improve their potato breeding programs.
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1 INTRODUCTION

Potato (Solanum tuberosum L.) is one of the most important non-cereal crops for1

human consumption in the world (http://www.fao.org/faostat/en/). In response2

to a growing global population, producing su�cient food becomes a big challenge for3

agriculture (Fróna et al., 2019). In addition, global crop production is expected to be4

negatively impacted by climate change due to an increase in extreme temperatures5

and an alternation of rainfall patterns (Abberton et al., 2016). Thus, developing6

methods and approaches which increase the e�ciency and e↵ectiveness to develop7

new varieties with high and stable yield in potato is one of the important missions8

of plant geneticists.9

One of the necessary steps to develop varieties requires generating new genetic10

variability. This can be reached via (1) introducing new alleles, for instance using11

genetic resource collections (Sanchez et al., 2023); and (2) creating new allelic com-12

binations. The latter is realized by meiotic recombinations that occurs after crossing13

parental genotypes to create new segregating populations. The next steps after cross-14

ing are to identify and select the superior varieties in the created breeding populations,15

as well as to determine new cross combinations to start the next breeding cycle. In16

a typical clonal breeding program, these steps rely until now mostly on phenotypic17

records, and take several years. This is especially true in potato because the target18

traits can only be assessed in the later stages due to low multiplication coe�cient of19

potato (Grüneberg et al., 2009), which in turn hampers the improvement of genetic20

gain. With the advent of genomic selection (GS), genetic gain can be enhanced in21

both livestock and crop breeding (Voss-Fels et al., 2019; Xu et al., 2020). In potato,22

Wu et al. (2023) have shown via a simulation study that implementing GS into one23
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breeding cycle can improve the short-term genetic gain of the target trait compared24

to using phenotypic selection (PS). While incorporating GS into breeding programs25

has been shown to increase long-term genetic gain in diploid crops compared to PS26

(Gaynor et al., 2017; Gorjanc et al., 2018; Muleta et al., 2019; Lubanga et al., 2022;27

Sanchez et al., 2023; Werner et al., 2023), the e↵ects of implementing GS on the28

long-term genetic gain in tetraploids is still unclear. Furthermore, in tetraploid and29

heterozygous crops, due to their complicated quantitative genetics and the impor-30

tance of dominance e↵ects, di↵erent trends of implementing GS may be expected31

versus diploid, which need to be assessed.32

The value of new crosses is commonly estimated by the mid-parental performance33

based on the phenotypic records of candidate parents (Brown and Caligari, 1989).34

With the advent of GS, the mid-parental performance can be replaced by the es-35

timated genetic values (EGV) from a trained GS model, which has been proven to36

improve genetic gain in maize compared to the one based on phenotypes (Allier et al.,37

2019a; Sanchez et al., 2023). However, as GS is also a truncation selection, it is ac-38

companied by an acceleration of the fixation of favorable alleles. This in turn leads39

to a quick loss of genetic variation. If the candidate parents that are intermated for40

creating the next generation have similar genetic backgrounds, this hinders the gen-41

eration of new allelic recombinations and limits the long-term improvement of genetic42

gain (c.f Jannink, 2010). Therefore, maintaining diversity in the breeding popula-43

tions when selecting new crosses is one possibility to improve long-term genetic gain.44

Several studies have proposed approaches to balance genetic gain and diversity45

while determining desirable new crosses. The usefulness criterion (UC) is one of46

the criteria used to predict the performance of a cross (Schnell and Utz, 1975). It47

considers the expected progeny mean (µ) and the expected response to selection in48
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the progenies (ih�): UC = µ+ ih�, where � is the square root of progeny variance,49

i the selection intensity, and h the square root of heritability. Using UC to select50

new crosses has been shown to increase genetic gain compared to mid-parental values51

in simulation studies on maize of populations (Lehermeier et al., 2017; Allier et al.,52

2019a; Sanchez et al., 2023). Furthermore, Zhong and Jannink (2007) made a modifi-53

cation of the UC, called superior progeny value: S = µ+ i�. This focuses on progeny54

mean and variance but ignores heritability. However, depending on the traits, both55

UC and S can be close to the progeny mean as (1) the progeny standard deviation56

becomes very small (Rembe et al., 2022) or (2) the variation in progeny mean is much57

higher than the variation in progeny standard deviation (Zhong and Jannink, 2007;58

Lado et al., 2017). These two aspects limits the advantage of cross-selection (CS)59

methods – like UC and S, which consider only progeny mean and variance. Therefore,60

investigating di↵erent weights between progeny mean and progeny variance could af-61

fect the e�ciency of using progeny variance for CS on long-term genetic gain. This,62

however, has not yet been studied before.63

The progeny mean of a bi-parental cross can be predicted by mid-parental perfor-64

mance based on either phenotypic records or EGV from the trained GS model. This65

can be assessed for inbred populations derived from inbred parents or for hybrids66

and outbreds in the absence of dominance e↵ects. With the importance of domi-67

nance e↵ects in outbred crops, it can be estimated using a formula for diploid species68

(Falconer and Mackay, 1996; Wolfe et al., 2021; Werner et al., 2023). However, no69

formula is available for tetraploid species. Thus, using the mean of parental perfor-70

mance could lead to inaccurate estimations of the progeny mean and no formula for71

predicting progney mean in tetraploid potato is available so far. Furthermore, it is72

not easy to obtain a reliable prediction of progeny variance (Mohammadi et al., 2015).73
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With the development of dense genome-wide markers and the advent of GS models,74

the marker e↵ects can be well estimated (Meuwissen et al., 2001). Recently, several75

formulae considering linkage disequilibrium and recombination rate in parental lines76

have been derived to predict the progeny variance (Bonk et al., 2016; Lehermeier77

et al., 2017; Osthushenrich et al., 2017; Allier et al., 2019b; Wolfe et al., 2021). How-78

ever, these formulae are based on diploid with either inbred or outbred parents, which79

cannot be applied to tetraploid potato. The simulation of virtual progenies of a cross80

using a genetic map and phased parental haplotype information is an alternative ap-81

proach to circumvent this (Bernardo, 2014; Mohammadi et al., 2015). Softwares for82

that purpose are available (e.g. AlphasimR (Gaynor et al., 2021)) and can be used83

for such simulation in tetraploid species. The use of the average and variance of EGV84

among in silico progenies to estimate progeny mean and variance could improve the85

prediction accuracy of progeny mean compared to mid-parental values and provide86

an alternative to predict progeny variance for tetraploid species with heterozygous87

parents. This aspect, however, has not been examined earlier.88

An alternative to UC and its derived methods is the optimal cross-selection (OCS)89

(Gorjanc et al., 2018). The basic idea of OCS is to select a group of bi-parental crosses90

that maximize the expected progeny mean under a certain constraint of genetic di-91

versity or co-ancestry on the selected population of individuals who serve as parents.92

Through optimization algorithms (e.g. Kinghorn, 2011), this approach has proven93

to increase long-term genetic gain in a simulated maize breeding program with a94

minor penalty on the short-term genetic gain compared to using solely UC (Allier95

et al., 2019a; Sanchez et al., 2023). However, it is extremely more time-consuming96

to find the optimal parents and crosses compared to the abovementioned truncation97

CS methods based on ranking the performance among all possible crosses, especially98
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when many markers are used in the application of the tetraploid breeding program.99

This limits its advantage in potato.100

Another possibility to quantify diversity is based on the genome-wide variation of101

a cross itself rather than the variation in the whole population of parents for crosses.102

This can be measured by the expected heterozygosity (He). Accounting for this el-103

ement during the selection of new crosses may contribute to long-term genetic gain104

and simultaneously preserve diversity. However, to the best of our knowledge, no ear-105

lier studies have investigated the performance of a criterion including genome-wide106

diversity of a cross to determine new desirable crosses.107

The objectives of this study were to (i) assess how di↵erent CS methods incor-108

porating GS with or without consideration of genetic variability a↵ect both short-109

and long-term genetic gains compared to strategies using phenotypic values; and110

(ii) investigate the interaction e↵ects between di↵erent genetic architectures and CS111

methods on the long-term genetic gain.112
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2 MATERIALS AND METHODS

2.1 Potato empirical genomic dataset113

A set of 80 tetraploid potato clones genotyped for 49,125 phased sequence variants114

across 12 chromosomes (Baig et al. in preparation) was randomly selected from a di-115

verse panel of 100 clones and used in this simulation study. The sequence variants, in-116

cluding single nucleotide polymorphism and small insertion/deletion polymorphisms,117

have been filtered by a minor allele frequency < 0.05 and a missing rate > 0.1 and118

selected from all possible variants (19,649,193) to be evenly distributed every 15 kilo-119

bases. In addition, their corresponding genetic map information was estimated using120

a Marey map (for details see Wu et al. (2023)).121

2.2 Breeding programs and selection strategies122

This simulation study was based on three main selection strategies in a potato clonal123

breeding program: (1) Standard-PS: a scheme following a standard potato breeding124

program relying exclusively on PS, which serves as benchmark; (2) Optimal-PS: a125

scheme relying on PS but where the optimal selection intensities during the selection126

process were determined to maximize genetic gain; (3) Optimal-GS: a scheme based127

on both PS and GS where the optimal selection intensities during the selection pro-128

cess were determined to maximize genetic gain.129

To simulate a long-term potato breeding program, 30 sequential breeding cycles130

were considered. Each breeding cycle of the breeding program comprised seven main131

stages: cross stage (X), seedling stage (SL), single hills stage (SH), A clone stage (A),132

B clone stage (B), C clone stage (C), and D clone stage (D). During each breeding133

cycle, the selection was performed following one of the above described three selection134
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strategies. Then, some D clones were selected as new parents for the next breeding135

cycle and intercrossed to create new genetic variation. The details of the approaches136

used to determine new crosses are described in the next section.137

In order to allow a fair comparison of performance across di↵erent selection strate-138

gies and CS methods, a consistent starting point, called burn-in cycle (C0), was re-139

quired. The procedure of the potato breeding program across 30 cycles is shown in140

Figure 1 and its details are described here under:141

• Burn-in cycle (C0)142

– Step 1: 300 crosses were randomly selected from all possible crosses in the143

half-diallel among the 80 parents (=3,160, called candidate crosses) and144

served as a crossing plan. From each cross the same number of progenies,145

which were in the following designed as SL progenies, were generated.146

– Step 2: Selection processes from SL to D clone stage were conducted ac-147

cording to the chosen selection strategy (see Figure 2 in Wu et al. (2023)).148

– Step 3: The top 20 of the 60 clones at D were selected based on Tt149

phenotypes and were, together with the 80 parents of C0, considered as150

candidate parents for cycle 1 (C1). Therefore, the number of candidate151

parents in C1 became 100 (80+20).152

• Cycle 1 (C1)153

– Step 1: The performance of all possible crosses in the half-diallel among the154

100 parents, excluding the 300 random crosses of C0 (= 4,650 candidate155

crosses), was calculated based on the chosen CS method.156

– Step 2: Based on the calculated performance from Step 1, the top 300157
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crosses were selected as the crossing plan, and from each cross the same158

number of progenies, which were in the following designed as SL progenies,159

were generated.160

– Step 3: This followed Step 2 of C0.161

– Step 4: This followed Step 3 of C0 except that 20 parents were randomly162

selected from those candidate parents which were not used in the crossing163

plan of C1, and were removed from the candidate parents. Therefore,164

the number of candidate parents in the next cycle (C2) was still 100 (80-165

20+20).166

• Cycle t (Ct), where t > 1167

– Step 1: To reduce computational time and mimic the breeder’s usage,168

only the candidate crosses consisting of those crosses between the 80 old169

and 20 new ones and all possible crosses in the half-diallel among the 20170

new candidate parents were considered for Ct and their performances were171

calculated according to the CS method.172

– Step 2 to 4: These followed steps 2 to 4 of C1.173

2.3 Cross-selection (CS) methods174

Di↵erent methods were tested to select new crosses for the next cycle. The considered175

parameters for each cross were i) the predicted progeny mean, µ; ii) the predicted176

progeny variance, �2
G
; and iii) the predicted progeny diversity, Heper�cross; and (iv)177

and the linear combinations of (i), (ii) and (iii).178

The predicted progeny mean could be evaluated in five di↵erent ways: (i) the179

mean phenotypic values of the two parents, MPV; (ii) the mean estimated breeding180
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values of the two parents, MEBV-P; (iii) the mean estimated genetic values of the181

two parents, MEGV-P; (iv) the mean estimated breeding values among simulated182

o↵springs, MEBV-O; and (v) the mean estimated genetic values among simulated183

o↵springs, MEGV-O. The last two, (iv) and (v), were estimated by the mean breeding184

and genetic values, respectively, among 1,000 simulated progenies of an in silico cross.185

To balance selection between improvement of genetic gain and maintenance of186

variability measured by predicted progeny variance for the selection of new crosses,187

the concept of UC (Schnell and Utz, 1975) was first extended by:188

EUC : µ+ w1 · i · PA · �G [1]

representing an extended usefulness criterion (EUC), in which µ was the predicted189

progeny mean, w1 a weight on the square root of the progeny variance (�G), i the190

selection intensity, and PA the prediction accuracy of the GS model. Here, PA191

replaced the square root of heritability in the response of selection when GS was192

implemented (Falconer and Mackay, 1996; He↵ner et al., 2010). For EUC, µ was based193

on MEGV-O because this outperformed the other ways of progeny mean estimation194

in the previous assessment. �
2
G

was estimated by the variance of genetic values Tt195

among 1,000 simulated progenies of an in silico cross. We varied w1 by 1, 10, 50,196

and 100. If w1 = 1, the equation [1] is equivalent to UC. Moreover, we assumed the197

selected proportion per cross as 0.1 so that i corresponds to 1.755.198

In addition to the EUC criterion and to keep a certain level of genomic diversity199

in the breeding program, Heper�cross was incorporated into the equation [1] to create200

an extended usefulness criterion incorporating genomic diversity index (EUCD) by:201

EUCD : µ+ i · PA · �G + w2 ·Heper�cross, [2]
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where Heper�cross was calculated by the He among 1,000 simulated progenies of an202

in silico cross and weighted by w2. Due to the tetraploid nature of potato, He was203

determined by:204

He =
1

m

mX

j=1

(1�
kX

i=1

p
4
i(j)), [3]

where m was the number of sequence variants, k the number of alleles in one sequence205

variant, and pj(i) the allele frequency of the i
th allele at the j

th sequence variant206

(Gallais, 2003). We only considered bi-allelic sequence variants in this study, and207

therefore, k was equal to 2.208

The scale of �G and Heper�cross and their variance di↵ered largely. To keep the209

same proportion for the two measurements in the equation [1] and [2], w2 varied by210

50, 500, 2500, and 5000. The resulting four di↵erent scales of weights for EUC and211

EUCD as well as their abbreviations are summarized in Table 1.212

2.4 Simulation of genetic architectures of traits213

2.4.1 Simulated true genetic and phenotypic values214

Two traits, auxiliary (Ta) and target (Tt) trait, were considered in this study. Here,215

Ta represented the weighted sum of the auxiliary traits measured in the first three216

stages of the breeding program, and Tt the weighted sum of all market-relevant quan-217

titative traits. The latter was controlled by 2000 quantitative trait loci (QTL). The218

true genetic and phenotypic values (TGV and P) for both traits were simulated fol-219

lowing Wu et al. (2023) except for generating dominance e↵ects. For autotetraploids,220

all possible genotype classes in each QTL were aaaa, Aaaa, AAaa, AAAa, and AAAA.221

The deviations of genetic values from their breeding values (= cumulative the number222
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of additive e↵ects) for the three heterozygous classes (Aaaa, AAaa, and AAAa) were223

di↵erent and expressed by d1, d2, and d3, respectively (Gallais, 2003) (Table 2). The224

simulation of the dominance e↵ects is introduced in the next section.225

The trial environments across locations and breeding cycles were assumed to be226

homogeneous, and therefore the variance components of trial errors for both traits227

were fixed. To do so, the error variance of Ta and Tt (�2
✏Ta

and �
2
✏Tt

) were esti-228

mated at SL of C0 and were then both fixed and assumed for the following breed-229

ing cycles. In detail, the ratio of variance components was set for Tt as follows:230

�
2
GTt

: �2
GTt⇥L

: �2
✏Tt

= 1 : 1 : 0.5, where �
2
GTt

denoted the genetic variance, and231

�
2
GTt⇥L

the variance of interaction between genotype and location; and the heritabil-232

ity of H2
Ta

was fixed to 0.6. At SL of C0, �2
GTa

and �
2
GTt

were estimated by the233

sample variance of TGVTa and TGVTt , respectively. Then, �
2
✏Tt

was fixed to 1
2 of the234

estimated �
2
GTt

. Similarly, �2
✏Ta

was estimated by
1�H

2
Ta

H
2
Ta

�
2
GTa

. However, �2
GTt

and235

�
2
GTt⇥L

varied across breeding cycles and �
2
GTt

was re-estimated at SL of each cycle.236

Consequently, �2
GTt⇥L

was controlled by the ratio of variance components.237

2.4.2 Estimated breeding and genetic values238

In this study, a GS model was assumed to be trained for Tt on earlier cycles of239

the breeding program with a prediction accuracy PA. The estimated breeding val-240

ues for Tt obtained from the GS model were estimated by EBVTt = TBVTt + ✏PA,241

where TBVTt were the true breeding values of Tt, that is, only additive e↵ects were242

considered. ✏PA was the residual value following a normal distribution N(0,�2
✏PA

),243

with244
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�
2
✏PA

=
1

n0 � 2

1� PA2

PA2

n
0X

i=1

(TBVTt(i) � TBVTt)
2 [4]

representing the error variance determined by the level of PA, where n
0 was the245

number of genotyped clones, TBVTt(i) the TBVTt at the i
th genotyped clone, and246

TBVTt the average of TBVTt on all genotyped clones. The estimated genetic values247

for Tt (EGVTt) were obtained by replacing all TBV appearing in this section by248

TGV.249

2.5 Economic settings and quantitative genetic parameters250

The costs for phenotypic evaluation of Ta and Tt in one environment were assumed251

to be 1.4 and 25 e, respectively. The costs for genotypic evaluation per clone were252

set to 25 e. For the Standard-PS procedure, the total budget in one breeding cycle253

was 677,500 e. As this strategy served as benchmark, the total budget for all other254

selection strategies was also fixed to this amount. In this study, we chose the selection255

strategy GS-SH:A as Optimal-GS (see Wu et al. (2023)), and set PA and r to 0.5256

and 0.15, respectively, for all selection strategies as well as CS methods. The same257

number of locations and number of clones at D (N6=60) were set as the ones in the258

Standard-PS (see Wu et al. (2023)). The optimal selection proportions achieving the259

maximum short-term genetic gain and the number of clones at SL for each selection260

strategy used in this study are summarized in Table S1.261

In order to investigate the interaction e↵ects between di↵erent genetic architec-262

tures and CS methods on the long-term genetic gain, we considered four di↵erent263

cases of dominance degree � for Tt: (1) No dominance e↵ects: �0 was set to 0; (2)264

mild dominance e↵ects: �1 was produced across all QTL from N(1, 1); (3) moderate265
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dominance e↵ects: �2 = 2 ⇥ �1; (4) strong dominance e↵ects: �3 = 3 ⇥ �1. The true266

dominance e↵ect at each QTL was then calculated by multiplying the true additive267

e↵ect by the specific �.268

2.6 Evaluations269

The genetic gain and genetic variability achieved by each scenario in each breeding270

cycle were evaluated and ranked. The genetic gain was defined as the di↵erence in271

mean TGVTt between D clones and the 80 selected candidate parents of C0. The272

level of variability was evaluated by using the genetic variance of Tt, and the level273

of genomic diversity by expected heterozygosity (He) (see equation [3]) at D clone274

stage. To ensure statistical significance, all results in this study were based on 30275

independent simulation runs.276
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3 RESULTS

