
Inaugural Dissertation

High Performance Networking for

Distributed Java Applications

submitted by

Filip Krakowski
from Poznań

for the acquisition of the doctoral degree

of the Faculty of Mathematics and Natural Sciences

of the Heinrich Heine University Düsseldorf

January 2024

from the Institute of Computer Science

at Heinrich Heine University Düsseldorf

Printed with the permission of the

Faculty of Mathematics and Natural Sciences of the

Heinrich Heine University Düsseldorf

Reporters:

1. Prof. Dr. Michael Schöttner

2. Prof. Dr. Stefan Conrad

Day of the oral exam:

Acknowledgments

I would like to take this opportunity to express my sincere thanks to a number of

people, as this work would not have been possible in this form without them. First of

all, I would like to thank my supervisor Prof. Dr. Michael Schöttner. He was always

there to help with technical and organizational matters, made it possible for me to

meet interesting people and motivated me in my work in the form of many discussions

and new ideas. I would also like to thank my colleague Fabian Ruhland, with whom I

was given the opportunity to work throughout my doctorate. As our research topics

had some overlaps, this enabled a valuable exchange of insights, which helped me a

lot in some parts of my work. Further thanks go to our administrator Dr. Michael

Braitmeier. I could always rely on him in the event of technical problems or questions

relating to our infrastructure, so that my work could always be continued without in-

terruption. Furthermore, I would like to thank my mentor Prof. Dr. Stefan Conrad,

who was there to answer questions and help me with his knowledge. Special thanks

go to our former secretary Angela Rennwanz, who knew the answer to almost every

organizational question, offered her help at any time and thus made my work much

easier in many ways. In addition to the people in our department, I would also like

to thank the many students who have written their theses with us, as their work has

often given me new ideas that have helped my work.

Besides the university, there were also some people who accompanied me on my way

and always stood by my side. Here I would first like to thank the person most impor-

tant to me, my beloved wife Dr. Martha Krakowski. She supported me unconditionally

in all matters, always had an open ear, gave the necessary motivation and steered me

in the right direction more than once. I wouldn’t be the person I am today without her.

Many thanks also go to my mother Małgorzata, my father Krzysztof, my stepfather

Darius, my grandmother Krystyna and my grandfather Gerhard who always believed

in me, supported me and did their best in order to allow me to have a good life. I

would also like to thank my siblings Alex and Paula, who shaped my childhood and

whom I can always rely on. In addition, I have to thank my father-in-law Jan Tatusch

for his motivating discussions and my mother-in-law Judith Tatusch for the trust she

has placed in me.

Finally, I would like to thank all my friends who gave me the distraction I needed to

reorganize my thoughts in times of uncertainty. To everyone else who has accompanied

me on my journey, I also wish to express my sincere gratitude.

Abstract

While data processing has become a core component of almost all systems in the digital

world, some applications are designed for very large amounts of data or big data and

must also be able to produce a result in a short time. Furthermore, big data applications

have to be distributed, as a single computer is no longer sufficient due to its limited

resources. Due to the ever-increasing complexity of data, they also need a suitable way

to process it, which is offered in the form of various big data processing frameworks.

Many of these big data frameworks have been developed within the Java ecosystem

and the focus has therefore been placed on the Java Virtual Machine. This work

pursues the goal of accelerating communication between distributed Java applications

using modern technologies. Specifically, an integration of the InfiniBand technology

developed by NVIDIA (formerly by Mellanox) within the Java ecosystem is being

pursued. For this purpose, a connection to the Verbs API based on the Java Native

Interface is first developed, which allows efficient access to InfiniBand hardware within

Java applications. The developed solution shows very good results in benchmarks

with throughputs of up to 14 million messages per second as well as reaching the

maximum bandwidth achievable in practice of a 56 Gbit/s ConnectX-3 controller at

6 GB/s. Based on these findings and a cooperation with Oracle Labs, the focus is

being shifted away from the Java Native Interface to the Foreign Function & Memory

API recently developed by Oracle. The resulting Infinileap project continues to pursue

the goal of connecting InfiniBand hardware in Java applications, but relies on Oracle’s

Project Panama for native access and on the OpenUCX library, which provides an

abstraction layer for high-performance networking hardware. It also aims at providing

RDMA functions for Java applications. The benchmarks carried out in the context

of the Infinileap project show that using Project Panama with OpenUCX is a good

match. Using the Infinileap project and 100Gbit/s ConnectX-5 network controllers,

the round-trip latency for send operations and RDMA read and write operations with

small amounts of data of less than 256 bytes is around 2 microseconds. Similarly,

atomic operations such as Compare & Swap can be executed on remote memory in

under 2 microseconds The round-trip latency for smaller messages of 8 bytes is even

lower with 1.4 microseconds while the theoretically achievable minimum latency is

1.2 microseconds. The bandwidth of the network card is also reached at 100 Gbit/s

when using larger messages starting at around 4 kilobytes. Finally, an integration into

Java’s NIO framework is developed, which allows existing network applications to use

transparent InfiniBand controllers on the network level without major changes to the

code. The benchmarks developed in this context show that the Infinileap project offers

significant added value compared to other existing solutions such as JUCX and enables

more stable operation overall.

Contents

1 Introduction 1

1.1 Project Hermes . 4

2 The Java Ecosystem and its Unsafe Mechanisms 7

2.1 Garbage Collection . 7

2.2 Java Unsafe API . 11

2.2.1 Object Instantiation . 13

2.2.2 Synchronization . 13

2.2.3 Memory Manipulation and Management 15

2.3 High-Performance Object Serialization based on Ahead-of-Time Schema

Generation . 19

3 InfiniBand in the Context of Java 29

3.1 High-Performance Networking . 29

3.1.1 InfiniBand Network Transport 30

3.1.2 Remote Direct Memory Access 33

3.1.3 Java Native Interface . 35

3.2 Neutrino: Efficient InfiniBand Access for Java Applications 38

3.3 Performance analysis and evaluation of Java-based InfiniBand Solutions 47

4 Modern Foreign Function & Memory Access in Java 57

4.1 Foreign Function & Memory API . 57

4.2 Unified Communication X . 61

4.3 Infinileap: Modern High-Performance Networking for Distributed Java

Applications based on RDMA . 65

4.4 Transparent network acceleration for big data computing in Java 74

5 Application Integration 83

5.1 The Java Development Kit’s Networking Options 83

5.1.1 Blocking Network I/O . 83

5.1.2 Non-Blocking Network I/O . 86

5.2 hadroNIO: Accelerating Java NIO via UCX 89

5.3 Accelerating netty-based applications through

transparent InfiniBand support . 98

6 Conclusion & Outlook 107

Chapter 1

Introduction

In today’s digital world, data is generated almost everywhere. From a simple house-

hold thermometer to complex scientific calculations. At the same time, the volume of

data generated has grown steadily in the past and continues to do so today due to the

increasing number of virtual and physical sensors and the associated new possibilities

for data collection. In a blog post published at the end of 2014, for example, Face-

book revealed that it generates around 4 petabytes of new data every day, which is

stored in a huge storage system called "Hive" and then queried using around 600,000

queries and processed by around 1 million map-reduce jobs[1]. Since this statement

was made around 10 years ago, the number of monthly active users on Facebook has

more than doubled[2] and many new features have been added, it can be assumed that

the company now collects, processes and stores a much larger amount of data. It is

also clear today that workloads of this magnitude must be carried out in a distributed

environment in which each participating system takes on part of the task, as a single

computer would be more than inadequate. Since the basis for new findings lies within

the evaluation of collected data, it is important to establish ways to keep the processing

of the data as simple as possible, as otherwise a lot of time is lost. Nowadays, this

basis is provided by big data frameworks, which allow developers or data scientists

to model and execute complex calculations or sequences of operations using a simple

programming interface.

Widely known systems belonging to this group are, for example, Apache Spark™[3],

Apache Hadoop[4], Apache Storm[5] and Apache Flink®[6]. Since learning the different

APIs takes some time, the Apache Beam[7] project was also established, which offers

a unified API that is able to map operations to different backends. One characteristic

that all these systems have in common is the fact that they use the Java Virtual

Machine as their foundation.

1

CHAPTER 1. INTRODUCTION

"To a large extent Big Data is Java. Hadoop and a large percentage of the

Hadoop ecosystem are written in Java. The native MapReduce interface for

Hadoop is Java. So you can easily move into big data simply by building Java

solutions that run on top of Hadoop. There’s also Java libraries like Cascading

which make the job easier. Java is also really useful for debugging things even

if you use something like Hive.

Beyond Hadoop, Storm is written in Java and Spark (ie: arguably the future of

hadoop computing) is in Scala (which runs on the JVM and Spark has a Java

interface). So Java covers a massive percentage of the Big Data space. [..]"

- Marcin Mejran, 2014 [8]

The reason for the focus on the Java Virtual Machine is well summarized in an answer

published on Quora by Marcin Mejran. At the time of the widespread introduction of

big data, existing systems and tools were already designed for the Java Virtual Ma-

chine and therefore the entrance to the topic was linked to this technology. While

Hadoop played a major role in the initial phase, the aforementioned frameworks were

developed over time with numerous new possibilities for data processing. Over time,

a distinction was also made within the type of data processing between the previously

known batch processing and the new stream processing, in which data is processed

on-the-fly or in real time[9]. However, with this new type of processing came further

new challenges. Processing real-time data, for example, requires low latencies, as the

results to be analyzed may only be valid for a limited time. A good example of this

is the processing of aircraft data in real time. If the processing were to take a long

time, the reaction could be too late. Low latencies are absolutely essential in such cases.

Storing the data on a persistent storage medium, such as a hard disk, as is the case

with conventional batch processing, would greatly increase the latencies here, as write

accesses to disks are known to be relatively slow. For this reason, in-memory processing

was introduced, in which all data to be processed is stored in the main memory[10].

Since the main memory - apart from the CPU cache - is the fastest storage medium

within a computer, the latency with regard to local operations could be minimized as

far as possible and at the same time the calculation could be significantly accelerated.

The local processing of data could thus be significantly optimized. However, since a

big data system should be distributed by design, another bottleneck arose.

2

CHAPTER 1. INTRODUCTION

Whenever additional data is required within an operation on a computer for the cal-

culation, this must first be retrieved from another computer involved in the system via

the network. Modern big data systems address this problem by distributing the data

in advance in such a way that a minimal number of external accesses are required to

perform the calculations[11]. While this type of data distribution initially represents

a major optimization, it is of course not one hundred percent effective, which is why

external access must still take place. The next bottleneck that occurs here is the net-

work that connects all the systems involved, as well as the technologies used within it.

Within the Java ecosystem, the Netty project[12] has established itself as the de facto

solution for network applications, which is why it is also used in the aforementioned big

data systems. This is based on an asynchronous programming model that uses Java

NIO in the background and thus standard Ethernet-based network sockets. However,

such a programming model is associated with some performance drawbacks, such as the

context switches caused by system calls or the need to copy data between kernel and

user space. These factors understandably influence the latency of the entire system, as

any time spent waiting within the processing of data leads to a delay. An alternative

to this is Remote Direct Memory Access (RDMA) technology. Here, special network

controllers are used which have implemented the protocol stack within the hardware

and therefore only require minimal communication with the application for sending

messages. Another advantage is the possibility to control the hardware directly by

bypassing the system kernel, so that system calls are no longer necessary. Finally,

such hardware offers the possibility of accessing remote memory without utilizing the

target’s processor, which in turn leads to extremely low latencies of less than one mi-

crosecond for sending messages when used correctly.

While these capabilities represent a clear advantage over conventional socket program-

ming, there is currently no way to control RDMA hardware within the Java Devel-

opment Kit. While such support was pursued[13], the plans ultimately came to a

standstill and were discontinued. In addition to this, there is related work that has

been done at the Chair of Operating Systems at Heinrich Heine University in form of

the Ibdxnet project, which pursued similar goals, but developed a large part of the

functionality within the C programming language[14]. While the project offers very

low-level control of the hardware, it uses Java’s Unsafe API in many places, which can

lead to unpreventable program crashes if used improperly. An additional disadvantage

is the maintenance effort associated with the librarie’s core written within the native C

programming language. If changes need to be made within the logic, for example, the

native part must be recompiled. The native part must also be compiled for each plat-

3

CHAPTER 1. INTRODUCTION

form on which it is to be used. From the point of view of the Java Virtual Machine,

which is designed to enable program code to be executed on any platform without

changes, this represents an obstacle.

1.1 Project Hermes

This work aims to make RDMA hardware just as accessible and safe as socket program-

ming within Java by means of a simple abstraction layer. For this purpose, Project

Hermes has been started in collaboration with Oracle Labs, which specifies the neces-

sary steps towards a functioning integration and provides a scope for the implementa-

tion. Initially, it addresses the outlined goal using the Java Native Interface (JNI) by

developing a solution for connecting Java classes with native structs and an efficient

way to call native functions from Java space. This is realized within the Neutrino

project (see 3.2). Unlike previous solutions, the focus here is not only on performance

but also on the straightforward usability of the developed API. The backend used for

controlling InfiniBand hardware is the native ibverbs API. Additionaly, the Neutrino

project offers various abstractions that bundle the components of the ibverbs API and

thus make them more accessible. While it shows very good results, it is based on

Java technologies, which are intended for internal use and should therefore not be used

within production applications. An alternative to this is a new development by Oracle

with the name of Project Panama[15], which is intended to significantly improve access

to native functions and native memory within the Java Development Kit (JDK). The

integration of RDMA hardware within the Java ecosystem is therefore based on this

new development from here on. In the beginning, Project Hermes continues using the

native ibverbs API, but accesses it using Project Panama. This approach turns out

to be disadvantageous in the further course of the work, as the maintenance of such a

complex API takes consumes a lot of time and leaves little room for active development.

As a result, the backend is replaced by a production-ready framework for controlling

high-speed network controllers - namely OpenUCX[16]. While the native ibverbs API

provides many configuration options for fine-tuning the respective transport method

used, the OpenUCX project simplifies the developer’s work in that it automatically

determines the optimal configuration parameters so that the hardware can be opti-

mally controlled. Building on this foundation, the Infinileap project (see 4.3) is started

with the aim of providing the abstraction layers of the OpenUCX framework directly

in Java and thus making RDMA programming accessible in a simple form. A major

advantage of this project is that the entire logic is implemented within the Java pro-

gramming language. Since the underlying OpenUCX library is available on a variety of

platforms, Infinileap can therefore also be used on those platforms to access InfiniBand

4

CHAPTER 1. INTRODUCTION

hardware without having to change or recompile the project’s code. Using a suitable

package manager, in the simplest case it is only necessary to specify a dependency on

the Infinileap project in order to access its functions or classes.

netty

Default NIO

Sockets

libvmaKernel

IP over
InfiniBand

Network Interface Card

TCP/IP Stack

hadroNIO

JUCX/
Infinileap

UCX

Java space

Native space

Application

Figure 1.1: Project Hermes Overview. (see 4.4)

Figure 1.1 shows the components and the big picture of Project Hermes. In this

context, the author focuses on the basic integration of RDMA hardware in Java within

the Infinileap project. He also familiarizes himself with the OpenUCX project, which

offers an abstraction layer for various high-performance network controllers. This is

used within Infinileap as a backend for controlling RDMA-capable hardware. The

developed solution offers an easy entry into RDMA programming using Java, while

the code is published on GitHub[17] in the form of an open source project with many

examples and comprehensive instructions.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

The Java Ecosystem and its Unsafe

Mechanisms

The foundation of the Java programming language is the Java Virtual Machine (JVM).

Since it operates like a virtual machine and provides a platform-independent instruction

set[18], it can be used to implement and compile programs that can be executed in a

platform-independent manner. In addition, the Java Development Kit (JDK) and the

abstractions and functionalities it contains provide an easy entry into programming[19].

This chapter takes a closer look at specific components of the Java ecosystem in order

to create a basis for the work that follows.

2.1 Garbage Collection

Java belongs to the group of memory-safe programming languages. Unlike program-

ming languages such as C++, it is not possible (without bypasses) to perform illegal

memory operations, which can cause the JVM to crash. This security is achieved by

transferring all memory allocations and operations from the responsibility of the pro-

grammer to the responsibility of the JVM. The memory areas allocated by the JVM

are also returned to the programmer not as pure pointers but as typed references to

objects. Therefore, a kind of abstraction layer is built to prevent the programmer from

accessing raw memory addresses and manipulating the underlying memory at will. To

prevent memory leaks, the reserved memory must be released again. This responsi-

bility also falls within the scope of the JVM and thus forms a relief for programmers,

since reserved memory does not have to be released manually, as is common in other

programming languages like C/C++. This is accomplished by the JVM maintaining

an overview of all the object references used at all times and comparing them with

the current state of the program at runtime. Within the JVM, this concept is called

Garbage Collection. From a general point of view, the JVM uses this concept to free

7

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

the underlying memory of objects to which references no longer exist, so that it can be

used for new objects. In detail, however, this approach requires complex mechanisms

as well as a good assessment of the runtime environment. An overview of the involved

steps is provided in the Java Garbage Collection Basics[20] and can be described as

follows.

Marking Phase – The JVM maintains a list of all allocated object references. Period-

ically, it is accessed and run through for garbage collection. While other programming

languages use the concept of reference counting (cycles cannot be detected) to automat-

ically free memory areas, Java’s garbage collection mechanism is based on reachability

analysis[21]. This means that for each object in the maintained list, the JVM periodi-

cally checks whether it can be reached by the currently executed program code in form

of references. This process starts at object references that the JVM considers guaran-

teed to exist – the so-called Gargabe Collector Roots (GC Roots). These references

include, for example, threads that are currently executing or classes that are currently

loaded. Starting from each GC Root, the Garbage Collector traverses the object graph

and checks whether the object currently under consideration can be found in it. If this

is not the case, there is no longer a reference to the object and consequently it can no

longer be accessed. Such objects are marked for release by the garbage collector within

the marking phase.

Deletion Phase – The list of all allocated objects is used here, too. One difference

now is that the previous phase marked all objects to be released using Reachability

Analysis. This information is now used and all objects or memory areas that have such

a mark are released. After releasing the marked areas, they can be used for new ob-

jects, provided that the created gap is sufficiently large. However, in order to efficiently

utilize the available memory and prevent fragmentation, the heap is additionally com-

pacted. This means that the free gaps created by releasing marked memory areas are

closed by moving the objects that are still in use together within the memory. After

the deletion phase is complete, the memory areas of all objects that are no longer ac-

cessible or to which no more references exist are released and can be used again.

Under normal use of the Java programming language, many small objects are created

on the heap, which are needed only for a short amount of time[22], [23]. A good ex-

ample of this is the class java.lang.String , which is used to store simple strings.

Every time a string is needed, whether to read configuration values or to parse a query,

an instance of this class must be created. Since operations involving strings can occur

very frequently, it is not uncommon to have millions of string instances on the heap

8

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

from time to time. If this occurs, the garbage collector must step in and ensure that

the used memory is released. However, simply traversing millions of objects allocated

on the heap would lead to considerable performance losses. Since pointers may also

need to be moved during a garbage collection cycle, the garbage collector can trigger

a so-called stop-the-world (STW).[24] This causes the application’s program code to

stop all threads. In the case of a web server, for example, this event results in requests

from clients not being answered for a short or longer amount of time, thus significantly

increasing latency.

To keep the times required for a garbage collection cycle as short as possible, the

JVM uses generational garbage collection.[25] This technique is based on an empirical

analysis by the JVM developers, which showed that object instances are predominantly

used only for a short period of time and can therefore be cleaned up relatively soon

after their creation.[20] Based on this knowledge the heap is divided into regions which

are called generations. Each of these generations stores object instances, depending on

their lifetime. In a simple configuration, the heap consists of a total of three generations,

the Young Generation, the Old Generation and the Permanent Generation. Each of

the mentioned generations is associated with the following characteristics.

• Young Generation – After allocating an object, it is first placed in this genera-

tion. If the memory consumption within the Young Generation exceeds a certain

threshold, a Minor Garbage Collection is triggered. This type of collection only

considers the address space of the Young Generation and thus only processes ob-

jects that do not yet have a long lifetime. In addition, within each minor garbage

collection, the number of times an object survived the collection within the young

generation is counted, i.e., it was still accessible by reference in the program code.

If the value of the counter for an object exceeds a configured threshold, the object

is moved to Old Generation.

• Old Generation – Objects that are stored within this generation have a longer

lifetime. This means that they can be assumed to be used in different places in

the program code over a longer period of time. Object instances within the Old

Generation are cleaned up again from the heap using a Major Garbage Collection.

However, this is executed much less frequently compared to the Minor Garbage

Collection of the Young Generation, since it has a comparatively much higher

runtime and can thus strongly influence the execution of the program. This is

due to the fact that with a major garbage collection the entire heap must be

traversed, including all allocated object instances.

9

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

• Permanent Generation – This area is used to store metadata, which usually

has a very long lifetime. These include, for example, method definitions that

are likely to be needed repeatedly in different parts of the program. Likewise,

information about classes is contained here, such as the defined fields or instance

variables. Objects of this generation are usually rarely cleaned up, which is why

it is only included in a Major Garbage Collection.

Using these sub areas reduces the number of object to analyze during gargabe collection.

A characteristic of the Young Generation area is, that it is additionally divided into

three sub-areas. These areas are on the one hand the so-called Eden Space, in which

all newly allocated objects are created, and on the other hand two Survivor Spaces S0

and S1, into which objects are moved that have survived a minor garbage collection in

Eden space.

EDEN

S0 S1
1 1

Figure 2.1: Surviving objects get moved into the S0 survivor space.

During the first Minor Garbage Collection, the objects that are still accessible by

the program code are first copied to Survivor Space S0. At the same time, they are

assigned a counter value here, which is incremented after each garbage collection, in

case of survival. Figure 2.1 shows the described mechanism. Two of the total 10

contained objects in Eden Space were found to remain active using a reachability

analysis. Conversely, 8 objects were found to no longer be reachable. Based on this

information, the two objects that can still be reached are copied into the Survivor

Space S0. Here they are simultaneously assigned a counter with the initial value 1,

which indicates that both have survived one garbage collecton cycle.

EDEN

S0 S1
2 1 1 1

Figure 2.2: The Garbage Collector switches Survivor Spaces.

As soon as the first run of the garbage collection is completed, the Garbage Collector

switches the Survivor Space. As can be seen in Figure 2.2, the objects of the next

10

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

garbage collection cycle that are still accessible are not moved to Survivor Space S0

but to S1, whereupon they are also assigned the initial counter value 1. Since a Minor

Garbage Collection includes the entire Young Generation, the Survivor Space S0 is

also processed. Here it is determined that the first object is no longer accessible and

must be removed accordingly. In the case of the second object, it is determined that

it can still be reached, whereupon the counter value is incremented. This sequence

of operations is repeated until the counter value of one or more objects of a Survivor

Space exceeds a configured threshold. After this, the object(s) will be moved to the

Old Generation, as it can be assumed that they are long-lived.

2.2 Java Unsafe API

Instances of objects are created using the new keyword in the Java programming

language. This has the consequence that the respective constructor (as well as con-

structors belonging to super classes) of the class to be instantiated is called. Depending

on the complexity, an object instantiation can therefore take different amounts of time

and, in the worst case, slow down the program’s execution[26]. In simple cases where

the application creates a small number of objects, this mechanism is desirable because

in the constructor the parameters used to initialize the object can be validated and

thus errors can be caught early. However, in other cases, such as processing a network

stream that provides a large number of values at short intervals, instantiation can have

extremely bad performance implications.

Example

An application processes a large amount of sensor data and stores it on a persistent

storage medium such as a hard disk for archiving. While collecting this data,

objects of a class describing the data are created. During each instantiation, the

constructor associated with the class is called, in which the passed data is validated.

Since these created objects have a very short lifetime - namely the time between

instantiation and persistence on the storage medium - the garbage collector must

become active very frequently at short intervals to clean up the objects that are no

longer needed and free up the associated memory. In the overall picture, due to the

pauses caused by the garbage collector, this leads to highly fluctuating latencies

during the processing of the data.

Many big data frameworks address this problem by using a JDK-internal programming

interface which allows to bypass some security precautions of the JVM. This program-

ming interface is called the Java Unsafe API.[27] It is located inside an internal package

11

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

called sun.misc which cannot be used directly in Java application. However, since

Java offers the possibility to access private fields of a class without the respective au-

thorization by means of the Reflection API[28], it is possible to use the Unsafe API as

follows.

UnsafeProvider.java Java

1 public class UnsafeProvider {
2

3 public static sun.misc.Unsafe get() {
4 try {
5 Field field = sun.misc.Unsafe.class.getDeclaredField(" theUnsafe ");
6 field.setAccessible(true);
7 return (sun.misc.Unsafe) field.get(null);
8 } catch (NoSuchFieldException | IllegalAccessException e) {
9 throw new RuntimeException(e);

10 }
11 }
12 }

Figure 2.3: Accessing the JDKs Unsafe API through the use of Reflection.

The code example in figure 2.3 shows how to access the Unsafe API using the Reflection

API. Within the example, the following operations are performed in the respective

associated lines.

5 The Unsafe class stores an instance of itself inside a private static field named

theUnsafe . This field is first retrieved using the Reflection API and stored

inside the field variable.

6 The instance method setAccessible of the class Field allows to override the

access rights of individual fields using the Reflection API. This is done at this

point to gain access to the theUnsafe field.

7 With the help of the instance method get of the class Field it is possible

to access the stored value or in case of an object the stored reference which is

held in the field. The parameter of the function defines from which instance the

respective field is to be extracted. In this case the field to be accessed is statically

defined, so no instance is needed and for this reason null can be passed as a

parameter.

In summary, calling the UnsafeProvider#get class method allows to get an instance

of the Unsafe class. This instance can then be used to call the instance methods of

the class and thus execute internal functionalities at the user level. The functions of

this internal API can be roughly divided into a few categories

12

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

2.2.1 Object Instantiation

Besides the usual way of creating objects using the new keyword with the associ-

ated constructor call, the Unsafe API provides a function that can instantiate ar-

bitrary classes without calling the respective constructor. This function is called

allocateInstance . Unlike normal object instantiation, it merely reserves the mem-

ory needed for the instance and then returns an object reference to that reserved area.

AllocationDemo.java Java

1 public class AllocationDemo {
2

3 public static void main(String[] args) {
4 var unsafe = UnsafeProvider.get();
5 var internalData = unsafe.allocateInstance(InternalData.class);
6 }
7 }

Figure 2.4: Allocating an instance using the Unsafe API.

Figure 2.4 shows an example instantiation of a class named InternalData using the

Unsafe API. The class InternalData does not need to have a public or accessible

constructor. So even if the only constructor of the class is declared with the private

keyword, an instance of the respective class can be created and used this way. This is

a great advantage especially when deserializing objects. For example, if a class triggers

a side effect within its constructor, it would occur every time the class is instantiated.

With a large number of objects, such behavior can lead to performance degradation.

To work around this, the object can first be allocated using the allocateInstance

function and the fields inside it can then be set manually without executing the con-

structor and its side effects. A deserialization of objects, which is realized in this way,

entails a very low overhead.

2.2.2 Synchronization

Another category of available functions is the synchronization of the executed code at

runtime. Here the Unsafe API offers functions for synchronization on a very low level.

Such functions are mainly known from programming languages such as C or C++, for

example.

First, it is possible to exclude individual threads from scheduling and include them

again. The Unsafe API functions used for this are park and unpark . They can be

used to precisely control the execution of concurrent tasks. One application, for exam-

ple, is the implementation of an custom scheduler if special requirements or mechanisms

need to be met. A thread which calls the park method is stopped immediately and

13

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

must then be restarted by another thread using its reference and the unpark method.

An exception is the call of the park method with parameters which express that the

thread should only be stopped for a certain amount of time. For this, the method

receives a boolean parameter indicating that stopping the thread is not absolute. In

addition, the second parameter of type long specifies for how many nanoseconds the

thread should be stopped. After the specified time has elapsed, the thread is automat-

ically woken up again and thus does not need to be brought back into operation using

the unpark method.

Another group of functions within the synchronization area is the so-called memory

fencing[29]. Under normal circumstances, the CPU uses many optimizations during

the execution of a program to achieve good performance. One of these optimizations

is memory reordering. Here the CPU can rearrange memory accesses - i.e. read and

write operations - in the execution sequence, so that operations which, according to

the code, should take place after other operations in terms of time, are executed before

them. For example, if the CPU determines that several pending read operations can be

combined without affecting the overall result of the remaining operations, it performs

this optimization step. Especially with contiguous memory areas, this type of opti-

mization can greatly increase performance, since the CPU cache can be utilized better.

However, there are also cases where the reordering of operations by the CPU is not

desired. This may be the case, for example, if synchronization mechanisms are to be

implemented which are based on the sequence of read and write operations performed.

For such cases, the Unsafe API offers various memory fences.

• loadFence

This function ensures that all read operations defined before its call are not

reordered with either read or write operations after its call.

• storeFence

This function ensures that all write operations defined before its call are not

reordered with either read or write operations after its call.

• fullFence

This function ensures that all read and write operations defined before its call

are not reordered with either read or write operations after its call.

Within the x86 architecture, the above functions map respectively to the LFENCE ,

SFENCE , and MFENCE instructions[30]. This fact already shows the low level at which

the operations are carried out.

14

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

Atomic memory accesses represent another group of functions within the Unsafe API’s

synchronization operations. Using the Java programming language, atomic opera-

tions are performed by means of already existing classes such as AtomicInteger ,

AtomicLong and AtomicRefernce . However, in some cases, access to atomic opera-

tions at a low level is needed. Here, the Unsafe API provides access to functions that

directly operate on the underlying memory while using the corresponding processor

instructions. The most commonly used of these operations is the Compare-And-Swap

(CAS) operation, which is implemented by the x86 processor instruction CMPXCHG .

CompareAndSwapDemo.java Java

1 public class CompareAndSwapDemo {
2

3 public static void main(String[] args) {
4 var unsafe = UnsafeProdiver.get();
5 var internalData = unsafe.compareAndSwapLong(
6 null,
7 0x4000,
8 0x42,
9 0x24

10);
11 }
12 }

Figure 2.5: Executing a Compare-And-Swap Operation using the Unsafe API.

Figure 2.5 shows an exemplary CAS operation which is executed on a value of type

long (64 bit). The parameter null in line 6 specifies that the operation is not to

be executed in the context of an object, but directly on the memory address specified

in line 7 . The semantics of a CAS operation dictate that a value at a given memory

address is compared to a given value and, if equal, replaced by another given value.

The value being compared with is passed in line 8 in the preceding example, while

the value being used for the replacement operation is defined in the following line 9 .

In summary, the operation compares the 64-bit value stored at the virtual memory

address 0x4000 with the numerical value 0x42 and exchanges it with the numerical

value 0x24 if it is equal. The use of this programming interface is particularly useful

when the allocation of objects such as the AtomicLong class must be avoided due to

performance requirements. In such cases a permanent memory area can be created, in

which all synchronization variables are stored. Consequently, this has the advantage

that the garbage collector does not have to manage any references.

2.2.3 Memory Manipulation and Management

All objects allocated using the new keywords are created within a memory area or

heap managed by the JVM. This memory area is the one that is constantly checked

and cleaned up by the garbage collector. As mentioned in 2.1, a garbage collector cycle

15

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

can lead to the shifting of memory addresses or pointers due to the compaction of the

heap. In some scenarios, this behavior is highly undesirable. If, for example, a memory

address is transferred to a hardware component which then accesses the transferred

pointer by means of Direct Memory Access (DMA)[31], the address must not change

between transfer and access. If this case does occur, the hardware component accesses

a memory area which no longer contains the expected data.

#1
0x040

#2
0x180

#3
0x2A0

#4
0x4B0

#2
0x040

#4
0x220

1

2

#2
0x040

#4
0x2203

STORE(0x4B0)

ACCESS(0x4B0)

Figure 2.6: A failing direct memory access after heap compaction.

Such a scenario is shown in Figure 2.6. In step 1 the program first transfers the

memory address of the object #4 to the hardware controller. It then stores the ad-

dress within its memory for later use. After this step, the garbage collector starts a

cycle and determines that the objects #1 and #3 can be cleaned up. This operation

is performed in step 2 , whereupon objects #2 and #4 are each given new mem-

ory addresses by compacting the heap and thus recopying the memory. In step 3

the hardware controller now tries to access the memory address 0x4B0 stored in its

memory using DMA. Since the expected data has already been copied, the controller

erroneously accesses data that no longer has any relation to the intended operation.

Such an error can initially remain undetected in the case of calculations, as the result-

ing end result can still appear plausible. In the case of network applications, however,

it would quickly become apparent, as network packets containing invalid values would

be sent.

This problem is addressed by the JDK providing the ByteBuffer class[32], which uses

the Unsafe API internally. With its help it is possible to allocate memory areas which

are located outside the managed heap area of the JVM. This unmanaged heap area is

called Off-Heap Memory within the Java ecosystem, and does not get compacted auto-

matically. From the point of view of the garbage collector, this memory area does not

exist, which is why it must be managed manually. For this purpose, the Unsafe API of-

16

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

fers the two methods allocateMemory and freeMemory , analogous to the functions

malloc and free known from C. The ByteBuffer class reserves a memory area

within the off-heap memory during the allocation of an object using the Unsafe API’s

methods. It also releases the reserved memory again as soon as the garbage collector

attempts to clean up the associated object. This way, it is possible to use memory

areas outside the managed heap and continue to rely on the safeguards of the JVM.

However, in cases where explicit management of memory is necessary, it is better to

use the Unsafe API directly. For example, if certain characteristics of the CPU, such

as the cache, are to be utilized for optimization purposes. Here, the memory can be

created and used in such a way that the CPU cache is optimally utilized by aligning

the allocated data. It may also be necessary to carry out read or write operations on a

specific memory address, which the ByteBuffer class does not permit. An example of

this is a memory address which is mapped into the JVM process via a memory mapping.

In addition to simple allocation and deallocation of off-heap memory, the Unsafe API

also provides methods for manipulating memory. These can either be used to read and

write fields of individual objects directly without any access control, or to manipulate

off-heap data.

PrivateValue.java Java

1 public class PrivateValue {
2 private long value;
3 }

UnsafeWriteDemo.java Java

1 public class UnsafeWriteDemo {
2

3 public static void main(String[] args) {
4 var unsafe = UnsafeProdiver.get();
5 var value = unsafe.allocateInstance(PrivateValue.class);
6 unsafe.putLong(value, 0x0, 0x42);
7 }
8 }

Figure 2.7: Direct write access to an object’s private field using the Unsafe API.

The example in Figure 2.7 shows how a field that should not be accessible under nor-

mal circumstances can be manipulated using the Unsafe API. This is accomplished

by using the putLong method of the Unsafe API within the UnsafeWriteDemo class

in line 6 . The first parameter specifies the object on which the write operation is

to be carried out. In this case, it is the previously allocated object value of type

PrivateValue . The second parameter specifies the offset at which the operation is to

be executed within the object. This is the offset in bytes from the start of the reserved

memory area of the object’s fields. As the associated class only has one field, the offset

17

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

here is 0x0 . The third parameter specifies which value is to be written at the corre-

sponding position in the memory. Here it is the value 0x42 . After the operation has

been executed, the value field contains the value 0x42 , although external access to

this field has been restricted or prohibited using the private keyword. This example

shows one of the most powerful operations of the Unsafe API, namely the manipulation

of arbitrary objects and memory areas without any security controls.

Since these operations skip almost all safety checks and map directly to the respec-

tive underlying processor instructions, they can be of great advantage in performance-

critical applications. For example, the deserialization and serialization of data for send-

ing within a network application or for storage on a persistent storage medium can be

greatly accelerated in this way, as objects can be copied directly out of the memory

using the Unsafe API for the purpose of serialization by means of read operations and

copied back in again by means of write operations (see 2.3)

18

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

2.3 High-Performance Object Serialization based on

Ahead-of-Time Schema Generation

Filip Krakowski, Fabian Ruhland and Michael Schöttner. High-Performance Object

Serialization based on Ahead-of-Time Schema Generation. In 2023 IEEE 22nd Inter-

national Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom), TrustCom 2023, Exeter, United Kingdom, November 01-03, 2023.

Contributions:

The mechanisms presented in this paper were initially started in the context of the

DXRAM project[33]. The idea was to replace the serialization mechanism within the

application in order to achieve data transmission with even lower latency. The au-

thor implemented the Skema project for this purpose, which can serialize data located

in the heap or off-heap to any location in the main memory using the Java Unsafe API.

As part of the implementation, the author compared different frameworks (Kryo and

FST), which pursue similar goals but solve them in a different way. Based on this, the

author first developed a recursive mechanism that can run through the fields of any

class in a deterministic order. This mechanism is one of the main contributions of this

work. The author then adapted the developed mechanism so that it could be stopped

and resumed at any byte boundary. For this purpose, the author first designed a way

to save the recursively traversed path during serialization. The implementation was

then also carried out by the author in the form of a stack, which stores the indices of

the traversed fields and thus enables the path to be traced. This solution finally led

to the next main contribution of this work, which is partial serialization and was also

implemented by the main author.

Finally, to evaluate the performance of the solution, the author implemented a series of

benchmarks using the Java Microbenchmark Harness framework and visualized these

in a suitable form using the Pandas library in Python.

While the author wrote the textual part of this work, Michael Schöttner and Fabian

Ruhland contributed valuable input in the form of many discussions regarding the

implementation and results of the developed benchmarks.

Status: published

19

High-Performance Object Serialization based on

Ahead-of-Time Schema Generation

Filip Krakowski

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

filip.krakowski@hhu.de

Fabian Ruhland

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

fabian.ruhland@hhu.de

Michael Schöttner

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—Many of today’s Big Data systems are developed
in the Java programming language and require fast object
serialization and deserialization for efficient and high-speed
message exchange. We address this by introducing Skema, a
library providing high-performance serialization of Java objects.
Skema works based on Ahead-of-Time schema generation, so
that only a minimal number of operations need to be performed
at runtime to serialize an object. This approach allows Skema
to also serialize individual objects only partially which is a great
advantage for network communications with fixed buffer sizes.
Furthermore, targeted optimizations, such as caching the size of
the serialized form of objects that have a fixed size so that they
do not have to be recomputed for each operation, are presented.
In addition to a more in-depth explanation of the implemented
procedures, this paper also presents benchmark results compar-
ing the Skema library against Kryo, FST and the native Java
serialization function. The results of these experiments achieve
very good values in comparison with the remaining libraries.
For example, one experiment shows that there can be nearly
a hundredfold increase in the speed of deserializing objects
when compared to the native Java serialization mechanism by
using Skema. We also show that deserializing objects using the
native Java mechanism requires a large amount of additional
memory per operation, which puts a burden on the garbage
collector afterwards. Finally, to investigate the scalability of
the implemented solution, the benchmarks are also performed
using different numbers of threads and the results are presented
graphically.

Index Terms—Java, Serialization, Native, High-Performance

I. INTRODUCTION

The serialization of objects represents one of the most

fundamental mechanisms in the software engineering envi-

ronment. In addition to the many possibilities for its use,

it makes it much easier for developers to save as well as

load complex data or even application state from persistent

storage devices. Likewise, it allows language-specific objects

to be sent between processes in a distributed system over the

network without much effort and thus enables, for example,

the continuation of a calculation with its associated state in

another environment[1], [2]. In this area, new solutions are also

constantly being developed, such as zero-copy serialization,

in which no copies of the data to be serialized are created

[3], [4]. With the introduction of persistent random access

memory modules (NVDIMM), it is now even possible to

continue or resume a process terminated by an error without

having to recompute the state that existed at the time of the

error [5], [6]. In such a case, the programmer must of course

still check whether the persisted state still has its validity

and has not been corrupted, otherwise the application would

operate using incorrect data. Another important application

area is the scaling of distributed applications. Here, individual

instances can be quickly booted up and shut down by keeping

the application state constantly in persistent memory [7], [8].

Pausing and resuming the application is thus possible and fast

at any time. A high degree of serialization also exists within

Java-based big data systems, which must first serialize the data

to be processed and then distribute it to additional instances of

the system for the actual computation. Since the distribution

of data is a core task in such systems, it must be carried out

quickly. Serialization is therefore a function that should be

optimized as much as possible.

Serialization in the context of Java can be distinguished

between two types. On the one hand, there are libraries where

the user must first create definitions for the data to be serialized

in the form of schemas, i.e. write them manually. Well-

known examples of this are Google’s Protobuf [9] as well

as Flatbuffers [10] libraries and the Cap’n’Proto library [11].

The second option is to use Java’s reflection mechanism, which

allows objects to be inspected for their structure at runtime, but

produces a non-negligible overhead in terms of performance

[12].In addition to these two types of serialization, there are

also works based on modifying the Java Virtual Machine

(JVM) so that it can directly access the memory managed

by the JVM and then exchange it between instances of

a distributed system using Remote Direct Memory Access

(RDMA) without having to process the data first [13], [14].

Since these solutions require a modified version of the JVM,

they will not be discussed in detail in the remainder of this

paper. The solution presented in this paper focuses on com-

bining the mentioned methods by generating schemas ahead-

of-time once at program startup using Java Reflection and

then reusing them. The resulting contributions of this paper

are a recursive method for generating schemas of arbitrary

Java classes, the possibility to serialize and deserialize object

instances only partially, a method for detecting classes with

static size to avoid recalculating the object’s size, and an easy-

to-use interface for integration into existing software systems.

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

20

II. JAVA OBJECT SERIALIZATION

Since serialization of data is a very frequently used opera-

tion within the Java environment, the development kit natively

supports the ability to convert objects into byte streams. The

required classes and interfaces are available in the standard

java.io package. A core feature of the provided serializa-

tion functionality is that it can be used independently of the

deployed Java Virtual Machine. This means that an object can

be serialized on an Oracle HotSpot JVM, for example, then

sent over the network and finally deserialized on an Eclipse

OpenJ9 JVM so that both instances are identical from the

JVM’s point of view.

