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Chapter I - Introduction 

1 Introduction 

1.1 Child-appropriate dosage forms 

1.1.1 Challenges in the development of child-appropriate drug development 
Child-appropriate formulations are a prerequisite for a safe and efficient pharmacotherapy. On 

the current pharmaceutical market, there is an immense lack of approved and safe medicines 

for children, in particular in the treatment of severe diseases [1-3]. Consequently, medicines 

are often used outside their approved authorised conditions or age groups (off-label), or in an 

altered form in the context of an individual therapy regime (unlicensed-use). Exemplarily, 

tablets are crushed and dispersed in a liquid, capsules are opened and mixed with food or 

smaller doses are intended in order to achieve suitable therapeutic regimes for children. These 

procedures are manifold and were found to a great extent in practical application [4,5]. A study 

conducted by Conroy et al. [6] highlighted the widespread use in five different hospitals in 

Europe. According to this, 67 % of the paediatric patients received at least one drug outside 

the market authorisation. In many cases extemporaneous manipulation is unavoidable, but 

often linked with considerable risks for the patients in terms of safety and efficacy of the therapy 

[4,7]. 

To counteract the problematic situation, in 2007 a new European Union (EU) regulation on 

medicinal products (MP) (Regulation EC No 1901/2006) for paediatric use came into force [8]. 

The overall aim was to improve the availability and quality of MPs for children. On the one 

hand, the industry is requested to develop a Paediatric Investigation Plan (PIP) for each new 

product to be authorised. The PIP should ensure sufficient collection of data and must be 

implemented in the drug development at the end of clinical phase 1 to ensure safety, quality, 

and efficacy of the product. On the other hand, companies were encouraged to develop 

appropriate dosage forms (DF) based on drug products which previously have been authorised 

for adults. For a successful development the companies may benefit from a paediatric use 

marketing authorisation (PUMA) receiving a 10-year market exclusivity. In the United States 

(US), the Food and Drug Administration (FDA) also introduced a mandatory submission of a 

Paediatric Study Plan (PSP), at the end of clinical phase 2 [9]. To date, there is still only one 

official regulatory document “Guideline on Pharmaceutical Development for Medicines for 

Paediatric Use” published by the EMA in 2013 which provides an overview of compulsory 

criteria for child-appropriate drug formulations [10].  

The development of child-appropriate medicines compared to that of adults is characterised 

by numerous challenges which include physiological, pharmacological, ethical and regulatory 
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aspects [3]. The rapid development of the paediatric body within the first years of life requires 

a continuous adaption and individual adjustment of the medication. For this reason, high 

demands on the DF and the composition of the MP are required and need to be designed age-

appropriate, ensuring the highest possible bioavailability (BA) while a high safety and quality 

is guaranteed [3,11]. According to Breitkreutz and Boos and other publications the following 

key aspects should be considered for child appropriate drug formulations [1,2,12].  

- Sufficient bioavailability 

- Toxicological safety of the active pharmaceutical ingredients (API) and excipients 

- Palatability and acceptability 

- Adequate dosing possibility  

- Easy and safe administration  

- Socio-cultural acceptability  

- Precise and clear product information (child appropriate packaging) 

The oral drug administration can be regarded as the most preferred route. Over the years, it 

was hypothesised that oral liquid formulations would fit best for children since dose flexibility 

is given, and the issue of swallowability of solid drug carriers could be overcome [13]. However, 

there are numerous concerns that arise when liquid DFs are administered such as poor taste, 

toxicologically critical excipients (e.g. preservatives), drug stability issues and the need for a 

suitable dosing device [12]. In recent years, new oral solid DFs with promising key attributes 

such as mini-tablets, dispersible tablets, orordispersible tablets (ODTs) and orodispersible 

mini-tablets (ODMTs) as well as orodispersible films provided new opportunities and already 

showed their superiority either in clinical or non-clinical approaches [14-17]. Experts from the 

World Health Organization (WHO) considered these modern formulations as the DFs of choice 

and are calling for a shift of paradigm from liquid DFs to novel oral solid DFs [18,19]. In the 

scope of this work ODTs were selected as DF of interest and will be intensively reviewed in 

chapter II for their overall potential in the field of paediatric drug development. 
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1.1.2 Poorly water solube drugs: classification 
When focusing on the aspect of BA for orally administered drugs, the aqueous solubility of the 

API plays a major role, as it is a prerequisite for drug absorption in the small intestine [20,21]. 

For orally administered drugs, the molecules must dissolve in the gastrointestinal fluids, pass 

through the intestinal membrane, and reach the blood circulation in sufficiently high quantity to 

finally show a systemic therapeutic effect [22]. Low aqueous solubility may therefore contribute 

to an increased risk for uncontrolled pharmacokinetics. This could be expressed by factors like 

inter-and intra-subject variability of BA, a higher risk for food effects and difficulties in dose 

finding [23,24]. It has been stated that 40 % of the drugs currently on the market can be 

classified as poorly water soluble [25]. Regarding the recent development pipeline of the 

pharmaceutical industry this fact is even more pronounced, providing approximately 90 % of 

drug substances as poorly soluble according to the Biopharmaceutics Classification System 

(BCS) [25]. With bearing this in mind the research on suitable techniques for solubility 

enhancement is a subject of continuous work for the pharmaceutical industry. 

Generally, it is possible to classify poorly soluble compounds broadly into two categories. 

“Grease balls” are highly lipophilic molecules with high LogP values with low melting points, 

and “brick dusts”, representing molecules with high melting points due to their high crystal 

lattice energies [26,27]. Focusing on the biopharmaceutical aspects rather than considering 

only physicochemical properties of the APIs a classification approach was published by 

Amidon et al. [20] introducing the BCS which classifies new drug substances according to their 

solubility and permeability in four different categories. The four BCS classes are schematically 

depicted in Figure 1. The respective APIs could be defined as highly soluble when the highest 

labelled single dose is soluble in a physiological pH range from 1 to 6.8 in a maximum volume 

of 250 ml or less of aqueous media at 37 ± 1 °C. A drug is considered as highly permeable 

when the BA or the extent of absorption of the highest administered dose is at least 85 % [28]. 

Butler and Dressman [29] have expanded the BCS and introduced modifications to reflect more 

on the drug product developability aspect than focusing only on the API itself and implemented 

the Developability Classification System (DCS). Besides the use of biorelevant media to 

achieve a more reliable assessment of in-vivo solubility, the authors further subdivided BCS 

class 2 into subcategories distinguishing between a dissolution-or a solubility-limited behaviour 

(DCS class 2 a resp. 2 b).  
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Figure 1 Biopharmaceutics Classification System according to Amidon et al. [20] 

Usually, either the BCS or the DCS is taken as the starting point of rational drug product 

development [23]. However, considering the paediatric patient group, the applicability is highly 

questionable [24,30]. The general classification of drug substances based on solubility and 

permeability could result in a class change when applying to paediatric patients since there is 

a huge variability in the highest considered dose, as well as differences in gastrointestinal 

volumes and transit times between adults and children throughout the different developmental 

stages [23,30,31]. It should be kept in mind, that both the highest dose strength, as well as the 

considered volumes of 250 ml is only valid and proved for adults [20,32]. In order to illustrate 

the difficulty, the study conducted by Del Moral Sanchez et al. [33] can be taken into 

consideration. The authors created a provisional paediatric biopharmaceutical classification 

system (pBCS) and included several orally administered drug substances from the Essential 

Medicines List for children by the WHO. As a result of the study, several APIs finally showed 

a change in solubility and/or in permeability in the pBCS compared to BCS and therefore had 

to be assigned to a different classification group. Consequently, the previously satisfactory in-

vivo performance assessed by solubility and permeability in adults cannot necessarily be 

extrapolated for children [33]. For many years researchers aimed for the implementation of a 

reliable pBCS to improve the paediatric drug development, but this approach could not be 

successfully implemented yet [24,30,32]. The great challenge here lies in the heterogeneity of 

the patient groups [23]. A meaningful pBCS would have to be additionally subdivided into 

several age groups, by far not only considering the solubility but also highly variable factors 

like intestinal permeability, gastrointestinal transit time and luminal contents [24,30].  
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1.1.3 Formulation development for poorly soluble drugs: considerations and 
approaches 

A variety of pharmaceutical formulation technologies are used to enhance the poor aqueous 

solubility of APIs. Well-known attempts to counteract the poor solubility include salt formation, 

formation of co-crystals, complexation, solubilization and API micronization [34-36]. In recent 

years, however, so called supersaturating drug delivery systems (SDDS) have gained 

increased attention and yielded new possibilities especially for drugs more limited by the low 

equilibrium solubility rather than by the dissolution rate. Free drug concentration exceeding the 

equilibrium solubility in the small intestines was found to significantly increase the permeation 

[26,37,38]. Among nano-technologies or lipid-based formulations (LBFs), amorphous solid 

dispersions (ASDs) show by far the widest application. This becomes apparent by several 

marketed products available for different therapeutic indications such as human 

immunodeficiency virus (HIV), cancer, or mycotic infections just to name a few of them. 

Exemplarily, the commercial products Kaletra®, Zelfboraf® and Sporanox® can be mentioned 

here [38-40].  

If the focus is placed on the development of child-appropriate DFs containing poorly soluble 

APIs, far less products and related literature is available. Reasons for this could be the inherent 

challenges in the field of paediatric drug development as pointed out in chapter 1.1.1, the age-

dependent biopharmaceutical challenges (see chapter 1.1.2) and the selection of a suitable 

solubility enhancement technique [23,33]. Additionally, a more comprehensive safety 

evaluation of APIs and excipients is required, as the impact of disposition of various 

substances throughout the different age groups is still not well understood yet [30,41]. 

Nevertheless, much research is being conducted in this area with the aim to expand on the 

available opportunities for children. Recently, Salunke and co-workers from the European 

Paediatric Formulation Initiative (EuPFI) and industry companies have published a very 

informative review focusing on paediatric oral drug delivery for poorly soluble APIs, which could 

serve as beneficial basis for future studies [23]. 

Physicochemical profiling of the API is usually performed as initial action in formulation 

development since the suitability of the solubility enhancement technique strongly depends on 

the API properties like lipophilicity, molecular weight, melting point, crystallization behaviour, 

polymorphism and ionic charge [42,43]. However, to finalize the product development and also 

evaluate on the final oral DFs the formulation scientist also need to be aware of the targeted 

population group since the desired dose, acceptability, as well as the GIT status of children 

can commonly vary considerably [24,44]. Therefore, to cover the large width of developmental 

stages, different drug loads and more than one DF should be considered to enable high 

flexibility throughout the development route [23].  
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With regard to the market situation only a few oral solid DFs containing a poorly soluble drug 

substance are marketed for children [23]. Today, oral liquid DFs are still widely used for the 

administration of poorly soluble drugs [45]. The use of inclusion complexes with cyclodextrines 

(e.g. in Sporanox®) or cosolvents like propylene glycol and ethanol (e.g. in Kaletra®) are most 

common, whereas the formulation for example as LBF (as present in Neoral® ) is a rarity [23]. 

Despite enabling dose flexibility and ease of administration, several concerns were pointed out 

for the use of oral liquids such as, instability, bad taste, low drug solubility and safety concerns 

for the high quantity of used excipients for solubilization [2,23,45,46].  

In recent years, the production and further downstream processing of an ASD into a tablet has 

emerged as a promising alternative to enable the development of solid DFs for poorly soluble 

APIs [47,48]. Shortly summarised, ASDs can be described as a molecular (or amorphous) 

dispersion of an API in a polymeric carrier [22,38]. The solubility enhancement is achieved by 

the appearance of a high energetic state with a disordered structure of the API molecules, 

leading to an increased apparent solubility. As ASDs are the solubility enhancement technique 

investigated in this work, more detailed descriptions about ASD principles are presented in 

chapter 1.3. ASDs are most frequently formulated into conventionally sized tablets [47]. The 

high proportion of excipients, predominantly a polymer, results in high tablet masses, which 

causes difficulties in the administration, especially for paediatric and geriatric patients [47,49]. 