The mean genetic gain and genetic variance of Tt, as well as the genome-wide di-277

versity in a long-term tetraploid potato breeding program were assessed at D clone278

stage considering the following parameters and their interactions: (1) di↵erent se-279

lection strategies, (2) di↵erent CS methods, (3) di↵erent genetic architectures of Tt,280

i.e., di↵erent degree of dominance.281

Regardless of the genetic architectures of Tt and under the use of the MPV282

method, any selection strategy based on the optimal allocation of resources (Optimal-283

GS and Optimal-PS) had a higher genetic gain than the Standard-PS in both short-284

and long-term breeding cycles (Figure 2a). Furthermore, the Optimal-GS was supe-285

rior to Optimal-PS. An increase of the cycle numbers strengthened this tendency.286

Regardless of the parameters: selection strategies, CS methods, and genetic ar-287

chitectures of Tt, an improved genetic gain was observed with increased numbers288

of finished breeding cycles (Figures 2a and 3a). However, the speed of increase of289

the genetic gain per cycle reduced at late breeding cycles compared to early ones.290

This trend as well as the di↵erence in ranking among all assessed CS methods were291

a↵ected by several parameters: the degree of dominance and weights (w1 and w2) of292

the modified UC. Their details are explained below.293

3.1 Comparison of CS methods that only consider progeny mean294

First, we observed the e↵ects of GS implementation on genetic gain using di↵erent295

CS methods only focusing on the progeny mean. In general, any progeny mean pre-296

dicted by in silico progenies (MEBV-O and MEGV-O) outperformed those predicted297

by mid-parental performance (MPV, MEBV-P, and MEGV-P) (Figure 2a). Further-298
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more, the MEGV-O method was superior to the MEBV-O method. The di↵erence299

between the two CS methods was more obvious as both the number of breeding cycles300

and the degree of dominance increased. The latter had stronger influences on genetic301

gain compared to the former. Interestingly, the MPV (Optimal-GS) had the highest302

genetic gain among CS methods based on mid-parental performance.303

In contrast to the genetic gain, the genetic variance of Tt decreased as the number304

of breeding cycles increased (Figure 2b). This tendency increased with the reduction305

of the degree of dominance. Furthermore, the e↵ects of the selection strategies and306

the CS methods were opposite on the genetic variance in comparison to the genetic307

gain. As the degree of dominance increased, larger di↵erences and fluctuations in308

genetic variance among these CS methods and cross cycles were observed.309

Similarly, the genome-wide diversity measured by He decreased with increasing310

breeding cycle numbers (Figure 2c). However, a higher degree of dominance reduced311

this tendency. With increasing importance of dominance e↵ects, the CS methods312

considering additive and dominance e↵ects (MPV, MEGV-P, and MEGV-O) kept313

a higher He than those based solely on additive e↵ects (MEBV-P and MEGV-P),314

especially at late cycles. Furthermore, MEGV-O method kept the highest He among315

the progeny mean-base CS methods, even though it had the lowest genetic variance316

and the highest genetic gain. Therefore, the MEGV-O was used hereafter as a mea-317

surement for the prediction of progeny mean in the weighted methods, i.e., EUC and318

EUCD.319
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3.2 Comparison of CS methods with weights on progeny variance or320

genome-wide diversity321

Regardless of the genetic architectures of Tt, a small or no di↵erence on genetic gain322

was observed at early cycles among the following CS methods: MEGV-O, EUC and323

EUCD with low weights (Figure 3a). As the cycle number increased, the di↵erence324

was more pronounced. On average across the four levels of dominance e↵ects, the325

EUCw1=1 (=UC) had the highest genetic gain among all EUC (731.01 at C30), as well326

as was superior to CS methods based only on progeny mean (MEGV-O and MPV327

methods) (Figure 3a and Table S2). Furthermore, the EUCD with a low weight328

(w2=50 or 500) yielded the highest genetic gain (734.38 at C30).329

Under the assumption of the same proportion for genetic variance and He with con-330

sidering the four scales (A, B, C, and D) (Table 1), the e↵ect of the di↵erent weights331

for EUC and EUCD was compared for the long-term genetic gain. Regardless of332

the genetic architectures of Tt, a small or no di↵erence between EUCD and EUC333

was observed on the genetic gain when the lowest weights for w1 and w2 were given,334

that is under Scale A (Figure 3a and Table S2). Furthermore, EUCDw2=500 always335

outperformed EUCw1=10 (Scale B). With high dominance e↵ects, the EUCDs were336

superior to the EUCs with high weights, i.e., under Scale C and D.337

The ranking and the di↵erence in genetic gain among these CS methods were influ-338

enced by the degree of dominance (Table S2). EUC and EUCD with high weights339

ranked better when dominance e↵ects increased. This was especially true for EUCD.340

For instance, EUCDw2=5000 had the worst performance under no or mild dominance341

e↵ects. However, under strong dominance e↵ects, it ranked 7th and outperformed342

EUCw1=50&100 as well as MPV. While a slow improvement of genetic gain using343
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EUCDw2=2500 was observed under the case without dominance e↵ects, it ranked 5th344

under the cases with moderate and strong dominance e↵ects. Furthermore, the dif-345

ference between this CS method and the best one decreased, especially by strong346

dominance e↵ects.347

EUC and EUCD with low weights reached high genetic gain but were accompa-348

nied by low genetic variance (Figure 3b and Table S2). This trend was similar to the349

CS methods only based on mid-parental values in the previous section. In addition,350

with an increase in cycle numbers, the reduction of genetic variance slowed down,351

especially for the case with strong dominance e↵ects. Di↵erently, high-weighted EUC352

and EUCD kept relatively high genetic variance and even increased it as the cycle353

number increased. Under the same proportion for genetic variance and He, EUCD354

had a higher genetic variance than EUC under Scale C and D, except for the case355

with strong dominance e↵ects under Scale C, but EUCD reached a higher genetic gain356

than EUC. Furthermore, with strong dominance e↵ects, EUCDw2=5000 kept the high-357

est genetic variance. However, it still performed similarly to EUCw1=10 regarding to358

genetic gain and even had a much higher genetic gain than MPV and EUCw1=50&100.359

Furthermore, EUC dramatically decreased He along increasing cycles (Figure 3c and360

Table S2), which was similar to the only mean-based CS methods. This trend was361

not mitigated a lot as w1 increased, except for the scenarios with low or no dominance362

e↵ects. In contrast to EUC, using EUCD obviously slowed down the decline of He. A363

greater w2 increased this tendency. Under the same proportion for genetic variance364

and He (i.e., any scale in Table 1), EUCD always kept a higher He than EUC. Further-365

more, EUCD with a low w2 reached a higher He than EUC with a high w1, especially366

for a high importance of dominance e↵ects. Overall the genetic architectures of Tt,367

EUCD with a low w2 (50 or 500) achieved a high genetic gain and still kept a higher368
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He than the UC and the MEGV-O method. Meanwhile, its level of genetic variance369

remained average. Under strong dominance e↵ects, the genetic gain reached by the370

EUCD with a high w2 (e.g. EUCDw2=2500) had no significant di↵erence with the371

highest one reached by EUCDw2=500. However, the He and genetic variance achieved372

by EUCDw2=2500 were higher than the one reached by EUCDw2=500.373
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4 DISCUSSION

Di↵erent CS methods accounting or not for diversity have been evaluated in diploid374

crops to enhance genetic gain (Gaynor et al., 2017; Allier et al., 2019a; Werner et al.,375

2023). However, the e↵ects of implementing GS and di↵erent CS methods in a long-376

term breeding program for tetraploid crops with a highly heterozygous genome are377

lacking. Because of their di↵erence in quantitative genetics compared to diploid378

inbred breeding, one could expect di↵erent outcomes in such an analysis. Therefore,379

we evaluated the e�ciency of di↵erent CS methods in long-term breeding programs380

under di↵erent genetic architectures via a simulation study.381

4.1 The e↵ects of di↵erent selection strategies on long-term potato382

breeding programs383

In this study, we extended an analysis (Wu et al., 2023) considering the implementa-384

tion of GS in one breeding cycle, to study its impact on the long-term genetic gain.385

Regardless of the genetic architectures and based on MPV as CS method, a higher386

genetic gain (Figure 2a) in long-term breeding programs was observed with Optimal-387

PS compared to the benchmark Standard-PS. This follows the trend observed in the388

study on short-term genetic gain (Wu et al., 2023). Our observations can be ex-389

plained by that Optimal-PS had lower selection proportions at B and C clone stages390

(i.e., higher selection intensities, Table S1) fully based on PTt selection in compar-391

ison with the benchmark procedure, leading to a higher genetic gain according to392

breeder’s equation (Falconer and Mackay, 1996). Furthermore, the selection strategy393

incorporating GS reached a higher genetic gain than PS, which can be expected be-394

cause the former has a higher indirect selection response than the latter at the early395
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stages (Wu et al., 2023). Thus, we compared the performance among the evaluated396

CS methods using the selection strategy GS:SH-A hereafter.397

4.2 The accuracy in predicting progeny mean398

Among the examined CS methods that predict progeny mean, the ranking with399

respect to maximum genetic gain was MEGV-O > MEBV-O > MPV > MEGV-P400

/ MEBV-P (Figure 2a). This trend was even more pronounced as both breeding401

cycle numbers and dominance e↵ects increased. One reason might be expected that402

the CS methods based on an in silico cross of simulated o↵spring can more precisely403

predict progeny mean compared to mid-parental performance because the former can404

consider the possibilities of allelic combinations for progenies of a cross. Furthermore,405

a high prediction accuracy of progeny mean makes it possible to identify the cross406

maximizing the gain from selection. Therefore, we calculated the real progeny mean407

as the average of all simulated SL progenies at C0 across 30 runs to assess the accuracy408

to predict progeny mean using di↵erent CS methods. The prediction accuracy was409

estimated as correlation between real and predicted progeny mean. The results (Table410

S3) were in complete agreement with our finding on the ranking of CS methods for411

genetic gain, leading to a higher improvement of genetic gain using the CS methods412

based on an in silico cross of simulated o↵spring compared to all CS methods based413

on mid-parental values (Figure 2a).414

Outbred crops have a highly heterozygous genome, which is accompanied by the415

existence of dominance e↵ects for quantitative traits in the phenotypes of the parental416

genotypes. The dominance e↵ects in outbreds can partially transmit from parents417

to progenies (Gallais, 2003; Endelman et al., 2018). Therefore, taking into account418

dominance e↵ects to predict progeny mean can lead to a more accurate estimate419
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compared to additive e↵ects only. This was clearly observed in our results based420

on tetraploid potato: MEGV-O had higher accuracy in predicting progeny mean421

compared to MEBV-O, especially as dominance e↵ects increased. It also provided a422

higher long-term genetic gain, which is in accordance with a former study (Werner423

et al., 2023). Werner et al. (2023) showed that the genetic gain was increased when424

considering both additive and dominance e↵ects to predict cross performance using425

a formula in a diploid crop. However, it was in discordance with our result when426

comparing the parental prediction of progeny mean between MEGV-P and MEBV-P,427

even though MEGV-P incorporated dominance e↵ects. One explanation can be that428

using MEGV-P based on parental dominance e↵ects to capture dominance e↵ects for429

progenies is incorrect, leading to low accuracy in predicting progeny mean, especially430

with increasing dominance e↵ects (Table S3).431

One surprising aspect was that MPV had the highest genetic gain among all CS432

methods based on mid-parental performance. This observation was unexpected that433

phenotypic records outperformed estimated values from a GS model, as well as in434

discordance with former studies in maize breeding programs (Allier et al., 2019a;435

Sanchez et al., 2023), where MEBV-P reached a higher genetic gain than MPV.436

One explanation of the superiority of MPV compared to MEBV-P and MEGV-P437

is that the heritability across the four environments in our setting (0.72 at D of438

C0) used in this method was higher than the assigned PA (0.5) used in MEBV-P439

and MEGV-P. Therefore, according to the breeder’s equation, the MPV can increase440

more the genetic gain than other CS methods based on mid-parental performance441

incorporating GS model. This was also confirmed by the higher accuracy in predicting442

progeny mean using MPV compared to MEBV-P and MEGV-P (Table S3).443
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4.3 The limitation of mean-basis CS methods444

Besides genetic gain, the evaluation of genetic variance and genome-wide diversity445

across cycles is essential because a low genetic variations in breeding materials could446

limit the genetic gain in the long-term (Falconer and Mackay, 1996). As expected,447

both the genetic variance of Tt and He decreased with cycle numbers increase (Figure448

2). This was more pronounced for the genetic variance especially with the CS meth-449

ods reaching the higher genetic gain. The high accuracy in predicting progeny mean450

that leads to the quick accumulation of favorable alleles can be one reason for this ob-451

servation. Moreover, the Bulmer e↵ect (Bulmer, 1971), which reduces the proportion452

of genetic variance due to linkage disequilibrium between trait-coding polymorphisms453

(Grevenhof et al., 2012), can further explain this result. Focusing on mean perfor-454

mance only to select new crosses could lead to a plateau for the genetic gain with455

increasing cycle numbers, which hampers the further long-term improvement of ge-456

netic gain. Therefore, CS methods considering the maintenance of diversity while457

maximizing long-term genetic gain are required.458

4.4 The e�ciency of CS methods used to balance the improvement of459

genetic gain and the maintenance of diversity460

Besides paying attention to high progeny mean, a high variance in progenies is of461

fundamental importance in response to selection of gain. The UC of a cross consid-462

ers these aspects and has been used to predict the mean performance of the upper463

fraction of its progeny, considering the genetic variance, the heritability as well as the464

selection intensity. Thus, this method could improve the genetic gain compared to465

mean-basis CS methods, which is confirmed in our study. However, while we observed466
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a slightly higher genetic gain using the UC compared to the MEGV-O method (Fig-467

ure 3 and Table S2), the genetic variance or He were the same for UC and MEGV-O468

method. Furthermore, their di↵erence in the genetic gain was not statistically sig-469

nificant, which is contradictory to the results of former studies (Lehermeier et al.,470

2017; Sanchez et al., 2023). This could be explained by lower PA (0.5) and selec-471

tion intensity (1.75) used in the present study, compared to a high heritability (1)472

and selection intensity (2.06) in Sanchez et al. (2023). Lehermeier et al. (2017) also473

showed higher heritability and selection intensity lead to a higher advantage of the474

UC versus other methods.475

On the other hand, a large ratio of mean to square root of genetic variance can476

be expected to weaken the merit of UC. Rembe et al. (2022) showed a comparably477

higher ratio (⇠ 3) for the trait of ear emergence compared to the other assessed traits,478

which could lead to a low influence of the progeny variance on UC. This could be479

more pronounced in our study because the ratio was around 29. Therefore, this ob-480

servation could explain the very small and even no di↵erence between progeny mean481

and UC in our study. Furthermore, in our study, the variance in the progeny mean482

was much higher (⇠ 90 times) than the variance in the progeny standard deviation.483

This is in accordance with former studies (Zhong and Jannink, 2007; Lado et al.,484

2017), leading to no di↵erence between UC and progeny mean. Thus, one way to485

strengthen the importance of the genetic variance in the progeny could be to weight486

the genetic variance or to add extra measurement to the UC.487

The genetic diversity of a cross can be quantified by the genetic variance of a trait,488

but also on a genome-wide scale by the expected heterozygosity (He). Therefore, in489

addition to the weight on genetic variance of Tt, i.e., EUC, one could consider weight-490

ing He can integrate another level of diversity to balance genetic gain. This is because491
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the latter considers the level of whole genomic variation instead of being restricted492

to the variation of specific loci linked to QTL of Tt like the former. In our study, on493

average across the four di↵erent genetic architectures, EUCDw2=50/500 reached the494

maximum genetic gain among all assessed EUCDs and a slightly higher long-term495

genetic gain compared to UC (Figure 3a and Table S2). Meanwhile, EUCDw2=50/500496

kept a certain degree of genetic variance and a slightly higher He compared to UC.497

This confirmed our expectation, as EUCD keeps the advantage of the UC and pre-498

serves a certain genome-wide diversity by accounting for He simultaneously, helping499

to e�ciently convert genetic variability into long-term genetic gain.500

While EUCD with a high weight kept a higher genetic variance and He along cy-501

cles, it was accompanied by a reduction of long-term genetic gain compared to EUCD502

with a low weight. This was not surprising because a high weight on diversity means503

to minimize the loss of diversity after selection. Allier et al. (2019a) had a similar504

approach accounting for di↵erent weights of penalty on He to balance between max-505

imal genetic gain and minimal loss of diversity during the selection of new crosses.506

They also indicated that a stronger penalty on diversity reduced the improvement of507

genetic gain but kept higher diversity. However, this trend gradually diminished as508

the degree of dominance increased in our study, implying di↵erent weights should be509

fitted to di↵erent genetic architectures when using EUCD.510

Although our proposed method EUCD cannot manage to reach a significant im-511

provement in genetic gain compared to EUC and MEGV-O, it keeps a higher genome-512

wide diversity, which can balance maximal genetic gain and minimal loss of diversity513

in the process of selecting new crosses. Preserving diversity is very important in long-514

term breeding programs because it provides opportunities for breeders to promptly515

adjust the goals of the breeding programs in response to new requests such as changes516
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in climate and human usage and to develop new varieties adapted to biotic and abi-517

otic stresses. Therefore, for the improvement of the long-term breeding program,518

potato breeders should choose a proper weight on He accounting to their parameters519

for a subsequent long-term improvement in genetic gain and nevertheless adaptabil-520

ity of the breeding program. In detail, to reach a high long-term genetic gain but521

simultaneously keep a certain diversity, EUCDw2=50/500 can be used for cases with522

no, mild, and moderate dominance e↵ects, and EUCDw2=2500 for cases with strong523

dominance e↵ects. However, EUCDw2=2500 or EUCDw2=5000 can be utilized if the524

main breeding goals are to keep maximum diversity and to reach a certain genetic525

gain for the cases with moderate or strong dominance e↵ects. Therefore, the choice526

of the most appropriate weight on diversity in EUCD depends on not only the genetic527

architecture of Tt, but also the breeder’s breeding objectives.528

4.5 Assumptions of the present study529

In this study, we assume that the parental haplotype phase is known, and there-530

fore, the progeny variance can be predicted by in silico progenies (Bernardo, 2014;531

Mohammadi et al., 2015; Miller et al., 2023). However, within the current state of532

the art, the methodology to phase haplotype is costly (Sun et al., 2022). Thus, in533

current breeding programs, the possibility of estimating the progeny mean is based534

on mid-parent performance. In this study, MPV had a higher accuracy in predicting535

progeny mean compared to MEGV-P or MEBV-P because the heritability is higher536

than PA. However, if heritability is lower than PA, the advantage of MPV compared537

to MEBV-P and MEGV-P will disappear. For example, the heritability at early538

breeding stages is lower than the one at late breeding stages, because the former539

has lower experimental locations and replications than the latter. Therefore, if the540
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candidate parents are selected from early breeding stages, the superiority of MPV541

over MEBV-P or MEGV-P could diminish.542

Wolfe et al. (2021) and Werner et al. (2023) predicted the progeny mean based543

on the formula based on allele frequencies of parents and considering additive and544

dominance e↵ects from Falconer and Mackay (1996) in heterozygous diploid crops.545

Although Wolfe et al. (2021) showed no improvement in prediction accuracy of the546

progeny mean using MEGV estimated by the formula compared to MEBV estimated547

by mid-parental values based on the empirical breeding materials, Werner et al.548

(2023) indicated that the genetic gain was improved especially for the traits with549

the existence of dominance e↵ects using MEGV estimated by the formula to select550

crosses via a simulation study. Therefore, one possibility to improve the prediction of551

progeny mean in future research is to develop the formula to estimate progeny mean552

and variance in tetraploid species. Furthermore, Heper�cross based on simulated pro-553

genies is highly correlated with Heper�cross based on parental genotypic information.554

