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Abstract

Organisms must efficiently manage their energy resources to survive as nutrient availability
can vary significantly over time, and other stresses may temporarily increase energy demands.
Therefore, internal energy stores are necessary to respond to changes in energy supply and de-
mand. These stores are filled when nutrients are abundant and depleted when demand exceeds
available supply. Glucose plays a central role in energy metabolism for most organisms as it
serves as a direct substrate for catabolic pathways. Animals, fungi, and most bacteria store
glucose as glycogen, a macro-polymer made of glucose organized in branched linear chains.
Cycles of glycogen degradation and breakdown ensure maintaining glucose homeostasis, as
well as fueling other organs in mammals. Four enzymes are directly responsible for glycogen
synthesis and degradation: glycogen synthase, glycogen branching enzyme, glycogen phospho-
rylase, and glycogen debranching enzyme. The interplay between these four enzymes ensures
the correct building of the glycogen molecule. Despite being widely investigated since 1950,
numerous questions remain unclear. The interplay between the kinetics of these enzymes and
the structure of glycogen is not fully characterized. The precise mechanism at work during
branching and debranching is not well understood. Moreover, the effects of certain genetic
conditions on glycogen metabolism and structure is still to be explored.

This thesis introduces a spatially resolved and stochastic model for the synthesis and degrada-
tion of glycogen. By using the Gillespie algorithm to track single reaction events, the model
allows for a detailed exploration of glycogen structure. Experimental measurements of struc-
tural features as signatures of enzyme activities were used to constrain different branching
scenarios. The model can also replicate numerous other experimental data such as the density
profile and radius of the glycogen granules. Additionally, the model can be used to investigate
other effects such as steric hindrance and enzymatic mechanisms, potentially in polysaccharides
other than glycogen.

In the second part of this work, we developed algorithmic methods to couple deterministic
chemical systems with stochastic ones. We present the periodic-coupling algorithm, which
comprises a stochastic module communicating with a classical ordinary differential equation
(ODE) solver at a given frequency, enabling the tracking of single stochastic reactions in a
regular ODE model. The algorithm outperforms a full stochastic approach and enables the
coupling of our 3D structural model to a kinetic model of glycogen metabolism. With this
approach, we can simultaneously track the evolution of a small glycogen metabolic model and
the glycogen granule properties, which allows for a characterization of the reciprocal effect
of the granule structure on the kinetic model. Additionally, it facilitates the investigation of
simplified models for glycogen storage diseases that we discuss.

Finally, we provide a discussion on the fractal view of glycogen, as well as a toy model to
establish the basics of further investigation of β and α glycogen granule interactions.
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Chapter 1

Introduction and Motivation

1.1 Metabolism

Metabolism refers to the set of chemical reactions that insure the sustain of life within or-
ganisms. These reactions serve three functions: converting the energy found in nutrients into
a usable form for fuelling cellular processes, transforming these nutrients into the building
blocks necessary for proteins, lipids, nucleic acids, and carbohydrates. It enables organisms
to grow, reproduce, maintain their structure, and respond to their surrounding environments.
Metabolism is often used as a way to define what is a living organism [Taylor et al., 2021].
From a metabolic perspective, viruses are not classified as living entities due to their inability
to transform energy within themselves.

Metabolic reactions can be classified into two types: catabolic and anabolic reactions. Catabolic
reactions involve the breakdown of complex compounds, such as the conversion of glucose to
pyruvate during cellular respiration. In contrast, anabolic reactions involve the synthesis or
building up of more complex compounds, including proteins, carbohydrates, lipids, and nucleic
acids [Berg et al., 2018]. Typically, catabolic reactions release energy while anabolic reactions
consume energy. These reactions are catalyzed by enzymes that help them to overcome their
activation energy. In anabolism reaction, an energy source is usually required to go against
the standard free energy potential, typically provided by ATP, a molecule often described as
the energy currency of cells.

These reactions are organized in metabolic pathways which consist in a series of reactions
that step by steps transforms one chemical into another. These pathways are highly complex
and involve numerous enzymes and proteins. Important ones, among others, are glycolysis,
TCA cycle, fatty acid oxidation, gluconeogenesis and glycogenolysis. Glycolysis consists in
the conversion of glucose into pyruvate, producing ATP and NADH. The TCA cycle is a
sequence of enzymatic reactions that break down acetyl-CoA to produce ATP and NADH,
while releasing CO2. Fatty acid oxidation breaks down fatty acids also producing ATP and
NADH. Gluconeogenesis consists in producing glucose from non-carbohydrate precursors such
as lactate, amino acids, and glycerol. Glycogenolysis, on the opposite produce glucose from
carbohydrate sources, such as glycogen. The reverse pathway is called glycogenesis and consists
in the building up of the glycogen molecule from glucose.
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Chapter 1 Introduction and Motivation

Between organisms, metabolism vary greatly and depends on numerous factors. In human
it is typically influenced by age, activity level, temperature, hormones, diet composition and
genetics [Lehninger et al., 2017]. Hormones, such as insulin and glucagon, play a central role,
by regulating blood glucose levels or the storage of lipids and their utilization [Cryer, 1993;
Gerich, 1993].

One objective of this work is to investigate glycogenolysis and glycogenesis and the effect of
hormones and genetic variances on these pathway.

1.2 About Glycogen

The glycogen macro-molecule

Glycogen is a polysaccharide molecule, first observed by Claude Bernard in 1857 [Young,
1957]. It is a very large molecule, composed of thousands of glucose molecules linked together
by covalent glycosidic bonds [Drochmans, 1962; Ggunja-Smith et al., 1971]. There are two
kinds of glycosidic bonds α − 1, 4 and α − 1, 6, where the numbering refers to the positions
of the carbon atoms involved in the bond, and α to the stereochemical configuration. These
α − 1, 4 linkage forms linear chains of glucose units constituting glycogen. On these chains,
some glucose molecule are linked with α − 1, 6 linkages, which serves as branching points to
another linear chain. These arrangement between chains and branches makes glycogen a highly
branched polymer [Lodish et al., 2007].

There is 5 main enzymes involve in its synthesis and breakdown. The synthesis is initiated by
Glycogenin (GN). Its role is to form a primary linear glucose chains by catalyzing the transfer
of a glucose molecule from UDP-glucose, until the chains reach a degree of polymerisation
(DP) around 6 [Roche, 2002]. From these initiated chains, another enzyme will pursue the
synthesis by elongating the chains. This enzyme is Glycogen Synthase (GS) and is responsible
for the elongation of the chains. It adds a glucose unit at the end of a linear chain (called
non-reducing end), using UDP-glucose as substrate. Once the chains become long enough,
Glycogen Branching Enzyme (GBE) will be able to cleave one α− 1, 4 bond and to branch the
cleaved part of the chain onto another glucose through an α−1, 6 linkage, creating a new chain.
The combined action of these two enzymes will ensure glycogen synthesis and gives glycogen
some of its structural features, as for example its average chain length, or the frequency in the
branching points.

In order for an organism to make use of its stored glycogen, it must first be broken down
into glucose unit (glycogenolysis). This process begins with a Glycogen Phosphorylase (GP)
breaking down the bonds between individual sugar molecules within each chain, releasing
glucose in form of glucose-1-phosphate. When chains have been shorten enough, Glycogen
Debranching Enzyme (GDE) will unbranched the short chain, releasing directly one glucose
and transferring the remaining part of the chain onto another. The resulting sugar molecules
from both reactions are then released into circulation where they can be used for energy
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1.2 About Glycogen

production or used in other metabolic pathways. The mechanisms of these reactions are not
elaborated on here. In this work, one of the main focus will be to address this question.
We will provide a more comprehensive explanation of these reactions, along with the relevant
considerations for their modeling in chapter 2 and 3.

The role of Glycogen

Glycogen is the main energy store in animals, most bacteria and fungi [Berg et al., 2018]. It can
be found in both cytoplasm and the nucleus of cells [Stick, 2008]. In mammals It is primarily
stored in the liver, muscles and brain where it can be quickly broken down into glucose when
needed for energy. The synthesis of glycogen is one of the ways in which organisms store excess
energy, in order to use it later. It can be seen as a capacitor in electricity. One of the uses
of these is to reduce the fluctuations of an electrical signal, by accumulating excess electrons
when there is a high signal and releasing them when the signal is low. This analogy can be
extended in a simplified way to the level of glucose in an organism, particularly in humans in
terms of glucose levels in the blood. In particular, hepatic glycogen will act as an enormous
reserve of glucose and help to regulate the level of glucose in the blood, preventing glucose from
accumulating in cytoplasm and increase in osmolarity Meléndez-Hevia et al., 1993. A molecule
very similar to glycogen, in terms of its chemical composition, is starch. Both molecules are
composed of chains of glucose linked together in α− 1, 4 and α− 1, 6 bonds. However, the two
molecules differ in their branching frequency, with glycogen having a higher degree of branching
than both forms of starch (amylose or amylopectin). Despite their seemingly simple chemical
notation, these structural differences have important implications for the characteristics of the
two molecules.

The way in which unbranched chains are arranged in starch is crucial for the formation of
double helix structures, which are responsible for starch’s crystallinity and insolubility. This
solid form of storage also affects the kinetics of degradation and glucose release. Conversely,
glycogen’s highly branched structure makes it soluble and more readily degraded. Therefore,
it is essential to comprehend the different branching patterns during the synthesis of these
molecules.

β and α glycogen granules

Electron microscopy has identified two types of glycogen structures, known as α and β granules
Drochmans, 1962. α granules are predominantly found in the liver, and are aggregate of several
β granules. These β granules are single glycogen molecules as we described above. They have
a size of about 20-30 nm in diameter and a molecular weight of 106-107 while α granules are
bigger with a diameter of up to 300 nm and a molecular weight of 108. It is believed that these
aggregates provide a slower energy source [Sullivan et al., 2014], by minimizing their surface to
volume ratio. It is a reasonable assumption if we assume that most of the breakdown activity
take place at the surface, and that enzymes can not access inner part of glycogen. In the liver,
when glycogen concentration is at maximum, glycogen is found in form of β granule, which
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Chapter 1 Introduction and Motivation

later aggregate into α granules via protein bindings [Sullivan et al., 2010]. In section 5 we will
discuss in more details these two form of glycogen.

Models for glycogen

The geometry of glycogen and how it occupies 3D space is critical for understanding enzyme ac-
tivities at the surface and the impact of steric hindrance. Constructing models of glycogen can
provide valuable insights into these processes and help researchers gain a better understanding
of the underlying mechanisms.

In the 1960s, researchers tried to established a general pattern for glycogen that could explain
experimental data. One particularly notable model was the Meyer-Bernfeld model Meyer and
Bernfeld, 1940, which can be seen in Figure 1.1-left. The model respects a specific ratio in
which the number of A chains divided by the number of B chains is approximately unity [first
sources]+ Marshall and Whelan, 1974. A chain is defined Gunja-Smith et al., 1970a as a chain
that is only connected to the rest of the molecule through its reducing chain end and does not
carry any "daughter" chains. In contrast, B chains carry other A and/or B chains. The Meyer-
Bernfeld pattern matches this ratio and has the characteristic that all of its chains terminate
at the surface of the molecule, meaning that no chains are buried.

The discovery of a glycogen debranching enzyme from Cytophaga Gunja-Smith et al., 1970c,
an isoamylase, allowed for further investigation into the detailed structure of glycogen. This
enzyme can hydrolyze α − 1, 6 bonds only when the branch contains at least three glucose
units, leaving chains linked in α − 1, 6 with a maltosyl chain uncut. When applied to ϕ − β
limit dextrin glycogen (glycogen reduced with phosphorylase and beta-amylase, transforming
the accessible A chains into maltosyl groups), the enzyme breaks all α− 1, 6 bonds between B
chains. The resulting product is a mixture of B chains linked to untouched A chains in form
of a maltosyl group, and B chains branched to potentially untouched A chain because they are
located inside the granule. Further application of β-amylase to the mixture would reduce the
unbranched B chains as well as the untouched A chains, yielding maltose units.

The Meyer-Bernfeld pattern is characterized by the absence of buried A chains or B chains
carrying only B chains. If we assume such a structure and subject it to an enzymatic process
involving (i) creating a phi-beta limit dextrin, (ii) using cytophaga isoamylase, and (iii) reduc-
ing the remaining mixture with beta-amylase, no maltose should be released from step (iii).
However, results from a study by Gunja-Smith in 1970 show that the degree of beta-amylolysis
is approximately 44%, which is roughly the number of maltose molecules that could potentially
be released from the total glucose units in the mixture (0.5 x total number of glucose units).
The authors concluded that there must be B chains without A chains and/or with buried A
chains (not available to phosphorylase in step (i)). Therefore, the proposed Meyer-Bernfeld
model cannot be used to accurately describe glycogen molecules.

Whelan [Ggunja-Smith et al., 1971; Gunja-Smith et al., 1970b] proposed a revision of the
Meyer-Bernfeld structure drawn in figure 1.1-right. It explains the above observations (A:B=1
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1.2 About Glycogen

and degree of beta-amylolysis = 44%). In this model, which will become known as the Whelan
model, 50% of the B chains (the outermost ones) carry an average of two A chains, and the
other B chains carry 2 others B chains.

From a schematic view to a widespread idea of a fractal model

The Whelan model has been interpreted more literally over time. In their study of the structure
of Maltoheptaose, Goldsmith et al. [Goldsmith et al., 1982] provide valuable insights into the
organization of glycogen branches at a molecular level. They discovered the average angles
in the alpha1,4 glycosidic bonds responsible for a left-handed helical configuration of glucose
residues among the chains. They found that the helix has 6.5 residues per turn, with a rise
per residue of 0.24 nm and a cross-sectional area of 1.3 nm2.

Assuming that glycogen follows the pattern described in the model perfectly, with n regular
tiers (layers), one can reasonably state that the number of branches in tier n is 2n−1, and
therefore the total number of chains is given by

t∑
i=1

2i−1 = 1− 2t

1− 2 .

From this, one should expect the glycogen content in the two outermost tiers to be around 75%.
The authors claim that this is supported by in-vivo observations [Gunja-Smith et al., 1970a].
With enzymatic arguments, the authors further assume that two branches are separated by 4

Figure 1.1: Schematic view of the Meyer-Bernfeld and Whelan models. Left: Illus-
tration of the Meyer-Bernfeld model. All the A and B chains’ non reducing ends
are located at the surface. Right: The schematic model proposed by Gunja-Smith
et al, known as the Whelan model. Figure adapted from Gunja-Smith et al., 1970b
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free glucose units. This assumption leads to another: on average, a branch starts halfway up
a chain. Therefore, one can calculate the contribution in length of each tier:

l = 1
2 · n · ℓ+ 0.35

where n = 13 is the number of glucose units per chain according to the model, ℓ = 0.24 nm is
the contribution in length of one glucose unit (rise per residue), and finally, the value of 0.35
comes from the contribution of the α− 1, 6 bond.

Assuming a molecular weight of M = 107 for glycogen, we can distribute the 55,500 glucose
units in a single molecule along a tiered pattern with chains of 13 units. The total number of
chains is given by 2t where t is the number of tiers. With t = ln( 55000

13 )/ ln(2), it is found that
t ≈ 12. Therefore, the radius of such a molecule, which is R = t · l, is roughly R ≈ 21 nm.

In a study by Goldsmith et al. [Goldsmith et al., 1982], the authors claimed that an hypothet-
ical 13th tier of glycogen would not be possible due to volume occupancy reaching 1 between
the 12th and 13th tiers. The article claim that this mechanism is responsible for the uniformity
in size of beta granules, as reported in [Drochmans, 1962].

The concept of glycogen as a fractal structure has been extended by Melendez-Hevia and
colleagues [Meléndez et al., 1999; Meléndez-Hevia et al., 1993], who proposed that it arises
from an optimality principle. However, more recent research has presented arguments and
observations that challenge this perspective [Kim and Duhamel, 2023].

What may have supported this model is a result from polymer physics [Fréchet, 2003] in which
certain dendrimer exhibit a density that increase exponentially with the radius, with their
external part becoming to dense and providing any further growth.

In Chapter 5 (section 5.1), we explore this issue in greater depth and addressed arguments
that oppose this viewpoint.

Zhang et al., 2018 have proposed a Monte Carlo approach to numerically simulate glycogen
biosynthesis, in which glucose units are placed on a three-dimensional grid. The biosynthesis
of the granule is simulated by adding glucose units on 26 neighbouring positions around the
end of the growing chain, leading to the emergence of limited growth as a result. This supports
the common idea that steric hindrance restricts granule growth. In order to account for the
effects of steric hindrance, the authors set thresholds for the number of grid points that can
be occupied locally (equivalent to put a local limit density). If this threshold is reached, some
enzymatic reactions cannot take place. This allows for the consideration of an environment
which is too dense for an enzyme to access the chains. However, these model parameters
are refined empirically in order to reproduce certain observations without predicting any new
ones. A second default is the way linear glucose chains are modeled that disregards structural
considerations as suggested in [Goldsmith et al., 1982]. Some critical aspects of their models,
however, seem to have been corrected after the publication of two erratum.
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1.3 Glycogen related diseases

1.3 Glycogen related diseases

Glycogen storage diseases

Glycogen storage diseases (GSDs) are a group of inherited metabolic disorders that affect the
body’s ability to store and break down glycogen. In each GSD, one enzyme involved in glycogen
synthesis or degradation is either absent or defective, leading to various symptoms in different
parts of the body, such as the liver, skeletal muscle, and heart [Hicks et al., 2011]. GSDs affect
approximately 1 in 20,000 to 1 in 40,000 individuals worldwide [Ozen, 2007a].

A schematic of the principal reactions involved in glycogen synthesis and degradation is shown
in Figure 1.2. Each enzyme and its corresponding GSD are marked in orange.

GSD type 1, also known as Von Gierke disease, is the most common type of GSD affecting
approximately 1 in 100,000 individuals worldwide [Hicks et al., 2011]. This disorder is caused by
an alteration of glucose-6-phosphatase (G6Pase) or G6P transporter (G6PT), which catalyzes
the conversion of glucose-6-phosphate to glucose for export into the blood. In GSD1, glycogen
accumulates in liver and muscle cells leading to hepatomegaly, hypoglycemia, hyperlipidemia,

Figure 1.2: Schematic view of the principal reactions involved in GSDs. This scheme
show the mains metabolites (black) and enzyme (red) involved in some of the GSDs.
The corresponding GSDs are highlited in yellow. When two GSDs correspond to
one enzyme it means that the same reaction is affected in a different tissues. The
Glycogen molecule in shown in green (representing the non-reducing ends). It is a
simulated one from our model.
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and lactic acidosis [Bali et al., 1993]. The inability to convert Glucose-6-Phosphate into Glucose
enhances the two reactions using it as a substrate. The reaction catalyzed by G1PI leads to an
increase in Glucose-1-Phosphate, ultimately leading to enhanced glycogen synthesis through
GS.

GSD type 0, also known as Glycogen Synthase deficiency, is characterized by hypoglycemia as
one of its main symptoms Orho et al., 1998. This is because the impaired function of Glycogen
Synthase leads to a reduced synthesis of glycogen, which in turn prevents efficient glucose
release during fasting. To use again the analogy with electric capacitor, the blood glucose level
is way more subject to variation (here feeding and fasting periods).

GSD type 2 and type 3, also known as Pompe and Cori’s disease respectively, are caused
by a deficiency in one Glycogen Debranching Enzyme (GDE), either in the cytosol or in the
lysosome. It lead to glycogen accumulation and consequently hepatomegaly. The prevalence of
Pompe’s disease is up to 1 in 13,000 in certain populations [Dasouki et al., 2014; Hicks et al.,
2011].

GSD type 4, also known as Andersen disease, is caused by Glycogen Branching Enzyme (GBE)
deficiency and also leads to hepatomegaly. It typically form abnormal glycogen structure that
resemble amylopectin [Hicks et al., 2011].

GSD type 5 and 6 are associated with Glycogen Phosphorylase (GP) in muscle and liver
respectively. GP is the enzyme responsible for breaking down the linear chain. Hypoglycemia
and hepatomegaly are observed in GSD6 only.

GSD type 7 affects the conversion of fructosee-1 phosphate into fructose-1,6-biphosphate, one
of the essential metabolites in Glycolysis.

It is important to note that this enumeration of GSDs is not exhaustive. In Chapter 4, we will
address some of these diseases in the context of our model.

Other glycogen related diseases

One other disease directly link to glycogen is Lafora. Lafora disease is a rare, inherited disorder
that affects the nervous system. It is a progressive, neurodegenerative disorder characterized
by the accumulation of abnormal glycogen-like structures in cells of the central and periph-
eral nervous systems, resulting in epilepsy, cognitive decline and other neurological symptoms
Tagliabracci et al., 2008.

Adult Polyglucosan Body Disease (APBD) is an inherited, progressive neurological disorder
that affects the peripheral and central nervous systems [Suzuki et al., 1971]. It is caused by
mutations in the GBE1 gene, resulting in an accumulation of abnormal glycogen in neurons,
called polyglucosan bodies. APBD is a rare condition that affects fewer than one in every
million people worldwide. In our study, we will associate APBD with GSD type 4, since our
model will not allow to distinguish between them.

8



1.4 Research Questions

Finally, the most known disease related to glycogen is Diabetes. It is metabolic disorder char-
acterized by high levels of blood glucose. It is caused by genetic and environmental factors, and
is often associated with a various of health complications Federation, 2011. In type 1 diabetes
there is an impaired ability to regulate blood glucose levels due to either inadequate produc-
tion or utilization of insulin. This results in hyperglycemia. To characterize the mechanisms at
work in diabetes, it is important, among other things, to be able to understand how different
metabolic conditions affects blood glucose levels. Interestingly, diabetic patients exhibit lower
formation of α granule in the liver [Li and Hu, 2020], which will be discussed in 5.

1.4 Research Questions

Glycogen possesses certain structural characteristics that can only be fully understood through
complex models. Variations in the molecule’s branching patterns, chain length distribution
(CLD), and chain A to chain B proportions differ among organisms. While some features of
glycogen structure, such as CLD, can be approximated through simplified kinetic models, oth-
ers cannot. Wu and Gilbert, 2010 have proposed a reductionist approach that utilizes a set of
equations to model starch, which is closely related to glycogen. This approach yields promis-
ing results and allows for extensive comparison to experimental data. Ordinary Differential
Equation-based kinetic models are computationally less demanding than stochastic simula-
tions and enable the simulation of chain length distribution dynamics for simple polymeric
systems.

However, a detailed 3D description of glycogen granule is required to access complex branching
patterns, distinguishing between A and B chain types as well as considering volume effect. The
precise location of branches and the connectivity information is essential to access macroscopic
structural quantities such as the granule radius and density. It further allows to consider steric
hindrance effects, where enzymes may be prevented from reacting due to local high glycogen
density. Chapter 3 presents a model of glycogen that accounts for the 3-dimensional structure.
This model is dynamic in the sense that a glycogen granule evolves according to the enzymes
in presence, their mechanisms and kinetic activities, exhibiting either a synthesis phase or a
degradation phase. We show how this detailed 3D description can provide insight into complex
branching mechanisms that are not captured by simple kinetic models.

If having a model of glycogen synthesis and degradation allows us to access the structural
characteristics of glycogen as explained above, we can also approach the problem in the opposite
way. Starting from structural data and trying to understand what mechanisms are at work
in the enzymes to have allowed such a structure. We will see how to use the model in this
direction (chapter 3), and in particular how to constrain different possible scenarios on the
branching enzyme, and discuss them in the context of the current literature.

One of the common threads of this work has been to consider the reciprocal effects between
the structure of glycogen and the kinetics of chemical reactions associated with its synthesis
and degradation. Most of the diseases related to glycogen caused, or are caused by structural
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Chapter 1 Introduction and Motivation

deficiencies of glycogen. To study them requires a model coupling reaction kinetics and glycogen
structures.

A traditional approach to studying glycogen metabolism would involves using ordinary differ-
ential equations (ODE) to model the reactions. However, this approach oversimplifies glycogen
as a simple concentration of glucose fixed into glycogen. In reality, glycogen can have different
structures that affect its ability to release glucose. For example, a branched glycogen structure
may be more efficient in releasing glucose than a linear structure. Certain genetic conditions
can also affect glycogen structure and metabolism. To better understand these effects, our
detailed structural description of glycogen is required.

In chapter 4 we developed a reduced glycogen metabolism model that accounts for hormonal
regulation. It leads us to develop an hybrid algorithm in which stochastic reactions are incor-
porated in a regular kinetic model. By combining this approach with our structural glycogen
model, we have established a framework to investigate the impact of various genetic conditions
on both glycogen metabolism and its structure. Our approach has the unique capability of
quantifying the role of debranching in glucose homeostasis, as debranching bypass the regular
pathway from glucose-1-phosphate to glucose by releasing glucose directly.

In chapter 5, a computational model has been proposed to investigate the aggregation behavior
of glycogen granules. Specifically, the model explores the impact of the surface to volume ratio
of glycogen on the size and kinetics of granule aggregation.
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Chapter 2

Methods

The aim of this chapter is to provide an overview of the key elements that are applicable to all
following chapters. In cases where a chapter presents methods that are specific to that particular
chapter, the necessary information will be provided within that chapter. Certain elements are
shared with the method section of the article featured in chapter 3. In this chapter, a more
comprehensive description of the methods is provided, including potential variations.

2.1 A complete description of the model

2.1.1 From self avoiding random-walk to a coarse-grain model for glycogen

One of the main objectives of this study is to explore the structural properties of glycogen.
In order to accomplish this, a structural model is required that accurately describes the ar-
rangement of glycogen granules in three-dimensional space. While the models described in the
introduction have been proposed to illustrate the branching patterns of glycogen, very few have
focused on the organization of glycogen in 3D. In polymer physics, the most simple way to
describe a linear polymer is a random walk. The steps ℓ of the random-walk accounting for the
distance between two monomers. The linear polymer is therefore modeled by generating the
position of the next monomer from the position of the previous one. This is done by generating
randomly, with equal probability, a direction in space −→u such that

−−→rn+1 = −→rn +−→u

with |−→u | = ℓ. In order to make such a model more realistic and account for steric-hindrance,
one can model the monomer as a sphere of radius ρ. When generating the next position −−→rn+1,
it has to be ensured that no other monomer occupies the space. This is done by rejecting the
new position if one of the distances

∀i ∈ 1, ..., N, ||−−→rn+1 −−→ri || < 2 · ρ,

with || · || being the Euclidean distance defined as :

||−−→rn+1 −−→ri || =
√

(xn+1 − xi)2 + (yn+1 − yi)2 + (yn+1 − yi)2 (2.1)
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Figure 2.1 depicted when a position is rejected. The green monomer is the generated monomers
indexed by n+1. On the left side, the monomer indexed by i0 is overlapping with the proposed
position because the distance D = ||−−→rn+1 −−→ri0 || in red is lower that 2ρ, therefore the location
is rejected. On the right side, the distance D is greater than 2ρ implying no overlapping of the
monomers.

Figure 2.1: Schematic of the distance criteria in a self-avoiding random walk. The
blue disks represent the previously generated monomers. A new potential monomer
(green disk) is generated at a distance of ℓ from the previous monomer n. Left: The
generated monomer (green) overlap with another monomer indexed by i0, therefore
the generated location is rejected. Right: The generated monomer (green) does
not overlap with another monomer any of the monomer indexed by i ∈ 1, ..., n,
therefore the generated location is accepted

It is inspired by this approach that we designed our numerical procedure to generate a 3D
glycogen structure. As previously introduced, glycogen is not a linear polymer but is instead
highly branched. This type of polymer is called a dendrimer. Firstly, we will explain how we
model linear chains, and secondly, we will describe how we model branching points.

