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Abstract

This thesis deals with algebraic properties of profinite groups. It is divided into
two parts, corresponding to two distinct topics.The first part is devoted to proving
the finite axiomatizability of the rank and the dimension of pro-π groups, while
the second part is about the unique product property for pro-p groups.

Recently, Nies, Segal and Tent investigated finite axiomatizability in the realm
of profinite groups. They prove that the rank of a p-adic analytic pro-p group is
finitely axiomatizable up to an error term. It is therefore natural to ask whether
the rank of a pro-p group can be completely determined by a single first-order
sentence. Here we give a positive answer to this question. More generally, given
a finite set of primes π, we consider the class of pro-π groups and we prove that
the rank of a pro-π group, as well as the ranks and dimensions of its Sylow
pro-p subgroups, are finitely axiomatizable in the first-order language of groups.
Moreover, we show that this result is optimal in the class of profinite groups. The
result is first proved for the profinite groups in the class Cπ of pronilpotent groups
whose order is divisible only by primes in π and it is subsequently extended to
pro-π groups. Its proof is based on group-theoretic results that are of independent
interest.

The second part of the thesis concerns the unique product property for pro-p
groups. A group G has the unique product property, or equivalently G is a
unique product group, if, given two non-empty, finite subsets A and B of G,
there always exists at least one element g of G that can be written in a unique
way as a product g = ab with a ∈ A and b ∈ B. The unique product property
was introduced in 1964 by Rudin and Schneider in connection with Kaplansky’s
conjecture on zero divisors in group rings. It is indeed not difficult to show that
a unique product group satisfies this conjecture. Recently, Craig and Linnell
conjectured that uniform pro-p groups possess the unique product property. By
extending one of their results we prove that the conjecture holds true for virtually
soluble saturable pro-p groups. A well-known property that is stronger than the
unique product property is local indicability. A group is locally indicable if each of
its non-trivial finitely generated subgroups has infinite abelianisation. We start
to study local indicability for soluble profinite groups, producing some results
that relate being locally indicable to a topological version of local indicability.
Another property related to local indicability and the unique product property is
orderability. Indeed, one can show that a bi-orderable group is locally indicable.
We give an elementary proof of the fact that insoluble pro-p groups of finite rank
are not bi-orderable and we adapt one of the proofs that RAAGs are bi-orderable
to show that also pro-p completions of RAAGs are bi-orderable, hence locally
indicable.
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Introduction

This thesis is about algebraic properties of profinite groups. Profinite groups are
topological groups but it is natural to ask which purely algebraic properties they
possess when considered as abstract groups, forgetting their topology. A ground-
breaking result in this direction is the strong completeness theorem by Nikolov
and Segal, that states that (topologically) finitely generated profinite groups are
strongly complete, i.e., their open subgroups coincide with those of finite index.
In other words, the topology of a finitely generated profinite group is already
completely determined by the algebraic structure of the group. It can easily be
seen that this does not hold true in general for non finitely generated profinite
groups (see Section 1.2). Nikolov and Segal’s theorem generalises a result of
Serre, who proved that every finitely generated pro-p group is strongly complete
and asked whether the same holds true for finitely generated profinite groups.
The strong completeness theorem has numerous applications. For example, it is
not difficult to see that a consequence of the theorem is that a homomorphism
from a finitely generated profinite group to any profinite group is automatically
continuous. The proof of the strong completeness theorem relies on results on
the finite width of certain words proved by Nikolov and Segal. We recall here
briefly the definition of width. Let w be a word in k variables and G a group.
Consider the set

Gw := {w(g)±1 | g ∈ G(k)}
of w-values in G. Given a set S and m ∈ N we denote by S∗m the set

{s1s2 · · · sm | si ∈ S}

of products of m elements of S and by ⟨S⟩ the group generated by S. The verbal
subgroup corresponding to w is defined as

w(G) := ⟨Gw⟩ =
⋃︂

m∈N
G∗m

w .

We say that the word w has width (more precisely, width at most) m in G if

w(G) = G∗m
w ,

for a fixed m ∈ N. For example, in a d-generated pro-p group G, the commutator
word has width d, i.e., every element of the commutator subgroup of G can be
written as the product of d commutators ([Se], Theorem 4.1.5). Actually, it
is even possible to give a concrete description of the commutator subgroup of
a finitely generated pro-p group. Namely, if G is a pro-p group generated by
elements a1, . . . , ad, then

[G,G] = [a1, G] · · · [ad, G]
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(see [Se], Corollary 4.3.2). This result has many consequences in the theory of
pro-p groups. For example, it is a fundamental ingredient for proving Serre’s
theorem on the strong completeness of finitely generated pro-p groups (see the
exposition in [DDMS], Chapter 1). In the thesis we will also see that, as shown
in [NST], such a description of the commutator subgroup allows to axiomatize
with one first-order sentence the property that a finitely generated pro-p group
has a certain minimal number of generators. We will also use the formula for the
commutator subgroup of a finitely generated pro-p group more than once in our
proofs in the course of this thesis.

The kind of profinite groups that we will mainly consider are pro-p groups
and, among pro-p groups, we will mostly work with p-adic analytic pro-p groups.
These are groups with a Lie structure but purely group-theoretic characterisa-
tions, proved mainly by Lubotzky, Mann, Dixon, du Sautoy and Segal building
on previous work of Lazard. One of the characterisations is given in terms of
the rank. Given a profinite group G, its rank is defined as the supremum of the
minimal number of (topological) generators d(H), where H runs over the closed
subgroups of G. Then the following holds.

Theorem 1 ([DDMS], Corollary 8.33). A pro-p group is p-adic analytic if and
only if it has finite rank.

Other characterisations are given in terms of powerful and uniform pro-p sub-
groups (see Section 1.3 for more details). Uniform pro-p groups can be defined as
torsion-free powerful pro-p groups. In a way, they replaced Lazard’s p-saturable
groups as they are better suited for group-theoretic applications. It turns out
that uniform pro-p groups form a proper subclass of saturable pro-p groups (see
[K]). A characterisation of p-adic analytic pro-p groups in terms of uniform pro-p
groups is the following.

Theorem 2 ([DDMS], Corollary 4.3). A pro-p group is p-adic analytic if and
only if it has a uniform subgroup of finite index.

A standard example of a uniform pro-p group is the first congruence subgroup
GL1

d(Zp) given by the set of matrices in GLd(Zp) that are congruent to the identity
modulo p, for p an odd prime. More generally, a pro-p group has a p-adic analytic
structure if and only if it is isomorphic to a closed subgroup of a Sylow pro-p
subgroup of GLd(Zp) for some degree d (see [K1], Corollary 2.3).
In the first part of the thesis we will consider a more general class of profinite
groups. Namely, given a finite set of primes π we will work with pro-π groups,
i.e., inverse limits of finite groups whose order is divisible only by primes in π.
The Sylow pro-p subgroups of a pro-π group of finite rank are p-adic analytic
pro-p groups. An example of a pro-π group is given by GLd(Zp). Moreover, we
will show in Chapter 2 that pro-π groups of finite rank contain a finite index
subgroup that is a direct product of p-adic analytic pro-p groups, where p runs
over π (compare with the proof of Theorem 2.6.4).

The thesis is divided into two parts. The first part is devoted to the finite
axiomatizability of the rank and the dimension of pro-π groups while the second
part concerns the unique product property for pro-p groups.
Finite axiomatizability of the rank and the rank and dimension of a
pro-π group. In [JL], Jarden and Lubotzky used results on the finite width
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of certain words proved by Nikolov and Segal to show that finitely generated
profinite groups are first-order rigid, i.e., completely determined, up to isomor-
phism, by their first-order theory. More recently, Nies, Segal and Tent started
to investigate which profinite groups can be axiomatized by a single first-order
sentence. Among the classes of groups that they consider is the class of p-adic
analytic pro-p groups. Concerning their rank, they state the following result.

Proposition 3 ([NST], Proposition 5.1). For each positive integer r, there is a
sentence ρp,r in the language of groups such that, for a pro-p group G,

rk(G) ≤ r ⇒ G |= ρp,r ⇒ rk(G) ≤ r(2 + log2(r)).

It is therefore natural to ask whether the rank of a p-adic analytic pro-p group
can be axiomatized by a single first-order sentence in the language of groups.
Moreover, one can also consider another fundamental invariant of p-adic analytic
groups, their dimension, and ask the same question. In the first part of the thesis
we give a positive answer to these questions. More generally, given a finite set
of primes π, we consider pro-π groups and prove the following main result (see
Theorem 2.6.4 and Corollary 2.7.2).

Theorem 4. Let π be a finite set of primes and let r be a positive integer. Let
r = (rp)p∈π and d = (dp)p∈π be two tuples in {0, . . . , r}. There is a single first-
order sentence σπ,r,r,d in the language of groups such that for every pro-π group
G the following are equivalent:

1. σπ,r,r,d holds true in the group G;

2. G has rank r and, for each p ∈ π, the Sylow pro-p subgroups of G have rank
rp and dimension dp.

Moreover, we show that this result is optimal in the class of profinite groups.
Indeed, for model-theoretic reasons, it turns out that the rank of a profinite
group whose order is divisible by an infinite number of primes cannot be finitely
axiomatizable (see Proposition 2.3.9).
We first prove Theorem 4 for pronilpotent groups whose order is divisible only
by primes in π, i.e., direct products of pro-p groups, where p runs over the
primes in π. We will call such groups Cπ groups. In order to show the finite
axiomatizability of the rank of Cπ groups, we prove group-theoretic results that
are also interesting on their own. In their more general form they can be stated
as follows (see Theorem 2.6.1).

Theorem 5. Let R be a positive integer. Suppose that the profinite group G has
an open normal subgroup F ⊴o G which is pronilpotent and such that each Sylow
subgroup of F is powerful.

1. If rkp(G) ≤ R for some prime p, then

rkp(G) = rkp
(︁
G/Φ2R+1(F )

)︁
.

2. If rk(G) ≤ R, then
rk(G) = rk

(︁
G/Φ2R+1(F )

)︁
.
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Here rkp(G) denotes the rank of a Sylow pro-p subgroup of G and Φ2R+1(F ) the
2R+ 1 iterated Frattini subgroup of F .
Regarding the finite axiomatizability of the dimension of Cπ groups, we give two
different proofs. The first one uses the adjoint representation of a p-adic analytic
pro-p group while the second one depends on the following new description of the
dimension of a finitely generated powerful pro-p group that is also of independent
interest (see Theorem 2.5.1).

Theorem 6. Let G be a finitely generated powerful pro-p group with torsion
subgroup T . Then

dim(G) = d(G)− d(T ).

Moreover, using different approaches, we write alternative sentences that axiom-
atize the dimension of Cπ groups in different classes: soluble Cπ groups, Cπ groups
whose factors are just-infinite p-adic analytic pro-p groups and Cπ groups satis-
fying a certain condition and whose factors have non-abelian simple Lie algebra
(see Section 2.4.3).
In order to eventually prove Theorem 4, we show that in a pro-π group one can
find an open definable Cπ group with certain properties that will allow to prove
the desired result. This relies on the classification of finite simple groups. Finally,
we analyse the quantifier complexity of the sentences that we produced, proving
that they are of the form ∃∀∃, hence in particular independent of any input data.
This first part of the thesis led to the preprint [CK] written together with my
advisor Benjamin Klopsch (see the end of Section 2.1).
The unique product property for pro-p groups. We say that a group G
has the unique product property if, given two non-empty, finite subsets A and
B of G, there always exists at least one element g of G that can be written
in a unique way as a product g = ab with a ∈ A and b ∈ B. The unique
product property was introduced by Rudin and Schneider in [RS] in relation
to the Kaplansky conjecture on zero divisors in group rings. The conjecture,
which is still open, predicts that, if K is a field and G is a torsion-free group,
then the group ring K[G] has no non-trivial zero divisors. It is not difficult
to see that a group with the unique product property satisfies the zero divisor
conjecture. Recently, Craig and Linnell conjectured that uniform pro-p groups
possess the unique product property ([CL]). This is motivated by the fact that,
if G is a uniform pro-p group and K is a field of characteristic zero or p, then
K[G] has no non-trivial zero divisors ([FL]). Moreover, Craig and Linnell prove
their conjecture for virtually soluble subgroups of uniform pro-p groups. Here we
extend their result to the class of virtually soluble subgroups of saturable pro-p
groups by using Lie-theoretic tools (see Corollary 3.3.7):

Theorem 7. Virtually soluble subgroups of saturable pro-p groups have the unique
product property.

Furthermore, as an example, we verify that the unique product property holds
for sets of a specific form in some of the simplest non-soluble p-adic analytic pro-p
groups, namely, congruence subgroups of SL2(Zp) (see Example 3.3.20). Then
we consider a property that implies the unique product property, namely local
indicability. A group G is locally indicable if every non-trivial finitely generated
subgroup of G maps homomorphically onto Z. Actually, for soluble groups, local
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indicability is equivalent to right-orderability. In order to prove Theorem 7 we
actually show that virtually soluble subgroups of saturable pro-p groups are right-
orderable, hence locally indicable. Motivated by this we start to study local
indicability for soluble profinite groups. In particular, we try to compare local
indicability with a topological analogue, i.e., every closed subgroup of a given
profinite group has infinite topological abelianisation.

Finally, as ordered groups have the unique product property, we start to study
the orderability of profinite groups. For example, by adapting one of the proofs of
the fact that (abstract) partially commutative groups are bi-orderable, we prove
that partially commutative pro-p groups or, equivalently, pro-p completions of
partially commutative groups, are bi-orderable (see Section 3.5). Moreover, we
give an elementary proof of the fact that non-soluble pro-p groups of finite rank
are not bi-orderable, based on an observation on the normal subsemigroups of
these groups carried out with the help of commutator calculus and Lie-theoretic
tools (Corollary 3.4.5).

The thesis is organised as follows. We start with a chapter of preliminaries
divided into three sections, where we collect some facts that we will need later
on. We present some basic notions on profinite and pro-p groups and on pro-p
groups of finite rank or, equivalently, p-adic analytic pro-p groups. We will also
give a brief overview on abstract properties of profinite groups.
The subsequent chapter concerns the finite axiomatizability of the rank and the
dimension of pro-π groups. After the introduction and some preliminaries we
first prove the finite axiomatizability of the rank of Cπ groups. Then we give
the first proof of the finite axiomatizability of the dimension of Cπ groups using
the adjoint representation of a p-adic analytic pro-p group and we present some
alternative sentences for some classes of Cπ groups. In the subsequent section we
give another proof of the same result based on a result of Héthelyi and Lévai that
allows us to formulate a new description of the dimension of finitely generated
pro-p groups. In the next sections we extend these results to pro-π groups and we
analyse the quantifier complexity of the sentences produced. Finally, we propose
some further questions that arise from this work.
The last chapter is about the unique product property for pro-p groups. After
the introduction and some preliminaries we prove the main result of the chapter,
i.e., the generalisation of Craig and Linnell’s theorem. In the same section we
also study local indicability for soluble profinite groups with the ascending chain
condition on closed subgroups. In the following two sections we prove that non-
soluble p-adic analytic pro-p groups are not bi-orderable and that pro-p RAAGs
are bi-orderable. Finally, we present some open questions and, in the appendix,
a commutator formula.
Notation. The symbol N denotes the natural numbers including zero.
Given a natural number n > 0 we write Cn for the cyclic group of order n.
The commutator subgroup of G is denoted by [G,G] or G′. More generally, if H
and K are subgroups of G, [H,K] is the subgroup of G generated by commutators
of the form [h, k], with h ∈ H and k ∈ K.
Given a natural number m and an abstract group G, we denote by Gm the
subgroup of G generated by the m-th powers of the elements of G and by G{m}

the subset of G consisting of the m-th powers of the elements of G. Unless stated
otherwise, when G is a topological group, by Gm we will denote the topological
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closure of the group generated by the m-th powers of the elements of G.
Finally, the symbols ≤ c (respectively ⊴ c), ≤ o (respectively ⊴ o) indicate closed
subgroup (respectively closed normal subgroup) and open subgroup (respectively
open normal subgroup).
The rest of the notation is either standard or introduced when needed throughout
the thesis.
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Chapter 1

Preliminaries

In this chapter we will present some preliminary notions and facts that will be
used throughout the thesis. The chapter is divided into three sections. The first
one provides a brief overview of profinite and pro-p groups. The second section
is devoted to presenting a few of the main results concerning abstract properties
of profinite groups. This material is essential to us. On the one hand, we will
use some of these facts later on and, on the other hand, the results give some
insight into the area which this thesis focuses on, i.e., algebraic properties of
pro-p groups. Finally, in the last section we will present some basics about pro-p
groups of finite rank or, equivalently, p-adic analytic pro-p groups.

The main sources for this chapter are the monographs [RZ], [W1], [DDMS].
The material presented here is well known and there are no significant original
contributions.

1.1 A few basics on profinite and pro-p groups

In this section we will present some basic facts on profinite and pro-p groups
that we will need throughout the thesis. We will mostly follow [RZ], [W1] and
Chapters 1 and 3 of [DDMS], where much more information on profinite groups
can be found.

Definition 1.1.1. A profinite group is a compact Hausdorff topological group
whose open subgroups form a base of neighbourhoods of the identity.

It turns out that the condition in the definition is equivalent to saying that
the group is compact, Hausdorff and totally disconnected ([RZ], Theorem 1.1.12).

A useful characterisation of profinite groups in terms of inverse limits is the
following ([DDMS], Proposition 1.3).

Proposition 1.1.2. Let G be a profinite group. Then G is isomorphic, as a
topological group, to

lim←−
N⊴ oG

G/N.

Conversely, the inverse limit of any inverse system of finite discrete groups is a
profinite group.

The isomorphism in the first part of the proposition is given by

g ↦→ (gN)N⊴ oG.

7



Example 1.1.3.

1. Let G be a group and let N be a directed family of normal subgroups of
finite index in G ordered by reverse inclusion. Then the family of quotients
(G/N)N∈N gives an inverse system by considering, for every N ≤ M , the
natural epimorphism πNM : G/N → G/M . The resulting inverse limit

ˆ︁GN := lim←−
N∈N

G/N

is a profinite group by the previous proposition, that is called the completion
of G with respect to N . Note that the kernel of the natural homomorphism
G→ ˆ︁GN is given by ⋂︁N∈N N .
If N consists of all normal subgroups of G of finite index, then ˆ︁GN is called
the profinite completion of G.
If instead N contains all normal subgroups of G whose index is the power
of a fixed prime p, then ˆ︁GN is called the pro-p completion of G.

2. As a special case of the previous example we get ˆ︁Z, the profinite completion
of the integers Z, isomorphic to

lim←−
n∈N
n≥1

Z/nZ.

Its elements can be regarded as equivalence classes of sequences of integers
(a1, a2, a3, . . .) such that, if i and j are integers with i | j, then ai ≡ aj

modulo i. Two sequences (ai), (bi) are equivalent if ai ≡ bi modulo i for all
i ≥ 1.

3. Let R be a topological commutative ring with identity that is profinite,
i.e., compact, Hausdorff and totally disconnected. For example, R could beˆ︁Z. Then the following groups obtained by R are profinite groups with the
topology naturally induced by R: the group of units R∗, the group GLd(R)
of invertible d × d matrices with entries in R, the group SLd(R) of d × d
matrices with determinant 1 and entries in R.

4. Consider the group SLd(Z) and, for every positive integer m, let K(m)
be the kernel of the homomorphism SLd(Z) → SLd(Z/mZ) obtained by
reducing the entries of the matrices modulo m. Since SLd(Z/mZ) is a finite
group, K(m) has finite index in SLd(Z) and therefore we can consider the
completion of SLd(Z) with respect to the family N = {K(m) | m ≥ 1},
that is the so-called congruence completion of SLd(Z). Understanding the
relation between the profinite completion and the congruence completion
of SLd(Z) is an instance of the congruence subgroup problem.

Here are some important basic properties of profinite groups that we mention
without proof (see for example [W1], Chapters 0 and 1):

Proposition 1.1.4. Let G be a profinite group.

1. Every open subgroup is closed of finite index. Conversely, a closed subgroup
is open if and only if it has finite index.

8



2. Every open subgroup of G contains an open normal subgroup of G.

3. The family of all open subgroups of G has trivial intersection.

4. Let X be a subset of G. Then, if we denote by X the topological closure of
X,

X =
⋂︂

N⊴ oG

XN.

5. Let H be a closed subgroup of G. Then H is a profinite group with the
induced topology. Every open subgroup of H is of the form H ∩K where K
is an open subgroup of G.

6. Let N be a closed normal subgroup of G. Then G/N is a profinite group
with the quotient topology.

7. Let X and Y be closed subsets of G. Then XY := {xy | x ∈ X, y ∈ Y } is
closed in G.

We now discuss generators of profinite groups. Since profinite groups, if not
finite, are always uncountable ([RZ], Proposition 2.3.1), they can never be finitely
generated as abstract groups. Therefore, when we talk about generators of a
profinite group, we will always mean topological generators.

Definition 1.1.5. Let G be a topological group. We say that a subset X of G
generates G topologically or that X is a set of topological generators for G if the
abstract group generated by X is dense in G, i.e., if ⟨X⟩ = G.
We say that G is finitely generated if there exists a finite set X that generates G
topologically.

From now on, when we write that a set X generates a profinite group G, we
will always mean that X generates G topologically.

Proposition 1.1.6 ([DDMS], Proposition 1.5). Let G be a profinite group and
let H be a closed subgroup of G.

1. A subset X of H generates H if and only if XN/N generates HN/N for
every N ⊴ o G. In particular, if H = G, we have that X generates G if and
only if XN/N generates G/N for every N ⊴ o G.

2. Let d be a positive integer. Then H can be generated by d elements if
and only if HN/N can be generated by d elements for every N ⊴ o G. In
particular, if H = G, then G can be generated by d elements if and only if
G/N can be generated by d elements for every N ⊴ o G.

Example 1.1.7. A profinite group is called procyclic if it is isomorphic to the
inverse limit of finite cyclic groups. According to [W1], Proposition 1.2.1, if G
is a procyclic group and N is an open normal subgroup of G, then the quotient
G/N is a finite cyclic group. It follows that a procyclic group is 1-generated.
Conversely, if a profinite group G is 1-generated then all its quotients by open
normal subgroups are cyclic, hence G is a procyclic group.
By [W1], Theorem 1.2.5, closed subgroups of procyclic groups are also procyclic.
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Let G be a profinite group. We define the minimal number of generators of
G as

d(G) := min{|X| : X ⊆ G,X generates G}.

Whenever we will talk of a group G with an infinite number of generators, we
will simply mean that we are considering a set of generators of G of some infinite
cardinality. From Proposition 1.1.6 it follows

Corollary 1.1.8. Let G be a profinite group and let H be a closed subgroup of
G. Then

d(H) = sup{d(HN/N) | N ⊴ o G}.

In particular,
d(G) = sup{d(G/N) | N ⊴ o G}.

Proof. Let s := sup{d(HN/N) | N ⊴ o G}. It is clear that d(HN/N) ≤ d(H)
for every N ⊴ o G, hence s ≤ d(H). Conversely, HN/N can be generated by s
elements for every N ⊴ o G. Therefore, by Proposition 1.1.6, H can be generated
by s elements and d(H) ≤ s.

Remark 1.1.9. It is clear that, if N is a base of neighbourhoods of the identity
in G consisting of open normal subgroups, then

d(G) = sup{d(G/N) | N ∈ N}.

In general, given a finitely generated profinite group G, its subgroups are
not automatically finitely generated. However, its open subgroups are ([DDMS],
Proposition 1.7). Moreover, as free profinite groups satisfy Schreier’s formula
([RZ], Theorem 3.6.2), it is possible to give a quantitative upper bound on the
minimal number of generators of an open subgroup of a finitely generated profinite
group G that depends on d(G) and on the index of the subgroup.

Proposition 1.1.10. Let G be a finitely generated profinite group and let U be
an open subgroup of G. Then,

d(U) ≤ 1 + [G : U ](d(G)− 1).

We now move a step forward and introduce an invariant of profinite groups
that takes into account the minimal number of generators of all closed subgroups
of a given group.

Definition 1.1.11. Let G be a profinite group. The rank of G is defined as

rk(G) := sup{d(H) | H ≤c G}.

In words, if finite, rk(G) is the minimal integer r such that every closed
subgroup of G can be generated by r elements.

Proposition 1.1.12 ([DDMS], Proposition 3.11). Let G be a profinite group.
Then the following numbers coincide:

1. r1 := rk(G);

2. r2 := sup{d(H) | H ≤c G and d(H) <∞};

10



3. r3 := sup{d(H) | H ≤o G};

4. r4 := sup{rk(G/N) | N ⊴ o G}.

As the rank of a profinite group is a fundamental object for the topic of this
thesis, we sketch the proof of the previous proposition.

Proof. It is clear that r2 ≤ r1. Also, as every open subgroup is closed, r3 ≤ r1.
Now let N be an open normal subgroup of G and let K/N be a subgroup of
G/N . Then K is a closed subgroup of G and d(K/N) ≤ d(K) ≤ r3, i.e., r4 ≤ r3.
For proving r4 ≤ r2, consider again N and K as before. Since K/N is finite, we
can write K = NX where X is a finite subset of G. Let H = ⟨X⟩; by definition
H is a closed and finitely generated subgroup of H, hence d(H) < ∞. Now by
construction

d(K/N) = d(NH/N) = d(H/N ∩H) ≤ d(H) ≤ r2.

Finally we prove r1 ≤ r4. Let H be a closed subgroup of G. By Corollary 1.1.8

d(H) = sup{d(HN/N) | N ⊴ o G} ≤ r4.

Remark 1.1.13. From Remark 1.1.9 it follows immediately that, if N is a base
of neighbourhoods of the identity in G consisting of open normal subgroups, then

rk(G) = sup{rk(G/N) | N ∈ N}.

Two further important properties of the rank that we will subsequently use
are the following (compare with [W1], Proposition 8.1.1).

Proposition 1.1.14. Let G be a profinite group.

1. Suppose that G has rank r. Then closed subgroups and quotients by closed
normal subgroups of G have rank bounded by r.

2. If K⊴ cG and both K and G/K have finite rank then G has finite rank and

rk(G) ≤ rk(K) + rk(G/K).

Proof.

1. It is clear by definition that the rank of a closed subgroup of G is bounded
by r. If N is an open normal subgroup of G then a subgroup of G/N is
the image of a subgroup of G under the projection modulo N , hence its
minimal number of generators is bounded by r.

2. Let H be a closed subgroup of G. Then H ∩K has a system of generators
X with cardinality bounded by rk(K). Moreover, H/H ∩K ∼= HK/K ≤c
G/K, hence we can find a generating set Y of H/H ∩K whose cardinality
is bounded by the rank of G/K. As the union of X and any lift of Y to H
is a generating set for H, we conclude that d(H) ≤ rk(K) + rk(G/K).
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Example 1.1.15. Let G be the direct product of r procyclic groups G1, . . . , Gr.
Then rk(G) ≤ r.

We can proceed by induction on r. If r = 1 there is nothing to say, so let
r > 1. For each i ∈ {1, . . . , r}, let gi be the generator of Gi and let Si be the
(closed) subgroup of G generated by g1, . . . , gi. Then we have a series

1 ≤ S1 ≤ S2 ≤ · · · ≤ Sr = G.

Now Sr/Sr−1 is a procyclic group, hence of rank one, while Sr−1 has rank bounded
by r − 1 by induction. By Proposition 1.1.14 we conclude that rk(G) ≤ r.

We now introduce the Frattini subgroup of a profinite group, the subgroup of
‘non-generators.’

Definition 1.1.16. Let G be a profinite group. For G ̸= 1, the Frattini subgroup
Φ(G) of G is defined as the intersection of all maximal proper open subgroups of
G. For G = 1 we set Φ(G) = G.

The Frattini subgroup Φ(G) is by definition a closed normal subgroup of G.
Its name of subgroup of non-generators comes from the following result.

Proposition 1.1.17 ([DDMS], Proposition 1.9). Let G be a profinite group and
let X be a subset of G. Then the following are equivalent:

1. X generates G;

2. X ∪ Φ(G) generates G;

3. XΦ(G)/Φ(G) generates G/Φ(G).

We will see that, when G is a finitely generated pro-p group, we are able to
write down explicitly how the Frattini subgroup of G looks like. This will result
in a fundamental tool to work with pro-p groups of finite rank.

Let p be a prime number. We now consider a special class of profinite groups,
namely the class of pro-p groups.

Definition 1.1.18. A pro-p group is a profinite group with the property that
the index of every open normal subgroup is a power of p.

Note that finite p-groups are by definition pro-p groups. Pro-p groups are
closed under taking subgroups and quotients and under group extensions.

Proposition 1.1.19 ([DDMS], Proposition 1.11). Let G be a profinite group.

1. If G is pro-p and H is a closed subgroup of G then H is a pro-p group.

2. Let N be a closed normal subgroup of G. Then G is pro-p if and only if N
and G/N are pro-p.

Also for pro-p groups one can give a characterisation in terms of inverse limits.

Proposition 1.1.20 ([DDMS], Proposition 1.12). Let G be a topological group.
Then G is a pro-p group if and only if G is topologically isomorphic to an inverse
limit of finite discrete p-groups.
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Example 1.1.21.

1. Looking back at Example 1.1.3, we see that the pro-p completion of any
group is a pro-p group. In the special case of the pro-p completion of the
integers, we get the p-adic integers Zp. Elements of Zp can be thought of
as formal series ∑︁∞

i=0 aip
i, where ai is a natural number with 0 ≤ ai < p

for every i. Equivalently, an element of Zp can be identified with the equiv-
alence class of a sequence of natural numbers (bn)n≥1 = (b1, b2, . . .), where
bn ≡ bm (mod pm) whenever m ≤ n. Two such sequences (bn)n and (b′

n)n

are equivalent when bn ≡ b′
n (mod pn) for every n ≥ 1. If x = ∑︁∞

i=0 aip
i,

then bn ≡ x (mod pn) = ∑︁n−1
i=0 aip

i.
Note that the open subgroups of Zp are exactly the subgroups of the form
piZp for some integer i ≥ 1. Indeed, it is clear that such subgroups are
open, because they are the kernels of the maps Zp → Zp/p

iZp. Conversely,
if H is an open subgroup of Zp, then it has index a power of p, say pi.
Therefore, piZp ≤ H ≤ Zp. But as the index of piZp in Zp is also pi, it
follows that H = piZp.
Moreover, the groups piZp, for i ≥ 1, form a base of open neighbourhoods
of the identity element (see for example [RZ], Lemma 2.1.1).
If we consider also multiplication, Zp can actually be regarded as a profinite
ring, i.e., a topological ring with the profinite topology.

2. Sylow subgroups of profinite groups are pro-p groups. (Recall that a Sylow
pro-p subgroup of a profinite group G is, by definition, a maximal pro-p
subgroup of G).

3. Consider the group GLd(Zp) of invertible d× d matrices over Zp. GLd(Zp)
is a subset of Matd(Zp), the ring of d × d matrices with entries in Zp. As
Matd(Zp) can be identified with Zd2

p , it can be given the product topology
that makes it into a Hausdorff, compact, totally disconnected topological
space. Since addition and multiplication in Matd(Zp) are induced by the
operations in Zp, they are continuous with respect to the profinite topology,
hence Matd(Zp) is a profinite ring. Therefore GLd(Zp) is Hausdorff and
totally disconnected with the subspace topology inherited from Matd(Zp).
Moreover, GLd(Zp) is the preimage under the determinant map of the closed
set Zp \ pZp, hence it is closed in Matd(Zp) and therefore it is compact. It
follows that GLd(Zp) is a profinite group.
For any integer i ≥ 1, let GLi

d(Zp) be the kernel of the map GLd(Zp) →
GLd(Z/piZ) that reduces the entries of a matrix modulo pi; equivalently

GLi
d(Zp) = {A ∈ GLd(Zp) | A ≡ I mod pi},

where I is the d× d identity matrix. As a matrix in Matd(Zp) is invertible
if and only if it is invertible modulo p, we can also write

GLi
d(Zp) = I + pi Matd(Zp).

Since each GLd(Z/piZ) is finite, GLi
d(Zp) is a closed normal subgroup of

finite index in GLd(Zp), hence an open normal subgroup. As the topology

13



on GLd(Zp) is inherited from the product topology on Zd2
p and we saw that

the open subgroups piZp form a base of open neighbourhoods of the identity
in Zp, it follows that a base of neighbourhoods of the identity in GLd(Zp)
is given by the subgroups GLi

d(Zp). Since, for every i ≥ 1,

|GL1
d(Zp) : GLi

d(Zp)| = pd2(i−1),

it follows that GL1
d(Zp) is a pro-p group. Indeed, every open subgroup H

of GL1
d(Zp) is in particular an open set containing the identity, hence it

contains GLi
d(Zp) for some i and therefore the index of H in GL1

d(Zp) must
divide pd2(i−1).
Similarly, one can also show that the congruence subgroup SL1

d(Zp) is a
pro-p group (see [DDMS], Chapter 1, Exercise 10). Alternatively, one can
simply note that SL1

d(Zp) is a pro-p group as it is a closed subgroup of
GL1

d(Zp).

4. Let d be a natural number. A free object on d generators in the category
of pro-p groups is a free pro-p group on d generators. It can also be seen as
the pro-p completion of an abstract free group on d generators.

5. The Heisenberg group over Zp given by the upper unitriangular 3×3 matri-
ces over Zp is a pro-p group. More generally, the group of upper triangular
n× n matrices is a pro-p group for any positive integer n.

A pronilpotent group is by definition a profinite group that is isomorphic to
the inverse limit of finite nilpotent groups. Since finite p-groups are nilpotent,
pro-p groups are pronilpotent. The same holds for procyclic groups and abelian
profinite groups. (A profinite group is abelian if and only if it is pro-abelian; see
[RZ], Exercise 2.1.7). The following result relating pronilpotent groups to their
Sylow subgroups holds true.

Proposition 1.1.22 ([W1], Proposition 2.4.3). Let G be a profinite group. Then
G is pronilpotent if and only if it is isomorphic to the direct product of its Sylow
subgroups.

Regarding finitely generated abelian pro-p groups, we have the following struc-
ture result.

Proposition 1.1.23. Let A be a finitely generated abelian pro-p group. Then,

A ∼= Zk
p × Cpl1 × · · · × Cpls

for some non-negative integers s, k and some positive integers l1 . . . , ls, with

d(A) = rk(A) = s+ k.

Proof. Let d := d(A). The abelian pro-p group A can be regarded as a Zp-
module in the following way: using additive notation, if λ belongs to Zp and g
belongs to A, then λ · g is well-defined and gives A the structure of a Zp-module
(compare with [RZ], Lemma 4.1.1 or [W1], Proposition 1.5.3). As a Zp-module,
A is generated by d elements. Since Zp is a principal ideal domain, we can write
A as the direct product of d cyclic pro-p modules, i.e., d procyclic pro-p groups.
Now d(A) = rk(A) follows from Example 1.1.15.
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Remark 1.1.24. From the previous proposition one can deduce the structure
theorem of finitely generated abelian profinite groups. Indeed, suppose that G
is an abelian profinite group with d(G) = d. By Proposition 1.1.22, G is the
direct product of its Sylow subgroups, which are abelian pro-p groups that can
be generated by d elements, as a Sylow subgroup of G can be regarded as a
quotient of G. Let Sp be a Sylow pro-p subgroup of G. Then, by Proposition
1.1.23 we have Sp

∼= Sp,1 × · · · × Sp,d, where each Sp,i is a procyclic pro-p group,
possibly trivial. Therefore, G ∼=

∏︁
p prime(

∏︁d
i=1 Sp,i).

Remark 1.1.25. Regarding the proof of Proposition 1.1.23, it is possible to
prove that for a finitely generated abelian profinite group A one has d(A) = rk(A)
without making use of the structure theorem for finitely generated modules over
principal ideal domains; see [RZ], Proposition 4.3.6.

When dealing with a finitely generated pro-p group, its Frattini subgroup
provides information on the number of generators of the group.

Proposition 1.1.26. Let G be a finitely generated pro-p group. Then the quotient
group G/Φ(G) is an elementary abelian p-group of order pd(G).

This result follows from the fact that, if G is a pro-p group, then

Φ(G) = Gp[G,G] (1.1)

(see for example [DDMS], Proposition 1.13 for a proof). Note that, for any
profinite group G, one can define the p-Frattini subgroup of G as

Φp(G) := Gp[G,G].

The inclusion Φ(G) ≥ Φp(G) always holds, but the equality holds if and only if
G is pro-p ([W1], Proposition 2.5.2). Moreover, if G is any profinite group, the
p-Frattini quotient G/Φp(G) is the largest elementary abelian pro-p quotient of
the group G.

In Section 1.2 we will be able to simplify further the formula (1.1) when G is a
finitely generated pro-p group and give an explicit description of the commutator
subgroup of G in terms of its generators.

Example 1.1.27. Let

A ∼= Zk
p × Cpl1 × · · · × Cpls

for some non-negative integers s, k and some positive integers l1 . . . , ls. We give
another proof of the fact that d(A) = s+ k.
The Frattini subgroup of A is Φ(A) = pA, hence, using additive notation, we
have

Φ(A) = (pZp)k × pCpl1 × · · · × pCpls .

Since for every i ∈ {1, . . . , s} we have pCpli
∼= Cpli−1 , we get that A/Φ(A) has

order pk+s and, by Proposition 1.1.26, we conclude that d(A) = k + s.

Another relation between the Frattini subgroup of a pro-p group and the
generators of the group is given by the following ([DDMS], Proposition 1.14)
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Proposition 1.1.28. Let G be a pro-p group. Then G is finitely generated if and
only if Φ(G) is open.

Finally, we introduce the lower p-series of a pro-p group G, that is defined
recursively as P1(G) := G and Pi+1(G) := Pi(G)p[Pi(G), G] for i ≥ 1, where ·
denotes the topological closure.

By definition, P2(G) = Φ(G) and Φ(Pi(G)) ≤ Pi+1(G). Also in this case,
that is, as for the Frattini subgroup, we will give in the next section a simplified
formula for the elements of the lower p-series of a finitely generated pro-p group.

Proposition 1.1.29 ([DDMS], Proposition 1.16). Let G be a pro-p group.

1. [Pi(G), Pj(G)] ≤ Pi+j(G) for all positive integers i and j;

2. Let G be finitely generated. Then Pi(G) is open in G for each positive
integer i and the set {Pi(G) | i ≥ 1} is a base of neighbourhoods of the
identity in G.

Example 1.1.30. If G is a finitely generated abelian pro-p group, using additive
notation we have that Pi+1(G) = Pi(G)p = Pi(G){p} = piG for i ≥ 1 and, from
the previous proposition, it follows that this is a base of neighbourhoods for the
identity. When G is Zp we find again that the subgroups piZp are a base of
neighbourhoods of the identity (compare with Example 1.1.21).

1.2 Abstract properties of profinite groups

When studying profinite groups, one can ask which properties they have as ab-
stract groups, i.e., when considered without taking into account their topology.

A starting point for this kind of investigation is a result by Serre who estab-
lished that the topology of a finitely generated pro-p group is entirely determined
by the algebraic structure of the group. More precisely, Serre proved that, if G
is a finitely generated pro-p group, then every subgroup of finite index of G is
open. In other words, in a finitely generated pro-p group a subgroup is open if
and only if it has finite index. A profinite group with this property is said to be
strongly complete or rigid. (According to [RZ], Section 4.8, Serre included this
result in an unpublished letter to Pletch dated March 26, 1975).

One can see that it is not always the case that a pro-p group is strongly
complete. For instance, consider the following example taken from [Se2], Section
6.3 (see also [K2], Section 5.2.1). Let p be a prime and, for each positive integer
i, let Cp be the cyclic group of order p. Consider, for each positive integer n, the
direct product Gn = ∏︁n

i=1Cp and let G = lim←−Gn. As an abstract group, G is
an Fp-vector space of dimension 2ℵ0 and therefore it has 22ℵ0 subgroups of finite
index. However, open subgroups of G must contain a subgroup ker(G→ Gn) for
some n ([RZ], Lemma 2.1.1), hence there are only countably many open subgroups
in G. More generally, one can construct similar examples with any non-trivial
finite group in place of a cyclic group of order p (see [RZ], Example 4.2.12).
As we will see below, the topology of a strongly complete profinite group is
completely determined by its group structure. There are indeed examples of
profinite groups that are isomorphic as abstract groups but not isomorphic as
topological groups, for instance the pro-p groups G = ∏︁∞

i=1Cpi and G× Zp (see
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[K2], Proposition 5.5). In [Ki], Kiehlmann classifies countably-based abelian pro-
p groups up to abstract and topological isomorphism.

