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Abstract

Solid state physics has made striking progress in the recent decades. This led to a
great interest for experimental physicists and theoreticians in research of different ap-
plications and materials.
Within this work, different superlattice structures are presented and the influence of
two-dimensional Dirac fermions on electronic properties is discussed.
We introduce the model of twisted bilayer graphene, which includes the moiré superlat-
tice, flat bands and magic angles. The moiré superlattice causes completely flat bands
for discrete rotation angles between the two graphene layers. These angles are called
magic angles. Graphene is a widely studied material and the group around Y. Cao
actually managed to observe some superlattice effects experimentally in 2019, which
was an important breakthrough. Here we show that the magic angles can be shifted
by tuning the ratio of nearest neighbor coupling and next-nearest neighbor coupling.
Such angles where the bandstructure is flat are sensitive to a variation of the different
coupling strengths.
Next, we discuss the influence of two-dimensional Dirac fermions in a mass super-
lattice. This mass superlattice periodically alternates between positive and negative
values along one direction and can be realized for monolayer graphene. We show that
the low-energy calculation is controlled by the Jackiw-Rebbi mechanism. With help of
the transfer matrix approach, we obtain exact results for a piece-wise constant mass
superlattice. Apart from the resulting anisotropic Dirac cone dispersion, we find dif-
ferent nontrivial boundary modes as well as interface modes near potential steps. We
compute the dispersion relation for existing types of boundary and interface modes.
We show that the interface modes, the Bloch wave functions, the transmission and the
electrical conductance exhibit an explicit dependency on the step position relative to
the superlattice.





Zusammenfassung

Die Festkörperphysik hat in den letzten Jahrzehnten beeindruckende Fortschritte gemacht.
Dies führte zu großem Interesse bei experimentellen Physikern und Theoretikern in der
Forschung an unterschiedlichen Anwendungen und Materialien.
In dieser Arbeit werden verschiedene Übergitter-Strukturen vorgestellt und der Einfluss
zweidimensionaler Dirac-Fermionen auf die elektronischen Eigenschaften diskutiert.
Wir führen das Modell des verdrehten zweilagigen Graphens ein, welches auch das
Moiré-Übergitter, flache Bänder und magische Winkel umfasst. Für diskrete Rota-
tionswinkel zwischen den beiden Graphenschichten führt das Moiré-Übergitter zu voll-
ständig flachen Bändern. Diese Rotationswinkel werden magische Winkel (engl.: magic
angles) genannt. Graphen ist ein viel untersuchtes Material, und die Gruppe um Y. Cao
hat tatsächlich 2019 einige Übergitter-Effekte experimentell beobachten können. Dies
stellte einen wichtigen Durchbruch dar. Hier zeigen wir, dass die magischen Winkel
durch Einstellen des Verhältnisses von nächsten Nachbar- und übernächsten Nach-
barkopplungen verschoben werden können. Die Winkel, bei denen die Bandstruktur
abflacht, reagieren empfindlich auf eine Variation der verschiedenen Kopplungsstärken.
Als nächstes diskutieren wir den Einfluss zweidimensionaler Dirac-Fermionen in einem
Übergitter, dass durch einen effektiven Masseterm definiert wird, der periodisch zwis-
chen positiven und negativen Werten entlang einer konstanten Richtung wechselt und
für monolagiges Graphen realisiert werden kann. Wir zeigen, dass das Regime niedriger
Energien durch den Jackiw-Rebbi-Mechanismus kontrolliert wird. Mit Hilfe des Ansatzes
für Übertragungsmatrizen erhalten wir genaue Ergebnisse für ein stückweise konstante
Massenübergitter. Neben der resultierenden anisotropen, kegelförmigen Dispersion-
srelation finden wir auch verschiedene nichttriviale Moden in der Nähe von Poten-
zialschritten sowie den Ränder des Systems. Wir berechnen die Dispersionsrelation
für die vorhandene Arten von Grenzmoden. Wir zeigen, dass die Moden nahe eines
Potentialschrittes, die Bloch-Wellenfunktionen, die Transmission und die elektrische
Leitfähigkeit eine explizite Abhängigkeit von der Position des Potentialschrittes relativ
zur Überstruktur aufweisen.
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Chapter 1

Introduction

In this work we are going to discuss various electronic properties of two-dimensional
Dirac fermions in superlattice structures. To this end we will mainly focus on two
different superlattices. In the last decades major progress in solid state physics dealing
with superlattice structures was achieved and the topic became more and more inter-
esting for theoreticans and also experimental physicists. Interestingly superlattices can
cause properties that were not present before in the underlying sublattice structures.
These effects do not only restrict to materials like graphene, they also can be seen
generally in layered van der Waals materials [1] and topological insulators [2]. Further-
more, it is well known how to tune band structures in solid state physics with the help
of superlattice potentials.
First, we are going to introduce some important fundamental principles and methods
for later calculations. We start with a short overview of 2D materials. Furthermore,
we explain the basic concepts of the tight binding method as well as the Kronig-
Penney model and the Landauer-Büttiker formula. We also introduce the topic of
Dirac fermions and basic properties of such particles will be declared for the graphene
case. Graphene is a material formed by a single layer of graphite and exhibits excep-
tional properties. In 1947 P.R. Wallace calculated the band structure of graphite for
the first time [3]. In general, there was a huge interest in the two-dimensional material
graphene, especially by theoreticians. However, L.D. Landau and R. Peierls predicted
in the 1930s that a two-dimensional crystal cannot be stable. This insight was based
on thermal fluctuations with a divergent contribution for lower dimensional systems.
Such a displacement caused by the fluctuations give rise to interatomic distances and
forces a change of state [4, 5]. Nevertheless, the group headed by K.S. Novoselov and
A.K. Geim showed in the mid 2000s with their work that they were able to find strictly
two-dimensional free-standing atomic crystals and exfoliated monolayer graphene from
a graphite block [6, 7]. For their work they were awarded with the Noble Prize in
2010 [8]. Their work marks the starting point for a variety of theoretical and experi-
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mental groups dealing with graphene structures. The interest is also motivated by the
low-energy limit of graphene. In the low-energy regime graphene can be described by a
Dirac Hamiltonian. Therefore, the behavior can be linked to two-dimensional massless
Dirac fermions that obey the Dirac equation.
In chapter 3 we consider the single-electron theory for a perfect twisted bilayer graphene
structure with twist angle between both layers and without disorder effects. Here, the
low-energy continuum theory developed by R. Bistritzer and A.H. MacDonald [9] holds
for θ ≲ 10◦. Otherwise, the restriction to a single valley per layer would not be al-
lowed. For more details of continuum calculations see also references [10–14]. Here, we
successively build up the system starting with decoupled layers in section 3.1. The con-
tinuum theory is valid for incommensurate and commensurate bilayers, which allows to
employ Bloch theory in a quasiperiodic system without true crystal periodicity. In sec-
tion 3.2 we introduce tunneling between the two decoupled layers which causes a moiré
superlattice, see section 3.3. Such superlattice effects can be monitored. Flat bands
locked to zero energy can be found near certain so-called magic angles like illustrated
in section 3.6. Furthermore, we show limitations of the model in 3.5 and finally we are
able to show how the nearest neighbor coupling and next-nearest neighbor coupling
influence the magic angles. Especially, we show in section 3.7 that the magic angles
will not be robust for a variation of the coupling ratio.
A big breakthrough in experiments was the work of Y. Cao et al. [15]. They were able
to detect some of the exceptional properties such as the superconductivity of bilayer
graphene systems for the first time.
The structure we will focus on in chapter 4 is a one-dimensional mass superlattice.
A detailed discussion of the electronic spectrum of periodic mass problems was also
done before in references [16] and [17]. In their case, regions of zero and positive mass
alternate. The key point in the study shown in chapter 4 is the more general peri-
odic mass superlattice. Here, we use a one-dimensional mass superlattice M(x), which
periodically alternates between positive and negative mass. For graphene this could
be realised due to a sublattice dependent potential. These potentials can arise due to
substrates like hexagonal boron nitride (hBN).
The model is introduced in section 4.1, where we also review in detail the electronic
spectrum for a single mass kink and for a mass barrier. Like studied before, a single
mass kink binds a Jackiw-Rebbi zero mode [18]. For the case of a periodic mass a
gapless anisotropic Dirac cone exists, see section 4.2. In the presence of boundaries
the periodicity condition allows imaginary and real solutions, leading to evanescent
solutions and two different boundary modes that will be discussed in 4.3. Including a
potential step, which characterizes an np-junction, also gives rise to quite similar two
interface modes, see chapter 4.6. Interestingly these modes only appear in presence of
the mass superlattice M(x) and emerge near the center of the superlattice Brillouin
zone while the other come from the Brillouin zone boundary. In section 4.7 we show
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how to recover the low-energy spectrum of the periodic mass problem by projecting
the Hamiltonian on the subspace of the chiral zero-energy modes localized at isolated
kinks and anti-kinks of the mass potential.





Chapter 2

Background material

In this chapter we introduce some fundamental aspects and principles that will be
necessary to understand the route and calculations in the following chapters. For this
we briefly define 2D materials. The calculations in chapter 3 and 4 are based on this
class of materials. Furthermore we introduce some models and formalisms such as the
Landauer-Büttiker formula used in section 4.6.2.

2.1 2D materials

Two-dimensional materials can be characterized by crystalline structures with a thick-
ness of just one or at most a few layers. They differ enormously from their three-
dimensional counterparts and exhibit unusual properties. Since the discovery of the
characteristics of e.g. graphene, there is a huge interest in these materials and the 2D
family started growing quite fast.
The main feature, that makes 2D materials compelling for application, is the possi-
bility to stack various monolayers onto each other such that one can design a special
material for a specific purpose. In fact, there seems to be no limit for the stacking. As
an illustrative point of view, shown in Figure 2.1, every material can be interpreted as
Lego block, such that a high variety of layered systems can be designed. [19]
There are only two main interacting forces in layered systems. The strong covalent bond
provides the in-plane stability and the van der Waals force, which prohibits mixing of
the layers. These types of heterostructures open up a wide interest for technological
use such as application in transistors, solar systems and a lot more gadgets.
Graphene, hexagonal boron nitride (hBN) as well as molybdenum disulfid (MoS2)
are the most studied structures. In this work, the focus is set on graphene structures
and the description of similar structures. The role of hBN in laboratories is essential.
Due to its band gap it is often used to protect other 2D materials from the environ-
ment [19,20].
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Figure 2.1: Illustration of Lego principle. Figure from [19].

2.2 Tight Binding Method

The tight binding approach is a useful method to deal with electronic structures of
materials in condensed matter physics. One of the key points is to provide a description
of the band structure by calculating the interaction forces between the crystalline layers,
such that it is a convenient method for solids.
The concept is based on the assumption that a crystal lattice is typically composed of
a periodic arrangement of atoms in space. To describe the electronic properties of a
crystal, one can use wave functions ψi(r) where i represents the site of an atom, and r is
the position vector in the crystal. Each wave function ψi(r) characterizes the electronic
state associated with an atom at site i. The total wave function for the entire crystal
can be expressed as a linear combination of these localized wave functions:

Ψ(r) =
∑
i

ciψi(r), (2.1)

where ci is the coefficient determining the contribution of each atomic site to the
overall electronic state. The tight binding Hamiltonian then describes the energy of
the electrons in the crystal. The operator is written as

H =
∑
i

εic
†
ici −

∑
⟨i,j⟩

tij

(
c†icj + c†jci

)
. (2.2)

Here c†i and ci are creation and annihilation operators for an electron at site i and tij is
the parametrization of hopping between sites i and j [21]. This hopping integral gives
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rise to the probability amplitude of an electron to move from site i to site j and εi
represents the on-site energy of an electron at site i.
By diagonalizing the matrix representation of (2.2) one can find information about
energy eigenvalues and eigenvectors. With the help of these quantities one can dis-
cuss energy levels and energy bands to understand conductivity and other material
parameters. [22–24]

2.3 Kronig-Penney model

The Kronig-Penney model is a theoretical framework in solid-state physics providing
valuable insights into the electronic band structure of periodic crystal lattices. Origi-
nally formulated as a simple one-dimensional model [25], it has evolved over the years
to encompass a broad spectrum of potential energy landscapes in periodic crystal lat-
tices. Eldib, Hassan and Mohamed introduced a comprehensive extension of this model.
Their formulation [26] includes complex periodic potentials.

Figure 2.2: Scheme of Kronig-Penney potential.

The basic Kronig-Penney model considers a one-dimensional periodic potential con-
sisting of a series of delta-function barriers. In this simplified model, the crystal lattice
is represented as a string of delta-function potentials of the same spacial extent. The
model can be represented via the Schrödinger equation and then written as(

− ℏ2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x), (2.3)

where the periodic potential V (x), see Figure 2.2, can be described as a sum of delta
functions

V (x) =
∑
n

V0δ(x− nd). (2.4)
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2.4 Dirac fermions

Fermions, in general, are fundamental particles that form the building blocks of matter.
They possess unique characteristics that distinguish them from other particles, such as
bosons.
Key properties of fermions include their half-integer spin, which leads to the Pauli
exclusion principle. Due to this it is impossible for two identical fermions to occupy
the same quantum state simultaneously [27,28].
Dirac fermions, a remarkable class of particles, play an important role in condensed
matter physics. Initially introduced by Paul Dirac in the context of relativistic quan-
tum mechanics [29], these particles exhibit a wide spectrum of relativistic and quantum
behavior. Dirac fermions have gained substantial attention due to their unique prop-
erties and their relevance in various condensed matter systems, including graphene [6],
topological insulators [30], and Weyl semimetals [31]. Based on Paul Diracs work
the Dirac equation describes the behavior of spin-1

2
particles, such as electrons, in a

relativistic framework. It is given by

(iγµ∂µ −m)ψ = 0, (2.5)

where ∂µ is the four-gradient, m is the mass of the particle, and ψ is the Dirac spinor.
γµ are the Dirac matrices which can be defined as

γ0 =

(
1 0

0 1

)
, γk =

(
0 σk

−σk 0

)
(2.6)

with the Pauli matrices σk for k = 1,2,3. For i ̸= j, the Dirac matrices anticommute
with each other {γi, γj} = 0 while γ0 is Hermitian and γk are anti-Hermitian. Dirac
fermions exhibit several distinctive characteristics that distinguish them from other
particles in condensed matter systems:

• Relativistic-like dispersion: The energy-momentum relation of Dirac fermions
near the Fermi level is linear, resembling the characteristics of relativistic particles
[32].

• Massless nature: In some materials, Dirac fermions are effectively massless,
which leads to exceptional electronic transport properties. This property is
evident in graphene, where the Dirac fermions behave as if they have no rest
mass [6, 7].

• Chiral behavior: Dirac fermions exhibit chiral behavior, with their spin and
momentum locked in a specific way. This chirality gives rise to phenomena like
the unconventional quantum Hall effect [6, 7].
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• Topological Protection: In topological insulators, Dirac Fermions are topo-
logically protected, making them robust against certain types of disorder and
defects [30].

For the understanding of the above characteristics we will now consider a monolayer
graphene structure and take a closer look at.

2.5 Graphene

Graphene monolayers are formed by carbon atoms, which are arranged in hexagonal
structures. It turns out that the honeycomb lattice can be described as a combination
of two triangular sublattices with diatomic basis A and B. The lattice vectors are

a1 =
a

2

(
3,
√
3
)
, a2 =

a

2

(
3,−

√
3
)

(2.7)

where a ≈ 1.42Å is the lattice constant.

Figure 2.3: Graphene lattice. Adapted from [32].
left: Honeycomb lattice with color coded diatomic basis A and B, unit vectors ai for
i = 1,2 and nearest neighbor vectors δ1 =

a
2

(
1,
√
3
)
, δ2 =

a
2

(
1,−

√
3
)
, δ3 = −a

2
(1,0).

right: Position of the Dirac points K and K ′ in the reciprocal lattice.

In real space one can define the nearest neighbor vectors of graphene monolayers as

δ1 =
a

2

(
1,
√
3
)
, δ2 =

a

2

(
1,−

√
3
)
, δ3 = −a

2
(1,0) . (2.8)

Moreover, the Wigner-Seitz cell of the reciprocal lattice is spanned by the vectors
Gi = 2π · aj×(ai×aj)

|ai×aj |2 which then explicitly results in

G1 =
2π

3a

(
1,
√
3
)
, G2 =

2π

3a

(
1,−

√
3
)
. (2.9)
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There are some further points which are of interest due to their symmetry like the
center of the Brillouin zone Γ = (0,0)T and the M -point

M =

(
2π

3a
,0

)
. (2.10)

The corners of the Brillouin zone, known as Dirac points or K points, are located at

K =

(
2π

3a
,
2π

3
√
3a

)
, K′ =

(
2π

3a
,− 2π

3
√
3a

)
. (2.11)

Near these Dirac points the conductance and valence band of the π-electrons touch
each other and the electrons can tunnel to their neighbors.
In 1998 R. Saito et. al. introduced in Transport Properties of Carbon Nanotubes [33]
the tight binding model for graphene structures in terms of the Hamiltonian

H = −t
∑
⟨i,j⟩,s

(
a†i,sbs,j + h.c.

)
− t′

∑
⟨⟨i,j⟩⟩,s

(
a†s,ias,j + b†s,ibs,j + h.c.

)
, (2.12)

where the first term defines the nearest neighbor hopping. Next-nearest neighbor cou-
plings are denoted by the second term. a†s,i, b

†
s,i denote creation- and as,i, bs,i annihila-

tion operator for electrons with spin s =↑ and s =↓. The nearest neighbor hopping can
also be seen as a switch of the sublattice while an electron stays on the same sublattice
during the next-nearest neighbor hopping. Interestingly, the energy 2.5 eV ≤ t ≤ 3 eV
for jumping to the nearest neighbor is much higher than t′ with 0.02t ≤ t′ ≤ 0.2t.
Starting with Hamiltonian (2.12) one can find the dispersion relation of graphene by
applying the tight binding approximation. The next-nearest neighbor coupling physi-
cally gives just an energy shift and such one can focus only on the first term of equation
(2.12). The wave vector can be expressed in terms of the reciprocal lattice vectors Gi,
see (2.9):

k = b1G1 + b2G2 =
a

2π
(k1G1 + k2G2) (2.13)

with 0 ≤ bi ≤ 1, ki ∝ 2π
a
bi and bi =

ni

Ni
. Here N is related to the size of the graphene

sheet via Li = Nia and ki · Li = 2πni. The creation operators can be rewritten in the
Fourier representation like:

a†i,s =
1√
N

∑
k

e−k·ra†k,i,s =
1√
N

∑
k1,k2

exp
(
−i a

2π
(k1G1 + k2G2) · r

)
a†k,i,s, (2.14)

b†i,s =
1√
N

∑
k

e−k·rb†k,i,s =
1√
N

∑
k1,k2

exp
(
−i a

2π
(k1G1 + k2G2) · r

)
b†k,i,s. (2.15)
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This follows analogously for the annihilation operators and such the first term of Hamil-
tonian (2.9) can be written:

γ = t
∑
⟨i,j⟩

(
a†ibj + h.c.

)

= t
∑
k

[(
eik·δ1 + eik·δ2 + eik·δ3

)
a†kbk +

(
eik·δ1 + eik·δ2 + eik·δ3

)
b†kak

]
. (2.16)

Here, the spin is kept implicit and the sum runs over every k in the first Brillouin zone.
The vectors are defined as shown in Figure 2.3.
The second term of (2.12) represents the diagonal elements of the Hamiltonian and
introduce the shift, that has been mentioned before. One can call this shift ϵ0 with

ϵ0 = −2t′
3∑

l=1

eik·δl . (2.17)

Finally, the Hamiltonian has the form

H =
∑
k

(
a†k b†k

)(ϵ0 γ

γ ϵ0

)(
ak
bk

)
(2.18)

and due to its diagonalisation one finds the dispersion relation

ϵ(k) = ±t
√

3− F (k)− t′F (k) (2.19)

with

F (k) = 2 cos
(√

3kya
)
+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
. (2.20)

Due to the π-band symmetry the valence band is fully occupied while the conduction
band is empty. This is the reason for describing graphene as semiconductor with
zero energy gap and one can expand (2.19) near the Dirac points for the wave vector
k = K+ q.
Expanding near the Dirac points yields

ϵ(q) ≈ 3t′ ± vF |q| −
(
9

4
t′ ± 3

8
t sin(3θ)

)
|q|2a2 (2.21)

with Fermi velocity

vF =
3

2
ta ≈ 106

m

s
for t ≈ 3 eV (2.22)

and angle θ = arctan
(

qy
qx

)
. For a small region around the Dirac points the expanded

dispersion relation (2.21) is compatible to ultra-relativistic particles of the Dirac equa-
tion. Recalling section 2.4 this justifies the description of electrons near the K points
as massless Dirac fermions

−ivFσ · ∇Ψ = EΨ. (2.23)
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Figure 2.4: Dispersion relation of graphene monolayers. Figure from [32].
left: Energy dispersion (2.19) with honeycomb structure of Brillouin zone. right:

Zoom to the Dirac points.

One can write the Dirac-like Hamiltonian as

HK
D = vF

(
0 kx + iky

kx − iky 0

)
= vFσ · k. (2.24)

Here σ = (σx,σy) is a two-dimensional Pauli vector which ensures that states can be
written as two-component wave functions

Ψ±,K(q) =
1√
2

(
exp(−iθq/2)
± exp(iθq/2)

)
. (2.25)

HK′
D = −vFσ∗ · k holds for the K ′ points with k = K′ + q analogously.

2.6 Landauer-Büttiker formula

The Landauer-Büttiker formula provides a fundamental framework for understanding
electron transport in low-dimensional systems. The work of Rolf Landauer in 1957 [34]
can be seen as the origin of the Landauer-Büttiker formula

G =
2e2

h
T , (2.26)

where G is the electrical conductance, e is the elementary charge, h is Planck’s con-
stant, and T is the transmission probability. Landauer’s paper set a basis for under-
standing the relationship between electrical conductance and the transmission of elec-
trons through a system. His approach treated the transport of electrons as a statistical
process, influenced by the principles of thermodynamics and information theory.
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In the late 1980s, Markus Büttiker expanded Landauer’s work. Büttikers work is a
significant extension of Landauer’s original concept [35] and gives rise to the Landauer-
Büttiker formula. The Landauer-Büttiker formula is particularly relevant in the field of
quantum transport, addressing the behavior of electrons as both particles and waves.
One of the remarkable predictions of the formula is the quantization of conductance in
quantum point contacts and quantum wires. This phenomenon reveals the discrete na-
ture of electron transport and has been experimentally verified in various systems [36].





Chapter 3

Twisted Bilayer Graphene

Twisted bilayer graphene is a two-dimensional material formed by two superimposed
graphene monolayers with a relative twist θ between them. This twist results in a su-
perlattice, the so called moiré pattern, which gives rise to unique electronic properties.
The study of twisted bilayer graphene has gained significant attention in recent years
due to its physical phenomena, e.g., superconductivity and flat bands as discussed
in the following. Twisted bilayer graphene was first introduced by P. R. Wallace in
1947 [3] and was extensively explored. In 2018, Pablo Jarillo-Herrero’s group at MIT
published a paper [15] that revealed some of these properties in experimental results,
such as the existence of superconductivity as a function of the twist angle.