Thus, the lack of information about haplotype phase does not a↵ect the ability to555

quantify genome-wide diversity of a cross.556

An alternative method to consider genome-wide diversity while selecting new557

crosses for the next breeding cycle was developed by Gorjanc et al. (2018) and Allier558

et al. (2019a). Their approach is called optimal cross-selection (OCS) and is based559

on an optimization algorithm. This approach provided a high genetic gain as well560

as kept a high diversity. However, this method required the optimization process to561

search for an optimal group of crosses, leading to extremely intensive computational562

calculations compared to our proposed methods–EUCD. This di↵erence in compu-563

tational time requirement is even more pronounced with an increasing number of564

markers and repetitions. Our study considered between 2 to 24 times more SNP and565
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the triple repetition numbers compared to the former studies. Thus, OCS has not566

been assessed yet in this study. However, the comparison of performance between567

the two methods still needs further research.568

4.6 Conclusion569

The present study demonstrated that implementing GS with optimal selection in-570

tensity per stage enhances both short- and long-term gain from selection compared571

to a typical tetraploid potato breeding program solely based on PS. In addition, for572

tetraploid and heterozygous crops, the prediction of progeny mean considering not573

only additive but also dominance e↵ects (MEGV-O) is necessary. This can reach574

the highest prediction accuracy in progeny mean and have the highest genetic gain575

among all mean-based CS methods. Furthermore, combining UC and genome-wide576

diversity (EUCD) by a linear combination in a tetraploid potato breeding program577

reached the same level of long-term genetic gain. However, it simultaneously pre-578

served a higher diversity as well as a certain degree of genetic variance compared to579

MEGV-O and UC. In our results, although EUCD with a low weight can reach the580

highest genetic gain, di↵erent genetic architectures of Tt and the breeder’s breeding581

objectives require choosing di↵erent degree weights to achieve the high genetic gain582

and simultaneously preserve the diversity. These results can provide breeders with a583

concrete method to improve their potato breeding programs.584
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proving short-and long-term genetic gain by accounting for within-family variance593

in optimal cross-selection. Frontiers in Genetics, 10:1006.594

Allier, A., Moreau, L., Charcosset, A., Teyssèdre, S., and Lehermeier, C.595
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E. P., and Weltzien, E., editors, Plant Breeding and Farmer Participation, pages634

275–322. Food and Agriculture Organization of the United Nations (FAO).635

He↵ner, E. L., Lorenz, A. J., Jannink, J. L., and Sorrells, M. E. (2010). Plant breeding636

with genomic selection: gain per unit time and cost. Crop Science, 50(5):1681–637

1690.638

Jannink, J. L. (2010). Dynamics of long-term genomic selection. Genetics Selection639

Evolution, 42:1–11.640

Kinghorn, B. P. (2011). An algorithm for e�cient constrained mate selection. Ge-641

netics Selection Evolution, 43(1):1–9.642

Lado, B., Battenfield, S., Guzmán, C., Quincke, M., Singh, R. P., Dreisigacker, S.,643

Peña, R. J., Fritz, A., Silva, P., Poland, J., and Gutiérrez, L. (2017). Strategies for644

selecting crosses using genomic prediction in two wheat breeding programs. The645

Plant Genome, 10.646
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Table 1: Overview of the di↵erent weight (w1 and w2) scales for the extended usefulness criterion

(EUC) and extended usefulness criterion incorporating genomic diversity index (EUCD).

Criterion
Cross-selection methods (w1, w2)

Scale A Scale B Scale C Scale D

EUC EUCw1=1 (1,0) EUCw1=10 (10,0) EUCw1=50 (50,0) EUCw1=100 (100,0)

EUCD EUCDw2=50 (1,50) EUCDw2=500 (1,500) EUCDw2=2500 (1,2500) EUCDw2=5000 (1,5000)

Table 2: Summary of the five genotype classes, including their coding expression, additive and domi-

nance e↵ects, as well as breeding and genetic values.

Genotype class Additive e↵ect (a)
Dominance e↵ect

Breeding value Genetic value
d1 d2 d3

aaaa 0 0 0 0 0 0

Aaaa 1 1 0 0 a a+d1

AAaa 2 0 1 0 2a 2a+d2

AAAa 3 0 0 1 3a 3a+d3

AAAA 4 0 0 0 4a 4a
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Figure 1: Graphical illustration of recurrent selection in a potato breeding program with the chosen cross-selection (CS) method to

determine new crosses. Each breeding cycle of the breeding program comprised seven main stages: cross stage where 300 crosses are

selected, seedling stage (SL), single hills stage (SH), A clone stage (A), B clone stage (B), C clone stage (C), and D clone stage (D).

p1 to p2 are selection proportions at each selection stage. Their exact values for each selection strategy are shown in Table S1. The

details about conducting the selection strategies in each breeding cycle are shown in Wu et al. (2023).
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Figure 2: The evolution of genetic gain (a) and genetic variance (b) for the target trait, as well as (c) genome-wide

diversity measured by expected heterozygosity (He), along the 30 breeding cycles on average across 30 simulation

runs. Measures were done at D clone stage for di↵erent selection strategies (Standard-PS, Optimal-PS, and

Optimal-GS), di↵erent mean-basis cross-selection methods (MPV, MEBV-P, MEGV-P, MEBV-O, and MEGV-O),

and di↵erent genetic architectures of the target trait (no, mild, moderate, and strong dominance e↵ects).
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Figure 3: The evolution of genetic gain (a) and genetic variance (b) for the target trait, as well as (c) genome-wide

diversity measured by expected heterozygosity (He), along the 30 breeding cycles on average across 30 simulation

runs. Measures were done at D clone stage based on the Optimal-GS selection strategy for di↵erent cross-selection

methods modified by usefulness criteria (EUC and EUCD), and di↵erent genetic architectures of the target trait

(no, mild, moderate, and strong dominance e↵ects). The details of EUC and EUCD are shown in Table 1.
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SUPPLEMENTARY MATERIAL

Table S1: The summary of the optimal selected proportions achieving the maximum

short-term genetic gain for the three selection strategies (Standard-PS, Optimal-PS,

and Optimal-GS-SH:A). p1 to p5, ↵k, and N1 are the selected proportion per stage,

the weight of genomic selection relative to phenotypic selection, and the number of

clones at seedling stage (see Wu et al. (2023)), respectively.

Selection strategy p1 p2 p3 p4 p5 ↵k N1

Standard-PS ⇠0.33 0.1 0.15 0.2 0.2 - 300,000

Optimal-PS ⇠ 0.16 0.45 0.45 0.10 0.10 - 190,252

Optimal-GS-SH:A ⇠0.15 0.45 0.45 0.10 0.20 0.90 96,831
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Table S2: The mean and standard deviation (sd) of the genetic gain and the genetic variance for the target trait,

as well as genome-wide diversity measured by expected heterozygosity (He) at cycle 30 across 30 simulation runs.

Simulations were based on the Optimal-GS selection strategy for di↵erent cross-selection methods modified by

usefulness criteria (EUC and EUCD), and di↵erent genetic architectures of the target trait (no, mild, moderate,

and strong dominance e↵ects). The details of EUC and EUCD are shown in Table 1.

Case Scale Cross-selection method
Genetic gain Genetic variance He

mean | sd | rank1 | group2 mean | sd | rank1 mean | sd | rank1

No dominance

-
Optimal-GS: MPV

mean-base
674.86 | 45.38 | 6 | b 25.54 | 7.17 | 6 0.1354 | 0.0236 | 9

MEGV-O 682.91 | 36.83 | 4 | ab 20.55 | 7.12 | 9 0.1419 | 0.0211 | 8

A
MEGV-O (1,0) EUC 690.42 | 34.25 | 2 | ab 20.50 | 6.79 | 10 0.1438 | 0.0241 | 7

MEGV-O (1,50) EUCD 688.26 | 37.24 | 3 | ab 22.27 | 5.59 | 8 0.1462 | 0.0241 | 6

B
MEGV-O (10,0) EUC 682.03 | 35.41 | 5 | ab 27.62 | 7.19 | 5 0.1307 | 0.0216 | 10

MEGV-O (1,500) EUCD 697.52 | 35.45 | 1 | a 25.41 | 5.29 | 7 0.1762 | 0.0193 | 5

C
MEGV-O (50,0) EUC 510.83 | 41.30 | 7 | c 158.38 | 37.96 | 4 0.2125 | 0.0255 | 4

MEGV-O (1,2500) EUCD 474.79 | 32.86 | 9 | d 201.18 | 59.78 | 2 0.4291 | 0.0106 | 2

D
MEGV-O (100,0) EUC 479.07 | 31.80 | 8 | d 195.13 | 45.51 | 3 0.2432 | 0.0287 | 3

MEGV-O (1,5000) EUCD 345.34 | 29.90 | 10 | e 277.26 | 152.84 | 1 0.4962 | 0.0107 | 1

Mild dominance

-
Optimal-GS: MPV

mean-base
589.13 | 24.70 | 6 | b 165.21 | 29.62 | 6 0.3686 | 0.0146 | 6

MEGV-O 630.46 | 21.73 | 3 | a 155.91 | 32.38 | 8 0.3871 | 0.0120 | 8

A
MEGV-O (1,0) EUC 634.86 | 20.86 | 2 | a 152.32 | 29.24 | 10 0.3880 | 0.0132 | 10

MEGV-O (1,50) EUCD 635.53 | 18.70 | 1 | a 154.53 | 28.70 | 9 0.3896 | 0.0107 | 9

B
MEGV-O (10,0) EUC 607.07 | 24.09 | 5 | b 187.34 | 32.32 | 5 0.3833 | 0.0130 | 5

MEGV-O (1,500) EUCD 627.08 | 18.74 | 4 | a 161.12 | 36.10 | 7 0.3963 | 0.0103 | 7

C
MEGV-O (50,0) EUC 538.28 | 19.13 | 8 | c 233.10 | 46.12 | 4 0.3942 | 0.0122 | 4

MEGV-O (1,2500) EUCD 539.83 | 21.64 | 7 | c 316.13 | 86.45 | 2 0.4611 | 0.0075 | 2

D
MEGV-O (100,0) EUC 517.75 | 26.58 | 9 | d 245.84 | 39.13 | 3 0.4026 | 0.0147 | 3

MEGV-O (1,5000) EUCD 437.93 | 21.82 | 10 | e 375.27 | 101.12 | 1 0.5045 | 0.0096 | 1
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Case Scale Cross-selection method
Genetic gain Genetic variance He

mean | sd | rank1 | group2 mean | sd | rank1 mean | sd | rank1

Moderate dominance

-
Optimal-GS: MPV

mean-base
615.59 | 29.91 | 8 | cd 536.13 | 110.22 | 6 0.4273 | 0.0102 | 10

MEGV-O 722.54 | 25.61 | 3 | a 483.54 | 97.25 | 9 0.4442 | 0.0087 | 5

A
MEGV-O (1,0) EUC 731.97 | 24.21 | 1 | a 473.95 | 96.69 | 10 0.4400 | 0.0072 | 7

MEGV-O (1,50) EUCD 722.47 | 26.83 | 4 | a 508.45 | 98.52 | 8 0.4446 | 0.0088 | 4

B
MEGV-O (10,0) EUC 683.29 | 21.74 | 6 | b 616.05 | 115.14 | 5 0.4346 | 0.0096 | 9

MEGV-O (1,500) EUCD 731.00 | 25.33 | 2 | a 510.10 | 108.94 | 7 0.4504 | 0.0086 | 3

C
MEGV-O (50,0) EUC 617.29 | 29.37 | 7 | c 633.84 | 104.73 | 4 0.4364 | 0.0110 | 8

MEGV-O (1,2500) EUCD 693.48 | 28.76 | 5 | b 635.23 | 120.92 | 3 0.4788 | 0.0054 | 2

D
MEGV-O (100,0) EUC 603.47 | 27.35 | 10 | d 685.91 | 188.11 | 2 0.4402 | 0.0097 | 6

MEGV-O (1,5000) EUCD 611.82 | 27.36 | 9 | cd 799.24 | 118.21 | 1 0.5038 | 0.0060 | 1

Strong dominance

-
Optimal-GS: MPV

mean-base
709.57 | 29.15 | 10 | d 1150.66 | 223.20 | 5 0.4459 | 0.0089 | 10

MEGV-O 863.63 | 37.04 | 4 | a 937.20 | 192.78 | 10 0.4598 | 0.0082 | 6

A
MEGV-O (1,0) EUC 866.76 | 34.68 | 2 | a 1012.18 | 189.86 | 8 0.4601 | 0.0074 | 5

MEGV-O (1,50) EUCD 866.11 | 25.14 | 3 | a 1035.21 | 240.35 | 7 0.4616 | 0.0092 | 4

B
MEGV-O (10,0) EUC 797.36 | 33.52 | 6 | b 1157.18 | 237.24 | 4 0.4504 | 0.0065 | 7

MEGV-O (1,500) EUCD 873.48 | 28.85 | 1 | a 978.41 | 199.76 | 9 0.4654 | 0.0067 | 3

C
MEGV-O (50,0) EUC 733.52 | 41.32 | 8 | c 1385.26 | 240.45 | 2 0.4479 | 0.0085 | 9

MEGV-O (1,2500) EUCD 859.17 | 36.96 | 5 | a 1071.70 | 230.82 | 6 0.4840 | 0.0054 | 2

D
MEGV-O (100,0) EUC 720.28 | 36.26 | 9 | cd 1352.71 | 289.42 | 3 0.4484 | 0.0107 | 8

MEGV-O (1,5000) EUCD 796.02 | 25.44 | 7 | b 1456.23 | 291.13 | 1 0.5037 | 0.0047 | 1

1 The number after the sd represent the rank across these cross-selection methods within a specific genetic

architecture.

2 The letters after the rank represent the significance groups (P < 0.05) across these cross-selection methods

within a specific genetic architecture.

4 Wu et el. (2024) in preparation

89



43

Table S3: Accuracy to predict progeny mean using the di↵erent mean-basis cross-

selection methods under di↵erent genetic architectures of the target trait. This was

calculated as the correlation between predicted progeny mean and real progeny mean

at SL of C0 with an average across 30 simulation runs.

No dominance Mild dominance Moderate dominance Strong dominance

MPV 0.85189 0.81577 0.75472 0.70474

MEBV-P 0.49619 0.48285 0.44988 0.41854

MEGV-P 0.49617 0.47554 0.43872 0.40755

MEBV-O 0.99962 0.96148 0.88994 0.82049

MEGV-O 0.99962 0.99913 0.99840 0.99783

4 Wu et el. (2024) in preparation
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Abstract
Background: Genomic prediction (GP) based on single nucleotide polymorphisms (SNP) has become a broadly used
tool to increase the gain of selection in plant breeding. However, using predictors that are biologically closer to the
phenotypes such as transcriptome and metabolome may increase the prediction ability in GP. The objectives of this
study were to (i) assess the prediction ability for three yield-related phenotypic traits using different omic datasets as
single predictors compared to a SNP array, where these omic datasets included different types of sequence variants
(full-SV, deleterious-dSV, and tolerant-tSV), different types of transcriptome (expression presence/absence
variation-ePAV, gene expression-GE, and transcript expression-TE) sampled from two tissues, leaf and seedling, and
metabolites (M); (ii) investigate the improvement in prediction ability when combining multiple omic datasets
information to predict phenotypic variation in barley breeding programs; (iii) explore the predictive performance
when using SV, GE, and ePAV from simulated 3’end mRNA sequencing of different lengths as predictors.

Results: The prediction ability from genomic best linear unbiased prediction (GBLUP) for the three traits using dSV
information was higher than when using tSV, all SV information, or the SNP array. Any predictors from the
transcriptome (GE, TE, as well as ePAV) and metabolome provided higher prediction abilities compared to the SNP
array and SV on average across the three traits. In addition, some (di)-similarity existed between different omic
datasets, and therefore provided complementary biological perspectives to phenotypic variation. Optimal combining
the information of dSV, TE, ePAV, as well as metabolites into GP models could improve the prediction ability over that
of the single predictors alone.

Conclusions: The use of integrated omic datasets in GP model is highly recommended. Furthermore, we evaluated a
cost-effective approach generating 3’end mRNA sequencing with transcriptome data extracted from seedling
without losing prediction ability in comparison to the full-length mRNA sequencing, paving the path for the use of
such prediction methods in commercial breeding programs.

Keywords: Barley, Deleterious SV, Transcriptome, Metabolome, Genomic prediction, Omic prediction

Background
Barley (Hordeum vulgare L.) is the fourth most important
cereal crop in the world (FAOSTAT, http://www.fao.org/
faostat/en/) and is used for human nutrition and animal
feed [1]. In the context of a growing global population [2],
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1Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine
University, 40225 Düsseldorf, Germany
Full list of author information is available at the end of the article

producing sufficient food is a big challenge for agriculture
[3]. In addition, climate change is expected to negatively
impact global crop production by increasing extreme tem-
peratures and altering rainfall patterns [4]. Thus, high and
stable yield in barley is one of the most important breed-
ing goals. However, in addition to directly breeding for
yield, the consideration of yield-related characters during
the breeding processes proved successful [5]. Leaf angle
(LA) e.g. is one of the most important canopy architecture

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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parameters that influence the efficiency of photosynthe-
sis and further affect yield production [6]. In addition, the
control of plant height (PH) can be used to reduce yield
loss arising from lodging and adaption to variable environ-
ments through heading time (HT) alteration impacts yield
[7]. Therefore, the use of approaches that help breeders to
reliably select for yield and yield-related quantitative traits
increases the gain of selection.
Genomic prediction (GP) has emerged as a powerful

tool to increase selection gain for complex traits in both
livestock and plant breeding programs [8, 9]. This method
is based on the idea that the performance of individuals
can be predicted from genotypic information using the
GP model which was trained on those individuals with
both phenotypic and genotypic information. Thus, the
genotyped individuals can be preselected before their phe-
notypes are measured in the field to shorten the breeding
cycle as well as to reduce the cost of phenotyping [10].
Typically, single nucleotide polymorphisms (SNP) serve

as predictors in GP [11–13]. SNP in gene coding regions
can be classified into non-synonymous (nsSNP) and syn-
onymous SNP (sSNP), which differ in their property to
change or not the amino acid sequence of a protein.
Therefore, these two SNP classes may have different influ-
ence on phenotypes. In previous studies, the advantage
of using these classes of SNP in comparison to randomly
selected SNP for GP was explored in pig [14]. How-
ever, they observed that predictive performance of neither
nsSNP nor sSNP did significantly differ from those of ran-
dom SNP for most traits. In addition, Heidaritabar et al.
[15] observed that nsSNP did not enhance the perfor-
mance of GP in chicken. On the other hand, a protein may
be able to tolerate an amino acid change due to a nsSNP
and still keep its function normal [16]. Therefore, SNP can
be grouped using the SIFT algorithm [17] into (1) tolerant
SNP (tSNP), which can keep a protein’s function normal;
and (2) deleterious SNP (dSNP), which will affect a pro-
tein’s function. To the best of our knowledge, the use of
tSNP or dSNP as predictor of the phenotypic variation has
not yet been compared.
Complex biological processes such as transcription,

translation, and biochemical cascades resulting in various
metabolites occur between DNA sequence and pheno-
types [11], which hamper the predictive power of SNP. In
addition, higher-order epistatic effects may contribute to
the genetic variance of complex traits [18], which can in
most of cases not directly be captured using SNP informa-
tion [13, 19]. Therefore, prediction ability of phenotypic
variation using SNP information for quantitative traits still
leaves room for improvement. In the last years, molecu-
lar technologies were developed, which allow a cheap and
high-throughput gene expression andmetabolite profiling
[20]. Such data can act as bridge to shorten the biologi-
cal distance between genotypes and phenotypes and may

even capture higher-order epistatic interactions for the
prediction of phenotypic variation [21, 22].
Transcription is the first downstream processes after the

DNA sequence and, thus, more likely affects the variation
of traits compared to SNP. Recently, thanks to techno-
logical developments, several studies have proposed to
use gene expression (GE) variation as predictor of phe-
notypic variation in maize [11, 21], rice [22] and barley
[23]. While Schrag et al. [21] and Hu et al. [22] used
GE assessed from microarray experiments for GP and
showed that a considerable proportion of phenotypic vari-
ation can be explained by such information, Guo et al.
[11] and Weisweiler et al. [23] used mRNA sequenc-
ing datasets to predict the performance of phenotypic
traits. The advantage of mRNA sequencing compared to
microarray experiment is the possibility to extract SNP
and small insertions/deletions (INDEL) called sequence
variants (SV hereafter), in addition to the quantification
of transcript abundance. Furthermore, a single gene can
often produce more than one transcript through alter-
native splicing, which can generate various proteins to
regulate the complexity of pathways [24]. These differ-
ent transcripts of the same gene can be identified using
full-length mRNA sequencing. To our knowledge, tran-
script expression (TE) as predictor in GP has not yet been
compared to GE.
Compared to the two previous levels of molecular infor-

mation (DNA sequence andGE), metabolites (M) have the
closest relationship to the expressed phenotype because
they are the end-points of upstream biochemical pro-
cesses [25], and, thus, have a high potential as predictors
for GP. Previous studies on the use of metabolites to
predict phenotypic traits in Arabidopsis thaliana, maize,
wheat, and barley reported lower or higher prediction
abilities compared to SNP information, depending on the
traits and species [11, 21, 26–29]. Gemmer et al. [29]
recommended that metabolites cannot be used alone in
barley for phenotype prediction. However, the integration
of expression and metabolite datasets with SNP infor-
mation improved prediction abilities in comparison to
the benchmark using SNP information in maize [11, 21].
Thus, the integration of several layers of omic datasets
such as SV, GE, TE, and M as predictors could outper-
form benchmark methods and should be evaluated in GP
of phenotypic traits in barley.
The objectives of our study were to (i) assess the pre-

diction ability for three yield-related phenotypic traits
(LA, PH, and HT) using different omic datasets as sin-
gle predictors compared to a SNP array, where these omic
datasets included different types of sequence variants (SV,
dSV, and tSV), different types of transcriptome (expres-
sion presence/absence variation-ePAV, GE, and TE) sam-
pled from two tissues, leaf and seedling, and metabolites
(M); (ii) investigate the improvement in prediction ability
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when combining multiple omic datasets information to
predict phenotypic variation in barley breeding programs;
(iii) explore the predictive performance when using SV,
GE, and ePAV from simulated 3’end mRNA sequencing of
different lengths as predictors.