We assume that glycogen is made only of glucose units linked together through α-1,4 and α-1,6
glycosidic bonds. The former will be the linkage inside linear chains, while the latter will form
branching points. We assume that these linear chains are always in the form of a single helix,
for which many structural parameters have been measured experimentally [Goldsmith et al.,
1982]. This article reports that the cross-section of the helix is 1.3nm2. The spatial period of
the helix, also called a "turn," has a length of 6 to 7 residues. They also determined the rise
per residue, which we will refer to as ℓ, to be 0.24nm. It corresponds to the contribution of
one glucose unit to the length of the chains (see Fig 2.2). Finally, the van der Waals radius is
found to be 0.65 nm, and we will refer to it as ρ throughout this manuscript. To account for
these structural specificities, we will describe the glucose units as spheres with radii equal to

12



2.1 A complete description of the model

the van der Waals radius. This ensures that we spatially account for the width of the helices.
Each of these spheres will be spaced by ℓ = 0.24 nm to account for the contribution, in length,
of a monomer to the chain. Unlike in a random walk, we will place these spheres on a straight
line representing the direction of the helix.

It can be noticed that the radius of our spherical monomers is greater than the distance between
two consecutive monomers. In order to accommodate this within the self-avoiding approach,
we allow monomers on the same branch to overlap (refer to Figure 2.2).

Figure 2.2: Schematic of the monomer description in linear chains. Each glucose in
an helical linear chains contributes to 0.24 nm. The helix has a radius of 0.65 nm.
Inside a linear chains, the models stacks overlapping spheres with radius 0.65 nm,
where each sphere is distant from its neighbors by 0.24 nm

With this approach, we create a representation that is simple to computationally implement
yet still accurately reflects the spatial properties of helical conformation of linear chains. To
properly model branches formed by alpha-1,6 linkages, additional geometric considerations
must be taken into account. As shown in Figure 2.3 (left panel, branching A), a new branch
is generated from the monomer on the main chain to which it is attached and by two angles
(ϕ and ψ) indicating the direction of the new chain. Additionally, the monomer anchoring
the branch to the main chain and the first monomer of the branch chain are separated by a
distance greater than 2ρ to prevent overlap.

This method, which involves generating a new direction directly from the monomer of the
mother chain, is simple and will be the default method used in this manuscript, unless otherwise
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Figure 2.3: Schematic of two models for branching. Left: Model referred to as "Branch-
ing A". In this model, two angles ϕ and ψ are randomly picked from a uniform
distribution to provide a direction from the monomer on the "mother chain". This
model is used by default in this manuscript. Perpendicular directions are favored
because the first monomers can potentially overlap with the "mother chain" if the
generated direction is too parallel to the "parent" direction. Right: Model referred
to as "Branching B". An alternative way to perform branching. In this model, we
first randomly generate a vector perpendicular to the "mother chain" (red). From
this direction, we pick ϕ and ψ from a uniform distribution to provide the direction
of the new branch. It allows for more possible new directions.

specified. Its main drawback is the number of rejections it causes when attempting to simulate
branching. When a branching attempt occurs, if the generated direction is too close to the
mother direction (blue dotted line), the first daughter monomers will overlap with the mother
chain, which is not allowed. This leads to the rejection of the proposal and increases calculation
time. Furthermore, the accepted chains will tend to be rather perpendicular to the parent
direction, which can potentially decrease molecular density locally.

Possible improvements

To overcome this, another possible branching model is described in Figure 2.3 (right panel,
Branching B). In this case, a vector is first generated perpendicular to the parent chain, and
then from the first "daughter" monomer, the direction of the chain is generated. Practically, we
first generate a random vector from a uniform distribution. Then, we subtract its component
co-linear to the mother direction and normalize it.
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if −→r is vector generated randomly, it can be written as follow:
−→r = a · −→u +−→v

where a ∈ R, −→u is a direction vector of the mother chain, and −→v is the perpendicular part to
it. We can then writes:

a =
−→r · −→u
||−→u ||2

(2.2)

Figure 2.4: Comparison of branching models. Boxplot of 30 simulations per model. All
simulations are stopped when N = 10, 000 monomers have been synthesized. Left:
Occupancy of the different models. While the second way to branch does not
significantly increase the granule density, the addition of possible torsion to the
chain does. Right: Radius of the granule for each model. The radius of the
granule decreases with the introduction of possible torsion.

To further develop this coarse-grained branching approach, one could think of allowing flexibil-
ity to the chains. Linear polymers have a persistence length, a concept introduced by de Gennes
[Gennes, 1979]. It measures the polymer stiffness by calculating how much the direction, de-
fined by a pair of monomers, is correlated over a certain distance. Therefore, incorporating the
ability for chains to bend may prove useful in future work. As a proof of concept, we tested
the case where, if volume exclusion rejects the addition of one glucose unit, the chain will find
the closest new location for this unit, minimizing the quadratic sum of the angles between each
monomer constituting the chain. This has the effect of spreading the total torsion on each
consecutive monomer. The occupancy during the synthesis is now way higher than in the first
branching model (Figure 2.4). As it is hard to visualize in 3D, figure 2.5 shows the result in a
2D version of the model.

2.1.2 The enzyme mechanistic

In the previous subsection, we presented how we modeled the 3D organization of glucose
molecules. In this subsection, we will explain how we modeled the "mechanical" action of
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Figure 2.5: Example of the 2D variation of the model with flexible chains. The pink
marker shows the starting position. The red marker shows the center of mass. The
blue gradient shows the connectivity distance from the initial chain.

enzymes, which we will refer to interchangeably as "enzyme mechanistic" or "reaction mecha-
nistic". In this general term, we include everything that pertains to both the characteristics
and specificity of the substrate (in this case, glucose chains), as well as the specificity of the
enzymes involved, particularly the branching enzyme (GBE) and the disconnection enzyme
(GDE).When we refer to substrate specificity, we are primarily referring to the lengths of the
glucose chains involved in the reactions, as measured by their degree of polymerization (DP).

Elongation reaction catalyzed by Glycogen Synthase (GS)

This reaction is one of the simplest to parameterize, as only one length is involved, which we
refer to as LGS

min. This length corresponds to the minimal degree of polymerization required
for the elongation reaction to take place. By default, we set this length to 4 glucose units, as it
has been observed biochemically that the enzyme cannot react on shorter chains [Berg et al.,
2018].

LGS
min = 4

The reaction of a chain with degree of polymerisation of n glucose (DPn) writes:

DPn + UDP−Glc GS−−→ DPn+1 + UDP, with n ≥ LGS
min (2.3)
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Figure 2.6: Schematic explaining LGBE
spacing, LGBE

leftover and LGBE
transferred.

Reduction reaction catalyzed by Glycogen Phosphorylase (GP)

As for GS, here again only one length is necessary to characterize the reduction of a chain
by GP. We will call it LGP

min. Unless otherwise stated, we will fix this length in relation to
LGS

min, so that
LGP

min = LGS
min + 1.

It prevents too much reduction (e.g. DP = 3, with LGS
min = 4) where the chain would becomes

chemically "inert", blocking the synthesis of the molecule. This assumption can however be
relaxed if eventually, the disconnecting enzyme can compensate and use a chain shorter than
LGS

min. The reaction of a chain with degree of polymerisation of n glucose (DPn) writes:

DPn + P GP−−→ DPn−1 + Glc−1-phosphate, with n ≥ LGP
min (2.4)

Glycogen Branching Enzyme (GBE) catalyzed reduction reaction

This reaction is the most complex to model because it involves different chain lengths. The
enzyme will first cleave a chain and branch the "cut" part of the chain into α− 1, 6. We always
model this reaction in an intra-molecular way, to simplify our study. To describe the specific
length chains involved in the reaction, we introduce 3 lengths:

LGBE
spacing, L

GBE
leftover, L

GBE
transferred

LGBE
spacing is the minimum distance in glucose residue that can separate two branches, or that

can separate a branch from the the reducing end (Fig 2.6.a. LGBE
leftover is the minimum distance

in glucose residue that can remain on the chain after a new branch has been added. In other
terms it is the minimal chain length between the last branch and the non-reducing end (Fig
2.6.b). Finally LGBE

Transferred is the minimal length that can be transferred (Fig 2.6.c). To fulfil
these 3 criteria, a chain has to be strictly greater than the sum of these 3 minimal length in
order to be considered as substrate for the branching:

Lmin
GBE = LGBE

spacing + LGBE
leftover + LGBE

transferred (2.5)
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The "strictly greater" come from the glucose residue that is attached to the new branch, which is
not considered in any of these length in our description. Fig 2.7 shows an example of the possible
outcomes when we parameterized these lengths with LGBE

spacing = 2, LGBE
leftover = 2, LGBE

transferred = 2.
For a DP of 7 glucose residues there is only one possible outcome, while for DP9 we get 6
possibilities.

Figure 2.7: Illustration of the potential outcomes by GBE branching with {LGBE
spacing =

2, LGBE
transferred = 2, LGBE

leftover = 2}. With these minimal lengths, the minimal DP
required for a branching to occur is DP = 7. If the chain length is longer, the
number of possible outcomes increases. Left: With a substrate of DP = 7, only
one outcome is possible. Right: With a substrate of DP = 9, up to 6 distinct
outcomes are possible.

These different possibilities are described here in a qualitative way in the sense that we do not
describe the possibility of variability in the probabilities of these outcomes. In the chapter of
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this thesis, we test two different ways of choosing among these different outcomes. The first
one, called "the flexible location model", consists in not privileging any configuration. Thus,
all cleavage and branching points allowed by LGBE

spacing, L
GBE
leftover, L

GBE
transferred are equiprobable. A

second model, named "strict location model" is also tested. In this one, the cleavage point
is also selected according to a uniform probability distribution, while the branching point is
always the same and is located closest to the non-reducing end. Supported by the results of
this paper, and unless otherwise stated, we will keep the "flexible location model" as the default
model.

The reaction of a chain with degree of polymerisation of n glucose (DPn) writes:

DPn
GBE−−−→ DPn−m + DPm, with n > Lmin

GBE and m ≥ LGBE
transferred (2.6)

Glycogen Debranching Enzyme (GDE)

This reaction, like the one catalised by GBE, takes place in two steps. The substrate chain
has to be an A chain, which means that it does not contain any branch. The length criteria
here, LGDE

max is a maximal DP instead of a minimal, as it is used in the other reactions.
When an A chain becomes short enough (DP(n), n ≤ LGDE

max ), A chain of DP(n − 1) will
be transferred to the so-called "mother chain". The remaining glucose will be hydrolysed an
release in the system. Overall we have:

DPn + DPm
GDEstep 1−−−−−−→ DP1 + DPm+n−1 (2.7)

DP1 + DPm+n−1
GDEstep 2−−−−−−→ DPm+n−1 + Glc (2.8)

2.1.3 Stochastic approaches to model the dynamics

In the previous subsection we have introduced how we model the 3-dimensional organisation of
glucose in a glycogen granule as well as how the different enzymes act and perform reaction on it.
We will now explain how we model the evolution of glycogen structure dynamically, in relation
to the different enzymes present in the system. We have to know which single reaction occurs
and when, in order to make the corresponding changes to the granule structure, reaction by
reaction. To do this, we model the dynamics of the system using a Gillespie algorithm [Gillespie,
1976]. Moreover, the number of enzymes involved in glycogen synthesis and degradation is small
compared to the number of glucose contained in a granule. As such, temporal fluctuations can
have a significant impact that is difficult or even impossible to characterize using deterministic
methods.

Gillespie

Initially introduced by Daniel T. Gillespie [Gillespie, 1976, 1977a] with the purpose of numeri-
cally simulating the temporal evolution of a chemical reaction system for gases, this algorithm
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is more powerful than a simple Monte-Carlo approach. Indeed, it follows from rigorous prob-
abilistic considerations that not only allow it to provide an exact solution to the system, but
also to take into account the "true" fluctuations of the system. This subsection will consist in
explaining and discussing the foundations of this algorithm, which will first be used to explain
how our simulations work, and secondly, to set the basis for a hybrid algorithm that is both
stochastic and deterministic that we have developed and that we will describe later.

Gillespie’s algorithm follows from the following assumptions: the system is spatially homoge-
neous and in thermal equilibrium. Let us consider a system composed of N species involved
in M chemical reactions Rµ (µ = 1, · · · ,M), we will seek to estimate the probability Pµ that
reaction Rµ occurs in a time interval ∆t:

P(τ, µ) dτ = probability that Rµ will happens in the next infinitesimal (2.9)
time interval(t+ τ, t+ τ + dτ)

This quickly leads the author to rewrite the equation in the form:

P(τ, µ) dτ = P0(τ)aµdτ (2.10)

where P0(τ) is the probability that not a single event occurs during time τ and aµdτ the
probability that reaction Rµ occurs during the next interval time dτ . After carefull derivation,
P0(τ) can be put in the form

P0(τ) = exp
(
−

M∑
ν=1

aντ

)
(2.11)

Inserting 2.11 into 2.9 give us

P(τ, µ) = aν exp
(
−

M∑
ν=1

aντ

)
(2.12)

Now that we have an expression for P(τ, µ), the author describes two methods for generating
events according to this probability distribution. Here we will briefly explain the so-called "The
direct method" which is used in the context of our study.

The method consists of rewriting equation 2.12 using conditional probabilities. P(τ, µ) can be
decomposed as follows:

P(τ, µ) = P(τ) · P(µ|τ) (2.13)

Where P(τ) is the probability that a reaction takes place between times t+ τ and t+ τ + dτ ,
whatever it may be, and P(µ|τ) is the probability that the next reaction is Rµ given that the
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reaction takes place at time t+ τ . The probability P(τ) is nothing more than the sum of the
probabilities of each of the reactions:

P(τ) =
M∑

µ=1
P(µ, τ) (2.14)

By substituting 2.14 into 2.13, the following is obtained:

P(µ|τ) = P(µ, τ)∑M
ν=1 P(ν, τ)

(2.15)

We now set a =
∑M

µ=1 aµ and using Equation 2.13, we have the following:

P(τ) = a · exp(−aτ) (2.16)
P(µ|τ) = aµ/a (2.17)

Where P(τ)dτ is the probability of a reaction occurring between t + τ and t + τ + dτ , it can
be written that:

F (t) =
∫ t

0
P(τ) (2.18)

as the probability distribution function. It will give us the probability that the event "reaction"
has occurred at a time t′ < t. To generate a random time in accordance with this distribution
we will use what the author calls "the inversion generating method". This amounts to picking
r according to a uniform law between 0 and 1 such that t = F−1(r) (see Fig 2.8.a).

with:

P(t) = a · exp(−at) (2.19)
⇒ F (t) = 1− exp(−at) (2.20)

with t = F−1(r) and the fact that picking r or 1− r from a uniform distribution is equivalent,
r writes:

r = 1− exp(−a · t) (2.21)

t = 1
a

ln(1/r)

Thus, by generating a random number r1 ∈ [0, 1], we can generate the time interval ∆t that
had to be waited for the next reaction to occur.

Once this is done, it is now necessary to choose which reaction has taken place. The probability
P(µ|∆t) is nothing more than the ratio between the probability aµ that the reaction Rµ takes
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Figure 2.8: Schematic view of the random numbers involved in the Gillespie direct
method. a: The probability P of a reaction to occurs and the corresponding
probability distribution function. Picking a random number between 0 and 1 allows
to returns the elapsed time. b: The reaction is selected by drawing a random
number between 0 and 1, and looking on which segment, defined by the normalized
propensities, this random number falls.

place in the next infinitesimal interval dt, and the sum of all probabilities of seeing a reaction
take place in the interval dt, we have:

P(µ|∆t) = aµ/a (2.22)

Thus, we only need to draw a second random number r2 ∈ [0, 1] and look in which interval
i ∈ [1,M ] it falls such that:

i∑
j=1

aj ≤ r2 <
i+1∑
j=1

aj ,

as illustrated in Fig. 2.8.b.
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2.1.4 Equivalence between deterministic rate-laws and stochastic
propensities

The strength of Gillespie’s approach lies primarily in the evaluation of stochastic reaction
rates, which are meant to reflect the actual course of events occurring in a system. While it
is possible to access these reaction rates in the case of "simple" chemical kinetics (i.e. Mass-
action kinetics) as shown cleverly in the original paper from Gillespie [Gillespie, 1976], it
becomes rapidly really difficult for more complex kinetics. For gases in thermal equilibrium,
this amounts to estimating the probability that reactants collide within the infinitesimal time
interval dt, within a volume V . Considerable efforts have been produced in applying Gillespie
type algorithms to enzymatic reactions kinetics such as Michaelis-Menten [Petzold, 2011].

The rates laws used in ODEs systems often reflect complex kinetics. We can always use the
deterministic reaction rate and convert it into a stochastic rate, with the only difference being
that the populations will be a discrete number of molecules rather than a concentration. In
doing so, we do not gain precision as would have been the case with a stochastic description
of all elementary reactions, but we have an effective way of reproducing the right kinetics in a
stochastic manner.

To do so, we take the flux vi of a given reaction i and multiply it by the Avogadro number and
the volume V of the system we consider:

ϕ = Na · V · v (2.23)

ϕi is the number of reactions i that occurs within V per unit time, therefore a true reaction
rate (in opposition to a reaction rate measured in concentration per unit time).

The product of this reaction rate by an infinitesimal time dt gives us the probability that the
reaction of type i will take place in this time interval. This is precisely the definition given to
propensity in 2.10.

Unless otherwise mentioned, in what follows we will always associate the stochastic propensity
ai with ϕi, the reaction rate derived from the reaction flux.

Test case

In this paragraph, we will test different reaction kinetics for the same system and discuss the
non-optimized approach of the Gillespie algorithm. Consider the system described in Fig. 2.9

We can write the system as:
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Figure 2.9: A toy system to compare to compare stochastic and deterministic solv-
ing. The system is composed by 4 reactions and 4 metabolites. Each reaction flux
is highlighted in blue. Glucose (Glc) enter the system at rate vin. Glucose react
with one ATP to form Glucose-6-phosphate (Glc6P) and ADP at rate v1. ADP
is converted again into ATP at rate v2. Finally Glucose-6-phosphate escape the
system at rate vout

d[Glc6P]
dt

= vin − v1

d[Glc]
dt

= v1 − vout

d[ATP]
dt

= −v1 + v2

d[ADP]
dt

= v1 − v2,

At first, we assume each of the four reactions to follow a mass-action kinetics. Thus, one can
write the four fluxes as follows:

vin = kin

v1 = k1 · [Glc] · [ATP]
v2 = k2 · [ADP]

vout = kout · [Glc6P],

One classical way to get the propensities is to calculate the number of molecules N involved
in the system and to convert deterministic kinetic constants into stochastic ones. Following
Gillespie’s paper, the 4 reactions above would lead to the following propensities:

ain = kin · Na · V

a1 = k1

Na · V
·NGlc ·NATP

a2 = k2 ·NADP

aout = kout ·NGlc6P,
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where the stochastic kinetic constant of each reaction will depend on the stoichiometry and
the reaction type. If we denote Ks

i as the stochastic kinetic rate of reaction Ri, we would
have: Ks

in = kin · Na · V , Ks
1 = k1

Na·V , Ks
2 = k2 and Ks

out = kout.

In living systems, enzyme catalyzed reactions are often described with more complex kinetic
rate-laws than mass-action kinetics. It usually consist in several elementary reactions, in
which enzymes concentration can become limiting not following a mass-action kinetic anymore.
One common description of enzymatic reactions is provided by the Michaelis-Menten (MM)
kinetics equations, but sometimes reactions are subject to even more complex kinetics (allosteric
activation/deactivation, product or substrate inhibition, ping-pong mechanism etc.). Thus
transforming the corresponding kinetic constants of these rate laws becomes less and less
trivial.

Here we propose to simply uses equation 2.23 to calculate the propensities from phenomeno-
logical rate laws used in deterministic system. We found again the propensity as calculated
above:

ain = Na · V · kin

a1 = Na · V · k1 · [Glc] · [ATP]
a2 = Na · V · k2 · [ADP]

aout = Na · V · kout · [Glc6P],

We can thus apply the Gillespie’s direct method described in the previous section 2.1.3. We
simulated the time course of the four metabolites until the system reaches steady-states. The
initial (unrealistic) concentrations are the following: [Glc]0 = 0.1 M , [Glc6P]0 = 0.1 M ,
[ATP]0 = 0.4 M and [ADP]0 = 0.4 M . The results of the simulation are presented in Figure
2.10. The colored lines are the deterministic approximations using an ODE’s solver. Here we
used Modelbase [Aalst et al., 2020] which uses the Assimulo solver [Andersson et al., 2015].
The black lines are the result from the Gillespie method using our equivalence between fluxes
and propensities. As the volume V used for the conversion between concentration and number
of particles is increased, the noise is drastically reduced and eventually becomes negligible.
However, this comes at a cost in terms of computation time. Indeed, the simulation presented
at the bottom right of the figure is obtained for V = 10−18 m−3, a volume for which the
initial conditions of 0.4 M correspond to 240, 000 molecules. At steady state the system is
composed of almost 106 molecules. Since each reaction is proceed successively and would
change the number of each metabolite by ±1 or 0 depending on the stoechiometry, the 20
seconds time-course is obtained in a bit more than a minute (1 minute and 18 seconds) in term
of computational time on a Intel(R) Xeon(R) W-2135 CPU @ 3.70GHz.

Now, as a proof of concept, we changed reaction R1 by a Michaelis-Menten-rate law in the
system presented above. The rate law can be written as:

v1 = vmax ·
[Glc]

KM · [Glc]
.
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Figure 2.10: Time courses of the species involved in the system for the deterministic
and the stochastic approaches. The colored lines show the result from the
deterministic approach and the black lines show the result from the Gillespie
algorithm for different volume V . When V increases, the fluctuations are reduced
until the number of particles is big enough they becomes negligible.
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Figure 2.11: Test case of the stochastic conversion of a Michaelis-Menten kinetic
Time courses of the species involved in the system for the deterministic and
stochastic approaches.

Using equation 2.23 again, a1 becomes simply:

a1 = Na · V · vmax ·
[Glc]

KM · [Glc] .

We tested it with the same initial concentration, and setting vmax and KM to 1. We obtained
the result presented in Fig 2.11.

2.2 Numerical procedure

2.2.1 Glycogen granule object

In this section, we explain how the simulation of glycogen synthesis and degradation take place.
To accomplish this, extensive information about the granule is required to make the molecule
evolve in time and space, as well as the subsequent analytical treatment. In the preceding
subsections (2.1.1, 2.1.2, and 2.1.3), we have introduced all the necessary requirements to con-
struct our glycogen structural model. The first part accounts for the structure’s geometry,
including volume effects, and requires storing the positions of the glucose units and the intro-
duction of a a chain identity. The chain identity allows for distinguishing between members
and non-members of a chain and permitting or denying overlap between monomers belonging
to different chains (see subsection 2.1.1). The second part of the model (subsection 2.1.2)
pertains to enzyme mechanistics. It requires access to chain lengths and branch positions to
determine the degree of "free" polymerization, which determines whether a chain is a substrate
for one of the reactions. The model also necessitates accessing chain connectivity to branch
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and unbranch chains. Creating a new "daughter" branch reduces the degree of "free" poly-
merization of the mother chain and must be updated accordingly. Therefore, it is essential to
access the genealogy of the chains. Similarly, when a chain is unbranched, we must update the
chain that loses a branch. The third part of the model (subsection 2.1.3) models the kinetics of
the reactions using the Gillespie algorithm, which also requires knowledge of the chain lengths
and the "free" portion. The free DP determines whether a chain is a substrate for a reaction,
enabling the calculation of reaction propensities. Finally, all post-simulation analysis is based
on the aforementioned information

To allow an easy access to this information, we store in a Python dictionary each of the chains,
themselves being dictionaries. A chain will thus contain the information depicted in figure
2.12.

2.2.2 Main numerical steps to simulate synthesis and degradation

The simulations begin by initializing a granules object, consisting of two chains of DP 4 on
opposite directions on the z axis, separated by the diameter of the glycogenin core. Initially,
these chains are only substrates for elongation, but they rapidly grow in length, providing
substrate chains for all other reactions. At each simulation step (as shown in Fig 2.13), the
structure information is used to determine the number of substrate chains for each reaction.
Propensities are calculated from this number to determine which reaction occurs and the
corresponding elapsed time.

If GS is selected, the algorithm chooses one substrate chain and tries to elongate it in the
direction of the chain. If the volume at the new location is not occupied by another branch,
the reaction is successful, and the monomer is added to the structure. If the volume is occupied,
the algorithm tries to add the monomer on another branch until the reaction is successful.

For GBE, the algorithm selects one substrate chain and possible cleaving points according to the
rules introduced in subsection 2.1.2. From the selected cleaving points, the algorithm generates
a new direction that will have the potential new branches. For all potentially transferred
monomers, the algorithm checks if the space is not occupied by other glucose units. If the
space is not occupied, the reaction is successful, and the change is implemented in the granule
object, updating the mother chains and adding a new chain with a new identifier and the
position of the glucose units. If the chains overlap, the algorithm restarts from selecting a
substrate chain.

If GP is selected, a chain substrate for the reaction is chosen, and its DP is reduced by 1.

For GDE, a corresponding substrate chain is selected, and by default, n− 1 glucose units are
transferred to the mother chain while the remaining glucose is removed. The mother chain is
updated, and the information on the debranched chain is erased.
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2.2 Numerical procedure

Figure 2.12: Python dictionary containing the information needed in the simulation.
This example shows the initial information contained for a simulation starting with
a single chain. The status is "2", meaning that the chain is subject to elongation
(GS) and degradation (GP) only. There is no "mother" chain because it is the
primary chain attached to the glycogenin core. There is no branching point (empty
list for identity and position of the "daughter"). Finally, by default the chains are
initialized to DP5 on the z axis, starting at a distance rGN from the center (radius
of the glycogenin).
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Chapter 2 Methods

Figure 2.13: Algorithm flow diagram. This scheme shows some of the main steps of our
algorithm. The green squares represent deterministic calculations or actions. The
blue ovals involve random numbers. Finally, the yellow diamonds represent ques-
tions or "if" statements.
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Chapter 3

A structural model for glycogen synthesis
and degradation

This section consists in an article that have been accepted in PLOS Computational Biology.
I was the main contributor to the conceptualization, formal analysis, investigation, methodol-
ogy, programming, results visualization, and draft writing.

Summary

The article presents the structural glycogen model that we have developed, along with an in-
depth analysis of its ability to facilitate glycogen synthesis in the presence of only Glycogen
Synthase and Glycogen Debranching Enzyme. Our study is focused on analyzing the impact
of the ratio of glycogen synthase to branching enzyme activities on the granule’s structure.
To begin with, we examine the model using generic parameters before validating it against
experimental data obtained from mice.

Our investigation into the mechanism of branching leads us to parameterize it using distinct
lengths. We consider various sets of values for these lengths and different rules for their appli-
cation, ultimately showing how these parameters can be combined to fine-tune the structure
of glycogen macromolecules. By comparing our model to experimental data, we demonstrate
that we can accurately reproduce glycogen chain length distributions in wild type mice. Fur-
thermore, the additional structural properties obtained from this fit are consistent with values
reported in the literature.

We find that the mechanism of branching may be more flexible than previously thought. Our
study suggests that the chain length distribution is an indicator of the branching activity and
mechanism, and our model provides a theoretical basis for quantifying these effects. It can
be applied to any glycogen data set, and could potentially contribute to characterizing the
mechanisms at work in glycogen storage disorders.

