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Zusammenfassung

Akkurate machine learning (ML) Modelle mit hoher Generalisierbarkeit für die Diagnose einer De-

pression könnten sich in mehrfacher Hinsicht als wertvoll erweisen. Sie könnten beim Screening

auf depressive Störungen zum Einsatz kommen, bei der Differentialdiagnose von klinisch ähnlichen

Entitäten helfen und Erkenntnisse über die Pathomechanismen der Krankheit liefern. Ob eine solche

Klassifikation mit klassischen ML Methoden möglich ist, ist eine offene und derzeit umstrittene Frage.

Hierzu gibt es derzeit widersprüchliche Berichte und Veröffentlichungen. Parallel dazu entwickelte

sich in den letzten Jahren ein neues Teilgebiet von ML, nämlich automated machine learning (AML).

Ziel dieser Arbeit war es in einem ersten Schritt, die Anwendbarkeit von AML auf die strukturelle

Neurobildgebung anhand von zwei gängigen ML Aufgaben zu überprüfen (nämlich Alter- sowie

Geschlechtsvorhersage). Im zweiten Teil nutzten wir es zur Klassifizierung einer Depression als

Alternative zu Standard ML Ansätzen.

Zwei separate Stichproben wurden aus der 1000BRAINS Studie (N1000BRAINS=1157) für eine AML

Benchmark herangezogen. Die strukturelle Magnetresonanztomographie (MRT) der Probanden wurde

für die regionsweise Extraktion von kortikalen Eigenschaften vorverarbeitet. Die erste Stichprobe

wurde für die Herstellung der AML Modelle verwendet, die zweite für die Validierung der Leistungen

auf neue Subjekte. Wir beendeten die AML Benchmark mit einem letzten Test an einer externen

Stichprobe aus der BiDirect Studie (NBiDirect=1102). Zur Klassifikation der Depression wurden zwei

separate Stichproben aus BiDirect abgeleitet, um unsere AML Modelle zunächst zu entwickeln und

dann zu evaluieren. Die AML Modelle erreichten bei der Altersvorhersage 5.69 mean absolute error

(MAE) und bei der Geschlechtsvorhersage 85.8% balanced accuracy (BA) in der externen Validierung,

ähnlich wie state-of-the-art ML Modelle. Hinsichtlich der Klassifikation einer Depression schnitten

AML Modelle nur geringfügig besser ab als eine Zufallsvorhersage (55.1% BA).

Mit dieser Arbeit konnten wir zeigen, dass AML eine tragfähige und effiziente Alternative zu klassis-

chen ML Methoden in neuroimaging basierten Aufgaben ist, mit guter Generalisierbarkeit. Wie

klassische ML Modelle konnten AML Modelle depressive Patienten von healthy controls (HC) nicht

unterscheiden. Dieses negative Ergebnis konvergiert mit aktuellen negativen Ergebnissen für diese ML

Aufgabe.
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Abstract

Accurate and well-generalizing machine learning (ML) models for depression diagnosis could prove

to be tremendously valuable in multiple ways. They could find application in screening for depressive

disorder, assist in differential diagnosis from clinically similar entities and provide insights about the

illness’s pathomechanisms. Whether such a classification is possible with classical ML methods is

an open and currently debated question. Conflicting reports and publications exist on this matter. In

parallel, the recent years saw the development of automated machine learning (AML), a relatively new

subfield of ML.

This thesis aimed first at assessing the applicability of AML to structural neuroimaging in two

commonly performed ML tasks (namely age and sex prediction). In the second part, we applied it to

depression classification as an alternative to standard ML approaches.

Two separate samples were drawn from the 1000BRAINS study (N1000BRAINS=1157) for an AML

benchmark . Subjects’ structural MRIs were preprocessed for region-wise extraction of cortical features,

namely cortical thickness (CT), grey matter volume (GMV) and surface area (SA). The first sample

was used for AML model design, the second for validation of performance on subjects not involved

in pipeline design to test the generalizability of our models. We ended the AML benchmark with an

external validation on a sample drawn from the BiDirect study (NBiDirect=1102). Regarding depression

classification: two separate samples were derived from BiDirect for designing then validating our

AML models. AML performed similar to state of the art ML models for age (5.69 mean absolute

error (MAE)) and sex prediction (85.8% balanced accuracy (BA)). For depression classification, AML

models only performed slightly better than random (55.1% BA).

With this work, we showed that AML is a viable and efficient alternative to standard ML methods in

neuroimaging based tasks, with good generalization power. Similarly to classical ML methods, AML

models could not differentiate depressive patients from healthy controls (HC). This negative result

converges with recent negative findings for this task.
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CHAPTER 1

Introduction

Depression undoubtedly counts to the major illnesses of our time, with a lifetime prevalence

of 15.7% in Germany for diagnosed depressive disorders (Boudes et al., 2014). The 12

months prevalence of major depressive disorder (MDD) is at 4.2% for men and 9.9% for

women in Germany, numbers that have been on the rise (Maske et al., 2016; Steffen et al.,

2020). Depression is thought to be one of the most common cause for disability adjusted life

years (DALY) worldwide (Vos et al., 2020; Rehm & Shield, 2019). Not only does it have an

important impact on the quality of life of the patients themselves, but on their relatives and

close ones as well.

There is as such a strong incentive to better understand this disease. The pathomechanisms

associated with MDD however remain complex, multivariate and to a vast extent unclear. Part

of the effort to widen our knowledge focused on its correlates with the structure of the brain.

Identifying significant differences in terms of brain structure between depressive subjects and

healthy controls (HC) lead so far to only partly consistent results (Schmaal et al., 2017; Li

et al., 2020; Gray et al., 2020). The widespread problems of cohort and research team specific

findings played a role in the creation of conflicting reports (Marek et al., 2022; Botvinik-Nezer

et al., 2020). Such reported group-wise differences tend to contradict themselves, making

them usable for depression classification only to a limited extent. Even significant group-wise

statistical differences would not imply guaranteed feasibility of ML classifiers for the task

(Arbabshirani et al., 2017).

The idea of classifying depressive subjects and HC using machine learning (ML) based

on brain structure still lead to the realization of a plethora of studies (Gao et al., 2018,
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review; Patel et al., 2016, review). A high proportion of those studies reported high classifier

performances (Gao et al., 2018, review; Patel et al., 2016, review). Those studies however

suffered from relatively low sample sizes as well as limited testing for generalizability. Later

attempts on larger cohorts for the same task lead to negative results (Flint et al., 2021; Stolicyn

et al., 2020; Schulz et al., 2022), so that the realizability of exportable, well performing

classifiers yet has to be demonstrated.

Parallel to those developments, the ML branch saw the emergence of a new promising subfield

in recent years: automated machine learning (AML) (Waring et al., 2020, review). AML

algorithmically automatizes part of the ML pipeline design process. This allows for a selection

of pipeline components basing on high-speed evaluation of their performance amidst the

infinite domain of definition of possible ML structures. As an alternative to already attempted

conventional ML approaches, the application of AML may provide useful insights on the

problem and allow an improvement of performances. AML however saw until now relatively

little usage for neuroimaging related ML tasks (Dafflon et al., 2020; Waring et al., 2020,

review; Musigmann et al., 2022).

This leads us to the two research aims of our project: First, we tested the applicability of

AML to neuromaging tasks with two common and realizable ML tasks, sex classification

and age regression. We then attempted to differentiate depressive subjects from HC based on

structural neuroimaging techniques and data derived from them using AML.

2



CHAPTER 2

Literature review

2.1 Depressive disorder

Depressive disorder is a mental disorder defined in the International statistical classification

of diseases and related health problems (10th ed.; World Health Organization, 1993) (ICD-10)

by the following 3 main criteria: persistent sadness or low mood, loss of pleasure in normally

enjoyable situations and of interests, and persistent fatigue or loss of energy. According to

the Diagnostic and statistical manual of mental disorders (5th ed.; American Psychiatric

Association, 2013) (DSM-5) and the ICD-10, further symptoms of depressive disorder are:

loss of appetite, sleep disorders, diminished concentration, diminished sense of self-worth,

unreasonable feelings of self-reproach or inappropriate feeling of guilt, hopelessness and

suicidal ideation (World Health Organization, 1993; American Psychiatric Association, 2013).

The presence of symptoms can lead to the diagnosis of MDD if they persist over a duration of

at least 2 weeks (American Psychiatric Association, 2013; DGPPN et al., 2017). The presence

of the 3 main symptoms and of at least 4 side symptoms combined with the time factor are

required for this according to German guidelines (DGPPN et al., 2017).

A diagnosis of depressive disorder should be paired with an examination of additional symp-

toms as well as the patient’s medical history (DGPPN et al., 2017; World Health Organization,

1993; American Psychiatric Association, 2013). A depressive disorder that was preceded

by maniac or hypomaniac phase(s) leads to the diagnosis of a bipolar disorder (DGPPN

et al., 2017; World Health Organization, 1993; American Psychiatric Association, 2013). If

psychotic phases or symptoms are known, the diagnosis should be changed in depressive

disorder with psychotic symptoms (DGPPN et al., 2017; World Health Organization, 1993;
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American Psychiatric Association, 2013). Those two differential diagnoses have considerably

different treatment in comparison with the treatment of unipolar depressive disorder without

psychotic symptoms and should therefore be considered as different entities (DGPPN et al.,

2017; World Health Organization, 1993; American Psychiatric Association, 2013).

The prevalence of depressive disorders among adults is estimated at 5.0% worldwide (Vos

et al., 2020). In Germany, it has an estimated prevalence of 10.1% (Bretschneider et al., 2017).

The impact of depressive disorders on individual, societal and economic levels tends to be

underrated and is on the rise (Vos et al., 2020; McLaughlin, 2011). From 1990 to 2020, the

DALY caused by depressive disorders augmented by 60%. In 2019, it was ranked 13th in the

leading causes of disability across all ages worldwide (Vos et al., 2020). It ranked as high

as 4th leading cause of disability for younger generations globally in that year (10-24 years,

Vos et al., 2020). Additionally, depression is also recognized as a major cause for suicide,

with an estimated 5% to 8 % of patients with depression dying by suicide (Brådvik, 2018).

High prevalence, impact on populations as well as perceived suffering for the patients have

motivated research on depression for decades (Holtzheimer 3rd & Nemeroff, 2006).

The origins for depressive disorder are described by the widely accepted biopsychosocial

model as a complex interaction between elements of the patient’s environment, intrinsic

mental processes and biological processes (Engel, 1977). The pathophysiology for depressive

disorder is often described at cellular scale using the monoamine hypothesis (Hirschfeld,

2000). This hypothesis explains depressive symptoms through a perturbation in neuronal

pathways caused by an imbalance in the presence of neurotransmitters. More specifically,

serotonin, dopamine, norepinephrine and epinephrine pathways are associated with this

hypothesis, although others have been the subject of studies (e.g. glutamate; Sanacora

et al., 2012; Onaolapo & Onaolapo, 2021). It became widely popular due to the fact it

explained the efficiency of a broad range of antidepressant medications and is a common part

of psychoeducative programs (Rabovsky & Stoppe, 2008). It also has the merit of establishing

a bridge between the clinical picture of depression and neurophysiological knowledge. Still, it

encountered a lot of criticism and seems incomplete (Moncrieff et al., 2022, review; Hirschfeld,

2000; Delgado, 2000). Reasons for this is among others the insufficient amount of evidence
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supporting the theory (Moncrieff et al., 2022, review). The specific idea of serotonin depletion

as a cause for depressive disorder, a wide-spread idea, is also partly contradicted by the

mechanism of action of Tianeptine, a serotonin reuptake enhancer, and when induced did not

lead to depressive symptoms (McEwen et al., 2010; Delgado, 2000).