Results
Heritability
The three phenotypic traits (LA, PH, and HT) were mea-
sured for 23 spring barley inbreds in seven environments.
The adjusted entry means of the 23 inbreds ranged from
2.52 to 7.07 for LA, 48.75 to 79.75 cm for PH, and
57.31 to 82.23 days for HT (Suppl. Table S1). Heritabili-
ties on an entry mean basis (H2) were high and similar
for LA (0.91) and HT (0.90) and with 0.83 slightly lower
for PH. A total of 192 chemical entities were annotated
(Suppl. Table S2) and after filtering (see methods), 144
metabolites remained for which the relative abundances
were used for further analyses. A total of 101 metabo-
lites were found in databases and, thus, it was possible
to assign them according to their chemical features to
12 compound classes, while the remaining 43 metabo-
lites were unknown (Suppl. Table S3). The heritabilities
of the metabolites on an entry mean basis ranged from
0 to 0.98 with an average of 0.62 (Suppl. Fig. S1). The
classification of the metabolic predictors using different
degrees of heritability (0.1 to 0.8 in increments of 0.1)
resulted in eight groups with 133, 128, 121, 117, 109,
93, 72 and 45 metabolites, respectively. These groups
were then considered for the omic prediction described
below.

Correlation and genetic dissimilarity analyses
Positive correlations between the three phenotypic traits
were observed (Suppl. Fig. S2). Particularly, LA was highly

and significantly correlated with HT (0.685∗∗∗), where the
correlation coefficients between PH and HT as well as
between PH and LA were with about 0.45 considerably
lower. Many metabolites were significantly (P < 0.05)
negatively associated with the assessed phenotypic traits
(Fig. 1). For instance, a cluster of some acids, amino acids,
and several unknown metabolites was strongly negatively
correlated with the three traits. Interestingly, we found
that the same metabolites that were significantly corre-
lated with LA were also correlated with HT. This was
consistent with the phenotypic correlations between both
traits (Fig. 1 and Suppl. Fig. S2).
To assess similarity/dissimilarity between these omic

datasets, we performed generalized procrustes analysis
(GPA) [30] on the resulting principal component analysis
(PCA) obtained from each omic dataset. The dissimilarity
measurements from GPA were used for principal coordi-
nates analysis (PCoA). The first two PCo accounted for
71.86% and 20.72% of the total variability, respectively
(Fig. 2). The first PCo separated the metabolites from the
other features while the second PCo tended to differen-
tiate the two tissues, leaf (l) and seedling (s). GE, TE,
and ePAV datasets were similar to each other within the
same tissue. This can be explained thereby that the ePAV
dataset was derived from GE dataset and the GE dataset
was derived from the TE dataset. ePAVls was, as expected,
centered between the ePAV from the individual tissues.
Although SNP array, SV, dSV, and tSV clustered together,
SNP array was more distant from the cluster of dSV, tSV,
and SV which almost overlapped. This was due to that
dSV and tSV are a subset of SV. This finding indicated that
SNP, expression and metabolite features would provide
different layers of biological information and might con-
tribute differently and complementarily to the phenotypic
variation.

Fig. 1 Heatmap of Pearson correlation coefficients calculated between all pairs of the three phenotypic traits and the 144 metabolites. The three
phenotypic traits are leaf angle (LA), plant height (PH) and heading time (HT). Correlations marked with ∗ , ∗∗ , and ∗∗∗ were significant at P < 0.05,
0.01, and 0.001, respectively. The heritability of each metabolite is given in parentheses after each metabolite’s name
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Fig. 2 Plot of the first two axes of the principal coordinate analysis for comparison of the similarity between different omic datasets based on
generalized procrustes analysis. The omic datasets include SNP array, sequence variants (SV), deleterious sequence variants (dSV), tolerant sequence
variants (tSV), gene expression in seedling and leaf (GEs and GEl), transcript expression in seedling and leaf (TEs and TEl), expression
presence/absence variation in seedling, leaf and combining both tissues (ePAVs , ePAVl , and ePAVls), and metabolites (M). The colors show the four
groups of omic datasets used in a grid search for integration of multiple predictors (Figure 5). Red represents ePAV, green expression, blue
metabolite, and purple SNP and SV predictors

Omic prediction
The prediction ability of the three phenotypic traits using
different single predictors was examined through five-fold
cross-validation. Regardless of the predictor, the predic-
tion abilities were higher for traits with higher heritabil-
ities (Fig. 3). Prediction abilities based on SV, GE, TE,
ePAV, and M datasets were compared to that realized
with the SNP array which was used as baseline predictor.
The observed median prediction ability based on the SNP
array dataset ranged from 0.185 (HT) to 0.590 (LA). The
prediction ability of SV extracted frommRNA sequencing
dataset was slightly higher than that of SNP array dataset
across the three traits. Moreover, the dSV dataset slightly
outperformed the SV extracted from mRNA sequencing
and the tSV dataset (Fig. 3). Even higher prediction abili-
ties were observed for ePAV, any expression datasets from
seedling (GEs and TEs), and metabolite datasets (Fig. 3).
The prediction abilities for the ePAV dataset were signif-
icantly different among l, s and ls, but not consistently
across the three traits (data not shown). ePAVls was cho-
sen as the best compromise across the three traits for
further analyses, as it was for none of the three traits in
the significance group with the lowest prediction abilities.
The TE datasets slightly outperformed the GE datasets for
HT and LA, and TEs resulted in the highest prediction
ability as single predictor for these traits. In contrast, no
difference between TE and GE was observed for PH.
To explore whether the heritability of a metabo-

lite affects the prediction performance, eight classes of
metabolites based on different degrees of heritabilities
served as predictor. The prediction ability increased when
the metabolites with lower heritability (< 0.1) were

not considered (Fig. 3). However, the prediction ability
didn’t increase significantly and consistently across the
three traits with increasing heritability of the considered
metabolites (data not shown). Therefore, we selected the
metabolite group for which the highest prediction abil-
ity was observed across the three traits (M0.6) for further
analyses.
Pearsons correlation coefficients between pairwise pre-

dicted values of different omic datasets were calculated,
and the correlation-based distance was used for PCoA
analysis for each trait. Across the three examined traits,
the metabolite feature was clearly separated from the
other omics features (Fig. 4), and the predicted values of
M were less correlated with those values of the other omic
datasets than the other omic datasets among themselves
(Suppl. Fig. S3). A similar result was observed between
the two tissues, seedling and leaf, which were clearly sep-
arated on Fig. 4. In contrast, the predicted values from
features that clustered together on Fig. 4, especially SNP
array, SV, dSV, tSV, ePAVls, were highly correlated (Suppl.
Fig. S3).
In order to evaluate whether the prediction ability can

be improved by combining several predictors, a joined
weighted relationship matrix of the single predictors with
the highest prediction ability was established and a grid
search was used to identify those combinations of dSV,
ePAVls, TEs, and M0.6 resulting in the highest prediction
ability. For the three examined traits, the highest median
prediction ability was observed when more than one pre-
dictor was used (Fig. 5). Furthermore, the optimal weights
of the four predictors to reach the maximal prediction
ability differed among the three traits, but the weights of
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Fig. 3 Boxplot of prediction abilities for the three traits, leaf angle, plant height and heading time, based on 22 inbreds using different omic datasets
as a single predictor across 200 five-fold cross-validation runs. The values given above each box represent the medians of 200 runs. The omic
datasets include SNP array, sequence variants (SV), deleterious sequence variants (dSV), tolerant sequence variants (tSV), gene expression in seedling
and leaf (GEs and GEl), transcript expression in seedling and leaf (TEs and TEl), expression presence/absence variation in seedling, leaf and
combining both tissues (ePAVs , ePAVl , and ePAVls), metabolites filtered for their heritability (M, M0.1, M0.2, M0.3, M0.4 M0.5, M0.6, M0.7, and M0.8)

ePAVls and TEs were at least 10% and 50%, respectively.
However, the optimal weight for M was, except for PH,
0, and the optimal weight for the dSV was 0 for the three
traits.
We also assessed the prediction abilities of SV, GE,

ePAV from 3’end mRNA sequencing that we simulated
from our full-length mRNA sequencing dataset. Depend-
ing on the trait, a similar, slightly better or worse median
of prediction abilities of SV, GE, ePAV were observed
when considering 3’end mRNA sequencing compared to a
full-length mRNA sequencing dataset as baseline (Fig. 6).
Moreover, we did not observe a systematic trend on the

prediction ability when increasing the length of the 3’end
mRNA sequencing.

Discussion
Ability of different omic features to predict phenotypic
traits
Genomic prediction has become a broadly used tool to
improve the gain of selection in plant breeding [9]. The
current standard procedure of genomic prediction is to
use SNP markers generated from SNP array or genotyp-
ing by sequencing methods as predictors [12]. However,
there are several complicated biological downstream pro-
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Fig. 4 Plot of the first two axes of principal coordinates analysis for comparison of predicted values from different omic datasets as a single predictor
based on the median of correlation-based distance across 200 five-fold cross-validation runs for the three traits, leaf angle, plant height and heading
time. The omic datasets include SNP array, sequence variants (SV), deleterious sequence variants (dSV), tolerant sequence variants (tSV), gene
expression in seedling and leaf (GEs and GEl), transcript expression in seedling and leaf (TEs and TEl), expression presence/absence variation in
seedling, leaf and combining both tissues (ePAVs , ePAVl , and ePAVls), and metabolites (M). The colors show the four groups of omic datasets used in
a grid search for integration of multiple predictors (Figure 5). Red represents ePAV, green expression, blue metabolite, and purple SNP and SV
predictors

cesses such as transcription, translation, and biochemical
cascades resulting in various metabolites between DNA
sequences and phenotypes [11]. Using predictors that are
biologically closer to the phenotypes may increase the
prediction ability in genomic predictions. With the devel-
opment of high-throughput molecular technologies, the
availability of such predictors from the genomic, tran-
scriptomic, or metabolomic level is ensured [20]. In this
pilot study, we aim to compare different types of omic
datasets for their predictive performance in order to pri-
oritize them for their later evaluation in large-scale exper-
iments. We hold that this is true also with only 23 inbreds
of our study, especially as these inbreds are representative
of and cover most of the genotypic diversity of barley [23].

For the three examined traits, any of the SV informa-
tion generated from mRNA sequencing (SV, dSV, as well
as tSV) resulted in a higher prediction ability compared to
the SNP data produced with the 50K SNP array (Fig. 3).
This might be explained by the higher number of SV fea-
tures, as increasing the number of predictors can increase
the extent of linkage disequilibrium between SNP and
quantitative trait loci (QTL) [23, 31]. In addition, INDEL
information was included in the SV, which was not the
case in the SNP array. INDEL are one type of genetic
variation in living organisms that involve larger DNA frag-
ments than single variants and have been identified in
known genes (c.f. [32, 33]). Therefore, they are very use-
full for the developpment of functional markers [34] and

Fig. 5 Prediction ability for the three traits, leaf angle, plant height, and heading time, from 22 inbreds for 286 combinations of the joined weighted
matrix which differ in the weights of four predictors, deleterious sequence variants (dSV), expression presence/absence variation in combined leaf
and seedling (ePAVls), transcript expression in seedling (TEs), and metabolite with a heritability on an entry mean basis>0.6 (M0.6). Plotted values
represent medians across 200 cross-validation runs
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Fig. 6 Boxplot of prediction ability for the three traits, leaf angle, plant height and heading time, from 22 inbreds using different omic datasets from
simulated 3’end mRNA sequencing with seven length categories (200, 250, 300, 350, 400,450, and 500 bp) as a single predictor across 200
cross-validation runs. The omic datasets from full-length mRNA sequencing are used as a baseline. The values given above each box represent
medians of 200 prediction abilities. The omic datasets include sequence variants (SV), gene expression in seedling (GEs), and expression
presence/absence variation in seedling (ePAVs)
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are expected to cause extreme change in the phenotypes.
This could be a further explaination why SV had better
predictive performance than SNP array. Our observation
is in agreement with the finding that the PCo 1 resulting
from the GPA separated clearly SV and SNP array (Fig. 2),
which indicates that SV and SNP array provide different
information.
SV in gene coding regions can be classified into nsSV

and sSV, where the former can change the amino acid
sequence of proteins, but not the latter. However, not
all amino acid changes lead to significant changes of the
protein. This can be explored by the SIFT algorithm in
classifying SV into dSV and tSV based on the conver-
sion of amino acid sequences [16], where the former cause
a loss of protein function but not the latter. Kono et al.
[35] showed that known phenotype-altering variants were
more frequently inferred as deleterious than the genome-
wide average, and have a higher probability to contribute
to phenotypic variation. Thus, we compared the predic-
tion ability of dSV and tSV compared to that of SV across
the three traits.
The predicted phenotypic values based on the three dif-

ferent classes of SV were highly correlated with each other
(Suppl. Fig. S3), which can be expected because dSV and
tSV are a subset of SV and clustered together in the GPA
(Fig. 2). However, the prediction ability for the three phe-
notypic traits using dSV information was slightly higher
than using tSV and all SV information, despite the fact
that the number of dSV features was far smaller (15,868)
than the number of tSV features (117,698) and the total
number of SV. This trend of a higher prediction abil-
ity for dSV was even more pronounced when adjusting
for differences in the number of features by resampling
simulations (data not shown). Our finding is in discor-
dance with the results of Do et al. [14] and Heidaritabar
et al. [15], who observed no difference between the pre-
diction performance of nsSNP and randomly sampled
SNPs. A first explanation for our different findings could
be that the former cited studies classified the SNP based
on whether they may induce amino acid change or not,
whereas our study distinguished tolerant/deleterious SNP.
Secondly, the SNP used for GP by Heidaritabar et al. [15]
were imputed for all genotypes from a 60K SNP array.
This might have hampered the improvement of prediction
ability in comparison to our study, which is based on real
variant data for all inbreds (except few missing data that
were mean-imputed). Our finding indicated that the pre-
selection of variants based on their theoreticaly predicted
protein function could improve prediction performance
of traits, which can be of considerable importance for
breeders.
The features derived from the transcriptome datasets

(GE, TE, as well as ePAV) led to increased prediction abil-
ities by 62.81% compared to SNP array and even SV on

average across the three traits and two tissues. This find-
ing was inconsistent with the results of previous studies
[11, 21], who observed that the prediction abilities based
on transcriptomic datasets were a little lower (5.30% and
0.03%) than those based on genomic information aver-
aged across the examined traits. This difference might
be caused by the complex genetic architectures of traits
evaluated and tissue sampled in the studies cited above.
However, the use of transcriptomic datasets as predictors
still had reasonable prediction abilities in the former stud-
ies, which is in accordance with our results and can be
explained by the fact that with such datasets expression
levels can be quantified and physiological epistasis even
captured.
A single gene can encode multiple distinct transcripts

through alternative splicing, which allows organisms to
increase the protein diversity based on the same set of
genes [36], and therefore could lead to more phenotypic
variation. As a consequence, a higher prediction ability
could be expected for phenotypic traits predicted from
TE compared to GE information. This was confirmed by
our findings (Fig. 3), and suggests that TE information
might be more efficient than GE information in predict-
ing the performance of traits when the full-length mRNA
sequencing has been performed.
All the datasets generated by mRNA sequencing from

seedling were well separated from those from leaf (Fig. 2).
Similarly, the correlation between predicted patterns
based on the transcriptomic dataset of the two tissues was
low (Fig. 4 and Suppl. Fig. S3) , which indicated that differ-
ent types of tissue offer dissimilar information concerning
the phenotypic variation and influence the prediction abil-
ity. In general, the prediction ability was considerably
higher for the datasets from seedling in comparison with
the datasets from leaf on average across the three traits
(Fig. 3). This might be explained by the fact that more
diverse genes are expressed in seedling than in leaf.
Only for HT, expression information from leaf (GEl,

TEl) achieved the same level of prediction ability as that
from seedling. One explanation for this finding might be
that HT is triggered by environmental factors in later
developmental stages and therefore the causal expression
features for this trait are more likely to be revealed in leaf
than in early developmental stages like seedling.
A total of 53 of the 144 metabolites quantified in our

study were significantly correlated with at least one of
the three phenotypic traits (Fig. 1). This suggests that
the metabolites can be used for selection for phenotypes.
In addition, the metabolite feature was clearly separated
from the other features in the similarity/dissimilarity anal-
ysis (Fig. 2). More importantly, the correlations between
the predicted values based on metabolic feature and other
omic datasets were low, and lower than the correlation
between different other omic datasets (Suppl. Fig. S3).
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This finding suggested that the metabolites can provide
another biological layer of information to capture the phe-
notypic variation. We observed across the three traits that
prediction abilities based on metabolites were consider-
ably higher compared to SNP or SV information (Fig. 3).
This finding is in contradiction to results of previous
studies [11, 29] who revealed considerably lower predic-
tion ability using metabolites as predictor. This might be
caused by the high accuracy of the metabolite assessment
used in our study. The average heritability on an entry
mean basis across 144 metabolites was with about 0.62
considerably higher than that observed by Guo et al. [11]
with 0.49 and Gemmer et al. [29] with 0.26. This aspect
was studied further by leaving out those metabolites with
heritabilities < 0.1. This resulted in an increased pre-
diction ability for all traits, which suggested that higher
accuracy of metabolites can bring stable information in
the prediction of phenotypes.
Generally, (di)-similarity between (1) different omic

datasets (Fig. 2) and also between (2) the correlation
between predicted phenotypic traits based on different
omic datasets (Fig. 4 and Suppl. Fig. S3) was observed in
our study. This suggested complementation between dif-
ferent biological perspectives to the phenotypic variation.
Therefore, combining predictors covering different layers
of biological information in an integrative model could
have an advantage over the GP model based on single
predictors, and was examined in our study.