We further extend the investigation and provide a characterization of the A to B ratio. Our
findings indicate that if the branching reaction is symmetrical in a way such that the transferred
chain is of the same length as the remaining chain, the expected A:B ratio is one. However,
when the branching reaction differs, we demonstrate that different A:B ratios can be obtained,
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Chapter 3 A structural model for glycogen synthesis and degradation

thereby explaining the variability in ratios observed among polysaccharides. Additionally, we
quantify the effects of steric hindrance on the granule and demonstrate that this addition to
the model is necessary to accurately predict the distribution of chain lengths.
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Abstract
In humans, glycogen storage diseases result from metabolic inborn errors, and can lead
to severe phenotypes and lethal conditions. Besides these rare diseases, glycogen is
also associated to widely spread societal burdens such as diabetes. Glycogen is a
branched glucose polymer synthesised and degraded by a complex set of enzymes.
Over the past 50 years, the structure of glycogen has been intensively investigated.
Yet, the interplay between the detailed three-dimensional glycogen structure and the
related enzyme kinetics is only partially characterised and still to be fully understood.
In this article, we develop a stochastic coarse-grained and spatially resolved model of
branched polymer biosynthesis following a Gillespie algorithm. Our study largely
focusses on the role of the branching enzyme, and first investigates the properties of
the model with generic parameters, before comparing it to in vivo experimental data
in mice. It arises that the ratio of glycogen synthase over branching enzyme activities
drastically impacts the structure of the granule. We deeply investigate the mechanism
of branching and parametrise it using distinct lengths. Not only do we consider
various possible sets of values for these lengths, but also distinct rules to apply them.
We show how combining them finely tunes glycogen macromolecular structure.
Comparing the model with experimental data confirms that we can accurately
reproduce glycogen chain length distributions in wild type mice. Additional granule
properties obtained for this fit are also in good agreement with typically reported
values in the experimental literature. Nonetheless, we find that the mechanism of
branching must be more flexible than usually reported. Overall, our model provides a
theoretical basis to quantify the effect that single enzymatic parameters, in particular
of the branching enzyme, have on the chain length distribution. Our generic model
and methods can be applied to any glycogen data set, and could in particular
contribute to characterise the mechanisms responsible for glycogen storage disorders.

Author summary
Glycogen is a granule-like macromolecule made of 10,000 to 50,000 glucose units
arranged in linear and branched chains. It serves as energy storage in many species,
including humans. Depending on physiological conditions (hormone concentrations,
glucose level, etc.) glycogen granules are either synthesised or degraded. Certain
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metabolic disorders are associated to abnormal glycogen structures, and structural
properties of glycogen might impact the dynamics of glucose release and storage. To
capture the complex interplay between this dynamics and glycogen structural
properties, we propose a computational model relying on the random nature of
biochemical reactions. The granule is represented in three dimensions and resolved at
the glucose scale. Granules are produced under the action of a complex set of enzymes,
and we mostly focus on those responsible for the formation of new branches.
Specifically, we study the impact of their molecular action on the granule structure.
With this model, we are able to reproduce structural properties observed under certain
in-vivo conditions. Our biophysical and computational approach complements
experimental studies and may contribute to characterise processes responsible for
glycogen related disorders.

1 Introduction 1

Management of energy resources is crucial for an organism to survive, since nutrient 2

availability may vary considerably with time. Moreover, organisms face numerous 3

other stresses that may temporarily increase energy demand. To react to such changes 4

in energy supply and demand, it is apparent that some internal stores are necessary. 5

These stores are filled when nutrients are abundant and depleted when demand 6

exceeds available supply. As direct substrate for catabolic pathways, glucose plays a 7

central role in energy metabolism in most organisms [1]. While plants have found their 8

way to store glucose as starch, animals, fungi, and most bacteria store glucose as 9

glycogen. Both starch and glycogen are branched polymers consisting of glucose 10

monomers, linked into linear chains by α-1,4 bonds, and branching points by α-1,6 11

bonds. However, these two macromolecules exhibit rather different physico-chemical 12

properties. In contrast to glycogen, starch is insoluble in water under physiological 13

conditions, and contains high density crystalline regions. These different properties are 14

reflected by distinct branching patterns and chain length distributions (CLD). 15

Functionally, starch and glycogen can be compared to capacitors in electric circuits. 16

The latter are able to store and release electrons depending on current and voltage. 17

Thus, they can be used to stabilise a fluctuating electric signal. Analogously, glycogen 18

and starch can be seen as two different capacitors that both contribute to glucose 19

homeostasis by managing energy resources through time. 20

While the fine structure of starch has been widely investigated over the past 50 21

years, less is known on that of glycogen [2]. The characterisation of the detailed 22

structure of glycogen, as well as the interplay between its structural properties and the 23

dynamics of glycogenesis (synthesis) and glycogenolysis (degradation) is unclear. Yet, 24

both glycogen structure and dynamics are of utmost interest for understanding 25

glycogen metabolism and the impact of related genetic variances. For human health, 26

this is particularly important considering the increasing prevalence of glycogen storage 27

diseases (GSDs), as well as diabetes, and other glycogen related disorders. 28

So far, different structures of glycogen have been proposed [3–6], but a structural 29

model that emerges from the detailed underlying enzymatic mechanisms of synthesis 30

and degradation is still lacking. Understanding and precisely describing the 31

biochemistry of glycogen is challenging. With a molecular weight of 106 to 107 32

g·mol−1 [7–9], glycogen is a large molecule, even compared to the enzymes involved in 33

its dynamics [10–12]. Thus, enzymes synthesising, degrading, or otherwise altering 34

glycogen, can only access certain branches near its surface, while many glucose 35

residues near the centre of the molecule remain ’hidden’. At the macroscopic scale, the 36

structure of glycogen is well known. Drochmans [13] observed two populations of 37

glycogen granules in rat liver. The so-called α granules are aggregates of the smaller β 38
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granules [14–16]. The latter have a radius in the range from 10 to 20 nm, while the 39

radius of α granules ranges between 40 and 300 nm [13]. Here, we focus on β granules, 40

whose synthesis and degradation both involve a relatively small number of enzymes 41

(see Fig 1). For a comprehensive review, see [17]. 42

To initiate a new glycogen molecule, a chain of 5 glucose units is synthesised and 43

bound to a glycogenin (GN) protein, which forms the core of the final granule [18–21]. 44

Once initiation is completed, the granule is expanded by the two enzymes Glycogen 45

Synthase (GS) and Glycogen Branching Enzyme (GBE). GS is an elongating enzyme 46

that adds one glucose residue to the non-reducing end of an α-1,4 linear chain, thereby 47

forming a new α-1,4 glucosydic bond. GBE cleaves a small part of a linear chain and 48

creates a new branch by forming an α-1,6 glucosydic bond. We call ”daughter” the 49

newly formed chain and ”mother” the one it is branching from. 50

Besides synthesis, granules are subject to degradation, that is performed by two 51

other enzymes. Glycogen Phosphorylase (GP) and Glycogen Debranching Enzyme 52

(GDE) respectively shorten and debranch glycogen branches. 53

Depending on the relative enzymatic activities of these four enzymes (GS, GBE, 54

GP, and GDE) the overall size of the glycogen granule can either increase or decrease. 55

In this article, we choose to focus on glycogen synthesis, and more specifically the role 56

of the branching enzyme GBE. 57

Fig 1. Main enzyme reactions involved in the synthesis and breakdown of
glycogen. In vivo, the GS and GBE enzymes synthesise glycogen, while the GP and
GDE degrade it. Besides, GN is the initial precursor of the granule and stands in its
core. Enzymes are noted in orange, glucose residues are in blue, and GN is highlighted
with a yellow sphere.

Experimental observations [22,23] of glycogen show an average chain length (CL) 58

around 13 glucose units, which depends on the organism type. A typical peak is 59

observed at low degree of polymerisation (DP), around DP 8, and almost no chains 60

are detected above DP 40 [22–25]. The degree of branching is defined in two ways in 61

the literature. It is most commonly defined as the ratio of α–1,6 to α–1,4 linkages, but 62

sometimes also as the average number of α–1,6 bonds per chain [6]. We will apply the 63

first definition throughout the paper. This ratio is in the range 0.02− 0.05 in 64

amylopectin [26–28] from starch and 0.06− 0.10 in glycogen [9, 29]. In 1956, Peat et 65

al. [30] introduced the concept of A and B chains. An A chain does not carry any 66

branch, while a B chain does. The A:B ratio is an important characteristic of glycogen 67

granules and an indicator of the branching pattern. Early studies reported an A:B 68

ratio of 1 in glycogen [22,31], while it is usually greater than 1 in amylose, and ranging 69
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from 1.5 to 2.6 in amylopectin [31,32]. 70

As early as in the 1940s various hypotheses have been formulated aiming at 71

explaining macroscopic features of glycogen granules. One of them has become known 72

as the Whelan model, which assumes that every chain carries on average two branches. 73

Based on the Whelan model, the nowadays widespread idea emerged that glycogen 74

can be described as a fractal molecule [6, 33,34]. A fractal glycogen structure is indeed 75

attractive because it can reproduce various structural properties of glycogen. 76

Moreover, it provides a mechanism explaining why glycogen granules seem to have a 77

maximum size. With this model, glycogen becomes too dense at the surface due to an 78

exponential increase of the number of non-reducing ends with the distance from the 79

centre. Thus, steric hindrance prevents synthesis to continue. However, Manners [2] 80

stressed in 1990 that there is no clear evidence that supports a regular branching and 81

therefore a fractal pattern. More recently, further arguments and results against a 82

fractal structure have been raised [35–37]. Besides, independently from any fractal 83

structure considerations, Zhang et al. [38] proposed a mathematical model based on a 84

Monte Carlo approach to numerically simulate glycogen biosynthesis, aiming to 85

support the common idea that steric hindrance limits granule growth. In this model, 86

glucose units are placed on a three-dimensional grid, and the granule biosynthesis is 87

simulated by adding glucose units on any of the 26 neighbouring positions around the 88

end of the growing chain. As a result, limited growth is an emergent property of this 89

model. 90

Here, we propose a mechanistic model for glycogen synthesis, focussing on the 91

impact of the branching enzyme on the granule structure. We aim at explaining 92

macroscopic and experimentally observable quantities, such as chain length 93

distributions (CLDs), from the underlying enzymatic mechanisms. Such CLDs can be 94

predicted theoretically using numerical inversion of Laplace transforms [39] or kinetic 95

equations [40–42]. However, besides the fact that CLDs are only one of the many 96

quantities that can be measured in the glycogen structures we simulate, our model 97

accounts for complex features for which an analytic treatment is no longer feasible, e.g. 98

the complete connectivity of the structure, complex enzyme mechanisms, simple helix 99

structure of linear glucan chains, and steric-hindrance effects. Also, in contrast to the 100

model proposed by Zhang et al. [38] based on stochastic simulations, we do not restrict 101

glucose units to a grid, and instead reflect the helical structure of glucose chains, using 102

parameter values derived from biophysical properties. Therefore, our model provides a 103

more flexible and more realistic representation of the three-dimensional granule 104

structure. Specifically, it is designed to study the effect of the enzymatic activity on 105

the structure, and to infer mechanism parameters from measurable quantities, while, 106

Zhang et al. [38] focus on explaining the limited growth of glycogen granules. To our 107

knowledge, these scientific questions have so far not been addressed by computational 108

approaches. In this article, we first detail the geometrical and structural features, and 109

enzymatic reactions, taken into consideration in our model. Then, we analyse distinct 110

properties of the model with a specific focus on the effect of the branching enzyme. 111

Finally, we compare the model to experimental data and discuss the parameter values 112

resulting in a best fit, in relation to typical values reported in the experimental 113

literature. In addition, several complementary results justifying our modelling choices 114

are reported in the extensive Supplementary Material. 115
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2 Results 116

2.1 The model 117

Glycogen structure and geometry 118

Fig 2. Geometrical description of glucose chains. Left: Coarse-grained
linear chain. Assuming helical chains, glucose units are described as interpenetrated
spheres with radius ρ = 0.65 nm. Two consecutive glucoses are distant by l = 0.24 nm,
which is the radial contribution to the chain length of one glucose in a helical
structure. Right: Description of a branching point. We generate the direction of
the new branch by randomly picking two angles φ and ψ. The first monomer of the
new branch will be located at a distance greater than 2ρ to insure no overlapping
between the mother and the daughter branches.

We represent glycogen granules as simplified three-dimensional structures, in which 119

every glucose monomer is characterised by its position in space (see Fig 2). To 120

describe the branched tree-like structure, we generalise the simple representation of 121

linear self-avoiding polymers. Using X-ray experiments, Goldsmith et al [33] 122

characterised in detail how glucose molecules are arranged into helical α-1,4 linear 123

chains. The cross-section of the helix has been calculated to be 1.3 nm2 with 6 to 7 124

residues per turn of length 1.4 nm. The radius of the circular cross-section is thus 125

ρ = 0.65 nm, and each glucose residue contributes to the chain length by l = 0.24 nm. 126

Inspired by these findings, we propose that monomers are described as overlapping 127

spheres with radius ρ = 0.65 nm, equal to that of the helix. The validity of this 128

assumption and its impact on our results are presented in detail in the Supplementary 129

Material (see Fig 12). Besides, the center of consecutive monomers are distant by 130

l = 0.24 nm, which corresponds to the contribution of one glucose unit to the chain 131

length, but also involves that the coarse-grained monomer spheres overlap. However, 132

to realistically reflect self-avoidance, two different chains cannot overlap. With these 133

spatial considerations, we ensure that the contribution to the volume by one glucose 134

unit in the model is similar to that of the real helical chain. This way, we provide a 135

description which is simple enough to be easily represented in a computer model, but 136

still realistic enough to reflect the spatial properties of linear chains arranged into 137

helices. 138

Describing branches formed by α-1,6 linkages requires additional geometrical 139

considerations. As illustrated in Fig 2 (Right panel), a branch point is defined by the 140

monomer on the mother chain to which it is attached, and two angles defining the 141
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direction of the daughter chain. Besides, the anchoring monomer on the mother chain 142

and the first one of the daughter chain are distant by more than 2ρ, ensuring that they 143

do not overlap. 144

Glycogen synthesis is initiated by GN that is located in the centre of the 145

molecule [43]. It contributes to the total volume of glycogen, and thus we also consider 146

self-exclusion between GN and any glucose residue of the granule. For the sake of 147

simplicity, we assume that it is a sphere of density 1.3 g · cm−3 [44], which is the 148

typical density of a protein. Accounting for its two sub-units of 38 kDa each [11], we 149

approximate its radius by ρGN ≈ 2.85 nm. Together with GS, which is responsible for 150

elongation, GN may initiate more than a single primary chain, possibly either 2 or 4 151

[21]. We model this initial core structure with two primary chains pointing out of the 152

GN sphere in opposite directions. 153

2.1.1 Enzymatic reactions 154

Two enzymes (GS and GBE) are directly involved in glycogen synthesis. Their role is 155

illustrated in Fig 3. 156

GS binds the non-reducing end of an α-1,4 linear chain and elongates it by adding 157

one glucose residue. It is commonly assumed that GS needs a glucose chain primer as 158

a glucose acceptor [45]. In the model, we call LGS
min the minimal chain length of this 159

required primer by GS. As elongation takes place, the chain becomes long enough to 160

be cleaved and branched. This reaction is catalysed by GBE. Just like GS, the action 161

of GBE is also characterised by specific substrate and product lengths as shown in Fig 162

3. Since less is known for GBE, we tested two models for its mechanism, namely the 163

strict location model and the flexible location model. These are detailed in the 164

Supplementary Material (see Figs 13 and 14). While comparing the two models to 165

experimental data, we observed that the flexible location model provides a 166

considerably better fit (see Figs 15 and 16 in the Supplementary Material). Thus, 167

throughout the paper, we choose to use the flexible location model and will vary the 168

GBE associated parameters. As illustrated in Fig 3, we consider a minimal chain 169

length for the substrate (noted LGBE
min ) such that GBE is able to bind. We ensure that 170

no daughter branch stands between the binding point and the non-reducing end of the 171

branch. After binding, GBE cleaves at least LGBE
transferredglucose units. Finally, GBE 172

must attach the cleaved chain on the initial substrate, following an intramolecular 173

process, and creating a new A chain. To precisely describe this last step, we define two 174

additional lengths. First, the new α-1,6 branching point must not be closer than 175

LGBE
spacing from either the first glucose of the chain, or an above α-1,6 branching point. 176

Second, the new branching point must not be closer than LGBE
leftover from the 177

non-reducing end of the substrate chain, which is the original position of cleavage. 178

Thus, for a new branch to be created by GBE, the substrate branch must have a chain 179

length greater than LGBE
min , verifying: 180

LGBE
min > LGBE

spacing + LGBE
transferred + LGBE

leftover. (1)

To illustrate the impact of these minimal lengths on the reaction outcomes, in Fig 181

4 we detail the case of {LGBE
spacing, L

GBE
transferred, L

GBE
leftover} = {2, 2, 2}. If the substrate 182

reaches a length of DP equal 7, the condition (Eq 1) is fulfilled and the reaction may 183

take place. If this reaction occurs, there is a single possible outcome (Fig 4, left panel). 184

If the branching reaction occurs on a longer chain than just the minimal one, several 185

outcomes are possible, all fulfilling the set of rules specified by the triplet {2, 2, 2}. Fig 186

4 (Right panel) depicts the case of a substrate chain with 9 residues, which results in 6 187

possible outcomes. 188
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Fig 3. Glycogen synthesis reactions. Glycogen Synthase (GS) catalyses the
elongation reaction. It needs a branch with a minimal DP as a substrate and a glucose
unit to react. Glycogen Branching Enzyme (GBE) catalyses the branching reaction if
the substrate’s DP is greater than the sum of 3 different minimal lengths.

2.2 Analysis of the model’s properties with generic parameters 189

2.2.1 Elongation to branching ratio 190

When the simulation starts, the system is composed of a GN core with two primary 191

chains standing in opposite directions in the center of the simulation space. Two 192

enzymes (GS and GBE) modify the structure of the glycogen granule. To quantify 193

that, we define Γ as the ratio of the GS over GBE reaction rates. For Γ ≈ 0, branching 194

dominates over elongation, and vice versa when Γ≫ 1. Fig 5 (Top) shows two 195

simulated glycogen structures obtained with Γ = 0.2 and Γ = 10, respectively. We 196

observe that a low Γ corresponds to a tightly packed structure, while a high Γ leads to 197

a sparsely packed structure, with further elongated chains. Both simulations have 198

been performed with a high N value, such that the number of monomers is not a 199

limiting factor. The simulations end when the total number of monomers incorporated 200

into the growing granule is N = 50,000. As can be seen in Fig 5 (Top), when Γ 201

increases, for the same number of glucose units incorporated into the granule, the 202

length of the chains increases while their number decreases, and so does the number of 203

non-reducing ends (represented by green spheres). 204

Fig 5 (Bottom) shows the chain length distribution (CLD) for the two simulated 205

structures. It is computed as the abundance of each chain length, taking into 206

consideration all the chains of the structure. With Γ = 0.2 (light grey histogram) the 207

average DP is 12.2 with a peak in the range [4− 8] DP. When elongation is stronger 208

than branching (Γ = 10.0, black histogram) the distribution shifts to higher DPs, the 209

mean is 38.8, and the intensity of the peak is much reduced. By analogy with the 210

well-studied case of starch, a chain length distribution with abundant high DP, might 211

be an indication of double helix formation [46]. We do not model double helices as 212

such, but our results allow to determine the Γ range that might lead to double helix 213

formation, and thus potential glycogen precipitation. 214
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Fig 4. Illustration of the potential outcomes by GBE branching with
{LGBE

spacing = 2, LGBE
transferred = 2, LGBE

leftover = 2}. With these minimal lengths, the
minimal DP required for a branching to occur is DP = 7. If the chain length is longer,
the number of possible outcomes increases. Left: With a substrate of DP = 7, only
one outcome is possible. Right: With a substrate of DP = 9, up to 6 distinct
outcomes are possible.

2.2.2 Granule density 215

Our approach tracks the position (x, y, z) of each glucose unit in three-dimensions.
This allows us to compute how densely the granules are packed. Granule packing is
quantified by the occupancy Ω, which is defined by the volume occupied by glucoses
Vglucose divided by the total volume Vtotal,

Ω =
Vglucose
Vtotal

. (2)

To characterise an entire granule, we consider the total volume Vtotal to be a sphere of 216

gyration radius Rg (defined in the section 5.1 of the Supplementary Material). To 217

determine the occupancy at a given radius r from the center of the granule, we 218

estimate the local occupancy in a spherical shell between radii r and r +∆r. Fig 6 219

displays how the occupancy Ω as a function of the radius r dynamically changes 220

during granule synthesis for two different values of the elongation to branching ratio Γ. 221

The left panel shows the formation of a tightly packed granule (Γ = 0.2), while the 222
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Fig 5. Simulated glycogen granule structures for different elongation to
branching ratios (Γ). 50,000 glucose units are incorporated. Top: 3D structures
of glycogen granules. Blue spheres represent the glucose units, green spheres the
non-reducing ends. When Γ = 0.2, the structure of the granule is tightly packed. For
Γ = 10.0, the structure of the granule is sparsely packed. Bottom: Associated
chain length distributions. The light grey histogram shows the CLD for the tightly
packed granule, while the black one shows that of the sparsely packed granule. The
inset shows the full range of DP for Γ = 10.0. The longest chain is found to have a DP
of 226.

right panel shows a sparsely packed structure (Γ = 10.0). Each line in the figure 223

corresponds to the incorporation of 5,000 glucose units into the granule. It can be 224

observed that granule synthesis proceeds in two phases. The first phase is 225

characterised by an increase of the density close to the granule centre, while the radial 226

extension increases only moderately. This can be explained by the fact that initially 227

there is sufficient space to add new glucose units and there is hardly any steric 228

hindrance among them. When steric hindrance constrains the synthesis (after around 229

10,000 glucose units have been incorporated), the system transits to the second phase. 230

The latter is characterised by a radial expansion of the overall structure, while the 231

density remains approximately constant around 30%. The two phases can be observed 232

for both Γ values considered, but they are more pronounced for the tightly packed 233

granule (Γ = 0.2). Our simulated occupancy profile is in agreement with recent 234

experimental measurements of the radial density profile of glycogen granules [37]. 235
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There, the authors also observed a rather constant density in the inner part of the 236

granule, and a decrease at its periphery. 237

The relatively low occupancy close to the granule center is due to the presence of 238

the GN core, which is not counted in the occupancy, but its corresponding volume 239

cannot be filled with glucose units. We observe that at most 30% of the granule 240

volume is occupied by glucose. This value is rather low, which is expected, since in the 241

model, branches are straight helices, without any flexibility, while in reality, branches 242

can bend and form locally higher densities. Specifically, this occupancy value is below 243

Ω = 0.45, which we can estimate from previous studies [33]. There, the authors 244

combine experimental and modelling approaches to conclude that granules of 55,000 245

glucoses have a radius of 21 nm [33]. Nonetheless, there are many uncertainties on the 246

molecular masses experimentally measured. Thus, the occupancy value (i.e. Ω = 0.45) 247

that we deduce from their work might hold large errors. For instance, it is unclear how 248

the water and protein molecules embedded in the granules contribute to the molecular 249

masses experimentally measured. 250

Fig 6. Dynamics of the occupancy profiles for a tightly (Γ = 0.2, left) and
sparsely (Γ = 10.0, right) packed granule. Occupancy as a function of the radius
at different simulation times. Each line corresponds to an incorporation of N = 5,000
glucose units. The simulation stops at N = 50,000. The grey arrow highlights the two
phases of the granule synthesis dynamics. In phase 1, steric hindrance constrains are
low, allowing occupancy to increase. In phase 2, i.e. after incorporation of ca.
N = 10,000 glucose units, the occupancy reaches a plateau and the granule expands.

2.2.3 Effect of the branching enzyme on the CLD 251

The branching enzyme mechanism is characterised by a triplet of integer numbers, 252

denoted {LGBE
spacing, L

GBE
transferred, L

GBE
leftover}, which specifies a unique set of rules for the 253

enzymatic reaction. These rules considerably impact the CLD. Fig 7 shows that when 254

these minimal lengths increase, the peak of the CLD is less pronounced and the 255

distribution spreads towards higher DPs. Also, a change in each minimal length has a 256

specific effect on the CLD. 257

Increasing LGBE
spacing drastically reduces the peak and spreads the distribution, while 258

making it bimodal. An increase in LGBE
spacing reduces the granule’s number of possible 259

configurations. Less configurations are possible, and LGBE
spacing further shapes the chain 260

length distribution. Chains of DP that are combinations of LGBE
spacing and LGBE

leftover are 261

favoured, resulting in local peaks. Increasing LGBE
leftover also decreases the peak and 262

spreads the overall distribution towards higher DPs. Besides, LGBE
transferred has a 263
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different effect on the structure. Since LGBE
transferred is the smallest DP that can be 264

formed, it is found on the leftmost part of the CLD, and variations in LGBE
transferred shift 265

the overall distribution by the corresponding exact amount. 266

Fig 7. Effect of the chain length specificities on the CLD. Top-left: CLD for
LGBE
spacing = 2, 4, and 6, respectively. When LGBE

spacing increases, a multi-modal
distribution emerges. Top-right: CLD for LGBE

leftover = 2, 4, and 6, respectively. When
LGBE
leftover increases, the peak is reduced and the overall distribution spreads towards

higher DPs. Bottom-left: CLD for LGBE
transferred = 2, 4, and 6, respectively. When

LGBE
transferred increases, the distribution shifts towards higher DPs. Bottom-right: CLD

for LGBE
spacing = LGBE

transferred = LGBE
leftover = 2, 4, and 6, respectively. Varying these distinct

minimal lengths concomitantly, combines the individual effects described above, when
a single length is varied. Each CLD is the result of averaging 200 simulations of
granules with 5,000 glucose units each.

It is important to notice, that these results are obtained when branching dominates 267

over elongation. Increasing the elongation to branching ratio Γ systematically 268

smoothens any multi-modal CLD, because it introduces flexibility in the branching 269

location. It also flattens the peak and spreads the distribution towards higher DPs. 270

Consequently, bi-modal distributions are obtained for high LGBE
spacing and low Γ values. 271

As discussed in the Elongation to branching ratio section, we can compare the 272

synthesis process of glycogen and starch. Specifically, in starch the CLD is bi-modal 273

and shifted towards higher DPs as compared to glycogen [47]. Based on our preceding 274

remarks, it could mean that starch branching enzymes are characterised by large 275

substrate specificity lengths, corresponding to a more constrained mechanism than for 276

glycogen. An alternative explanation for the arising of multi-modal CLDs, also based 277

on highly constrained branching, is discussed in the Supplementary Material (see Figs 278

13 and 14). 279
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2.3 Comparison to experimental data 280

2.3.1 Parameter calibration 281

Based on our simulations, it is clear that the CLD is a signature of the branching 282

enzyme mechanisms and substrate specificity. This signature results from the 283

combination of many different parameters. Therefore, it is particularly difficult to 284

analyse experimental data and infer parameter values without a complementary 285

modelling approach. To extract useful information, and compare simulations to 286

experimental data, we designed a fitting procedure, which is detailed in the Material 287

and Methods section 3.2. With this strategy, we are able to determine parameter 288

values that we compare to experimental results. 289

GBE’s mechanism and substrate specificity are incompletely characterised, yet they 290

drastically impact on the CLD, as shown in Fig 7. Therefore, we specifically focus on 291

this enzyme. To this end, we use experimental data obtained by Sullivan et al. [25] for 292

mice muscles, that we extracted from their publication using the software Engauge 293

Digitizer [48]. After purification, the granule chains are debranched using isoamylase, 294

and their degree of polymerisation is measured using size exclusion chromatography. 295

Our fitting procedure can be applied to any glycogen data, obtained from any specie 296

and tissue. The data by Sullivan et al. [25] present two major advantages for our study. 297

First, they are quantitative measurements of good resolution. Second, the authors 298

investigated the case of a defective GBE. 299

Fig 8 shows the heat-map containing the best fit we obtained with the model.
Extensive scans of the parameter space (see Figs 15 and 16 in the Supplementary
Material) have shown that best fits can be obtained for LGBE

transferred = LGBE
leftover = 3. We

therefore fix these two values in the following analysis. On Fig 8, the parameter
LGBE
spacing is represented on the Y-axis, ranging from 1 to 6. The elongation to branching

ratio Γ is varied on the X-axis. We notice that only low values for
LGBE
spacing, L

GBE
leftover and LGBE

transferred allow to fit the experimental data. However, one
should remember that these are minimal lengths and that the positions at which GBE
is able to cleave and branch is flexible beyond these minimal lengths (see Fig 4).
Overall, not only have we ran our fitting procedure using both the flexible and the
strict location branching models, but also considering distinct values for ρ (see Figs 15
and 16 in the Supplementary Material). Interestingly, the best fit is obtained for
ρ = 0.65 nm, which reflects the realistic size of a glucose unit inside an helical chain.
This highlights the role of the steric hindrance to mimic the granule’s structural
properties. The best fit is obtained for the following set of parameters:

{Γ = 0.6, LGBE
spacing = 1, LGBE

leftover = LGBE
transferred = 3}.