Serre’s theorem on the rigidity of finitely generated pro-p groups is a funda-
mental result in the theory of finitely generated pro-p groups. Its proof requires
some ingredients that are important in their own right and that we will use later
on so that we briefly sketch its proof, following the exposition in [DDMS].

The first ingredient of the proof is the following lemma.

Lemma 1.2.1. Let G be a pro-p group and H a subgroup of finite index of G.
Then |G : H| is a power of p.

Proof. By replacing H by its normal core if necessary, we can assume that H is
normal in G. Let m := prm′, with (p,m′) = 1, be the index of H in G. Then
G/H is a finite group of order m. Therefore, the set X := G{m} of m-th powers
of elements of G is contained in H and it is closed in G, being the image of the
continuous map g ↦→ gm from the compact space G to the Hausdorff space G.

Now, consider an element g ∈ G; we want to prove that, for some positive
integer e, gpe belongs to H. Indeed, let N be an open normal subgroup of
G. By definition of pro-p group, the index of N in G is a power of p, hence
there exists k such that gpk belongs to N . Moreover, we can assume k ≥ r.
Then there exist integers a and b such that am + bpk = pr. It follows that
gpr = gam+bpk = (ga)m(gpk)b ∈ XN . Since this is true for every normal open
subgroup N and X is closed, we get that gpr ∈

⋂︁
N⊴ oGXN = X ⊆ H.

The second main ingredient in the proof of Serre’s result is the fact that the
commutator subgroup of a finitely generated pro-p group is closed.

Proposition 1.2.2. Let G be a finitely generated pronilpotent group generated
by elements a1, . . . , ad. Then,

[G,G] = [a1, G] · · · [ad, G].

In particular, [G,G] is closed in G.

Recall that [G,G] is the commutator subgroup of G, i.e., the subgroup of G
generated by all commutators, while [a1, G] · · · [ad, G] is the set

{[a1, g1] · · · [ad, gd] | g1, . . . , gd ∈ G}.

The proof of this proposition relies on a similar result that holds for all finitely
generated nilpotent groups. It is proved by induction on the nilpotency class by
performing computations with commutators, see [DDMS], Lemma 1.23 or [Se].

Lemma 1.2.3. Let H be a nilpotent group generated by a1, . . . , ad. Then,

[H,H] = [a1, G] · · · [ad, G].

With this lemma we can now sketch the proof of Proposition 1.2.2.
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Proof of Proposition 1.2.2. Let X be the set [a1, G] · · · [ad, G] ⊆ [G,G]. This is
the image in G of the compact space G × · · · × G under the continuous map
(g1, . . . , gd) ↦→ [a1, g1] · · · [ad, gd], hence it is compact. Therefore, since G is Haus-
dorff, X is closed in G, hence

X = X =
⋂︂

N⊴ oG

XN (1.2)

by Proposition 1.1.4. Now for every open normal subgroup N of G, the quotient
G/N is a finite nilpotent group. Therefore we can apply Lemma 1.2.3 to G/N to
obtain

[G/N,G/N ] = [a1, G/N ] · · · [ad, G/N ].
It follows that

[G,G]N = XN.

Hence, by using (1.2) we obtain:

[G,G] ⊆
⋂︂

N⊴ oG

XN = X.

As X ⊆ [G,G] the result follows.

As a corollary of this proposition we give a simplified formula for the Frattini
subgroup and for the lower p-series of a finitely generated pro-p group, as promised
in the previous section.

Corollary 1.2.4. Let G be a finitely generated pro-p group. Then,

Φ(G) = Gp[G,G]

and
Pi+1(G) = Pi(G)p[Pi(G), G]

for all i ≥ 1.

Proof. We know from (1.1) that Φ(G) = Gp[G,G]. Now, Gp[G,G] = G{p}[G,G]
and the set G{p} is closed, being the image of the p-th power map from G to
G. Since also [G,G] is closed by Proposition 1.2.2, from Proposition 1.1.4 we
conclude that Gp[G,G] is closed and Φ(G) = Gp[G,G].

The second claim is proved similarly by induction; see [DDMS], Corollary
1.20 for details.

Putting everything together we can prove Serre’s theorem.

Theorem 1.2.5 (Serre). Let G be a finitely generated pro-p group. Then every
subgroup of finite index of G is open.

Proof. LetH be a finite index subgroup inG. ReplacingH by its core if necessary,
one can assume that H is normal in G. We argue by induction on the index (of
normal subgroups). If the latter is 1, then H = G is open. Suppose that the index
of H is greater than 1. Let M = HΦ(G). As M contains the open subgroup
Φ(G) (Proposition 1.1.28), M is open in G, hence finitely generated ([DDMS],
Proposition 1.7). It is moreover a proper subgroup of G, since G/H is a finite
p-group. Hence, |M : H| < |G : H|. Therefore, by induction we obtain that H is
open in M , hence in G.
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An immediate consequence of this result is that a finitely generated pro-p
group is isomorphic to its pro-p completion (use Proposition 1.1.2 and the defi-
nition of pro-p completion together with Lemma 1.2.1).

Another consequence is that the topology of a finitely generated pro-p group
is completely determined by its group structure.

Corollary 1.2.6. Any group homomorphism from a finitely generated pro-p group
to a profinite group is continuous.

Proof. Let G be a finitely generated pro-p group, H a profinite group and ϕ :
G → H a group homomorphism. Let U be an open subgroup of H (hence of
finite index). Then ϕ−1(U) has finite index in G, hence it is open. It follows that
ϕ is continuous “at the identity ” and hence continuous.

Corollary 1.2.7. Let G be a finitely generated pro-p group. Then there is no
other topology on G that makes G into a profinite group.

Proof. Assume that H = G as an abstract group but is given a possibly different
topology that makes it into a profinite group. Consider the identity map G→ H.
By the previous corollary this map is continuous. Since G is compact, any closed
subset of G is compact hence its image under the identity is compact. Since H,
being profinite, is Hausdorff, any compact subset is closed. Therefore the identity
map is a continuous closed map, hence a homeomorphism.

In [NS] Nikolov and Segal extended Theorem 1.2.5 to all finitely generated
profinite groups proving the strong completeness theorem: every subgroup of finite
index in a finitely generated profinite group is open. The proof of this result is
significantly more involved than the pro-p case and relies on the classification of
finite simple groups; see [K2] for a survey and the book [Se] for another exposition.
It is worth to mention that some of the tools related to the finite width of certain
words developed by Nikolov and Segal to prove the strong completeness theorem
were later used by Jarden and Lubotzky to prove the first-order rigidity of finitely
generated profinite groups (see Section 2.2.2).

As important consequences of the strong completeness theorem we obtain
that the topology of a finitely generated profinite group is already determined by
its algebraic structure and that a finitely generated profinite group is isomorphic
to its profinite completion. Finally, the theorem of Nikolov and Segal has also
consequences related to the comparison between abstract and continuous coho-
mology groups of finitely generated profinite groups (see [K2], Section 5.4 and
[N], Section 7).

1.3 Pro-p groups of finite rank

In this section we collect some facts regarding pro-p groups of finite rank that
will be needed later on. For proofs and more results see [DDMS]. For a concise
introduction to pro-p groups of finite rank see [K1].

Recall that, given a pro-p group G, we denote by d(G) the minimal number
of (topological) generators of G and that the rank of G is defined as

rk(G) := sup{d(H) | H ≤ G closed}.
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Loosely speaking, a p-adic analytic group (or p-adic Lie group) is a group that
has also the structure of a p-adic analytic manifold such that the group operations
are analytic (see [DDMS], Section 8.2). One possible interpretation of Hilbert’s
fifth problem is to determine whether the fact that a group admits a Lie structure
has a purely topological characterisation. In the real case this was proven in the
affirmative by Montgomery-Zippin and Gleason, who showed that a topological
group G admits a (real) Lie structure if and only if G is locally euclidean, i.e.,
every point of G has a neighbourhood that is homeomorphic to an open subset
of Rd, for some positive integer d ([T], Theorem 1.1.9). The answer to Hilbert’s
fifth problem in the p-adic setting was found in the 1960s by Lazard who, in
his seminal paper [La], developed a comprehensive theory of p-adic Lie groups.
The group-theoretic aspects of his work were later reconsidered and developed in
the 1980s by Lubotzky and Mann and were systematically written down in the
book ‘Analytic Pro-p Groups’ ([DDMS]) by Dixon, du Sautoy, Mann and Segal.
One way of expressing Lazard’s characterisation of p-adic analytic groups is the
following ([DDMS], Theorem 8.1 and Theorem 3.13).

Theorem 1.3.1. A topological group G has the structure of a p-adic analytic
group if and only if G has an open subgroup which is a pro-p group of finite rank.

Therefore, in the special case when G is a finitely generated profinite group,
by the strong completeness theorem, G is a p-adic analytic group if and only if
G is virtually a pro-p group of finite rank. In particular, by Proposition 1.1.14,
G itself must have finite rank. It follows that the rank is a crucial invariant for
pro-p groups. Indeed, one can formulate the following algebraic characterisation
of p-adic analytic pro-p groups (see [DDMS], Interlude A):

Theorem 1.3.2. A pro-p group is p-adic analytic if and only if it has finite rank.

Example 1.3.3. We saw in Example 1.1.21 that the congruence subgroups
GL1

d(Zp) and SL1
d(Zp) are pro-p groups. Let ϵ = 0 if p ̸= 2 and ϵ = 1 if p = 2.

Then the congruence subgroups GL1+ϵ
d (Zp) and SL1+ϵ

d (Zp) are pro-p groups of fi-
nite rank, given by d2 and d2−1 respectively (see [DDMS], Section 5.1). Therefore
GL1

d(Zp) and SL1
d(Zp) are pro-p groups of finite rank: this follows immediately if

p is odd and from Proposition 1.1.14 if p is even.

Conversely, every pro-p group of finite rank admits a faithful linear represen-
tation over Zp ([DDMS], Theorem 7.19), which gives, together with the previous
example, another characterisation of p-adic analytic pro-p groups: a pro-p group
is p-adic analytic if and only if it is isomorphic to a closed subgroup of GLd(Zp)
for some positive integer d.

Yet another characterisation of p-adic analytic pro-p groups is given in terms
of powerful subgroups. Loosely speaking, a pro-p group is powerful if it has many
p-th powers. This concept generalises the property of being abelian.

Definition 1.3.4. A pro-p group G is powerful if p ̸= 2 and [G,G] ⊆ Gp or
p = 2 and [G,G] ⊆ G4. More generally, a closed subgroup N ≤c G is powerfully
embedded in G if p ̸= 2 and [N,G] ⊆ Np or p = 2 and [N,G] ⊆ N4.

Note that by Gp, G4, Np and N4 we mean the topological closure of the
subgroup of G (respectively of N) generated by all the p-th (respectively 4th)

20



powers. It follows from the definition that G is powerful if and only if it is
powerfully embedded in itself and that, if a closed subgroup N is powerfully
embedded in G, then N is a normal subgroup of G and N is powerful. Moreover,
it is clear from the definition that the quotients of a powerful pro-p group are
again powerful pro-p groups.

With powerful pro-p groups we can give the following characterisation of pro-p
groups of finite rank ([DDMS], Theorem 3.13).

Theorem 1.3.5. Let G be a pro-p group. Then G has finite rank if and only if
G is finitely generated and virtually powerful.

From this theorem and Theorem 1.3.2 it follows that:

Theorem 1.3.6. A pro-p group is p-adic analytic if and only if it is finitely
generated and virtually powerful.

It is an important fact that for a powerful finitely generated pro-p group the
rank coincides with the minimal number of generators of the group ([DDMS],
Theorem 3.8):

Theorem 1.3.7. Let G be a powerful finitely generated pro-p group. Then, for
any closed subgroup H of G, d(H) ≤ d(G).

Recall from Section 1.1 that the lower p-series of a pro-p group G is defined
recursively as

P1(G) := G

Pi+1(G) := Pi(G)p[Pi(G), G],

for i ≥ 1, where · denotes the topological closure.
The following proposition collects some important results regarding the lower

p-series of a finitely generated powerful pro-p group.

Proposition 1.3.8 ([DDMS], Theorem 3.6). Let G be a finitely generated pow-
erful pro-p group. Then, for every positive integer i, the following hold:

1. Pi(G) is powerfully embedded in G;

2. Pi+1(G) = Φ(Pi(G));

3. Pi(G) = Gpi−1 = {xpi−1 | x ∈ G};

4. the map x ↦→ xpk induces a homomorphism from Pi(G)/Pi+1(G) onto
Pi+k(G)/Pi+k+1(G) for each natural number k.

In particular, it follows from the previous proposition that the lower p-series
of a finitely generated powerful pro-p group G coincides with its iterated Frattini
series, i.e.,

Φi(G) = Pi+1(G)

for every natural number i ≥ 0.
When the homomorphism from Pi(G)/Pi+1(G) to Pi+1(G)/Pi+2(G) induced

by the map x ↦→ xp is an isomorphism for every i, we obtain a special kind of
powerful group.
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Definition 1.3.9. A uniformly powerful (abbreviated as uniform) subgroup of
a pro-p group G is a finitely generated powerful subgroup U of G such that
|Pi(U) : Pi+1(U)| = |G : P2(G)| for all i ≥ 1.

The last condition is the one that justifies the term uniform. Equivalently, a
finitely generated pro-p group is uniform if and only if it is powerful and torsion-
free ([DDMS], Theorem 4.5).
Examples of uniform pro-p groups are the congruence subgroups GL1+ϵ

d (Zp) and
SL1+ϵ

d (Zp) ([DDMS], Section 5.1). For the former group the uniform cardinality
of the sections in the lower p-series is given by pd2 , while, for the latter, it is
pd2−1. A relevant fact regarding uniform pro-p groups is contained in the next
proposition.

Proposition 1.3.10 ([DDMS], Proposition 4.4). Let G be a finitely generated
powerful pro-p group. Then the following are equivalent:

1. G is uniform;

2. d(H) = d(G) for every powerful open subgroup H of G.

It turns out that every finitely generated powerful pro-p group has an open
characteristic uniform subgroup. From this and the fact that any pro-p group of
finite rank contains a powerful characteristic open subgroup ([DDMS], Theorem
3.10) one gets the following:

Corollary 1.3.11 ([DDMS], Corollary 4.3). A pro-p group of finite rank contains
a characteristic open uniform subgroup.

Finally, uniform pro-p groups allow us to formulate the following structure
theorem for powerful pro-p groups.

Theorem 1.3.12 ([DDMS], Theorem 4.20). Let G be a finitely generated pow-
erful pro-p group. Then the elements of finite order in G form a characteristic
subgroup T of G. Moreover, T is a powerful finite p-group and G/T is uniform.

The fact that a pro-p group has a p-adic analytic structure can be charac-
terised in purely algebraic terms. Also the dimension of a p-adic analytic pro-p
group, i.e., its dimension as an analytic manifold, can be characterised alge-
braically in terms of the minimal number of generators of certain subgroups.
We saw before that every pro-p group of finite rank has a normal uniform sub-
group of finite index (Corollary 1.3.11). It turns out that the minimal number
of generators of any uniform subgroup U of finite index in a pro-p group G is
the same, independently of the choice of the uniform subgroup ([DDMS], Lemma
4.6). Hence, if G is a pro-p group of finite rank and U is any uniform subgroup
of finite index in G, we can define

dimG := d(U)

and it turns out that this number coincides with the dimension of G as an analytic
group (see [DDMS], Theorem 8.36).
For example, since, when p is odd, GL1

d(Zp) is a uniform pro-p group and

|GL1
d(Zp) : GL2

d(Zp)| = |GL1
d(Zp) : Φ(GL1

d(Zp))| = pd2
,
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the dimension of GL1
d(Zp) is d(GL1

d(Zp)) = d2.
The dimension satisfies some good properties, such as that, for any N ⊴ c G,

dimG = dimG/N + dimN

([DDMS], Theorem 4.8). In particular, a normal subgroup of finite index in G
has the same dimension as G.

Recall that a Zp-Lie lattice is a Lie ring over Zp that is also a free module of
finite rank over Zp. To each uniform pro-p group U there is an associated Zp-Lie
lattice L(U) whose underlying set is U and whose addition, scalar multiplication
and Lie bracket are defined using the group operation on U (see [DDMS], Chapter
4). Tensoring by Qp, one obtains the Qp-Lie algebra associated to G, that is given
by

L := L(U)⊗Zp Qp.

Similarly to the definition given for powerful pro-p groups, we define a Zp-lattice
L to be powerful if p ̸= 2 and [L,L] ⊆ pL or p = 2 and [L,L] ⊆ 4L. For example,
if L is any Zp-lattice and p is odd (respectively p = 2), then its sublattice pL
(respectively 4L) is powerful. One can verify that the Zp-lattice associated to a
uniform pro-p group is powerful.

Conversely, to a powerful Zp-Lie lattice L one can associate a uniform group
that has L as underlying set and whose operation is defined via the Campbell-
Hausdorff formula ([DDMS], Theorem 9.8). This results in an equivalence of
categories between uniform pro-p groups and Zp-powerful lattices ([DDMS], The-
orem 9.10). Tensoring by Qp, this equivalence of categories gives a functor from
the category of p-adic analytic pro-p groups to the category of finite-dimensional
Qp-Lie algebras ([DDMS], Theorem 9.11).

Example 1.3.13. Let gld(Zp) be the Zp-Lie lattice consisting of all d×d matrices
with entries in Zp together with the Lie bracket given by the commutator bracket.
The Lie lattice gld(Zp) has a congruence filtration given by

glid(Zp) := {x ∈ gld(Zp) | x ≡ 0 (mod pi)},

where i runs over the positive integers. Let ϵ = 0 if p ̸= 2 and ϵ = 1 if p = 2. Then
the powerful Zp-Lie lattice associated to the uniform pro-p group GL1+ϵ

d (Zp) is
isomorphic to gl1+ϵ

d (Zp) ([K1], Proposition 8.2).
Similarly, if sld(Zp) denotes the Zp-Lie lattice consisting of all d× d matrices

with entries in Zp and zero trace together with the commutator Lie bracket, then
the powerful Zp-Lie lattice associated to the uniform pro-p group SL1+ϵ

d (Zp) is
isomorphic to sl1+ϵ

d (Zp).

In general, a closed subgroup of a uniform pro-p group G is not uniform,
which makes it difficult to establish a correspondence between closed subgroups
of G and Zp-Lie sublattices of L(G). However, the following result holds true.

Theorem 1.3.14 ([DDMS], Proposition 4.31). Let G be a uniform pro-p group.
Let H be a uniform closed subgroup of G and let N be a closed normal subgroup
of G such that G/N is uniform. Then

1. L(H) is a Zp-Lie sublattice of L(G);

23



2. N is uniform and L(N) is a Zp-Lie ideal in L(G).

By Zp-Lie ideal of L(G) we mean a Zp-Lie sublattice M of L(G) such that
[L(G),M ] ⊆M .

Note that, as [x ⊗ λ, y ⊗ µ] = [x, y] ⊗ (λµ), if L(H) is a Zp-Lie sublattice of
L(U), then L(H)⊗Zp Qp is a Qp-Lie subalgebra of L(U)⊗Zp Qp and, if L(K) is
a Zp-Lie ideal of L(U), then L(K)⊗Zp Qp is a Qp-Lie ideal of L(U)⊗Zp Qp.
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Chapter 2

Definability of the rank and
the dimension of p-adic
analytic pro-p groups

2.1 Introduction

In a recent paper ([NST]), Nies, Segal and Tent started an investigation of the
finite axiomatizability of profinite groups. A profinite group is said to be finitely
axiomatizable in the class of profinite groups with respect to a language L if there
is a first-order sentence ψG in the language L such that, for every profinite group
H the following holds: H satisfies ψG if and only if H is isomorphic to G, where
the isomorphism is required to be continuous. More generally, one can investigate
which properties or invariants of profinite groups belonging to a given class can
be described by a single first-order sentence in a certain language. In this case
we say that a property P is finitely axiomatizable in a class C of profinite groups
with respect to a language L if there exists a first-order sentence ϕP in L such
that the following holds: a profinite group G belonging to C has property P if
and only if ϕP holds true in G.

One of the classes of profinite groups under consideration in [NST] is the one
of pro-p groups of finite rank or, equivalently, p-adic analytic pro-p groups.
Regarding the rank of pro-p groups, Nies, Segal and Tent state the following
Proposition 1 ([NST], Proposition 5.1). For each positive integer r, there is a
sentence ρp,r in the language of groups such that, for every pro-p group G,

rk(G) ≤ r ⇒ G |= ρp,r ⇒ rk(G) ≤ r(2 + log2(r)).
As the proof of this proposition is only sketched in the aforementioned paper,

we present its proof in Section 2.2.4 for completeness. Then we improve on this
result by proving that the rank of a pro-p group is actually determined by a single
first-order sentence in the language of groups (compare with Corollary 2.3.6). In
other words, given a positive integer r, the property of having rank r is finitely
axiomatizable in the class of pro-p groups. To prove this we will establish first
the following fact, that is interesting in its own right (see Theorem 2.3.1).
Theorem 2. Let r be a positive integer and let G be a pro-p group of rank
rk(G) ≤ r. Suppose that F ⊴ o G is powerful. Then rk(G) = rk(G/P2r+1(F )).
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Recall that P2r+1(F ) is the 2r + 1 term in the lower p-series of F (see Section
1.1).
More generally, we show that, given a finite set of primes π, the rank of a pro-π
group is completely determined by a single first-order sentence (see Theorem
2.6.4):

Theorem 3. Let π = {p1, . . . , pk} be a finite set of primes and let r be a positive
integer. Then the property of having rank r is finitely axiomatizable in the class
of pro-π groups.

Moreover, we prove that this result is the best possible in the class of profinite
groups, meaning that the rank of a profinite group involving an infinite number
of primes cannot be finitely axiomatizable (Proposition 2.3.9).
We also prove an analogous statement for the dimension of pro-π groups (compare
with Theorem 2.7.1):

Theorem 4. Let π = {p1, . . . , pk} be a finite set of primes and let d be a k-
tuple of natural numbers. Then the property of having dimension d is finitely
axiomatizable in the class of pro-π groups of fixed finite rank.

Here, by dimG = d = (d1, . . . , dk), we mean that the pro-pi Sylow of G has
dimension Gi.

We give two different proofs of the previous theorem. The first uses the adjoint
representation of a p-adic analytic pro-p group (Section 2.4), while the second
relies on the following new description of the dimension of a finitely generated
powerful pro-p group (Theorem 2.5.1):

Theorem 5. Let G be a finitely generated powerful pro-p group with torsion
subgroup T . Then

dim(G) = d(G)− d(T ).

We will first prove both results for pronilpotent groups and then generalize them
to pro-π groups.

The chapter is organized as follows. We start with a brief recollection of
some preliminaries that will be needed throughout the chapter (Section 2.2).
Then we will prove the finite axiomatizability of the rank and the dimension
for pronilpotent groups (Sections 2.3, 2.4, 2.5). Along the way we also present
some alternative sentences that express the dimension of pronilpotent groups
belonging to some special classes of pronilpotent groups of finite rank (Section
2.4.3). Finally, in Sections 2.6 and 2.7 we extend these results to pro-π groups.
In Section 2.8 we make an analysis of the quantifier complexity of the sentences
that we wrote and, in Section 2.9, we collect some open questions that arise from
our work. Finally, in the last section we list some of the main formulas used
throughout the chapter for the convenience of the reader.

The material of this chapter led to the preprint [CK] written together my
advisor Benjamin Klopsch. In our preprint one can find the main results of this
chapter. These results were obtained and written up jointly by the two authors.
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2.2 Preliminaries

2.2.1 A few model theoretic facts and notation

In this section we collect some basic facts of model theory, following mostly [M]
and [TZ]. We will present the concepts and tools that we will need later on in
a rather informal way, mostly with a view towards the use of first-order logic in
group theory.

The basic idea of model theory is to use first-order languages to talk about
mathematical structures and their properties. By mathematical structure we
mean a set with a collection of distinguished functions, relations and elements.
For example, a group is a set with a distinguished element (the neutral element),
a binary function (the group operation) and a unary function (the inverse opera-
tion). Then one chooses a language with which it is possible to talk about these
distinguished functions, relations and elements.
Therefore the first concept to be introduced is the one of language.

Definition 2.2.1. A language L is given by the following elements:

1. a set of constant symbols;

2. a set of function symbols where, for each function symbol f , its arity nf

(i.e., the number of variables) is specified;

3. a set of relation symbols where, for each relation symbol R, its arity nR is
specified.

Example 2.2.2.

1. The language of groups is given by

Lgp = {1, ·,−1 }.

Here the constant 1 represents the neutral element of the group, · the (bi-
nary) group operation and −1 the (unary) inverse function.

2.
Lordgp = {1, ·,−1 , <}

is the language of ordered groups, where 1, ·,−1 are as above and < is a
symbol for a binary relation (order relation).

3. The language of rings Lrings is given by the set

Lrings = {0, 1,+,−, ·}.

Once we have a language L we need a structure where we can interpret the
symbols of such a language.

Definition 2.2.3. Let L be a language. An L-structure M is given by the
following data:

1. a non-empty set M , called the universe of M;
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2. an element cM ∈M for each constant c ∈ L;

3. a function fM : Mnf →M for each function f in L with nf variables;

4. a set RM ⊆MnR for each relation symbol R in L with arity nR.

For example, if Lgp is the language of groups, (Z, 0,+,−) is an Lgp-structure.
Once we have a language L and an L-structure, we can talk about properties

of our structure by means of first-order formulas. Concretely, a first-order formula
in the language L is a finite string of symbols built using the symbols of L, variable
symbols, the equality symbol (=), the connectives and (∧), or (∨), not (¬), the
existential quantifier (∃), the universal quantifier (∀) and parentheses. Note that
the implication (→) can be obtained as a combination of ¬ and ∨. One then
interprets such formulas in the given L-structure.
For instance, if L = Lgp, examples of formulas are:

1. ∃x : (x · x · x = 1 ∧ x ̸= 1);

2. x2 = 1;

3. x−1yx = z;

4. ∀y, z : y−1z−1yz = 1.

It is important to note that in first-order logic one is allowed to quantify only
over elements of the structures and not, for examples, over its substructures. The
formal definition of a formula is inductive and can be found in Chapter 1 of [M].

A variable in a formula is said to be free if it is not preceded by a (universal or
existential) quantifier. A sentence is a formula without free variables. This means
that one can always tell the truth value of a sentence for each given structure.
Examples 1 and 4 above are examples of sentences. Given any group G we can
say whether they hold true in G or not: the sentence in Example 1 holds true in
G if and only if G contains an element of order 3, while the sentence in Example
4 is true in G if and only if G is abelian. The truth value of the formulas in
Examples 2 and 3 instead depend on the values that we choose for replacing the
variables x, y, z. For example, if we take G to be C4 with additive notation, the
sentence in Example 2 is true if we replace x with 2̄ and false if we replace x
with 3̄.
As a matter of notation, if ϕ is a formula with free variables v1, . . . , vn, we will
sometimes write ϕ(v1, . . . , vn) to underline the fact that v1, . . . , vn are free.

If g := (g1, . . . , gm) is an element of the L-structure M and ϕ(v1, . . . , vm) is
an L-formula with free variables v1, . . . , vm, we write M |= ϕ(g) if ϕ(g) holds
true in M and we also say that M satisfies ϕ(g). Note that we will often use the
algebraists’ convention of talking about the universe of a structure, rather than
the structure itself, hence writing M |= ϕ(g) rather than M |= ϕ(g).
For example, if we take ϕ(x) to be the formula x2 = 1 in the previous Example
2, we have that C4 |= ϕ(2̄) and C4 ̸|= ϕ(3̄). If instead ψ is the sentence ∀y, z :
y−1z−1yz = 1 from Example 4, we have that, for every abelian group G, G |= ψ.

A set of sentences T is called a theory. An L-structureM is said to be a model
of T if M |= ϕ for every sentence ϕ in T and we say that a theory is satisfiable
if it has a model. Two structures are said to be elementarily equivalent if they
satisfy the same first-order sentences.
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Now that we have L-formulas and we can express that a given formula holds
true in an L-structure, we can introduce sets that are defined by a formula.

Definition 2.2.4. Let M be an L-structure. A subset X ⊆ Mn is said to
be definable if there exist an L-formula ϕ(v1, . . . , vn, w1, . . . , wm) and elements
b1, . . . , bm in M such that

X = {(a1, . . . , an) ∈Mn :M |= ϕ(a1, . . . , an, b1, . . . , bm)}.

The elements b1, . . . , bm are called parameters.

In this thesis we will always use the language of groups, therefore from now
on L = Lgp, unless otherwise stated.

Example 2.2.5. If G is a group, its center Z(G) is definable without parameters:

Z(G) = {g ∈ G : G |= (∀x : gx = xg)}.

Here the formula defining Z(G) is given by ϕ(g) : ∀x : gx = xg.
Similarly, also the centralizer of an element of G is definable, however by a formula
with parameters. If x is an element of G, then

CG(x) = {g ∈ G : G |= (gx = xg)}.

In this case the formula is given by ϕ(g, x) : gx = xg, where g is considered as
variable and x as parameter.

Let C be a class of L-structures. We say that C is an elementary class or an
axiomatizable class if there exists a theory T such that C = {M :M |= T}.
For example, the class of groups is axiomatizable in the language of groups by
the sentences

∀x : x · 1 = 1 · x = x;
∀x, y, z : (x · y) · z = x · (y · z);
∀x : x · x−1 = x−1 · x = 1.

(2.1)

If one adds to these axioms the sentence ∀x, y : xy = yx one gets that also the
class of abelian groups is axiomatizable.

One says that a class C is finitely axiomatizable if C is axiomatizable and the
theory that axiomatizes C is finite. Note that this is equivalent to the fact that
C is axiomatized by a single sentence, that we can take to be the conjunction of
the finitely many sentences of the theory.

One fundamental result in model theory, that can be used to prove that a
given property is not (finitely) axiomatizable, is the compactness theorem (see
[M], Theorem 2.1.4).

Theorem 2.2.6 (Compactness). Let T be an L-theory. Then T is satisfiable if
and only if every finite subset of T is satisfiable.

Example 2.2.7 ([Ba], Proposition 2.3). The property of ‘being torsion’ for a
group is not axiomatizable (in the language of groups), i.e., the class of torsion
groups is not axiomatizable. By torsion group we mean a group where every
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element has finite order, i.e., for every g there exists a natural number n ≥ 1 such
that gn = 1 (in additive notation, ng = 0).

To prove our claim, we assume by contradiction that the class of torsion
groups is axiomatized by a theory T . By using compactness, we will find a model
of T that is not a torsion group. We use additive notation. Fix a new constant
symbol c and consider the language L ∪ {c} that extends the language of groups
with the new constant c. Write ψn for the sentence nc ̸= 0 for n ≥ 1 and set
T ′ := T ∪ {ψn|n ≥ 1}. Any finite subset S of T ′ is satisfiable: if ψi1 , . . . , ψim

are the elements from {ψn|n ≥ 1} belonging to S, with i1 ≤ i2 ≤ · · · ≤ im,
and N > im, then the finite cyclic group CN of order N is a model of S, if we
interpret the constant c as a generator of CN . It follows by compactness that T ′

is satisfiable, hence there exists a non-torsion group that satisfies the theory T .

One of the proofs of the compactness theorem uses Łoś’s theorem on ultra-
products (see [E], Section 5). We just recall very briefly the main definitions.

Definition 2.2.8. Let I be a non-empty set. A filter over I is a subset U of the
power set of I such that:

1. the empty set does not belong to U and I belongs to U ;

2. if X and Y belong to U , then X ∩ Y belongs to U ;

3. if X ∈ U and X ⊆ Y ⊆ I, then Y ∈ U .

If Y ⊆ I is non-empty, then U = {X ⊆ I | Y ⊆ X} is called the principal filter
generated by Y . A filter U is called an ultrafilter over I if, for every X ⊆ I, either
X ∈ U or I \X ∈ U .

Given a language L and a family of L-structures, we can define their ultra-
product in the following way.

Definition 2.2.9. Let I be a non-empty set, (Ai | i ∈ I) a family of L-structures
and U an ultrafilter on I. Then we can define the ultraproduct

∏︁
i∈I Ai/U by

considering the cartesian product ∏︁i∈I Ai modulo the equivalence relation ∼U
given by

(ai)i∈I ∼U (bi)i∈I ⇔ {i ∈ I | ai = bi} ∈ U .

One can see that the ultraproduct ∏︁i∈I Ai/U can be made into an L-structure
(see [E], Section 2, or [TZ], Exercise 1.2.4).

We will just use the following corollary of Łoś’s theorem.

Theorem 2.2.10 (Łoś; see [E], Corollary 3.2). Let L be a language, I an infinite
set and U an ultrafilter on I. Let (Ai | i ∈ I) be a family of L-structures.
Then, for any L-sentence ϕ, the ultraproduct

∏︁
i∈I Ai/U satisfies ϕ if and only if

{i ∈ I | Ai |= ϕ} ∈ U .

A consequence of Łoś’s theorem is that, if each member of a family of groups
satisfies a sentence, then also their ultraproduct satisfies the same sentence ([E],
Corollary 3.3). It follows that a class of groups that is not closed under ultra-
products cannot be axiomatizable. For example, one can prove that the class of
torsion groups is not axiomatizable also by showing that this class is not closed
under ultraproducts (see [E], Corollary 3.4).
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A consequence of the compactness Theorem is the Löwenheim-Skolem Theo-
rem (see [TZ], Theorem 2.3.1), from which one can deduce the following ([TZ],
Corollary 2.3.2):

Theorem 2.2.11. A theory that has an infinite model has a model in every
cardinality κ ≥ max(|L|,ℵ0).

From this result it follows, for example, that the class of finitely generated
groups is not axiomatizable: finitely generated groups have at most countable
cardinality but, if there was a theory axiomatizing this class, this theory would
also have an uncountable model. Even more, from this it follows that no theory
can axiomatize the property of being isomorphic to a given infinite group, again
for cardinality reasons.

Finally, another result that we will use to prove the non-axiomatizability
of a property is the following theorem proved by Feferman and Vaught ([FV],
Corollary 6.7).

Theorem 2.2.12. If the class of all models of a set of first-order sentences is
closed under finite direct products, then it is closed under arbitrary direct products.

As a matter of example, we list here some common properties of groups and
state whether they are (finitely) axiomatizable or not in the first-order language
of groups. See also [Ba] and [W] for more examples and explanations.

Property A FA Reason/Formula(s)
group yes yes axioms (2.1) in definition

abelian yes yes axioms (2.1) ∧ ∀x, y : xy = yx

divisible yes no (∀x∃y : yn = x)n≥1 / Compactness Theorem
finite no no Łoś Theorem

finite p-group no no Łoś Theorem
torsion-free yes no (∀x : x ̸= 1→ xn ̸= 1)n≥1 / Compactness Theorem

torsion group no no Compactness Theorem (see Example 2.2.7)
finitely generated no no Löwenheim-Skolem Theorem

simple no no Łoś Theorem
nilpotent no no Łoś Theorem

nilpotent of class 2 yes yes ∀x, y, z : [x, y, z] = 1
soluble no no Łoś Theorem

Sometimes a certain class of L-structures is not axiomatizable but it is still
axiomatizable within another class of L-structures: we say that the class of L-
structures C is axiomatizable in the class of L-structures D if there exists a theory
T such that, for every G ∈ D, G belongs to C if and only if G satisfies T .
This will be relevant to our discussion because we will always deal with axioma-
tizability with respect to a given class, for example the class of pro-p groups with
p a fixed prime.

Example 2.2.13. Any class of groups C is axiomatizable in the class D of finite
groups. Indeed, for each finite group G we can consider the sentence ϕG that one
obtains from the multiplication table of G. Then C is axiomatized by the theory
{¬ϕG : G /∈ C}.
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The previous example shows that, when dealing with axiomatizability in the
class of finite groups, the question becomes whether a certain subclass is finitely
axiomatizable. Some results in this direction are:

• Simple groups are not FA within the class of finite groups ([W]);

• Non-abelian simple groups are FA within the class of finite groups ([W]);

• Soluble groups are FA within the class of finite groups ([W2]);

• Nilpotent groups are not FA within the class of finite groups ([CW]).

We conclude this section recalling some of the facts and notation frequently
used in [NST] that we will often use; see [NST], Section 2.
Let G be a group and let H be a definable subgroup of G, i.e., there exists a
formula κ(x) (possibly with parameters g) such that H = κ(G) = κ(g,G) = {x ∈
G | G |= κ(g, x)}.
Then, H satisfies a formula ϕ if and only if G satisfies the corresponding restricted
formula, that is obtained by replacing expressions of the form ∀x : ψ(x) with
∀x : (κ(x) → ψ(x)) and expressions of the form ∃x : ψ(x) with ∃x : κ(x) ∧
ψ(x). In symbols, for any formula ϕ(y1, . . . , yk) there is a restriction formula
res(κ, ϕ)(y1, . . . , yk) such that

G |= res(κ, ϕ)(b)⇔ H |= ϕ(b).

For example, let H be a definable subgroup of G by means of a formula κ(x). If
we want to express that H is abelian we can use the formula

∀g1, g2 : (κ(g1) ∧ κ(g2))→ g1g2 = g2g1.

In a similar way, if N = κ(G) is a definable normal subgroup of G, then there
exists a lifted formula lift(κ, ϕ) which satisfies

G |= lift(κ, ϕ)(b)⇔ G/N |= ϕ(b̃1, . . . , b̃k),

where, for each i = 1, . . . , k, b̃i is the image of bi under the projection map
G → G/N . Such a formula is obtained by replacing each atomic formula x = y
in ϕ with κ(x−1y).
Moreover, κ(G) is a subgroup of G if and only if G |= s(κ), where

s(κ) := ∃x : κ(x) ∧ ∀x, y : (κ(x) ∧ κ(y)→ κ(x−1y))

and κ(G) is a normal subgroup if and only if G |= s◁(κ), where

s◁(κ) := s(κ) ∧ ∀x, y : (κ(x)→ κ(y−1xy)).

2.2.2 A brief overview on the finite axiomatizability of profinite
groups

The concept of finite axiomatizability used in [NST] is a generalization of the con-
cept of quasi-finite-axiomatizability introduced in [N1] by Nies. This stems from
the study of which properties of a group are axiomatizable by a set of sentences
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in first-order logic. We already saw in the previous section that some properties
of groups are not axiomatizable but they become such if we restrict the class of
groups under consideration. One of the strongest properties of a group G is being
isomorphic to G. Hence the following question naturally arises: given a group G,
does there exist a set of sentences T such that, for any given group H, the theory
of H is T if and only if H is isomorphic to G? We already noted that, given
an infinite finitely generated group G, the property of being isomorphic to G
cannot be axiomatizable because of the Löwenheim-Skolem Theorem. Therefore
one sees immediately that some kind of restriction on the class of groups under
consideration is necessary. Moreover, in [N1], Nies observes that even restricting
to the class of countable groups is not enough. Indeed, for any finitely generated
group G there exists a countable group that has the same theory as G but is not
isomorphic to G. Therefore he considers the class of finitely generated groups and
defines a finitely generated group G to be quasi-axiomatizable if, given any finitely
generated group H with the same theory as G, H is isomorphic to G. In the same
spirit, working in the realm of profinite groups, Jarden and Lubotzky proved that,
if two profinite groups have the same theory and one of them is finitely generated,
then the two groups are isomorphic ([JL], Theorem A). However, the situation
for abstract groups is more complicated. For example, in [N1], Nies points out
that there exists a finitely generated torsion-free nilpotent group of class 3 that
is not quasi-axiomatizable. This follows from an example of Hirshon of such a
group G for which there exists a group H with G × Z ∼= H × Z but G ̸∼= H
(see [H], Section 3, page 154). By a result of Oger ([O]), two finitely generated
nilpotent groups G and H have the same theory if and only if G×Z ∼= H×Z and
therefore G and H from Hirshon’s example are elementarily equivalent but not
isomorphic. However, Nies observes that there are classes of quasi-axiomatizable
groups, such as finitely generated abelian groups and torsion-free finitely gener-
ated nilpotent groups of class 2. Even more, in his investigation he finds out
that there are finitely generated groups that are completely determined (among
finitely generated groups) by a single first-order sentence. This leads him to the
following definition:

Definition 2.2.14. A finitely generated group G is quasi-finitely axiomatizable
(QFA) if there exists a first-order sentence ϕ such that, for every finitely generated
group H, H satisfies ϕ if and only if H is isomorphic to G.