Any class that will later be used in the context of Java’s

built-in serialization feature must implement the marker inter-

face java.io.Serializable (an empty interface with

no methods or fields). The presence of this interface tells

the JVM that the implementing class is eligible for seri-

alization. Another mechanism, which enables a more fine-

grained control of the byte representation of the objects to

be serialized, is the java.io.Externalizable interface.

Classes implementing this interface must define the two meth-

ods readExternal() as well as writeExternal(),

in which the data stored within the instance must be

manually transformed into a byte representation. It should

be noted that - using Java’s automatic serialization fea-

ture via the Serializable marker interface - only

fields are serialized which are not defined with either the

transient or the static keyword. To transform instances

of the class to be serialized into byte streams, the class

java.io.ObjectOutputStream is used. On an instance

of this class, an object that needs to be serialized can be passed

to the writeObject() method to write it to the underlying

data stream. The target of this write operation can be chosen

freely, which makes it possible to write to persistent storage,

such as solid-state drives, or directly to existing network

streams, such as Java sockets. With the introduction of lambda

functions in Java 8, it is also possible to serialize functions

in addition to simple objects, for example, to execute them

on remote computers. This type of serialization is primarily

found in distributed compute platforms, where functions are

distributed to worker instances and then executed on them.

Another building block in which the native Java serialisation

mechanism is anchored is Java’s Remote Method Invocation

(RMI). Here, functions are exported to external consumers

by means of interfaces that inherit from a parent interface

java.rmi.Remote, so that they can access them via a

network. Building on this function, it is possible to develop

larger distributed systems that communicate using RMI and

encode and decode the actual data using Java’s serialisation

function.

While the JDK’s natively supported serialization features

bring many advantages, one characteristic stands out as a

significant negative: performance and storage overhead. Java’s

built-in serialisation mechanism extracts the values of an

object’s fields using reflection, which is known to be much

slower than ordinary field access. Major factors that come into

play here are the validation of access operations by means

of reflection. For example, for each field access, it must first

be checked whether the field to be accessed also belongs

to the provided instance of an object or its class. It must

also be checked whether the caller has the necessary rights

to access the respective field or not. An example of this are

package-private fields, which are to be accessed from outside

the declaring package via reflection. In such a case, an error

must be thrown at runtime, as access would not be possible

under normal circumstances and an error would be thrown at

compile time.

III. FRAMEWORK DESIGN

This chapter presents the fundamental mechanisms of the

Skema framework as well as some optimizations to speed up

the time it takes to perform a serialization operation.

A. Class layout

Within the Java programming language, data structures are

modeled in a object-oriented fashion using classes. In a general

sense, classes can be regarded as providing a blueprint for the

creation of the actual objects or instances of the respective

class. For this purpose, each class defines the fields it contains,

such as primitive data types (int, long, float, ...). Besides

these simple field types, complex data types can also be used.

These include references to further instances of classes (i.e.

objects) or arrays of elements.

Tree.java Java

1 public class Tree {

2 private final Node root;

3

4 ...

5 }

Node.java Java

1 public class Node {

2 private final int value;

3 private final List<Node> children;

4

5 ...

6 }

Fig. 1. A simple tree data structure storing integer values defined using two
Java classes.

Using these properties, complex data types, such as the

tree structure shown in Figure 1, can be modeled. Besides

the fields of a class, functions can also be defined, which are

executed in the context of the created instance. However, since

the functions belonging to a class are stored statically and are

internally passed an instance as a parameter to operate on the

respective object, the individual functions are not serialized

due to their existence. If an entire class, which was previously

unknown, is to be loaded, the .class file would have to be

sent to the target, which would then have to load the received

class definition via its class loader. Since these are mechanisms

outside the context of serialization, they are not discussed in

detail further.

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

21

In general, the statement can be made that every data

structure defined in Java must work with primitive data types

at its deepest level, since all complex data types consist of just

those. The resulting conclusion is that the data to be serialized

are exclusively primitive data types, that is 1-, 2-, 4- or 8-byte

values or contiguous memory regions (arrays) consisting of

them. Furthermore, any field that has a primitive data type

forms a direct reference into the computer’s random access

memory. In the example from Figure 1, the value field of

the Node class would thus point directly to an address in the

program’s virtual address space, and any write access to this

field would manipulate the underlying memory. Knowing that

instances of a Java class are merely a structured collection of

primitive data types in the program’s virtual address space,

a serialization mechanism can be developed that efficiently

exploits these properties. To do this, it is first necessary to

determine how the fields of a class are arranged in memory.

The Java Development Kit provides the Unsafe API [15]

with its jdk.internal.misc.Unsafe class for these

purposes, which, as the package name suggests, is used for

internal purposes. Even though it is not well regarded to use

this class, it is very widely used in many projects and offers

many advantages in terms of performance, such as:

• Object instantiation

Using the allocateInstance method, it is possible

to instantiate a class without calling its constructor first.

During deserialization, it is assumed that the data or

fields read are correct and represent an exact copy of a

previously instantiated class for which the constructor

was called. Here it is therefore not necessary to call the

constructor again, which in turn saves many CPU cycles.

• Manual memory management

Using the allocateMemory and freeMemory

methods, it is possible to manage memory manually

similar to malloc and free in the C programming

language. Since these memory areas are outside the

garbage collector’s management area, the garbage

collector does not have to check accessibility and is thus

relieved at the expense of increased programming effort.

• Class introspection

The Unsafe class offers with its

objectFieldOffset method the possibility to

determine the memory offset of a field within a class.

In addition, the class defines several getter and setter

functions which can be used to read and write primitive

data types at freely chosen memory offsets within an

instance of a class. These two functionalities together

allow to manipulate any fields of an object regardless of

the access rights.

The Skema framework takes advantage of these and several

other features to generate a schema for each class that is to

participate in the serialization process.

B. Automatic schema generation

Within the framework, a class schema describes how and at

which memory address the contained fields must be read or

written. Since this information is not provided in ready-made

form by the JDK, it must first be generated using suitable

methods. Consequently, before an instance of a class can

be serialized, the corresponding schema must be generated.

The only way to find out which fields are defined within

a class at runtime is to use Java’s Reflection functionality.

For example, it is possible to retrieve the fields of a class

using the getDeclaredFields method defined on the

Class class. The information obtained in this way includes,

among other things, the names of the fields and their type,

which can be a primitive or complex data type. Using the

objectFieldOffset function mentioned in chapter III-A,

all memory offsets belonging to the queried fields can then be

obtained.

SensorReading.java Java

1 public class SensorReading {

2 private final long timestamp;

3 private final double value;

4

5 ...

6 }

Fig. 2. A simple data structure describing a sensor reading.

Looking at the preceding example in Figure 2, it is program-

matically possible to determine that the SensorReading

class has the two fields timestamp of the primitive data

type long and value of the primitive data type double

by means of reflection at runtime of the program. With

this information and the mentioned objectFieldOffset

function it is then possible to determine at which memory

offsets these two fields are located within the object. This

process, i.e. the extraction of the information belonging to all

fields, is performed recursively until the entire class graph has

been traversed and thus all fields are covered. The information

collected in this way is finally bundled and stored in a schema,

which is accessed during serialization.

timestamp
SensorReading

value
type:

offset:

size:

long

8

0

type:

offset:

size:

double

8

8

Fig. 3. An exemplary abstract schema of the SensorReading class.

The diagram shown in Figure 3 describes the structure of

the SensorReading class by means of field types or field sizes

and the associated memory offsets within the instance of the

class. Using this information and the provided functions of

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

22

the Unsafe class to manipulate fields without respecting access

rights by specifying memory offsets, it is finally possible to

create a Java object by means of write operations directly in

memory without making object-oriented access to the fields.

Likewise, it is possible to extract or serialize an exact replica

of a Java object from the main memory and then restore or

deserialize it from the data generated in this way. An important

point to note here is that unlike the usual Java serialization

mechanism, the functions belonging to Reflection are only

called once - just to create the schema of a class - and thus

do not cause any performance overhead during runtime. This

is possible because the schema describing a class contains all

the information that the functions of the Unsafe class need

to read data from instances of the class or write data to the

individual fields.

C. Optimizations

In order to keep the performance stable and predictable dur-

ing runtime, some optimizations are used to make efficient use

of the available information. The Java programming language

allows elements to be stored within arrays, so that individual

elements are accessed by reference to the array and an index

or offset. The length of these array instances can be freely

chosen at runtime, so that an array can take up any amount

of space in the system’s main memory. In order to be able

to determine whether the memory provided is sufficient to

hold the serialized form of the object to be serialized during

the serialization process, its size must first be determined.

The same applies in the case where the programmer does

not provide a memory buffer, but lets the framework allocate

the memory into which the object is to be serialized. The

determination of the size of an object turns out to be non-

trivial, because a class, which contains at least one array, can

form many different instances with different sizes. While the

first instance of a class contains an array of length 5, another

instance can contain an array of length 3, which makes the

two instances different in size. Thus, in cases where fields

of dynamic size (i.e., arrays) are used, the framework must

first determine the size of these fields for each serialization

operation.

The situation is different for fields with primitive data

types. Here the sizes in bytes are fixed, which is why an

optimization of the size calculation of an object is possible in

the following way.

1) Start by generating a schema for a given class.

2) For each visited field, examine whether it has a fixed

size and add this size to a counter associated with the

schema object.

3) If all fields of a class have a fixed size, the entire class

is considered to be of fixed size.

With the help of the size information determined in this way,

the calculation of the size for all fields with a fixed size can

be skipped later during serialization and the sizes determined

in advance can be used. The size of the serialized form of an

object is thus determined by the sum of the stored counter of

the schema object and all length fields of the arrays contained

(directly or transitive) in the object.

In addition to the optimization regarding the size calculation

of an object, the serialization functions are implemented in

an entirely stateless manner except in the case of partial

serialization as referenced in the following Chapter III-D. This

means that the provided functions can be used from any thread

without having to pay attention to thread safety. Likewise, no

new objects are created during serialization, so consequently

there is no activity in the garbage collector and the program

can execute without interruption.

D. Partial Serialization

A unique feature of the Skema serialization library is the

possibility to serialize objects only partially. In detail, this

means that serialization can be interrupted at any point and

resumed at a later time without having to serialize data that

has already been written again. This allows, for example,

writing to a bounded network stream buffer before enough

memory is available to send the object to be serialized in its

entirety. Furthermore, serialization can be stopped not only

at field boundaries, but also within fields at any byte. This

ensures that the available memory can be used as efficiently as

possible. However, it is important to note that the objects to be

serialized should not be changed during the pauses, otherwise

inconsistent states may occur in the system.

#1 #2 #3 #4 #5

#1 #2 #3 #1 #2

#1 #2 #3 #4

Object A

Object B Object C

Object D

reference field object position written

Fig. 4. Skema’s partial serialization feature.

For partial serialization, a stateful object representing the

current serialization operation is required in addition. This

object contains information about the progress of the opera-

tion, so that when the serialization function is called again,

it can start at the position where it was last stopped. The

most important information contained herein is the number

of processed bytes, as well as the path within the object

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

23

graph to the field at which serialization was last stopped.

The first information is needed to resume the operation with

byte precision, while the second information is used to get

to the corresponding field in the object graph. The mentioned

path is stored in form of a stack of indices and is traversed

when serialization is resumed. Each stored index represents the

position of a field within a class. Once the last index has been

removed from the stack and the target field has been reached,

the serialization operation continues until it again determines

that there is not enough memory in the target buffer, or all

data has been successfully written.

An exemplary structure of an object graph and the corre-

sponding partial serialization operation can be seen in Figure

4. Here, a total of four objects (Object A through Object D)

are serialized with their associated fields. A field can be a

reference - i.e. it can refer to another object - or it can store

a value and thus not be a reference. If a reference is detected

during serialization, it is automatically followed and the index

of the corresponding field is stored on a stack. Likewise, the

value is taken from the stack as soon as the object being

referenced has been fully serialized. As soon as the end of the

memory to be written to is reached, the operation is simply

aborted and the metadata collected up to that point - that is,

the path in the object graph in the form of a stack and the

current write position within the last accessed field - is saved.

On resumption of the serialization operation, the framework

can use the saved stack (in our example [3,1,3]) to get to

the current field directly and process it further using the saved

write position.

IV. EVALUATION

In this chapter, the functions and features of the Skema

framework are compared and evaluated against other seri-

alization libraries[16], [17]. The following benchmarks are

executed on a machine consisting of the hardware shown in

Figure 5 and using the software specified in Figure 6.

CPU 1x Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

(22 MB Cache)

RAM 4x Micron Technology 36ASF2G72PZ-2G6E1

16GB

Fig. 5. System specifications of the hardware used in all experiments.

OS CentOS Linux release 8.1.1911 (Core)

JDK Eclipse Temurin™ JDK 20.0.1+9

FST Maven: de.ruedigermoeller:fst:3.0.1

Kryo Maven: com.esotericsoftware:kryo:5.5.0

Fig. 6. Operating system and software versions used in all experiments.

The benchmarks are written and executed using the Java

Microbenchmark Harness (JMH) [18] and can therefore be

easily reproduced.

A. Operation Throughput

In the first experiment, the throughput, i.e. the number

of serialization as well as deserialization operations per

second, is measured. For this purpose, a Java object is

created with randomly filled fields based on a specified

seed. This object contains one field for each primitive data

type and additionally one field for each primitive array

type. All stateful objects of the respective frameworks are

additionally cached (where possible) so that the garbage

collector is not burdened by additionally instantiated objects.

This also allows a better comparison of the results, since

the respective benchmarks can be run under the same

conditions. The operations to be executed are distinguished

between serialization and deserialization as well as on-

heap memory and off-heap memory. In case of the Kryo

library, the classes UnsafeInput / UnsafeOutput

(on-heap) as well as UnsafeByteBufferInput /

UnsafeByteBufferOutput (off-heap) are used, since

these also use Java’s Unsafe API and thus ensure a better

comparability in regard to Skema. Additionally, all off-heap

memory areas are allocated page-aligned to better utilize

caches and create a more equal baseline for all benchmarks.

Fig. 7. Average operation throughput for serialization and deserialization in
million operations per second.

Figure 7 illustrates the collected results of the throughput

benchmark. Each measurement represents an average value,

which is formed from five runs of five seconds each, in

which operations are performed continuously. One observa-

tion that immediately stands out is the virtually non-existent

throughput of the native Java deserialization function when

using on-heap as well as off-heap memory. This contrasts

with the serialization function, which is several times faster

in both cases. This observation cannot be made with the

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

24

other libraries, since the performance of the serialization and

deserialization operations is always close to each other in

these cases. Another noticeable detail is the large difference

in the use of on-heap versus off-heap memory within the

Kryo library. Here, the use of on-heap memory, that is,

the use of Unsafe{Input|Output} classes instead of

UnsafeByteBuffer{Input|Output}, leads to a dou-

bling of performance. With the FST Library, on the other hand,

no major noticeable differences can be found, since the results

here are very similar in the case of on-heap as well as off-heap

memory. The Skema library performs very well in terms of

performance, offering, for example, slightly more than twice

the throughput of Kryo in the case of on-heap memory and

slightly more than five times the throughput in the case of

off-heap memory.

Serialize Deserialize

Library on-heap off-heap on-heap off-heap

FST 4.55 4.38 24.21 26.16

Kryo 5.42 2.23 34.22 15.64

Skema 13.84 14.68 89.90 96.99

Fig. 8. Comparison of average operation throughput against Java’s native
serialization mechanism as a baseline.

Figure 8 breaks down the speedups of each library with

respect to Java’s native serialization feature. Each value rep-

resents the factor by which the performance, i.e. the average

number of operations per second, increases in comparison. It

immediately becomes clear that the use of third-party libraries

is strongly advised in case of many deserialization operations

within a performance-critical application. While a speedup

by a factor of 14.68 is possible when serializing objects

using Skema and off-heap memory, almost 100 times as many

(96.99) objects can be deserialized within the same time

when deserializing compared to Java’s native deserialization

function.

B. Allocation Rate

During serialization and deserialization, internal functions

are called within the respective libraries, which can gen-

erate additional temporary data structures. Since these data

structures or objects are only required for a short time, the

garbage collector must release the memory associated with

them again afterwards. Since memory allocations generally

have a comparatively high overhead, it is essential to keep

memory allocations at a low level in order not to stress

the garbage collector and thus avoid pauses during program

execution.

The JMH framework supports the ability to add various

profilers during the execution of benchmarks. One of these

profilers is the gc profiler, which is able to determine the

number of bytes allocated per operation or benchmark method

invocation. Figure 9 shows the values determined in this way

for all libraries examined, distinguishing between serialization

Fig. 9. Average allocation rate for serialization and deserialization in bytes
per operation.

and deserialization operations as well as off-heap and on-heap

memory.

A noticeable characteristic is the comparatively much higher

number of allocated bytes when using the native Java dese-

rialization function, as well as the strong fluctuations of the

measured values contained therein. The values determined here

may provide an explanation for the poor native deserialization

performance observed in Figure 7. On the one hand, the

high overhead associated with the allocations can lead to a

slowdown during the deserialization operation and, on the

other hand, the garbage collector must release the memory

occupied during this process once the objects associated with

it are no longer accessible. During this release process, there

can also be a pause in the execution of the program code,

which reduces performance accordingly. In the case of native

Java deserialization, the large deviations within the number

of bytes allocated per operation can only be explained by the

fact that certain data structures are cached and only reallocated

when necessary.

As can be seen from the measurements, the other libraries

allocate relatively little memory during the deserialization

process and also have almost no fluctuations. This is explained

by the fact that they do not need any or almost no helper

structures and only allocate memory for the fields belonging to

the deserializing object. In the case of serializing objects, not

a single byte of memory is allocated, so the garbage collector

is not required to do any work here. This is possible because

the object to be serialized is already allocated and therefore

only the contained fields have to be read and then written into

a pre-allocated buffer. Unfortunately, this does not apply in

the case of native Java serialization, where an average of 50

bytes of memory are allocated per operation.

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

25

Deserialize

Library on-heap off-heap

FST 0.09 0.09

Kryo 0.11 0.11

Skema 0.08 0.08

Fig. 10. Comparison of average allocation rate against Java’s native deseri-
alization mechanism as a baseline.

As can be seen in Figure 10, the three libraries FST, Kryo

and Skema require only a fraction of memory per deserializa-

tion operation compared to Java’s native mechanism. Skema

performs best with a factor of 0.08 and thus provides the

lowest memory overhead. Since the number of bytes allocated

per serialization operation is zero for all three libraries, they

are not listed within 10.

C. Scalability

The Skema library is implemented stateless for ordinary

serialization as well as deserialization operations and also

does not allocate any additional memory during serializa-

tion. Because of these two properties, no shared structures

are accessed during the execution of the operations and no

synchronization, which would lead to a degradation of the

performance, has to take place. Since the threads can work

completely independently in such an environment, parallelism

is optimal from an application point of view.

Fig. 11. Skema’s average operation throughput for serialization and deseri-
alization in million operations per second and different thread counts.

Figure 11 shows the average number of operations per

second using different numbers of threads within the same

environment that is used in chapter IV-A. The benchmarks

were run in such a way that each thread gets its own buffers

and objects. This is necessary to ensure that each thread

truly operates independently of the remaining threads. From

the measurements, it is easy to conclude that the addition

of threads leads to a strong increase in overall performance.

While one thread can serialize about 5 million objects per

second, this value increases to about 35 million objects per

second when 8 threads are used, which corresponds to an

increase of about 700%.

Serialize Deserialize

Threads on-heap off-heap on-heap off-heap

1 1.00 1.00 1.00 1.00

2 1.87 1.72 1.88 1.78

4 3.55 3.50 3.53 3.25

8 7.14 6.67 7.40 6.61

Fig. 12. Comparison of Skema’s average operation throughput for serializa-
tion and deserialization in million operations per second and different thread
counts using 1 thread as a baseline.

Figure 12 shows the speedups achieved by the increase of

the number of threads during the execution of the operations.

A single thread represents the baseline with a factor of

1.00. The Skema library provides the greatest speedup during

deserialization of on-heap data, that is, from a byte array. Here

the speedup is 7.40, which means that the use of 8 threads

compared to the use of only a single thread leads to an increase

of the number of deserialized objects per second by a factor

of 7.40.

V. CONCLUSION & FUTURE WORK

In summary, the implemented solution for serialization of

Java objects based on ahead-of-time schema generation has a

very good performance and in certain cases offers a consider-

able advantage over native Java serialization functions. Unlike

other libraries, it requires no configuration and allows the user

to serialize an object with just one line of code. Additionally,

the experiments conducted show that multicore systems can be

efficiently utilized, as the introduction of additional threads

results in a large increase in performance. Based on this

work, we plan to integrate and evaluate the developed library

in various big data frameworks, such as Apache Spark[19].

Another aspect we would like to investigate is the evaluation

of NVRAM-based Java systems that manage their state in

the form of an object and store it in persistent memory by

means of checkpointing. Here we plan to use our implemented

solution for transparent backup as well as recovery of state

data and based on the results achieved in this work we expect

a good final result.

ACKNOWLEDGEMENTS

Computational infrastructure and support were provided by

the Centre for Information and Media Technology at Heinrich

Heine University Düsseldorf.

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

26

REFERENCES

[1] W. McKinney. “Introducing apache arrow flight: A

framework for fast data transport.” (2019), [Online].

Available: https://arrow.apache.org/blog/2019/10/13/

introducing-arrow-flight (visited on 05/29/2023).

[2] Y. Wang, C. Xu, X. Li, and W. Yu, “Jvm-bypass for

efficient hadoop shuffling,” (May 20–24, 2013), Cam-

bridge, MA, USA: IEEE, May 20–24, 2013, pp. 569–

578, ISBN: 978-0-7695-4971-2. DOI: 10.1109/IPDPS.

2013.13.

[3] D. Raghavan, P. Levis, M. Zaharia, and I. Zhang,

“Breakfast of champions: Towards zero-copy serial-

ization with nic scatter-gather,” in Proceedings of the

Workshop on Hot Topics in Operating Systems, ser. Ho-

tOS ’21, Ann Arbor, Michigan: Association for Com-

puting Machinery, Jun. 3, 2021, pp. 199–205, ISBN:

9781450384384. DOI: 10 . 1145 / 3458336 . 3465287.

[Online]. Available: https://doi.org/10.1145/3458336.

3465287.

[4] A. Wolnikowski, S. Ibanez, J. Stone, C. Kim, R.

Manohar, and R. Soulé, “Zerializer: Towards zero-copy

serialization,” in Proceedings of the Workshop on Hot

Topics in Operating Systems, ser. HotOS ’21, Ann Ar-

bor, Michigan: Association for Computing Machinery,

Jun. 3, 2021, pp. 206–212, ISBN: 9781450384384. DOI:

10.1145/3458336.3465283. [Online]. Available: https:

//doi.org/10.1145/3458336.3465283.

[5] F. A. Aouda, K. Marquet, and G. Salagnac, “Incre-

mental checkpointing of program state to NVRAM for

transiently-powered systems,” in 9th International Sym-

posium on Reconfigurable and Communication-Centric

Systems-on-Chip, ReCoSoC 2014, Montpellier, France,

May 26-28, 2014, IEEE, 2014, pp. 1–4. DOI: 10.1109/

ReCoSoC.2014.6861359.

[6] W. Zhang, S. Shenker, and I. Zhang, “Persistent state

machines for recoverable in-memory storage systems

with nvram,” in 14th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2020, Vir-

tual Event, November 4-6, 2020, USENIX Association,

2020, pp. 1029–1046. [Online]. Available: https://www.

usenix.org/conference/osdi20/presentation/zhang-wen.

[7] V. A. Sartakov and R. Kapitza, “Nv-hypervisor:

Hypervisor-based persistence for virtual machines,” At-

lanta, GA, USA: IEEE, 2014, pp. 654–659, ISBN: 978-

1-4799-2233-8. DOI: 10.1109/DSN.2014.64.

[8] S. Jaffer, M. Chitnis, and A. Usgaonkar, “Providing

high availability in cloud storage by decreasing virtual

machine reboot time,” in 10th Workshop on Hot Topics

in System Dependability, HotDep ’14, Broomfield, CO,

USA, October 5, 2014, F. Junqueira and K. Marzullo,

Eds., USENIX Association, 2014. [Online]. Available:

https : / / www . usenix . org / conference / hotdep14 /

workshop-program/presentation/jaffer.

[9] Google, Protocol Buffers - Google’s data interchange

format. [Online]. Available: https : / / github . com /

protocolbuffers/protobuf (visited on 05/30/2023).

[10] Google, Flatbuffers. [Online]. Available: https://github.

com/google/flatbuffers (visited on 05/31/2023).

[11] K. Varda, Cap’n Proto serialization/RPC system. [On-

line]. Available: https://github.com/capnproto/capnproto

(visited on 05/31/2023).

[12] Y. Li, T. Tan, and J. Xue, “Understanding and analyzing

java reflection,” ACM Trans. Softw. Eng. Methodol.,

vol. 28, no. 2, 7:1–7:50, 2019. DOI: 10.1145/3295739.

[13] K. Nguyen, L. Fang, C. Navasca, G. Xu, B. Demsky,

and S. Lu, “Skyway: Connecting managed heaps in

distributed big data systems,” in Proceedings of the

Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating

Systems, ser. ASPLOS ’18, Williamsburg, VA, USA:

Association for Computing Machinery, Mar. 19, 2018,

pp. 56–69, ISBN: 9781450349116. DOI: 10 . 1145 /

3173162.3173200. [Online]. Available: https://doi.org/

10.1145/3173162.3173200.

[14] K. Taranov, R. Bruno, G. Alonso, and T. Hoefler, “Naos:

Serialization-free RDMA networking in java,” in 2021

USENIX Annual Technical Conference, USENIX ATC

2021, July 14-16, 2021, I. Calciu and G. Kuenning,

Eds., USENIX Association, 2021, pp. 1–14. [Online].

Available: https : / /www.usenix.org/conference/atc21/

presentation/taranov.

[15] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza,

M. Hauswirth, and N. Nystrom, “Use at your own

risk: The java unsafe API in the wild,” in Proceedings

of the 2015 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages,

and Applications, OOPSLA 2015, part of SPLASH

2015, Pittsburgh, PA, USA, October 25-30, 2015, J.

Aldrich and P. Eugster, Eds., ACM, 2015, pp. 695–710.

DOI: 10.1145/2814270.2814313.

[16] Esoteric Software, Kryo Github Repository. [Online].

Available: https : / / github. com / EsotericSoftware / kryo

(visited on 06/07/2023).

[17] R. Moeller, FST Github Repository. [Online]. Available:

https: / /github.com/RuedigerMoeller /fast- serialization

(visited on 06/07/2023).

[18] Oracle, Java Microbenchmark Harness (JMH) GitHub

Repository. [Online]. Available: https : / / github . com /

openjdk/jmh (visited on 06/01/2023).

[19] M. Zaharia, R. S. Xin, P. Wendell, et al., “Apache spark:

A unified engine for big data processing,” Commun.

ACM, vol. 59, no. 11, pp. 56–65, 2016. DOI: 10.1145/

2934664.

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

27

CHAPTER 2. THE JAVA ECOSYSTEM AND ITS UNSAFE MECHANISMS

28

Chapter 3

InfiniBand in the Context of Java

3.1 High-Performance Networking

Nowadays, both large and small applications are increasingly operated within cloud

environments or data centers[34]. These include platforms such as Amazon Web Ser-

vices (AWS), Google Cloud Platform (GCP) and Oracle Cloud Infrastructure (OCI).

All these platforms have one thing in common. They operate thousands of servers

running virtualized systems, which need to communicate with each other. The speed

of this network communication has a strong influence on the scalability of applica-

tions running within a data center[35]. The use of conventional network controllers, as

known from the consumer sector, would have a strong negative impact on latency and

throughput in such a scenario.

Example

Hundreds of servers are operated in a data center, each running an average of 50

applications. Each of these servers is equipped with a Gigabit Ethernet controller,

which is shared between the applications. This results in an average available data

rate of 20 Mbit/s (2.5 MB/s) for each application. If one of the applications wants

to load larger data records from the Internet, long waiting times occur. Similarly,

a network controller from the consumer segment is not designed for such intensive

parallel use, which is why the latency inevitably also increases and fast reactions

to events are no longer possible.

For the reasons outlined in the previous example, data centers use special hardware that

is tailored to the respective workload[36]. While fast Ethernet controllers also exist,

they are still connected to the protocol overhead. This is the reason why special net-

work protocols are used within data centers, which are designed for high-performance

operations. One of these technologies is InfiniBand developed by Mellanox (acquired

by NVIDIA in 2020).

29

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

3.1.1 InfiniBand Network Transport

Most computer networks at the current time are based on Ethernet technology. Ap-

plications that are based on this usually use the Sockets API[37] for communication

with other applications. For each message exchange, system calls must first be made,

which switch from user space to kernel space and then pass through layers of the Open

Systems Interconnection (OSI) model[38]. The protocol stack of the Ethernet protocol

is also executed here. Switching between user and kernel space also results in latencies

due to context switches - the state or registers of the currently running thread must

be saved for later recovery or return from kernel space - which can lead to significant

delays in applications based on high-frequency data exchange[39]. Within time-critical

applications in which the sending and receiving of messages must not exceed certain

latency limits, for example because sensor data is only valid for a certain period of

time, this could also lead to data that can no longer be evaluated.

For these reasons, Mellanox began developing high-performance network controllers

in the early 2000s, which are used for large workloads in data centers and high-

performance computing clusters. This family of network controllers was given the

name InfiniBand. While bandwidths of around 10 Gbit/s (1.25 GB/s) could be pro-

vided at the time of introduction, the latest generations of network controllers, such

as the ConnectX-7 from NVIDIA[40], offer bandwidths of up to 400 Gbit/s (50 GB/s).

Accordingly, a data transfer comprising one terabyte would theoretically be possible

with such a controller within 20 seconds. Another feature of InfiniBand network con-

trollers is the extremely low latency when exchanging small messages of less than one

kilobyte. Under normal circumstances, such small messages take less than one mi-

crosecond from triggering the send operation to triggering the receive operation on the

receiver side.

Application

Kernel

Controller

Memory Application

Kernel

Controller

Memory

Figure 3.1: Bypassing the kernel in an InfiniBand-enabled application.

30

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

These properties are mainly achieved by changing the programming model. Whereas

with the Sockets API it is an easy matter to call the send function (<sys/socket.h>)

to send a buffer, InfiniBand offers its own API with far more complex functions. This

API is called Verbs API [41]. It is implemented in the C programming language and

has the biggest difference to the Sockets API in the fact that it can bypass system calls

or the kernel and communicates directly with the network controller. This property

is illustrated in Figure 3.1, where an application bypasses the kernel to access the

controller directly, which in turn is able to access the computer’s main memory using

DMA. When sending a message using InfiniBand, an application first writes the data

to the area of the main memory assigned to it and then informs the network card where

this data is located and to which recipient it is to be sent. The InfiniBand network

controller then reads the data from the main memory via the Peripheral Component

Interconnect Express (PCIe)[42] bus and sends it to the network controller of the

receiver, whereupon the latter writes the data, also via DMA, to an area in the main

memory reserved for this purpose and then informs the application that new data has

been received.

Context
ibv_context

Device
ibv_device

Completion Queue
ibv_cq

Scatter-Gather
Element
ibv_cq

Protection Domain
ibv_pd

Work Completion
ibv_wc

Queue Pair
ibv_qp

Send
Workrequest
ibv_send_wr

Receive
Workrequest
ibv_recv_wr

Memory Region
ibv_mr

Keys
local remote

Figure 3.2: Selected components belonging to the Verbs API.

In detail, sending a message using the Verbs API requires interaction with some of its

components. An overview of some important components is shown in Figure 3.2. The

tasks of the individual components are as follows.

Device - This component bundles the information belonging to the network controller

or device and must be determined in the first step using the ibv_get_device_list

function. In addition to the name of the device, access is also granted here to certain

31

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

characteristics such as the speeds of the individual network ports.

Context - Before a device’s resources can be used, a context must first be created for

it using the ibv_open_device function. It then bundles all resources and is used to

manage them. In abstract terms, this can be compared to a session in which the user

must first log in.

Protection Domain - So-called protection domains can be created for each verbs

context using the ibv_alloc_pd , which are used to prepare memory for use with In-

finiBand hardware. Unlike conventional network programming with sockets, memory

areas must first be registered with the InfiniBand hardware before they can be used.

This is necessary in order to pin the physical memory so that it is not accidentally

copied by the operating system between the triggering and execution of an operation.

Memory Region - The memory areas registered with the InfiniBand hardware are

called memory regions and can be created using the ibv_reg_mr function. In addition

to the aforementioned pinning of the memory, two additional keys are created which

can be seen as passwords. These keys are the local key and the remote key , which

must be specified for the execution of send, write or read operations.

Queue Pair - While the Ethernet protocol relies on sockets, the Verbs API uses so-

called queue pairs. As the name suggests, these queues come in pairs. A queue is

created on both the sender and receiver side using the ibv_create_qp . Both sides

then exchange their connection information - each queue has a local id , which is

comparable to an IP address - and connect both queues to form a pair.

Send & Receive Workrequest - To instruct the network card to carry out an op-

eration, so-called work requests must be transmitted to it. In addition to the type of

operation, these also contain information regarding the virtual memory address and

the size of the data to be sent. Work requests are divided into two categories - send

and receive - and must also be sent separately to the network card using the functions

ibv_post_send and ibv_post_recv .

Scatter-Gather Element - The Verbs API supports scatter-gather operations. This

means that several memory areas that are not necessarily contiguous can be specified

within a single workrequest. These are then sent to the recipient as a single unit. All

memory areas must be specified within a list of so-called scatter-gather elements and

stored within the workrequest. A linked list of the ibv_sge struct must be created

32

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

for this purpose.

Completion Queue - All network-related operations of the Verbs API are executed

non-blocking. As soon as a work request has been passed through to the hard-

ware, the corresponding function returns immediately. To find out whether an op-

eration was successful or failed, a so-called completion queue must be created using

the ibv_create_cq function. Within this queue, the network controller stores ele-

ments that describe the status of previously initiated operations.

Work Completion - The elements within a completion queue are called work com-

pletions. They indicate whether an operation has been executed successfully and can

be retrieved by polling the ibv_poll_cq function. After sending a work request to

the hardware, the caller receives an identifier, which is also available within a work

completion for the purpose of association.

Due to the many components and orchestration required to connect two InfiniBand

network controllers, simple programs that could be implemented in just a few lines

using the Socket API can take several hundred lines using the Verbs API. Within

applications that require the much higher performance characteristics of an InfiniBand

network, however, this property is of secondary importance, as the Verbs API has far

more powerful functions in addition to simple message sending, which cannot be found

within the Sockets API.

3.1.2 Remote Direct Memory Access

Since the InfiniBand protocol stack is implemented directly within the hardware, unlike

Ethernet controllers, and therefore no preparation of the data by the kernel is necessary,

the InfiniBand technology offers a special functionality called Remote Direct Memory

Access (RDMA)[43]. Analogous to local DMA operations, this functionality makes it

possible to directly write to or read from the remote random access memory of another

computer. Newer developments, such as GPUDirect[44], also make it possible to use

not only the main memory as a source or target, but also the integrated memory of a

graphics card, which benefits distributed machine learning applications in particular.

As with simple send operations, the creation of a work request is necessary for the

execution of a write or read operation within the Verbs API. An important difference,

however, is the use of the previously mentioned keys belonging to memory regions.

As direct operations on remote memory entail a certain security risk - for example,

confidential data could be read out - access to the memory must be regulated. The

remote key is used for this purpose. The Verbs API assigns an individual key to each

33

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

memory region that has been registered with the network controller so that access can

be controlled at a fine granular level. Whenever a remote memory region is to be

accessed, the accessing party must know the key of the respective region and specify

it in the work request so that it can be sent to the target controller together with the

operation.

A B

send(2,) 1 2 3

write(2, , 0x07)

write(1, , 0x01)

0x10 0x05 0x04

1 2 3
0x10 0x07 0x04

1 2 3
0x10 0x07 0x04

Variable & Value

Remote Keys

Figure 3.3: Accessing memory regions using a remote key.

As the remote key is only known to the program that creates the associated memory

region, it must first be transmitted to every network participant who is to be given

access to it. The knowledge of this key can be compared to that of a symmetric crypto-

graphic key. As soon as a participant in the network knows it, any arbitrary operation

can be carried out on the memory associated with it. An example of an exchange in-

volving two network parties A and B with a subsequent operation is shown in Figure

3.3. First, B sends information about its memory region 2 together with the associ-

ated key (shown here as a geometric object) to the network participant A . In the next

step, A performs a write operation on the remote memory region 2 to write the value

0x07 . For the purpose of authenticating the write access, A also sends the previ-

ously communicated key. The network controller of the party B receives the operation

together with the key and checks whether the key is valid for the specified memory

region. In this case, the keys match, whereupon the write operation is executed and the

value 0x07 is now stored within the memory region 2 . In the next step, A performs

another write operation, but this time the memory region 1 is to be accessed. The

request also contains the key of the memory region 2 . When the operation arrives at

the network controller of party B , it detects that an incorrect key has been specified

and cancels the corresponding operation. This ensures that only those applications

that have previously been granted permission can access certain memory areas.

34

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

Since the CPU of the computer is not involved during the execution of the Verbs

operations, the only limitation in terms of performance lies within the characteristics

of the network controller, the main memory and the PCIe bus. RDMA operations

are therefore particularly suitable for transferring large volumes of data. For example,

huge contiguous memory areas in the gigabyte range can be transferred at almost

full bandwidth - using a 400 Gbit/s Infiniband controller, this is around 50 GB/s.

Another advantage is the predictable performance of the network card. As it works

independently of the CPU and is only responsible for sending and receiving messages or

operations, a certain performance can be predicted here, depending on the workload in

terms of operations, as the controller, unlike the CPU, can work without interruption.

In summary, it can be said that the use of RDMA in areas with time-critical or data-

heavy applications is a good candidate for network communication.

3.1.3 Java Native Interface

Functionalities at a lower level, such as the targeted invocation of system calls or

functions of integrated libraries, cannot be easily accessed in Java. This is due to the

safety of the language, as access to such functionality can lead to a program crash if

used incorrectly, which cannot be prevented by the JVM. One cause of this can be,

for example, access to a memory area that is not assigned to the program or does

not exist in its virtual address space. In the event of such access, mechanisms of the

operating system take effect and a segmentation fault is triggered. Nevertheless, it is

possible, at the expense of safety, to write Java program code that can interact with

native compiled programs. The Java Native Interface (JNI)[45] integrated in the JVM

forms the building block required for this. It allows special methods to be defined on

the Java side, which are forwarded to an associated native function when called.

Native.java Java

1 package de.hhu.bsinfo;
2

3 public class Native {
4 public static native void hello();
5 }

native.c C

1 JNIEXPORT void JNICALL Java_de_hhu_bsinfo_Native_hello(JNIEnv* env) {
2 printf(" Hello World \n ");
3 }

Figure 3.4: Interconnecting Java code with native functionalities.

An example of this is shown in Figure 3.4. Here, a class Native with an associated

35

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

native method hello is defined within the Java package de.hhu.bsinfo . By spec-

ifying the native keyword, the JVM is instructed to redirect this native method to

the function defined in the C source code file native.c . A special characteristic here

is the structure of the name of the native function. Since a Java function can only be

identified by means of its name, package and class, the names of the native functions

that are to be called must follow a specific pattern. First of all, each function must

begin with the prefix Java_ to ensure a distinction between functions that are used

exclusively in the native part and functions that are called from Java. This is followed

by the name of the package, whereby the dots in the package name must be replaced

by underscores, as the C programming language does not allow dots within variable

and function names. Finally, the class name and the function name follow in order to

clearly identify the associated Java function. Within the parameter list of the native

function, a variable env of the type JNIEnv is always transferred as the first param-

eter. This parameter can be used to access JVM functionalities from the native part

of the code. This includes the following functions, for example.

• AllocObject(JNIEnv *env, jclass clazz)

This function can be used to allocate a Java object from the native part of the

code. A special detail here is that, as with the Unsafe API, the constructor is

not called. This means that the object created is initially uninitialized.

• NewDirectByteBuffer(JNIEnv* env, void* address, jlong capacity)

In contrast to the Java side, the JNI allows instances of the ByteBuffer class

with a specified virtual memory address to be created in the native part of the

code. All that is required is the virtual address and the size of the respective

buffer. The resulting ByteBuffer instance can then be used within Java.

• GetDirectBufferAddress(JNIEnv* env, jobject buf)

Similarly, it is possible on the native side to query the virtual memory address

for a ByteBuffer object allocated on the Java side. This is particularly useful if

the underlying memory is to be used with the Unsafe API, but the ByteBuffer

is created by a third-party library.

• NewGlobalRef(JNIEnv *env, jobject obj)

The garbage collector of the JVM has no knowledge of the references used in

the native part. If an object reference is saved in the native part for later use,

for example within a global variable, the garbage collector would clean up the

associated object as soon as it is no longer accessible on the Java side. The native

code would therefore have an invalid reference in such a case. To prevent this case,

the NewGlobalRef function can be used, which creates a long-lived reference

36

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

within the native code and thus prevents the garbage collector from cleaning it

up until it has been released again using the DeleteGlobalRef function.

• Throw(JNIEnv *env, jthrowable obj)

As the programming language does not support the concept of exceptions, the

JNI provides a function to propagate exceptions from the native part of the code

to the Java part. However, it should be noted that the method signature of the

native method should be adapted to the possible throwing of an exception, as

otherwise exceptions may not be handled by the Java code and ultimately lead

to the program crashing.