Increasing prediction abilities by combiningmultiple
predictors
In this study, a grid search was used to identify those
combinations of dSV, ePAVls, TEs, and M0.6 in the joined
weighted relationship matrix of GBLUP model maximiz-
ing the prediction ability. The highest prediction ability
across the three examined traits was observed when more
than one predictor was used and, for each of the three
traits, without the contribution of the dSV (Fig. 5). This
finding might be explained by the fact that transcriptome
and metabolome information are closer to phenotypes
than gene information according to the central dogma of
molecular biology, and can capture together more genetic
variation and physiological epistasis caused by compli-
cated networks and interactions between genes than when
using only one single predictor [11].
On the other hand, even if a higher prediction ability

for all three examined traits was observed if more than
one predictor was used (Fig. 5), the optimal weight of each
component in the joined weighted relationship matrix
depended highly on the traits. For instance, metabolite
information was needed to obtain the highest prediction
ability for PH, but not for the other traits. Transcrip-
tome was the most important component, but the weight
ranged from 0.5 to 0.9 across the three traits. From the

physiological point of view, this might be explained by
the different genetic architectures of the different traits
and their exposure to different environments at differ-
ent developmental stages and tissues. We observed the
tendency that for traits with a lower heritability more dif-
ferent omic predictors were needed to result in the highest
prediction ability. Further research on traits with high
genetic complexity and low heritability such as yield is
needed to test this hypothesis.

Summary: application in breeding programs
The results of our study suggested that combining the
information of SV, expression, as well as metabolite
dataset into genomic prediction models can improve
the prediction ability of phenotypic traits. Especially, the
expression datasets were the most important compo-
nents for this improvement (Fig. 5). To be implemented
in breeding programs, such datasets have to be created
approximately at the costs of one traditional phenotyp-
ing unit (c.f. [37]). This implies that the datasets of SV,
gene expression, and metabolite are sampled from one
tissue, to avoid the cost of multiple sampling at several
stages. The goal of this study was to compare predictors
for their ability to predict phenotypic traits. The results
of our study indicate that the higher and more stable pre-
dictive performance across traits can be achieved from
gene and transcript expression gained on seedling sam-
ples. Seedling samples combine both aptitude in reaching
a high prediction ability but can be also generated in a
cost-effective and high-throughput manner. Thus, they
are recommended as the best tissue to predict the vari-
ation of phenotypes in barley populations. However, for
other crops such as tuber crops, different approaches and
tissues might be needed, which requires further research.
The limited budget available in practical breeding pro-

grams for full-length mRNA sequencing hampers the
use of such approaches. Instead, 3’end mRNA sequenc-
ing could be a cost-effective alternative method to obtain
transcriptome information. For 3’end mRNA sequencing,
only 50-800bp at the 3’end of the genes are sequenced.
Interestingly, we observed that the prediction abilities
of SV, GE, ePAV from simulated 3’end mRNA sequenc-
ing were on average across the three traits similar to
those from the full-length mRNA sequencing (Fig. 6).
Therefore, our finding suggested that transcriptome data
can be generated from the 3’end mRNA sequencing
without losing prediction ability in comparison to the
full-length mRNA sequencing, paving the path for the
use of such prediction methods in commercial breeding
programs.
Although this study is based on a limited number of

barley inbreds, it can be considered as a pilot research
showing how different omic datasets can improve pre-
diction of phenotypic variation and will open the path to
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perform such analysis on a bigger scale, e.g. on segregating
populations derived from the 23 inbreds [38].

Materials andmethods
Plant materials and phenotypic data collection
This study was based on 23 spring barley inbreds which
were selected from a worldwide collection [39] to max-
imize phenotypic and genotypic diversity [23]. The 23
inbreds were planted as replicated checks in a field exper-
iment laid out as an augmented row-column design.
The experiment was performed in seven agro-ecologically
diverse environments (Cologne from 2017 to 2019, Mech-
ernich and Quedlinburg from 2018 to 2019) in Germany
in which the checks were replicated 10 to 21 times per
environment. At each environment, three yield-related
phenotypic traits were assessed. The leaf angle (LA) was
scored on a scale from 1 (erect) to 9 (very flat) on four-
week-old plants. The heading time (HT) was recorded as
days after planting. Furthermore, the plant height (PH,
cm) wasmeasured after heading (only assessed in Cologne
and Mechernich).

Omic datasets
Metabolite profiling
The metabolite profiling of our study was based on leaf
samples collected for the 23 barley inbreds with quadru-
plicates in a greenhouse experiment, where no phenotypic
traits were assessed. Seeds of the 23 spring barley inbreds
were sown in controlled conditions with 16 hours light
and eight hours dark at 22 °C. Plantlets were cultivated for
two weeks and then moved to vernalisation in a growth
chamber. After five weeks of vernalisation, the plants were
repotted and returned to the greenhouse. After one week,
one 3 x 1cm piece of the central part of the youngest
fully developed leaf was harvested from two plants of
the same inbred, pooled, and immediately flash frozen in
liquid nitrogen. The collection of all samples was done
within one hour tominimize the variation due to circadian
rhythms. Each of the 92 samples was analyzed one time via
gas chromatography-mass spectrometry (GC-MS) using
an adapted protocol from Lisec et al. [40]. Metabolites
were extracted from 45-55 mg frozen mortared samples
with 1.5 ml of a 1:2.5:1 H2O:methanol:chloroform (v:v:v)
mixture pre-cooled to -20 °C, then mixed on a rotator for
10 min and centrifuged at 20,000 g for 2 min (both at 4
°C). A total of 30 µl of the supernatant were dried com-
pletely in a vacuum concentrator and derivatized in two
steps via an MPS-Dual-head autosampler (Gerstel): (1)
with 10 µl methoxyamine hydrochloride (Acros organics;
freshly prepared at 20 mg/ml in pure pyridine (Sigma-
Aldrich)) and shaking at 37 °C for 90 min, (2) adding 90 µl
N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA;
Macherey-Nagel) and shaking at 37 °C for 30 min. After
incubation for 2 hours at room temperature, 1 µl of

derivatized compounds was injected at a flow of 1 ml/min
with an automatic liner exchange system in conjunction
with a cold injection system (Gerstel) in splitless mode
(ramping from 50 °C to 250 °C at 12 °C/s) into the
GC. Chromatography was performed using a 7890B GC
system (Agilent Technologies) with a 30 m long, 0.25
mm internal diameter, HP-5MS column with 5% phenyl
methyl siloxane film (Agilent 19091S-433). The oven tem-
perature was held constant at 70°C for 2 min and then
ramped at 12.5°C/min to 320°C at which it was held
constant for 5 min; resulting in a total run time of 27
minutes.
Metabolites were ionized with an electron impact

source at 70V and 200 °C source temperature and
recorded in a mass range of m/z 60 to m/z 800 at 20
scans per second with a 7200 GC-QTOF (Agilent Tech-
nologies). Raw data files exported fromMassHunter Qual-
itative (v b07, Agilent Technologies) in the mzData for-
mat (*mzdata.xml) were converted to the NetCDF format
(*.cdf ) and baseline-corrected via MetAlign (v 041012,
[41]) using default parameters. Baseline-correction was
visually inspected usingOpenChrom (v 1.3.0, [42]). Quan-
titative analysis of GC-MS-based metabolite profiling
experiments was then performed using TagFinder (v 4.1,
[43]). After evaluating the uniqueness and linearity of each
fragment, the aggregated fragment intensity was calcu-
lated as the average of the maximum scaled fragment
intensity. For relative quantification, aggregated fragment
intensities of the compounds were normalized to those of
the internal standard ribitol (Sigma-Aldrich) which was
added to the extraction buffer. Mass spectral annotation
was manually supervised using the Golm Metabolome
Database mass-spectral library (http://gmd.mpimp-golm.
mpg.de/download/) after conversion of absolute time
in retention indices [44]. The raw data, details of
the quantification and annotation steps, and the pro-
cessed metabolite profiles are available (https://www.ebi.
ac.uk/metabolights/MTBLS1561). The compounds cor-
responding to contaminations, siloxane, ribitol, and
dimethylphenylalanine were removed. Furthermore, if
several compounds were identified as the same metabo-
lite, the one with the greatest heritabilty, for which the
calculation is described below, was retained.

SNP genotyping, RNA extraction, sequencing, and
quantification of gene expression
The Illumina 50K barley SNP array [45] was used to geno-
type the 23 inbreds of our study [23]. This dataset is
designated in the following as SNP array.
mRNA was extracted from leaf and seedling samples

of the 23 inbreds as described earlier by Weisweiler et
al. [23]. 46 polyA enriched RNA libraries were prepared
at the Max Planck Genome Centre Cologne (https://
mpgc.mpipz.mpg.de/home/). In addition, two tissue sam-
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ples of one of the inbreds and one tissue sample of
two other inbreds had to be removed during the data
cleaning process. Reads were trimmed, adapter and low
quality regions were removed. Afterwards, reads were
mapped using HISAT2 (version 2.0.5) [46] to the Morex
referene sequence version 1 [47]. Transcript calling was
performed with StringTie (version 2.1.3) [48]. Newly iden-
tified and annotated genes were included to the dataset as
described by Weisweiler et al. [23]. The expression data
for the 23 inbreds was separated into gene expression
and transcript expression data. The expression quanti-
fied as fragments per kilobase of exon model per million
fragments mapped (FPKM) was measured for every tran-
script of a gene, resulting in one FPKM-value per gene
and the corresponding FPKM-value for each transcript
of a gene. The FPKM-values of genes and transcripts are
designated in the following as GE and TE, where the
indexes l and s were used to separate the leaf (GEl, TEl)
and seedling (GEs, TEs) samples. For further details see
Weisweiler et al. [23].

Determination of ePAV
For each tissue separately, a presence call was made for
each inbred-gene combination in the matrix of pres-
ence/absence calls, if GE >0 and an absence call if GE
= 0. No presence/absence call (“NA”) was made for the
inbreds with 0< GE <10% of the maximum value of
GE for a gene-tissue combination (cf. [49]). Tissue spe-
cific ePAV calls were combined to an across tissue ePAV
call as described in detail by Weisweiler et al. [23]. The
ePAV detection procedure resulted in three ePAV data
sets, namely ePAV leaf (ePAVl), ePAV seedling (ePAVs),
and one across both tissues (ePAVls).

Sequence variant calling
Variant calling of SNP and small INDEL and their fil-
tering was performed with samtools (version 1.11) and
bcftools (version 1.10.2) as described by Weisweiler et
al. [23], and the dataset is designed in the following as
SV. SIFT4G (version 2.4) was used to annotate and pre-
dict tolerant and deleterious variants. The prediction was
done based on the conversion of amino acid sequences
[16]. Amino acid substitutions were classified according
to their effect on the protein functions and were predicted
as tolerant if the score was >0.05 and as deleterious if the
score was<= 0.05. The SIFT4G database was build based
on the uniref 90 database (downloaded 2020/04/29) and
the Morex reference sequence version 1 [47] with the tool
SIFT4_Create_Genomic_DB.

Simulation of 3’endmRNA sequencing
For the simulation of 3’end mRNA sequencing, GEs was
only measured based on the last 200, 250, 300, 350, 400,
450, and 500 bp at the 3’end of each gene. To the same
reduced set of sequence data, the ePAV detection pro-

cedure and the SV calling procedure has been applied
resulting in seven different GE, ePAV, and SV datasets.

Statistical analyses
Adjusted entrymeans, variance components, and heritability
Based on visual inspections of quantile-quantile (Q-Q)
plots of residuals as well as residuals vs. fitted values plots,
phenotypic outliers were removed. Each of the phenotypic
traits was then analysed across the environments using the
following mixed model:

yijk = µ+ Ej + Gi + (G × E)ij + εijk , (1)
where yijk was the observed phenotypic value for the ith
genotype at the jth environment within the kth replica-
tion, µ the general mean, Gi the effect of the ith inbred, Ej
the effect of the jth environment, (G × E)ij the interaction
between the ith inbred and the jth environment, and εijk
the random error. To estimate adjusted entry means for
all inbreds, Gi was treated as fixed and the other effects
as random. As the samples for metabolites were collected
from one environment, the model [1] was reduced to:

yik = µ+ Gi + εik , (2)
where yik was the observed metabolite for the ith inbred
within the kth replication, and εik the random error. The
resulting adjusted entry means of phenotypic traits and
metabolites for each inbred were used in further analy-
ses, where the adjusted entry means of metabolites were
designated as M.
To estimate the genetic variance (σ 2

G), model (1) and (2)
were used but considering Gi as random. The heritabil-
ity on an entry mean basis for the phenotypic traits and
metabolites was then calculated as H2 = σ 2

G/(σ
2
G + ν̄/2),

where ν̄ was the mean variance of difference between two
adjusted entry means [50].

Prediction of phenotypic traits frommulti-omic datasets
The performance to predict phenotypic variation of dif-
ferent types of predictors: (1) SNP array, (2) sequence
variants (SV), (3) deleterious sequence variants (dSV), (4)
tolerant sequence variants (tSV), (5) ePAVs, (6) ePAVl,
(7) ePAVls, (8) gene expression in seedling (GEs), (9)
gene expression in leaf (GEl), (10) transcript expression
in seedling (TEs), (11) transcript expression in leaf (TEl),
(12) metabolite (M), was compared based on the most
stable and widely used model in GP, genomic best linear
unbiased prediction (GBLUP) model [51], which can be
described as

y = 1µ+ Zu+ ε (3)
where y is the vector of the adjusted entry means of the
examined trait, 1 the unit vector, µ the general mean,
Z the incidence matrix of genotypic effects, and u the
vector of genotypic effects that are assumed be normal
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distributed with N(0,Gσ 2
u ), in which G denotes the rela-

tionship matrix between inbreds and σ 2
u the genetic vari-

ance. In addition, ε is the vector of residuals following a
normal distribution N(0, Iσ 2

e ). In this study, only additive
effects were modeled.
For each of the above mentioned omic dataset, the

monomorphic features and the features with missing rates
> 0.2 have been filtered out.W was defined as a matrix of
feature measurements for the respective omic dataset that
is designated in the following as predictor. The dimen-
sions of W were the number of barley inbreds (n) times
the number of features in the corresponding predictor (m)
(Table 1). Because of genotyping problems for one of the
inbreds, 22 inbred lines were used for further analyses
(n = 22).
For each predictor, the additive relationship matrix G

was defined as G = W∗W∗T
m , where W∗ is a matrix of

feature measurement for the respective predictor, whose
columns are centered and standardized to unit variance
of W, and W∗T is the transpose of W∗. In addition, to
assess the impact of the heritability of a metabolite on
the prediction performance, only those metabolites with
a heritability on an entry mean basis higher than t, where
t varied from 0.1 to 0.8 in increments of 0.1, were consid-
ered, and the datasets were designated as M0.1, M0.2, M0.3,
M0.4 M0.5, M0.6, M0.7 and M0.8.
In order to understand whether the different omic

datasets can capture similar genetic information, Pearsons
correlation coefficients between pairwise predicted values
of different omic datasets were calculated. Subsequently,

Table 1 The number of features and the abbreviations for each
omic dataset used in this study

Omic dataset Abbreviation Number of
features

50K SNP array SNP array 38,285

Sequence variants SV 133,566

Deleterious sequence variants dSV 15,868

Tolerant sequence variants tSV 117,698

Expression presence/absence
variation in seedling

ePAVs 27,445

Expression presence/absence
variation in leaf

ePAVl 26,653

Expression presence/absence
variation in combining leaf and
seedling

ePAVls 36,235

Gene expression in seedling GEs 67,844

Gene expression in leaf GEl 60,888

Transcript expression in seedling TEs 250,490

Transcript expression in leaf TEl 220,749

Metabolites M 144

1 − the correlation coefficients among all pairs of predic-
tors was used as the correlation-based distance in a PCoA.
Furthermore, to investigate the performance of a joined
weighted relationship matrix [21] to predict phenotypic
variation, the matrices G in model (3) of four predictors
were weighted and summed up to one joined weighted
relationship matrix, where we varied:

1. the weight of SNP (wSNP): the weight of the most
representative SNP datasets was determined as the
one from the SNP array, SV, tSV, or dSV which has
the most stable prediction performance across the
three traits (dSV).

2. the weight of ePAV (wePAV ): the weight of the most
representative ePAV datasets was determined as the
one from ePAVls, ePAVs, or ePAVl which has most
stable prediction performance across the three traits
(ePAVls).

3. the weight of expression (wexpression): the weight of
the most representative of the expression datasets
was determined as the one from GEs, GEl, TEs, or
TEl which has most stable prediction performance
across the three traits (TEs).

4. the weight of metabolite (wM ,
1 − wSNP − wePAV − wexpression): the weight of the
most representative metabolite datasets was
determined as the one from M, M0.1, M0.2, M0.3,
M0.4 M0.5, M0.6, M0.7, or M0.8 which has most stable
prediction performance across the three traits (M0.6).

A grid search, varying any weight (w) from 0 to 1
in increments of 0.1, resulted in 286 different combina-
tions of joined weighted relationship matrix, where the
summation of four weights in each combination must
be equal to 1. In addition, the performance of SV, GEs,
and ePAVs from simulated 3’end mRNA sequencing of
different length as described above was explored.
Five-fold cross-validation was used to assess the model

performance. Prediction abilities were obtained by cal-
culating Pearson correlations between observed (y) and
predicted (ŷ) adjusted entry means in the validation set
of each fold. The median prediction ability across the
five folds within each replicate was calculated and the
median of the median across the 200 replicates was used
for further analyses.

Correlation and genetic similarity analyses
Correlations among the three phenotypic traits, and
between the three phenotypic traits and the individual
metabolites were measured as Pearson correlation coeffi-
cient. Principal component analysis (PCA) was performed
on each omic dataset (SNP array, SV, dSV, tSV, ePAVs,
ePAVl, ePAVls, GEl, GEs, TEs, TEl, and M). To evaluate
similarity/dissimilarity among the various datasets, gen-
eralized procrustes analysis (GPA) [30] was performed
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based on the PCA results. Subsequently, 1 − the pro-
crustes similarity indexes among all pairs of omic datasets
was used as dissimilarity measurements in a principal
coordinates analysis (PCoA).
All analyses have been performed using the statistical

software R [52].
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SUPPLEMENTAL MATERIALS

List of Supplemental Tables

- Table S1: The adjusted entry means of the 23 inbreds for the three traits, leaf

angle (LA), plant height (PH) and heading time (HT).

- Table S2: The information of 192 chemical entries and their relative abundance

for each inbred.

- Table S3: The classification of the 144 metabolites based on their chemical

properties.

List of Supplemental Figures

- Figure S1: Distribution of heritabilities (H2) for the 144 metabolites. The

average (0.62) is indicated as red vertical line.

- Figure S2: Pearson correlation coe�cients calculated between all pairs of ad-

justed entry means of the three phenotypic traits.

- Figure S3: Heatmap of correlation coe�cients calculated between all pairs of

the predicted values of omic datasets for the three traits, leaf angle, plant

height and heading time, across 200 five-fold cross-validation runs. The values

given in each cell represent the medians of 200 runs. The omic datasets in-

clude SNP array, sequence variants (SV), deleterious sequence variants (dSV),

tolerant sequence variants (tSV), gene expression in seedling and leaf (GEl
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3

and GEs), transcript expression in seedling and leaf (TEl and TEs), expression

presence/absence variation in seedling, leaf and combining both tissues (ePAVs,

ePAVl, and ePAVls), and metabolites (M)
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4

Table S1: The adjusted entry means of the 23 inbreds for the three traits, leaf angle

(LA), plant height (PH) and heading time (HT).