Importantly, the parameter values for the branching enzyme inferred from the best fit 300

are distinct from those reported in the field [33,49,50], especially for the typical 301

spacing observed between two branches [33]. Also, based on our results, GBE is able 302

to transfer less than 4 glucose units. Knowing that GS’s chain length specificity has to 303

follow the same rule, this questions the commonly assumed value of DP4 as the 304

minimal length that can be elongated by GS. 305

In Fig 9, the CLD for the best fit is shown, together with simulation results for 306

parameter values typically reported in the experimental literature, i.e. 307

{LGBE
spacing = 4, LGBE

leftover = 4, LGBE
transferred = 4}. For the latter, we observe a plateau from 308

DP4 to DP10, while experimental data show a peak between DP6 and DP8. 309

Additionally, longer chains (DP ≥ 15) are over-represented in our results. Noticeably, 310

for this set of GBE minimal lengths, our model is not able to reproduce the 311

experimental data by Sullivan and coworkers [25], even when varying the elongation to 312

branching ratio Γ (see Fig 15 in the Supplementary Material). 313
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Fig 8. Heat-map showing fitting scores for various sets of parameters. The
Y -axis shows LGBE

spacing ranging from 1 to 6. The X-axis shows the elongation to
branching ratio Γ ranging from 0.1 to 5.0. A given cell corresponds to a parameter set
{Γ, LGBE

spacing, LGBE
leftover, LGBE

transferred, ρ}. Additional parameter sets are tested around good
scores, i.e. the resolution on the elongation to branching ratio is increased, as well as
the number of runs averaged. This area is surrounded by a red rectangle in which the
average score is 12.26. Fitting scores are ranging from 8.6 to 369.0. The best score is
8.6 (red square in the inset heat-map) which corresponds to {Γ = 0.6, LGBE

spacing = 1,
LGBE
transferred = LGBE

leftover = 3, ρ = 0.65 nm}.

2.3.2 Glycogen structure using the fitted parameters 314

In this section, unless otherwise specified, we assume that GBE chain length 315

specificities are set to those of the best fit 316

{Γ = 0.6, LGBE
spacing = 1, LGBE

leftover = LGBE
transferred = 3}. With these parameters, we 317

simulate the synthesis of glycogen granules, and compute their structural features and 318

macroscopic characteristics (see Table 1). For each of those, the average values and 319

standard errors are calculated over 30 granules with N = 50,000 glucose units. The 320

number of non-reducing ends (noted NNREs) is equal to the total number of chains, 321

since there is one non-reducing end per chain. 322

Table 1. Summary of the granule structural features for the best fit parameters
Structural features Macroscopic characteristics
NNREs A:B CL Branching degree Generation Ω Rg

Γ = 0.6 4135.1± 57.6 0.98± 0.02 12.09± 0.17 0.0901± 0.0014 21.8± 1.4 0.521± 0.012 19.42 nm± 0.15
Γ = 50.0 430.9± 21.5 1.03± 0.06 116.32± 5.95 0.0087± 0.0004 11.3± 1.3 0.025± 0.007 54.83 nm± 7.69

For Γ = 0.6, we find that on average, granules are made of 4,136 chains, with a 323
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Fig 9. Comparison of simulated versus experimental CLDs. Experimental
data are from Sullivan and coworkers [25] (black squares). In each simulation run
50,000 glucose units are incorporated in the growing granule (grey line). The average
over 200 runs is represented as a red dotted line. Left: The CLD for the best fitting
score (S = 8.6) is obtained with {Γ = 0.6, LGBE

spacing = 1, LGBE
leftover = 3, LGBE

transferred = 3,
ρ = 0.65 nm}. Our best fit almost perfectly captures the experimental CLD. Right:
CLD using parameter values typically assumed in the literature {Γ = 0.6, LGBE

spacing = 4,
LGBE
leftover = 4, LGBE

transferred = 4, ρ = 0.65 nm} [49,50]. The simulated CLD differs a lot
from the experimental CLD, with under-representation of small DPs, and
over-representation of high DPs.
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chain length of 12.09 glucoses. These two quantities are intrinsically linked since the 324

total number of glucoses is fixed to N = 50,000. The higher the average chain length 325

(noted CL), the lower the total number of non-reducing ends, since CL ·NNREs = N . 326

The A:B ratio is found to be 0.98. With NNREs = 4,135, it means that ca. 2,047 327

chains are of type A, while 2,088 are of type B. The branching degree is found to be 328

9.01%. This is in good agreement with the range typically reported in glycogen (i.e. 329

[5-10 %] [9, 29]), while starch exhibits much lower values (typically between 1 and 330

5% [26–28]). The average occupancy is Ω = 0.521, which means that half of the total 331

granule volume is filled with glucoses. The gyration radius is Rg = 19.42 nm which is 332

consistent with radii reported for big granules (molecular weight ca. 107g.mol−1), like 333

the ones considered here (N = 50,000) [13,51]. 334

It is interesting to notice that ca. 21 nm is the upper limit for the radius of a 335

glycogen granule of ca. 50,000 glucoses, when considering the fractal structure 336

depicted by Meléndez et al. [6]. Thus, with our approach, that is not based on a 337

fractal structure, we determine a gyration radius close to their results. However, the 338

glycogen structures we simulate are deeply distinct from theirs. In our simulations, we 339

observe that the density is approximately constant with the radius, while a fractal 340

glycogen granule has a density that increases exponentially with the radius, so 341

resembling a rather empty shell. Also, we show that our simulations can reproduce 342

characteristic quantities (summarised in Table 1 for Γ = 0.6), which are in good 343

agreement with experimental results. Thus, our model appears to provide a more 344

realistic depiction of glycogen granules. 345

For comparison, in Table 1, we also report the case of Γ = 50.0, while keeping all 346

other parameters unchanged. By increasing Γ, we force elongation over branching. As 347

expected, less chains are created but they are longer. Consistently, the branching 348

degree is also lower. In our model, chains are rigid rods that cannot bend, which leads 349

to a bigger radius of gyration. Since the total content of glucose is the same like for 350

Γ = 0.6, the occupancy Ω decreases almost proportionally. In vivo, glycogen granules 351

might follow a distinct behaviour, where the presence of long chains could trigger 352

precipitation, like for instance reported in the Lafora and GBE diseases [25,52]. 353

The formation of an A chain results from branching either an A or a B chain.
These different events can be represented as reactions and described as follows:

RA→AB : A
GBE

B + Anew,

RB→AB : B
GBE

B + Anew·

To illustrate how different branch structures correspond to specific A:B ratios, we 354

sketch extreme cases in Fig 10. If the RB→AB and RA→AB reactions are equally likely, 355

a purely probabilistic approach predicts that, on average, the A:B ratio is equal to 1, 356

independently of the relative activities of the enzymes (see Fig 17 in the 357

Supplementary Material). Such a ratio is for instance observed in the first two rows of 358

Table 1, with A:B = 0.98± 0.02 and A:B = 1.03± 0.08, which is in good agreement 359

with reported values for glycogen (A:B = 0.6− 1.2 [31]). Other closely related 360

branched polysaccharides can exhibit different A:B ratios. For example, amylopectin 361

has a typical A:B ratio in the range from 1.5 to 2.6 [31,32], depending on the 362

organism. It is therefore interesting to investigate which factors influence this ratio. 363

Here, we identify two effects of the interplay between the branching mechanism and 364

the dynamics of the granule structure, highlighting once again the importance of the 365

branching enzyme on the emerging structural patterns. First, considering a small Γ, 366

branching dominates over elongation, and the enzyme branches as soon as it can. 367

Thus, if in addition LGBE
spacing is small, the A chains are closely stacked together and the 368

granule is tightly packed. In this regime, overall, A chains are closer to other A chains 369
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Fig 10. Two schematic branched structures with different A:B ratios. For a
”Haworth”-like structure, branching reactions tend to occur on A chains, leading to a
low A:B ratio, while for a ”Staudinger”-like structure branching on B chains is
favoured, leading to a high A:B ratio.

than to B chains. Due to the increased steric hindrance for A chains, B chains react 370

more easily, which favours the RB→AB reaction, and leaves A chains unchanged. 371

Therefore, the A:B ratio increases, meaning that it shifts to the right along the axis in 372

Fig 10. Second, if LGBE
transferred > LGBE

leftover, when a branching occurs, on either an A or a 373

B chain, the newly formed A chain will on average be longer than the B (leftover) one. 374

Therefore, the new A chain will react faster, favouring RA→AB , and lead to a 375

reduction of the A:B ratio, meaning that it shifts to the left along the axis in Fig 10. 376

We confirmed this effect for the specific case of LGBE
transferred = 7 and LGBE

leftover = 3. The 377

resulting structures have an A:B ratio on average equal to 0.80± 0.02. If the values of 378

the minimal lengths are exchanged, such that LGBE
transferred = 3 and LGBE

leftover = 7, the A:B 379

ratio is instead equal to 2.01± 0.04. It appears that the LGBE
transferred and LGBE

leftover are 380

specific mechanistic features that uniquely determine the A:B ratio. Consequently, 381

they could cause the main structural differences observed between amylopectin (the 382

prime constituent of starch) and glycogen. 383

3 Material and Methods 384

3.1 Simulation procedure 385

We present a model that simulates the dynamics of glycogen synthesis. We record all 386

enzymatic reaction steps, the time at which they occur, and the full 3-dimensional 387

details of the glycogen structure at any time point. The model specifically keeps track 388

of each glucose position, the complete connectivity of the chains, and the position of 389

each branching point. To account for this complexity, we implement the model using a 390

stochastic algorithm. This approach also allows to specifically consider how changes in 391

the glycogen structure enable or disable enzymatic reactions. For comparison, 392

employing a deterministic approach, for instance based on systems of ordinary 393

differential equations, would lead to unnecessarily complex simulation rules, that 394

would also include additional ad-hoc assumptions. Besides, randomness has a stronger 395

impact on a system as it involves small numbers, like the one we consider here. Indeed, 396

the synthesis and breakdown of a single glycogen granule of ca. 50,000 glucose units 397

involves only a small number of enzymes. For example, experiments indicate that on 398

average a single glycogen synthase enzyme is active per granule [53]. As a result, a 399

stochastic approach appears very natural to deal with this complex and spatially 400

structured substrate. 401

We base our stochastic approach on the Gillespie algorithm [54,55]. At each time 402

step, it consists in randomly selecting both an enzymatic reaction and its duration, 403

while systematically updating the structure of the glycogen molecule accordingly. 404
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While the enzymatic reaction is selected from a uniform distribution, the time is 405

chosen from an exponential distribution, such that the Gillespie algorithm allows to 406

simulate the real time of the dynamics of the system, as far as the underlying 407

enzymatic mechanisms and their kinetic parameters are known. Each reaction is 408

associated to a specific propensity, that we choose as proportional to the concentration 409

of enzymes and substrate, thereby following a typical mass-action kinetics. 410

The Gillespie algorithm accounts for all possible reactions, and keeps track of any 411

modification of the granule structure, such that only possible reactions can be selected. 412

Nonetheless, because of the complexity of the structure we simulate, to account for 413

steric hindrance among monomers, we instead allow for certain reactions to be 414

rejected. For these rejected reactions the time elapsed is not accounted. 415

We provide details about the Gillespie algorithm, and how it was employed to 416

simulate the dynamic changes of the three-dimensional structure of the granule in the 417

Supplementary Material. Moreover, the source code of our model, together with 418

Jupyter Notebooks that recreate the main figures of this manuscript, are available on 419

our gitlab repository (link provided below under Data Availability). 420

3.2 Best fit algorithm 421

The model contains various kinds of parameters. Some describe the physical 422

properties of the glycogen structure, others relate to the enzymatic activity, including 423

the enzyme substrate specificities. On the one hand, certain parameters are inferred 424

from literature data, for instance the minimum DP for GS to act (LGS
min). On the other 425

hand, other parameters are free to be fitted by our in-house designed best fit 426

algorithm. Here we choose to fit the minimum DP between two branches after a 427

branching reaction (LGBE
spacing), the minimum DP between the non-reducing end of the 428

mother branch and the new branching point (LGBE
leftover), and the ratio between the 429

elongation and branching reaction rates (Γ). 430

The best fit algorithm consists in setting bounding ranges for the parameters to be
fitted, and systematically scanning the parameter space thereby defined. For each
parameter set tested, we run 50 simulations, take the average of the resulting CLDs,
and compare it to our targeted experimental data set. For each parameter set, the
comparison to the experimental data is measured by the score S, defined as follows:

S =

n∑

DP=1

(
Aexp(DP)− Āsim(DP)

)2 ,

where Aexp(DP) is the experimental CLD abundance for a given DP and Āsim(DP) 431

the average simulated CLD abundance for a given DP. Therefore, S measures the 432

difference between the average simulated and the experimental CLDs. The best fit is 433

found for the parameter set that has the lowest score S. 434

4 Conclusion 435

4.1 Discussion of the results 436

According to the World Health Organization, metabolic diseases are a burden in 437

western countries. Among them, Glycogen Storage Diseases (GSDs), Lafora disease, 438

Adult Polyglucosan Body Disease (APBD), and even diabetes directly or indirectly 439

involve glycogen. Investigating the regulation of glycogen’s structural properties could 440

therefore strongly contribute to further understand such diseases. Computational 441

models that encompass the complex interplay of both glycogen’s structure and its 442

metabolism allow to tackle this challenge but remain poorly exploited. 443
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In this article, we present a stochastic structural model for glycogen synthesis. The 444

model provides a precise description of both the structure of glycogen in 3 dimensions, 445

that we can visualise, and the detailed dynamics and mechanistics of the underlying 446

enzymatic reactions. For instance, both elongation and branching have precise rules 447

regarding their substrate specificities. Modelling glycogen granules in 3 dimensions is 448

made possible by a coarse-grained geometrical description at the glucose level, 449

allowing us to track all the glucose units in space. This description also accounts for 450

the steric hindrance effects resulting from the impossibility for the chains to overlap. 451

Simulating reaction dynamics relies on a Gillespie algorithm, which determines when 452

and where a reaction of branching or elongation takes place, thereby dictating the 453

corresponding change in the 3-dimensional structure. 454

We show qualitatively how enzyme activity affects glycogen structure for generic 455

sets of parameters. We highlight two different synthesis regimes, depending on Γ, the 456

ratio between the elongation and branching reaction rates. By varying this ratio, 457

either small and dense, or big and sparse granules can be simulated. Still, it can be 458

expected that Γ depends on numerous factors, such as the organism under 459

investigation, the cell type, and possibly the external conditions. In addition, a model 460

that would consider chains bending and intermolecular interactions might lead to more 461

complex results, in particular during the synthesis of sparse granules. In our results, 462

the phenomenology of the two synthesis regimes is also confirmed by the occupancy 463

profiles along the radius of the corresponding granules. In both synthesis regimes, first 464

the center of the granule is filled around GN, before reaching a critical density 465

preventing further internal reactions to occur due to steric hindrance. Then, the 466

granule expands such that the density remains approximately constant within the 467

sphere defined by the gyration radius. While this result is a consequence of the 468

geometrical assumptions of our model, it is interesting to note that a glycogen fractal 469

description would instead give a density exponentially increasing with the granule 470

radius. Besides our own results and the various arguments exhibited against a fractal 471

representation of glycogen, we would like to highlight here that, as soon as one 472

considers even a single degree of freedom in the glycogen branching reaction, it would 473

rapidly lead to the loss of any ”fractal-like” structure. Such degrees of freedom are 474

necessarily present in natural conditions. For instance, the dihedral angles defining the 475

α− 1, 6 bonds may take various values, making a fractal pattern very unlikely in vivo. 476

Beyond these spatial considerations, the model establishes a natural and clear 477

connection between enzymes’ reaction rates, and both the degree of polymerisation of 478

the chains, and the number of non-reducing ends. 479

Our results show that the chain length distribution (CLD) of glycogen is highly 480

sensitive to the branching reaction, predominantly its mechanism. Each of the three 481

characteristic minimal lengths of the reaction has specific effects on the CLD. 482

Additionally, if any of them increases, less branching outcomes are possible, eventually 483

leading to a bi-modal or even multi-modal distribution. This effect is enhanced by 484

high branching activity. When varied together, these minimal lengths show even more 485

complex imprints on the CLD. In contrast, multi-modal distributions become less 486

pronounced by increasing the elongation reaction rate, because rapid elongation 487

increases the number of possible configuration outcomes. Additionally, increasing 488

elongation leads to longer chains and results in a CLD spreading towards higher DPs. 489

Altogether, we show that the CLD, and in particular peaks location and intensity, are 490

subtly affected by several complex effects. 491

Guided by these findings, we propose to consider the CLD not only as an 492

important structural feature of glycogen, but also as a signature of GBE. Thus, fitting 493

experimental data with our model arises as a natural strategy to infer knowledge on 494

the GBE mechanism. Not only did we illustrate the strength of our fitting procedure 495
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on an experimental data set from Sullivan et al. [25], but we also extracted several 496

macroscopic characteristic features from the resulting fit, which we compared to 497

various literature sources, thereby confirming the validity of our results. Using this fit, 498

at the microscopic level, we were able to discriminate between the two branching 499

models we hypothesised, and selected the flexible location branching over the strict 500

one. Besides, we could critically evaluate parameter values typically reported in the 501

literature. For instance, it is often assumed that GBE transfers branches of DP 4 or 6, 502

or even longer [33,49,50]. Similarly, it is typically reported that around 6 glucose units 503

space two branches. Within the framework of our model and its underlying 504

assumptions, it is impossible to reproduce CLDs of in vivo glycogen using the above 505

mentioned values. Instead, our fitting procedure suggests that a high flexibility is 506

necessary for both the branching mechanism and the minimal lengths involved. This 507

finding fully confirms the importance of modelling glycogen synthesis using a 508

stochastic approach. 509

Moreover, our customisable branching model shows that the A:B ratio is 510

independent of the kinetic parameter Γ, but specifically determined by the difference 511

between LGBE
transferred and LGBE

leftover. Based on these observations, we hypothesise that the 512

branching mechanism is chiefly responsible for the structural differences observed 513

between starch and glycogen. 514

Throughout this study, our coarse-grained approach accounts for the contribution 515

of individual glucoses to the overall granule structure, by considering them as spheres 516

of radius 0.65 nm. It is interesting to notice that if we set the glucose volume to 0 nm3, 517

the CLD remains almost unchanged while other macroscopic properties of the granule, 518

such as its overall volume, are dramatically impacted. This observation confirms once 519

more that the glycogen CLD is primarily shaped by the enzyme mechanisms. 520

4.2 Outlook 521

It is important to keep in mind that our model contains limitations that may be 522

circumvented by further refining the model assumptions. In our model, the simplified 523

coarse-grained representation of glucoses assumes that all of them are arranged in 524

single helices. This hypothesis implies that all α− 1, 4 glycosidic bonds have the same 525

angle values. Yet, in vivo, this is highly unlikely, and instead, the dihedral angles of 526

the α− 1, 4 bonds should be able to take various values. To take this into account, we 527

could randomly pick the dihedral angles of the α− 1, 4 bonds using the Ramachandran 528

plots of their energetically favourable regions. As a first trial, we could use that of 529

maltose, that is well characterised [56]. We expect that, introducing such disorder in 530

the angles, chains will appear longer. Besides, in the model, we consider that all 531

chains are stiff. Thus, to improve the macroscopic representation of the chains, we 532

could introduce the possibility that they bend when encountering steric hindrance. To 533

do so, we would minimise their torsion energy, like it is done in polymer physics 534

models [57]. Opposite to the change suggested for the α− 1, 4 bonds variability, 535

accounting for the flexibility of the chains might lead to a higher granule density, and 536

thus, a lower radius. The fact that these two effects might cancel each other, possibly 537

explains why our simplified model is nonetheless able to capture realistic in vivo 538

granule radii. Besides, in abnormal conditions, the potential formation of double 539

helices may not only lead to glycogen precipitation, but also prevent enzymatic 540

reactions. Thus, a later improvement of the model could include to tune the enzymes’ 541

reaction rate depending on the substrate chain configuration and length. 542

Throughout this article, we focus on glycogen synthesis, yet, simulating the 543

degradation dynamics with the algorithms we developed would be straightforward. We 544

expect residual degradation activity to only lightly modify the effective elongation to 545

branching ratio Γ, and slow down the synthesis. In such a case, the CLD would be 546
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slightly shifted to the left, and the first chain length detected would be the smallest 547

value between LGBE
transferred and its GP counterpart. It could be particularly interesting 548

to account for the degrading enzymes, beyond a residual activity, in case the synthesis 549

is defective. Indeed, abnormal structures produced by defective synthesis enzymes 550

could be degraded, and thereby corrected, by degrading enzymes. For instance, if 551

LGBE
transferred becomes too short for GS to elongate the newly formed chain, GDE could 552

unbranch the latter and thereby preserve the macroscopic properties of the granule. 553

Last, following an approach analogous to the one taken in this article, one could 554

choose to investigate the glycogen granules’ breakdown in full depth, by first 555

synthesising granules and then proceeding to their degradation. Although, for the sake 556

of simplicity, we would then uncouple in time the synthesis and degradation processes, 557

it would still be very interesting to study the mutual impact of distinct modes of 558

synthesis and degradation on the overall glucose release and fixation. 559

In this article, we show that the availability of the substrate strongly influences the 560

enzyme activity, leading to distinct chain lengths and number of non-reducing ends. 561

Noticeably, other modelling approaches, such as kinetic models using systems of 562

ordinary differential equations (ODEs), instead consider glycogen as a single 563

metabolite, approximated by the sum of all glucose units that compose it. A direct 564

consequence is that any structural aspects are neglected and these models cannot 565

differentiate between a single chain of 50,000 glucoses, and an actual granule of the 566

same weight. Still, for instance, the number of non-reducing ends available for 567

elongation are drastically different in these two cases. Thus, coupling our model to 568

glycogen metabolic ODE models, would constitute a hybrid approach that would 569

include key structural details, while enlarging its biochemical scope. It would thereby 570

open up a whole new range of modelling possibilities. For instance, it would allow to 571

investigate the interplay between glycogen structure and the evolution in time of 572

important metabolites, under various physiological conditions, including diseases 573

scenarios. Using this approach, we shall be able to characterise the phenomenology of 574

each glycogen storage disease, with a focus on the role of glycogen structure, and 575

address questions such as glycogen accumulation, glucose cycling, glucose homeostasis, 576

and even glycogen precipitation. 577
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5 Supplementary materials
5.1 Symbols definition
α and β Different forms of glycogen granules as described by

[13]. The first one being aggregates of the second.
ρ Radius of a monomer unit described as a sphere in

the model.
l Distance between two overlapping spheres.
N Number of glucose units incorporated in a granule.

LGBE
spacing Minimum distance (in glucose units) between two

chains after branching.
LGBE
transferred Minimum chain length (in glucose units) cleaved and

transferred.
LGBE
leftover Minimum distance (in glucose units) between the

non-reducing end of the mother chain and the newly
created branching point.

Γ Ratio of the elongation and branching reaction rates.
Rg Radius of gyration (i.e. radius of a glycogen granule

in nm)

Rg =

√√√√ 1

N

N∑

i=1

(−→ri −−−−→rmean)
2
,

where N is the total number of glucose units in the
granule, ri the spatial coordinate of the ith glucose
unit, and rmean that of the center of mass of the
granule.

A : B Ratio of the number of A chains (that do not carry
any daughter chain) over B chains (that carry at least
one).

Vglucose Volume effectively occupied by all the glucose units
incorporated in the granule.

Vtot Volume of a glycogen granule (i.e. 4/3 · π ·Rg
3).

Ω Occupancy, defined as the ratio of Vglucose and Vtot.
S Score to measure the distance between simulated and

experimental CLDs, defined as the mean square dif-
ference between the two curves.

5.2 Abbreviations list
GS Glycogen synthase
GN Glycogenin
GBE Glycogen branching enzyme
NREs Number of non-reducing ends
DP Degree of polymerisation
A:B Ratio between the number of A chains and the num-

ber of B chains
CL Chain length
ODE Ordinary differential equation
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5.3 Numerical procedures
5.3.1 A brief reminder of the Gillespie ”direct” method

In this subsection, we summarise the main steps of the so-called ”direct” Gillespie
method that has been introduced by Daniel Gillespie in 1976 [54] and further
popularised in 1977 [55]. It consists in splitting the probability:

P(µ, τ) = Probability for the next reaction to be the reaction Rµ

and to occur between time τ and τ + dτ,

into two terms, using conditional probability. P(µ, τ) can be written as follows:

P(µ, τ) =P(τ) · P(µ|τ) (3)

where P(τ) is the probability that no reaction occurs between t = 0 and t = τ , and
P(µ|τ) is the probability that, given that a reaction occurs during the infinitesimal
time τ and τ + dτ , it is the reaction Rµ. Gillespie showed that:

P(τ) =a · exp(−aτ), (4)

where a is the sum of all propensities aµ, and aµ · dt is the probability for the reaction
µ to occur in the next infinitesimal time interval dt. Additionally,

P(µ|τ) =aµ
a
. (5)

The idea underpinning the algorithm is to draw random numbers that determine the
next reaction and reaction time, according to these probabilities. (Eq 4) can be
integrated to get the probability distribution function F (t) from the probability
density function P(t).

F (t) =

∫ t

0

P(t′) · dt′, (6)

such that any F (t0) is the probability that t is less than t0. Using the inversion
generating method described in details in the Appendix of [55], Gillespie showed that
the time τ can be generated using a pseudo-random number r1 following a uniform
distribution in [0, 1], such that:

τ =
1

a
· ln(1/r1). (7)

To determine which reaction takes place at time τ , one draws a second pseudo-random
number r2, and looks in which of the following intervals it falls. For N possible
reactions, the reaction µ ∈ (1, .., N) will be selected if:

µ∑

j=1

aj
a
≤ r2 <

µ+1∑

j=1

aj
a
. (8)

The couple {µ,τ} determines the reaction µ and the increment of time t← t+ τ to be
implemented.

The propensities of the distinct reactions of the system are computed based on rate
laws. As a first assumption, in our model, we use mass-action kinetics with rate
constants k = 1. Therefore, the respective propensities for the elongating enzyme
(aGS) and the branching enzyme (aGBE) write:

aGS = cGS · SGS

aGBE = cGBE · SGBE,
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where cGS and cGBE are parameters that can force the system into either elongation or
branching, depending on the previously introduced ratio Γ = cGS

cGBE
. Besides, SGS and

SGBE are the number of available substrate chains for GS and GBE, respectively. It is
important to recall that we are interested in the phenomenology of the system. In this
context, simply assuming mass-action kinetics is sufficient to investigate the different
elongation and branching regimes of interest.

5.3.2 Overall simulation algorithm

The main steps of our algorithm are outlined in Fig 11. The overall loop, in which the
biochemical reactions are simulated, begins by analysing the granule structure and
identifying the available substrate chains for GS and GBE. Based on this information,
the propensity for each reaction is calculated, using a mass-action kinetic approach as
previously described in subsection 5.3.1. The Gillespie direct method randomly
determines the next reaction and its duration. If the reaction is an elongation, the
code selects one of the potential substrate chains at random, and analyses the granule
structure to check for overlaps. If there is none, the glucose monomer is added to the
substrate chain. Otherwise, another substrate chain is selected at random, and the
overlap criterion is checked again. If the reaction is a branching, the code proceeds in
the same way, but it verifies that there is no overlap for the entire daughter chain.