In this chapter we successively build up a system of twisted bilayer graphene and show
that the moiré pattern causes superlattice effects such as the flattening of bands near
the magic angles. Interestingly, we were able to show how the magic angles depend on
the coupling strength κ. Hence, the angle for which the energy bands flatten changes
due to variation of the ratio of the coupling to nearest neighbors and the coupling to
next-nearest neighbors.

3.1 Decoupled layers

Here first the case of decoupled layers is considered. For that one can neglect inter-layer
tunneling in the geometry. Starting from the Bernal stacked bilayer, one rotates the
first honeycomb layer clockwise by θ1 = θ/2 and translates the second layer by a vector
v0, followed by a rotation of the second layer with angle θ2 = −θ/2 around the origin.
The layers are separated by d⊥êz. Then, the lattice translation operators in each layer
with respect to a fixed frame are given by [14]
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aℓ,j ≡ O(θℓ) · aj, a1 = a

(
1
2√
3
2

)
, a2 = a

(
−1

2√
3
2

)
, (3.1)

Rℓ=1,2 = n1aℓ,1 + n2aℓ,2, O(θℓ) =

(
cos θℓ sin θℓ
− sin θℓ cos θℓ

)
, (3.2)

with integers n1,2 and a =
√
3d, see section 2.5. One finds the unit cell area Auc =

|a1 × a2| =
√
3a2/2. The basis is formed by two carbon atoms (α = A,B) located at

the positions Rℓ + vℓ,α with

v1,A = (0,0), v1,B = O(θ1) · (0,d), (3.3)

v2,A = O(θ2) · [(0,− d) + v0], v2,B = O(θ2) · v0. (3.4)

One can recover the standard Bernal stacked case for v0 = 0. The reciprocal lattice
obtained from Fourier transformation is spanned by Gℓ = m1bℓ,1+m2bℓ,2 with integers
m1,2. The reciprocal lattice vectors, bℓ,j with ℓ = 1,2, must fulfill the property bℓ,j ·
aℓ,k = 2πδjk. Thus, the vectors are obtained in the form

bℓ,j = O(θℓ)bj, b1 =
4π√
3a

( √
3
2
1
2

)
, b2 =

4π√
3a

(
−
√
3

2
1
2

)
, (3.5)

where the physical spin-1/2 degree of freedom is kept implicit. However, one can find
coupling of different valleys in different layers via interlayer tunneling for θ > 10◦. This
is why the Bistritzer-MacDonald model focuses on θ < 10◦ [9]. The uncoupled layers
can be then described as massless 2D Dirac fermions. For each layer, one can focus on
just a single K point, corresponding to momentum Kℓ in layer ℓ:

Kℓ = O(θℓ) ·K, with K = (kD,0), and kD ≡ 4π

3a
, (3.6)

which finally results in

Kℓ = kD

(
cos θℓ
− sin θℓ

)
. (3.7)

The shift of the Dirac points for different layers is given by [37]

∆K ≡ K2 −K1 = (0, kθ), kθ ≡ 2kD sin
θ

2
. (3.8)

The crystal momentum in layer ℓ = 1,2 is written as O(θ1,2)K+q, and the low-energy
Dirac Hamiltonian for qa≪ 1 for the respective layer is

Hℓ(q) = vq · σθℓ , σθℓ
a=x,y = e−i(θℓ/2)σzσae

i(θℓ/2)σz . (3.9)

Here the Pauli matrices σx,y,z and the identity σ0 act in sublattice space. The velocity
is approximately v ≈ 106m/s, see (2.22). In the following, matrices acting in layer
space are denoted with τx,y,z for Pauli matrices and τ0 for the identity.
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3.2 Tunneling

In the next step, interlayer tunneling is allowed and the calculation is done via a tight
binding approach. The interlayer tunneling can be described by H21 = H†

12 with [14]

H12 =
∑

R1,α;R2,β

c†1,α(R1)tαβ(R1,R2)c2,β(R2). (3.10)

Here tαβ(R1,R2), defines a tunnel matrix element and the operator cℓ,α=A,B(Rℓ) stands
for an electron at Rℓ+vℓ,α. Nℓ is introduced as the number of unit cells in layer ℓ and
then expanded in intralayer Bloch waves

cℓ,α(Rℓ) =
1√
Nℓ

∑
kℓ∈BZℓ

eikℓ·(Rℓ+vℓ,α)cℓ,α(kℓ). (3.11)

In the two-center approximation, the tunnel coupling depends only on the distance√
d2⊥ + r2 between the atomic orbital centers, where r = |r| with r = (x,y) is their

in-plane distance:

tαβ(R1,R2) =

∫
R2

d2p

(2π)2
eip·(R1+v1,α−R2−v2,β)t⊥(p), t⊥(p) =

∫
R2

d2re−ip·rt̃⊥(r),

(3.12)
here, t̃⊥(r) is independent of the sublattice indices. The two-center approximation im-
plies momentum conservation for inter-layer tunneling processes. One can parametrize
t̃⊥(r) as [38]

t̃⊥(r) =
d2⊥

d2⊥ + r2
Vppσ

(√
r2 + d2⊥

)
+

r2

d2⊥ + r2
Vppπ

(√
r2 + d2⊥

)
. (3.13)

with Slater-Koster potentials given by

Vppσ(ρ) = t⊥e
qσ(1−ρ/d⊥), Vppπ(ρ) = −te qπ(1−ρ/d). (3.14)

Note that Vppσ(d⊥) = t⊥ and Vppπ(d) = −t, with t ≈ 2.97 eV and t⊥ ≈ 0.33 eV follow
from ab initio calculations [14] in agreement with experimental values. Equation (3.14)
thus correctly describes Bernal stacked bilayer graphene as well as the case of monolayer
graphene. In order to determine the parameter qπ in equation (3.14), we note that the
next-nearest neighbor coupling in monolayer graphene is given by t′ ≈ 0.1t [32, 39].
Since t/t′ = Vppπ(d)/Vppπ(

√
3d), we obtain qπ ≈ ln(10)√

3−1
≈ 3.15. Finally, both terms in

equation (3.13) should have the same asymptotic ρ-dependence for ρ→ ∞. Here only
the charge term in the multipole expansion matters due to the fact that the precise
form of the orbital is asymptotically irrelevant. We then find qσ = d⊥

d
qπ ≈ 7.42. Thus

all parameters in equation (3.13) are given by [14,32,39]

d⊥ ≈ 3.35 , d ≈ 1.42 , t ≈ 2.97 eV, t⊥ ≈ 0.33 eV, qπ ≈ 3.15, qσ ≈ 7.42.

(3.15)
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By performing the angular integration in equation (3.12) and using the Bessel function
J0 one obtains t⊥(p) with p = |p| from (3.13):

t⊥(p) = t⊥(p) = 2π

∫ ∞

0

dr rJ0(pr)t̃⊥(r). (3.16)

Inserting equation (3.12) into equation (3.10) and using
∑

Rℓ
eik·Rℓ = Nℓ

∑
Gℓ
δk,Gℓ

as
well as δk,k′ → (2π)2√

N1N2Agr
δ(k− k′), one gets

H12 =
∑
α,β

∑
k1,2∈BZ1,2

c†1,α(k1)t
αβ
⊥ (k1,k2)c2,β(k2) (3.17)

with the momentum-space tunneling amplitudes

tαβ⊥ (k1,k2) =
1

Agr

∑
G1,G2

δk1+G1,k2+G2 e
i(G1·v1,α−G2·v2,β)t⊥(|k1 +G1|). (3.18)

Here one recognizes the generalized Umklapp condition [12] k1 +G1 = k2 +G2.

Figure 3.1: Illustration of important vectors.
left: Moiré Brillouin zone (mBZ) with the vectors Qn, bm

n and the K, K ′ points
shown in equations (3.23), (3.28) and (3.30). right: Real-space moiré unit cell with

the am
n vectors in equation (3.28).

The following calculations assume small twist angles in the region of 0 < θ ≪ π/3,
where kθ ≪ kD. To obtain a low-energy theory, one can then focus on just one pair
of nearby valleys in both layers. For most observables, the other decoupled valleys
at momenta −Kℓ can be taken into account by a factor 2 as usual. This is the limit
considered by Bistritzer and MacDonald [9], where issues of commensurability do not
arise. The aspects of commensurability will be discussed in section 3.4.
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Assuming a smooth function t⊥(p) near the K points for qa ≪ 1 and taking the limit
|q| ≪ kD, one can neglect q in t⊥(p). Note, that also kθa ≪ 1 is fulfilled. One then
can write (3.18) as

tαβ⊥ (q1,q2) ≃
1

Agr

∑
G1,G2

δK1+G1+q1,K2+G2+q2 e
i[G1·v1,α−G2·v2,β ]t⊥(|K1 +G1|). (3.19)

The Bistritzer MacDonald model becomes useful due to the fact that only a few Umk-
lapp processes contribute to (3.19). This is a result of an approximately constant
t̃⊥(r < d⊥) that rapidly decays with increasing r. One finds a rapid exponential decay
of t⊥(p) for pd⊥ > 1. It is sufficient to keep only those G1 in equation (3.19) that sat-
isfy |K1+G1| = kD. This corresponds to hopping between the three equivalent corner
point pairs in the first Brillouin zone [9]. To that end, one restricts the summation in
equation (3.19) to the three reciprocal lattice vectors for each individual layer ℓ = 1,2

Gℓ = {gℓ,n=0,gℓ,n=1,gℓ,n=2} = {0,bℓ,2,−bℓ,1}, (3.20)

|Kℓ + gℓ,n| = kD =
4π

3a
. (3.21)

Those three choices describe scattering between the three equivalent single layer K
points. Since these points are shifted in a different way in both layers, they yield
different momentum exchanges Qn between the layers for θ ̸= 0. For a twist angle of
θ = 0 one recovers the Bernal stacked case with Qn = 0. Therefore, one can write with
the interlayer-coupling w ≡ t⊥(kD)

Agr
≃ 110 meV and the angle ϕ = 2π/3

tαβ⊥ (q1,q2) ≃
∑

n=0,1,2

δq2,q1+QnT
αβ
n , Tαβ

n = wei(g1,n·v1,α−g2,n·v2,β), (3.22)

Qn = K1 + g1,n − (K2 + g2,n) = kθ

(
sin (nϕ)

− cos (nϕ)

)
.

The value of w follows from (3.15) and is in agreement with Bistritzer and MacDonald’s
estimate in reference [9]. Explicitly

Q0 = −∆K = kθ (0,− 1) , Q1 = kθ

(√
3

2
,
1

2

)
, Q2 = −(Q0+Q1) = kθ

(
−
√
3

2
,
1

2

)
.

(3.23)
The sublattice matrix T̂n with (T̂n)

αβ = Tαβ
n is given by

T̂n=0,1,2 = weiαn

(
einϕ 1

e−inϕ einϕ

)
, ϕ =

2π

3
, α0 = 0, α1 = −b2 · v0, α2 = b1 · v0,

(3.24)
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where one can use e2iϕ = e−iϕ. Note that for the case of zero twisted Bernal stacked
layers with a twist angle θ = 0 and shift v0 = 0, one can find a position independent
tunneling matrix [9] ∑

n

Tαβ
n = 3wδαAδβB. (3.25)

Valley mixing by interlayer tunneling can be neglected for moderate large twist angles
by introducing the low-energy fermion operators ψℓ,α(q) ≡ cℓ,α(Kℓ + q) near the Kℓ

point, where one can recall Kℓ = O(θℓ)K and require qa ≪ 1. The Hamiltonian [9]
gives

H =
∑
q

∑
ℓ

ψ†
ℓ(q)

[
vq · σθℓ

]
ψℓ(q) +

∑
q

2∑
n=0

(
ψ†
1(q)T̂nψ2(q+Qn) + H.c.

)
. (3.26)

It is convenient to introduce the dimensionless coupling parameter [9]

α =
w

vkθ
≈ 0.58

θ
. (3.27)

For θ ≪ π/3, one finds ℏvkθ ∼ 0.190 · θ, with the angle in degrees and energy in eV,
see reference [10]. One then arrives at the small-θ estimate given in the second step in
equation (3.27). The parameter α fully controls the spectrum and combines the twist
angle θ and the tunnel coupling strength into a single parameter.

3.3 Moiré superlattice

Using the Hamiltonian (3.26), one can see that repeated hopping processes generate an
emergent moiré honeycomb lattice with nearest neighbor distance |Qn| = kθ and lattice
constant

√
3kθ. The corresponding moiré Brillouin zone is a hexagon with corners

defined by the Qn, see Figure 3.1. The moiré Brillouin zone has two different Dirac
points, Km and K′

m, illustrated in Figure 3.1. The A or B sites of this momentum-space
honeycomb lattice correspond to the Dirac points Kℓ=1,2 of the individual layers. One
can choose the moiré reciprocal lattice vectors as bm

n=1,2 = Qn−Q0. The corresponding
real-space moiré basis vectors am

1,2, holding the relation am
n ·bm

n′ = 2πδnn′ , are then given
by [37]

bm
1 =

√
3kθ

(
1

2
,

√
3

2

)
, bm

2 =
√
3kθ

(
−1

2
,

√
3

2

)
, (3.28)

am
1 =

4π

3kθ

(√
3

2
,
1

2

)
, am

2 =
4π

3kθ

(
−
√
3

2
,
1

2

)
. (3.29)

The two Dirac points in the moiré Brillouin zone are located at

Km =
−2bm

1 + bm
2

3
= −Q1, K′

m = −Km = +Q1, (3.30)
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and the basis sites of the real-space honeycomb moiré lattice can be chosen as

rA ≡ r0 =
am
1 + 2am

2

3
=

1√
3

4π

3kθ

(
−1

2
,

√
3

2

)
, (3.31)

rB =
2am

1 + am
2

3
=

1√
3

4π

3kθ

(
1

2
,

√
3

2

)
. (3.32)

In this notation rA is the BA stacking point in real space, while rB corresponds to
the AB stacking point. At the origin of the hexagonal cell there are the regions of
AA stacking cites. The real-space interference pattern is therefore characterized by the
wavelength Lm(θ) = 4π/3kθ = a/[2 sin(θ/2)].

Introducing the four-component spinors ΨBM(r) = [ψ1A(r),ψ1B(r), ψ2A(r), ψ2B(r)]
T ,

the model (3.26) can be written as [9, 40]

HBM =

∫
d2rΨ†

BM(r)HBM(r)ΨBM(r), HBM(r) =

(
HD,1 T (r)

T †(r) HD,2

)
. (3.33)

Compared to equation (3.26) the center of Bloch momentum is shifted to the Γ-point
of the moiré Brillouin zone located at Γm = 1

2
(K1 +K2 +Q1 −Q2). The Γ-point

characterizes the center of the moiré Brillouin zone. The 2 × 2 structure in equation
(3.33) refers to layer space and uses

HD,ℓ = v(−i∇− (−1)ℓQℓ) · σθℓ (3.34)

with ∇ = (∂x,∂y). The real-space hopping matrices T (r) in sublattice space make the
periodic structure of the inter-layer tunneling term explicit and are given by [9, 37]

T (r) =
∑

n=0,1,2

T̂ne
−i(Qn−Q0)·r = T̂0 + T̂1e

−ibm
1 ·r + T̂2e

−ibm
2 ·r, (3.35)

T̂n=0,1,2 = κwσ0 + w cos(nϕ)σx + w sin(nϕ)σy. (3.36)

Here, the Bistritzer MacDonald model is generalized in the sense of coupling. The
coupling w can differ for AA and AB inter-layer couplings. One can find equation
(3.36) in the explicit form

T̂0 = w (κσ0 + σx) , T̂1 = w

(
κσ0 −

1

2
σx +

√
3

2
σy

)
, T̂2 = w

(
κσ0 −

1

2
σx −

√
3

2
σy

)
.

(3.37)
The tunneling terms in a σ-dependent were introduced by the work of Lian et. al. [41].
Equation (3.35) shows in fact adjusted phases αn such that equation (3.24) is recovered
for κ = 1 with T̂n = ei(αn+nϕ)[σ0 + σx cos(nϕ) + σy sin(nϕ)]. Redefining αn → αn − nϕ

and subsequently putting αn = 0, one arrives at (3.35).
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Figure 3.2: Energy spectrum and moiré bands.
Bandstructure computed from equation (3.38) along a trajectory

K → K ′ → Γ1 → Γ2 → K like [9] with κ = 1. top left: Calculations for a twist of
α = 0.127. top right: Twist angle of α = 0.606. bottom: Same for α = 1.27.
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Figure 3.3: Energy spectrum and moiré bands.
Bandstructure computed from equation (3.38) along a trajectory

K → K ′ → Γ1 → Γ2 → K like [9] with κ = 0. top left: Calculations for a twist of
α = 0.127. top right: Twist angle of α = 0.606. bottom: Same for α = 1.27.
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For the numerical evaluation of the band structure, k is defined within the moiré
Brillouin zone and one can write the momentum as qn1,n2,k ≡ k + n1b

m
1 + n2b

m
2 with

n1,2 ∈ Z such that equation (3.33) with ψℓ(q) → ψℓ,n1,n2,k assumes a form convenient
for band structure calculations

H =
∑

k∈mBZ

∑
n1,n2

(
v
∑
ℓ=1,2

ψ†
ℓ,n1,n2,k

(
[qn1,n2,k − (−1)ℓQℓ] · σθℓ

)
ψℓ,n1,n2,k

+ (3.38)

+
[
ψ†
1,n1,n2,k

(
T̂0ψ2,n1,n2,k + T̂1ψ2,n1+1,n2,k + T̂2ψ2,n1,n2+1,k

)
+H.c.

])

with the matrices T̂n in the form (3.35). The sum over (n1,n2) must be truncated by
selecting the bandwidth, where reference [9] argues that all momenta with |qn1,n2,k| <
w/v should be taken into account. Typical results for the band structure obtained
from equation (3.38) are shown in Figure 3.2 and reproduce the results of reference
[9] quite accurately. Interestingly, Figure 3.3 indicates an accurate sensitivity of the
bandstructure for a change in the parameter κ. The angle for which the bands flatten
depend on κ. This will be studied in section 3.7. Here, the origin in reciprocal space is
at the center of the first moiré Brillouin zone at Γ2 = Γm. Different points of interest
in Figure 3.2 can be expressed by qn1,n2,k ≡ k+ n1b

m
1 + n2b

m
2 :

• K corresponds to Km in Eq. (3.30), corresponding to k = −Q1 and n1 = n2 = 0.

• K ′ is K′
m in Eq. (3.30), i.e., k = Q2 and n1 = n2 = 0.

• Γ1 is at bm
2 in Eq. (3.28), i.e., k = 0 and n1 = 0, n2 = 1.

• Γ2 is at the origin, q = k = 0, i.e., n1 = n2 = 0.

3.4 Commensurability

In this chapter, the case of commensurate twisted bilayer graphene [10] is briefly dis-
cussed. The shift v0 only shifts the moiré interference pattern but does not destroy
it. Also, the energy spectrum is not affected by v0 like discussed before. One can
therefore consider v0 = 0. A commensurate bilayer structure occurs whenever a su-
perlattice translation maps the origin to another A1B2 point. This requirement leads
to a Diophantine equation, which is most conveniently solved via symmetry analy-
sis [10,42,43]. It turns out that all possible commensurate structures with 0 < θ < π/3

can be expressed in terms of pairs of positive co-prime integers (m,r):

cos θ(m,r) = 1− r2/2

3m2 + 3mr + r2
. (3.39)
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The primitive translations {t1,t2} of this Moiré superlattice come in two classes [42].
First for gcd(r,3) = 1, one finds

SE odd : t1 = ma1 + (m+ r)a2, t2 = −(m+ r)a1 + (2m+ r)a2, (3.40)

and the area of the unit cell is

A
(SE odd)
sl = |t1 × t2| = (3m2 + 3mr + r2)Agr = (3m2 + 3mr + r2)

√
3a2

2
. (3.41)

Here the vertices of the real-space Wigner-Seitz cell of the superlattice alternate be-
tween A1B2 sites and points with a hexagon center in both layers [10]. And secondly
in the case of even SE, we have gcd(r,3) = 3, and each corner of the Wigner Seitz cell
corresponds to a hexagon center in one layer and an atom (A or B) site in the other
layer [10]. The primitive superlattice translations are now given by

SE even : t1 = (m+ r/3)a1 + (r/3)a2, t2 = −(r/3)a1 + (m+ r/3)a2, (3.42)

A
(SE even)
sl = (m2 +mr + r2/3)

√
3a2

2
. (3.43)

3.5 Limitations

Next, it will be shown that the angles αn in equation (3.24), which are due to the
relative shift vector v0, can be removed by a gauge transformation, i.e., the spectrum
for infinitely extended samples of twisted bilayer graphene is independent of v0. To
see this, one starts from equation (3.38) and considers a model where the T̂n matrices
are replaced by eiαnT̂n with arbitrary choice of αn. Next, defining the phases φℓ,n1,n2 =

γδℓ,1 + ηn1 + ξn2, with arbitrary parameters (γ,η,ξ), which can be chosen identical
for all k and for both spinor entries. One then performs the gauge transformation
ψℓ,n1,n2,k → e−iφℓ,n1,n2ψℓ,n1,n2,k. Choosing γ = −α0, η = α1 − α0, and ξ = α2 − α0,
the phases αn are gauged away from H in equation (3.38). Even if the spectrum is
unaffected by v0, observables such as the interference pattern can still depend on the
shift.
For α ≫ 1, one starts from the Bernal case, θ = 0, and arrives to leading order at the
low-energy Hamiltonian [44][

H(α≫1)
eff

]
11

=
[
H(α≫1)

eff

]
22

= 0, (3.44)

[
H(α≫1)

eff

]
12

= − w

α2

(
(kx − iky)

2

k2θ
− 1

4k2θ
(∆Kx − i∆Ky)

2

)
, (3.45)

[
H(α≫1)

eff

]
21

= − w

α2

(
(kx + iky)

2

k2θ
− 1

4k2θ
(∆Kx + i∆Ky)

2

)
. (3.46)
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The Hamiltonian is expressed in the basis of states (A1B2). These states decouple from
the (B1A2) states which are strongly hybridized and move to high energy.
For θ = 0, one recovers the Bernal bilayer Hamiltonian. The next step is to analyze the
low-energy limit with q ≪ kθ and α ≪ 1, which excludes the strong coupling regime
θ < 2◦. In this limit, we can truncate the full honeycomb lattice in Hamiltonian (3.38)
down to just the lowest order. An additional simplification arises since for relatively
small twists, the θ-dependence in the Pauli matrices σθℓ causes only subleading effects
[9]. One can use the 8-spinor notation

Ψk = [ϕℓ=1(k), ϕℓ=2,n=0(k+Q0), ϕ2,1(k+Q1), ϕ2,2(k+Q2)]
T , (3.47)

where each spinor entry ϕℓ,n has sublattice structure and k ∈ mBZ, see equation (3.38).
One uses a representation [9] where k is taken with respect to Km. The lowest-order
truncated single-particle Hamiltonian has the matrix form:

Hk =


h(k) T̂0 T̂1 T̂2
T̂ †
0 h(k+Q0) 0 0

T̂ †
1 0 h(k+Q1) 0

T̂ †
2 0 0 h(k+Q2)

 , (3.48)

with h(k) = vk · σ . Assuming k ̸= 0 gives h−1(k) = 1
vk2

k · σ. First one can show
that for k = 0, right at the Dirac point Km, the Hamiltonian (3.48) has a two-fold
degenerate zero-energy ground state, Ψ(0)

j=1,2. Note, that the spinor components in layer
2 follow from the layer 1 spinor according to

ϕ2,n = −h−1(Qn)T̂
†
nϕ1. (3.49)

Next one can write

Qn · σ = ikθ

(
0 e−inϕ

−einϕ 0

)
. (3.50)

This yields together with equation (3.24)

T̂nh
−1(Qn)T̂

†
n ∝ T̂nQn · σT̂ †

n = 0. (3.51)

For zero modes, relation (3.49) then implies T̂nϕ2,n = 0, and equation (3.48) tells us
that ϕ1 has to be one of the two zero modes of the decoupled layer 1, where ϕ2,n then
follows from equation (3.49). In this case, decoupled layers lead to w = 0. The two
zero-mode states Ψ

(0)
j are not normalized yet. Using the relations

T̂nT̂
†
n = 2w2

(
1 e−inϕ

einϕ 1

)
and

∑
n

einϕ = 0 (3.52)

as well as ⟨ϕ1|ϕ1⟩ = ⟨ϕ2,n|ϕ2,n⟩ = 1 and h−2(Qn) = (vkθ)
−2 one finds [9]

⟨Ψ(0)
j |Ψ(0)

j ⟩ = 1 + α2
∑

n=0,1,2

⟨ϕ2,n|T̂nT̂ †
n|ϕ2,n⟩ = 1 + 6α2. (3.53)
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To linearize in terms of k one uses the method of projecting Hk to the low-energy space
spanned by the two zero-mode states. Taking into account the normalization factor,
the effective Hamiltonian for layer 1 has the matrix elements

⟨Ψ(0)
i |Heff(k)|Ψ(0)

j ⟩ = v

1 + 6α2
[ϕ

(i)
1 ]†

(
k · σ +

∑
n

T̂nh
−1(Qn)k · σ h−1(Qn)T̂

†
n

)
ϕ
(j)
1 .