For example, he proves that, if p is a prime number, then the restricted
wreath product Cp ≀ Z is quasi-finitely axiomatizable ([N1], Theorem 2.3). See
[N2], Section 7, for more examples and results.

In [NST], Nies, Segal and Tent extend the previous definition in the following
way:

Definition 2.2.15. Let C be a class of groups and L a language. We say that
a group G belonging to C is finitely axiomatizable (FA) in C with respect to L
if there is a sentence ϕ in the language L such that, for any group H ∈ C, H
satisfies ϕ if and only if H is isomorphic to G.

If the class of groups under consideration is a class of topological groups, such as
the class of profinite groups or pro-p groups, the isomorphism in the definition is
required to be a continuous map.
Observe that QFA just means FA in the class C of finitely generated groups.
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To give some examples of FA profinite groups, regarding p-adic analytic
groups, in [NST] the authors prove, among many other results, that a pro-p group
of finite rank given by the pro-p completion of an (abstractly) finitely presented
group is finitely axiomatizable in the class of pro-p groups ([NST], Theorem 1.6)
and that, if d ≥ 2 and p is an odd prime with p ∤ d, then each of the groups
SL1

d(Zp), SLd(Zp) and PSLd(Zp) is finitely axiomatizable in the class of profinite
groups. It is an open question to establish whether a finitely generated non-
abelian free pro-p group is finitely axiomatizable in the class of profinite groups
([NST], Section 1.5, Problem 3).

By abuse of notation we will also say that a property P is finitely axiomati-
zable for groups of a certain class C if there exists a single first-order sentence ϕ
such that a group G in C has property P if and only if G satisfies ϕ.

2.2.3 Some model theory of Cπ groups

Given a finite set of primes π := {p1, . . . , pk}, we follow [NST] in calling groups of
the form G1×· · ·×Gk, where each Gi is a pro-pi group, Cπ groups; equivalently, a
Cπ group is a pronilpotent group whose Sylow subgroups are pro-pi groups, with
pi ∈ π (Proposition 1.1.22).

The class of finitely generated Cπ groups is particularly nice from a first-order
point of view. To start with, as we will explain below, one can express the fact
that d elements of a Cπ group G are generators of G.
To avoid repetition, from now on π will denote a finite set of primes {p1, . . . , pk}
and we will denote as usual with d(G) the minimal number of generators of G.

We start by recalling a crucial fact established in [NST], Section 5.1.
Lemma 2.2.16 ([NST]). If G is a finitely generated Cπ group and q(π) :=
p1 · · · pk, then its Frattini subgroup

Φ(G) := [G,G]Gq(π)

is definable.
Proof. If G is generated by elements a1, . . . , ad, then

[G,G] = [a1, G] · · · [ad, G]

(see Proposition 1.2.2). Recall that Gq(π) denotes the group generated by the
q(π)-th powers of the elements of G, while G{q(π)} denotes the subset of G
consisting of the q(π)-th powers of the elements of G. Since [G,G]Gq(π) =
[G,G]G{q(π)}, we can define Φ(G) by means of the formula with parameters
ϕ1 = ϕ1(a1, . . . , ad, G) given by

ϕ1(a1, . . . , ad, x) := ∃z, y1, . . . , yd : x = [a1, y1] · · · [ad, yd]zq(π).

Thanks to the fact that the Frattini subgroup of a finitely generated Cπ group
is definable, for each integer d ≥ 1, we can write a formula βd (depending on π)
with parameters a1, . . . , ad that expresses the fact that a Cπ group is generated
by a1, . . . , ad ([NST], Proposition 5.3). As the existence of such a formula is a
crucial part in being able to express properties of Cπ groups and as we will need
it later to study the complexity of our sentences, we recall the precise statement
and its proof here.
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Lemma 2.2.17 ([NST]). Given a positive integer d, there exists a formula (with
parameters) βd such that, for a Cπ group G,

G |= βd(a1, . . . , ad) ⇔ G = ⟨a1, . . . , ad⟩.

Proof. The idea to write this formula is to use the fact that the quotient G/Φ(G)
is a finite direct product of elementary abelian groups, each of order dividing q(π).
Since Φ(G) is definable in a finitely generated Cπ group, we just need to write
that each element of G belongs to one of the finitely many cosets of G/Φ(G).
We first need to express the fact that, if G is d-generated, then the commutator
word has width d in G. To do so, given a1, . . . , ad generators of G, we say that
the product of any d + 1 commutators belongs to [a1, G] · · · [ad, G] by means of
the formula w(a1, . . . , ad):

∀x1, y1, . . . , xd+1, yd+1∃z1, . . . , zd : [x1, y1] · · · [xd+1, yd+1] = [a1, z1] · · · [ad, zd].

Note that, if G satisfies w(a1, . . . , ad), then it follows automatically that the set
[a1, G] · · · [ad, G] is a subgroup of G. Moreover, G satisfies w(a1, . . . , ad) if and
only if [G,G] = [a1, G] · · · [ad, G].
We now write that every element x in G belongs to one of the finitely many cosets
of G/Φ(G), that are of the form a

s(1)
1 · · · as(d)

d Φ(G) for s(1), . . . , s(d) belonging to
the set S := {0, 1, . . . , q(π)−1}. This can be done by saying that x−1a

s(1)
1 · · · as(d)

d

belongs to Φ(G), i.e., that G satisfies ϕ1(a1, . . . , ad, x
−1a

s(1)
1 · · · as(d)

d ). In conclu-
sion, let βd(a1, . . . , ad) be the formula

w(a1, . . . , ad) ∧ ∀x :
⋁︂

s(1),...,s(d)∈S

ϕ1(a1, . . . , ad, x
−1a

s(1)
1 · · · as(d)

d ).

Then, from the previous considerations, it is clear that if G is generated by
a1, . . . , ad then G satisfies βd(a1, . . . , ad). Conversely, if G is a Cπ group that sat-
isfies β(a1, . . . , ad), then G′ = [a1, G] · · · [ad, G] and every element x in G belongs
to as(1)

1 · · · as(d)
d [a1, G] · · · [ad, G]Gq(π) for some s(1), . . . , s(d) in S. It follows that

G ⊆ ⟨a1, . . . , ad⟩[a1, G] · · · [ad, G]Gq(π) = ⟨a1, . . . , ad⟩G′Gq(π) = ⟨a1, . . . , ad⟩Φ(G),

i.e., G is (topologically) generated by a1, . . . , ad.

From βd one can easily obtain sentences βd̃ and β∗
d (depending on π) such

that, for a Cπ group G,
G |= βd̃ ⇔ d(G) ≤ d,

G |= β∗
d ⇔ d(G) = d.

These sentences are given by

β̃d := ∃a1, . . . , ad : βd(a1, . . . , ad)

and
β∗

d := β̃d ∧ ¬β̃d−1.

Therefore, the property of a Cπ group of being d-generated can be expressed by
one single first-order sentence, i.e., it is a finitely axiomatizable property.
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It is interesting to note that the same is not true for profinite groups, i.e.,
in the class of profinite groups the property of being d-generated, as well as the
property of being finitely generated, cannot be expressed by a single first-order
sentence ([NST], Proposition 5.4).

If the Cπ group G has finite rank, by iteration also the higher Frattini sub-
groups Φm(G) (m ≥ 1), defined recursively by Φm(G) := Φ(Φm−1(G)), can be
characterized by a first-order formula (with parameters) ϕm.
More precisely, let rk(G) = r and define ϕ1 and βr as before, taking d = r. Then
Φ(G) has rank bounded by r and therefore there exist elements b(1)

1 , . . . , b
(1)
r in

Φ(G) such that Φ(G) = ⟨b(1)
1 , . . . , b

(1)
r ⟩. It follows that

Φ(Φ(G)) = {x ∈ Φ(G)| ∃w, t1, . . . , tr ∈ Φ(G) : x = [b(1)
1 , t1] · · · [b(1)

r , tr]wq(π)}.

Hence, Φ(Φ(G)) is defined in G by the formula

ϕ2 = ϕ2(b(1)
1 , . . . , b(1)

r , x) := res(ϕ1, ϕ1(b(1)
1 , . . . , b(1)

r , x)),

where the parameters b(1)
1 , . . . , b

(1)
r can be described implicitly by the formula

res(ϕ1, βr(b(1)
1 , . . . , b(1)

r )),

which describes the fact that Φ(G) is generated by b(1)
1 , . . . , b

(1)
r .

In the same way one can find generators b(2)
1 , . . . , b

(2)
r of Φ(Φ(G)) and it-

erate the process just described, thus finding, for each m ≥ 1, the formula
ϕm(b(m−1)

1 , . . . , b
(m−1)
r , x).

Note that when we want to talk about properties of the Frattini subgroup
of a pro-p group G with rank r by means of a formula ψ, we need to include
β̃r in ψ, since the generators of G are needed in the formula ϕ1. The same
is true for the iterated Frattini subgroup Φm(G) for m ≥ 2 and moreover, in
this case, we also need the generators of all the iterated Frattini subgroups
Φk(G) for k ∈ {1, . . . ,m − 1}, i.e., we have to add, for k ∈ {1, . . . ,m − 1},
all the sentences ∃b(k)

1 , . . . , b
(k)
r : ⋀︁r

i=1 ϕk(b(k)
i ) ∧Φk(G) |= βr(b(k)

1 , . . . , b
(k)
r ), where

Φk(G) |= βr(b(k)
1 , . . . , b

(k)
r ) is given by res(ϕk, βr(b(k)

1 , . . . , b
(k)
r )). As we will often

need to speak of the iterated Frattini subgroup and writing such a sentence would
be rather long, we make the following shortcuts.
If G is a pro-p group of finite rank r we will denote by ϕG

m the formula defining
Φm(G) in G, that is given by

ϕG
0 = ϕ0 := ∃b(0)

1 , . . . , b(0)
r : βr(b(0)

1 , . . . , b(0)
r )

for m = 0 and, for m ≥ 1, by

ϕG
m(x) := ∃b(0)

1 , . . . , b(0)
r : βr(b(0)

1 , . . . , b(0)
r ) ∧

m−1⋀︂
k=1
∃b(k)

1 , . . . , b(k)
r :

m−1⋀︂
k=1

r⋀︂
i=1

ϕk(b(k−1)
1 , . . . , b(k−1)

r , b
(k)
i ) ∧

m−1⋀︂
k=1

res(ϕk, βr(b(k)
1 , . . . , b(k)

r ))

∧ ∃w, t1, . . . , tr : ϕm−1(b(m−1)
1 , . . . , b(m−1)

r , w)

∧
r⋀︂

i=1
ϕm−1(b(m−1)

1 , . . . , b(m−1)
r , ti) ∧ x = [b(m−1)

1 , t1] · · · [b(m−1)
r , tr]wq(π).
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The first term of the formula expresses the fact that b(0)
1 , . . . , b

(0)
r generate G,

the second and third terms say that, for each k ∈ {1, . . . ,m − 1}, the ele-
ments b

(k)
1 , . . . , b

(k)
r belong to Φk(G) and generate Φk(G) and the last three

terms are the definition of Φm(G). Note that with these last three terms, that
form the last two lines of the formula ϕG

m(x), we are just explicitly writing out
res(ϕm−1, ϕm(b(m−1)

1 , . . . , b
(m−1)
r , x)).

Remark 2.2.18. Note that the previous sentence ϕG
m that defines Φm(G) im-

plicitly states also that d(Φi(G)) ≤ r for each 0 ≤ i ≤ m− 1.

Finally, it is worth noting that, when we want to express something of the
form

Φm(G) |= ψ1 ∧ Φm(G) |= ψ2 ∧ G/Φm(G) |= ψ3 ∧ ...

we will write it as

res(ϕG
m, ψ1) ∧ res(ϕG

m, ψ2) ∧ lift(ϕG
m, ψ3) ∧ ...

but, if needed, we can assume that we are choosing the same sets of generators
at each step in the formulas for ϕG

m.
Even if we will not make use of it, note that a similar argument can be used

to define the iterated Frattini subgroups when it is known that G is d-generated
but the rank of G is not known. In this case one can use the Schreier formula to
bound the number of generators at each step (see Proposition 1.1.10).

Later we will also need the following fact, of which we briefly sketch the proof.

Lemma 2.2.19. If G = G1 × · · · ×Gk, then

Φ(G) ∼= Φ(G1)× · · · × Φ(Gk).

Proof. Recall that this isomorphism holds for a finite group ([Mi]) and that, if
{Gi}i∈I is an inverse system of finite groups, then Φ(lim←−i∈I

(Gi)) = lim←−i∈I
(Φ(Gi))

([RZ], Proposition 2.8.2, (c)). It follows that, if we denote by U the set of open
normal subgroups of G,

Φ(G) = Φ( lim←−
U∈U

(G/U)) = lim←−
U∈U

Φ(G/U) = lim←−
U∈U

Φ( G1
G1 ∩ U

× · · · × Gk

Gk ∩ U
)

= Φ( lim←−
U∈U

( G1
G1 ∩ U

))× · · · × Φ( lim←−
U∈U

( Gk

Gk ∩ U
)) = Φ(G1)× · · · × Φ(Gk).

By induction, we obtain, for every m ≥ 1,

Φm(G) ∼= Φm(G1)× · · · × Φm(Gk).

Finally, if G is a Cπ group, we say, as in [NST], that G is semi-powerful
(respectively semi-uniform) if each direct factor of G is powerful (respectively
uniform). If G is a Cπ group of finite rank r, for each i ∈ {1, . . . , k} we set
ri := rk(Gi) and

m(ri) := ⌈log2(ri) + εpi⌉,

37



with

εpi :=
{︄

0, if pi ̸= 2
1, if pi = 2

.

If m(r) := maxi=1,...,kmi, then Φm(r)(G) is semi-powerful ([NST], Theorem 5.7)
and being (semi)powerful is a first-order property: a finitely generated Cπ group
P is semi-powerful if and only if

P |= pow := ∀x, y ∃z : ([x, y] = zq′(π)),

where q′(π) := 2επq(π), with επ = 0 if 2 /∈ π and επ = 1 if 2 ∈ π ([NST], Section
5.2).
Note that

m(r) ≤ ⌈log2(r) + επ⌉. (2.2)

Let F be a definable semi-powerful subgroup of G defined by a formula θ;
then each term Pi(F ) (i ≥ 1) of the lower q(π)-series of F is definable in G.
Indeed, since F is semi-powerful, we have that

Pi(F ) = F q(π)i−1 = {xq(π)i−1 |x ∈ F}

for all i ≥ 1 ([DDMS], Theorem 3.6). Hence Pi(F ) is defined in F by the formula˜︂πF
i (z) := ∃x : z = xq(π)i−1 and it is defined in G by the formula πF

i := res(θ, ˜︂πF
i ).

2.2.4 The problem of the finite axiomatizability of the rank

As stated in the introduction of this chapter, the problem of the finite axioma-
tizability of the rank of a p-adic analytic pro-p group has its origin in the paper
[NST] and has a natural place in the general framework of studying first-order
properties of profinite groups, in this case in particular of pro-p groups. In the
already mentioned paper, Nies, Segal and Tent state Proposition 1, that we write
here again for convenience.

Proposition 2.2.20. For each positive integer r, there is a sentence ρp,r in the
language of groups such that, for a pro-p group G,

rk(G) ≤ r ⇒ G |= ρp,r ⇒ rk(G) ≤ r(2 + log2(r)).

They observe that, at a first glance, the property of having fixed rank r does
not seem to be axiomatizable. Indeed, if one uses the definition of rank to write a
sentence axiomatizing the fact that a given pro-p group G has rank r, one needs
to quantify over subgroups of G, which is not allowed in first-order logic.

We will prove in this thesis that the property of having a fixed finite rank is
actually finitely axiomatizable in the class of pro-p groups. What will allow us
to do so is a result that states that we can read the rank of a pro-p group G in a
finite definable quotient of G.

Before illustrating our results we spell out in some detail the proof of Propo-
sition 2.2.20, as it is just sketched in the paper [NST]. Contrary to most of the
proofs that will follow, here we just describe the sentence without writing it out
in detail.
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Proof of Proposition 2.2.20. Let G be a pro-p group with rank at most r and let

m := m(r) := ⌈log2(r) + εp⌉,

with

εp :=
{︄

0, if p ̸= 2
1, if p = 2

.

By [NST], Theorem 5.7, and the previous considerations in Section 2.2.3, the
iterated Frattini group Φm(G) is a definable powerful normal subgroup of G
whose index is bounded by prm. The latter bound is obtained considering that
each quotient Φi(G)/Φi+1(G), for i ≥ 0, is an elementary abelian p-group with
rank bounded by r. Therefore, G/Φm(G) is a definable quotient of G and a
finite p-group with order bounded by prm. Moreover, since Φm(G) is powerful,
d(Φm(G)) = rk(Φm(G)) ≤ r and we can express this fact with the first-order
sentence β̃r. Hence, let ρp,r be the first-order sentence that expresses the fact
that Φm(G) is powerful with d(Φm(G)) ≤ r and that the quotient G/Φm(G) is a
finite group with order bounded by prm. It is clear that any pro-p group of rank
bounded by r satisfies ρp,r.

Assume now that G is a pro-p group satisfying ρp,r and set H := Φm(G). Let
K be a closed subgroup of G and consider K ∩H.

G

HK

K H

K ∩H

Since G satisfies ρp,r, we know that the rank of H is r and, therefore, d(K∩ H) ≤
r. Now d(K) ≤ d(K∩H)+d(K/K∩H) = d(K∩H)+d(HK/H). Thus we want
an upper bound for d(HK/H). By remark 2.2.18 we know that d(Φi(G)) ≤ r for
each 0 ≤ i ≤ m−1. Hence d(Φi(G)/Φi+1(G)) ≤ r for each 0 ≤ i ≤ m−1. As each
factor Φi(G)/Φi+1(G) is an elementary abelian group also rk(Φi(G)/Φi+1(G)) ≤ r
and therefore d((K ∩ Φi(G))Φi+1(G)/Φi+1(G)) ≤ r for each 0 ≤ i ≤ m − 1.
From this it follows that d(HK/H) = d(Φm(G)K/Φm(G)) ≤ rm. Therefore,
d(K) ≤ r(1 +m) ≤ r(2 + log2 r). Since K is an arbitrary closed subgroup of G,
the result follows.

Remark 2.2.21. As G/Φm(G) has bounded order, we can add to ρp,r a term
stating that G/Φm(G) is one of the finitely many possible groups of rank at most
r. In this way we can improve the upper bound r(2 + log2(r)) in the previous
proposition to 2r.

Finally, it is interesting to note that, because of the result of Feferman and
Vaught (Proposition 2.2.12), it is not possible to axiomatize the property of
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‘having finite rank’. Indeed, by using the fact that an extension of two pro-p
groups of finite rank has again finite rank (Proposition 1.1.14) and induction on
the number of factors, one sees that every finite cartesian product of pro-p groups
of finite rank is again a pro-p group of finite rank. However, an infinite cartesian
product of non-trivial pro-p groups of finite rank does not have finite rank.

Example 2.2.22. The pro-p group Cℵ0
p given by the direct product of countably

many copies of Cp has not finite rank as it is not even finitely generated. However
every finite direct product Cn

p has finite rank.

Observe that the same example shows that also the property of being finitely
generated cannot be axiomatized within the class of pro-p groups.

Then the question arises: is it possible to find a class of pro-p groups in
which the property of having finite rank is axiomatizable? For example, fix a
positive integer d and consider the class C of pro-p groups with minimal number
of generators bounded by d. Assume that there exists a sentence ϕ that expresses
the fact that a group in C has finite (unbounded) rank. Then the previous example
ceases to be an issue as Cℵ0

p is a model of ϕ not belonging to the class C under
consideration (see Section 2.9 for a list of questions).

2.3 Finite axiomatizability of the rank of Cπ groups

In this section we prove that the rank of a p-adic analytic pro-p group is finitely
axiomatizable. This result follows immediately from the slightly more general fact
that the rank of any pronilpotent group of finite rank is finitely axiomatizable.

The main tool that we need is a result that allows us to detect the rank of a
p-adic analytic pro-p group G in a finite quotient of G. More precisely, assume
that we have an upper bound λ on the rank of G. We will then find a normal
subgroup Hλ with finite index in G bounded by pf(λ) for a certain function f ,
such that rk(G) = rk(G/Hλ). This will help us in the following way. In the first
part of the proof of the finite axiomatizability of the rank we will write a sentence
that is satisfied by any pro-p group of a given rank r and that gives us an upper
bound λ := λ(r) for the rank of any pro-p group satisfying it, similarly to what
happens in Proposition 2.2.20. We will then add a term to our sentence which
states that rk(G/Hλ) = r. Then, thanks to our main tool, every pro-p group
that satisfies the sentence that we produced has rank r.

Let G be a pro-p group of finite rank. We start by recalling that, if F is
a powerful pro-p subgroup of G, then the lower p-series of F forms a base of
neighbourhoods of the identity in G (see Section 1.3) and therefore, by Remark
1.1.13,

rk(G) = sup{rk(G/Pj(F )) | j ≥ 1, j ∈ N} = max{rk(G/Pj(F )) | j ≥ 1, j ∈ N}.

It is then natural to look for the smallest positive integer j such that rk(G) =
rk(G/Pj(F )). In the following result we find a positive integer k that is dependent
on a bound on rk(G) such that rk(G) = rk(G/Pk(F )). Example 2.3.3 shows that
the approach used in the proof of this result is not suitable for finding an index
independent of rk(G); it remains open to determine if such an index exists.

Theorem 2.3.1. Let R be a positive integer and let G be a pro-p group of rank
rk(G) ≤ R. Suppose that F ⊴ o G is powerful. Then rk(G) = rk(G/P2R+1(F )).
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Before starting with the proof we need a lemma.

Lemma 2.3.2. Let G be a (not necessarily infinite) pro-p group with d(G) = d
and let N be a normal subgroup of G. Let m := d(G/N) and ȳ1, . . . , ȳm a
minimal generating set for this quotient. Then there exist z1, . . . , zd−m in N such
that y1, . . . , ym, z1, . . . , zd−m form a minimal generating set for G.

Proof. The quotient (G/N)/Φ(G/N) is a finite dimensional Fp-vector space of
dimension d(G/N) = m with basis given by the images of ȳ1, . . . , ȳm. By abuse
of notation we write again ȳ1, . . . , ȳm to denote the images of these elements in the
quotient (G/N)/Φ(G/N). Since G is a pro-p group, Φ(G/N) ∼= Φ(G)N/N and
therefore (G/N)/Φ(G/N) ∼= G/Φ(G)N . The latter group is in turn isomorphic
to the quotient of G/Φ(G) by Φ(G)N/Φ(G). It follows that we can lift the images
of the basis ȳ1, . . . , ȳm of (G/N)/Φ(G/N) to ỹ1, . . . , ỹm in G/Φ(G) and extend
to a basis of G/Φ(G) by means of elements z̃1, . . . , z̃d−m in Φ(G)N/Φ(G). Lifting
to G we obtain a minimal system of generators y1, . . . , ym, z1, . . . , zd−m with the
required properties.

Proof of Theorem 2.3.1. For convenience, write Fi = Pi(F ) for the terms of the
lower p-series of the powerful group F . For a contradiction, we assume that
rk(G) > rk(G/F2R+1). Consider H ≤o G with rk(G) = d(H) =: r. Since
the sequence {Fj}j is decreasing and ⋂︁j Fj = 1, the sequence d(HFj/Fj), j ∈
N, is non-decreasing and eventually constant, with final constant value d(H).
Since d(H) ≤ R < 2R + 1, we conclude that d(HFj/Fj), j ∈ N, cannot be
strictly increasing until it becomes constant. Indeed, if this sequence was strictly
increasing, there would be an index i0, with 1 ≤ i0 ≤ r = d(H) ≤ R < 2R + 1,
such that d(HFi0/Fi0) = d(H) = r, contradicting the fact that r = rk(G) >
rk(G/F2R+1). Consequently, we may choose H such that j = j(H) ∈ N is
minimal with regard to the following property:

d(HFj/Fj) = d(HFj+1/Fj+1) < d(HFj+2/Fj+2)
< . . . < d(HFj+k+1/Fj+k+1) = d(H) (2.3)

for suitable k = k(H) with 1 ≤ k ≤ r ≤ R.
In particular, this set-up implies that j + k + 1 > 2R + 1, for otherwise we

would contradict the assumption d(H) = rk(G) > rk(G/F2R+1). Hence j > R
and 2j ≥ j +R+ 1 ≥ j + k + 1. Consequently,

[Fj , Fj ] ⊆ F2j ⊆ Fj+k+1. (2.4)

We set m = d(HFj+1/Fj+1), choose y1, . . . , ym ∈ H such that ⟨y1, . . . , ym⟩ ≤c H
satisfies ⟨y1, . . . , ym⟩Fj+1 = HFj+1 and set

L := ⟨y1, . . . , ym⟩.

As d(HFj/Fj) = d(HFj+1/Fj+1), we gain for free the extra information LFj =
HFj . Next we put ℓ = d(H) −m and, by using Lemma 2.3.2, we complement
y1, . . . , ym to a minimal generating system for H, by choosing successively suit-
able w1, . . . , wℓ ∈ Fj+1: the first few elements w1, . . . , wl(1) are chosen in Fj+1
to obtain a minimal generating system y1, . . . , ym, w1, . . . , wl(1) modulo Fj+2, the
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next elements wl(1)+1, . . . , wl(2) are chosen from Fj+2 to obtain a minimal gener-
ating system y1, . . . , ym, w1, . . . , wl(2) modulo Fj+3 et cetera. We write l(0) = 0
and deduce from (2.3) that 0 = l(0) < l(1) < l(2) < . . . < l(k) = ℓ.

As F is powerful, Fj+1 = {xp | x ∈ Fj}. Thus we find z1, . . . , zℓ ∈ Fj with
wi = z p

i for 1 ≤ i ≤ ℓ. Observe that wl(i−1)+1, . . . , wl(i) ∈ Fj+i ∖ Fj+i+1 for
1 ≤ i ≤ k and therefore zl(i−1)+1, . . . , zl(i) ∈ Fj+i−1 ∖ Fj+i for 1 ≤ i ≤ k: if,
without loss of generality, zl(i−1)+1 was in Fj+i, then zp

l(i−1)+1 = wl(i−1)+1 would
be in Fj+i+1, in contradiction with our choice of wl(i−1)+1.

We claim that y1, . . . , ym, z1, . . . , zℓ is a minimal generating system for the
group ˜︁H = ⟨y1, . . . , ym, z1, . . . , zℓ⟩ ≤c G,

(hence ˜︁H ≤o G and d( ˜︁H) = m + ℓ = d(H) = rk(G) = r), and correspondingly
that

d( ˜︁HFj/Fj) < d( ˜︁HFj+1/Fj+1) < . . . < d( ˜︁HFj+k/Fj+k) = d( ˜︁H), (2.5)

in contradiction to our initial choice of H with the aim of minimising j = j(H).
In order to prove these claims we may work in the group G0 = HFj = ˜︁HFj =

LFj ≤o G. First note that we can quotient by F2j because, by (2.4), the minimal
number of generators of the image of H in G0/F2j remains r. Also, we know that
Fj/F2j is abelian; hence, from now on we will consider F2j = 1 and write A for
the abelian group Fj . Now observe that L ∩ A is normal in G0 = HA = LA: if
u ∈ L ∩ A, l ∈ L and a ∈ A then a−1ua = u, since A is abelian, and l−1ul is an
element of L that belongs to A because A is normal in G0. Moreover, we observe
that d(H/L ∩ A) = d(H), i.e., taking this quotient does not affect the minimal
number of generators of H. Indeed, since by construction

d( L

L ∩A
) = d(LA

A
) = d(HA

A
) = d( H

H ∩A
) = m = d(L),

L ∩A is contained in the Frattini subgroup of L, hence in the Frattini subgroup
of H. It follows that from now on we can consider the quotient G0/(L∩A), thus
assuming that the intersection L ∩A is trivial.

With these simplifications, G0 is a finite p-group and splits as a semidirect
product G0 = L⋉A.

We note that the minimal number of generators of the ZL-module H ∩ A =
⟨wm+1, . . . , wr⟩L is dL(H ∩ A) = ℓ, as H ∩ A can be generated by wm+1, . . . , wr

as an L-module. Indeed, an element v of H ∩A can be written as a product

y
ki1
i1
w

lj1
j1
· · · ykis

is
w

ljs
js

for some integer s, some indices i1, . . . , is in {1, . . . ,m} and j1, . . . , js in {1, . . . , ℓ}
and some exponents ki1 , . . . , kis , lj1 , . . . , ljs . Rearranging terms if necessary, we
can rewrite such product as ∏︂

t

y
κιt
ιt ·

∏︂
n

(wλγn
γn

)y
κµn
µn

for some indices ιt, µn in {1, . . . ,m}, γn in {1, . . . , ℓ} and exponents κιt , λγn , κµn .
Now the first factor of this product belongs to L and the second one to H ∩ A.
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Since this product represents an element in H ∩A, it follows that also the factor∏︁
t y

κιt
ιt must belong to A. But L ∩A = 1 by assumption, hence ∏︁t y

κιt
ιt is trivial

and v = ∏︁
n(wλjn

γn )y
κιn
ιn , which proves that H∩A can be generated by wm+1, . . . , wr

as an L-module. It is now clear that ℓ is the minimal number of generators of
such module, because otherwise one would get d(H) < r.
It follows that d(H) = r = d(L) + dL(H ∩A) = m+ ℓ.
In a similar way, d( ˜︁H) = d(L) + dL( ˜︁H ∩ A), where ˜︁H ∩ A = ⟨z1, . . . , zℓ⟩L is the
relevant ZL-module, whence dL( ˜︁H ∩ A) = d( ˜︁H) −m ≤ r −m = ℓ. Finally, we
notice that, since A is abelian, the p-power map x ↦→ xp induces an epimorphism
of ZL-modules ˜︁H∩A→ H∩A and shifts the elements z1, . . . , zℓ of Fj∖Fj+k each
one term down in the given filtration A = Fj ⊇ Fj+1 ⊇ . . . ⊇ Fj+k+1. Therefore,
dL( ˜︁H∩A) ≥ dL(H∩A) = ℓ and we can conclude that dL( ˜︁H∩A) = d( ˜︁H)−m = ℓ.
Therefore the minimal number of generators of ˜︁H modulo (L∩Fj)F2j is at least
r and hence also d( ˜︁H) ≥ r. But since r is the rank of G, the minimal number of
generators of ˜︁H is exactly r, which proves the claim.

Example 2.3.3.

1. Let G be an abelian pro-p group, i.e.,

G ∼= Zk
p × Cpl1 × · · · × Cpls

for some natural numbers s, k and some positive integers l1 . . . , ls. We
use additive notation for the group operation. Since G is abelian it is in
particular powerful, hence we can take F to be G in the previous theorem.
By Proposition 1.1.23 the rank of G is given by the number of factors of the
direct product, i.e., rk(G) = k+ s. If we want to use the previous theorem,

P2(k+s)+1(G) = p2(k+s)+1Zk
p × p2(k+s)+1Cpl1 × · · · × p2(k+s)+1Cpls

and taking the quotient G/P2(k+s)+1(G) we get

Ck
p2(k+s)+1 ×

Cpl1

p2(k+s)+1Cpl1
× · · · ×

Cpls

p2(k+s)+1Cpls

.

Since, for every i ∈ {1, . . . , s}, the group p2(k+s)+1Cpli is either trivial or a fi-
nite p-group of order pli−2(k+s)−1, it follows that the quotientG/P2(k+s)+1(G)
is a finite p-group of rank k + s.
Note that we could have taken the quotient of G by P2(G) obtaining the
same result.

2. Let n be a positive integer and consider the metabelian pro-p group

G = C ⋉A, where C = ⟨c⟩ ∼= Zp, A = ⟨a1, . . . , an⟩ ∼= Zn
p

and the action of C on A is given by

a c
i = aiai+1 for 1 ≤ i < n, and a c

n = an.
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Then G = ⟨c, a1⟩ is 2-generated, nilpotent of class n and has rank rk(G) =
n+ 1. For instance,

H = ⟨c, a pn−1

1 , a pn−2

2 , . . . , a p
n−1, an⟩ ≤o G

requires n+ 1 generators.
Suppose that p > n ≥ 2. Then F = ⟨cp⟩⋉A ⊴o G is powerful, and Φj(F ) =
⟨cpj ⟩⋉Apj−1 for j ≥ 1. Thus any subgroup ˜︁H ≤o G with ˜︁HF = HF = ⟨c⟩F
and d( ˜︁H) = d( ˜︁HΦn(F )/Φn(F )) requires less than d(H) = n+1 generators,
but nevertheless rk(G) = rk(G/Φ(F )). For example, the group

K = ⟨cp, a1, . . . , an⟩,

which is unrelated to H, requires n + 1 generators, even modulo Φ(F ) =
P2(F ).

Note that the previous example shows that one would have to follow a different
approach to eliminate the dependency on R from the number of iterations of
the Frattini subgroup of F . (Recall that, if F is a finitely generated powerful
pro-p group, then its lower p-series coincides with its iterated Frattini series,
with Φj(F ) = Pj+1(F ) for all natural numbers j; see Proposition 1.3.8).
Remark 2.3.4. Even if we presented the previous theorem in the pro-p case for
clarity of exposition and because this is the result that we will need in this section,
we want to mention that the same result holds more generally for profinite groups
of finite rank that are virtually pro-p, more or less with the same proof. As later
on, in Section 2.6, we will need this more general result, we state it here indicating
the changes needed in the proof. Recall that, if G is a profinite group and p is a
prime, we denote with rkp(G) the rank of a Sylow pro-p subgroup of G.
Theorem 2.3.5. Let R be a positive integer and let G be a profinite group that
is virtually pro-p. Assume that F ⊴o G is a powerful pro-p open normal subgroup
of G. If rkp(G) ≤ R, then

rkp(G) = rkp
(︁
G/P2R+1(F )

)︁
.

Proof. The proof is almost the same as the proof of Theorem 2.3.1. Here are
the few modifications needed. First of all, when considering the rank, we are
always talking about the p-rank rkp. We therefore assume by contradiction that
rkp(G) > rkp(G/F2R+1), with F2R+1 = P2R+1(F ). When choosing the open
subgroup H, we take it to be a pro-p subgroup of G of minimal index among the
open pro-p subgroups of G with d(H) = rkp(G). Instead, we do not make any
assumption of minimality on the index j = j(H) in the filtration (2.3). Finally,
when dealing with H̃ we need to observe that this group is pro-p, as it is a closed
subgroup of the pro-p group HFj . The result is then obtained by observing that
d(H̃) = rkp(G) (as before) and that |G : H̃| < |G : H|, that contradicts the
minimality of the index of H. The last inequality is obtained by extending the
p-power map to a surjective homomorphism from H̃ to H.

Now let π = {p1, . . . , pk} be a finite set of primes and G = G1 × · · · × Gk a
Cπ group. Then, since the primes in π are all distinct, the rank of G is related to
the ranks of the factors in the direct product by

rk(G) = maxi=1,...,k rk(Gi). (2.6)
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This formula is well known but we provide a proof for completeness.

Proof of (2.6). To prove the formula we show that, for any Cπ group H = H1 ×
· · · × Hk, the minimal number of generators of H is given by d(H) = m :=
maxi=1,...,k d(Hi). We start with the case where H is a finite Cπ group. Then
clearly d(H) ≥ m as the projection H → Hi is surjective for every i. Conversely,
for every i ∈ {1, . . . , k} let h1,i, . . . , hm,i be generators of Hi and consider the
subgroup T of H generated by all tuples (hj,1, . . . , hj,k) with j ∈ {1, . . . ,m}.
Each projection homomorphism T → Hi is surjective because its image contains
the generators h1,i, . . . , hm,i of Hi. It follows that, for each i ∈ {1, . . . , k}, the
order of Hi divides the order of T . Since the orders of the groups Hi are pairwise
coprime we get that also their product divides the order of T . Therefore we
conclude that

|H| = |H1| · · · |Hk| ≤ |T | ≤ |H|,

hence T = H and H is generated by m elements, i.e., d(H) ≤ m.
Let now H be any Cπ group, not necessarily finite, and let again m :=

maxi=1,...,k d(Hi). As before, clearly d(H) ≥ m. Conversely, by [DDMS], Propo-
sition 1.5,

d(H) = sup{d(H/N)|N ⊴ o H}
= sup{max{d(H1/N ∩H1), . . . ,d(Hk/N ∩Hk)}|N ⊴ o H}

thanks to the finite case. Therefore, d(H) = d(Hi/N ∩Hi) for some N ⊴ oH and
some i ∈ {1, . . . , k} and d(Hi/N ∩Hi) ≤ d(Hi) ≤ m.

We now look at the rank. Let G = G1 × · · · × Gk be a Cπ group. Then, by
definition of rank, maxi=1,...,k rk(Gi) ≤ rk(G). Conversely,

rk(G) = sup {d(H)|H <o G}
= sup max{d(Hi)|H = H1 × · · · ×Hk <o G}
≤ max rk(Gi).

Note that in the previous proof we also showed that, if G = G1 × . . .×Gk is
a Cπ group, then

d(G) = maxi=1,...,k d(Gi).

Finally, note that also in the case of a semi-powerful group F we have

d(F ) = maxi=1,...,k d(Fi) = maxi=1,...,k rk(Fi) = rk(F ).

Recall that the direct factors of a Cπ group G = G1 × · · · × Gk are Sylow
subgroups of G. If π = {p1, . . . , pk}, by rearranging the factors of G if necessary,
we can assume that Gi is the Sylow pro-pi subgroup of G for each i ∈ {1, . . . , k}.
Given a prime p, from now on we will call p-rank the common rank of all Sylow
pro-p subgroups of G and we will denote it by rkp(G).

From (2.6) it follows that a Cπ group G has finite rank if and only if each
direct factor of G has finite rank and in this case we have the following:
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Corollary 2.3.6. Let π := {p1, . . . , pk} be a finite set of primes. For each positive
integer r and each tuple r = (ri)i∈{1,...,k} of natural numbers in {0, 1, . . . , r} with
max ri = r there is a sentence σπ,r,r in the language of groups Lgp such that, for
every Cπ group G, the following are equivalent:

1. rk(G) = r and rkpi(G) = ri for every i ∈ {1, . . . , k},

2. G is a model of σπ,r,r.

We remark that the case of a p-adic analytic pro-p group can be recovered from
the pronilpotent case by considering π = {p} and G consisting of a single pro-p
factor.

Proof of Corollary 2.3.6. Recall that π := {p1, . . . , pk} is a finite set of primes
and let G = G1×· · ·×Gk be a Cπ group of rank r. Set m := m(r) = ⌈log2(r)+επ⌉,
with

επ :=
{︄

0, if 2 ̸∈ π
1, if 2 ∈ π

.

For the considerations made in Section 2.2.3, the iterated Frattini group
Φm(G) is a semi-powerful subgroup of G of rank bounded by r, definable via
the formula ϕG

m. Moreover, the quotient G/Φm(G) is a finite π-group with or-
der bounded by ∏︁

i=1,...k p
mr
i and rank bounded by r. Let λ1, . . . , λN be the

finitely many formulas that can describe such groups. Then G/Φm(G) |= λ :=
λ1 ∨ . . . ∨ λN .
It follows that a Cπ group G of rank r satisfies the sentence

res(ϕG
m,pow) ∧ res(ϕG

m, β̃r) ∧ lift(ϕG
m, λ).