Performance Pitfalls

Just like with the Unsafe API functions, care must be taken when using the JNI to

ensure that the operations to be executed are called with valid parameters, otherwise

there is a risk of the program crashing. In addition, there are some implementation

details that are not immediately apparent at first glance, but which can lead to sudden

drops in performance[46]. For example, there are functions for accessing primitive ar-

rays, which originate from the Java Space, like GetIntArrayElements for retrieving

a pointer directed at the raw memory belonging to an integer array. A special aspect

here, however, is the type of access. In some cases where the JVM cannot guarantee

that the corresponding array within the heap will not be moved by compaction, a copy

of the array is created and passed on to the native space. If a method that accesses

an array in this way is called very often at short intervals, this results in many copy

operations in a very short time, which can take a non-negligible amount of execution

time. To avoid such scenarios, the JNI offers functions for direct access to arrays.

If a pointer to an array is to be retrieved without triggering a copy operation, the

GetPrimitiveArrayCritical function can be used. Operations that are executed

on the returned pointer should also be completed in a relatively short time, as some

mechanisms of the JVM, such as garbage collection, can be stopped until the comple-

mentary ReleasePrimitiveArrayCritical function is called in order to prevent the

memory area within the heap from being moved.

As the aforementioned Verbs API is implemented in the C programming language, the

JNI is a good candidate for the integration of InfiniBand functionalities within the

Java programming language. Considering the special characteristics associated with

the JNI, high-performance networking can thus be provided within the Java ecosystem.

This objective is being pursued jointly with a subsequent evaluation in the following

two works.

37

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

3.2 Neutrino: Efficient InfiniBand Access for Java

Applications

Filip Krakowski, Fabian Ruhland and Michael Schöttner. Neutrino: Efficient Infini-

Band Access for Java Applications. In 19th International Symposium on Parallel and

Distributed Computing, ISPDC 2020, Warsaw, Poland, July 5-8, 2020.

Contributions:

As the main developer of the Neutrino project, the author pursued the goal of provid-

ing access to InfiniBand hardware within Java applications. First, the author looked

at existing solutions, such as jVerbs or DiSNI, and came to the conclusion that each

of the alternatives considered has certain disadvantages. Based on these findings, the

author developed an alternative that is easy to use and also causes little overhead in

terms of performance.

The basis and one of the main contributions of the project is the possibility to connect

Java classes with native structs within C code. This function was largely implemented

by the author and then refined in collaboration with Fabian Ruhland. The required

manual mapping between Java classes and native structs was carried out in collabora-

tion with Fabian Ruhland, whereby the author later developed a tool that automates

this step. The framework’s architecture and its main components were developed by

the author. This includes a further main contribution in the form of the processing

of requests. Here the author developed a highly efficient mechanism based on epoll,

which is able to saturate the maximum throughput of the network card using small

messages.

Finally, the author developed distributed benchmarks to evaluate the performance of

the developed solution. Michael Schöttner and Fabian Ruhland were involved in this

process by evaluating the results and providing suggestions regarding the cause of

certain behaviors. The textual part of this work was written by the author, while

Michael Schöttner and Fabian Ruhland were involved in the form of proofreading and

various discussions.

Status: published

38

Neutrino: Efficient InfiniBand Access

for Java Applications

Filip Krakowski

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

filip.krakowski@hhu.de

Fabian Ruhland

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

fabian.ruhland@hhu.de

Michael Schöttner

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—Fast networks like InfiniBand are important for
large-scale applications and big data analytics. Current Infini-
Band hardware offers bandwidths of up to 200 Gbit/s with
latencies of less than two microseconds. While it is mainly used in
high performance computing, there are also some applications in
the field of big data analytics. In addition, some cloud providers
are offering instances equipped with InfiniBand hardware. Many
big data applications and frameworks are written using the
Java programming language, but the Java Development Kit
does not provide native support for InfiniBand. To this end we
propose neutrino, a network library providing comfortable and
efficient access to InfiniBand hardware in Java as well as epoll
based multithreaded connection management. Neutrino supports
InfiniBand message passing as well as remote direct memory
access, is implemented using the Java Native Interface, and
can be used with any Java Virtual Machine. It also provides
access to native C structures via a specially developed proxy
system, which in turn enables the developer to leverage the
InfiniBand hardware’s full functionality. Our experiments show
that efficient access to InfiniBand hardware from within a Java
Virtual Machine is possible while fully utilizing the available
bandwidth.

Index Terms—InfiniBand, Java Native Interface, Remote Di-
rect Memory Access

I. INTRODUCTION

RDMA capable devices are providing high throughput

and low latency to HPC applications for several years [1].

With todays cloud providers offering instances equipped with

InfiniBand for rent, such hardware becomes available to a

wider range of users without the high costs of buying and

maintaining it [2]. Many big data systems are written in Java

[3], [4] benefitting from the strong type system, the rich

libraries and the automatic garbage collection.

Distributed Java applications are limited to Ethernet-based

socket-interfaces (standard ServerSocket or NIO) on the com-

monly used JVMs OpenJDK and Oracle. These JVMs do

not provide support for low-latency InfiniBand hardware. But,

there are third-party solutions like for example DiSNI [5],

Ibdxnet [6], and jverbs [7] available each with pros and cons.

Ibdxnet is an InfiniBand message passing transport we

developed in the past for DXNet [8] both for distributed and

parallel Java applications. While our previous efforts are based

on transparent serialization of messaging objects we are now

developing the successor neutrino aiming at providing RDMA

for native data which is managed by Java applications and

can be accessed efficiently and easily. The latter is realized

by automatically generated proxy objects which are linked to

native C structs. This allows us to provide the full functionality

of the ibverbs library within the Java space and consequently

implement all logic that previously had to be implemented in

native code in Java. Similarly, these capabilities allow us to

provide an application library for developing RDMA-enabled

Java applications.

II. RELATED WORK

In the past, several attempts have been made to use the

ibverbs library from Java, such as jVerbs and the Direct Storage

and Networking Interface (DiSNI) library developed at the

IBM Research Lab [5], [7]. jVerbs is a proprietary library,

while DiSNI is an open source solution based on jVerbs

[9]. The authors also emphasize that native method calls are

expensive and therefore they need a solution that minimizes

these costs. To this end, the authors use a procedure which they

call "Stateful Verb Calls". The core function of this procedure

is to serialize operations allocated in Java space into the format

expected by ibverbs and to cache them for further calls. After

this step it is possible to execute the operation as often as

desired by passing the serialized state to the corresponding

ibverbs method using the Java Native Interface.

From our point of view, this approach has some disadvan-

tages. First, serialization logic as well as the memory layout

of the native structures for each operation must be laboriously

created by hand in Java. Second, ordinary Java objects are

serialized into a format understandable to ibverbs, resulting

in additional copies of the required structures. In addition, a

memory layout must also be adapted when changes are made

within the native library, otherwise it can lead to write or read

accesses at incorrect memory offsets and thus to undefined

behavior.

Jdib [10] is another library wrapping native ibverbs function

calls and exposing them to Java using a JNI layer. According

to the authors, various methods, e.g. queue pair data exchange

on connection setup, are abstracted to create an easier to

use API for Java programmers. The fundamental operations

to create protection domains, create and setup queue pairs,

as well as posting data-to-send to queues and polling the

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

39

@LinkNative("ibv_ah")
public	class	AddressHandle	extends	Struct	{
			private	final	Context	context	=	referenceField("context");
			private	final	ProtectionDomain	protectionDomain	=	referenceField("pd");
			private	final	NativeInteger	handle	=	integerField("handle");
}

struct	ibv_ah	{
			struct	ibv_context	*context;
			struct	ibv_pd	*pd;
			uint32_t	handle;
};

Java C

Fig. 1. Example mapping between automatically generated Java proxy object and native C struct.

completion queue seem to wrap the native verbs and do not

introduce additional mechanisms like jVerbs’s stateful verb

calls. Unfortunately, we were not able to obtain a copy of

the library for further investigation.

III. EFFICIENT STRUCTURED ACCESS TO IBVERBS

The key objectives of neutrino include efficient access to

the functionality provided by ibverbs on any JVM. For this

reason, the idea of adapting the source code of one specific

JVM was not an option and we have developed a universally

applicable solution.

The approach we propose for a structured access to ibverbs

is a concept that allows programmers to link native structures

with automatically generated proxy objects in Java space and

pass them as efficiently as possible through the Java Native

Interface (JNI).

Interfacing with native methods from Java space is known to

be costly and can be measured on a per invocation basis [11].

To keep these costs as low as possible, we aim at minimizing

the number of border crossing calls and keep them as simple

as possible. This is achieved by passing only primitive data

types to the native part of neutrino. For this purpose, we

use automatically generated Java proxy objects in order to

write and read memory outside the Java managed heap in a

structured way. Since native memory is not managed by the

JVM, it is safe to share it with native code without having to

fear object movements by the garbage collector.

Proxy Object

Java

StructUnsafe API
virtual address

C

native memory

Fig. 2. Components of the structured native memory access.

As shown in Figure 2, each proxy object encapsulates the

virtual address of the corresponding native structure. This

approach allows direct access to native structures using Java’s

Unsafe class and its intrinsic methods [12]. Furthermore, our

proxy objects allow selective access to individual fields of

native structures. Special access objects for various native data

types are available to implement this property.

Figure 1 shows an example of a generated Java proxy object,

which includes references to two other generated proxy objects

(source code is not shown) and one access object for an integer

field. As can also be seen, the individual fields of the proxy

object use the names of the corresponding fields within the

native structure and the enclosing class has an annotation

containing the native structure’s name. Our system uses this

information to automatically create a mapping between each

pair of fields. To achieve this, the offsets of the individual

fields within the native structure must be known at runtime.

struct	MemberInfo	{
			char	name[32];
			int	offset;
};

struct	StructInfo	{
			int	structSize;
			int	memberCount;
			MemberInfo	*memberInfos;
};

Fig. 3. Metadata structs used to map proxy object fields onto native C struct
fields.

Our solution stores the metadata shown in Figure 3 in the

native code and makes it available to the Java space through

the JNI. This allows us to lookup and cache the names and

offsets of each field of a native structure. More importantly, the

metadata is stored in a form in which each field query can be

completed in a constant time. All metadata is automatically

generated in native code using macro functions that extract

the required information. This allows proxy objects to easily

retrieve the storage layout of their associated native structures

and configure their access objects accordingly.

memberInfosstructSize memberCount
20 3

name offset
context 0

pd 8
handle 16

Fig. 4. Generated metadata for the ibv_ah C struct.

Figure 4 shows an exemplary setup of the metadata for the

native structure ibv_ah shown in Figure 1. We need to know

the size of the structure (in this case 20 bytes) in advance in

order to allocate correspondingly large memory blocks in Java

space. Similarly, we need to know the number of fields (in

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

40

this case 3) contained within the structure so that the list of

metadata generated for it can be traversed from Java space.

Because both data structures in Java and native space share

the same memory layout, we can safely and efficiently access

the Java space from native code. This is done by passing the

pointer encapsulated in a proxy object to a native method,

which in turn is now able to read and write to the referenced

memory in a structured way using a typecast. Since the

referenced memory exists on both sides, changes can be seen

immediately without copying data.

We use this concept for automatically generating Java

classes for all native structures contained in ibverbs. For this

purpose we have implemented a custom code generator, which

processes header files of native libraries and then creates the

corresponding Java classes. In this way, we are able to use

the full functionality of the library from within the Java space

and consequently implement all logic that previously had to

be implemented in native code in Java. Since the memory

addresses of the created objects do not change at runtime, it

is also possible for us to cache the created proxy objects in

Java space and keep them ready for future access. Thus, no

unnecessary instances of proxy objects are created and the

garbage collector is not burdened.

IV. NEUTRINO’S ARCHITECTURE

Developing an application using ibverbs and our JNI access

layer alone requires considerable effort and careful program-

ming. This is particularly the case for applications aiming at

high performance. In this section we propose neutrino, a net-

work library aiming at simplifying the development of RDMA-

enabled applications in Java. The provided functionalities

include connection management, concurrent messaging and

operations on remote storage. The core idea behind neutrino is

to use small messages to control the system and remote direct

memory accesses to transfer large amounts of data.

A. Connection management

Within the ibverbs library connections are abstracted in

the form of queue pairs. To manually establish a reliable

connection between two queue pairs, certain information must

be exchanged in advance. This includes the InfiniBand device

port’s local id and number and the local queue pair’s number.

Using this information the queue pairs can be configured

and transitioned into a state in which they can be used

for sending and receiving messages on both sides. Neutrino

handles this procedure transparently by using a TCP connec-

tion for the exchange of all necessary information. In this

way, the connection between two endpoints is established by

using an IP address and a port. The RDMA Communica-

tion Manager library [13] offers similar functionality and is

therefore also supported for connection establishment. While

being supported, we decided against its usage, because it sets

some parameters independently during the connection setup.

Configuration from the application side is therefore limited.

B. Threading model

To make optimal use of the available resources, neutrino

makes use of a thread pool and works event-based in a

non-blocking fashion. Besides this, as seen in Figure 5 the

processing of messages to be sent and received is handled

by separate threads which are created based on the available

number of CPU cores.

Buffer Pool

Buffer Pool

Send Thread #0

Send Thread #3

Receive Ring
epoll

Receive Ring

Receive Thread #0

Receive Thread #3

Connection #0

Connection #3

epoll

epoll

epoll
add

add

add

add

Fig. 5. Adding individual connections to sender and receiver threads.

Each connection is assigned to exactly one receive and one

send thread in a round robin fashion, which perform the pro-

cessing of the outgoing and incoming messages from this point

on. This architectural design decision offers the opportunity

to better configure individual endpoints in the network based

on their tasks. For example, an endpoint that is intended to

collect data can specify a greater weighting when creating

receive threads and thus process more received messages in

parallel. Similarly, an endpoint that only distributes data can

use more sender threads than receiver threads and therefore

process more outgoing messages in a concurrent fashion.

Queue
Pair

Completion
Queue

Producer

poll post

Queue
Pair

Completion
Channel

Producer

epoll_wait post

Fig. 6. Continuous polling of the completion queue (left) and notification
based waiting on completions (right).

The execution of operations such as accessing remote mem-

ory must be triggered within the underlying ibverbs library by

placing so-called work requests on the corresponding queue

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

41

pair. Each completed work request optionally generates a work

completion, which the application can query to find out the

request’s status. For this purpose, each queue pair is assigned a

completion queue for sent and received messages. Whenever a

pending work request completes the network controller places

a work completion on the corresponding completion queue.

The application is then able to query these work completions

and use their metadata to call up the appropriate processing

function. By default, the query of completed requests is based

on polling. Since continuous polling of completion queues

results in high CPU usage while potentially not processing any

work completions, ibverbs provides also completion channels.

These contain a file descriptor which can be used with existing

IO multiplexing approaches like select, poll and epoll

as illustrated in Figure 6.

We decided to use epoll because of its good scalability with

many connections. Each thread within the system receives

its own epoll file descriptor, which is used to monitor the

connections assigned to it for corresponding events. In this

way it is possible to distribute connections to different threads

for load balancing purposes. At the same time we avoid

synchronization issues, because the data structures for sending

and receiving messages of a connection are accessed only by

a single thread. This also minimizes the necessary number

of atomic operations on data structures and allows to avoid

context switches.

C. Send request processing

InfiniBand offers two possibilities to exchange data between

two network participants. On the one hand, it is possible to

send data as messages, which must be actively processed by

the other side. Alternatively, it is also possible to read or write

remote memory using RDMA operations without including

the CPU of the other node. A pre-requisite for both modes

is the registration of so-called memory regions, which can

then be used for the above operations. This is necessary since

the InfiniBand hardware must know the physical addresses of

the memory to be used. Furthermore, the mapping of virtual

to physical memory addresses within the registered memory

must not change during the runtime of the application. The

corresponding pages are therefore additionally pinned by the

operating system.

Neutrino aims at supporting both modes and therefore needs

an abstraction layer that allows applications to easily send

messages and work with remote memory without the need

to perform the mentioned steps. For this purpose, certain data

structures are created within connections as well as within

the send threads, which enable easier handling of registered

memory and facilitate the creation of work requests.

Each send thread allocates a configurable contiguous block

of memory at the beginning of its execution. This memory

block is registered with the InfiniBand hardware and then

divided into smaller slices. The default size for each slice

is the maximum MTU supported by the network card. Each

slice is assigned a unique identifier and put into a send buffer

array of memory blocks using the identifier as the index. A

work request allows setting user-defined data for recognizing

the corresponding work completion only within the id field,

which is a 64 bit number. We therefore use this id field to

store the index of the buffer belonging to the request. This

later helps to release buffers processed or sent by the network

controller. Finally, each slice is placed in a bounded multi-

producer multi-consumer queue[14], the send buffer queue,

which is used for borrowing memory blocks.

Send	Ring
SEND READ SEND WRITE

tail

0

1 4
Send	Buffer	Queue

process

notify

Queue	PairCompletion	Channel

epoll_wait

SEND
head

Application Send	Thread

release

post

append

borrow available borrowed

free occupied

Send	Buffer	Array
1 2 3 4 5 6 7 8 9

3 5 7 6

Fig. 7. Processing of outgoing operations using a ring buffer for requests and
a queue of buffers for writing messages.

As shown in Figure 7, the send buffer array contains a fixed

number of memory blocks ready for application requests. Each

buffer may be available (white), and thus enqueued within the

send buffer queue for borrowing, or borrowed (grey) and in the

process of being accessed by the InfiniBand hardware. Sorting

within the queue (1,4,3,...) can be arbitrary, as we cannot

guarantee in which order an application will pass its borrowed

buffers to a send thread for processing. However, this is not

a problem because the buffers can be used in any order. An

application borrows a buffer by polling the send buffer queue’s

next element.

We decided to register one memory region per thread instead

of one memory region per connection as registering many

scattered memory regions consumes additional resources of

the InfiniBand hardware. The hardware needs to copy the

registered memory regions using direct memory access. By

using many scattered memory regions the hardware’s access

pattern is unpredictable, which can seriously affect perfor-

mance. Also, caching within the hardware benefits of less

memory regions, because there are only a few resources to be

cached. In addition, we also align memory areas so that the

network controller may transfer them using as few as possible

direct memory accesses. Using our interface for accessing

native memory, we are also able to wrap the buffers borrowed

from the send thread with the help of a proxy object and

thus write directly and in a structured way into the memory

intended for sending. This way copies of the messages or data

to be sent within the Java managed heap are avoided.

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

42

The network controller accesses borrowed buffers using

information (virtual memory address, size and access key)

contained within work requests. These work requests are

stored in a modified version of Agrona’s ring buffer[15] by

the application. We call this ring buffer send ring since it does

only contain work requests. Furthermore, each connection has

its own send ring. Our modification to the original version was

needed as the standard implementation only allows consuming

messages or events written to the ring buffer isolated from each

other. Since ibverbs offers the possibility to post requests in

batches by linking work requests together, we needed a way

to access successive requests within the send ring in order to

chain them. As a first step, the application reserves an area

large enough for storing its work request. This is done by

atomically incrementing the send ring’s tail index. Afterwards

a work request is written directly into the reserved area. In

the case of a message to be sent, this work request contains a

reference to the borrowed buffer so that it can be released after

processing. Finally, the written work request is committed to

the send ring so that the send thread can consume it.

The send thread is responsible for posting pending work

requests within the connection’s send ring to the queue pair

associated with the connection the send ring belongs to. To do

this, the send thread first identifies and extracts the readable

area of the send ring. Afterwards the work requests contained

within the extracted area are chained together so that they can

be transferred to the hardware in one batch. After the work

requests have been transmitted, the send thread increments

the head index of the send ring, freeing the extracted area

for new work requests. The work requests can be released

immediately after they are posted because ibverbs copies them

into an internal representation for the hardware.

The other task of the send thread is the notification of

completed work requests. For this purpose, the completion

channel belonging to the connection is monitored using the

epoll file descriptor of the send thread. As soon as a work

completion is generated for a connection, the corresponding

send thread is woken up. At this point it starts polling the

completion queue of the associated connection and notifies the

application of each completed work request. After processing

is complete, the send thread waits for further notifications

using the epoll_wait call.

D. Receive request processing

Just like the execution of outgoing requests, the receipt

of messages requires the creation of work requests. Within

these work requests the registered memory area in which

data is received is referenced. It is important to provide large

enough buffers so that the InfiniBand hardware is able to

process incoming messages. For example, it is not sufficient

to post several small buffers to receive one large message,

because the hardware consumes exactly one work request for

each incoming message. Likewise, work requests must also

be provided to the hardware in order to receive messages,

otherwise the network controller does not know in which

memory areas it should place the incoming data. In case no

work request is provided or the memory region is not large

enough, the network controller of the receiving side sends a so-

called RNR (receiver not ready) NACK, whereupon the sender

waits a certain time until the message is transmitted again. This

can lead to a severe drop in performance.

RECEIVE RECEIVE RECEIVE RECEIVE
Receive	Ring

current
BUFFER BUFFER BUFFER BUFFER

Receive	Thread

circular
link

Shared	Receive	Queue

post

Completion	Channel

epoll_wait

handle

RECEIVE

BUFFER

process

Application

Receive	Buffers

usable posted

Fig. 8. Processing of incoming messages using a circular linked list of pre-
allocated work requests.

Similar to the concept of the send ring owned by each

connection, the receive thread creates a data structure, which

bundles work requests and their corresponding buffers for the

received data. We call this data structure the receive ring

(see Figure 8). Within the receive ring, all work requests

are connected to their successor and the last to the first.

These preallocated work requests are later used for receiving

messages.

In normal mode, work requests for receiving messages

as well as for sending messages are posted to the queue

pair assigned to the connection. To avoid having to fill each

queue pair individually with new work requests for receiving

messages, ibverbs provides the shared receive queue. It can be

assigned to several queue pairs, whereupon these can consume

the work requests on it collectively when receiving messages.

This helps to reduce the total number of work requests

on the recipient side. Each receive thread creates its own

shared receive queue, which is associated with its assigned

connections. Since a connection is associated with exactly one

receive thread, it can therefore fill the shared receive queue

assigned to it when it receives work completions.

The handling of incoming messages is implemented in a

way in which the shared receive queue is refilled as quickly

as possible, because missing work requests can lead to the

before-mentioned loss of performance. Similar to the send

thread, the receive thread first waits for new notifications

regarding new work completions via the epoll_wait call.

After a notification is received, the work completions on the

completion queue belonging to the connection are polled but

not yet processed. Immediately after polling, the number of

existing work completions is determined and the same number

of work requests are refilled in the shared receive queue.

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

43

This is done by maintaining an index within the receive ring,

which indicates the position from which new work requests

can be used. Starting from this index, the index of the last

work request needed for the required amount is calculated and

the connection to its successor is removed. The resulting list

of work requests is then passed to the shared receive queue

for consumption. After posting the list of work requests, the

connection of the last element to its successor is restored and

the index of the next free work request is set to this successor.

To guarantee that the shared receive queue can always be

completely filled, we choose twice the capacity of the shared

receive queue as the size of the receive ring. It should also be

noted that this data structure does not require synchronization

since it is only used within the receive thread. As a last step,

the receive thread calls a handler function of the application

to notify it of the incoming messages.

V. EVALUATION

To give an idea of what is possible with neutrino, we

examine the system for different aspects with the help of

implemented benchmarks. We present results on messaging

and operations on remote memory using one or two connec-

tions. In case of two connections, the mentioned operations

(sending messages or remote memory access) are performed

concurrently using separate threads.

CPU Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz

(15 MB Cache)

RAM 4x Samsung 16GB DDR4-2400 CL17

NIC Mellanox Technologies MT27500 Family

[ConnectX-3] (56Gbit/s)

Fig. 9. System specifications of the hardware used in all experiments.

Within each experiment, two nodes are used equipped with

the hardware shown in Figure 9. Each node uses two send

and two receive threads. Since, to the best of our knowledge,

no other system provides such an abstraction layer over the

ibverbs library as neutrino, we cannot make a comparison

with other systems at this point. The systems mentioned at the

beginning of this paper are designed to work by putting the

user in control of posting work requests and handling work

completions directly while our system accepts buffers and

automatically creates work requests for them. In our opinion

a comparison would therefore not be meaningful.

A. Messaging

In our messaging benchmark we measure the average

number of messages sent per second, the average network

throughput achieved and the average latency per message in

microseconds. To determine the throughput, a message of fixed

size ranging between 16 bytes and 4 kilobytes is created per

connection and then sent continuously over the network. The

number of messages to be sent was set to one million. In

addition, this number of messages is sent in several runs, so

we have several measurements for each message size. We

choose 10 runs for warmup and 30 runs for measurement.

The warmup runs are necessary because the Java Virtual

Machine analyzes and optimizes the executed code at runtime.

To provide a suitable long time for the analysis we use the

warmup runs. Within each measurement run, the time between

sending the specified number of messages and the arrival of all

corresponding work completions is measured. In case of two

connections, the number of messages is divided between both

connections and the time between sending the messages and

receiving all work completions is waited on both connections.

Using the measured time of a run, we then calculate how many

messages were sent in this run and what network throughput

this corresponds to.

16 32 64 128 256 512 1 Ki 2 Ki 4 Ki
Message Size in Bytes

2

4

6

8

10

12

14

M
illi

on
 M

es
sa

ge
s p

er
 S

ec
on

d

One Connection Two Connections

0

1

2

3

4

5

6

Tr
ou

gh
pu

t (
GB

/s
)

Fig. 10. Average message (solid line) and network (dashed line) throughput
by message sizes using one and two connections.

As can be seen in Figure 10, neutrino achieves an average

message throughput of about 10 million messages per second

using a message size up to 256 bytes with one connection.

When using two connections working in parallel, up to a

message size of 128 bytes, an average of about 14 million

messages per second is possible. This shows that the parallel

processing of connections by multiple send and receive threads

can result in a big improvement for small message sizes. From

a message size of 512 bytes on, the use of one and two

connections are almost equal regarding average messages sent

per second. Only in terms of network throughput there is still

an improvement in the area of larger messages between 2 and

4 kilobytes.

Similar to message throughput, latency is also measured by

sending multiple messages using one and two connections.

We use the same number of messages as well as warmup

and measurement runs like in the previous experiment. The

difference here lies in the measurement of time. Instead

of waiting for the work completions of all messages, the

benchmark waits for the corresponding work completion for

each individual message and connection until the next message

is sent and measures the time between these two events.

Figure 11 shows the results as average values for different

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

44

16 32 64 128 256 512 1 Ki 2 Ki 4 Ki
Message Size in Bytes

0

2

4

6

8

10

Av
er

ag
e

La
te

nc
y

pe
r M

es
sa

ge
 (µ

s)

One Connection Two Connections

Fig. 11. Average latency by message sizes using one and two connections.

message sizes. In contrast to a single connection, the latency

increases minimally when using two connections. Overall, the

latency remains below 6 microseconds in both cases up to

a message size of 512 bytes. InfiniBand hardware is known

to deliver latencies below 2 microseconds. However, this can

only be achieved if the processing of messages is done by

active polling to minimize latency. Neutrino, on the other

hand, uses Linux’s IO multiplexing system epoll, which

introduces additional latency by notifying threads and using

system calls for such purposes. This therefore explains the

increased latencies within our experiments.

B. Remote memory access

Exchanging memory between two nodes is one of neutrino’s

core functions and should therefore work reliably and fast.

For this purpose we implement a second experiment showcas-

ing the average operation (RDMA_READ or RDMA_WRITE)

throughput as well as the average network throughput. As in

the Messaging Benchmark, all measurements are collected in

several runs, consisting of 10 warmup phases and 30 measure-

ment phases. In each phase a buffer ranging from 512 kilobytes

to 32 megabytes is read or written 100 times by means of

remote memory access. In this experiment the two nodes are

divided into the roles of an initiator and a responder. The

initiator first asks the responder to create a buffer of sufficient

size via messaging. The responder then returns the information

necessary for remote memory access (virtual address and

access key) to the initiator by sending a message. After

receiving this information from the responder, the benchmark

proceeds similarly to the messaging benchmark. The received

information is used to continuously execute remote read or

write accesses. The time until completion of all operations

within each run is also measured based on the received work

completions.

Figure 12 shows the measured results as the average number

of send operations per second and the network throughput

using remote read accesses. Up to a buffer size of 8 megabytes,

512 Ki 1 Mi 2 Mi 4 Mi 8 Mi 16 Mi 32 Mi
Buffer Size in Bytes

2

4

6

8

10

12

14

Th
ou

sa
nd

 O
pe

ra
tio

ns
 p

er
 S

ec
on

d

One Connection Two Connections

0

1

2

3

4

5

6

7

8

Tr
ou

gh
pu

t (
GB

/s
)

Fig. 12. Average read operation (solid line) and network (dashed line)
throughput by buffer sizes using one and two connections.

the average network throughput always remains above 6

GB/s when using a single connection. After this, the average

throughput drops to just under 6 GB/s. In contrast, the average

network throughput remains relatively stable at all buffer sizes

when using two connections. This shows that the use of two

connections is more suitable for accessing larger amounts

of data through reading remote memory. In terms of the

average number of operations per second, the use of one

and two connections is quite similar and there are hardly any

differences.

512 Ki 1 Mi 2 Mi 4 Mi 8 Mi 16 Mi 32 Mi
Buffer Size in Bytes

2

4

6

8

10

12

14

Th
ou

sa
nd

 O
pe

ra
tio

ns
 p

er
 S

ec
on

d

One Connection Two Connections

0

1

2

3

4

5

6

7

8

Tr
ou

gh
pu

t (
GB

/s
)

Fig. 13. Average write operation (solid line) and network (dashed line)
throughput by buffer sizes using one and two connections.

With respect to the results shown in Figure 13 regarding

the average write operations per second as well as the average

network throughput when using remote write accesses, it can

be said that they perform similarly well as read accesses.

Using two connections, the same more stable average network

throughput can be observed as with read accesses. Remote

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

45

write accesses can thus also be used to exchange large amounts

of data between two nodes.

VI. CONCLUSION

The Java Development Kit and the Java Virtual Machine do

not yet offer an official solution to use InfiniBand hardware

for the implementation of network applications. In this paper

we propose neutrino, a system aiming at providing efficient

means for accessing InfiniBand hardware from Java space

through usage of the Java Native Interface as well as building

an abstraction layer above the native ibverbs library. This

system works in a multithreaded non-blocking fashion using

thread pools for performing work and grants users access to

messaging and remote direct memory access functionalities

through a simple programming interface. Examples for the

usage of our system can be found in the public GitHub

repository.[16]. Our experiments show that neutrino is well

suited for use with InfiniBand hardware and reaches saturation

in case of network throughput of remote memory accesses.

When sending small messages we can also show that neutrino

benefits from the multithreading architecture and with its

help reaches up to about 14 million messages per second on

average. In summary, it can be said that the use of InfiniBand

hardware within the Java Virtual Machine is quite possible

and practical in terms of performance and usability as shown

within our experiments and examples.

VII. OUTLOOK

In our future work we plan on focusing neutrino on the use

with Apache Arrow [17], which provides an platform inde-

pendent columnar memory format for representing in-memory

data sets. Since each column’s data is stored in contiguous

memory areas, they are very well suited for remote memory

accesses. In the long term, we hope to enable integration with

Apache Flight [18], which is designed to transport Arrow in-

memory data. The core idea is to implement control messages

for looking up data locations via messaging and the retrieval

of the actual data via remote memory accesses. We assume

that applications which transfer and process large amounts of

data should benefit greatly from these efforts.

REFERENCES

[1] TOP500 Supercomputer Sites. [Online]. Available:

https://top500.org (visited on 04/15/2020).

[2] I. Hashem, I. Yaqoob, N. Anuar, S. Mokhtar, A. Gani,

and S. Khan, “The rise of “Big Data” on cloud com-

puting: Review and open research issues,” Information

Systems, vol. 47, pp. 98–115, Jul. 2014. DOI: 10.1016/

j.is.2014.07.006.

[3] S. Mehta and V. S. Mehta, “Hadoop Ecosystem : An

Introduction,” 2016.

[4] J. Kreps, “Kafka : a Distributed Messaging System for

Log Processing,” 2011.

[5] P. Stuedi. (2018). “Direct Storage and Networking In-

terface (DiSNI),” [Online]. Available: https://developer.

ibm.com/open/projects/direct-storage-and-networking-

interface-disni (visited on 04/15/2020).

[6] S. Nothaas, K. Beineke, and M. Schöttner, “Leveraging

InfiniBand for Highly Concurrent Messaging in Java

Applications,” 2019 18th International Symposium on

Parallel and Distributed Computing (ISPDC), pp. 74–

83, 2019.

[7] P. Stuedi, B. Metzler, and A. Trivedi, “JVerbs: Ultra-

Low Latency for Data Center Applications,” in Proceed-

ings of the 4th Annual Symposium on Cloud Computing,

ser. SOCC ’13, Santa Clara, California: Association for

Computing Machinery, 2013, ISBN: 9781450324281.

DOI: 10.1145/2523616.2523631.

[8] K. Beineke, S. Nothaas, and M. Schöttner, “Efficient

Messaging for Java Applications Running in Data Cen-

ters,” 2018 18th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGRID),

pp. 589–598, 2018.

[9] DiSNI GitHub repository. [Online]. Available: https://

github.com/zrlio/disni (visited on 04/15/2020).

[10] W. Huang, H. Zhang, J. He, J. Han, and L. Zhang,

“Jdib: Java Applications Interface to Unshackle the

Communication Capabilities of InfiniBand Networks,”

in 2007 IFIP International Conference on Network

and Parallel Computing Workshops (NPC 2007), 2007,

pp. 596–601.

[11] D. Kurzyniec and V. Sunderam, “Efficient cooperation

between Java and native codes–JNI performance bench-

mark,” Jan. 2001.

[12] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza,

M. Hauswirth, and N. Nystrom, “Use at Your Own

Risk: The Java Unsafe API in the Wild,” SIGPLAN

Not., vol. 50, no. 10, pp. 695–710, Oct. 2015, ISSN:

0362-1340. DOI: 10.1145/2858965.2814313.

[13] RDMA communication manager. [Online]. Available:

https://www.ibm.com/support/knowledgecenter/ssw_

aix_72/communicationtechref/rdma_cm.html (visited

on 04/15/2020).

[14] Agrona ManyToManyConcurrentArrayQueue. [Online].

Available: https://github.com/real- logic/agrona/blob/

master / agrona / src /main / java /org / agrona / concurrent /

ManyToManyConcurrentArrayQueue . java (visited on

04/16/2020).

[15] Agrona RingBuffer. [Online]. Available: https://github.

com/real- logic/agrona/blob/master /agrona/src/main/

java/org/agrona/concurrent/ringbuffer/RingBuffer.java

(visited on 04/16/2020).

[16] Neutrino github. [Online]. Available: https://github.com/

hhu-bsinfo/neutrino (visited on 06/21/2020).

[17] Apache Arrow Explained by Dremio. [Online]. Avail-

able: https://www.dremio.com/apache-arrow-explained

(visited on 04/19/2020).

[18] W. McKinney. (2019). “Introducing apache arrow flight:

A framework for fast data transport,” [Online]. Avail-

able: https : / / arrow . apache . org / blog / 2019 / 10 / 13 /

introducing-arrow-flight (visited on 04/19/2020).

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

46

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

3.3 Performance analysis and evaluation of Java-based

InfiniBand Solutions

Fabian Ruhland, Filip Krakowski, and Michael Schöttner. Performance analysis and

evaluation of Java-based InfiniBand Solutions. In 19th International Symposium on

Parallel and Distributed Computing, ISPDC 2020, Warsaw, Poland, July 5-8, 2020.

Contributions:

In this work, various InfiniBand solutions - both native and those usable in Java -

were compared with each other. For this purpose, Fabian Ruhland developed a bench-

mark suite called Observatory, which can use various backends by means of interfacing.

One of the author’s contributions is the Neutrino backend, which was implemented by

the author as the main developer and adapted based on the feedback received within

the Observatory project. Fabian Ruhland developed the benchmarking framework, car-

ried out the associated benchmarks and finally analyzed the data. During this phase,

the author and Michael Schöttner were involved in discussions regarding the results

and any discrepancies within the measurements or their causes. Finally, the author

was available to answer questions on the use of the Neutrino project.

The paper was written by Fabian Ruhland, while the author and Michael Schöttner

were involved in several discussions regarding the design and implementation of the

Observatory benchmark framework and provided valuable input.

Status: published

47

Performance analysis and evaluation of Java-based

InfiniBand Solutions

Fabian Ruhland

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

fabian.ruhland@hhu.de

Filip Krakowski

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

filip.krakowski@hhu.de

Michael Schöttner

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—Low-latency network interconnects, such as Infini-
Band, are widely used in HPC centers and are becoming available
in public cloud offerings, too. For MPI applications accessing
InfiniBand is transparent, but many big-data applications are
written in Java, which does not provide direct access to Infini-
Band networks, but relies on thid-party libraries. In this paper,
we present Observatory, a benchmark for evaluating low-level
libraries, providing InfiniBand access for Java applications. Ob-
servatory can be used for evaluating and comparing socket- and
verbs-based libraries regarding throughput and latency. With
transparency often traded for performance and vice versa, the
benchmark helps developers with studying the pros and cons of
each solution and supports them in their decision which solution
is more suitable for their existing or new use-case. We also give
an overview of existing and maintained InfiniBand libraries for
Java and evaluate them with the proposed benchmark.

Index Terms—High-speed Networks, InfiniBand, Remote Di-
rect Memory Access

I. INTRODUCTION

RDMA capable devices have been providing high through-

put and low-latency to HPC applications for several years

[13]. With todays cloud providers offering instances equipped

with InfiniBand (IB) for rent, such hardware is available to a

wider range of users without the high costs of buying and

maintaining it [18]. Many big data frameworks these days

are written in Java, e.g. batch processing frameworks [23],

databases [1] or backend storages/caches [5].

These applications benefit from the rich environment Java

offers, including automatic garbage collection and multi-

threading utilities. But, the choices for inter-node commu-

nication on distributed applications are limited to Ethernet-

based socket-interfaces (standard ServerSocket or NIO) on the

commonly used JVMs OpenJDK and Oracle. They do not

provide support for low-latency IB hardware. However, there

are external solutions available each with pros and cons.

This raises questions if a developer wants to choose a

suitable solution for a new use-case or an existing application:

What’s the throughput/latency on small/large payload sizes?

Is the performance sufficient when trading it for transparency

requiring less to no changes to the existing code? Is it worth

considering developing a custom solution based on the native

API to gain maximum control with chances to harvest the

performance available by the hardware?

In this paper, we address these questions by proposing

the Observatory benchmark to evaluate existing libraries to

leverage the performance of IB hardware in Java applications.

Existing benchmark tools like iperf [6] for TCP/UDP or the

ibperf included in the OFED package [11] do not support

Java libraries. Observatory has a modular design and currently

supports implementations to evaluate four verbs-based libraries

(ibverbs, jVerbs, DiSNI and neutrino), as well as socket-based

implementations, of which we evaluated IP over IB, libvma

and JSOR. This paper focuses on the fundamental performance

metrics of low-level interfaces and not on higher-level network

subsystems with connection management, complex pipelines

and messaging primitives like for example provided by MPI.

The proposed benchmark is used to evaluate the libraries

mentioned above with 56 Gbit/s IB NICs. The contributions

of this paper are:

• An overview of existing Java IB solutions

• The design and implementation of Observatory, an exten-

sible and open-source benchmark to evaluate Java-based

IB solutions

• Evaluation results using Observatory

The paper is structured as follows: Section II discusses

related work, Section III presents existing IB solutions with

socket-based (§III-A) and verbs-based (§III-B) libraries. Sec-

tion IV presents the Observatory benchmark, followed by Sec-

tion V with the evaluation results. Conclusions are presented

in Section VI.

II. RELATED WORK

Java networking performance with and without IB networks

has been evaluated in literature. However, to the best of our

knowledge, there is no benchmark aiming at comparing both

socket- and verbs-based libraries for Java.

In 2007 Jnetperf has been implemented analog to the

netperf utility to evaluate Gigabit Ethernet and 20 Gbit/s IB

in Java [31]. Jnetperf and netperf were then used to analyze

the throughput and round-trip latency achievable in Java and

native applications with TCP/IP, IP over IB and the now

discontinued Socket Direct Protocol. Regarding latency, the

native ibverbs API has also been evaluated to set a baseline

for the remaining solutions. While insightful results could be

achieved with Jnetperf, many new solutions for leveraging IB

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

48

in Java have been developed since then. Especially in the field

of making ibverbs available in the JVM, several attempts were

made, which will be evaluated in this paper.

In 2012 Vienne et al. evaluated IB and RoCE (RDMA over

Converged Ethernet) for HPC and Cloud Computing scenarios

[30]. While they evaluated raw network level performance,

their main focus was on MPI and the impact, that different

hardware solutions have on middleware applications in the

cloud. With Observatory, we focus solely on network level

performance and solutions that work on the network level,

instead of the application level.

In 2014 Ekanayake et al. have shown, that MPI performance

in Java has vastly improved over the preceeding years and

concluded, that the gap between Java and native performance

is decreasing continuosly [15]. However, their focus was

completely on MPI, which is not what we intend to evaluate

with our benchmark.

III. INFINIBAND LIBRARIES

This section elaborates on existing low-level solu-

tions/libraries that can be used to leverage the performance

of InfiniBand hardware in Java applications. This does not

include network or messaging systems, implementing higher-

level primitives such as the Message Passing Interface, e.g.

Java-based FastMPJ [16] providing a special transport to use

InfiniBand hardware.