As another axis for depression research, anomalies were sought for at the scale of the central

nervous system’s anatomy (Trifu et al., 2020; Zhang et al., 2018). MDD has been linked to

alterations of volume and cortical thickness in different regions. The prefrontal cortex (PFC) is

a region located rostral to the primary motor area. It is involved in emotional regulations, social

behaviour regulation and planning, among others. The PFC is the region most commonly

associated with depression induced transformation (Trifu et al., 2020). Sections commonly

affected are the dorsolateral prefrontal cortex (DLPFC), the orbitofrontal cortex (OFC), the

middle PFC and the anterior cingulate cortex (ACC). Studies based on magnetic resonance

imaging (MRI) have supported the association of reduced PFC volume in MDD, as well as a

significant reduction in cortical thickness (CT) (Trifu et al., 2020; Zhang et al., 2018). Other

arguments supporting its involvement is the success of high-frequency repetitive transcranial

magnetic stimulation (HF-rTMS) used on the left DLPFC in the treatment of MDD (Berlim

et al., 2014, review). Structural changes affecting the hippocampus in MDD were also reported

(Videbech & Ravnkilde, 2004; Trifu et al., 2020). The hippocampus plays an important role

in memory recall (Burgess et al., 2002). Meta-analysis have shown a smaller hippocampus

in depressed patients in comparison with HCs. Explanation for this is given to the high

concentration of glucocorticoid receptors present in the region (R. M. Sapolsky et al., 1984),

giving it a sensitivity to elevated cortisol levels (R. Sapolsky, 1985). Cortisol levels have been

reported as higher in stress situation and in depression (Dienes et al., 2013; Carroll et al., 2007),

although these postulates are still debated (Nandam et al., 2020). Thus, it it hypothesized

that cortisol levels reach a toxic level in depression, causing hippocampus volume reduction

(Trifu et al., 2020). There is evidence that successful therapy with antidepressant treatment

and electroconvulsive therapy (ECT) can revert this effect (Nordanskog et al., 2010). The

thalamus is believed to play an important role in information processing forwarding between

different areas (Fama & Sullivan, 2015). It is involved in emotion as well as in sleep and

wakefulness regulation (Barson et al., 2020; Coulon et al., 2012). The grey matter volume
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(GMV) of both sides of the thalamus was found to be reduced in MDD. Lastly, the striatum,

the parietal lobe and the dorsolateral prefrontal circuit were all shown to be significantly

different in their anatomy when compared with HC.

Studies hinting at structural differences in depressive subjects compared to healthy controls

brought the following question: Could those differences be analogous and striking enough to

allow for a diagnosis of depressive disorder using solely the data of an sMRI ? There exist

no report of such a classification being successfully performed by a trained clinician without

techniques derived from the field of ML.

ML is a field of mathematics centered around the design and usage of self-learning algorithms

(Rebala et al., 2019, Jung, 2022). It lies at the crossroad between statistics, algorithmics and

computer science. ML can be used to create predictive models (that will be called ML or

AML models in this work) using a set of input variables called features as input to predict a

variable called target (Jung, 2022). Different mathematical objects can be used to design an

ML model’s architecture (e.g. statistical trees, forest of trees, neural networks). The choice of

ML model algorithm, subcomponents and hyperparameters affect its predicting performances

and generalization power (Jung, 2022). The performances of an ML model are dependent

on the task given to it as well the quality and size of the samples used to train it (Jung, 2022;

Marek et al., 2022). ML models are at risk of a phenomenon called overfitting (Jung, 2022;

Mutasa et al., 2020; Graham et al., 2019; Ying, 2019). An overfitted ML model predicts

accurately on its training sample yet fails to reproduce those performances on new, unknown

subjects. ML was used with structural MRI (sMRI) derived features in order to attempt sMRI

based depression prediction.

2.2 AML/ML based depression diagnosis

Previous studies have shown that MDD patients could be successfully distinguished from

HC using structural imaging data with ML methods. In Patel et al., 2016, 15 of such studies

were reviewed, with accuracies ranging between 67.6% - 94.3%. The classifiers used in

those studies all originated from conventional ML approaches (i.e., neither deep learning
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(DL) nor AML were used). The most used type of algorithms was support vector machines

(SVM), with different kernels and normalization methods having been employed. The datasets

were all balanced in classes, although relatively small (74 samples in the most important

dataset). Performances were mainly measured using accuracy as a metric. The evaluation was

performed predominantly with leave-one-out-cross-validation (LOOCV). An other review

supported similar findings in terms of accuracy (Gao et al., 2018, review). Again, the main

metric used was to a large extent accuracy, and the method for evaluation LOOCV. Overall,

the results reported in Patel et al. (2016) and Gao et al. (2018) were positive and hinting at the

realizability of ML based depression diagnosis using sMRI data.

Those studies however suffered from a number of limitations. First, most of them used

relatively small sample sizes (Patel et al., 2016, review; Gao et al., 2018, review). The

majority of them additionally did not make use of separate train and validation datasets. In

ML this is a choice that can lead to undetected overfitting (Graham et al., 2019; Flint et al.,

2021). Both of these restrictions come with a considerable risk of reporting overoptimistic

results, and should therefore be taken with caution.

The reported positive results of such studies was questioned in Flint et al. (2021). A com-

petition called Predictive Analytics Competition (PAC) took place in 2018. Approximately

170 ML experts split across 49 ML teams from around the world competed to train the best

ML based predictor for depressive disorders, based on sMRI. First, every team was provided

with the same training dataset, that included the sMRI as well as diagnosis and confounders

for each subject. Each ML team then constructed the best ML model they could using this

dataset. In a second phase, each team received a new dataset to evaluate performance, that we

will call test dataset. The test dataset included again sMRI and confounders for each subjects.

This time though, the diagnosis were not provided. The ML models produced previously were

used to predict whether those new subjects were HC or patients. It is on their performance for

the prediction on those unknown subjects that each ML team was ranked. In contrast with

previously mentioned studies, we here had a strict separation between the dataset used to find

the optimal model and the validation dataset.
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Results from studies such as those mentioned above (Patel et al., 2016, review; Gao et al.,

2018, review) had led to a conservative expectation for results reaching at least the 80%

accuracy threshold. The accuracies of the winning classifiers were much lower, ranging

between 60% and 65%. The important discrepancy between the competition’s results and

prior findings highlighted the drastic limitations of the latter.

The explanations for the divergence between the previous, small-sample studies and the results

of the PCA 2018 are multiple (Patel et al., 2016, review; Gao et al., 2018, review; Flint et al.,

2021). First, the inverted proportionality between accuracy and number of samples recently

identified for the task is very likely to have played a role in it (Schulz et al., 2022; Flint et al.,

2021). The tendency of studies to show overly positive results was thus attributed to models

being able to adapt to patterns specific to the samples of the dataset when the population

was small enough (Flint et al., 2021; Graham et al., 2019). Aside from this, the risk of

misestimation of the accuracy was linked with the use of LOOCV as evaluation method (Flint

et al., 2021). LOOCV was shown to lead to non-generalizable estimations of performances

with high variance (Flint et al., 2021; Varoquaux et al., 2017). The absence of separation

between train and dataset in most publications probably further contributed to overoptimistic

reports (Iniesta et al., 2016). Overall, the ML predictors built previously were deemed as

being probably unable to export to unknown samples. The negative result of the PAC 2018 on

a large validation sample for depression classification with sMRI data was reproduced on a

different sample in Stolicyn et al. (2020).

Thus, it still remains unknown if ML can successfully be used to perform prediction of

depressive disorder on unknown subjects using sMRI based data.

2.3 Rationale for the use of AML

AML is an emerging subfield of ML were different ML tasks such as selecting the data

preprocessors, feature preprocessors, optimal predictive models and architecture as well as

optimising the models’ hyperparameters is solved algorithmically using different possible

meta-heuristics. Although first attempts at automating the process of ML pipeline design
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already existed in the 1990’s, the field gained more attention in the last decade (Zöller &

Huber, 2021). This is due partly to vast improvements in available computing power as well

as in the existing AML implementations (Zöller & Huber, 2021). A likely explanation for this

development is certainly the increased demand for ML experts and shortages in that regard.

AML aims at improving the quality of ML pipelines designed for common predictive tasks.

This is achieved by using different automatized metaheuristics in order to efficiently select

an ML architecture amidst the infinite possibilities available. Where human operators often

select among a limited subset of possible architectures due to human-time limitations (Zöller

& Huber, 2021), AML can rapidly evaluate thousands of different combinations of ML

algorithms. AML also vastly accelerates parts of the ML development by automatizing time-

consuming tasks (e.g. hyperparameter optimization), thus allowing ML operators to reallocate

their productivity in a more optimized ways. A rapid integration of AML in common ML

workflows is to be expected in the current context due to the great demand in ML experts

(Musigmann et al., 2022).

Automation is inherent to the ML field. The extent to which the ML pipeline creation

and optimization process is automated is to be understood as a continuum, and not as a

binary attribute (Zöller & Huber, 2021). Methods designed to automatize part of the ML

optimization process exists. Grid-search or random-search can for example be used to

automatize hyperparameter optimization (Liashchynskyi & Liashchynskyi, 2019), while

recursive feature elimination is an example of automatic feature selection method (Escanilla

et al., 2018). AML brings the logic of automatizing the ML design process to a further

extent (Zöller & Huber, 2021). Modern AML libraries can, with limited intervention from a

human operator, create a prediction-ready AML model by simply analyzing a dataset given

as input (Feurer et al., 2019; Olson & Moore, 2016). Even though partial automations of

the ML model design process are common, the use of fully automated ML design processes

understood under AML is relatively new in the medical field (Waring et al., 2020, review;

Dafflon et al., 2020; Musigmann et al., 2022).

Although AML has progressively gotten more attention in the field of medical research

(Waring et al., 2020, review; Dafflon et al., 2020; Musigmann et al., 2022), there is still little
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literature on the usage of AML in neuroimaging (Dafflon et al., 2020; Musigmann et al.,

2022). Encouraging results were already reached for the tasks of age predictions based on

sMRI, with performances nearing the ones of conventional ML methods (Dafflon et al., 2020).

Furthermore, AML performed convincingly in a small-sample study for the prediction of the

achievability of resection of meningioma (N=138; Musigmann et al., 2022). Additionally, as

previously described (2.2), conventional ML models were already tested extensively for the

task of diagnosing depressive disorder. We thus decided to use AML for the task at hand as a

new and potentially advantageous option.
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2.4 Objectives of the study

First objective: AML benchmark

The applicability of AML to neuroscientific problems acquired some attention (Dafflon et al.,

2020; Musigmann et al., 2022), yet still deserves further exploration. Therefore, the first

part of our study consists in testing AML models for the prediction of two targets where ML

based prediction was already proven to work, namely on age and sex prediction (Chekroud

et al., 2016; Jiang et al., 2020). For this aim, we used sMRI from a pool of subjects from the

1000BRAINS study (Caspers et al., 2014). Testing on sex and age allows us to test AML for

both regression and classification tasks.

During this part of the study, the effect of the dataset (train, validation or test) chosen for

metrics evaluation on reported performance will furthermore be analyzed. This will be

achieved by comparing the evaluation performances on each dataset.

Second objective: Depression classification

Whether depression can be diagnosed using ML models based on sMRI derived features or

not remains an open question. To our knowledge, little to no studies were conducted using

AML instead of classical ML methods for this task. After the establishment of a baseline in

the first part of our project, we turned to depression diagnosis using data from the BiDirect

study.

The generalization power of AML models will be assessed in this step. We will furthermore

perform an analysis of the effects of confounders on prediction accuracy for depression

diagnosis.
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CHAPTER 3

Material and Methods

This chapter describes the protocols that were followed in order to answer our two aims,

from the raw data acquisition to performance evaluation of our AML models. The material

we had access to and its preprocessing is initially described. We then detailed the protocol

followed for our first objective of performing an AML benchmark along with its rationale.

The steps followed for our second objective, the depression classification, AML tasks are

finally reported.

3.1 Material

As detailed in Falk et al., 2013, cohort-specific, non-generalisable findings are an ubiquitous

problem in neuroscience. In order to minimize these, populations from different studies were

acquired for our experiments. Here, we first provide context and descriptions on those: The

1000BRAINS study’s sample (Caspers et al., 2014) was used for our AML Benchmark; the

BiDirect study’s sample (Teismann et al., 2014) for depression classification. The way from

raw MRIs to the AML ready features is further detailed; along with the steps for subject

inclusion/exclusion.