Conversely, if a Cπ group G = G1 × · · · × Gk satisfies the previous sentence,
then its rank is bounded by 2r:

rk(G) ≤ rk(Φm(G)) + rk(G/Φm(G)) ≤ 2r

(see Proposition 1.1.14 for the first inequality).
We know that G has rank r if and only if the maximum of the ranks of the factors
Gi is r. Let R := 2r, F := P2R+1(Φm(G)) and Fi := P2R+1(Φm(Gi)) for every
i = 1, . . . , k. By Theorem 2.3.1, the rank of each factor Gi is equal to the rank
of Gi/Fi and, in order for G to have rank r, it is enough to require that one of
the quotients Gi/Fi has rank r and the others have rank bounded by r. This is
what we are going to express with a first-order sentence.
Given i ∈ {1, . . . , k}, consider the quotient Gi/Fi. This finite group has order
bounded by p2r(2R+1+m)

i and it is isomorphic to G/(F ·Gp
2r(2R+1+m)
i ). Recall that

each ri is a natural number in {0, . . . , r} and that max ri = r by assumption. Let
νpi,ri

1 , . . . , νpi,ri
Mpi,ri

be the finitely many formulas describing finite groups of order
bounded by p2r(2R+1+m)

i and with rank ri and set νpi,ri := νpi,ri
1 ∨ . . . ∨ νpi,ri

Mpi,ri
.

Let ξi be the formula describing F · Gp
2r(2R+1+m)
i (such a formula exists because

the word xp
2r(2R+1+m)
i has finite width; see [NST], Proposition 5.12.) Then the Cπ

group G has rank r and pi-rank ri for each i ∈ {1, . . . , k} if and only if it satisfies
the sentence
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σπ,r,r := res(ϕG
m,pow) ∧ res(ϕG

m, β̃r) ∧ lift(ϕG
m, λ) ∧

k⋀︂
i=1

lift(ξi, νpi,ri).

Remark 2.3.7. In the case where π consists of a single prime p, the last term
of σπ,r,r can be simplified to lift(πΦm(G)

2R+1 , ν), where πΦm(G)
2R+1 is the formula defining

P2R+1(Φm(G)) and ν is the formula describing finite groups of order bounded by
pr(2R+1+m) and with rank r.

Remark 2.3.8. In Section 2.6 we will prove a more general result than Theorem
2.3.5, that holds true for all virtually pronilpotent profinite groups (see Theorem
2.6.1). By using this result we could simplify the previous sentence by simply
imposing in the last step that rk(G/F ) = r and that, for each pi ∈ π, the pi-rank
of G/F is ri, where F := P2R+1(Φm(G)). However, since Theorem 2.6.1 will
depend on the classification of finite simple groups, it is worth recording the
previous proof that is independent of the classification.

We conclude this section by showing that it is necessary that the set of primes
π under consideration is finite. The situation would not change even if the lan-
guage Lgp was to be enlarged by an extra function to be interpreted as the p-power
map x ↦→ xp in pro-p groups. We sketch a proof for completeness; it relies on a
standard ultraproduct construction and a well-known quantifier elimination re-
sult in model theory. More precisely, we will use the fact that, given a field K,
the theory of infinite K-vector spaces is complete, i.e., any two models of this
theory are elementarily equivalent (see [TZ], Theorem 3.3.3).

Proposition 2.3.9. Let π̃ be an infinite set of primes and let r be a positive
integer. Then there is no Lgp-sentence ϑπ̃,r such that, for every p ∈ π̃ and every
finite elementary abelian p-group G, the following are equivalent:

1. rk(G) = r.

2. ϑπ̃,r holds in G, i.e., G |= ϑπ̃,r.

Proof. For a contradiction, assume that the Lgp-sentence ϑ = ϑπ̃,r has the desired
property. Then C r

p |= ϑ and C r+1
p |= ¬ϑ for all p ∈ π̃. We regard C r

p and C r+1
p

as the additive groups of the vector spaces F r
p and F r+1

p over the prime field Fp.
Let U be a non-principal ultrafilter on the infinite index set π̃. By Łoś’s

theorem (Theorem 2.2.10),

K =
(︃∏︂

p∈π̃
Fp

)︃
/U

is a field of characteristic 0 (see [E], Theorem 5.3), and

V =
(︃∏︂

p∈π̃
F r

p

)︃
/U and W =

(︃∏︂
p∈π̃

F r+1
p

)︃
/U

are non-zero K-vector spaces. Let LK-vs denote the language of K-vector spaces,
which comprises the language of groups (for the additive group of vectors) and,
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for each scalar c ∈ K, a 1-ary operation fc (to denote scalar multiplication by c).
Clearly, the Lgp-sentence ϑ gives rise to an LK-vs-sentence θ, not involving scalar
multiplication at all, such that, again by Łoś’s theorem,

V |= θ and W |= ¬θ,

in contradiction to the known fact that the infinite K-vector spaces V and W
have the same theory.

2.4 Finite axiomatizability of the dimension of Cπ groups

In this section we prove that the dimension of a pro-p group of fixed finite rank r
is axiomatizable by a single first-order sentence in Lgp. Also in this case we will
prove the result in the slightly more general case of pronilpotent pro-π groups, i.e.,
Cπ groups. Given a Cπ group with finite rank G = G1×· · ·×Gk, let di := dim(Gi)
for all i ∈ {1, . . . , k}; then we call the k-tuple d := (d1, . . . , dk) the dimension of
G. Recall that the factors Gi of G are Sylow subgroups of G. As in the previous
section, if π = {p1, . . . , pk}, we assume that Gi is a Sylow pro-pi subgroup of G
for each i ∈ {1, . . . , k}.

We deal first with the case of abelian Cπ groups of finite rank and then we
make use of it to deduce the result in the general case.

2.4.1 The abelian case

Let G = G1 × · · · × Gk be an abelian Cπ group of rank r = maxi=1,...,kri, where
ri is the rank of Gi for all i ∈ {1, . . . , k}.
Given a k-tuple d := (d1, . . . , dk) of natural numbers, we want to write a sentence
δab

π,r,d such that G |= δab
π,r,d if and only if G has dimension d.

By the structure theorem of finitely generated abelian pro-p groups, for every
i ∈ {1, . . . , k},

Gi
∼= Zdi

pi
× C

p
li,1
i

× · · · × C
p

li,si
i

for some non-negative integers di, si and some positive integers li,1, . . . , li,si , where
ri = di + si. Therefore

G ∼=
k∏︂

i=1
Zdi

pi
× C

p
li,1
i

× · · · × C
p

li,si
i

.

Hence we see that an abelian pro-pi group Gi of rank ri has dimension di if and
only if Gi has a finite subgroup isomorphic to the direct product of ri − di = si

copies of Cpi and Gi does not have a subgroup isomorphic to the direct product
of ri − di + 1 copies of Cpi .
Let γpi,si = γpi,si(v1, . . . , vp

si
i

) be a formula with free variables v1, . . . , vp
si
i

de-
scribing the direct product of si copies of the cyclic group Cpi ; such a formula
can be written by using the multiplication table of said group.
Hence, we can define the sentence δab

pi,ri,di
as follows:

∃ x1, . . . , xp
si
i

: γpi,si(x1, . . . , xp
si
i

) ∧ ¬∃ y1, . . . , yp
si+1
i

: γpi,si+1(y1, . . . , yp
si+1
i

).
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Moreover, we can detect the ranks ri of the direct factors of G thanks to the
fact that

G/Gp1···pk ∼= Cr1
p1 × · · · × C

rk
pk
. (2.7)

According to (2.7), in order to specify the ranks ri it is enough to write a sentence
that states that the quotient G/Gp1···pk contains a direct product isomorphic to
Cri

pi
for every i ∈ {1, . . . , k}.

Let χπ(z) be the formula ∃x : z = xp1···pk that defines Gp1···pk and consider the
sentence τr1,...,rk

given by

k⋀︂
i=1

(︂
∃x1, . . . , xp

ri
i

: γpi,ri(x1, . . . , xp
ri
i

) ∧ ¬∃y1, . . . , yp
ri+1
i

: γpi,ri+1(y1, . . . , yp
ri+1
i

)
)︂
.

Then we can express the isomorphism (2.7) by the sentence

τ r1,...,rk
:= lift(χπ, τr1,...,rk

).

By using δab
pi,ri,di

and τ r1,...,rk
we get:

Proposition 2.4.1. For every positive integer r and every k-tuple of natural
numbers d := (d1, . . . , dk), with di ≤ r for each i ∈ {1, . . . , k}, there is a sentence
δab

π,r,d in the language of groups Lgp such that for every abelian Cπ group G the
following are equivalent:

1. G has rank r and dimension d,

2. G is a model of δab
π,r,d.

Proof. Let δab
π,r,d be the sentence

⋁︂
r1,...,rkmaxiri=r

τ r1,...,rk
∧

k⋀︂
j=1

δ
ab
pj ,rj ,dj

.

Then, according to the previous discussion, an abelian Cπ group G = G1 ×
. . . ×Gk satisfies δab

π,r,d if and only if, for every i ∈ {1, . . . , k}, rkGi = ri (this is
assured by τ r1,...,rk

) and, for every i ∈ {1, . . . , k}, the dimension of Gi is di (this
follows from δ

ab
pj ,rj ,dj

).
Note that when the group has a single factor, i.e., when we are dealing with an
abelian pro-p group G of rank r, the sentence

lift(χp, τr) ∧ δab
p,r,d

is enough to ensure that G has dimension d.
Note also that we might use the sentence σπ,r,r from the previous section to
determine the ranks ri of the factors.

Remark 2.4.2. Letting α := ∀x, y : x−1y−1xy = 1, then G |= α if and only if G
is abelian. Thus, by setting δ̃ab

π,r,d := α ∧ δab
π,r,d we can reformulate the previous

proposition as:
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Proposition 2.4.3. For every positive integer r and every k-tuple of natural
numbers d := (d1, . . . , dk), with di ≤ r for each i ∈ {1, . . . , k}, there is a sentence
δ̃

ab
π,r,d in the language of groups Lgp such that, for every Cπ group G, the following

are equivalent:

1. G is abelian and has rank r and dimension d,

2. G is a model of δ̃ab
π,r,d.

2.4.2 The general case

Let G = G1× . . .×Gk be a Cπ group of finite rank and, for every i ∈ {1, . . . , k},
let Hi be an open normal uniform subgroup of the pi-adic analytic pro-pi group
Gi. Set H := H1 × · · · ×Hk.
Recall that, if we denote by L(Hi) the Lie lattice corresponding to Hi, the Lie
algebra of Gi is given by

L(Gi) := Qpi ⊗Zpi
L(Hi)

(see Section 1.3). From these Lie algebras we obtain an abelian group given by

L(G) :=
k⨁︂

i=1
Qpi ⊗Zpi

L(Hi) =
k⨁︂

i=1
L(Gi).

Let g := (g1, . . . , gk) ∈ G. The inner automorphism ϕg sending an element
x := (x1, . . . , xk) in G to xg := g−1xg = (g−1

1 x1g1, . . . , g
−1
k xkgk) induces an

automorphism ϕ∗
g : L(G)→ L(G) defined as

ϕ∗
g :=

k⨁︂
i=1

1⊗ ϕgi |L(Hi)

(see [DDMS], Section 9.5).
Denote as usual by Ad the adjoint representation of G:

Ad : G→ Aut(L(G)), g ↦→ ϕ∗
g.

Lemma 2.4.4. Let K be the kernel of Ad.
Then K = CG(H) = CG1(H1)× . . .× CGk

(Hk).

Proof. Let g be an element of K. Then ϕ∗
g = idL(G). In particular, for every

i ∈ {1, . . . , k}, for every λi in Qpi and every hi in Hi we have λi⊗g−1
i higi = λi⊗hi,

hence gi ∈ CGi(Hi).
Conversely, if g is in CG1(H1)× . . .×CGk

(Hk), then, given i ∈ {1, . . . , k}, for
every λ1, . . . , λs in Qpi and every h1, . . . , hs in Hi one has

ϕ∗
gi

(λ1 ⊗ h1 + . . .+ λs ⊗ hs) = (λ1 ⊗ g−1
i h1gi) + . . .+ (λk ⊗ g−1

i hkgi)
= (λ1 ⊗ h1) + . . .+ (λk ⊗ hk),

i.e., ϕ∗
gi

is the identity. Since this holds for every i ∈ {1, . . . , k}, ϕ∗
g is the identity.
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Assume now that G has rank r and dimension d, that K has dimension d1
and G/K has dimension d2, with d1 + d2 = d.
We will show that G satisfies a first-order sentence in the language of groups that
expresses the fact that G has dimension d.
In order to do so we will first consider K and G/K separately.
We need a (well known) lemma to begin with.

Lemma 2.4.5. Let U be an abelian subgroup of G and let CG(U) be the centralizer
of U in G. Then CG(CG(U)) is abelian and U ⊆ CG(CG(U)).

Proof. It is clear that U ⊆ CG(CG(U)).
Moreover, since U ⊆ CG(U), then CG(CG(U)) ⊆ CG(U).
We claim that CG(CG(U)) = Z(CG(U)).
Indeed, Z(CG(U)) = CG(CG(U)) ∩ CG(U) = CG(CG(U)).
It follows that CG(CG(U)) is abelian.

1. dim K

Since K is a closed subgroup of G and G has rank r, the rank of K is less than
or equal to r.
It follows that, setting m := m(r) as defined in Section 2.3, the iterated Frattini
subgroup Φm(K) is semi-powerful.

We claim that Φm(K) has an open semi-uniform abelian subgroup U .
Indeed, since Φm(K) has finite rank, it has an open semi-uniform normal sub-
group V . Let U ′ := V ∩H, where H is the open normal semi-uniform subgroup
of G that we chose above. Now from V/U ′ ∼= V H/H it follows that U ′ has finite
index in V , hence in Φm(K). Moreover, U ′ is torsion-free, being contained in the
torsion-free group V .
Let U be a semi-powerful open subgroup of U ′; then U is a semi-uniform open
subgroup of Φm(K) by construction.

G

K

Φm(K) V H

V H

U ′ := V ∩H

U

Finally, since U ⊆ H, CG(H) ⊆ CG(U), i.e., K ⊆ CG(U). But by definition U is
contained in K and therefore U is abelian.
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It follows by Lemma 2.4.5 that CK(CK(U)) is abelian and that U ⊆ CK(CK(U)).
In particular, since U has finite index in K, also CK(CK(U)) has finite index in
K and dimK = dimCK(CK(U)).

Now note that K = CG(H) is definable in G in the language of groups.
Indeed, since G has rank r, there exist h1, . . . , hr in G with H = ⟨h1, . . . , hr⟩.
Therefore, K = CG(H) = {x ∈ G | [x, hi] = 1 for i = 1, . . . , r}.

Moreover, CK(CK(U)) is definable in K (hence in G).
Indeed, consider CK(U). Since K has rank bounded by r, there exist elements
a1, . . . , ar in K such that CK(U) = ⟨a1, . . . , ar⟩.
Now consider CK(CK(U)) = CK(a1)∩ . . .∩CK(ar) and let ζ(a, x) be the formula
ax = xa. Then CK(CK(U)) = {x ∈ K | G |= ζ(a1, x)∧. . .∧ζ(ar, x)} is a definable
abelian subgroup of G containing U .
Denote by α̃ := α̃(a1, . . . , ar, x) the formula (with parameters) ζ(a1, x) ∧ . . . ∧
ζ(ar, x) that defines CK(CK(U)) in K and let r1 ≤ r be the rank of CK(CK(U)).
From the abelian case, we know that dim(CK(CK(U))) = d1 if and only if
CK(CK(U)) |= δab

π,r1,d1
. Let dmax

1 be the maximal entry of the vector d1.
Since dmax

1 ≤ r1 ≤ r, we have a finite number of possibilities for the value of
the rank of CK(CK(U)). Write δd1 for the sentence given by the corresponding
union of r − dmax

1 + 1 sentences, one for each possible value of r1:

δd1 := δab
π,dmax

1 ,d1 ∨ δ
ab
π,dmax

1 +1,d1 ∨ . . . ∨ δ
ab
π,r,d1

Then clearly CK(CK(U)) |= δd1 .
Furthermore, we can express the fact that CK(CK(U)) is an abelian subgroup

of maximal dimension in K, meaning that each direct factor CK(CK(U))i of
CK(CK(U)) has maximal dimension in the direct factor Ki of K.
Indeed, suppose that there is an abelian subgroup B := B1×. . .×Bk one of whose
components Bi has dimension greater than (d1)i, the ith component of d1, and
assume that CK(B) is generated by the elements b1, . . . , br. Then B is contained
in B := CK(CK(B)), that, by Lemma 2.4.5, is a definable abelian subgroup of K
defined in K by the formula (with parameters) β := ζ(b1, x) ∧ . . . ∧ ζ(br, x).
Then we can express the maximality of the dimension of CK(CK(U)) by means
of the following sentence µ (holding true in K)

¬∃ b1, . . . , br : (res(β(b1, . . . , br),
⋁︂

m∈{0,...,r}k

m̸=(0,...,0)

δd1+m) ∧ res(β(b1, . . . , br), α)),

where α := ∀x, y : xy = yx is the formula defining being abelian.
Therefore, K |= δd1 , where

δd1 := ∃ a1, . . . , ar : res(α̃(a1, . . . ar), δd1) ∧ res(α̃(a1, . . . , ar), α) ∧ µ.

In the previous sentence, res(α̃(a1, . . . ar), δd1) states that CK(CK(U)) has dimen-
sion d1, res(α̃(a1, . . . , ar), α) states that CK(CK(U)) is abelian and µ ensures that
d1 is the maximal dimension among the dimensions of abelian subgroups of K.

Finally, let κ be the formula (with parameters) ζ(h1, x) ∧ . . . ∧ ζ(hr, x) that
defines K.
Then G |= δs

d1
, where δs

d1
is the formula with parameters

δs
d1 := res(κ(h1, . . . hr), δd1) ∧ s◁(κ(h1, . . . , hr)),

where s◁(κ(h1, . . . , hr)) ensures that K is a normal subgroup of G.
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2. dim G/K

Recall that d = dimG. Since K is the kernel of the adjoint representation of G,
the quotient G/K embeds into GLd1(Qp1)× . . .×GLdk

(Qpk
). Consider the semi-

powerful group Φm(G/K). It is known ([DDMS], Theorem 4.20) that the torsion
elements of Φm(G/K) form a finite Cπ group T(Φm(G/K)) that is characteristic
in Φm(G/K). Since this group is isomorphic to a finite subgroup of GLd1(Qp1)×
. . . × GLdk

(Qpk
), it follows that its order is bounded by p

f1(d1)
1 · · · pfk(dk)

k , where
fi : N→ N is the function given by

fi(n) :=

⎧⎨⎩⌊
n

φ(pi−1)⌋+ vpi(n!) if pi ̸= 2
2⌊ n

φ(2)⌋+ vpi(n!) if pi = 2 . (2.8)

Here vpi(n!) is the pi-valuation of n! and φ is the Euler function (see [Serre2],
Theorem 5).1

It follows that T(Φm(G/K)) = {x ∈ Φm(G/K) : xp
f1(d1)
1 ···pfk(dk)

k = 1} is a defin-
able subgroup of Φm(G/K).
Let boundd be the formula

xp
f1(d1)
1 ···pfk(dk)

k = 1

that defines T(Φm(G/K)).
Now the quotient Φm(G/K)/T(Φm(G/K)) is a semi-uniform group ([DDMS],

Theorem 4.20) whose dimension is the same as the dimension of Φm(G/K),
i.e., d2. In order to define this dimension with a sentence we use the fact
that the dimension of a uniform group coincides with its rank. Therefore it
is enough to express the rank of each factor of the pronilpotent group Q :=
Φm(G/K)/T(Φm(G/K)), which we can do similarly to what we did in Section
2.3. Namely, for every i ∈ {1, . . . , k}, we can describe with a sentence the rank of
the quotient Q/P2r+1(Q)Qpi

r(2r+1) , that is equal to the rank of the direct factor Qi

by Theorem 2.3.1. To this aim let ξ̃i be the formula describing P2r+1(Q)Qpi
r(2r+1)

and let ν̃i
1, . . . , ν̃

i
Mi

be the finitely many formulas describing finite groups of order
bounded by pi

r(2r+1) and with rank (d2)i and set ν̃(d2)i
:= νi

1 ∨ . . . ∨ νi
Mi

. Hence
we can express the fact that Q has dimension d2 with the sentence

qd2 :=
k⋀︂

i=1
lift(ξ̃i, ν̃(d2)i

)

that is satisfied by Q.
(Alternatively, one might use directly the sentence σπ,max(d2)i,d2 established in
Section 2.3 to define the rank of a Cπ group and of its factors).

1Alternatively, one can use the following elementary fact to find a bound for the order of
the elements of the torsion subgroup T(Φm(G/K)). Let g be a torsion element in GLd(Qp),
i.e., there exists a non-negative integer n such that gpn

= 1. The minimal polynomial of g over
Qp has degree bounded by d and divides the polynomial Xpn

− 1. It is therefore a cyclotomic
polynomial, say the pk-th cyclotomic polynomial, with degree φ(pk) = (p − 1)pk−1 ≤ d. Let pl

be the least common multiple of the finite set {pk | φ(pk) ≤ d}. Then every torsion element in
GLd(Qp) has order bounded by pl.
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We can therefore conclude that Φm(G/K) has dimension d2 if and only if it
satisfies the sentence

˜︃˜︃δd2 := s◁(boundd) ∧ lift(boundd, qd2) ∧ ∀x :
(︄

k⋁︂
i=1

xp
f(di)+1
i = 1→ xp

f(di)
i = 1

)︄
.

Note that the last part of the sentence guarantees that the torsion of Φm(G/K)
is exactly given by T(Φm(G/K)) = {x ∈ Φm(G/K) : xp

f1(d1)
1 ···pfk(dk)

k = 1}.
Since Φm(G/K) is of finite index in G/K, they have the same dimension and

therefore G/K has dimension d2 if and only if G/K satisfies the sentence

˜︁δd2 := res(ϕG/K
m ,

˜︃˜︃δd2).

Finally, G/K has dimension d2 if and only if G |= δq
d2
, where δq

d2
is the

formula with parameters

δq
d2

:= lift(κ(h1, . . . , hr), ˜︁δd2).

Remark 2.4.6. When dealing with a pronilpotent group of finite rank with
just one factor (i.e., a p-adic analytic pro-p group) one can simplify the previous
sentence by considering that, thanks to the fact that the dimension of a uniform
group coincides with the minimal number of its generators, we can express the
dimension of Q by means of the sentence β∗

d2
= β∗

d2
.

In this case we can write that Φm(G/K) has dimension d2 by means of the
sentence (satisfied in Φm(G/K))

˜︂˜︂δ′
d2

:= s◁(boundd) ∧ lift(boundd, β
∗
d2) ∧ ∀x : (¬boundd(x)→ xpf(d)+1 ̸= 1).

The same argument cannot be directly used in the case of multiple direct factors
because we cannot single out the factors since they are not definable (see [NST],
Remark after Proposition 5.12.) However, for each prime pi ∈ π, the pi-Frattini
subgroup of Q, defined as Φpi(Q) = [Q,Q]Qpi , is definable. Since |Q : Φpi(Q)| =
p

d(Qi)
i and, as Qi is uniform, d(Qi) = (d2)i, one could write a sentence expressing

the fact that the quotient Q/Φpi(Q) has prescribed order p(d2)i

i for each pi ∈ π.

Conclusion

At this point we can conclude that a Cπ group of rank r has dimension d if and
only if it satisfies the sentence δπ,r,d given by

∃h1, . . . , hr :
⋁︂

d1+d2=d

(︂
δs

d1(h1, . . . , hr) ∧ δq
d2

(h1, . . . , hr)
)︂

∧¬∃h1, . . . , hr :
⋁︂

m∈{0,...,r}k

m̸=(0,...,0)

⎛⎝ ⋁︂
d1+d2=d+m

(δs
d1(h1, . . . , hr) ∧ δq

d2
(h1, . . . , hr))

⎞⎠ .
Indeed, it follows from the previous discussion that a Cπ group of rank r and

dimension d satisfies the formula
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∃h1, . . . , hr :
⋁︂

d1+d2=d

(︂
δs

d1(h1, . . . , hr) ∧ δq
d2

(h1, . . . , hr)
)︂
.

Conversely, if a Cπ group G of rank r satisfies this formula, then its dimension
is at least d. Indeed, if G satisfies δs

d1
∧ δq

d2
with d1 + d2 = d, then G has a

normal subgroup N of dimension at least d1 (since the maximal dimension of the
abelian subgroups of N is d1) such that the quotient G/N has dimension d2.

With the second half of the sentence,

¬∃h1, . . . , hr :
⋁︂

m∈{0,...,r}k

m ̸=(0,...,0)

⎛⎝ ⋁︂
d1+d2=d+m

(δs
d1(h1, . . . , hr) ∧ δq

d2
(h1, . . . , hr))

⎞⎠

we rule out the possibility that the dimension is strictly greater than d.
With the previous considerations we therefore obtained:

Theorem 2.4.7. For every natural number r and every k-tuple of natural num-
bers d := (d1, . . . , dk), with di ≤ r for each i ∈ {1, . . . , k}, there is a sentence
δπ,r,d in the language of groups Lgp such that, for every Cπ group G of rank r,
the following are equivalent:

1. G has dimension d,

2. G is a model of δπ,r,d.

Corollary 2.4.8. For every positive integer r, every k-tuple of natural numbers
d := (d1, . . . , dk), with di ≤ r for each i ∈ {1, . . . , k}, and every k-tuple r :=
(r1, . . . , rk) satisfying r = max ri, there is a sentence δπ,r,r,d in the language of
groups Lgp such that, for every Cπ group G, the following are equivalent:

1. G has rank r and dimension d and each factor Gi has rank ri,

2. G is a model of δπ,r,r,d.

Proof. Take
δπ,r,r,d := σπ,r,r ∧ δπ,r,d,

where σπ,r,r is as in Corollary 2.3.6.

2.4.3 Alternative sentences for the dimension for special classes
of Cπ groups of finite rank

In this section we provide alternative sentences for the dimension of Cπ groups of
finite rank belonging to special classes, namely soluble Cπ groups of finite rank,
Cπ groups in which each factor is a just-infinite pro-pi group of finite rank and
pro-p groups of finite rank whose associated Lie algebra is non-abelian simple.

The approaches used for proving the finite axiomatizability of the dimension
in this section differ from the one used in the general case, thus leading to different
sentences.

For all this section fix π := {p1, . . . , pk} to be a finite set of primes.
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Soluble Cπ groups

We prove the following:

Proposition 2.4.9. Let r be a positive integer. For every k-tuple of natural
numbers d := (di)i∈{1,...,k} with di ≤ r for each i ∈ {1, . . . , k}, there is a sentence
δsol

π,r,d in the language of groups Lgp such that for every soluble Cπ group G of rank
r the following are equivalent:

1. G has dimension d;

2. G is a model of δsol
π,r,d.

We will need the following:

Lemma 2.4.10. Let G be a soluble pro-p group of finite rank and positive di-
mension. Then G has a closed normal abelian subgroup of positive dimension.

Proof. Let U be a normal uniform subgroup of finite index in G and let

{1} = U (n+1) ◁ U (n) ◁ . . . ◁ U (0) = U

be the derived series of U .
The group U (n) is a closed normal abelian subgroup of G (see Proposition 1.2.2)
and it has positive dimension. Indeed, it is a finitely generated abelian pro-p
group, hence of the form Zdn

p × Fn, where dn ≥ 0 is a natural number and Fn

is a finite abelian p-group. Since U is uniform, it is torsion-free, therefore Fn is
trivial and necessarily dn > 0.

Proof of Proposition 2.4.9. Let G be a soluble Cπ group of finite rank r.
Since G is soluble, it contains a closed abelian normal subgroup A0. Moreover, by
Lemma 2.4.5 we can choose A0 in such a way that A1 := CG(CG(A0)) is an abelian
normal subgroup of maximal dimension among the abelian normal subgroups of
G, by this meaning that each factor of A1 has maximal dimension. Note that,
thanks to Lemma 2.4.10, if G has at least one factor of positive dimension, then
the dimension vector of A1 has at least one positive entry.
Let ˜︂A1 := CG(A0). Since G has rank r, there exist elements a1, . . . , ar in G such
that ˜︂A1 = ⟨a1, . . . , ar⟩.
Now consider A1 = CG(˜︂A1) = CG(a1)∩. . .∩CG(ar) and let ζ(a, x) be the formula
ax = xa.
Then A1 = {x ∈ G | G |= ζ(a1, x) ∧ . . . ∧ ζ(ar, x)} is a definable closed normal
abelian subgroup of G containing A0. Note that a subgroup of G defined by this
formula is automatically closed.
Let r1 ≤ r be the rank of A1 and let d1 be the dimension of A1.
From the abelian case, we know that dimA1 = d1 if and only if A1 |= δab

π,r1,d1
.

Since dmax
1 ≤ r1 ≤ r, we have a finite number of possibilities for the value of

the rank of A1. Write δsol
d1 for the sentence given by the corresponding union of

r − dmax
1 + 1 sentences, one for each possible value of r1:

δ
sol
d1 := δab

π,dmax
1 ,d1 ∨ δ

ab
π,dmax

1 +1,d1 ∨ . . . ∨ δ
ab
π,r,d1 .
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Then clearly A1 |= δ
sol
d1 .

Similarly to what we did in the proof of Theorem 2.4.7, we can express the fact
that A1 is a normal abelian subgroup of maximal dimension in G.
Indeed, suppose that there is a normal abelian group B of dimension greater
than d1 and assume that CG(B) is generated by the elements b1, . . . , br. Then
B is contained in B := CG(CG(B)), that, by Lemma 2.4.5, is a definable abelian
normal subgroup of G defined by the formula β := ζ(b1, x) ∧ . . . ∧ ζ(br, x). Then
we can express the maximality of the dimension of A1 by means of the sentence
µ defined as

¬ ∃ b1, . . . , br : (res(β(b1, . . . , br),
⋁︂

m∈{0,...,r}k

m ̸=(0,...,0)

δd1+m ∧ α) ∧ s◁(β(b1, . . . , br)),

where α is the formula defining being abelian.
Let α1 := α1(a1, . . . , ar, x) be the formula ζ(a1, x)∧ . . .∧ ζ(ar, x) that defines A1.
Then G |= δsol

d1
, where

δsol
d1 := ∃ a1, . . . , ar : res(α1(a1, . . . ar), δsol

d1 ) ∧ res(α1(a1, . . . , ar), α)
∧ µ ∧ s◁(α1(a1, . . . , ar)).

In the previous sentence, res(α1(a1, . . . ar), δsol
d1 ) states that A1 has dimension d1,

res(α1(a1, . . . , ar), α) states that A1 is abelian, µ ensures that d1 is the maximal
dimension among the dimensions of normal abelian subgroups of G and s◁(α1)
implies that A1 is a normal subgroup.

Now consider the quotient G/A1. This is again a soluble Cπ group of finite
rank bounded by r and we can repeat the same reasoning as above. Proceeding
as before we can find in G/A1 a definable closed normal abelian subgroup A2
of maximal dimension d2 with dmax

2 ≤ r. Note that, by Lemma 2.4.10, if the
dimension of G is strictly greater than d1 (meaning that at least one entry of d
is strictly greater than the corresponding entry of d1), then d2 has at least one
positive entry.
With the same argument we get that G/A1 |= δ

sol
d2 , where

δ
sol
d2 := ∃a′

1, . . . , a
′
r : res(α2(a′

1, . . . , a
′
r), δsol

d2 ) ∧ res(α2(a′
1, . . . , a

′
r), α) ∧ µ′∧ s◁(α2),

where α2 is the formula defining A2 in G/A1 and µ′ is the formula establishing
the maximality of the dimension of A2 among the dimensions of normal abelian
subgroups of G/A1.
Hence, G |= δsol

d1
∧ δsol

d2
, where δsol

d2
:= lift(α1, δ

sol
d2 ).

Since G has rank r, we have to iterate this process for at most r times.
At the end of the process we find that G satisfies the sentence δsol

d1
∧ . . . ∧ δsol

dr
,

where d := dimG = d1 + . . .+ dr.
Note that it is possible that there is an index i with r ≥ i ≥ 1 such that dj = 0
for every i ≤ j ≤ r.
We see that G satisfies also the sentence

δsol
π,r,d :=

⋁︂
d1+...+dr=d

δsol
d1 ∧ . . . ∧ δ

sol
dr
.
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Conversely, if a soluble Cπ group G of rank r satisfies δsol
π,r,d, then G has

dimension d. Indeed, this sentence states that we can find a closed normal abelian
subgroup of G of maximal dimension d1, then a closed normal abelian subgroup
of G/A1 of maximal dimension d2 and so on up to dimension dr. Because of the
requirement of maximality of the dimension at each step and considering that
the rank of G is r, we can conclude that dimG = d = d1 + . . .+ dr.

Corollary 2.4.11. For every positive integer r and every k-tuple of natural num-
bers d := (di)i∈{1,...,k} and r := (ri)i∈{1,...,k} with di ≤ r for each i ∈ {1, . . . , k}
and max ri = r, there is a sentence δsol

π,r,r,d in the language of groups Lgp such
that, for every soluble Cπ group G, the following are equivalent:

1. G has dimension d and rank r and each factor Gi has rank ri;

2. G is a model of δsol
π,r,r,d.

Proof. Take
δ

sol
π,r,r,d := σπ,r,r ∧ δsol

π,r,d,

where σπ,r,r is as in Corollary 2.3.6.

Observe that, if one wants a sentence that is satisfied by a soluble Cπ group
G if and only if G has dimension d and rank r without imposing any restriction
on the individual ranks of the factors Gi, it is enough to take the sentence(︄ ⋁︂

r:max ri=r

σπ,r,r

)︄
∧ δsol

π,r,d.

Cπ groups whose factors are just-infinite p-adic analytic pro-p groups

We start by recalling a definition.

Definition 2.4.12. A pro-p group is said to be just-infinite if it is an infinite
pro-p group all of whose proper quotients are finite.

A non-soluble just-infinite p-adic analytic pro-p group G acts faithfully on its Lie
algebra L(G) (see [KLGP], Proposition III.6). By using this fact, the argument
used for proving the finite axiomatizability of the dimension of Cπ groups can be
slightly simplified in this case.

Let G = G1 × . . . × Gk be a Cπ group with rank r whose factors Gi are
non-soluble just-infinite pi-adic analytic pro-pi groups of dimension di, for i ∈
{1, . . . , k}.
Since each factor ofG acts faithfully on its Lie algebra, G embeds into GLd1(Qp1)×
. . . × GLdk

(Qpk
). As we remarked in the proof of Theorem 2.4.7, setting m :=

⌈log2(r) + επ⌉, the torsion elements of Φm(G) form a finite Cπ group T(Φm(G))
that is characteristic in Φm(G) and has order bounded by pf1(d1)

1 · · · pfk(dk)
k , where

the fi are the functions (2.8) defined in the proof of Theorem 2.4.7. Following
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the proof of Theorem 2.4.7 we find that the fact that G has dimension d = (di)
can be expressed by the sentence (holding true in the definable group Φm(G))

s◁(boundd) ∧ lift(boundd, qd) ∧ ∀x :
(︄

k⋁︂
i=1

xp
f(di)+1
i = 1→ xp

f(di)
i = 1

)︄
,

that expresses the fact that the formula boundd describes the group T(Φm(G))
and that T(Φm(G)) is a normal subgroup of G such that dim(G/T(Φm(G)))(=
dim(G)) = d.

However, in our case the previous sentence can be simplified further.
Indeed, consider the sentence

δ∗
π,d := s◁(boundd) ∧ lift(boundd, qd),

from which, recalling that ϕG
m is the formula describing Φm(G), we obtain the

sentence

δj.i.
π,r,d := res(ϕG

m, δ
∗
π,d).

Now, if a Cπ group of rank r with non-soluble just-infinite pi-adic analytic pro-pi

factors has dimension d, then clearly it satisfies δj.i.
π,r,d by the previous discussion.

Conversely, if such a group G satisfies δj.i.
π,r,d, then its dimension is at most d.

Indeed, let T(Φm(G)) be the torsion subgroup of Φm(G) and let

Td(Φm(G)) := {x ∈ Φm(G) : xp
f(d1)
1 ···pf(dk)

k = 1}.

Then clearly Td(Φm(G)) ◁ T(Φm(G)) and therefore, for each i ∈ {1, . . . , k},

dimGi = d(Φm(G)/T(Φm(G)))i ≤ d(Φm(G)/Td(Φm(G)))i = di,

where the last equality is ensured by the sentence δj.i.
π,r,d satisfied by G.

Since each Gi is a non-soluble just-infinite pi-adic analytic pro-pi group, if its
dimension is less than di, then Gi embeds in GLki

(Qpi) with ki ≤ di. Therefore
also Φm(Gi) embeds in GLki

(Qpi) and its torsion subgroup has order bounded by
p

f(ki)
i . Since each fi is a monotone function, pf(ki)

i ≤ pf(di)
i and thus T(Φm(G)) ⊆

Td(Φm(G)). It follows that T(Φm(G)) = Td(Φm(G)) and we can conclude that,
for each i ∈ {1, . . . , k},

dimGi = d(Φm(G)/T(Φm(G)))i = d(Φm(G)/Td(Φm(G)))i = di,

hence dimG = d.
We therefore proved:

Proposition 2.4.13. For every positive integer r and every k-tuple of natural
numbers d := (di)i∈{1,...,k} with di ≤ r for each i ∈ {1, . . . , k}, there is a sentence
δj.i.

π,r,d in the language of groups Lgp such that, for a Cπ group G of rank r with non-
soluble just-infinite pi-adic analytic pro-pi factors, the following are equivalent:

1. G has dimension d;

2. G is a model of δj.i.
π,r,d.
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As usual, taking the sentence δj.i.
π,r,d ∧ σπ,r,r we get the following variation:

Corollary 2.4.14. For every positive integer r and every k-tuple of natural num-
bers d := (di)i∈{1,...,k} and r := (ri)i∈{1,...,k} with di ≤ r for each i ∈ {1, . . . , k}
and max ri = r, there is a sentence δj.i.

π,r,r,d in the language of groups Lgp such that,
for a Cπ group G with non-soluble just-infinite pi-adic analytic pro-pi factors, the
following are equivalent:

1. G has dimension d and rank r and each factor Gi has rank ri;

2. G is a model of δj.i.
π,r,r,d.

Remark 2.4.15. When π = {p}, one has that a just-infinite pro-p group G of
finite rank r has dimension d if and only if it satisfies δsol

p,r,d ∨ δ
j.i.
p,r,d.

Cπ groups whose factors have non-abelian simple Lie algebras

In this subsection we show that we can find an alternative formula to define the
rank, as well as the rank and dimension vectors, of Cπ groups G = G1 × · · · ×Gk

all of whose factors Gi have non-abelian simple Lie algebra and that satisfy the
following condition (⋆)υ, involving a fixed first-order formula υ = υ(z;x1, . . . , xl)
in l + 1 variables, which needs to be chosen carefully.

(⋆)υ The formula (with l parameters) υ defines a family of closed subsets of
G such that every semi-uniform open normal subgroup N of G contains a non-
trivial closed normal subgroup HN that is definable in G by the formula υ(z) =
υ(z; a1, . . . , al), where a1, . . . , al ∈ G are suitable parameters that depend on N .

Ideally, we would like to identify υ, depending only on π and r, such that (⋆)υ

holds for all Cπ groups G of rank at most r (all of whose factors have non-abelian
simple Lie algebra), but currently it is not clear how this could be done; see
Remark 2.4.20.

As usual, let m := ⌈log2(r) + επ⌉. We will need the following:

Lemma 2.4.16. Let G be a Cπ group with rank r such that each factor Gi of
G has non-abelian simple Lie algebra. Let N be a semi-uniform open normal
subgroup of G and let HN be a non-trivial closed subgroup of N that is normal
in G. Then dim(G) = dim(Φm(HN )).