A. Socket-based libraries

The socket-based libraries redirect the send and receive traf-

fic of socket-based applications transparently over InfiniBand

host channel adapters (HCAs) with or without kernel bypass

depending on the implementation. Thus, existing applications

do not have to be altered to benefit from improved performance

due to the lower latency hardware compared to commonly

used Gigabit Ethernet. The following three libraries are still

supported to date and evaluated in Section V.

IP over InfiniBand (IPoIB) [20] is not a library but actually

a kernel driver that exposes the InfiniBand device as a standard

network interface (e.g. ib0) to the user space. Socket-based

applications do not have to be modified but use the specific

interface. However, the driver uses the kernel’s network stack

which requires context switching (kernel to user space) and

CPU resources when handling data. Naturally, this solution

trades performance for transparency.

libvma [7] is a library developed by Mellanox and included

in their OFED software package [8] and is preloaded to any

socket-based application (using LD PRELOAD). It enables

full bypass of the kernel network-stack by redirecting all

socket-traffic over InfiniBand using unreliable datagram with

native ibverbs. Again, the existing application code does not

have to be modified to benefit from increased performance.

Java Sockets over RDMA (JSOR) [29] redirects all socket-

based data traffic in Java applications using native verbs, sim-

ilar to libvma. It uses two paths for implementing transparent

socket streams over RDMA devices. The “fast data path” uses

native verbs to send and receive data and the “slow control

path” manages RDMA connections. JSOR is developed by

IBM and only available in their proprietary J9 JVM.

The following libraries are also known in literature but are

not supported or maintained anymore.

The Sockets Direct Protocol (SDP) [17] redirects all

socket-based traffic of Java applications over RDMA with

kernel-bypass. It supported all available JDKs since Java 7

and was part of the OFED package until it was removed with

OFED version 3.5 [10].

Java Fast Sockets (JFS) [28] is an optimized Java socket

implementation for high speed interconnects. It avoids seri-

alization of primitive data arrays and reduces buffering and

buffer copying with shared memory communication as its main

focus. However, JFS relies on SDP (deprecated) for using

InfiniBand hardware.

B. Verbs-based Libraries

Verbs are an abstract and low-level description of function-

ality for RDMA devices (e.g. InfiniBand) and how to program

them. Verbs define the control and data paths including RDMA

operations (write/read) as well as messaging (send/receive).

RDMA operations allow reading or writing directly from/to

the memory of the remote host without involving the CPU of

the remote. Messaging follows a more traditional approach by

providing a buffer with data to send and the remote providing

a buffer to receive the data to.

The programming model differs heavily from traditional

socket-based programming. Using different types of asyn-

chronous queues (send, receive, completion) as communica-

tion endpoints. Applications use different types of work re-

quests to send and receive data. When handling data transfers,

all communication with the HCA is executed using these

queues. The following libraries are verbs implementations that

allow programming RDMA capable hardware directly. The

first four libraries presented are evaluated in Section V.

ibverbs are the native verbs implementation included in the

OFED package [11]. Using the Java Native Interface (JNI)

[21], this library can be utilized in Java applications as well

in order to create a custom network subsystem [16] [24]. Using

the Unsafe class [22] or Java DirectByteBuffers, memory can

be allocated off-heap to use it for sending and receiving data

with InfiniBand hardware (buffers must be registered with a

protection domain which pins the physical memory).

jVerbs [27] is a proprietary verbs implementation for Java,

developed by IBM for their J9 JVM. Using a JNI layer,

the OFED ibverbs implementation is accessed. “Stateful verb

methods” (StatefulVerbsMethod Java objects) encapsulate the

verb to call including all parameters with parameter serializa-

tion to native space. Once the object is prepared, it can be

executed, which actually calls the native verb. These objects

are reusable for further calls with the same parameters, to

avoid repeated serialization and creating new objects which

would burden garbage collection. However, if a program works

with constantly changing buffer addresses, thus calling verbs

with different parameters, repeated serialization is inevitable.

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

49

DiSNI [26] is an open source solution based on jVerbs [2]. It

utilizes the same “Stateful verb method” mechanism as jVerbs.

neutrino [9] is our own approach at making verbs accesible

from within the JVM. It allows structured access to native

structures with automatically generated proxy objects in Java

space. This allows manipulating native structures and calling

native methods without any form of serialization or copying.

neutrino aims to be more flexible than jVerbs and DiSNI, while

still offering high throughput rates and low latency.

Jdib [19] is a library wrapping native ibverbs function calls

and exposing them to Java using a JNI layer. According to the

authors, various methods, e.g. queue pair data exchange on

connection setup, are abstracted to create an easier to use API

for Java programmers. The fundamental operations to create

protection domains, create and setup queue pairs, as well as

posting data-to-send to queues and polling the completion

queue seem to wrap the native verbs and do not introduce

additional mechanisms like jVerbs’s stateful verb methods. We

were not able to obtain a copy of the library for evaluation.

IV. OBERVATORY BENCHMARK

In this section we describe the architecture and implemen-

tation aspects of the Observatory benchmark which aims at

allowing to compare different Java-based IB solutions (§III)

with each other, as well as comparing them to C-based

libraries. The latter include the ibverbs library to provide a

baseline for performance measurements.

A. Communication patterns

Observatory aims at evaluating a fundamental point-to-

point connection regarding throughput and latency. Like other

benchmarks (e.g. OSU [12]), we want to determine the max-

imum throughput on unidirectional and bidirectional commu-

nication (e.g. application pattern asynchronous “messaging”),

as well as one-sided latency and full round-trip-time (RTT)

with a ping-pong communication pattern (e.g. application

pattern “request-response”). These communication patterns are

commonly used to evaluate network hardware or applications

[6], [11], [12] and allow us to determine the fundamental per-

formance of a Java-based IB library. Complex communication

patterns, like for example all-to-all and multi-threading are

planned, but not implemented so far.

B. Architecture

The work on Observatory began as continuation of our

Java InfiniBand Benchmark [25], which consisted of multiple

standalone micro benchmarks for each library. Our goal with

Observatory is to develop a coherent benchmark architecture

for Java libraries and C/C++ solutions, see Fig. 1. This led us

to an architecture, that is easier to extend and results in less du-

plicate code compared to the Java InfiniBand Benchmark. The

benchmark needs to support two programming languages (C

and Java) and two programming models (sockets and verbs),

as well as two different forms of network communication

(messaging and RDMA). The benchmark provides a flexible

interface with default implementations for standard message

passing and RDMA operations, so it is not necessary to always

implement all methods for each library.

Observatory
Benchmark

Java

Interface Interface

Socket
binding

jVerbs
binding

ibverbs
binding

Reflection

Phases

Ex
ec

ut
es

Re
tu

rn
s S

ta
tu

s

Config (JSON)
className: Socket
parameters: { ... }
operations: [{
 name: Msg Latency
 repetitions: 5
 iterations: [
 { size: 1, count: 10000},
 { size: 2, count: 10000},
 ...]
}]

Loads

(className from config)

Output file
(CSV)

Observatory
Benchmark

C++

Fig. 1: Observatory architecture design

Observatory can be configured through a JSON file, includ-

ing the communication pattern (uni-/bidirectional throughput,

latency, etc.), buffer sizes, the number of repitions, and a

potential warmup phase.

C. Benchmark phases

Each benchmark run is made up of the following six phases,

which call methods that need to be implemented by each

library binding:

1) Initialization. During this phase, the client should allocate

any needed resources (e.g open an IB context and allocate

a Protection Domain). Client-specific configuration pa-

rameters, that are defined in the configuration file (JSON),

are passed to the client as key-value tuples. This can be

used to pass IB related parameters to the client (e.g. the

device and port number).

2) Connection. A connection is setup, after IB connection

information has been exchanged (e.g. via TCP sockets).

3) Preparation. The operation size, which dictates the size of

the messages being sent, respectively the size of RDMA

writes/reads being performed, is passed to the client,

allowing it to allocate matching buffers to use in the

benchmark. It is also reasonable to preallocate reusable

Work Requests during this phase.

4) Warmup. A configurable amount of operations are ex-

ecuted as a warmup, allowing the JVM and its JIT to

optimize the benchmark code.

5) Operation. This is the main phase of the benchmark,

executing the configured amount of operations. If a bidi-

rectional benchmark run is performed, dedicated threads

for sending and receiving are started. If a throughput

benchmark is being performed, two timestamps will be

taken right before the first operation starts and right

after the last one has finished. Otherwise, if a latency

measurement is performed, the time needed for each

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

50

operation is measured and stored in an array. This allows

calculating percentiles afterwards.

Furthermore, the benchmark utilizes the performance

counters of the IB HCA to determine the raw amount of

data being sent/received. This enables us to calculate the

overhead added by any software defined protocol which is

especially relevant for the socket-based libraries (§V-B).

6) Cleanup. The benchmark is finished, resources shall be

freed and all connections shall be closed.

The benchmark automatically fills up the receive queue

before the warmup and operation phases in order to avoid

Receiver Not Ready (RNR) timeouts, which would force the

sender to wait for a short amount of time, before retrying to

send a message.

After a benchmark run has finished successfully, the mea-

sured results are appended to a CSV-file, which can later be

plotted with a Python script, that is bundled with Observatory.

V. EVALUATION

In this Section, we present the evaluation results using

Observatory (§IV). An overview of all experiments is shown

in the following Table I.

Library/Benchmark OV Unidir Bidir Lat PingPong

ibverbs RDMA write x x x

ibverbs messaging x x x x x

jVerbs RDMA write x x x

jVerbs messaging x x x x x

DiSNI RDMA write x err x

DiSNI messaging err err err err err

neutrino RDMA write x x x

neutrino messaging x x x x x

IPoIB messaging x x x x x

JSOR messaging x x err x x

libvma messaging x x x x x

TABLE I: Overview of all experiments; OV = overhead.

The verbs-based libraries showed similar behaviors regard-

ing RDMA write and read, so that no additional insights could

be gained by analyzing both. For this reason, we decided to

only discuss RDMA write results.

In the following text we use the terms “operation” (op) and

“message” (msg) for referring only to the payload, excluding

overhead of the network protocols. Each throughput focused

benchmark run executes 100 million operations and each

latency focused benchmark run executes 10 million operations.

Starting with 8 KiB payload size, the amount of operations

is incrementally halved to avoid unnecessary long running

benchmark runs. We evaluated payload sizes of 1 byte to 1

MiB in power-of-two increments. When discussing the results,

we focus on the operation rate on small operations, with

payload sizes less than 1 KiB and on the throughput on middle

sized and large operations, starting at 1 KiB.

The throughput results are depicted as line plots with the left

y-axis showing the throughput in million operations per second

(Mop/s) and the right y-axis showing the throughput in GB/s.

For the latency results, the left y-axis shows the latency in µs

and the right y-axis the throughput in Mop/s. The dotted lines

always represent the operation throughput while the solid lines

represent either the throughput in GB/s or the latency in µs,

depending on the benchmark. For the overhead results, a single

y-axis describes the overhead in percentage in relation to the

amount of payload transferred on a logarithmic scale. On all

plot types, the x-axis depicts the size of the payload in power-

of-two increments from 1 byte to 1 MiB. Each benchmark run

was executed five times and the average is used to depict the

graph, while the error bars visualize the standard deviation.

A. Configuration

We ran all experiments on two servers with the following

hardware: Intel Xeon CPU E5-1650 v3 @ 3.50GHz (6 cores,

12 threads), 64 GB RAM, Mellanox ConnectX-3 HCA, 56

Gbit/s IB (Link width 4x), MTU size 4096. Both nodes run

CentOS 8.1 with the Linux Kernel version 4.18.0-151

The software used included OpenJDK 11.0.6, IBM SDK

8.0.6.6 with the J9 JVM 2.9, rdma-core v28.0, libvma 9.0.2,

gcc 8.3.1.

libvma. Flow steering must be activated for libvma

to redirect all traffic over IB, by setting the parameter

log num mgm entry size to -1 in the configuration file

/etc/modprobe.d/mlnx.conf for the IB kernel module. Other-

wise, libvma falls back to sockets over Ethernet.

JSOR. For JSOR, we set the send and receive buffer sizes

to 1 MiB, to avoid hanging connections [3]. However, the bidi-

rectional throughput benchmark did not terminate for buffer

sizes greater than 32 KiB. Furthermore, sudden disconnects

occurred for buffer sizes smaller than 512 byte. This seems to

be a known problem [4], but increasing the send and receive

queue size did not solve this issue.

DiSNI. There seems to be a problem with memory man-

agement in DiSNI, which causes the JVM to crash during

the benchmark. When looking at the stacktrace after a crash,

we observed that the last method call was either a malloc()

or free(). We tried to compile and run the benchmark with

different JDKs/JVMs (OpenJDK 8, OpenJDK 11, IBM SDK

8), but the problem could not be fixed. The crashes did not

occur after a certain amount of operations or time. However,

most of the times, we were not able to run Observatory with

DiSNI for more than a few minutes. The only benchmark type

that finished successfully was the unidirectional RDMA write

benchmark.

B. Overhead

In this Section, we present the results of the overhead

measurements of the described libraries/implementations. As

overhead, we consider the additional amount of data that is

sent along with the payload data of the user. This includes

any data of any network layer down to the HCA. We measured

the amount of data emitted and received by the port using the

performance counters port xmit data and port rcv data of the

HCA. These counters contain the amount of byte sent/received

per lane, which means the values need to be multiplied with

the link width to get the correct amount of data. The cards in

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

51

our test systems have a link width of 4, leading to a granularity

of 4 byte for the measured values.

IPoIB and libvma implement buffer/message aggregation

when sending data, which allows increasing throughput and

reducing overhead when sending many small messages in a

row. However, in order to determine the general per message

overhead, we used the pingpong benchmark which does not

allow aggregation due to its nature. The results of both types

(sockets/verbs) are shown in Fig. 2. Since all verbs-based

libraries generate the identical amount of overhead, we only

include the results of ibverbs.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

100

101

102

103

104

Da
ta

 O
ve

rh
ea

d
Pe

rc
en

ta
ge

IPoIB JSOR ibverbs libvma

Fig. 2: Avg. overhead (%) in relation to the payload size.

We try to give a rough breakdown of the overhead involved

with each method evaluated. A precise breakdown is rather

difficult with just the raw amount of data captured from the

ports as re-transmission of packages are also captured (e.g. RC

queue pairs or custom protocols based on UD queue pairs).

The results in Fig. 2 show that the overhead for messaging

operations of verbs-based libraries is 5500%, connotating that

for a single byte of payload in each of the ping and pong

messages, a total of 112 byte are sent and received (2 byte

payload, 110 byte overhead). When using the RC protocol

each package starts with a local routing header (8 byte),

followed by a base transport header (12 byte) and ends with an

invariant CRC (4 byte), as well as a variant CRC (2 byte) [14],

which makes a total of 26 byte of metadata. Sent packages

must be acknowledged, typically one ACK/NACK for multiple

messages. Each ACK/NACK message contains an additional

acknowledge extended transport header, which is 4 byte long.

Acknowledging multiple packages is however prevented by

the ping-pong pattern used in the benchmark, see Fig. 3.

Each ping-pong iteration requires two messages to be sent

and both of them need to be acknowledged, so that the total

amount of metadata sums up to 2 ∗ 26 byte+2 ∗ 30 byte =

112 byte. The 2 byte of payload are still missing, probably

due to the 4 byte granularity of the hardware counters. The

overhead stays constant, which leads to an overall decreasing

per message overhead with increasing payload size. Starting

with 1 KiB payload size the overhead drops below 10% and

with 8 KiB below 1%.

Server Client

Ping26B metadata + 1B payload
Ack

30B metadata

Pong

26B metadata + 1B payload

Ack
30B metadata

Fig. 3: Verbs-based ping-pong communication pattern.

The overhead of the socket-based solutions is overall

slightly higher. Again, considering 1 byte messages, JSOR

adds an additional overhead of 7500%, libvma 7900% and

IPoIB 9100%. IPoIB and libvma rely on UD messaging verbs

which add a datagram extended transport header (8 byte) to

the IB header and include additional information to allow IP-

address based routing of the packages. The IPoIB specification

describes an additional header of 4 octets (4 byte) and IP

header (e.g. IPv4 20 byte + 40 byte optional) which are added

alongside the message payload [20]. libvma adds an IP-address

(4 byte) and Ethernet frame header (14 byte) [7]. Remaining

data is likely committed towards a software signaling protocol.

Regarding JSOR, we could not find details of the protocol as

it is closed source.

For IPoIB and libvma the overhead drops below 10%

starting with message sizes of 4 KiB and decreases further to

around 4%-6% with increasing message sizes. JSOR manages

to keep the overhead below 10% starting with 1KiB messages

and below 1% with 128 KiB, which is closer to the verbs-

based libraries than IPoIB and libvma.

C. Unidirectional Throughput

This section presents the throughput results of the unidirec-

tional benchmark. Starting with the messaging results depicted

in Fig. 4, neutrino and ibverbs are mostly on par regarding

operation throughput for small messages (< 1 KiB), with

ibverbs having slight advantages but also showing higher signs

of jitter. However, jVerbs is yielding very poor performance

with only 6000 operations per second for message sizes of up

to 4 KiB. Although we cannot provide results for DiSNI due

to the stability issues we experienced V-A, we observed the

same behavior as with jVerbs, during the few benchmark runs

that would complete. Starting with 8 KiB messages, there is

virtually no difference between the three libraries.

Looking at the socket-based libraries, we can see that on

small payload sizes up to 64 byte, IPoIB achieves a throughput

of approximately 1.1 Mop/s. With increasing payload size,

the throughput stagnates at 128 KiB message size with 4.1

- 4.2 GB/s. The results of libvma show a highly increased

throughput of 5.0 to 5.4 Mop/s for up to 64 byte messages.

Overall throughput for middle and large sized messages ini-

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

52

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

0

2

4

6

8

10

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 in

 G
By

te
/s

IPoIB
JSOR

ibverbs
jVerbs

libvma
neutrino

Fig. 4: Unidir. throughput (msg), increasing message size,

tially surpasses IPoIB’s, but stagnates at 3.3 GB/s starting

with 2 KiB messages. JSOR achieves a significantly lower

throughput of 3.2 - 4.0 Mop/s for up to 256 byte messages.

However, it provides a much higher throughput starting at 512

KiB message size compared to IPoIB and libvma. Throughput

saturates at 64 KiB message size with approx. 6.2 GB/s, which

is on par with the verbs-based libraries.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 in

 G
By

te
/s

DiSNI ibverbs jVerbs neutrino

Fig. 5: Unidir. throughput (write), increasing buffer size.

The results in Fig. 5 show, that the RDMA write throughput

of jVerbs and DiSNI (6.0 - 7.0 Mop/s) is less than half of

ibverbs’s RDMA write throughput (approximately 15.0 Mop/s)

for small payload sizes up to 64 byte, with DiSNI yielding

approximately 500 Kop/s more than jVerbs. However, neutrino

achieves an operation rate much closer to ibverbs with 12.5

Mop/s. Starting with 128 byte, ibverbs’s throughput abruptly

decreases to 10 Mop/s with high jitter. For large sized buffers,

all three libraries yield a similar throughput, saturating at 8

KiB with 6.0 GB/s for jVerbs and neutrino and 16 KiB with

6.2 GB/s for the other two libraries.

D. Bidirectional Throughput

This section presents the throughput results of the bidirec-

tional benchmark. For full-duplex communication we expect

roughly doubled throughput.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

0

5

10

15

20

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 in

 G
By

te
/s

IPoIB
ibverbs

jVerbs
libvma

neutrino

Fig. 6: Bidir. throughput (msg), increasing message size.

Fig. 6 depicts messaging results and as expected, all verbs-

based implementations show an increased message rate on

small messages and roughly double the throughput on large

messages compared to the unidirectional results (§V-C). How-

ever, the socket-based libraries did not scale with two nodes,

but even degraded in most cases, with JSOR not able to even

finish the benchmark for all payload sizes (§V-A).

The message rate of ibverbs is roughly 17.5 Mop/s, though

highly jittery, for payload sizes up to 64 Byte and constantly

decreasing afterwards, saturating the bandwidth at 256 KiB

with 11.7 - 11.8 GB/s. As with the unidirectional benchmark,

jVerbs is again showing a very poor message rate (8000 Op/s)

for payload sizes smaller than 8 KiB, but manages to achieve

a high bandwidth, on par with ibverbs and neutrino, starting

with 16 KiB messages. neutrino did not manage to fully double

its message rate from the unidirectional results, but achieves

a respectable 14.0 Mop/s for payload sizes up to 64 Byte. At

512 byte and onwards, it yields the same message rate and

data throughput as ibverbs.

Regarding the socket-based libraries, libvma performs best

with a message rate of roughly 2.7 - 3.0 Mop/s for payload

sizes up to 256 byte, saturating at 16 KiB with a throughput

of 3.4 - 3.5 GB/s. IPoIB shows a slightly improved message

rate of 1.3 - 1.6 Mop/s for messages smaller than 128 byte,

but does not manage to yield a throughput higher than 2 GB/s,

stagnating at 128 KiB payload size.

Fig. 7 depicts the results of the bidirectional RDMA write

benchmark, with ibvebs roughly doubling its operation rate

to 30.0 Mop/s for payload sizes up to 64 byte. The operation

rates of neutrino and jVerbs have not fully doubled with 20.0 -

21.0 Mop/s and 11.0 - 11.1 Mop/s respectively for buffer sizes

smaller than 512 byte. Starting at 4 KiB, there is virtually no

difference between the three libraries, with saturation reached

at 32 KiB and 11.8 GB/s.

E. One-sided latency

Next we are evaluating the latency of a single operation.

Section V-F further discusses full RTT latency for a ping-pong

communication pattern. Results are separated by socket-based

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

53

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 in

 G
By

te
/s

ibverbs jVerbs neutrino

Fig. 7: Bidir. throughput (write), increasing buffer size.

and verbs-based. Due to space constraints, we try to limit the

discussion to the most interesting values, and only depict the

99.99th percentiles for the verbs-based and the average values

for the socket-based libraries.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

100

101

102

103

La
te

nc
y

in

s

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

ibverbs jVerbs neutrino

Fig. 8: 99.99% latency (msg), increasing message size.

The average latency of ibverbs and neutrino is on par at 2.0

µs for message sizes up to 256 byte, with ibverbs only showing

a slight advantage of less than 0.1 µs. However, jVerbs shows

unexpected average latency results. Up to 4 KiB message size,

which equals the used MTU size, the latency is high and

fluctuating at approx. 7 - 11 µs with high signs of jitter. At

4 KiB and beyond it equals the average latencies of the other

transfer methods.

To further analyze this issue, we looked at the 99.9th and

99.99th percentiles. While ibverbs and neutrino are showing

expected behavior and overall low latency regarding the 99.9th

percentiles, jVerbs is now on par with them. However, looking

at the 99.99th percentiles (i.e. 1000 worst out of 10 million,

depicted in Fig. 8), jVerbs is again showing poor results, even

for large payload sizes, indicating that only a small amount

of messages yield high latencies, raising the average latency

results. The maximum latency (i.e. single worst out of 10

million) for buffer sizes up to 1 KiB is extraordinary high, with

2.13 seconds, confirming our assumption. However, ibverbs

and neutrino are still showing similar and stable results of 5.5

- 6.0 µs for small messages.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

10 1

100

101

102

La
te

nc
y

in

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

IPoIB JSOR libvma

Fig. 9: Avg. latency (msg), increasing message size.

For the socket-based solutions, the average latencies in Fig.

9 show that JSOR performs best with an average per operation

latency of roughly 0.3 µs for up to 1 KiB messages. With

further increasing payload size, latency increases as expected.

libvma shows similar results with a slightly higher latency of

0.5 - 0.9 µs for small messages. IPoIB follows with a further

increased average latency of 1.0 to 1.2 µs for small payload

sizes. These results, especially JSOR’s, seem unexpectedly

low at first glance. However, when considering the socket

interface, it does not provide means to return any feedback

to the application when data is actually sent. With verbs, one

polls the completion queue and as soon as the work completion

is received, it is guaranteed that the local data is sent and

received by the remote. A socket send-call however, does not

guarantee that the data is sent once it returns control to the

caller. Typically, a buffer is used to allow aggregation of data

before sending it. JSOR, libvma and IPoIB implement message

aggregation, which can also be cross-checked by the ping-pong

benchmark, which prevents aggregation (§V-F).

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

100

101

102

La
te

nc
y

in

s

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s
DiSNI ibverbs jVerbs neutrino

Fig. 10: 99.99% latency (write), increasing message size.

Regarding RDMA write latencies, all four libraries yield

average values very close to each other. For buffer sizes

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

54

smaller than 256 byte, the average latency is around 2 µs, with

DiSNI and ibverbs managing to stay slightly under 2 µs and

jVerbs yielding latencies slightly higher than the rest. However,

looking at the 99.99th percentile values (depicted in Fig. 10),

we observed highly increased latency values of roughly 14 µs

for jVerbs. From 4 KiB to 128 KiB the latencies are similar

to the other libraries, but then abruptly jump to over 400 µs

and rise even more, reaching over 600 µs for 1 MiB message

sizes. The other libraries manage to not rise over 200 µs.

F. Ping-Pong latency

In this section, we present the results of the ping-pong

latency benchmark. Due to the nature of the communication

pattern, the methods of transfer are limited to messaging

operations for verbs-based implementations. Using RDMA

is also possible, but requires additional data structures and

control, currently not implemented in Observatory.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

101

102

La
te

nc
y

in

s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

ibverbs jVerbs neutrino

Fig. 11: 99.99% ping-pong latency, increasing message size.

Regarding the average latencies, i.e. full round-trip-times, of

the verbs-based libraries, all three perform very similar to each

other, yielding values between 3 and 4 µs for message sizes up

to 1 KiB, with ibverbs showing the best results and neutrino

performing slightly better than jVerbs. However, looking at the

99.99th percentiles (depicted in Fig. 11), jVerbs already starts

with more than 400 µs for 1 byte messages, while ibverbs and

neutrino manage to yield latencies of 16 - 18 µs for payload

sizes up to 1 KiB. At 8 KiB message size, jVerbs reaches

its lowest latency at roughly 320 µs. However, this is still

extraordinary high, compared to ibverbs and neutrino.

Regarding the average latencies of the socket-based meth-

ods, depicted in Fig. 12, JSOR shows low average latencies

of 2.1 to 3.5 µs for message sizes up to 512 byte. A small

”latency jump“ of around 1 µs is notable from 64 byte to 128

byte message size. The results of libvma are slightly higher

with 3.7 to 5.5 µs for payload sizes up to 512 byte and the same

”latency jump“ from 128 byte to 256 byte. IPoIB’s latency is

distinctly higher, being constantly at 18.2 - 19.0 µs up to 512

byte message size. Starting with 128 KiB, libvma’s latency

values are abruptly rising faster than IPoIB’s and make a large

”jump“ from 512 KiB to 1 MiB.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

100

101

102

103

104

La
te

nc
y

in

s

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

IPoIB JSOR libvma

Fig. 12: Avg ping-pong latency, increasing message size.

VI. CONCLUSIONS

InfiniBand is transparently available for HPC applications

using MPI. However, many big-data applications are devel-

oped in Java and need to be adapted towards a specific verbs-

based library in order to benefit from the full potential of an

IB network. In this paper we have proposed the Observatory

benchmark, which aims at comparing different existing IB

solutions for Java. The benchmark is open source and has

a lean interface, allowing to easily add other IB libraries.

Socket-based solutions are transparent for the application,

but the evaluation results show that they cannot exploit

the full hardware potential, especially regarding bidirectional

communication. The latency is at least half on 56 Gbit/s

hardware compared to Gigabit Ethernet and sometimes is even

as low as 2-5 µs for small messages. The throughput is at

least ten-fold faster and it is possible to saturate 56 Gbit/s

on unidirectional communication. libvma is a good choice

providing transparency, while not requiring a proprietary JVM.

Verbs-based solutions are not transparent for the application

but are a must for exploiting the full potential of IB networks.

jVerbs performs well and brings nearly native performance

on RDMA operations to the Java space. However, message

passing is slow with jVerbs and it can only be used with IBM’s

SDK (limited to Java 8). For DiSNI, the RDMA write results

look promising, but we observed the same messaging issues as

with jVerbs. neutrino, our own open source IB library shows

overall very good results and is compatible with new Java

versions.

Future work includes extending Observatory with more com-

munication patterns, integrate multi-threading support and

evaluations on 100 GBit/s IB. Also, other IB connection types,

such as “Unreliabe Datagram” (UD) and “Dynamic Connected

Transport” (DCT) are planned to be evaluated.

REFERENCES

[1] Apache ignite. https://ignite.apache.org/.

[2] Disni github. https://github.com/zrlio/disni.

[3] Ibm. rdma communication appears to hang. https://www.ibm.com/
support/knowledgecenter/en/SSYKE2 7.0.0/com.ibm.java.lnx.70.doc/
diag/problem determination/rdma jsor hang.html.

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

55

[4] Ibm. rdma connection reset exceptions. https://www.ibm.com/support/
knowledgecenter/en/SSYKE2 7.0.0/com.ibm.java.lnx.70.doc/diag/
problem determination/rdma jsor connection reset.html.

[5] Infinispan. http://infinispan.org/.
[6] iperf - the ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/.
[7] libvma github. https://github.com/Mellanox/libvma/.
[8] Mellanox. https://www.mellanox.com/.
[9] neutrino github. https://github.com/hhu-bsinfo/neutrino.

[10] Ofed 3.5 release notes. https://downloads.openfabrics.org/OFED/
release notes/OFED 3.5 release notes.

[11] Openfabrics alliance. https://openfabrics.org/.
[12] Osu micro-benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.
[13] Top500 list.
[14] Infiniband architecture specification volume 1, release 1.3. http://www.

infinibandta.org/, 2015.
[15] S. Ekanayake and G. Fox. Evaluation of java message passing in high

performance data analytics. 03 2014.
[16] R. R. Exposito, S. Ramos, G. L. Taboada, J. Touriño, and R. Doallo.

Fastmpj: a scalable and efficient java message-passing library. Cluster

Computing, 17:1031–1050, Sept. 2014.
[17] D. Goldenberg, T. Dar, and G. Shainer. Architecture and implementation

of sockets direct protocol in windows. 2006 IEEE International

Conference on Cluster Computing, pages 1–9, 2006.
[18] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and

S. U. Khan. The rise of “big data” on cloud computing: Review and
open research issues. Information Systems, 47:98 – 115, 2015.

[19] W. Huang, H. Zhang, J. He, J. Han, and L. Zhang. Jdib: Java applications
interface to unshackle the communication capabilities of infiniband
networks. In Proceedings of the 4th Annual Symposium on Cloud

Computing, pages 596–601, 10 2007.
[20] V. Kashyap. Ip over infiniband (ipoib) architecture. https://www.ietf.

org/rfc/rfc4392.txt, April 2006.
[21] S. Liang. Java Native Interface: Programmer’s Guide and Reference.

Addison-Wesley Longman Publishing Co., Inc., 1999.
[22] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and

N. Nystrom. Use at your own risk: The java unsafe api in the wild.
SIGPLAN Not., 50:695–710, Oct. 2015.

[23] S. Mehta and V. Mehta. Hadoop ecosystem: An introduction. In Int.

Journal of Science and Research (IJSR), volume 5, June 2016.
[24] S. Nothaas, K. Beineke, and M. Schoettner. Ibdxnet: Leveraging in-

finiband in highly concurrent java applications. CoRR, abs/1812.01963,
2018.

[25] S. Nothaas, Ruhland. A benchmark to evaluate infiniband solutions for
java applications. Technical report, 8 2019.

[26] P. Stuedi. Direct storage and networking inter-
face (disni). https://developer.ibm.com/open/projects/
direct-storage-and-networking-interface-disni/, 2018.

[27] P. Stuedi, B. Metzler, and A. Trivedi. jverbs: Ultra-low latency for data
center applications. In Proceedings of the 4th Annual Symposium on

Cloud Computing, SOCC ’13, pages 10:1–10:14. ACM, 2013.
[28] G. L. Taboada, J. Touriño, and R. Doallo. Java fast sockets: Enabling

high-speed java communications on high performance clusters. Comput.

Commun., 31:4049–4059, Nov. 2008.
[29] S. Thirugnanapandi, S. Kodali, N. Richards, T. Ellison, X. Meng,

and I. Poddar. Transparent network acceleration for java-based
workloads in the cloud. https://www.ibm.com/developerworks/library/
j-transparentaccel/, January 2014.

[30] J. Vienne, J. Chen, M. Wasi-Ur-Rahman, N. S. Islam, H. Subramoni, and
D. K. Panda. Performance analysis and evaluation of infiniband fdr and
40gige roce on hpc and cloud computing systems. In IEEE 20th Ann.

Symposium on High-Performance Interconnects, pages 48–55, 2012.
[31] H. Zhang, W. Huang, J. Han, J. He, and L. Zhang. A performance study

of java communication stacks over infiniband and giga-bit ethernet. In
2007 IFIP International Conference on Network and Parallel Computing

Workshops (NPC 2007), pages 602–607, 2007.

CHAPTER 3. INFINIBAND IN THE CONTEXT OF JAVA

56

Chapter 4

Modern Foreign Function & Memory

Access in Java

4.1 Foreign Function & Memory API

The use of the Unsafe API is explicitly not recommended by Java developers due to

the lack of guarantees regarding compatibility and availability - it is still an internal

API, which can change between individual Java versions or even disappear completely.

A good example of this is the defineClass method, which could be used to load

arbitrary classes at runtime using a byte array. This method was initially marked as

deprecated within the Unsafe API with Java version 9 and then completely removed

with the release of Java version 11[47]. Projects and libraries that relied on this func-

tion therefore had to switch to alternative methods of defining classes at runtime. As

the JDK developers recognized a greater demand for functionalities that can access

native areas of the system, the development of Project Panama began in 2014.

"We are improving and enriching the connections between the Java

virtual machine and well-defined but “foreign” (non-Java) APIs, in-

cluding many interfaces commonly used by C programmers."

- Oracle, 2014 [15]

As explained in the previous quote, this project aims to significantly improve the

interaction between Java and native code. One of the main components involved in

this is the Foreign Function & Memory API first introduced in JDK Enhancement

Proposal 412[48]. The goal here is to gradually transfer the functionalities provided

by the Unsafe API into more superior abstractions that carry some safety guarantees.

Furthermore, another objective is to significantly reduce the effort required to call a

57

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

native function from the Java space by dropping the requirement for a layer of glue-

code. Instead, it relies on tools that can generate the code required to control native

functions. One of these tools is jextract [49], which accepts header files belonging to

C libraries and generates Java classes from them, which map the data structures and

functions available within the library. It supports the generation of readable source

code as well as precompiled class files. As this tool was increasingly used in this work,

a plugin for the Gradle build system was also developed, which integrates jextract into

the build process. As this tool was increasingly used for a project developed within

this work, a plugin for the Gradle build system was developed - also in the context

of this work - which integrates jextract into the build process[50]. This plugin allows

the specification of data structures and functions of a header file within the build

configuration, whereupon the corresponding classes are automatically available within

the project - i.e. without manually calling the jextract tool.

build.gradle Groovy

1 jextract {
2 header(" ${project.projectDir}/src/main/c/stdio.h ") {
3 libraries = [" stdc++ "]
4 targetPackage = " org.unix "
5 className = " Linux "
6 functions = [" printf "]
7 }
8 }

Figure 4.1: Using the gradle-jextract plugin to access native functions.

The code snippet in figure 4.1 shows an example configuration of the plugin. The

plugin is instructed to make the printf function of the standard library available

in the Java code using the jextract tool by means of the following steps within the

following lines.

2 The header file to be evaluated for extraction is specified in the first step using

the header method.

3 The libraries array contains the names of the shared libraries required at

runtime. These are loaded automatically before the generated methods are used.

4 The targetPackage property specifies the package in which the generated code

is to be placed.

5 The className property specifies the name of the class in which the generated

functions are to be defined.

58

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

6 Finally, the functions array is used to specify which functions are to be ex-

tracted from the header file. These functions are then available within the spec-

ified class.

In addition to individual functions, it is also possible to extract structs, constants, type

definitions, unions and individual variables from the header file using the corresponding

configuration options of the plugin. However, one restriction should be noted here, as

otherwise unexpected errors may occur during program execution. Functions that are

defined within the C source code using the inline keyword are inserted in their

entirety at compile time at the locations where they are called, so that no real function

call takes place. In other words, there is no function with a corresponding function

name in the compiled code or within the shared library. As the Foreign Function

& Memory API is based on a dynamic lookup within the shared library using the

function’s name at runtime, such a function cannot be found or called. In such a case,

the corresponding lookup simply returns null , which can lead to confusion during

programming[51].

Linux.java Java

1 static final AddressLayout POINTER = ValueLayout.ADDRESS.withTargetLayout(
2 MemoryLayout.sequenceLayout(JAVA_BYTE)
3);
4

5 static final FunctionDescriptor PRINTF_FD = FunctionDescriptor.of(
6 ValueLayout.JAVA_INT,
7 POINTER
8);
9

10 static final MethodHandle PRINTF_MH = RuntimeHelper.downcallHandleVariadic(
11 " printf " ,
12 PRINTF_FD
13);
14

15 public static int printf(MemorySegment __format, Object... x1) {
16 try {
17 return (int)PRINTF_MH.invokeExact(__format, x1);
18 } catch (Throwable ex) {
19 throw new AssertionError(" should not reach here " , ex);
20 }
21 }

Figure 4.2: Code generated by jextract for calling the native printf function.

A simplified form of the generated code of the jextract tool for the printf function is

shown within the code snippet in Figure 4.2. To ensure that Java can check at runtime

whether the function arguments specified during the call are of the correct type, a

FunctionDescriptor must first be specified (lines 5 to 8). Within this, the native

function’s signature is specified. The first argument specifies the type of the return

value. The subsequent arguments then specify the types of the parameters. As the

return value of the native printf function is an integer value - namely the number of

59

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

characters written or output - the first argument is set to JAVA_INT , i.e. an integer.

The following arguments are pointers to arrays of bytes, i.e. strings, which is why the

following parameter is set to POINTER (a layout previously defined in lines 1 to 3).

In order to obtain a MethodHandle , a class that can forward calls to native functions,

the downcallHandleVariadic method of the helper class RuntimeHelper generated

by jextract must be called (line 10). Here, the name of the function, as defined within

the shared library, must be specified as the first parameter. This is used to determine

the entry address of the function within the shared library. The second parameter is

the previously created FunctionDescriptor with which the MethodHandle can check

the parameter types when called and generate an exception in the event of an error,

which can be handled by the program code. Finally, a helper function is generated

in lines 15 to 21 , with which the printf function can be called as if it was called

within C source code. A notable advantage here is that not a single line of C code

needs to be written; all definitions take place within Java. Accordingly, no additional

code needs to be compiled for existing shared libraries, as is the case with JNI.

NativeHelloWorld.java Java

1 import java.lang.foreign.Arena;
2 import static org.unix.Linux.printf;
3

4 public final class NativeHelloWorld {
5

6 public static void main(String... args) {
7 try (var arena = Arena.openConfined()) {
8 var format = arena.allocateUtf8String(" Hello %s ");
9 var value = arena.allocateUtf8String(" World ");

10

11 printf(format, value.address());
12 }
13 }
14 }

Figure 4.3: Calling the native printf function from Java code using generated bindings.

The generated code can then be called using a simple import within Java. This is

demonstrated in an example in Figure 4.3. First, a Arena is opened in line 7 , which

represents an abstraction within the Foreign Function & Memory API for providing

off-heap memory and provides some auxiliary functions for interacting with native

functions. One of these functions is allocateUtf8String (used in lines 8 and 9),

which converts a Java string into a memory buffer that can be passed on to native

code. This is necessary because the standard String class uses UTF-16 encoding for

storing its data within the Java programming language[52]. As soon as the parameters

for the function call have been prepared, the printf function can be called (line

11). Visually, the function call barely differs from the notation that would be used

within C code. Code that was previously written in the C programming language

60

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

can therefore be transferred to Java very easily in this way. Another advantage is the

Oracle developers’ goal of making the Foreign Function & Memory API superior to JNI

in terms of performance and ease of use. Benchmarks already show that the API can

work faster than JNI[53]. The aforementioned advantages can be utilized to create an

easier to maintain, usable and more efficient connection between InfiniBand hardware

and the Java programming language.

4.2 Unified Communication X

The Neutrino project developed in 3.2 already provides an abstraction layer for working

with InfiniBand hardware in Java, which is based on the JNI and the Unsafe API. It

also uses a similar mechanism like the jextract tool of the Foreign Function & Memory

API to determine metadata associated with data structures, such as field offsets and

sizes. One difference here, however, is that the metadata is statically integrated within

the natively written code and any change to the Verbs API therefore requires this

metadata to be modified and the JNI glue-layer to be recompiled. In the long term, this

project requires a great deal of maintenance, which can be easily circumvented using

the Foreign Function & Memory API. As mentioned in subsection 3.1.1, the Verbs API

can be used for communication and control of InfiniBand hardware. However, as this

API is based on a very low level and requires many configuration steps, it can take

some time before a fully functional abstraction for using the hardware is developed

and can be used. For this reason, the Unified Communication X (UCX)[16] project

was established by the Unified Communication Framework Consortium. It provides

a high-level framework for the use of high-speed interconnect hardware and aims to

make it easy to use. This framework consists of a total of three different layers, which

can be used as needed.

• ucs / Unified Communication Services

This layer contains shared functionalities that can be used by the other layers

and also the program layer. These include, for example, functions for managing

memory or the use of non-blocking event queues.

• ucp / Unified Communication Protocols

All high-level functions for using high-speed interconnect hardware are provided

within this layer. In contrast to the Verbs API, barely any configuration steps

are necessary and the functions are immediately ready for use.