Fig 11. Algorithm flow diagram. This scheme shows the main steps of our
algorithm. The green round rectangles denote deterministic calculations or actions.
The blue ovals involve stochastic steps relying on random numbers. Finally, the yellow
diamonds are conditional decisions (or ”if” statements).
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5.4 Effect of self-exclusion
Modelling the 3D structure of glycogen, while considering self-exclusion of glucoses,
allows investigating glycogen chain patterns, molecular density, size of the granules,
and crowding at the surface. But is this detailed approach strictly required for
studying glycogen’s macroscopic properties? In the following, we test various radius
values for the spheric description of the glucose units and look whether they affect the
macroscopic properties of glycogen.

Fig 12. Effect of the steric hindrance on the CLD. Chain length distributions
for ρ = 0 nm (blue), ρ = 0.325 nm (red), and ρ = 0.650 nm (green). For ρ = 0 nm, the
distribution exhibits a higher peak at DP [6-8] than for ρ = 0.325 nm and
ρ = 0.650 nm. Opposite, for ρ = 0.325 nm and ρ = 0.650 nm, the higher DPs (from
DP 12) are over-represented as compare to ρ = 0 nm.

Three scenarios are investigated: ρ = 0 nm, ρ = 0.325 nm, and ρ = 0.650 nm. For
ρ = 0 nm, the glucose units have no volume and thus no steric hindrance, allowing
chains to overlap. Instead, ρ = 0.325 nm is equal to half of the helix’s van der Waals
radius, while ρ = 0.650 nm is its total radius. By comparing these scenarios, we can
evaluate the impact of steric hindrance on the substrate availability during the
synthesis of glycogen.

Fig 12 shows that short chains are more abundant for ρ = 0 nm than for the other
two values of ρ. Opposite, long chains are more abundant for non-zero ρ. As soon as
ρ > 0 nm, since elongation involves adding a single glucose unit, while branching
means transferring an entire piece of a branch, it is easier to find the necessary space
around the substrate for allowing elongation to take place. This is reinforced by the
fact that when adding a new glucose unit at the non-reducing end of a branch, we do
not elongate the substrate by the total length of a glucose unit, but only its radial
contribution, which is l = 0.24 nm (see Fig 2). As a consequence, steric hindrance
stronger impacts branching than elongation. In other words, the number of branching
attempts rejected due to steric hindrance is higher than that of elongation. If we
would define effective branching and elongation rates that respectively account for
these rejections, the branching effective rate would reduce much more than that of
elongation. This would lead to an effective elongation to branching ratio Γeff which
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increases with the effect of steric hindrance. In the section Elongation to branching
ratio, we concluded that as Γ increases, the overall CLD shifts towards higher DPs
and the distribution peak decreases. Γρ=0

eff < Γρ=0.325
eff < Γρ=0.650

eff therefore explains
both the over-representation of high DPs and the peak reduction as ρ increases in Fig
12. Despite these changes in the CLD, as the steric hindrance increases, we can
remark that not only is the number of peak conserved (here unimodality) but their
location too.

5.5 Flexible location versus strict location branching models
As briefly introduced in the section The model, paragraph Enzymatic reactions, two
assumptions for GBE can be made. In the flexible location branching model (used
throughout the article) all glucose units that are in the acceptable range can
equiprobably be cleaved, and similarly for those that can potentially be transferred.
Opposite, in the strict location branching model (introduced here for comparison)
GBE always branches at a precise location, i.e. at a given distance from the
non-reducing end. For the sake of clarity, these two models and their associated
mechanisms are fully detailed in Fig 13. Their patterning impact on the CLD is
presented in Fig 14.

Fig 13. Mechanisms of the flexible location and the strict location
branching models. Both models fulfill the minimal lengths requirement (Eq 1). In
the flexible location branching model, the cleaving position is randomly picked from a
uniform distribution, and so is that of branching. Instead, in the strict location
branching model, both the cleaving and the branching always occur at a specific
distance from the non-reducing end.

In Fig 14, we compare the two branching models, and vary Γ and {LGBE
spacing,

LGBE
leftover, LGBE

transferred}, which results in 12 different plots. From the Elongation to
branching ratio section, we learnt that increasing Γ spreads the CLD towards higher
DPs and reduces the distribution peak typically observed for short chains. In the
section Effect of the branching enzyme on the CLD, we observed that increasing the
minimal lengths {LGBE

spacing, LGBE
leftover, LGBE

transferred} modifies the shape of the CLD that
becomes bi- or even multi-modal. When decreasing these lengths, the multi-modality
is weakened while it is reinforced by a small Γ.
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Fig 14. Comparing the impact of the flexible location and the strict
location branching models on the CLD. The CLDs for the flexible location and
the strict location branching models are shown in blue and red, respectively. Top-left:
CLD obtained for small Γ (branching regime), with small minimal lengths for GBE.
Top-right: CLD obtained for small Γ (branching regime), with longer minimal
lengths for GBE. Increasing the lengths reinforces the multi-modality. Middle-left:
CLD obtained for Γ = 1 (intermediary regime), with small minimal lengths for GBE.
Both models loose their multi-modalities. Middle-right: CLD obtained for Γ = 1
(intermediary regime), with increased minimal lengths for GBE. Multi-modality is
restored in both models. Bottom-left: CLD obtained when increasing Γ, with small
minimal lengths for GBE. Both conditions contribute to weaken the multi-modality.
Bottom-right: CLD when increasing both Γ and minimal lengths for GBE. The first
condition tends to weaken multi-modality while the latter one instead reinforces it. As
a consequence, multi-modality is observed for the strict location branching model only.

For Γ = 0.1, the strict location branching model (red) matches the flexible one
(blue). That is not surprising, since in this particular regime, when branching strongly
dominates over elongation, branching occurs as soon as possible (DP > LGBE

min ),
making the two models equivalent.
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When Γ increases (second and third lines), the two models are not anymore
equivalent. In the strict location model, the length of the transferred branch is always
equal to LGBE

transferred, while in the flexible location model, longer chains can be
transferred. In both cases, the smallest transferable DP is equal to LGBE

transferred (see
section 2.2.3). For the strict location model the latter is the most abundant DP, unlike
for the flexible one.

5.6 Scope of the parameter space
We apply our fitting procedure to all possible combinations of
Γ ∈ {0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 2.0, 5.0}, LGBE

spacing ∈ {1, 2, 3, 4, 5, 6},
LGBE
transferred = LGBE

leftover ∈ {2, 3, 4, 5}, and ρ ∈ {0 nm, 0.325 nm, 0.650 nm}, while
considering two different branching scenarios, i.e. the flexible location and the strict
location branching models. It sums up to a total of 1,296 tested parameter sets. The
corresponding heat-maps are shown in Fig 15 for the flexible location and Fig 16 for
the strict location branching models. In both figures, ρ varies across the columns,
while LGBE

leftover = LGBE
transferred does over the successive rows. On each heatmap, the Y

and X axes correspond to LGBE
spacing and Γ, respectively.

In Fig 15, all scores below 20 are highlighted with white squares, and correspond to
good fits (arbitrary cut-off chosen as up to twice the best-fit). Noticeably, various
parameter sets fulfill this criterion and all of them show a small LGBE

spacing value. As
presented in section Comparison to experimental data, paragraph Parameters
calibration, the best score is obtained with ρ = 0.65 nm (third column). This supports
the fact that steric hindrance plays a role in the chain length distribution of real
glycogen, although good matches also exist with ρ = 0 nm, in which the CLD is not
impacted by steric hindrance. When focussing on the good scores (dark blue cells), it
appears that changing the elongation to branching ratio Γ can be compensated by
varying LGBE

spacing, or the two other minimal lengths.
Opposite, when considering parameter values that are typically reported in the

literature, we systematically obtain very poor (i.e. high) scores, even upon varying Γ.
This case is highlighted in red and discussed in the section Comparison to
experimental data, paragraph Parameters calibration. In general terms, for each
heatmap, we observe that LGBE

spacing ≥ 4 corresponds to poor scores, i.e. S ≥ 30. This
effect is even more pronounced if LGBE

spacing ≥ 6, i.e. S ≥ 60 (66.3 and above). Thus,
with these parameter sets, our model is not able to reproduce the experimental CLD
data by Sullivan and coworkers used for fitting throughout this article [25]. Regarding
the enzyme mechanism, this suggests that GBE is able to branch much closer than 4
glucose units away from an existing chain. Similarly, if LGBE

transferred = LGBE
leftover ≥ 3, we

are not able to fit the experimental data by Sullivan and coworkers. Therefore, these
minimal lengths must be shorter than those typically reported in the literature.

In Fig 16, we present analogous results for the strict location model. Overall, the
fitting procedure returns much poorer scores than for the flexible location branching
model (see Fig 15). This is due to the fact that strict branching locations almost
systematically lead to a multi-modal distribution, which is not the case of the
experimental CLD data set fitted here [25]. Although multi-modality can be cleared
by increasing Γ, this would lead to a reduction of the distribution peak and a shift of
the overall distribution towards higher DPs. For the experimental data considered, we
could not find a good trade-off, corresponding to good fitting scores. As a result, the
strict location model seems to be very unlikely, that is why we instead choose the
flexible location branching model for this study.
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Fig 15. Heat-maps showing fitting scores for the flexible location branching
model. The three columns show 3 different radii for the glucose units (ρ = 0 nm,
0.325 nm, and 0.650 nm). The 4 rows correspond to distinct values of LGBE

transferred (2, 3,
4, and 5) with LGBE

leftover = LGBE
transferred. For each heat-map, the values for LGBE

spacing are on
the Y axis, while the Γ ratio is on the X axis. Each cell is characterised by a unique
set of parameters {ρ, Γ, LGBE

spacing, LGBE
leftover, LGBE

transferred}. White squares show good
scores (S ≤ 20), while the red rectangle (S ≥ 31.3) shows the scores obtained for
minimal length values as typically assumed in the literature.
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Fig 16. Heat-maps showing fitting scores for the strict location branching
model. The three columns show 3 different radii for the glucose units (ρ = 0 nm,
0.325 nm, and 0.650 nm). The 4 rows correspond to distinct values of LGBE

transferred (2, 3,
4, and 5) with LGBE

leftover = LGBE
transferred. For each heat-map, the values for LGBE

spacing are on
the Y axis, while the Γ ratio is on the X axis. Each cell is characterised by a unique
set of parameters {ρ, Γ, LGBE

spacing, LGBE
leftover, LGBE

transferred}. Overall, the scores are much
higher than those for the flexible location branching model (see Fig 15), indicating
poorer fits. Specifically, no scores below the threshold S = 20 are found.
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5.7 Probabilistic approach to the A:B ratio
In this section, we describe why the A:B ratio must be equal to 1 when no biological
nor biophysical properties of the system are considered, but pure probabilities. As
presented in Section 2.3.2, we note as two distinct reactions, branching on either an A
or a B chain:

RA→AB : A
GBE

B + Anew

RB→AB : B
GBE

B + Anew·

In this purely mathematical framework, A and B chains have the same chance to react,
so that the probability for a reaction to occur only depends on the respective number
of A (noted NA) and B (noted NB) chains. We sketch the associated probability tree
in Fig 17. The tree is symmetric, and the number of paths to a given state follows the

Fig 17. Probability tree of forming a given number of chains of type A
(NA) and B (NB). Directions that spread the tree are unfavoured, while those
oriented towards the center of the tree (reducing the absolute value |NA −NB |) are
favoured, proportionally to the difference |NA −NB |. Therefore, for high numbers of
branching reactions (noted i) the distribution (blue) is centered around NA −NB = 0,
and is thinner than a binomial distribution (grey).

binomial coefficients. The horizontal dotted line corresponds to NA −NB = 0, when
there are as many A as B chains. We know that in the example of flipping a coin i
times, the central limit theorem tells us that the distribution of the difference in the
number of heads and tails, tends to a normal distribution centered in 0 when i tends
to infinity. This case corresponds to heads and tails having equal probabilities. In our
case, a given state of the probability tree (NA, NB) leads either to the state
(NA, NB + 1) with probability p(RA→AB) =

NA

NA+NB
, or to (NA + 1, NB) with

probability p(RB→AB) =
NB

NA+NB
. It means that the probability to go from one state
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to the next one depends on the state of the system, in a way that the probability to
come closer to NA −NB = 0 (horizontal dotted line) is always higher than that of
spreading away. Additionally, the distribution of the probabilities remains symmetric
with respect to the case NA = NB . Based on these considerations, the mean value
NA −NB = 0 and the distribution is even more peaked than in the simple case of
flipping a coin. Since the mean value NA −NB = 0, the mean ratio NA

NB
= 1, in other

words the A:B ratio is 1.

April 1, 2023 36/36



Chapter 4

The interplay between glycogen structure
and glycogen metabolism

In the previous chapter’s final section, we demonstrated how the model may serve as a valuable
tool in characterizing the structural aspects of specific glycogen-related disorders. However,
the scope of this approach is notably limited from a metabolic perspective. Thus far, we have
considered a really limited system that comprises solely glucose units and four enzymes. Addi-
tionally, the kinetic laws applied, which served to describe the structures, held no physiological
relevance.

While we could potentially establish a kinetic model that encompasses the principal pathways
associated with glycogen, such as glycogen synthesis, glycogenolysis, or glyconeogenesis, in
an ODE system, we would fail to account for the effects related to glycogen structure. Such
models do not regard glycogen as a full metabolite; rather, it is viewed as the amount of glucose
stored in the form of glycogen. In fact, these models solely encompass glycogen through its
concentration and make no differentiation between distinct structures. For instance, a linear
chain of 10,000 glucose molecules would not be distinguished from a highly branched molecule
of equivalent molecular weight. These two structures should not possess identical synthesis
and degradation rates, given that GS or GP react at the non-reducing end.

Furthermore, without a model that takes structural features into account, we are unable to
characterize the roles of branching and debranching enzymes (GBE and GDE) in metabolism.
Specifically, we cannot account for the fact that GDE directly releases glucose without conver-
sion of glucose intermediate glucose-1-phosphate and glucose-6-phosphate.

The aforementioned examples illustrate the possible effects of structure on the dynamics of the
metabolites within the system. We may also envision how metabolic reactions, even distant
ones, may impact the molecule’s structure. It is precisely this mutual interaction between
structure and the metabolic network that piques our interest and that we aim to investigate.

In the opening section of this chapter, we introduce novel algorithmic approaches that allow
for the integration of both deterministic and stochastic methods in solving a chemical reaction
system. This approach permits the preservation of the stochastic nature of certain reactions
essential for investigating glycogen structure, while modeling other reactions via a conventional
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Chapter 4 The interplay between glycogen structure and glycogen metabolism

approach to avoid the excessive computational demands commonly associated with large reac-
tion networks when utilizing purely stochastic methods.

Subsequently, we present a model that describes glycogen synthesis and degradation in response
to hormonal signals. This model provides a simplified representation of glucose’s pathway from
blood plasma to glycogen and vice versa. With this model, we may apply the algorithmic ap-
proach introduced in the prior section and examine the relationship between glycogen structure
and its metabolism.

Finally, armed with this newly developed tool, we conduct a comprehensive investigation of
specific glycogen-related disorders described in Chapter 1 to gain deeper insights into their
underlying mechanisms.

4.1 Coupling deterministic and stochastic methods

As outlined in chapter 2, the Gillespie algorithm [Gillespie, 1976, 1977a,b] yields results iden-
tical to solving an ODE system using any integrating methods if the propensities are properly
expressed. The system depicted in figure 2.9 will be reused and will serve as a proof of concept
in the following section, where we introduce new methods for coupling both deterministic and
stochastic approaches.

4.1.1 Coupling stochastic and deterministic reactions

The classical Gillespie algorithm (Gillespie, 1977a) is limited in its ability to model complex
systems consisting of a large number of molecules. This is because the algorithm generates
the time elapsed reaction by reaction, and the total simulation time, T , is the sum of all the
time intervals, δti, which have passed from one reaction to the next. When the system being
modeled increases in the number of molecules, the time interval between successive reactions
decreases drastically. For a mass action kinetics, the number of reactions in a system with N

particles is proportional to N2. Thus, an increase of a factor of 10 in the number of molecules
considered will result in, on average, δti being 100 times less than the number of molecules
considered. Consequently, the algorithm will have to iterate 100 times more to produce a
simulation of the same total time, T .

To address this issue, methods derived from the classical algorithm have been developed,
including the tau-leaping method [Gillespie, 2001]. This approach segments time and approxi-
mates the Gillespie solutions within the time intervals. Although more efficient, the tau-leaping
method is only an approximation of the exact approach of the classical algorithm and depends
on the characteristic time, τ , of the algorithm. A larger τ does not allow for a good approx-
imation. Theoretical arguments on the appropriate value of τ for a good balance between
performance and accuracy are discussed in the article [Gillespie, 2001]. However, such an algo-
rithm is not applicable in situations where access to the events reaction by reaction is necessary.
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4.1 Coupling deterministic and stochastic methods

Figure 4.1: A toy hybrid system to test the coupling method. The system is composed
by 4 reactions and 4 metabolites. Each reaction flux is highlighted in blue. Glucose
(Glc) enter the system at rate vin. Glucose react with one ATP to form Glucose-6-
phosphate (Glc6P) and ADP at rate v1. ADP is converted again into ATP at rate
v2. Finally Glucose-6-phosphate escape the system at rate vout

Nonetheless, the idea of a time larger than that of an individual reaction, to approximate other
reactions, is applicable and will be explored further in our study.

The Gillespie algorithm faces a second challenge, which is related to the first problem discussed
above. Specifically, the algorithm struggles to model systems with vastly different reaction
rates. In such cases, the algorithm will spend most of its time returning elapsed times for
species involved in fast reactions, causing significant slowdowns in the simulation. To address
this issue, a variant of the Gillespie algorithm, known as the Slow-Scale Stochastic Simulation
Algorithm (SSSSA) has been proposed [Cao et al., 2005; Haseltine and Rawlings, 2002]. The
SSSSA approach separates fast and slow reactions in the system and employs a stochastic
description only for the slow reactions. During simulation, the same reaction can be simulated
in both a deterministic and stochastic way.

However, in our specific case, we desire a stochastic description for the reactions that directly
affect glycogen structure to allow us to track each reaction individually and take appropriate
action. Therefore, we propose a variation of the SSSSA algorithm to address this require-
ment.

Our approach seeks to combine both the conventional deterministic approach and the stochastic
Gillespie direct method approach. Specifically, we will solve the system described in section
2.1.4 using deterministic methods for two reactions (vin and v1), while using the Gillespie
approach for two other reactions (v2 and vout). The red dotted arrows in figure 4.1 represent
the two reactions that we will model using the Gillespie approach.

The proposed approach involves utilizing the elapsed time returned by the Gillespie algorithm
at each iteration as the integration time for the solver to solve the deterministic equations.
There are two possible scenarios. In the first case, the method is efficient when the stochastic
reaction has the lowest flux, meaning that it occurs the least in the system. In such a scenario,
the time returned by Gillespie, denoted by δt, will be significantly larger compared to the
characteristic times of other reactions. As a result, the integration of the deterministic ODE
system will capture the change in metabolite concentrations during this time interval. In
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Figure 4.2: Flow diagram of the hybrid algorithm.

the second case, where the stochastic reactions occur more frequently, the time δt will be
considerably smaller compared to the characteristic time of other reactions. In such a scenario,
the deterministic system will have little time to evolve during this short time interval. The
algorithmic workflow is summarized in Figure 4.2.

The algorithm consists of several steps to simulate the evolution of a system over time. At
step 0, the initial state of the system is defined, including the concentrations Ci of the M

metabolites at time t0. These concentrations are then converted into the number of particles
Ni at step 1, using the Avogadro number and the volume of the system V . The direct Gillespie
method is then applied at step 2, where the corresponding propensities are calculated and a
reaction and the time δt necessary for the reaction to occur are returned. The numbers of
molecules involved in the reaction are then updated at step 3. After this, the ODE module
is called at step 4 to integrate the initial concentrations based on the time obtained from
the Gillespie algorithm, δt. This produces the concentrations at time t = t0 + δt as if the
system evolved without taking into account the stochastically modeled reactions. At step 5,
the variation in concentrations δCi due to the stochastically modeled reaction is added to these
concentrations. Finally, the algorithm returns to step 0 with the new state of the system. By
iteratively performing these steps, the algorithm can simulate the evolution of the system over
time, taking into account both deterministic and stochastic processes.
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4.1 Coupling deterministic and stochastic methods

Figure 4.3: Time course of the toy system. From left to right, the volume of the system
increases (V0, 10V0, 100V0), reducing the fluctuation in the stochastic algortihm

It converges and match the solutions obtained by a regular ODE solving method (Fig 4.3).
Different volumes for the system are considered and, as in section 2.1.4, we see the fluctuation
diminishing as the volume increases. One can notice a visual difference in the left plot on
Fig 4.3, compare to the plot from the full Gillespie approach from Fig 2.10. The Glucose
time course fluctuate less than the others. It is because this is the only metabolite in the toy
system which is not involved in any stochastic reaction. While the method converges„ the
computational time for V = 100V0 with V0 = 10−19m3, is approximately 37 times higher than
a simple Gillespie approach (see table 4.1), which motivates us to find an improvement to the
approach to reduce this calculation time.

4.1.2 Toward a more efficient algorithm: Periodic-Coupling Algorithm

In this part, we will try to make the previous algorithm more efficient in terms of computation
time. The previous algorithm is slow because at each stochastic reaction, we have to reintegrate
the deterministic differential equation system. The idea here is to try to decouple slightly the
two modules (stochastic and deterministic), so that they work independently, in parallel for a
certain time interval greater than the δt time of a single stochastic reaction. The two modules
will then communicate once this time is exceeded and allow the system to be updated. The
figure 4.4 shows the main steps of this algorithm. The state of the system is described by all
the concentrations Ci, i ∈ {1, ..,M} at time t = t0 (step 0). As in the algorithm presented
above 4.1.1, the concentrations Ci are then converted in number of particles Ni (step 1), with
Ni = Ci · Na · V , where Na is the Avogadro number and V the volume of the considered
system. Step 2 consist in running the Gillespie algorithm several times on the sub-system
made of stochastic reactions. The elapsed time is tracked by summing all the Gillepspie time
δt and the number of molecules are updated independently of the deterministic reaction. After
a certain number of iterations i, the elapsed time

∑i
k=1 δtk exceeds the threshold value of the

communication time T . When this condition is reached, we record the elapsed time in the
stochastic module ∆t =

∑i
k=1 δtk (step 4). The fact that we stop after T ensure that at least
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a single event occurs with δtk > T . In this precise case the communication time becomes δtk
and the algorithm is a special case of the algorithm 1 shown in the previous section.This ∆t
is later used by the deterministic module to integrate its system of equations (step 5). Finally
the two module communicate. The concentration of the deterministic module is changed by
the variation in concentration due to the stochastic module (step 6). The new concentrations
become the input of the next iteration (step 0).

Figure 4.4: Flow diagram of the Periodic-Coupling algorithm .

We applied this algorithm to the toy model used before 4.1. The convergence is also obtained
with this new algorithm, but only when the communication between the two module is frequent
enough, or equivalently when T is small enough. We summarize the different time-course obtain
with different volume V and communication time T in Fig 4.5. From left to right, the volume
of the system increases reducing the fluctuation in the concentrations. From Top to bottom,
we reduce the communication time between the two modules. For T = 0.1 we observe that
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4.1 Coupling deterministic and stochastic methods

the algorithm do not converge toward the exact solution given by the deterministic solving.
However, when we decrease the communication time (T = 0.01 and T = 0.001), the algorithm
converge for all Volumes.

The algorithm ensure that we always have ∆T ≥ δt and ∆T ≈ δt when we set the com-
munication time T below the typical Gillespie time. The algorithm will therefore solve the
deterministic ODE system way less often, ensuring a faster computational method. In table
4.1 we compare the simulation times for all the methods with different volumes. We observe
that the periodic-coupling method outperform the basic simple-coupling method by consequent
time (18 and 58 times faster for all volumes. When the volume becomes bigger, the algorithm
also outperformed the simple Gillespie approach. Another argument in favor of this algorithm
is that these results are obtained for a simple system of 4 reactions. As the number of reactions
considered increases, it is expected that the number of molecules to be considered will increase
as well, deteriorating the computational time of the simple Gillespie approach, and not influ-
encing, or very little, the periodic coupling algorithm. Indeed, adding non-stochastic reactions
will increase the computation time in the deterministic module, which is not the limiting part
here.

We will therefore use this new algorithm it the next sections.

Table 4.1: Computational time from different methods

Model
Volume of the system

V0 10 · V0 100 · V0 1000 · V0

ODE 0.11 s - - -
Gillespie 0.08 s 0.69 s 7.58 s 74.10 s

Algo 1: Direct coupling 3.40 s 29.41 s 281.30 s 3009.77 s
Algo 2: Periodic coupling (T = 0.01) 1.05 s 1.61 s 5.02 s 40.95 s
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Figure 4.5: Time-course obtained with the periodic-coupling algorithm. All algo-
rithms were run on an Intel(R) Xeon(R) W-2135 CPU @ 3.70GHz The
colored lines correspond the algorithm solution while the black lines are the "exact"
solution obtained from the ODE system. Left to right: the volume of the system
increase which reduce the fluctuations. Top to bottom: The communication time
T decrease between the two module of the algorithm. It results in the convergence
of the solutions toward the exact solutions.

4.1.3 Plugging the glycogen module to the Periodic-Coupling algorithm

In this last subsection we will apply the algorithm developed to a system together with our
glycogen module developed in Chapter 2 and 3. The system is depicted in Fig 4.6 and consist
of 8 reactions. All reactions follow a mass-action kinetics. The stochastic sub-system of the
Periodic-Coupling algorithm will consist of the 4 reactions that act on the glycogen granules
(GS, GBE, GP and GDE). The other ones will be modeled deterministically.

The deterministc sub-system will be described by the following mass action rate laws:
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4.1 Coupling deterministic and stochastic methods

Figure 4.6: Toy model with glycogen module. The deterministic sub-system consists in
the 3 reactions with black arrows. The import and export of glucose through
vin and vout can be time dependant. The stochastic sub-system consists in the 4
reaction detailed in section 3. These reactions directly impact the glycogen granule
structure.

vin = vin(t)
vGK = kGK · [Glc]
vG6P = kG6P · [G6P]
vout = vout(t)

For the propensities of the stochastic subsystem, we want the glycogen glucose chains to be the
substrate of the reactions. As each of the enzymes involved has different length specificities,
we assign different status i, depending on their length, to each of the chains. To do this we
calculate the degree of free polymerization DPfree of each of these chains. This DPfree is the
degree of branchless polymerization between the non-reducing end of the chain and the last
branch α− 1, 6 2.1.2.

Thus when
DPfree < min(LGS, LGDE),

the chain will be assigned the status i = 0. These chains are too short to react with the
enzymes in presence. This status will be useful later when we introduce defects in the enzymatic
mechanisms.
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For
LGS ≤ DPfree < LGS + 1

the chain will be given the status i = 1. These chains are the shortest and can only react with
GS and potentially GDE. GP will not be able to react on these strings. This avoids reducing a
chain beyond the specific length for GS, which would make it impossible for the chain to react
and would block the evolution of the structure.

For
LGS + 1 ≤ DPfree < LGBE,

the chain will be given the status i = 2. These chains are of intermediate length and will be
able to react in an elongation reaction (GS) but also in a reduction reaction (GP). For

LGBE ≤ DPfree

the chain will be assigned the status i = 3. These chains are long and can be branched. They
will be substrates for GS, GP and GBE. Finally if

DPfree = LGDE and the chain is of type A

, the chain will be assigned the status i = 4 These are unbranched chains having the specific
length of the disconnection enzyme. They will be substrate for GDE, but can still be extended
by GS. The concentration of the status i chain will be noted by Ci.