Proof. We claim that, for each i, the closed uniform subgroup Φm(HN )i is of
finite index in Gi. In our setting, Gi is a pi-adic analytic pro-pi group with
non-abelian simple algebra and the open uniform subgroup Ni has the same Lie
algebra as Gi. Assume by contradiction that Φm(HN )i has infinite index in
Gi, hence in Ni. If T/Φm(HN )i denotes the torsion subgroup of the powerful
group Ni/Φm(HN )i, then, by Theorem 1.3.12, we have that T/Φm(HN )i is finite
and that Ni/T ∼= Ni/Φm(HN )i/T/Φm(HN )i is uniform. Hence, by Theorem
1.3.14, T is a uniform normal subgroup of infinite index in Ni and therefore
its corresponding Lie algebra is a non-trivial Lie ideal in the simple Lie algebra
of N , which gives the required contradiction (compare also with the proof of
Proposition 3.4.6).
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Therefore, as, for each i, the closed subgroup Φm(HN )i is of finite index in
Gi, we can conclude that the dimension of each Gi is the same as the dimension
of Φm(HN )i and hence that the dimension of G is the same as the dimension of
Φm(HN ).

Proposition 2.4.17. For every positive integer r and every k-tuple of natural
numbers d := (di)i∈{1,...,k} with di ≤ r for each i ∈ {1, . . . , k}, there is a sentence
δsim

π,r,d in the language of groups Lgp such that, for a Cπ group G with rank r
satisfying (⋆)υ and all of whose factors have non-abelian simple Lie algebra, the
following are equivalent:

1. G has dimension d;

2. G is a model of δsim
π,r,d.

Proof. By Ha we will denote the closed subgroup of G defined by υ(a1, . . . , al).
Consider the sentence δsim

π,r,d defined as

∃ a1, . . . , al : res
(︂
υ(a1, . . . , al), s◁ ∧ ∀x : xp1···pk = 1→ x = 1

)︂
∧ res

(︂
ϕHa

m , σπ,max di,d
)︂

∧ ¬∃ b1, . . . , bl : res
(︂
υ(b1, . . . , bl), s◁ ∧ ∀x : xp1···pk = 1→ x = 1

)︂
∧

⋁︂
u∈{0,...,r}k

u̸=(0,...,0)

res
(︂
ϕHb

m , σπ,max (di+ui),d+u

)︂
.

that expresses that there exist elements a1, . . . , al in G such that the group Ha
defined by υ(a1, . . . , al) is a normal torsion-free subgroup of G of dimension d and
that there are no elements b1, . . . , bl such that the group Hb is a normal torsion-
free subgroup of dimension greater than d. For the assertions on the dimension
recall that, in a uniform group, the rank coincides with the minimal number of
generators and with the dimension. Here, ϕHa

m defines the semi-uniform group
Φm(Ha) and the sentence σπ,max di,d from Corollary 2.3.6 expresses the fact that
Φm(Ha) has rank vector d, which coincides with its dimension vector.

By Lemma 2.4.16, it follows that a Cπ group satisfying (⋆)υ with rank r, di-
mension d and factors with non-abelian simple Lie algebras satisfies this sentence.
Indeed, such a group contains an open normal semi-uniform subgroup N that,
by condition (⋆)υ, contains a non-trivial closed normal subgroup Ha, defined by
υ(a1, . . . , al), for some a1, . . . al in G. Now, by Lemma 2.4.16, the dimension of
Φm(Ha) is the same as the dimension of G, which is d.

Conversely, let G be a Cπ group satisfying (⋆)υ, with rank r and factors with
non-abelian simple Lie algebras, that satisfies the sentence δsim

π,r,d. Then certainly
G has dimension at least d (i.e., each factor Gi has dimension at least di).
Suppose by contradiction that G has dimension d + u, where each ui is a non-
negative integer and at least one di is positive. For any semi-uniform open normal
subgroup U of G, let HU be a non-trivial closed normal subgroup defined by υ
and contained in U , according to condition (⋆)υ. Then, by Lemma 2.4.16, the
dimension of Φm(HU ) would be equal to d + u, the dimension of G. However,
this would contradict the sentence δsim

π,r,d.
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Remark 2.4.18. For a pro-p group we can simplify the previous sentence to

∃ a1, . . . , al : res(υ(a1, . . . , al), s◁ ∧ ∀x : xp = 1→ x = 1) ∧ res(ϕHa
m , β∗

d)

∧¬∃ b1, . . . , bl : res(υ(b1, . . . , bl), s◁ ∧ ∀x : xp = 1→ x = 1) ∧ res(ϕHb
m ,

r−d⋁︂
i=1

β∗
d+i),

as β∗
d expresses the fact that Φm(Ha), which is defined by ϕHa

m , has minimal
number of generators d.

Corollary 2.4.19. For every positive integer r and every k-tuple of natural num-
bers d := (di)i∈{1,...,k} and r := (ri)i∈{1,...,k} with di ≤ r for each i ∈ {1, . . . , k}
and max ri = r, there is a sentence δsim

π,r,r,d in the language of groups Lgp such
that, for a Cπ group G satisfying (⋆)υ and whose factors have non-abelian simple
Lie algebra, the following are equivalent:

1. G has dimension d and rank r and each factor Gi has rank ri;

2. G is a model of δsim
π,r,r,d.

Remark 2.4.20. Let G be a Cπ group and let N be a semi-uniform open normal
subgroup of G. A natural candidate for the closed subgroups HN in condition
(⋆)υ would be the group [G,N ]. Indeed, if N is a semi-uniform open normal
subgroup of G, then [G,N ] is a closed normal subgroup of G contained in N .
Moreover, it is non-trivial. Indeed, as the Lie algebra of each direct factor Gi of
G is non-abelian, for each i ∈ {1, . . . , k} we have that [Gi, Ni] ̸= 1. This holds
true because, if [Gi, Ni] = 1, in particular Ni would be abelian, in contradiction
with the fact that its Lie algebra, that coincides with the Lie algebra of Gi,
is not abelian. Therefore, [G,N ] is a non-trivial closed normal subgroup of G.
However, it is currently not clear to us whether the groups [G,N ] are definable in
the required way by a single formula υ, depending only on π and the rank rk(G).

The following example shows that, unfortunately, it is not possible to imitate
directly the formula in Proposition 1.2.2: for a pronilpotent group G and N a
closed normal subgroup of G generated by elements a1, . . . , ar, in general one
cannot expect to have an equality of the form

[G,N ] = [G, a1] · · · · · [G, ar].

Example 2.4.21. Let p be an odd prime and let F = Qp(ζ) be the cyclotomic
extension of the field of p-adic numbers, obtained by adjoining a primitive p-th
root of the identity. The valuation ring of F takes the form O = Zp[ζ] and the
additve group (O,+) is isomorphic to Zp−1

p and generated by 1, ζ, . . . , ζp−2.
Now let m be a positive integer and let N := O/pmO. Then N is a finite

abelian group of order p(p−1)m. Let Cp be the cyclic group of order p and let x
be a generator. Consider the group G := N ⋊Cp, where x acts as multiplication
by ζ. The group operation in G is given by:

(a1 + a2ζ + · · ·+ ap−1ζ
p−2, xi)(b1 + b2ζ + · · ·+ bp−1ζ

p−2, xj) =
(a1 + a2ζ + · · ·+ ap−1ζ

p−2 + b1ζ
i + b2ζ

i+1 + · · ·+ bp−1ζ
i+p−2, xi+j),

(2.9)

where the coefficients ah and bk are classes of elements of Zp for each h, k ∈
{1, . . . , p− 1}. The neutral element of the group is (0, 1).
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By using the group operation (2.9) and the fact that every element of N has
the form (a1 + a2ζ + · · ·+ ap−1ζ

p−2, 1), one can verify that [G,N ] is isomorphic
to (1 − ζ)N . Therefore, if we choose m big enough, [G,N ] can have arbitrarily
large order.
However, if x is any fixed element of N , the centraliser CG(x) of x in G is
isomorphic to N if x is non-trivial and it is isomorphic to G if x is trivial. Hence,
the conjugacy class of x in G can have cardinality p or 1, and the number of
commutators of the form [g, x], where x is a fixed element in N and g runs over
G, is also p or 1.

Now suppose that we can write

[G,N ] = {[g1, x1] · · · [gl, xl] | g1, . . . , gl ∈ G}

for some fixed positive integer l and some fixed elements x1, . . . , xl in N . Then one
can obtain at most pl elements of this form, which, for m big enough, contradicts
the fact that the order of [G,N ] is bigger than pl.

2.5 Finite axiomatizability of the dimension of Cπ groups:
another proof

In this section we present another proof for the finite axiomatizability of the di-
mension of Cπ groups, following an approach that was suggested by Jon González-
Sánchez. This proof is shorter than the previous one and leads to a formula with
lower quantifier complexity. Moreover, the preliminary Theorem 2.5.1 is of inde-
pendent interest.

We begin by establishing this very result, that is a new description of the
dimension of a finitely generated powerful pro-p group. Recall that, by Theorem
1.3.12, the elements of finite order in a finitely generated powerful pro-p group G
form a characteristic powerful finite subgroup T and the quotient G/T is uniform.
Therefore, intuitively, dimG = d(G/T ) should equal d(G)− d(T ). In our result
we prove that this is exactly what happens.

Theorem 2.5.1. Let G be a finitely generated powerful pro-p group with torsion
subgroup T and let Ω{1}(G) = {g ∈ G | gp = 1} denote the set of all elements of
order 1 or p. Then

dim(G) = d(G)− logp|Ω{1}(G)| = d(G)− d(T ).

This theorem is a consequence of a result of Héthelyi and Lévai ([HL]); com-
pare also with [Wi] and [FA].

Theorem 2.5.2 (Héthelyi, Lévai; [HL], Theorem 1). Let P be a powerful finite
p-group. Given a subset S ⊆ P , let Ω{1}(S) be the set of elements of S of order
at most p. Then:

|Ω{1}(P )| = |P : P p| = pd(P ).

The idea of the proof of Theorem 2.5.1 is the following. We choose a positive
integer k and an open uniform normal subgroup U of G such that U × T ⊴G,

d(G) = d(G/Upk) (2.10)
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and
Ω{1}(G/Upk) 1:1←→ Upk−1

/Upk × Ω{1}(T ), (2.11)
thus obtaining the following diagram:

G

U × T ⊇Ω{1}(T ) = Ω{1}(G)

Upk−1

Ω{1}(U/Upk) ⊆

Upk

Considering the order of all the groups in (2.11) and taking logp we obtain

logp|Ω{1}(G/Upk)| = logp|Upk−1
/Upk |+ logp|Ω{1}(T )|.

We observe that Upk = Φ(Upk−1), hence logp|Upk−1
/Upk | = d(U) = dim(G).

Finally, using (2.10) and the result of Héthelyi and Lévai we can conclude that

d(G) = dim(G) + d(T ).

Proof of Theorem 2.5.1. The torsion subgroup T is finite and characteristic in G
so that CG(T ) ⊴o G. We choose a uniform open normal subgroup U ⊴o G such
that U ⊆ CG(T ) and U ⊆ Φ(G); we can always do that by considering a uniform
open subgroup contained in a suitable power of the Frattini subgroup Φ(G) and
intersecting it with CG(T ). Since U is torsion-free, this implies that

N = U × T ⊴o G and d(G) = d(G/U). (2.12)

We show below that there exists k ∈ N such that Upk = Φk(U) ⊴o G satisfies

Ω{1}(G/Upk) = Ω{1}(N/Upk). (2.13)

Since N/Upk ∼= U/Upk×T and because U is uniform, Ω{1}(N/Upk) is in bijection
with the cartesian product of sets

Ω{1}(U/Upk)× Ω{1}(T ) = Upk−1
/Upk × Ω{1}(G) (2.14)

and furthermore logp|Upk−1
/Upk | = d(U). Put s(G) = logp|Ω{1}(G)|. Then, from

(2.13) and (2.14), we see that the finite powerful p-group P = G/Upk satisfies

logp|Ω{1}(P )| = d(U) + s(G) = dim(G) + s(G).

The theorem of Héthelyi and Lévai 2.5.2 yields logp|Ω{1}(P )| = d(P ) and s(G) =
logp|Ω{1}(T )| = d(T ) so that

dim(G) = logp|Ω{1}(P )| − s(G) = d(P )− s(G) (2.12)= d(G)− s(G) = d(G)− d(T ).
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It remains to establish (2.13). We show that there exists an open normal
subgroup W ⊴o G such that, for every x ∈ G∖N ⊆c G, we have xp ̸∈ W , or in
other words xp ̸≡W 1. Since Upk , k ∈ N, is a base for the neighbourhoods of 1
in G, this implies that there exists k0 ∈ N such that, for every x ∈ G∖N , xp ̸∈
Upk0 ⊆W , i.e., Ω{1}(G/Upk) ⊆ Ω{1}(N/Upk), as claimed (the reverse inclusion is
obvious). From T ⊆ N we see that G∖N does not contain any elements of finite
order. Hence, for every x ∈ G ∖ N there exists Wx ⊴o G such that xp ̸≡Wx 1,
and consequently yp ̸≡Wx 1 for all y ∈ xWx ⊆o G. Since G ∖ N is compact, it
is covered by a finite union of such cosets xWx, i.e., G ∖ N ⊆

⋃︁
x∈X xWx with

|X| <∞. This implies that W = ∩x∈XWx ⊴o G has the required property.

As in the previous sections, if π = {p1, . . . , pk} and G = G1× · · ·×Gk is a Cπ

group, we assume that each factor Gi is a Sylow pro-pi subgroup of G.

Theorem 2.5.3. For every positive integer r and all tuples of natural numbers
d := (di)i∈{1,...,k} and r := (ri)i∈i∈{1,...,k} satisfying di ≤ r for each i and r =
max ri, there is a sentence δalt

π,r,r,d in the language of groups Lgp such that, for
every Cπ group G, the following are equivalent:

1. G has rank r and dimension d and each factor Gi has rank ri,

2. G is a model of δalt
π,r,r,d.

Proof. Recall that m = m(r) := ⌈log2(r)⌉ + 1. Then Φm(G) is a semi-powerful
and definable subgroup of (π, r)-bounded index in G. The dimensions of the
direct factors of G do not change if we pass from G to an open subgroup. It is
therefore enough to detect the dimensions of the direct factors of F := Φm(G).
Let Fi denote the Sylow pro-pi subgroup of F and Ti its torsion subgroup, for
pi ∈ π. By Theorem 2.5.1 it suffices to produce a sentence which defines the
invariants

d(Fi) = logpi
|Fi : Φ(Fi)| and d(Ti) = logpi

|Ω{1}(Fi)|,

within the finite range {0, 1, . . . , r}, where Ω{1}(Fi) = {g ∈ Fi | gpi = 1} is
the set of all elements of Fi of order 1 or pi. We observe that Fi/Φ(Fi) ∼=
F/F pi [F, F ] = F/Φpi(F ) is isomorphic to the pi-Frattini quotient of F and that
Ω{1}(Fi) = {g ∈ F | gpi = 1}.

The Frattini quotient F/Φ(F ) has (π, r)-bounded order and maps onto the
pi-Frattini quotient F/Φpi(F ). As we have already seen, the group F/Φ(F )
is interpretable in F , hence in G. There is a sentence which detects any pre-
scribed isomorphism type of F/Φ(F ) among a (π, r)-bounded number of pos-
sibilities. Forming a suitable disjunction, we can also detect the isomorphism
type of the pi-Frattini quotient F/Φpi(F ) and hence the minimal numbers of
generators d(Fi). Alternatively, as F/Φpi(F ) is powerful, we can directly use the
sentence β∗

d(Fi) to impose that d(Fi) is the minimal number of generators of Fi,
but this yields a worse quantifier complexity (see Section 2.8).

Clearly, the closed subset {g ∈ F | gpi = 1} ⊆c F is definable in F , hence
in G, by the formula ω(g) := gpi = 1. Moreover, its size equals pd(Ti)

i and is thus
at most pr

i . We can easily identify by means of a sentence its precise size and
hence the invariant d(Ti).
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In conclusion, if ϕF
pi,1 is the formula defining Φpi(F ) = [F, F ]F pi in F , the

group G of rank r has dimension d if and only if the subgroup F = Φm(G)
satisfies the sentence ς given by⋁︂

d(Fi), d(Ti):
d(Fi), d(Ti)≤r

d(Fi)−d(Ti)=di

⋀︂
i∈{1,...,k}

(︂
lift(ϕF

pi,1, β
∗
d(Fi))

∧ ∃g1, . . . gpd(Ti) : gn ̸= gj ∧ ω(gn) for all n, j ∈ {1, . . . , pd(Ti)}

∧ ¬∃g1, . . . gpd(Ti)+1 : gn ̸= gj ∧ ω(gn) for all n, j ∈ {1, . . . , pd(Ti) + 1}
)︂

if and only if G satisfies the sentence

δalt
π,r,r,d := σπ,r,r ∧ res(ϕG

m, ς),

where σπ,r,r is the sentence established in Corollary 2.3.6 which expresses the fact
that G has rank r and each factor Gi has rank ri.

2.6 Finite axiomatizability of the rank of pro-π groups

In this section we prove that, given π := {p1, . . . , pk} a finite set of primes, the
rank of a pro-π group is finitely axiomatizable. Recall that pro-π groups are
inverse limits of finite π-groups, i.e., finite groups whose index is divisible only
by primes in π. An example of an infinite pro-π group is given by GLd(Zp). The
finite axiomatizability of the rank of these groups relies on the classification of the
finite simple groups and on the finite axiomatizability of the rank of pronilpotent
pro-π groups. We will need the following result, that generalizes Theorem 2.3.1
to virtually pronilpotent groups. Recall that, if G is a profinite group, rkp(G) is
the rank of any Sylow pro-p subgroup of G.

Theorem 2.6.1. Let R be a positive integer. Suppose that the profinite group G
has an open normal subgroup F ⊴o G which is pronilpotent and such that each
Sylow subgroup of F is powerful.

1. If rkp(G) ≤ R for some prime p, then

rkp(G) = rkp
(︁
G/Φ2R+1(F )

)︁
.

2. If rk(G) ≤ R, then
rk(G) = rk

(︁
G/Φ2R+1(F )

)︁
.

Proof. It is convenient to write Fi = Φi(F ) for i ∈ N.
1. This part reduces to the virtually pro-p case (see Theorem 2.3.5). Indeed, let p
be a prime such that rp = rkp(G) ≤ R. We need to show that rp = rkp(G/F2R+1).
Since F is pronilpotent, its Hall pro-p′ subgroup P ′ is normal in G. Working
modulo P ′, we may assume without loss of generality that F is a powerful pro-p
group. In this situation G is virtually a pro-p group and we can apply Theorem
2.3.5.
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2. Now suppose that rk(G) ≤ R. Clearly, the maximal local rank

mlr(G) = max
(︁
{rkp(G) | p prime}

)︁
is at most rk(G). Conversely, Lucchini established in Theorem 3 and Corollary 4
in [L2] (see also [L] and [L1]) that

rk(G) ≤ mlr(G) + 1,

with equality if and only if there are

◦ an odd prime p such that rp = rkp(G) = mlr(G) and

◦ an open subgroup H ≤o G and N ⊴o H such that

H/Φp(N) ∼= H/N ⋉N/Φp(N) ∼= Cq ⋉ C mlr(G)
p ,

where H/N ∼= Cq is cyclic of prime order q | (p− 1), the p-Frattini quotient
N/Φp(N) ∼= C

mlr(G)
p is elementary abelian of rank mlr(G), and H/N acts

via conjugation faithfully on N/Φp(N) by power automorphisms (i.e., by
non-zero homotheties if we regard N/Φp(N) as an Fp-vector space).

Note that this result currently relies on the classification of finite simple groups.
For short let us refer within this proof to such a pair (H,N) as a ‘runaway couple’
for G with respect to p.

By the first part of the theorem, we have mlr(G) = mlr(G/F2R+1), and hence
it suffices to show: if G admits a runaway couple, then so does G/F2R+1, in
fact, with respect to the same prime. This ensures that, if rk(G) = mlr(G) + 1,
then also rk(G/F2R+1) = mlr(G/F2R+1) + 1 = mlr(G) + 1 = rk(G). Conversely,
it is clear that, if G/F2R+1 admits a runaway couple, i.e., if rk(G/F2R+1) =
mlr(G/F2R+1)+1 = mlr(G)+1 ≥ rk(G), then rk(G) ≤ rk(G/F2R+1) = mlr(G)+1
and therefore rk(G) = mlr(G) + 1 = rk(G/F2R+1). Suppose that (H,N) is a
runaway couple for G with respect to an odd prime p so that H/Φp(N) ∼= Cq⋉C

rp
p

as detailed above, with the additional property that |G : H| is as small as possible.
Assume for a contradiction that G/F2R+1 does not admit a runaway couple.

As in the proof of the first part of the theorem, there is no harm in factoring
out the Hall pro-p′ subgroup P ′ of F , because H ∩ F ⊆ N and H ∩ P ′ ⊆ Φp(N).
Consequently we may as well assume that F ⊴o G is a powerful pro-p group,
which makes G virtually a pro-p group.

As in the proof of Theorem 2.3.5, the sequence

d
(︁
H/
(︁
(H ∩ Fj)Φp(N)

)︁)︁
= d

(︁
HFj/Φp(N)Fj

)︁
, j ∈ N,

is non-decreasing and eventually constant, with final constant value

d(H/Φp(N)) = d(H) = rp + 1 < 2R+ 1.

We use the same arguments as the ones in the proof of Theorem 2.3.5 to conclude
that there exists j = j(H) such that the analogue of (2.3) for H/Φp(N) holds
and we reduce to the situation where [Fj , Fj ] = F2j = 1. This reduction renders
G finite, with abelian normal p-subgroups

A = Fj and B = Fj+1 = Φ(Fj) = Ap;
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furthermore, we have

l = d
(︁
N/
(︁
(H∩A)Φp(N)

)︁)︁
= d

(︁
N/
(︁
(H∩B)Φp(N)

)︁)︁
< d(N/Φp(N)) = rp. (2.15)

It suffices to produce a runaway couple ( ˜︁H, ˜︁N) for the group HA with respect to
p such that |HA : ˜︁H| < |HA : H|; thus we may assume that

G = HA.

This reduction allows us to conclude that Φp(N) ∩ A ⊴ G and there is no
harm in assuming Φp(N) ∩ A = 1. Likewise M = H ∩ A ⊴ G, and reduction
modulo Φp(N) induces an embedding of M ≤ N into the elementary abelian
group N/Φp(N) ∼= C

rp
p . Using (2.15), we conclude that

M = H ∩A = H ∩B = ⟨b1, . . . , bm⟩ ∼= Cm
p for m = rp − l ≥ 1.

The normal subgroup MΦp(N) ⊴ H decomposes as a direct product M×Φp(N).
Recall that H/Φp(N) ∼= Cq⋉C

rp
p , with the action given by power automorphisms.

We build a minimal generating set x, y1, . . . , yl, b1, . . . , bm for H modulo Φp(N)
by choosing

x ∈ H ∖N and y1, . . . , yl ∈ N

which supplement b1, . . . , bm suitably. We set

L1 = ⟨x, y1, . . . , yl⟩ ≤ H and L = L1Φp(N) ≤ H.

In this situation H = LM and we claim that L ∩M = 1 so that

H = L⋉M.

Indeed, our construction yields that the intersection in H/Φp(N) ∼= Cq ⋉ C l+m
p

of the subgroups

L/Φp(N) = ⟨x⟩⋉ ⟨y1, . . . , yl⟩ ∼= Cq ⋉ C l
p and MΦp(N)/Φp(N) ∼= M ∼= Cm

p

is trivial. This gives L∩M ⊆ Φp(N) and consequently L∩M ⊆ Φp(N)∩M = 1.
Put ˜︂M = {a ∈ A | ap ∈ M} ⊴ G. Recall that M = H ∩ B and B = Ap.

The p-power map constitutes a surjective G-equivariant homomorphism ˜︂M →M
whose kernel K ⊴ G, say, includes M . From L ∩ M = 1 we conclude that
LK ∩ ˜︂M = (L ∩ ˜︂M)K ⊆ K. Moreover, we have L ∩K ⊆ H ∩ A = M and thus
L ∩K ⊆ L ∩M = 1.

These considerations show that the group ˜︁H = L˜︂M maps onto

˜︁H/K ∼= LK/K ⋉ ˜︂M/K ∼= L⋉M = H,

and hence onto Cq ⋉ C
rp
p . Thus ˜︁H gives rise to a runaway couple for G, with

respect to the prime p, just as H does. To conclude the proof we observe that
|K| ≥ |M | ≥ p implies | ˜︁H| > | ˜︁H|/|K| = |H| and hence |G : ˜︁H| < |G : H|.

Corollary 2.6.2. Let R be a positive integer. Suppose that the profinite group
G has an open normal subgroup F ⊴o G which is pronilpotent.
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1. If rkp(G) ≤ R for some prime p, then

rkp(G) = rkp
(︁
G/Φ2R+⌈log2(R)⌉+2(F )

)︁
.

2. If rk(G) ≤ R, then

rk(G) = rk
(︁
G/Φ2R+⌈log2(R)⌉+2(F )

)︁
.

Proof. As in the proof of Theorem 2.6.1, one reduces to the case in which
F is a pro-p group for a single prime p. From rk(F ) ≤ R it follows that
Φ⌈log2(R)⌉+1(F ) ⊴o G is powerful. Therefore we can apply Theorem 2.6.1 to
Φ⌈log2(R)⌉+1(F ) in place of F .

Remark 2.6.3. As stated in the proof of Theorem 2.6.1, the result of Lucchini
that we used to prove the second part of the theorem (hence of the corollary)
currently relies on the classification of finite simple groups. However, in the
prosoluble case the same result holds without use of the classification (see [L],
Section 5). In particular, if 2 ̸∈ π, every pro-π group is prosoluble because of the
Odd Order Theorem by Feit and Thompson.

Theorem 2.6.4. Let π := {p1, . . . , pk} be a finite set of primes. For each positive
integer r and for each tuple r = (ri)i∈{1,...,k} in {0, 1, . . . , r} there exists a sentence
σ̃π,r,r in the language of groups Lgp such that, for every pro-π group G, the
following are equivalent:

1. rk(G) = r and rkpi(G) = ri for every i ∈ {1, . . . , k};

2. G is a model of σ̃π,r,r.

The idea of the proof of this theorem is similar to the one of the proof of
Corollary 2.3.6, i.e., given a pro-π group of finite rank r, we find a definable open
Cπ subgroup F that is semi-powerful and of bounded index in G, of which we
can express the rank thanks to Corollary 2.3.6. From rk(G) ≤ rk(F ) + rk(G/F )
we obtain a bound R on the rank of G. Finally, we impose in our sentence
that rk(G/Φ2R+1(F )) = r, which guarantees, thanks to Theorem 2.6.1, that
rk(G) = r.

Proof. Let G be a pro-π group with rank bounded by r and consider the set
S := {S | S finite simple π-group}. Using the classification of finite simple groups
one can deduce that S is finite ([Ma], Remark page 51).

Let Λ be the set

{ϕ | ϕ : G→ Aut(Sm) homomorphism, S ∈ S,m ∈ N with d(Sm) ≤ r}.

Since S is finite, by definition Λ is also finite. It follows that the group

K :=
⋂︂

ϕ∈Λ
Kerϕ

is an open normal subgroup of G and the finite quotient G/K has order bounded
by a function f(r, π) of r and π.
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We claim that K is a pronilpotent pro-π group, i.e., a Cπ group. Indeed, let
L be an open normal subgroup of G. Starting from L we can construct a chief
series

L =: Gn ◁ Gn−1 ◁ . . . ◁ G1 ◁ G0 := G,

where each Gi, for i ∈ {0, . . . , n}, is normal in G and each quotient Gi/Gi+1,
for i ∈ {0, . . . , n − 1}, is finite, hence of the form Sk for some k ∈ N and S ∈
S. Moreover, since rk(G) ≤ r, the minimal number of generators of each such
quotient is bounded by r. From such a series we get a normal series for K:

K ∩ L = K ∩Gn ◁ K ∩Gn−1 ◁ . . . ◁ K ∩G1 ◁ K ∩G0 = K.

Since the quotients K ∩ Gi/K ∩ Gi+1 (i ∈ {0, . . . , n − 1}) are again of the form
Sk for some k ∈ N, S ∈ S and d(Sk) ≤ r, the action of K on them is trivial by
the definition of K. It follows that [K,K ∩Gi] ⊆ K ∩Gi+1, i.e., the series

1 ◁ K ∩Gn−1
K ∩Gn

◁ . . . ◁
K

K ∩Gn
= K

K ∩ L

is central and K/K ∩ L is nilpotent. Since every finite quotient of K arises as a
quotient of some K/K ∩ L we can conclude that K is pronilpotent.

Now consider the group H := Gf(r,π). By [NS1], Theorem 1, the word gf(r,π)

has finite width and therefore H is a definable subgroup of G contained in K with
index that is (π, r)-bounded by the positive solution to the Restricted Burnside
Problem. In this specific case, however, we do not need to use these general
theorems to infer these properties of H. Indeed, assume for the moment that
the pro-π group G of rank r is finite of exponent f(π, r). We need to show that
|G| is (π, r)-bounded. We established that G has a nilpotent normal subgroup
K of (π, r)-bounded index. Thus there is no harm in assuming that G = K.
Furthermore, K is a direct product of its Sylow p-subgroups, where p ranges over
the finite set π. Hence we may even assume that G is a p-group of rank at most r,
for some p ∈ π, and that f(π, r) is a p-power, pe say. In this situation, G contains
a powerful normal subgroup of (p, r)-bounded index (see [DDMS], Theorem 2.13),
and we may assume that G itself is powerful. The p-power series of a powerful
p-group coincides with its lower p-series, and we obtain the bound |G| ≤ pre.
As for the fact that every element of H can be written as a product of a (π, r)-
bounded number of f(π, r)-th powers, descending without loss of generality to a
subgroup of (π, r)-bounded index, as above, it suffices to recall that in a powerful
pro-p group every product of pe-th powers is itself a pe-th power; see [DDMS],
Corollary 3.5.

As K is pronilpotent, so is H and we can express this fact with a first-order
sentence.
Claim. One can express with a first-order sentence that H is pronilpotent.

Proof of Claim. The idea of the proof is that H is pronilpotent if and only if
H/Z(H) is pronilpotent and we can express that the latter quotient is pronilpo-
tent; note that this quotient is definable in G as H is definable.

Let H1, . . . ,Hk be the Sylow subgroups of H and, for i ∈ {1, . . . , k}, let
xi

1, . . . , x
i
r be generators of Hi.

We first note that, for every i ∈ {1, . . . k},

CH(Hi) = H1 × · · · ×Hi−1 × Z(Hi)×Hi+1 × · · · ×Hk,
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from which it follows that

˜︂CH(Hi)
Z(H) := CH(H1) ∩ . . . ∩ CH(Hi−1) ∩ CH(Hi+1) ∩ . . . ∩ CH(Hk)

Z(H)
∼=

Hi

Z(Hi)
.

Therefore,

H/Z(H) = H1 × · · · ×Hk

Z(H1)× · · · × Z(Hk)
∼=

k∏︂
i=1

˜︂CH(Hi)
Z(H) . (2.16)

Now each CH(Hi) is a definable subgroup (with parameters xi
1, . . . , x

i
r) defined

as {x ∈ H | [x, xi
j ] = 1 for all j : 1 ≤ j ≤ r} = {x ∈ H | ζ(x, xi

j) for all j : 1 ≤ j ≤
r}. It follows that also the quotients ˜︂CH(Hi)/Z(H) (i ∈ {1, . . . , k}) are definable.

We can then express the isomorphism (2.16) by a sentence ι holding true in
H that states that

˜︂CH(H1)
Z(H) · · ·

˜︂CH(Hk)
Z(H) = H

Z(H)
as sets, that

˜︂CH(Hi)
Z(H) ∩

⎛⎝ ˜︂CH(H1)
Z(H) · · ·

˜︂CH(Hi−1)
Z(H) ·

˜︂CH(Hi+1)
Z(H) · · ·

˜︂CH(Hk)
Z(H)

⎞⎠ = {1}

for each i ∈ {1, . . . , k} and that each factor ˜︂CH(Hi)/Z(H) is normal in H/Z(H).
Moreover, we can express that each Qi := ˜︂CH(Hi)/Z(H) is a pro-pi group

with a first-order sentence pri holding in H: given any h ∈ Qi, the group
Z(CQi(h)) is a definable abelian pro-pi subgroup of Qi with rank bounded by
r. This can be expressed by checking that the prime pi is the only prime in π
that occurs in the factorization of Z(CQi(h)), as we did for expressing the dimen-
sion of an abelian Cπ group. More precisely, Z(CQi(h)) must satisfy the sentence⋁︁r

ri=1
⋁︁ri

j=0 δ̃
ab
pi,ri,j :

∀h ∈
˜︂CH(Hi)
Z(H) : Z(CQi(h)) |=

r⋁︂
ri=1

ri⋁︂
j=0

δ̃
ab
pi,ri,j .

(Recall that Z(CQi(h)) |= δ̃
ab
pi,ri,j means that Z(CQi(h)) is abelian and that

Z(CQi(h)) ∼= Zj
pi
× Cs1

pi
× · · · × Csl

pi

for some j and ri, with j + l = ri.)
Alternatively, as Qi is a pro-π group, it is enough to impose that each element of
Qi is a qi-th power, for qi = p1 · · · pi−1pi+1 · · · pk.

Putting everything together, one obtains a sentence that states that H/Z(H)
is a pronilpotent pro-π group, and hence thatH is a pronilpotent pro-π group.

Therefore, if n is the formula defining H and ϖ is the sentence defining finite
groups with order bounded by f(r, π) and rank bounded by r, we can conclude
that G satisfies the sentence ηπ,r given by

res(n, ι) ∧ res(n,
k⋀︂

i=1
pri) ∧ res(n,

r⋁︂
r̃=1

⋁︂
r̃:max(r̃)i=r̃

σπ,r̃,r̃) ∧ lift(n, ϖ).
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In the previous sentence, the first term describes the isomorphism (2.16), the
second term implies that H is a Cπ group, the third term assures that rk(H) ≤ r
and the last term implies that the finite group G/H has rank bounded by r.

At this point we have a sentence ηπ,r that is satisfied by any pro-π group of
rank r; conversely, if a pro-π group G satisfies ηπ,r, then the rank of G is bounded
by 2r.

Now, let R := 2r and consider the semi-powerful subgroup of H given by

P2R+1(Φm(R)(H)) = P2R+1(Φm(R)(H1))× · · · × P2R+1(Φm(R)(Hk)),

where m(R) is the function (2.2) defined in Section 2.3.
By Theorem 2.6.1, rkG = rk(G/P2R+1(Φm(R)(H))) and, for each pi ∈ π, rkpi G =
rkpi(G/P2R+1(Φm(R)(H))). We can impose that such ranks are equal to r and ri

respectively with a first-order sentence ϱπ,r,r that holds in G. Indeed, the quotient
G/P2R+1(Φm(R)(H)) is definable and it is enough to impose that it satisfies one
of the finitely many formulas defining finite groups that have order bounded by
f(r, π) · (p1 · · · pk)m(R)+2R, rank r and pi-rank ri for each pi ∈ π.

Therefore, the sentence

σ̃π,r,r := ηπ,r ∧ ϱπ,r,r

holds true in the pro-π group G if and only if G has rank r and pi-rank ri for
each pi ∈ π.

2.7 Finite axiomatizability of the dimension of pro-π
groups

Similarly to the case of Cπ groups, we define the dimension of a pro-π group G
of finite rank as the k-tuple d := (d1, . . . , dk), where each di is the dimension of
a pro-pi Sylow of G.

Theorem 2.7.1. For every positive integer r and every k-tuple of natural num-
bers d := (di)i∈{1,...,k} with di ≤ r for each i ∈ {1, . . . , k}, there is a sentence
δ̃π,r,d in the language of groups Lgp such that, for every pro-π group G of rank r,
the following are equivalent:

1. G has dimension d,

2. G is a model of δ̃π,r,d.

Proof. The proof of the theorem easily follows from the discussion in Section 2.6.
Indeed, we saw in the proof of Theorem 2.6.4 that G contains an open normal
definable Cπ subgroup H with rank r̃ ≤ r and index f(r, π). We can use this
group to express the dimension of G.
Indeed, let S1, . . . , Sk be Sylow pro-pi subgroups of G with pi ∈ π and Hi ⊆ Si

for each i ∈ {1, . . . , k}. Then Hi = H ∩ Si is open in Si. It follows that the
dimension of Hi coincides with the dimension of Si for every i and therefore we
can use the formula δalt

π,r̃,r̃,d established in Theorem 2.5.3 to express the dimension
of the definable Cπ group H, that is the same as the dimension of G.
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Precisely, if n is the formula defining H and ηπ,r is the sentence expressing that
H is a pronilpotent pro-π group of index bounded by f(r, π) and rank bounded
by r (see the proof of Theorem 2.6.4), the required sentence is given by

δ̃π,r,d := ηπ,r ∧ res

⎛⎝n, ⋁︂
r̃≤r

(
⋁︂

r̃:max (r̃)i=r̃

δalt
π,r̃,r̃,d)

⎞⎠ .

Corollary 2.7.2. For every positive integer r and all k-tuples of natural numbers
d := (di)i∈{1,...,k} and r := (ri)i∈{1,...,k} with di ≤ r for each i ∈ {1, . . . , k} and
max ri = r, there is a sentence ˜︁δπ,r,r,d in the language of groups Lgp such that,
for every pro-π group G, the following are equivalent:

1. G has dimension d, rank r and each Sylow pro-pi subgroup of G has rank
ri,

2. G is a model of ˜︁δπ,r,r,d.

Proof. Take ˜︁δπ,r,r,d := σ̃π,r,r ∧ ˜︁δπ,r,d,

where σ̃π,r,r is like in Theorem 2.6.4.

Remark 2.7.3. In the soluble case one does not need to rely on the classification
of finite simple groups. Indeed, if G is a soluble pro-π group, one can find a
definable maximal abelian normal subgroup of G, A1, of which one can compute
the dimension by using the formula for the dimension of Cπ groups (since A1 is
abelian, it is in particular pronilpotent). Proceeding inductively for at most r
steps, one gets a formula for the dimension of G. This is very similar to the case
of soluble Cπ groups treated in 2.4.3.

2.8 Quantifier complexity of the sentences expressing
rank and dimension

In this section we examine the quantifier complexity of the main sentences that
we produced to express the rank and the dimension of pro-π groups. Here, by
quantifier complexity we mean the type of quantifiers occurring in the sentence
when put in prenex form, without considering the number of variables. Recall
that a formula is said to be in prenex form if it is of the form Q : P where Q is a
string made of concatenated quantifiers and P is a quantifier-free formula; every
first-order formula can be put in prenex form ([TZ], Exercise 1.2.3). For example,
the sentence ∃a1, . . . , ad∀z∃x1, . . . , xd : z = [a1, x1] · · · [ad, xd] is in prenex form
and has quantifier complexity ∃∀∃.

We prove here that all our main sentences have quantifier complexity ∃∀∃.
Hence, in particular, the quantifier complexity is independent of the set of primes
π and of the rank and the dimension that are being axiomatized. For the dimen-
sion we will consider the second sentence that we produced in Section 2.5. We will
note that the sentence presented in Section 2.4 has the slightly worse complex-
ity ∃∀∃∀. In order to establish these results, we need the following preliminary
observations.
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Remark 2.8.1. Let G be any group and let H = {g ∈ G | φ(g)} be a definable
subgroup of G, where φ(x) is of the form ∃z : φ0(x, z) with φ0 quantifier-free in
free variables x and z1, . . . , zm, say. In this case we will say that H is ‘∃-definable’.
Then H is ‘quantifier-neutral’ in the following sense. First-order assertions about
H can be translated into assertions of the same quantifier complexity about G via
res, simply by expressing universal quantification over elements of H as ∀x, z :
(φ0(x, z) → . . .) and existential quantification over elements of H by ∃x, z :
(φ0(x, z) ∧ . . .). It is easy to see that, as H is ∃-definable, this does not change
the quantifier complexity of the formula.