In order to prevent the need for an extemporaneous compounding prior to administration, 

innovative DFs for children like mini-tablets, granules or pellets based on ASDs are a point of 

current research interest [50-52]. Niessen et al. [53] recently showed the feasibility for ritonavir 

(RTV) containing ASDs to be formulated as mini-tablets. In the scope of this work a biorelevant 

dissolution assessment revealed no significant differences between the developed mini-

tablets, the marketed oral powder Norvir® and conventionally sized tablets. Consequently, the 

advantages in the ease of administration of mini-tablets can be beneficially used while possible 

dissolution differences hypothetically caused by the DF could be excluded.  

Regarding industrial drug product development, a preferred approach is trying to convert the 

formulation technique used for the marketed tablet for adults, into a child-appropriate DF like 

oral powders. Exemplarily, the marketed RTV film tablet Norvir® from AbbVie could be taken 

here into account [23]. In the case of the paediatric product a further milling step and a polymer 

coating were implemented prior to packaging the powder into stick packs [23,54]. The beneficial 

attributes of the oral powder formulation were additionally demonstrated by Morris et al. [54]. 

The authors reported on an improved acceptability due to reduced bitterness of the ASD 

powder compared to the Norvir® oral solution. Furthermore, the study showed that the use of 

different food vehicles to improve the acceptability had no influence on the BA.  
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Selected oral solid DFs where the technology transfer from the adult to the paediatric product 

was successful is exemplarily shown in Table 1. Here, every marketed product is formulated 

as an ASD and afterwards processed downstream into a different DF [23]. 

In many cases, where poorly soluble APIs were formulated as LBFs or nanocrsytals, this 

procedure was only possible for adults, equivalent formulations suitable for children have not 

been realised to date. As example the products Agenerase® (Glaxo Smith Kline) and Emend® 

(Merck Sharp & Dohme) could be mentioned. In both cases the same solubility enhancement 

technique was applied during paediatric development as used for the adult product, however, 

the final DF was changed into a liquid [23].  

Table 1 Selected marketed solid oral products for paediatrics based on the same solubility enhancement 
technique as present for the marketed product for adults. Modified according to Salunke et al. [23]. 

Product name, 
company 

APIs Formulation 
technique 

Adult 
formulation 

Paediatric 
formulation 

Kaletra®, 

AbbVie 

 

Ritonavir,  

Lopinavir 

ASD via Hot-melt 

extrusion (HME) 

Film-coated tablet Scaled down 

film-coated 

tablet 

Lopinavir 

Ritonavir oral 

pellets, 

Cipla 

Ritonavir,  

Lopinavir 

ASD via HME not available Oral pellets 

Norvir®, 

AbbVie 

Ritonavir ASD via HME Film-coated tablet Oral powder 

Kalydeco®, 

Vertex 

Ivacaftor ASD via Spray 

drying (SD) 

Film-coated tablet Oral granules 

Orkambi®, 

Vertex 

Lumacaftor, 

Ivacftor 

ASD via SD Film-coated tablet Oral granules 

 

Nevertheless, the successful implementation of child appropriate ASD products could only be 

accomplished for a few products, explainable by several formulation challenges ASDs tend to 

show. Physical drug stability is crucial since most of the ASDs can be classified as metastable 

systems and are at risk for recrystallization [36,55]. Therefore, careful handling and packing is 

required as for example moisture contact can influence stability of the amorphous system [56]. 

Based on this, ASDs are hardly feasible to be formulated as an oral liquid formulation. 

However, if APIs with low tendency for crystallization such as RTV are considered, tablets, 

granules, or powders can be at least dispersed in a liquid prior to administration [54,57]. Morris 

et al. demonstrated even a higher relative BA for the previously suspended ASD powder 

compared to the oral solution [54].  
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1.1.4 Reference product Kaletra®: Paediatric HIV therapy  
The API combination of RTV and lopinavir (LPV) will be used in the scope of this work as 

model drugs developing a child-appropriate DF for poorly soluble drugs. As a reference, the 

marketed product Kaletra®, by Abbvie was considered for the investigations. Kaletra® is a fixed 

dose combination (FDC) for the treatment of HIV for both, adults and children [58]. According 

to the WHO Guideline from 2016 the use of co-formulated protease inhibitors is first line 

therapy for HIV infections in infants, children, and adults [59].  

The two APIs belong to the same group of HIV protease inhibitors. LPV is thereby 

characterised as main component for the blockade of HIV-1-protease which is essential for the 

replication of the virus. However, due to the rapid metabolism of LPV via cytochrome P (CYP) 

450 enzymes, RTV is added to slow down the metabolism of LPV by blockage of the CYP 

enzymes [60]. Depending on the administered dose and concentration of RTV, Eichbaum et 

al. [61] reported on a complex mechanism of inhibition by RTV mainly caused by an irreversible 

mechanism, usually induced by a clinical daily dose of 100 to 300 mg [62]. In addition to the 

already complex pharmacokinetics, both APIs tend to interact with each other during 

dissolution which further hampers the prediction of the systemic exposure and finally the 

available quantity in blood circulation. Therefore, sufficient drug monitoring of the blood plasma 

needs to be applied to verify an adequate API exposure and preventing possible adverse drug 

effects (ADE) during the therapy [7,63].  

Currently there are three different products of Kaletra® on the market. Giving emphasis to the 

paediatric population, most commonly a liquid solution of Kaletra® is part of the therapy [64]. 

The product is authorized for children older than 14 weeks and is dosed by body surface area 

or body weight. Despite the dosing advantage, the use of the oral solution is linked to several 

concerns. The oral solution contains high amounts of propylene glycol (15.3 %) and ethanol 

(42.3 %) which are associated with an increased risk for gastrointestinal ADEs or even worse 

alcohol toxicity especially for newborns and infants [7,52]. Consequently, there is a tendency 

for reduced patient adherence, which in turn can lead to therapeutic failure or the accumulation 

of viral resistances [52]. The broad application of the oral solution is furthermore complicated 

by the bad taste as well as by stability aspects (recommend storage conditions < 8 °C), a major 

issue for the use in countries with poor resource settings [52].  

Alternatively, if oral solid DFs can be administered, there are two tablet formulations of Kaletra® 

with different dosage strengths of LPV/RTV (100 mg/25 mg) and (200 mg/50 mg) on the 

market. Considering the recommended daily dose for adults and children above 12 of  

800/200 mg this would end up by 2 x 2 200/50 mg or 1 x 4 200/50 mg tablets a day. This goes 

along with an immense number of tablets to be taken and demands a high level of compliance 

for the patients to finally achieve a successful therapy. Both products consist of the same 
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qualitative composition and solubility enhancement principle. The tablets are prepared by the 

MELTREX® technique by AbbVie [65]. In brief, this manufacturing approach consists of a  

hot-melt extrusion step with extremely short residence times to avoid thermal degradation of 

the APIs prior to be shaped with forming rolls (calendaring) to the final product geometry. 

Within the hot-melt extrusion a composite ASD of both APIs with the polymer 

polyvinylpyrrolidone vinylacetate co-polymer (PVPVA) is formed [65,66].  

Extremely relevant for the administration of Kaletra® is that these tablets are only intended to 

be swallowed intact, without being crushed, broken, or dispersed prior to the administration. 

Reason for this were collected results by Abbott Pharmaceuticals (the legal predecessor of 

AbbVie) during the development. A decreased absorption in animals for both APIs was 

reported when crushed tablets were administered [7]. Moreover, a pharmacokinetic study by 

Best et al. [7] reported on the susceptibility of crushed Kaletra® in humans. The study compared 

the systemic exposure of RTV and LPV in a paediatric population with HIV infection when 

either intact Kaletra® or crushed Kaletra® were administered to children aged from 10-16 years. 

As a major output the study has revealed a significant decrease of the mean systemic exposure 

for both APIs for the crushed formulations by approx. 40 % compared to the intact tablets. 

Considering swallowability as one of the major issues paediatric patients may have, the 

intended use of Kaletra® is a major challenge. The swallowability issue predominantly for the 

200/50 mg Kaletra® tablet becomes apparent looking at the tablet dimension (see Figure 2). 

The Kaletra® tablet has a mass of approximate 1 g, a length of 19 mm and a width of 10 mm 

(self-collected measurement data). In Figure 2 a comparison of a) Kaletra® b) self-produced  

8 mm ODT and c) seven 2 mm mini-tablets is provided to highlight the differences in tablet 

dimensions. The availability of the down-scaled Kaletra® tablet with 100/25 mg dose strength, 

however, has improved the acceptability for children, but still a huge proportion of patients is 

not able to swallow this tablets intact [7].  

 
Figure 2 Comparison of a) commercially available 200/50 mg Kaletra® b) self-produced 8 mm ODT  

c) seven 2 mm mini-tablets 
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To overcome these challenges experienced with previously available tablet formulations or 

oral liquids, LPV/ RTV 40/10 mg pellets have been developed by CIPLA. and approved by the 

FDA in 2015. The pellets are authorized for the use in children above 14 days of age and > 5 

kg of body weight [67]. To investigate the possible benefit the pellet formulation might have, an 

acceptability study was conducted by Pasipanodya et al. comparing the use of pellets and the 

oral solution in infants [64]. The study revealed that a large proportion of caregivers preferred 

the use of pellets, however, still challenges in the administration were reported. The authors, 

however, concluded that current challenges in the administration could be overcome by an 

appropriate training of the caregivers [64]. It is also worth noting that the pellets are also based 

on the same formulation approach as the tablets and may not be crushed or altered in any way 

[67]. Undoubtedly, this is by far much less relevant for pellets than for tablets, but still poses 

risks to be considered.  

Currently quite a lot of activity is ongoing for the development of suitable DF for the FDC of 

LPV and RTV. Nanoparticle-based systems were investigated by two different research groups 

[45,52]. In the work of Pham et al. [52] solid granules were formed that induce self-assembled 

nanoparticles after encountering water. It was possible to encapsulate both APIs and 

consequently covering the unpleasant taste. Further, Deng et al. [45] investigated a 

nanoparticle based orodispersible system for RTV and LPV produced via lyophilization. In both 

cases sufficient stability was proven, and in-vivo data were presented, showing that the 

nanoparticle-based systems exceeded the plasma levels of Kaletra®. One major drawback, 

however, is the limitation in the production scaling since these concepts have been 

investigated in lab scale dimensions and will present a challenge when it comes to scaling up 

for industrial relevant batch sizes. 
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Lopinavir 

For this work LPV was selected as model API for a poorly soluble molecule which plays an 

important role in the field of paediatric HIV therapy. Despite presenting a high efficacy in the 

inhibition of HIV protease 1 LPV is commonly used in combination with the booster agent RTV 

due to the strong CYP 3A4-mediated metabolism. The consequence of the rapid metabolism 

combined with a poor aqueous solubility is a low BA of LPV after oral administration [68,69].  

 

Figure 3 Chemical structure of LPV 

LPV is a white to yellowish, slightly hygroscopic powder. The chemical structure shown in 

Figure 3 depicts a relatively large peptidomimetic molecule with a molecular weight of 628 

g/mol. LPV can be described as a highly lipophilic molecule [69]. LPV is practically insoluble in 

water and freely soluble in methanol or dichloromethane. The solubility is pH independent, at 

least for the biopharmaceutically relevant range from 1 to 6.8 [63]. According to the BCS, LPV 

can be classified as class II drug [69]. Furthermore, it needs to be considered that due to the 

high flexibility of the molecule, LPV can adopt different molecular conformations allowing for 

amorphous as well as crystalline forms [70]. 
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Ritonavir 

For this work, the poorly water-soluble API RTV was chosen as the second model substance. 

RTV also belongs to the class of HIV Protease 1 inhibitors, however, to date predominantly 

considered as booster agent in combination with more potent HIV protease inhibitors. RTV is 

characterised as one of the most potent CYP 3A4/5 inhibitors and is therefore of high clinical 

relevance, especially in combination with APIs suffering from a poor BA due to the CYP- 

mediated metabolism. The reason given for not using RTV solely as protease inhibitor is on 

the one hand, the rapid metabolism, and on the other hand, the rapid creation of viral 

resistances [68].  