3.1.1 1000BRAINS

1000BRAINS (Caspers et al., 2014) is a longitudinal study that aims at winning insights in

the effects of aging on the function and the anatomy of the human brain. For this purpose,

subjects were recruited from the cohorts of two different sources (Caspers et al., 2014; Erbel

et al., 2012; Erbel et al., 2010). Subjects from 10-year follow-up cohort of the German Heinz
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Nixdorf Recall (HNR) Study as well as from the HNR MultiGeneration Study (Erbel et al.,

2012; Erbel et al., 2010). Those studies’ main focus lies on the estimation of cardiologic

pathologies and risk factors affiliated to those (Erbel et al., 2012; Erbel et al., 2010). Exclusion

criteria were related to MRI and strong magnetic field exposure (stents, pacemaker, surgical

implants or protheses, claustrophobia, tatoo, history of neurosurgery). Since 1000BRAINS is

a population-based study, the only exclusion criteria were based on the eligibility of the MR

(Caspers et al., 2014). An extensive protocol including sMRI, functional MRI (fMRI) and

diffusion tensor imaging (DTI) was followed by the subjects. Various psychological variables

were also collected using different questionnaires. All subjects provided written informed

consent prior to inclusion (Caspers et al., 2014). The study protocol was approved by the

Ethics Committee of the University of Essen, Germany (Caspers et al., 2014).

The process of subject selection is here described. For a visual representation, see 1. We

initially had access to the data of 1314 subjects. We selected those with available sMRI,

proceeded to preprocess their data using Freesurfer’s pipeline (Fischl, 2012) and structured

the output in the dataset we used later on. 124 subjects were excluded because of missing MRI

scan, failed MRI preprocessing or missing demographic data (here age and sex). A quality

control (QC) (Shewhart & Deming, 1939) was then performed, resulting in 33 exclusions.

A final sample of 1157 subjects was present in our main dataset for the 1000BRAINS study

(meanage = 61.01 years, SDage = 12.84 years, minage = 18.50 years, maxage = 85.40 years,

percentfemale = 46%).
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Fig. 1: Subject selection for the 1000BRAINS sample

3.1.2 BiDirect

The BiDirect Study (Teismann et al., 2014) is a prospective observational study of 3 cohorts

designed with the aim of exploring the bidirectional effects of depression and (subclinical)

arteriosclerosis. The study was approved by the ethics committee of the University of Münster

and the Westphalian Chamber of Physicians in Münster, North-Rhine-Westphalia, Germany

(Teismann et al., 2014). Written informed consent for participation in the study was obtained

from all participants (Teismann et al., 2014).

The data of 2 from the 3 main cohorts of the study were employed for our investigation.

The first cohort we used is the MDD cohort. It has a population size of 999 patients. These

patients suffered an episode of depression at the time of recruitment. Additional inclusion

criteria were: 1. Age between 35 years and 65 years (included) 2. Ongoing treatment of
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acute depression. Exclusion criteria were: 1. Additional diagnosis of dementia 2. Additional

diagnosis of drug abuse 3. Compulsory admission. Diagnosis of depression was conducted at

recruitment in one of the 6 centers that are part of the study and limited to those who had been

hospitalized due to a depressive episode at least once during the last year prior to recruitment.

Potential participants for the study were evaluated by certified psychologists, after which

eligible patients were invited to participate in BiDirect-Baseline. The second cohort we used

is the control cohort. It is composed of 912 subjects of age ranging between 35 and 65 years

(included).

Participants followed an extensive data collection procedure that further assessed the presence

or absence of depressive symptoms. They were required to fill the modules A, A’, B, D, and

O of the Mini-International Neuropsychiatric Interview (MINI). The Hamilton Depression

Rating Scale (HAM-D-17) and the 14 items version of the Hamilton Anxiety Rating Scale

(HAM-A-14) were also used for that purpose (Hamilton, 1960; Hamilton, 1959).

The acquisition of the BiDirect sample was again followed by exclusions of certain subjects

in parallel to the preparation of the data. The subjects were excluded when their sMRI was

not available. This resulted in 1428 subjects’ sMRIs being preprocessed using Freesurfer’s

pipeline (Fischl, 2012). For each ML task, the same sets of features were calculated as for the

benchmark. A QC was performed which lead to 34 exclusions (Shewhart & Deming, 1939).

The availability of age, sex and the depression/HC variable of each subject was controlled for

missing values, leading to 12 subjects further exclusions. A supplementary step was taken

in this task to ensure that demographic data had no statistical effects on the diagnosis using

propensity score matching, resulting in 280 subjects sorted out (Austin, 2011). In total, 1102

subjects were present in our datasets for the BiDirect study (meanage = 51.08 years, SDage =

7.51 years, minage = 35.30 years, maxage = 70.05 years, percentfemale = 58%).
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Fig. 2: Subject selection for the BiDirect sample

3.1.3 Image acquisition and structural image preprocessing

The acquisition of the structural MRIs used in this work from 1000BRAINS was performed

on a 3 Tesla MR scanner (Caspers et al., 2014). The structural data used in our study is

derived from the anatomical 3D T1-weighted Magnetization Prepared - RApid Gradient Echo

(MP-RAGE) sequence (176 slices, repetition time (TR) = 2.25 s, echo time (TE) = 3.03 ms,

inversion time (TI) = 900 ms, field of view (FoV) = 256 × 256 mm2, flip angle (FA) = 9°,

voxel resolution (VR) = 1 × 1 × 1mm3; Caspers et al., 2014). From the BiDirect study, we

used the T1-weighted 3D anatomical images in the next preprocessing steps (TR = 7.26 ms,
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TE= 3.56 ms, FA = 9°, 256 × 256 mm2, VR = 1 × 1 × 1mm3; 2 signal averages; Opel et al.,

2019; Teuber et al., 2017).

ML and AML models’ performances are sensible to the peaking phenomenon which requires

restricting the number of features used in prediction (Sima & Dougherty, 2008). The peaking

phenomenon describes the following tendency: With an always growing number of features,

and with a constant number of subjects in the training sample, the performance of a predictive

algorithm tends to first grow, but then decreases for every additional feature of the set (Sima

& Dougherty, 2008). Large number of features may also result in a loss of generalization

power (Dougherty et al., 2009). Voxel-wise analysis of the sMRI would result in features sets

with a magnitude exceeding the million features, submitting our AML models to the adverse

consequences of the peaking phenomenon. Moreover, AML models using voxels as input and

trained with one MRI acquisition configuration could not export well to another one due to

varying matrix configurations. We responded to those technical difficulties by parcellating the

sMRI, thus reducing the number of features and improving the generalizability of our AML

models to other sMRI acquisition configurations. We used a resting state fMRI (rs-fMRI)

based parcellation, because they may allow to establish a connection between structural

anomalies and anomalies in the function of cognitive networks known in depressive disorder

(Dai et al., 2019, review).

Anatomical preprocessing of the data was accomplished using Freesurfer (Fischl, 2012)

v7.1.0. on the T1-weighted 3D anatomical images. The original pipeline was adapted to

also include the 400-node Schaefer parcellation (Schaefer et al., 2018), which is based on

cortical surface models calculated from rs-fMRI measurements of 1489 participants using a

gradient-weighted Markov Random Field (gwMRF) approach (Kindermann & Snell, 1980).

First, the parcellation was transformed to individual space using FreeSurfer’s mris_ca_label

tool (Fischl, 2012). Then, morphology values were gathered for every transformed node using

FreeSurfer’s mris_anatomical_stats tool (Fischl, 2012). For each node, the following features

were determined: the surface area in mm2, the gray matter volume in mm3 and the average

cortical thickness in mm.
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3.1.4 Quality control and propensity score matching

A quality control was performed for the sample of each study after the features were computed

(CT, GMV and SA; Shewhart & Deming, 1939). The average GMV, average CT and average

surface area (SA) were calculated for each participant and used for the QC. A deviation from

2.68 standard deviation (SD) for one of those values lead to the exclusion of the subject.

AML models may capture the effect of confounders to draw inference on the target, an effect

we wanted to restrict. We theorized that the effects of age and sex on the depression/HC

variable may be used by our depression predictors in such a way. A last step was thus

undertaken in order to limit the effect of the sex and age variable on the depression/HC

variable for the BiDirect dataset, using propensity score matching (Austin, 2011). This

resulted in 280 subjects being excluded from our BiDirect dataset.

3.2 First objective: AML benchmark protocol

Whether depressive states can be predicted or diagnosed using structural MRI is still up to

debate (Flint et al., 2021). The efficiency of AML in the field of neuroscience, although

beginning to receive attention in the last years, also requires further investigations (Dafflon

et al., 2020; Musigmann et al., 2022). Therefore, a failure to predict depressive states with

AML and structural MRIs could either be inherent to the task, due to the use of AML, or both.

A benchmark was performed with the targets sex for a classification ML task and age for a

regression ML task using Auto-sklearn as our AML library (Feurer et al., 2019). Those two

targets are predictable to a certain extent using region-wise GMV, CT and SA with standard

ML models (Chekroud et al., 2016; Jiang et al., 2020). They were therefore used to test the

efficiency of our AML models before application to depression prediction.

In this section, we describe the protocol that we followed for the AML benchmark once the

data were preprocessed for the creation and performance evaluation of our AML models. For

a visual representation, see fig. 3. First, the included subjects for 1000BRAINS were split in

a train- and an internal validation dataset. We then created multiple datasets, using the same
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subjects’ train/validation partitioning but different feature sets. Afterwards, the creation of

our AML models was performed for each feature set using the subjects of the 1000BRAINS

train dataset. Lastly, the performance of the so designed AML models were tested separately

on the train dataset, the internal validation dataset and the BiDirect dataset that served as the

external validation dataset.

3.2.1 Preparation of the train and internal validation datasets

Building a successful AML model requires adequate preparation of the raw data in datasets

for designing, training and testing purposes (Jung, 2022). The split in train and validation is

a splitting that occurs between subjects and does not involve any form of feature selection

(Jung, 2022). This measure serves the purpose of limiting the risk of undetected overfitting

and overoptimistic positive results (Arbabshirani et al., 2017). An AML model is said to

be overfitting when it performs well on the dataset used to design it, however is unable to

reproduce such performances on new, unknown samples (Mutasa et al., 2020; Jung, 2022).

Overfitting is due to an AML model having adapted to characteristics and patterns specific to

the train dataset without having found an actual abstract and generalizable rule to solve the

problem (Mutasa et al., 2020; Jung, 2022, Ying, 2019). It is an ubiquitous problem in ML

(Ying, 2019).

The 1000BRAINS subjects were thus split into a train and an internal validation dataset (Jung,

2022). The train and the validation datasets had strictly different samples from each other

and were designed so as to be demographically homogeneous (Jung, 2022). Dimensions for a

train/test split usually range from a 50% / 50% of the main dataset for respectively the train

dataset and the test dataset to 90% / 10% of the main dataset (Rácz et al., 2021). There exist

no strict recommendation on the size of splits to choose (Jung, 2022). We opted for 50% /

50% splits in order to maximize the size of the internal validation datasets and thus limit the

variance of reported results (Wickenberg-Bolin et al., 2006). A test dataset may potentially

also be extracted from the main dataset, distinct from the train and validation dataset. This

was not done for this aim, since we had access to the sample of the BiDirect study for external

validation (Teismann et al., 2014).
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Fig. 3: Path from raw data to a prediction-ready AML model for each AML task. The hashed space
represents the part of ML that is run automatically by most AML libraries. This workflow was followed for the
sex classification, the age regression and the depression classification tasks separately.
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The practice of creating separate train, internal validation and external validation datasets

serves the purpose of evaluating performances on future unknown samples in the last steps of

the process as realistically as possible (Jung, 2022; Cabitza et al., 2021; Bleeker et al., 2003).

Previous studies attempting the diagnosis of depressive disorders based on sMRI have mostly

trained and tested on the same dataset (Patel et al., 2016, review; Gao et al., 2018, review).