(3.54)
Using equation (3.50) and computing the sum over n gives the explicit expression∑

n=0,1,2

T̂nh
−1(Qn)k · σ h−1(Qn)T̂

†
n

= −α2

w2

∑
n

T̂n

(
0 e−inϕ

−einϕ 0

)(
0 kx − iky

kx + iky 0

)(
0 e−inϕ

−einϕ 0

)
T̂ †
n

= −α2
∑
n

(
−einϕ 1

−e−inϕ einϕ

)(
0 kx − iky

kx + iky 0

)(
e−inϕ einϕ

−1 −e−inϕ

)

= −α2
∑
n

(
kx + iky −(kx − iky)e

inϕ

(kx + iky)e
inϕ −(kx − iky)e

−inϕ

)(
e−inϕ einϕ

−1 −e−inϕ

)

= −3α2k · σ. (3.55)

To lowest order in α and k, interlayer coupling effects are thus encoded by a renormal-
ization of the Fermi velocity in layer 1, Heff(k) = veff(θ)k · σ, with [9, 40]

veff(θ) =
1− 3α2

1 + 6α2
v ≃

[
1− 9α2 +O(α4)

]
v. (3.56)

This perturbative expression predicts that for decreasing θ, the first zero of veff is
reached at α = 1/3 which corresponds to θ ≈ 1.74◦, which is bigger than the correct
non-perturbative first magic angle θ ≈ 1.05◦. This is not surprising since the 8-band
model (3.48) is only accurate for θ ≳ 2◦ [9]. The above argument also does not explain
why the entire band is flat at magic angles. These aspects are the motivation for the
next chapter.

3.6 Flat bands and magic angle

This chapter will focus on the strong coupling regime θ < 2◦ and discuss for this
instance the importance of the work by Tarnopolsky, Kruchkov and Vishwanath [37].
Here, the real space version of the Bistritzer and MacDonald model in equation (3.33)
will be used which manifests the chiral nature of the model for κ = 0. The case
κ < 1, i.e., wAA < wAB is relevant for θ < 2◦ because of the energetically preferred
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Bernal stacking [11, 45]. Recent RG calculations for the interacting case argue that
at low energies, the chiral limit is dynamically approached [46]. For κ = 0, analytical
calculations are possible.
Note that, for κ = 0, it is possible to undo the rotation of the Pauli matrices by a
unitary transformation. In addition, it is convenient to retain the momentum resulting
from the expansion around (Km, K

′
m) for the different layer entries in Ψ, where one

can put K′
m = −Km. Thus, the chiral spinor representation has the form [37]

Ψc,k(r) = e−iτzKm·rei
θ
4
σzτzΨBM,k(r) =


ψ1A

ψ2A

ψ1B

ψ2B

 =

(
ϕA

ϕB

)
, (3.57)

where the spinor entries are reshuffled such that the upper and lower two entries ϕA

and ϕB refer to sublattice block A and B. Bloch boundary conditions are now given
by [47]

Ψc,k(r+ am
n ) = ei(k−iτzKm)·am

n Ψc,k(r). (3.58)

For κ = 0, T (r) in equation (3.35) is invariant under the rotation (3.57) because of

ei
θ
4
σzτz

[
{σx cos(nϕ) + σy sin(nϕ)}

τx − iτy
2

]
e−i θ

4
σzτz = {σx cos(nϕ)+σy sin(nϕ)}

τx − iτy
2

(3.59)
where the bracketed term commutes with σzτz. Putting v = 1, the Hamiltonian (3.33)
thereby takes the chiral form [37]

Hc =

∫
d2r Ψ†

c(r)Hc(r)Ψc(r) with Hc(r) =

(
0 D(r)

D†(r) 0

)
. (3.60)

The 2× 2 structure in Hc refers to sublattice space, where D(r) has a 2× 2 structure
in layer space and reads

D(r) ≡
(

−i∂ wU−ϕ(r)

wU−ϕ(−r) −i∂

)
, D†(r) =

(
−i∂̄ wUϕ(r)

wUϕ(−r) −i∂̄

)
, (3.61)

Uϕ(r) ≡
∑

n=0,1,2

einϕe−iQn·r = U∗
−ϕ(−r), ∂ = ∂x − i∂y, ∂̄ = ∂x + i∂y, ϕ = 2π/3.

With α in equation (3.27) one has w = αkθ. Furthermore, α is the only dimensionless
parameter of the Hamiltonian (3.60) and fully controls all the physics.
The chiral model (3.60) reveals a set of different symmetries. Firstly, the model shows
charge-U(1) valley symmetry. The theories describing states near the valleys Kℓ and
those near −Kℓ decouple and are related by time reversal T . This is also a symmetry
of the full Bistritzer MacDonald model [9]. Here only the +Kℓ valleys are considered.
Secondly, the model exhibits a chiral symmetry {Hc,σzτ0} = 0. This relation requires
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that there are no inter- or intra-layer (AA or BB) couplings. It directly implies a
particle-hole symmetric spectrum where all eigenenergies come in ±E pairs and E = 0

is special. Furthermore, the model (3.60) shows C3 rotation symmetry and My mirror
symmetry which are not crucial in the following. Next is the C2T symmetry. T (r) in
equation (3.35), with κ = 0, satisfies T (r) = σxT

∗(−r)σx. This relation implies

τyD
†(r)τy = −D†(−r), (3.62)

for the linear Dirac spectrum. In the chiral basis, interlayer tunneling from top to
bottom layer is then identical to tunneling from bottom to top layer together with
spatial inversion. Moreover, a intra-valley inversion symmetry (I) [47]

IHc(r)I† = Hc(−r), I = σzτy = I† = I−1, (3.63)

is introduced due to equation (3.62) with κ = 0 and the linear Dirac spectrum. This
symmetry maps Bloch states k → −k within the moiré Brillouin zone without mixing
valleys. The intra-valley inversion symmetry implies that the dispersion of the chiral
model is not only particle-hole symmetric but also inversion symmetric. To show this,
note that for each eigenstate Ψk (with k ∈ mBZ) to energy Ek, there is another
eigenstate from the condition (3.63), Ψ′

k(r) = IΨk(−r), with the same energy:

Hc(r)Ψ
′
k(r) = Hc(r)IΨk(−r) = IHc(−r)Ψk(−r) = EkΨ

′
k(r). (3.64)

Assuming a nondegenerate Bloch momentum, Ψ′
k(r) must be equivalent to Ψ−k(r), i.e.,

Ψ−k(r) = eiζkσzτyΨk(−r). (3.65)

The same state will be reached by applying this transformation twice. This implies
ζ−k = −ζk. For the spinors ϕA,k and ϕB,k in the form of (3.57), which are 2-spinors in
layer space, equation (3.65) implies

ϕA,k(r) = eiζkτyϕA,−k(−r), ϕB,k(r) = −eiζkτyϕB,−k(−r). (3.66)

At inversion symmetric points, kinv = −kinv mod Gm with reciprocal lattice vectors
Gm of the moiré Brillouin zone, ζkinv

must be 0 or π. This inversion eigenvalue,
η = eiζ = ±1, can be extracted at the Γ-point of the moiré Brillouin zone, i.e., for
kinv = 0:

ϕA,k=0(r) = ητyϕA,k=0(−r). (3.67)

For the flat band appearing at the nth magic angle (see below), Ref. [47] found numer-
ically that this inversion parity number alternates, ηn = (−1)n+1.
In fact, there are certain values of α = αn, which define the sequence of magic an-
gles θn according to equation (3.27), see Figure 3.4. This was also studied by [37, 47].
There are two exact zero modes for all k ∈ mBZ, i.e., one finds two truly flat bands,
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Figure 3.4: Periodicity of the magic angles for κ = 0.
The band gap ∆ϵ vanishes for different so called magic angles, which exhibits a

periodicity. Note that here just half of the band gap is plotted.

Ek = 0. The chiral model yields a periodicity αn+1 ≈ αn + 3/2 for the magic angles,
with αn = α(θn).

Flat band states are localized either on sublattice A or B and follow as solutions of [37]

D(r)ϕB,k(r) = 0, D†(r)ϕA,k(r) = 0. (3.68)

One of these equations has to be solved, the other can be constructed from the so-
lution. For instance, suppose one had solved the first equation in (3.68). From the
knowledge of ϕB,k(r), the second solution, ϕA,k(r), follows by comparingD†(r)ϕA,k(r) =[
D(−r)ϕ∗

A,k(r)
]∗

= 0 and D(r)ϕB,k(r) = 0 in the form

ϕA,k(r) = ϕ∗
B,k(−r), (3.69)

possibly up to a phase factor. Focussing on ϕA,k,ℓ(r) with ℓ = 1,2 with equation (3.68)
yields

−i∂̄ϕA,k,1(r) + wUϕ(r)ϕA,k,2(r) = 0, − i∂̄ϕB,k,2(r) + wUϕ(−r)ϕA,k,1(r) = 0. (3.70)

A zero mode for arbitrary α, which is pinned to zero energy by chiral symmetry [37],
can be found right at the K point of the moiré Brillouin zone. To see this, note that
at the corner points of the real-space cell, r = ±r0 in equation (3.31), see Figure 3.1,
one finds

Qn · r0 = (n− 1)ϕ −→ Uϕ(r0) = 3eiϕ, Uϕ(−r0) = e−iϕ
∑
n

e−inϕ = 0. (3.71)
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The second equation in (3.70) then implies ϕA,Km,2(r0) = 0 for arbitrary α since one
can effectively put ∂̄ → 0 at the Dirac point, i.e.,

ϕA,Km,2(±r0) = ϕB,Km,2(±r0) = 0. (3.72)

One can then define a generalized Fermi velocity [37]

vF (α) =
∑
ℓ

ϕA,Km,ℓ(r)ϕA,Km,ℓ(−r), (3.73)

which is independent of r. Indeed, then ∂̄vF (α) = 0 by using equation (3.70), i.e., vF (α)
is a holomorphic function of z. Since this function is also cell-periodic, it therefore must
be constant. By setting r = r0 in the generalized form of the Fermi velocity (3.73),
the condition vF (α) = 0 implies that the ℓ = 1 component of either ϕA,Km(r0) or
ϕA,Km(−r0) must vanish as well. This condition determines the sequence of magic
angles.

Figure 3.5: Geometry of stacking regions. Figure from [48].
Moiré superlattice with color coded stacking regions.

The next step is to generate magic-angle solutions for α = αn at arbitrary k, i.e., states
ϕA,k(r), from the above solution at k = Km by using the fact that

D†(r)[Fk(z)ϕA,Km(r)] = 0 (3.74)

automatically holds for any holomorphic function F (z) with z = x + iy. Note that
D†(r) only contains the anti-holomorphic derivative ∂̄. Functions thus constructed
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might not be normalizable since a non-constant F (z) cannot be bounded. The only
exception arises if both components of ϕA,Km(r) = 0 vanish at some point in space,
i.e., at r0 or −r0. This then corresponds to the magic angles. By using an analogy to
fractional quantum Hall states on a torus, the function Fk(z) is [37, 47]

Fk(z) = ez
∗
k(z−

zk
2 )σ(z − zk)

σ(z − z0)
, z = x+ iy, z0 = x0 + iy0, (3.75)

zk = xk + iyk, (rk)
a=x,y = ra0 + ϵab(k−Km)b, (3.76)

with the modified Weierstrass sigma function σ(z).

3.7 Robustness of magic angle

In this section the influence of different coupling strengths to the bandstructure and
the magic angles will be discussed. This was briefly done for a few selected parameters
in [37]. Following (3.36) and (3.37) one can distinguish two different couplings. The
ratio of these couplings is given by the parameter κ. The coupling in AB/BA stacked or
Bernal stacked regions is governed by w0 = w and w1 = κw represents the coupling in
AA stacked regions. For illustration of stacking regions see Figure 3.5 or reference [49].
When comparing Figures 3.2 and 3.3 it becomes clear that the variation of κ and thus
the change in the ratio of w0 and w1 have an obvious influence on the band structure.
Therefore, a change of the respective magic angles is also noticeable. In section 3.6
κ was set to zero and the magic angles α1 ≈ 0.6, α2 ≈ 2.2 and α3 ≈ 3.8 had been
revealed. For κ = 1 the magic angles are shifted towards lower values of α, see Figure
3.6. In this case, the magic angle for the third band is shifted to α3 ≈ 1.8 and the
magic angle of the second band to α2 ≈ 1.1. Interestingly, for the first magic angles
there seems to be no influence and one can still find α ≈ 0.6.

The robustness of the first magic angle is also confirmed for the case κ = 0.5. Figure
3.6 bottom also shows that the first magic angle can be just slightly influenced by
variation of the coupling ratio. However, the second and third magic angles are shifted
like illustrated in Figure 3.6 bottom.
Finally, Figure 3.7 shows the full evolution of the magic angle α for the whole spectrum
of κ. This also confirms that the first angle is only marginally influenced. Contrary
to this, the second and third magic angles exhibit a remarkable dependency on κ.
Interestingly, the smallest α is needed for κ = 1 for both bands, corresponding to equal
contribution of the couplings w0 = w1, while the bands flatten for larger α assuming
w0 = w and w1 = 0.
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Figure 3.6: Periodicity of the magic angles.
top: The flattening of band gap ∆ϵ of the corresponding bands. The first, second and
third band are color coded with red, green and blue, respectively. bottom: Band gap

∆ϵ calculated for κ = 0, 0.5, 1 corresponding to solid, dashed and dotted lines,
respectively.
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Figure 3.7: Magic angles in dependence of κ.
Magic angles for the first, second and third band using red, green and blue,

respectively. These correspond to the first three magic angles in twisted bilayer
graphene.
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3.8 Summary

In this chapter, the influence of the moiré superlattice to electronic properties of twisted
bilayer graphene was discussed. The base for that was to formulate a Dirac continuum
theory like R. Bistritzer and A.H. MacDonald [9]. This continuum theory is valid for
incommensurate and commensurate bilayers. This advance allows to employ Bloch
theory in a quasiperiodic system without true crystal periodicity. The emergent peri-
odicity is linked to the moiré interference pattern present even in the incommensurate
case.
For values of θ ∼ 2− 10◦ the main effect is a downwards renormalization of the Fermi
velocity since van Hove singularities move towards the Dirac point. In the regime
0 < θ ≲ 2◦ the layers are strongly coupled also at low-energy scales. In that case,
interactions can become important since near certain so-called magic angles, one finds
flat bands locked to zero energy. Here, the magic angles in general depend on the dif-
ferent couplings between the individual graphene layers. However, the first magic angle
seems to be nearly robust against variation of two different coupling strengths. The
magic angles of higher order sensitively shift for different values of κ, which corresponds
to the ratio of the couplings w0 and w1.





Chapter 4

Mass superlattice

In the following chapter we study two-dimensional Dirac fermions in a mass superlattice
M(x), where M(x) alternates between positive and negative mass and is assumed to
be homogeneous along y-direction. The chapter is based on the work of De Martino,
Dell’Anna, Handt, Miserocchi and Egger [50]. We show that the model in our case will
be exactly solvable and nevertheless won´t loose fundamental physical properties.
In fact, we can find the typical highly anisotropic Dirac dispersion, see section 4.4 and
4.7. Furthermore, section 4.4 provides an analytical result for the renormalized velocity
and section 4.3 reveals different types of boundary modes.

4.1 Model

In the following part, noninteracting electrons will be described by a two-dimensional
Dirac Hamiltonian with a single Dirac cone. In particular, one can consider the two-
dimensional Dirac Hamiltonian for single valley graphene, with periodic, piece-wise
constant mass term, alternating between +M to −M in a period d = 2l in the x-
direction and with translational invariance in the y-direction. Furthermore, the model
is also valid for the description of topological insulator physics. Assuming ℏ = 1 and
setting the Fermi velocity vF = 1 the Hamiltonian reads

H = −iσx∂x − iσy∂y +M(x)σz + V (x)1. (4.1)

This model is valid for an infinitely extended system in the xy-plane with the elec-
trostatic potential V (x) and the mass term M(x), which are homogeneous along the
y-direction. Furthermore, the momentum ky is conserved. Here, the mass term can be
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understood as a spatially periodic term which alternates between positive and negative
values

M(x) =


+M x ∈ [2nl,(2n+ 1)l],

−M x ∈ [(2n+ 1)l,(2n+ 2)l],

n ∈ Z (4.2)

Writing the wavefunction of equation (4.1) as

Ψ(x,y) = eikyy ψ(x), ψ(x) =

(
u(x)

v(x)

)
, (4.3)

the 1D Dirac equation for Ψ(x) reads(
M(x) + V (x) −i(∂x + ky)

−i(∂x − ky) −M(x) + V (x)

)(
u

v

)
= E

(
u

v

)
. (4.4)

Firstly one assumes that the potential is uniform, V (x) = V. The uniform scalar
potential can be restored by a simple shift E → E − V . Solving for a constant
M(x) =M one gets(

u

v

)
= a

(
1

−iκ+iky
M+E

)
exp (κx) + b

(
1

−iκ+iky
M+E

)
exp (−κx) , (4.5)

where a and b are complex coefficients. Notice that if E2 < M2, κ is real for all ky and
it never vanishes. If E2 > M2 and k2y < E2 −M2, κ becomes imaginary. In this case,
one can define κ = ik to get the general expression

κ =


√
M2 + k2y − E2, E2 < k2y +M2,

ik ≡ i
√
E2 −M2 − k2y, E2 > k2y +M2.

(4.6)

The unnormalized wave function can be written as

ψ(x) = WM(x)

(
a

b

)
(4.7)

with

WM(x) =

(
eκx e−κx

i ky−κ

M+E
eκx i ky+κ

M+E
e−κx

)
, W−1

M (x) =
1

2κ

(
(ky + κ)e−κx i(M + E)e−κx

−(ky − κ)eκx −i(M + E)eκx

)
.

(4.8)
This reveals spatially localized eigenstates on the length scale κ−1 near boundaries for
low energies. For E2 > k2y +M

2, κ is purely imaginary. Therefore one finds plane-wave
solutions propagating along the x-direction with wave number kx = k. Note that the
determinant of WM(x) in equation (4.8) is independent of x

detWM(x) =
2iκ

M + E
. (4.9)
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It is interesting to observe that

W †
M(x)σxWM(x) =


− 2κ

E+M
σy, E2 < k2y +M2,

2k
E+M

σz, E2 > k2y +M2.

(4.10)

This implies that the x-component of the current density is uniform:

jx = ψ†σxψ =


4κIm(b∗a)

M+E
, E2 < k2y +M2,

2k(|a|2−|b|2)
M+E

, E2 > k2y +M2.

(4.11)

In the second illustration the mass term is assumed to be a single kink

M(x) =M sgn(x) with M > 0. (4.12)

The wave function then writes

ψ(x) =


W−M(x)

(
aL
0

)
for x < 0,

WM(x)

(
0

bR

)
for x > 0,

(4.13)

where κ is real and positive, such that the low-energy case of equation (4.6) is required.
Also the normalizability requirement is fulfilled by setting bL = 0 and aR = 0. The
continuity condition at x = 0 gives(

0

bR

)
= ΩS

(
aL
0

)
, (4.14)

with

ΩS = W−1
M (0)W−M(0) =

1

κ(E −M)

(
Eκ− kyM −(κ+ ky)M

(−κ+ ky)M Eκ+ kyM

)
. (4.15)

This leads to

0 = (Eκ− kyM)aL, (4.16)

bR =
(−κ+ ky)M

κ(E −M)
aL. (4.17)

Equation (4.16) determines the dispersion relation E(ky) for the propagating zero-mode
localized at the kink:

E
√
M2 + k2y − E2 − kyM = 0, (4.18)
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whose solution is E = ky. This describes a 1D chiral mode propagating along the
positive y-direction with velocity vF . For the trivial case, ky = 0, it is the usual zero-
energy solution. There is a second solution, E = sign(ky)M , but this is not acceptable.
Equation (4.17) then implies

bR = aL. (4.19)

Finally, the normalization condition fixes aL. In the case of an anti-kink, M(x) =

−Msign(x), one just needs to replace M with −M and one finds the dispersion E =

−ky descibing a mode propagating in opposite direction.
The next step is to look at a single mass barrier of width l:

M(x) =


M for |x| < l/2,

−M for |x| > l/2.