 

 

Figure 4 Chemical structure of RTV  

RTV can be described as white to tan light powder. The chemical structure of RTV is depicted 

in Figure 4 and reveals a relatively large peptidomimetic molecule with a molecular weight of 

721 g/mol. The chemical nature of RTV can be described as highly lipophilic with a LogD value 

of 4.3 at neutral pH of 6.8 [71]. RTV is practically insoluble in water or phosphate buffers at pH 

4-7 (solubility approx. 1 µg/ml), however, provides significantly higher water solubility (400 

µg/ml) in acidic conditions (pH < 2) [71]. According to the BCS, RTV can be assigned to  

class IV due to its poor aqueous solubility as well as low permeability [54]. Regarding the 

chemical structure the two basic thiazole moieties will lead to an ionization in acidic 

environment thus, increasing the solubility of RTV. The pKa values for the respective thiazole 

structures are 1.8 and 2.6 [71,72]. Attention should be given to polymorphism since two 

polymorphs were described in literature (I & II), significantly differing in their physicochemical 

properties such as solubility [70,73]. 
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1.2 Orodispersible tablets 

1.2.1 General aspects 
Despite many beneficial aspects conventional tablets may have, there are several limitations 

that do not allow a convenient use for every patient group, mostly connected with swallowing 

difficulties predominantly for paediatric and geriatric patients [16,74]. ODTs can be seen as a 

promising therapeutic alternative to overcome swallowability issues while still enabling both, 

the preferred oral administration as well as stability benefits of solid DFs [15,75]. ODTs rapidly 

disperse after contact with saliva, forming a liquid dispersion or solution which can be 

swallowed easily. After disintegration the released API may act locally or show a systemic 

effect, either via an intestinal or transmucosal absorption. The possibility to affect the BA due 

to the transmucosal absorption route was exemplarily shown for the two APIs naratriptan and 

valsartan [76,77]. The potential of ODTs in the context of paediatric therapy, particularly 

focusing on acceptability as well as on numerous formulation aspects, is described more in 

detail in the review article in chapter II.  

According to the Ph.Eur., ODTs are uncoated tablets intended to be administered to the oral 

cavity, disintegrating rapidly without the need for further intake of any liquids. A disintegration 

time of 180 s in a conventional disintegration tester is required by Ph.Eur., whereas the FDA 

stated in a guidance for industry a more biorelevant time of 30 s relying on the application in 

the oral cavity [78]. Despite some heterogenous terms in literature as well as in regulatory 

specifications, the nomenclature of Ph. Eur. will be used in this work. DFs such as dispersible 

tablets and lyophilisates must be distinguished from ODTs. Dispersible tablets are dispersed 

in water prior to application, whereas lyophilisates are produced based on API containing 

solutions or suspensions via freeze drying preferably directly in the blister. Controversially, 

ODMTs firstly prepared by Stoltenberg and Breitkreutz [79] are still classified under ODTs, 

despite providing relevant differences in the aspects of quality control and product 

specifications [15].  

1.2.2 ODT manufacturing and excipients 
By far the most commonly used technique for the manufacturing of ODTs is direct compression 

(DC). This is generally attributed to the ease of manufacturing combined with time and cost 

efficacy. Furthermore, the limited number of process steps needed, including only weighing 

and blending of the excipients and the API(s) prior to compression on a tablet press also led 

to the establishment of DC as preferred manufacturing technique. In addition, lower variability 

in the process and a lower risk for stability issues of the API were highlighted [15,80,81].  

Many different studies in literature were performed either on a compaction simulator for initial 

formulation development or e.g. in terms of up-scaling approaches on industrial like rotary 
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tablet presses [82]. Despite a broad knowledge and a high expertise in DC, still several 

challenges are present. The majority is linked to the properties of the APIs. In both cases, for 

low dosed as well as for high dosed ODTs different aspects are needed to be addressed. For 

low dosed formulations the content uniformity, whereas for higher drug loaded ODTs the 

balance between a sufficient mechanical strength and a fast disintegration were found to be 

most important [80,81,83]. To overcome the difficult properties of the API, while still ensuring 

the required quality attributes of ODTs such as disintegration time, mechanical strength, 

content uniformity and finally sufficient acceptability, suitable excipients must fulfil high 

requirements [75,81,84]. For initial research many cellulose derivates e.g. microcrystalline 

cellulose (MCC) and L-Hydroxypropyl cellulose (L-HPC) were screened for suitability, but 

mostly excluded either due to an insufficient disintegration or an unpleasant mouthfeel [85]. 

Instead, sugar alcohols became the most relevant material group. Especially mannitol is by far 

the most frequent used material in the field of ODTs [85]. The reason for that could be 

predominantly attributed to the pleasant mouthfeel providing a slightly sweet taste, a cooling 

effect during dissolution and the high porosity of the resulting compacts [85]. Despite many 

beneficial characteristics of mannitol, the major drawbacks which strongly limit the sole use of 

native mannitol is the poor flowability, compressibility and tableting difficulties such as capping 

and sticking [86]. Due to the low bonding capacity of the mannitol crystals the resulting 

compacts exhibit a low mechanical strength [85,87]. To counterbalance the poor bonding 

capacity, but still maintaining the benefits of mannitol, different co-processed excipients 

(CPEs) have been developed to provide a good flowability, compactability, fast disintegration 

and a pleasant mouthfeel within one ready-to-use powder [84,85,88]. According to Rojas et al. 

[84] co-processing leads to an interaction of two or more excipients on a subparticular level, 

resulting in a synergy of powder functionality. The physical alteration of a mostly mannitol-

based combination of a filler-binder and a superdisintegrant leads to a modification of powder 

properties like particle size, particle shape, porosity, and density, which all have a significant 

influence on the desired ODT properties. Commonly used processes are spray drying (SD), 

granulation, co-grinding, and co-crystallization [85,88-90].  

Among others, Draskovic et al. [80] pointed out the superiority of CPEs, especially for the 

incorporation of high amounts of APIs like caffeine or ibuprofen. The challenging behaviour of 

the APIs often cause an insufficient compaction or a poor disintegration. Many studies in 

literature compared the performance of CPEs and could aid in the selection since the variety 

of CPEs is high [80,83,84,91]. Exemplarily, the study of Bowles et al. [81] and Dziemidowicz et 

al. [75] could be taken into consideration. They highlighted many different aspects in their 

studies and evaluated different CPEs either regarding manufacturability or acceptability 

aspects. In Table 2 selected commercially available products are summarised. Special grades 

of the respective products differing for example in characteristics such as particle size 
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distributions, however, are not considered in this overview. Even though much useful literature 

is available the final selection of the best suitable CPE is commonly evaluated on a case-by-

case basis.  

Table 2 Examples of mannitol based CPEs for the direct compression of ODTs (adapted and modified 
from Bowles et al. [81]). 

CPEs Supplier Ingredients 
Hisorad® Daicel Corporation, Japan D-mannitol 

MCC 

croscarmellose sodium 

Granfiller D® Daicel Corporation, Japan D-mannitol 

MCC 

carmellose 

crospovidone 

Ludiflash® BASF, Germany D-mannitol (90 %) 

crospovidone (5 %) 

polyvinyl acetate dispersion (5 %) 

Parteck® ODT Merck KGaA, Germany mannitol 

sorbitol 

croscarmellose 

Pearlitol® Flash Roquette, France mannitol (80-85 %) 

maize starch (15-20 %) 

SmartEx® Shin-Etsu, Japan D-mannitol 

polyvinyl alcohol 

L-HPC 

F-Melt® Fuju Chemical Industry, Japan D-mannitol (55-70 %) 

MCC (10-25 %) 

xylitol (2-9 %) 

crospovidone (5-13 %) 

magnesium aluminometasilicate (2-9 %) 

Prosolv® ODT JRS Pharma, Germany mannitol (60-70 %) 

MCC (15-30 %) 

fructose and silicon dioxide (< 10 %) 

crospovidone (5 %) 

Compressol® SM SPI Pharma, USA mannitol (80-90 %) 

sorbitol (10-15 %) 

silicon dioxide (< 2 %) 

Pharmaburst® 500 SPI Pharma, USA mannitol (85 %) 

silicon dioxide (< 10 %) 

sorbitol (< 10 %) 

crospovidone (5 %) 
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1.3 Amorphous solid dispersions  

1.3.1 General aspects  
The principle of solid dispersions was firstly considered by Sekiguchi and Obi in 1961. The 

authors observed an increased dissolution rate by preparing eutectic mixtures of the poorly 

soluble API sulfathiazole with urea [92]. The term “solid dispersion” has been firstly introduced 

by Chiou and Riegelman [93] having defined it as “a dispersion of one or more active 

ingredients in an inert carrier at the solid state“ [93]. Nowadays, many different schemes for 

the categorization of solid dispersions can be found in literature [38,94]. To give some 

examples, eutectic mixtures, glass suspensions, crystalline suspensions, crystalline solid 

solutions, and ASDs can be allocated to the group of solid dispersions. However, a distinct 

definition for one system is not necessarily possible since several types can be present within 

one solid dispersion.  

In the scope of this work, the term ASD will be used following the definition by Huang and Dai 

[95], characterising systems where an API is predominantly embedded in amorphous state into 

a solid matrix, commonly a polymer. The relevance of ASDs in modern oral drug delivery is 

justified by the possibility to improve the BA of poorly soluble drugs [38]. This is attributed to 

an increase in dissolution rate and the generation of supersaturation of the API when exposed 

to biological fluids [38]. 

The typical dissolution profile of an ASD has been described as spring and parachute by 

Guzman et al. [96]. Due to the lower density and the lack of long range order, the amorphous 

API is at higher energetic state, which results in a sharp increase in dissolution exceeding the 

equilibrium solubility [97]. The initial spring is either followed by rapid precipitation or a 

parachute phase, meaning that supersaturation can be maintained over a certain time. 

According to Taylor and Zhang [98], every concentration of an API dissolved above the 

equilibrium solubility of its most stable polymorph can be defined as supersaturated. For 

quantification, the degree of supersaturation can be easily applied and be calculated by the 

ratio of the concentration at certain time point and the equilibrium solubility in the same media 

at same conditions such as temperature and pressure [98]. The supersaturated state of the 

API after initial dissolution can be stabilised via different mechanisms, strongly influenced by 

the selection of the polymer, as could be pointed out by Curatolo et al. [99]. The relevance for 

the generation and the maintenance of supersaturation can be explained by the findings of 

Raina et al. [100] and Borbas et al. [101] defining the extent and amount of supersaturation as 

prerequisite for an increased flux across the membrane. A correlation was found between the 

increase of flux and the extent of supersaturation up to a defined threshold called “amorphous 

solubility”.  
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From a thermodynamic point of view the supersaturation can be regarded as unstable since 

no thermodynamic equilibrium can be formed, as this system exists between the amorphous 

form and its solution in the absence of crystalline material [38]. To stabilise supersaturation 

while preventing the dissolved API from crystallization, the adequate selection of a polymeric 

crystallization inhibitor is crucial [22]. Besides a desirable increase in permeation, the higher 

energetic state of the API also acts as driving force for possible precipitation and crystallization 

of the API [102]. Consequently, the amount of molecularly dissolved drug substance which is 

available for permeation would continuously decrease until finally equilibrium solubility is 

reached. As a result, this would counteract the benefit of an ASD formulation and would 

automatically lead to an insufficient in-vivo performance [103].  

The complex dissolution interplay during ASD dissolution as well as critical formulation aspects 

will be discussed in the following chapters. 

1.3.2  Drug Dissolution from ASDs 
Besides the appearance of molecularly dissolved API during dissolution of ASD formulations, 

a multitude of colloidal structures, such as drug-rich particles, micelles, nanoaggregates, are 

formed simultaneously, leading to a complex interplay between those structures [98,104]. 

Therefore, to describe the maximum amount of detectable API in solution, the term apparent 

solubility is widely accepted, as it combines both, states of molecular supersaturation as well 

as solubilised forms [38,105,106].  