Suppl_Table_S1_AEM_3traits_23_inbreds.csv

Table S2: The information of 192 chemical entries and their relative abundance for

each inbred.

Suppl_Table_S2_192_analytes_information.csv

Table S3: The classification of the 144 metabolites based on their chemical properties.

Metabolites Number

Amino Acids 22

Acids 16

Phosphates 11

Fatty Acids 10

Polyhydroxy Acids 9

N-Compounds 8

Alcohols 4

Sugars 7

Terpene 7

Polyols 4

Phenylpropanoids 2

Sugar Conjugates 1

Unknown 43
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Figure S1: Distribution of heritabilities (H2) for the 144 metabolites. The average (0.62) is indicated

as red vertical line.
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Figure S3: Heatmap of correlation coe�cients calculated between all pairs of the predicted values of omic datasets for the three traits, leaf angle, plant

height and heading time, across 200 five-fold cross-validation runs. The values given in each cell represent the medians of 200 runs. The omic datasets

include SNP array, sequence variants (SV), deleterious sequence variants (dSV), tolerant sequence variants (tSV), gene expression in seedling and leaf

(GEl and GEs), transcript expression in seedling and leaf (TEl and TEs), expression presence/absence variation in seedling, leaf and combining both

tissues (ePAVs, ePAVl, and ePAVls), and metabolites (M).
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Abstract
Key message Structural variants (SV) of 23 barley inbreds, detected by the best combination of SV callers based on 
short-read sequencing, were associated with genome-wide and gene-specific gene expression and, thus, were evalu-
ated to predict agronomic traits.
Abstract In human genetics, several studies have shown that phenotypic variation is more likely to be caused by structural 
variants (SV) than by single nucleotide variants. However, accurate while cost-efficient discovery of SV in complex genomes 
remains challenging. The objectives of our study were to (i) facilitate SV discovery studies by benchmarking SV callers 
and their combinations with respect to their sensitivity and precision to detect SV in the barley genome, (ii) characterize the 
occurrence and distribution of SV clusters in the genomes of 23 barley inbreds that are the parents of a unique resource for 
mapping quantitative traits, the double round robin population, (iii) quantify the association of SV clusters with transcript 
abundance, and (iv) evaluate the use of SV clusters for the prediction of phenotypic traits. In our computer simulations based 
on a sequencing coverage of 25x, a sensitivity > 70% and precision > 95% was observed for all combinations of SV types 
and SV length categories if the best combination of SV callers was used. We observed a significant (P < 0.05) association 
of gene-associated SV clusters with global gene-specific gene expression. Furthermore, about 9% of all SV clusters that 
were within 5 kb of a gene were significantly (P < 0.05) associated with the gene expression of the corresponding gene. The 
prediction ability of SV clusters was higher compared to that of single-nucleotide polymorphisms from an array across the 
seven studied phenotypic traits. These findings suggest the usefulness of exploiting SV information when fine mapping and 
cloning the causal genes underlying quantitative traits as well as the high potential of using SV clusters for the prediction of 
phenotypes in diverse germplasm sets.

Introduction

Researchers began to study genomic rearrangements and 
structural variants (SV) about 60 years ago. These studies 
investigated somatic chromosomes, biopsies, and cell cul-
tures from lymphomas to understand the role of abnormal 
chromosome numbers as well as SV for the development of 
cancer (Jacobs and Strong 1959; Nowell and Hungerford 
1960; Manolov and Manolov 1972; Craig-Holmes et al. 
1973; Mitelman et al. 1979).

The development of sequencing by synthesis pioneered 
by Frederick Sanger (Sanger et al. 1977) enabled in the fol-
lowing years the first sequenced genomes of prokaryotes 
(e.g., Escherichia coli) and eukaryotes (e.g., yeast) (Gof-
feau et al. 1996; Blattner et al. 1997). Next milestones of 
sequencing by synthesis were the sequenced genomes of 
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Arabidopsis thaliana as first plant species (The Arabidopsis 
Genome Iniative 2000) and of human (Craig Venter et al. 
2001). Due to the development of next-generation sequenc-
ing (NGS) platforms such as 454 and Illumina, studies aim-
ing for genome-wide variant detection in 100s or 1000s 
of samples as in the 1000 genome project (Altshuler et al. 
2012) became possible.

Three different approaches have been proposed to detect 
SV based on NGS data: assembling, long-read sequencing, 
and short-read sequencing (Mahmoud et al. 2019). For crop 
and especially for cereal species, the assembly approach 
is a tough challenge because of the large genome size and 
the high proportion of repetitive elements in the genomes 
(Neale et al. 2014; Mascher et al. 2017). Long-read map-
ping requires Pacific Biosciences or Nanopore sequenc-
ing data which results in high costs if many accessions 
should be sequenced and, thus, is not affordable for many 
research groups. In contrast, short-read sequencing is well-
established for SV detection in the human genome (Chais-
son et al. 2019; Ebert et al. 2021). Various software tools 
have been developed to detect SV from short-read sequenc-
ing data and were benchmarked based on human genomes 
(Cameron et al. 2019; Kosugi et al. 2019).

More recently there is also an increased interest in using 
such approaches for SV detection in plant genomes (Fuentes 
et al. 2019; Zhou et al. 2019; Guan et al. 2021). Fuentes 
et al. (2019) evaluated several SV callers to detect SV in the 
rice genome. However, no study evaluated the performance 
of SV callers for transposon-rich complex cereal genomes.

Several studies have examined the distribution and fre-
quency of SV in the genomes of rice and maize (Wang et al. 
2018; Yang et al. 2019; Kou et al. 2020). Despite the impor-
tance of cereals for human nutrition, only Jayakodi et al. 
(2020) performed a genome-wide study on SV in barley, 
with a focus on large SV in 20 barley accessions.

In humans, SV have been described to have an up to ∼
50fold stronger influence on gene expression than single 
nucleotide variants (SNV) (Chiang et al. 2017). SV also 
have been associated with changes in transcript abundance 
in plants such as in cucumber (Zhang et al. 2015), maize 
(Yang et al. 2019), tomato (Alonge et al. 2020), and soybean 
(Liu et al. 2020a). However, the role and frequency of SV in 
gene regulatory mechanisms in small grain cereals is widely 
unexplored.

In humans, several studies have shown that phenotypic 
variation is more likely to be caused by SV than by SNV 
(Alkan et al. 2011; Baker 2012; Sudmant et al. 2015; Schüle 
et al. 2017; McColgan and Tabrizi 2018). In plants, indi-
vidual SV have been associated with traits such as aluminum 
tolerance in maize (Maron et al. 2013), disease resistance 
and domestication in rice (Xu et al. 2012), or plant height (Li 
et al. 2012) and heading date (Nishida et al. 2013) in wheat. 
In barley, individual SV have been associated with traits 

such as Boron toxicity tolerance (Sutton et al. 2007) and 
disease resistance (Muñoz-Amatriaín et al. 2013). In grape-
vine and rice, it has been shown that SV have a low variant 
frequency due to purifying selection (Zhou et al. 2019; Kou 
et al. 2020). However, few studies have examined the ability 
to predict quantitatively inherited phenotypic traits using SV 
in comparison to SNV.

The objectives of our study were to (i) facilitate SV dis-
covery studies by benchmarking SV callers and their com-
binations with respect to their sensitivity and precision to 
detect SV in the barley genome, (ii) characterize the occur-
rence and distribution of SV clusters in the genomes of 23 
barley inbreds that are the parents of a unique resource for 
mapping quantitative traits, the double round robin popula-
tion (Casale et al. 2022), (iii) quantify the association of SV 
clusters with transcript abundance, and (iv) evaluate the use 
of SV clusters for the prediction of phenotypic traits.

Methods

Benchmarking of variant callers for detecting SV 
and INDELs in the barley genome

Computer simulations

We used Mutation-Simulator (version 2.0.3) (Kühl et al. 
2021) to simulate INDELs, deletions, duplications, inver-
sions, insertions, and translocations in the first chromosome 
of the Morex reference sequence v2 (Monat et al. 2019) as 
this was the genome sequence available when our study was 
performed. Furthermore, it is not expected that the reference 
version impacts the results of the simulations. In accordance 
with Fuentes et al. 2019, we considered five SV length cat-
egories for each of the above mentioned SV types (except 
translocations) (A: 50–300 bp; B: 0.3–5 kb; C: 5–50 kb; D: 
50–250 kb; E: 0.25–1 Mb) plus INDELs (2-49bp). Trans-
locations were simulated for 50 bp–1 Mb (ABCDE). We 
simulated SV with a mutation rate of 1.9x10−6 for the SV 
length categories A-C and INDELs, whereas mutation rates 
of 3.8x10*6 and 1.9x10*7 were assumed for SV length cat-
egories D and E, respectively. For each type of SV, we used 
BBMap’s randomreads.sh (BBMap - Bushnell B. - http:// 
sourc eforge. net/ proje cts/ bbmap/) to simulate 2x150  bp 
Illumina reads with a sequencing coverage of 1.5x, 3x, 6x, 
12.5x, 25x, and 65x as well as LRSim (version 1.0) (Luo 
et al. 2017) to simulate linked-reads with a sequencing cov-
erage of 14x and 25x. Illumina- and linked-reads were simu-
lated with a minimum, average, and maximum base quality 
of 25, 35, and 40, respectively.
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SV detection

The simulated Illumina reads were mapped to the first 
chromosome of the Morex reference sequence v2 using 
BWA-MEM (version 0.7.15) whereas LongRanger align 
(version 2.2.2) was used for the simulated linked-reads. 
The SV callers Pindel (version 0.2.5b9) (Ye et al. 2009), 
Delly (version 0.8.1) (Rausch et al. 2012), GRIDSS (ver-
sion 2.8.3) (Cameron et al. 2017), Manta (version 1.6.0) 
(Chen et al. 2016), Lumpy (smoove version 0.2.5) (Layer 
et al. 2014), and NGSEP (version 3.3.2) (Duitama et al. 
2014) were used to identify SV based on the mapped 
reads. GATK’s HaplotypeCaller (4.1.6.0) (Poplin et al. 
2017), Pindel, and GRIDSS were used to detect INDELs. 
The workflow was implemented in Snakemake (version 
5.10.0) (Köster et al. 2021). A SV call was only kept if it 
passed the built-in filter of the corresponding SV caller. 
For INDELs and all SV types and length categories, only 
homozygous, alternative variant calls were considered. 
Deletions annotated as “replacement” (RPL) by Pindel 
were removed. We calculated the sensitivity (1), preci-
sion (2), and the F1-score (3) as

 for all combinations of SV types*SV callers, where TP was 
the number of true positives, FP the number of false posi-
tives, and FN the number of false negatives. For INDELs, 
a TP INDEL had break points that did differ � 2 bp from 
those of the simulated INDEL and the length did differ by � 5bp. For SV length category A, a TP SV had break points 
that did differ � 10 bp from those of the simulated SV and 
the SV length did differ by � 20 bp. For the other SV length 
categories, a TP SV had break points and length differences 
compared to the simulated SV of � 50 bp. For insertions 
where no SV length was detected, the start of a TP insertion 
had a break point that did differ � 10 bp from this of the 
simulated insertion. For translocations, a TP translocation 
had break points that did differ � 50 bp from those of the 
simulated translocation.

We also evaluated combinations of SV callers for their 
precision and sensitivity to detect SV. The following pro-
cedure was used to decide for the combinations that were 
examined: First, for those SV callers, which have shown 
a precision ≥ 95% for all SV length categories for a par-
ticular SV type, SV calls were combined via logical or (“∣
”). Second, for those SV callers with a precision � 95% in 
at least one SV length category, SV calls were combined 

(1)Sensitivity = TP∕(TP + FN)

(2)Precision = TP∕(TP + FP)

(3)
F1 - core = 2 ∗ (Precision*Sensitivity/Precision + Sensitivity)

with a logical and (“&”). If the precision of the combina-
tion of the second step increased to ≥ 95% in all SV length 
categories, SV calls of this combination were kept for the 
particular SV type and were combined with a logical or 
with those of the first step. The threshold of ≥ 95% preci-
sion was used to reduce the number of FP SV calls to a 
reasonable level.

Detection of SV, SNV, and INDELs in the barley 
genome

Genetic material and sequencing

Our study was based on 23 spring barley inbreds (Weis-
weiler et al. 2019) that were selected out of a worldwide col-
lection of 224 inbreds (Haseneyer et al. 2010) (Supplemen-
tary Table S6) using the MSTRAT algorithm (Gouesnard 
2001). These inbreds are the parents of the double round 
robin population (Casale et al. 2022). Paired-end sequenc-
ing libraries with an insert size of 425 bp were sequenced 
(2x150 bp) to a ∼25x coverage on the Illumina HiSeqX plat-
form by Novogene Corporation Inc. (Sacramento, USA).

SV, INDELs, and SNV detection

The quality of the raw reads was checked by fastqc. Reads 
were adapter- and quality-trimmed using Trimmomatic (ver-
sion 0.39) (Bolger et al. 2014). The trimmed reads were 
mapped to the Morex reference sequence v3 (Mascher et al. 
2021) using BWA-MEM. PCR-duplicates were removed 
using PICARD (version 2.22.0).

Based on the results of the benchmarking of different 
SV callers using simulated data, the results of specific SV 
callers were combined as explained above. The final set of 
deletions for each inbred were those that were identified 
by Manta ∣ GRIDSS ∣ Pindel ∣ Delly ∣ (Lumpy & NGSEP) 
where homozygous-reference (0/0) and heterozygous variant 
(0/1) calls were removed. Additionally, deletions annotated 
by Pindel as RPL were removed. In analogy, the duplica-
tions were identified by Manta ∣ GRIDSS ∣ Pindel ∣ (Delly 
& Lumpy). Insertions of the SV length category A were 
identified by Manta ∣ GRIDSS ∣ Delly, where insertions 
of the SV length categories B-E were called using Manta. 
Inversions were identified by Manta ∣ GRIDSS ∣ Pindel. 
Translocations were called from pairs of break points iden-
tified by Manta ∣ GRIDSS ∣ (Delly & Lumpy). INDELs were 
detected by GATK’s HaplotypeCaller ∣ GRIDSS ∣ Pindel 
where homozygous-reference (0/0) and heterozygous vari-
ant (0/1) calls were discarded. SV which were located in a 
region of the reference sequence, where the sequence only 
consists of N’s, were excluded. For genome regions, where 
break points of different SV overlapped or were inconsistent 
in the same inbred, only the smallest SV was considered. 
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The number of false positives could be increased by detect-
ing large SV clusters; therefore, SV clusters larger than 1 Mb 
were not considered in our study. The SV of the 23 inbreds 
were grouped together to SV clusters based on the similar-
ity of sizes and the position in the genome according to the 
following procedure. The distance from a SV to the next 
SV in such a SV cluster had to be smaller than 20 bp for the 
SV length category A and 50 bp for the SV length category 
B - E and the difference of the two break points had to be 
smaller than 10 or 50 bp as described above. SV with a 
larger difference between break points were kept as separate 
SV and SV clustering was pursuing. Each SV cluster was 
genotyped across the examined 23 barley inbreds.

SNV and INDELs were called using GATK. First, 
GATK’s HaplotypeCaller was used in single sample GVCF 
mode, afterward GATK’s CombineGVCFs was used to com-
bine the SNV across the 23 inbreds. Combined SNV were 
genotyped using GATK’s GenotypeGVCFs. SNV were fil-
tered using GATK’s VariantFiltration where variants below 
the following filtering thresholds were removed: QD < 
2.0; QUAL < 30.0; SOR > 3.0; FS > 60.0; MQ < 40.0; 
MQRankSum < −12.5; ReadPosRankSum < −8.0. Het-
erozygosity of SNV for each genotype was low (1.0–1.7%) 
and therefore such SNV were not discarded to avoid remov-
ing true positives.

PCR validation of SV

A total of 25 of the detected SV were targeted for validation 
by PCR amplification of genome regions of and around the 
SV in Morex and Unumli-Arpa. This included six SV length 
category A deletions, five SV length category A insertions, 
six SV length category B deletions and eight SV length cat-
egory C-E deletions. In order to determine the SV allele, we 
required the amplification of two differently sized fragments 
in the two inbreds. For each SV, a regular primer pair was 
created with the position defined by the validation strategy 
(Supplementary Fig. S1). If needed, a second right primer 
was added to the PCR reaction. The primers were designed 
using Primer3 (Untergasser et al. 2012) and Blast+ (Cama-
cho et al. 2009).

Plant material was sampled for the PCR validation from 
adult plants and seedlings grown under controlled condi-
tions. DNA was extracted from 100 mg frozen plant material 
using the DNeasy Plant Mini Kit (Qiagen, Germany) accord-
ing to the manufacturer’s instructions. The PCR reaction 
mixture contained in a final volume of 20 μ L: 0.2 mM dNTP, 
Fw/Rev Primer 0.5 μ M, 50 ng DNA, 1.5 U/μ L DreamTaq 
DNA Polymerase (Thermo Fischer Scientific, USA), Pol-
ymerase-Buffer 1X and water. Amplified fragments were 
separated by gel electrophoresis and the validation success 
was determined by comparing the PCR product sizes with 
the calculated values based on the SV detection.

Location of SV clusters

SV clusters were classified and annotated based on their 
location in the genome, their distance relative to genes, or 
other genomic features. SV clusters were grouped into four 
gene-associated and one intergenic SV cluster categories: 
5 kb upstream/downstream gene-associated SV clusters were 
located in the 5 kb region from the 3 ′ - or 5 ′ - end of a gene. 
Intron and exon gene-associated SV clusters were located in 
the gene sequence, where the genic sequence was separated 
into intronic and exonic sequences. SV clusters which were 
not located in the four gene-associated SV cluster categories 
were determined as intergenic SV clusters. A gene-associ-
ated SV cluster could be classified in more than one category 
if its sequence covers several genomic features.

To check if the detected SV clusters were transposable 
elements, the genomic positions of SV clusters were com-
pared to the transposable elements annotation file of the 
Morex reference sequence v3 (Mascher et al. 2021). Dele-
tions, duplications, inversions, INDELs, and insertions with 
known length were annotated as transposable elements if the 
reciprocal overlap was ≥ 80% (Fuentes et al. 2019). Inser-
tions with unknown length were classified as transposable 
elements if the detected break point of the insertion was 
inside the transposable element sequence. Translocations 
were classified as transposable element, if at least one of 
the two break points was located inside a transposable ele-
ment sequence.

SV hotspots were identified using the following proce-
dure: The average number of SV clusters in non-overlapping 
1 Mb windows across each of the seven chromosomes was 
determined. Using this number, we calculated for each win-
dow based on the Poisson distribution the expected number 
of SV clusters. Windows with more SV clusters than the Q 99 
of the expected Poisson distribution were designated as SV 
hotspots (Guan et al. 2021).

Population genetic analyses

Linkage disequilibrium (LD) measured as r2 (Hill and Rob-
ertson 1968) was calculated between each SV type and 
linked SNV. Nucleotide diversity ( � ) was calculated in 
100 kb windows along the seven chromosomes separately 
for SV clusters (deletions, insertions, duplications, inver-
sions) and SNV using vcftools (version 0.1.17) (Danecek 
et al. 2011).

SV clusters and gene expression

SV clusters which were assigned into one of the gene-associ-
ated SV categories, namely 5 kb up- or downstream, introns, 
and exons, were associated with the genome-wide gene 
expression of the 23 barley inbreds. Gene expression for the 
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seedling tissue measured as fragments per kilobase of exon 
model per million fragments mapped was available for all 
inbreds from an earlier study (Weisweiler et al. 2019). This 
information was the basis of a principal component analy-
sis. For all gene-associated SV clusters with a minor allele 
frequency (MAF) > 0.15, Pearson’s correlation coefficient 
with the first three principal components was estimated, 
where the presence and absence of SV clusters were used as 
metric character. This analysis was performed to examine 
the association between SV clusters and genome-wide gene 
expression (Liu et al. 2020b). A permutation procedure with 
1,000 iterations was used to test the mean absolute values 
of the correlations for their significance. In addition to this 
evaluation of the effect of SV clusters on the genome-wide 
gene expression level, we also examined the significance 
of the effect of gene-associated SV clusters with a MAF > 
0.15 on the expression of individual genes. In order to do 
so, the mixed linear model with population structure and 
kinship matrix (PK model) (Stich et al. 2008) was used. The 
population structure matrix consisted of the first two princi-
pal components calculated from 133,566 SNV and INDELs 
derived from mRNA sequencing (Weisweiler et al. 2019). 
From the same information, the kinship matrix was calcu-
lated as described by Endelman and Jannink (2012).