(4.20)

Here again the focus is on localized solutions and κ is assumed to be real and positive,
i.e., E2 < M2 + k2y . The wave function can be written as

ψ(x) =



W−M(x)

(
aL
0

)
for x < −ℓ/2,

WM(x)

(
a

b

)
for |x| < ℓ/2,

W−M(x)

(
0

bR

)
for x > ℓ/2,

(4.21)

where the requirement of normalizability is already taken into account. Imposing the
continuity at x = ±l/2 one again finds analogously to (4.22)(

0

bR

)
= ΩB

(
aL
0

)
, (4.22)

with
ΩB = W−1

−M(ℓ/2)WM(ℓ/2)W−1
M (−ℓ/2)W−M(−ℓ/2), (4.23)

where

[ΩB]11 =
1

κ2(E2 −M2)
(E2 −M2)[k2y − E2 +M2e−2κl], (4.24)

[ΩB]12 =
1

κ2(E2 −M2)
− 2M(κ+ ky)(Eκ+ kyM) sinh(κl), (4.25)

[ΩB]21 =
1

κ2(E2 −M2)
2M(κ− ky)(Eκ− kyM) sinh(κl), (4.26)

[ΩB]22 =
1

κ2(E2 −M2)
(E2 −M2)[k2y − E2 +M2e2lκ]. (4.27)
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Therefore, the dispersion relation of the localized modes is obtained by solving the
equation

k2y − E2 +M2 · exp (−2κl) = 0. (4.28)

For l → ∞, one can neglect the exponential term and obtain

E = ±ky, (4.29)

which are the dispersion relations of the two counterpropagating chiral modes localized
at the edges of the barrier when they are very far apart. For large but finite l, the
two modes hybridize, the dispersions acquire an exponentially small correction, and
the crossing at ky = 0 is replaced by an avoided crossing. To see this explicitly, one
first focuses on ky = 0 and finds the equation

E2 =M2 · exp
(
−2l

√
M2 − E2

)
, (4.30)

which, in the limit of large l, has the two solutions

E ≈ ±M · exp (−lM) . (4.31)

For small energies E and |ky|,|E| ≪M one finds an exponentially small gap

E±(ky) ≈ ±
√
k2y +M2e−2Mℓ. (4.32)

In this limit, the group velocities are given by

vy ≈ ± ky√
k2y +M2e−2Mℓ

. (4.33)

4.2 Periodic structure

In this section, the periodic case for the mass term is shown. Two main requirements
are necessary here. Firstly, the regions of positive and negative mass are assumed to be
of the same spatial extent l ≡ d/2. Secondly, these regions have to be from the same
absolute value |M(x)| = M . Overall this implies the symmetry M(x + ℓ) = −M(x).
By use of the transfer matrix technique one arrives at the quantization condition. Here,
the piece-wise constant periodic mass term (4.2) is rewritten in the form

M(x) =

 +M, nd ≤ x < (n+ 1
2
)d,

−M, (n+ 1
2
)d ≤ x < (n+ 1)d,

(4.34)

where d labels the lattice period and j the unit cell. Since one focuses on one unit cell,
it is convenient to restrict calculations to the first unit cell n = 0 for simpler notation.
The mass profile (4.34) is illustrated in Figure 4.1.
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Figure 4.1: Periodic mass profile M(x) of equation (4.34). Adapted from [50].

For n = 0 and with equation (4.7) the wave function takes the form

ψ(x) =


WM(x)

(
a1
b1

)
for 0 < x < ℓ,

W−M(x)

(
a2
b2

)
for ℓ < x < d.

(4.35)

If one imposes the continuity condition at x = l this relates the coefficients (a2,b2) and
(a1,b1)

WM(l)

(
a1
b1

)
= W−M(l)

(
a2
b2

)
, (4.36)

from which one finds(
a2
b2

)
= W−1

−M(ℓ)WM(ℓ)

(
a1
b1

)

=
1

κ(E +M)

(
Eκ+Mky e−2κl(κ+ ky)M

e2κl(κ− ky)M Eκ−Mky

)(
a1
b1

)
. (4.37)

The transfer matrix across the unit cell 0 < x < d is then defined by the connection of
Ψ(0) and Ψ(d)

ψ(d) = Tψ(0), (4.38)

where

T = W−M(d)W−1
−M(ℓ)WM(ℓ)W−1

M (0). (4.39)
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The transfer matrix elements are explicitly given by

T11 =
M2 + (k2y − E2) cosh(κd)

κ2
+
ME[cosh(κd)− 1] + kyκ sinh(κd)

κ2
,

T12 = T21 = i
Eκ sinh(κd) +Mky(cosh(κd)− 1)

κ2
, (4.40)

T22 =
M2 + (k2y − E2) cosh(κd)

κ2
− ME[cosh(κd)− 1] + kyκ sinh(κd)

κ2
.

There are two important properties of the matrix (4.39). One can identify the sym-
metric structure in (4.40). Furthermore, one finds det T = 1 and the eigenvalues of T
are reciprocal to each other and they can be parametrized as λ± = exp (±iKd).
In this sense it is useful to work with the matrix Ω defined by

T = WM(0)ΩW−1
M (0). (4.41)

Replacing

ψ(0) = WM(0)

(
a1
b1

)
and ψ(d) = W−M(d)

(
a2
b2

)
(4.42)

and using relation (4.37) one writes

Ω = W−1
M (0)W−M(d)W−1

−M(l)WM(l). (4.43)

The matrix elements are defined by

Ω11 =
M2 + (k2y − E2)eκd

κ2
,

Ω12 =
M(1− e−κd)(κ+ ky)(Eκ−Mky)

κ2(E2 −M2)
,

Ω21 =
M(1− e−κd)(κ− ky)(Eκ+Mky)

κ2(E2 −M2)
,

Ω22 =
M2 + (k2y − E2)e−κd

κ2
.

The matrix (4.43) provides quite similar properties like the transfer matrix above. Ω

is real when assuming real κ. Again it is det Ω = 1. Therefore, the eigenvalues of Ω
are reciprocal to each other. Since Tr Ω = Tr T , the eigenvalues of Ω are the same as
the eigenvalues of T , λ± = exp (±iKd). Moreover, Ω12 vanishes for E = ky and Ω21

vanishes for E = −ky which results in

λ (E = ky) =

(
1 0

2E(exp(Md)−1)
E+M

1

)
, λ (E = −ky) =

(
1 2E(exp(−Md)−1)

E+M

0 1

)
. (4.44)
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At this point, different boundary conditions can be imposed. In this section, the focus
is on periodic solutions, hence one requires that ψ satisfies the Bloch condition

ψ(x+ d) = eiKd ψ(x), (4.45)

where the quasi momentum K runs in the 1D Brillouin zone −π/d < K ≤ π/d. Other
solutions can be obtained by imposing the condition

ψ(x+ d) = e∓Kd ψ(x) (4.46)

or the condition
ψ(x+ d) = −e±Kd ψ(x), (4.47)

with K > 0. These describe evanescent waves and exist in systems with boundaries or
non-constant potential. In general, one can write equation (4.45) for general complex
K. Using (4.51) below and the fact that Tr Ω is real, one can show that there are three
possible types of solutions. The first type of solution given by real K corresponds
to Bloch waves and as second possibility, K can be complex which corresponds to
evanescent state solutions, with K = ±iK or K = ∓iK ± π/d. Evanescent waves
following from (4.46) are called type I states and type II states derive from (4.47).
Setting x = 0 and using the transfer matrix, the condition (4.45) can be rewritten as

WM(0)ΩW−1
M (0)ψ(0) = eiKdψ(0), (4.48)

which is equivalent to (
Ω− eiKd

1
)(a1

b1

)
=

(
0

0

)
. (4.49)

Then a non-trivial solution exists provided

det
(
Ω− eiKd

1
)
= 0. (4.50)

The compatibility condition (4.50) is equivalent to

Tr Ω = 2 cos(Kd), (4.51)

which gives the spectral equation

cos(Kd) =
M2 +

(
k2y − E2

)
cosh

(
d
√
M2 + k2y − E2

)
M2 + k2y − E2

. (4.52)

Here, it will be useful to define a dimensionless parameter

ξ = (k2y − E2)d2 (4.53)

with Tr Ω(ξ) = 2f(ξ), such that one can write

f(ξ) = cos(Kd) (4.54)
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with equation (4.51) and finally (4.52) gives

f(ξ) =
(Md)2 + ξ cosh

(√
(Md)2 + ξ

)
(Md)2 + ξ

. (4.55)

For ky = 0, equation (4.55) coincides with the result obtained in [26] for the generalized
Kronig-Penney model, as introduced in chapter 2.3, for a diatomic crystal

H = −∂2x +
2∑

i=1

νi
∑
n

δ (x−Ri − 2nl) (4.56)

and one finds a spectral equation with B =
√
M2 − E2 following [26]

cos (2lK) = cosh (2Bl)− 2M2

B2
sinh2 (Bl) . (4.57)

Figure 4.2: The function f (ξ) of equation (4.55). Adapted from [50].
f (ξ) is shown for various values of Md. Md = 0.7 corresponds to the red curve, while
Md = 2 is shown by the green one. Md = 3.5 and Md = 5 then are illustrated in

brown and blue, respectively.

Note that in the (E, ky) region where the absolute value of the left-hand side of equation
(4.52) exceeds one, there is no real solution for K. Due to this Bloch states are limited
to −1 ≤ f(ξ) ≤ 1. Defining a critical point ξc < 0 via f(ξc) = −1 implies ξc ≤ ξ ≤ 0 for
the above region. In the regions where no Bloch states exist, equation (4.54) is solved by
complex valued quasi momenta. One can instead construct evanescent wave functions
with imaginary K = iK, or complex K = iK+ π with K > 0, which won’t be periodic
along x, but still yield solutions of the Dirac equation (4.4). They satisfy the boundary
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conditions in the equations (4.46) and (4.47). For ξ > 0, type I evanescent states can
be obtained. Type II evanescent states occur for ξ < ξc. In the low-energy regime
|E| < M type II solutions only exist for Md > 2, because in contrast to the Md < 2

case here the Fermi surface evolves from a closed curve into a pair of disconnected arcs.
For an illustration of the critical point and behavior of equation (4.54) see Figure 4.2.

4.3 Boundary modes

In this part, a brief description of evanescent solutions is given. These evanescent
states can arise in the presence of boundaries or nonuniform potentials and follow with
a complex valued quasi-momentum K. In this section again the low-energy regime
|E| < M is considered with real-valued κ in equation (4.6) and (Md)2+ ξ > 0 referring
equation (4.55) is valid.
For given energy E and momentum ky, the solution of the spectral equation (4.52)
gives

Kd = ± arccos f(ξ). (4.58)

This is plotted in Figure 4.3 as a function of ky for two different values of E and briefly
discussed in the following.

For small but non-zero and positive ξ one finds

Kd ≃ sinh(Md/2)

Md/2

√
ξ, (4.59)

which is interesting for later purpose and fits to the calculations for small energies, see
(4.86) and (4.87). Evanescent states arise in the regions corresponding to |f (ξ) | > 1.
From equation (4.52) one sees that if f (ξ) exceeds 1, K must become imaginary,
K = iK with always positive K. Then the corresponding wave function of type I states
will take the form (4.35) with

b1(K = ±iK)

a1
=
e∓Kd − Ω11

Ω12

(4.60)

by using the relation (4.49) and the matrix elements of (4.43). For K = iK the wave
function decays, for K = −iK there is a rising wave function. Interestingly, since a1
and b1 are real for real κ, the x-component of the current density vanishes.
If f (ξ) decreases below −1, then K must become complex, K = iK + π/d. The
corresponding wave function will take the form (4.35) with

b1 (K = ∓iK ± π/d)

a1
=

−e±Kd − Ω11

Ω12

. (4.61)

As illustrated in the Figure 4.3 there exists a region for small |ky| and Md > 2 where
a pair of type-II states with K = ∓iK ± π/d is present.
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Figure 4.3: Quasi-momentum (4.58). Figure from [50].
K vs ky for Md = 4 and the + sign in equation (4.58). The red curves illustrate the
imaginary part of K, while the blue shows the real part. solid lines: For |ky| > |E|

the real part is zero and K becomes imaginary. Here Ed = 0.5. This is when
Tr Ω(E, ky) > 2. dashed lines: For Ed = 1.4, the real part is zero for |ky| > |E|.

There is a range of ky around zero where K becomes complex. This is when
Tr Ω(E, ky) < −2.
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Equation (4.58) is plotted in Figure 4.3 as a function of ky for two different values of
E. From the figure it is obvious that, if one uses the equation (4.58), then when K is
purely imaginary, its imaginary part is positive. When it is complex, its imaginary part
is negative. It is important to keep this in mind when using (4.58) to calculate K. For
E2 < M2, the evanescent states have two length scales. Locally, they decay and grow
over the characteristic length κ−1, which is a ”microscopic” length that decreases for
increasing ky. On scales larger than d they decay or grow with the larger characteristic
length K−1, that increases for increasing ky.
For the calculation of the spectrum for boundary states a system that extends in the
half-plane x < x0 with 0 < x0 < l is considered. Here, no potential step V (x) = 0

is required. Setting the usual boundary condition for the Dirac equation at position
x = x0, i.e., requiring that the component of the current density normal to the boundary
vanishes, one finds

M(α)Ψ(x0,y) = ±Ψ(x0,y), (4.62)

where
M(α) = σy cos(α) + σz sin(α). (4.63)

α is an angle that parametrizes the boundary condition. For definiteness, one can
choose the eigenvalue + in equation (4.62). The other case is obtained by replacing
α → α + π. |α,+⟩ denotes the eigenstate of M(α) with eigenvalue +1:

|α,+⟩ =
(

cos
(
α
2
− π

4

)
−i sin

(
α
2
+ π

4

)) , (4.64)

|α,−⟩ =
(

sin
(
α
2
− π

4

)
i cos

(
α
2
+ π

4

)) . (4.65)

The range of ky and E is assumed such that |Tr Ω| > 2. Therefore, the imaginary
part of Kd = ± arccos(Tr Ω/2) is finite and here only the wave function corresponding
to an evanescent wave that decays for x → −∞ is taken. This wave function will
be written as ΨK(x). For type I states, that exist if Tr Ω > 2, this means that
Kd = −i Im[arccos(Tr Ω/2)] = −iKd with K > 0, and ΨK(0) satisfies

(T − exp (Kd))ΨK(0) = 0. (4.66)

For type II states, that exist if Tr Ω < −2, this means thatKd = π+i Im[arccos(Tr Ω/2)] =

π − iKd with K > 0, and ΨK(0) satisfies

(T + exp (Kd))ΨK(0) = 0. (4.67)

Note, that for type I states there is K = Im[arccos(Tr Ω/2)] > 0, while for type II
states, K = −Im[arccos(Tr Ω/2)] > 0. It is convenient to write the two equations
above as

(T − exp (Kd))ΨK(x) = 0. (4.68)
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Figure 4.4: Dispersion relation of boundary states. Figure from [50].
Bloch waves exist in the grey region in the limits TrΩ < 2 and TrΩ > −2. Here, the

boundary angles are α = π/3 (solid), α = π/2 (dashed), α = 2π/3 (dotted) and
x0 = 0.25 d, Md = 3.1. blue: Spectrum of type I boundary states. red: Spectrum of

type II boundary states.
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Now, imposing the boundary condition, the wavefunction at x = x0 must be the
eigenstate |α,+⟩ up to a constant:

ΨK (x0) = C|α,+⟩. (4.69)

Since
Ψk (x0) = WM (x0)W

−1
M (0)ΨK (0) (4.70)

one can find

Ψk (0) = WM (0)W−1
M (x0)Ψ (x0) = CWM (0)W−1

M (x0) |α,+⟩. (4.71)

Imposing the condition
(T − exp (Kd))ΨK(0) = 0 (4.72)

this results in
(T − exp (Kd))WM (0)W−1

M (x0) |α,+⟩ = 0. (4.73)

This equation determines the spectrum of the boundary states. For the numerics, it is
more convenient to use (4.51) and one derives the spectral equation(

Ω− eiKd
1
)
W−1

M (x0)|α⟩ = 0 (4.74)

with K = −iK for type I states and K = −iK + π/d for the type II states.
The Figure 4.4 illustrates the spectrum of boundary states, where the energy is in
the range E2 < M2. For the case Md = 1.7 only type I states exist and typical
features are shown. The shape of the spectrum depends significantly on the angle α
and the boundary location x0. In addition, the dispersion is not symmetric in ky. For
values with Md > 2 both type I and type II states exist and also exhibit the above
features. The antisymmetry in ky then implies a current, which leads to observability
in transport experiments.

4.4 Bloch states

In between the grey lines in Figure 4.4 Bloch states arise. To study these states one
has to find the solutions of the spectral condition (4.54) for real quasi-momenta K in
the 1D Brillouin zone −π/d < K ≤ π/d. For numerics it is convenient to introduce
the function

Φ̃(E,K,ky) = f
(
(k2y − E2)d2

)
− cos(Kd). (4.75)

The quantization condition Φ̃(E,K,ky) = 0 then refers to equation (4.54) and deter-
mines the spectrum. In general, one can implicitly find E(K,ky) from numerics and
plot the band structure shown in Figure 4.5.
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Figure 4.5: Dispersion relation of Bloch states for Md = 5. Figure from [50].

In the following, a few cases will be discussed that can be solved analytically. For this
purpose E, K and ky are measured in units of 1/d and the spectral equation (4.52) is
rewritten with the parameter η =Md. Then condition (4.75) is analogous to

Φ(E,K,ky) = η2 +
(
k2y − E2

)
cosh

(√
η2 + k2y − E2

)
−
(
η2 + k2y − E2

)
cos(K). (4.76)

Equation (4.76) determines a set of particle-hole symmetric bands En,±(K,ky) with
n ∈ Z. Here, n labels the different bands. The group velocity is given by

vx = −∂KΦ
∂EΦ

∣∣∣∣∣
E=En,±

=
κ3 sin(K)

E (2κ (cosh(κ)− cos(K)) + (κ2 − η2) sinh(κ))

∣∣∣∣∣
E=En,±

, (4.77)

vy = −∂kyΦ
∂EΦ

∣∣∣∣∣
E=En,±

=
ky
E

∣∣∣∣∣
E=En,±

. (4.78)

For the limit of η =Md→ 0 equations (4.55) and (4.76) yield

cosh
(√

k2y − E2
)
= cos(K), (4.79)

which gives the usual linear spectrum of the Dirac equation with the x-component of
the momentum restricted to the first Brillouin zone:

E = ±En(K,ky) = ±
√

(K + 2πn)2 + k2y, n ∈ Z, − π < K ≤ π. (4.80)
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This band structure features an isolated node and crossing point at E = 0 due to
E0,+(0, 0) = E0,−(0, 0). Moreover, there are crossing points for finite energies at
K = 0, because En,±(0, ky) = E−n,±(0, ky), and at K = π, because En,±(π, ky) =

E−n−1,±(π, ky). But in fact they are not isolated, because they move with ky. For very
large Md the bandwidth in x-direction is strongly suppressed

E ≈ ±
√
k2y + 2η2 (1− cos(K)) exp(−η). (4.81)

For finite η, at the center of the 1D Brillouin zone, K = 0, equation (4.76) gives(
E2 − k2y

)
cosh

(√
η2 + k2y − E2

)
= E2 − k2y, (4.82)

whose solutions are

E0,± (0,ky) = ±ky (4.83)

E0,± (0,ky) = ±
√
η2 + k2y + (2πn)2, n = ±1,± 2,± 3,.... (4.84)

Note that each En,±(0, ky) is doubly degenerate, because En,±(0, ky) = E−n,±(0, ky).
The degeneracy is lifted for finite K as shown below. For not too large ky, the first
pair of solutions is inside the mass gap |E0,±(0)| < η, all the others are outside the gap.
For ky = 0, the band structure has crossings at E = 0,±

√
η2 + (2πn)2. For finite η

around (K,ky,E) = (0,0,0) one can expand and find

1 +
cosh(η − 1)

η2
(
k2y − E2

)
= 1− 1

2
K2, (4.85)

which gives an anisotropic conical dispersion relation for small energies and small mo-
menta

E0,±(K,ky) ≈ ±
√
v2x,0K

2 + ky. (4.86)

Here, the renormalized x-component of the velocity is

vx,0 =

√
η2

2(cosh(η)− 1)
=

η/2

sinh(η/2)
. (4.87)

It is clear that for η → 0 the usual linear spectrum with vx,0 = 1 is recovered.
Similarly, one can expand around the Γ-point (K,ky,E) =

(
0,0,
√
η2 + (2πn)2

)
and

find

En,±(K,ky) ≈ ±
(√

η2 + (2πn)2 +
k2y

2
√
η2 + (2πn)2

)
± vx,n|K|, (4.88)

with

vx,n =
(2πn)2

η2 + (2πn)2
. (4.89)
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All four combinations of signs in equation (4.88) should be considered. The double
degeneracy of each eigenvalue En,±(0, 0) is lifted by a finite K. Note that a finite ky
does not lift the degeneracy at K = 0, hence there is a nodal line. It is interesting
to compare this result with the case of uniform mass M(x) = M . Using the transfer
matrix approach, one finds the equation

cosh
√
η2 + k2y − E2 = cos(K), (4.90)

whose solutions are

En,±(K,ky) = ±
√
η2 + k2y + (2πn+K)2, n ∈ Z, − π < K ≤ π. (4.91)

Note that there is no zero energy mode that relates to the anisotropic Dirac cone of
equation (4.86).

Expanding around the Γ-point one finds

E0,±(K,ky) ≈ ±
(
η +

k2y +K2

2η

)
, (4.92)

En,±(K,ky) ≈ ±
(√

η2 + (2πn)2 +
k2y

2
√
η2 + (2πn)2

+ sign(n)ṽx,nK

)
(4.93)

with
n = ±1,± 2,± 3,... and ṽx,n =

2πn√
η2 + (2πn)2

. (4.94)

Remember E = ±
√
η2 + (2πn)2 is the energy of the crossing points. The main dif-

ference with the case of alternating mass is the absence of the zero modes and such a
resulting energy shift. Furthermore, a different renormalization of the x-component of
the velocity occures.

4.5 Bloch wave function

Now, assume K is real for considering the wave function itself. The wave function can
be written as Ψ(x) = uK(x) exp(iKx), where uK(x) is a spinor with the periodicity of
the lattice, uK(x+ d) = uK(x), given by

uK(x) =


exp(−iKx)WE,M(x)

a1
b1

 , 0 < x < l,

exp(−iKx)WE,−M(x)

a2
b2

 , l < x < d.

(4.95)
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From equation (4.49) one finds

b1(K) =
exp(iKd)− Ω11

Ω12

a1 (4.96)

and with equation (4.37)

(
a2
b2

)
is determined. The coefficient a1 is fixed by the nor-

malization condition in the unit cell∫ d

0

dx |uK(x)|2 = 1. (4.97)

From equation (4.11) it follows that the x-component of the current density for real κ
in the region 0 < x < l is given by

jx =
−4κ sin(Kd)

(M + E)Ω12

|a1|2, (4.98)

Note that this expression is odd in K. Since the x-component of the current density
must be uniform along x, this expression must be valid in the whole unit cell. Moreover,
it seems that jx is divergent if Ω12 vanishes, but this is incorrect, because Ω12 vanishes
for ky → E and in this limit K → 0. For the general scattering problem, instead of
condition (4.97) it is more convenient to adopt a normalization such that the wave
function carries unit current. This is obtained by setting

|a1|2 =
∣∣∣∣ (M + E)Ω12

−4κ sin(Kd)

∣∣∣∣ , (4.99)

The absolute value is needed because the current can be positive or negative. Equation
(4.99) fixes a1 up to an irrelevant phase. Notice that |a1(−K)|2 = |a1(K)|2. It follows
that the x-component of the current density can also be expressed as

jx =
2i sin(Kd)

T12
|u(0)|2, (4.100)

where u(0) is the upper component of Ψ(0).

4.6 Potential step

In this section the Hamiltonian (4.1) with a mass term following (4.34) in the presence
of the potential step at position xs

V (x) =


−VL x < xs

VR x > xs

(4.101)
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is studied. Here, the step is located in a region of positive mass, i.e., 0 < xs < l. This
implies that M is positive both on the left and the right of the step. Furthermore, the
step is assumed to be of moderate size with 0 < VL < M/2 and 0 < VR < M/2. One
considers an np junction set-up, with VL, VR > 0 and focuses on an energy range where
only the zero-mode band is involved, i.e., only subgap states. The calculation then
restricts to real values of κ, see (4.6). Note, that close enough to (K, ky) = (0, 0), the
zero-mode band dispersion is an anisotropic double cone, see (4.86). To ensure that κ
is real for any ky, one assumes in the right and in the left subsystems

|E + VL|,|E − VR| < M, (4.102)

which is equivalent to
−M + VR < E < M − VL. (4.103)

This is in particular important for values of ky approaching zero and guarantees that

κL =
√
M2 + k2y − (E + VL)2, κR =

√
M2 + k2y − (E − VR)2 (4.104)

are always real. In the following, the reflection coefficient at energy E is calculated
assuming

−VL < E < VR. (4.105)

This implies that the state at energy E is a particle state on the left and a hole
state on the right of the junction. The associated group velocity is then parallel to the
momentum on the right and anti-parallel on the left. Note that as long as VR+VL < M

the condition (4.105) automatically implies (4.103).