Special emphasis must be given to the formation of a separated amorphous phase during 

dissolution, often generalised as amorphous-liquid phase separation (ALPS) [38]. According to 

Ueda and Taylor [107], the phenomenon of ALPS generally occurs if a certain limit of 

supersaturation defined as amorphous solubility is exceeded while the crystallization tendency 

of the molecule is low. The formation of ALPS has additionally been described to be dependent 

on the combination of API and polymer [108]. Furthermore, a study conducted by Indulkar et 

al. [109] has shown that ALPS is likely to occur when the drug load in an ASD is low, due to 

the rapid increase in drug dissolution exceeding the amorphous solubility. Wilson et al. [103] 

reported that the desired increase in permeation is directly linked to the extent of 

supersaturation, however, only until the amorphous solubility is reached. From that point where 

the free drug concertation is at maximum, further addition of drug would just lead to an 

enrichment in the colloidal phase, while the degree of supersaturation remains constant. The 

appearance as well as the formation of the colloidal phase is not fully understood to date and 

controversially discussed in literature [110,111]. While the appearance of crystalline precipitates 

is undoubtedly correlated with a negative influence as it depletes the supersaturation, the 

formation of an amorphous colloidal phase is expected to be of biopharmaceutical relevance 

[112]. Various studies indicated that the colloidal phase is advantageous for in-vivo purposes 
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since it is in equilibrium with the molecularly dissolved API, thus acting as a reservoir by 

replenishing the permeated drug continuously [103,113]. In contrary, there is also some 

literature available, characterising the formed amorphous phase as precursor for precipitation 

with a considerable risk for subsequent crystallization [38,111]. To date, still a lot of research is 

ongoing in this field, for example by analysing the influence of the generated particle size of 

the colloids, as studies have demonstrated that smaller particle sizes could play an important 

role in permeation [107,112,114,115].  

Besides many different postulated dissolution mechanisms for ASDs, there is accumulated 

evidence in literature that three different mechanisms as summarised by Schittny et al. [38] are 

most likely to occur when a solid ASD particle is exposed to aqueous media. The three 

highlighted mechanisms are schematically visualized in Figure 5. 

 

Figure 5 Overview of three different dissolution mechanism of ASDs (with permission from Schittny et al. 
[38] ) 

In terms of the first scenario, the carrier-controlled release, the used matrix polymer starts to 

from a highly viscous gel layer after water ingression through which the API has to diffuse. As 

a result, the expected drug release kinetic is comparably slow. The release in this case is 

controlled by the API concentration within the ASD and the surrounding release medium. For 

this mechanism, however, when exceeding the amorphous solubility, ALPS can occur. The 

second scenario is the congruent release where the API and the polymer show a fast and 

simultaneous release inducing a strong supersaturation effect. It is crucial in this regard that 

the efficacy of the polymer for an immediate stabilisation is maintained as the degree of 

supersaturation strongly affects the crystallization rate in both aspects, the nucleation step as 

well as the crystal growth [116,117]. It was reported by Saboo et al. [118] that the congruent 

release mainly attributes to the formation of ALPS. The third mechanism described, is the drug-

controlled release which is attributed to an initial dissolution of the polymer whereby the 

remaining API dissolves at a rate which is predominantly controlled by the drug itself. ASDs 

relying on this mechanism suffer from a high recrystallization tendency due to the lack of direct 
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interaction with the polymer. According to Schittny et al. [38] no reports were found in literature 

describing the occurrence of ALPS for this scenario. However, the clear distinction of the 

mechanisms is mostly based on theoretical considerations. In practice, the different occurring 

mechanisms cannot be clearly distinguished and therefore simultaneous occurrence can be 

assumed [119].  

1.3.3 Formulation aspects  
Defining most of the ASDs as thermodynamically metastable, challenges arise for physical 

stability over the intended shelf-life. To reduce the high energetic state of the amorphous API, 

the systems are susceptible to recrystallize forming a thermodynamically favourable 

polymorph [36]. To reduce the risk for recrystallization by an increased solid state stability 

several important ASD properties were highlighted in literature, such as polymer selection, 

drug load, the protection of moisture and the addition of further excipients [22,56]. 

For kinetic stabilisation a commonly assumed rule of thumb claims that the glass transition 

temperature (Tg) of an ASD should be at least 50 °C higher than the maximum storage 

temperature [120]. Besides the antiplasticization effect, which causes an increase in Tg of the 

API the use of polymers with a high Tg can also increase solid state stability by an increase in 

viscosity which can lead to a decrease in molecular mobility [22,121]. The polymers that have 

been most studied and described for ASDs are cellulose derivatives such as hydroxypropyl 

methylcellulose (Hypromellose, HPMC) and hydroxypropyl methylcellulose acetate succinate 

(HPMCAS), poloxamers, polyvinylpyrrolidone (Povidone, PVP) and polyvinylpyrrolidone vinyl 

acetate (PVPVA) [122]. Within each development process, however, the appropriate polymer 

has to be selected fitting the API properties best [22,116,123].  

Besides solid-state stabilisation the ideal polymer should also aid to the desired dissolution 

profile, followed by stabilisation of the supersaturation, and finally prevent the drug to 

precipitate. The polymer selection for a given API aimed for being developed as an ASD, is 

generally assessed first in small scale high throughput dissolution assays [39,124]. Most 

commonly ASDs are formulated as binary systems including an API and the polymer only [125]. 

The effectiveness of polymers to influence the respective ASD performance varies significantly 

as pointed out by Curatolo et al. [99]. This could be attributed to multiple possible mechanisms 

the polymers aim to maintain drug in supersaturation. In general, this is mainly enabled by 

kinetic stabilisation and merely slow the thermodynamically unavoidable process of nucleation 

and crystal growth [126]. 

Conceivable mechanisms would be [122,126]: 

• changes in solution properties either via solubilisation or viscosity increase 

• steric hindrance  
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• hindering crystal growth by adsorption on the newly built surfaces  

• molecular interactions such as hydrophobic interactions or hydrogen bonds  

Khan et al. [127] found out that polymers with intermediate hydrophilicity/hydrophobicity were 

most effective in the inhibition of crystallization during dissolution. This is potentially attributed 

to the ability of these polymers to interact with the hydrophobic drug rich phase formed within 

the process of ALPS as well as with the molecularly dissolved drug in the aqueous phase 

[123,128]. Besides intermediate hydrophobicity, the appearance of ionizable groups, number 

of hydrogen bond donors and acceptors as well as a sufficient molecular weight were reported 

to be most favourable for stabilising drug supersaturation [38]. By far PVPVA and HPMCAS 

play the most important role in ASD development apparent from most of the marketed products 

[22]. In terms of PVPVA, a fast onset of drug release at least until the threshold for drug load 

is reached and the ability for strong molecular interactions can be highlighted [109,123,129]. In 

the case of HPMCAS, the high relevance is mostly related to the huge potential of 

crystallization inhibition [130]. Curatolo et al. [99] analysed 41 polymers regarding the ability for 

achieving and maintaining supersaturation including nine structurally different hydrophobic 

drugs. The results of the study revealed the highest effectiveness of stabilisation when 

HPMCAS is used. A crucial point to bear in mind, when HPMCAS is selected, is the use of the 

HPMCAS grade suitable for the specific formulation approach. The grade has a remarkable 

impact on the resulting pH dependent solubility, crystallization inhibition and dissolution rate, 

caused by a different ratio of acetyl to succinoyl groups in the polymer [128]. The different 

onsets of dissolution for example at different pH, can be taken as advantage for a tailored 

dissolution profile. Exemplarily, gastric resistance and sustained release principles could be 

mentioned here [128,131]. 

It is well known that the API load directly impacts the ASD dissolution behaviour. Indulkar et 

al. [109] performed a study to investigate the dissolution of ASDs with RTV and PVPVA with 

rising drug loads starting form 10 % w/w up to 50 % w/w. Interestingly, the authors observed 

rapid and complete release for ASDs up to 25 % w/w, with a subsequent formation of ALPs 

and described a congruent release of API and polymer up to a drug load of 25 % as limit of 

congruent release. It is also confirmed by other research groups that the congruent release of 

API and polymer can be seen as prerequisite for ALPS to occur. Higher drug loads thereby 

decreased dissolution with no indication for ALPS [109,112,118]. This circumstance poses an 

immense risk for recrystallization, however, not observed in the study of Indulkar et al. [109] 

possibly due to the low crystallization tendency of RTV. The hypothesis was made by the 

authors, that in terms of higher drug loads, the dissolution mechanism has changed to be finally 

dominated by the hydrophobic nature of the lipophilic drug [109]. The relevance for the 

dissolution mechanism can be even strengthened by the study of Tres et al. [132] taking 
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felodipine as a fast-crystallizing API. Likewise, the change in dissolution mechanism by 

increasing the drug load was also described, however, in this case re-crystallization was found 

to occur. The authors compared the dissolution behaviour of 2 different PVPVA based ASDs, 

first, with a drug load of 5 % and second with a drug load of 50 %. In the case of the lower 

loaded ASD, the release was shown to be polymer dependent with felodipine dissolving with 

the same dissolution rate as the polymer. In contrast for the 50 % drug loaded option, 

significantly lower dissolution rates were observed for the polymer as well as for felodipine. 

Additional analytical investigations via Raman spectroscopy served to find detectable reasons 

for these different dissolution performances. For the 5 % loaded ASD no changes in Raman 

spectra were detected during dissolution, indicating a dissolution of the ASD as single entity, 

dominated by the hydrophilic polymer. However, the picture obviously changed for the  

50 % drug-load of the ASD. Here, the investigation revealed an initial loss of the polymer from 

the ASD extrudate with the consequence of drug re-crystallization. The authors concluded that 

the dissolution behaviour has changed to be now strongly dominated by the hydrophobic 

felodipine [132]. Even though, higher drug loads are principally desired, a careful evaluation is 

mandatory to ensure well performing ASD products. 

A further critical aspect could potentially be the addition of another poorly soluble drug to the 

product as it is often present in FDCs. A well-described system is the combination of LPV and 

RTV. A significant decrease in dissolution is reported in literature when both APIs were 

combined in one polymer matrix. A physicochemical API-API interaction during dissolution was 

suggested as possible explanation. The authors hypothesized a significant reduced 

amorphous solubility for each drug, due to the mixing tendency in the drug-rich phase. This 

mixing tends to stabilise the colloidal phase, causing a shift in the balance with the molecularly 

dissolved API and hence reducing the concentration of dissolved drug molecules [63,133]. 

Besides this system of RTV and LPV further API combinations were also investigated. As far 

as miscibility was present in the amorphous state, a substantial decrease in amorphous 

solubility was also detectable [134]. 

For completeness, many other formulation aspects may affect the drug dissolution from ASDs 

to name a few, the degree of ASD homogeneity, further addition of excipients such as 

surfactants or a second polymer as apparent in ternary ASDs, and residual crystallinity [38]. 

1.3.4 Biorelevant dissolution testing for ASDs 
Dissolution testing according to the standardized methods of the United States Pharmacopeia 

(USP) and Ph.Eur. is usually performed to assess the quality of the drug product and to prove 

the batch-to-batch consistency [135]. In principle, the basket or the paddle methods can be 

used for solid oral DFs, usually with media volumes in the range of 500-1000 ml to achieve 

sink conditions for enabling a complete drug release. Besides quality control aspects, in-vitro 



Chapter I – Introduction 

22 
 

 

dissolution testing has been established to predict changes in drug release that may have an 

impact on in-vivo performance [136]. In case of immediate release DFs for highly soluble APIs 

in-vitro dissolution testing has been entered in approval procedures and can be used as a 

replacement for bioequivalence studies in order to file a biowaiver [137]. However, this is mostly 

not applicable for poorly soluble drugs since the used volumes for in-vitro dissolution testing 

are prone for false in-vivo prediction due to overestimation of dissolution.  

The prediction of in-vivo performance for ASDs is by far more complex since the dissolution 

process relies on different mechanisms such as solubilization, supersaturation and 

precipitation which all influence the exposure and finally, the absorption in the small intestine 

[37,138]. To nevertheless draw possible conclusions on in-vitro-in-vivo correlations (IVIVC) for 

ASDs more advanced dissolution models were proposed. These models were either based on 

USP I and II apparatus or flow through cells (USP IV) [37,135,139,140]. The implementation of 

non-sink conditions (in a one-phase setup) is of great importance for the dissolution 

assessment of ASDs as pointed out by Sun et al. [141]. Only when the possibility is given to 

assess the extent and maintenance of a supersaturated state, as well as ongoing precipitation 

and recrystallization, biopharmaceutically relevant conclusions could be made.  