While this is more time and ressource efficient, designing an AML model and evaluating

its performances on the same dataset comes with a high risk of overfitting, thus reporting

overoptimistically high and non generalizable performances (Flint et al., 2021). Splitting

the experience dataset in an AML design (or train) dataset and an internal validation dataset

represents a necessary measure against such a risk (Jung, 2022). Ideally, this evaluation

should be followed by an external validation with datasets from another source (Bleeker et al.,

2003; Cabitza et al., 2021; Rose, 2018).

Our splitting of the initial dataset (A) in a train (B) and an internal validation dataset (C) of

equal size (+/- 1 subject) followed the here detailed procedure. A random pairwise matching

algorithm was implemented using a parameter list of matching-relevant features, composed

of either continuous or binary features (e.g.: age, then sex). The order played a role, as

the matching algorithm prioritized selecting similar values for the feature provided first. A

random seed allowed to repeat the matching or to perform it in a different order. The algorithm

ran in a recursive fashion with the starting dataset A being reduced by two subjects in each

iteration (with the exception of the last were 3 subjects could be substracted) while datasets

B and C gained one subject per iteration (with again the exception of the last iteration). For

each subject in the dataset A, a subset Y of matching yet non-matched subjects was selected

for the first of the feature to match for. From this subset, another subset of matching subjects

was then selected for the next matching-relevant feature, and so on. This procedure stopped

when every feature in the list of matching-relevant features was used to filter the successively

produced subset. A subject was then selected randomly from the final subset. The original

and the selected subjects were then stored, one in the datasets B, the other in C, and subtracted

out of A. This procedure was repeated until there are no subjects left in the dataset A.
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Using this procedure with the arguments sex followed by age to split the 1000BRAINS dataset

resulted in homogeneous demographics in the train and internal validation datasets, presented

in table 1.

Train dataset Internal
validation dataset Complete dataset

Number of subjects 579 578 1157
Age (in years) 61.07± 12.94 60.95± 12.74 61.01± 12.84
Sex (percent of female) 46% 46% 46%

Table 1: Demographics of the 1000BRAINS complete, train and internal validation datasets

3.2.2 1000BRAINS feature sets preparation

The subject-wise splitting of the initial 1000BRAINS dataset was followed by the feature-

wise splitting in multiple datasets. Different feature sets were prepared as input to the AML

Benchmark: (i) GMV for each node (400 features), (ii) CT for each node (400 features), (iii)

SA for each node (400 features), (iv) GMV, CT and SA for each node (1200 features).

The estimated total intracranial volume (eTIV) is a variable known to interfere with the

prediction of various variables. As shown in 2, eTIV and the structural parameters we used

tend to be intercorrelated. In Hilger et al., 2020, the authors therefore chose to regress the

factor eTIV out of the variables and used the residuals as input to perform the ML tasks with

both the raw data and residuals in different feature sets. We chose this approach too.The same

four feature sets combinations with eTIV regressed out were computed and added as feature

sets. As such, we derived a total of eight feature sets to be tested in our AML benchmark, that

both were used for sex classification and age regression.

Pearson corr. coef. eTIV Average volume Average thickness Average surface
eTIV - 0.61*** 0.11*** 0.62***
Average volume 0.61*** - 0.44*** 0.82***
Average thickness 0.11*** 0.44*** - -0.13***
Average surface 0.62*** 0.82*** -0.13*** -

Table 2: Pearson correlation coefficient between eTIV, average volume, average thickness, average
surface in the 1000BRAINS dataset. Significant correlation between eTIV and each of those features could
be shown.
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3.2.3 AML model design

A predictive AML model was designed with optimized hyperparameters for each feature set

using solely the subjects of the train dataset. We here provide a description of the algorithms

used for AML model design along with their search space. The rationale behind AML

library choice, search space, search setting and evaluation metrics is here detailed. The

ML algorithms included in the AML search space are of importance to report, because they

provide an overview of the options that were evaluated algorithmically for future research

projects. At the end of this phase, one AML model was available for each of the 8 feature sets

of the AML benchmark.

3.2.3.1 AML library selection

The rationale behind the selection of AML library is described here. Different AML libraries

were designed and made available, with no guideline available on which one to use in which

situation. Auto-sklearn (Feurer et al., 2019), TPOT (Olson & Moore, 2016), Auto-Weka

(Thornton et al., 2012) as well as H2O (LeDell & Poirier, 2020) are just a few examples

among the libraries developed for this purpose.

Two important criteria for the selection of an AML library are: performances reported in

the literature, and interpretability of the final AML models for a human operator. For the

diagnosis task, the priority consists in finding a model that performs better than a random

predictor. This is why we prioritized performance over interpretability of the outputted AML

models in this work. In the event of accurate AML models intended for clinical use, the

explainability of the decisional algorithm should be granted, so that priorities should be

changed (Vilone & Longo, 2021).

In Zöller & Huber, 2021, AML libraries were benchmarked on 114 publicly available real-

world datasets. It appeared that the performances reached by the different competing al-

gorithms were on average very similar, with a maximum performance difference of only 2.2%.

For most datasets, the performance differences were not significantly different. However, this

benchmark did not include Auto-sklearn 2.0 (Feurer et al., 2021), that seemed to outperform
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other AML libraries for classification tasks. The possible superiority of Auto-sklearn in

classification tasks is also supported in Balaji & Allen, 2018. The study however shows that

TPOT outperforms other AML libraries when it comes to regression tasks. Based on this

literature, we selected Auto-sklearn 2.0 as our main AML library. We furthermore decided to

compare the results of TPOT and Auto-sklearn 2.0 for the diagnostic task.

Auto-sklearn

We here provide a short description of Auto-sklearn (Feurer et al., 2019), that we used to

perform the majority of AML model search. Auto-sklearn is an AML library focused on

optimizing ML ensembles, creating ensembles of up to 50 ML pipelines including data and

feature preprocessors in its default configuration. It takes advantage of a large variety of

preprocessors and classifiers from the scikit-learn library (Pedregosa et al., 2011). Auto-

sklearn has multiple implementations. For regression tasks, we used a recent version of

Auto-sklearn 1.0, the version 0.13.0. An other version of Auto-sklearn specifically optimized

for classification, Auto-sklearn 2.0 (from the version 0.13.0), is used in our classification

tasks.

For each run, we used the default search spaces provided in Auto-sklearn. The search-space of

Auto-sklearn 2.0 is described in Feurer et al., 2021. The following classifiers are included in

Auto-sklearn 2.0: Extra Trees, Gradient Boosting, Multilayer perceptron, Passive aggressive-

classifier, Random Forest and Stochastic gradient descent. Following preprocessors are

available: categorical encoding, category coalescence, imputation of missing values, rescaling,

quantile transformer, robust scaling.

TPOT: Tree-based Pipeline Optimization Tool

In order to offer comparison for our Auto-sklearn AML models, AML models for depression

classification were additionally searched for using Tree-Based Pipeline Optimization Tool

(TPOT) (Olson & Moore, 2016). TPOT also bases on preprocessors and classifiers from the

scikit-learn library (Pedregosa et al., 2011), as well as custom models proper to TPOT only.

Searching for a well-performing pipeline is here done using a genetic-algorithm inspired
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heuristic as implemented in the Python package Distributed Evolutionary Algorithms in

Python (DEAP). We allowed TPOT to perform its generational optimization process for a

maximum of 100 generations.

The following models are included in the search space we used for TPOT: decision trees-,

random forests-, eXtreme Gradient Boosting- and k-Nearest Neighbor classifier as well as

logistic regression. Available preprocessors are: standard -, robust -, min-max -, and MaxAbs

scalers, as well as randomized PCA, binarizing, and polynomial features.

3.2.3.2 Evaluation metrics

Both Auto-sklearn and TPOT require a main evaluation metrics for the AML design process.

The balanced accuracy (BA) was used as the main performance indicator in order to monitor

the efficiency of our classifiers in the training-, validation- and test-phases. The BA score is a

variation of the accuracy score that takes in account the number of occurrence of a class in

the dataset. For a binary classification problem, it is calculated as follows:

BAS =
TPR + TNR

2

with:

BAS = BA score

TPR = true positive rate

TNR = true negative rate

An important advantage of BA is its robustness to class imbalance. Imbalanced classes are a

problem that arises when some of the classes (e.g. the HC) are more represented than others

(e.g. the depressive subjects / subjects screened positively) in available datasets. Due to this

problem, the use of accuracy as a main or unique performance evaluation in neuroscience ML

tasks has been described as problematic (Alberg et al., 2004). Accuracy and BA should be

similar or equal in values for our datasets, since the classes to be predicted were balanced.

Generally speaking though, we see BA as a more representative and reliable measurement
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and for this reason decided to use it as our main metric. In the case of binary classifications,

BA equals the arithmetic mean of sensitivity and specificity.

Our regressors were built using mean squared error (MSE), which is defined as followed:

MSE =
1

n

D∑
i=1

(Xi − Yi)
2

with:

n = Number of samples

X = Predicted values

Y = True targets

A common problem in age regression is that the limits of the targets’ domain of definition

are generally poorly predicted (Smith et al., 2019). Subjects with true target at the lower

end of the domain tend to be overestimated, subjects at the higher end underestimated. MSE

punishes misestimation of outliers more severely than functions such as mean absolute error

(MAE). This is why we selected MSE for the AML model building phase. For comparisons

with results from previous studies, we also calculated the MAE.

Once the subjects’ splitting, features sets’ preparation and AML library’s configuration was

completed, the AML design process was started. For the Auto-sklearn based model search,

each pipeline-building algorithm was given a maximum run time of one day with a maximum

CPU-usage of 40 logical CPUs. The maximum size of models in memory was capped to

12GB. The runs lasted 8 days for each of the 2 tasks. The regression tasks ran with Auto-

sklearn (0.13.0). In this version of Auto-sklearn, the evaluation processes in the inward loop

of the search process can be either set manually or use a default configuration. We opted

for a 10 fold cross-validation. The classification task ran with Auto-sklearn 2.0 (v 0.13.0).

Auto-sklearn v2.0 uses meta-learning and selects the evaluation methods for the inner-loop

automatically, based on knowledge of runs of real-world datasets.
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3.2.4 Performance evaluation of the Benchmark’s AML models

The AML design phase was followed by a thorough evaluation of performances that took place

in multiple phases. The evaluation on the train and internal validation datasets consisted in a

10 fold cross-validation (10 repeats) on the train dataset first, then on the internal validation

dataset. The external validation consisted in training the AML models on the complete dataset

of 1000BRAINS and evaluating its performance on the BiDirect sample. Comparing the

results of the internal and the external validation allowed us to get an insight on the magnitude

of overfitting to the train population. It also provided an insight on how well AML models

would export to samples of other studies, acquired with different scanner modalities and with

some differences in demographic data. The results of the successive evaluations are presented

in section 4.1.
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3.3 Second objective: Depression classification

protocol

3.3.1 Preparation of the train and validation datasets

The subjects were split in order to form the train- and the validation datasets using the

algorithm described in subsection3.2.1. The splits were performed with a 50% to 50% distri-

bution, matching primarily for HC/depressive patient followed by sex, followed by age. As

we can see in 3, this results in homogeneous demographics.

Train dataset Validation dataset Complete dataset
Number of subjects 551 551 1102

Healthy controls / total 50% 50% 50%

Age (in years) 51.14± 7.67 51.01± 7.35 51.08± 7.51

Sex (percent of female) 58% 58% 58%

Table 3: Demographics of the BiDirect datasets

The absence of influence of age on the diagnosis variable was inspected. When analysed with

an independent t-test, there was not a significant difference in the age distributions for healthy

controls (M = 51.14, SD = 7.79) and depressed patients (M = 51.01, SD = 7.22); t(1100) =

0.30, p = 0.76 in the BiDirect main dataset. Furthermore, there was not a significant difference

in the age distributions for healthy controls (M = 51.21, SD = 7.92) and depressed patients

(M = 51.08, SD = 7.43); t(549) = 0.20, p = .84 in the BiDirect train dataset and no significant

difference in the age distributions for healthy controls (M = 51.07, SD = 7.68) and depressed

patients (M = 50.93, SD = 7.01); t(549) = 0.22, p = .82 in the BiDirect validation dataset.