Assessment of phenotypic traits

For the assessment of phenotypic traits under field condi-
tions, the 23 inbreds were planted as replicated checks in an 
experiment laid out as an augmented row-column design. 
The experiment was performed in seven environments 
(Cologne from 2017 to 2019, Mechernich and Quedlinburg 
from 2018 to 2019) in Germany in which the checks were 
replicated multiple times per environment. For each environ-
ment, seven phenotypic traits were assessed. Heading time 
(HT) was recorded as days after planting, leaf angle (LA) 
was scored on a scale from 1 (erect) to 9 (very flat) on four-
week-old plants, and plant height (PH, cm) was measured 
after heading in Cologne and Mechernich. Seed area (SA, 
mm2 ), seed length (SL, mm), seed width (SW, mm), and 
thousand grain weight (TGW, g) were measured based on 
full-filled grains from Cologne (2017–2019) and Quedlin-
burg (2018) by using MARVIN seed analyzer (GTA Sen-
sorik, Neubrandenburg, Germany).

Prediction of phenotypes

Each of the phenotypic traits was analyzed across the envi-
ronments using the following mixed model:

(4)yijk = ! + Ej + Gi + (G × E)ij + "ijk,

where yijk was the observed phenotypic value for the ith geno-
type at the jth environment within the kth replication; ! the 
general mean, Gi the effect of the ith inbred, Ej the effect 
of the jth environment, (G × E)ij the interaction between 
the ith inbred and the jth environment, and !ijk the random 
error. This allowed to estimate adjusted entry means for all 
inbreds.

The performance to predict the adjusted entry means 
of each barley inbred for each trait using different types 
of predictors: (1) single nucleotide polymorphism (SNP) 
array, which was generated by genotyping the 23 inbreds 
using the Illumina 50K barley SNP array (Bayer et al. 
2017), (2) gene expression (3) SNV & INDELs, (3a) SNV, 
(3b) INDELs, (4) SV clusters, (4a) deletions, (4b) duplica-
tions, (4c) insertions, (4d) inversions, (4e) translocations, 
was compared based on genomic best linear unbiased pre-
diction (GBLUP) (VanRaden 2008).

For each predictor, the monomorphic features and the 
features with missing rates > 0.2 and identical informa-
tion were discarded. � was defined as a matrix of feature 
measurement for the respective predictor. The dimen-
sions of � were the number of barley inbreds (n = 23) 
times the number of features in the corresponding pre-
dictor (m) ( mSNP array = 38, 025 , mgene expression = 67, 844 , 
mSNV&INDELs = 3, 025, 217  ,  mSNV = 2, 338, 565  , 
mINDELs = 686, 918  ,  mSVclusters = 458, 330  , 
mdeletions = 183, 219  ,  mduplications = 93, 073  , 
minsertions = 70, 143  ,  minversions = 6, 582  , 
mtranslocations = 105, 313 ). The additive relationship matrix 
! was defined as ! = W∗W∗T

m
 , where W∗ was a matrix of 

feature measurement for the respective predictor, whose 
columns are centered and standardized to unit variance of 
W , and W∗T was the transpose of W∗.

Furthermore, to investigate the performance of a joined 
weighted relationship matrix (Schrag et al. 2018) to pre-
dict phenotypic variation, the three ! matrices in GBLUP 
model of the three predictors, SNV &INDELs, gene 
expression, and SV clusters, were weighted and summed 
up to one joined weighted relationship matrix. A grid 
search, varying any weight (w) from 0 to 1 in increments 
of 0.1, resulted in 66 different combinations of joined 
weighted relationship matrix, where the summation of 
three weights in each combination must be equal to 1.

Fivefold cross-validation was used to assess the model 
performance. Prediction abilities were obtained by cal-
culating Pearson’s correlations between observed (y) and 
predicted (ŷ) adjusted entry means in the validation set of 
each fold. The median prediction ability across the five 
folds within each replicate was calculated and the median 
of the median across the 200 replicates was used for fur-
ther analyses.
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Results

Precision and sensitivity of SV callers

Six tools (Table 1) which call SV based on short-read 
sequencing data were evaluated with respect to their pre-
cision and sensitivity to detect five different SV types 
(deletions, insertions, duplications, inversions, and trans-
locations) in five SV length categories (A: 50–300 bp; 
B: 0.3–5 kb; C: 5–50 kb; D: 50–250 kb; E: 0.25–1 Mb) 
using computer simulations. The precision of Delly, 
Manta, GRIDSS, and Pindel to detect deletions of all 
five SV length categories based on 25x sequencing cov-
erage ranged from 97.8–100.0%, whereas the precision 
of Lumpy and NGSEP was lower with values between 
75.0 and 89.8% (Table 2). The sensitivity of NGSEP was 
with 78.6–87.5% the highest but that of Manta was with 
79.7–81.1% only slightly lower. We evaluated various 
combinations of SV callers and observed for the combi-
nation of Manta | GRIDSS | Pindel | Delly | (Lumpy & 
NGSEP) an increase of the sensitivity to detect deletions 
compared to the single SV callers up to a final of 89.0% 
without decreasing the precision considerably (99.1%).

Manta was the only SV caller which allowed the detec-
tion of insertions of all SV length categories with preci-
sion values as high as 99.8–100.0%. The combination of 
Manta | GRIDSS | Delly for the SV length category A has 
shown a high sensitivity (88.4%) and precision (99.8%). 
This combination was therefore used for the detection of 
insertions of SV length category A in further analyses.

The sensitivity of the SV callers Delly, Manta, Lumpy, 
and GRIDSS to detect duplications of the SV length cat-
egory A was with values from 28.2 to 39.4% very low. In 
contrast, Pindel could detect these duplications with a sen-
sitivity of 75.7%. For the other SV length categories, the 
combination of Manta | GRIDSS | Pindel could increase 
the sensitivity to detect duplications by 2–7% compared 
to using a single SV caller while the precision ranged 
between 97.6 and 99.3%.

The performance of Lumpy and NGSEP to detect inver-
sions reached precision values of 81.5–98.5% and sensitivity 
values of 66.1–80.0% that were on the same low level as for 
deletions. Delly performed well for detecting inversions in 
SV length categories B to D, but for E and especially for A, 
the performance was lower compared to that of the other SV 
callers. Overall, Pindel was the only SV caller with a combi-
nation of both, high precision and sensitivity to detect inver-
sions. These precision and sensitivity values could be further 
improved across all SV length categories by combining the 
calls of Pindel with that of Manta | GRIDSS (Table 2).

The combination of GRIDSS | Pindel | GATK increased 
the sensitivity to detect INDELs (2–49 bp) by 3% compared 
to using the single callers (Supplementary Table S1). With 
6%, an even higher difference for the sensitivity to detect 
translocations was observed between the combination of 
Manta | GRIDSS | (Delly & Lumpy) and single callers.

In a next step, different sequencing coverages from 1.5x 
to 65x were simulated and the performance of the best com-
bination of SV callers for each of the SV types was com-
pared to their performance with 25x sequencing coverage 
(Supplementary Fig. S1 ). For deletions, the F1-score, which 
is harmonic mean of the precision and sensitivity, for 65x 
sequencing coverage was ∼ 2% higher than for 25x sequenc-
ing coverage. Only marginal differences were observed 
between the F1-score of 65x or 25x sequencing coverage 
for calling duplications and inversions. Interestingly, the 
F1-score for calling translocations and insertions was with 
2% and 9%, respectively, higher in the scenario with 25x 
than with 65x sequencing coverage. For 12.5x sequenc-
ing coverage, the F1-score was still on an high level with 
values > 80% for each SV type (Supplementary Fig. S2). 
With a further reduced sequencing coverage, the F1-score 
also decreased. Finally, the performance of our pipeline to 
detect SV was evaluated based on 14x and 25x linked-read 
sequencing data. For all SV types and SV length catego-
ries, with the exception of deletions and duplications in SV 
length category D and A, respectively, the F1-score was 
2–7% higher based on Illumina sequencing data than based 
on linked-read sequencing data.

Table 1  Properties of structural 
variant (SV) callers for short-
read sequencing that were 
compared in our study, where 
split reads (SR), paired-end 
reads (PE), read depth (RD), 
and local alignments (LA) 
are the underlying detection 
principles

1 Ye et al. (2009), 2Rausch et al. (2012), 3Layer et al. (2014), 4Chen et al. (2016), 5Cameron et al. (2017), 6
Duitama et al. (2014)

SV caller Detection principle Deletion Insertion Inversion Duplication Translocation
SR PE RD LA ≤500bp >500bp

Pindel1 x x x x x x
Delly2 x x x x x x x
Lumpy3 x x x x x x x
Manta4 x x x x x x x x x
GRIDSS5 x x x x x x x x
NGSEP6 x x x x x
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SV clusters across the 23 parental inbreds 
of the double round robin population

Across the 23 barley inbreds that are the parents of a new 
resource for mapping natural phenotypic variation, the 

double round robin population, we detected 458,671 SV 
clusters using the best combination of SV callers (Table 3). 
These comprised 183,489 deletions, 70,197 insertions, 
93,079 duplications, 6,583 inversions, and 105,323 trans-
locations. Additionally, 6,381,352 INDELs were detected 

Table 2  Sensitivity/precision of 
structural variant (SV) callers 
and combinations of them (for 
details see Material & Methods) 
to detect deletions, insertions, 
duplications, and inversions 
of the SV length categories A 
(50–300 bp), B (0.3–5 kb), C 
(5–50 kb), D (50–250 kb), and 
E (0.25 – 1 Mb)

SV length category
SV caller A B C D E

Deletions

Delly 58.1/97.8 76.2/99.4 72.5/99.3 72.4/100.0 75.0/100.0
Manta 79.7/100.0 81.1/99.8 79.9/99.6 79.7/99.4 81.0/100.0
Lumpy 60.0/78.1 70.5/86.5 66.8/85.6 62.5/79.0 64.3/80.6
GRIDSS 79.0/99.5 80.7/99.9 77.8/99.9 78.1/100.0 77.4/100.0
Pindel 87.4/99.9 68.4/99.7 83.6/99.4 80.2/100.0 67.9/100.0
NGSEP 84.1/87.3 83.1/83.4 83.5/82.2 87.5/89.8 78.6/75.0
Combination 89.0/99.1 86.9/99.4 86.7/99.2 86.5/99.4 86.9/100.0

Insertions
Delly 3.4/100.0
Manta 88.4/99.8 74.1/100.0 72.1/100.0 72.5/100.0 75.0/100.0
GRIDSS 45.5/100.0
Pindel 6.6/93.0
NGSEP 64.1/59.2 26.8/29.6 35.5/40.5 30.5/32.1 26.0/26.5
Combination 88.4/99.8 74.1/100.0 72.1/100.0 72.5/100.0 75.0/100.0

Duplications
Delly 28.2/99.0 75.1/96.8 74.7/95.4 75.3/97.2 71.7/91.7
Manta 39.0/99.5 80.5/99.8 82.7/99.8 83.9/98.7 82.6/97.4
Lumpy 31.5/98.4 67.9/84.8 67.7/82.6 68.3/81.9 65.2/80.0
GRIDSS 39.4/99.8 80.0/100.0 80.0/100.0 83.3/100.0 79.4/100.0
Pindel 75.7/98.1 57.8/99.0 88.1/99.8 83.9/99.4 73.9/100.0
Combination 75.8/98.1 87.3/99.1 90.8/99.3 89.8/98.2 89.1/97.6

Inversions
Delly 49.7/70.4 84.6/99.2 85.5/99.4 82.6/99.4 78.2/98.6
Manta 77.0/99.0 87.0/99.9 87.3/99.9 90.0/100.0 82.8/100.0
Lumpy 66.1/88.5 76.8/96.2 75.3/97.4 77.4/94.8 74.7/98.5
GRIDSS 76.9/99.1 86.9/99.8 85.2/99.9 87.9/100.0 82.8/100.0
Pindel 83.5/99.2 90.7/99.9 90.2/99.9 89.0/100.0 77.0/100.0
NGSEP 0.0/0.0 75.7/87.9 75.3/81.5 80.0/85.4 77.0/88.2
Combination 88.4/98.1 91.5/99.8 90.9/99.8 93.2/100.0 85.1/100.0

Table 3  Summary of detected 
structural variants (SV) and 
small insertions and deletions 
(2–49 bp, INDELs) across 23 
diverse barley inbreds, where 
MAF was the minor allele 
frequency, and TE were SV 
clusters which were annotated 
as transposable elements in the 
Morex reference sequence v3

1Because of missing endpoint information no reciprocal overlap criterion applied

SV type Number of SV calls Number of SV clusters
MAF > 0.05 TE

Deletions 714,867 183,489 78,823 16,846
Insertions 241,522 70,197 29,672 279 (17,718)1
Duplications 195,710 93,079 58,793 6,608
Inversions 14,961 6,583 4,116 92
Translocations 251,956 105,323 61,572 0 (54,258)1
INDELs 29,637,520 6,381,352 4,134,064 21
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across the seven chromosomes. The proportion of SV clus-
ters which were annotated as transposable elements varied 
from 1.4% for inversions to 51.5% for translocations.

We performed a PCR-based validation for detected dele-
tions and insertions (Supplementary Table S2, Supplemen-
tary Fig. S3). Six out of six deletions and five out of five 
insertions up to 0.3 kb could be validated (Supplementary 
Fig. S4). Additionally, we could validate eight out of eleven 
deletions between 0.3 and 460 kb (Supplementary Fig. S5), 
where for the three not validated deletions, the expected 
fragments were not observed in the non-reference parental 
inbred.

The number of SV clusters present per inbred ranged 
from less than 40,000 to more than 80,000 (Fig. 1A). We 
observed no significant (P > 0.05) correlation between the 
sequencing coverage, calculated based on raw, trimmed, 
and mapped reads, of each inbred as well as the number of 
detected SV clusters in the corresponding inbred. A two-
sided t-test resulted in no significant (P > 0.05) associa-
tion between the number of SV clusters of an inbred and 
the spike morphology as well as the landrace versus variety 

status of the inbreds. In contrast, principal component analy-
ses based on the presence/absence matrices of the SV clus-
ters revealed a clustering of inbreds by spike morphology, 
geographical origin, and landrace vs. variety status (Sup-
plementary Fig. S6).

Out of the 458,671 SV clusters, 50.6% (232,071) appeared 
in only one of the 23 inbreds, whereas 19.7% (90,256) were 
detected in at least five inbreds (Fig. 1B, Supplementary 
Fig. S7). Additional analyses revealed a significant although 
weak negative correlation (r = −0.06681, P = 2.07x10−314 ) 
between the length of a SV cluster and its MAF. The average 
MAF of SV clusters with a length of 250 kb to 1 Mb and of 
50–250 kb was 0.08, respectively, while that of SV clusters 
with a length of 50 bp–50 kb was 0.13 (Supplementary Fig. 
S8). SV clusters annotated as transposable elements had a 
shorter average length of 5,853 bp and a higher MAF of 0.16 
compared to SV clusters that were not annotated as transpos-
able elements (10,605 bp, 0.12). Deletions and insertions of 
the SV length category A were the most common detected 
SV clusters with a fraction of 41.7 and 48.4%, respectively 
(Supplementary Table S3). In contrast, for duplications, the 

A

B

Fig. 1  Stacked bar graph of the number of different types of structural variant (SV) clusters detected in the 23 inbreds (A) and SV clusters which 
were detected in at least the given number of the inbreds (B)
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largest fraction were that for SV clusters of the SV length 
category C (55.9%). The average MAF of the individual SV 
types was the highest for insertions with 0.17, followed by 
deletions, inversions, translocations, and duplications with 
values of 0.14, 0.11, 0.10, and 0.10, respectively.

Characterization of the SV clusters

After examining the length of the detected SV clusters and 
their presence in the 23 barley inbreds, we investigated the 
distribution of the SV clusters across the barley genome. 
We observed a significant correlation (r = 0.5653, P < 
0.01) of nucleotide diversity ( ! ) of SV clusters and SNV, 
measured in 100 kb windows along the seven chromosomes 
(Supplementary Fig. S9). The SV clusters were predomi-
nantly present distal of pericentromeric regions. In contrast 
to SNV, the frequency of all SV types, and especially that of 
duplications, increased in centromeric regions (Fig. 2). For 
all centromeres, a significantly (P < 0.01) higher number 
of SV clusters was observed compared to what is expected 
based on a Poisson distribution and, thus, were designated 
as SV hotspots. The proportion of SV clusters in pericentro-
meric regions was with 14.5% considerably lower compared 
to what is expected based on the physical length of these 
regions (25.7%). Only 4.5% of all detected SV hotspots were 
observed in pericentromeric regions.

We also examined if SV clusters provide additional 
genetic information compared to that of closely linked SNV. 
To do so, we determined the extent of LD between each 
SV cluster and SNV located within 1 kb and compared this 
with the extent of LD between the closest SNV to the SV 
cluster and the SNV within 1 kb. Across the different SV 
types, 33.7–74.3% have at least one SNV within 1 kb that 
showed an r2 ≥ 0.6 (Supplementary Table S4). In contrast, 
89.2–89.9% of SNV that are closest to the SV cluster showed 
an r 2 ≥ 0.6 to another SNV within 1 kb.

In the next step, we examined the presence of SV clusters 
relative to the position of genes. The highest proportion of 
SV clusters ( ∼60%) was located in intergenic regions of the 
genome (Fig. 3). The second largest fraction ( ∼30%) of SV 
clusters was present in the 5 kb up- or downstream regions 
of genes, which is considerably higher compared to that of 
INDELs ( ∼17%) and SNV ( ∼16%). Within the group of SV 
clusters that were 5 kb up- or downstream to genes, a par-
ticularly high fraction were inversions. On average across all 
SV types, about 10% of SV clusters were located in introns 
and exons, with inversions being the exception again, show-
ing a considerably higher rate.

The enrichment of SV clusters proximal to genes lead us 
to assess their physical distance relative to the transcription 
start site (TSS) of the closest genes and compare this to 
SNV. The number of SV clusters at the TSS was approxi-
mately 10% lower than 5kb upstream of the TSS (Fig. 4). A 

similar trend was observed for the 5kb downstream regions 
( ∼7%). In comparison, the absolute number of SNV around 
the TSS was more than ten times lower than the number of 
SV clusters. With the exception of a distinct peak at position 
two downstream of the TSS, the number of SNV around 
the TSS followed the same trends as described for the SV 
clusters above.

Association of SV clusters with gene expression

We tested if the SV clusters could be associated with the 
genome-wide gene expression differences of the 23 inbreds. 
As a first step, a principal component analysis of the gene 
expression matrix, which included all genes and inbreds, was 
performed. The loadings of all 23 inbreds on principal com-
ponent (PC) 1 explained 19.7% of the gene expression vari-
ation and were correlated with the presence/absence status 
of all inbreds for each gene-associated SV cluster. The aver-
age absolute correlation coefficient of gene-associated SV 
clusters and the PC1 of gene expression was 0.17 and higher 
than the Q 95 of the coefficient observed for randomized pres-
ence/absence pattern and the PC1 (Supplementary Fig. S10, 
Supplementary Fig. S11). Similar observations were made 
for the association of gene-associated SV clusters with PC2 
and PC3 of 0.17 and 0.19, respectively, for the above-men-
tioned gene expression matrix (Supplementary Fig. S12). 
In addition, we investigated a possible association between 
SV clusters and gene expression on the basis of individual 
genes. For a total of 1,976 out of 21,140 gene-associated SV 
clusters a significant (P < 0.05) association with the gene 
expression of the associated gene was observed (Fig. 5).