In order to better simulate in-vivo conditions, the model must be physiologically adapted 

[135,138]. One major aspect in this regard is the use of biorelevant media, firstly proposed by 

Dressman et al. [136]. Especially for systems which induce supersaturation, biorelevant media 

like fasted state simulated gastric fluid (FaSSGF), fasted state simulated intestinal fluid 

(FaSSIF) and fed state simulated intestinal fluid (FeSSIF) were found to have a good prediction 

compared to human intestinal fluids as pointed out by Bevernage et al. [37]. Physicochemical 

key aspects in the development of these media were the adjustment of pH, osmolarity, surface 

tension and buffer capacity [136]. Schittny et al. finally summarised the use of biorelevant 

media during the development stage as one of the most crucial points and defined it as 

indispensable [38]. 

Besides the implementation of non-sink conditions and the use of biorelevant media the 

simulation of the physiological pH gradient must be also considered, especially for formulations 

that rely on the gastrointestinal pH gradient to induce supersaturation such as weak bases 

[37,142]. However, the consideration of gastric residence is not only noteworthy for APIs 

providing pH dependency but can be also critical for neutral molecules as recently pointed out 

by Müller et al. [130]. A significant decrease of supersaturation was observed when the 

exposure time in acidic media was increased, despite the absence of acidic or basic properties 

of the API. To simulate the transfer out of the gastric environment into the small intestine, 

Kostewicz et al. developed a two-compartment gastric intestinal transfer model [142]. Many 
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different transfer setups are described in literature, among other aspects they exemplarily differ 

in the technique the transfer is applied, or medium volumes considered [130,143,144].  

To further increase the in-vivo reliability Bevernage et al. [37] among others pointed out the 

absence of an absorptive sink compartment as an important cause for poor IVIVC for 

supersaturating systems [103,145]. The permeation can affect precipitation by lowering the 

Gibbs free energy of the supersaturated state by a continuous removal of dissolved molecules. 

Furthermore, the supersaturation is at risk for overestimation in single phase setups, due to 

misinterpretations of the effect of precipitation inhibitors [37]. An easy principle for first trials, 

which could potentially provide first insights for possible in-vivo behaviour is the use of a 

biphasic dissolution approach. In this setup an organic layer e.g. octanol or decanol as 

absorptive sink compartment is added [146,147]. Like the previously described simple transfer 

model there are also many modifications of this procedure published. Most commonly either 

USP I, USP II apparatus or models based on flow through cells (USP IV) were used [148]. 

Worth to mention in this regard is the developed biphasic dissolution assay (BiPHa+) used in 

the study of Denninger et al. [149]. Besides the implementation of the sink compartment the 

model additionally ensures a continuous control and adjustment of pH throughout the 

simulated gastrointestinal transit. Despite promising in-vivo correlations found by Xu et al [72], 

and Shi et al. [146] there are numerous limitations that restrict the broader use of the biphasic 

model. For example, it remains unclear to what extent the direct contact between the drug and 

the organic solvent is affecting the dissolution. Furthermore, it must be mentioned that the 

partition of the API is mainly driven by the partition coefficient between the aqueous and 

organic phase and does not rely on the properties of a physiological membrane. Despite 

difficulties in the in-vivo prediction, valuable insights especially in early-stage development 

could be gained. Of greatest relevance thereby is the discriminative power between ASD 

formulations or even between different manufacturing techniques as pointed out by Silva et al. 

[150] or Thiry et al. [151]. In practice, the simulation of an absorptive compartment has also 

been established by several other experimental setups, the well-established Caco-2 model 

using human colorectal adenocarcinoma cells [34], the parallel artificial membrane permeation 

assay (PAMPA) [152] or the TNO Gastro-Intestinal Model (TIM) [153] were documented in 

literature. Despite years of intensive research, to date none of the above-mentioned models is 

able to fully simulate GIT conditions, yet [135,138]. 

1.4 Challenges in the downstream processing of ASDs 

1.4.1 Manufacturing techniques  
Several ASD production techniques have been developed in recent years. The four most 

described techniques in literature are, SD, HME, fluid-bed technology and KinetiSol© 

technology. Processes like HME require the application of high temperatures to reach the 
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molten state of the compounds, whereas the Kinetisol© technology is working with mechanical 

stress to reach the required energy. SD and fluid-bed technology thereby involve the 

evaporation of solvent or solvent mixtures [22,48,139]. Each of the listed techniques offers 

different advantages and opportunities, however, also go along with individual limitations which 

usually need to be thoroughly evaluated before choosing the appropriate technique on a case-

by-case basis. An important key parameter in this regard is the physicochemical nature of the 

API [48,154]. Taking the API characteristics into account, scientists often follow two possible 

manufacturing routes: the solvent- or the melt-based route. By far the two most prominent 

processes are SD as solvent-based and HME as melt-based option [22,155]. This point can be 

further emphasised by taking a closer look at the FDA approved ASD products, which are 

predominantly produced via SD or HME as emphasized in the review of Baghel et al. [22]. 

In 1961, Sekiguchi and Obi firstly reported on the melting technology to produce solid 

dispersions, at that time mostly investigating eutectic or monotectic mixtures of an API and a 

carrier [92]. A physical mixture was heated to obtain a melt which was afterwards solidified via 

cooling and finally crushed to reduce the particle size. As a modern industry-related version, 

HME has emerged nowadays as the most relevant technique, highlighted by a rising number 

of patents and several marketed products available [139,156,157]. This process combines 

feeding of the components, and an intensive mixing of polymer and API under heating in an 

extruder before the melt is pressed out of the nozzle(s). Besides the high temperatures applied 

and the subsequent melting of the substances the additional introduced mechanical force 

further supports a homogenous dispersion of the API in the polymer. As already pointed out, 

ASD homogeneity has a significant influence on the resulting biopharmaceutical performance 

[158,159]. Finally, the melt is pushed under pressure through a die forming a filament, which 

solidifies to the glassy state where the API molecules are entrapped in the polymer. Afterwards 

the filament can be either post-processed into granules via milling prior to tableting or filled into 

hard capsules or sachets. Rarely described, but also possible is the direct shaping of the 

filament into the final dosage form, so called calendaring [156].  

In HME, as a solvent free process, a drying step is not necessary, leading to an increased 

cost-efficiency and the possibility to implement continuous manufacturing approaches 

[157,159,160]. Furthermore, it was shown that high drug-loaded ASDs were producible while 

stability issues could be excluded. Tian et al. [161] demonstrated the production of 60-70 % 

loaded ASDs for three selected APIs, with the use of intensive thermodynamic modelling. 

Despite the broad applicability of HME in ASD production several disadvantages are also 

present. Thermal stability must be ensured for all the ingredients since HME works at elevated 

temperatures and contains relatively long residence times in the extruder. Consequently, the 

process is not capable for heat sensitive materials. This point is not only relevant for APIs but 
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also for many polymers, which often need high temperatures to reduce the melt viscosity 

needed for extrusion [156,158]. As an alternative to overcome the thermal load and still be able 

to process high melting drugs, the KinetiSol© technique was developed. The heat necessary 

for the melting of the compounds is only generated by friction and shearing at high rotating 

speeds of the blades. Beneficial thereby is the comparably low processing time of under 30 s 

and lower processing temperatures [139]. This technique is frequently implemented in 

research, however, has not been implemented into industrial scale, yet [48].  

Solvent based techniques start with the dissolution of the API and a polymeric carrier in a 

solvent or in a solvent mixture, followed by a quick removal of the solvent. The main benefit of 

the solvent-based techniques is the prevention of thermal degradation of the API, as only a 

low heat load is necessary to evaporate organic solvents [139]. However, two different 

challenges are needed to be addressed in the development. Firstly, a suitable solvent or a 

solvent mixture has to be found to dissolve both, the API and the polymer. The determination 

of a suitable solvent is a prerequisite for the final ASD performance, as insufficient dissolution 

in the solvent can significantly influence final ASD homogeneity [162,163]. The difficulty here 

often lies in the different polarities of the molecules [139]. As an undesired consequence, 

further excipients like surfactants are often required. However, their quantity in the final DF is 

generally strictly limited and reduces the loading capacity. Secondly, the residual organic 

solvent needs to be completely removed for patient safety, as these can cause ADEs [22]. 

Additionally, the second drying poses a risk to ASD stability since the increased temperature 

goes ahead with an increase in molecular mobility with the consequence of phase separation, 

frequently the preliminary step before the first nucleation induces [22]. Nevertheless, SD has 

become the most relevant solvent-based technique. This process allows for an extremely fast 

evaporation, enabling an entrapment of the API molecules in the polymer matrix due to the 

sudden increase in viscosity. Beneficial aspects additionally highlighting the relevance of SD 

for the manufacturing of ASDs could be the high control of process variables, the ease of up-

scaling and the great potential to influence the final powder properties of the ASD [48,139]. 

1.4.2 Downstream processing of ASDs into tablets 
A lot of research has been performed focusing on production techniques for ASDs [164] or on 

the dissolution performance of intermediates [38,165], however, only a few studies dealt with 

the downstream processing of ASDs into tablets as the final DF [47,166,167]. Possible reasons 

for that could be the higher complexity of the systems, attributed to a more challenging 

formulation development and stability assessment compared to standard formulations 

[155,168]. Regarding stability, it is important to bear in mind that ASDs are prone to phase 

separation in form of demixing triggered by mechanical energy input during tableting or dry 
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granulation [47]. This tendency can be even more pronounced if higher drug loads are 

considered as demonstrated by Ayenew et al. [169].  

Most studies available in literature focusing on downstream processing of ASDs into tablets 

highlighted the poor flowability, compactability and later tablet properties such as disintegration 

and dissolution as biggest challenges [47]. Undoubtedly, the individual extent is highly 

dependent on the ASD manufacturing technique and the resulting properties of the 

intermediates [170-172]. For ASDs produced by SD one of the main challenges will be the 

improvement of flowability, because SD typically yields very cohesive powder with a low bulk 

density and a large surface area, hampering subsequent direct compression. Reports on direct 

compression of spray dried ASDs are often limited using single punch equipment and a manual 

die fill to firstly study the compaction behaviour of the powder [173,174]. To overcome this, 

another intermediate step such as dry granulation is often necessary [167].  

Regarding this work, the focus will lay on the downstream processing of ASDs produced via 

HME. To achieve a tablet as desired oral solid DF, the obtained filaments need to be first milled 

in an additional process step. In contrast to SD powders, milled powders obtained from 

filaments generally have the tendency to show a better flowability, due to the higher bulk 

density. However, this is strongly dependent on the particle size distribution and particle 

morphology [47,170]. The resulting particle size of the milled extrudates was found to be a 

relevant aspect as it influences the flowability [47,160], tabletability [158,175] as well as the 

dissolution behaviour [175,176]. An interesting downstream approach for HME was published 

by Hörmann et al. [160]. With the use of strand pelletization it was possible to achieve free 

flowing spherical particles with a very narrow particle size distribution. In a subsequent process 

step the pellets could be mixed and finally compressed into tablets. The authors also provided 

extensive insights for the implementation of quality by design (QbD) approaches using a semi 

continuous process for the development of tablets containing ASDs.  

The main challenges for the processing of milled extrudates towards a successful tablet 

formulation are the loss in compressibility and the insufficient disintegration of the tablets. 

Davis et al. [170] observed a significantly lower tensile strength for milled extrudates compared 

to spray dried products applying compression pressures in the same range. As possible 

reasons for that, particle size and morphology as well as the reduced compressibility of the 

previously densified extrudate were hypothesised [158,170]. Demuth et al. [47] suggested the 

use of smaller particles for an increase in specific surface area available for particle-particle 

bonding, however, only to a limit where the flowability is still in a processable range. In addition 

to the challenges caused by the powder properties of the milled extrudates the high amount of 

polymer included will also lead to difficulties. Many polymers tend to swell and form a gel layer 

after contact with water or generally suffer from poor wettability, after the extrusion process. 
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As a result, the disintegration of the tablet as well as the dissolution rate of the particles can 

be significantly influenced [158,166]. In a recently published study by Zhang et al. [177] 

remarkable differences in the disintegration process dependent on polymer hydrophilicity and 

polymer-drug ratio were reported. The authors showed that for ASDs prepared using 

hydrophilic polymers (like PVPVA) disintegration time increased when polymer-drug ratio 

increased. In contrast for less hydrophilic polymers like HPMCAS faster disintegration times 

were observed considering the same polymer-drug ratios.  