With this notation, the stochastic sub-system will be described by the following propensity:

aGS = kGS · (Na · V ) · (C2 + C3 + C4) · [G6P]
aGP = kGP · (Na · V ) · (C2 + C3)
aGBE = kGBE · (Na · V ) · C3

aGDE = kGDE · (Na · V ) · C4,

Through Ci, we have the possibility to link our glycogen model to the Periodic-Coupling
algorithm developed above. By default, we will use the branching parameters obtained in
chapter 3. Empirically we set the volume of the system so that a 5, 000 glucose granule has a
reasonable concentration ([0-10mM]). We ensure that the elongation and branching activities
(GS and GBE) are higher than the breakdown activites (GP and GDE) to ensure that synthesis
takes place. For generic parameters of the system, we obtain the two kinetics presented in figure
4.7.

On the top-left plot, the system is closed, no glucose equivalent can enter or leave the system
(vin = 0 and vout = 0 ). One can see that glucose6-phosphate bind to the glycogen granule
until the reserves in glucose units are exhausted (both glucose and glucose-6-phosphate). Once
the equilibrium is reached, one can notice the presence of fluctuations due to the presence of
residual degradation reactions (GP and GDE). The fact of having mass action kinetics makes
the speed of synthesis exponential as the number of chains increases (zoom on the figure 4.7
top-left), before the units of glucoses eventualy become limiting. The figure on the right allows
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Figure 4.7: Time courses of the system. Top-left: Time course of the 3 metabolites for a
closed system with no vin nor vout. The dotted square shows a zoom for the first
50 seconds of the simulation. Top-right: Corresponding evolution of the different
chain types concentration. Bottom-left: Time course of the 3 metabolites for
an open system with vout but no vin. When most of the glucose has been fixed
onto glycogen, the molecule start being degraded. Bottom-right: Corresponding
evolution of the different chain types concentration.

us to track the evolution of these chains as a function of time. During the synthesis phase (0-
50sec), it can be seen that the elongation allows the formation of substrate for the branching
(green peak). When equilibrium arises, there will not be enough elongation to create new
chains for branching. Existing ones will react and branched or be reduced by GP, reducing
their focus to almost zero. Therefore we logically see the appearance of shorter chains (chains
of type 1 and 4). Indeed, even if the GP activity is residual, GS is limited by the quasi absence
of glucose residue. Thus the relative activity of GP compared to GS increases which reduces
the size of the chains. On the bottom part of the figure, we have simulated the same system
with the possibility of glucose leaving the system. This leads to two differences, the maximum
concentration of glycogen is logically lower because part of the glucose has already left the
system. When all the glucose has either been exported or synthesized, the residual activity of
GP and GDE becomes more important than that of GS and GDE triggering the degradation of
the molecule. Concerning the concentrations of the different types of chains (Fig 4.7 Bottom-
right), they decrease as the glycogen is degraded. Another important aspect of coupling the
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glycogen structure model to our kinetic algorithm (Periodic-Coupling) is that we can access the
structural properties of glycogen over time for, in principle, any kinetic model. The parameters
used in these simulations are arbitrary and do not reflect physiological quantities. However, as
a proof of concept we have looked at some of the structural properties of glycogen in the two
simulations discussed above. The figure shows 4.8 the evolution of the A:B ratio (top-left),
the radius of the molecule (top-right), the occupancy (middle-left), the average chain length
(middle-right) and the branching degree (bottom-left).

Several interesting observations emerge from these plots. The A:B ratio seems to be depen-
dent on the state of the system. Indeed, in chapter 3 we have seen that this ratio was 1 when
Lleftover = Ltransferred. This result was obtained during a pure synthesis phase. On the figure
here, we see that this ratio also seems to be equal to 1 at the end of the synthesis phase.
However, when the system reaches equilibrium or starts to degrade (black and ref curve re-
spectively), the ratio seems to drop around 0.75. A possible explanation for this is a relative
increase in debranching.

The evolution of the radius is also surprising. Indeed, while the granule is at equilibrium,
the radius increases (black curve). A possible explanation is due to the equilibrium between
branching and disconnection. Indeed, the branching reaction is subject to steric hindrance,
and these reactions will therefore tend to take place more often towards the outside of the
granule, where the density is lower. The debranching reaction, on the other hand, has no
spatial constraint. Thus where GDE will degrade homogeneously over the whole granule, GBE
will rebuild rather towards the outside of the granule, lowering its total density and increasing
its radius. This observation probably does not occur in-vivo because GDE should also undergo
steric constrains. However, if we imagine that GDE penetrates the molecule deeper than GBE,
such a result could take place in-vivo. This previous observation can logically also be seen
on occupancy plot (middle-left, black curve), which decreases while the glycogen content is
constant. This is directly due to the increase of the radius. The average chain length is higher
during the synthesis phase than during equilibrium or degradation. This is logically caused by
the activity of GS during synthesis which allows the elongation of the chains. However, the
gap between the peak and the more or less constant part could be reduced by increasing the
branching activity. If during the synthesis, branching occurs instantaneously when the chain
is sufficiently long, it would dilute the effect of having and higher activity in GS than GP.
Finally, we observe that the degree of branching increases when we leave the synthesis phase.
This is directly due to the decrease in chain length and therefore to the decrease in the number
of bonds α-1, 4.
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Figure 4.8: Time dependency of various structural features. Top-left: The A to B
ratio decreases during the synthesis. Top-right: The radius of the granule. When
the system is open, degradation is possible leading to a decrease in the radius.
When the system is closed, a counter-intuitive increase of the radius appears, while
the glycogen content is constant. Middle-left: The occupancy as a function of
time. Middle-right: The average chain length is slightly lower with vout due to
the degradation. Bottom-left: The branching degree is higher with vout because
the average chain length is lower.
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4.2 A reduced model for glycogen metabolism

Now that we are equipped with a set of methods and tools that allow us to couple the structure
of glycogen to a kinetic model, we will orient the study towards something more quantitative,
with the ultimate goal of being able to study certain glycogen-related diseases. To do this,
we will build a kinetic model of glycogen metabolism from an existing one. Our basis will be
the one presented in an article entitled "Quantifying the contribution of the liver to glucose
homeostasis: a detailed kinetic model of human hepatic glucose metabolism" [König et al.,
2012]. The authors present a ODEs model of human hepatic glucose metabolism, including
glycolysis, gluconeogenesis, and glycogen metabolism. One major aspect of the model is that
it includes hormonal control of these pathways by insulin, glucagon, and epinephrine, allowing
investigations how liver cells respond to changes in plasma glucose levels. The results are
in good agreement with experimental data on the contributions of each pathway to hepatic
glucose production and utilization.

Exclusion of model components

In order to establish a kinetic model for glycogen metabolism, we excluding numerous reactions
that were not suitable for our need. In the model presented by König et. al. it is not clear
how some reactions are taken into account. For example, the reaction:

ATP + AMP AK←−→ 2ADP

is described in the model with an associated rate law, whereas the article states that the
concentrations of AMP, ADP and ATP are all fixed (see https://doi.org/10.1371/journal.
pcbi.1002577.s013). Moreover, the part considering the TCA cycle of their model is not
very precise. On the one hand, many of the compounds in the mitochondrion are kept at
constant concentration, resulting in reactions that are not effectively balanced. On the other
hand, some reactions have their vmax = 0, resulting in non-effective reactions. We tried to
implement the complete model in two ways. A first one were we fixed the concentrations of the
supposed constant metabolites. A second one were all metabolite concentrations were variables
in the ODE system. In both cases the steady-state could not be reached, some compounds
leaving the system through reaction v31. In addition, the phosphate pool is not a conserved
moiety. This results in an infinite accumulation of the compound. Despite trying different
modifications we could not reproduce the results shown in the article. To build our reduced
model, we therefore removed all the reactions in the mitochondrion compartment as well as all
reactions from lactate to Fructose-6-phosphate. Another aspect which does not fit our needs is
how glucose is considered. The external glucose, which regulates the hormonal signal, is also
fixed in the model. The underlying hypothesis is that other parts of the body contribute to
maintain glucose homeostasis. This is one of the aspects that interests us most. How does
the external glucose level evolve according to the glycogenolysis and glycogenesis pathways?
Fixing the external glucose level results in never changing hormone levels, whereas our interest
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lies precisely in capturing the reciprocal effect between a dynamic hormonal response and the
evolution of blood glucose level.

Selection and addition of model components

In spite of all the issues mentioned above, some aspects of the model are very interesting. The
kinetic laws of chemical reactions, sometimes complex, and their respective parameters are very
well detailed. They take into account two important regulatory mechanisms. The first one
is of alosteric type, for which enzyme activities will be regulated, principally, by the glucose-
6-phosphate level. The second one, is the modulation of activities in response to Insulin and
Glucagon signal. Indeed, the corresponding inter-convertible enzymes, according to their state
of phosphorylation γ, directly depending on hormones level, will be more or less active. This
γ function is modeled with a logistic functions as follow and is depicted in figure 4.9-left:

γ = 1
1 + exp Glc−Glc0

, (4.1)

where Glc0 = 4.6 is a glucose threshold value. The reactions involved will always be modeled
through a flux having the following form [König et al., 2012]:

v = γ · vp + (1− γ) · vdp. (4.2)

The phosphorylation state, represented by γ, is directly dependent on the glucose level in the
blood. When the blood glucose is high, γ will be low, resulting in a dephosphorylate state
with vdp dominating over vp. Conversely, when the blood glucose is low, γ will be high, leading
to a phosphorylate state where vdp dominating over vp. In our case, we adjusted a simplified
sigmoid function to represent the phosphorylation behaviour depicted in the article. This γ
function will be incorporated in our ODEs system, while in the article γ is kept constant with
a value that depends on the regime of interest (glycogenolysis or glycogen synthesis).

In our model, the external glucose concentration is no longer constant and becomes a variable,
which allows us to evaluate the value of γ(Glc) at each moment of the simulation. To this we
have added two reactions, vin and vout which allows to account for the import and export of
glucose to other parts of the organism (Fig. 4.9-left and -middle respectively). For the import
we used a constant influx to mimic periods of "feeding". To avoid numerical issues from abrupt
changes in vin, we used an approximation of an Heaviside function:

vin = kin

1 + expa·(t−tstop) , (4.3)

where tstop is the time at which glucose import should stop, and a a factor that will act on
the sharpness of the Heaviside function. This time dependant function will allows us to mimic
some feeding/fasting cycles. To model the glucose export, one could think of several rate laws.
In our study we make the following assumption: At rest, the demand in glucose from outside
the liver is constant. One can see it as a maintenance glucose export, without considering
any body extra activities. This is why we choose not to model this export as a mass action
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Figure 4.9: Phosphorylation function γ, rates of glucose export and import. Left: γ
as a function of glucose level. Middle: Import of glucose as function of time. Rate
is constant (vin = 0.67) during a feeding period tstop = 5h (red area), and start
decreases after. The different values of a illustrate different sharpness coefficient
for the Heaviside approximation. Right: Export of glucose as function of glucose
level. Rate is constant (kout = 0.22) above a critical value Glcc = 1mM , and start
decreases above this value. The different values of a illustrate different sharpness
coefficient for the Heaviside approximation.

kinetics nor as a Michaelis-Menten like kinetics. We used an almost constant outflux, with
a dependency on glucose at low value only. For this we also chose an approximation of an
Heaviside function. We depicted the rate law behaviour in Figure 4.9-right:

vout = kout

1 + exp−b·(Glc−Glcc) , (4.4)

where Glcc is a critical level of glucose and b constant which act such as a.when blood glucose
concentrations are very low, this fuelling can not be maintain and the export drop to vout = 0.
It is important to exercise caution when initializing the system, as a glucose concentration of
0 may result in negative concentration due to the fact that the outflux is never truly 0.

In our model, we re-introduced ATP, ADP, UTP and UDP as variable concentration in the
reactions we kept. We identified that the reversible reaction of

ATP + AMP AK←−→ 2ADP,

catalyzed by Adenylat kinase (AK) in their model, is problematic. During synthesis ATP and
UTP are highly demanded, however the ATP turnover is not efficient enough. It is not clear
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4.2 A reduced model for glycogen metabolism

Figure 4.10: Scheme of the reduced König Model. Import and export of glucose are mod-
eled through vin and vout outside the cytosol. This plasma glucose (GLCplasma)
impact the value of the phosphorylation state γ, mimicking the behaviour of the
hormones. Depending on the value of γ, glycogen synthesis or glycogen breakdown
will be enhanced.

to us the exact reason why the reverse reaction is effectively not working. We simplified it by
removing AMP from the system with the following reaction:

ATP AK←−→ ADP,

but keeping the same kinetic rate. The AMP concentration in the rate-law becomes a fixed
parameter. After this simplification, The system works properly in both the synthesis and the
degradation phase. It comes at the cost of loosing regulatory effect from AMP.

Finally, we also added a reaction that export fructose-6-phosphate, which end the glycolytic
pathway here. This export is modelled with a mass-action reaction rate:

vout
F6P = kout

F6P · F6P. (4.5)

All the reactions (13 in total) in our reduced system are presented in Fig 4.10, together with the
metabolites (11 in total). All the rate-laws (except vin, vout and vout

F6P) are taken from König
et al., 2012 can be found at https://doi.org/10.1371/journal.pcbi.1002577.s014.
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Figure 4.11: Time courses of glycogen degradation and synthesis in the reduced
model versus experimental data. Left: Degradation of glycogen. Simulation
(dotted line) starts with 500mM of glycogen. Each color point corresponds to
individual patient. Right: Synthesis of glycogen. Simulation (dotted line) starts
with 200mM of glycogen. Each color point corresponds to individual patient.

The only unknown kinetic parameters are those introduced through the glucose import and
export reactions, as well as the fructose-1-Phosphate export. To have realistic ones, we adjusted
kin and kout so that simulation of glycogen synthesis and degradation fit the data used in König
et al., 2012 which originates from Ferrannini et al., 1985; Magnusson et al., 1992; Radziuk and
Pye, 2001; Rothman et al., 1991; Taylor et al., 1996. We found kin = 0.67 mM.min−1.kg−1 and
kout = 0.22 mM.min−1.kg−1. kout

F6P is set to 0.1 min−1.kg−1. All values below 0.5 min−1.kg−1

have a very little to no impact on the evolution of other metabolites in the system. kout
F6P

can later be changed, together with Eq.4.5 if one wants to consider downstream changes in
the glycolysis pathway. Time courses of glycogen degradation and synthesis together with the
corresponding experimental data are presented in Fig 4.11.
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4.2 A reduced model for glycogen metabolism

Figure 4.12: Time courses of glucose level during fasting and feeding periods. The
green area indicates the glucose level range between hypoglycemia and hyper-
glycemia (3 mM and 9 mM respectively). The blue line shows the glucose level
with a glucose dependent γ function. Dark red, red and pink curves show the
glucose level with a constant γ function (γ = 1, γ = 0.5 and γ = 0 respectively).
Left: Evolution of glucose during fasting. Right: Evolution of glucose during a
feeding phase. The red area indicates the period of glucose intake.
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Testing the model

In order to test how the γ function acts on the system, we looked at how glucose evolves during
fasting and feeding phases (Fig. 4.12). γ have the expected regulatory effect. The blue curve
shows us how the glucose level is kept constant by this hormonal regulation. We did the same
simulations with constant γ = 0.5 (red curve). It corresponds more or less to the absence of
hormonal regulation with Equation 4.2 which becomes:

v = vdp + vp

2 .

We have also simulated the case of γ = 0 and γ = 1, which correspond to v = vdp and v = vp

respectively. The green area indicates the range between 3 and 9mM. This defines the expected
range of blood glucose level [Nuttall et al., 2008]. Fig. 4.12-left shows the evolution of glucose
level during fasting (vin = 0). Simulation starts with a full storage of glycogen (500 mM). One
can observe for γ = 0.5 (red curve), a too important contribution of the glycogen degradation
to the blood glucose level. The time interval for which the glucose level is in the right range is
much shorter (26-38h) than when hormonal response is taken into account (0-38h). The case
where γ = 0 would correspond to a completely dephosphorylated state, normally found when
the glucose level is very high. In this situation the enzymes responsible for synthesis are hardly
activated, resulting in the impossibility of using glycogen to supply glucose to the blood. On
the other hand, when γ = 1, the degradation is too active compared to the need for glucose
and this results in an excessively high glucose level.

We also performed the same study (Fig.4.12-right) during a feeding period. During glucose
intake (red area), γ is close to zero. The blue curve therefore coincides with the pink one. For
γ = 0, 5 (red curve) and γ = 1 (dark-red curve), the degrading enzyme GP is too active as it
was during the degradation phase, resulting in a high glucose level. When the intake stops,
we find the same behavior as in (Fig.4.12-left). It is also interesting to note that the glucose
level after a meal is estimated at 9 mM [Nuttall et al., 2008], which is approximately the value
found here.

To further highlight the effect of the hormones, one can modified Eq 4.4 by adding a mass-action
term:

vout = kout

1 + exp−b·(Glc−Glcc) + k ·Glc, (4.6)

The idea of this new term is to mimic the effect of refilling other parts of the body, together
with the maintenance term introduced in Eq 4.4.

Figure 4.13 shows how glucose and glycogen evolves during fasting under these conditions.
Simulation starts with a full storage of glycogen (500 mM). Since excess in glucose level
is now used to fuel other part of the body through the mass-action kinetic term in Eq.4.6,
glycogen is reduced too quickly when not regulated (γ = 0, 5), resulting in both a shorter total
supply duration (equivalent to glucose production duration) and a shorter duration of glucose
level in the correct range [3 mM - 9 mM]. This is a striking case of the hormones effect on
glycogen storage management.
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4.2 A reduced model for glycogen metabolism

Figure 4.13: Time courses of glucose and glycogen level during fasting in the reduced
model with refilling The green area indicates the glucose level range between
hypoglycemia and hyperglycemia (3 mM and 9 mM respectively). The blue line
shows the glucose and glycogen level with a glucose dependent γ function. Dark
red, red and pink curves show the glucose and glycogen level with a constant γ
function (γ = 1, γ = 0.5 and γ = 0 respectively). Left: Evolution of glucose
during fasting. Right: Evolution of glycogen during fasting.
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4.3 Connecting the glycogen module to the kinetic model

The subsection 4.1.3 presents a methodology for coupling a glycogen structural model with
a simplified ordinary differential equation (ODE) system. The approach is extended to the
reduced model of glycogen metabolism introduced in section 4.2, where only the stochastic re-
actions catalyzed by glycogen synthase, glycogen branching enzyme, glycogen phosphorylase,
and glycogen debranching enzyme are considered, while all other reactions are modeled deter-
ministically. We recall that this chapter aims to investigate the interplay between glycogen
structure and metabolism, requiring the consideration of glycogen chains for the four stochastic
reactions.

Verfication

Prior to outlining the suitable rate laws, it is essential to verify that utilizing identical reaction
rates as outlined in 4.2 results in the same outcomes when connecting the glycogen granule
model. In the ODE model, glycogen synthesis occurred solely through the catalytic activity
of glycogen synthase (GS), whereas in the present study, both GS and glycogen branching
enzyme (GBE) are involved. In this regard, we combine the branching and elongation processes,
previously considered as distinct in König’s model, into a single reaction:

UDP−glc GS−−→ UDP + glycogen, (4.7)

where the glycogen concentration refers, in fact, to the concentration of "glucose fixed." To
enable a comparison between different reaction rates, we have included the branching reaction,
which is catalyzed by GBE, within the elongation reaction catalyzed by glycogen GS. By
doing so, we can utilize the same reaction rate as described in Eq.4.7. The combined reaction
is expressed as follows:

UDP−glc + glycogen(n,Nb) GS−−→ UDP + glycogen(n+ 1, Nb)
(

GBE−−−→ glycogen(n+ 1, Nb + 1)
)
,

(4.8)

where glycogen molecules are described through glycogen(n, Nb), a granule made of n glucose
units arranged in Nb branches. With the same rate as in Eq.4.7, one glucose will be fixed to
our glycogen granule producing glycogen(n+1, Nb). To account for branching, we incorporate
a probability for GBE to act during the elongation reaction, which will sometime produce
glycogen(n+1, Nb+1). Since the branching reaction does not contribute to the stoechimetries,
it is a simple way to use the same rate-law in the two cases. The situation is a bit different for
the reduction reaction catalyzed by GP in the ODE model:

where glycogen molecules are represented as glycogen(n, Nb), which is a granule consisting
of n glucose units organized into Nb branches. Utilizing the same reaction rate as described
in Eq.4.7, the addition of one glucose unit to the glycogen granule results in the formation
of glycogen(n+1, Nb). To account for branching, we incorporate a probability factor for the
action of GBE during the elongation reaction, resulting in the production of glycogen(n+1,
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Nb+1) in certain instances. Since the branching reaction does not affect the stoichiometries,
incorporating it in this manner allows us to utilize the same rate law for both elongation and
branching reactions.

However, the situation differs for the reduction reaction catalyzed by glycogen phosphorylase
(GP) in the ODE model:

glycogen + P GP−−→ Glc−1-P, (4.9)

while unlike glycogen branching enzyme (GBE), the debranching reaction (GDE) changes the
number of fixed glucose units, denoted as n. Therefore, when accounting for the reaction rates,
we cannot combine glycogen phosphorylase (GP) and GDE with a single reaction rate. Instead,
the rate of GP will account for either GP or GDE individually, as follows:

glycogen(n,Nb) + P GP−−→ + Glc−1-P + glycogen(n− 1, Nb) (4.10a)
OR

glycogen(n,Nb) + P GP−−→ + Glc−1-P + glycogen(n− 1, Nb − 1) (4.10b)

where Equation 4.10a represents the actual reaction catalyzed by GP, which reduces a glycogen
chain by one unit and releases a glucose-1-phosphate molecule. On the other hand, Equation
4.10b represents the debranching reaction. It is important to note that the actual debranching
reaction releases a glucose molecule instead of a glucose-1-phosphate, but for the sake of com-
parison, we consider the reaction to release a glucose-1-phosphate instead. The inclusion of
these non-standard reactions allows for the use of the same rate-laws in both the ODE model
and the hybrid model. This hybrid model, which combines ODE and stochastic reactions and
employs identical rates, will be referred to as the "comparable model" henceforth, whereas the
pure ODE model will be referred to as the "ODE model". The comparable model integrates
the approach presented in subsection 4.1.2, which establishes the equivalence of the Periodic-
Coupling algorithm to regular ODE solving, with the model introduced in subsection 4.1.3 that
does not consider glycogen chains as substrates. The primary goal of constructing this model
is to ensure the reproducibility of the pure ODE system when combining complex kinetics with
our Periodic-Coupling algorithm and the granule structural model for glycogen.

Figure 4.15 displays the time courses of blood glucose (top-left panel) and glycogen (top-right
panel) for a synthesis phase (150 minutes, with glucose input rate vin = 0.7 mM.min−1)
followed by a degradation phase (glucose input rate vin = 0 mM.min−1), with a constant small
export of blood glucose (vout = 0.24 mM.min−1). The results of both the ODE model (black
curves) and the comparable model (red curves) are depicted in the figure, and they exhibit
identical behavior, as expected.
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Appropriate rate-laws for GS, GBE, GP and GDE

Now that the full model (structural model, reduced glycogen metabolic model and Periodic-
Coupling algorithm) has been verified to be working properly, appropriate rate-laws need to
be found that depend on glycogen chains rather than glycogen glucose content. These kinetic
laws should approximate the behavior observed in section 4.2 when the enzymes GS, GBE, GP,
and GDE act normally (in contrast to the possible introduction of defects in their respective
activities). A correspondence will be established between the flux vkönig

GS , which describes
the total synthesis reaction without distinction between elongation and branching, and the
individual reactions of elongation and branching. Similarly, a relation will be established
between the total degrading reaction vkönig

GP and the individual processes of reduction and
debranching. It is worth noting that in our glycogen model, as discussed in subsection 4.1.3,
chains are categorized according to their status, denoted as i ∈ 1, 2, 3, 4. The concentration
of a chain with status i is denoted as ci. Moreover, it should be mentioned that each of the
four enzymes is capable of utilizing different combinations of chain status as their respective
substrate:

cGS = c1 + c2 + c3 + c4 (4.11)
cGBE = c3 (4.12)
cGP = c2 + c3 (4.13)
cGDE = c4 (4.14)

Elongation (GS) The kinetic law in König et al., 2012, vGS is written as follows:

vGS = γ · vp
GS + (1− γ) · vdp

GS (4.15a)

vp
GS = vmax · fmax ·

[UDP-glc]
[UDP-glc] +

(
k1p

k2p+[G6P]

) (4.15b)

vdp
GS = vmax · fmax ·

[UDP-glc]
[UDP-glc] +

(
k1dp

k2dp+[G6P]

) (4.15c)

fmax =
(

1 + k1
max

)
· C − [glycogen]
C − [glycogen] + k1

max · C
(4.15d)

where C is a capacity term of glycogen (500 mM). One can see that there is no positive de-
pendency on glycogen content, but only a product inhibition term (C − [glycogen]). The real
process of elongation by GS requires two substrates: a glycogen molecules (regardless of it
description, total glucose content or chain content) and a UDP-glucose molecules. However,
when one look at vgs, one can see that glycogen doesn’t appear as substrate. Phenomenologi-
cally this means that the limiting substrate is UDP-glucose and not the glycogen content. To
account for glycogen, Eq.4.7 can be cahnged into the raction depicted in Fig.4.14-elongation.

In the provided equation, C represents the capacity of glycogen (500 mM). One can see the
absence of a positive dependence on glycogen content, and a term for product inhibition
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(C − [glycogen]). The actual process of elongation by GS involves two substrates, namely
a glycogen molecule (independent of its characterization in terms of total glucose content or
chain content) and a UDP-glucose molecule. However, vGS shows that glycogen does not
feature as a substrate. This implies that the limiting substrate is UDP-glucose rather than
glycogen content. To incorporate glycogen, Eq. 4.7 can be modified to the reaction illustrated
in Fig. 4.14-elongation.

Figure 4.14: New reactions considering glycogen chains as substrate. The marker "*"
highlight potential change in the status of the chains.

In these new reactions, the quantity of glucose fixed into glycogen, represented by glyglc, is no
longer present. Instead, glycogen is considered as a metabolite consisting of n glucose molecules
arranged in Nb branches. The GS enzyme now requires both glycogen and UDP-glucose as
substrates to catalyze the reaction. Above the glycogen compound, the involved chains type
are highlighted in green. The star markers in the products describe potential modifications of
the chain type content. When GS takes place, every chains type can changed, which explain
they are all marked.

The idea is the following: We will use the rates from König and multiply it by a factor going
from 0 to 1, mimicking a Michaelis-Menten-like kinetics::

vGS
new = ṽ · [glycogen]

KGS + [glycogen] .
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where ṽ can be seen as a varying vmax which is equal to vGS
König:

vGS
new = vGS

König · [glycogen]
K + [glycogen] . (4.16)

To work with a reasonable value for KGS , we assume that during the synthesis phase presented
in Fig.4.11-right, which start with an initial glycogen concentration of [glycogen] = 200 mM,
the content in glycogen (as substrate) was sufficient for the enzyme to work close to ṽ. For
this concentration, we assert that vGS

new is equal to 99% of ṽ. This allows us to calculate a
corresponding K value:

KGS = ṽ − 0.95 · ṽ
0.99ṽ · [glycogen]⇔ KGS = 2.02 mM (4.17)

We then convert this value in chains concentration. Because all of the chains are substrate
for GS, we used the average chain length of 12.09 (table 1, page 12 of the article) found in
chapter 3, for "healthy" glycogen. There is therefore a factor 12.09 between the concentration
of chains cchain and the concentration of glucose fixed into glycogen [glycogen]. It gives us the
effective value of this Michaelis-Menten-like constant considering chain as substrate KGS

chain =
0.167 mM . The new rate-laws for GS reads:

vGS
new = cchain

cchain +KGS
chain ·

(
γ · vp

GS + (1− γ) · vdp
GS

)
which can be rewrite as a function of each chain type according to subsection 4.1.3:

vGS
new = c1 + c2 + c3 + c4

c1 + c2 + c3 + c4 +KGS
chain ·

(
γ · vp

GS + (1− γ) · vdp
GS

)
(4.18)

The same KGS
chain will be used independently for the GS and GBE. We will make the distinc-

tion between enzymes substrate specificities by discriminating the chains according to their
status introduced in subsection 4.1.3. We are conscious it could not reflex exactly the precise
kinetics at small glycogen concentrations, but allows in a simple way to account for chains
concentrations. Similar to GSD type 0, the model does not contain reverse glycolysis or al-
ternative pathways for glucose production, making glycogenolysis is the sole source of glucose
production. The rate-laws governing this process are highly responsive to hormonal regula-
tion, effectively mitigating any potential deviations in glycogen breakdown or synthesis fluxes,
forcing the "correct" regulation of glucose.