• uct / Unified Communication Transport

However, if precise control of the functionality is required, the transport layer

61

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

of the framework can be used, which provides low-level functions. These can be

compared with the functions of the Verbs API, but still offer a certain degree of

abstraction.

The high-level layer of the API, the ucp layer, builds on top of the uct layer. It

bundles several low-level function calls within a single high-level function call in or-

der to minimize the load on the programmer that would otherwise be caused by the

configuration or orchestration of an operation.

Figure 4.4: The Unified Communication X framework’s architecture[54].

The entire architecture of the framework is shown within Figure 4.4. A unique feature

of the framework is that it provides support for other high-speed interconnect hardware

besides InfiniBand such as Cray’s Gemini/Aries network controller. It also offers the

option of using the integrated memory within graphics cards for data transfers using

the CUDA framework (NVIDIA) or the ROCm framework (AMD). However, one of the

most powerful features of the framework is the way in which it is configured. Using the

high-level API (ucp), the framework scans the hardware of the executing computer

and determines optimal parameters for the configuration based on this information.

Configuration by the program is therefore not strictly necessary and may be a disad-

vantage in some cases where the effects of certain configuration options are not fully

known. In the case of automatic configuration using multiple Network Interface Con-

trollers (NICs), the framework also supports a feature called Multi-Rail Support [55].

In this context, several NICs are used in parallel during a data transmission. For this

purpose, the framework uses the information determined belonging to the NICs in or-

der to achieve an optimal distribution of the data to the individual NICs. This means

that larger data transmissions can be split over several physical connections and the

62

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

available bandwidth can be optimally utilized. This mechanism is described in more

detail in the following example.

Example

A computer has three network controllers - a 400 Gbit/s InfiniBand controller and

two 10 Gbit/s Ethernet controllers. A data transfer is initiated using the UCX

framework. As the framework has previously scanned the configuration of the

computer and knows about the available NICs, it can distribute the data according

to the speeds of the NICs and send it via each of them. In total, this results in a

theoretically usable data transmission bandwidth of 420 Gbit/s instead of the 400

Gbit/s available when only using the InfiniBand card.

The use of several network controllers is particularly advantageous when there is an

increased amount of large data transfers, as the bandwidths of the individual physical

connections can be optimally utilized and latency can be neglected.

Context
ucp_context_h

Worker
ucp_worker_h

Endpoint
ucp_ep_h

Listener
ucp_listener_h

Figure 4.5: Basic UCX components required for establishing a network connection.

Unlike the Verbs API, a small number of components are required for network com-

munication using the UCX framework. These are displayed within Figure 4.5 together

with the names of their associated type definitions. The components shown each have

the following tasks.

• Context - As with the Verbs API, a context must first be created using the UCX

framework, which is used to manage the resources created with it. This context

is initialized using the ucp_init function.

• Worker - This abstraction can be compared to an event loop. The worker con-

tains logic for triggering send operations and for querying the statuses associated

with the executed operations. It should be noted here that a run of the logic must

be triggered manually by a call in the program code, i.e. the worker itself does not

provide any threading functionalities and a mechanism for continuous triggering

must be developed itself. The worker is created using the ucp_worker_create

function, which accepts the context as a parameter.

63

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

• Endpoint - Within the UCX framework, an endpoint can be compared to a

socket of the Sockets API. Individual messages, streams or even RDMA opera-

tions can be executed using the functions that can be called on it. The multi-rail

feature mentioned above is supported within an endpoint, so that an endpoint

can also be assigned to several physical connections. An endpoint is created using

the ucp_create_ep function, specifying the parent worker.

• Listener - In order for a server to accept connections, a listener must be cre-

ated within the UCX framework, which acts similarly to a server socket of the

Sockets API. Together with it, a callback is defined, which is called for con-

nection requests and can therefore decide in fine granularity whether a connec-

tion should be accepted, established or rejected. A listener is created using the

ucp_listener_create function and specifying the worker.

Unlike the Verbs API, connections can also be established by specifying an IP address

and a port, provided the computers involved are connected within an IP network.

For this purpose, the UCX Framework exchanges the connection information of the

InfiniBand connection out-of-bounds via an IP connection so that the computers can

then connect via InfiniBand. Since the use of a relatively small API layer leads to

a significantly reduced effort within the maintenance caused by changes, the UCX

framework in combination with Java’s Foreign Function & Memory API is ideally

suited for the development of an easily maintainable integration of InfiniBand hardware

within the Java ecosystem. This objective is pursued in the following project and later

compared with other frameworks and libraries in an evaluation.

64

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

4.3 Infinileap: Modern High-Performance Network-

ing for Distributed Java Applications based on

RDMA

Filip Krakowski, Fabian Ruhland and Michael Schöttner. Infinileap: Modern High-

Performance Networking for Distributed Java Applications based on RDMA. In 27th

IEEE International Conference on Parallel and Distributed Systems, ICPADS 2021,

Beijing, China, December 14-16, 2021.

Contributions:

The Infinileap project is based on the findings of the Neutrino project and relies on

new Java technologies that improve access to native functionalities as well as on the

OpenUCX Project, which abstracts access to InfiniBand hardware. It was mainly im-

plemented by the author, while Fabian Ruhland contributed some bug fixes.

First, the author implemented the new access layer using the new Foreign Function

& Memory API. As the components used were still in incubator status at this stage,

there was also regular communication with project leaders at Oracle, which also in-

volved Michael Schöttner and Fabian Ruhland in a number of video conferences. For

the same reason, the author had to regularly adapt the implemented solution to the

changes in the JDK and made contributions to the OpenJDK project in the form of bug

fixes. The author also uncovered a number of issues in the OpenUCX project, which

were subsequently discussed with the respective developers. The main contribution of

this work is the development of an abstraction layer based on the OpenUCX library

and some auxiliary functions in Java, which makes access to InfiniBand hardware sig-

nificantly easier.

Furthermore, the author has evaluated the implemented solution in specially devel-

oped benchmarks, which have extended the JMH framework with a distributed mode.

Another main contribution are the insights gained from this. These showed the Oracle

developers how the use of the Foreign Function & Memory API in real applications

affects performance. The paper was written by the author, while Michael Schöttner

contributed some suggestions for improvement and did the proof reading. In addition,

Michael Schöttner and Fabian Ruhland provided valuable advice in many discussions.

Status: published

65

Infinileap: Modern High-Performance Networking

for Distributed Java Applications based on RDMA

Filip Krakowski

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

filip.krakowski@hhu.de

Fabian Ruhland

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

fabian.ruhland@hhu.de

Michael Schöttner

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—In this paper, we propose Infinileap, a modern net-
working framework enabling high-performance memory transfer
mechanisms like Remote Direct Memory Access (RDMA) for
applications written in Java. Infinileap is based on the Open
Communication X (UCX) framework, which is accessed from
Java. This is accomplished through Oracle’s Project Panama,
which is currently in the preview phase and aims to significantly
improve interoperability between Java and "foreign" languages,
such as C. In contrast to often used internal and unsupported
JDK APIs, Project Panama’s APIs are explicitly intended for
use and developers are encouraged to adapt their existing code
accordingly. Using Project Panama, we implement an object
as well as future-oriented framework based on UCX. Our
experiments show that Infinileap and thus Project Panama’s
innovations work reliably and efficiently under heavy load and
also, within benchmarks implemented for this purpose based on
the Java Microbenchmark Harness (JMH), achieve very good
performance results with over 110 million messages per second
and round-trip latencies below two microseconds with a single
ConnectX-5 InfiniBand (single-port) network interface controller.

Index Terms—OpenUCX, Project Panama, Java, InfiniBand,
Remote Direct Memory Access

I. INTRODUCTION

Driven by the ever-increasing demands that modern dis-

tributed applications place on their underlying systems,

RDMA-enabled hardware like InfiniBand is increasingly being

adopted in more and more areas of cloud computing. Public

platforms such as Amazon Web Services or Microsoft Azure

already offer instances that support RDMA. In addition to the

usual advantages such as low latency and high bandwidth,

this type of hardware also offers offloading techniques such

as tag matching or adaptive routing, which relieve the system’s

CPU and thus allow more computing time for application

threads. Work is also in progress on so-called Data Processing

Units (DPUs), which aim to perform data reception and

transmission as well as programmable computations directly

on a SmartNIC like NVIDIA’s Bluefield-2 without having to

use the PCI bus for larger data transfers. All these technologies

have in common that, from the developer’s point of view,

the programming differs significantly from traditional socket

programming.

On the one hand, low-level user-space libraries like libib-

verbs allow full and direct control over InfiniBand hardware,

but on the other hand, these require a lot effort and expertise

on hardware details in order to achieve reasonable results

regarding network latency and throughput - especially for

tuning configuration parameters.

Considering this background, the Unified Communicaton X

(UCX) project was founded by leading industrial as well as

academic institutions, addressing the mentioned challenges[1].

As the name suggests, the project aims to unify network

communication between heterogeneous systems using differ-

ent transport techniques (including RDMA), under a single

abstract interface thus making the aforementioned advantages

more accessible to the masses. Instead of different APIs for

different transports, the developer is provided with one API

for many transports. This allows programs based on the UCX

framework to be executed on different computer and network

architectures without changing the program code.

Many of the Big Data frameworks available today, such as

Apache Spark or Apache Flink, continue to use ordinary socket

communication for data exchange between cluster participants.

This is no different for message broker services such as

Apache Kafka or latency-critical coordination services such

as Apache ZooKeeper. This is not because the developers

behind these projects do not want to use fast interconnects,

but rather because they cannot use them easily. All of the

aforementioned projects are based on the Java platform, which

does not yet offer the possibility of network communication

outside the domain of ordinary sockets. This circumstance

could be improved by the introduction of OpenJDK’s Project

Panama, which pursues the goal of being able to communicate

with native libraries from Java as well as work with native

memory outside the Java domain. Most of the functionality

has already been rolled out with the release of OpenJDK 16

in incubator status and can therefore be tested with the official

releases.

The contribution of this paper is Infinileap, a modern object-

oriented networking framework based on UCX and purely

written in Java. It enables Java-based distributed systems to use

RDMA as well as other functionalities such as tag matching or

atomic operations on remote memory. Unlike previous work,

Infinileap relies on cutting-edge future-proof technologies,

provides users with an easy-to-use API that greatly simplifies

programming in the context of RDMA and is publicly avail-

able under an open-source license[2]. The core focus of our

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

66

framework lies within an easy integration into existing projects

as well as the availability of the source code itself. Initial

experiments also show that the use of this new technology is

efficient and reliable under load. Similarly, we show by means

of our benchmarks running on the Java Virtual Machine (JVM)

that message rates of over 100 million messages per second

between two Network Interface Controllers (NICs) are within

the realm of possibility.

II. RELATED WORK

The idea of accelerating applications in the Java domain by

means of RDMA has already been studied in literature. Very

prominent are custom implementations of the Apache Spark

Shuffle Manager, which distributes the data to be processed

within the Spark cluster, using RDMA for data transport[3]–

[7]. Efforts have also been made to accelerate message broker

services such as Apache Kafka using RDMA[8]. On the

one hand, these implementations offer a high increase in

performance, but on the other hand, they are not publicly

available. Likewise, according to the architectures described,

they are highly tailored to their intended use and thus cannot

be readily deployed in third-party projects.

Another type of accelerated network communication was

also investigated using socket-intercepting plugin mecha-

nisms[9], [10]. In this case, ordinary socket calls were inter-

cepted and passed on to the InfiniBand hardware by means of

suitable operations. A major advantage of this approach is that

the code of existing applications does not have to be modified.

Likewise, however, the user is still bound to the semantics of

ordinary sockets and thus can not explicitly perform RDMA

operations or even control how they are executed by specifying

configuration parameters available at the native layer.

Another research focus, which has formed in the area of

RDMA within the Java domain, is the efficient connection

of native libraries for the use of functionalities which would

not be available otherwise. Many of the solutions imple-

mented in this field establish a Java Native Interface-based

connection to the native libibverbs library in order to be

able to use functionalities of RDMA-capable network cards

on the Java side[11]–[13]. Within the experiments carried

out by the authors, very good results were also achieved in

this case with regard to data throughput, latency as well as

scalability. An important fact that should not be neglected is

that previous projects have always relied on Java’s Unsafe

API for accessing off-heap memory that is not managed by

the Java Virtual Machine, which is not well received within

end-user software[14]. Lastly, there are frameworks providing

a binding for the native libibverbs library based on the Java

Native Interface as well as the Unsafe API, which aim at

making native structs accessible in Java by means of so-called

proxy objects and thus grant access to the functionality of the

native library in a structured way[15].

III. PROJECT PANAMA

The ability to call native functions from Java has been

existing for a long time and has evolved from the Native

Method Interface (NMI) in version 1.0 of the JDK, which

was subsequently removed in version 1.2, to the Java Native

Interface (JNI). The use of the JNI is challenging. As a

basis for the native interface a wrapper around the native

code that is to be called from Java must be implemented

using the native programming language and compiled into a

shared library for all targeted platforms. In addition, during

the implementation of this wrapper code, some important

properties of the JNI must be taken into account, otherwise the

overhead of the interface can have a strong negative impact on

the performance of the application[16], [17]. Likewise, there

are limitations regarding the access to native memory. The

java.nio.ByteBuffer class used for this purpose uses a

32-bit value as the offset for accessing individual values in the

underlying memory block. Since Java also works exclusively

with signed primitive data types, this results in the restriction

that a single memory block can contain a maximum of two

gigabytes of memory. To work around these limitations, many

applications that need to work with native memory resort

to using the JDK’s internal Unsafe APIs, which offer no

guarantees of support or future availability and may crash the

JVM if handled wrong.

Oracle intends to solve these problems with its Project

Panama in the form of a Foreign Linker API[18] as well as a

Foreign Memory Access API[19]. Both components together

allow the developer to call native functions from Java without

adding an additional external layer, as well as manage native

memory without practical size constraints. A central tool

for linking native functionality in Java is Project Panama’s

jextract and its ability to parse C header files of existing

native libraries and generate Java code from them that reflects

the defined functions as well as data structures.

C

jextract

libclang

JAVA

Fig. 1. Jextract’s process of generating native bindings.

The foundation for this is the native libclang library,

which, with the help of components provided by Project

Panama, is used to generate an abstract syntax tree (AST) of

the header file to be processed. Subsequently, the resulting

AST is used to generate Java code that reflects the elements

it contains. This process is depicted in Figure 1. The resulting

source code can be used afterwards to call native functions

and to allocate and manipulate native structs. It should also

be noted that jextract is not a mandatory component,

but merely assists the programmer in creating bindings.

The following basic building blocks are provided by Project

Panama for the integration of native functions as well as data

structures.

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

67

• jdk.foreign.incubator.MemoryAddress

A simple wrapper class which stores a memory address

in the form of a primitive long value.

• jdk.foreign.incubator.MemorySegment

A class that describes a memory segment including its

access rights and owner or associated thread. An instance

of MemorySegment can only be accessed by the associ-

ated thread, but ownership can be given to other threads.

• jdk.foreign.incubator.MemoryAccess

A helper class which allows to read and write individual

values within the memory area of a MemorySegment

instance.

• jdk.foreign.incubator.MemoryLayout

A class which is used to describe layouts within memory.

This is primarily used to describe the layout of native

structs.

• jdk.foreign.incubator.CLinker

A class that allows to look up symbols within

a shared library and link instances of the

java.lang.invoke.MethodHandle class to

them, in order to call them afterwards.

The code generated by jextract uses the preceding

classes to establish the native interface. Building on this code,

we then implement Infinileap.

IV. INFINILEAP ARCHITECTURE

This section describes Infinileap’s design and addresses

which obstacles currently exist, how they are solved, and

which opportunities will exist in the future.

A. Framework Design

Infinileap builds on top of the aforementioned jextract

tool for generating the native interface and offers the

developer an object-oriented API for using UCX. In addition,

some helper functions exist to facilitate the processing of

requests.

Wrapper
Classes

Native
PrimitivesMultiplexing Request

Handling

INFINILEAP

jextract

Context EndpointWorker
UCX

Epoll
SYSTEM

MemorySegment MemoryAccess
PROJECT PANAMA

NA
TI

VE
JA

VA

Fig. 2. Infinileap’s architecture and dependencies.

The architecture as well as its individual components and

dependencies are shown in Figure 2 and can be described as

follows.

• Wrapper Classes

The UCX library nearly always works with handles

(i.e. memory addresses) within the high-level API, so

that a high compatibility between the individual ver-

sions can be guaranteed. For these handles, Infinileap

provides wrapper classes that bundle the functions

belonging to the corresponding category (Context,

Worker, Endpoint, etc.) using the bindings generated

by jextract. These wrapper classes extend a common

super class NativeObject, which, by implementing

java.lang.AutoCloseable, allows resources, such

as configuration parameters, to be temporarily created

using try-with-resources statements and automatically

released afterwards. The Infinileap API only accepts

instances of these wrapper classes and thus prevents the

incorrect use of memory addresses which can lead to

segmentation faults and program crashes. Buffers are

an exception to this rule, since the associated addresses

must be freely selectable by the user. RDMA operations

can thus be performed either on instances derived from

the NativeObject class or directly on an instance of

Project Panama’s MemorySegment class.

• Multiplexing

The UCX API provides the developer with two mecha-

nisms for asynchronous processing of requests. Both use

the underlying Worker abstraction of the framework.

The first and simpler variant is to use existing functions

of the framework to wait for new events of the worker.

Internally, the framework uses multiplexing functions of

the operating system for this purpose. Since it is only

possible to wait for a specific worker and several of these

workers can exist, a filedescriptor belonging to the worker

can also be queried and used for polling with epoll. To

provide this second variant within the Infinileap API, the

necessary epoll functions are also provided using the

bindings generated by jextract at the Java level in the

form of an object-oriented API.

• Native Primitves

Project Panama provides with its MemoryAccess class

the possibility to read and write single values at specific

memory addresses. Since UCX provides an API for

performing atomic operations on 4 and 8 byte values

within remote memory, this class is an excellent foun-

dation for it. To avoid errors in function calls, classes

(referred to as Native Primitives in Figure 2) are

developed that represent primitive values in the form of

objects (similar to Java’s boxing) and manipulate them

using the MemoryAccess class. Just like the previously

mentioned wrapper classes, instances of these classes are

accepted within the Infinileap API to perform atomic

operations on remote memory.

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

68

• Request Handling

Latency-critical systems often work with synchronous

network APIs, since the overhead caused by adding

asynchronous mechanisms is unacceptable. UCX returns

a handle (i.e. memory address) to a request for each

network operation. This can subsequently be used to

query the current status of the operation and thus achieve

very low latency times by means of busy-polling. For this

purpose Infinileap provides helper functions which wait

for the completion of a request by means of busy-polling.

This allows the developer to implement synchronous

communication within an application and at the same

time provides a simple abstraction for processing network

operations.

B. Garbage Collector Overhead

One of the JVM’s mechanisms which can have a negative

impact on performance is garbage collection. In the software

development context, Java’s garbage collector offers a major

advantage over languages without automatic memory manage-

ment. For example, developers do not have to worry about

freeing allocated memory, since it is automatically freed by

the JVM as soon as it is no longer reachable. In performance-

critical systems, however, this process can have a strong

negative impact on the execution of the program. This is due

to the fact that so-called "Stop the World" events occur, which

stop the application threads in the course of cleanup.

Project Panama’s jextract tool generates bindings

which, if a pointer is returned from the native code, create

an instance of the MemoryAddress class and store the

returned value in it. In the case of a few calls, such as

for configuration or establishing connections, this situation

does not have a negative effect, since the garbage collector

only has to release comparatively few objects. When network

operations are executed, which can occur several million times

per second, a large number of references are generated on the

Java heap at the same time, which place a heavy load on the

garbage collector.

We address this problem by using only primitive data types,

which do not create objects in the heap managed by the JVM,

for parameter and return types in the data path (i.e. sending and

receiving data) of our framework. To achieve this we slightly

modify the bindings generated by jextract, in the case

of the data-path functions, so that they return values of type

long (64 bit value) instead of MemoryAddress instances.

This prevents the creation of references to objects that the

garbage collector would otherwise have to clean up leading to

"Stop the World" events.

Another way to address this problem is described by

the Java Enhancement Proposal on so-called Primitive Ob-

jects[20]. Unlike ordinary Java objects, instances of primitive

objects are treated just like primitive data types, and instead

of the Java heap, the stack is used for storage. Since it often

makes sense to encapsulate primitive data types in objects for

abstraction reasons, such as in the case of Project Panama’s

MemoryAddress class, Primitive Objects provide a very

good solution for avoiding garbage collector overhead due to

the elimination of ordinary object overhead, while also being

more memory efficient. After rolling out this new feature,

Project Panama’s MemoryAddress class would be a good

candidate for adoption, as this would eliminate the need

to allocate additional ordinary objects within jextract-

generated bindings for returning memory addresses on the Java

heap.

V. EXPERIMENTS

In this chapter, we first present the architecture of our

implemented benchmarks and show which problems have been

solved. Afterwards, we take a closer look at the test setup and

the subsequent results of all benchmarks and analyze them.

A. Benchmark Implementation

Since Java is a dynamically compiled programming lan-

guage, the runtime behavior is often unpredictable and can

change between individual program calls, which can lead to

unexpected results, especially in the case of benchmarks. For

example, the JVM uses a just-in-time compiler (JIT), which

compiles the generated intermediate code (Java bytecode) into

platform-dependent machine code at runtime. This has the

great advantage that the intermediate code can be analyzed

at runtime and thus optimizations can be made based on

findings from real code behavior. In the context of benchmarks,

however, this behavior can turn into a disadvantage, since the

functions implemented by the developer can, in the worst case,

be removed entirely by optimizations and results thus do not

reflect expectations[21].

In order to address these challenges, the OpenJDK project

provides the Java Microbenchmark Harness[22] (JMH), which

is a framework for the development and execution of bench-

marks written in Java. In addition to many configuration

options as well as a simple API for third-party applications, it

also provides a rich set of examples that present and explain

best practices in benchmark development.

Since JMH’s intended use lies primarily in the area of local

microbenchmarks, we need to add a thin application layer

enabling it for the use in distributed benchmarks over the

network. JMH provides phases for initialization as well as

release of resources, which are very suitable for establishing

connections between network partners. Likewise, the already

existing support for multithreaded benchmarks is used to cre-

ate multiple connections in different threads and for utilizing

the available processor cores.

As a counterpart to the client on which JMH is executed,

we implement a server application that responds to the client’s

requests using a simple protocol and performs appropriate

actions. The basic flow of a benchmark run can be described

as follows.

• SETUP - Phase in which resources such as threads and

buffers are initialized.

1) Send a START_RUN command to tell the server to

start the next or first run.

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

69

2) Send a configuration to the server which includes

the number of threads, the buffer or message size,

the number of operations and the type of operation

which will be executed.

• RUN - Phase in which JMH invokes benchmark methods

and makes measurements.

1) Execute the specified number of benchmark method

invocations until a configured time has expired.

2) Synchronize with the server to let it receive new

commands.

• TEARDOWN - Phase in which benchmark resources are

released.

1) Send a END_RUN command to tell the server to re-

lease its resources and terminate all worker threads.

2) Send a SHUTDOWN command to tell the server it

should terminate. Alternatively another benchmark

run may be started by sending a START_RUN

command and starting again from the beginning.

B. Benchmark Setup

CPU 1x Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

(22 MB Cache)

RAM 4x Micron Technology 36ASF2G72PZ-2G6E1

16GB

NIC 1x Mellanox Technologies MT27800 Family

[ConnectX-5] (100Gbit/s)

Fig. 3. System specifications of the hardware used in all experiments.

OS CentOS Linux release 8.1.1911 (Core)

JDK OpenJDK 17-internal (commit 75329169a407)

UCX UCX 1.9.0 stable (commit cd9efd3d80ec)

Fig. 4. Operating system and software versions used in all experiments.

All benchmarks are executed using two identical machines

consisting of the hardware shown in Figure 3 and using the

software specified in Figure 4. Both machines are connected

back-to-back, which means that both InfiniBand network cards

are directly connected to each other without adding a switch

in between.

C. Latency Benchmark

In the case of the latency benchmark, each operation is

executed exactly once and then waited for completion. The

time measured in between represents the latency. The UCX

framework considers some operations to be complete as soon

as the associated buffer can be reused by the application.

Since this time does not reflect the true network latency, these

operations (WRITE and SEND) are measured using a ping-

pong pattern and thus represent the round-trip time. Since both

machines used in the benchmark are identical, the one-sided

latency (which is not shown in Figure 5) can be determined

by dividing by two.

Fig. 5. Average Round-trip latency for RDMA write, RDMA read and send
operations measured in microseconds per operation.

Figure 5 visualizes the average round-trip latency for read,

send and write operations. It should be noted that, because of

the aforementioned assumptions made by the UCX framework,

in case of SEND and WRITE operations the message/buffer is

sent/written to the destination and back again, while READ

operations only send a small protocol message to the desti-

nation and finally receive the requested data. This explains

the comparatively short round-trip latency when reading from

remote memory.

As can also be seen, small amounts of data up to 128 bytes

can be sent to the destination and back as well as written in

under two microseconds, which is particularly beneficial in

latency-critical applications. For data sizes above 128 bytes, it

can be seen that the latency increases more significantly with

each doubling of the size compared to sizes below 128 bytes.

This can be explained by the fact that the UCX framework

uses inlining for small messages, and the network interface

controller therefore does not have to read them via the PCI

bus, but can retrieve them directly from its integrated memory.

Nevertheless, the latency times are always within a reasonable

range and show that it is possible, for example, to send an

entire memory page (4 Ki) to a remote destination in about

2.6 microseconds (RTT divided by two).

Since Infinileap also supports all available atomic opera-

tions on remote memory provided by the UCX framework,

we measure their latencies as well. Unlike the operations

mentioned so far, atomic operations can be performed with

fetching semantics and thus wait for the result of the full

operation. We use this mode to measure the true latency of

all operations. In the case of a compare and swap (CSWAP)

operation, the old value that was stored before the swap is

thus returned within the operations result. Atomic operations

are principally only possible with 4 or 8 byte values on the side

of the UCX framework. The latencies of all supported atomic

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

70

Fig. 6. Average operation latency for all UCX-supported atomic operations
and data sizes.

operations are shown in Figure 6. What is remarkable in this

regard is that all types of operations always require less than

two microseconds to execute. At the time of this work, only

two machines with the aforementioned network interface con-

trollers were available, which means that an evaluation with

the addition of lock contention was not possible. In principle,

however, the results obtained suggest that the supported atomic

operations can be very well used in, for example, coordination

services.

Fig. 7. Operation latency for all supported atomic operations by percentiles.

In addition to measuring the average latency of individual

atomic operations, the distribution of times by percentiles is

also measured. These are presented in Figure 7. Here it can

be well observed that almost all kinds of atomic operations

are performed within two microseconds in 99% of the cases

(label omitted within the graph due to space constraints).

Similarly, only 0.1% of atomic operations take longer than

3.7 microseconds to complete. An exception is the compare

and swap operation on 4-byte data values, since it always

has a small offset to all other measured latencies. Apart from

this, it can finally be concluded that atomic operations can be

used well due to their similar latency compared to ordinary

operations and the stability of these times.

D. Throughput Benchmark

In addition to the latency benchmark, which measures

average times related to individual operations, a throughput

benchmark, which measures the number of operations per

second, has been implemented, too. This involves continuously

executing batches of operations and measuring how often

these batches are completed per second. Due to the already

mentioned assumptions of the UCX framework regarding

completions, mechanisms for detecting true completions are

also used here in the case of WRITE and SEND operations.

Specifically, this means that the server sends a message back

to the client after receiving all operations, so that the client

can measure the time between the first operation and this

received message. In addition, the benchmark is executed with

different numbers of threads, each of which manages a single

connection. For this, a thread pool is also used on the server

side, which uses one thread per connection.

Fig. 8. Average RDMA write operation throughput in million operations
(solid line) and gigabit per second (dashed line).

Figure 8 depicts the average write operation throughput in

millions of operations as well as gigabits per second. It can

be observed that the addition of connections leads to a high

increase in throughput in each case, due to each thread working

independently from another. For example, a single thread

with a buffer size of four kilobytes achieves a throughput

of about 63.5 gigabits per second while two threads perform

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

71

the same task with about 96.2 gigabits per second and are

thus close to the theoretical maximum of 100 gigabits per

second. Furthermore, it can be observed that writing many

small buffers of sizes 8 and 16 bytes in parallel using 16

Threads leads to performance degradation.

Fig. 9. Average RDMA read operation throughput in million operations (solid
line) and gigabit per second (dashed line).

Unlike writing data to remote storage, reading involves

overhead due to the protocol used and therefore results in

comparatively lower throughputs. To complete each operation,

a protocol message must first be sent to the remote NIC, which

then sends back the requested data. The resulting overhead

leads to 30 to 50 percent lower throughput compared to write

operations in case of small messages. Figure 9 shows the

measured results regarding read operation throughput. For

messages smaller than 512 bytes, a plateau can be seen in

the operation throughput due to the aforementioned over-

head, while for messages 512 bytes and larger, the message

throughput drops sharply as the bandwidth gradually becomes

saturated.

The best results are achieved with send operations in the

throughput benchmark. The results measured here are provided

in Figure 10. While again saturating the bandwidth with

multiple threads and large message sizes, in the case of small

messages between 8 and 16 bytes, message throughputs of

approximately 110 million messages per second are achieved

when using 16 threads. This feature shows that the framework

can be used particularly well in RPC systems with very small

payload sizes. The temporary, comparatively easier increase

in throughput when switching from 128 to 256 byte messages

is also noticeable. This can be explained by the fact that

the UCX framework uses different internal copy mechanisms

(inlining, intermediate buffer and zero copy) for the user data,

depending on the message size, and a change could have taken

place at this point. In conclusion, all results are within a good

Fig. 10. Average send operation throughput in million messages (solid line)
and gigabit per second (dashed line).

range, giving applications a lot of potential to speed up their

communication.

VI. CONCLUSION & FUTURE WORK

In this paper we propose Infinileap, an easy-to-use and mod-

ern network communication framework for Java developers

building on top of UCX that enables technologies previously

unavailable in Java, such as RDMA. Instead of internal and

not officially supported APIs, it relies on new and future-

proof APIs developed within Oracle’s Project Panama to

connect native functionalities with Java. We also show that

even in a dynamically compiled language such as Java, very

good performance results are possible, such as 110 million

messages per second as well as round-trip latencies below two

microseconds using a single single-port InfiniBand NIC.

In the future, we plan to integrate Infinileap into exist-

ing larger Java-based distributed systems such as Apache

ZooKeeper, Apache Spark, or Apache Kafka to accelerate

network communication and leverage RDMA functionality at

appropriate locations. We expect that the results obtained here

will justify the use of high-performance interconnects such as

InfiniBand within the Java programming language and thus

lead one step closer to adoption.

VII. ACKNOWLEDGEMENTS

We thank the UCX developers as well as all developers

involved in Project Panama for valuable discussions. We also

especially thank Oracle for their sponsorship in the context

of this work. Computational infrastructure and support were

provided by the Centre for Information and Media Technology

at Heinrich Heine University Düsseldorf.

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

72

REFERENCES

[1] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker,

O. Hernandez, Y. Itigin, M. Dubman, G. Shainer, R. L.

Graham, L. Liss, Y. Shahar, S. Potluri, D. Rossetti,

D. Becker, D. Poole, C. Lamb, S. Kumar, C. Stunkel,

G. Bosilca, and A. Bouteiller, “Ucx: An open source

framework for hpc network apis and beyond,” (Aug. 26–

28, 2015), IEEE, Aug. 26–28, 2015, pp. 40–43, ISBN:

978-1-4673-9160-3. DOI: 10.1109/HOTI.2015.13.

[2] F. Krakowski and F. Ruhland, Infinileap GitHub Reposi-

tory. [Online]. Available: https://github.com/hhu-bsinfo/

infinileap.

[3] B. Liu, F. Liu, N. Xiao, and Z. Chen, “Accelerating

spark shuffle with RDMA,” in 2018 IEEE International

Conference on Networking, Architecture and Storage,

NAS 2018, Chongqing, China, October 11-14, 2018,

IEEE, 2018, pp. 1–7. DOI: 10.1109/NAS.2018.8515724.

[4] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda, “High-

performance design of apache spark with rdma and its

benefits on various workloads,” (Dec. 5–8, 2016), IEEE,

Dec. 5–8, 2016, pp. 253–262, ISBN: 978-1-4673-9006-

4. DOI: 10.1109/BigData.2016.7840611.

[5] H. Li, T. Chen, and W. Xu, “Improving spark perfor-

mance with zero-copy buffer management and rdma,”

(Apr. 10–14, 2016), IEEE, Apr. 10–14, 2016, pp. 33–38,

ISBN: 978-1-4673-9956-2. DOI: 10.1109/INFCOMW.

2016.7562041.

[6] X. Lu, M. Wasi-ur-Rahman, N. S. Islam, D. Shankar,

and D. K. Panda, “Accelerating spark with RDMA for

big data processing: Early experiences,” in 22nd IEEE

Annual Symposium on High-Performance Interconnects,

HOTI 2014, Mountain View, CA, USA, August 26-28,

2014, IEEE Computer Society, 2014, pp. 9–16. DOI:

10.1109/HOTI.2014.15.

[7] Y. Wang, C. Xu, X. Li, and W. Yu, “Jvm-bypass for

efficient hadoop shuffling,” (May 20–24, 2013), IEEE,

May 20–24, 2013, pp. 569–578, ISBN: 978-0-7695-

4971-2. DOI: 10.1109/IPDPS.2013.13.

[8] M. H. Javed, X. Lu, and D. K. Panda, “Cutting the tail:

Designing high performance message brokers to reduce

tail latencies in stream processing,” (Sep. 10–13, 2018),

IEEE, Sep. 10–13, 2018, pp. 223–233, ISBN: 978-1-

5386-8320-0. DOI: 10.1109/CLUSTER.2018.00040.

[9] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krish-

namoorthy, J. Wu, and D. K. Panda, “Sockets direct

protocol over infiniband in clusters: Is it beneficial?,”

(Mar. 10–12, 2004), IEEE, Mar. 10–12, 2004, pp. 28–

35, ISBN: 0-7803-8385-0. DOI: 10.1109/ISPASS.2004.

1291353.

[10] IBM, Java sockets over remote direct memory access.

[Online]. Available: https : / / www. ibm . com / support /

knowledgecenter/SSYKE2_7.1.0/com.ibm.java.lnx.71.

doc/diag/understanding/rdma_jsor.html.

[11] S. Nothaas, K. Beineke, and M. Schoettner, “Leverag-

ing infiniband for highly concurrent messaging in java

applications,” (Jun. 3–7, 2019), IEEE, Jun. 3, 2019,

pp. 74–83, ISBN: 978-1-7281-3802-2. DOI: 10 . 1109 /

ISPDC.2019.00013.

[12] P. Stuedi, B. Metzler, and A. Trivedi, “JVerbs: Ultra-

Low Latency for Data Center Applications,” in Proceed-

ings of the 4th Annual Symposium on Cloud Computing,

ser. SOCC ’13, New York, NY, USA: Association for

Computing Machinery, 2013, ISBN: 9781450324281.

DOI: 10.1145/2523616.2523631.

[13] W. Huang, H. Zhang, J. He, J. Han, and L. Zhang, “Jdib:

Java applications interface to unshackle the communica-

tion capabilities of infiniband networks,” (Sep. 18–21,

2007), IEEE, Sep. 18–21, 2007, pp. 596–601, ISBN:

978-0-7695-2943-1. DOI: 10.1109/NPC.2007.111.

[14] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza,

M. Hauswirth, and N. Nystrom, “Use at your own

risk: The java unsafe API in the wild,” in Proceedings

of the 2015 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages,

and Applications, OOPSLA 2015, part of SPLASH

2015, Pittsburgh, PA, USA, October 25-30, 2015, J.

Aldrich and P. Eugster, Eds., ACM, 2015, pp. 695–710.

DOI: 10.1145/2814270.2814313.

[15] F. Krakowski, F. Ruhland, and M. Schöttner, “Neu-

trino: Efficient infiniband access for java applications,”

(Jul. 5–8, 2020), IEEE, Jul. 5–8, 2020, pp. 12–19, ISBN:

978-1-7281-8947-5. DOI: 10.1109/ISPDC51135.2020.

00012.

[16] D. Kurzyniec and V. Sunderam, “Efficient coopera-

tion between java and native codes – jni performance

benchmark,” in In The 2001 International Conference

on Parallel and Distributed Processing Techniques and

Applications, 2001.

[17] M. Dawson, G. Johnson, and A. Low. (Jul. 7, 2009).

“Best practices for using the java native interface,”

[Online]. Available: https://developer.ibm.com/articles/

j-jni.

[18] M. Cimadamore. (Sep. 21, 2020). “Jep 393: Foreign-

memory access api (third incubator),” [Online]. Avail-

able: https://openjdk.java.net/jeps/393.

[19] M. Cimadamore. (Jul. 20, 2020). “Jep 389: Foreign

linker api (incubator),” [Online]. Available: https : / /

openjdk.java.net/jeps/389.

[20] D. Smith. (Aug. 13, 2020). “Jep 401: Primitive objects

(preview),” [Online]. Available: https : / / openjdk . java .

net/jeps/401.

[21] K. Shiv, R. Iyer, C. Newburn, J. Dahlstedt, M. Lager-

gren, and O. Lindholm, “Impact of jit/jvm optimizations

on java application performance,” IEEE, 2003, pp. 5–13,

ISBN: 0-7695-1889-3. DOI: 10 . 1109 / INTERA . 2003 .

1192351.

[22] OpenJDK, Java microbenchmark harness. [Online].

Available: https://github.com/openjdk/jmh.

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

73

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

4.4 Transparent network acceleration for big data com-

puting in Java

Fabian Ruhland, Filip Krakowski and Michael Schöttner. Transparent network accel-

eration for big data computing in Java. In 2023 IEEE 22nd International Conference

on Trust, Security and Privacy in Computing and Communications (TrustCom), Trust-

Com 2023, Exeter, United Kingdom, November 01-03, 2023.

Contributions:

This work aims to transparently accelerate Java applications by extending Java’s NIO

module with InfiniBand functionality. To this end, Fabian Ruhland developed a con-

nection layer called hadroNIO between Java’s NIO components and two InfiniBand

Java solutions using the Service Provider Interface.

One of the author’s contributions is the Infinileap framework, which enables access to

InfiniBand hardware within Java applications. Alongside another externally developed

framework, this was used by Fabian Ruhland to realize an asynchronous socket channel

implementation based on InfiniBand. Another contribution of the author is the adap-

tation of the implementation of a ring-buffer data structure of the Agrona project. This

was modified by the author so that the publication of data within the ring buffer can be

carried out in two steps, consisting of a reservation and the subsequent write process.

The final benchmarks were implemented and evaluated by Fabian Ruhland, while the

author and Michael Schöttner were involved in discussions regarding the results and

possible improvements.

The author and Michael Schöttner also provided other valuable suggestions, such as

optimizing the epoll-based event loop with regard to a stage-based wake-up mecha-

nism. The paper was written by Fabian Ruhland, whereby the author and Michael

Schöttner were involved in several discussions regarding various aspects of the library’s

functionality.

Status: published

74

Transparent network acceleration for big data

computing in Java

Fabian Ruhland

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

fabian.ruhland@hhu.de

Filip Krakowski

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

filip.krakowski@hhu.de

Michael Schöttner

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—HPC and cloud data centers offer an increasing
amount of cores per CPU, GPUs and high-speed networks like
InfiniBand with up to 400 Gbit/s. Scaling out big-data computing
is mostly limited by the network performance. However, many
big data frameworks are written in Java (often using netty),
which cannot fully exploit the performance of such networks. The
reason is found in Java NIO, which is based on traditional sockets,
while InfiniBand provides ibverbs, a totally different interface, to
the operating system and applications. This challenge has been
addressed by different approaches, providing transparent and
non-transparent acceleration via high-speed NICs, many of them
no longer maintained.

In this paper, we propose hadroNIO, a Java library, providing
transparent network acceleration for Java NIO applications,
based on Unified Communication X (UCX). The latter is written
in C, providing efficient access to different network technologies.
hadroNIO has been extended to use Infinileap for efficiently
accessing UCX. Infinileap is using the new Foreign Function &
Memory APIs of Oracle’s Project Panama to access native code.

Our evaluation results show, that hadroNIO allows netty to
achieve round-trip times of less than 5 µs on a 100 GBit/s network
and efficiently handle hundreds of connections per server. We
compare the raw performance of hadroNIO with traditional Java
sockets and libvma using a netty microbenchmark and include
experiments with gRPC and Apache ZooKeeper. The measure-
ments show, that hadroNIO outperforms existing solutions, while
being transparent for applications and developers.

Index Terms—High-speed Networks, Cloud Computing, Eth-
ernet, InfiniBand, OpenUCX, Java

I. INTRODUCTION

With increasing CPU core counts and the availability of

high-speed networks, distributed applications need to be scal-

able to take advantage of modern hardware. Java and its

library ecosystem provide developers with the tools to write

scalable distributed applications. Programmers can choose to

write low-level network code using Java NIO (e.g. Apache

ZooKeeper [5]), or implement their projects using high-level

RPC frameworks, such as gRPC [4]. However, most modern

big-data Java applications are based on netty [30] (e.g. Apache

Cassandra [18], Apache Bookkeeper [13]), which offers full

control over the data being sent and received, while its event-

driven architecture abstracts the complexity of Java NIO. It

utilizes the CPU to its full potential by executing multiple

event loops, each in its own thread, and distributing connec-

tions evenly over them. Scalability with modern processors is

achieved, by automatically detecting the amount of available

cores and starting an appropriate amount of threads.