The absence of influence of sex on the diagnosis variable was also examined. A chi-square test

of independence showed that there was no significant association between sex and depression

in the BiDirect main dataset, X2 (1, N = 1102) = 0.54, p = .46. Furthermore, a chi-square test

of independence showed that there was no significant association between sex and depression

in the BiDirect train dataset, X2 (1, N = 551) = 0.23, p = .63 and a last chi-square test of
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independence showed that there was no significant association between sex and depression in

the BiDirect validation dataset, X2 (1, N = 551) = 0.22, p = .64.

Base structural and confounder datasets

A total of 9 feature sets was first prepared for AML model design, train and validation. The

8 first contained the same features as the 8 datasets of the AML benchmark, calculated for

the BiDirect population this time. One additional feature set was prepared where only the

demographic data, i.e. age and sex, was used. Rationale for this is that in the PAC 2018 (Flint

et al., 2021), one of the leading 5 teams reported using solely demographic data together with

total GMV to train their ML models and make predictions. This feature set serves as a further,

necessary measure to test the influence of confounders on AML model performances.

Feature sets based on functional networks

Studies reported functional anomalies in MDD patients in comparison with HC (Castanheira

et al., 2019). Those changes may be concomitant with regional structural changes. In order

to investigate whether changes of the individual functional networks were accompanied by

significant changes in brain structure, we used the structural data of each network as feature

sets for depression classification. Thus, we created 14 additional feature sets that are based on

the regions of the 7 functional networks as defined in Schaefer et al., 2018. For each network,

one feature set with the raw structural data and one with the residuals after regressing the

factor eTIV out was used.

Feature sets based on anatomical priors

We decided to additionally perform depression classification with a restricted amount of

features based on anatomical priors. Restricting feature with the help of domain-specific

knowledge may improve AML model performances (Remeseiro & Bolon-Canedo, 2019,

review). Here, we describe the method and sources used in this intent.
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We used the meta-analysis described in Schmaal et al., 2017. Regions with statistically

relevant differences among adults in CT bewteen HC and MDD patients (FDR P-value < .05)

were selected. This resulted in 13 regions from the Desikan atlas (Desikan et al., 2006) being

included in the feature set. Our previous preprocessing protocol outputted features according

to the Schaefer parcellation. The conversion from one atlas to the other was realized with

Freesurfer (Fischl, 2012). Every Schaefer-node being included at 50% or more of its surface

in one of the relevant Desikan regions was included (Schaefer et al., 2018). This resulted in

54 Schaefer-nodes being incorporated in this AML task for each of the 8 base feature sets,

hence an additional 8 feature sets for our analysis.

3.3.2 AML model design

Since depression diagnosis is a classification task, we used the same AML settings as during

the sex classification task of the AML benchmark, as described in 3.2.3. Again, each AML

algorithm was given a maximum run time of one day with a maximum CPU-usage of 40

logical CPUs per feature set and ran only on subjects of the train dataset. The maximum

size of models in memory was capped to 12GB. The depression classification model design

was performed with Auto-sklearn 2.0 (v 0.13.0). At the end of this process, for each of the

thirty-one feature sets, one AML model was ready for the evaluation round.

In order to compare our AML models with the ones of another library, we additionally

generated a TPOT AML model for the 8 base feature sets as well as the age + sex dataset.

For the TPOT-based model search, the population per generation was set to 200 along with a

maximum of 100 generations, for a maximum of 20200 possible pipelines being evaluated.

An early-stop policy was also set, with runs being terminated if there were no improvement in

performance after 10 generations. A mutation rate of 0.9 with a crossover rate of 0.1 was used.

Performance of the pipelines were measured in the inner loop with a 5 fold cross-validation

process.
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3.3.3 AML performance evaluation

The evaluation was performed in 2 rounds: once in 10 folds cross-validation (10 repeats) on

the train dataset, then again on the validation dataset. The performances of the TPOT AML

models were evaluated using the same scheme. At the end of the validation round, the results

did not require further confirmation because of negative results, so that no external validation

was performed for our second objective. The results for this part of the study are presented in

section 4.2.
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CHAPTER 4

Results

4.1 First objective: AML benchmark results

The sex classification and age regression AML model design phases ran for 8 days each, with

a capped maximum of 30 CPU made available. We thus allowed Auto-sklearn to search for

model very extensively in comparison with commonly used configurations (Balaji & Allen,

2018; Feurer et al., 2021). At the end of this procedure, for each dataset, a functioning AML

model was created. The algorithmic composition as well as the performances of these are

described in this section.

4.1.1 AML models’ validation performances

The performance of the AML models in the cross-validation evaluation on the validation

sample are presented in figure 4 (for additional scoring information, see table 5, table 6 and

table 7). The best results were achieved with a combination of the 3 modalities across targets

and input data. A BA of 87±4% was reached by the top AML model for sex prediction with

raw data. The top model for age prediction reached a mean absolute error of 5.90±0.62 years.

The results obtained by the best models for both tasks outmatch by a large margin those of a

random prediction (87% vs. 50% BA for sex classification; 5.9 years vs 9.73 years MAE for

age regression ). Raw data and residuals led to similar AML performance for age prediction.

This, however, was not the case for the sex classification. Here, raw data provided better ML

results for all modalities except CT (Raw: 57±7% BA, Residuals: 72±6.7% BA). Overall,

classifiers as well as regressors displayed satisfying capabilities in the internal validation.
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Fig. 4: AML models’ internal validation performances for (A) sex classification and (B)
age regression. AML performance measured as BA in %. Error bars represent standard
deviation.
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4.1.2 Sensitivity analysis

We assessed the performance of our AML models as a function of the input subjects, as

rendered in figure 5. AML related overfitting can be analysed with 3 different measurements

(see Fabris & Freitas, 2019): training-validation overfitting, training-testing overfitting and

validation-testing overfitting. In this sub-section, validation refers to internal validation and

testing to external validation.

The sex classification models based on raw data with SA, GMV, as well as GMV+CT+SA

display similar behavior. The GMV dataset showed some training-testing and validation-

testing overfitting, while the CT dataset has marked training-validation, validation-testing

as well as training-testing overfitting. When based on residuals, sex classification models

seemed to all display a slight training-testing and validation-testing overfit.

In the regression task, the performances displayed by the AML models on their respective

modality seemed consistent on the train, internal validation and external validation datasets.

The performance of our AML models in one test phase seemed to be a good estimator of its

performance in other performance estimation phases, except for a marked underperformance

on the residuals CT dataset and overperformance on the residuals SA dataset.

AML models designed during the benchmark tended to keep similar and convincing perform-

ances at all stages of the evaluation. This rule applied to classification as well as regression

tasks. The fact AML models showed solid performances in the external validation qualifies

them as a valid method for prediction on unknown subjects.
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Fig. 5: Sensitivity analysis of the benchmark’s AML models. AML models’ evaluation performances on the train dataset (dark blue), in the internal validation
(light blue) and the external validation (light green). The represented tasks are (A) sex classification with raw data, (B) age regression with raw data, (C) sex
classification on residuals with eTIV regressed out, (D) age regression on residuals with eTIV regressed out. Performance is measured with MAE in years for
(A) and (C), BA in % for (B) and (D). Error bars represent standard deviation. The evaluation on the train sample and test sample was performed with 10 fold
cross-validation (10 repeats). The external validation was performed on the BiDirect sample set after training on the 1000BRAINS sample. Since this evaluation
scheme implies measuring performance once, there are no error bars.
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4.1.3 AML models’ compositions

The type of model architecture chosen by AML may also be further examined and allows

insight into the internal model building procedure. For each dataset, an ensemble was

outputted consisting of up to 50 submodels. The composition of the ensembles as outputted

by Auto-sklearn is presented in 4. The importance of a submodel’s predictions in the results

outputted by the ensemble is determined by the weight assigned to it. In order to reflect the

impact of a certain type of pipeline in the ensemble, we calculated the relative importance of

the pipeline’s model type in the decisions.

For the sex classification task, Auto-sklearn built ensembles with an average size of 20.88 sub

models. Auto-sklearn overwhelmingly decided to use stochastic gradient descent (SGD). It

was the only type of classifier used for the raw data based tasks and had more than 50% of the

weights of models basing on residuals. Only the ensemble basing on the GMV dataset with

residuals did not use them. Instead of this, this ensemble used gradient boosting. Multilayer

perceptrons, random forest, passive-aggressive and extra-trees classifiers all found use to a

smaller extent, mostly in the ensemble of the SA dataset with residuals. The composition of

age regression AML models relied on smaller ensembles, with an average ensemble size of

9.3 submodels. Those ensembles also heavily relied on SGDs, with more than half of the

total weights attributed to them. multi-layer perceptron (MLP), Gaussian process (GP) and

support vector regression (SVR) were also part of some ensembles.

We further analyzed the underlying ML algorithms used together with SGD pipelines, since

SGD is strictly speaking an optimization heuristics that can be used on different ML ar-

chitectures. They are not fully independent ML models. Scikit-learn implements SGD on

regularized linear models. The loss function and other hyperparameters used define the de-

cision mechanism of the pipeline. For the classification AML task, SGDs loss functions used

were: squared hinge (30% of weights), modified huber (25%), perceptron (14%), hinge (5%)

and log(25%). Using hinge based loss functions means fitting an SVM-like submodel, while

a logarithmic loss function generates logistic regression like classifiers. For the regression

AML tasks, SGDs based as a loss function on squared epsilon incentive for 68%, squared loss

for 14%, epsilon incentive for 11% and huber for 7% of total weights.
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Sex classification
Data type Ensemble size Stochastic gradient descent Random forest Multilayer perceptron Passive aggressive Gradient boosting Extra trees

Raw data
CT 32 100% - - - - -
GMV 15 100% - - - - -
SA 20 100% - - - - -
GMV+CT+SA 25 100% - - - - -

Residuals for eTIV
CT 14 100% - - - - -
GMV 15 - - - - 100% -
SA 20 23% 10% 15% - 25% 27%
GMV+CT+SA 26 100% - - - - -

Age regression
Data type Ensemble size Stochastic gradient descent Multilayer perceptron Gaussian process Libsvm SVR Liblinear SVR -

Raw data
CT 5 44% - - 56% - -
GMV 3 100% - - - - -
SA 6 100% - - - - -
GMV+CT+SA 2 50% - - - 50% -

Residuals for eTIV
CT 6 100% - - - - -
GMV 3 46% - - 54% - -
SA 8 14% 26% 14% 46% - -
GMV+CT+SA 4 38% 54% - - 8% -

Table 4: Composition of Auto-sklearn ensembles - Benchmark. Composition of the AML models’ ensembles for the sex classification and the age regression
tasks. The ensemble size was set to a maximum of 50 pipelines for each task. For each model type, the percent represents the relative amount of weights
assigned to a model type and thus how impactful the model type is in the decisions of the AML model.
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Sex classification
Raw data Balanced accuracy Accuracy Precision Recall F1 score ROC AUC

CT 0.646 0.670 0.832 0.362 0.458 0.646
GMV 0.840 0.841 0.835 0.817 0.823 0.840

SA 0.843 0.842 0.818 0.845 0.829 0.843
GMV+CT+SA 0.858 0.859 0.849 0.841 0.842 0.858

Residuals Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.689 0.693 0.672 0.640 0.652 0.689

GMV 0.755 0.758 0.741 0.726 0.729 0.755
SA 0.729 0.731 0.712 0.693 0.698 0.729

GMV+CT+SA 0.747 0.751 0.744 0.701 0.715 0.747

Age regression
Raw data MAE MSE R2 score

CT 6.152 59.719 0.623
GMV 6.955 76.097 0.526

SA 7.723 99.950 0.385
GMV+CT+SA 5.962 57.477 0.640

Residuals MAE MSE R2 score
CT 6.237 61.266 0.615

GMV 6.760 72.358 0.548
SA 7.427 92.982 0.426

GMV+CT+SA 5.995 57.697 0.638

Table 5: Performance of benchmark AML models on the train dataset. Evaluation scheme: 10 fold cross-
validation (10 repeats)
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Sex classification
Raw data Balanced accuracy Accuracy Precision Recall F1 score ROC AUC