To overcome this challenging behaviour of the ASDs, high amounts of different excipients are 

needed, such as filler-binders and disintegrants. However, considering that the drug load in 

ASDs is most commonly around 10-30 % [124], further addition of excipients will finally increase 

tablet mass causing pill burden or acceptability issues [47]. For this reason, the used excipients 

should be evaluated thoroughly and ASDs should contain as little additives as possible.  
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1.5 Aim of the thesis 
As laid out in the previous sections, child-appropriate DFs for poorly soluble drugs are highly 

required for an efficient and safe pharmacotherapy. In recent years, innovative solid oral DFs 

like ODTs, ODMTs or immediate-release mini-tablets have gained importance since 

advantages in terms of stability and acceptability were proven in several studies. To date, still 

most available products with poorly soluble APIs are formulated as liquid oral DFs. They often 

contain high amounts of questionable excipients posing a considerable risk for adverse effects. 

Also, common practice is the manipulation of marketed products for adults, e.g., via crushing 

the tablets prior to dispersing them in water, or extemporaneous compounding, which is 

associated with a high potential for the failure of pharmacotherapy. 

Aim of the thesis was to develop a child-appropriate formulation for the two poorly soluble 

drugs RTV and LPV. As selected technique for solubility enhancement the preparation of ASDs 

was chosen prior to be downstream processed into ODTs. 

 

In a more detailed overview, the aims of the thesis are described as follows: 

• To review the potential of ODTs as promising child-appropriate DF in the field of 

paediatric drug development. Furthermore, to provide a detailed overview about current 

challenges and recent advances of ODTs. Main points in this regard were the detailed 

analysis of acceptability and formulation challenges of ODTs (chapter II). 

 

• To evaluate the performance of CPEs for direct compression of ODTs. To gain 

knowledge about the tableting and disintegration behaviour of the ODT formulations 

based on CPEs, especially for high loaded APIs with challenging properties  

(chapter III). 

 
• To investigate new formulation approaches in several biorelevant dissolution models, 

with a special focus on the role of interplay between both model APIs (chapter IV).  

 
• To finally determine key aspects in the downstream processing of ASDs into ODTs  

(chapter V). 
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1.6 Outline of the thesis 

The current state of research on ODTs in paediatric drug therapy is provided in chapter II of 

this thesis in form of a review article published in Expert Opinion on Drug Delivery. An overview 

was given about recent advances and current challenges of ODTs. One of the main interests 

in this work was the literature-provided evidence in how far ODTs can be regarded as 

acceptable for children. In several case studies it was demonstrated that principally ODTs also 

found acceptance for pre-school children, which is controversy to the previously assumed age 

limits. This insight could further extend the targeted age groups. Thereby, the relevance of the 

tablet diameter was pointed out as crucial aspect for acceptability. Regarding the tablet size 

ODMTs prove to be the ideal DF for children since they even seemed to be accepted by 

neonates and could be used for personalized dosing. Challenges in the field of ODTs were 

also found since still the most assumptions are evidenced with small studies and need to be 

further confirmed by larger studies. Also still challenging are special formulation approaches 

in terms of taste masking, modified release or when poorly soluble drugs are formulated, 

especially relevant for high drug loads.  

Chapter III focuses on the evaluation of two novel CPEs based on mannitol with already 

available ones used for direct compression of ODTs and ODMTs. It was investigated in how 

far the CPEs could overcome poor compressibility, a slow disintegration, relevant for high drug 

loads and the content uniformity for low-dosed formulations. Paracetamol which is well known 

for its poor compactability was selected for evaluation of the CPEs to what extent the 

inadequate bonding capacity could be conquer. High-loaded ibuprofen formulations were 

prepared to serve as reference for the disintegration of the tablets when poorly soluble drugs 

suffering from a slow disintegration are embedded. Furthermore, low-dosed enalapril maleate 

ODTs and ODMTs were produced on an industrial rotary tablet press Korsch XM 12 to 

investigate the feasibility of matching content uniformity. 

Chapter IV focuses on different biorelevant dissolution approaches for the two selected model 

APIs RTV and LPV. First, after preparing different ASD formulations via HME, a small-scale 

formulation screening was carried out to get an impression of the general dissolution behaviour 

pointing out the extent and maintenance of supersaturation as most relevant. Second, a 

biorelevant transfer dissolution approach was performed to compare the dissolution profiles 

for selected combinations with the marketed product Kaletra® since the interaction of RTV and 

LPV dissolving simultaneously must be regarded critically. Here, it was suspected that a new 

formulation approach would perform significantly better as already existing ones in literature. 

Finally, a biphasic dissolution approach was implemented to analyse a more physiological 

environment with the addition of an absorption sink compartment to be able to possibly 

emphasize the superiority of the new postulated formulation approach. 
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Chapter V brings together the most relevant findings from chapter III and IV and focuses on 

the downstream processing of ASDs into ODTs. In the following study key aspects were 

determined to enable sufficiently performing ODTs, meaning a balance between adequate 

mechanical strength and a fast disintegration. Relying on the results and experiences gained 

from chapter III, two different CPEs, Hisorad® and Ludiflash®, were found to be best suitable 

to overcome the challenging behaviour of high loaded ASDs. Besides the involvement of two 

CPEs, also different particle size fractions of the ASDs, ASD loads, and the use of two different 

polymers have been evaluated. The final aim thereby was to analyse the effect on the critical 

quality attributes (CQAs), mechanical strength and disintegration of the ODTs. Finally, a 

biorelevant dissolution setup excluded an influence of compression, due to possible solid-state 

changes and proved the ability for ASDs to be downstream processed into ODTs. 
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Chapter II – Orodispersible tablets for pediatric drug delivery: current challenges and 

recent advances 

Pretext 

Since many years experts are calling for a shift of paradigm in the paediatric therapy from 

previously preferred liquid oral DF to modern solid oral DF. Through intensive research during 

the last years, ODTs and ODMTs, have become much more important, evident from the 

increase in the number of publications in this research field. Nevertheless, still only a few drug 

products formulated as ODTs have achieved to be successfully authorised. Reason for this 

could be the small number of acceptance studies available which confirm the relevance and 

the possible superiority of this DF. The aim of this review article was to shed light on the current 

research situation and pointing out existing challenges for ODTs. The authors highlighted the 

acceptability of ODTs throughout different developmental stages and formulation challenges 

as most relevant in this article.  
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Abstract 

Introduction: Child appropriate dosage forms are indispensable in modern medicine and are 

a prerequisite for successful and efficient pediatric drug therapy. For years experts call for a 

paradigm shift, from formerly preferred liquid dosage forms to novel oral solid dosage forms. 

Orodispersible (mini-) tablets are a promising formulation approach due to the ease of 

administration and their relatively high acceptability. 

Areas covered: Current challenges as well as recent advances of orodispersible tablets for 

pediatric drug delivery are critically discussed in this review. Highlighted aspects are evidence 

for acceptability by children and advances in special ODT formulations (taste masking, 

modified release, enabling formulations).  

Expert opinion: Innovative solid dosage forms like OD(M)Ts are gaining more importance in 

pediatric drug therapy because of various benefits discussed in the review. Especially to be 

emphasized is the high acceptance even in pre-school children, that has not been fully 

recognized by clinicians, yet. 

Despite the presented evidence and recent advances, notable challenges remain: More clinical 

acceptance studies with ODTs are needed to learn about the acceptability of different ODT 

sizes within certain age groups. 

Numerous formulation advancements have been made, but challenges remain where several 

issues (e.g. poor taste) have to be addressed and the required drug loads are high.
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Chapter III – Evaluation of two novel co-processed excipients for direct compression of 
orodispersible tablets and mini-tablets 

Pretext 

Besides the importance of children’s acceptability, as highlighted in chapter II still challenges 

in the formulation development and manufacturing are needed to be addressed, especially 

relevant for formulations with a high drug load. The scope of this publication was to critically 

evaluate the potential of two novel CPEs for direct compression when highly challenging APIs 

are included. Key points were mechanical strength, disintegration behaviour and content 

uniformity. Three different model drugs, paracetamol, ibuprofen and enalapril maleate were 

selected to specifically challenge the CPE. Based on this knowledge a more formulation 

realistic data set should be generated which in the following could attribute to a fast and 

suitable selection of a CPE adapted to the respective properties of the API. 
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Abstract 

Pediatric, geriatric, and other patients who suffer from swallowing difficulties represent a 

special patient group, where an increased need in appropriate formulation development is 

required. To overcome these mostly swallowability linked issues, orodispersible tablets (ODTs) 

and orodispersible mini-tablets (ODMTs) can be seen as a suitable alternative to improve 

compliance. Orodispersible tablets are oral solid dosage forms which rapidly disintegrate after 

contact with saliva, leaving a liquid dispersion, which can be easily swallowed. To fulfil the 

required quality criteria and optimize the formulations regarding tensile strength and 

disintegration time, co-processed excipients (CPE) based on mannitol are frequently used in 

the manufacturing of orodispersible tablets. This study aimed to systematically compare two 

new CPEs, namely Granfiller-D® and Hisorad® and evaluate their potential in future OD(M)T 

formulations with already marketed products. The performance of the CPEs was examined in 

combination with three different APIs. Disintegration time, sufficient mechanical strength and 

content uniformity for low dosed formulation were chosen as main quality aspects. 

Conventionally sized tablets (9 mm) with 50 % drug load of ibuprofen and paracetamol were 

produced with each CPE. Low dosed OD(M)Ts with a drug load of 4 % enalapril maleate were 

manufactured to study content uniformity. Large differences were visible in the formulations 

containing ibuprofen and only Hisorad® allowed to compress ODT fulfilling the specifications 

of Ph.Eur. and FDA regarding disintegration times (180 s and 30 s, respectively). For the 

poorly binding model drug paracetamol, none of the studied excipients showed a satisfactory 

performance, with maximum tensile strengths < 1 MPa. To reach content uniformity in low 

dosed ODMTs, Ludiflash® seems to be the most preferable alternative, as the formulation 

showed the lowest AV (< 4) combined with the smallest variation in API content (c.v. < 2 %). 

In conclusion, the study revealed that none CPE is the ideal choice for all approaches, but 

different CPEs should be selected dependent on the different challenges during formulation 

development of OD(M)Ts.
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Chapter IV – The interplay of poorly soluble drugs in dissolution from amorphous solid 
dispersions 

Pretext 

Before the gained knowledge from chapter III could be further transferred to the overall aim to 

develop a child appropriate DF for RTV and LPV the interaction of both APIs predominantly 

relevant during dissolution needed to be investigated more in detail. This interaction is of great 

relevance in the context of paediatric therapy, emphasised by several published in-vitro as well 

as in-vivo data. This research article aimed to present a new formulation approach for the 

combination therapy by gaining a deeper understanding of the interplay of both APIs during 

dissolution. Starting from a small-scale dissolution approach for first formulation screening, 

followed by a more biorelevant dissolution either performed in single- or biphasic setups. The 

formulation concept was based on a separate embedding of the APIs into two different 

behaving polymers. In addition to the use of PVPVA for RTV, HPMCAS grades were evaluated 

for LPV in order to analyse the influence of a modified onset of release. Finally, a comparison 

to the marketed product was performed.  
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Abstract 

In recent years, the application of fixed dose combinations of antiretroviral drugs in HIV therapy 

has been established. Despite numerous therapeutic benefits, this approach poses several 

challenges for the formulation development especially when poorly soluble drugs are 

considered. Amorphous solid dispersions (ASD) thereby have gained considerable interest in 

the pharmaceutical field, however, mainly including binary systems containing only one drug 

and a polymer. The co-formulation of two amorphous drugs is accompanied by an immense 

increase in the complexity of the system as exemplarily reported for ritonavir and lopinavir 

embedded in a composite polymer matrix of PVPVA. The present study aims to present a new 

formulation approach to overcome the well-documented interaction during dissolution. Two 

different polymers, PVPVA and HPMCAS were used to produce ASDs for both drugs 

individually via hot-melt extrusion. The embedding of lopinavir in the slower dissolving polymer 

HPMCAS, while using PVPVA for ritonavir was found to significantly improve the overall 

dissolution performance compared to the individual use of PVPVA as well as to the commercial 

product Kaletra®. In addition, the use of different grades of HPMCAS demonstrated the 

possibility to further modify the dissolution profile. For a preliminary biorelevant assessment, 

the selected formulations were tested in a biphasic dissolution setup.
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Chapter V – Downstream processing of amorphous solid dispersions into 
orodispersible tablets 

Pretext 

The last publication has the aim to finalise the development of a child-appropriate DF for RTV 

and LPV. Key aspects in the downstream processing of ASDs into ODTs were investigated. 