Whether developers choose to use Java NIO directly, or base

their projects on netty or an even higher level framework, there

is one major drawback to these solutions, as they are ultimately

based on NIO, which still uses classic sockets for communica-

tion. While this suffices to saturate traditional Gigabit Ethernet

hardware, fully exploiting modern network equipment requires

more sophisticated programming. InfiniBand and high-speed

Ethernet NICs can both be accessed using the native ibverbs

library, which offers full kernel bypass and thus much lower

latencies than the traditional socket API, but implements a

vastly different programming model and cannot be accessed

directly by Java programs.

There have been several attempts at combining the ac-

cessibility of the socket API with the speed of ibverbs, by

implementing libraries, which transparently offload socket

traffic to high-speed networks using the ibverbs API. However,

most of these solutions are not maintained anymore.

To this end, we proposed hadroNIO in 2021 [34], a Java

library, which transparently replaces the default NIO imple-

mentation and offloads traffic via the Unified Communication

X framework. UCX is a native library, providing multiple

communication APIs, including streaming, message passing,

active messaging and rdma, and automatically detects the

fastest network available to send/receive traffic. Developers

can take advantage of a unified set of APIs, while UCX takes

care of the low-level network implementation, supporting for

example InfiniBand, high-speed Ethernet and shared memory.

It can also use classic TCP sockets as a fallback, when no

high-speed interconnect is available.

UCX provides an official Java binding called JUCX, which

is based on the Java Native Interface. For a long time, JNI was

the only way to interface between Java and native code. It al-

lows Java programs to call native functions and provides many

ways to interact with a Java program from native code (e.g.

object creation and method upcalls). However, it is not possible

to call native functions directly, requiring developers to write

glue code. Furthermore, interacting with the JVM from native

code may cause performance issues. While we have shown,

that JNI can be used for fast access to native functionality [15],

it is complex to use and holds several pitfalls for developers.

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

75

To allow for easier interoperability between Java and native

code, the OpenJDK is currently incorporating Project Panama,

which offers new ways to interface between Java and native

functions, and access off-heap memory, aiming to replace the

JNI. The project is available as a preview feature in OpenJDK

20 and can therefore be used with official releases.

Based on Project Panama, we proposed Infinileap in 2021,

a Java library providing access to UCX via the new Foreign

Function & Memory API, as an alternative to JUCX [16].

Since then, we incorporated Infinileap into hadroNIO, allowing

users to choose between acceleration via JUCX for higher

backwards compatibility down to Java 11, or Infinileap for

better performance, but requiring execution on a Java 20 JVM.

The contributions of this paper are:

• Evaluations with hundreds of connections, using a netty-

based microbenchmark, as well as the industry proven

Yahoo Cloud Serving Benchmark [2] on real world appli-

cations.

• Optimizations in hadroNIO and extensions for using

Infinileap

• An overview of existing socket acceleration solutions for

Java

The paper is structured as follows: Section II discusses

related work by presenting existing acceleration solutions.

Section III presents optimizations to hadroNIO for supporting

hundreds of connections and providing low latencies. Section

IV presents the benchmarks used for performance evaluation,

followed by a the results in Section V. Conclusions are

presented in Section VI

II. RELATED WORK

Modern high-speed NICs from Mellanox can be configured

to use either InfiniBand or Ethernet as link layer protocol.

Choosing Ethernet makes these cards fully compatible with

the standard socket API, while still being programmable via

the ibverbs library. Regardless of the link layer protocol,

traditional sockets do not suffice to fully exploit such a NIC.

While we are not aware of any alternative NIO implemen-

tations, there are several solutions for accelerating traditional

sockets, with only few being still actively maintained. Typi-

cally, these can come in three different shapes: kernel modules,

native libraries and Java libraries. Since the default NIO

implementation is based on classic sockets, these solutions

can be used to accelerate Java NIO applications. We have

already evaluated some of these solutions, using socket-based

microbenchmarks [33] and compared them to hadroNIO with

another microbenchmark, directly using the NIO API [34].

A. Kernel modules

IP over InfiniBand [14] exposes InfiniBand devices as

standard network interfaces, enabling applications to use them

by simply binding to an IP address, associated with such

a device. This solution does not require any preloading of

libraries, making it the easiest to use. However, it relies on the

kernel’s network stack, thus requiring context switches which

impose a large performance overhead, rendering it unattractive

for applications requiring low latency.

Fastsocket [23] replaces the Linux kernel’s TCP implemen-

tation, aiming to provide better scaling with multiple CPU

cores. It has been evaluated using up to 24 cores and 10

Gbit/s Ethernet NICs, showing much better scalability than

the default TCP implementation. Fastsocket consists of kernel

level optimizations, a kernel module and a user space library. It

requires a custom kernel, based on Linux 2.6.32 and officially

only supports CentOS 6.5, which is outdated by now. While

it would be interesting to see how such an integrated solution

would perform on modern high-speed Ethernet hardware, it

does not seem to be in active development anymore.

B. Native libraries

mTCP [10] is a TCP-stack, running completely in user

space. As Fastsocket, it primarily aims at high scalability,

which it achieves by being independent from the kernel’s

network stack, alleviating the need for context switches in

network applications. Contrary to the other solutions, it is

not transparent and requires rewriting parts of an application’s

network code. It has no official support for Java, but there is

an unofficial binding called JmTCP, based on the Java Native

Interface (JNI). However, it does not seem to be actively

maintained, probably requiring Java applications to manually

access mTCP via JNI or the experimental Foreign Function

& Memory API (Project Panama) [9]. Since it is neither

transparent, nor officially supports Java, mTCP does not fit

our use case of accelerating netty-based applications.

libvma [20] is a library developed in C/C++ by Mellanox,

transparently offloading socket traffic to high-speed Ethernet

or InfiniBand NICs. It can be preloaded to any socket-based

application (using LD PRELOAD), enabling full kernel bypass

without the need to modify an application’s code. However,

libvma requires the CAP NET RAW capability, which might

not be available, depending on the cluster environment.

While it is highly configurable by exposing many parame-

ters, allowing users to tune the library to the needs of a specific

applications, the resulting performance can actually be worse

compared to using the traditional socket implementation, as

we have shown in previous experiments [35] and it may

even not work at all for some distributed scenarios (see V).

Additionally, the default configuration is only suited to basic

use cases (e.g. single threaded applications), requiring some

time being spent on finding the right configuration for complex

applications, using multiple threads and connections.

SocksDirect [19] is a closed source library from Microsoft,

written in C/C++. Like libvma, it works by preloading it

to socket-based applications, redirecting socket traffic via a

custom protocol based on RDMA. It also supports acceleration

of intra-host communication via shared memory. It achieves

low latencies and a high throughput by removing large parts

of the synchronization and buffer management involved in tra-

ditional socket communication, while being fully compatible

with linux sockets, even when process forking is involved.

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

76

We were able to get access to the source code from the

authors and have successfully tested it with native applications,

but so far we could not get the library working with Java

applications. Additionally, SocksDirect uses the experimental

verbs API, only available in the Mellanox OFED up to version

4.9 [29].

C. Java libraries

The Sockets Direct Protocol) SDP [28] provided transpar-

ent offloading of socket traffic via RDMA, fully bypassing

the kernel’s network stack. It was part of the OFED package

and introduced into the JDK starting with Java 7. However,

support has officially ended and it has been removed from the

OFED in version 3.5 [27]

Java Sockets over RDMA (JSOR) [6] has been developed

by IBM with the goal to offload all socket traffic of Java

applications to high-speed NICs using RDMA. It is included

in the IBM SDK up to version 8, requiring their proprietary J9

JVM. JSOR is not available in newer SDK versions and while

the old SDK still receives security updates, applications using

features not available in Java 8 cannot be used with JSOR.

While it has shown promising results in our benchmarks,

there are known problems with connections getting stuck [7]

and exceptions [8]. Additionally, we were not able to evaluate

JSOR using a bidirectional connection with separate threads

for sending and receiving. These problems and its reliance on

proprietary technology limit its usability, especially for modern

applications.

netty

Default NIO

Sockets

libvmaKernel

IP over
InfiniBand

Network Interface Card

TCP/IP Stack

hadroNIO

JUCX/
Infinileap

UCX

Java space

Native space

Application

Fig. 1. Application stack overview for different acceleration solutions

D. Application-specific solutions

Other approaches aim at accelerating network performance

of a specific application or framework. In 2014, a successful

attempt at redesigning Spark’s shuffle engine for RDMA usage

has been made [25] and refined in 2016 [26]. Similar solutions

have been implemented for Apache Storm: In 2019, RJ-Netty

has been proposed as a replacement for netty in Apache Storm

[38], while in 2021 another approach at integrating RDMA

into Storm, based on DiSNi [36] (formerly jVerbs [37]) has

been implemented [39].

While these solutions show, that the performance benefit

for using high-speed networking hardware can be huge, they

are specific to a single framework only and can not be used

for general purpose network programming, like transparent

acceleration libraries.

III. HADRONIO OPTIMIZATIONS

In our past benchmark results, we saw that hadroNIO

provides a substantial acceleration for netty-based applications

regarding throughput and is able to saturate high-speed NICs.

While it also yields very low round-trip times of around 5 µs

when only a single connections is used, latencies rise fast with

an increasing amount of connections, making libvma the better

solution for applications, that rely on low latency transfers of

small messages [35]. Since then, we focused on decreasing

round-trip times and provide much better scalability.

A. Faster UCX access via Project Panama

UCX provides an official Java binding called JUCX, which

is based on JNI. While JUCX provides full access to the

native API, it does not call native methods in an optimized

fashion. JNI requires creating a native wrapper library, which

can be called from Java code and handles the interaction with

the desired native functions. The wrapper library also has

the ability to interact with the JVM, for example by creating

and manipulating Java objects. However, fast access to native

functionality is best achieved by keeping the wrapper code

short and performing as little upcalls to Java space as possible

[17] [3]. Unfortunately, the native part of JUCX performs a

lot of interactions with the JVM, such as object manipulation,

throwing exceptions, as well as creation and deletion of global

references, slowing down general JUCX performance.

Project Panama avoids such pitfalls, by omitting the need

for a wrapper library. Instead it provides a Foreign Function

Interface, enabling Java programs to directly call functions

from native libraries, such as UCX. Additionally, the Foreign

Memory Interface allows to manipulate off-heap memory from

Java space. This way, Java programs can access native struc-

tures and process return values coming from native functions.

In 2021, we proposed Infinileap an alternative Java binding

for UCX, based on Project Panama, providing ultra-low round

trip times of less than 2µs and offering great scalability with

multiple connections [16]. It successfully utilizes the Foreign

Function Interface to efficiently call native UCX functions

and makes use of the Foreign Memory Interface to interact

with native off-heap structures, returned by these functions.

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

77

Furthermore, Infinileap avoids some design decisions, made

by JUCX, that lead to a lower performance. For example,

send and receive requests are generally processed in an

asynchronous manner by UCX. The programmer can either

manually check if a request is finished, or register a callback

to be notified about a completion. UCX may however decide

to directly process small requests to achieve lower latencies.

In these cases, it will ignore the callback and instead signal

the completion via the return value. However, in case of such

an immediate request completion, JUCX will manually call

the registered Java callback, thus performing an unnecessary

upcall. This is done to simplify the API, but comes at the cost

of increased latencies, limiting performance. Infinileap on the

other hand, provides a true representation of the native UCX

API, allowing programmers to leverage the full potential of

the UCX framework.

B. Integrating epoll support

Asynchronous network requests in UCX are handled by

workers. Each worker can have multiple connections associ-

ated with it and in order to be notified about completed re-

quests, the programmer must call progress(). This method

will gather all finished requests on a specific worker and call

the associated callback of each request. It can be called in a

blocking or non-blocking way, where blocking lets the calling

thread sleep until a request is finished (or aborted) and non-

blocking returns directly, regardless of request states. In UCX,

connections are represented by endpoints. Each endpoint must

be associated with a worker at the time of its creation, and

cannot be transferred to another worker at a later time. Because

of this, hadroNIO uses one worker per connection, instead

of one worker per selector. This forces us to use the non-

blocking version of progress(), because by calling the

blocking version on one worker, we might miss events on

other workers, which would lead to stuck connections. This

busy polling implementation works best, when the amount

of network threads does not exceed the amount of CPU

cores. While it provides very low latencies, we encountered

problems when opening hundreds of connections between two

nodes, with connection setup times taking over one second per

connection. Furthermore, this approach wastes CPU resources,

since the selector is working without interruption, even when

there is no event to be polled from a worker.

To mitigate these effects, we implemented epoll-based

polling. By using epoll, one can monitor multiple file de-

scriptors at once (including event file descriptors). The calling

thread sleeps until there is an update on at least one of the

descriptors and receives a list of descriptors ready for I/O,

once it is woken. UCX workers use event file descriptors

internally for their blocking progress() implementation

and also expose them via a getter-function. This feature was

only available in the native UCX library, but we wrapped it

in Infinileap and also ported this functionality to JUCX [12].

However, epoll is not available with the standard Java tools.

In order to use it, we leveraged the open source library linux-

epoll.java, which exposes native epoll functionality via the

Java Native Access library [24] [11].

While epoll might help saving resources, letting a thread

sleep and wakeup costs time and affects latency negatively,

especially with only a few active connections. Once an event

has been processed, it is advisable to keep the thread active

for a short amount of time, so that following events can

be processed faster. Our epoll-based selector implementation

respects that, by using busy polling first, and leveraging epoll

after no event has ben processed for a configurable amount of

time (default: 20 µs).

IV. BENCHMARKS

We evaluated hadroNIO in three different scenarions using

a netty-based microbenchmark, a distributed key-value store

build on top of gRPC [4] and ZooKeeper [5]. This chapter

elaborates on the different applications and benchmarks used

for these experiments.

A. Netty Microbenchmark

Our microbenchmark measures round-trip times using netty.

It runs on two nodes (server/client) and supports an arbitrary

number of connections. All communication is done directly in

the netty channel handlers. Once a handler reads an incoming

message from a channel, it directly sends an answer. This

way, no additional threads are needed and the benchmark

solely uses the netty worker threads, allowing us to saturate

the CPU with a number of threads matching the number of

logical cores, but not overwhelming it with too many threads.

B. gRPC Key-Value Store

gRPC is a framework to perform remote procedure calls

in distributed systems [4]. It uses HTTP/2 as its transport

protoctol and supports multiple programming languages. Its

Java implementation is based on netty, rendering it a candidate

for acceleration via hadroNIO. However, by default gRPC

uses netty’s epoll-based channel implementation, instead of the

NIO-based one. This can easily be changed, but needs updates

in a few lines of the application’s setup code. Receiving

requests is handled by a netty worker thread pool, while a

separate executor thread pool performs the requested method

calls. Both are configurable by the programmer.

To evaluate gRPC performance we implemented a dis-

tributed key-value store, originally based on the example code

by Carl Mastrangelo [1]. We implemented safe access from

multiple clients at once by using a ConcurrentHashMap

and enhanced the store with support for multiple servers, by

implementing client-side static hashing and distributing keys

over servers according to their hash values.

For benchmarking, we decided to use the Yahoo! Cloud

Serving Benchmark (YCSB) [2], an industry approved bench-

mark for evaluating (distributed) cloud databases. It expects

data to be stored in records, which have unique keys assigned

with them and each record containing an arbitrary number of

fields. During the benchmark, records are read (or updated)

and the time for each operation is measured. Results can be

given as a histogram or time series.

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

78

C. Apache ZooKeeper

Apache ZooKeper is a highly reliable hierarchical key-value

store, used for coordination of distributed cloud services [5].

Data is stored on disk and can be replicated on multiple

servers to increase reliability. The values are organized in

nodes and the key naming scheme follows a hierarchical

structure, resembling a filesystem. ZooKeeper uses the Java

NIO API directly, instead of being built on top of netty. Like

gRPC, it uses one thread pool for network communication,

called the selector thread pool, and one worker thread pool

for performing I/O. It may however be configured to do all

work inside the selector threads and omit second thread pool.

The YCSB repository contains an official binding for

ZooKeeper, making it the obvious choice for our evaluation.

V. EVALUATION

This sections presents the evaluation results, comparing

hadroNIO based on Infinileap and JUCX with libvma and

classic sockets using 100 GBit/s high-speed NICs.

A. Evaluation setup

We used our netty microbenchmark, as well as the YCSB

(described in chapter IV) to evaluate application performance.

We look at two types of figures: For scalabilty evaluation,

we use graphs with an increasing amount of connections on

the x-axis, and either the round-trip time in microseconds

or the operation throughput on the y-axis. In such cases,

all benchmark runs were executed 5 times and the graphs

depict average values with the error bars showing the standard

deviation. To get a better idea of the latency variation, we

also executed time series benchmarks using the YCSB with a

granularity of 1 ms and a fixed connection count. We depcit

the results as scatter plots with the elapsed time in seconds on

the x-axis and the request time in microseconds on the y-axis.

We cut off the first 30 seconds as warmup time.

All experiments were performed on identical nodes, pro-

vided by the Oracle Cloud Infrastructure, using the HPC

Cluster Terraform stack [31].

CPU 2x Intel(R) Xeon(R) Gold 6154 CPU (18

Cores/36 Threads @3.00 GHz)

RAM 384 GB DDR4 @2933 MHz

NIC Mellanox Technologies MT28800 Family

[ConnectX-5] (100 GBit/s) Ethernet

Storage Oracle 6.4 TB NVMe SSD v2

OS Oracle Linux 8.7 with Linux kernel 4.18.0-425

OFED MLNX 5.4-3.6.8.1

Java OpenJDK 20.0.1

UCX 1.14.1

libvma 9.8.30

Fig. 2. Hardware specification of the OCI systems.

Each of the OCI nodes disposes of two CPUs in distinct

sockets, which can hurt performance, if applications are not

aware of that. To avoid such problems, we used the tool

numactl to pin our benchmark processes to the CPU, which

the network card is connected to. For our gRPC scenario, we

started two servers on one node, with each server instance

being pinned to an individual CPU.

Regarding libvma, some setup is needed for it to

work properly. To accommodate that, we set the amount

of hugepages to 16384, as recommended by the libvma

readme file [22] (shmmax was already pre-configured with

a high enough value). Furthermore, we followed the in-

structions in the official libvma wiki and set the en-

vironment variables VMA RING ALLOCATION RX and

VMA RING ALLOCATION TX to 20, while also increasing

the amount of receive buffers to 2000000 to improve per-

formance with multiple network threads [21]. For the netty

micro-benchmark, we set VMA SPEC to latency, while in the

other scenarios, libvma performed better without it. Lastly,

we ran our benchmarks with root privileges, when using

libvma, because just granting CAP NET RAW did not work

as described.

For hadroNIO, we used the default configuration with 8

MiB large send and receive buffers and a buffer slice length

of 64 KiB.

B. Netty microbenchmark results

We used our netty microbenchmark to measure round-trip

times with 16 byte messages and up to 512 connections in

increments of 8. However, for libvma we do not have results

for more than 96 connections, because we faced problems with

hanging connections, causing the benchmark to not finish. This

also occurred with less connections, forcing us to restart the

benchmark multiple times, but when using more than 100 con-

nections, it happened so often, that it was not practical to get

more libvma results. Furthermore, we aborted the benchmark

with hadroNIO based on JUCX at 128 connections, because

it became so slow, that letting it run further would haven

taken too long. To achieve such a high connection count with

hadroNIO, we used our epoll-based selector implementation.

We configured netty to use 36 worker threads, matching the

amount of logical CPU cores available.

11 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Connections

0

25

50

75

100

125

150

175

La
te

nc
y

in

s

Ethernet
hadroNIO (Infinileap)

hadroNIO (JUCX) libvma

Fig. 3. Netty microbenchmark round-trip times with 16 byte messages

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

79

Depicted by Fig. 3, we see hadroNIO and libvma starting

very close to each other, with hadroNIO based on Infinileap

having a marginal advantage over libvma (4.5 µs vs. 4.7 µs)

and our JUCX-based solution yielding slightly higher latencies

of around 5.6 µs. However, all perform better than classic

Ethernet which needs almost 25 µs on average per iteration.

Going further, latencies rise fast using JUCX and getting

even slower than Ethernet from 32 connections onward. With

Infinileap, round-trip times climb slowly, staying under 10

µs up to 80 connections, with the gap between hadroNIO

(Infinileap) and libvma also growing slowly. libvma breaks

10 µs at 32 connections and the last result we got for it is

around 19 µs with 96 connections. At that point, the Infinileap-

based solution still yields latencies of 11-12 µs, while Ethernet

measures 65 µs and JUCX is by far the slowest with 126 µs.

Going over 100 connections, the values rise moderately for

hadroNIO, but never exceed 45 µs, even with more than 500

connections. We can see a slight sawtooth pattern coming from

the use epoll. Each time a multiple of 36, which matches the

amount of active worker threads, is reached, it performs best

and latencies rise up to the next multiple of 36, where a slight

drop, of at maximum 5 µs, can be observed.

Overall, hadroNIO based on Infinileap performs by far the

best, offering a 5x performance improvement over Ethernet for

up to 256 connections, and still a 3.5x improvement with 512

connections. The official Java binding for UCX, (JUCX) seems

overwhelmed by this synthetic scenario, while libvma offers

good performance but cannot handle over 100 connections.

C. gRPC key-value store benchmark results

For our gRPC evaluation, we started two key-value store

servers on one node, each pinned to an individual CPU and

three clients on different nodes requesting data from the

servers. To evaluate performance with small values, we took

the YCSB workload configuration workload C and altered it to

use records containing only a single 16 byte field, with 1000

records being distributed evenly over the two servers. Each

client started off with a single benchmark thread performing

1 million get requests, and added one thread and another 1

million requests with each iteration. At the end, each client

had 36 active connections to each server, equalling a total

amount of 216 connections being managed by the server

node’s HCA. On the server side, we used 18 netty worker

threads and 18 executor threads to process the method calls,

while each client also started 18 netty worker threads and one

YCSB benchmark thread per connection. We found that in this

scenario, hadroNIO performs best with a busy polling selector,

so we used that instead of the epoll-based selector used

in the netty microbenchmark. Unfortunately, we experienced

problems with hanging connections when using libvma during

some benchmark runs and with more than 5 benchmark threads

per client, exceptions in netty’s HTTP/2 module occurred. Due

to this, we decided to exclude libvma from the scalability test.

However, we can get an idea of libvma’s performance with

gRPC from Fig. 5.

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Connections per client

100

200

300

400

500

Th
ro

ug
hp

ut
 in

 K
Op

er
at

io
ns

/s

Ethernet hadroNIO (Infinileap) hadroNIO (JUCX)

Fig. 4. gRPC key-value store request times 3 clients and 1x16 byte records

Starting with 1 connection per client (6 connections in total),

we see a speedup of around 70% for hadroNIO based on JUCX

compared to classic sockets (∼50 KOp/s vs. ∼29 KOp/s, see

Fig 4). Using Infinileap yields another 3.5 KOp/s over JUCX,

resulting in a total performance gain of more than 80%. With

a rising amount of connections, the absolute gap between

hadroNIO and Ethernet grows further, reaching around 100

KOp/s with 10 connections per client, amounting to a 50%

improvement. It reaches its maximum around 16 connections

with a difference of more than 150 KOp/s.

Interestingly, the difference between JUCX and Infinileap

ist much smaller, compared to the netty microbenchmark.

JUCX is still generally slower than Infinileap throughout the

benchmark (e.g. ∼426 KOp/s vs. ∼454 KOp/s with 16 con-

nections per client), but in terms of scalability, both solutions

perform similarly. Round-trip times in gRPC are much higher

than in our netty microbenchmark, starting at around 50µs.

This results in less pressure on the JVM, caused by object

allocations and upcalls from the native part of JUCX. We

think, that for this reason the performance difference between

JUCX and Infinileap is much less drastic here.

With 28 or more connections per client, there is virtually no

difference between using hadroNIO with JUCX or Infinileap.

From there on, we can see no more throughput growth, as

it seems like a point of saturation has been reached. When

increasing the connection count further, hadroNIO manages to

maintain a stable rate of 500-530 KOp/s. With 36 connections,

Ethernet ist still slower than hadroNIO with around 495

KOp/s, but the difference is smaller than before.

Fig. 5 presents an in-depth look at gRPC request latencies

using the same setup as before, with 3 connections per client

(18 connections in total). Ethernet not only yields the slowest

performance, but also has more spread out values than the ac-

celeration libraries, with request times generally lying between

90 and 110 µs and a considerable amount of requests even

reaching up to 130 µs. As the slowest acceleration solution,

libvma still outperforms classic sockets, with most requests

being served in less than 90 µs and some reaching answer

times of less than 75 µs. However, the best performance is

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

80

Fig. 5. gRPC key-value store request times with 3 clients ()each using 3
threads) and 1x16 byte records

achieved by hadroNIO, serving the majority of requests in

less than 70 µs and with Infinileap request latencies can be as

low as 55 µs and are generally lower than with JUCX.

To conclude the gRPC benchmarks, we increased the record

size by setting the field length to 1024 byte and storing 16

fields in each record, amounting to 16 KiB of data per request.

The graphs look similar, compared to the 16 byte results. We

can see that Ethernet profits from the larger amounts of data

being sent per request. This was expected, since transferring

small amounts of data, with each message causing a context

switch into kernel space, is much more inefficient than sending

large payloads and thus causing less context switches.

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Connections per client

100

200

300

400

Th
ro

ug
hp

ut
 in

 K
Op

er
at

io
ns

/s

Ethernet hadroNIO (Infinileap) hadroNIO (JUCX)

Fig. 6. gRPC key-value store request times with 3 clients and 16x1024 byte
records

However, hadroNIO still provides performance improve-

ments of 30-40% with up to 24 connections per client and

manages to outperform classic sockets by 20% with 30

connections per client. As before, a point of saturation is

reached at around 28 connections with hadroNIO yielding

∼430 KOp/s, compared to Ethernet with ∼343 KOp/s.

D. ZooKeeper benchmark results

As our last benchmark scenario, we tested Apache

ZooKeeper with one server and three clients, each running

three benchmark threads. We did not start two ZooKeeper

instances on our server node, as we did with gRPC, because

ZooKeeper does not distribute values over servers, but rather

replicates them, so that each additional server makes the sys-

tem more reliable. However, running two servers on one node

does not increase reliability, since a hardware failure would

kill both instances, making this a very untypical scenario.

We loaded 1000 records, each with a size of 16 byte, and

configured the ZooKeeper server to store data on an NVME

SSD, not used by other processes, for fast access. Furthermore,

we configured ZooKeeper to not use any worker threads, but

perform all work directly in the selector threads, to achieve

lower latencies.

Fig. 7. ZooKeeper request times with 3 clients (each using 3 threads) and
1x16 byte records

As with gRPC, classic Ethernet causes a wide spread of

request times, with the majority lying between 95 µs and

130 µs, and some reaching more than 150 µs. While libvma

manages to accelerate a good portion of requests to less than

90 µs and a considerable amount is as fast as 75 µs, values

are spread equally high as with Ethernet, and a major fraction

of latencies are higher than 100 µs. This is hard to see from

Fig. 7, because most of the libvma data is covered by Ethernet

values. But, looking at the area between 130 µs and 150 µs,

libvma values can be seen amongst the Ethernet values.

In this scenario, hadroNIO provides a much better accel-

eration, with almost all requests being answered in less than

50 µs. Curiously, we can see short latency bursts, with the

highest reaching almost 70 µs. However, even during these

short bursts, request latencies are still lower, compared to

Ethernet and libvma. Overall, Infinileap has a slight advantage

over JUCX, but both perform similarly.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we presented the latest extensions to

hadroNIO, including support for accessing the native high-

performance networking framework UCX via the new Foreign

Function and Foreign Memory Interfaces, included in Java

20. We compared hadroNIO to the native socket accelera-

tion library libvma in a synthetic workload, using a netty

microbenchmark, as well as distributed real-world scenarios

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

81

based on gRPC and Apache ZooKeeper using the YCSB.

Our results show, that hadroNIO is able to outperform libvma

in each of these scenarios. Furthermore, libvma has shown

problems with high connection counts, not being able to finish

all of our benchmarks, while also requiring root privileges.

Depending on the workload, hadroNIO yields an increase

in performance of roughly 50% over classic Ethernet sockets

and can scale with hundreds of connections in gRPC. For

Apache ZooKeeper we saw a 2-3x speedup. Looking at the

netty microbenchmark results, one can see that there is much

acceleration potential left for real-world applications, with

hadroNIO being able to achieve average round-trip times of

10 µs with around 100 connections working concurrently.

Our benchmark results show, that Infinileap, based on

Project Panama, performs better than the JNI-based JUCX. In

our netty microbenchmark, JUCX has shown unusable perfor-

mance, even being slower than classic Ethernet with more than

32 connections. However, in our gRPC and ZooKeeper tests,

JUCX performs admirably, albeit still slower than Infinileap.

Future plans include a more in-depth evaluation of

ZooKeeper performance in different scenarios, as well as

performing benchmarks with other real-world applications.

Successful tests with Apache Ratis [32] and Apache Book-

Keeper [13] have already been executed.

VII. ACKNOWLEDGMENT

We thank Oracle for their sponsorship in the context of this

work.

This work was supported in part by Oracle Cloud credits

and related resources provided by the Oracle for Research

program.

REFERENCES

[1] Carl Mastrangelo. gRPC Key Value store. https://github.com/
carl-mastrangelo/kvstore.

[2] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the

1st ACM Symposium on Cloud Computing, SoCC ’10, page 143–154,
New York, NY, USA, 2010. Association for Computing Machinery.

[3] M. Dawson, G. Johnson, and A. Low. Best practices for using the java
native interface.

[4] gRPC. https://grpc.io/.

[5] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-
free coordination for internet-scale systems. In Proceedings of the

2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, page 11, USA, 2010. USENIX Association.

[6] Java Sockets over Remote Direct Memory Access (JSOR).
https://www.ibm.com/docs/en/sdk-java-technology/7?topic=
networking-java-sockets-over-remote-direct-memory-access-jsorl.

[7] IBM. RDMA communication appears to hang.
https://www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-communication-appears-hang.

[8] IBM. RDMA connection reset exceptions. https:
//www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-connection-reset-exceptions.

[9] Project Panama. https://openjdk.java.net/projects/panama/.

[10] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park. mTCP: a highly scalable user-level TCP stack for multicore
systems. In 11th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 14), pages 489–502, Seattle, WA, Apr. 2014.
USENIX Association.

[11] Java Native Access. https://github.com/java-native-access/jna#readme.

[12] UCX Pull Request 8453. https://github.com/openucx/ucx/pull/8453.

[13] F. P. Junqueira, I. Kelly, and B. Reed. Durability with bookkeeper.
SIGOPS Oper. Syst. Rev., 47(1):9–15, jan 2013.

[14] V. Kashyap. IP over InfiniBand (IPoIB) Architecture. https://www.ietf.
org/rfc/rfc4392.txt, April 2006.

[15] F. Krakowski, F. Ruhland, and M. Schöttner. Neutrino: Efficient
infiniband access for java applications. In 2020 19th International

Symposium on Parallel and Distributed Computing (ISPDC), pages 12–
19, 2020.

[16] F. Krakowski, F. Ruhland, and M. Schöttner. Infinileap: Modern high-
performance networking for distributed java applications based on rdma.
In 2021 IEEE 27th International Conference on Parallel and Distributed

Systems (ICPADS), pages 652–659, 2021.
[17] D. Kurzyniec and V. Sunderam. Efficient cooperation between java and

native codes – jni performance benchmark. In In The 2001 International

Conference on Parallel and Distributed Processing Techniques and

Applications, 2001.
[18] A. Lakshman and P. Malik. Cassandra: A decentralized structured

storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, apr 2010.
[19] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang. Socksdirect: Datacenter

sockets can be fast and compatible. In ACM SIGCOMM Conference

(SIGCOMM), August 2019.
[20] libvma GitHub. https://github.com/Mellanox/libvma/.
[21] VMA Parameters. https://github.com/Mellanox/libvma/wiki/

VMA-Parameters.
[22] libvma README. https://github.com/Mellanox/libvma/blob/master/

README.
[23] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi. Scalable kernel

tcp design and implementation for short-lived connections. SIGPLAN

Not., 51(4):339–352, mar 2016.
[24] linux-epoll.java. https://github.com/helins/linux-epoll.java.
[25] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda.

Accelerating spark with rdma for big data processing: Early experi-
ences. In 2014 IEEE 22nd Annual Symposium on High-Performance

Interconnects, pages 9–16, 2014.
[26] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda. High-performance

design of apache spark with rdma and its benefits on various workloads.
In 2016 IEEE International Conference on Big Data (Big Data), pages
253–262, 2016.

[27] OFED 3.5 release notes. https://downloads.openfabrics.org/OFED/
release notes/OFED 3.5 release notes.

[28] Sockets Direct Protocol. https://docs.oracle.com/javase/tutorial/sdp/
sockets/index.html.

[29] Statement on support of experimental verbs. https://forums.developer.
nvidia.com/t/verbs-exp-h-no-such-file-or-directory/206300/2.

[30] Netty. https://netty.io/index.html.
[31] Oracle Marketplace: HPC Cluster Terraform Stack. https://

cloudmarketplace..com/marketplace/en US/listing/67628143.
[32] Apache Ratis. https://ratis.apache.org/.
[33] F. Ruhland, F. Krakowski, and M. Schöttner. Performance analysis

and evaluation of Java-based InfiniBand Solutions. In 2020 19th Inter-

national Symposium on Parallel and Distributed Computing (ISPDC),
pages 20–28, 2020.

[34] F. Ruhland, F. Krakowski, and M. Schöttner. hadronio: Accelerating
java nio via ucx. In 2021 20th International Symposium on Parallel and

Distributed Computing (ISPDC), pages 25–32, 2021.
[35] F. Ruhland, F. Krakowski, and M. Schöttner. Accelerating netty-based

applications through transparent infiniband support, 2022.
[36] P. Stuedi. Direct storage and networking inter-

face (disni). https://developer.ibm.com/open/projects/
direct-storage-and-networking-interface-disni/, 2018.

[37] P. Stuedi, B. Metzler, and A. Trivedi. jverbs: Ultra-low latency for data
center applications. In Proceedings of the 4th Annual Symposium on

Cloud Computing, SOCC ’13, pages 10:1–10:14. ACM, 2013.
[38] S. Yang, S. Son, M.-J. Choi, and Y.-S. Moon. Performance improvement

of apache storm using infiniband rdma. The Journal of Supercomputing,
75:6804–6830, 2019.

[39] Z. Zhang, Z. Liu, Q. Jiang, J. Chen, and H. An. Rdma-based apache
storm for high-performance stream data processing. International

Journal of Parallel Programming, 49:671–684, 2021.

CHAPTER 4. MODERN FOREIGN FUNCTION & MEMORY ACCESS IN JAVA

82

Chapter 5

Application Integration

With the increasing demand for systems to evaluate and analyze big data records, more

and more frameworks for this purpose have emerged within the Java ecosystem over

time. Examples of this are some projects created under the Apache Software Foun-

dation, such as Apache Spark™[3], Apache Hadoop[4], Apache Storm[5] and Apache

Flink®[6]. While some of these projects are implemented in JVM-compatible lan-

guages such as Scala, they all use the JVM as their foundation. For this reason, they

also make use of the networking functionalities provided by the JDK. The following

chapter focuses on the integration of high-speed interconnect hardware within existing

frameworks aiming at transparently accelerating applications based on them.

5.1 The Java Development Kit’s Networking Options

The Java Development Kit offers two basic building blocks for implementing network

applications. These can be divided into the categories "blocking" and "non-blocking".

Both categories have different approaches to the execution of operations. Roughly

speaking, the non-blocking components within the JVM were introduced after the

realization that the blocking components could no longer deliver the required efficiency

within highly parallel systems.

5.1.1 Blocking Network I/O

The first available variant of network operations is blocking I/O implemented within

classes located within the java.net package. The classes implemented here are based

on the assumption that each connection within a network application is handled by a

separate thread, so that many threads are busy processing network operations in par-

allel[56]. However, this type of design has a major disadvantage, which is particularly

noticeable with many connections. As soon as a network operation is required, the as-

83

CHAPTER 5. APPLICATION INTEGRATION

sociated thread must be stopped at the corresponding point due to the blocking nature

of the network operation until the result can be retrieved or the function returns.

Example

An abstract comparison of this is an office (the processor) with several counters

(the threads). Each customer to be served (the operation) must first queue at the

counter. While one customer is being served at the counter (the operation is being

carried out), all customers behind him in the queue must wait. If the customer

needs more time, customers behind him may decide to leave the queue (abort due

to timeout) in order to visit the office again at a later time.

As described in the previous example, the use of blocking I/O operations within network

applications can lead to higher latencies or even timeouts during processing. However,

the use of blocking I/O is still possible within smaller applications that are designed

for handling only a dozen of connections. One advantage over non-blocking I/O is the

straightforward implementation of network applications.

NetworkClient.java Java

1 public final class NetworkClient {
2

3 public static void main(String... args) {
4 Socket socket = new Socket(" localhost " , 1234);
5 DataOutputStream out = new DataOutputStream(socket.getOutputStream());
6 out.writeUTF(" Hello World ");
7 out.flush();
8 }
9 }

Figure 5.1: Establishing a blocking socket connection with a remote server.

Figure 5.1 shows a simple four-line program that establishes a connection with a remote

server and then sends a message. First, a Socket is created in line 4 , which is given

the host and the port to which it should connect. In this example, the program connects

to another process within the same computer, which is why localhost is specified

here as the host. In the next step, an abstraction of the java.net package is used

in line 5 , which wraps the OutputStream of the socket to provide functions that

can be used to send simple data types. This abstraction is the DataOutputStream

class. It is used in the following line 6 to send a simple String using the writeUTF

instance method. Finally, the instance method flush is called in line 7 to ensure

that the data is sent, as it may still be temporarily held for buffering purposes. Using

the steps described above, it is possible to write a simple program that connects to a

server and sends it a message. On the server side, receiving messages using blocking

I/O operations is also very easy and can be implemented in just a few lines.

84

CHAPTER 5. APPLICATION INTEGRATION

NetworkServer.java Java

1 public final class NetworkServer {
2

3 public static void main(String... args) {
4 ServerSocket server = new ServerSocket(1234);
5 Socket client = server.accept();
6 DataInputStream in = new DataInputStream(client.getInputStream());
7 System.out.println(in.readUTF());
8 }
9 }

Figure 5.2: Starting a blocking server instance and receiving data.

The creation of a server application using blocking I/O is shown in Figure 5.2. In

line 4 , an instance of the ServerSocket class must first be created. This type of

socket listens on a defined port (in this example 1234) and is able to process incoming

connection requests. To accept an incoming connection request, the instance method

accept is called, which blocks until a client requests a connection. The return value

of the method is an object of type Socket which can be used to communicate with

the client. For this purpose, the InputStream of the client is wrapped within a

DataInputStream (line 6), which is the counterpart to a DataOutpuStream . It can

be used to convert or deserialize the data sent by the client back into Java objects. This

is done within the print statement in line 7 by calling the instance method readUTF

(the counterpart to writeUTF) and outputting the resulting string (in this example

Hello World) to the console. As in the case of the client side, it is thus also possible

to write a functioning program in just a few lines using blocking I/O, which can accept

connections via a network and receive messages afterwards.

However, it should be emphasized that the example can only accept one connection due

to the use of the main thread (the thread that calls the main method) for processing

incoming connections and also terminates immediately as soon as a message has been

received and output. A server that wants to process several connections would therefore

have to use several threads in which the respective Socket instances are processed. As

each thread can process exactly one connection, the operating system or the underlying

hardware quickly reaches its limits. This limitation was already recognized some time

ago and addressed within the "C10K Problem"[57]. The core statement here is that

operating systems provide various mechanisms (such as Linux’s epoll) for parallel

processing of many individual connections using a small limited number of threads,

which should always be preferred within applications that expect a high number of

connections. It is precisely for this reason that new network-related components have

been developed within the JDK, which make use of these non-blocking mechanisms

and make them available to the program for use.

85

CHAPTER 5. APPLICATION INTEGRATION

5.1.2 Non-Blocking Network I/O

In contrast to the blocking I/O, there is the non-blocking I/O within the JDK, which

bundles its classes within the java.nio package. The classes contained herein belong

to Java’s New I/O (NIO) APIs[58]. The programming model used here is based on

asynchronous processing of operations. In detail, this means that triggering an op-

eration does not lead to the executing thread being blocked, but the corresponding

function places the operation to be executed in a queue for later execution. The pro-

gram is then notified of the status of the operation by means of a callback, i.e. a

function that is called on completion of the operation, and can react accordingly. A

program based on non-blocking I/O generally uses a thread to accept connections and

then passes the accepted connections to a thread of a thread pool, which manages a

fixed number of threads (usually twice the number of processor cores). The threads

of the thread pool are in turn responsible for processing incoming and outgoing oper-

ations inside an event loop (i.e. an endless loop). Since the execution of a continuous

loop without intermediate pauses would lead to very high energy consumption due

to the constantly working processor, Java’s NIO API provides an abstraction for the

use of operating system-specific multiplexing mechanisms[59]. This abstraction is the

Selector class. Together with the SocketChannel class - the asynchronous counter-

part to the Socket class - this abstraction can be used to implement highly parallel

network applications using just a few threads. A SocketChannel can be assigned to a

selector using the instance method register . In addition to the Selector instance,

this method accepts a set of operations to which the selector should react, as well as a

freely selectable attachment.

AsyncSelector.java Java

1 Selector selector = Selector.open();
2 SocketChannel clientA = ...
3 SocketChannel clientB = ...
4 clientA.register(selector, SelectionKey.OP_READ, clientA);
5 clientB.register(selector, SelectionKey.OP_WRITE, clientB);
6 while (true) {
7 selector.select();
8 for (SelectionKey key : selector.selectedKeys()) {
9 if (key.isReadable()) {

10 // Perform read
11 }
12

13 if (key.isWritable()) {
14 // Perform write
15 }
16 }
17 }

Figure 5.3: Asynchronous processing of multiple connections using a selector.