CT 0.573 0.609 0.776 0.162 0.247 0.573
GMV 0.823 0.825 0.816 0.794 0.801 0.823

SA 0.792 0.793 0.775 0.766 0.767 0.792
GMV+CT+SA 0.867 0.868 0.863 0.842 0.850 0.867

Residuals Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.709 0.713 0.696 0.66 0.673 0.709

GMV 0.754 0.754 0.734 0.725 0.724 0.754
SA 0.717 0.719 0.704 0.666 0.680 0.717

GMV+CT+SA 0.749 0.752 0.753 0.687 0.712 0.749

Age regression
Raw data MAE MSE R2 score

CT 6.300 69.082 0.555
GMV 6.742 75.715 0.514

SA 7.750 96.537 0.382
GMV+CT+SA 5.901 58.724 0.621

Residuals MAE MSE R2 score
CT 6.378 69.674 0.552

GMV 7.608 94.371 0.395
SA 6.403 70.248 0.548

GMV+CT+SA 5.924 58.553 0.621

Table 6: Performance of benchmark AML models on the internal validation dataset. Evaluation scheme: 10
fold cross-validation (10 repeats)
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Sex classification
Raw data Balanced accuracy Accuracy Precision Recall F1 score ROC AUC

CT 0.490 0.556 0.574 0.905 0.702 0.490
GMV 0.795 0.819 0.788 0.941 0.857 0.795

SA 0.821 0.828 0.816 0.908 0.860 0.821
GMV+CT+SA 0.859 0.864 0.877 0.890 0.884 0.859

Residuals Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.583 0.542 0.741 0.322 0.449 0.583

GMV 0.692 0.697 0.746 0.723 0.734 0.692
SA 0.653 0.669 0.700 0.750 0.724 0.653

GMV+CT+SA 0.654 0.638 0.759 0.551 0.638 0.654

Age regression
Raw data MAE MSE R2 score

CT 6.467 65.105 -0.155
GMV 6.067 58.352 -0.036

SA 7.436 87.955 -0.561
GMV+CT+SA 5.640 50.813 0.098

Residuals MAE MSE R2 score
CT 6.214 59.533 -0.057

GMV 6.155 60.719 -0.078
SA 8.192 105.032 -0.864

GMV+CT+SA 5.833 53.621 0.048

Table 7: Performance of benchmark AML models on the external validation dataset. Evaluation scheme:
Training on 1000BRAINS, testing on BiDirect
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4.2 Second objective: Depression classification

results

For the second part of our study, 31 feature sets were used in total to design 31 AML models,

with each AML ensemble taking 1 day of calculations to build. The 8 starting feature sets

consisted in the GMV, CT, SA and GMV+CT+SA feature sets, used with their raw value

once and once with their residual values with eTIV regressed out. 14 further feature sets were

formed with only the CT of the nodes of each of the 7 network according to the Schaefer

parcellation (Schaefer et al., 2018), again once the raw value and once the residuals. 8 further

feature sets were created, this time with anatomical priors (3.3.1). One feature set consisted

only of age and sex of each sample to test the effect of confounders. It is the only feature set

containing those 2 variables.

4.2.1 AML models’ validation performances

Base feature sets

The 8 base AML models, based on the raw or residual data for GMV, CT, SA, and GMV+CT+SA,

yielded validation performances that were at best slightly above those of a random predictor.

The BA ranged between 45% and 55%. The top scoring AML model based on the raw value

used the SA feature set and reached a BA of 55±6.2%. The best AML model using residuals

used the GMV+CT+SA feature set, also with 55±6.2% BA. The performances of the AML

models generated for our depression classification task are presented in figure 6 (for additional

scoring information, see table 8 and table 9 ).

Anatomical priors

Restricting the number of features according to the results of a meta-analysis (Schmaal et al.,

2017) did not seem to improve performances in any significant way. The validation results

ranged from 51% BA (SA, residuals) to 55% BA (CT, raw data).
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Network based datasets

The best validation performances were reached by separating the nodes respectively to

their functional network and using their CT as features. The usage of raw data provided

performances between 51% and 59% BA, outperforming the usage of residuals with those

performances ranging from 50% BA to 53% BA. In this context, best AML performance was

reached using raw data from nodes of the ventral attention network (BA: 59±6.0%), followed

by the dorsal attention network (BA: 55±6.0%) and the control network (BA: 55±6.2%).

Using residuals with networks lead at best to a 53±5.8% BA based on the dorsal attention

network.
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Fig. 6: Depression classification results. Depression classification results displayed across different input features/datasets. AML performance measured as
BA in %. Error bars represent standard deviation. Models were built based on different feature sets: (A) data from all 400 nodes for different metrics , (B) data
from 7 networks, (C) using anatomical priors for feature restriction, (D) restricting features to sex and age. VN = Visual network, CN = Control Network, LN =
Limbic Network, DN = Default Network, SMN = Somatomotor Network, DAN = Dorsal Attention Network, VAN = Ventral Attention Network.
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Raw data Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.465 0.467 0.466 0.470 0.464 0.465

GMV 0.538 0.535 0.539 0.512 0.518 0.538
SA 0.547 0.544 0.551 0.535 0.536 0.547

GMV+CT+SA 0.541 0.539 0.545 0.493 0.512 0.541

Residuals Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.540 0.524 0.543 0.527 0.511 0.540

GMV 0.544 0.543 0.542 0.548 0.539 0.544
SA 0.517 0.517 0.515 0.529 0.517 0.517

GMV+CT+SA 0.541 0.526 0.546 0.517 0.510 0.541

With anatomical priors - raw data Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.536 0.529 0.537 0.516 0.516 0.536

GMV 0.535 0.535 0.535 0.556 0.541 0.535
SA 0.531 0.523 0.528 0.504 0.504 0.531

GMV+CT+SA 0.533 0.533 0.533 0.521 0.522 0.533

With anatomical priors - residuals Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.562 0.561 0.561 0.562 0.557 0.562

GMV 0.557 0.557 0.556 0.559 0.554 0.557
SA 0.528 0.526 0.531 0.442 0.476 0.528

GMV+CT+SA 0.551 0.544 0.553 0.536 0.535 0.551

Network-based - raw data Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
Control Network 0.582 0.579 0.575 0.622 0.591 0.582
Default Network 0.563 0.561 0.564 0.562 0.557 0.563
Dorsal Attention 0.573 0.571 0.583 0.528 0.546 0.573
Limbic Network 0.548 0.540 0.552 0.477 0.498 0.548

Somatomotor Network 0.520 0.520 0.523 0.539 0.510 0.520
Ventral Attention Network 0.511 0.511 0.511 0.505 0.503 0.511

Visual Network 0.570 0.566 0.571 0.562 0.560 0.570

Network-based - residuals Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
Control Network 0.550 0.555 0.554 0.653 0.574 0.550
Default Network 0.524 0.522 0.522 0.529 0.520 0.524
Dorsal Attention 0.579 0.579 0.609 0.452 0.511 0.579
Limbic Network 0.553 0.547 0.549 0.605 0.561 0.553

Somatomotor Network 0.519 0.518 0.519 0.498 0.501 0.519
Ventral Attention Network 0.533 0.526 0.542 0.474 0.494 0.533

Visual Network 0.540 0.539 0.539 0.548 0.539 0.540

Table 8: Performance on train dataset of depression classifiers. Evaluation scheme: 10 fold cross-validation
(10 repeats).
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Raw data Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.447 0.446 0.445 0.437 0.437 0.447

GMV 0.533 0.530 0.536 0.504 0.514 0.533
SA 0.547 0.545 0.549 0.543 0.540 0.547

GMV+CT+SA 0.510 0.508 0.513 0.493 0.498 0.510

Residuals Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.544 0.527 0.549 0.555 0.529 0.544

GMV 0.511 0.511 0.510 0.500 0.500 0.511
SA 0.527 0.526 0.529 0.504 0.511 0.527

GMV+CT+SA 0.547 0.537 0.550 0.543 0.534 0.547

With anatomical priors - raw data Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.547 0.539 0.548 0.558 0.543 0.547

GMV 0.524 0.523 0.523 0.553 0.533 0.524
SA 0.515 0.508 0.518 0.530 0.512 0.515

GMV+CT+SA 0.522 0.522 0.523 0.502 0.508 0.522

With anatomical priors - residuals Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
CT 0.535 0.534 0.537 0.541 0.534 0.535

GMV 0.530 0.530 0.531 0.521 0.523 0.530
SA 0.507 0.506 0.508 0.439 0.465 0.507

GMV+CT+SA 0.525 0.519 0.526 0.524 0.516 0.525

Network-based - raw data Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
Control Network 0.552 0.546 0.553 0.572 0.552 0.552
Default Network 0.513 0.511 0.513 0.538 0.52 0.513
DorsalAttention 0.551 0.549 0.556 0.525 0.531 0.551
Limbic Network 0.528 0.516 0.53 0.528 0.511 0.528

Somatomotor Network 0.518 0.518 0.521 0.508 0.503 0.518
Ventral Attention Network 0.531 0.531 0.528 0.554 0.535 0.531

Visual Network 0.593 0.590 0.598 0.570 0.578 0.593

Network-based - residuals Balanced accuracy Accuracy Precision Recall F1 score ROC AUC
Control Network 0.518 0.513 0.513 0.706 0.572 0.518
Default Network 0.506 0.505 0.506 0.512 0.504 0.506
DorsalAttention 0.53 0.527 0.538 0.448 0.479 0.53
Limbic Network 0.51 0.505 0.506 0.651 0.557 0.51

Somatomotor Network 0.512 0.509 0.514 0.498 0.491 0.512
Ventral Attention Network 0.534 0.528 0.537 0.535 0.527 0.534

Visual Network 0.526 0.526 0.528 0.524 0.521 0.526

Table 9: Performance on validation dataset of depression classifiers. Evaluation scheme: 10 fold cross-
validation (10 repeats).

45



Auto-sklearn vs TPOT

Our choice of using Auto-sklearn as our main AML library was driven by previous benchmarks

and reports on estimated performances (3.2.3.1). We performed a retest with TPOT on the base

feature sets for depression classification to evaluate whether this would result in significant

discrepancies in performances.The results are presented in table 10.

Overall, when considering the mean BA of the 8 base models averaged for TPOT and Auto-

sklearn, TPOT outperformed Auto-sklearn by a very thin margin (0.8%). The result of this

retest in concordant with AML benchmarks reporting no clear superiority of one AML library

over others across all datasets (Gijsbers et al., 2019; Zöller & Huber, 2021).

Auto-sklearn
Raw data

TPOT
Raw data

Auto-sklearn
residuals (eTIV)

TPOT
residuals (eTIV)

CT 44.7±6% 54.7±6% 54.2±5% 50.6±7%
GMV 52.3±6% 50.7±6% 50.9±7% 53.7±6%
SA 54.6±6% 49.2±6% 52.7±5% 53.8±7%
GMV+CT+SA 51.3±7% 51.9±5% 54.5±6% 53.9±6%
Age + Sex 48.2±6% 49.6±3% - -

Table 10: Autosklearn vs. TPOT based models for depression classification. Comparison of BA in 10 fold
cross-validation (10 repeats). Values represent the BA in %. The best values for each dataset are marked in bold
font.

Effects of matching on performances

The effects of age and sex on structural neuroimaging derived data are multifaceted and

complex (Jockwitz et al., 2021; Ruigrok et al., 2014, review). We used propensity score

matching on the HC / MDD feature with age and sex while selecting samples (3.3.1). By

doing this, we had the intention of negating the effect of those two confounders on prediction

performances.

To verify the efficiency of the method for our problem, we ran a separate depression prediction

task on the BiDirect sample, using solely age and sex as features. The main difference with

our already presented age + sex (matched) dataset is that in this dataset (age + sex (no match)),

the samples were not matched using propensity score matching. The results of this run are
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presented in figure 7. With a BA of 60±5.1% in the absence of a confounder targeted matching

strategy, the age + sex based classification of HC vs depressive subjects outperforms our

results from the main analysis. With matching, the performance of classification based on

those two features dropped to 48±6.0% BA.