The findings in chapter III enabled an efficient selection of suitable CPEs, whereas the best 

performing combination approach found in chapter IV was chosen for the final downstream 

processing. The hot-melt extruded ASDs were milled, sieved, blended either with Hisorad® or 

Ludiflash® and finally tableted on a compaction simulator. In particular, the effect of the used 

matrix polymer, the ASD load, the used ASD particle size as well as the CPE selection were 

pointed out as critical factors for well performing ODTs. The aim was to develop ODTs with the 

highest achievable ASD load while balancing out a fast disintegration with a sufficiently high 

mechanical strength.  
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Abstract 

The formulation development of amorphous solid dispersions (ASDs) towards a patient-

friendly oral solid dosage form is proving to be still challenging. To increase patient’s 

compliance orodispersible tablets (ODTs) can be seen as promising alternative. Two different 

ASDs were prepared via hot melt extrusion (HME), using PVPVA as polymer for ritonavir (RTV) 

and HPMCAS for lopinavir (LPV). The extrudates were milled, sieved, and blended with 

Hisorad® (HRD) or Ludiflash® (LF), two established co-processed excipients (CPE) prior to 

tableting. Interestingly, the selected ASD particle size was pointed out to be a key parameter 

for a fast disintegration and high mechanical strength. In terms of PVPVA based ASDs, larger 

particle sizes > 500 µm enabled a rapid disintegration even under 30 s for 50 % ASD loaded 

ODTs, whereas the use of smaller particles went along with significant higher disintegration 

times. However, the influence of the CPE was immense for PVPVA based ASDs, since it was 

only possible to prepare well performing ODTs, when Hisorad® was chosen. In contrast for 

HPMCAS based ASDs the selection of smaller particle sizes 180-500 µm was beneficial for 

overcoming the poor compressibility of the ASD matrix polymer. ODTs with LPV could be 

produced using both CPEs even with higher ASD loads up to 75 %, while still showing 

remarkably fast disintegration 
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Chapter VI – Conclusion and outlook  

This work provides new insights in the field of paediatric drug development for poorly soluble 

active pharmaceutical ingredients (API). In detail, this thesis addressed two current major 

challenges in pharmaceutical development which are brought into a relevant context, 

overcoming poor aqueous solubility and final post processing into a child-appropriate dosage 

form. Advanced dosage forms such as orodispersible tablets (ODTs) and mini-tablets became 

increasingly important and stated their relevance in several clinical studies and scientific 

publications.  

The review of existing literature demonstrated that ODTs have mostly been claimed as a highly 

promising alternative, predominantly for school children (> 6 years). The acceptance of ODTs 

was generally summarised to be high throughout different age groups of children, pointing out 

the tablet size as most important characteristic. Therefore, many articles have highlighted the 

use of orodispersible mini-tablets (ODMTs) as ideal option since they combine the inherent 

advantages of oral solid dosage forms and are well accepted even by neonates. It was also 

evident in literature that the full potential of ODTs especially regarding acceptability in the 

paediatric therapy has not been fully utilised, yet. As one of the main reason the very limited 

number of direct acceptance studies is hypothesized as the resulted knowledge is therefore 

mainly based on anecdotal reports. Besides the acceptability, immense research has been 

done to solve formulation issues concentrating mostly on taste masking, modified release, and 

solubility enhancement. Despite many outstanding formulation concepts published in the field 

of taste masking and modified release dosage forms, available data for ODTs containing poorly 

soluble APIs is rare.  

Of greatest relevance in the production of ODTs are mannitol based ready-to-use co-

processed excipients (CPEs). In order to be able to select the suitable CPE for the following 

formulation development a systematic comparison with different CPEs was carried out. The 

current literature has already presented several comparisons of CPEs, however, mostly 

without or only with low API loads. The performance of the CPEs was evaluated with three 

different APIs. Mechanical strength, disintegration time and content uniformity were chosen as 

critical quality attributes. Each of those aspects could be a relevant parameter with the first two 

being mostly challenging at high API loads. Paracetamol was selected in order to evaluate the 

ability of the CPEs to overcome the widely known insufficient compactability. Ibuprofen was 

chosen as model substance for a poorly soluble drug, causing a poor disintegration due to 

hydrophobicity and low resulting porosities. Enalapril maleate was selected to evaluate the 

potential to enable adequate content uniformity in low dose formulations. The conducted study 

successfully revealed differences between the selected CPEs. It was shown that Parteck® 

ODT, Hisorad® and Ludiflash® performed extremely well at low drug loads. However, the 
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picture changed visibly when a high amount of hydrophobic drug was incorporated. In this case 

only Hisorad® allowed for a fast disintegration within the specified requirements of European 

Pharmacopoeia while also a sufficiently high mechanical strength was achieved. Interestingly, 

all the other CPEs suffered from a poor disintegration with finally failing the requirements. For 

paracetamol, all CPEs failed to compensate the poor compaction properties. Taking every 

result into account it could be stated that no excipient is the one-fits-all choice for all challenges 

faced in the development of ODTs. It could be concluded that the wide range of available CPEs 

enables several opportunities, however, the final choice is still to be made on a case-by-case 

basis.  

After thorough investigations in the field of ODTs, the second part of this work started with the 

formulation of amorphous solid dispersions (ASD) for the model system ritonavir (RTV) and 

lopinavir (LPV). ASDs with different polymers and drug loads were produced via hot-melt 

extrusion and afterwards tested in different dissolution setups. First, with the aim to find the 

best composition of API and polymer separately. Second, to characterise the best combination 

when both APIs are administered simultaneously. Seperate ASDs using two different 

polymeric carriers, polyvinylpyrrolidone vinylacetate co-polymer (PVPVA) and different grades 

of hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared since the 

formation of a composite ASD matrix proved to be inferior based on previously performed 

experiments and published studies in literature. Preliminary small-scale dissolution trials 

revealed superiority of HPMCAS as carrier for LPV enabling a drug load of up to 40 %. In terms 

of RTV, however, the polymer HPMCAS underperformed and therefore PVPVA was chosen 

as matrix with a maximum drug load of 20 %. 

Interestingly, the following evaluation of biorelevant dissolution for several combination 

approaches of RTV and LPV did not show complete consistency with the literature. Here, it 

was previously hypothesised that the sole separation of the APIs into fast-dissolving polymers 

such as PVPVA compared to the use of a composite matrix seemed to be sufficient for a 

significant decrease of API-API interaction during dissolution. In the present study, however, 

still a remarkable decrease of RTV supersaturation was observed when the dissolution onset 

of LPV took place immediately. This led to the assumption that a separation of the dissolution 

onsets of both APIs might be a promising aspect to improve both profiles. It was observed that 

considering the slower dissolving polymer HPMCAS for LPV, both dissolution profiles could be 

improved significantly. By the delay of the LPV onset, the supersaturation of RTV could be 

maintained longer. Nevertheless, it is also worth noting that even when the separation of 

dissolution onsets was enabled the direct interaction was also noted after a certain time when 

both APIs came into contact during dissolution. Furthermore, it was also demonstrated in this 

study that the selection of a defined HPMCAS grade as matrix polymer for LPV can be 
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regarded as key for the fine tuning of RTV dissolution. Since the grades differ in their pH- 

dependent onset of dissolution, the beginning of LPV dissolution can be directly adjusted with 

the consequence of an indirect influence on RTV dissolution. Regarding the influence of the 

used HPMCAS grade on LPV performance, it was observed that the final degree of 

supersaturation was unaffected. In addition to further examine this hypothesis from a more 

biopharmaceutical point of view a biphasic dissolution test was performed. The most promising 

combination LPV_HPMCAS with RTV_PVPVA pointed out from the conducted dissolution 

experiments also performed best in these trials, apparent by a 3-fold higher decanol partition 

of LPV compared to the use of separated fast-dissolving PVPVA ASDs for both APIs. Almost 

no partition was detectable for the approach where both APIs were embedded in one 

composite PVPVA matrix as present in the marketed product Kaletra®. Although, this biphasic 

approach was extremely simplified, interesting differences between the investigated 

combinations could be detected and therefore taken as starting point for following research in 

this field. 

After the superior ASD combination has been identified, the respective ASDs were milled, 

sieved, and blended with a CPE before being tableted on a compaction simulator. The CPE 

evaluation study defined Hisorad® as best suitable when hydrophobic drugs are considered. 

Additionally, Ludiflash® was also chosen for investigation as it represents a more hydrophilic 

CPE without MCC as crystalline material. It was demonstrated that many different aspects 

were necessary to be considered to finally achieve a well performing ODT. The study revealed 

that the selection of the CPE, the polymer and the used ASD particle size fraction were of 

greatest relevance for balancing out a fast disintegration and a high mechanical strength. With 

the use of Hisorad® both, a challenging disintegration behaviour caused by the PVPVA matrix, 

and a reduced bonding capacity triggered by the HPMCAS matrix could be compensated best. 

Additionally, Hisorad® enabled highest ASD loads for well performing ODTs with 50 % for 

RTV_PVPVA and 75 % for LPV_HPMCAS. In contrast Ludiflash® ODTs, which proved to be a 

highly suitable CPE in many other aspects, showed strong limitations in disintegration with 

higher loaded PVPVA-based ASDs. Apart from the choice of CPE, the particle size fraction of 

the ASDs had a massive impact on the ODT properties, however, strongly dependent on the 

polymer used. In case of RTV_PVPVA ASDs it was shown that the use of smaller particles < 

500 µm negatively affected the disintegration time. This was accompanied by an increase in 

mechanical strength, possibly due to the increase in specific surface area of the ASD particles. 

It is well known that a higher specific surface area correlates with a higher ability for bonding 

capabilities of the particles. Consequently, to load the ODTs as high as possible (50 %) while 

still having sufficiently strong compacts with a fast disintegration, a bigger particle size fraction 

of 500-710 µm had to be considered. In contrast, LPV_HPMCAS ASDs did not show limitations 

in disintegration, even though ODTs were loaded with ASD up to 75 %. The challenge in this 
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case was mainly to generate a tablet with a sufficiently high mechanical strength. To overcome 

this limitation, smaller particles were used in contrast to PVPVA-based systems. In this regard 

it was unavoidable to exploit a higher specific surface area to increase the possibility for more 

particle-particle interactions. Finally, for both APIs well performing ODT formulations based on 

Hisorad® were found. To exclude a possible influence of tableting on ASD stability, dissolution 

results of RTV and LPV ODTs were compared with the respective ASDs before tableting. As 

a result, no difference could be detected, and it was therefore verified that tableting did not 

have a negative impact on ASD dissolution for these formulations. 

In order to be able to finally assess whether this demonstrated formulation approach could 

make HIV therapy for children safer and better in real life, much research has still to be 

performed. It should be kept in mind that all results were based on in-vitro trials. In-vivo studies 

would be essential to investigate to what extent the separation of the release onset is beneficial 

when it comes to absorption processes in the small intestine. Extremely relevant in this field 

would also be the execution of acceptance studies with children to investigate if the produced 

ODTs are well accepted. A key aspect in this regard would be the analysis of sensory 

perception, such as taste, the appearance and acceptance of remaining ASD particles after 

tablet disintegration. Finally, future research must deal with process development since an 

adequate scale-up from a compaction simulator as used in this work to an industrial scale 

rotary tablet press would be mandatory for the development of a new product.  
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Chapter VII – Summary  
Since the shift of paradigm from previously preferred liquid dosage forms to solid dosage forms 

for paediatric patients, orodispersible tablets (ODT) and mini-tablets became a promising 

alternative. Despite a lot of research throughout the last years, still the availability of child-

appropriate products is limited, especially for active pharmaceutical ingredients (API) with 

challenging physicochemical properties like a poor aqueous solubility. Therefore, available 

medicinal products authorised for adults are frequently manipulated prior to administration. 