Branching (GBE): In Chapter 3, our best-fit procedure shows that the ratio Γ = vGS/vGBE

should be equal to 0.6 in order to reproduce the chain length distribution of measured in
Sullivan et al., 2014. We will use this result and write the rate-law so that it fulfill:

vGBE
max = vGS

max

Γ
, together with the addition of the dependency in concentration of chains with status i = 3
leads to:

vnew
GBE = c3

c3 +KGS
chain ·

1
Γ ·
(
γ · vp

GS + (1− γ) · vdp
GS

)
(4.19)
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Degradation by GP and GDE: We proceed a bit differently for the degradation. Because
both the reduction by GP and the debranching by GDE release one glucose, we can not simply
approximate the vnew

GP "max" as vKönig
GP as we have done for GS. Indeed, it would lead to an

excess effective degradation
vnew

GP + vnew
GDE > vKönig

GP

when chains are abundant. We instead consider in a first step the total flux resulting from the
two degrading process as:

vdegradation = (c2 + c3) + c4(
(c2 + c3) + c4

)
+Kdeg

chain · vGP
König (4.20)

vGP
König = γ · vp

GP + (1− γ) · vdp
GP

We have introduced Kdeg
chain, the Michaelis-Menten-like constant for degradation. Without

prior knowledge about it we will use Kdeg
chain +KGS

chain unless otherwise stated. When this
reaction occurs, we then look at the ratio Λ between the substrates type for GP and for GP
+ GDE. We recall that the chains that are substrate for reduction are of types i ∈ {2, 3} and
the one for GDE of type i = 4. Therefore Λ writes:

Λ = c2 + c3

c2 + c3 + c4
(4.21)

It allows to discriminate between the two reactions. GP will occur with a probability Λ and
GDE with a probability (1− Λ) (Figure 4.14).

The total reaction rate of degradation can be seen has the sum of the two sub reaction rates:

vGP
new = Λ · vdegradation (4.22)

vGDE
new = (1− Λ) · vdegradation (4.23)

Kinetic laws allowing for the consideration of different types of glycogen chains as substrates
of the reactions have now been obtained. For this purpose, we have used the fact that the
reactions present in König et al., 2012 for elongation and reduction intrinsically contain infor-
mation on branching and debranching rates. Effective Michaelis-Menten constants for chain
concentrations were evaluated using results obtained in Chapter 3, followed by expressing the
flux vGBE as a function of vGS using the constant Γ. Finally, Λ was introduced to express
reduction and debranching as a function of vdegradation.

We recall that Fig 4.15 shows the evolution of both blood glucose and glycogen (top-left panel
and top-right panel respectively). The condition of the simulations is introduced at the end of
subsection 4.3. The results from the final model introduced above is shown in blue, where the
rate-laws of the 4 enzymes (GS, GBE, GP and GDE) were modified to account for glycogen
chains as substrate. The overall behavior is respected, as compared with the ODE model
and the comparable model. However, a few differences are revealed, along with interesting
observations labeled with numbers from 1 to 6 in Fig 4.15.

95



Chapter 4 The interplay between glycogen structure and glycogen metabolism

Figure 4.15: Evolution of glucose and glycogen content during a short glucose intake
period for different models. Top-left: Evolution of glucose. The blood glu-
cose increases until the glucose intake stops. It decrease drastically and stabilised
using glycogen as a glucose source. Top-right: Evolution of glycogen. Glycogen
fixes glucose during the glucose intake period. When the intake stops, glycogen
start being degraded to provide glucose to the blood. Bottom-right: Zoom in
the first 30 min of glycogen synthesis.

Observation 1 and 5 points at the differences in glucose and glycogen level (before ≈ 20 min)
between the pure ODE model (also with the comparable model) and the final model. This
is due to the introduction of a the Kchain constant that behave the same way as a Michaelis-
Menten constant. Since now the chains are substrate for the enzymes, the start of the synthesis
of glycogen is slower (the initial glycogen granule contains only 2 chains). It is now the chains
that are limiting the reaction and not UDP-glucose. This early slow synthesis forces the system
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to accumulates glucose residues.
Observation 2: at the opposite of observation 1, from 30 min to 150 min the final model
exhibit lower glucose level. One possible explanation could come from a reduced residual
degrading activity. While the true synthesis rate is the difference between the rate of synthesis
and the one of degradation, introducing chains concentration in the rate-laws might have lower
vGP and vGP more than VGS in this early phase.
Observation 3: During glycogen degradation the level of glucose is higher with the final
model (≈ 8%). This come from the fact that the debranching reaction is now releasing directly
a glucose instead of a glucose-1-phosphate as before. This "short-cut" in the chemical reaction
pathway leads to higher glucose level.
Observation 4: A temporal shift is observed between the end of the glucose intake and the
peak of the glycogen synthesis. This is due to the hormone-response. To see an effective
change in the activities of GS and GP, the phophorilase state function γ as to be lowered, and
therefore the system has to wait a decrease in the glucose level before the degradation becomes
effective.

Observation 6: There is small discrepancy between the ODE model and the comparable
modeling the glycogen content. This is due to the Periodic-Coupling algorithm. During
synthesis, UDP-glucose is very low and is substrate for the stochastic reaction catalyzed by
GS. Even for consequent volume V0, it appears that from time to time the integer value of
[UDP-glucose]·V0 ·Na drops below 1. In this situation, the stochastic algorithm can not proceed
any GS reaction and will go to the next step. It introduces a small bias in the probabilities
which reduces the difference between the flux of synthesis and the one of the degradation,
leading to slower effective synthesis.

Figure 4.16: Evolution of the substrate chains concentrations.
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Fig.4.16 shows the evolution of substrate chain type concentration for the final model, with
the same initial condition as above. During the glucose intake period, most of the chains are
of type i = 2 (intermediate length). Few type 1 and 4 are also forming. It is because as the
synthesis occurs the number of branches increases. The newly formed branches are often of
the size of Ltransferred since this simulation is obtained with high branching activity is high
(Γ = 0.6). Since we have LGDE = Ltransferred = 3, the newly formed chain becomes directly
substrate for debranching (status i = 4). Since Lleftover = 3 as well, only GS can react on
the non-reducing end of the leftover residues, creating substrate of type i = 1. During the
synthesis c1 = c4, precisely because Ltransferred = Lleftover. Finally, during the synthesis phase,
almost no substrate for branching is observed. It is because the branching reaction has the
higher rate du to Γ = 0.6. Whenever a chain of type 3 is form by elongation, it react almost
instantly. When the glucose intake stops, degradation starts and so the chain concentrations
behaviour. Now c1 ̸= c4, because debranching act on c4 only, and c1 chains have to wait that
GDE removes all the daugther chains, so that c1 becomes c4 (most likely by transiting through
type 2). No chain 4 are observed neither during degradation. There was almost none during
synthesis, it is even more unlikely to see some during degradation.

Finally, the coupling of our glycogen structural model to a kinetic model also allows us to
visualize the 3D evolution of the granule during its different phases. A animation of glycogen
synthesis can be found at the following link: https://github.com/yvanrousset/hybrid_
glycogen_models/tree/main/animation .

Specific Kchain for the degradation

When determining suitable rate-laws for stochastic reactions, the incorporation of KGS
chain

and Kdeg
chain was deemed necessary to account for substrate chains dependency of the synthesis

and degradation. To simplify the analysis of results, it was decided to investigate the effect
of varying Kdeg

chain solely for degradation reactions. Simulations were conducted using the
same initial conditions as those in Figure 4.15 for four different values of Kdeg

chain: KGS
chain

(as previously), 1, 5, and 10. The results indicate a noticeable effect on the evolution of blood
glucose and glycogen at the end of the simulations, which range from 300-450 mM. As the
substrate for degradation (c2, c3, c4) becomes depleted, it becomes evident that degradation
efficiency decreases with an increase in Kdeg

chain.

Upon examining the experimental measurements of glycogen degradation depicted in Figure
4.11, it appears that there is a plateau towards the end of the degradation process, despite
the different simulation conditions. This observation could suggest that the efficacy of the
enzymes responsible for degradation in binding to glycogen may diminish, implying a high
value for KGS

chain. It is plausible to speculate that this could serve as a protective mechanism
against excessive degradation, which would ultimately reduce the efficiency of the subsequent
synthesis phase.
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Figure 4.17: Evolution of glycogen and glucose at the end of glycogen degradation
for different values of Kdeg

chain. Left: Glycogen is almost fully degraded.
Increasing Kdeg

chain diminish the efficiency of the degradation as substrate chains
become rare. Left: Consequently glucose production is less effective leading to a
lower blood glucose level.

4.4 Analysis of different glycogen related diseases

In this last part of this chapter, the final model is applied qualitatively to different cases of
disease. There is no pretension here to explain the ins and outs of these diseases, but to provide
a discussion, in the light of our model. For each diseases, different approaches will be provided.
This section is intended to be exploratory and non exhaustive.

4.4.1 GSD type 0: impaired Glycogen Synthase

The enzyme involved in GSD0 is Glycogen Synthase (GS). 3 scenarios will be compared where
the elongation reaction reaction rate is at 100%, 50% and 10% corresponding to what we define
as healthy, mild and severe GSD0 models. It is done by introducing a constant αGSD in the
rate-law of Eq. 4.24:

vGS
GSD = αGSD ·

c1 + c2 + c3 + c4

c1 + c2 + c3 + c4 +KGS
chain ·

(
γ · vp

GS + (1− γ) · vdp
GS

)
(4.24)

where αGSD equal 1, 0.5 and 0.1. Remarkably, the outcomes attained from the mild model
exhibit minimal deviation from the normal scenario, with almost identical levels of glycogen
synthesis in both cases. While a slightly elevated glucose level was observed during the feeding
phase, it remained within reasonable limits [Nuttall et al., 2008]. It might have been anticipated
that the total glycogen synthesized would decrease by 50% given that vGS

GSD = 0.5 · vGS
new.

However, the hormonal response was dissimilar. The rise in blood glucose levels intensified the
flux of synthesis, counteracting the effect of introducing αGSD = 0.5 However, even if this is
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Figure 4.18: Glycogen, glucose and glucose-6-phosphate levels for GSD0 models. The
pink area shows the duration of glucose intake. While the mild case exhibit the
same behaviour as the normal case, the severe model shows a reduction of glycogen
synthesis as well as abnormal glucose and glucose-6-phosphate level during feeding
phases.

not modeled, the underlying physiological mechanism of our phosphorylation state function is
that insulin is much more solicited in the present case to maintain glucose levels. Speculatively,
this could potentially result in insulin resistance over time, as previously observed in patients
[Tagliaferri et al., 2022]. In the severe model, distinct variations are observed from the normal
and mild cases. At an early stage, glycogen synthesis is impaired, as indicated in Figure 4.18-
left. Although there is a delay in its initiation, the rate of synthesis appears to be similar to that
of the normal case once initiated. However, this shift in the initiation time results in a lower
overall accumulation of glycogen. During the feeding phase, this also leads to a significantly
higher blood glucose level, as depicted in Figure 4.18-middle. Nevertheless, no hypoglycemia
were found while it is observed experimentally [Arko et al., 2020; Ozen, 2007b]. This is likely
due to the relatively low outflow rates of glucose and fructose-6-phosphate from the system,
which keeps the sum of all glucose entities (glc to glucose fixed into glycogen) almost constant.
Consequently, the accumulated glucose in the blood serves as a glucose reservoir. This finding
also explains the shift in the peak of glycogen synthesis between the severe and other cases,
as described in Figure 4.18-left. The excess blood glucose is utilized for glycogen synthesis,
which is subsequently degraded to maintain glucose homeostasis. An increase in the export
of compounds from the system would likely lead to hypoglycemia, as glucose would be less
likely to accumulate in the blood. To clarify why synthesis occurs at the same rate in the
severe case despite differences from the normal and mild cases, it is necessary to examine the
glucose-6-phosphate level. As previously stated, glucose-6-phosphate is an allosteric activator
of GS (Eq. 4.15). During the feeding phase, glucose-6-phosphate accumulates (Figure 4.18-
right), enhancing vGS

new and offsetting the effect of αGSD = 0.1. In contrast to the mild case,
which only requires enhancement by γ to regulate synthesis, the severe case necessitates strong
activation by glucose-6-phosphate.
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4.4.2 GSD type 1: impaired Glycogen 6 Phosphatase

Two forms of Glycogen Storage Disease (GSD) type 1 have been identified, namely type 1a
and type 1b. GSD type 1a is caused by a genetic mutation in the G6PC gene, resulting in im-
paired function of the glucose-6-phosphatase enzyme. This enzyme is responsible for converting
glucose-6-phosphate into glucose. On the other hand, GSD type 1b results from a mutation in
the G6PT1 gene, which encodes for the glucose-6-phosphate translocase 1 enzyme. This en-
zyme facilitates the transportation of glucose-6-phosphate from the cytosol to the endoplasmic
reticulum, where it is transformed into glucose by glucose-6-phosphatase [Parikh and Ahlawat,
2023]. The current subsection will focus on GSD1a, which is also known as Cori disease. The
investigation will examine three different scenarios in which the rate of G6PC is 100%, 50%,
and 10% (normal, mild and sever respectively), by introducing the parameter αGSD1 into the
rate-law of G6PC:

vG6P C = αGSD1 · vmax ·
[G6P]

KM + [G6P] (4.25)

Figure 4.19: Glycogen, glucose and glucose-6-phosphate levels for GSD1 models.
The pink shaded region represents the duration of glucose intake. Left: glycogen
does not differ significantly across the three models. Middle: the glucose level is
lower in the disease models, as the parameter αGSD1 decreases. The results of the
pure ODE system are represented by the dotted line. The discrepancy between
the stochastic and ODE models (represented by the brown arrow) is due to the
release of one glucose molecule during the debranching reaction, emphasizing the
importance of using a stochastic approach for this scenario. Right: When the
degradation occurs, in the severe case, glucose-6-phosphate can not be efficiently
transformed into glucose, resulting in a higher level of glucose-6-phosphate. How-
ever, the debranching process facilitates the reduction of the glucose-6-phosphate
level, which would have been higher in the ODE model (represented by the brown
arrow), where the debranching reaction is not included.
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A simulation was performed to mimic a 150-minutes period of glucose intake followed by a
300-minutes period without intake in three scenarios. The changes in glycogen, glucose, and
glucose-6-phosphate were analyzed and presented in Figure 4.19. No significant difference in
the evolution of glycogen was observed among the models. However, patients with glycogen
storage disease type 1a (GSD1a) typically exhibit glycogen accumulation [Kishnani et al.,
2014; Ozen, 2007b], which was not observed in these simulations. Nevertheless, the last phase
of glycogen degradation seems slower in the case of the disease, and repetitive glucose intakes
may lead to excess glycogen content compared to the normal case.

Interestingly, the reduced activity of glucose-6-phosphatase (G6PC) led to lower glucose levels,
as shown in Figure 4.19-middle, which is directly attributed to the enzyme’s inability to convert
glucose-6-phosphate to glucose. This was confirmed by the increase in glucose-6-phosphate
during degradation, especially in the severe case, as observed in Figure 4.19-right. The duration
of glucose levels in the range of 3-9 mM and the overall lower level in the disease case can be
considered hypoglycemia, which has also been observed experimentally [Kishnani et al., 2014;
Ozen, 2007b].

However, the differences observed between the models were less significant than if the system
had been modeled with a pure ODE system. The incorporation of the glycogen structural
model allowed for proper debranching reactions that released glucose directly, bypassing the
regular pathway from glucose-1-phosphate to glucose, as in the reduction by GP. This resulted
in higher glucose levels due to the debranching activity, which was also observed in Figure
4.19-right, where the glucose-6-phosphate levels were much lower than predicted by the ODE
model in the severe case.

An increase in the export of fructose-6-phosphate into the glycolysis pathway was also observed
in the GSD1 model. It could be speculated that an increase in lactate production, which
has been observed in GSD1 [Kishnani et al., 2014; Oster et al., 2016], may result from this
alteration.

Enhanced enzymatic activities

In order to expand the investigation, the activities of the four enzymes involved in glycogen
synthesis and degradation (GS, GBE, GP, and GDE) were examined under the same simu-
lation conditions as described previously. The time-dependent behavior of these activities is
illustrated in Figure 4.20-a and 4.20-b. Notably, the reaction activities are expressed in terms
of reactions per minute, with a conversion to mM.min−1 possibly achieved by dividing by
Na · V . For each enzyme, the number of single reactions was counted and averaged over one
minute.

Figure 4.20-a indicates that reducing the efficiency of G6PC caused an increase in all four
reaction activities. Given that glycogen concentration was unchanged across the three scenarios
(Figure 4.19-left), it may be inferred that these increases were of the same proportion for all
enzymes. Otherwise, a change in glycogen synthesis or degradation would have been observed.
Figure 4.20-b shows the individual activities of the enzymes for each scenario.
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Figure 4.20: Activities of GS, GBE, GP and GDE in glycogen storage disease 1. The
pink shaded area represents the period of glucose intake. The enzyme activities
are expressed in units of reactions per minute. Panel (a) displays the activities
of four enzymes (GS, GBE, GP, GDE) under normal, mild, and severe conditions
(αGSD1=1.0, 0.5, and 0.1, respectively). Decreased activity of G6PC results in
increased activities of these four enzymes. Panel (b) illustrates individual enzyme
activities in the three scenarios. Although no significant differences were observed
during synthesis, the degradation phase revealed significant variations in enzyme
activities.
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While no significant differences were observed during the synthesis phase, the degradation
phase revealed significant variations in enzyme activities. During synthesis, glucose is primarily
transformed into glucose-6-phosphate, rendering G6PC less active. Thus, there were no major
differences in activities observed. However, when degradation started, the effects of impaired
G6PC became apparent as the reaction became central to glycogen breakdown.

Figure 4.21: Enzyme enhancements in glycogen storage disease 1.

The justification for observing higher activity levels in all enzymes in the case of the disease is
depicted in Figure 4.21. This schematic outlines the main reactions involved during glycogen
breakdown in the normal case and with G6PC impairment (mild, severe). The arrows are
intended to give a qualitative idea of the fluxes. In cases of reduced G6PC activity, glucose
levels in the blood decrease, leading to a higher response by hormones that increase GP ac-
tivities. Subsequently, the reduction in chains generates more substrates for the debranching
reaction, thereby enhancing GDE activity. Since glucose-1-phosphate produced by GP cannot
efficiently follow the normal pathway to form glucose, it accumulates, creating more substrate
for elongation and enhancing GS activity (through it conversion to UDP-glucose). Ultimately,
this also increases the formation of substrate for branching. Glucose equivalents are cycling
between glucose fixed to glycogen, glucose-1-phosphate, and UDP-glucose, allowing for a tight
interplay between all enzymes and forming substrate for debranching (Figure 4.21-b). This
prevents the accumulation of glucose equivalents. Therefore, the rate of degradation remains
unchanged from the normal case (Figure 4.19-left), but the contribution of debranching be-
comes increasingly important as αGSD1 decreases.
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In the end, the cyclical process of glucose equivalent is expected to result in an elevation of
energy consumption due to the fact that the conversion of glucose-1-phosphate to UDP-glucose
requires UTP and releases two phosphate groups.

Glycogen structure in GSD1

With regards to the structure of the glycogen molecule, there were no discernible differences
observed between the three scenarios examined with respect to the A to B ratio, Branching
degree, and Average chain length (Figure 4.22). However, a small effect on the A:B ratio
may be observed in the case of the disease, but this would require additional simulations to
be statistically appreciated. However this would not be surprising since GDE is more active
in the case of the disease model, and is the only enzyme that specifically work on A chains,
resulting in a net dicrease of the A:B ratio. The effect would be further dilluted by the effect of
GBE (see discussion "Probalistic approach to the A:B ratio" in the article from Chapter 3).

This observation would not be unexpected given that GDE is more active in the disease model
and is the sole enzyme that specifically targets A chains, ultimately leading to a net reduction
in the A:B ratio. The impact of GBE would reduces this effect since when Lleftover = Ltransferred

it GBE act toward and A:B ratio of 1 (see discussion on "Probabilistic approach to the A:B
ratio" in Chapter 3).

Figure 4.22: Structural features of glycogen in the GSD1 models. The A:B ratio (left
panel) seems to exhibit small variation when reducing G6PC activity. The branch-
ing degree (middle panel) and the average chain length do not exhibit significant
differences.

105



Chapter 4 The interplay between glycogen structure and glycogen metabolism

4.4.3 GSD type 2 and 3: impaired Glycogen Debranching Enzyme

In this section, we will discuss how our model can be applied to analyze GSD type 2 (Pompe
disease) and GSD type 3 (Cori disease) in the context of reduced activity and impaired hydrol-
ysis of the branching enzyme. Although these diseases have different genes involved, they both
code for a branching enzyme. For simplicity, we will combine the discussion of both diseases
since our model does not distinguish between the lysosome and cytosol locations.

Reduced activity

To analyze the effect of reduced activity of the branching enzyme, we first tested the case
where we simply decreased the activity of GDE. This was achieved by introducing αGSD2,3 in
the determination of ΛGSD2,3 (see eq. 4.21). It now reads:

ΛGSD2,3 = c2 + c3 + αGSD2,3 · (1− c4)
c2 + c3 + c4

(4.26)

When αGSD2,3 = 1 we recovered the same behaviour as before where the probability ΛGSD2,3

is just the ratio between substrate for GP to substrate for degradation (GP + GDE). However
when αGSD2,3 = 0, the probability ΛGSD2,3 becomes 1, and the model can only reduced chains
without debranching. We tested 3 different scenarios where αGSD2,3 was set to 1, 0.5, and 0.1.
We found no significant differences in the rate of glycogen synthesis and degradation or in the
concentrations of other metabolites.

Impaired hydrolysis

The debranching reaction catalyzed by GDE involves two enzymatic processes. The first is
a transferase activity where GDE cleaves the glycogen chain up to one glucose and transfers
it to another chain. The second process is the hydrolysis of the remaining α − 1, 6 glucosidic
bond releasing the glucose unit. In this paragraph, we focus on modeling the impairment
of the hydrolysis activity, which would be the case in a genetic mutation affecting only the
corresponding catalytic site of the enzyme.

In such a scenario, a chain would be left with a single glucose residue linked in α− 1, 6. This
remaining glucose blocks the structure from further degradation since GP can only reduce a
chain that is longer than DP4. To model this, we introduced a probability pfail that during a
debranching reaction, the hydrolysis part fails. We simulated the cases where pfail was set to
0.1 and 0.5. Figure 4.23 shows the concentration of glycogen and glucose in these two scenarios,
as well as in the normal case.

The granule reaches a blocked state (known as limit dextrin in in vitro experiment), in both
cases of hydrolysis impairment (Fig. 4.23-top-left), where all the A chains have been missed-
unbranched and the remaining structure consists of only B chains, and A chains in the form of
a single glucose residue that cannot enter any other reactions. At this point, degradation stops,
and the granule is frozen, resulting in an inability to produce glucose. This frozen state leads
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Figure 4.23: Concentration of glycogen and glucose with branching and debranching
fluxes with GDE hydrolysis activity impaired.

to a rapid decrease in blood glucose when reached (Fig. 4.23-top-right), which is consistent
with the observed glucose accumulation in GSD type 2 and 3.

Interestingly, both the branching and debranching activities appear to increase with the in-
troduction of this hydrolysis failure. The reason for this phenomenon is not entirely clear
and requires further investigation. However, one possible explanation is that the impairment
initially decreases the substrate for glycogen phosphorylase by blocking some chains. To com-
pensate, the system attempts to unbranch even more. This unbranching, even when hydrolysis
fails, elongates some chains and provides more substrate for branching, which increases GBE
activity.
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To further observe glycogen accumulation in this model, we simulate three periods of 50 minutes
of glucose influx, each followed by 100min of without. The results are presented in.

This small naive model without hydrolysis failure does not allows observation of glycogen
accumulation

4.4.4 GSD type 4 and ADPB: impaired Glycogen Branching Enzyme

Reduced activities

In an initial attempt to replicate GSD type 4, changes in Γ were introduced. The values of Γ
used for comparison were 0.6 (normal case), which was derived from the best fit as described
in Chapter 3, as well as 5.0, 10.0, and 30.0. As previously done for other GSD, a simulation
was conducted for a period of 450 minutes, with glucose intake occurring during the first
150 minutes. The resulting concentrations for glycogen, glucose and glucose-6-phosphate are
illustrated in Figure 4.24.

Figure 4.24: Glycogen, glucose, and glucose-6-phosphate levels in GSD4 model. Left:
Glycogen early synthesis appears slower when Γ increases, as GS has less substrate
due to GBE low activity.. Middle: Early glucose levels rise when Γ increases,
as glycogen synthesis is slowed down. Right: Early glucose-6-phosphate levels
increase, enhancing the synthesis of glycogen.

There is a noticeable decrease in the rate of initiation of glycogen synthesis as Γ increases,
particularly when Γ ≥ 5. This is due to the fact that the reduced branching caused by
lower values of Γ leads to a deceleration in the interplay between glycogen synthase (GS)
and glycogen branching enzyme (GBE), which in subsequently reduces the formation of new
glycogen chains. This trend is further observed towards the end of the simulation period,
where degradation becomes more challenging because of the reduced number of chains within
the glycogen granule, leading to slower activity of glycogen phosphorylase (GP) and glycogen
debranching enzyme (GDE). However, there is a point at which the number of glycogen chains
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is sufficient to support proper synthesis and degradation. This is illustrated in the black
curves (corresponding to Γ = 30) which eventually catch up to the synthesis rate observed
in the normal case. Due to the aforementioned lack of chains in the glycogen granule and
the subsequent impaired synthesis results in the early accumulation of glucose and glucose-6-
phosphate (Figure 4.24-middle and -right), which quickly vanish when chains number become
sufficient.

We also looked at some structural features during these simulations. The results show that

Figure 4.25: Structural features of glycogen in the naive GSD4 models (Γ =
0.6, 5, 10, 30). The A:B ratio (left panel) does show significant differences in all
four scenarios. The branching degree (middle panel) and the average chain length
(right panel) however, differs consequently.

the A to B ratio remains unchanged in all three cases, but there are significant differences in
branching degree and average chain length (Fig. 4.25). As expected, when Γ increases, the
elongation process is much more efficient than branching, resulting in longer chains and lower
branching degrees. During degradation, the average chain length decreases as GP reduces the
chains in all scenarios. However, after 300 minutes, the chain length seems to increase again,
leading to a decrease in the branching degree.

One possible interpretation is due to the fact that the initial average chain length is higher
at the beginning of the synthesis phase (around 45 minutes) than at the end of the synthesis
phase (150 minutes), indicating that the first generation of chains might be longer. These
chains can still grow through their non-reducing end but are prevented from reduction until
the debranching reaction removes their α − 1, 6 bonds, forming the granule backbone. The
increases observed at the end of the degradation (300-450 minutes) in Fig. 4.25-right are likely
the contribution of these first-generation branches to the average chain length, as smaller ones
have been removed.
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The branching degree found here and the average chain length is more something one can
observe in amylopectin.