Fig. 7: Effect of confounders matching on depression classification

4.2.2 AML models’ compositions

The model weights were calculated in the same manner as in 4.1.3, and are presented in table

11 and table 12.

For the AML task basing on the 8 base datasets, Auto-sklearn built ensembles with an average

size of 22.4 submodels. Auto-sklearn split the submodels used in the ensembles more evenly

than in the sex classification task. The most commonly used type of ML model architecture

was random forest classifiers (30.25% of weights), followed by gradient boosting classifiers
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(25.5%), then SGD (19.75%), extra-trees classifiers (19.5%), passive aggressive classifiers

(4.1%) and finally MLP (0.75%).

With regard to the network based AML models, average ensemble size reached 18.6 submodels

in average. The composition of the ensembles differs from the previously described ones.

MLP was the most important ML model type, with 40% of weights, followed by gradient

boosting (26%), random forest (13%), extra trees (13%) and SGD (2%). The AML models

created with feature restriction based on anatomical priors had an average ensemble size of

19.8 and had similar compositions, basing on MLP, gradient boosting, random forest as well

as extra trees.
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Depression Diagnosis
Data type Ensemble size Stochastic gradient descent Random forest Multilayer perceptron Passive aggressive Gradient boosting Extra trees

Raw data
CT 27 - 100% - - - -
GMV 8 48% - - - - 52%
SA 12 - - - - 100% -
GMV+CT+SA 32 100% - - - - -

Residuals for eTIV
CT 21 10% 52% - 33% 4% -
GMV 31 - 90% 6% - - 4%
SA 16 - - - - 100% -
GMV+CT+SA 32 - - - - - 100%

Depression Diagnosis – Network based
Data type Ensemble size Stochastic gradient descent Random forest Multilayer perceptron Passive aggressive Gradient boosting Extra trees

Raw data
CN 16 - - 100% - - -
DAN 7 - 81% 19% - - -
DN 22 - - 100% - - -
LN 13 - - 31% - - 69%
SMN 18 24% - 76% - - -
VAN 21 - - - - 100% -
VN 4 - - - - - 100%

Residuals for eTIV
CN 18 - - 36% - 64% -
DAN 22 - - 100% - - -
DN 12 - 100% - - - -
LN 28 - - 100% - - -
SMN 22 - - 91% - - 9%
VAN 32 - - - - 100% -
VN 35 - - - - 100% -

Confounders
Age + Sex 33 - 96% 4% - - -

Table 11: Composition of Auto-sklearn ensembles - MDD/HC Classification. Composition of the AML models’ ensembles for the depression classification
task. The ensemble size was set to a maximum of 50 pipelines for each task. For each model type, the percent represents the relative amount of weights
assigned to a model type and thus how impactful the model type is in the decisions of the AML model.
CN = Control Network, DAN = Dorsal Attention Network, DN = Default Network, LN = Limbic Network, SMN = Somatomotor Network, VAN = Ventral Attention
Network, VN = Visual network
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Depression Diagnosis - Feature restriction with anatomical priors
Data type Ensemble size Random forest Multilayer perceptron Gradient boosting Extra trees

Raw data
CT 6 7% - 23 % 70 %
GMV 24 - 71 % - 29 %
SA 35 - - 100 % -
GMV + CT +SA 1 - - - 100 %

Residuals for eTIV
CT 7 - - 100 % -
GMV 44 - - - 100 %
SA 32 - 100 % - -
GMV + CT +SA 9 - - - 100 %

Table 12: Composition of Auto-sklearn ensembles - MDD/HC Classification using feature restriction with anatomical priors Composition of the AML
models’ ensembles for the depression classification task using feature restriction with anatomical priors. The ensemble size was set to a maximum of 50
pipelines for each task. For each model type, the percent represents the relative amount of weights assigned to a model type and thus how impactful the model
type is in the decisions of the AML model.
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CHAPTER 5

Discussion

The global aim of this study was to determine whether AML could be used for ML prediction

using sMRI derived features by testing it with an AML benchmark, then to use it as an

alternative to classical ML approaches for depression classification. The results of the first

part of the study showed that AML based classification was a viable option for sMRI derived

data, and an alternative worth considering for depression classification. The usage of AML

lead to well-generalizing AML models for single-subject sex classification as shown in the

external validation on the BiDirect dataset (Teismann et al., 2014). In the regression task,

results close to those reported in the literature were achieved, qualifying AML for the task

of rapidly providing efficient predictive models (Jiang et al., 2020; Cole et al., 2018; Cole

et al., 2017; Dafflon et al., 2020). The ensembles designed by the AML libraries used

in this work were different and more complex than those described in the literature, thus

differentiating AML models from ML models designed with classical ML methods. The

depression classification task resulted in low BA when attempting the task using AML on

sMRI derived features. This finding supports those of recent studies attempting depression

classification based on sMRI data on datasets with large sample sizes (Stolicyn et al., 2020;

Flint et al., 2021). Thus, results from the current dissertation support the general applicability

of AML for neuroimaging questions and highlight the limited performances of depression

classification based on sMRI information.
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5.1 First objective: AML Benchmark

Determining whether the employment of AML is pertinent for prediction based on sMRI

derived data was the first step of this work, an important prerequisite before attempting

depression classification. Only limited prior literature is available on the usage of AML for

structural imaging data. In this context, prior investigations have focused on the application

of AML to particular tasks, e.g. age prediction (Dafflon et al., 2020) or resectability of

meningeoma (Musigmann et al., 2022). The current thesis extended previous work by

providing a more detailed insight into the applicability to a classification task as well as

a regression task on two large cohorts, with one being used solely for external validation

(NBiDirect=1102; Teismann et al., 2014).

This work first showed that AML was able to outperform random sex classification based on

structural neuroimaging data. The benchmark results also made this apparent for regression,

thereby corroborating the findings from Dafflon et al. (2020). The baseline objective of

generating predictions more precise than a dummy predictive algorithm was completed

both for the classification and the regression tasks. The top sex classifier reached 87% BA,

surpassing the 50% BA of the random baseline classifier. The top age regressor reached 5.9

years MAE, also clearly besting the 9.73 years MAE of the random baseline regressor.

Outmatching random prediction was a first important step, but to represent a viable alternative

to ML for depression classification, AML performing at least similarly to it was a significant

milestone. The key results of the benchmark are here compared with the state-of-the-art

performances for sex classification and age regression.

5.1.1 Sex classification

Overall, the results in sex classification reached by this study’s top AML model were on

the level of state-of-the-art ML models. In Nieuwenhuis et al. (2017), the average accuracy

reached ranged from 81% to 94% on the samples of multiple studies (Ntotal = 389) using SVM

with nested cross-validation (Cahn et al., 2002; Mourao-Miranda et al., 2012; Schaufelberger
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et al., 2007; Crespo-Facorro et al., 2009; Velakoulis et al., 2006). In Anderson et al. (2019),

an accuracy of 93.8% on the validation hold out set was obtained (Nvalidation = 370) using

radial basis function (RBF) SVM and logistic regression as ML model types, also fitting

in this range. In Joel et al., 2018, 3 datasets from different studies were used for external

validation with results ranging from 71% to 86% accuracy with SVMs. With 87% BA in the

internal validation and 86% BA in the external validation, the AML sex classifier using all

feature types as raw data scored on a level similar to these results. This study thus highlighted

the efficiency of AML for sex classification based on morphological brain features. It also

supports the general applicability of AML to neuroimaging classification tasks (Musigmann

et al., 2022).

This study also showed that AML library provided an efficient way of selecting relevant

ML model types for the task of sex classification, while still designing original pipeline

structures. Without prior knowledge on optimal model type for the problem, Auto-sklearn

2.0 selected ML model types known in the literature (Feurer et al., 2021). Sex classification

studies relied on logistic regression (Chekroud et al., 2016; Anderson et al., 2019) and SVMs

(Anderson et al., 2019). The AML ensembles showed a more diverse composition (4.1.3), but

the choice in the ensembles’ SGDs of squared-hinge and hinge loss functions (making the

models similar to SVMs) and logistic regression was predominant. AML, more specifically

Auto-sklearn, came to similar conclusion regarding optimal model-choice than three other

studies (Chekroud et al., 2016; Anderson et al., 2019; Joel et al., 2018). Those results indicate

that AML is an efficient way of discovering efficient ML model types for neuroimaging

classification problems.

5.1.2 Age regression

The performances of this work’s AML age regressors were close to those known in the current

literature. Previous studies, all covering the same large age range (18-90 years), have reported

MAEs ranging from 4.16 to 5.55 years based on structural features (Jiang et al., 2020; Cole

et al., 2018; Cole et al., 2017). A further example of age regression ML task on another

sample yielded similar results (N = 2640, MAE on test set: 4.54 ± 0.06 - 5.82 ± 0.09 years,
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female ratio = 53.1%, mean age = 35.87 ± 16.20 years, age range : 17-90 years; Treder et al.,

2021). This study’s AML models basing on raw data with GMV + CT + SA performed closely

to those models with 5.90 years MAE in the internal validation evaluation (age range: 18-85

years).

Dafflon et al. (2020) also tested the efficiency of AML models for regression on age prediction

with a large sample (N = 10307, mean age = 59.40 years, age range : 18-89 years). TPOT was

the AML library used and reached a performance of 4.6 years MAE, performing better than the

best age-regressor in the benchmark (5.90 years MAE). An explanation for this discordance

in results could reside in the choice of atlas. The Desikan-Killiany atlas (Desikan et al., 2006)

and ASEG Freesurfer atlas (Fischl et al., 2002) were used in Dafflon et al. (2020), contrasting

with the choice made in this work to use an atlas designed based on the characteristics of

rs-fMRI (Schaefer et al., 2018). The use of a structural atlas, such as the Juelich brain atlas,

may yield improved performances (Amunts et al., 2020). Further explanations may reside in

the normal variance of performances of ML regressors, population-specific attributes and the

choice of AML library (Dafflon et al., 2020, Balaji & Allen, 2018).

The AML based approach partly selected submodels types known in the literature, while still

combining them in original ML model architectures. Diverse ML model types are described in

the literature for age regression. Convolutional neural networks, relevance vector regression /

machine, Gaussian process regression , support vector regression / machine and random forest

are examples of models that were used successfully in the past (Jiang et al., 2020, table 5).

The structure of the AML models outputted by Auto-sklearn, combining multiple approaches

into complex ensembles, seemed to be relatively unique (Feurer et al., 2019). Some of the

submodels’ types used (principally SGD, then MLP, SVR and finally Gaussian process) were

already known for age regression (Jiang et al., 2020, table 5). In this regard, AML offered an

effective way to rapidly sort out amidst a vast range of possibilities which ML pipeline type

to favor for the task. This attribute is especially valuable for future research on AML tasks

with targets that received little or no attention yet as a first approach.
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5.1.3 Implications of the AML benchmark

Positive results for the classification tasks were an important requirement to proceed to

the second objective. Results from the AML benchmark have demonstrated that compar-

able results to the literature can be achieved for two problems of the combined fields of

neuroimagining and ML. This works supports other pilot studies stating that using AML’s

fully automatized pipeline design procedures is a solid method for ML tasks in neuroimaging

(Dafflon et al., 2020; Musigmann et al., 2022). Both parts of the AML benchmark revealed

results that corroborated Dafflon et al. (2020) findings, confirming the utility of AML as a

practical first-approach tool for new ML tasks in the field.

This study moreover demonstrated the convincing generalization power of AML models

when predicting with unknown subjects. Their performances were consistent in the external

validation for two structural neuroimaging tasks on the large sample of the BiDirect study,

external validation being the gold standard for performance assessment (Cabitza et al., 2021;

Bleeker et al., 2003, Teismann et al., 2014). The top sex classifier of the AML benchmark

went from an 87% BA in the internal validation to an 86% BA in the external validation,

while the top age regressor went from 5.90 years MAE to 5.64 years MAE. Well exporting

ML models for age and sex prediction were recently achieved for those two tasks (Flint et al.,

2020; Baecker et al., 2021). AML displayed the potential to predict accurately in unknown

ground truth scenarios in two sMRI based tasks, similarly to ML.