The fact that the extemporaneous manipulation outside the intended use is highly concerning 

can be exemplarily elaborated on the film-coated tablet Kaletra®, a fixed dose combination of 

ritonavir (RTV) and lopinavir (LPV) showing a decrease of approximately 50 % in systemic 

exposure when the tablets were crushed prior to administration. The aim of the present work 

was to develop a new child-appropriate drug formulation for the poorly soluble protease 

inhibitors RTV and LPV. 

The initial focus of this work was mainly set on the investigation and evaluation of ODTs as 

suitable dosage form for children. Literature research demonstrated that ODTs as oral solid 

dosage form have mostly been claimed as highly promising for child-appropriate 

administration. This is predominantly due to a high acceptance throughout the different age 

groups of children. Many different formulation concepts such as taste masking or modified 

release are point of interest in literature. However, reports on the use of poorly soluble APIs, 

formulated via a suitable solubility enhancement technique and subsequent downstream 

processing into ODTs are limited.  

Based on the gained knowledge in the field of ODTs, a first study was conducted highlighting 

more the aspects of manufacturing and formulation development. For the manufacturing of 

ODTs mostly mannitol based co-processed excipients (CPE) are favoured. Many comparative 

studies for the direct compression of ODTs using CPEs are available in literature, however, 

mostly for placebo formulations or at low API dose. In order to define the best suitable CPEs 

for later formulation development a systematic investigation of available alternatives was 

carried out. For this purpose, specific APIs suffering from a poor disintegration and/or 

compaction behaviour were selected to investigate in how far the CPEs can compensate this 

challenging behaviour. The study revealed that the best balance between sufficient mechanical 

strength and fast disintegration within the pharmacopeial limits was present for the CPE 

Hisorad®. 

After the extensive research on ODTs, the formulation development and biorelevant 

dissolution assessment for RTV and LPV and the following downstream processing into ODTs 

was focus. The preparation of amorphous solid dispersions (ASD) was selected as solubility 
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enhancement technique for both APIs. The model system RTV and LPV as well as the 

marketed product Kaletra® have already received attention in the literature. Considering the 

susceptibility of the marketed product to crushing, as well as the described interplay of those 

two APIs during dissolution, a biorelevant dissolution study was conducted. As part of this, 

numerous different ASD combinations and single ASDs have been tested for biorelevant 

dissolution to get a deeper understanding of this phenomenon and to draw possible 

conclusions for later formulation development. In contrast to already available studies, the only 

separation of the APIs using the same fast-dissolving polymer PVPVA was not sufficient to 

overcome the significantly decreased dissolution for both APIs. However, it could be shown 

that a separation of the respective dissolution onsets improved both dissolution performances. 

This was realised by using a slower dissolving polymer HPMCAS for the embedding of LPV 

and keeping the fast-dissolving polymer PVPVA for RTV. Furthermore, the selection of the 

HPMCAS grade, differing in the pH-dependent onset of dissolution could be seen as key 

parameter because the onset of LPV directly affected the supersaturation of RTV, however, 

did not show any influence on the achieved supersaturation for LPV. 

To finally combine both conducted studies, a third one investigated the suitability of ODTs as 

formulation platform for ASDs. The respective ASDs for RTV and LPV were milled, sieved, and 

blended with a CPE prior to be tableted. The study demonstrated that the selection of the CPE, 

the ASD polymer and the used ASD particle size were relevant for the achievement of well 

performing ODTs, characterised by balancing out a fast disintegration with a sufficient 

mechanical strength. Depending on these key parameters ODTs with maximum ASD loads of 

75 % for LPV and 50 % for RTV could be successfully manufactured. Additionally, it could be 

proved that the energy input during tableting did not affect the following dissolution 

performance of the ASDs. 

In the context of this work, a development route towards a child appropriate dosage form for 

poorly soluble APIs was presented. A promising new combination approach of LPV and RTV 

was proposed. The separation of both APIs into polymers with different dissolution kinetics 

created a possibility to adjust and to improve both dissolution profiles in-vitro. Additionally, for 

the first time, it was successfully demonstrated that ASDs of RTV and LPV could be afterwards 

downstream processed into well performing ODTs. Furthermore, the detailed study on the 

evaluation of CPEs, can be used as a basis for other investigations to choose a suitable CPE 

for direct compression of ODTs. 
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Chapter VIII – Zusammenfassung 
Seit dem Paradigmenwechsel von zuvor bevorzugten flüssigen Darreichungsformen zu festen 

Darreichungsformen für pädiatrische Patienten, stellen orodispersible Tabletten (ODT) und 

Mini-Tabletten eine vielversprechende Alternative dar. Trotz immenser Forschungsaktivitäten 

in den letzten Jahren, ist die Verfügbarkeit fester, kindgerechter Arzneimittel nach wie vor 

begrenzt. Dies gilt insbesondere für Wirkstoffe mit herausfordernden physikochemischen 

Eigenschaften, wie beispielsweise eine geringe Wasserlöslichkeit. Aus der Notwendigkeit 

heraus, werden oftmals für Erwachsene zugelassene Arzneimittel vor der Verabreichung 

modifiziert, beziehungsweise manipuliert und außerhalb der jeweiligen Zulassung verwendet. 

Eine solche Anwendung kann allerdings mit höchstbedenklichen Folgen einhergehen. Dies 

lässt sich exemplarisch anhand der für die Therapie des Humanen Immunodefizienz Virus 

zugelassenen Filmtablette Kaletra®, eine Kombination aus Ritonavir (RTV) und Lopinavir 

(LPV), aufzeigen. Im Rahmen einer klinischen Studie konnte gezeigt werden, dass die 

systemische Exposition beider Wirkstoffe ersichtlich geringer war, wenn die Tabletten vor der 

Einnahme zerkleinert wurden, im Vergleich zu der Einnahme der intakten Tablette. Ziel der 

vorliegenden Arbeit war es eine neue, kindgerechte Formulierung der beiden schwerlöslichen 

Protease-Inhibitoren LPV und RTV zu entwickeln. 

Der anfängliche Schwerpunkt dieser Arbeit, lag vor allem auf der Untersuchung und 

Bewertung von ODTs als geeignete Darreichungsform. Die ausführliche Literaturrecherche 

zeigte, dass ODTs als feste, orale Darreichungsform oftmals als vielversprechende Alternative 

bei pädiatrischen Patienten beschrieben werden. Dies wird unter anderem mit einer hohen 

Akzeptanz in den verschiedenen Altersgruppen begründet. Viele verschiedene 

Formulierungskonzepte, wie zum Beispiel die Geschmacksmaskierung, oder die modifizierte 

Freisetzung sind in der Literatur von Interesse. Durchgeführte Studien, die sich jedoch mit der 

Verwendung von schwerlöslichen Wirkstoffen in einer orodispersiblen Matrix befassen, sind 

dagegen eher selten. 

Auf der Grundlage der gewonnenen Erkenntnisse, wurde eine erste Studie durchgeführt, in 

der die Aspekte der Herstellung und Formulierungsentwicklung von ODTs näher beleuchtet 

wurden. Für die Herstellung von ODTs mittels Direkttablettierung werden oftmals 

mannitolbasierte koprozessierte Hilfsstoffe bevorzugt. In der Literatur lassen sich zahlreiche 

vergleichende Arbeiten zu den jeweils verfügbaren Fertigmischungen der Hilfsstoffe finden, 

allerdings meist für Placebo-Formulierungen oder Formulierungen, mit nur geringem 

Wirkstoffgehalt. Um die am besten geeigneten koprozessierten Hilfsstoffe für die spätere 

Formulierungsentwicklung zu identifizieren, wurde eine systematische Untersuchung 

durchgeführt. Für diesen Zweck wurden Wirkstoffe ausgewählt, die ein herausforderndes 

Zerfalls- und/oder Kompressionsverhalten aufweisen, um zu untersuchen, inwieweit die 
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Hilfsstoffe dies kompensieren können. Die Studie legte offen, dass die beste Balance zwischen 

einer ausreichenden mechanischen Festigkeit und einem schnellen Zerfall innerhalb der 

Grenzen des europäischen Arzneibuches, nur für den Hilfsstoff Hisorad® gegeben war.  

Im Anschluss an die umfangreiche Betrachtung und Bewertung von ODTs, folgte die 

Formulierungsentwicklung und biorelevante Freisetzungsuntersuchung für RTV und LPV. Als 

Formulierungstechnik zur Erhöhung der Löslichkeit, wurde die Herstellung amorpher fester 

Dispersionen gewählt. In Anbetracht der bekannten Interaktion beider Wirkstoffe, formuliert in 

einer gemeinsamen Polymermatrix, wurde eine initiale Freisetzungsuntersuchung 

durchgeführt, um ein tieferes Verständnis dieses Phänomens zu erlangen und mögliche 

Schlussfolgerungen für die folgende Formulierungsfindung zu ziehen. Im Rahmen dieser 

Studie, wurde eine Vielzahl verschiedener Kombinationen von amorphen festen Dispersionen 

in unterschiedlichen Freisetzungsansätzen untersucht. Im Gegensatz zu bereits vorliegenden 

Daten, reichte die alleinige Trennung der Wirkstoffe unter Verwendung desselben 

schnelllöslichen Polymers PVPVA nicht aus, um die verringerte Freisetzung beider Wirkstoffe 

zu verhindern. Es konnte jedoch in dieser Arbeit hervorgehoben werden, dass eine Trennung 

der jeweiligen Freisetzungsstartpunkte eine signifikante Verbesserung des gesamtem 

Freisetzungsprofils ermöglichte. Dies wurde durch die Verwendung eines 

verzögert/verlangsamt freisetzenden Polymeres HPMCAS, für die Einbettung von LPV und die 

Beibehaltung des schnelllöslichen Polymeres PVPVA für RTV realisiert. Darüber hinaus 

konnte die Auswahl der HPMCAS-Qualität, welche sich unter anderem durch den pH-Wert 

abhängigen Auflösungsbeginn unterscheidet, als Schlüsselfaktor angesehen werden. Der 

somit variable Auflösungsbeginn des LPVs, gesteuert über die entsprechende HPMCAS- 

Qualität, beeinflusste unmittelbar das Ausmaß der Übersättigung von RTV, wohingegen die 

finale Übersättigung des LPVs unbeeinflusst blieb.   

Um die beiden durchgeführten Studien final verbinden zu können, wurde in einer dritten Studie 

die Eignung von ODTs als Formulierungsplattform für amorphe feste Dispersionen untersucht. 

Die jeweiligen Dispersionen für RTV und LPV wurden gemahlen, gesiebt und mit einem 

koprozessierten Hilfsstoff vermengt und anschließend tablettiert. Hierbei zeigte sich, dass die 

Auswahl des Hilfsstoffes, des Polymers, als auch die verwendete Partikelgrößenfraktion der 

Dispersion von größter Bedeutung für die Qualität der ODTs war. In Abhängigkeit dieser 

Schlüsselparameter konnten erfolgreich ODTs mit einer maximalen Beladung der Dispersion 

von bis zu 75 % für LPV-Dispersionen und 50 % für RTV-Dispersionen hergestellt werden.  

Im Rahmen dieser Arbeit wurde ein Entwicklungskonzept für eine kindgerechte 

Darreichungsform für zwei schwerlösliche Wirkstoffe vorgestellt und ein neuer, 

vielversprechender Kombinationsansatz beschrieben. Die Trennung der beiden 

Freisetzungsstartpunkte der Wirkstoffe durch unterschiedliche Polymere, ermöglichte die 
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Anpassung und Verbesserung beider Freisetzungsprofile. Darüber hinaus konnte zum ersten 

Mal erfolgreich gezeigt werden, dass amorphe feste Dispersionen von RTV und LPV 

anschließend zu gut funktionierenden ODTs weiterverarbeitet werden konnten. Darüber 

hinaus kann die umfangreiche Vergleichsstudie der koprozessierten Hilfsstoffe, als Anhalts- 

sowie Startpunkt für eine Vielzahl von weiteren Untersuchungen im Rahmen der 

Formulierungsentwicklung von ODTs dienen.  
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