4.6.1 Scattering problem

From the band structure it is obvious that there are two Fermi momenta ±KL(E) on
the left side of the step and two Fermi momenta ±KR(E) on the right. The exact
values can be determined by the dispersion relation using (4.75):

Φ(E + VL,KL,ky) = 0, Φ(E − VR,KR,ky) = 0. (4.106)

The wave function can be written as

ψ<(x < xs) = WE+VL,M(x)

[(
a1
b1

)
KL

+ r

(
a1
b1

)
−KL

]
,

ψ>(x > xs) = tWE−VR,M(x)

(
a1
b1

)
−KR

, (4.107)

where we have reintroduced the energy subscript on the matrix W , r is the reflec-
tion amplitude and t the transmission amplitude. In general, these amplitudes are
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complex-valued. The normalization of the incident, reflected and transmitted wave
functions follow from (4.99). Notice that the wave function Ψ> is evaluated at −KR,
as it describes a hole propagating to the right. The transmission coefficient T can be
expressed as

T = |t|2 = |c|2
∣∣∣∣∣a1(KL)

a1(KR)

∣∣∣∣∣
2

, (4.108)

where c is calculated from Eq. (4.109) below with all a1(±KL,R) set to 1. The conti-
nuity condition for the wave function at the step position gives a system of two linear
equations

Ψ<(xs) = Ψ>(xs)

WEL,M(xs)

[(
1

b1

)
KL

+ r

(
1

b1

)
−KL

]
= cWER,M(xs)

(
1

b1

)
−KR

, (4.109)

where EL = E + VL and ER = E − VR and with (4.43)

b1(±KL) =
e±iKLd − Ω11(E + VL)

Ω12(E + VL)
, (4.110)

b1(±KR) =
e±iKRd − Ω11(E − VR)

Ω12(E − VR)
. (4.111)

By solving the system for r, one determines the reflection probability R = |r|2. It is
useful to define (

A

B

)
K

= W−1
EL,M

(xs)WER,M(xs)

(
1

b1

)
K

. (4.112)

The matrix W−1
EL,M

(xs)WER,M(xs) is real if κ is real. One then obtains

r = − B(−KR)− b1(KL)A(−KR)

B(−KR)− b1(−KL)A(−KR)
, (4.113)

c =
b1(KL)− b1(−KL)

B(−KR)− b1(−KL)A(−KR)
.

The reflection and transmission probabilities are finally given by

R =

∣∣∣∣∣ B(−KR)− b1(KL)A(−KR)

B(−KR)− b1(−KL)A(−KR)

∣∣∣∣∣
2

, (4.114)

T =
4κR sin(KR)

(ER +M) Ω12(ER)

(EL +M) Ω12(EL)

−4κL sin(KL)

∣∣∣∣∣ b1(KL)− b1(−KL)

B(−KR)− b1(−KL)A(−KR)

∣∣∣∣∣
2

. (4.115)

Both R and T are functions of energy E and momentum ky. The formulas above
are derived under the assumption that at the given value of energy and momentum,
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there exists a Bloch wave incident from the left side, i.e., there is a real solution KL to
equation (4.106). Therefore, the range of ky must be restricted, when plotting R or T
as function of ky at given E. The restriction is given by

−2 < Tr Ω(E + VL,ky) < 2, (4.116)

or the left side of equation (4.52) is smaller than mod1 by replacing E → E+VL. This
would be equivalent to (4.116). There are no propagating states in the region x > x0,
if |Tr Ω(E + VL, ky)| < 2 but |Tr Ω(E − VR, ky)| > 2. Therefore, the states are fully
reflected and the reflection coefficient must be 1. Indeed, if KL is real but KR = iKR

or KR = iKR + π/d, then equation (4.114) gives R = 1. In this case, the formula for
the transmission (4.115) should not be used, but instead T = 0. Explicitly, one finds
that the two inequalities (4.116) can be casted into the following form:

Tr Ω(E + VL,ky) < 2 ⇔ (E + VL)
2 − k2y > 0, (4.117)

Tr Ω(E + VL,ky) > −2 ⇔ (E + VL)
2 − k2y <

2M2

cosh
√
M2 + k2y − (E + VL)2 + 1

,

(4.118)

where κ2 > 0 is assumed. From the first condition one sees that there is an upper
bound for the allowed k2y, such that ky,max = |E + VL|. The second condition is always
satisfied for k2y close enough to (E+VL)

2. However, depending on E+VL and M , there
might also be a lower bound on k2y . Indeed, both sides of the inequality are decreasing
functions of k2y with a maximum at ky = 0. Then, if the maximum of the left-hand
side is larger than the maximum of the right-hand side, there can be a range of k2y
around zero in which the inequality is not satisfied. This occurs if M is large enough
and M2 − (E + VL)

2 small enough. The lower bound k2y is then the solution of

(E + VL)
2 − k2y <

2M2

cosh
√
M2 + k2y − (E + VL)2 + 1

, (4.119)

which results in
(E + VL)

2 >
2M2

cosh
√
M2 − (E + VL)2 + 1

. (4.120)

By exactly looking at the reflection (4.114) and transmission (4.115) one can find strong
dependencies to the behaviour by varying the parameters. This is illustrated for the
case of equal step size VL = VR = Vs. Starting with the transmission probability T ,
Figure 4.6 illustrates that for fixed step position xs there is a symmetry given by

T (E = 0,− ky) = T (E = 0,+ ky) . (4.121)

Furthermore, there is a wide region around ky = 0 where also T completely vanishes.
The extent in ±ky direction seems to be independent of the step size. This region
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Figure 4.6: Dependency of transmission probability T on ky. Figure from [50].
Here the illustration is for fixed E = 0, Vsd = 1.25 and Md = 5 while the step

position varies. xs/d = 0.05 corresponds to the red curve. Further xs/d = 0.1 is
shown in green and xs/d = 0.25 blue.

shrinks for decreasing Md, for further illustration see [50]. The transmission exhibits
peaks near kmin and kmax where the height strongly depends on the step position for
fixed energy. In addition, Figure 4.7 reveals that the transmission probability is high
where also the probability density is maximum. Additionally, one finds the symmetry

T
(
d

2
− xs,ky

)
= T (xs,− ky) . (4.122)

4.6.2 Conductance

For calculating the conductance of the potential step system, one can impose periodic
boundary conditions in the y-direction, such that ky = 2πm

w
with m ∈ Z labels dis-

crete transverse states. Because of the noninteracting behaviour the conductance can
directly be determined from the transmission T in equation (4.115). According to the
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Figure 4.7: Dependency of transmission probability T on xs. Figure from [50].
Here the illustration is for fixed Vsd = 1.25 and Md = 5 while the energy or step

position varies. The dashed lines correspond to kyd = −1.1 while the case kyd = 1.1

is illustrated with solid lines. E = 0 corresponds to the red curve. Further E = 0.05

is shown in green and E = 0.1 blue.

Landauer-Büttinger formalism each available transverse state at the Fermi energy at
zero temperature contributes e2

h
T to the linear conductance. Then one finds

G(EF ) =
Ne2

2πℏ
∑
ky

T (EF ,ky) (4.123)

≈ Ne2w

(2π)2ℏ

∫
dky T (EF ,ky), (4.124)

with the degeneracy factor N. The integration limits are constructed in the region of
ky such that

−2 < |Tr Ω(E + VL, ky)| < 2, −2 < |Tr Ω(E − VR, ky)| < 2. (4.125)

This formula then gives the conductance of a stripe with width w along the y-direction,
where the electrodes are connected at x → ∞. For a system of monolayer graphene
the spin and valley degeneracy would provide N = 4.
The conductance shows a periodicity for the step position xs and exhibits a period of
d/2. Furthermore, the conductance has a local minimum at the position xs = d/4. In
general there is the symmetry:

G

(
d

2
− xs

)
= G (xs) . (4.126)
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In addition, the conductance strongly depends on the step size Vs. For larger Vs the
curve of the conductance flattens. Interestingly, the dependency of the step position
also shrinks for decreasing M .

Figure 4.8: Conductance G in dependency of xs. Figure from [50].
Here the illustration is for fixed EF = 0 and Md = 5 while the step size varies. The
plots follow from equation (4.124). Vsd = 1.1 corresponds to the red curve. Further

Vsd = 1.25 is shown in green and Vsd = 1.4 blue.

4.6.3 Interface modes

In this part the case of localized solutions at the interface is considered. Hence, the
focus is on the regime

|Tr Ω(E + VL, ky)| < −2, |Tr Ω(E − VR, ky)| < −2, (4.127)

assuming that there is a possible range of ky where this is valid. The localized solutions
form interface states at the step position xs composed of type I and type II modes at
opposite sides. A type II-II interface mode then is formed in the regime (4.127) which
is also equivalent to the condition

f (ζL) < −1, f (ζR) < −1 (4.128)

with complex KL,R,
KL = iKL +

π

d
, KR = iKR +

π

d
. (4.129)
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For E > 0 and a type I-II interface mode one finds type II states on the left and type
I states on the right of the step position, which indicates

KL = −iKL +
π

d
, KR = +iKR. (4.130)

This assignment flips for energies smaller than zero such that

KL = −iKL, KR = +iKR − π

d
. (4.131)
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Figure 4.9: Dispersion relation of interface states. Adapted from [50].
Interface states for a potential step Vsd = 1.5 for Md = 5. The green and red regions
correspond to Bloch states, while black lines indicate interface states. Interface states

in the central region are of type II-II and in the outer region of type I-II. top left:
xs = 0. top right: xs = 0.1d. bottom left: xs = 0.4d. bottom right: xs = 0.5d.

The matching condition will take the form

WE+Vs,M(xs)

(
1

b1

)
KL

= cWE−Vs,M(xs)

(
1

b1

)
KR

, (4.132)

where a1 = 1 and for b1 see equations (4.110) and (4.111) analogous to section 4.6.1.
From this one finds (

Ω(E + Vs)− eiKLd1
)(A(KR)

B(KR)

)
= 0. (4.133)
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This equation implicitly defines the dispersion relation of the interface mode. In fact,
there exist type II-II interface modes in the central region around (kyd,E) = (0,0),
see Figure 4.9. In this context also type I-II modes can be observed. Interestingly, no
interface modes of type I-I exist. To understand this, note that these modes arise from
a crossing point defined by either (ky = 0, E = Vs) or (ky = 0, E = −Vs). On the
other hand, a necessary condition for the mode is k2y > (EI ± Vs)

2. Both conditions
cannot be valid at the crossing point simultaneously.

4.7 Zero-energy states

In this section the limit of large η = dM ≫ 1 is discussed. The essential low-energy
physics is captured by projecting onto the basis of zero-energy modes located at the
positions of the kinks and anti-kinks of the mass. The kinks and anti-kinks form a
one-dimensional bipartite lattice in the x-direction. The sublattice A comprises the
sites at the positions xAn = 2xn − l/2 for kinks, the sublattice B comprises the sites at
the positions xBn = 2xn + l/2 for anti-kinks, where xn = nd/2 with n ∈ Z labels the
unit cells. Furthermore, the origin of the coordinate system along x is shifted in this
section by

x→ x− l

2
, (4.134)

so that the origin is an inversion point of the lattice and M(−x) =M(x). In the unit
cell around the origin there is n = 0 and |x| < l, such that the mass profile reads

M(x) =

 (1 + γ)M, |x| < ℓ
2
,

−(1− γ)M, ℓ
2
< |x| < ℓ,

(4.135)

where γ is the asymmetry parameter. If |γ| exceeds 1, the mass has always the same
sign, and the zero modes disappear. In the following section |γ| < 1 is assumed. The
periodicity of M(x) follows from M(x + xn) = M(x). Notice that if |γ| = 0, then
M(x + l) = −M(x) and one retains equation (4.34). This property is lost if |γ| ̸= 0.
MK(x) and M̄K(x) denote the kink and anti-kink profiles, where

MK(x) = (1 + γ)Mθ(x)− (1− γ)Mθ(−x)

=Msign(x) + γM, (4.136)

M̄K(x) = −(1− γ)Mθ(x) + (1 + γ)Mθ(−x)

= −Msign(x) + γM (4.137)

with
MK(−x) = M̄K(x). (4.138)
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The zero-energy states for a kink or anti-kink satisfy

(−iσx∂x +MK(x)σz)ϕ+(x) = 0,(
−iσx∂x + M̄K(x)σz

)
ϕ−(x) = 0 (4.139)

and are given explicitly by

ϕ±(x) =
√
M(1− γ2) e−F (±x)|±⟩, (4.140)

where

F (x) =Mx[(1 + γ)θ(x)− (1− γ)θ(−x)] =M |x|+Mxγ (4.141)

|±⟩ = 1√
2

(
1

±i

)
. (4.142)

Notice that ϕ±(x) are orthonormalized eigenstates of σy, and ϕ−(x) = σzϕ+(−x). The
electron field operator in terms of zero modes is then given by

Ψ̂(x,y) =
∑
n

[ϕ+(x− xAn) ψ̂An(y) + ϕ−(x− xBn) ψ̂Bn(y)] (4.143)

=
1√
L

∑
n,ky

eikyy [ϕ+(x− xAn) cAnky + ϕ−(x− xBn) cBnky ], (4.144)

where ψ̂αn(y) are one-dimensional fermion field operators for each sublattice α = A,B

and cαnky denotes the fermion operators. In addition, the states fulfill the periodic
boundary condition ψ̂αn(y + L) = ψ̂αn(y) with ky = 2πm

L
. The effective low-energy

Hamiltonian is then obtained by projecting the initial Hamiltonian (4.1) onto (4.144)
and assuming the mass profile to be like (4.135) and V = 0. Finally, one finds

Heff =

∫
dxdy Ψ̂†(x,y)HΨ̂(x,y)

=
∑

αα′,nn′,ky

c†αnkyh
αα′
nn′ (ky) cα′n′ky , (4.145)
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with

hAA
nn′(ky) = ky

∫
dx ϕ+(x− xAn)ϕ+(x− xAn′)

= kyM(1− γ2)

∫
dx e−F (x−xAn)−F (x−xAn′ ), (4.146)

hBB
nn′ (ky) = −ky

∫
dx ϕ−(x− xBn)ϕ−(x− xBn′)

= −kyM(1− γ2)

∫
dx e−F (−x+xBn)−F (−x+xBn′ ), (4.147)

hAB
nn′(ky) =

∫
dx ϕ+(x− xAn)[M(x)− M̄K(x− xBn′)]ϕ−(x− xBn′)

=M(1− γ2)

∫
dx e−F (x−xAn)−F (−x+xBn′ )[M(x)− M̄K(x− xBn′)], (4.148)

hBA
nn′(ky) =

∫
dx ϕ−(x− xBn)[M(x)− M̄K(x− xAn)]ϕ+(x− xAn′)

=M(1− γ2)

∫
dx e−F (−x+xBn)−F (x−xAn′ )[M(x)−MK(x− xAn′)]. (4.149)

One can show that hAB
nn′(ky) = hBA

nn′(ky), as the Hamiltonian must be Hermitian. All
these matrix elements only depend on the separation

xnn′ = xn − xn′ = (n− n′) = d (4.150)

and decay exponentially with it. Equation (4.146) yields with (4.150)

hAA
nn′(ky) = kyM(1− γ2)

∫
dx e−F (x−xAn)−F (x−xAn′ ) = kyM(1− γ2)

∫
dx e−F (x−xnn′ )−F (x)

= kyf|n−n′|, (4.151)

where the dimensionless numbers are defined as

f|n−n′| = fo = (1− γ2)η

∫
dt exp (−η(|t|+ |t− o|+ γ(2t− o)))

=

(
cosh(γoMd) +

sinh(γoMd)

γ

)
exp(−oMd) (4.152)

with o = 0,1,2,3,... and hAA
nn′(ky) = −hBB

nn′ (ky) and change of variable t = x/d. The
numbers f , see equation (4.152), are the overlaps between zero-energy modes of the
same sublattice. In particular, notice that f(0) = 1. The overlaps between zero-energy
modes of different sublattices vanish because of the opposite eigenstates of σy. The
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integral of the off-diagonal element (4.148) can be evaluated with exponential accuracy
for the cases of interest, i.e., for small values of the separation (4.150). hAB

nn′(ky) is then
independent of ky and can be rewritten to the form

hAB
nn′ =M(1− γ2)

∫
dx e−F (x−xnn′+l)−F (−x)[M(x+ l/2)− M̄K(x)]

=Mg|n−n′|, (4.153)

where the dimensionless function gm is given by

gm = (1− γ2)Md exp

(
γ

(
m− 1

2

)
Md

)∫
dt exp (−Md(|t|+ |t−m+ 1/2|))

×
(
M(t+ 1/4)

M
+ sgn(t)− γ

)
. (4.154)

The cases of interest are

g0 ≈ −(1− γ2)e−(1+γ)Md
2 , (4.155)

g1 ≈ (1− γ2)e−(1−γ)Md
2 . (4.156)

In equation (4.153) the periodicity of M(x+ xn) =M(x) is used. Note that M(−x) =
M(x) and M(x+ l) = −M(x) hold for γ = 0 and imply g(n) = −g1−m. Both functions
f and g decrease exponentially with the separation xnn′ . It is therefore enough to keep
only the term n′ for f and the terms n′ and n′+1 for g in equation (4.145). The reason
for the two terms for g is that the first describes hopping between A and B sites in the
same unit cell of the bipartite lattice, while the second describes the hopping between
A and B sites in neighboring unit cells. One defines the Fourier transformation in
x-direction based on the fermion operators

cαnky =

∫ π/d

−π/d

dK

2π
exp(inKd)cαKky , α = A,B. (4.157)

Since the functions f and g only depend on the difference (4.150), the Hamiltonian in
Fourier space is diagonal and one gets

Ĥ =
1

L

∑
k

∫
dK

2π
f̃(kx)ky

(
c†AKky

cAKky − c†BKky
cBKky

)

+
(
g̃(K)Mc†AKky

cBKky + g̃∗(K)c†BKky
cAKky

)
. (4.158)

For L→ ∞ this results in

Heff =

∫
dKdky
(2π)2

(
c†Ajky

c†Bjky

)
H̃(K,ky)

(
cAjky

cBjky

)
, (4.159)
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with

H̃(K,ky) =

(
f̃(K)ky g̃(K)M

g̃∗(K)M −f̃(K)ky

)
(4.160)

and

f̃(K) = f0 + 2
∞∑
l=1

fl cos(lKd) ≈ 1, (4.161)

g̃(K) =
∑
m

gme
−imKd ≈ g0 + g1e

−iKd. (4.162)

Diagonalizing the Hamiltonian (4.160) by taking care of the approximated Fourier
transformed expressions (4.161) gives the eigenenergies

E(K,ky) = ±
√
k2y +M2[g20 + g21 + 2g0g1 cos(Kd)] (4.163)

and directly reproduces the zero order obtained via the spectral equation (4.54) in
chapter 4.2. For γ = 0, this expression coincides with the expansion of the exact
dispersion close to the Γ-point (4.86) and again gives an anisotropic massive Dirac
fermion energy

E(K,ky) = ±
√
ṽ2xK

2 + v2Fk
2
y +∆2, (4.164)

with

∆ = 2(1− γ2)M exp(−Md/2) sinh(γMd/2), (4.165)

ṽx
vF

= (1− γ2)Md exp(−Md/2). (4.166)

Close to this point, the Hamiltonian reads

H̃(K, ky) =Mg1Kd τy + kyτz −
(
∆+

1

2
Mg1(Kd)

2

)
τx, (4.167)

where τa denotes the Pauli matrices in sublattice space which is formed by kinks and
anti-kinks and the gap ∆ = −(g0 + g1)M > 0. This Hamiltonian can be mapped
onto the standard gapped graphene Hamiltonian by a unitary transformation. Since
vx,0 = ṽx equation (4.88) is reproduced by (3.68) in the case of vanishing γ.

4.8 Magnetic field

In this section, the idea of the Dirac equation with periodic mass in the presence of a
uniform magnetic field perpendicular to the system is sketched. By use of the Landau
gauge A = (0,Bx, 0) the Hamiltonian (4.1) is adapted to

H = [−iσx∂x + σy(−i∂y + x/l2B)] +M(x)σz + V (x)1. (4.168)
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Here again, ℏ = v = 1 and the magnetic length lB =
√

ℏc/eB and (4.2) is used.
Furthermore, the variables are dimensionless with length in units of the magnetic length
lB and energy in the units of the cyclotron frequency ωc.
Using the translational invariance in the y-direction, one can write

Ψ(x,y) = exp(ikyy)ϕky(x), (4.169)

and the Hamiltonian (4.168) takes the form

H(ky) =
1√
2
(−iσx∂x + σy(ky + x)) +M(x)σz (4.170)

=

(
M −ia
ia† −M

)
, (4.171)

where the potential V is neglected and

a = ∂q +
q

2
, a† = −∂q +

q

2
,

q =
√
2(x+ ky), [a,a†] = 1.

By use of ϕky(x) = (u,v)T the two equations

av = i(E −M − V )u, a†u = −i(E +M − V )v (4.172)

arise and by eliminating u one finds for the case of V = 0

−iv(a†a− (E2 −M2)) = 0. (4.173)

This looks quite familiar to a Webers like equation. Solving (4.173) one can assume
v1 = iDp(q) with Dp(q) representing the parabolic cylinder function. In the following
the relations

a =
pDp−1(q)

Dp(q)
and a† =

Dp+1(q)

Dp(q)
(4.174)

will be used. With the use of (4.172) the expression for u1 is fixed to

u1 = p
Dp−1(q)

E −M
. (4.175)

Analogously one can find for v2 = −iDp(−q) the second solution. The shift of q → −q
implies also a change of sign in a and gives

u2 = p
Dp−1(−q)
E −M

. (4.176)

Finally the eigenstates are given by

ϕ
(1)
M (x) =

(
(E2 −M2)Dp−1(q)

E−M

iDp(q)

)
=

(
(E +M)Dp−1(q)

iDp(q)

)
, (4.177)

ϕ
(2)
M (x) =

(
(E +M)Dp−1(−q)

−iDp(−q)

)
. (4.178)
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Here, M is assumed to be constant and p follows from equations (4.174) and (4.173).
For the case of a single mass kink the ansatz analogous to (4.13) will be used. The
general solution can then be written as

Ψ(x) = WM(x)

(
a

b

)
, (4.179)

where the matrix WM(x) is given by

WM(x) =
(
ϕ
(2)
M (x) ϕ

(1)
M (x)

)
(4.180)

=

(
(E +M)Dp−1(−q) (E +M)Dp−1(q)

−iDp(−q) iDp(q)

)
. (4.181)

Imposing continuity at position x = 0 gives

W−1
M (0)W−M(0)

(
aL
0

)
=

(
0

bR

)
. (4.182)

Figure 4.10: Dispersion relation for single mass kink following (4.183) and (4.184).
The blue line indicates the linear dispersion E = ky/

√
2. left: Calculation done for

M = 0.05 (yellow) and M = 0.5 (green). right: Here M = 1,2 are used for the yellow
and green lines. The green line exactly covers the linear dispersion.