5.2 Second objective: Depression classification

The second aim of this study was to determine whether AML models could be used in order

to accurately differentiate HC from depressive subjects based on sMRI derived data. The

results obtained on this AML task showed performances slightly above those of a random

predictor, with a 55 ± 6% BA for the top base classifier (GMV + CT + SA with residuals) and

a 59 ± 6% BA for the top depression classifier overall (using the CT of the ventral attention

network with raw data).
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5.2.1 Influence of sample size and confounders on performances

In contrast, numerous small-sample studies reported high accuracies for depression classi-

fication on sMRI (Patel et al., 2016, review; Gao et al., 2018, review). Patel et al. (2016)

for example has reviewed 15 studies on depression classification with accuracies ranging

between 67.6% - 94.3%. The evaluation methodology in this work greatly differs from those

previous reports in multiple regards. These studies used small samples (none with more than

100 depressed patients in Patel et al. (2016) for example) for their validation set. As a mean

of comparison, Flint et al. (2021) recommended having at least 150 samples for a validation

set in depression classification. Moreover, the validation schemes of those studies consisted

overwhelmingly in using LOOCV or cross-validation on the dataset already used for ML

model design (Patel et al., 2016, review; Gao et al., 2018, review). Such a protocol was long

thought a safe method to avoid overoptimistic performance reports, but more recently proved

insufficient in neuroscience (Hosseini et al., 2020) as well in predictive medical ML tasks

(Navarro et al., 2021, review). Training and testing on the same dataset drastically increases

the risk of overoptimistic results (Hosseini et al., 2020; Navarro et al., 2021, review). The use

of LOOCV comes with an increased risk of unstable and biased estimates (Flint et al., 2021;

Varoquaux et al., 2017). The combination of small sample size and lenient validation scheme

opens a path for sporadic positive findings (Flint et al., 2021).

This work’s AML models’ design and validation scheme followed a comparatively stricter

procedure, which is the probable explanation for the discrepancies in performance evaluation.

The AML model design, including hyperparameter optimization, was performed exclusively

on the train dataset. The models were not subjected to change in their architecture after the

initial design phase. The validation sample of 551 subjects stood well-above the suggested

threshold of 150 samples for depression classification (Flint et al., 2021). It was used for a 10

fold cross-validation (10 repeats) after AML model design. The use of this stricter validation

protocol results in validation performances that can be seen as closer to the real-world

performances of the AML models.

The notable lack of negative results in two literature reviews may be revealing of a publication

bias in the field of depression classification based on sMRI (Patel et al., 2016, review; Gao
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et al., 2018, review). Such a bias may result in the overly frequent reporting of positive or

significant results and dismissal of negative results, caused both on researcher level and on

publisher level (Dickersin & Min, 1993; Rothstein et al., 2005; Easterbrook et al., 1991). With

negative results being tendentially discarded and validation schemes allowing for sporadic

positive results, this would result in literature reports giving an overly positive estimation on

the feasibility of the task.

The depression classification results in this work however converge with the findings of

depression classification studies with larger samples as well as strict train/validation split

procedures (Stolicyn et al., 2020; Flint et al., 2021). A study by Stolicyn et al. (2020) has

shown a similar discordance between performances on the train dataset and performance on

the external validation dataset. The best ML models on the train set reached 75% accuracy

using classical ML methods (decision tree (DT)) based on data related to brain morphometry

(Stolicyn et al., 2020). The accuracy of the ML model on an external validation dataset derived

from the UK Biobank sample with self-reported depression as a target yet was 53.63% using

brain morphometric features (Sudlow et al., 2015; Stolicyn et al., 2020). The results of this

study are also in line with those presented in Flint et al. (2021) on depression classification.

There, training and testing an ML classifier on a large and balanced dataset (N = 1868)

between HC and depressive patients yielded an accuracy of 61% BA with SVMs (Flint

et al., 2021). The AML depression classifiers designed in this work performed similarly,

corroborating these results. Repeated negative results for the classification of depression

with large datasets based on structural brain features may hint at the absence of relevant

information in sMRI for this task (Schulz et al., 2022).

Both Flint et al. (2021) and Stolicyn et al. (2020) reviewed the influence of low sample sizes

on prediction accuracy. They showed that the chances of artificially good performances

increase continuously with decreased sample size (Flint et al., 2021; Stolicyn et al., 2020).

This effect is partly independent of the nature of the information withheld in the features.

It could be reproduced with a dummy classifier predicting randomly based solely on the

prevalence of classes in a train sample (Flint et al., 2021). The BA of SVMs trained to test the

impact of test sample size for depression classification with sMRI data averaged around 60%
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BA, with a minimum of 35%BA and a maximum of 81% BA for N=100 using LOOCV (Flint

et al., 2021). This elevated variability in performance estimates may result in misestimation

when using low evaluation sample sizes. This problem is common in neuroimaging ML tasks

and recently gained significant attention (Arbabshirani et al., 2017; Varoquaux, 2018). It may

be part of the explanation for the numerous positive findings in depression classification in

small sample studies and repeated negative results in studies with larger samples.

As an additional finding, this study furthermore showed that the effects of age and sex on

structural data could inadvertently lead to reporting artificially high performances for the

present AML task. Random-sampling alone did not seem to sufficiently negate the influence

of these confounders on the target (4.2.1). The sole use of random sampling resulted in BA of

60% for depression prediction when using sex and age as features. Utilizing propensity score

matching as a further preprocessing step between confounders and target reduced the BA to

48% with the same features. Future research would profit from baseline predictors based

solely on demographics as a way to evaluate confounders effect on depression prediction.

5.2.2 Methodological considerations, limitations and future

outlook

This work’s results revealed that the employment of AML yielded performances on the

level of state-of-the-art, conventional ML models tested in large-scale studies for depression

classification using sMRI data (Flint et al., 2021; Stolicyn et al., 2020). It hence showed a

limited potential for this task when evaluated on a large sample size, displaying results at best

slightly above a random classifier (Stolicyn et al., 2020; Flint et al., 2021). This is not caused

by an inability of AML to perform classification using neuroimaging data, as shown with

the sex classification task, but inherent to the task of depression prediction. In the apparent

dichotomy between small samples/high accuracy and high sample/low accuracy studies

existing in the literature, present findings support the idea that high accuracy single subject

AML classification for depression on unknown subject has yet to be achieved. Successive

absence of positive results for the task do not prove the absence of feasibility. They may either
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be the sign of a necessary evolution of methodology for depression classification or a hint of

the impossibility of the task due to biological reasons.

The method in this work involved a rigid preprocessing of the sMRI which might be the reason

for the negative results. It based on the use of the 400-node Schaefer parcellation (Schaefer

et al., 2018). Using an rs-fMRI parcellation may, in the event of a positive result, have allowed

to establish a connection between structural and functional changes in depressive disorder

(Dai et al., 2019, review). An other large dataset study using the Desikan-Killiany atlas did

not achieve better results through this process (Stolicyn et al., 2020; Desikan et al., 2006).

The use of further parcellations may nonetheless prove more adapted to the problem.

The concept of parcellation itself implies a reduction of the initial information per subjects

(Eickhoff et al., 2018). This allows the favoring of certain types of information and offers

a practical way to orient the decision making of ML processes while avoiding the ’curse

of dimensionality’ (Eickhoff et al., 2018; Bellman, 1966). It however comes at the cost of

discarding potentially useful information. Renouncing the parcellation of the data as was

done in Flint et al. (2021) may allow ML models to combine different type of information

for decision making in the future. Increasing the number of features per subjects in order

to improve performances would nevertheless require increasing drastically the size of the

datasets used (Jain & Waller, 1978).

Independently of the preprocessing methods used, whether sMRI alone withholds the ne-

cessary information for accurate single subject prediction of depressive disorder is unclear

(Schulz et al., 2022). Multiple studies revealed group-wise structural brain differences between

depressive patients and HC (Trifu et al., 2020; Zhang et al., 2018; Schmaal et al., 2017).

Statistically significant group-wise differences in neuroanatomical features however do not ne-

cessarily imply effects strong enough on the individual level for single subject ML depression

prediction (Schulz et al., 2022). The areas determined as significantly different in depression

according to Schmaal et al. (2017) were used for feature restriction as described in section

3.3.1. This restriction of features according to anatomical priors yielded no improvements

in performances. This result reinforces the idea of insufficient effect of depression on the

individual level for single-subject depression prediction (Schulz et al., 2022).
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The task of imaging based depression prediction could profit from the use of different MRI

modalities. The possibility offered by fMRI to capture the patterns of function of the brain as

well as of diffusion-weighted magnetic resonance imaging (DW-MRI) to hint at anomalies in

its connectivity could very well improve classifier performances to clinically relevant levels.

Studies investigating the possibility of combining modalities for diagnostic of psychiatric

disease exist, with promising results (Gao et al., 2018, review; Arbabshirani & Calhoun,

2011).

Future research on the topic of depression classification would profit from larger samples

(Marek et al., 2022; Arbabshirani et al., 2017; Iniesta et al., 2016; Varoquaux, 2018; Button

et al., 2013, review). This would allow for better inference on the generalization power of

designed ML models and improved performances (Button et al., 2013, review). It would

additionally permit the usage of specific type of ML models, whose training require large

amount of data (e.g. Neural networks, complex ensembles; Arbabshirani et al., 2017). Those

model types allowed for breakthrough in other fields but are heavily reliant on vast amounts of

subjects for training (Jiřík et al., 2022). Moreover, larger samples allow for the possibility to

match for increasing amount of confounders while keeping a healthy dataset size. The field of

neuroscience thankfully already is adapting to the necessity for larger data repositories. The

last years saw the establishment of different central repositories for raw data (Turner, 2014).

The assembly of such a repository for depressive disorder would be of tremendous value.

Whether sMRI alone withhold the necessary information for accurate single subject prediction

of depressive disorder is an open question (Schulz et al., 2022). The task of imaging based

depression prediction could profit from the use of different MRI modalities. The possibility

offered by fMRI to capture the patterns of function of the brain as well as of DW-MRI to hint

at anomalies in its connectivity could very well improve classifier performances to clinically

relevant levels (Gao et al., 2018). Studies investigating the possibility of combining modalities

for diagnostic of psychiatric disease exist, with promising results (Gao et al., 2018, review;

Arbabshirani & Calhoun, 2011).
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5.3 Conclusion
The aim of this work was to first investigate the applicability of AML to sMRI-derived

features, then employ it for HC vs depressive subjects classification. The first part of the

study evaluated the efficiency of AML in a common classification (sex) and regression (age)

setup. The second part of the study consisted in the creation and evaluation of AML models

designed for depression classification based on the same features as in the first part of the

study. The effect of feature restriction according to anatomical priors and functional networks

on prediction was additionally tested.

AML was shown to be similar in performances to ML models described in the literature,

both for the sex classification and the age regression tasks when evaluated on the large

sample of the 1000BRAINS study, supporting previous work on this matter (Dafflon et al.,

2020; Musigmann et al., 2022). The AML models outputted by Auto-sklearn displayed

convincing performances in the external validation, generalizing well to the BiDirect cohort.

This speaks for a satisfying generalization power, qualifying AML as a suitable option for

hypothesis testing and optimal model search in further neuroimaging research. The convincing

performances and generalizability of AML confer to the method a position of choice for

approaching new neuroimagining problems in a time-efficient manner while developing

predictive algorithms of high quality. Its main downside reside in the complexity of the

generated models, leading to restricted model explainability (Vilone & Longo, 2021).

Regarding depression classification, AML models performed slightly above random at best,

similarly to ML models that were trained on large samples in other studies. These results hint at

an inability from AML and ML models to find a general abstract rule allowing to differentiate

depressive patients from HC using morphological brain data. Multiple large sample studies

converging toward this null result make the hypothesis of insufficient information about the

target in sMRI data realistic. Further research could profit from improvements in resolution

yielding new types of data, combination of multiple imaging modalities and increases in the

size of available datasets. With standard ML methods as well as with AML methods, reliably

differentiating HC from depressive patients based on sMRI data does not currently seem in

reach.
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