Remark 2.8.2. Let G be a profinite group and let N ⊆c G. Suppose that N is
definable in G; this means that there is an Lgp-formula φ(x), with a single free
variable x, such that N = {g ∈ G | φ(g)}.

Let B = {b1, . . . , bn} be a finite group of order n, with multiplication ‘table’

bibj = bm(i,j)

encoded by a suitable function m : {1, . . . , n} × {1, . . . , n} → {1, . . . , n}.
Then the sentence

∃a1, . . . an ∀x, y, z : φ(1) ∧
(︂(︁
φ(x)∧φ(y)

)︁
→ φ(x−1y)

)︂
∧
(︂
φ(x)→ φ

(︁
y−1xy

)︁)︂
∧
(︄ ⋀︂

1≤i<j≤n

¬φ
(︁
a−1

i aj
)︁)︄
∧
(︄ ⋁︂

1≤i≤n

φ
(︁
a−1

i y
)︁)︄
∧
(︄ ⋀︂

1≤i,j≤n

φ
(︁
a−1

m(i,j)aiaj
)︁)︄

can be used to express that N ⊴ G and G/N ∼= B. Note that the quantifier
complexity of this sentence is the same as the quantifier complexity of φ increased
by ∃∀. In particular, if N ⊆c G is an ∃-definable subset of G, we obtain an ∃∀∃-
sentence to express that N ⊴c G and G/N ∼= B.

Corollary 2.8.3. Let m be a natural number and G a Cπ group. Then, first-order
sentences holding true in the iterated Frattini group Φm(G) give rise, via res, to
sentences in G with the same quantifier complexity. Also, first-order sentences
holding true in the finite quotient G/Φm(G) expressing the isomorphism type of
this group give rise, via lift, to first-order sentences holding in G of complexity
∃∀∃.

Proof. From the discussion in Section 2.2.3, we see that each iterated Frattini
subgroup Φm(G) is defined in the previous iterated Frattini subgroup Φm−1(G)
by an existential formula ϕm. Then, it follows from Remark 2.8.1 that a sentence
expressing a property of Φm(G) can be iteratively translated into sentences with
the same quantifier complexity holding in the lower Frattini subgroups, up to
reaching G. Regarding the quotient G/Φm(G), it is easy to see that Φm(G)
is ∃-definable in G; this can be inferred by looking directly at the formulas in
Section 2.2.3 or, equivalently, by observing that, since the formula defining Φk(G)
in Φk−1(G) for each natural number k ≥ 1 is existential, restricting iteratively
the formula defining Φm(G) in Φm−1(G) up to G, one finds again an existential
formula. Then the claim follows from Remark 2.8.2.

Theorem 2.8.4. Let r be a positive integer and r := (ri)i∈{1,...,k} a tuple of
natural numbers with max ri = r, for pi ∈ π. Let σ̃π,r,r be the sentence established
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in Theorem 2.6.4 that axiomatizes the property of a pro-π group of having rank r
and Sylow pro-pi rank ri for every pi ∈ π. Then σ̃π,r,r has quantifier complexity
∃∀∃.

Proof (Sketch). Recall that in the proof of Theorem 2.6.4 we found a definable
open normal Cπ subgroup H of finite index bounded by a function f(r, π) in G.
In the first part of the sentence σ̃π,r,r we imposed that H satisfies the formula⋁︁r

r̃=1
⋁︁

r̃:max(r̃)i=r̃σπ,r̃,r̃, that expresses the fact that H has rank bounded by r.
Recall that H = Gf(r,π) and, therefore, H is ∃-definable and hence quantifier-
neutral by the previous Remark 2.8.1. Therefore, we just need to look at the
quantifier complexity of ⋁︁r

r̃=1
⋁︁

r̃:max(r̃)i=r̃ σπ,r̃,r̃. The sentence σπ,r̃,r̃ was estab-
lished in Corollary 2.3.6. In this sentence, we first express the fact that the
iterated Frattini subgroup Φm(H), with m := m(r) (see (2.2)), is semi-powerful
and has minimal number of generators bounded by r. The latter fact is en-
sured by the sentence βr̃ written down in Section 2.2.3, that has complexity ∃∀∃,
while the sentence pow expressing that a group is semi-powerful (that can also be
found in Section 2.2.3) has complexity ∀∃. Hence, the conjunction of these two
sentences has complexity ∃∀∃. From Corollary 2.8.3 it follows that the resulting
sentence in G has again complexity ∃∀∃. Note that, in order to talk about the
iterated Frattini subgroups up to Φm(G), we also need the generators of all Φk(G)
for k ∈ {0, . . . ,m− 1} (see the discussion in Section 2.2.3), and this can be done
with the sentence βr and its restriction to quantifier-neutral subgroups, that gives
a contribution of ∀∃ to the complexity. Finally, again by Corollary 2.8.3, the fact
that the finite group H/Φm(H) has rank bounded by r̃ has complexity ∃∀∃. To
conclude the discussion for σπ,r̃,r̃, we just need to examine the complexity of the
sentence expressing that H/(F · Hp

2r̃(4r̃+1+m)
i ), where F := P4r̃+1(Φm(H)), has

rank r̃. The group F ·Hp
2r̃(4r̃+1+m)
i is ∃-definable in H and therefore, by Remark

2.8.2, this sentence has complexity ∃∀∃ in H, hence in G, as H is quantifier-
neutral. We now examine the rest of the sentence regarding H, that states that
H is a Cπ group and that the finite quotient G/H has rank bounded by r and
index bounded by f(r, π). By Remark 2.8.2, the latter term of the sentence, i.e.,
lift(n, ϖ), has complexity ∃∀∃. The term res(n, ι), expressing the isomorphism

H/Z(H) = H1 × · · · ×Hk

Z(H1)× · · · × Z(Hk)
∼=

k∏︂
i=1

˜︂CH(Hi)
Z(H) ,

has also quantifier complexity ∃∀∃. Indeed, taking the generators of H and of
the factors Hi as parameters, the groups Z(H) and CH(Hi) are quantifier-free
definable in H. Therefore, also the groups

˜︂CH(Hi) := CH(H1) ∩ . . . ∩ CH(Hi−1) ∩ CH(Hi+1) ∩ . . . ∩ CH(Hk)

are quantifier-free definable in H and we can conclude that the quotients H/Z(H)
and ˜︂CH(Hi)

Z(H) are quantifier-free interpretable in H. Now ι states that

˜︂CH(H1)
Z(H) · · ·

˜︂CH(Hk)
Z(H) = H

Z(H)
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as sets, that

˜︂CH(Hi)
Z(H) ∩

⎛⎝ ˜︂CH(H1)
Z(H) · · ·

˜︂CH(Hi−1)
Z(H) ·

˜︂CH(Hi+1)
Z(H) · · ·

˜︂CH(Hk)
Z(H)

⎞⎠ = {1}

for each i ∈ {1, . . . , k} and that each factor ˜︂CH(Hi)/Z(H) is normal in H/Z(H).
It is easy to see that these three properties are expressed by a ∀∃-sentence. Adding
the existence of the generators as parameters at the beginning of the sentence
yields another existential quantifier, leading to an ∃∀∃-sentence. The last piece of
the sentence expressing the properties of H states that each Qi := ˜︂CH(Hi)/Z(H)
is a pro-pi group via the first-order sentence pri. We saw that one possible
way to write pri is to impose that each element of Qi is a qi-th power, for
qi = p1 · · · pi−1pi+1 · · · pk, which yields a ∀∃-sentence. Again by introducing the
generators as parameters, one obtains an ∃∀∃-sentence. Finally, by using the
fact that P2R+1(Φm(R)(H)) is ∃-definable in H, hence in G, we can infer by Re-
mark 2.8.2 that also the sentence ρπ,r,r expressing the properties of the quotient
G/P2R+1(Φm(R)(H)) has complexity ∃∀∃. Putting all terms together we can
conclude that the sentence σ̃π,r,r has quantifier complexity ∃∀∃, as claimed.

Theorem 2.8.5. Let r be a positive integer and d := (di)i∈{1,...,k} a tuple of
natural numbers with di ≤ r, for every i ∈ {1, . . . , k}. Let δ̃π,r,d be the sentence
established in Theorem 2.7.1 that axiomatizes the property of a pro-π group with
rank r of having dimension d. Then δ̃π,r,d has quantifier complexity ∃∀∃.

Proof (Sketch). Recall that the sentence δ̃π,r,d has a first term ηπ,r that ensures
that G has a Cπ subgroup H with rank bounded by r and index bounded by
a function f(π, r) and a second term that uses the sentence δalt

π,r,r,d and that
certifies that H has dimension d. As H has finite index in G, this tuple d
will also be the dimension of G. We already saw in the proof of Theorem 2.8.4
that H is ∃-definable and that the sentence ηπ,r has quantifier complexity ∃∀∃.
Regarding δalt

π,r,r,d, setting F := Φm(H) with m = m(r) as in (2.2), we want
to express, for each pi ∈ π, properties of the quotient F/F pi [F, F ] and of the
set {g ∈ F | gpi = 1}. First, recall from the proof of Corollary 2.8.3 that
F is ∃-definable in H and that, in order to talk about its properties we also
need the generators of all Φk(H) for k ∈ {0, . . . ,m − 1}. This can be done by
using the sentence βr and its restriction to quantifier-neutral subgroups, that
brings a contribution of ∀∃ to the complexity. Once all these generators are
given as parameters, F pi [F, F ] is ∃-definable in F , hence in H. Therefore, by
Remark 2.8.2, the sentence expressing that F/F pi [F, F ] has a certain isomorphism
type (hence a certain minimal number of generators d(Fi)) has complexity ∃∀∃.
Finally, expressing that the set {g ∈ F | gpi = 1} has a prescribed cardinality
d(Ti) requires an ∃∀-formula. It follows that the overall sentence satisfied by F
has ∃∀∃ quantifier complexity. Since F is ∃-definable in H and H is ∃-definable
in G, hence quantifier-neutral (Remark 2.8.1), also the overall sentence satisfied
by G has ∃∀∃ quantifier complexity.

Corollary 2.8.6. Let r be a positive integer, r := (ri)i∈{1,...,k} a tuple of natural
numbers with max ri = r and d := (di)i∈{1,...,k} a tuple of natural numbers with
di ≤ r for every i ∈ {1, . . . , k}. Let ˜︁δπ,r,r,d be the sentence established in Corollary
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2.7.2 that axiomatizes the property of a pro-π group of having rank r, Sylow pro-pi

rank ri for every pi ∈ π and dimension d. Then ˜︁δπ,r,r,d has quantifier complexity
∃∀∃.

Proof. The sentence ˜︁δπ,r,r,d is given by the conjunction

σ̃π,r,r ∧ ˜︁δπ,r,d.

Since, by the previous theorems, both σ̃π,r,r and ˜︁δπ,r,d have quantifier complexity
∃∀∃, also ˜︁δπ,r,r,d has the same quantifier complexity.

We conclude this section by observing that the sentence expressing the di-
mension introduced in Section 2.4 has quantifier complexity ∀∃∀∃.

Proposition 2.8.7. Let r be a positive integer and d := (di)i∈{1,...,k} a tuple of
natural numbers with di ≤ r for all i ∈ {1, . . . , k}. The sentence δπ,r,d expressing
that a Cπ group G of rank r has dimension d has quantifier complexity ∀∃∀∃.

In particular, if we were to use this sentence in place of δalt
π,r̃,r̃,d to build the

sentence ˜︁δπ,r,d holding for pro-π groups, we would get the worse complexity ∀∃∀∃.
We will not prove this proposition. We just point out that, carrying out an

analysis similar to the ones above, one finds that the sentences (δs
d1
∧ δq

d2
) from

Section 2.4 have complexity ∃∀∃. Since

δπ,r,d :=∃h1, . . . , hr :
⋁︂

d1+d2=d

(︂
δs

d1(h1, . . . , hr) ∧ δq
d2

(h1, . . . , hr)
)︂

∧ ¬∃h1, . . . , hr :
⋁︂

m∈{0,...,r}k

m ̸=(0,...,0)

⎛⎝ ⋁︂
d1+d2=d+m

(δs
d1(h1, . . . , hr) ∧ δq

d2
(h1, . . . , hr))

⎞⎠ ,
the negation in the second half of the sentence produces a string of quantifiers
∀∃∀, leading to the overall quantifier complexity ∀∃∀∃.

2.9 Some open questions

We list here a few open questions that arise naturally from the work presented
in this thesis.

From a purely group-theoretic point of view, we saw in Theorem 2.3.1 that,
given a pro-p group G of rank r and F an open normal powerful subgroup of G,
the quotient G/P2r+1(F ) (dependent on r) has the same rank as G. A natural
question arising from this is:

Question 2.9.1. Is it possible to find a quotient of G that does not depend on
rk(G) and has rank rk(G)?

Ideally, the quotient G/P2(F ) could be a candidate, but the arguments used in
the proof of Theorem 2.3.1 do not hold in this case (see Example 2.3.3, 2.). More
generally, one might try to prove that the result holds for rk(G) = rk(G/Pc(F ))
with c independent of the rank of G.
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In another direction, regarding definability, the next step would be to inves-
tigate the finite axiomatizability of the dimension of R-analytic groups, where R
is a pro-p ring (see [DDMS], Chapter 13).
Also, we have already observed that it is not possible to express that a pro-p
group has finite (unbounded) rank by Feferman and Vaught’s result (Proposition
2.2.12). A possible question would then be the following.

Question 2.9.2. Is it possible to find a class of pro-p groups where the property
of having finite (unbounded) rank is finitely axiomatizable?

We already noticed at the end of Section 2.2.4 that one might try to consider
the class of d-generated pro-p groups, where d is a fixed positive integer, to begin
with.

Finally, one could consider the Hirsch length of polycyclic groups, that be-
haves as some sort of dimension for these groups, and investigate whether this is
a first-order definable invariant.

2.10 List of main formulas

α: group is abelian; Section 2.4.1

β∗
d : minimal number of generators of a Cπ group is d; Section 2.2.3

β̃d: minimal number of generators of a Cπ group is ≤ d; Section 2.2.3

boundd: xp
f(d1)
1 ···pf(dk)

k = 1; Section 2.4.2

γp,s: direct product of s copies of the cyclic group Cp; Section 2.4.1

δπ,r,d: Cπ group of rank r has dimension d; Section 2.4.2

δπ,r,r,d: Cπ group that has rank r, dimension d and pi-ranks ri; Section
2.4.2

δalt
π,r,r,d: alternative sentence for Cπ group that has rank r, dimension d and
pi-ranks ri; Section 2.5

δ̃π,r,d: pro-π group of rank r has dimension d; Section 2.7

˜︁δπ,r,r,d: pro-π group that has dimension d, rank r and pi-ranks ri; Section
2.7

δab
π,r,d: abelian Cπ group has rank r and dimension d; Section 2.4.1

δ̃
ab
π,r,d: Cπ group that is abelian, has rank r and dimension d; Section 2.4.1

δj.i.
π,r,d: Cπ group of rank r with non-soluble just-infinite pi-adic analytic

pro-pi factors has dimension d; Section 2.4.3

78



δ
j.i.
π,r,r,d: Cπ group with non-soluble just-infinite pi-adic analytic pro-pi fac-

tors has rank r, dimension d and pi-ranks ri; Section 2.4.3

δsim
π,r,d: Cπ group of rank r satisfying (⋆)υ and whose factors have non-abelian

simple Lie algebra has dimension d; Section 2.4.3

δ
sim
π,r,r,d: Cπ group satisfying (⋆)υ and whose factors have non-abelian simple

Lie algebra that has rank r, dimension d and pi-ranks ri; Section 2.4.3

δsol
π,r,d: soluble Cπ group of rank r has dimension d; Section 2.4.3

δ
sol
π,r,r,d: soluble Cπ group that has rank r, dimension d and pi-ranks ri;

Section 2.4.3

ϕG
m: (iterated) Frattini subgroup Φm(G) of a Cπ group G; Section 2.2.3

µ: maximality of dimension of abelian subgroup; Section 2.4.2

πF
i : ith term of the lower q(π)-series of a definable semi-powerful group F ;

Section 2.2.3

pow: (semi)powerful group; Section 2.2.3

s(κ): set defined by κ is a subgroup; Section 2.2.1

s◁(κ): set defined by κ is a normal subgroup; Section 2.2.1

σπ,r,r: Cπ group has rank r and pi-ranks ri; Section 2.3

σ̃π,r,r: pro-π group has rank r and pi-ranks ri; Section 2.6

ζ(a, x): a and x commute; Section 2.4.2
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Chapter 3

The unique product property
for pro-p groups

3.1 Introduction

The unique product property is a combinatorial property related to the Kaplansky
conjecture on zero divisors in group rings. This conjecture states that, if G is a
torsion-free group and K is a field, then the group ring K[G] has no non-trivial
zero divisors. According to [G] and page 112 in [S], the zero divisor conjecture
was formulated by Higman in his thesis in 1940 and appeared in written form in
the report of a talk given by Kaplansky in 1956, whence the common attribution
to Kaplansky. The zero divisor conjecture is related to two further conjectures on
group rings, namely the unit conjecture and the idempotent conjecture. Given
a field K and a torsion-free group G, the unit conjecture states that every unit
in K[G] is of the form λg, where λ ∈ K \ {0} and g ∈ G, while the idempotent
conjecture states that the only idempotents in K[G] are 0 and 1. The basic
relation between these three conjectures is the following:

Unit conjecture ⇒ Zero divisor conjecture ⇒ Idempotent conjecture.

The unit conjecture was disproved by Gardam in 2021 ([G]), while the zero divisor
conjecture and the idempotent conjecture are still open. The zero divisor con-
jecture is known to be true for important classes of groups, such as: torsion-free
abelian groups, free groups, torsion-free abelian-by-finite groups and elementary
amenable groups. However, for some of these classes, such as for elementary
amenable groups, the proof of the conjecture relies on ring-theoretic and K-
theoretic machinery and it would therefore also in these cases be desirable to
find a more direct group-theoretic or combinatorial proof.

It is easily seen that a group possessing the unique product property satisfies
the zero divisor conjecture but it is known that the converse does not hold true
(for instance by an example given by Promislow; [P]). In the realm of pro-p
groups little is known regarding the unique product property, but the following
result, proved by ring-theoretic means, holds true.

Theorem 1 (Farkas, Linnell; [FL]). If G is a uniform pro-p group and K is a
field of characteristic 0 or p, then K[G] has no non-trivial zero-divisors.
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In light of the evidence provided by this result, Craig and Linnell formulated
the following

Conjecture 2 (Craig, Linnell; [CL]). Every uniform pro-p group has the unique
product property.

In the direction of proving this conjecture they show:

Theorem 3 (Craig, Linnell; [CL]). A virtually soluble subgroup of a uniform
pro-p group has the unique product property.

In order to prove this result, they use properties of uniform pro-p groups and
of linear groups to show that virtually soluble subgroups of uniform pro-p groups
are torsion-free nilpotent-by-torsion-free abelian. In this way they actually show
that these groups are right-orderable (see Section 3.2.2), a stronger property than
the unique product property.

In this chapter we consider a larger class of pro-p groups, namely saturable pro-p
groups (see Section 3.3) and we prove the following result (compare with Corollary
3.3.7):

Theorem 4. A virtually soluble subgroup of a saturable pro-p group is right-
orderable and therefore has the unique product property.

Our proof uses Lie-theoretic methods and therefore provides not only a general-
isation but also a different proof of Craig and Linnell’s result.

We then proceed to investigate the related property of orderability in the
realm of pro-p groups, finding both, classes of orderable and not orderable pro-p
groups. As for non bi-orderable pro-p groups, it is easily seen that compact
p-adic Chevalley groups cannot be bi-ordered (see the beginning of Section 3.4).
It is then natural to ask what happens in general. In this respect we show (see
Corollary 3.4.5):

Theorem 5. Let G be a non-soluble p-adic analytic pro-p group. Then G is not
bi-orderable.

In order to prove this theorem we need to establish first another result, that
is interesting on its own, which states that every non-trivial normal subsemi-
group of a just-infinite insoluble pro-p group G is an open normal subgroup of G
(Proposition 3.4.1).

In contrast, adapting the proof that abstract RAAGs are bi-orderable to the
pro-p case, we find a large class of pro-p groups that are bi-orderable (see Section
3.5):

Theorem 6. Pro-p RAAGs are bi-orderable.

On the way, by using Theorem 3.1, we give some examples of subsets of
uniform subgroups of pro-p Chevalley groups that display the unique product
property (Example 3.3.20) and we try to relate the fact that a pro-p group is
locally indicable to other properties of the group (compare with Corollary 3.3.16).
In particular, in the case of metabelian profinite groups we obtain (see Corollary
3.3.19):
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Theorem 7. Let G be a metabelian profinite group with the ascending chain
condition on closed subgroups. Then the following are equivalent:

1. G is torsion-free and, for every H ≤c G, the abelianisation H/H ′ is infinite;

2. G is locally indicable.

Also the questions and the formula contained in Sections 7 and 8 are orig-
inal. Smaller new insights are collected in the following results and examples.
Example 3.2.4 of a torsion-free profinite group that does not possess the unique
product property is easily found by using Promislow’s example. Lemma 3.2.24
and Corollary 3.2.27 show that extensions of groups with a locally invariant or-
der have a locally invariant order (the result is probably known but a suitable
reference for it was not found), from which one can easily deduce Example 3.2.28
of a profinite group with a locally invariant order. Finally, Remarks 3.2.20 and
3.2.23 in Section 2 and Example 3.3.3 in Section 3 are also new.

The organisation of the chapter is as follows. In Section 3.2 preliminaries on
the unique product property and orderability of groups are presented. The main
result on the right-orderability of virtually soluble subgroups of saturable pro-p
groups can be found in Section 3.3, together with a characterisation of groups
with the property that every closed subgroup has infinite abelianisation within
the class of torsion-free soluble pro-p groups of finite rank. In Section 3.4 it is
proved that insoluble pro-p groups of finite rank are not bi-orderable, while in
Section 3.5 the bi-orderability of pro-p RAAGs is proven. Finally, in Section
3.6 some further open questions and lines of investigation are described and in
Appendix 3.7 a commutator formula is proved.

3.2 Preliminaries

3.2.1 The unique product property

Definition 3.2.1. We say that a group G has the unique product property (UP
for short) if, given two non-empty, finite subsets A and B of G, there always exists
at least one element g of G that can be written in a unique way as a product
g = ab with a ∈ A and b ∈ B.
If G satisfies UP we say that G is a unique product group (UPG for short).

It follows immediately from the definition that a group with the unique prod-
uct property is torsion-free; indeed, if g ∈ G \ {1} is a torsion element of order
n, then the set {1, g, . . . , gn−1} contradicts the unique product property: every
element of this set can be written in n ≥ 2 ways as the product of two elements
from the set itself.

Example 3.2.2. The group Z has the unique product property; indeed, if ∅ ≠
A,B ⊆ Z are finite and if a is the maximal element of A and b is the maximal
element ofB, then a+b is greater than any other element in A+B. More generally,
every ordered group has the unique product property (see Section 3.2.2).

Unique product groups were introduced in [RS] in relation to the Kaplansky
conjecture regarding zero divisors in group rings. The conjecture predicts that,
if K is a field and G is a torsion-free group, then the group ring K[G] has no
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non-trivial zero divisors; this conjecture is still open. Note that, by considering
the quotient field of an integral domain, it is equivalent to state this conjecture
for K an integral domain instead of a field.
Some classes of torsion-free groups which are known to satisfy the zero divisor
conjecture are: free groups and torsion-free abelian groups (more generally order-
able groups, see Section 3.2.2), groups with a locally invariant order (see Section
3.2.2) and torsion-free abelian-by-finite groups (see [Li]).
Indeed, it is not difficult to see that if G has the unique product property, then
R[G] has no zero divisors: let x := r1g1 + ...+ rngn and y := r′

1g
′
1 + ...+ r′

mg
′
m be

two non-zero elements in R[G], each written as an R-linear combination of dis-
tinct elements of G with non-zero coefficients ri, r′

j , and consider the finite non
empty subsets of G given by A := {g1, . . . , gn} and B := {g′

1, . . . , g
′
m}. By the

UP there exists an element in G, without loss of generality g := g1g
′
1, that can be

written uniquely as the product of an element in A and an element in B. Hence
gig

′
j ̸= g1g

′
1 for every (i, j) ̸= (1, 1) and xy = r1r

′
1(g1g

′
1) + r1r

′
2(g1g

′
2) + . . . ̸= 0.

However, the class of groups G such that R[G] has no zero divisors is strictly
larger than the class of groups which have the unique product property, as shown
by the following example, given by Promislow in 1988 (see [P]).

Example 3.2.3. Let G2 be the crystallographic group given by the presentation

⟨x, y : x−1y2x = y−2, y−1x2y = x−2⟩.

It can be shown that G2 is torsion-free and abelian-by-finite and therefore R[G]
does not have any zero divisors, whenever R is an integral domain; see [Li].
Indeed, the group G2 is a non-split extension of Z3 by the finite group C2 × C2.
More precisely, setting z := xy, we see that N := ⟨x2, y2, z2⟩ is a normal subgroup
of G2 which is free abelian of rank 3; the quotient G2/N is isomorphic to C2×C2
(see [F] for more details about crystallographic groups).

In his paper, Promislow explicitly constructs a non-empty finite set A with
fourteen elements such that there is no unique product in A ·A.

It is interesting to note that this group was used to give a counterexample to
the units conjecture in [G]. By using Example 3.2.3, we can easily produce an
example of a profinite group satisfying the zero divisor conjecture, but without
the unique product property.

Example 3.2.4. We consider ˆ︂G2, the profinite completion of G2. Let N be the
closure of the group N introduced in the previous example in ˆ︂G2. As N has
finite index in G2, N ∼= ˆ︁N ∼= ˆ︂Z3 (see Proposition 3.1.24 in [Wil]) and ˆ︂G2/N ∼=
G2/N ∼= C2 × C2. We note that, since G2 is torsion-free and finitely generated
abelian-by-nilpotent, by Theorem 2.4 in [KW] its profinite completion is torsion-
free. Therefore, ˆ︂G2 is torsion-free abelian-by-finite.
Moreover, sinceG2 is residually finite, it injects into ˆ︂G2; thus, ˆ︂G2 gives an example
of a torsion-free profinite group without the unique product property. However,
being torsion-free abelian-by-finite, ˆ︂G2 does satisfy the zero divisor conjecture.

The first example of a torsion-free group without the unique product property
was given in 1985 by Rips and Segev in [RiSe]. In 2014, Carter ([Ca]) gave new
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examples of torsion-free groups that satisfy the zero divisor conjecture but do not
possess the unique product property. More precisely, for each positive integer k,
these groups are given by

Pk := ⟨a, b | ab2k
a−1b2k

, ba2b−1a2⟩.

The group P1 is the same as Promislow’s group. However, Carter proves that, for
every k > 1, the group Pk does not contain P1 ([Ca], Theorem 3.6). Moreover,
he proves that each Pk contains arbitrarily large non-unique product sets ([Ca],
Theorem 1.5). More recently, in [CL] Craig and Linnell generalised Promislow’s
example in another direction. Namely, for each natural number n, they define
the combinatorial generalized Hantzsche-Wendt group Gn as

Gn := ⟨x1, . . . , xn | x−1
i x2

jxix
2
j for all i ̸= j⟩.

Note that G2 is the same group used in Promislow’s example. Craig and Linnell
prove that each Gn for n ≥ 1 satisfies the zero divisor conjecture. However, for
n ≥ 2, each group Gn does not have the unique product property as it contains
a copy of G2.

Next we list some other properties of unique product groups. The following
theorem, due to Strojnowski, states that the unique product property for a group
G can be verified by considering products in product sets of the form A ·A, where
A is a non-empty finite set of G. Moreover, it states that the seemingly stronger
property of having two elements that can be expressed as a unique product is
actually equivalent to the unique product property.

Theorem 3.2.5 (Strojnowski; [S]). Let G be a group. The following are equiva-
lent:

1. G has the unique product property;

2. For every non-empty finite subset A of G there exists (at least) one element
g ∈ G that can be written uniquely as a product g = xy with x, y ∈ A;

3. Given any two non-empty finite subsets A and B of G with |A|+ |B| ≥ 3,
there exist at least two elements of G which can be written in a unique way
as the product of an element in A and an element in B.

The following results, recalled in [CL], state that the unique product property
is closed under some standard group theoretic constructions.

Theorem 3.2.6 (Strojnowski; [S], Theorem 2). Every free product of groups with
the unique product property has the unique product property.

Proposition 3.2.7 (Rudin, Schneider; [RS], Theorem 6.1). The unique product
property is closed under extensions, i.e., given a group G and N ◁ G, if N and
G/N have the unique product property, then G has the unique product property.

Remark 3.2.8. The unique product property is a local property, i.e., a group G
is a unique product group if and only if all the finitely generated subgroups of G
are unique product groups. This is clear since the definition of unique product
property involves only finite sets.
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Corollary 3.2.9 (Compare with [CL], Introduction). Let G be a group having a
subnormal series

1 = G0 ◁ G1 ◁ . . . ◁ Gn = G

such that every quotient Gi+1/Gi is torsion-free abelian.
Then G is a unique product group.

Proof. First of all we show that every torsion-free abelian group is a unique
product group. By the structure theorem of finitely generated abelian groups,
every finitely generated torsion-free abelian group is the direct product of finitely
many copies of Z and we already noted that Z has the unique product property.
For every natural number r, H = Zr has a subnormal series of the form

1 = H0 ◁ H1 ◁ . . . ◁ Hr = H

with Hi
∼= Zi and Hi/Hi−1 ∼= Z for all i ∈ {1, . . . , r}. Using Proposition 3.2.7

inductively one obtains that Zr has the unique product property.
Since the unique product property is a local property (Remark 3.2.8), it follows
that every torsion-free abelian group is a unique product group.
Finally, if G has a subnormal series

1 = G0 ◁ G1 ◁ . . . ◁ Gn = G

with all the quotients torsion-free abelian, it suffices to apply inductively Propo-
sition 3.2.7.

Remark 3.2.10. From the previous corollary we obtain in particular that every
torsion-free abelian group has the unique product property and, in particular, Zr

and the free abelian pro-p group Zr
p are unique product groups for every integer

r ≥ 1.
Moreover, the proof above works for every subnormal series in which the quotients
possess the unique product property.

In [CL], Craig and Linnell conjectured that every uniform pro-p group G is
a unique product group. This conjecture can be motivated by the fact that, if
G is a uniform pro-p group, then K[G] has no zero divisors for all fields K of
characteristic 0 or p (see [FL]). Moreover, they remark that the crystallographic
group G2, that is known to be a non-unique product group (see Example 3.2.3),
cannot be embedded in a uniform pro-p group: this follows from the fact that a
virtually abelian subgroup of a uniform pro-p group is abelian ([CL], Theorem
2.4) and G2 is virtually abelian but not abelian.
As a step towards proving this conjecture, Craig and Linnell show that, if H is a
virtually soluble subgroup of a uniform pro-p group G, then H is a unique product
group. In Section 3.3 we give a different proof of a somewhat more general result,
namely that if H is a virtually soluble subgroup of a saturable pro-p group, then
H is a unique product group (see Corollary 3.3.7).

3.2.2 Orderability and the unique product property

The unique product property is implied by some other group-theoretical proper-
ties related to the notion of orderability (see for example [BMR], the first chapters
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of [DNR] or of [CR] for more on this topic). Recall that a strict order on a set X
is a binary relation < that is transitive (i.e., for all x, y, z ∈ X, x < y and y < z
imply x < z) and irreflexive (i.e., for all x ∈ X, x ≮ x). These two properties
imply asymmetry, i.e., for all x, y ∈ X, if x < y then y ≮ x. From a strict order
< one can obtain a non-strict order ≤ by setting x ≤ y if and only if x < y
or x = y; such an order is a binary relation that is transitive, reflexive (i.e., for
every x ∈ X, x ≤ x) and antisymmetric (i.e., if x, y ∈ X with x ≤ y and y ≤ x,
then x = y). Conversely, from a non-strict order ≤ one obtains a strict order
< by setting x < y if and only if x ≤ y and x ̸= y. Therefore we can speak
without distinction of strict and non-strict orders. Finally, a strict (respectively
non-strict) total order is a strict (respectively non-strict) order relation in which
any two distinct elements (respectively any two elements) are comparable.

Definition 3.2.11. A right-order on a group G is a total order ≤ on G such that,
if x, y are elements in G with x ≤ y, then, for every z ∈ G, xz ≤ yz. Similarly,
a left-order on G is a total order ≤ such that, if x ≤ y, then zx ≤ zy for every
z ∈ G. A bi-order on G is a total order which is both a left- and a right-order.
We say that a group is (bi-)orderable (respectively right-orderable, left-orderable)
if it admits a bi-order (respectively right-order, left-order).

Note that a groupG is right-orderable if and only if it is left-orderable. Indeed,
let ≤ be a right-order (respectively left-order) on G and consider the order ≤′

defined by x ≤′ y if and only if x−1 ≥ y−1. Then ≤′ is a left-order (respectively
right-order) on G. In light of this remark from now on we will consider only
right-orders.

To give a right-order on a group G is equivalent to giving a subset P of G
that is closed under multiplication and such that, for every g ∈ G with g ̸= 1,
either g ∈ P or g−1 ∈ P . Indeed, given a right-order < we can take for P the set
of positive elements {x ∈ G | 1 < x} and, conversely, given such a set P , we can
define on G the right-order given by g < h if and only if hg−1 ∈ P . Note that P
is a semigroup, called the positive cone of the associated order <.
The positive cone of a bi-order has these same properties and, in addition, it
must be closed under conjugation by elements of G, i.e., it must be a normal
subsemigroup of G.
It follows that to ask whether a group G admits a (right-)order is equivalent to
asking whether G has subsemigroups with the properties mentioned above.

Remark 3.2.12. A group G with a right-order is torsion-free.

Proof. Let g ∈ G, g ̸= 1. If g > 1, then gn > . . . > g2 > g > 1 for every positive
integer n. Similarly, if g < 1, then gn < . . . < g2 < g < 1 for every n.

Example 3.2.13. Some examples of bi-orderable groups are: torsion-free abelian
groups, torsion-free nilpotent groups and free groups (see [DNR], Section 1.2).
In particular, since the principal congruence subgroups of SL2(Z) of level greater
than 2 are free, they are bi-orderable. However, a result of Morris-Witte estab-
lishes that finite-index subgroups of SLd(Z) for d ≥ 3 are not right-orderable (see
[DNR], Theorem 3.5.1). It follows that principal congruence subgroups of the
p-adic analytic group SLd(Zp) for d ≥ 3 are not right-orderable.
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We remark that a bi-orderable group has the unique product property: given
two finite non-empty subsets A and B of G, the maximal element of A multiplied
by the maximal element of B will have a unique representation. However, the
converse is not true in general (see [KRD]).

Remark 3.2.14. Since the crystallographic group G2 does not have the unique
product property (see Example 3.2.3), it cannot admit a bi-order. However, we
can also show this directly: if ≤ is a bi-order on G2, then y−2 = x−1y2x > 1 if
and only if y2 > 1 if and only if y−2 < 1.

Note that, with a slightly more complicated argument, one can also prove
that right-orderable groups have the unique product property (see [DNR], Section
1.4.3).

We now consider what happens for extensions of right-orderable groups.

Lemma 3.2.15. Let G be an extension of N by K with N and K right-orderable
groups. Then G is right-orderable.

Proof. We fix right-orders ≤N and ≤K on N and K respectively. Let i : N → G
and p : G → K be the two homomorphisms that come with the extension. For
defining an order ≤ on G we remark that G is the disjoint union of the right-cosets
of N in G; hence we define a sort of lexicographic order on G taking as a primary
parameter the image of an element under p and as a secondary parameter the
“N -part” of an element.1

Namely, let x, y be two distinct elements of G. We distinguish two cases:

1. p(x) ̸= p(y): in this case we set x > y if p(x) >K p(y) in K;

2. p(x) = p(y): this means that xy−1 ∈ Ker(p) = Im(i), so there exists an
element n ∈ N such that i(n) = xy−1. Moreover, n is the unique element
of N with this property since i is injective. In this case we set x ≥ y if
n ≥N 1N in N .

The relation ≤ just defined is a (total) order.
It is clearly reflexive.
It is antisymmetric: let x and y be elements of G with x ≥ y and y ≥ x. There are
two possibilities: if p(x) ̸= p(y) this means that p(x) ≥K p(y) and p(y) ≥K p(x)
in K, which would imply p(x) = p(y) since ≤K is an order in K and this would
contradict the hypothesis. Hence, p(x) = p(y); let n ∈ N such that i(n) = xy−1.
Then we have n ≥N 1N and n ≤N 1N , thus n = 1N because ≥N is antisymmetric;
it follows that xy−1 = i(n) = 1G, i.e., x = y.
Finally, ≤ is transitive. Let x, y, z be elements of G such that x ≤ y and y ≤ z.
We have to distinguish several cases:

1. p(x) ̸= p(y) and p(x) ≤K p(y).

• p(y) = p(z), in which case p(x) ̸= p(z) and p(x) ≤K p(y) = p(z), so
x ≤ z.

1In [C], 3.7, Conrad defines the same order on G by defining the positive cone of the order;
namely, g ∈ G, g ̸= 1 is defined to be positive either if g ∈ N and g >N 1N or g ∈ G ∖ N and
p(g) >K 1K . This automatically defines a right-order.
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• p(y) ̸= p(z) and p(y) ≤K p(z), from which p(x) ≤K p(y) ≤K p(z)
that implies p(x) ≤K p(z) by transitivity of ≤K . Since p(x) ̸= p(y) by
hypothesis, p(x) ̸= p(z) (otherwise we would have that p(x) = p(y));
hence we can conclude that x ≤ z.

2. p(x) = p(y) and n1 ≤N 1N , where i(n1) = xy−1.

• p(y) = p(z) and n2 ≤ 1N , where i(n2) = yz−1.
Let n3 ∈ N such that i(n3) = xz−1; we want to show that n3 ≤N 1N .
Since i(n1n2) = xy−1yz−1 = xz−1 and i is injective, n3 = n1n2.
Since ≤N is a right-order on N , we have: n3 = n1n2 ≤N n2 ≤N 1N ,
from which n3 ≤N 1N by transitivity of ≤N .

• p(y) ̸= p(z) and p(y) ≤K p(z). In this case p(x) ̸= p(z) and p(x) =
p(y) ≤K p(z), so x ≤ z.

We now show that ≤ is a right-order.
Let x, y be elements of G with x ≤ y and let z be another element of G.
There are two cases: if p(x) ̸= p(y) then p(xz) ̸= p(yz), p(x) ≤K p(y) and
p(xz) = p(x)p(z) ≤K p(y)p(z) = p(yz) because ≤K is a right-order. If p(x) =
p(y), then p(xz) = p(yz), and, if i(n) = xy−1, then n ≤N 1N . Since i(n) =
xy−1 = xzz−1y−1 this also shows that xz ≤ yz.

Remark 3.2.16. In Example 1 of Section 5 of [C], Conrad notes that the exten-
sion of two bi-ordered groups need not be a bi-ordered group; in this example he
considers the group

G := ⟨x, y | xy = x−1⟩.

The group G can be written as the non-abelian semidirect product ⟨y⟩ ⋉ ⟨x⟩ ∼=
Z⋉Z. The right-order induced on Z⋉Z by the canonical order on Z is the lexico-
graphic order and G inherits a right-order via the above isomorphism. However,
G is not bi-orderable because xy = x−1, from which it follows that, in a given
bi-order on G, the element x can be neither positive nor negative.

In general, given an extension 1 → H → G → K → 1 where H and K are
bi-ordered, the procedure used in the proof of Lemma 3.2.15 gives a bi-order on
G if and only if the conjugation action of G on H preserves the order on H.

More generally, the orderability of the quotients of a group is related to the
notion of convex subgroups.