Prediction of phenotypic variation from SV clusters

The prediction ability of seven quantitative phenotypic traits 
using SV clusters as well as SNV from a SNP array, genome-
wide gene expression information, SNV and INDELs (SNV 
& INDELs) were examined as predictors through five-fold 
cross-validation. The median prediction ability across all 
traits ranged from 0.509 to 0.648. The SV clusters had the 
highest prediction power, followed by SNV & INDELs, 
SNP array, and gene expression in decreasing order (Fig. 6). 
Compared to these differences, those among the median pre-
diction abilities of the different SV types were small. The 
highest prediction ability was observed for insertions and 
the lowest for inversions. We also evaluated the possibil-
ity to combine SNV and INDELs with gene expression and 
SV cluster information using different weights to increase 
the prediction ability (Supplementary Fig. S13). The mean 
of the optimal weight across the seven traits was highest 
for gene expression (0.41) and lowest for SV clusters (0.23) 
(Supplementary Table S5).
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Discussion

The improvements to sequencing technologies made SV 
detection in large genomes possible (Della Coletta et al. 
2021). Despite these advances, the relative high cost of 
third compared to second generation sequencing makes 
the former less affordable and scalable for many research 

groups. This fact is particularly strong if genotypes have 
to be analyzed. We therefore used computer simulations to 
study the precision and sensitivity of SV detection based 
on different sequencing coverages of short-read sequenc-
ing data in the model cereal barley. We also evaluated 

Fig. 2  Distribution of genomic variants among 23 barley inbreds 
across the seven chromosomes. The outermost circle denotes the 
chromosome number, the physical position, and as gray bar the peri-
centromeric regions (Casale et al. 2022) plus the centromeres (black) 
according to the Morex reference sequence v3. The next inner circles 

report the SV cluster hotspots (black bars), frequencies of single-
nucleotide variants (red), small insertions and deletions (2–49  bp, 
INDELs, purple), deletions (blue), insertions (green), duplications 
(orange), and inversions (yellow) which were detected among the 23 
inbreds (color figure online)
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whether linked-read sequencing offered by BGI (Wang 
et al. 2019) or formerly 10x Genomics (Weisenfeld et al. 
2017) is advantageous for SV detection compared to clas-
sical Illumina sequencing.

Limitations of our study

In our study, the different SV types were always determined 
in comparison against one reference sequence. The number 
of insertions present in this reference inbred determines the 
number of detected deletions and vice versa. However, this 

A

B

C

D

E

F

Fig. 3  The occurrence of deletions (A), insertions (B), duplications (C), inversions (D), small insertions and deletions (2 –0 49 bp, INDELs, E), 
and single-nucleotide variants (SNV) (F) in five genomic regions
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is just a matter of nomenclature. Additionally, the usage of 
short-read sequencing data and only one reference sequence 
could lead to detect false positive SV calls, due to differences 
in the mapping efficiency of the evaluated inbreds due to dif-
ferences in relatedness. In our study, however, the average 
mapping quality for the 23 inbreds was high and varied only 
moderately between 41 and 46. Therefore, the influence of 
the relatedness should be weak. However, this aspect should 
be considered when interpreting the SV data set.

Precision and sensitivity to detect SV in complex 
cereal genomes using short-read sequencing data 
are high

The costs for creating linked-read sequencing libraries is 
considerably higher compared to that of classical Illumina 
libraries. Taking this cost difference into account, a fair com-
parison of precision and sensitivity to detect SV is between 
25x Illumina and 14x linked-reads. However, even when 
directly compared at equal (25x) sequencing coverage, the 
F1-score, which is the harmonic mean of the precision and 
sensitivity, on average across all SV types and SV length 
categories was higher for Illumina compared to linked-
reads (Supplementary Fig. S1). One reason might be that 
the SV callers used in our study do not fully exploit linked-
read data. In our study, linked-read information was only 
used to improve the mapping against the reference genome 
(Marks et al. 2019). More recently, SV callers have been 
described that exploit linked information of linked-read data 

as VALOR2 (Karaoǧlanoǧlu et al. 2020) or LEVIATHAN 
(Morisse et al. 2021). However, the SV callers that were 
available at the time the simulations were performed had a 
very limited spectrum of SV types and SV length categories 
they could detect, e.g., LongRanger wgs (Zheng et al. 2016) 
and NAIBR (Elyanow et al. 2018). In addition, we have 
observed for these SV callers in first pilot simulations con-
siderably lower values for precision and sensitivity to detect 
SV compared to the classical short-read SV callers. There-
fore, only short-read SV callers were evaluated in detail.

One further aspect that we examined was the influence of 
the sequencing coverage on sensitivity and precision of SV 
detection. Only a marginal difference between the F1-scores 
of the best combination of SV callers for a 25x vs. 65x Illu-
mina sequencing coverage was observed (Supplementary 
Fig. S1). In addition, for some SV length categories, the 
F1-score for 25x compared to 65x sequencing coverage was 
actually higher. A possible explanation for this observation 
may be that a higher sequencing coverage can lead to an 
increased number of spuriously aligned reads (Kosugi et al. 
2019). These reads can lead to an increased rate of false 
positive SV detection (Gong et al. 2021). Our result sug-
gests that for homozygous genomes, Illumina short-read 
sequencing coverage of 25x is sufficient to detect SV with 
a high precision and sensitivity. We therefore made use of 
this sequencing coverage not only for further simulations 
but also to re-sequence the 23 barley inbreds of our study.

In addition, we also tested if a lower sequencing cover-
age could be used for SV detection to reduce the cost for 

Fig. 4  Distribution of structural 
variant (SV) clusters (black) 
and single-nucleotide variants 
(SNV, red) among 23 barley 
inbreds relative to the transcrip-
tion start site (TSS) of a gene 
(x-axis). SV clusters and SNV 
were counted for every position 
from 5kb up- and downstream 
around the TSS of all genes 
(y-axes). As third y-axis, the 
proportion difference relative 
to the maximum number of 
SV clusters/SNV is illustrated 
(color figure online)
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sequencing further. We observed lower F-scores for all SV 
types using a sequencing coverage of 12.5x than for 25x 
(Supplementary Fig. S2). However, the F1-score was still > 
80% for all SV types suggesting that even a sequencing cov-
erage of 12.5x would have been sufficient for SV detection 
in barley. When decreasing the sequencing coverage further, 
the precision and sensitivity to detect SV decreased con-
siderably. Therefore, a sequencing coverage of 12.5x could 
be used to detect SV clusters in a small discovery panel as 
it was performed in our study. In a next step, a larger panel 
of hundreds of accessions could be used for genotyping the 
detected SV clusters based on a lower sequencing cover-
age. However, the performance of such two-step approaches 
needs first to be evaluated based on computer simulations.

The SV callers evaluated here were chosen based on for-
mer benchmarking studies in human (Cameron et al. 2019; 
Chaisson et al. 2019; Kosugi et al. 2019) as well as rice 
(Fuentes et al. 2019) and pear (Liu et al. 2020b). Across all 

SV types and SV length categories, we observed the highest 
precision and sensitivity for Manta and GRIDSS followed 
by Pindel with only marginally lower values (Table 2). This 
finding is in accordance with results of Cameron et al. (2019) 
for humans. In comparison with the results of Fuentes et al. 
(2019), we observed a considerably lower sensitivity and 
precision for Lumpy and NGSEP (Table 2). This difference 
in performance of the SV callers in rice and barley might be 
explained by the difference in genome length as well as the 
high proportion of repetitive elements in the barley genome 
(Mascher et al. 2017).

Despite the high sensitivity and precision observed for 
some SV callers, we observed even higher values when using 
them in combination (Table 2). This can be explained by the 
different detection principles such as paired-end reads, split 
reads, read depth, and local assembling that are underlying 
the different SV callers. Our observation indicates that a 
combined use of different short-read SV callers is highly 

A

DC

B

Fig. 5  Association of gene-associated (for details see Material & 
Methods) deletions (A), insertions (B), duplications (C), and inver-
sions (D) with a minor allele frequency > 0.15 with the expression 
of individual genes assessed using the PK mixed linear model. The 
gene-associated structural variant (SV) clusters were classified based 

on their occurrence relative to genes in 5kb up- or downstream, 
introns, and exons. Values of SV clusters with the same coordinates 
are illustrated as points with edges, where each edge represents one 
SV cluster

5 Weisweiler et al. (2022) in Theoretical and Applied Genetics

126



3524 Theoretical and Applied Genetics (2022) 135:3511–3529

1 3

recommended. This approach was then used for SV detec-
tion in the set of 23 spring barley inbreds.

Validation of SV in the barley genome

A PCR-based approach was used to validate a small subset 
of all detected SV. In accordance with earlier studies (Zhang 
et al. 2015; Yang et al. 2019; Guan et al. 2021), we evaluated 
the agreement between the detected SV and PCR results 
(Supplementary Fig. S3) for deletions and insertions up to 
0.3 kb (Supplementary Fig. S4). For eleven out of the eleven 
SV, we observed a perfect correspondence.

Our PCR results further suggested that the SV callers 
were able to detect eight out of eleven deletions between 
0.3 and 460  kb (Supplementary Fig. S5) based on the 
short-read sequencing of the non-reference parental inbred 
Unumli-Arpa. In four of the eleven PCR reactions, however, 
more than one band was observed. This was true three times 
for the non-reference genotype Unumli-Arpa and one time 
for Morex (Supplementary Fig. S5B). In two of the four 
cases, PCR indicated the presence of both SV states in one 
genome. This was true for Morex as well as Unumli-Arpa 

and might be due to the complexity of the barley genome 
which increases the potential for off-target amplification.

In conclusion, for 19 of the 22 tested SV (Supplementary 
Table S2), the SV detected in the non-reference parental 
inbred by the SV callers was also validated by PCR. This 
high validation rate implies in addition to the high precision 
and sensitivity values observed for SV detection in the com-
puter simulations that the SV detected in the experimental 
data of the 23 barley inbreds can be interpreted.

Characteristics of SV clusters in the barley gene pool

Across the 23 spring barley inbreds that have been selected 
out of a world-wide diversity set to maximize phenotypic 
and genotypic diversity (Weisweiler et al. 2019), we have 
identified 458,671 SV clusters (Table 3). This corresponds 
to 1 SV cluster every 9,149 bp and corresponds to what was 
observed by Jayakodi et al. (2020). This number is in agree-
ment with the number of SV clusters detected for cucumber 
(9,788 bp−1 ) (Zhang et al. 2015) or peach (8,621 bp−1 ) (Guan 
et al. 2021). Other studies have revealed a higher number of 
SV clusters than observed in our study. This might be due to 
the considerably higher number of re-sequenced accessions 

Fig. 6  Boxplot of the median prediction abilities across the seven 
traits heading time (HT), leaf angle (LA), plant height (PH), seed 
area (SA), seed length (SL), seed width (SW), thousand grain weight 
(TGW) based on 23 inbreds using different predictors. The points in 
each box represent the medians of 200 five-fold cross-validation runs 

for each trait. The predictors were: features from SNP array, gene 
expression, single nucleotide variants (SNV) and small insertions and 
deletions (2–49 bp, INDELs), as well as structural variant (SV) clus-
ters individually as well as combined together
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in rice (214 bp−1 ) (Fuentes et al. 2019), tomato (3,291 bp−1 ) 
(Alonge et al. 2020), and grapevine (1,260 bp−1 ) (Zhou et al. 
2019).

The highest proportion of SV clusters detected in our 
study were deletions, followed in decreasing order by trans-
locations, duplications, insertions, and inversions (Table 3). 
This is in disagreement with earlier studies where the fre-
quency of duplications was considerably lower compared 
to that of insertions (Zhang et al. 2015; Zhou et al. 2019; 
Guan et al. 2021). Barley’s high proportion of duplications 
compared to other crops may be due to its high extent of 
repetitive elements (Mascher et al. 2017).

In contrast to earlier studies in grapevine and peach (e.g., 
Zhou et al. 2019; Guan et al. 2021) we observed a strong 
non-uniform distribution of SV clusters across the genome. 
Only 14.5% of the SV clusters were located in pericentro-
meric regions, which make up 25.7% of the genome, whereas 
the rest was located distal of the pericentromeric regions 
(Fig. 2). This pattern was even more pronounced for SV 
hotspots, i.e., regions with a significantly (P < 0.05) higher 
amount of SV clusters than expected based on the average 
genome-wide distribution. Almost all SV hotspots (95.5%) 
were located distal of the pericentromeric regions (74.3% of 
the genome) where higher recombination rates are observed. 
Our observation indicates that the majority of SV clusters in 
barley might be caused by mutational mechanisms related to 
DNA recombination-, replication-, and/or repair-associated 
processes and might be only to a lower extent due to the 
activity of transposable elements. This is supported by the 
observation that, with the exception of translocations, only 
1.4 to 25.2% of SV clusters were located in genome regions 
annotated as transposable elements (Table 3).

To complement our genome-wide analysis of barley SV 
clusters, we also examined their occurrence relative to genes 
and their association with gene expression.

Association of SV clusters with transcript abundance

About 60% of the SV clusters were detected in the intergenic 
space (Fig. 3). The remaining SV clusters were gene-asso-
ciated and detected in regions either 5kb up- or downstream 
of genes ( ∼30%) while ∼10% were detected in introns and 
exons (Fig. 3). These values are in the range of those previ-
ously reported for rice ( ∼75%, NA, exons: ∼6%) (Fuentes 
et al. 2019), potato ( ∼37%, ∼37%, ∼26%) (Freire et al. 2021), 
and peach ( ∼52%, ∼27%, ∼21%) (Guan et al. 2021). The 
higher proportion of SV clusters in genic regions in potato 
and peach compared to the cereal genomes might suggest 
that SV clusters are more frequently associated with gene 
expression in clonally than in sexually propagated species. A 
possible explanation for this observation could be the degree 
of heterozygosity in clonal species, which is considerably 

higher compared to that in selfing species such as rice and 
barley. Hence, it is plausible that they better tolerate SV 
clusters close to genes.

Our study was based on 23 barley inbreds which confer a 
limited statistical power to detect SV cluster-gene expression 
associations. However, this leads not to an increased propor-
tion of false positive associations. Therefore, the findings 
are discussed here.

We observed that the average absolute correlation coef-
ficient of gene-associated SV clusters and global gene 
expression measured as loadings on the principal compo-
nents was with 0.17 significantly (P < 0.05) different from 0 
(Supplementary Fig. S12). In addition, 700 gene-associated 
SV clusters were individually associated (P < 0.05) with 
genome-wide gene expression. A further 1,976 alleles of 
gene-associated SV clusters were significantly (P < 0.05) 
associated with the expression of the corresponding 1,594 
genes (Fig. 5). Additional support is given by the obser-
vation that despite SV clusters have a similar distribution 
across the genome as SNV, SV clusters covered more posi-
tions (in bp) of promoter regions than SNV (Fig. 4). These 
figures of significantly gene-associated SV clusters are in 
agreement with earlier figures for tomato (Alonge et al. 
2020) and soybean (Liu et al. 2020a) and highlight the high 
potential of SV clusters to be associated with phenotypic 
traits.

Genomic prediction

Because of the limited number of inbreds included in this 
study, the power to identify causal links between SV clus-
ters and phenotypes is low when considering only the 23 
inbreds. However, instead of examining the association of 
individual SV clusters with phenotypic traits, we evaluated 
their potential to predict seven phenotypic traits in compari-
son with various other molecular features which is expected 
to provide reasonable information also with a limited sample 
size (Weisweiler et al. 2019).

We observed that the ability to predict these seven traits 
was higher for SV clusters compared to the benchmark data 
from a SNP array (Fig. 6). This might be explained by the 
considerably higher number of SV clusters than variants 
included in the SNP array. However, we observed the same 
trend when comparing the prediction ability of SV clusters 
to that of the much more abundant SNV & INDELs. This 
indicates that the SV clusters comprise genetic information 
that is not comprised by SNV & INDELs. Our result is sup-
ported by the observation that when examining the combina-
tion of SNV and INDELs with gene expression and SV clus-
ters to predict phenotypic traits, an increase of the prediction 
ability was observed compared to the ability observed for 
the individual predictors (Supplementary Table S5). Fur-
thermore, our observation of a different prediction ability 
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between SV clusters and SNV & INDELs can be explained 
by a lower extent of LD between SV clusters and linked 
SNV compared to that between SNV and linked SNV (Sup-
plementary Table S4). These findings together illustrate the 
high potential of using SV clusters for the prediction of phe-
notypes in diverse germplasm sets. Such type of applications 
might be used also in commercial plant breeding programs. 
From a cost perspective such approaches will be realistic if 
SV detection is possible from low coverage sequencing. This 
might be possible when comprehensive reference sets of SV 
per species are available as was, for example, generated in 
our study for barley. However, this requires further research.  

Usefulness of SV information for QTL fine mapping 
and cloning

The inbred lines included in our study are the parents of a 
new resource for joint linkage and association mapping in 
barley, the double round robin population (HvDRR, Casale 
et al. 2022). This population consists of 45 biparental seg-
regating populations with a to total of about 4,000 recom-
binant inbred lines and is available from the authors upon 
reasonable request. The detailed characterization of the 
SV pattern of the parental inbreds, presented in this study, 
will therefore be an extremely valuable information for the 
ongoing and future QTL fine mapping and cloning projects 
exploiting one or multiple of the HvDRR sub-populations.

To illustrate this, we have mapped the naked grain pheno-
type in six HvDRR sub-populations (HvDRR03, HvDRR04, 
HvDRR20, HvDRR23, HvDRR44, HvDRR46) to chro-
mosome 7H (7H:525,620,758-525,637,446). Taketa et al. 
(2008) discovered a 17 kb deletion harboring an ethylene 
response factor gene on chromosome 7H that caused naked 
caryopses in barley. In our study, two parental inbreds, 
namely Kharsila and IG128104, are naked barley. For both 
inbreds, the SV calls revealed the same 17 kb deletion on 
chromosome 7H. In contrast, the deletion was absent in the 
21 other parental inbreds. This illustrates the potential of 
exploiting SV information of parental inbreds for gene QTL 
and gene cloning.

Furthermore, four indels which occur in the 5kb up-/
downstream and genic regions of the VRS1 gene were sig-
nificantly (P < 0.01) associated with the rowtype of the 
parental inbreds.
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Table S5: The optimal weights of the three predictors single nucleotide variants (SNV)

and Indel (SNV&Indel), structural variants (SV) and gene expression that resulted

in the highest prediction abilities for the seven traits heading time (HT), leaf angle

(LA), plant height (PH), seed area (SA), seed length (SL), seed width (SW), and

thousand grain weight (TGW).

Traits SNV&INDELs SV clusters Gene expression Prediction ability

HT 0.0 0.1 0.9 0.63

LA 0.0 0.4 0.6 0.79

PH 0.0 0.1 0.9 0.54

SA 0.9 0.0 0.1 0.74

SL 0.6 0.0 0.4 0.70

SW 0.0 1.0 0.0 0.75

TGW 1.0 0.0 0.0 0.86

Mean (median) 0.36 (0) 0.23 (0.1) 0.41 (0.4)
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Fig. S13: Prediction ability for the seven phenotypic traits heading time (HT), leaf angle (LA), plant height

(PH), seed area (SA), seed length (SL), seed width (SW), and thousand grain weight (TGW) from 23 inbreds for

66 combinations of the joined weighted matrices which differ in the weights of three predictors single nucleotide

variants (SNV) and small insertions and deletions (2 - 49bp, INDELs, SNV&INDELs, x-axis), structural variant

(SV) clusters (y-axis), and gene expression. Plotted values represent medians across 200 cross-validation runs.
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