The previous example in Figure 5.3 shows the processing of two connections by a single

86

CHAPTER 5. APPLICATION INTEGRATION

thread using a Selector instance. This is created in line 1 using the class method

open . Two different SocketChannel instances are then registered with the Selector

in the lines 2 to 5 . During registration, the second parameter of the register

instance method can be used to specify which events should cause the selector to

select the corresponding channel. The possible options for this are as follows.

• SelectionKey.OP_READ - The corresponding channel is selected as soon as in-

coming data is available for a read operation.

• SelectionKey.OP_WRITE - The associated channel is selected as soon as free

memory space is available within its internal buffer for an outgoing write opera-

tion.

• SelectionKey.OP_CONNECT - The corresponding channel is selected as soon as

a connection with the other side has been established or an error has occurred

during the connection setup.

• SelectionKey.OP_ACCEPT - The associated channel is selected as soon as an

incoming connection request can be processed. This option is only relevant for

server applications.

Within the infinite loop, in line 7 the select instance method of the Selector is

called. This initially causes the executing thread to block at this point and wait for

one of the specified events. The method only returns when one of the events (OP_READ

or OP_WRITE) occurs on the associated channels. Then, in line 8 , the selected keys

- abstractions that indicate which event has occurred and carry the specified attach-

ment - can be iterated over using the selectedKeys instance method. Finally, the

isReadable and isWritable instance methods of the SelectionKey class are used

to check which event has occurred (lines 9 and 13), whereupon a corresponding

action, which is omitted in the previous example for reasons of simplicity, can be ex-

ecuted. Compared to blocking I/O, a special characteristic here is the way in which

the individual connections are processed. Since the select method can select sev-

eral connections on which the corresponding registered events have been recognized,

these can be processed specifically or isolated from the rest of the connections that

do not currently require processing. This means that the processor is only occupied

with processing connections that are waiting to be processed and can use the resources

thus freed up elsewhere or for other threads. As a result, this leads to dramatically

better scaling, as the processor only needs to process when it is needed, thereby greatly

optimizing efficiency.

87

CHAPTER 5. APPLICATION INTEGRATION

While the blocking I/O API only accepts buffered streams as a source for data, the

Java NIO API also offers the advantage of using off-heap memory. For this purpose, the

ByteBuffer class introduced in 2.2.3 is used. The SocketChannel class also provides

two instance methods read and write for read and write operations. Each of these

receives a ByteBuffer instance as a parameter and then executes the corresponding

operation on it.

ReadOperation.java Java

1 SocketChannel channel = ...
2 ByteBuffer buffer = ByteBuffer.allocate(32);
3 int bytes = channel.read(buffer);

Figure 5.4: Execution of a read operation on a ByteBuffer instance.

An example of a read operation on a ByteBuffer instance is shown in Figure 5.4. First,

a ByteBuffer instance, which comprises 32 bytes of memory, is allocated in line 2 .

This instance is then passed to the read instance method of the SocketChannel class

in line 3 . This results in any data that is ready to be read within the SocketChannel

being copied to the reserved memory of the ByteBuffer instance. However, it should

be noted here that it is not known in advance how many bytes can be read, so the

buffer’s size should be selected accordingly, as otherwise several read operations may

be necessary instead of just one. It is also possible that not all the required data is

available for processing because it has not yet been transferred. In such cases, the

return value of the read instance method must be considered. It indicates how many

bytes were copied into the reserved memory area of the ByteBuffer instance. If this

number is smaller than the expected number of bytes, the read operation must be con-

tinued at a later time when the SocketChannel is selected again by the Selector

due to new incoming data.

While this type of programming initially poses some challenges, it is indispensable

within high-performing networking systems, which is why many well-known network-

ing frameworks, such as Netty[60], rely on it. However, since such frameworks do

not provide support for RDMA-enabled hardware like InfiniBand, the following two

papers show how an integration can be transparently achieved by using Java NIO’s

SelectorProvider feature without having to modify existing application code.

88

CHAPTER 5. APPLICATION INTEGRATION

5.2 hadroNIO: Accelerating Java NIO via UCX

Fabian Ruhland, Filip Krakowski and Michael Schöttner. hadroNIO: Accelerating

Java NIO via UCX. In 20th International Symposium on Parallel and Distributed

Computing, ISPDC 2021, Cluj-Napoca, Romania, July 28-30, 2021.

Contributions:

This work is the direct predecessor to the work presented in 4.4 and was mainly devel-

oped by Fabian Ruhland.

Unlike with the successor version, the Infinileap framework was not yet ready for use,

which is why it was not included in this work. For this reason, Fabian Ruhland used

the only available Java interface to OpenUCX at the time, which was JUCX. During

the implementation, the author helped to track down some bugs within the JUCX

framework and find a solution for them. One example of this was the author’s dis-

covery of a memory leak within the JUCX project, which was caused by the incorrect

handling of global references within the native part of the code. Based on this finding,

Fabian Ruhland created a pull request in the JUCX project, whereupon this error was

fixed with the next release. As the author was working on the Infinileap project at the

same time and was therefore familiar with the OpenUCX framework, there was also an

exchange regarding the use of the framework, which cleared up some areas of unclarity.

The paper was written by Fabian Ruhland, whereby the author and Michael Schöttner

were involved in some discussions on the conception and implementation of various

components of the framework.

Status: published

89

hadroNIO: Accelerating Java NIO via UCX

Fabian Ruhland

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

fabian.ruhland@hhu.de

Filip Krakowski

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

filip.krakowski@hhu.de

Michael Schöttner

Department Operating Systems

Heinrich Heine University

Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—InfiniBand networks with bandwidths up to 400
Gbit/s and sub-microsecond latencies are more and more popular
in HPC and cloud data centers. Many big-data frameworks, such
as Apache Spark and Cassandra, are written in Java and use Java
NIO socket channels, which are designed for Ethernet networks.
Rewriting network code for such complex systems is typically not
an option and thus, transparent solutions like IP over InfiniBand
are used.
In this paper, we present hadroNIO, a Java library, that transpar-
ently replaces the default NIO implementation, providing support
for InfiniBand (as well as Ethernet and other transports) through
the Unified Communication X (UCX) library. We compare our
library against other transparent network acceleration solutions
in an InfiniBand environment and also evaluate the overhead,
that is introduced by using hadroNIO versus directly accessing
UCX. We show that it is possible to achieve latencies as low
as 3.1 µs, while also being able to leverage the full bandwidth
of InfiniBand hardware with our fully transparent acceleration
solution. In the future we aim at extending hadroNIO, and thus
the NIO API, with RDMA directives.

Index Terms—High-speed Networks, InfiniBand, OpenUCX,
Java, Remote Direct Memory Access

I. INTRODUCTION

Java NIO is the standard for modern network development

on the Java platform for many years now. With its elegant API

for asynchronous communication, it empowers application

developers to handle several connections with just a single

thread, while still being flexible to scale with large thread

counts. Additionally, it supports blocking communication,

resembling the traditional Java socket API. Its success is

underlined by the amount of projects based on NIO (or netty,

building upon NIO [6]), such as Spark [16] or Cassandra [2].

However, since the NIO implementation relies on classic

sockets, applications are limited to using Ethernet for com-

munication. While there are several successful approaches

mitigating this problem by transparently offloading socket

traffic to fast networks like InfiniBand [5] [10] [15], our past

research shows, that none of them are capable of leveraging

the full potential of the underlying InfiniBand hardware [13].

Unified Communication X (UCX) is a native framework,

aiming to provide a unified API for multiple transport types

[14]. The UCX API offers several forms of communication,

such as tagged messaging, active messaging, streaming or

RDMA. Application developers do not need to target a specific

network interconnect, since UCX automatically scans the

system for available transports and chooses the fastest one

(e.g. Ethernet or InfiniBand). Since it also provides a Java-

binding called JUCX (based on JNI), this framework can also

be used in Java applications [4].

In this paper, we propose hadroNIO, aiming at accelerating

Java communication using JUCX. Instead of offloading the

traffic to a specific type of transport, we leverage UCX to

benefit from several transports. We aim at enabling NIO

based applications to transparently use the full potential of the

available hardware, regarding both high throughput with NIO’s

non-blocking API, as well as low latencies with blocking

socket channels. Developers do not have to specifically build

their applications against hadroNIO, but can just use the

standard NIO API. In the future, we plan to provide RDMA

functionality by extending the NIO API with new directives

for remote reading and writing. This would allow applications,

that are aware of hadroNIO, to use RDMA features, without

requiring developers to learn a new API from the ground up.

The contributions of this paper are:

• An overview of existing socket acceleration solutions for

Java applications

• The design and implementaion of hadroNIO, a library to

transparently accelerate Java NIO using UCX, enabling

developers to benefit from several types of interconnects

without learning a new API

• Evaluation of hadroNIO against IP over InfiniBand and

directly using JUCX with blocking and non-blocking

socket channels

The paper is structured as follows: Section II discusses

related work and presents some of the existing acceleration

solutions. Section III discusses hadroNIO’s architecture fol-

lowed by Section IV with the evaluation results. Conclusions

are presented in Section V.

II. RELATED WORK

To the best of our knowledge, there are no alternative NIO

implementations, but there are multiple solutions (some of

them still actively maintained) aiming to accelerate traditional

Java sockets by offloading the send and receive traffic of

socket-based applications to InfiniBand host channel adapters

(HCAs). Since NIO is based on classic Java sockets, these

solutions also work with applications based on Java NIO.

In the past, we have already evaluated some of them using978-1-6654-3281-8/21/$31.00 ©2021 IEEE

CHAPTER 5. APPLICATION INTEGRATION

90

Observatory, our networking micro-benchmark suite, tailored

towards evaluating InfiniBand solutions for Java applications.

IP over InfiniBand (IPoIB) [10] is a kernel module,

that exposes the InfiniBand device to the user space as a

standard network interface (e.g. ib0). Applications can just

bind their sockets to an IP-address associated with such a

network interface, making IPoIB transparent to use. However,

since it uses the kernel’s network stack, thus requiring context

switching between user and kernel space, there is a relatively

high performance penalty (especially regarding latency).

libvma [5] is a native open source library, developed by

Mellanox, that can be preloaded to any socket-based appli-

cation (using LD PRELOAD). It enables full bypass of the

kernel’s network stack by redirecting all socket traffic over

InfiniBand using a custom protocol based on unreliable data-

gram communication. While existing application code does

not have to be modified to benefit from increased performance,

libvma requires the CAP NET RAW capability, as well as flow

steering to be enabled, which might not be available depending

on the cluster environment.

Java Socket over RDMA (JSOR) is a java library, devel-

oped by IBM, which redirects all socket traffic over high-speed

networks using RDMA. It is included in IBM’s Java SDK and

requires their proprietary J9 JVM, thus only supporting Java

versions up to 8, so far. While JSOR has shown promising

results, there are known problems with connections getting

stuck [8] and exceptions [9]. Additionally, when evaluating

JSOR, we were not able to perform a full benchmark run with

a bidirectional connection, using separate threads for sending

and receiving [13]. These problems and its dependency on

proprietary technology limit its usability.

The Sockets Direct Protocol (SDP) leverages RDMA with

full kernel bypass to accelerate all socket traffic of Java

applications. It was part of the OFED and introduced into

the JDK starting with Java version 7. However, support has

officially ended and it has been removed from the OFED since

version 3.5 [7].

Java Fast Sockets is an optimized Java socket implemen-

tation for high-speed interconnects. It avoids serialization of

primitive data arrays and reduces buffer copying with shared

memory communication as its main focus. While JFS provides

InfiniBand access, it relies on SDP, which is deprecated.

III. HADRONIO ARCHITECTURE

This section presents the architecture of hadroNIO and the

challenges we solved when interfacing between Java NIO and

UCX, as well as the benefits of using UCX.

A. Replacing the default NIO implementation

Per JDK specification, a socket channel may either be

configured to be blocking or non-blocking [3]. In blocking

mode, each write() operation will block until all bytes from

the source buffer have been processed. This does not imply,

that all bytes have been received by the remote side, but that

the data has at least been copied to the underlying socket’s

buffer. A similar norm applies to the read() method, as in

blocking mode it must block until at least one byte may be

read from the underlying socket’s buffer.

NIO’s non-blocking API works quite different from that,

since a call to write() or read() is not obligated to

block, but is allowed to return after processing only part of

the source buffer and in fact may not process any data at

all (e.g. if the underlying socket’s buffer is full or empty).

To check which operations are eligible to be performed on a

socket channel, NIO introduces the concept of selectors and

selection keys. Each socket channel may be registered with

one selector. This registration is represented by a selection key,

which signals the associated channel’s current state (e.g. if the

channel is readable/writeable). To refresh the information held

by a selection key, the select() method of the appropriate

selector must be called. The selector will then check the

state of each associated channel and refresh the selection keys

accordingly. Additionally, an object may be attached to each

key. Typically, applications attach Runnable instances and

execute each attachment (commonly called handler) after the

selection operation, to handle the associated channel’s state

(e.g. perform a read or write operation).

To transparently accelerate existing NIO applications,

hadroNIO needs to fully substitute the involved classes,

including SocketChannel, ServerSocketChannel,

Selector and SelectionKey. The Java platform pro-

vides a comfortable way of exchanging the default NIO

implementation through a class called SelectorProvider.

This class offers methods to create instances of the different

NIO components (e.g. SocketChannel or Selector). To

accelerate an NIO based application, users simply need add to

the hadroNIO JAR file to the classpath and configure the JVM

to use the hadroNIO selector provider by setting the property

java.nio.channels.spi.SelectorProvider.

SocketChannel Selector

hadroNIO

ServerSocketChannel

JUCX

Endpoint WorkerCallback

pr
og

re
ss

create

co
nn

ec
t send/

receiveno
tif

y

Java Application

Ethernet Infiniband Shared Memory...
Hardware

Java space

Native space UCX

Fig. 1. Architecture overview

CHAPTER 5. APPLICATION INTEGRATION

91

B. UCX request processing

UCX’s tagged messaging API, which we used to build

hadroNIO, generally works in a non-blocking fashion. While

operations with small buffers may be completed directly,

the majority of requests are executed asynchronously. To

keep track of a request’s state, a handle is created for each

asynchronous request. These handles may be used to check

if a request is completed, still in progress or was aborted

with an error. Asynchronous requests do not get executed

automatically, but are processed by so called workers. In

UCX, a worker abstracts one or multiple network resources

(e.g. HCA ports). To complete an asynchronous request, the

worker, associated with the network device to which the

request has been issued, needs to be progressed manually.

Optionally, a callback can be associated with each request and

be automatically executed once the request has been finished

or aborted. This asynchronous communication concept fits

well with NIO’s non-blocking API, since UCX requests can

be issued within the read() and write() methods of the

SocketChannel class, while the responsible workers can

be progressed in the select() method of the Selector

class (see Fig 1). However, mapping this concept to blocking

socket channels proved to be more challenging (see Section

III-E).

C. Buffer management for writing

Buffers are managed differently in UCX and NIO: In the

default NIO implementation, calling write() will copy the

the source buffer’s content into the underlying socket’s buffer

and return. Even though the actual process of sending the data

is then performed asynchronously, the source buffer may be

reused and altered by the application. UCX’s behaviour differs

from that by not allowing the source buffer to be modified until

the request is completed.

We address this by introducing an intermediate buffer to our

SocketChannel implementation. In its write() method,

the source buffer’s content is copied into the intermediate

buffer and all UCX send requests will only operate on the

copied data. Since we want to be able to handle multiple active

send requests, a simple yet thread-safe memory management

is needed to manage the space inside the intermediate buffer.

To achieve this, the buffer is implemented as a ring buffer,

based on Agrona’s OneToOneRingBuffer. Agrona is a library

providing multiple lock-free thread-safe data structures [1].

The full write mechanism can be divided into the following

steps (also depicted in Fig. 2):

1) Allocate the needed amount of space inside the interme-

diate buffer.

2) Copy the source buffer’s content into the newly allocated

space.

3) Issue a send request via UCX.

4) Return to the application. The source buffer may now

be reused and the actual process of sending the data to

a remote receiver is performed asynchronously.

5) Once the request has been completed by UCX, a call-

back is invoked.

6) The space inside the intermediate buffer is not needed

anymore and is freed by the callback routine.

Send Buffer: 1 MiB

SocketChannel.write(ByteBuffer source)

Source Buffer: 4 KiB

1. Claim 4 KiB of space

2. Copy source buffer
into send buffer

Copied Buffer: 4 KiB

3. Invoke an async send
via UCX

4. Return to application

UCX send (async) UCX Callback
5. Callback is
invoked when

finished sending

6. Free claimed space

Fig. 2. Write mechanism with a 4 KiB source buffer and a 1 MiB intermediate
buffer

D. Buffer management for reading

In the traditional NIO implementation, all received data

is first being stored in the underlying socket’s internal

buffer and the read() method copies this data into

the application’s target buffer. A similar technique is ap-

plied in hadroNIO’s read() implementation: Equivalent

to the write() method, an intermediate buffer is used

to store asynchronously received data and read() just

needs copy this data. To issue receive requests to UCX,

the method fillReceiveBuffer() is introduced to the

SocketChannel class. This method allocates several slices

of the same length inside the intermediate buffer and creates

a receive request for each of these slices. This implies,

that send requests, issued by write(), may not be larger

than the slices created by fillReceiveBuffer(). To

accommodate for that, write() divides larger buffers into

multiple smaller send requests, that fit into the slices inside the

remote’s receive buffer. To ensure that hadroNIO never runs

out of active receive requests, fillReceiveBuffer() is

called once a connection has been established, and afterwards

inside each selection operation. The full read mechanism can

be divided into the following steps (also depicted in Fig. 3):

1) Slices inside the intermediate receive buffer are allocated

by fillReceiveBuffer().

2) A receive request is issued for each of the newly

allocated slices.

3) Once a request has been completed by UCX, a callback

is invoked.

4) The callback routine notifies the socket channel, that a

new buffer slice has been filled with data. The channel

keeps an internal counter of how many of the allocated

slices contain valid data.

CHAPTER 5. APPLICATION INTEGRATION

92

5) When the application calls read(), the content of a

buffer slice is copied into the destination buffer. If a

slice has been read fully, the allocated space is freed

and reused the next time fillReceiveBuffer() is

called.

Receive Buffer: 1 MiB

SocketChannel.read(ByteBuffer destination)

Destination Buffer

Slice: 32 KiB

2. Invoke async
receives via UCX

UCX receive (async) UCX Callback
3. Callback is
invoked when

finished receiving 4. Notify SocketChannel

...Slice: 32 KiB

5. Copy buffer slice
into destination buffer

1. Allocate slices
inside receive buffer

fillReceiveBuffer()

Fig. 3. Read mechanism with 32 KiB buffer slices and a 1 MiB intermediate
buffer.

Additionally, each buffer slice is preceded by an 8-byte long

header, consisting of two 4-byte fields. The first field indicates

the length of valid data inside the slice and is needed to

accommodate for the case that the remote side sends a buffer

smaller than the length of a slice. The second field keeps track

of the amount of data, that has already been copied to an

application buffer by read(). In case the destination buffer

is not large enough to fit a whole slice, only part of it may be

copied and this header field gets updated.

The size of the send and receive intermediate buffers, as

well as the slice length, have a large impact on hadroNIO’s

performance. For example, too small slices will result in

lower bandwidths, while extremely large slices can lead to

a lot of wasted memory, since each slice will probably not

be filled completely. It is also important to keep in mind

how many slices fit inside an intermediate buffer, since this

number limits the amount of active requests and thus directly

affects performance. However, large slice lengths do not affect

latency and for the evaluation in section IV, we found that 64

KiB slices suffice to saturate bandwidth on our test hardware.

Nevertheless, all three of these values are configurable via

Java properties, allowing hadroNIO to be tuned to specific

application scenarios.

E. Blocking vs. non-blocking socket channels

As mentioned before, to actually send or receive data with

UCX, the appropriate worker instance needs to be progressed.

In non-blocking mode, this is done inside the associated

selector’s select() method. However, in blocking mode no

selector is involved, which means that the worker has to be

progressed elsewhere.

For write(), this is done right after the send request

for the last buffer slice has been issued, implying that in

contrary to non-blocking mode, the data to send has already

been processed by UCX, once write() returns. Naturally,

this approach favours latency over throughput. An alternative

might be to constantly progress the worker in a separate thread.

While this would benefit throughput, it would also have a

negative impact on latency.

For read(), the worker is progressed and

fillReceiveBuffer() called every time there are

no slices left to be read from the intermediate receive buffer.

F. Sender throttling

While evaluating hadroNIO, we noticed that receiving mes-

sages in non-blocking mode caused high memory usage. UCX

buffers received data, that can not be directly processed by a

receive request. For that purpose, a pool of memory, that grows

as needed, is used. In our test case, data was sent faster than

the receiving side could process it, causing the buffer pool to

grow, thus resulting in high memory usage. We address this

by introducing a flush mechanism into our implementation.

In fixed intervals (e.g. every 1000 requests), a socket channel

waits for the remote side to finish processing the received data.

During that time, a socket channel will no longer indicate to be

writeable. Once the remote side has finished receiving, it will

send a short acknowledgment message, causing the waiting

channel to be writeable again. After implementing this mech-

anism, we did not see an increased memory usage anymore,

implying the receiving side is no longer unable to cope with

the amount of incoming messages. This mechanism works

fully transparent and does not affect application developers

in any way.

Since the interval size may have a huge impact on perfor-

mance, it is also configurable via a Java property. However,

we found 1024 to be a good size, since with that, we did

not see any negative effect on performance and in fact even

saw an increased bandwidth, compared to not using any flush

mechanism at all. This is probably due to the fact, that UCX

no longer needs to allocate memory for the growing buffer

pool, causing the receiving side to slow down even more.

IV. EVALUATION

This section presents the evaluation results, comparing

hadroNIO against IPoIB with blocking and non-blocking

socket channels, as well as directly using JUCX on 56 GBit/s

InfiniBand hardware.

A. Evaluation setup

We use Observatory, a micro benchmark for Java-based

InfiniBand solutions, for evaluating hadroNIO. Observatory al-

lows evaluating both messaging and RDMA performance with

single point-to-point connections, regarding throughput and

latency. We have used it in the past with verbs-based libraries

(i.e. directly programming the InfiniBand hardware), as well as

socket-based solutions using traditional Java sockets [13]. For

CHAPTER 5. APPLICATION INTEGRATION

93

the purpose of evaluating hadroNIO, we have extended Obser-

vatory with a new NIO binding, which can be used for both

blocking and non-blocking socket channels. To evaluate the

overhead introduced by hadroNIO, compared to directly using

JUCX, Observatory includes a binding for JUCX, developed

by Mellanox [11] [12]. We also compare hadroNIO to IPoIB,

probably the most used acceleration solution, transparently

available in many environments. Unfortunately, we were not

able to generate results for libvma with our NIO benchmark,

because it yielded an error message about flow steering not

being enabled. Looking into libvma’s debug logs, we saw, that

the error was caused by ibv_create_flow(), even though

we have flow steering enabled in the driver. Nevertheless,

libvma’s performance using traditional sockets from has been

published before [13]. In IV-B, we evaluated hadroNIO with

different buffer sizes and slice lengths to find the optimal

configuration for the following experiments.

The benchmarks have been performed on two identical

nodes with the following setup:

CPU Intel(R) Xeon(R) CPU E5-1650 v4 (6 Cores/12

Threads @3.60 GHz)

RAM 64 GB DDR4 @2400 MHz

NIC Mellanox Technologies MT27500 Family

[ConnectX-3] (56 GBit/s)

OS CentOS 8.1-1.1911 with Linux kernel 4.18.0-151

JDK OpenJDK 1.8.0 265

UCX 1.10.0 stable

Fig. 4. Hardware and software specification of the benchmark systems.

For evaluating throughput, we executed 100 million opera-

tions per benchmark run, while we used 10 million operations

to evaluate round trip latencies. Starting with 8 KiB payload

size, the amount of operations is incrementally halved, to

avoid unnecessary long running benchmarks. We evaluated

unidirectional throughput, as well as round trip latencies

with payload sizes from 1 Byte to 1 MiB in power-of-two

increments. When discussing the throughput results, we focus

on the operation rate for small buffers up to 1 KiB and on the

data rate for larger buffers.

In IV-B, the results are depicted as single line plots, while in

IV-C and IV-D, we combined two line plots at a time: When

looking at the throughput results, the left y-axis shows the

operation rate in million operations per second (Mop/s) and the

right axis the data throughput in GB/s. For the latency results,

the left y-axis shows the latency in µs and the right y-axis the

operation throughput in Mop/s. The dotted lines always depict

the operation throughput, while the solid lines represent either

the throughput in GB/s or the latency in µs, depending on the

benchmark. Each benchmark run was executed five times and

the average values are used to depict the graph, while the error

bars visualize the standard deviation.

B. Evaluation of different buffer configurations

We evaluated hadroNIO with 4 KiB, 16 KiB, 32 KiB,

64 KiB and 128 KiB large buffer slices and configured the

intermediate buffers to be large enough to always fit 128 slices.

Furthermore, we used blocking socket channels for evaluating

latency and non-blocking socket channels for the throughput

benchmarks.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 in

 G
By

te
/s

hadroNIO (128K)
hadroNIO (16K)

hadroNIO (32K)
hadroNIO (4K)

hadroNIO (64K)
hadroNIO (8K)

Fig. 5. Throughput results with non-blocking socket channels and different
buffer configurations.

As depicted in Fig. 5, 4 KiB and 8 KiB buffer slices do not

suffice to saturate the hardware, with a maximum bandwidth

of 2.1 GB/s and 4.1 GB/s respectively. With 16 KiB slices, 5.9

GB/s can be reached using a payload size of 32 KiB. However,

for larger messages, the throughput drops to around 5 GB/s.

Using a slice length of 32 KiB, it is possible to achieve a

throughput of 6 GB/s starting with payload sizes of 32 KiB.

The best results were achieved using 64 KiB buffer slices,

with a slight advantage over 32 KiB slices. Unexpectedly,

the throughput is worse using a slice length of 128 KiB. A

significant drop from 5.8 GB/s to 4.1 GB/s can be observed

between payload sizes of 32 KiB and 64 KiB. This issue needs

further investigation in the future.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

100

101

102

103

La
te

nc
y

in

s

hadroNIO (128K)
hadroNIO (16K)

hadroNIO (32K)
hadroNIO (4K)

hadroNIO (64K)
hadroNIO (8K)

Fig. 6. Latency results with blocking socket channels and different buffer
configuration.

Fig. 6 shows, that the slice length has virtually no impact

on the round trip time using small payload sizes. This was

expected, since hadroNIO does not send a full slice, if it is not

CHAPTER 5. APPLICATION INTEGRATION

94

fully used. Only the part of a buffer slice, that contains relevant

data (i.e. user data), is sent. Starting with 8 KiB payloads,

the latencies of the 4 KiB configuration rise faster, which is

expected since multiple send and receive operations are needed

to perform a full iteration.

Based on these results, we configured hadroNIO to use 8

MiB large send and receive buffers with 64 KiB slices, since

this configuration has shown the highest throughput and we did

not see any negative impact on the latency. In the future, we

plan to study the performance drop caused by 128 KiB slices

and re-evaluate the different configurations on more modern

hardware.

C. Evaluation of blocking socket channels

When using blocking socket channels, it is not necessary

(and in fact even impossible) to use a selector and selection

keys. The channels behave similar to traditional sockets, with

each write() call only returning after writing all bytes of

the source buffer and each read() call blocking until at least

one byte has been read.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 in

 G
By

te
/s

IPoIB JUCX hadroNIO (64K)

Fig. 7. Throughput results with blocking socket channels.

As depicted in Fig. 7, JUCX sets the baseline with almost

2 Mop/s for buffer sizes up to 32 byte and slowly decreasing

from there, in the throughput benchmark. As expected, both

hadroNIO and IPoIB stay well under that mark, but still yield

around 1.2 Mop/s with hadroNIO having a slight advantage.

However, with increasing buffer sizes, IPoIB’s operation rate

constantly decreases, while hadroNIO manages to still push

over 1 million operations per second with 1 KiB buffers.

From that point on, JUCX’s data throughput rapidly increases,

reaching the 6 GB/s mark using a payload size of 8 KiB.

While hadroNIO manages to yield 4.5 GB/s at that point, its

throughput drops to around 2.5 GB/s with 16 KiB buffers. This

might look surprising, but can be explained by the different

ways UCX handles small and large message sizes.

Up to 8 KiB, send requests are typically processed instantly,

while with larger buffers, asynchronous request processing is

used, which should, in theory, be beneficial for data through-

put. However, hadroNIO’s write() implementation waits

until UCX has processed all requests associated with the

current operation, when blocking mode is configured. This

results in only a single asynchronous request being processed

at a time for buffers smaller than the configured slice length,

limiting throughput. We tried to mitigate this by using 8 KiB

slices instead of 64 KiB and while that alleviated the data

rate drop, the throughput did not rise above 4.5 GB/s, even

for larger payload sizes. As explained in Section III-E, the

best way to solve this problem would be to use another thread

for progressing the UCX worker, but that would come at the

cost of an increased latency. We plan to address this issue, by

providing both implementations, one focussed on maximum

throughput and one targeting minimum latencies, letting the

user decide which configuration meets the application require-

ments best.

While IPoIB provides a higher throughput for buffer sizes

from 16 KiB to 64 KiB, reaching its maximum of around 4.3

GB/s at 32 KiB, it is outpaced again by hadroNIO, starting

at 128 KiB. With constantly increasing data rates, hadroNIO

reaches 5.7 GB/s with 1 MiB buffers.

Although hadroNIO had problems with specific buffer sizes

regarding throughput with blocking socket channels, it shows

its strength looking at the round trip latencies, depicted in Fig.

8

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

100

101

102

La
te

nc
y

in

s

0.0

0.1

0.2

0.3

0.4

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

IPoIB JUCX hadroNIO (64K)

Fig. 8. Average round trip latency with blocking socket channels.

Compared to directly programming with JUCX, hadroNIO

introduces only a small latency overhead. Up to 64 byte

buffer sizes, JUCX yields average round trip times of 2.6 µs,

while hadroNIO delivers latencies of 3.1 µs, indicating that

hadroNIO’s buffer management has an overhead of just 500

ns. Contrary, IPoIB provides results more than 5 times worse

with latencies over 17 µs and an operation rate of 58 Kop/s vs

hadroNIO’s 320 Kop/s. Both JUCX and hadroNIO manage to

yield single digit microsecond round trip times for buffer sizes

up to 4 KiB buffers. At that point, IPoIB already passed the

30 µs mark. Naturally, with growing payloads copying data

between the application and hadroNIO’s internal buffers takes

more time, but even at 1 MiB the difference is only around

60 µs, with JUCX needing just over 340 µs for a full round

trip iteration and hadroNIO around 405 µs.

CHAPTER 5. APPLICATION INTEGRATION

95

D. Evaluation of non-blocking socket channels

For benchmarking non-blocking socket channels, we need

to use a selector and introduced different types of runnable

handler objects (as commonly used with NIO), attached to a

selection key. For the throughput benchmark, the handler just

calls write() or read() respectively one time per invo-

cation. For the latency benchmark, the handler switches from

writing to reading and vice-versa, once a buffer has been fully

processed. After setting up the connection, the benchmark

enters a loop, calling the selector’s selectNow() method

and running the selected key’s handler in each iteration. We

expect higher latencies in this scenario compared to using

blocking socket channels, since the selector’s logic induces an

overhead and processing a buffer completely may take several

handler invocations. However, data throughput should benefit

from this approach, since hadroNIO is not forced to wait until

UCX has finished processing, allowing requests to accumulate.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 in

 G
By

te
/s

IPoIB JUCX hadroNIO (64K)

Fig. 9. Throughput results with non-blocking socket channels.

As can be seen in Fig. 9, the operation throughput with

small buffers has decreased, compared to using blocking

socket channels, for both hadroNIO and IPoIB. This was

expected and is caused by the overhead introduced by the

selector’s logic. However, hadroNIO still manages to process

more operations per second than IPoIB (ca. 850 Kop/s vs.

ca. 620 Kop/s using 4 byte buffers). With larger buffers,

hadroNIO’s data throughput increases rapidly, reaching 6 GB/s

at 16 KiB. In contrast to using blocking socket channels,

there is no performance drop from 8 KiB to 16 KiB and the

the throughput stays stable at 6 GB/s going further, almost

matching the maximum throughput of 6.2 GB/s, reached by

the JUCX benchmark. IPoIB’s data throughput also increases

with larger buffers, but at a slower pace and stagnating at

a maximum speed of 4.7 - 4.8 GB/s, starting with 256 KiB

payload sizes.

As expected, both hadroNIO and IPoIB yield higher la-

tencies using non-blocking socket channels (see Fig. 10).

Nevertheless, hadroNIO manages to yield round trip times

as low as 5 µs and staying within single digit microsecond

latencies up to 2 KiB buffer sizes. With 16 to 19 µs, IPoIB’s

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

100

101

102

La
te

nc
y

in

s

0.0

0.1

0.2

0.3

0.4

Th
ro

ug
hp

ut
 in

 M
Op

er
at

io
ns

/s

IPoIB JUCX hadroNIO (64K)

Fig. 10. Average round trip latency with non-blocking socket channels.

latency results in that range are more than 3 times as high. This

is also reflected by the operation throughput, with hadroNIO

reaching 200 Kop/s and IPoIB maxing out at around 60 Kop/s.

V. CONCLUSIONS & FUTURE WORK

In this paper, we propose hadroNIO, a novel approach at

transparently accelerating network communication for Java

applications. Instead of implementing a communication library

for traditional sockets, we chose to provide an implementation

for Java NIO, based on UCX, which is a very attractive choice

as communication backend. It provides a straightforward API

and supports multiple types of network interconnects, allowing

us to offer applications and application developers with new

possibilities regarding networking hardware without the need

to learn a new API from the ground up. We have shown, that

our implementation only adds a minimal overhead regarding

latency, providing round trip times as low as 3.1 µs (using

blocking socket channels), while still being able to saturate

56 GBit/s hardware starting with 16 KiB buffers (using non-

blocking socket channels).

In the future, we plan to improve the performance of

blocking socket channels by providing two modes, leaving

the decision whether to focus on throughput or latency to

the user. Furthermore, we plan to integrate RDMA directives

into hadroNIO, thus augmenting the NIO API and providing

developers with an easy way of directly accessing remote

memory in a familiar environment. As a next step, we aim

to evaluate hadroNIO in a setting with multiple 100 GBit/s

InfiniBand connections, as well as accelerating existing ap-

plications. Further plans include using Infinileap, our Java

binding for UCX, based on Project Panama, as an alternative

way of accessing UCX.

VI. ACKNOWLEDGMENT

We thank Oracle for their sponsorship in the context of this

work. We also especially thank Peter Rudenko for providing

the JUCX binding for Observatory.

REFERENCES

[1] Agrona GitHub. https://github.com/real-logic/Agrona.
[2] Cassandra. https://cassandra.apache.org/.

CHAPTER 5. APPLICATION INTEGRATION

96

[3] Java Platform Standard Edition 8: SocketChannel. https://docs.oracle.
com/javase/8/docs/api/java/nio/channels/SocketChannel.html.

[4] JUCX GitHub. https://github.com/openucx/ucx/tree/master/bindings/
java.

[5] libvma GitHub. https://github.com/Mellanox/libvma/.
[6] Netty related projects. https://netty.io/wiki/related-projects.html.
[7] OFED 3.5 release notes. https://downloads.openfabrics.org/OFED/

release notes/OFED 3.5 release notes.
[8] IBM. RDMA communication appears to hang.

https://www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-communication-appears-hang.

[9] IBM. RDMA connection reset exceptions. https:
//www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-connection-reset-exceptions.

[10] V. Kashyap. IP over InfiniBand (IPoIB) Architecture. https://www.ietf.
org/rfc/rfc4392.txt, April 2006.

[11] P. Rudenko. Observatory pull request 1. https://github.com/hhu-bsinfo/
observatory/pull/1.

[12] P. Rudenko. Observatory pull request 2. https://github.com/hhu-bsinfo/
observatory/pull/2.

[13] F. Ruhland, F. Krakowski, and M. Schöttner. Performance analysis
and evaluation of Java-based InfiniBand Solutions. In 2020 19th Inter-

national Symposium on Parallel and Distributed Computing (ISPDC),
pages 20–28, 2020.

[14] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, et al. UCX:
an open source framework for HPC network APIs and beyond. In
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,
pages 40–43. IEEE, 2015.

[15] S. Thirugnanapandi, S. Kodali, N. Richards, T. Ellison, X. Meng,
and I. Poddar. Transparent network acceleration for Java-based
workloads in the cloud. https://www.ibm.com/developerworks/library/
j-transparentaccel/, January 2014.

[16] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica. Apache Spark: A Unified Engine
for Big Data Processing. Commun. ACM, 59:56–65, Oct. 2016.

CHAPTER 5. APPLICATION INTEGRATION

97

CHAPTER 5. APPLICATION INTEGRATION

5.3 Accelerating netty-based applications through

transparent InfiniBand support

Fabian Ruhland, Filip Krakowski and Michael Schöttner. Accelerating netty-based

applications through transparent InfiniBand support. In Networking and Internet Ar-

chitecture, arXiv, online, Sep 28, 2022.

Contributions:

This work pursues the goal of transparently accelerating the Netty framework using

InfiniBand technology and the solution implemented in 5.2. For this purpose, Fabian

Ruhland developed a compatibility layer between Netty and hadroNIO, which enabled

the use of SocketChannel instances originating from hadroNIO within Netty and pro-

vided further functionalities for a successful integration.

Fabian Ruhland carried out the subsequent evaluation within the Oracle Cloud. Here,

the author helped to set up the cloud environment using a Terraform project provided

by Oracle. The author also provided advice when problems arose within the cloud en-

vironment. The implementation and execution of the benchmarks and the subsequent

evaluation of the results were carried out by Fabian Ruhland. The author and Michael

Schöttner participated in this phase in the form of discussions regarding the measured

performance values.

The paper was written by Fabian Ruhland, with the author and Michael Schöttner

providing advice and feedback.

Status: published

98

Accelerating netty-based applications through

transparent InfiniBand support

Fabian Ruhland

Department Operating Systems

Heinrich Heine University

Dsseldorf, Germany

fabian.ruhland@hhu.de

Filip Krakowski

Department Operating Systems

Heinrich Heine University

Dsseldorf, Germany

filip.krakowski@hhu.de

Michael Schttner

Department Operating Systems

Heinrich Heine University

Dsseldorf, Germany

michael.schoettner@hhu.de

Abstract—Many big-data frameworks are written in Java,
e.g. Apache Spark, Flink and Cassandra. These systems use
the networking framework netty which is based on Java NIO.
While this allows for fast networking on traditional Ethernet
networks, it cannot fully exploit the whole performance of
modern interconnects, like InfiniBand, providing bandwidths of
100 Gbit/s and more.
In this paper we propose netty support for hadroNIO, a Java
library, providing transparent InfiniBand support for Java ap-
plications based on NIO. hadroNIO is based on UCX, which
supports several interconnects, including InfiniBand. We present
hadroNIO extensions and optimizations for supporting netty. The
evaluations with microbenchmarks, covering single- and multi-
threaded scenarios, show that it is possible for netty applications
to reach round-trip times as low as 5 µs and fully utilize the
100 Gbit/s bandwidth of high-speed NICs, without changing
the application’s source code. We also compare hadroNIO with
traditional sockets, as well as libvma and the results show, that
hadroNIO offers a substantial improvement over plain sockets
and can outperform libvma in several scenarios.

Index Terms—High-speed networks, Cloud computing, Ether-
net, InfiniBand, OpenUCX, Java

I. INTRODUCTION

Modern big-data applications need to operate on large data

sets, often using well-known big-data frameworks, such as

Apache Spark [37], Flink [1] or Cassandra [11]. Many of

these systems are written in Java, relying on Java NIO. Java

NIO provides developers with the tools for building large-scale

networking applications, by allowing a single thread to handle

multiple connections asynchronously, thus being able to scale

with the amount of CPU cores available in a system.

However, its API has a steep learning curve compared

to traditional Java sockets, thread management is still being

left to the programmer and buffers need to be allocated

manually, requiring a sophisticated buffer management to

prevent performance penalties by repeated allocations. Thus,

many applications do not use Java NIO directly, but are based

on netty, an asynchronous event-driven network application

framework [22]. It abstracts the complexity introduced by Java

NIO, implements buffer pooling based on reference counting,

and automatically uses as many worker threads, as there are

CPU cores available. It is also highly configurable, rendering

it a powerful, yet easy-to-use networking library.

Netty is widely adopted in the Java community as the

standard framework for fast and scalable networking and is

used in many projects, e.g. Apache BookKeeper [9] or Ratis

[30], which implements the Raft [27] algorithm in Java. Ad-

ditionally, it serves as the base for other networking libraries,

like the widely used RPC framework gRPC [2], as well as

many more projects [23]. Its relevance is further underlined

by the amount of organizations, that incorporate netty into

their projects, such as Google, Facebook and IBM [24].

However, since netty is based on Java NIO, which relies on

traditional sockets, it cannot use the full potential of modern

network interconnects, like InfiniBand or high-speed Ethernet.

While the socket API is compatible with high-speed Ethernet

NICs and can be used with InfiniBand cards via the kernel

module IP over InfiniBand [10], it uses the kernel’s network

stack, involving context switches between user and kernel

space, for exchanging network data, thus imposing a high

performance penalty, especially regarding latency.