The quantization condition is then[
W−1

M (0)W−M(0)
]
11

= 0, (4.183)
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which finally gives

(E −M)Dp(
√
2ky)Dp−1(−

√
2ky) + (E +M)Dp−1(

√
2ky)Dp(−

√
2ky) = 0. (4.184)

For an infinite system, one gets the usual relativistic Landau levels

En = sign(n)
√
|n|+M2, n = ±1,± 2,± 3... (4.185)

E0 = −M, (4.186)

where the solution is not normalizable. The numerical solution of equation (4.184)
is shown in Figure 4.10. For M ≪ 1 there are almost perfectly flat Landau levels.
For increasing values of M one can see that the Landau levels acquire a dispersion,
especially close to ky = 0. For M sufficiently large the usual interface mode with linear
dispersion which exists for B = 0 is recovered.

4.9 Summary

In this chapter, two-dimensional Dirac fermions in a mass superlattice have been dis-
cussed. The mass superlattice was assumed to be piece-wise constant and alternates
between positive and negative mass along the y-direction.
We showed that the low-energy calculation binds a Jackiw-Rebbi zero mode. Further-
more, we find the anisotropic Dirac cone dispersion. Due to the most general ansatz
imaginary and real solutions for the periodicity conditions are allowed. We predict
the existence of boundary modes and in presence of a potential step the existence of
interface modes. These modes characterize evanescent solutions of the periodicity con-
dition. Interestingly, we find two different types of interface modes. The first type
occurs for a momentum larger than the energy and the second type for a momentum
that is smaller than the energy.
We suppose that the boundary and interface modes carry unidirectional currents and
therefore could be observable in STM measurements.





Chapter 5

Conclusion and Outlook

In this chapter we give a short summary of some key aspects and findings and outline
the opportunities for further investigation and experiments.
In chapter 3 we started to introduce the most important quantities of twisted bilayer
graphene. Most of the properties can be described in terms of its band structure.
These energy bands are called moiré bands which originate from the superlattice, the
moiré lattice. The superlattice affects the properties of the structure. While monolayer
graphene exhibits Dirac cones, the energy levels of twisted bilayer graphene completely
flatten for a well defined series of magic angles, see section 3.6. Thus, it seems to
be obvious that superlattice effects can modify band structures and introduce novel
properties. We have been able to show numerically that the values of the magic angles,
apart from the first, highly depend on the strength of coupling amplitudes in AA
stacked and AB/BA stacked regions. Interestingly, the first magic angle seems to be
nearly robust.
In chapter 4 we then focused on a mass superlattice with a piece-wise constant mass
term that alternates between positive and negative values. We have been able to
show that this model turns out to be exactly solvable. We saw that the low-energy
part of the spectrum is spanned in this model by the chiral zero mode. Therefore,
the low-energy physics are directly linked to the chiral zero modes. Furthermore, we
find the anisotropic Dirac cone dispersion as well as boundary modes. Looking at
the dispersion relation for boundary modes, we see an asymmetry in ky which implies
unidirectional currents carried by the boundary modes. Thus, we expect that the
modes can be observed in transport experiments. Furthermore, they could be detected
in STM measurements. In presence of a potential step we also predict two different
types of interface modes. Firstly, we recover type I states with momentum |ky| larger
than the energy |E|. Secondly, for a momentum |ky| smaller than the energy |E| we
talk about type II states. These type II states can only occur if the product of the
amplitude of the mass term and the superlattice period is greater than 2. Both types
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should be observable analogous to the boundary modes above.
In general, the work and the introduced model of the mass superlattice can be useful
for further experimental and theoretical work on this topic. For instance the model can
be expanded with the intention to study magnetic fields, see section 4.8, or electron-
electron interactions.
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We study two-dimensional (2D) Dirac fermions in the presence of a periodic mass term alternating between
positive and negative values along one direction. This scenario could be realized for a graphene monolayer
or for the surface states of topological insulators. The low-energy physics is governed by chiral Jackiw-Rebbi
modes propagating along zero-mass lines, with the energy dispersion of the Bloch states given by an anisotropic
Dirac cone. By means of the transfer matrix approach, we obtain exact results for a piecewise constant mass
superlattice. On top of Bloch states, two different classes of boundary and/or interface modes can exist in a
fnite-size geometry or in a nonuniform electrostatic potential, respectively. We compute the dispersion relation
for both types of boundary and interface modes, which originate either from states close to the superlattice
Brillouin zone (BZ) center or, via a Lifshitz transition, from states near the BZ boundary. In the presence of a
potential step, we predict that the interface modes, the Bloch wave functions, and the electrical conductance will
sensitively depend on the step position relative to the mass superlattice.

DOI: 10.1103/PhysRevB.107.115420

I. INTRODUCTION

It is well known that the band structure of solids can
be modifed in a controllable way by means of superlattice
potentials. For instance, the use of electrostatic superlattice
potentials has been suggested as versatile and tunable tool
for creating emergent Dirac fermions with anisotropic disper-
sion in two-dimensional (2D) graphene monolayers [1–7] or
in few-layer black phosphorus devices [8]. Similarly, moiré
superlattice effects can induce a spectacular restructuring of
the band structure in twisted bilayer graphene [9], layered
van der Waals materials [10], and topological insulators (TIs)
[11], including the formation of topologically nontrivial and
nearly fat bands with strong correlation effects [12]. Apart
from the mostly considered case of electrostatic superlattices,
interesting modifcations of the band structure have also been
predicted for magnetic superlattices and for periodic modula-
tions of the spin-orbit coupling; see, e.g., Refs. [13–16] for the
case of graphene monolayers.

In the present work, we focus on yet another superlattice
type which can be realized in 2D Dirac materials, e.g., in
graphene monolayers [17] or the surface states of TIs [18,19].
We study the effects of a one-dimensional (1D) mass super-
lattice M(x), which periodically alternates between regions of
positive and negative mass. (The mass term is assumed homo-
geneous along the y direction, with the 2D material in the xy
plane.) For the graphene case, such a mass profle could arise
from a sublattice-dependent potential due to substrate or strain
effects [17]. For TI surface states, it could (approximately) be
generated by the exchange feld of an array of magnetic stripes
with alternating magnetization direction.

It is well known that a single mass kink binds a fermionic
zero mode by the Jackiw-Rebbi mechanism [20–22]. This
zero mode is unidirectional (“chiral”) and propagates with the

Fermi velocity vF either in the positive or negative y direction
while being exponentially localized near the mass kink along
the x direction. In general terms, a sign change of the mass
for 2D Dirac fermions corresponds to a transition between
two topological Chern insulators with a different Chern num-
ber [23]. By the bulk-boundary correspondence, zero-mass
lines at the interfaces then harbor chiral zero modes. For
the TI realization, experimental evidence for such chiral zero
modes has been reported in Refs. [24,25]. In Bernal-stacked
bilayer graphene devices, in the presence of either interlayer
bias voltage kinks, tilt boundaries, or in folded geometries,
one expects topological valley-momentum-locked zero-line
modes [26,27] that closely resemble the above chiral zero
mode [28,29]. We refer the reader to Ref. [30] for a recent
survey, including a summary of the experimental evidence
for zero-line modes in bilayer graphene. In particular, such
modes have been identifed by scanning tunneling microscopy
(STM) [31]. Similar zero-line modes also appear in the helical
network description of minimally twisted bilayer graphene
[32]. More generally, depending on the symmetries of the
problem, 1D zero-line modes can also appear near line defects
such as dislocations [33,34].

For 2D Dirac fermions with a periodic mass M(x) al-
ternating between positive and negative values, chiral 1D
modes are located near the positions with M(x) = 0, with
adjacent modes having opposite propagation direction. While
low-energy transport remains effcient along the y direction,
the band structure fattens along the x direction. For large
mass amplitude (and assuming the same absolute value for
positive and negative mass regions), the residual overlap
between counterpropagating neighboring chiral modes gener-
ates a small velocity vx � vF along the x direction. In effect,
one then arrives at a highly anisotropic Dirac cone dispersion
at low energies [35,36]. We here show that the case of a
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piecewise constant periodic mass term is exactly solvable.
Our calculations confrm the existence of anisotropic Dirac
cones, yield analytical results for the ratio vx/vF, and provide
a useful starting point for future studies of interaction effects
and/or magnetic felds. We note that in Refs. [37,38], closely
related models have been studied. In particular, the authors of
Ref. [37] show that for smooth mass kinks, additional nonchi-
ral localized states analogous to Volkov-Pankratov states
[39,40] can exist. However, the anisotropy of the Dirac cone
dispersion has not been discussed in Ref. [37]. Moreover,
while Ref. [38] (see also Ref. [41]) contains a detailed discus-
sion of the electronic spectrum for a periodic mass problem,
their mass term alternates between zero and a fnite value, in
contrast to the mass term considered below. As a consequence,
chiral zero modes and physical effects caused by these modes
are absent in Refs. [38,41]. Let us also mention that we here
study a coupled-wire model, see Refs. [42,43] for related but
different examples, where the 1D wires correspond to chiral
zero modes with alternating propagation direction [44].

A central result of our work is to point out the existence
of two types of boundary modes in the presence of a sample
boundary along the y direction. The modes are spatially con-
fned to the vicinity of the boundary but can propagate along
the boundary. Similarly, for an electrostatic potential step
along the x direction, we predict two types of interface modes.
The two different mode types emerge either near the center of
the superlattice Brillouin zone (BZ) or near the BZ boundary.
In the latter case, we observe that such modes appear only
if the mass amplitude exceeds a critical value. Under this
condition, the Fermi surface for the lowest band undergoes
a Lifshitz transition [45], opening up from a closed elliptic
contour into a pair of open (disconnected) arcs. Remarkably,
both types of boundary and/or interface modes can only exist
in the presence of the mass superlattice, and their spatial decay
length can exceed the lattice constant of the mass term.

The structure of this paper is as follows. In Sec. II, we
introduce the model and the assumptions behind it, and we
consider the cases of a single mass kink and of a mass barrier.
(Technical details have been relegated to the Appendix.) Next,
in Sec. III we use the transfer matrix approach to determine
the band structure and the Bloch states for a piecewise pe-
riodic mass term with alternating regions of mass ±M; see
Eq. (3.1) below. In this case, we fnd a gapless low-energy
anisotropic Dirac cone near the � point of the superlattice BZ.
However, if the positive and negative mass amplitudes differ,
a spectral gap will open, as shown in Sec. III C, where we
construct a systematic low-energy theory. Importantly, in the
presence of boundaries or in an inhomogeneous electrostatic
potential, the spectral condition also allows for evanescent
wave solutions. We discuss boundary modes in Sec. IV. In
Sec. V, we include an electrostatic potential step along the
x direction, which defnes an np junction. We determine
the transmission probability for Bloch states and show that
the conductance across the step will sensitively depend on the
step position. This dependence is a direct consequence of the
fact that low-energy states have signifcant weight only near
the positions of mass (anti)kinks. In Sec. V C, we show that
interface modes of various types can exist and we compute
their energy dispersion. The paper concludes with an outlook
in Sec. VI.

II. MODEL

In this paper, we study noninteracting electrons described
by a 2D Dirac Hamiltonian with a single Dirac cone. This
model captures the essential physics of the spin-momentum
locked and protected surface states in 3D TI materials [18,19],
as well as the low-energy physics of 2D graphene monolayers
which is governed by states close to a single K point (“valley”)
[17]. For the latter case, the assumption of a single K point
requires the mass or potential terms considered below to be
actually smooth on the scale of the lattice spacing of graphene.
For an infnitely extended system in the xy plane, using units
with h̄ = 1 and Fermi velocity vF = 1 throughout, we study
the Hamiltonian

H = −iσx∂x − iσy∂y + M(x)σz + V (x)1, (2.1)

with the electrostatic potential V (x) and the mass term M(x).
Both terms are assumed homogeneous along the y direction.
As a consequence of this translation invariance, the wave
vector (or momentum) component ky is conserved. The Pauli
matrices σx,y,z and the 2 × 2 identity matrix 1 act in spin
space for TI surface states, and in the sublattice space of the
honeycomb lattice for the case of graphene.

For given momentum ky, the spinor eigenstates of Eq. (2.1)
can be written as

�(x, y) = eikyy ψ (x), ψ (x) =
(

u(x)
v(x)

)
, (2.2)

which results in the 1D Dirac equation(
M(x) + V (x) −i(∂x + ky)
−i(∂x − ky) −M(x) + V (x)

)(
u
v

)
= E

(
u
v

)
. (2.3)

In this work, we are interested in the case of a spatially
periodic mass term which alternates between positive and
negative values. As a simple and exactly solvable model,
we will consider the piecewise constant periodic mass term
discussed in Sec. III. For the TI case, such a mass term can
(approximately) be generated by the deposition of ferromag-
netic insulator stripes with alternating magnetization on a TI
surface, where the magnetic exchange contributions produce a
periodic mass term [36]. Similarly, for a graphene monolayer,
a suitably patterned substrate creates a sublattice-dependent
superlattice potential which in effect gives a periodic mass
term [17].

In the remainder of this section, to prepare the ground
for the periodic mass case in Sec. III, we will analyze three
simpler problems. In Sec. II A, we determine the general
solution of Eq. (2.3) for the homogeneous case. In Sec. II B,
we rederive the well-known low-energy spectrum for a mass
kink, M(x) = M sgn(x), which binds a 1D chiral zero mode
propagating along the y direction [18,20–22]. In Sec. II C, we
study a mass barrier composed of a mass kink and an antikink,
where one fnds two counterpropagating chiral zero modes.
For ease of notation, we often keep the dependence on ky and
E implicit.

A. Homogeneous problem

Let us frst specify the general (not normalized) eigenstates
of Eq. (2.3) for a region with constant potential, V (x) = V ,
and constant mass, M(x) = M. A uniform scalar potential
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can be included by shifting E → E − V , which we implicitly
assume below. For M(x) = M, the solution is given by

ψ (x) = WM (x)

(
a
b

)
, (2.4)

where a and b are arbitrary complex coeffcients and we defne
the matrix

WM (x) =
(

eκx e−κx

i ky−κ

M+E eκx i ky+κ

M+E e−κx

)
, (2.5)

with the defnition

κ =
⎧⎨
⎩

√
M2 + k2

y − E2, E2 < k2
y + M2,

ik ≡ i
√

E2 − M2 − k2
y , E2 > k2

y + M2.
(2.6)

For low energies, E2 < k2
y + M2, we have evanescent waves

along the x direction, and the eigenstates are spatially local-
ized on the length scale κ−1 near boundaries or mass kinks.
For E2 > k2

y + M2, κ = ik is purely imaginary and we fnd
plane-wave solutions propagating along the x direction with
wave number kx = k. Useful expressions involving WM (x)
in Eq. (2.5) are summarized in the Appendix. In particular,
Eqs. (A3) and (A4) imply that the x component of the particle
current density is given by

jx = ψ†σxψ =

⎧⎪⎨
⎪⎩

4κIm(b∗a)
M+E , E2 < k2

y + M2,

2k(|a|2−|b|2 )
M+E , E2 > k2

y + M2.

(2.7)

B. Mass kink

We turn to the case of a single mass kink, M(x) = M sgn(x)
with M > 0; see Ref. [22]. We here discuss only the low-
energy case, E2 < k2

y + M2, where κ in Eq. (2.6) is real. From
Eq. (2.4), normalizable eigenstates then have the form

ψ (x) =

⎧⎪⎪⎨
⎪⎪⎩

W−M (x)

(
aL

0

)
, for x < 0,

WM (x)

(
0
bR

)
, for x > 0,

(2.8)

where the coeffcients aL and bR are determined by continuity
of ψ (x) at x = 0 and normalization. Using Eq. (A2), we defne
the matrix

�M = W −1
M (0)W−M (0)

= 1

κ (E − M )

(
Eκ − kyM −(κ + ky)M

(−κ + ky)M Eκ + kyM

)
, (2.9)

such that the continuity condition takes the form(
0
bR

)
= �M

(
aL

0

)
. (2.10)

As a result, we get the relations 0 = (Eκ − kyM )aL and bR =
(−κ+ky )M
κ (E−M ) aL. For nontrivial solutions, we must have Eκ −

kyM = 0 from the frst relation, which is solved by the dis-
persion relation E (ky) = ky of a 1D chiral mode. The second
relation then yields bR = aL for the spinor wave function,
where aL is fnally determined by normalization. This chiral
mode propagates with velocity vF along the positive y direc-
tion and is localized near the mass kink at x = 0 in the x

direction. Similarly, for an antikink mass profle with M re-
placed by −M, one fnds a 1D chiral mode propagating along
the negative y direction, with dispersion relation E (ky) = −ky.

C. Mass barrier

Next we consider a mass barrier of width 	 described by
[27]

M(x) =
{

M, for |x| < 	/2,

−M, for |x| > 	/2.
(2.11)

We search for low-energy solutions with E2 < k2
y + M2,

where normalizable eigenstates can be written as

ψ (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W−M (x)

(
aL

0

)
, for x < −	/2,

WM (x)

(
a
b

)
, for |x| < 	/2,

W−M (x)

(
0
bR

)
, for x > 	/2,

(2.12)

with coeffcients aL, a, b, and bR. Imposing continuity at x =
±	/2, one can eliminate a and b. We arrive at Eq. (2.10) but
with �M replaced by

�B = W −1
−M (	/2)WM (	/2)W −1

M (−	/2)W−M (−	/2); (2.13)

see Eq. (A5) for explicit matrix elements. The dispersion
relation follows from [�B]11 = 0, which reads explicitly

E2 = k2
y + M2e−2κ	. (2.14)

For barrier width 	 → ∞, we can neglect the exponential
term and obtain E±(ky) = ±ky, corresponding to a pair of
counterpropagating chiral zero modes localized at the barrier
edges. For large but fnite barrier width with M	 � 1, the two
chiral zero modes hybridize. The level crossing at ky = 0 is
now replaced by an avoided crossing, where Eq. (2.14) yields
E±(ky = 0) � ±Me−	M . The low-energy dispersion then ac-
quires an exponentially small gap due to the avoided crossing,

E±(ky) � ±
√

k2
y + M2e−2M	.

III. PERIODIC MASS

In this section, we discuss the solution of the Dirac equa-
tion (2.3) for the piecewise constant periodic mass term
sketched in Fig. 1, which is given by

M(x) =
{+M, jd � x < ( j + 1

2 )d,

−M, ( j + 1
2 )d � x < ( j + 1)d,

(3.1)

where d is the lattice period and j ∈ Z labels the unit cell.
For simplicity, we here assumed that the regions of positive
and negative mass have the same spatial extent, 	 ≡ d/2,
and the same absolute value of the mass, |M(x)| = M. This
implies the symmetry M(x + 	) = −M(x). Our calculations
can easily be adapted to the general case, where we fnd that
the spectrum acquires a gap; see Sec. III C. For now, however,
let us focus on Eq. (3.1). In Sec. III A, we employ the transfer
matrix method to solve the spectral problem and, in partic-
ular, to derive the energy quantization condition. The band
structure and the corresponding Bloch states are described in
Sec. III B, while we postpone the discussion of evanescent
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FIG. 1. Piecewise constant periodic mass profle M(x) in
Eq. (3.1). A unit cell of length d is indicated by the red square. The
inset indicates the regions of positive (gray) and negative (yellow)
mass in the xy plane. 1D chiral zero modes are generated near
the (anti)kink positions by the Jackiw-Rebbi mechanism, with the
respective propagation direction indicated by arrows.

state solutions to Sec. IV. Finally, in Sec. III C, a systematic
low-energy theory is constructed by projecting the model to
the subspace spanned by the chiral zero modes.

A. Transfer matrix and spectral equation

We frst consider the unit cell 0 < x < d , where ψ (d ) and
ψ (0) are connected by the transfer matrix T ,

ψ (d ) = T ψ (0). (3.2)

In this unit cell, Eq. (2.4) implies that the wave function has
the form

ψ (x) =

⎧⎪⎪⎨
⎪⎪⎩

WM (x)

(
a1

b1

)
, for 0 < x < 	,

W−M (x)

(
a2

b2

)
, for 	 < x < d,

(3.3)

with W±M (x) in Eq. (2.5). The continuity of ψ (x) at x = 	 re-
lates the complex coeffcients (a2, b2) and (a1, b1) according
to (

a2

b2

)
= W −1

−M (	)WM (	)

(
a1

b1

)
, (3.4)

with W −1
−M (	)WM (	) given in Eq. (A2). We can therefore ex-

press the transfer matrix as

T = W−M (d )W −1
−M (	)WM (	)W −1

M (0). (3.5)

The explicit form of the matrix elements of T is given by
Eq. (A7) in the Appendix. The matrix T is symmetric and
has det T = 1. Its eigenvalues can be written as λ± = e±iKd ,
where K can be interpreted as a quasimomentum along the x
direction. As discussed below, K can be either real-valued (for
Bloch waves) or complex-valued (for evanescent modes).

In what follows, instead of T , we fnd it more convenient
to use a modifed transfer matrix � defned by

T = WM (0) �W −1
M (0). (3.6)

Using Eq. (3.5) and the relations ψ (0) = WM (0)
( a1

b1

)
and

ψ (d ) = W−M (d )
( a2

b2

)
, which follow from Eq. (3.3), we arrive

at1

� = W −1
M (0)W−M (d )W −1

−M (	)WM (	). (3.7)

The corresponding matrix elements are specifed in Eq. (A6).
We again have det � = 1, and � has the same eigenvalues
λ± = e±iKd as T .

We next require that ψ (x) satisfy the Bloch periodicity
condition

ψ (x + d ) = eiKd ψ (x), (3.8)

with a quasimomentum K along the x direction. For Bloch
wave solutions, K must be real. We then take K from the frst
BZ of the mass superlattice,

−π

d
< K � π

d
, (3.9)

where (K, ky) = (0, 0) is the “� point.” More generally, we
can impose Eq. (3.8) for complex values of K . We fnd three
possible types of solutions, where K is either real (Bloch
waves) or complex (evanescent waves), with K = ±iK or
K = ∓iK ± π/d . The inverse length scale K > 0 is deter-
mined below. Evanescent state solutions thus are obtained by
imposing either

ψ (x + d ) = e∓Kd ψ (x) (3.10)

or

ψ (x + d ) = −e±Kd ψ (x). (3.11)

In what follows, evanescent waves derived from Eqs. (3.10)
and (3.11) are denoted as “type-I” and “type-II” states, respec-
tively. While for the infnitely extended system evanescent
states are not normalizable and hence not admissible, they
emerge in the presence of boundaries or nonuniform poten-
tials; see Secs. IV and V C.

Setting x = 0 and using the transfer matrix, Eq. (3.8) is
next written as

WM (0) �W −1
M (0) ψ (0) = eiKdψ (0), (3.12)

which is equivalent to the condition

(
� − eiKd1

)(a1

b1

)
=

(
0
0

)
. (3.13)

Nontrivial solutions of Eq. (3.13) can only exist if

det
(
� − eiKd1

) = 0. (3.14)

The compatibility condition (3.14) is equivalent to the spectral
equation

f (ξ ) = cos(Kd ), (3.15)

1With the matrix D(x) = diag(eκx, e−κx ) and the matrix �M for
the single-kink problem in Eq. (2.9), we may express � as � =
�M D(	) �−1

M D(	). This establishes a relation between the single-
kink problem and the periodic problem.