Definition 3.2.17. Let G be a group with a right-order ≤. A subset C of G
is said to be convex with respect to ≤ if, given any x, y in C and z in G, the
inequalities x < z < y imply z ∈ C. A subset C of G is said to be relatively
convex if there exists a right-order with respect to which C is convex.

Note that for proving that a subgroup C is convex in G with respect to a
certain right-order ≤ it is enough to prove that, for every h ∈ C and every g ∈ G,
if 1 < g < h, then g ∈ C.

Convex subgroups are in particular isolated, i.e., if C is convex in G and
gn ̸= 1 belongs to C for some g ∈ G \ {1} and some n ∈ N, then g ∈ C. This
follows from the fact that, if g > 1, then 1 < g < gn for every positive integer n
and, if g < 1, then gn < g < 1 for every positive integer n. In both cases g ∈ C
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by convexity. If C is a normal subgroup of G, the group C is isolated in G if and
only if the quotient G/C is torsion-free.

The importance of convex subgroups comes from the following proposition
(see [CR], Section 2.2.).

Proposition 3.2.18. Let G and H be right-orderable groups and let ϕ : G→ H
be a homomorphism. Then kerϕ is relatively convex in G. Conversely, if G is a
right-orderable group and kerϕ is relatively convex in G then the image of ϕ is
right-orderable.

The proof of this proposition is closely related to the following observation.
If G is an extension of two right-orderable groups N and K endowed with the
right-order ≤ constructed in the proof of Lemma 3.2.15, then N is convex in G
with respect to ≤. Indeed, if n ∈ N and g ∈ G with 1 ≤ g ≤ n, by definition
of ≤, taking the projection p to K we get 1 = p(1) ≤ p(g) and p(g) ≤ p(n) = 1,
from which it follows that p(g) = 1, i.e., g ∈ N .

A weaker form of order on a group is given by locally invariant orders.

Definition 3.2.19. A partial order relation ≤ on a group G is said to be a locally
invariant order (LIO) if, for all f , g ∈ G such that g ̸= 1 it follows that gf > f
or g−1f > f .

Remark 3.2.20. It is known that every partial order on a set can be extended
to a total order; for example, if X is a set with a partial order ≤, one can apply
Zorn’s lemma to the non-empty set F := {(Y,≤Y ) | Y ⊆ X and ≤Y is a total
order on Y which extends ≤ restricted to Y }, partially ordered by inclusion:
(Y1,≤Y1) ≤′ (Y2,≤Y2) if and only if Y1 ⊆ Y2 and ≤Y2 restricted to Y1 is ≤Y1 . It
is straightforward to check that, if (Y,≤Y ) is maximal in F with respect to ≤′,
then Y = X and therefore X is totally ordered.

If G is a group with a partial order ≤ that is locally invariant, we can extend
this partial order to a total order in the set theoretic way; this does not affect the
property defining a locally invariant order, hence it is equivalent to ask whether
a group G admits a LIO or a LIO that is also a total order.

Remark 3.2.21. A right-order on a group G is a locally invariant order.

Remark 3.2.22. A group G with a LIO is torsion-free.

Proof. Let g ∈ G with g ̸= 1. The definition of LIO yields g > 1 or g−1 > 1. First
suppose g > 1. Then either g2 = g · g > g or 1 = g−1 · g > g by the definition of
a LIO. Since g > 1 by assumption, it follows that g2 > g.
Inductively, assume that gk > gk−1, with k ≥ 1; hence, either gk+1 = g · gk > gk

or gk−1 = g−1 · gk > gk, from which it follows that gk+1 = g · gk > gk.
Thus, for every n ≥ 1, gn > 1 and g is not a torsion element.
If g < 1, it suffices to consider g̃ := g−1; indeed, by the definition of a LIO, if
g < 1, then g−1 > 1.

Remark 3.2.23. Let {Gi}i∈I , with I an arbitrary set of indices, be a collection
of groups, each admitting a bi-order (a right-order or a locally invariant order,
respectively). Then, by well-ordering I, one can consider the bi-order (right-order,
or locally invariant order, respectively) on the direct product ∏︁i∈I Gi given by
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the lexicographic order. In particular, if {Gi}i∈I is an inverse system of groups,
each admitting a bi-order (right-order, locally invariant order, respectively), also
the inverse limit of the groups Gi admits such an order.

As an example, we can consider pronilpotent groups, i.e., inverse limits of
finite nilpotent groups. We already saw that a pronilpotent group G is isomorphic
to the direct product of its Sylow subgroups (Proposition 1.1.22); thus, if all the
Sylow subgroups of G are (locally invariant, right-)orderable, so is G.

We now investigate what happens for the LIO property when considering
group extensions.

Lemma 3.2.24. Let G, N and H be groups such that G is a split extension of
N by H, i.e., G ≃ H ⋉N . Assume that H has a locally invariant order ≤1 and
N has a locally invariant order ≤2. Then G has a locally invariant order.

Proof. Without loss of generality, thanks to Remark 3.2.20 we can assume that
≤1 and ≤2 are total orders. We order G via the lexicographic order, i.e., given
(h1, n1) and (h2, n2) in G ≃ H ⋉ N , (h1, n1) < (h2, n2) if and only if h1 <1 h2
or h1 = h2 and n1 <2 n2. Now let x := (h, n) and y := (h̃, ñ), x ̸= (1, 1), be
two elements in G. Then xy = (hh̃, h̃−1

nh̃ñ) and x−1y = (h−1, hn−1h−1)(h̃, ñ) =
(h−1h̃, h̃

−1
hn−1h−1h̃ñ).

If xy > y there is nothing to say, so assume xy < y. Then there are two cases:

1. hh̃ <1 h̃ from which it follows that h−1h̃ >1 h̃ by the definition of a LIO on
H.

2. hh̃ = h̃ (i.e., h = 1) and h̃
−1
nh̃ñ <2 ñ which implies h̃−1

n−1h̃ñ >2 ñ by
the definition of a LIO on N .

In each case we conclude that x−1y > y, as required.

Using the lemma above we can deduce that the property of having a locally
invariant order is preserved under arbitrary group extensions. In order to do so
we need to recall the notion of a standard or regular wreath product.

Definition 3.2.25. Let N and H be two groups. For each x ∈ H consider a
copy Nx of N indexed by x, with elements nx for n ∈ N . Let Q := ∏︁

x∈H Nx be
the (complete) direct product of all such copies of N and consider the following
action of H on Q: if h ∈ H and q = (qx)x∈H ∈ Q, then qh is the tuple in Q
whose x-coordinate is qxh−1 , the xh−1-coordinate of q; in symbols, (qh)x = qxh−1 .
The resulting semidirect product H ⋉ Q is called the (complete) regular wreath
product of N by H and denoted N ≀H.

The following theorem, due to Krasner and Kaloujnine, states that N ≀ H
contains an isomorphic copy of every group extension of N by H (see [Ro], Section
11.1, Exercise 11).

Theorem 3.2.26 (Universal embedding theorem). Let G be an extension of a
group N by a group H. Then there exists an injective homomorphism G→ N ≀H.

Corollary 3.2.27. Let G be an extension of N by H, where N and H admit a
locally invariant order. Then G admits a locally invariant order.

91



Proof. By the universal embedding theorem, G can be embedded in the wreath
product N ≀H. Since the direct product of groups with a locally invariant order
has a locally invariant order (Remark 3.2.23), by the previous lemma we can
conclude that N ≀H has a locally invariant order, and so does G.

Example 3.2.28. For every natural number k consider the semidirect product
Zp⋉Zpk

p , where the action of Zp on Zpk

p factors through the finite quotient Zp/p
kZp

and permutes the pk coordinates of Zpk

p cyclically. The collection of these groups
naturally forms an inverse system so that we can consider their inverse limit
Zp
ˆ︁≀ Zp := lim←− Zp ⋉ Zpk

p . Combining Remark 3.2.23 and Lemma 3.2.24 we get
that the pro-p group Zp

ˆ︁≀ Zp admits a locally invariant order.
It is known that a group admitting a locally invariant order has the unique

product property. To prove this implication we need to mention the concept of
weakly diffuse group introduced by Bowditch in [B].
Definition 3.2.29. A group G is said to be weakly diffuse if, for every non-empty
finite set S of G, there exists g ∈ S such that, if hg ∈ S and h−1g ∈ S for some
h ∈ G, then h = 1. Such an element g is called an extremal point of S.

One can immediately see that, if G is right-ordered, then, given any non-
empty finite set S of G, the elements max(S) and min(S) are extremal points of
S in the sense of the previous definition.

It turns out that a group is weakly diffuse if and only if it admits a locally
invariant order ([DNR], Proposition 1.3.9). Therefore one can prove that a group
admitting a locally invariant order is a unique product group by using that weakly
diffuse groups have the unique product property.
Proposition 3.2.30 (see [DNR], Section 1.4.3). All weakly diffuse groups have
the unique product property.
Proof. Let G be weakly diffuse and let A and B be two finite non-empty subsets
of G. Consider the set AB and let g be an extremal point of AB, i.e., an element
in AB such that, if hg ∈ AB and h−1g ∈ AB for some h ∈ G, then h = 1.
Suppose that there exist a1, a2 in A and b1, b2 in B with a1 ̸= a2 and b1 ̸= b2
such that g = a1b1 = a2b2. Then, letting a := a2a

−1
1 , we have: ag = a2a

−1
1 a1b1 =

a2b1 ∈ AB and a−1g = a1a
−1
2 a2b2 = a1b2 ∈ AB. By the property of g it follows

that a = 1, i.e., a1 = a2 and therefore b1 = b2. Hence g is a unique product
element.

Summarizing what we collected so far, we have the chain of implications

bi-orderable⇒ right-orderable⇒ LIO⇔ weakly diffuse⇒ UP.
Moreover, the first two implications cannot be reversed: we already saw in Re-
mark 3.2.16 an example of a non-orderable but right-orderable group and an ex-
ample of a group with a LIO that is not right-orderable is given by Dunfield in the
appendix of [KRD]; more precisely, he constructs a closed orientable hyperbolic
3-manifold whose fundamental group is weakly diffuse but not right-orderable.
At present it is not known whether the implication UP⇒ LIO holds true.
Also, it is not known to us whether for some ‘non-artificial’ class of groups at
least (for example, metabelian groups), the unique product property is equivalent
to right-orderability.
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3.3 The unique product property for virtually soluble
subgroups of saturable groups

In [CL] it is proven that every virtually soluble subgroup of a uniform pro-p
group has the unique product property by showing that such a group is torsion-
free nilpotent-by-torsion-free abelian (therefore in particular right-orderable). In
this section we give a different proof of a somewhat more general result, i.e., that
a virtually soluble subgroup of a saturable pro-p group is right-orderable (and
thus it is a unique product group).

Saturable groups were introduced by Lazard in 1965 in his foundational work
“Groupes analytiques p-adiques” ([La]). A modern account of Lazard’s theory
of p-adic analytic groups that is close to the original can be found in [Sc]. As
already mentioned, the main source for the group-theoretic reformulation of this
theory, along with the discussion of some of its ramifications and applications in
group theory, is [DDMS]. In his seminal paper, Lazard established that any p-
adic analytic group contains an open compact saturated subgroup ([Sc], Theorem
27.1) and that, conversely, any p-valued pro-p group has a natural structure of a p-
adic analytic group ([Sc], Corollary 29.6). We start by introducing saturable pro-p
groups, following [K] and [GS]. The definition that we use is slightly different from
the original definition introduced by Lazard. In particular, we consider finitely
generated pro-p groups to start with. For this class of groups, the definition that
we use agrees with Lazard’s ([K], Section 2).

Definition 3.3.1. Let G be a finitely generated pro-p group. A valuation of G is
a map ω : G→ R>0∪{∞} with the following properties, holding for all x, y ∈ G:

1. ω(x) > (p− 1)−1;

2. ω(x) =∞ if and only if x = 1;

3. ω(xy−1) ≥ min{ω(x), ω(y)};

4. ω([x, y]) ≥ ω(x) + ω(y);

5. ω(xp) = ω(x) + 1.

A group G with a valuation ω satisfying the previous properties is said to be a
p-valued group.
A p-valued pro-p group is said to be saturated if

6. for every x ∈ G with ω(x) > p(p−1)−1 there exists y ∈ G such that x = yp.

A finitely generated pro-p group G is called saturable if it admits a valuation ω
such that (G,ω) is a saturated p-valued pro-p group.

The last property (6.) ensures that in saturable pro-p groups we can extract
p-roots of elements whose valuation is ‘big enough’.

All uniform pro-p groups are saturable pro-p groups but the converse is not
true in general. Indeed, let G be a uniform pro-p group and set ε = 0 if p is odd
and ε = 1 if p = 2. For all positive integers n consider Gn := Gpn−1 . Then the
map ω : G→ N∪{∞} that sends any g ∈ G to ω(g) := ε+sup{n | g ∈ Gn} defines
a valuation in the sense of the previous definition and turns G into a saturable
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group (see [K], Remark 2.1). Conversely, saturable groups are not always uniform.
For example, if d < p− 1 and d ≥ 2, then the Sylow pro-p subgroups of GLd(Zp)
and SLd(Zp) are saturable but not uniform (see [K], Theorem 1.1 and Proposition
2.4). However, it is the case that saturable pro-p groups are virtually uniform
and therefore have finite rank.

In [GS], González-Sánchez characterised saturable pro-p groups as groups
having a potent filtration (or PF-groups). Using this characterisation he was
able to recover the fact that in saturable pro-p groups, for any natural number
k, the map x ↦→ xpk is injective, or equivalently, that pk-roots are unique. Note
that from this fact it follows that saturable pro-p groups are torsion-free.

Proposition 3.3.2 ([GS], Proposition 2.2). Let G be a saturable pro-p group and
k a natural number. If x, y belong to G and xpk = ypk then x = y.

Example 3.3.3. Let G be a saturable pro-p group with center Z(G). Then
G/Z(G) is torsion-free and, if G/Z(G) is bi-orderable, then G is bi-orderable.

Proof. We note that the center of a saturable group is isolated: if k is a natural
number and z is an element of G such that zpk is in Z(G) then (x−1zx)pk =
x−1zpk

x = zpk for all x in G, and therefore x−1zx = z for all x in G by the
previous proposition. It follows that the quotient G/Z(G) is torsion-free. If it is
bi-orderable, by Remark 3.2.16 the procedure of extension of the order given in
the proof of Lemma 3.2.15 gives a bi-order on G because conjugation on Z(G) is
trivial.

Conversely, it is always true that the quotient of a bi-orderable group by its center
is bi-orderable ([KoK], Chapter II, Section 4, Theorem 3).

In general, there is a correspondence only between saturable pro-p groups of
dimension less than p and residually-nilpotent Zp-Lie lattices of dimension less
than p, under which closed subgroups correspond to Zp-Lie sublattices and closed
normal subgroups to Lie ideals ([GSK], Theorem B). However, in the soluble case
the following result about the correspondence between soluble saturable pro-p
groups and soluble Lie lattices holds true.

Theorem 3.3.4 ([GS], Corollary 4.7). Let G be a saturable pro-p group and L
the corresponding Zp-Lie lattice (on the same underlying set). Then the derived
series of G and L coincide. In particular, G is soluble if and only if L is soluble
and the derived lengths of G and L coincide.

Recall also that, if G is a saturable pro-p group and L is the Zp-lattice as-
sociated to G, then L := L ⊗Zp Qp is the Qp-Lie algebra associated to G. In
particular, it follows from the previous theorem that, if G is soluble, then also L
and therefore L are soluble.

We can now prove that virtually soluble saturable pro-p groups are right-
orderable.

Theorem 3.3.5. Let G be a virtually soluble, saturable pro-p group. Then G is
right-orderable (and in particular it has the unique product property).
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Proof. First of all we note that a virtually soluble, saturable pro-p group G is
soluble. Indeed, let G1 be a soluble normal subgroup of finite index in G; since
G is a pro-p group, the quotient G/G1 is a finite p-group, hence soluble. Thus,
G is soluble, being an extension of soluble groups. Therefore we can assume that
G is soluble.

We consider the derived series of G:

1 = G(n) ⊴ . . .⊴G′′ := [G′, G′] ⊴G′ := [G,G] ⊴G(0) := G;

by hypothesis it terminates in a finite number of steps, say n steps. Each quotient
G(i)/G(i+1) (i ∈ {0, . . . , n−1}) is an abelian finitely generated pro-p group, hence
of the form Zdi

p × Fi with di ≥ 0 a natural number and Fi a finite abelian p-
group. We observe that, for each i ∈ {0, . . . , n − 1}, necessarily di > 0. Indeed,
dn−1 is necessarily greater than 0 as G is torsion-free. Suppose that di0 = 0
for some i0 ∈ {0, . . . , n − 2}, i.e., G(i0+1) has finite index in G(i0); then, if Li

denotes the Zp-Lie lattice corresponding to G(i) (on the same underlying set),
we have that Li0+1 = Li0+1 ⊗Zp Qp = Li0 ⊗Zp Qp = Li0 , from which Li0+2 =
[Li0+1,Li0+1] = [Li0 ,Li0 ] = Li0+1 and, inductively, Li0+k = Li0 ̸= 0 for every
k ≥ 0, in contradiction with the fact that, by Theorem 3.3.4, L0 is soluble.

Now we consider the isolator of G′ in G, i.e., the group H1 = isoG(G′) :=
⟨g ∈ G | ∃ k ∈ N : gpk ∈ G′⟩. It can be shown that isoG(G′) is a normal closed
subgroup of G and that the index of G′ in isoG(G′) is finite. Moreover, as G′

is a closed subgroup of G and G is saturable, isoG(G′) is saturable (see [GSK],
Section 3). It is clear from the definition that isoG(G′) is the maximal subgroup
of G containing G′ such that its quotient by G′ is finite; hence H1/G

′ ∼= F0 and
G/H1 ∼= Zd0

p . We now consider H ′
1. For the same reason as before, since H1 is a

saturable soluble group, we have that the quotient H1/H
′
1 is infinite. Therefore

we can consider the proper subgroup of H1 given by H2 := isoH1(H ′
1), that is a

normal closed saturable subgroup of H1 such that H1/H2 is abelian torsion-free.
We now iterate the same process for every i ≥ 2 by setting Hi := isoHi−1(H ′

i−1).
Every quotient Hi/Hi+1 is an abelian torsion-free group. Furthermore, as G has
finite dimension, this process must terminate in a finite number of steps. If Hm−1
is the last non-trivial group in this series, then Hm−1 must be torsion-free as G
is torsion-free.

Thus we obtained a finite chain

1 = Hm ⊴ . . .⊴H2 ⊴H1 ⊴H0 := G, (3.1)

where all the quotients Hi/Hi+1 are abelian torsion-free, hence right-orderable.
By using repeatedly Lemma 3.2.15, which states that extensions of right-orderable
groups are right-orderable, we finally get that G is right-orderable.

Remark 3.3.6. In general, the groups Hi in the previous proof differ from the
derived subgroups G(i). For example, consider the Zp-Lie lattice given by L =
Zpx+Zpy+Zpz with Lie bracket [x, y]Lie = pkz for some integer k ≥ 1. It is clear
that L is a powerful Zp-Lie lattice and therefore it is associated to a uniform pro-p
group G. Here [L,L] = pk⟨z⟩, hence, by Theorem 3.3.4, G/G′ ∼= Zp×Zp×Z/pkZ.
Therefore H1 = ⟨z̄⟩ ≠ ⟨z̄pk⟩ = G′, where z̄ is the element corresponding to z under
the Lie correspondence.
However, if we set K1 := isoGG

′ and Ki := isoKi−1G
(i) = isoGG

(i) for each
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2 ≤ i ≤ n, then Ki = Hi for each i, hence in particular m = n, i.e., the number
of steps in the series (3.1) is the same as the derived length of G. This can be
proven by induction. For i = 1 the groups H1 and K1 coincide by definition.
Assume now that Hℓ = Kℓ for some integer ℓ ≥ 1. By using Theorem 3.3.4
one can show that Kℓ/Kℓ+1 = Hℓ/Kℓ+1 is torsion-free abelian, from which it
follows that Hℓ+1 ⊆ Kℓ+1 as, by definition, Hℓ/Hℓ+1 is the biggest torsion-free
abelian quotient of Hℓ. Conversely, from Hℓ = Kℓ = isoKℓ−1G

(ℓ) ⊇ G(ℓ) one has
G(ℓ+1) = (G(ℓ))′ ⊆ H ′

ℓ and therefore Kℓ+1 = isoKℓ
(G(ℓ+1)) ⊆ isoHℓ

H ′
ℓ = Hℓ+1.

Corollary 3.3.7. Let H be a virtually soluble subgroup of a saturable pro-p group
G. Then H is right-orderable.

Proof. Since the closure of H in G is again a virtually soluble group, we can
assume that H is closed. By [GSK], Proposition 3.2, the isolator isoG(H) of H
in G is saturable and [isoG(H) : H] < ∞. It follows that isoG(H) is a saturable
virtually soluble group, hence right-orderable by the previous proposition.

Corollary 3.3.8. Let G be an extension or an arbitrary direct product of virtually
soluble subgroups of saturable groups. Then G is right-orderable, hence has the
unique product property.

For example, pronilpotent groups whose Sylow subgroups are virtually soluble
subgroups of saturable groups are right-orderable.

Remark 3.3.9. By construction, the subgroups Hi in the series (3.1) in the
proof of Theorem 3.3.5 are convex with respect to the right-order constructed
(see remark after Proposition 3.2.18). Moreover, it is easy to see that the series
obtained by the chain of subgroups Hi is normal.

Recall that a group G is said to be locally indicable if each non-trivial finitely
generated subgroup of G admits a non-trivial homomorphism onto (Z,+). Being
locally indicable is equivalent to admitting Conradian orders ([DNR], Theorem
3.2.3). A right-order ≤ is said to be a Conradian order (or C-order) if, for all posi-
tive elements g, h in G there exists a natural number n such that hng ≥ h. We will
say that a group that possesses Conradian orders is Conradian-orderable. The
property of being Conradian-orderable is weaker than bi-orderability and stronger
than right-orderability (for examples of right-orderable but not Conradian-orderable
groups, see [DNR], page 94; an example of a Conradian-orderable but not bi-
orderable group is given in [BMR], Example 7.5.4). However, for amenable groups
the following result of Morris-Witte holds (see [DNR], Theorem 4.1.3, and [Mo]).

Theorem 3.3.10 (Morris-Witte; [Mo], Theorem B). Right-orderable amenable
groups are locally indicable. In particular, amenable groups are locally indicable
(or, equivalently, Conradian-orderable) if and only if they are right-orderable.

Since virtually soluble groups are amenable, the following holds.

Corollary 3.3.11. Virtually soluble subgroups of saturable pro-p groups are lo-
cally indicable or, equivalently, Conradian-orderable.

Note that this result follows also directly from the fact that a virtually soluble
subgroup G of a saturable pro-p group possesses a finite chain as in (3.1). Indeed,
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intersecting any non-trivial finitely generated subgroup K of G with such a chain,
one gets that K has a non-trivial torsion-free abelian quotient.

In light of Theorem 3.3.5, it is natural to ask whether there are soluble torsion-
free pro-p groups of finite rank other than soluble saturable pro-p groups that are
right-orderable. If we consider the pro-2 completion of the group G2 in Example
3.2.3, we get a torsion-free ([CBKL], Corollary 2.3) pro-2 group of finite rank
that is not right-orderable, as it does not possess the unique product property.
Therefore we cannot expect that all soluble torsion-free pro-p groups of finite
rank are right-orderable. However, Example 4.2 in [GSK] shows that the soluble
torsion-free p-adic analytic pro-p group given by

G := ⟨α⟩⋉ ⟨x1, . . . , xp−1⟩ ∼= Zp ⋉ Zp−1
p ,

with action

xα
i =

{︄
xixi+1, if 1 ≤ i ≤ p− 2
xp−1x

p
1, if i = p− 1

is not saturable. Nonetheless, as G is the extension of two torsion-free abelian
groups, G is right-orderable.

Looking at these examples and at the proof of Theorem 3.3.5, it seems that
the fact that closed subgroups of a given finitely generated soluble pro-p group
G have infinite abelianisation is related with the fact that G is right-orderable,
or, equivalently (by Theorem 3.3.10), locally indicable. Moreover, in the abstract
setting, by definition a group is locally indicable if and only if each of its finitely
generated subgroups has infinite abelianisation. The analogous situation in the
pro-p setting would be that each non-trivial closed subgroup of the given finitely
generated pro-p group has infinite abelianisation. It is not clear whether the
latter condition is stronger than local indicability. In particular, we prove that
the fact that all closed subgroups have infinite abelianisation is equivalent to
local indicability plus an extra condition, that seems to be the analogue to the
Conradian property of convex jumps in the profinite setting (see Theorem 3.3.12).
It is not immediately apparent whether this extra condition is already implied by
local indicability. We will prove that, in fact, it is in the special case of metabelian
pro-p groups of finite rank (see Corollary 3.3.19).

In order to understand this condition and our statement, recall that, if G is a
right-ordered group with order ≤, then the convex subgroups of G relative to ≤
are linearly ordered by inclusion, i.e., if C and D are convex subgroups of G with
respect to ≤, then either C ⊆ D or D ⊆ C. Moreover, arbitrary intersections
and unions of convex subgroups are again convex subgroups ([BMR], Section
7.2). Finally, let C and D be convex subgroups of G, and assume without loss of
generality that C ⊆ D. Then the pair (C,D) is called a convex jump if C ̸= D
and there is no convex subgroup strictly contained between C and D. An order
is a Conradian order if and only if the following property regarding convex jumps
holds true: if (C,D) is any convex jump relative to the given order, then C ◁ D
and D/C is isomorphic to a subgroup of the additive group of the reals, hence it
is in particular torsion-free abelian ([BMR], Theorem 7.4.1, (4)).

Finally, note that, since we are dealing with finitely generated profinite groups,
we always consider the topological abelianisation G/G′ of a given finitely gener-
ated group G. Indeed, in this case the abstract commutator subgroup G′ is au-
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tomatically closed and therefore G′ = G′ ([Se], Corollary 4.7.3). This is generally
not the case for non finitely generated profinite groups.

We can now state the following result.

Theorem 3.3.12. Let G be a soluble profinite group with the ascending chain
condition on closed subgroups. Then the following are equivalent:

1. G is torsion-free and, for every non-trivial H ≤c G, the abelianisation
H/H ′ is infinite;

2. G is locally indicable and, for every H ≤c G, there exists a Conradian
order on H such that the maximal proper closed convex subgroup C of H ′

is normal in H ′ and the quotient H ′/C is torsion-free abelian.

Note that whenever we talk about local indicability, even in the context of
profinite groups, we always consider abstractly finitely generated subgroups. It
remains open to investigate whether a characterisation of right-orderable, or,
equivalently (by Theorem 3.3.10), locally indicable soluble pro-p groups of finite
rank can be established (see Section 3.6 for more open questions).

The proof of the theorem relies on the following

Proposition 3.3.13. Let G be a profinite group with the ascending chain condi-
tion on closed subgroups and let K be a finite index subgroup of G. Assume that
there exists a Conradian right-order ≤ on G such that the maximal proper closed
convex subgroup C of K with respect to ≤ is normal in K and the quotient K/C
is non-trivial and torsion-free abelian. Then the abelianisation of G is infinite.

The proof of this proposition is a slight modification of the proof of a result
of Rhemtulla, that we write for completeness (see Theorem 3 in [R] and Theorem
7.5.10 in [BMR]). We will need the following property of Conradian orders.

Lemma 3.3.14 ([BMR], Theorem 7.4.1, (2)). Let G be a Conradian-orderable
group and let ≤ be a Conradian order on G. Then, for all x, y in G with y >
x > 1, there exists a positive integer m such that xymx−1 > y.

Proof of Proposition 3.3.13. The group G is torsion-free. If G is abelian there is
nothing to prove, so assume that the derived subgroup of G is non-trivial. As,
by hypothesis, K/C is non-trivial and torsion-free abelian, the subgroup K has
infinite abelianisation. Let I := isoKK

′. Then K/I is a non-trivial torsion-free
abelian group.

Now assume by contradiction that G/G′ is finite and let 1 = x1 < x2 <
· · · < xn be representatives of the cosets of K in G. Let τ : G → K/I be the
transfer map (see [Ro], Section 10.1). As K/I is torsion-free abelian and the
abelianisation of G is finite, the map τ must be trivial.

Assume that there exists g ∈ K such that g > xn. Then g > xi > 1 for all
i ∈ {2, . . . , n} and therefore gx−1

i > 1 for all such i. From xi > 1 we get gx−1
i =

xigx
−1
i > gx−1

i > 1, thus gx−1
2 gx−1

3 > gx−1
3 > 1 and so on until gx−1

2 . . . gx−1
n > 1.

Therefore,
gx−1

2 . . . gx−1
n g > g.

Moreover, as τ is trivial, gx−1
2 . . . gx−1

n g ∈ I.
We now show that such an element g exists. Because of Lemma 3.3.14, if z is any
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positive element in K with z < xn, then there exists a positive integer m such
that zxm

n z
−1 > xn. We now show that g can be taken to be a power of zxm

n z
−1.

Claim. There is a positive integer N such that zxN
n z

−1 ∈ K and zxN
n z

−1 > xn.

Proof of Claim. We know that zxm
n z

−1 > xn > 1. Let N be any multiple of
n = [G : K] such that N > m. Then, as N is a multiple of n, the element
zxN

n z
−1 is in K. Moreover, as N > m, one has zxN−m

n z−1 > 1 and therefore

zxN
n z

−1 = (zxN−m
n z−1)(zxm

n z
−1) > zxm

n z
−1 > xn.

We can therefore assume that in a suitably chosen set of generators of K, we can
find an element g greater than xn.

Let g1 < g2 < · · · < gl = g be such generators, with g > xn. Let D be a
closed convex subgroup of K containing g. By convexity, D must contain every
gi, for i ∈ {1, . . . , l}, and therefore D = K. Now let C̃ be the union of closed
convex subgroups of K not containing g. As the convex subgroups form a chain
and G has the ascending chain condition on closed subgroups, this union is over
finitely many terms and therefore a closed convex subgroup. It follows that C̃
is the maximal closed convex subgroup of K and does not contain g. Therefore
C̃ = C.

By hypothesis, C is normal in K and K/C is abelian torsion-free. Therefore,
I ⊆ C because I is the smallest closed subgroup of K such that K/I is abelian
torsion-free. It follows from gx−1

2 . . . gx−1
n g > g > 1 and gx−1

2 . . . gx−1
n g ∈ I that g

belongs to C, which yields the required contradiction.

In order to prove Theorem 3.3.12 we will also need the following result, stating
that the extension of a Conradian order by a Conradian order is Conradian.

Lemma 3.3.15. Let G be a an extension of N by K, where both N and K have
a Conradian order. Then the extension of the order on N by the order on K,
given as in the proof of Lemma 3.2.15, defines a Conradian order on G.

Proof. We will use the fact that a right-order on a group G is a Conradian order
if and only if, for all positive elements x, y in G, y2x > y ([DNR], Proposition
3.2.1.). Let i : N → G be the inclusion map, p : G→ G/N ∼= K be the projection
map and ≤N and ≤K the given Conradian orders on N and K respectively. Recall
from Lemma 3.2.15 that the extension of ≤N by ≤K is the right-order ≤ on G
defined in the following way. Let x, y be two elements of G.

1. If p(x) ̸= p(y) then x > y if p(x) >K p(y) in K;

2. If p(x) = p(y) then there exists a unique element n ∈ N such that i(n) =
xy−1. We set x ≥ y if n ≥N 1N in N . By slight abuse of notation we will
just write xy−1 ≥N 1N in this case.

We verify that this right-order is Conradian. Let x and y be positive in G with
respect to ≤. We distinguish two cases.
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1. Assume that p(y2xy−1) ̸= 1K . If also p(x) and p(y) are different from
1K then p(x) >K 1K and p(y) >K 1K by definition of ≤. Therefore
p(x) and p(y) are positive elements in K and, since ≤K is Conradian,
p(y)2p(x)p(y)−1 >K 1K , from which y2xy−1 > 1. If p(x) >K 1K but
p(y) = 1K , then p(y)2p(x)p(y)−1 = p(x) >K 1K . Similarly, if p(x) = 1K

and p(y) >K 1K , then p(y)2p(x)p(y)−1 = p(y) >K 1K . Finally, if both
p(x) = p(y) = 1K , then also p(y2xy−1) = 1K , a contradiction.

2. Now consider the case p(y2xy−1) = 1K . If both p(x) = p(y) = 1K then
x >N 1N and y >N 1N and we can again use the fact that ≤N is Conradian.
Also, if one of p(x) and p(y) is equal to 1K , from p(y2xy−1) = 1K it follows
that also the other is equal to 1K . Finally, if both p(x) ̸= 1K and p(y) ̸= 1K

then, from the fact that ≤K is Conradian, we would get p(y)2p(x)p(y)−1 >K

1K , a contradiction.

Proof of Theorem 3.3.12.

1.⇒ 2. Let H be a closed subgroup of G. By using the same argument of the proof
of Theorem 3.3.5 we get that H has a finite subnormal series

1 = Hm ◁ · · · ◁ H1 ◁ H0 = H,

where Hi := isoHi−1H
′
i−1 for each i ∈ {1, . . . ,m}. As this is in particular

true for G, it follows as before that G is locally indicable. As each quotient
Hi/Hi+1 is Conradian-orderable, we can construct a Conradian order ≤ on
H using Lemma 3.3.15. Note that, with respect to this order, H2 = isoH1H

′
1

is convex in H1. Moreover, as H2 is normal in H1 and H ′ is contained in H1,
also H2 ∩H ′ is normal in H ′. Now H ′/(H ′ ∩H2) ∼= H ′H2/H2 < H1/H2 is
abelian torsion-free and ordered. Therefore H ′ ∩H2 ◁H

′ is a closed convex
subgroup of H ′ with respect to ≤. (Alternatively, one can observe that, as
H ′ ⊆ H1 and H2 is convex in H1, then H ′∩H2 is convex in H ′ by definition
of convex subgroup.) It follows that the maximal closed convex subgroup
C of H ′ with respect to ≤ contains H ′ ∩H2. Therefore C is normal in H ′

and H ′/C is torsion-free abelian.

2.⇒ 1. Let H be a closed subgroup of G and assume that H ′ has finite index in
H. Then, if we apply Proposition 3.3.13 with K = H ′, we obtain that G
has infinite abelianisation, a contradiction.

Corollary 3.3.16. Let G be a torsion-free soluble pro-p group with finite rank.
Then the following are equivalent:

1. for every closed subgroup H ≤c G the abelianisation H/H ′ is infinite;

2. G is locally indicable and, for every H <c G, there exists a Conradian
right-order on H such that the maximal proper closed convex subgroup C of
H ′ is normal in H ′ and the quotient H ′/C is abelian torsion-free;

100



3. every closed subgroup of G admits a finite subnormal series whose factor
groups are isomorphic to Zp.

Proof.
1.⇔ 2. Since a pro-p group with finite rank satisfies the ascending chain condition
on closed subgroups (see [W1], Chapter 8, Exercise 8 (c) or [K1], Section 5.8),
this equivalence was already proved in the previous theorem.

3.⇒ 1. If H is a closed subgroup of G and admits such a subnormal series then
H has infinite abelianisation.

1.⇒ 3. Let H be a closed subgroup of G. Under this hypothesis we can perform
the same procedure carried out in the proof of Theorem 3.3.5 i.e., take H1 :=
isoHH

′ and, for i ≥ 2, Hi := isoHi−1H
′
i−1. As G has finite rank, this subnormal

series must terminate in a finite number of steps. All of its quotients are torsion-
free finitely generated abelian pro-p groups and therefore this series can be refined
to a finite one where each quotient is isomorphic to Zp.

Remark 3.3.17. Before going further we note that, at least in some cases, insol-
uble pro-p groups of finite rank cannot be locally indicable because they contain
a subgroup with property (T) (see [Mar], Chapter 3 or [Z], Section 7.1). For
example, Γ := SLd(Z) is a lattice in SLd(R) ([Be], Section 2, Example 1.1). If
d ≥ 3, then, by [Z], Theorem 7.1.4, Γ has property (T) and therefore also its
finite index subgroups have the same property. Moreover, a discrete group that
possesses property (T) has finite abelianisation ([Z], Corollary 7.1.11). In partic-
ular, any finitely generated subgroup of finite index in Γ has finite abelianisation.
Since Γ ≤ SLd(Zp), it follows that, for d ≥ 3, the insoluble pro-p group of finite
rank SL1

d(Zp) cannot be locally indicable.

Going back to local indicability, in the special case when G is metabelian we
can say more.

Proposition 3.3.18. Let G be a metabelian right-orderable profinite group with
the ascending chain condition on closed subgroups. Then the abelianisation of G
is infinite and there exists a Conradian right-order on G such that, if C is the
maximal proper normal closed convex subgroup of G, then the quotient G/C is
torsion-free abelian.

Proof of Proposition 3.3.18. Let n be the derived length of G. If n = 1 then G
is abelian and there is nothing to prove because all right-orders on an abelian
group are bi-orders, hence in particular Conradian.

Let then n = 2; we first prove that the abelianisation of G is infinite. As
G is soluble and right-orderable, it is Conradian-orderable by Theorem 3.3.10.
Therefore we can fix a Conradian order ≤ on G. Assume by contradiction that
G/G′ is finite. As G′ is abelian, the maximal proper closed convex subgroup D
of G′ with respect to the restriction of ≤ is normal and this implies that G′/D
is torsion-free abelian. Therefore, applying Proposition 3.3.13 with K = G′, we
conclude that G has infinite abelianisation.

Now we show that there exists a Conradian order on G with the properties
claimed in the statement. We consider the proper closed subgroup of G given by
I := isoGG

′. As G/I is an abelian torsion-free group, we can fix a Conradian
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order ≤∗ on G/I. Also, the restriction of the Conradian order ≤ of G to I is still
Conradian. The extension ≤′ of ≤|I by ≤∗ is Conradian by Lemma 3.3.15 and I
is convex in G with respect to ≤′. Thus, if C is the maximal proper normal closed
convex subgroup of G, then I ⊆ C and therefore G/C is torsion-free abelian.

Corollary 3.3.19. Let G be a metabelian profinite group with the ascending chain
condition on closed subgroups. Then the following are equivalent:

1. G is torsion-free and, for every H ≤c G, the abelianisation H/H ′ is infinite;

2. G is locally indicable.

Proof.

1.⇒ 2. This follows from Theorem 3.3.12.

2.⇒ 1. Every closed subgroup H of G is again a locally indicable metabelian profi-
nite group with the ascending chain condition on closed subgroups. There-
fore, by Proposition 3.3.18, the abelianisation of H is infinite.

We conclude this section with two examples in which we use the result in The-
orem 3.3.5 to construct some pairs of sets in the congruence subgroups SLℓ

2(Zp)
(with ℓ any positive integer) that have a unique product element. Similar exam-
ples can be more generally obtained in pro-p Chevalley groups (see the beginning
of Section 3.4 and [BJZK], Proposition 4.1). Recall that every element in SLℓ

2(Zp)
can be written in a unique way as an element of the form xhy, where x, h and y
are in SLℓ

2(Zp), x is an upper unitriangular matrix, h is a diagonal matrix and y is
a lower unitriangular matrix. Also, every element in SLℓ

2(Zp) can be written in a
unique way as an element of the form ỹh̃x̃, where x̃, h̃ and ỹ are in SLℓ

2(Zp), ỹ is a
lower unitriangular matrix, h̃ is a diagonal matrix and x̃ is an upper unitriangular
matrix.

Example 3.3.20.

1. Let A = {x1h1y1, . . . , xnhnyn} and B be two finite non-empty sets in
SLℓ

2(Zp) and assume that y1 = yi for all i ∈ {1, . . . n}; call y this common
value. In this example we show that A · B has a unique product element,
i.e., that there exists at least one element in SLℓ

2(Zp) that can be written
in a unique way as a product of an element of A and an element of B.
Here by A · B we mean the list of all products of the form ab, with a ∈ A
and b ∈ B, possibly with repetitions, i.e., there might be a ̸= a′ in A and
b ̸= b′ in B such that ab = a′b′, but both products would be listed in A ·B,
as ab and a′b′ respectively.