Double helices formation

Long linear chains have a tendency to form double helices with neighboring chains, as observed
in starch [Hejazi et al., 2008]. It is important to consider this mechanism, especially given that
individuals with GSD4 exhibit insoluble glycogen [Sullivan et al., 2019]. Indeed, the formation
of double helices can potentially lead to a local crystalline structure, making glycogen less
soluble. To model this, we introduced the possibility for our chain description to become
frozen when it becomes too long. The probability distribution for this frozen state follows
logistic growth as follows:

P(DP ) = 1
1 + exp−(DP −20) (4.27)

Thus, the probability of a chain becoming frozen increases with the degree of polymerization
(DP) of the chain and becomes greater than 0.5 for DP greater than 20.

When a chain is frozen, it prevents all enzymes from using it as a substrate. The introduction
of this freezing state considerably changes the previous results for glycogen synthesis (Figure
4.26). The glycogen synthesis is significantly more impaired with the introduction of this
frozen state, and therefore the level of glucose increases considerably compared to the approach
without it. In both scenarios, the granule eventually reaches a completely frozen state (all
chains are blocked), preventing further reactions from occurring. However, counterintuitively,
the simulation with the higher Γ exhibits a higher glycogen content. This is potentially a bias
in the timing of updating the status of the chains (frozen or not frozen), which depends on the
activities of the reaction, and would require further investigation.

4.4.5 Outlooks

One recurring observation when applying the reduced model of glycogen metabolism to var-
ious genetic conditions is that the process is excessively regulated by the hormones-response
function, denoted by γ. When defects are introduced in the enzymatic process that would
intuitively reduce glycogen synthesis or degradation, this regulatory mechanism compensates.
This can be partially explained by the fact that glycogen is the sole source of glucose produc-
tion or utilization in the model. As a result, blood glucose levels, and thus glucose intake and
output, indirectly regulate the rate of glycogen synthesis and degradation, instead of the other
way around. This possibility is not necessarily incorrect, and it echoes a question posed in a
previous work [Palm et al., 2012] on whether glycogen synthase regulates glycogen synthesis
or if it’s the glucose intake that does so.
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Figure 4.26: Glycogen and glucose concentration in a GSD4 model with and without
double helix formation. The blue lines represent previous results obtained
under normal conditions. The red line shows the values obtained when Γ = 5,
and the dark red line shows the concentration when Γ = 10.

In the following section, we will briefly examine mechanisms that could alter glycogen synthesis
and degradation, potentially weakening the significance of hormonal regulation.

Insulin resistance

Insulin resistance (IR) is a condition where cells become less sensitive to insulin, resulting in
decreased activation of enzymes involved in glycogen synthesis. This leads to lower glycogen
synthesis and higher blood glucose levels. To model insulin resistance in our study, we revised
the γ function (Eq. 4.1) as follows:

γIR = max
( 1

1 + exp (Glc−Glc0) , 0.5
)
. (4.28)

For high glucose levels, γIR cannot decrease below 0.5, which impairs the activation of the
enzymes responsible for glycogen synthesis. We conducted simulations using this function for
both normal and GSD0 models (Fig. 4.27).

Figure 4.27-left column show the changes in glycogen, glucose, and glucose-6-phosphate con-
centrations during the synthesis and degradation phases in the non-GSD0 model (αGSD0 = 1).
The pink line represents the results under insulin resistance, and the black line represents the
normal case without insulin resistance. As seen, the rates of synthesis and degradation have
already changed, resulting in hyperglycemia and an increase in glucose-6-phosphate levels.

111



Chapter 4 The interplay between glycogen structure and glycogen metabolism

Figure 4.27: Glycogen, glucose and glucose-6-phosphate levels for GSD0 models with
and without insulin resistance. The pink, red and dark red curves are GSD0
model with insulin resistance (IR). The black geen and dark green show the same
model without insulin resitance. Left to right: increasing the severity of the
disease. Top to bottom: Glycogen, glucose and glucose-6-phosphate levels.
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Insulin resistance in the GSD0 model (αGSD0 = 0.5 and 0.1) had an even more pronounced
effect than that observed in subsection 4.4.1. The red and dark red lines show the effects
of insulin resistance, while the green and dark green lines represent the normal case (Fig
4.27-midle and -right columns). In this scenario, hormones are unable to compensate for the
impairment of glycogen synthase activity.

Toward addition of glycolysis

To accurately assess the true impact of glycogen breakdown on glucose production, it’s essential
to take into account alternative sources of glucose. To achieve this, it’s necessary to augment the
current model with reactions that encompass a reversible glycolysis pathway. In pathological
situations, incorporating these reactions will prevent the system from solely relying on glycogen
synthesis and breakdown to maintain glucose levels, and instead prioritize other pathways.
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Chapter 5

Mini-chapter: About β and α glycogen
granule

5.1 Opinion: The fractal view of glycogen

In the introduction, it was mentioned that models of glycogen structure were originally devel-
oped to explain the observed structure resulting from glycogen digestion in enzyme cocktail
experiments, with particular emphasis on the A:B ratio. Whelan proposed a suitable structure
to explain these observations as well as other enzymatic observations. However, Whelan was
cautious when introducing the model [Gunja-Smith et al., 1970b], stating that:

" In explanation of the combined observations we offer the structure shown in fig.
4. This is intended only to express certain concepts and is not to be regarded
as precisely defining glycogen structure. In this model half the B chains carry an
average of 2 A chains, while the other B chains each carry 2 B chains. The model
has been drawn in its most symmetrical form but we would envisage variations from
this symmetry in the actual polymer, both in regard to chain length and average
degree of substitution of the chains."

and that the actual structure is more complex and less regular than the model suggests, antic-
ipating potential misinterpretations.

Despite this caution, the model gained popularity and was taken as exact in its pure symmetric
form by Goldsmith in 1981 [Goldsmith et al., 1982], who introduced the notion of regular tiers.
It was supported apparently by [Thornell, 1974] observation of glycogen particle being less
dense at the center. Later, Melendez explored the idea of glycogen potentially being the first
known real biological fractal structure. While the paper introduced clever optimality concepts,
it had the effect of further popularizing the fractal view of glycogen.

However, numerous articles have since presented arguments or results that contradict this
fractal view. Despite this, the belief in the fractal view of glycogen persists and continues to
be spread in many glycogen-related papers today. While the word "fractal" has diminished in
usage, many papers still use the term "tiers". This word is just a derived way of describing
glycogen as a fractal structure. In the article by Goldsmith, the fractal pattern leads to different
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layers of density (tiers), which finally reach the last tier (12th) with a limit density where the
space is completely filled.

The limit density and corresponding last tier have also provided support for the idea that
glycogen has a limited size and cannot grow indefinitely, as this mechanism prevents enzymes
from further synthesizing the granule due to the steric hindrance effect. This mechanism has
been shown in some dendrimeric structures exhibiting limited growth do to steric hindrance
[Fréchet, 2003].

The persistence of the fractal view within the glycogen community has the potential to over-
shadow other interesting mechanisms or research questions related to glycogen structure.

In the following, different arguments against this fractal view of glycogen are presented.

The hypothetical symmetry of the glycogen granule would be highly sensitive to even small
variations in the position of its branches, which can lead to deviation from a fractal structure.
As the granule grows, these defects are spread to the next chains, causing any regular pat-
tern to disappear. It is important to note that this model is depicted in two dimensions, so
small variations from a perfectly symmetrical structure may have even more impact in three
dimensions.

The average radius of glycogen granules typically falls between 10 and 15 nm [Drochmans, 1962;
Sullivan et al., 2014]. When a granule with a radius of 13 nm is filled with a fractal pattern,
it would have 6.8 tiers and a total of 111 chains, containing 2800 glucose units, resulting in a
molecular mass of M = 5 · 105. This value is 20 times lower than what is reported for larger
granules. Despite being a medium-sized granule, a glycogen granule with only 2800 glucose
units, with half of them in the last tier, can be considered almost empty. Gunja-Smith pointed
out that the hypothetical 13th tier would not be possible as it would exceed the density of
closely packed single helices. The volume between R11 and R12 can be calculated as follows:

δV = V12 − V11 = 4
3π(R12

3 −R11
3)

and the number of residues in the layer between R11 and R12 is given by

δN = 2t−1

When packed in helices, one residue occupies 0.318 cubic nanometers. Therefore, the volume
occupancy in the 12th tier can be expressed as:

ρ∗ = 0.318
(
δN

δV

)
⇒ ρ∗ = 0.90 .

Performing the same calculation for a glycogen with a radius of 13 nm, the volume occupancy
is found to be ρ∗ = 0.10. This means that for a typical glycogen molecule, assuming this tiered
model, the occupancy at the surface is only about 10% of the volume.

Another argument can be made by questioning the presence of the dense hypothetical outer
layer from the fractal view. If it is assumed to exist, it raises the question of why not a single
fluctuation would have resulted in chains that are slightly longer than the others, extending
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beyond the layer, and becoming a seed for another synthesis process, similar to the initial
chains initiated by glycogenin.

Besford et al., 2015 found that small angle X-ray scattering experiments on β glycogen are
inconsistent with regular branching has proposed in the fractal model introduced by Goldsmith
et al., 1982 and further extended, as the tiered model by Meléndez-Hevia et al., 1993. In a
recent study, Kim and Duhamel, 2023 addressed the radial density of glycogen. They found
that the density is higher at the center and decreases only at the outermost part of the granule.
This finding invalidates the fractal view of glycogen.

It would be very welcome if research in glycogen refrains from using terms such as "tiered
structure," "highly regular," or "fractal" when referring to the structure of glycogen. The use
of such terms may create the false impression that glycogen degradation occurs layer by layer
and that glycogen granules cannot exceed a certain size limit, typically a radius of 21 nm. This
view may obscure potentially important scientific questions related to glycogen structure and
metabolism.

With a non fractal glycogen, the question of what stops β glycogen granules to grow beyond
observed size remains.

5.2 A toy model system for β and α interactions

In this section we present a simple model to discuss β and α granule interaction. We recall
that beta granule are single glycogen granule that we have seen all along this thesis. α granule,
on the opposite are aggregate of β granule and are found in the liver.

It is believed that α granules [Besford et al., 2015] are a way to regulate glycogen synthesis
and degradation by reducing the surface to volume ratio. When β granules aggregate, the
molecular weight of the aggregates is the same as the sum of all individual weights of the beta
granules that constitute it. However the surface is not the sum of all individuals.

In what follows, we approximate α and β granules as spheres and that we get the surface of
the aggregates from its conserved volumes. If two β granules, 1 and 2, aggregates into an α

granule, one can write:

Vβ,1 + Vβ,2 = Vα (5.1)

where

Sα = (4π)1/3 ·
(
3 · (Vβ,1 + Vβ,2)

)2/3
, (5.2)

with:

Sα < Sβ,1 + Sβ,2. (5.3)

In a naive approach we will assume that the rate of the synthesis and degradation follows a
mass-action kinetic, and that the enzyme works at the glycogen surface. We further assume
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that the synthesis and degradation processes are described by the rates of glycogen synthase
and glycogen phosphorylase respectively.

Consider a system in its initial state with Nglc glucose molecules, Nβ β granules, and Nα = 0 α
aggregates. The β granules in the initial state are composed of only 10 glucose units and can be
viewed as the Glycogenin cores of a granule (refer to Chapter 2 for more information). As time
passes, the β granules will react with another β granule to form α aggregates. Subsequently,
these α aggregates can release a β granule.

With these assumptions, the corresponding reactions and system can be described as follows,
where v represents the reaction rate:

vGS(t) = kGS ·
(Nβ(t)∑

i=1
Si(t) +

Nα(t)∑
i=1

Si(t)
)

(5.4)

vGP (t) = kGP ·
(Nβ(t)∑

i=1
Si(t) +

Nα(t)∑
i=1

Si(t)
)

(5.5)

vβ→α(t) = kβ→α ·Nβ(t) ·
(
Nβ(t) +Nα(t)

)
(5.6)

vα→β(t) = kα→β ·Nα(t) (5.7)

The elongation reaction catalyzed by GS occurs at the surface of granules, and its rate is
proportional to the kinetic rate constant, kGS , multiplied by the sum of all accessible surfaces
of both beta and alpha granules. Reduction by GP follows the same kinetics. To form an alpha
aggregate, a beta granule must react with another beta granule or directly with an already
formed alpha aggregate. The release of a beta granule from a cluster is proportional to the
number of clusters. The system is solved stochastically, and each granule has a unique identifier
that allows for a detailed description of the compositions of different clusters.

How the surface affects the kinetics

In Figure 5.1, we observe the total glucose fixed into glycogen under different scenarios. When
there is no aggregation (i.e., kβ→α = 0), an increase in the number of granules maximizes the
surface area, resulting in faster synthesis, as shown in the top-left panel.

However, when kβ→α > 0, the system’s total surface area decreases, which is equivalent to a
decrease in the number of beta granules, leading to slower synthesis (as described by equation
5.3). The time courses are mixed due to variability in the number of clusters formed.

The average radius at the end of the simulation differs, as the same amount of glucose is
incorporated into all scenarios, distributed among the different granules. A system with more
granules will have smaller granules.
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Figure 5.1: Total glucose fixed and average radius of β granules with and without
aggregation. Top panels: without aggregation. Bottom panels: with aggre-
gation. When α granules are formed, it reduces the rate of synthesis.

Interestingly, the granule radius increases linearly with time. If the rate of the reaction were to
be constant, one could have expect the volume V to increase linearly, as each glucose molecules
fixed on the system contribute to a small δv. Therefore one have:

dV

dt
= cst,

which gives:

r2 · dr
dt

= cst

and thus,

dr

dt
∝ r−2. (5.8)

But here the rate vGS is proportional to the surface S, therefore one can write:

r2 dr

dt
∝ S ⇒ dr

dt
∝ r2 · r−2
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and thus:

⇒ dr

dt
= cst (5.9)

It could have been suggested that the limitation in observed glycogen could be due to equation
(5.8), requiring a prolonged feeding phase to observe a significant increase in the radius profile
distribution. However, with the rate-laws depicted above, which lead to a radius increasing
proportionally with time, this is not a possible explanation.

In Chapter 4, section 4.2, the experimental data on glycogen synthesis in humans showed a
linear behavior in time, which differs from the behavior described in the previous paragraph.
The relation between surface and synthesis rate of a granule is observed on a single or small
number of glycogen granules, as opposed to the larger number of β granules in a cell. The
aggregation of a large number of β granules may reduce the slope of glycogen accumulation,
resulting in a more linear experimental observation.

Further investigation of this system could lead to interesting results. For instance, it could
be interesting to characterize the effect of glycogen synthesis and degradation in diabetic in-
dividuals who maintain less easily glycogen in the form of α aggregates [Besford et al., 2015;
Sullivan et al., 2014]. Increasing vα→β(t) could represent this effect. It is also believed that
hormones regulate α and β granule interaction, where low phosphorylation results in aggre-
gation [Besford et al., 2015]. The model could potentially be incorporated into the metabolic
model of glycogen introduced in Chapter 4, which contains the phosphorylation state function
γ.
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Chapter 6

Conclusion

6.1 Main Results

A three-dimensional realistic model of glycogen

Since the 1950s, experimental investigations have provided valuable insight into the structure
of glycogen. However, few numerical and modeling approaches have been used to complement
these experiments. While in vitro and in vivo experiments offer data on glycogen structure,
interpretation can be challenging. In contrast, numerical procedures, despite being based on
assumptions, can unravel this complexity and offer explanations, discussions, and predictions.

This work presents a detailed 3D model of glycogen structure. The geometry used to describe
the chains is inspired by self-avoiding polymer models and is parametrized using experimental
measurements of how glucose assembles in helical structures within glycogen linear chains. In
this model, glucose units are represented as hard spheres that fill the 3D space, preventing
newly formed chains from occupying the same position. We introduce rules for the enzymes
involved in the synthesis and degradation of glycogen, with particular focus on the branching
enzyme mechanism, which requires more complex rules due to its nature.

We also employ a stochastic algorithm to track single reaction events, enabling us to make
corresponding structural changes. In a first qualitative study, we investigate the effect of the
elongation to branching rate ratio (Γ) and observe how the granule varies depending on this
ratio. This highlights the potential of such a model in tracking various structural properties
of glycogen, such as chain length distribution, branching degree, A to B ratio, radius, and
density.

Furthermore, we observe how sensitive the structure of glycogen is to the branching mechanism
and, more precisely, to the chain lengths involved in the branching process. We show that the
branching mechanism, along with the elongation to branching rate, are the main contributors
to the shape of the chain length distribution in glycogen. One particularly striking result is
the formation of multi-modal chain length distributions when the branching mechanism favors
spacing between two consecutive sister chains, and more generally when the minimal lengths
involved in the mechanism are long.
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We later used experimentally measured chain length distributions as a signature of the branch-
ing mechanism. By testing various branching scenarios, we concluded that the branching
process is likely more flexible than previously reported in the literature, in terms of substrate
specificity constraints. This method can be used to characterize differences in glycogen branch-
ing enzyme among different organisms, as different chain length distributions are observed.

We used the parameters of the model that were found to reproduce the chain length distri-
bution in mice data to predict other structural features of glycogen. We found that all other
structural properties were in good agreement with experimental data, despite the model being
parameterized only for the branching mechanism.

One of the properties we studied was the A to B ratio, which characterizes the proportion of
chains without a daughter (A chains, only branched through their reducing end) to the chains
that have at least one daughter. We provided a probabilistic explanation why this ratio tends
to one when the branching reaction transfers, on average, the same chain length as it lets on the
mother chain. When this symmetry is broken, different A:B ratios can be obtained, providing
an elegant explanation for the differences in this ratio observed in starch.

In addition, our model also accurately predicts granule size and glycogen radial density profile.
Our model is in good agreement with a recent study on glycogen density, which contradicts
the fractal view of glycogen, in which the density exponentially increases with radius.

The interplay between glycogen structure and glycogen metabolism

The primary objective behind developing the glycogen structural model was to investigate the
mutual relationship between glycogen structure and metabolism. Specifically, the aim was
to understand how glycogen structure impacts glycogen metabolism, and vice versa. The 3D
structural model involves only four stochastic reactions (GS, GBE, GP and GDE), which could
allows a proper investigation of a small system composed by these four enzymes, glycogen and
glucose equivalent. However such a model would become rapidly limited as it would not catch
the complexity and potential regulatory mechanisms involved in glycogen metabolism. The
ideal goal being to be able to integrate the our structural model into a realistic glycogen
metabolic model.

As the number of reaction increases, a pure stochastic approache becomes rapidly computation-
ally expensive, where solving ordinary differential equations are way more efficient at handling
even intermediate size system. Therefore, we aimed to incorporate our stochastic 3D structural
model into an ODE system. Some existing stochastic approaches (e.g Tau-leaping and Slow-
scal stochastic simulation algorithm) have been introduced to reduce the computational time
of the classical Gillespie algorithm, but are not applicable in our case, in their actual forms.
The main reason is that, in our system, certain reactions must be modeled purely stochastically
throughout the simulation, regardless of their rate.

Therefore, we developed our own in-house stochastic algorithm, called the Periodic-coupling
algorithm, to incorporate our stochastic structural glycogen model into an ordinary differen-
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tial system. This algorithm consists of two modules, one stochastic and one deterministic,
which communicate and synchronize their respective changes. We showed that the algorithm
converged when the communication time is small enough. The value of this communication
time is determined empirically by comparing the result values obtained to the results in a pure
ODE system, for equivalents system. We could have also approached the problem by mod-
eling all reactions in a classical stochastic manner, but we show that our model surpasses a
classical Gillespie approach, especially for large systems. However, we still need to investigate
a theoretical approach to determine the maximum communication time that guarantees the
convergence. With our newly developed algorithm, we were able to incorporate our stochastic
structural glycogen model into an ordinary differential system.

Our reduced glycogen metabolism kinetic model draws significant inspiration from König et
al’s work. Although we retained several reactions and their corresponding rate-laws, we made
numerous modifications to suit our needs. The resulting model comprises 13 reactions and
11 metabolites, with dynamic hormonal regulation based on blood glucose levels, as well as
allosteric regulation of glucose-6-phosphate. The model can simulate periods of glucose intake
and constant export. During the intake phase, we observed tightly controlled glycogen syn-
thesis, mediated by hormones to maintain stable blood glucose levels. Similarly, when glucose
intake ceases, hormonal functions fine-tune the rate of degradation to ensure glucose home-
ostasis. Furthermore, we investigated how the system behaves in the absence of hormonal
regulation, as well as in cases of insulin or glucagon resistance. These scenarios result in either
extremely high or low glucose levels, respectively.

Next, we integrated our reduced glycogen metabolism model with our stochastic structural
glycogen model using our periodic-coupling algorithm. However, to achieve this, we needed
to revisit some of the rate laws adapted from König’s model to make them dependent on
the glycogen chains. Each enzyme involved in glycogen synthesis and degradation has now
a unique combination of substrate chain types. The resulting complete model allows us to
explore the interplay between glycogen structure and metabolism in detail, as well as catching
the effect of the debranching reaction on the kinetic model. One interesting observation is that
the debranching reaction contributes to the blood glucose level (≈ 8%).

We presented an exploratory discussion on glycogen storage diseases, outlining simple models
to understand them. In GSD0, we noticed impairment in glycogen synthesis, resulting in high
glucose levels during the synthesis phase, consistent with the observed physiological phenotypes
in this disease. In GSD1, we examined the role of the debranching reaction in regulating blood
glucose levels. As the disease severity increases, this contribution becomes more significant.
Examining the activities of the four enzymes involved in glycogen breakdown and synthesis (GS,
GBE, GP, and GDE), we found a marked increase in their activities during the degradation
phase. This increase is necessary for maintaining glucose homeostasis, resulting in glucose
cycling around glycogen, with glucose being fixed and released. We also observed that in
GSD1, the A to B ratio is likely higher during degradation.

In GSD2 and GSD3, we simulated hydrolysis failure, leading to glycogen accumulation and
an inability to maintain glucose homeostasis for an extended period. Surprisingly, we found
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that GBE and GDE are more active in these cases. In GSD4, we observed a shift in the early
phase of glycogen synthesis, with inefficient branching enzyme slowing down the process. As a
result, blood glucose levels increase shortly after synthesis begins and can not be maintained
for as long as in the normal case. Structurally, GSD4 appears to have the same A:B ratio as
in the normal case, but with longer branches and lower branching degree, which is a logical
consequence of the slower synthesis.

Our model is highly regulated by hormones and glucose-6-phosphate levels. During the fasting
phase, glycogen is the sole source of glucose, and any deficiencies are compensated for through
positive regulation to maintain glucose homeostasis. To address this, we can either reduce
the impact of hormones on the rate-law or introduce another glucose source such as reverse
glycolysis. In order to test this, we allowed for the import of fructose-6-phosphate in a simple
manner. Our observations indicated that when glycogen is no longer the sole source of glucose,
the impact of each disease on glycogen synthesis is much more significant. Finally, we examined
a case of insulin resistance in GSD0, and found that glycogen synthesis was barely able to
occur.

β and α granules

We discussed the concept of a fractal glycogen and its prevalence in literature despite exper-
imental evidence against it. While Whelan’s original model was later interpreted in a more
symmetrical form and widely propagated, there is now evidence and arguments against this
view. Nevertheless, remains of this idea persist in the literature and may misguide research on
glycogen. We reviewed some arguments contradicting this view and provided some others.

The fractal hypothesis elegantly explains why glycogen beta granules should not grow in-
definitely and instead reach a maximum density at a 21 nm radius, which inhibits enzyme
elongation of glycogen chains. However, given that glycogen is likely not fractal and that den-
sity is probably uniform, we sought an alternative explanation for why larger beta granules
aren’t observed in nature. To this end, we developed a toy model in which beta granules aggre-
gate into alpha granules, with synthesis rate proportional to glycogen surface area. Our model
shows how aggregation can slow down synthesis by minimizing the surface-to-volume ratio.
However, although glucose addition contribute less importantly to the radius for larger radii,
the radius exhibit a linear dependency with time. A potential explanation in which one would
require a prolonged period of glycogen synthesis to observe beta granules with radii greater
than 30 nm is not observed it the model we proposed.
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6.2 Future Work

Possible improvement on the glycogen structural model

Our current coarse-grained structural model for glycogen efficiently reproduces its structural
properties, but it does not adequately consider the effects of steric hindrance on the dynamics
of the reactions involved. We only account for steric hindrance by rejecting reactions that
try to place glucose monomers in already occupied spaces, but this does not accurately reflect
the volume exclusion that enzymes would experience in reality. In our model, enzymes tend
to favor less dense regions, which are usually located on the external part of the granule,
solely because reactions in denser regions are rejected a posteriori. To improve the accuracy
of our model, we could prevent the enzymes from accessing chains in regions with too high
density, according to their size. However, if we consider the volume exclusion of the enzyme,
it would be impossible for them to react if a single glucose overlaps with their volume. To
address this issue, we could incorporate a maximal density for which the enzyme is prevented
from reacting, which would decrease the number of accessible chains and potentially alter the
dynamic behavior of the system.

Additionally, our glycogen model assumes that branches are arranged in a helical structure.
While this is the most stable configuration for single chains, interactions between chains could
lead to variations in the dihedral angles forming α − 1, 4 bonds. To improve the accuracy of
our model, we could randomly draw dihedral angles from a Ramachandran energy map, which
provides the energy profiles of the two angles for a pair of glucose molecules. We could extend
such a model to different types of polysaccharides and consider not only α− 1, 4 and α− 1, 6
linkages.

We could also investigate the generalization of the model to a generic dendrimer structure and
study some physical properties of such a model. Furthermore, we suspect that the entropy
of configuration may play an important role in the chain length distribution of the structure.
To investigate this, a simpler version of the model where branching is fully random could help
us determine the contribution of the combinatory effect compared to the enzyme mechanistic
contribution.

Investigation glycogen synthesis under other branching scenarios

Despite an already detailed analysis of the branching enzyme mechanism, it could actually be
more complex. Recent study have found that GBE is potentially able to hydrolyse a chain to
form preferred substrate, releasing a small chain in the system. Modelling this process could
introduce variation in the chain length distribution analysis.
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A theoretical approach to the coupling algorithm

Our periodic-coupling algorithm has been effective and more efficient than a full stochastic
method. However, there is significant scope for improvement in achieving greater optimality.
One example of sub-optimality in our algorithm is due to the constant frequency at which the
stochastic and deterministic module communicates. This means that during steady-state of
a system, the communication time remains the same as during a transient regimes where the
system variations are higher. To address this issue, we could extend the communication time
during periods of low activity to improve efficiency, and reduce it when strong variations appear.
To achieve this goal, a more theoretical approach is required, and one potential strategy would
be to incorporate a communication time that is dependent on the system’s variation.

Glycogen metabolism

Our current reduced glycogen model has shown promising results in capturing complex regu-
latory mechanisms and exhibiting interesting behaviors under different conditions. However,
it has some limitations, as it only considers glycogen degradation as the source of glucose
production. Therefore, incorporating a more detailed model that includes both glycolysis and
reverse glycolysis pathways would enable us to have a second source of glucose production,
allowing for a better characterization of disease phenotype. Additionally, the inclusion of the
TCA cycle could provide further insight into how energy is managed in disease cases.

Although the glucose influx and outflux rates have been adjusted to match observed rates
of glycogen synthesis and degradation, it is essential to incorporate data on glucose intakes
and the relative contributions of glycolysis and glycogenolysis to glucose homeostasis into the
model. Furthermore, other regulatory mechanisms, such as the role of carbohydrate-responsive
element-binding protein (ChREBP), a transcription factor that plays a crucial role in insulin
sensitivity, should also be incorporated.
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