115420-4



TWO-DIMENSIONAL DIRAC FERMIONS IN A MASS … PHYSICAL REVIEW B 107, 115420 (2023)

where we defne f (ξ ) ≡ 1
2 Tr �(ξ ) with the dimensionless

variable

ξ = (
k2

y − E2
)
d2. (3.16)

Using Eq. (A6), one fnds

f (ξ ) = (Md )2 + ξ cosh(
√

(Md )2 + ξ )

(Md )2 + ξ
. (3.17)

The spectral equation thus depends on the single dimension-
less parameter Md, and E and ky appear only through the
dimensionless variable ξ . Below, we mostly focus on the
low-energy regime, subject to the condition

|E | < M, (3.18)

such that ξ > −(Md )2. The function f (ξ ) is shown for sev-
eral values of Md in Fig. 2(a). Bloch states are possible for
−1 � f (ξ ) � 1 corresponding to ξc � ξ � 0, where ξc < 0
is defned by the condition f (ξc) = −1. Outside this window,
no real solutions for the quasimomentum K can be found.
However, Eq. (3.15) also allows for solutions with complex-
valued K . For f (ξ ) > 1, corresponding to ξ > 0 and therefore
|E | < |ky|, we obtain type-I evanescent states. On the other
hand, for ξ < ξc, we can have type-II evanescent states at
energies above a critical value, |E | > Ec with Ecd = √−ξc,
where we fnd the analytical estimate

Ecd ≈
{

3 − Md/2, Md ≈ 2,

2Mde−Md/2, Md � 1.
(3.19)

In the low-energy regime (3.18), solutions for ξc, and thus
type-II states, exist only for Md > 2. This is related to the
fact that if Md < 2, for any Fermi level |EF| < M, the Fermi
surface is a closed curve in the 2D BZ. If Md > 2, instead, the
Fermi surface evolves from a closed curve (for |EF| < Ec) into
a pair of disconnected arcs (for Ec < |EF| < M). The critical
point |EF| = Ec corresponds to a Lifshitz transition. Numeri-
cal results for Ec vs Md along with the estimates in Eq. (3.19)
are shown in the inset of Fig. 2(a). For large Md � 1, type-II
states are also realized at very low energies.

We discuss type-I and type-II states in more detail in
Sec. IV and focus on Bloch states with real K for the re-
mainder of this section. We note in passing that Eq. (3.15)
has also been specifed in Ref. [37]. However, the solutions

E = ±
√

k2
y + M2 reported in Ref. [37] are spurious, and the

anisotropy of the emergent Dirac cone near the � point has
been missed; see Eq. (3.25) below. It is also worth mention-
ing that for ky = 0, Eq. (3.15) coincides with the spectral
equation for a generalized Kronig-Penney model of diatomic
crystals [46,47].

B. Band structure and Bloch states

We frst study the solutions of the spectral condition (3.15)
for real quasimomenta K in the 1D BZ (3.9). The corre-
sponding Bloch bands form the band structure of the mass
superlattice. For computing the band structure and the group
velocities, it is convenient to introduce the auxiliary function

(E , K, ky ) = f
((

k2
y − E2)d2) − cos(Kd ), (3.20)

FIG. 2. Spectrum of the 2D Dirac Hamiltonian with the periodic
mass term (3.1). (a) The function f (ξ ) vs ξ , see Eq. (3.17), in the
regime ξ > −(Md )2, for Md = 0.7, 2, 3.5, and 5, corresponding
to the red, green, brown, and blue curves, respectively. According
to Eq. (3.15), Bloch states require | f (ξ )| � 1. For f (ξ ) > 1 [ f (ξ )
< −1], type-I [type-II] evanescent states are possible. Inset: Critical
energy Ec vs Md, where type-II states can only exist for |E | > Ec.
The solid curve gives numerically exact results. The red and blue dot-
ted curves give the analytical estimates (3.19) for Md ≈ 2 and Md �
1, respectively. (b) Low-energy band structure, E = ±En(K, ky ), for
Bloch states with n = 0 and Md = 5.

where Eq. (3.15) is equivalent to the condition (E , K, ky ) =
0. The band structure calculation amounts to fnding the
implicit function E (K, ky ) defned by this condition. In lim-
iting cases, this can be done analytically (see below), but
in general one has to resort to numerics. In any case, one
fnds a particle-hole symmetric spectrum, E = ±En(K, ky),
where n ∈ Z labels different bands with non-negative energy
En(K, ky). The group velocity (vx, vy) for a given eigenstate
follows with E = ±En(K, ky) from Eq. (3.20) as

vx = −∂K

∂E
, vy = −∂ky

∂E
. (3.21)
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The low-energy spectrum determined numerically is shown
in Fig. 2(b). To understand these results, we now examine
limiting cases where analytical progress is possible.

First, for Md → 0, Eq. (3.15) recovers the standard
isotropic massless Dirac cone with kx = K restricted to the
frst BZ (3.9),

E = ±En(K, ky) = ±
√

(K + 2πn/d )2 + k2
y , (3.22)

which includes an isolated Dirac node at zero energy as
well as fnite-energy crossing points for K = 0, because
En(0, ky) = E−n(0, ky), and for K = π

d , because En( π
d , ky) =

E−n−1( π
d , ky). The fnite-energy crossings points are not iso-

lated but form lines when varying ky. We will show next that
a fnite value of Md does not spoil the above nodal structures
at the center of the 1D BZ, but it does lift the degeneracies at
the BZ boundary where gaps open.

For fnite Md, let us frst consider the 1D BZ center K = 0.
We then fnd that Eq. (3.15) has the non-negative solutions

E0(0, ky) = |ky|, En =0(0, ky) =
√

k2
y +

(
2πn

d

)2

+ M2,

(3.23)
where each energy En =0(0, ky) is twofold degenerate due to
±n bands. However, this degeneracy is lifted for K = 0; see
Eq. (3.27) below. From Eq. (3.23), using E (c)

n ≡ En(0, 0) for
the �-point energy of the respective band, �-point crossings
occur at zero energy (n = 0) and at the fnite energies ±E (c)

n =0
with

E (c)
n =0 =

√
M2 + (2πn/d )2. (3.24)

The zero-energy node is of special interest. By expanding
Eq. (3.15) for small energies and small momenta, one obtains
an anisotropic conical Dirac dispersion,

E = ±En=0(K, ky) � ±
√

v2
x,0K2 + v2

Fk2
y , (3.25)

with a renormalized velocity along the x direction,

vx,0

vF
= Md/2

sinh(Md/2)
. (3.26)

Numerical results for the full low-energy band structure
are shown in Fig. 2(b). Near the � point, they agree with
Eq. (3.25). Evidently, for Md → 0, Eqs. (3.25) and (3.26)
recover the isotropic Dirac cone in Eq. (3.22). For Md � 1,
however, vx,0/vF is exponentially small and the dispersion
becomes almost fat in the K direction. In this case, the in-
dividual mass kinks and antikinks in the periodic mass profle
(3.1), which are centered at x = jd/2 with integer j, bind 1D
chiral zero modes by means of the Jackiw-Rebbi mechanism,
see Sec. II. As we elaborate in Sec. III C, superpositions of
chiral zero modes generate the n = 0 band dispersion (3.25),
where the fnite hybridization between the counterpropagat-
ing zero modes at neighboring mass kinks and antikinks is
responsible for the fnite but exponentially small velocity
(3.26). While the anisotropic Dirac cone dispersion associated
with zero modes in periodic mass profles has been discussed
before [36], the piecewise constant mass term (3.1) admits
an exact solution. We note that anisotropic Dirac cones can
alternatively be engineered by means of scalar superlattice

potentials [1,2,4,7,8] or by using periodic magnetic felds
[13–15].

Similarly, we may expand around the � point for the fnite-
energy crossing points (3.24), where we obtain

En =0(K, ky) � E (c)
n + k2

y

2E (c)
n

+ sgn(n) vx,nK, (3.27)

with the velocities vx,n =0 = [2πn/(E (c)
n d )]2 along the x di-

rection. We observe that a fnite ky does not lift the twofold
degeneracy at K = 0, and hence there is a nodal line.

Let us briefy compare the above results to the correspond-
ing uniform-mass case M(x) = M, where the band structure
is given by

E = ±E (u)
n (K, ky) = ±

√
M2 + (K + 2πn/d )2 + k2

y . (3.28)

Importantly, no zero-energy modes related to the anisotropic
Dirac cone (3.25) appear anymore in Eq. (3.28). Expanding
around the � point, where fnite-energy crossings occur again
at E = ±E (c)

n =0 with E (c)
n in Eq. (3.24), we fnd the positive-

energy solutions

E (u)
0 (K, ky) � M + k2

y + K2

2M
, (3.29)

E (u)
n =0(K, ky) � E (c)

n + k2
y

2E (c)
n

+ sgn(n) ṽx,nK,

with ṽx,n = 2π |n|/(E (c)
n d ). The main difference between the

alternating and the uniform mass profle is that the n = 0
zero-mode band in Eq. (3.25) has shifted to fnite energies
E (u)

0 (K, ky) � M. On the other hand, the n = 0 dispersion
relation (3.29) differs from Eq. (3.27) only with respect to the
velocity along the x direction, vx,n → ṽx,n.

Let us now turn to the Bloch eigenstates corresponding to
the above band structure. Keeping (E , ky) implicit, we begin
by expressing ψ (x) in terms of a spinor wave function uK (x)
with the periodicity of the mass superlattice,

ψ (x) = eiKxuK (x), uK (x + d ) = uK (x). (3.30)

In the unit cell 0 < x < d , we obtain uK (x) = e−iKxψ (x) from
ψ (x) as specifed in Eq. (3.3). We then need to determine the
K-dependent coeffcients (a1, b1) and (a2, b2) in Eq. (3.3).
To that end, we recall that (a2, b2) follows from (a1, b1)
by the continuity condition (3.4) imposed at x = d/2. Using
Eq. (3.13), we can express2 b1 in terms of a1,

b1(K ) = eiKd − �11

�12
a1, (3.31)

with the matrix elements of � in Eq. (A6). Finally, a1 is fxed
by the normalization condition∫ d

0
dx |uK (x)|2 = 1. (3.32)

2For K = 0, the matrix element �12 vanishes for the spectral
branches ±E0(0, ky ) = ky. Then Eq. (3.31) does not apply and we
have instead a1 = 0 with b1 determined by normalization.
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FIG. 3. Probability density P(x) vs x for selected eigenstates
of the periodic mass problem. (a) P(x) for Bloch states with band
index n = 0, taking Md = 5 and Ed = 0.7. Solid blue, dashed
blue, blue-red, dashed red, and solid red curves are for kyd =
0.7, 0.3, 0,−0.3, −0.7, respectively. (b) P(x) normalized to its value
at x = 2d , for type-II evanescent states with Md = 5 and Ed = 1.
Solid (dashed) green curves are for kyd = 0 (kyd = 0.3), while the
dotted gray lines show the corresponding graphs of eKx .

We thereby obtain the Bloch eigenstate �K,ky,n,±(x, y) =
ei(Kx+kyy)uK,ky,n,±(x) for the energy E = ±En(K, ky). We il-
lustrate the corresponding probability densities in Fig. 3(a).
For kyd = 0.7 (solid blue curve), the state is mainly localized
near the mass kinks at x = jd with integer j. For kyd = −0.7
(solid red curve), on the other hand, the state is localized
near the antikinks at x = ( j + 1/2)d . As |kyd| decreases, one
approaches the d/2-periodic probability density found for
ky = 0, where the eigenstate is an equal-weight superposition
of counterpropagating chiral Jackiw-Rebbi modes.

For E2 < k2
y + M2 (where κ is real), we now observe that

the particle current density (2.7) along the x direction is uni-
form and given by

jx = −4κ sin(Kd )

(M + E )�12
|a1|2, (3.33)

with a1 determined by Eq. (3.32). Note that jx is odd in K .
We note that for the scattering problem in Sec. V A, instead of
Eq. (3.32) it will be more convenient to adopt a normalization
where the wave function carries unit current. This is achieved

by setting

|a1|2 =
∣∣∣∣ (M + E )�12

−4κ sin(Kd )

∣∣∣∣, (3.34)

which determines a1, with |a1(−K )|2 = |a1(K )|2, up to an
irrelevant phase.

C. Effective low-energy theory

For Md � 1, the essential low-energy physics of the
staggered Dirac mass superlattice problem is captured by pro-
jecting the full Hamiltonian (2.1) onto the subspace spanned
by the 1D chiral zero modes centered at the (anti)kink posi-
tions x j = jd/2 (integer j) of the periodic mass term (3.1).
The resulting effective low-energy theory is also useful for
studying interacting variants of the model. We show below
that this projection reproduces the exact spectrum to exponen-
tial accuracy in the low-energy regime, |E | < M.

In the unit cell |x| < 	 obtained after shifting x → x − 	
2 ,

we start from the mass profle

M(x) =
{

(1 + γ )M, |x| < 	
2 ,

−(1 − γ )M, 	
2 < |x| < 	,

(3.35)

where M > 0. The full mass profle follows by periodic-
ity, M(x + jd ) = M(x), and is inversion symmetric, M(x) =
M(−x). We here allow for a dimensionless asymmetry pa-
rameter γ , resulting in different mass amplitudes in regions
of positive and negative mass. Note that Eq. (3.1) follows
(up to the above shift) from Eq. (3.35) for γ = 0, where we
also have M(x + 	) = −M(x). The latter property is lost for
γ = 0. For |γ | > 1, the mass term always has the same sign
and chiral zero modes are absent. Below we focus on the more
interesting case |γ | < 1.

The kink and antikink positions in M(x) defne a 1D bi-
partite lattice in the x direction, where sublattice A (kinks)
comprises the sites at xA j = jd − 	

2 and sublattice B (an-
tikinks) refers to xB j = jd + 	

2 . We now introduce the mass
profle MK(x − xA) for a single kink centered at position
xA, and similarly M̄K(x − xB) for an antikink centered at xB,
where

MK(x) = Msgn(x) + γ M, M̄K(x) = MK(−x). (3.36)

Zero-energy fermion modes bound to a kink or an antikink at
x = 0 satisfy

[−iσx∂x + MK (x)σz]φ+(x) = 0,

[−iσx∂x + M̄K (x)σz]φ−(x) = 0, (3.37)

where the orthonormalized states φ±(x) are eigenstates of
σy and satisfy φ−(x) = σzφ+(−x). Defning M̃ = (1 − γ 2)M,
we fnd

φ±(x) =
√

M̃

2
e−F (±x)

(
1
±i

)
, F (x) = (|x| + γ x)M.

(3.38)

For constructing the low-energy theory for Md � 1, we
expand the electron feld operator in terms of the zero
modes (3.38) for kink and antikinks centered at xA j and xB j ,
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respectively,

�̂(x, y) =
∑

j

[φ+(x − xA j ) ψ̂A j (y) + φ−(x − xB j ) ψ̂B j (y)]

(3.39)

with 1D chiral fermion feld operators ψ̂α j (y) for each
sublattice α = A, B and each unit cell j ∈ Z of the 1D
bipartite lattice. With fermion operators cα jky , we have
ψ̂α j (y) = 1√

W

∑
ky

eikyy cα jky , using periodic boundary condi-

tions, ψ̂α j (y + W ) = ψ̂α j (y), such that ky = 2πm
W for integer

m and linear system size W .
Projecting the full Hamiltonian H , see Eq. (2.1) with

V (x) = 0 and M(x) in Eq. (3.35), onto the low-energy basis
(3.39), we obtain the effective low-energy Hamiltonian,

Heff =
∫

dxdy �̂†(x, y)H�̂(x, y) (3.40)

=
∑

αα′, j j′,ky

c†
α jky

Hαα′
j j′ (ky) cα′ j′ky

,

with the sublattice-diagonal matrix elements

HAA
j j′ (ky) = kyM̃

∫
dx e−F (x−xA j )−F (x−xA j′ ), (3.41)

HBB
j j′ (ky) = −kyM̃

∫
dx e−F (−x+xB j )−F (−x+xB j′ ).

Similarly, the off-diagonal components take the form

HAB
j j′ (ky) = HBA

j′ j (ky) =
∫

dx e−F (x−xA j )−F (−x+xB j′ )

× M̃[M(x) − M̄K(x − xB j′ )]. (3.42)

All matrix elements depend on the site indices j and j′ only
through their separation ( j − j′)d and decay exponentially
with this distance. In particular, Eq. (3.41) yields

HAA
j j′ (ky) = −HBB

j j′ (ky) = ky f| j− j′|, (3.43)

where the dimensionless numbers (l = 0, 1, 2, . . .)

fl =
(

cosh(γ lMd ) + sinh(γ lMd )

γ

)
e−lMd (3.44)

encode the overlap between zero-energy modes at distance ld
belonging to the same sublattice. Note that f0 = 1. The off-
diagonal matrix elements (3.42) do not depend on ky and can
similarly be expressed as

HAB
j j′ (ky) = Mgj− j′ , (3.45)

where the dimensionless numbers gm, with m ∈ Z and M(x)
in Eq. (3.35), are given by

gm = M̃d eγ (m− 1
2 )Md

∫
ds e−(|s|+|s−m+ 1

2 |)Md

×
(

M(s + 1
4 )

M
+ sgn(s) − γ

)
. (3.46)

Note that for γ = 0, we have gm = −g1−m. For Md � 1,
the numbers fl and gm decrease exponentially fast when in-
creasing l and |m|, respectively. The low-energy theory is
dominated by terms with fl=0 = 1 and gm=0,1, corresponding

FIG. 4. Illustration of the numbers gm in Eq. (3.46), which en-
code the overlap between counterpropagating chiral zero modes. The
sites A and B correspond to the 1D bipartite lattice of kink and
antikink positions, where rectangles indicate a unit cell.

to overlaps between at most adjacent sites of the 1D bipartite
lattice, as illustrated in Fig. 4. In particular, the couplings g−1

and g2 describe next-nearest-neighbor overlap integrals which
are exponentially small compared to the nearest-neighbor cou-
plings g0,1, and can be omitted. For m = 0, 1, the integral in
Eq. (3.46) can be evaluated to exponential accuracy,

g0 ≈ −(1 − γ 2)e−(1+γ ) Md
2 , g1 ≈ (1 − γ 2)e−(1−γ ) Md

2 .

(3.47)

Since the matrix elements Hαα′
j j′ (ky) only depend on the

separation ( j − j′)d , the low-energy Hamiltonian (3.40) is
diagonal in momentum space. Using the above chiral 1D
fermion operators cα jky , we defne a momentum-space spinor
feld CKky according to(

cA jky

cB jky

)
=

∫ π/d

−π/d

dK

2π
ei jKdCKky , CKky =

(
CAKky

CBKky

)
. (3.48)

For W → ∞, we then obtain

Heff =
∫

dKdky

(2π )2
C†

Kky
H̃(K, ky)CKky

, (3.49)

where the single-particle effective Hamiltonian,

H̃(K, ky) =
(

f̃ (K )ky g̃(K )M
g̃∗(K )M − f̃ (K )ky

)
, (3.50)

is expressed in terms of the Fourier series

f̃ (K ) = f0 + 2
∞∑

l=1

fl cos(lKd ) ≈ 1, (3.51)

g̃(K ) =
∑

m

gme−imKd ≈ g0 + g1e−iKd .

The approximate results in Eq. (3.51) are obtained by keeping
only the leading coeffcients fl=0 = 1 and gm=0,1, and hold to
exponential accuracy for Md � 1. By diagonalizing H̃(K, ky)
with the approximations in Eq. (3.51), we obtain the eigenen-
ergies

E (K, ky) = ±
√

k2
y + M2

[
g2

0 + g2
1 + 2g0g1 cos(Kd )

]
. (3.52)

This expression accurately reproduces the n = 0 band ob-
tained from the exact spectral equation (3.15).

Close to the � point (Kd � 1), Eq. (3.50) reduces to

H̃(K, ky) = Mg1Kd τy + kyτz − (
� + 1

2 Mg1(Kd )2
)
τx,

(3.53)
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with the gap � = −(g0 + g1)M > 0 and Pauli matrices τa in
sublattice space for the 1D bipartite lattice. Equation (3.52)
then simplifes to the dispersion relation of anisotropic mas-
sive Dirac fermions,

E (K, ky) = ±
√

ṽ2
x K2 + v2

Fk2
y + �2, (3.54)

with

� = 2M̃ e−Md/2 sinh(γ Md/2),
ṽx

vF
= M̃d e−Md/2. (3.55)

For γ = 0, we have � = 0 and Eq. (3.54) reproduces
Eq. (3.25) since vx,0 = ṽx for Md � 1; see Eq. (3.26). How-
ever, for γ = 0, the anisotropic Dirac cone is gapped and has
the Chern number C = − 1

2 sgn(�) [28,30,48–50].
We mention in passing that in terms of fermionic sublattice

spinor felds, ψ̂ j (y) = ( ψ̂A j (y)
ψ̂B j (y)

)
, the low-energy Hamiltonian

(3.49) can also be written as

Heff =
∑

j

∫
dy{ψ̂†

j [−i∂yτz + Mg0τx] ψ̂ j

+ Mg1[ψ̂†
j τ+ψ̂ j+1 + H.c.]}, (3.56)

with the approximations in Eq. (3.47) and using τ+ = 1
2 (τx +

iτy). Such a representation can be useful in order to include,
for instance, Coulomb interaction effects.

The above projection scheme can be adapted to any pe-
riodic mass profle M(x) alternating between positive and
negative values. For a continuous mass profle, the zeros of
M(x) defne the sites of the 1D bipartite lattice, and close
to these zeros, a single (anti)kink in Eq. (3.36) can be ap-
proximated by a linear function MK(x) = Mx/d [M̄K(x) =
−Mx/d]. In that case, the normalized zero-energy wave func-
tions in Eq. (3.38) are replaced by

φ±(x) = (4πM/d )−1/4 e− M
2d x2

(
1
±i

)
. (3.57)

The effective low-energy Hamiltonian is then still given by
Eq. (3.50), with f̃ (K ) and g̃(K ) now calculated with φ± in
Eq. (3.57). We conclude that the projection approach offers
a powerful route toward studying the low-energy theory of
Dirac fermions in a mass superlattice.

IV. BOUNDARY MODES

We now turn to evanescent wave solutions which are char-
acterized by a complex-valued quasimomentum K and can
arise in the presence of boundaries or nonuniform poten-
tials. Throughout this section, we focus on boundary-induced
evanescent states in a constant potential and set V (x) = 0. In
addition, we consider the low-energy regime (3.18), where κ

in Eq. (2.6) is real-valued and (Md )2 + ξ > 0 in Eq. (3.17).
The length scale κ−1 governs the decay (or growth) of the
wave function along the x direction in a region of constant
mass. For the piecewise constant mass term (3.1), the length
κ−1 thus represents a microscopic scale, which is only relevant
on scales below the period d and which becomes shorter
with increasing |ky|. As discussed below, the mass superlattice

FIG. 5. Quasimomentum K in Eq. (4.1) vs ky for Md = 4, taking
the + sign in Eq. (4.1). Red (blue) curves show the imaginary (real)
part of K . The solid curves are for Ed = 0.5 and the dashed curves
for Ed = 1.4.

generates another characteristic length scale, K−1, which gov-
erns the decrease (or increase) of evanescent waves on scales
larger than the superlattice period d and which, for small |ky|,
grows with increasing |ky|. In Sec. IV A, we summarize gen-
eral properties of evanescent states, followed by the explicit
calculation of boundary modes for a semi-infnite geometry in
Sec. IV B.