Set A′ := Ay−1 and B′ := yB; then A′ contains only upper triangular
matrices, while B′ can be partitioned as B′ = X1ỹ1 ⊔ · · · ⊔Xkỹk where k is
some index, X1, . . . , Xk are sets containing upper triangular matrices and
ỹ1, . . . , ỹk are lower unitriangular matrices with ỹi ̸= ỹj for all i ̸= j. This
partition of B′ comes from the fact, recalled above, that every element in
SLℓ

2(Zp) can be written as a product of three matrices in SLℓ
2(Zp), namely

an upper unitriangular matrix, a diagonal matrix and a lower unitriangular
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matrix.
Note that A ·B = A′ ·B′ and that, if a ∈ A and b ∈ B, then ay−1 ·yb = a ·b

is a unique product element for A′ and B′ if and only if it is a unique prod-
uct element for A and B. Therefore it is enough to consider A′ ·B′.
As we proved that soluble uniform groups are unique product groups, for

each pair of sets (A′, Xi) (i ∈ {1, . . . , k}) we can find a unique product
element ui = a′x in A′ · Xi. Now uiỹi ̸= riỹi for each ri ∈ A′ · Xi \ {a′x}
because ui = a′x is a unique product element. Also, uiỹi ̸= xỹj for each
j ∈ {1, . . . , k} \ {i} and every x ∈ Xj because these two elements have a
different lower unitriangular part. Therefore, each uiỹi is a unique product
element for A′ and B′, hence for A and B. Analogously, one could consider
two sets A and B such that all the upper unitriangular parts of the elements
in B coincide.

2. Let A = {x1h1y1, . . . , xnhnyn} and B = {y′
1h

′
1x

′
1, . . . , y

′
rh

′
rx

′
r} be two finite

non-empty sets in SLℓ
2(Zp) and take the two sets A′ and B′ obtained from

A and B by considering just the lower unitriangular parts of the elements
of A and B: A′ = {y1, . . . , yn} and B′ = {y′

1, . . . , y
′
r}.

Claim 1. If the two sets A′ and B′ have 1 as a unique product element
obtained by y1 = 1 and y′

1 = 1, then also A and B have a unique product
element.

From this we will deduce that any normal open subgroup of SLℓ
2(Zp) con-

tains at least two sets with a unique product element that are not contained
in a soluble subgroup of SLℓ

2(Zp).

Proof of Claim 1. Note that some of the terms in A′ and B′ may be re-
peated in the original sets A and B but we consider them just once in A′,
B′. Also, if A′ and B′ are trivial there is nothing to say (we are in the
soluble case since all elements in A and B are upper triangular).
By using UP in the soluble case, we get an element yiy

′
j among the products

of the elements of A′ and the elements of B′ that can be written in a unique
way as the product of an element of A′ by an element of B′. Without loss
of generality, we can assume, by reordering if necessary, that this element
is y1y

′
1.

Let I := {i1, . . . , id} be the set of indices i such that yi = y1 = 1. Note
that I contains at least 1. Then we must have xirhir ̸= xishis for every pair
of distinct indices ir and is in I.
In a similar way define J := {j1, . . . , je}, where y′

j = y′
1 = 1 for all j ∈ J .

Consider the elements among the products of elements of A and elements of
B of the form xihih

′
jx

′
j with i ∈ I and j ∈ J (There is at least x1h1 ·h′

1x
′
1).

We claim that one of these elements is the required unique product.
By using UP in the soluble case, we can find an element xi0hi0h

′
j0x

′
j0 with

i0 ∈ I and j0 ∈ J that gives a unique product among the elements of this
form. Moreover, this element must be different from all other products
(xlhlyl)(y′

mh
′
mx

′
m) with l /∈ I or m /∈ J . Indeed, since 1 is a unique product

with respect to A′ and B′ and because of the definitions of I and J , all
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these elements satisfy yly
′
m ̸= 1. Hence, if we rewrite yly

′
mh

′
mx

′
m as x̃h̃ỹ for

some upper unitriangular matrix x̃, diagonal matrix h̃, lower unitriangular
matrix ỹ in SLℓ

2(Zp), the lower unitriangular matrix ỹ is non-trivial. Thus
(xlhlyl)(y′

mh
′
mx

′
m) = (xlhl)x̃h̃ỹ is an element with non-trivial lower unitri-

angular component, thus it cannot be an upper triangular matrix.
It follows that xi0hi0h

′
i0x

′
j0 is a unique product element for A and B.

Now consider the initial situation where A = {x1h1y1, . . . , xnhnyn} and
B = {y′

1h
′
1x

′
1, . . . , y

′
rh

′
rx

′
r} are two finite non-empty sets in SLℓ

2(Zp) and A′

and B′ are the set obtained from A and B by considering just the lower
unitriangular parts of the elements of A and B: A′ = {y1, . . . , yn} and
B′ = {y′

1, . . . , y
′
r}, but without making any assumption on the value of the

unique product element of A′ and B′.

Claim 2. There exist two lower unitriangular matrices y0 and y′
0 in SLℓ

2(Zp)
such that y0Ay

−1
0 and y′

0
−1By′

0 have a unique product element.

Proof of Claim 2. By reordering the elements of A and B if necessary, we
can assume that y1y

′
1 is a unique product element for the sets A′ and B′.

From Claim 1 it follows that the sets A(y1)−1 and (y′
1)−1B have a unique

product element. (Note that, in particular, if y′
1 = (y1)−1, then A and

B have a unique product element. One could use the same argument by
considering the upper triangular part and conclude that A and B have a
unique product element if x̃′

1 = x̃−1
1 .)

Finally, note that, if u belongs to A(y1)−1 and v belongs to (y′
1)−1B, then uv

is a unique product element for A(y1)−1 and (y′
1)−1B if and only if y1uvy

′
1 is

a unique product element for y1A(y1)−1 and (y′
1)−1By′

1. Therefore, y0 = y1
and y′

0 = y′
1 prove the claim.

Finally we can prove:

Claim 3. Any normal open subgroup of SLℓ
2(Zp) contains at least two sets

that are not contained in a soluble subgroup of SLℓ
2(Zp) and have a unique

product element.

Proof of Claim 3. Let N be a normal open subgroup of SLℓ
2(Zp) and take

A and B any two finite subsets of N that are not contained in a soluble
subgroup of SLℓ

2(Zp). By Claim 2 there exist elements y0 and y′
0 such that

y0Ay0
−1 and y′

0
−1B′y′

0 have a unique product property. Moreover, they
are again not contained in a soluble subgroup of SLℓ

2(Zp) and, since N is
normal, they are contained in N .

3.4 Non-orderability of insoluble p-adic analytic pro-p
groups

We begin this section with a remark. Let p > 2 be a prime. By Theorem
3.3.5, the subgroups Ti of upper triangular matrices in the congruence subgroups
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Gi = SLi
2(Zp) (i ≥ 1) of SL2(Zp) are right-orderable; however, we verify that

they are not bi-orderable.
Indeed, any such matrix can be written in a unique way as(︄

1 a
0 1

)︄(︄
(1 + t)−1 0

0 1 + t

)︄
=
(︄

(1 + t)−1 a(1 + t)
0 1 + t

)︄
,

where a, t ∈ piZp (see [BJZK], proof of Theorem 5.1).

Now consider a matrix x(a′) :=
(︄

1 a′

0 1

)︄
in Ti, where a′ ∈ piZp∖{0}; we compute

a matrix h(t) :=
(︄

(1 + t)−1 0
0 1 + t

)︄
, where t ∈ piZp, such that h(t)−1x(a′)−1h(t) =

x(a′)pi−1.
This gives the required contradiction: if Ti is bi-orderable and x(a′) > 1 then
x(a′)pi−1 > 1 but h(t)−1x(a′)−1h(t) < 1; the case x(a′) < 1 is analogous.
We have

h(t)−1x(a′)−1h(t) =
(︄

1 −a′(1 + t)2

0 1

)︄
and

x(a′)pi−1 =
(︄

1 (pi − 1)a′

0 1

)︄
.

Thus we have to solve the equation

t2 + 2t+ pi = 0,

which has a unique solution in piZp, obtained by applying Hensel’s Lemma to
the approximate solution t = −pi/2 modulo p2i.
This implies that subgroups of SL2(Zp) of finite index cannot be bi-ordered as
any such subgroup contains a principal congruence subgroup Gi.

More generally, we can deduce from this that also compact p-adic Chevalley
groups are not bi-orderable. Here we recall briefly the idea of the construction of
such groups; for more details see [C]. Given a crystallographic root system Φ and
a complex semisimple Lie algebra L of type Φ, one considers a Chevalley basis B
of L and takes the Z-linear span LZ of B. Tensoring LZ by the valuation ring R
of a non-archimedean local field of characteristic 0 and residue field characteristic
p, one obtains an R-Lie lattice LR := R ⊗Z LZ. The Chevalley group of type Φ
over R is then constructed as the subgroup of Aut(LR) generated by the union
of the root subgroups. It turns out that any compact p-adic Chevalley group
has a subgroup commensurable to SL2(Zp) (see [BJZK], Proposition 4.2), and
therefore it cannot be bi-ordered.

The same reasoning can be applied also abstractly to all non-abelian uni-
form pro-p groups of rank 2. Indeed, let G be such a group. By Exercise 13
in [DDMS], Chapter 4, we get that G has a unique normal procyclic subgroup
N with procyclic quotient G/N (compare also with [GSK], Section 7.1, where
uniform pro-p groups of dimension 2 are classified). Let x be a generator of N
and zN a generator of G/N ; then, since N is normal and procyclic, we have that
z−1xz = xλ for some λ ∈ Zp (see [RZ], Lemma 4.1.1, for the meaning of the
power xλ with λ ∈ Zp). Since G is uniform, [N,G] ⊆ Gp ∩ N = Np, and then

105



xλ−1 = [z, x−1] = z−1xzx−1 ∈ [G,N ] ⊆ Np, so xλ−1 = xµpe for some integer
e ≥ 1 and some µ ∈ Z∗

p; hence λ = 1 + µpe. Now there exists τ ∈ Z∗
p such that

λτ = 1− pe, hence z−τxzτ = xλτ = x1−pe . Since 1− pe < 1 this proves that G is
not bi-orderable, as no order would be preserved by conjugation.
Note that, if G is a non-abelian uniform pro-p group of rank 2, then G is non-
nilpotent, since all nilpotent uniform pro-p groups of rank 2 are abelian; hence
this is not in contradiction with the fact that torsion-free nilpotent groups are
always bi-orderable (see [DNR], Section 2.1).
By using Corollary 1.7 in [KS], we also get that if p ≥ 3 and G is a non-nilpotent
saturable pro-p group with d(G) = dim(G) = 2, then G is uniform and so non
bi-orderable by the previous remark.

It is therefore natural to investigate what happens in the general case. In this
section we show that insoluble p-adic analytic pro-p groups are not bi-orderable.
We already noted that some of these groups are not locally indicable (see Remark
3.3.17). However, we present here a more direct proof that holds for all insoluble
p-adic analytic pro-p groups, does not depend on property (T) and requires some
tools that are interesting in their own right. To this aim, we first deal with
just-infinite insoluble pro-p groups and we prove that in such groups it is not
possible to find subsemigroups with the properties of the positive cone of a bi-
order. Recall that just-infinite pro-p groups are infinite pro-p groups all of whose
proper quotients are finite (see Definition 2.4.12). One can show that just-infinite
pro-p groups are always finitely generated (see [K1], Exercise 9.4).

Proposition 3.4.1. Let G be a just-infinite insoluble pro-p group. Then every
non-trivial normal subsemigroup of G is an open normal subgroup of G.

Remark 3.4.2. Compare with [JZ], Proposition 1.1: Let G be a just-infinite
pro-p group. Then G is insoluble if and only if every non-trivial abstract normal
subgroup of G is open. This result yields that insoluble just-infinite pro-p groups
are also just-infinite as abstract groups.

Before proving this proposition we need a standard lemma; we present the
proof for completeness (see for example [Wr], Theorem I).

Lemma 3.4.3. Let S be a closed non-empty subsemigroup of a profinite group.
Then S is a group.

Proof. We start by proving the so-called Ellis-Numakura lemma, that states that
a compact Hausdorff non-empty semigroup T such that the product is continuous
has at least one idempotent element, i.e., an element x such that x2 = x. By
applying Zorn’s lemma to the family of non-empty compact sub-semigroups of T
we can find a minimal subsemigroup in this family, with which we can replace
T . Take x in T and consider the set Tx. As the product is continuous, Tx is
again compact and is clearly a semigroup contained in T . By minimality we can
therefore conclude that Tx = T . In particular, the subset A of T containing
elements y that satisfy yx = x is not empty and forms a compact subsemigroup
of T (it is the inverse image of the closed set {x} under the continuous map
T → T that maps any y in T to yx). Again by minimality we can conclude that
A = T and therefore A contains x, hence x2 = x.
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Now consider S: being closed in a compact Hausdorff group it is compact
and Hausdorff and its operation is continuous since it is inherited by the one in
the topological group. For the same reason the only idempotent contained in
S is the identity. Therefore, applying the Ellis-Numakura lemma we find that
S contains the identity, hence it is a group. Indeed, for every x ∈ S, xS and
Sx are compact Hausdorff non-empty semigroups and therefore, by using the
Ellis-Numakura lemma, they contain the identity.

Proof of Proposition 3.4.1. Let S be a normal subsemigroup of G and let T be
its closure in G (i.e., the smallest closed subsemigroup of G containing S).
Since, as we have seen in the previous lemma, a closed subsemigroup of a profinite
group is a group, T is actually a closed normal subgroup of G.
Hence T = (S )semigp = ⟨S⟩. Since G is just-infinite, T has finite index in G,
thus it is open (as it is closed of finite index). Since G is finitely generated, there
are elements x1, . . . , xd ∈ S such that T = ⟨x1, . . . , xd⟩.

Since G is insoluble, the commutator subgroup [T, T ] is open. Indeed, there
are two possibilities:

1. [T, T ] = 1 implies that T is abelian. Since moreover G/T is a finite p-group
(hence nilpotent), G is soluble in this case, a contradiction.

2. [T, T ] ̸= 1. The commutator subgroup [T, T ] is a closed subgroup of G
because T is a finitely generated pro-p group, [T, T ] is closed in T and T is
closed in G. Hence [T, T ] is open in the just-infinite group G.

We claim that xdxd−1 · · ·x1[T, T ] ⊆ xT
1 x

T
2 · · ·xT

d ⊆ S; more precisely, we prove
by induction on d ≥ 1 that

xdxd−1 · · ·x1[x1, t1] · · · [xd, td] = x
t1x−1

2 ···x−1
d

1 x
t2x−1

3 ···x−1
d

2 · · ·xtd
d .

Indeed, recall that every element of [T, T ] is of the form [x1, t1] · · · [xd, td] for
t1, . . . , td elements of T (Proposition 1.2.2). For d = 1 one has

x1[x1, t1] = xt1
1 .

Suppose now that the formula holds for d− 1, i.e.,

xd−1xd−2 · · ·x1[x1, t1] · · · [xd−1, td−1] = x
t1x−1

2 ···x−1
d−1

1 x
t2x−1

3 ···x−1
d−1

2 · · ·xtd−1
d−1 .

For every integer m with d > m ≥ 1, set ym := xdxd−1 · · ·xm. With this notation
our claim becomes

y1[x1, t1] · · · [xd, td] = x
t1y−1

2
1 x

t2y−1
3

2 · · ·xtd
d .

We have

y1[x1, t1] · · · [xd, td] = xdx
t1y−1

2 xd

1 x
t2y−1

3 xd

2 · · ·xtd−1
d−1 [xd, td]

= (xdx
t1y−1

2 xd

1 x−1
d )(xdx

t2y−1
3 xd

2 x−1
d ) · · · (xdx

td−1
d−1 x

−1
d )xtd

d

= x
t1y−1

2
1 x

t2y−1
3

2 · · ·xtd
d .
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Since [T, T ] has finite index in G, there exists k ∈ N such that the element
(xdxd−1 · · ·x1)pk belongs to [T, T ], from which it follows that

[T, T ] = (xdxd−1 · · ·x1)pk [T, T ]

= (xdxd−1 · · ·x1)pk−1
xdxd−1 · · ·x1[T, T ]

⊆ (xdxd−1 · · ·x1)pk−1
xT

1 · · ·xT
d ⊆ S.

Now, let S/[T, T ] denote the quotient semigroup with respect to the semigroup
congruence relation ∼ defined by s1 ∼ s2 if and only if there is an element t ∈
[T, T ] such that s1 = s2t. Recall that a semigroup congruence on the semigroup
S is an equivalence relation ∼′ such that, if s1, s2, s3, s4 are elements of S such
that s1 ∼′ s2 and s3 ∼′ s4, then s1s3 ∼′ s2s4. It is clear that ∼ is an equivalence
relation and, if s1 ∼ s2 and s3 ∼ s4 then there exist t1, t2 in [T, T ] such that
s1 = s2t1 and s3 = s4t2. Then s1s3 = s2t1s4t2 = s2s4t3t2 for some t3 ∈ [T, T ]
and so s1s3 ∼ s2s4. Hence S/[T, T ] is a subsemigroup of G/[T, T ], which is a
finite group. Since a semigroup in a finite group is a group, S is a group and it
contains the open subgroup [T, T ], from which we can deduce that S is an open
normal subgroup of G.

Corollary 3.4.4. Let G be a just-infinite insoluble pro-p group. Then G is not
bi-orderable.

Proof. Assume that G is bi-orderable and let S be the subsemigroup of positive
elements of G. Since S is normal, by the previous proposition S is a subgroup
of G. This yields a contradiction as, if x ∈ S, then x > 1 and x−1 < 1 cannot
belong to S.

Corollary 3.4.5. Let G be a non-soluble p-adic analytic pro-p group. Then G is
not bi-orderable.

In order to prove this corollary, we need to use the Lie correspondence between
uniform pro-p groups and powerful Zp-Lie lattices. Recall from Chapter 1, Section
1.3 that, if G is a pro-p of finite rank and U is any of its open uniform subgroups,
then the Qp-Lie algebra associated to G is given by L := L(U) ⊗Zp Qp, where
L(U) is the powerful Zp-Lie lattice associated to U . For proving our result we
will need the following

Proposition 3.4.6. Let G be a non-soluble pro-p group of finite rank and let
H be a simple Lie subalgebra of the Lie algebra associated to G. Then G has a
uniform subgroup H which is non-abelian just-infinite and whose associated Lie
algebra is H.

Proof. Let U be a uniform open subgroup of G and L(U) the corresponding Zp-
Lie lattice. The intersection L(U) ∩ H =: L is a non-empty Zp-Lie lattice such
that L ⊗Zp Qp = H. As recalled in Chapter 1, Section 1.3, if p is odd (if p = 2
respectively), then p (respectively 4L) is a powerful Zp-Lie sublattice of L(U) and
therefore corresponds to a uniform subgroup H of U . The Lie algebra of H is
LH = pL⊗Zp Qp = L⊗Zp Qp = H (respectively, 4L⊗Z2 Q2 = H) and is therefore
simple.
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We now show that H is just-infinite. If this was not the case, we could find a
closed normal subgroup N of H of infinite index. Consider the powerful pro-p
group H/N . By Theorem 1.3.12, the torsion subgroup T/N of H/N is a finite
characteristic subgroup and H/N

T/N
∼= H/T is uniform. As both H and H/T are

uniform, by Theorem 1.3.14, T is a normal uniform subgroup of H of infinite
index and L(T ) is a Zp-Lie ideal of L of infinite index. Then LT = L(T )⊗Zp Qp

is a proper ideal of LH = H, which contradicts the fact that H is simple.

Proof of Corollary 3.4.5. Let U be a uniform open normal subgroup of G and let
L := L(U) ⊗Zp Qp be the Lie algebra associated to G. By Levi’s decomposition
theorem ([Serre1], Part I, Chapter VI, Corollary 4.1), L = H ⋉R, where H is a
non-trivial semisimple Lie subalgebra of L and R is the soluble radical of L. Then
H can be written as H = H1 ⊕ . . . ⊕ Hm, where each Hi is a simple Lie algebra
([Serre1], Part I, Chapter VI, Corollary 2.1). For each i, set Li := Hi ∩ L(U).
By the previous proposition, each pLi corresponds to a non-abelian just-infinite
subgroup Hi of G. As, by Corollary 3.4.4, each Hi is not bi-orderable, we can
conclude that G is not bi-orderable.

Remark 3.4.7. By using some of the previous arguments, we can conclude that
any bi-orderable finitely generated pronilpotent group has infinite abelianisation.
Indeed, let G be a bi-orderable finitely generated pronilpotent group, with gen-
erators x1, . . . , xd chosen to be positive for a fixed bi-order on G. Let S be the
normal subsemigroup of G generated by x1, . . . , xd and T its closure. By the same
reasoning used in the proof of Proposition 3.4.1 we see that T = G. Assume that
G is non-abelian and that [G,G] has finite index in G. Again proceeding as in
the proof of Proposition 3.4.1, we can conclude that

xdxd−1 · · ·x1[G,G] ⊆ xG
1 x

G
2 · · ·xG

d ⊆ S (3.2)

and that, for some positive integer m,

[G,G] = (xdxd−1 · · ·x1)m[G,G] = (xdxd−1 · · ·x1)m−1(xdxd−1 · · ·x1)[G,G] ⊆

⊆ (xdxd−1 · · ·x1)m−1xG
1 x

G
2 · · ·xG

d ⊆ S.

As S contains only positive elements because G is bi-orderable, we can argue as
in the proof of Corollary 3.4.4 to find a contradiction. It follows that any bi-
orderable finitely generated pronilpotent group must have infinite abelianisation.
In particular, this gives an alternative proof of Corollary 3.4.4.
(Alternatively, one can assume that G is bi-orderable and take S = P the semi-
group of positive elements of G, thus obtaining the same contradiction.)

Note that we actually proved something more, namely that, if G = ∏︁
pGp

is a bi-orderable finitely generated pronilpotent group, then G maps onto Zp

for each p such that Gp is non-trivial. Indeed, each such Gp is a bi-orderable
finitely generated pro-p group, hence in particular it has infinite abelianisation
and therefore it maps onto Zp. Composing this map with the natural projection
G→ Gp one gets the required surjective homomorphism.

Note also that, ifG is a bi-orderable finitely generated pronilpotent group with
generators x1, . . . , xd, by (3.2) every element of the form xdxd−1 · · ·x1z with z ∈
[G,G] is positive. It is clear that the same is true for any permutation of x1, . . . , xd

and that, given any positive integers α1, . . . , αd with αi ≥ 1 for all i ∈ {1, . . . , d},
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also xαd
d x

αd−1
d−1 · · ·x

α1
1 [G,G] = xαd−1

d x
αd−1−1
d−1 · · ·xα1−1

1 xdxd−1 · · ·x1[G,G] ⊆ P .
It follows that the elements of the form xαd

d x
αd−1
d−1 · · ·x

α1
1 with the exponents αi

as before and any permutation of them are greater or equal than any element of
[G,G].

From the previous remark we can conclude that also soluble non-abelian just-
infinite pro-p groups are not bi-orderable, as bi-orderable pronilpotent groups
have infinite abelianisation. The same result can also be deduced less directly
from Proposition 6.1 in [GSK], which states that every soluble just-infinite pro-p
group other than Zp has torsion.

3.5 Orderability of pro-p RAAGs

In this section we prove that the class of bi-orderable pro-p groups contains a
large supply of interesting groups by proving that pro-p RAAGs are bi-orderable.
In particular, pro-p groups belonging to this class satisfy the unique product
property.

A right-angled Artin group (RAAG), or free partially commutative group, is an
abstract group F (A, θ) with the following presentation: let A be a finite set and
θ a symmetric and irreflexive subset of A × A (a partial commutation relation),
then

F (A, θ) := ⟨A | ab = ba, (a, b) ∈ θ⟩. (3.3)

We note that, if we consider the limit case where θ = (A × A) \ ∆(A) with
∆(A) := {(a, a) | a ∈ A}, we get the free abelian group on the set A, while, if
θ = ∅, we get the free group on A.
It is known that RAAGs are bi-orderable groups (see for example [R2] or [DK]).

We now consider the presentation given by (3.3) as a pro-p presentation, and
we call the pro-p group with this presentation a pro-p RAAG. This pro-p group,
that we will denote F (A, θ)pro-p, is the pro-p completion of the abstract right-
angled Artin group F (A, θ).
By slightly modifying one of the proofs of the bi-orderability of RAAGs given in
[DK], we prove that also pro-p RAAGs are bi-orderable.
For all the following definitions and constructions in the abstract case see [DK],
where the same are carried out for a generic non-trivial ring of coefficients.

Let A be the set consisting of the variables X1, . . . , Xn and let θ be a sym-
metric and irreflexive subset of A × A. We consider the partially commutative
formal power series ring Zp[[X1, . . . , Xn; θ]], consisting of the formal power series
in the variables X1, . . . , Xn with coefficients in Zp where two variables Xi and Xj

commute if and only if (Xi, Xj) ∈ θ, for i, j ∈ {1, . . . , n}.
A series in Zp[[X1, . . . , Xn; θ]] has the form S = ∑︁

X λXX, where λX ∈ Zp and X
runs over a set of representatives of the semigroup M generated by the variables
X1, . . . , Xn and subject to the relations XiXj = XjXi whenever (Xi, Xj) ∈ θ, for
i, j ∈ {1, . . . , n}.
The support of such a series S is given by the set of monomials X occurring in
S with non-zero coefficient. Given a monomial X = Xi1 · · ·Xim , the length of X
is the number of variables m occurring in X. The valuation ν(S) of a series S is
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the minimal length of the elements in the support of S. Thanks to this valuation
it is possible to define a filtration on Zp[[X1, . . . , Xn; θ]] as follows:

∀k ∈ N, Zp[[X1, . . . , Xn; θ]]k := {S ∈ Zp[[X1, . . . , Xn; θ]] : ν(S) ≥ k}.

The augmentation ideal of Zp[[X1, . . . , Xn; θ]] is given by

M(n; θ) := M(X1, . . . Xn; θ) := Zp[[X1, . . . , Xn; θ]]1,

i.e., by the set of series that do not have a non-zero constant term, and the
partially commutative Magnus group is defined as

Mg(n; θ) = Mg(X1, . . . Xn; θ) := 1 +M(n, θ),

i.e., the set of series with constant term 1, with group operation given by multi-
plication. Mg(n; θ) has a filtration inherited from the valuation filtration of the
partially commutative formal power series ring; we write

Mg(n; θ)k := 1 + Zp[[X1, . . . , Xn; θ]]k

for every k ≥ 1.
Consider the product ZT ({1,...,n})

p , where T ({1, . . . , n}) is a set of tuples of
natural numbers in {1, . . . , n} that is in bijection with the set of monomials of
Zp[[X1, . . . , Xn; θ]] via Xi1 · · ·Xim ↦→ (i1, . . . , im). Note that some of these tuples
are identified according to the partial commutation relation θ. For example, if X1
and X2 commute, then (1, 2) = (2, 1). There is a map from Zp[[X1, . . . , Xn; θ]]
to ZT ({1,...,n})

p that sends a series to the sequence of its coefficients. We put on
Zp[[X1, . . . , Xn; θ]] the topology of simple convergence of the coefficients (i.e.,
the product topology on copies of Zp indexed by monomials in the variables
X1, . . . , Xn); in other words, a sequence of series in Zp[[X1, . . . , Xn; θ]] converges
with respect to this topology if and only if, for each monomial X, the sequence
of coefficients of X converges in the product topology. Let I be the maximal
ideal of Zp[[X1, . . . , Xn; θ]]. It is a known fact that the I-adic topology ([DDMS]
Chapter 6, Section 6) on Zp[[X1, . . . , Xn; θ]] is equivalent to the topology of simple
convergence of the coefficients described before. We sketch the idea of the proof
of this fact for completeness.

Lemma 3.5.1. The I-adic topology and the topology of simple convergence of
the coefficients on Zp[[X1, . . . , Xn; θ]] are equivalent.

Proof. As the topology of simple convergence of the coefficients is the same as
the product topology on ZT ({1,...,n})

p , a basis for this topology is given by the open
sets {Uk}k∈N, where each Uk is of the form

Uk =
k∏︂

i=1
Ũ i ×

|T ({1,...,n})|∏︂
i=k+1

Zp,

with Ũ i open subsets of Zp. Recall that an open set in Zp is given by pmZp for
some natural number m. When looking at series, this means that an open set
of this basis contains series with k coefficients that belong to open sets of Zp. A
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basis of open sets for the I-adic topology is given by translates of powers of I,
i.e. by the sets

{x+ Ih | x ∈ Zp[[X1, . . . , Xn; θ]], h ∈ N}.

It is now not difficult to check that a set is open in the I-adic topology if and
only if it is open in the topology of simple convergence of the coefficients.

As a consequence, with the topology of simple convergence of the coefficients,
Zp[[X1, . . . , Xn; θ]] is a complete Zp-module in the sense of Lazard, since, con-
sidered with the I-adic topology, it is a topological Zp-module that is complete
and has a basis of neighbourhoods of zero given by its open submodules (see [La],
Chapter II, Section 2, (2.2.4)). The Magnus group Mg(n; θ) inherits the subspace
topology, that turns it into a pro-p group; this group is topologically generated
by the monomials 1 +X1, . . . , 1 +Xn.

Now consider the pro-p RAAG F (n; θ)pro-p := F (x1, . . . , xn; θ)pro-p, where
F (x1, . . . , xn; θ)pro-p is the pro-p group with pro-p presentation

⟨x1, . . . , xn; xixj = xjxi for i, j ∈ {1, . . . , n} and (xi, xj) ∈ θ⟩pro-p.

It is clear that F (n; θ)pro-p is a free partially commutative pro-p group.
We are going to show that the continuous homomorphism µ : F (n; θ)pro-p →

Mg(n; θ), defined by xi ↦→ 1 + Xi (i ∈ {1, . . . , n}), is injective. This slightly
generalises a result of Lazard, where the previous statements are proved in the
case of a free pro-p group; the proofs in the partially commutative case are very
similar to the ones in the free case. See [La], Chap. II, Section 3.1.

Lemma 3.5.2. The Magnus homomorphism µ : F (n; θ)pro-p → Mg(n; θ) is an
injective continuous homomorphism of pro-p groups.

Proof. First of all we note that the homomorphism µ : F (n; θ)pro-p → Mg(n; θ)
defined by µ(xi) := 1 + Xi is well defined because of the universal property of
relatively free groups.

Let Zp[[F (n; θ)pro-p]] be the completed group algebra of F (n; θ)pro-p. This is
also a Zp-complete module in the sense of Lazard ([La], Chapter II, Section 2,
Example (2.2.4.1)). Since Zp[[X1, . . . , Xn; θ]] is a complete Zp-module, there ex-
ists a unique morphism α : Zp[[F (n; θ)pro-p]]→ Zp[[X1, . . . , Xn; θ]] which extends
µ (see [La], Chapter II, Section 2, Lemma 2.2.5).
We construct the inverse of α as β : Zp[[X1, . . . , Xn; θ]] → Zp[[F (n; θ)pro-p]] that
sends Xi to xi − 1. This is well-defined since the powers of the ideal generated
by the xi − 1 tend to zero in the completed algebra Zp[[F (n; θ)pro-p]] (see [La],
Chapter II, Section 2, 2.2.3). This implies that µ, being the restriction of the
bijective morphism α, is injective.

We will now use the following

Theorem 3.5.3 ([DK], Section 3, Theorem 3.1). Let G be a group with a filtration
(Gk)k≥1 of normal subgroups with the following properties:

1. ∀k ≥ 1, ∀g ∈ G, ∀s ∈ Gk, ∃h ∈ Gk : [hg, s] ∈ Gk+1
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2. G1 = G

3.
⋂︁

k≥1Gk = {1}

Suppose that every quotient Gk/Gk+1 is bi-orderable. Then G is bi-orderable.

In the case of pro-p groups we will need to add the requirement that the Gk are
closed subgroups of G.

One can verify that the valuation filtration of the Magnus group satisfies all
the hypotheses of the previous theorem. Since, for every k ≥ 1, the quotients
Mg(n; θ)k/Mg(n; θ)k+1 are isomorphic to the product of a finite number of copies
of (Zp,+) and (Zp,+), being torsion-free abelian, is bi-orderable (see Example
3.2.13), it follows that Mg(n; θ) is bi-orderable. Alternatively, it is also possible
to construct a bi-order on the Magnus group. Namely, one can fix a bi-order
on the additive group Zp and an order on monomials and declare a power series
U greater than a power series V if the coefficient of the first monomial of U at
which U and V differ is greater than the corresponding coefficient of V (see [CR],
Chapter 3, Section 3.2). In any case, the pro-p group F (n; θ)pro-p can be ordered
via the injective homomorphism µ.

Note that it would also be possible to work directly with the lower central
series of F (n, θ)pro-p and show that each of its factors is torsion-free abelian. As
the groups forming the lower central series of F (n, θ)pro-p clearly satisfy the condi-
tions in Theorem 3.5.3, this would give an alternative proof of the bi-orderability
of F (n, θ)pro-p (compare with [DK], Theorem 2.1).

In [Ch], Chong-Keang replaces Zp with ˆ︁Z and considers the formal power
series ring ˆ︁Z[[X1, . . . , Xn]]. In this case, the closed multiplicative subgroup ofˆ︁Z[[X1, . . . , Xn]] generated by 1+X1, . . . , 1+Xn turns out to be the free pronilpo-
tent group on n generators. By modifying the previous argument we therefore
find that free partially commutative pronilpotent groups are bi-orderable.

Hence, as bi-orderable groups are locally indicable, we can conclude that free
(partially commutative) pronilpotent groups are locally indicable. It is an open
problem to determine whether this holds true in the case of free profinite groups.
Jaikin-Zapirain conjectures that all finitely generated free profinite groups are
indeed locally indicable ([JZ2], Conjecture 4).

3.6 Some further questions

We collect here some questions that arise naturally by what was done so far.
The first obvious question is whether it is possible to fully prove the conjecture

posed by Craig and Linnell, which states that every uniform pro-p group has the
unique product property, or, alternatively, provide a counterexample. It seems
to us that this is not immediately possible to accomplish with the methods used
in this thesis.

Another less ambitious direction would be to try to extend the results in
Section 3.3 to other classes of (soluble) profinite groups. Moreover, in Corollary
3.3.19 we saw a characterisation of (abstractly) locally indicable groups within
the class of metabelian profinite groups with the ascending chain condition on
closed subgroups. It remains open to find a similar characterisation of locally
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indicable groups in the class of profinite groups of finite rank, at least in the
soluble case.

Task 3.6.1. Find a characterisation of locally indicable groups in the class of
soluble profinite groups of finite rank.

More generally, it would be interesting to study local indicability in the realm
of profinite groups; an already cited open conjecture in this regard is that all
finitely generated free profinite groups are locally indicable ([JZ2], Conjecture 4).

Regarding orderability, we saw at the beginning of Section 3.4 that soluble
non-nilpotent uniform groups of rank 2 are not bi-orderable. It is natural to
ask whether it is possible to extend this result to soluble non-nilpotent uniform
groups of higher rank, i.e.,

Question 3.6.2. Are soluble non-nilpotent uniform groups of rank higher than
2 not bi-orderable?

Still related to orderability it is natural to ask the following:

Question 3.6.3. Are insoluble saturable groups right-orderable?

It might be the case that these groups possess the unique product property
but are not right-orderable. Moreover, it would be interesting to study the space
of right-orders on soluble saturable groups. Finally, it is known that there is no
order on p-adic analytic pro-p groups that is compatible with both the profinite
topology and the group operation. It would then be natural to examine the
topology induced by an order and compare it with the profinite topology. We
also want to mention that many known results on orderability of groups concern
countable groups; it would be an interesting task to think about which of these
results can be translated to the realm of profinite groups. For example, it seems
to us that one of the results regarding the structure of bi-orderable soluble groups
proved by Botto Mura and Rhemtulla ([BMR], Lemma 3.3.2) can be adapted to
the pro-p case.

Finally, regarding the relations among the unique product property and the
various kinds of orderability (see the end of Section 3.2.2), one might ask the
following question, which was posed to me by Olga Varghese.

Question 3.6.4. Are there some classes of groups (for example, metabelian
groups) for which the unique product property is equivalent to right-orderability?

Also, it is clear that taking the profinite (or pro-p) completion of the group G
in Remark 3.2.16 we obtain a profinite (respectively, pro-p) group that is right-
orderable but not bi-orderable. Therefore it would be good to carry out the
following task.

Task 3.6.5. Find an example of a profinite group that is locally indicable but not
right-orderable.

3.7 Appendix

In this section we prove a commutator formula for nilpotent groups similar to the
one in the proof of Proposition 3.4.1. More precisely, let G be a (pronilpotent
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or abstract) nilpotent group of nilpotency class c generated by x1, . . . , xd, let
a1, . . . , ad be integers and t1, . . . td be elements of G. Then

xa1
1 x

a2
2 · · ·x

ad
d [x1, t1][x2, t2] · · · [xd, td] = xb1

1 x
g

(1)
1

1 · · ·x
g

(1)
k1

1 · · ·xbd
d x

g
(d)
1

d · · ·x
g

(d)
kd

d ,

where, for each i ∈ {1, . . . , d}, bi is an integer such that ai − 1 ≥ bi ≥ ai − c+ 1,
ki ≤ c− 1 and g

(i)
1 , . . . , g

(i)
ki

are elements of G.
We prove this formula by induction on the nilpotency class c of G.

Let c = 2. When d = 2 we have:

xa1
1 x

a2
2 [x1, t1][x2, t2] = xa1

1 [x1, t1]xa2
2 [xa2

2 , [x1, t1]][x2, t2] = xa1−1
1 xt1

1 x
a2−1
2 xt2

2 ,

as c = 2 implies [xa2
2 , [x1, t1]] = 1. Similarly, for d > 2 we get

xa1
1 x

a2
2 · · ·x

ad
d [x1, t1][x2, t2] · · · [xd, td]

= xa1
1 [x1, t1]xa2

2 [x2, t2] · · ·xad
d [xd, td]

= xa1−1
1 xt1

1 x
a2−1
2 xt2

2 · · ·x
ad−1
d xtd

d ,

as all commutators [xai
i , [xj , tj ]] vanish.

Assume now that the formula holds for the nilpotency class c ≥ 2 and let G
be of class c+ 1. Quotienting by γc+1(G) we get a nilpotent group of class c and
therefore

xa1
1 x

a2
2 · · ·x

ad
d [x1, t1][x2, t2] · · · [xd, td] = xb1

1 x
g

(1)
1

1 · · ·x
g

(1)
k1

1 · · ·xbd
d x

g
(d)
1

d · · ·x
g

(d)
kd

d z,

where z ∈ γc+1(G) and the conditions on the bi’s, ki’s and g
(i)
j ’s are as before.

Now z can be written as

z =
∏︂

i∈{1,...,d}c

[xi1 , xi2 , . . . , xic , ti],

with i = (i1, . . . , ic) and ti ∈ G (see [Se] Corollary 1.2.8). As G has class c + 1,
each commutator [xi1 , xi2 , . . . , xic , ti] is central in G. Moreover, again because we
are in class c+ 1 we have

[xi1 , xi′
2
, . . . , xi′

c
, ti′ ][xi1 , xi2 , . . . , xic , ti] = [xi1 , [xi2 , . . . , xic , ti][xi′

2
, . . . , xi′

c
, ti′ ]].

Therefore we get

xa1
1 x

a2
2 · · ·x

ad
d [x1, t1][x2, t2] · · · [xd, td] = x

b′
1

1 x
g

′(1)
1

1 · · ·x
g

′(1)
k′

1
1 · · ·xb′

d
d x

g
′(d)
1

d · · ·x
g

′(d)
k′

d
d ,

where, for each i ∈ {1, . . . , d}, b′
i ≤ bi ≤ ai − 1, b′

i ≥ bi − 1 ≥ ai − (c + 1) + 1,
k′

i ≤ ki + 1 ≤ c and g′(i)
1 , . . . , g′(i)

ki
are elements of G. This proves the formula.
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