A. Evanescent states

The spectral condition (3.15) is formally solved by

Kd = ± arccos f (ξ ), (4.1)

with the function f (ξ ) in Eq. (3.17). Bloch wave solutions
with real K only exist for | f (ξ )| � 1. For f (ξ ) > 1, corre-
sponding to ξ > 0 and thus to |E | < |ky|, one instead fnds a
purely imaginary solution, K = ±iK for the respective sign
in Eq. (4.1), with the convention K > 0. For 0 < ξ � 1, we
estimate

Kd � sinh(Md/2)

Md/2

√
ξ, (4.2)

in agreement with Eqs. (3.25) and (3.26). The resulting type-I
boundary modes, see Eq. (3.10), originate from states near
the superlattice BZ center and are directly connected to the
anisotropic Dirac cone dispersion (3.25). This case is illus-
trated for Ed = 0.5 (solid curves) in Fig. 5. For the wave
function (3.3) of type-I states, using Eqs. (3.13) and (A6), we
obtain

b1(K = ±iK)

a1
= e∓Kd − �11

�12
, (4.3)

resulting in a decay (increase) of ψK (x) with increasing x for
K = iK (K = −iK). We note that the particle current along
the x direction vanishes, jx = 0, because b1/a1 is real.

Next we turn to the case Ed = 1.4 (dashed curves in
Fig. 5), where the real part of K again vanishes for |E | < |ky|,
corresponding to type-I states. However, for small |ky| and
Md > 2, a region with f (ξ ) < −1 corresponding to ξ < ξc <

0 exists, cf. Fig. 2(a), where Eq. (4.1) yields a pair of type-II
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states with K = ∓iK ± π/d , see Eq. (3.11). For ξ � ξc, we
fnd

Kd �
√

f ′(ξc) (ξc − ξ ). (4.4)

From Eq. (4.4) and Fig. 5, we observe that the decay length
K−1 can exceed the lattice spacing d of the mass superlattice.
The wave function of type-II states also follows from Eq. (3.3)
but with

b1(K = ∓iK ± π/d )

a1
= −e±Kd − �11

�12
, (4.5)

again resulting in jx = 0. The corresponding spatial probabil-
ity density is illustrated in Fig. 3(b), where an overall decay on
the emergent (long) length scale K−1 is clearly visible. At the
same time, the microscopic length 	 = d/2 due to the mass
superlattice causes a periodic modulation of the spatial decay.

The emergence of type-II states can also be seen from the
results of Sec. III C. Near the boundary of the superlattice
BZ, by writing K = π

d + q with |q|d � 1, the low-energy
dispersion relation (3.52) takes the form

E

(
π

d
+ q, ky

)
≈ ±

√
−ṽ2

x q2 + k2
y + E2

c , (4.6)

with ṽx in Eq. (3.55) and Ec = 2M̃e− Md
2 cosh( γ Md

2 ). Equa-
tion (4.6) reveals a saddle point at the BZ boundary, which
is responsible for the Lifshitz transition discussed in Sec. II A.
For |E | < Ec, Bloch states with real q exist for any (small)
value of ky. However, for |E | > Ec, type-II states with imagi-
nary q emerge for k2

y < E2 − E2
c .

B. Boundary modes for semi-infinite geometry

It is instructive to study a specifc example admitting
evanescent wave solutions. We here consider the Dirac mass
superlattice problem on the half-plane x < x0, with the bound-
ary line x = x0 located in a positive-mass region, say, 0 <

x0 < d
2 . We impose a boundary condition at x = x0 and y ∈ R,

B(α) �(x0, y) = ±�(x0, y), (4.7)

which ensures that the component of the current density nor-
mal to the boundary vanishes [51,52]. The matrix B depends
on a phenomenological boundary angle α,

B(α) = σy cos α + σz sin α. (4.8)

For defniteness, we choose the eigenvalue +1 in Eq. (4.7)
in what follows. (The solution for eigenvalue −1 follows by
replacing α → α + π .) The corresponding eigenstate of B(α)
is given by

|α〉 =
(

cos
(

α
2 − π

4

)
−i sin

(
α
2 − π

4

)
)

. (4.9)

We now consider parameter regions with | f (ξ )| > 1, where
Bloch waves are absent and K in Eq. (4.1) is complex-valued.

For the semi-infnite problem, normalizable states can be
obtained only from one of the two solutions in Eq. (4.1).
Denoting this solution by K = K0 and recalling our conven-
tion K > 0, we have K0 = −iK for type-I states with ξ > 0.
Similarly, we have K0 = −iK + π/d for type-II states with

FIG. 6. Dispersion relation EB(ky ) of type-I (blue) and type-II
(red) boundary modes in a semi-infnite geometry with x < x0. We
assume x0 = d/4 and Md = 3.1, where results obtained by numer-
ically solving Eq. (4.10) are shown for the boundary angles α =
π/3, π/2, and 2π/3, using solid, dashed, and dotted lines, respec-
tively. The shaded region corresponds to Bloch states.

ξ < ξc < 0. For x → −∞, the solution ψK0 (x) decreases ex-
ponentially and therefore describes a normalizable state. The
other solution ψ−K0 (x) grows exponentially for x → −∞ and
hence is not admissible.

The boundary condition (4.7) implies that the bound-
ary spinor ψK0 (x0) must be proportional to the state |α〉 in
Eq. (4.9). Using Eq. (3.13), we thereby arrive at the spectral
condition

(� − eiK0d1)W −1
M (x0)|α〉 = 0, (4.10)

which determines the dispersion relation of the boundary
modes E = EB(ky). We illustrate typical results in Fig. 6 for
different values of the boundary angle. For Md > 2, we ob-
serve both type-I boundary modes with |EB(ky)| < |ky| (blue
curves) and type-II boundary modes (red curves). In both
cases, the precise shape of the dispersion EB(ky) sensitively
depends on the angle α and on the boundary location x0

(not shown). Moreover, the dispersion is not symmetric in ky,
which implies that the boundary modes can carry unidirec-
tional currents. We therefore expect them to be observable in
transport experiments. In addition, they could be detected in
STM experiments.

V. POTENTIAL STEP AND INTERFACE MODES

In this section, we return to the extended problem (without
boundaries) for the Dirac Hamiltonian (2.1) with the periodic
mass term in Eq. (3.1). We now include an electrostatic poten-
tial step of moderate step size 2Vs at position x = xs,

V (x) = Vs sgn(x − xs), 0 < 2Vs < M. (5.1)

The potential (5.1) defnes an np junction. For defniteness, we
assume 0 < xs < d

2 such that the step is located in a region of
positive mass.

Here we focus on the most interesting low-energy regime
with real-valued κ parameters in Eq. (2.6). Recalling that a
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uniform potential can be accounted for by shifting the energy
E , on the left side x < xs, κ = κL follows from Eq. (2.6)
with E → E + Vs. Similarly, κ = κR for x > xs is obtained by
replacing E → E − Vs. [Below we will also use ξL,R which
follows from Eq. (3.16) with the same substitutions.] In order
to have both κL and κR real for all values of ky, we require

|E | < M − Vs. (5.2)

Apart from evanescent states bound to the potential step, we
then have to take into account only the zero-mode band with
n = 0 corresponding to the emergent anisotropic Dirac cone
near the � point.

In Sec. V A, we consider scattering states and calculate the
corresponding transmission probability for the potential step
(5.1). The linear two-terminal conductance G is discussed in
Sec. V B, where we consider transport across the junction with
lead electrodes attached to the system at x → ±∞. Interest-
ingly, we fnd a pronounced dependence of G on the step
position xs. In Sec. V C, we then determine the dispersion
relation of interface modes, which are spatially localized near
the potential step in the x direction but propagate along the y
direction.

A. Scattering states and transmission probability

We here consider scattering states with energy

|E | < Vs. (5.3)

Since the emergent Dirac cones on the two sides of the junc-
tion are shifted by the potential in opposite directions, in this
energy window one fnds a particle-like state on the left side
and a hole-like state on the right side of the np junction.
The associated group velocity is then parallel (antiparallel)
to the momentum K on the left (right) side. We note that
for 0 < 2Vs < M, Eq. (5.3) automatically implies Eq. (5.2).
For given E and ky, we have a pair of 1D Fermi momenta
±KL on the left side, and similarly ±KR on the right side.
The values of KL > 0 and KR > 0 follow from the spectral
equation (3.15). In particular, using the auxiliary function
(E , K, ky ) in Eq. (3.20), KL,R are the solutions of

(E + Vs, KL, ky) = 0, (E − Vs, KR, ky) = 0. (5.4)

We then use Eqs. (3.3) and (3.31) to determine the scattering
state by matching the wave function on the left side of the
junction to the wave function on the right side. Appending
energy arguments as indices on the matrix WM (x) in Eq. (2.5),
the full wave function for 0 < x < d

2 is written as

ψ (x < xs) = WE+Vs,M (x)

[(
a1

b1

)
KL

+ r

(
a1

b1

)
−KL

]
,

ψ (x > xs) = t WE−Vs,M (x)

(
a1

b1

)
−KR

, (5.5)

with complex-valued refection (r) and transmission (t)
amplitudes. We normalize the incident, refected, and trans-
mitted wave functions such that they carry unit current; see
Eq. (3.34). Notice that the wave function for x > xs describes
a hole propagating to the right and therefore involves the 1D
Fermi momentum −KR.

The transmission probability T is given by

T (E , ky) = |t |2 =
∣∣∣∣a1(KL )

a1(KR)

∣∣∣∣
2

|t ′|2, (5.6)

where the amplitude t ′ follows by setting all coeffcients
a1(±KL,R) = 1 in Eq. (5.5). Continuity of ψ (x) at x = xs then
results in two coupled linear equations for r and t ′,

WE+Vs,M (xs)

[(
1
b1

)
KL

+ r

(
1
b1

)
−KL

]

= t ′ WE−Vs,M (xs)

(
1
b1

)
−KR

, (5.7)

where, using a1 = 1, Eq. (3.31) gives

b1(±KL ) = e±iKLd − �11(E + Vs)

�12(E + Vs)
, (5.8)

and analogously for b1(±KR). Note that the energy argument
of the � matrix elements (A6) has been made explicit. With
the auxiliary quantities(

A(K )
B(K )

)
= W −1

E+Vs,M
(xs)WE−Vs,M (xs)

(
1

b1(K )

)
, (5.9)

where we suppress the dependence on xs, refection and trans-
mission amplitudes can be expressed as

r = − B(−KR) − b1(KL )A(−KR)

B(−KR) − b1(−KL )A(−KR)
,

t ′ = b1(KL ) − b1(−KL )

B(−KR) − b1(−KL )A(−KR)
. (5.10)

We thus obtain the refection probability R = |r|2 and the
transmission probability T from Eq. (5.6). Of course, current
conservation yields T = 1 − R.

We illustrate typical results for the transmission proba-
bility in Fig. 7. Depending on the parameters, Bloch states,
and thus a fnite transmission, can only be realized in a
window of ky values. For fxed step position, we indeed ob-
serve a strong dependence on ky, with the symmetry T (E =
0,−ky ) = T (E = 0, ky), cf. Fig. 7(a), where we also illustrate
the effect of changing the parameter Md. In particular, we see
that at fxed energy, for the case of larger mass in the main
panel of Fig. 7(a), there is a window around ky = 0 where
the transmission vanishes. This window shrinks as the mass
decreases, and eventually closes, as shown in the inset. Notice
that the window’s edges do not depend on the position of
the step. For fxed (E , ky), Fig. 7(b) reveals a pronounced
dependence of T on the step position xs, with the symmetry
T ( d

2 − xs, ky) = T (xs,−ky ). This effect is linked to the strong
x dependence of the wave functions. Indeed, as discussed in
Sec. III C, the low-energy states are built from chiral zero
modes which are localized along the x direction near x =
jd/2 (integer j). Depending on the sign of ky, we fnd high
transmission probability if xs is near one of these positions,
where the probability density has maxima; see Fig. 3(a). In the
next section, we study how this behavior affects the electrical
conductance.
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FIG. 7. Transmission probability T for the Dirac mass superlat-
tice in the presence of the potential step (5.1) with Vsd = 1.25. (a) T
vs ky for E = 0, Md = 5, and xs/d = 0.05, 0.1, 0.25 (red, green,
blue curves). Inset: Same parameters as in the main panel but for
Md = 3.7. (b) T vs step position xs for Md = 5 with kyd = 1.1
(solid lines) and kyd = −1.1 (dashed lines), using Ed = 0, 0.05, 0.1
(red, green, blue curves).

B. Conductance

Within a noninteracting theory, the transmission proba-
bility T (E , ky) directly determines the linear two-terminal
conductance G via the standard Landauer-Büttiker formula
[53]. At zero temperature, identifying E with the Fermi energy
EF, the conductance for a strip of large width W along the
y direction, with source and drain electrodes adiabatically
connected at x → ±∞, is given by

G = Nve2W

(2π )2h̄

∫
dky T (EF, ky), (5.11)

where Nv is a degeneracy factor. For instance, in a graphene
monolayer, we have Nv = 4 because of spin and valley de-
generacies. Note that at given energy, only states with ky

such that | f (ξL,R)| < 1 have fnite transmission probability
and contribute to the conductance.

We illustrate the dependence of G on the potential step
position xs and on the step size Vs in Fig. 8. We observe that
G strongly depends on xs and, in the interval 0 < xs < d/2,
exhibits a broad minimum at xs = d/4 with the symmetry
G( d

2 − xs) = G(xs). The conductance will then be a periodic

FIG. 8. Conductance G for the Dirac mass superlattice with
Md = 5 at Fermi energy EF = 0 in the presence of the potential
step (5.1). We show G in units of Nve2W

(2π )2 h̄d
for a strip of width W and

degeneracy index Nv. Main panel: G vs step position xs for several
values of the potential step size, Vsd = 1.1, 1.25, 1.4, shown by red,
green, and blue curves, respectively. Inset: G vs Vs for xs = 0.05d
(blue) and xs = 0.25d (red curve).

function of xs with period d/2. Such conductance oscillations
are most pronounced for Md � 1 and small values of the
Fermi energy, where the relevant electronic states originate
from the chiral zero modes localized near the mass (anti)kinks
at x = jd/2. The xs dependence of G becomes weaker for
smaller values of M (results not shown). A pronounced spatial
dependence of G on the step position is therefore a hallmark
of the existence of zero modes which are well localized along
the x direction.

As a function of step size Vs, we observe that the conduc-
tance shows a broad peak; cf. inset of Fig. 8. This behavior
can be rationalized by noting that in this example we consider
EF = 0, where the density of states associated with the Dirac
cone, and hence also the conductance, vanishes for Vs → 0.
Moreover, upon increasing Vs, the phase space for transmis-
sion (the window of ky where the transmission amplitude is
fnite) frst increases, but eventually shrinks and, as a conse-
quence, the conductance decreases toward zero.

C. Interface states

We fnally study states localized near the interface at x =
xs. These states are formed by a combination of either type-
I or type-II evanescent waves on opposite sides of the step,
matched at x = xs. In particular, solutions with type-II modes
on both sides (“type II-II” interface modes) require f (ξL ) <

−1 and f (ξR) < −1, and have quasimomenta

KL = −iKL + π

d
, KR = +iKR − π

d
, (5.12)

with KL,R > 0 given by Eq. (4.4) with the replacement E →
E ± Vs. The state ψKL (x) (for x < xs) then shows an expo-
nential decay for x → −∞ and, similarly, ψKR (x) (for x > xs)
decays for x → ∞. For type I-II interface states, composed of
type-I and type-II modes on opposite sides, we fnd that, for
E > 0, the type-II state is on the left and type-I on the right
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FIG. 9. Dispersion relation of interface states bound to a potential step with Vsd = 1.5 and several step positions xs for Md = 5, with
E in units of h̄vF/d . The green (red) bands correspond to Bloch states at x < xs (x > xs). The solid black curves refer to interface modes.
The interface modes in the central inner region are of type II-II, while all others are of type I-II. From left to right panel: xs = 0, xs = 0.1d ,
xs = 0.4d , and xs = 0.5d .

side, with

KL = −iKL + π

d
, KR = +iKR, (5.13)

while for E < 0, the opposite happens, with

KL = −iKL, KR = +iKR − π

d
. (5.14)

The wave function matching condition at x = xs now implies

WE+Vs,M (xs)

(
a1

b1

)
KL

= t ′ WE−Vs,M (xs)

(
a1

b1

)
KR

, (5.15)

with b1(K ) in Eq. (5.8). Using the auxiliary quantities in
Eq. (5.9), we arrive at the equation

(�(E + Vs) − eiKLd1)

(
A(KR)
B(KR)

)
= 0, (5.16)

which implicitly defnes the dispersion relation E = EI (ky)
of the interface modes. As for the boundary case (4.10), the
two equations in Eq. (5.16) are nonlinear conditions for ky

and E which have to be solved simultaneously. Depending
on the parameter values, our numerical analysis shows that
such solutions indeed exist. Typical results for the dispersion
relation EI (ky) are shown in Fig. 9. We fnd interface modes
of type I-II or type II-II, where the latter modes can only exist
for Md > 2. For the parameters in Fig. 9, there are no type
I-I interface modes. In fact, the absence of type I-I modes
is a generic feature which can be rationalized by observing
that their dispersion should originate from one of the two
crossing points (ky = 0, E = ±Vs), but at the same time it
should satisfy the conditions k2

y > (EI ± Vs)2. Clearly, both
requirements are incompatible.

In analogy to the boundary modes in Sec. IV, we ex-
pect such interface modes to affect transport properties. In
addition, they should be observable by STM or tunneling
spectroscopy.

VI. CONCLUSIONS

Our analysis of 2D Dirac fermions in a piecewise constant
mass superlattice, where the mass term periodically changes
sign, shows a remarkable richness. We have shown that the
low-energy part of the spectrum is spanned by the chiral
zero modes tied to the zero-mass lines of the superlattice.

Apart from the resulting anisotropic Dirac cone dispersion,
we also predict nontrivial boundary modes as well as interface
modes near potential steps. Those modes exist in two differ-
ent types. Type-I modes require a momentum |ky| parallel
to the zero-mass lines which is larger than the energy |E |.
Instead, type-II modes emerge at small |ky| but exist only
for Md > 2, where M is the amplitude of the mass term
and d the superlattice period. Both types of evanescent states
could affect transport properties and should be observable by
STM techniques.

Although our results have been derived for a particular
exactly solvable model, we have also shown that in the regime
Md � 1, the low-energy physics is directly connected to
the chiral zero modes localized at the zero-mass lines, and
therefore is generic to all Dirac mass superlattices where the
mass alternates between positive and negative values, includ-
ing periodic arrays of topological junctions between Chern
insulators with different Chern numbers.

The low-energy theory put forward in this work points to
several interesting extensions. First, the inclusion of an orbital
magnetic feld along the z direction allows one to study the
interplay of Landau level formation and quantum Hall physics
with the phenomena discussed above. Second, since we have
a model of coupled 1D chiral fermions, bosonization methods
[54] can be used to construct solvable nonperturbative theories
of this 2D system in the presence of electron-electron interac-
tions.

Zero-line modes similar to those discussed in our work
have also been reported in recent experiments performed on
magnetic topological insulators [55] which realize interfaces
between quantum anomalous Hall insulators [23] with differ-
ent Chern numbers. We expect that our results will also be
relevant in this platform. Theoretical predictions for layer-
dependent zero-line modes in antiferromagnetic topological
insulator multilayer structures based on MnBi2Te4 [56] sug-
gest that our theory can also be applied in that context. An
important caveat when comparing our results to experiments
concerns the idealized steplike mass term considered here.
While this simplifcation allowed us to obtain exact analytical
solutions, for smooth mass kinks, additional states local-
ized at the kinks can emerge at elevated energies, so-called
Volkov-Pankratov states [37,39,40]. However, such states are
nonchiral and are expected to cause distinct transport and
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spectroscopical features compared to the chiral states dis-
cussed in our work.

To conclude, we hope that the results put forward here will
inspire future experimental and theoretical work along these
lines.
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APPENDIX: MATRIX PROPERTIES

We here summarize useful algebraic relations involving the
matrix WM (x) in Eq. (2.5). We frst note that its inverse is given
by

W −1
M (x) = 1

2κ

(
(ky + κ )e−κx i(M + E )e−κx

−(ky − κ )eκx −i(M + E )eκx

)
(A1)

with κ in Eq. (2.6). Second, we observe that the determinant of
WM (x) is x-independent, det WM (x) = 2iκ

M+E . Third, Eqs. (2.5)
and (A1) imply the relation

W −1
−M (x)WM (x) = 1

κ (E + M )

(
Eκ + Mky e−2κx(κ + ky)M

e2κx(κ − ky)M Eκ − Mky

)
. (A2)

Fourth, for real κ corresponding to E2 < k2
y + M2, we fnd

W †
M (x)WM (x) =

(
e2κx

[
1 + ( ky−κ

E+M

)2] 2E
E+M

2E
E+M e−2κx

[
1 + ( ky+κ

E+M

)2]
)

, (A3)

W †
M (x) σx WM (x) = − 2κ

E + M
σy, W †

M (x) σy WM (x) = 2

E + M

(
e2κx(ky − κ ) ky

ky e−2κx(ky + κ )

)
.

For κ = ik with real k > 0, we instead fnd

W †
M (x)WM (x) =

(
2E

E+M e−2ikx
[
1 − (−k+iky

E+M

)2]
e2ikx

[
1 − ( k+iky

E+M

)2] 2E
E+M

)
, (A4)

W †
M (x) σx WM (x) = 2k

E + M
σz, W †

M (x) σy WM (x) = 2

E + M

(
ky e−2ikx (ky + ik),

e2ikx (ky − ik) ky

)
.

Next, the matrix �B in Eq. (2.13) for the mass-barrier problem in Sec. II C is given by

�B = 1

κ2(E2 − M2)

(
(E2 − M2)(k2

y − E2 + M2e−2κ	) −2M(κ + ky)(Eκ + kyM ) sinh(κ	)
2M(κ − ky)(Eκ − kyM ) sinh(κ	) (E2 − M2)(k2

y − E2 + M2e2	κ )

)
. (A5)

Similarly, the modifed transfer matrix � in Eq. (3.7) for the periodic mass profle (3.1) reads

� = 1

κ2(E2 − M2)

(
(E2 − M2)[M2 + (

k2
y − E2

)
eκd ] M(1 − e−κd )(κ + ky)(Eκ − Mky)

M(1 − eκd )(κ − ky)(Eκ + Mky) (E2 − M2)[M2 + (k2
y − E2)e−κd ]

)
. (A6)

For E2 < k2
y + M2 such that κ is real, the matrix elements of � are also real. For completeness, we also specify the elements of

the symmetric transfer matrix T :

T11 = M2 + (k2
y − E2) cosh(κd )

κ2
+ ME [cosh(κd ) − 1] + kyκ sinh(κd )

κ2
,

T12 = T21 = i
Eκ sinh(κd ) + Mky[cosh(κd ) − 1]

κ2
,

T22 = M2 + (k2
y − E2) cosh(κd )

κ2
− ME [cosh(κd ) − 1] + kyκ sinh(κd )

κ2
. (A7)
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