This problem has been addressed in the past, with different

native and Java-based solutions, which came in form of user

space TCP-stacks, transparent libraries offloading traffic to

high-speed NICs or kernel modules, replacing the traditional

TCP implementation. However, many of these solutions are

not supported anymore and introduce their own sets of prob-

lems, which we discuss in Section II.

We proposed hadroNIO in 2021 [32], a Java library, which

transparently replaces the default NIO implementation, of-

floading traffic via the Unified Communication X framework

(UCX) [33]. UCX is a native library, providing a unified API

for multiple transport types (including InfiniBand) and offering

a multitude of communication models, such as streaming,

tagged messaging, active messaging and RDMA. It automati-

cally detects all available transports and chooses the fastest

one, but can also be configured to use a specific NIC or

utilize multiple interconnects in a multi-rail setup. It officially

supports Java via a JNI-based binding called JUCX. We

already have shown that hadroNIO provides huge perfor-

mance improvements over using traditional sockets in a single-

connection setup, using a microbenchmark based directly on

Java NIO [32].

In this paper, we present the extensions and optimizations,

introduced in hadroNIO and evaluate its performance with

CHAPTER 5. APPLICATION INTEGRATION

99

netty-based microbenchmarks using multiple connections on

high-speed networking hardware, capable of 100 Gbit/s band-

width.

The contributions of this paper are:

• An overview of existing netty-compatible acceleration

approaches

• Design and implementation of hadroNIO extensions for

supporting netty

• Evaluations using microbenchmarks on 100 GBit/s hard-

ware, showing the benefits of the proposed solution

The paper is structured as follows: Section II presents

related work, discussing alternative acceleration solutions.

Section III elaborates on updates to hadroNIO, followed by

Section IV, which presents the architecture of our microbench-

marks. Evaluation results are discussed in Section V, while

Section VI concludes this paper and provides ideas for future

work.

II. RELATED WORK

Modern high-speed NICs from Mellanox can be configured

to use either InfiniBand or Ethernet as link layer protocol.

Choosing Ethernet makes these cards fully compatible with

the standard socket API, while still being programmable via

the ibverbs library. Regardless of the link layer protocol,

traditional sockets do not suffice for using the full potential of

such a NIC.

While we are not aware of any alternative NIO implemen-

tations, there are several solutions for accelerating traditional

sockets, with only few being still actively maintained. Typi-

cally, these can come in three different shapes: kernel modules,

native libraries and Java libraries. Since the default NIO

implementation is based on classic sockets, these solutions

can be used to accelerate Java NIO applications. We have

already evaluated some of these solutions, using socket-based

microbenchmarks [31] and compared them to hadroNIO with

another microbenchmark, directly using the NIO API [32].

A. Kernel modules

IP over InfiniBand [10] exposes InfiniBand devices as

standard network interfaces, enabling applications to use them

by simply binding to an IP address, associated with such

a device. This solution does not require any preloading of

libraries, making it the easiest to use. However, it relies on the

kernel’s network stack, thus requiring context switches which

impose a large performance overhead, rendering it unattractive

for applications requiring low latency.

Fastsocket [16] replaces the Linux kernel’s TCP implemen-

tation, aiming to provide better scaling with multiple CPU

cores. It has been evaluated using up to 24 cores using 10

Gbit/s Ethernet NICs, showing much better scalability than

the default TCP implementation. Fastsocket consists of kernel

level optimizations, a kernel module and a user space library. It

requires a custom kernel, based on Linux 2.6.32 and officially

only supports CentOS 6.5, which is outdated by now. While

it would be interesting to see how such an integrated solution

would perform on modern high-speed Ethernet hardware, it

does not seem to be in active development anymore.

B. Native libraries

mTCP [8] is a TCP-stack, running completely in user

space. As Fastsocket, it primarily aims at high scalability,

which it achieves by being independent from the kernel’s

network stack, alleviating the need for context switches in

network applications. Contrary to the other solutions, it is

not transparent and requires rewriting parts of an application’s

network code. It has no official support for Java, but there is

an unofficial binding called JmTCP, based on the Java Native

Interface (JNI). However, it does not seem to be actively

maintained, probably requiring Java applications to manually

access mTCP via JNI or the experimental Foreign Function

& Memory API (Project Panama) [6]. Since it is neither

transparent, nor officially supports Java, mTCP does not fit

our use case of accelerating netty-based applications.

libvma [13] is a library developed in C/C++ by Mellanox,

transparently offloading socket traffic to high-speed Ethernet

or InfiniBand NICs. It can be preloaded to any socket-based

application (using LD PRELOAD), enabling full kernel bypass

without the need to modify an application’s code. However,

libvma requires the CAP NET RAW capability, which might

not be available, depending on the cluster environment.

While it is highly configurable by exposing many parame-

ters, allowing users to tune the library to the needs of a specific

applications, the resulting performance can actually be worse

compared to using the traditional socket implementation, as

we show in Section V. Additionally, the default configuration

is only suited to basic use cases (e.g. single threaded appli-

cations), requiring some time being spent on finding the right

configuration for complex applications, using multiple threads

and connections.

SocksDirect [12] is a closed source library from Microsoft,

written in C/C++. Like libvma, it works by preloading it

to socket-based applications, redirecting socket traffic via a

custom protocol based on RDMA. It also supports acceleration

of intra-host communication via shared memory. It achieves

low latencies and a high throughput by removing large parts

of the synchronization and buffer management involved in tra-

ditional socket communication, while being fully compatible

with linux sockets, even when process forking is involved.

We were able to get access to the source code from the

authors and have successfully tested it with native applications,

but so far we could not get the library working with Java

applications. Additionally, SocksDirect uses the experimental

verbs API, only available in the Mellanox OFED up to version

4.9 [21].

C. Java libraries

The Sockets Direct Protocol) SDP [20] provided transpar-

ent offloading of socket traffic via RDMA, fully bypassing the

kernel’s network stack. It was part of the OFED package and

introduce into the JDK starting with Java 7. However, support

CHAPTER 5. APPLICATION INTEGRATION

100

has officially ended and it has been removed from the OFED

in version 3.5 [19]

Java Sockets over RDMA (JSOR) [3] has been developed

by IBM with the goal to offload all socket traffic of Java

applications to high-speed NICs using RDMA. It is included

in the IBM SDK up to version 8, requiring their proprietary J9

JVM. JSOR is not available in newer SDK versions and while

the old SDK still receives security updates, applications using

features not available in Java 8 cannot be used with JSOR.

While it has shown promising results in our benchmarks,

there are known problems with connections getting stuck [4]

and exceptions [5]. Additionally, we were not able to evaluate

JSOR using a bidirectional connection with separate threads

for sending and receiving. These problems and its reliance

on on proprietary technology limit its usability, especially for

modern applications.

D. Application-specific solutions

Other approaches aim at accelerating network performance

of a specific application or framework. In 2014, a successful

attempt at redesigning Spark’s shuffle engine for RDMA usage

has been made [17] and refined in 2016 [18]. Similar solutions

have been implemented for Apache Storm: In 2019, RJ-Netty

has been proposed as a replacement for netty in Apache Storm

[36], while in 2021 another approach at integrating RDMA

into Storm, based on DiSNi [34] (formerly jVerbs [35]) has

been implemented [38].

While these solutions show, that the performance benefit

for using high-speed networking hardware can be huge, they

are specific to a single framework only and can not be used

for general purpose network programming, like transparent

acceleration libraries.

III. SUPPORTING NETTY IN HADRONIO

While hadroNIO has been working with applications di-

rectly using Java NIO, we encountered new challenges with

netty-based applications. This section presents these chal-

lenges and their solutions, as well as changes in the design

of hadroNIO. For a general overview of our architecture and

the Java NIO API, as well as UCX, we refer to our original

paper [32].

The full application stack for hadroNIO, libvma, IP over In-

finiBand and traditional sockets from netty to NIC is depicted

by Fig. 1.

A. Providing a direct socket reference for netty

A Java NIO SocketChannel provides access to its un-

derlying socket via the socket() method. Since this would

defeat the purpose of NIO, accessing a socket directly via a

channel, is generally not done. However, netty keeps a refer-

ence to the socket of each channel to access its configuration

(e.g. buffer size).

Since hadroNIO directly replaces the default NIO imple-

mentation, there is no underlying socket. In contrast to the

aforementioned transparent acceleration solutions, we con-

sciously chose to intercept traffic at the NIO level, in-

stead of the socket level, since it fits well with the UCX

netty

Default NIO

Sockets

libvmaKernel

IP over
InfiniBand

Network Interface Card

TCP/IP Stack

hadroNIO

JUCX

UCX

Java space

Native space

Application

Fig. 1. Application stack overview

API and has a more modern interface than traditional Java

sockets. In its initial version, hadroNIO would throw an

UnsupportedOperationException when socket()

is called. However, for compatibility with netty, we needed to

provide a workaround for the socket access, which we imple-

mented in the form of two classes called WrappingSocket

and WrappingServerSocket, extending the JDK’s

Socket and ServerSocket classes. They wrap an instance

of a SocketChannel, or ServerSocketChannel re-

spectively, and implement methods to access connection at-

tributes, such as IP addresses and buffer sizes.

Once a connection has been terminated, the respective

socket channel becomes readable, indicated by the OP_READ

flag. However, each attempt at actually reading data from

the channel will return -1, signalling a closed connection.

This behaviour was not implemented in earlier version of

hadroNIO, since it only affects connection termination and

our benchmarks would run without it. However, for full

compatibility with the NIO specifications, we retrofitted it.

B. UCX worker management

UCX uses so called endpoints to represent connections.

However, these endpoints cannot send/receive data on their

own. Instead UCX introduces the concept of workers, which

serve as an abstraction between endpoints and network re-

sources (i.e. NICs). Each worker can be associated with

multiple endpoints.

In the original design of hadroNIO, we used a single worker

for all connections. However, since there is a limit on the

maximum amount of connections a worker can handle, we

CHAPTER 5. APPLICATION INTEGRATION

101

refined our architecture to use multiple workers. Originally,

we planned to use one worker per selector, which appeared

as a natural fit, because a selector is used to query multiple

channels, while a worker can progress multiple endpoints.

However, NIO allows reassigning of channels to different

selectors, which is not possible with UCX endpoints and

workers. Ultimately, we settled on using a single worker per

connection. This added complexity to our selector implemen-

tation, since it now has to poll multiple workers, but makes

channels independent from selectors and allows reassignments.

C. Supporting netty write aggregation

Java NIO offers two methods for sending data via a socket

channel: One only takes a single buffer, while the other one is

prescribed by the interface GatheringByteChannel [7],

thus capable of gathering write operations, accepting an array

of buffers to send. Gathering writes are used heavily by netty

(see chapter IV-B) to bundle multiple send requests into a

single method call, in order to achieve higher throughputs.

However, in the initial hadroNIO version, we implemented the

gathering write method by simply looping over all buffers,

sending each one separately using the single buffer write

method. While this implementation worked correctly, it did

not offer any performance improvements, which is why we

reimplemented it. Now, as many buffers as possible are merged

into a single contiguous space inside hadroNIO’s outgoing ring

buffer, requiring only a single UCX write request to send.

This massively improved throughput rates with netty-based

applications.

IV. BENCHMARK ARCHITECTURE

To evaluate the performance of different acceleration so-

lutions with netty-based applications, we designed and im-

plemented two microbenchmarks, using netty for connection

establishment and data exchange: One is focussed on through-

put while the other implements a ping-pong pattern to measure

round-trip times. The benchmarks are designed to work on two

nodes of a cluster environment with one acting as a server and

one acting as a client. Both support on or multiple connections

between server and client and each connection is handled by a

separate thread. Measurements are taken per connection, and a

final result, taking all measurements into account, is calculated

at the end.

A. Connection setup

The connection setup is similar for both benchmarks: On

startup, the server sets up a server channel to listen for

incoming connections. It then waits until a specified amount of

connections has been established. Once the amount is reached,

all threads start sending messages at the same time (throughput

benchmark) or send a single message to kick off the ping-pong

pattern (latency benchmark). Before the actual benchmark

starts, a tenth of the operations are executed as warm up,

without taking any measurements.

The client on the other side just needs to establish the

specified amount of connections and wait for the server to

start the benchmark.

B. Throughput benchmark

Once all connections are set up, the server starts a separate

thread for each connection, responsible only for sending

messages through the respective channel. Once all warmup

messages are sent, the thread waits for a synchronization

message from the client, signalling that all messages have

been received successfully. Each thread then needs to pass a

barrier, ensuring that all threads start the benchmark at the

same time. After all benchmark messages have been sent,

the client once again sends a signal to server, finishing the

benchmark. Times are measured once after the warmup barrier

has been passed and after the second signal from the client has

been received. allowing us to calculate the average data and

operation throughput rates.

When sending a buffer via netty, it is not transmitted

directly, but first stored in an instance of a class called

ChannelOutboundBuffer [25], which accumulates out-

going write requests. To make sure, that data is actually

transmitted, applications need to manually flush the respective

channel. The data, contained in a buffer, is not copied, but

only references to all outgoing buffers stored. Once netty is re-

quested to perform a flush operation, all buffers are send with a

minimal amount of write operations, using the gathering write

method described in chapter III-C. This aggregation strategy

allows netty to reach high throughputs without requiring any

buffer copies. Our throughput benchmark can be configured

to use a specific interval (e.g. every 64 buffers) for flushing

a channel, allowing us to analyse performance with different

amounts of aggregated buffers.

C. Latency benchmark

The latency benchmark does not start threads on its own,

but makes use of netty’s worker threads. Each time data is

received, a worker thread invokes a method in the respective

handler (instance of ChannelInboundHandlerAdapter

[26]) and once our handler implementation has received a

full message, it issues a write request, following a ping-pong

pattern. We configure netty to start as many worker threads,

as there are connections, with each thread opening its own

selector and connections being assigned to these selectors in

a round-robin fashion. This ensures, that each connection has

its own thread, responsible only for handling requests on that

specific connection. Times are measured before each send call

and after each received message, allowing us to gather the

round-trip latencies of all operations.

V. EVALUATION

This section presents and discusses the evaluation results,

comparing default netty performance using sockets via Ether-

net versus accelerating netty with hadroNIO and libvma using

100 GBit/s high-speed NICs.

A. Evaluation setup

We used the microbenchmarks described in chapter IV

for evaluating messaging performance with netty, regarding

throughput, as well ass round-trip latency in two different

CHAPTER 5. APPLICATION INTEGRATION

102

cluster environments. To test the scalability of each solution,

we increased the connection count step-wise from 1 to 16.

Our benchmark environment consisted of two identical bare-

metal nodes, provided by the Oracle Cloud Infrastructure,

using the HPC Cluster Terraform stack [28]:

CPU 2x Intel(R) Xeon(R) Gold 6154 CPU (18

Cores/36 Threads @3.00 GHz)

RAM 384 GB DDR4 @2933 MHz

NIC Mellanox Technologies MT28800 Family

[ConnectX-5] (100 GBit/s) Ethernet

OS Oracle Linux 7.9 with Linux kernel 3.10.0-

1160

OFED MLNX 5.3-1.0.0.1

Java OpenJDK 17.0.2

UCX 1.12.1

hadroNIO 0.3.2

libvma 9.5.0

Fig. 2. Hardware specification of the OCI systems.

We evaluated throughput and latency with small (16 byte)

mid-sized (1 KiB) and large (64 KiB) messages. For evaluating

throughput, we sent 100 million messages per benchmark run,

while 10 million round-trip operations were executed during

each latency benchmark run. For the large buffers, we used

10 million and 1 million messages respectively and evaluated

with up to 12 connections, to avoid unnecessary long running

benchmarks. The amount of connections is always depicted by

the y-axis, while the x-axis shows the data throughput in MB/s

or GB/s when looking at throughput results, and the round-trip

time in µs when evaluating latency. Each benchmark run was

executed five times and the graph depicts the average values,

while the error bars show the standard deviation.

B. Configuration and Optimizations

Each of the OCI nodes had two CPUs with 18 cores and

36 threads each at its disposal. To optimize performance, we

used the tool numactl to bind the JVM process to the processor,

that the network card is connected to. Since a single CPU has

18 cores, it should not be overwhelmed by 16 connections at

once. The ConnectX-5 NICs were configured to use Ethernet

as the link layer protocol, making them fully compatible with

traditional sockets.

To improve performance regarding the throughput bench-

marks, we did not flush the channels after each written

message, but gave netty the chance to gather multiple message

and send them at once. For small messages, we flushed each

time 64 messages were written and for mid-sized and large

messages, we used intervals of 16 and 4 messages respectively.

To work correctly, libvma needs to either be executed by

the root user or with the CAP NET RAW privilege. We tried

granting CAP NET RAW as described in libvma’s README

file [15], but could not get it to offload traffic. Fortunately,

running as the root user worked in the OCI environment.

Additionally, we set the amount of hugepages to 800

and shmmax to 1000000000, as recommended [15]. Fur-

thermore, libvma exposes a lot of configuration parameters,

settable via environment variables. As endorsed by the lib-

vma wiki, we set VMA RING ALLOCATION LOGIC RX

and VMA RING ALLOCATION LOGIC TX to 20, which

should improve multithreading performance [14]. We also

needed to increase the amount of receive buffers via

VMA RX BUFS to 800000, otherwise the benchmark would

sometimes not finish with 12 or more connections, because

libvma ran out of buffers. For the round-trip measurements,

we set VMA SPEC to latency.

For hadroNIO, we used the default configuration with 8

MiB large ring buffers and a slice length of 64 KiB.

C. Small messages (16 byte)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Connections

0

5

10

15

20

25

30

La
te

nc
y

in

s

Ethernet hadroNIO libvma

Fig. 3. Average round-trip times with 16-byte messages

Starting with 16-byte messages, Fig. 3 shows the round-trip

times for traditional Ethernet, hadroNIO and libvma. As can be

seen, libvma offers the best latency, with almost no overhead

being generated by using multiple connections. Starting with

4.7 µs using a single connection, it still manages to yield

round-trip times of 5.8 µs with 16 parallel connections.

While hadroNIO offers similarly low latencies with few

connections, starting with 6 µs, it breaks the 10 µs mark using

8 connections. From there on, each additional connection adds

around 1 µs of latency.

However, both acceleration solutions offer a substantial

performance improvement over plain Ethernet, which starts at

20 µs using a single connection. Curiously, round-trip times

fall to around 18 µs for 2-4 connections but constantly rise

starting with 5 connections.

The throughput values, depicted by Fig. 4, paint a different

picture. When using only one connection, all three solutions

offer similar performance between 28 and 35 MB/s, with

hadroNIO having a slight advantage. However, with a rising

connection count, the gap between hadroNIO and Ether-

net/libvma grows larger, with libvma even offering slightly

lower throughput values than plain Ethernet. Starting with 13

connections, libvma almost completety stops scaling, reaching

around 250 MB/s, while hadroNIO scales further to 380 MB/s

using 16 connections.

CHAPTER 5. APPLICATION INTEGRATION

103

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Connections

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 in

 M
By

te
/s

Ethernet hadroNIO libvma

Fig. 4. Average throughput with 16-byte messages

While libvma offers the smallest round-trip times with

small messages, its throughput rates are slower than using

Ethernet, whereas hadroNIO scales much better than the other

candidates in our throughput benchmark.

D. Mid-sized messages (1 KiB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Connections

0

5

10

15

20

25

30

La
te

nc
y

in

s

Ethernet hadroNIO libvma

Fig. 5. Average round-trip times with 1 KiB messages

Looking at the round-trip times for 1 KiB payloads (see Fig.

5), the three solutions perform almost the same compared to

the 16-byte results, apart from an offset being added to all

latencies. Again, libvma scales almost perfectly, starting with

5.9 µs for a single connection and only rising to 7.4 µs using

16 connections, while hadroNIO starts with 7.6 µs, with slowly

rising latencies up to 10.5 µs using 7 connections and linear

increasing values from there on.

The throughput values, shown in Fig. 6, demonstrate that

hadroNIO again scales well with an increasing amount of

connections, reaching more than 11 GB/s at the end, thus

almost saturating the 100 GBit/s hardware. On the other side,

libvma scales much slower and reaches its top speed of just

3.4 GB/s with 10 parallel connections. The same throughput

can be achieved using hadroNIO with only 4 connections and

even using no acceleration solution at all is substantially faster,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Connections

1
2
3
4
5
6
7
8
9

10
11
12

Th
ro

ug
hp

ut
 in

 G
By

te
/s

Ethernet hadroNIO libvma

Fig. 6. Average throughput with 1 KiB messages

surpassing libvma’s maximum throughput using 5 threads and

reaching around 6.6 GB/s with 16 threads.

To conclude the evaluation of mid-sized messages, libvma

continues to offer the best performance with regards to round-

trip times, but comparing the results of the throughput bench-

mark, it falls behind hadroNIO and even plain Ethernet by

far.

E. Large messages (64 KiB)

1 2 3 4 5 6 7 8 9 10 11 12
Connections

0

50

100

150

200

250

La
te

nc
y

in

s

Ethernet hadroNIO libvma

Fig. 7. Average round-trip times with 64 KiB messages

Continuing with large 64 KiB payloads, the latency results,

depicted by Fig. 7, differ from the previous ones. While libvma

yields the lowest round-trip times for up to 4 connections (44-

69 µs), values increase faster from there on, rising by around

20-25 µs per additional connection. Starting with 9 parallel

connections, libvma performs worse than plain Ethernet and

the gap grows further with an increasing thread count. While

hadroNIO yields higher latencies than libvma for 1-4 connec-

tions (67-76 µs), it offers the best performance using 5 or more

parallel connections, reaching round-trip times of only 94 µs

using 12 threads, while libvma is 2.5 times slower with around

235 µs.

CHAPTER 5. APPLICATION INTEGRATION

104

1 2 3 4 5 6 7 8 9 10 11 12
Connections

4
5
6
7
8
9

10
11
12

Th
ro

ug
hp

ut
 in

 G
By

te
/s

Ethernet hadroNIO libvma

Fig. 8. Average throughput with 64 KiB messages

We close the evaluation, by looking at the throughput values

using 64 KiB messages. Both acceleration solutions offer sim-

ilar performance, managing to saturate the NIC with more than

12 GB/s using 3 or more connections. For a single connection,

libvma is faster with 5.5 GB/s versus 4.6 GB/s, but with 11

and 12 connections, libvma becomes somewhat unstable and

falls slightly behind hadroNIO. Using plain Ethernet offers

acceptable performance, but 12 GB/s cannot be reached and

the results are not stable, with standard deviations sometimes

as high as 1 GB/s.

Concluding the large payload results, both libvma and

hadroNIO are able to saturate the hardware, but regarding

round-trip times, it depends on the amount of connections,

which solution performs best.

VI. CONCLUSTIONS & FUTURE WORK

In this paper, we presented hadroNIO extensions to sup-

port netty and compared the performance of netty based on

hadroNIO versus libvma and traditional sockets over Ethernet

using two microbenchmarks, for evaluating round-trip times

and throughput. Our results show, that hadroNIO offers a

substantial performance improvement over Ethernet on the

same NIC, without needing elevated privileges or complex

configurations. All results were achieved using hadroNIO’s

default configuration values. While libvma offers the lowest

latency with small and mid-sized messages, preloading it to a

netty-based application can actually worsen performance and

it may not be usable in every environment due to it being

dependent on CAP NET RAW or root privileges..

Future work includes evaluating hadroNIO with large netty-

based applications and frameworks, such as Apache Cassandra

and gRPC. We also aim to improve our selector implemen-

tation, by leveraging epoll, since it is currently based on

busy polling. Additionally, we are working on integrating

Infinileap , a UCX binding for Java, based on the experimental

Foreign Function & Memory API (Project Panama) [6], into

hadroNIO to see if the overhead introduced by JNI calls can be

alleviated. Furthermore, we want to evaluate hadroNIO with

GraalVM [29], offering low-cost interoperability between Java

and native code.

VII. ACKNOWLEDGMENT

We thank Oracle for their sponsorship in the context of this

work.

This work was supported in part by Oracle Cloud credits

and related resources provided by the Oracle for Research

program.

REFERENCES

[1] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink™: Stream and batch processing in a single
engine. IEEE Data Eng. Bull., 38:28–38, 2015.

[2] gRPC. https://grpc.io/.

[3] Java Sockets over Remote Direct Memory Access (JSOR).
https://www.ibm.com/docs/en/sdk-java-technology/7?topic=
networking-java-sockets-over-remote-direct-memory-access-jsorl.

[4] IBM. RDMA communication appears to hang.
https://www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-communication-appears-hang.

[5] IBM. RDMA connection reset exceptions. https:
//www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-connection-reset-exceptions.

[6] Project Panama. https://openjdk.java.net/projects/panama/.

[7] Javadoc: GatheringByteChannel. https://docs.oracle.com/javase/7/docs/
api/java/nio/channels/GatheringByteChannel.html.

[8] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park. mTCP: a highly scalable user-level TCP stack for multicore
systems. In 11th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 14), pages 489–502, Seattle, WA, Apr. 2014.
USENIX Association.

[9] F. P. Junqueira, I. Kelly, and B. Reed. Durability with bookkeeper.
SIGOPS Oper. Syst. Rev., 47(1):915, jan 2013.

[10] V. Kashyap. IP over InfiniBand (IPoIB) Architecture. https://www.ietf.
org/rfc/rfc4392.txt, April 2006.

[11] A. Lakshman and P. Malik. Cassandra: A decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44(2):3540, apr 2010.

[12] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang. Socksdirect: Datacenter
sockets can be fast and compatible. In ACM SIGCOMM Conference

(SIGCOMM), August 2019.

[13] libvma GitHub. https://github.com/Mellanox/libvma/.

[14] VMA Parameters. https://github.com/Mellanox/libvma/wiki/
VMA-Parameters.

[15] libvma README. https://github.com/Mellanox/libvma/blob/master/
README.

[16] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi. Scalable kernel
tcp design and implementation for short-lived connections. SIGPLAN

Not., 51(4):339352, mar 2016.

[17] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda.
Accelerating spark with rdma for big data processing: Early experi-
ences. In 2014 IEEE 22nd Annual Symposium on High-Performance

Interconnects, pages 9–16, 2014.

[18] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda. High-performance
design of apache spark with rdma and its benefits on various workloads.
In 2016 IEEE International Conference on Big Data (Big Data), pages
253–262, 2016.

[19] OFED 3.5 release notes. https://downloads.openfabrics.org/OFED/
release notes/OFED 3.5 release notes.

[20] Sockets Direct Protocol. https://docs.oracle.com/javase/tutorial/sdp/
sockets/index.html.

[21] Statement on support of experimental verbs. https://forums.developer.
nvidia.com/t/verbs-exp-h-no-such-file-or-directory/206300/2.

[22] Netty. https://netty.io/index.html.

[23] Netty related projects. https://netty.io/wiki/related-projects.html.

[24] Netty adopters. https://netty.io/wiki/adopters.html.

[25] Netty Javadoc: ChannelOutboundBuffer. https://netty.io/4.1/api/io/netty/
channel/ChannelOutboundBuffer.html.

[26] Netty Javadoc: ChannelInboundBuffer. https://netty.io/4.1/api/io/netty/
channel/ChannelInboundHandlerAdapter.html.

CHAPTER 5. APPLICATION INTEGRATION

105

[27] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of the 2014 USENIX Conference on USENIX

Annual Technical Conference, USENIX ATC’14, page 305320, USA,
2014. USENIX Association.

[28] Oracle Marketplace: HPC Cluster Terraform Stack. https://
cloudmarketplace..com/marketplace/en US/listing/67628143.

[29] GraalVM. https://www.graalvm.org/.
[30] Apache Ratis. https://ratis.apache.org/.
[31] F. Ruhland, F. Krakowski, and M. Schttner. Performance analysis and

evaluation of Java-based InfiniBand Solutions. In 2020 19th Inter-

national Symposium on Parallel and Distributed Computing (ISPDC),
pages 20–28, 2020.

[32] F. Ruhland, F. Krakowski, and M. Schttner. hadronio: Accelerating java
nio via ucx. In 2021 20th International Symposium on Parallel and

Distributed Computing (ISPDC), pages 25–32, 2021.
[33] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,

Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, et al. UCX:
an open source framework for HPC network APIs and beyond. In
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,
pages 40–43. IEEE, 2015.

[34] P. Stuedi. Direct storage and networking inter-
face (disni). https://developer.ibm.com/open/projects/
direct-storage-and-networking-interface-disni/, 2018.

[35] P. Stuedi, B. Metzler, and A. Trivedi. jverbs: Ultra-low latency for data
center applications. In Proceedings of the 4th Annual Symposium on

Cloud Computing, SOCC ’13, pages 10:1–10:14. ACM, 2013.
[36] S. Yang, S. Son, M.-J. Choi, and Y.-S. Moon. Performance improvement

of apache storm using infiniband rdma. The Journal of Supercomputing,
75:6804–6830, 2019.

[37] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica. Apache Spark: A Unified Engine
for Big Data Processing. Commun. ACM, 59:56–65, Oct. 2016.

[38] Z. Zhang, Z. Liu, Q. Jiang, J. Chen, and H. An. Rdma-based apache
storm for high-performance stream data processing. International

Journal of Parallel Programming, 49:671–684, 2021.

CHAPTER 5. APPLICATION INTEGRATION

106

Chapter 6

Conclusion & Outlook

This thesis shows that the use of the Java programming language in the context of

high-performance networking applications is possible and efficient. The work initially

began with the Java Native Interface, which at that time was the only option within the

Java ecosystem to access native functionalities. This resulted in the Neutrino project

(3.2), which showed that a high-performance connection to native code is possible

if various optimizations and peculiarities of the JNI are strictly taken into account.

Using this knowledge, a connection to the native Verbs API was developed, which fi-

nally allowed InfiniBand hardware to be used efficiently within Java applications. In

the subsequent benchmarks developed for this purpose, it was shown that connect-

ing the hardware within Java led to a network performance that could keep up with

existing native-based solutions or even surpassed some of them. However, since the

implemented solution was not easy to maintain, another way was chosen to provide In-

finiBand hardware support within the JDK. While there were already efforts within the

JDK to provide support for RDMA[13], these were no longer maintained after some

time, so that in the context of this work a project could be created in cooperation

with Oracle Labs[61], which continues these original goals but is based on new tech-

nologies such as the Foreign Function & Memory API presented in 4.1. The resulting

exchange enabled close cooperation with the JDK core developers in order to quickly

find a solution when problems with new technologies arose. It also allowed the direct

co-design of new features in the form of discussions within the mailing list or active

co-development of the Java Development Kit in the form of bug fixes[62]. The solutions

developed in 4.3 showed that the expected added value of the new JDK technologies

was achieved, as benchmarks, which were used to evaluate the developed interfaces to

native InfiniBand hardware using the Foreign Function & Memory API, achieved very

good performance. In this context, it was also shown that the integration of native

functionalities can greatly accelerate existing program code. Particularly within ap-

plications in which many processes are executed in a distributed manner and which

107

CHAPTER 6. CONCLUSION & OUTLOOK

have to exchange large amounts of data with each other, such as distributed big data

applications, the use of the developed technologies can lead to significant improvements

in performance. To make it easier to start programming with the Foreign Function &

Memory API, additional tooling has been developed that makes it straightforward to

integrate native libraries in Java (see 4.1).

It is expected that the use of the Foreign Function & Memory API will increase signif-

icantly with the upcoming Java version 22[63], which will be released in early 2024, as

it will no longer be in preview status and can therefore be used by many developers. In

some projects, such as Netty, the integration of the Foreign Function & Memory API

is already being tested in the form of incubator projects[64]. In general, it is to be ex-

pected that the project landscape of the Java ecosystem will expand considerably with

the release of the API, as existing projects written in native programming languages

will be easily usable within Java projects from this point onwards.

The use of RDMA technology in connection with big data frameworks in Java also

offers great potential for the future. While many aspects such as data distribution,

access and the storage media used have already been optimized, the focus has recently

been shifted to the data format. Accesses to the main memory can vary greatly in

terms of latency depending on the respective access pattern. Ideally, data is aligned

and contiguous in the memory so that caches can be optimally utilized. If this idea

is applied to the data format used within big data applications, the latency is further

reduced due to the shorter access time. The Apache Arrow project[65], which proposes

a unified data format for distributed applications, makes use of this fact. Here, data

is stored in the form of columns within the main memory, whereby each column is

a contiguous memory area and is also aligned. In conjunction with RDMA-capable

hardware, this results in highly efficient data transmissions, as the data is available

in the main memory in the most suitable form for the network controller. A further

advantage is the possibility of zero-copy[66] serialization, in which data can be sent

directly in the form in which it is stored in the main memory. This further reduces

latency, as it is no longer necessary to copy/transform the data since both sides have

agreed on the same in-memory data format and are able to process it.

Based on the Apache Arrow project, there is also the Apache Arrow Flight project[67].

This provides a system for querying in-memory Arrow data. While the data format

here is highly optimized, the project uses the gRPC framework for communication be-

tween individual nodes, which in turn is based on Netty and therefore uses Ethernet

sockets. Integrating the solution developed in Project Hermes would be of great benefit

108

CHAPTER 6. CONCLUSION & OUTLOOK

here, as the transmission of data using RDMA offers significantly lower latency and

higher throughput. In particular, the Arrow data format, which is optimally adapted

to RDMA, offers great potential in conjunction with RDMA programming, as the net-

work card can access the data very efficiently in this form and thus send it quickly.

One way of implementing this is to integrate Infinileap within the Apache Arrow Flight

project, which would then be able to access data using RDMA operations between the

nodes involved. This idea is being pursued in a forthcoming project called Java Direct

Flight. Here, the data transfer of larger data is to be offloaded to RDMA operations,

while the coordination of the individual nodes continues to take place by means of

messages via the gRPC protocol. Finally, such a solution can be integrated into an

existing big data framework, which benefits in particular during the shuffle phase due

to the significantly accelerated data transfer.

In summary, the use of RDMA technology will be a necessity in the future due to

the constantly increasing amount of data, as conventional socket programming will no

longer be appropiate for transfering data in a reasonable time due to the associated

overhead. The solutions developed in this thesis provide a good base for this and - the

author hopes - can be used in existing Java applications and computing frameworks.

109

CHAPTER 6. CONCLUSION & OUTLOOK

110

Bibliography

[1] J. Wiener and N. Bronson, “Facebook’s Top Open Data Problems”, Oct. 21,

2014. [Online]. Available: https://research.facebook.com/blog/2014/10/

facebook-s-top-open-data-problems.

[2] S. J. Dixon, Facebook: Quarterly number of mau (monthly active users) world-

wide 2008-2023, Nov. 9, 2023. [Online]. Available: https://www.statista.

com/statistics/264810/number- of- monthly- active- facebook- users-

worldwide/.

[3] Apache Software Foundation, Apache Spark™. [Online]. Available: https : / /

spark.apache.org/.

[4] Apache Software Foundation, Apache Hadoop. [Online]. Available: https : / /

hadoop.apache.org/.

[5] Apache Software Foundation, Apache Storm. [Online]. Available: https://storm.

apache.org/.

[6] Apache Software Foundation, Apache Flink®. [Online]. Available: https: / /

flink.apache.org/.

[7] Apache Software Foundation, Apache Beam. [Online]. Available: https://beam.

apache.org.

[8] M. Mejran, How can I switch careers from Java to big data?, 2014. [Online].

Available: https://www.quora.com/How-can-I-switch-careers-from-Java-

to-big-data.

[9] S. Shahrivari, “Beyond batch processing: Towards real-time and streaming big

data”, Computers, vol. 3, no. 4, pp. 117–129, 2014, issn: 2073-431X. doi: 10.

3390/computers3040117. [Online]. Available: https://www.mdpi.com/2073-

431X/3/4/117.

[10] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory big data

management and processing: A survey”, IEEE Transactions on Knowledge and

Data Engineering, vol. 27, no. 7, pp. 1920–1948, 2015. doi: 10.1109/TKDE.2015.

2427795.

111

https://research.facebook.com/blog/2014/10/facebook-s-top-open-data-problems
https://research.facebook.com/blog/2014/10/facebook-s-top-open-data-problems
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://spark.apache.org/
https://spark.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://beam.apache.org
https://beam.apache.org
https://www.quora.com/How-can-I-switch-careers-from-Java-to-big-data
https://www.quora.com/How-can-I-switch-careers-from-Java-to-big-data
https://doi.org/10.3390/computers3040117
https://doi.org/10.3390/computers3040117
https://www.mdpi.com/2073-431X/3/4/117
https://www.mdpi.com/2073-431X/3/4/117
https://doi.org/10.1109/TKDE.2015.2427795
https://doi.org/10.1109/TKDE.2015.2427795

BIBLIOGRAPHY

[11] B. Nicolae, C. Costa, C. Misale, K. Katrinis, and Y. Park, “Towards memory-

optimized data shuffling patterns for big data analytics”, in 2016 16th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016,

pp. 409–412. doi: 10.1109/CCGrid.2016.85.

[12] The Netty project, Netty Homepage. [Online]. Available: https://netty.io.

[13] Y. Lu, JEP 337: RDMA Network Sockets. [Online]. Available: https://openjdk.

org/jeps/337.

[14] S. Nothaas, K. Beineke, and M. Schoettner, “Ibdxnet: Leveraging infiniband in

highly concurrent java applications”, Dec. 5, 2018. arXiv: 1812.01963 [cs.NI].

[15] Oracle, Project panama: Interconnecting jvm and native code, 2014. [Online].

Available: https://openjdk.org/projects/panama/.

[16] UCF Consortium, Unified Communication X Homepage. [Online]. Available: https:

//openucx.org/.

[17] F. Krakowski and F. Ruhland, Infinileap GitHub Repository. [Online]. Available:

https://github.com/hhu-bsinfo/infinileap.

[18] Oracle, The Java Virtual Machine Instruction Set. [Online]. Available: https:

//docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html (visited on

10/17/2023).

[19] D. Maier, N. Grcevski, and V. Sundaresan, “An introduction to java development

kit 7”, in Proceedings of the 2011 Conference of the Center for Advanced Studies

on Collaborative Research, ser. CASCON ’11, Toronto, Ontario, Canada: IBM

Corp., 2011, pp. 366–367.

[20] Oracle, Java Garbage Collection Basics, Oct. 17, 2023. [Online]. Available: https:

//www.oracle.com/webfolder/technetwork/Tutorials/obe/java/gc01/

index.html (visited on 10/17/2023).

[21] u. Nikolić and F. Spoto, “Reachability analysis of program variables”, ACM Trans.

Program. Lang. Syst., vol. 35, no. 4, Jan. 2014, issn: 0164-0925. doi: 10.1145/

2529990. [Online]. Available: https://doi.org/10.1145/2529990.

[22] R. E. Jones and C. Ryder, “A study of java object demographics”, in Proceed-

ings of the 7th International Symposium on Memory Management, ser. ISMM

’08, Tucson, AZ, USA: Association for Computing Machinery, 2008, pp. 121–

130, isbn: 9781605581347. doi: 10.1145/1375634.1375652. [Online]. Available:

https://doi.org/10.1145/1375634.1375652.

112

https://doi.org/10.1109/CCGrid.2016.85
https://netty.io
https://openjdk.org/jeps/337
https://openjdk.org/jeps/337
https://arxiv.org/abs/1812.01963
https://openjdk.org/projects/panama/
https://openucx.org/
https://openucx.org/
https://github.com/hhu-bsinfo/infinileap
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://www.oracle.com/webfolder/technetwork/Tutorials/obe/java/gc01/index.html
https://www.oracle.com/webfolder/technetwork/Tutorials/obe/java/gc01/index.html
https://www.oracle.com/webfolder/technetwork/Tutorials/obe/java/gc01/index.html
https://doi.org/10.1145/2529990
https://doi.org/10.1145/2529990
https://doi.org/10.1145/2529990
https://doi.org/10.1145/1375634.1375652
https://doi.org/10.1145/1375634.1375652

BIBLIOGRAPHY

[23] H. Inoue, D. Stefanovic, and S. Forrest, “On the prediction of java object life-

times”, IEEE Transactions on Computers, vol. 55, no. 7, pp. 880–892, 2006. doi:

10.1109/TC.2006.107.

[24] M. Beckwith, Garbage First Garbage Collector Tuning, Aug. 2023. [Online]. Avail-

able: https://www.oracle.com/technical-resources/articles/java/g1gc.

html (visited on 10/20/2023).

[25] Sun Microsystems, “Memory Management in the JavaHotSpot™ Virtual Ma-

chine”, Oracle Whitepapers, Apr. 2006. [Online]. Available: https://www.oracle.

com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf

(visited on 10/20/2023).

[26] W. Huang, Y. Qian, W. Srisa-an, and J. Chang, “Object allocation and memory

contention study of java multithreaded applications”, in IEEE International Con-

ference on Performance, Computing, and Communications, 2004, ser. PCCC-04,

IEEE. doi: 10.1109/pccc.2004.1395032.

[27] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and N. Nys-

trom, “Use at your own risk: The java unsafe API in the wild”, in Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH

2015, Pittsburgh, PA, USA, October 25-30, 2015, J. Aldrich and P. Eugster, Eds.,

ACM, 2015, pp. 695–710. doi: 10.1145/2814270.2814313.

[28] Y. Li, T. Tan, and J. Xue, “Understanding and analyzing java reflection”, ACM

Trans. Softw. Eng. Methodol., vol. 28, no. 2, Feb. 2019, issn: 1049-331X. doi:

10.1145/3295739. [Online]. Available: https://doi.org/10.1145/3295739.

[29] P. E. McKenney, “Memory barriers: A hardware view for software hackers”, Linux

Technology Center, IBM Beaverton, 2010.

[30] Intel Corporation, Intel 64 and ia-32 architectures software developer’s manual -

volume 4, Intel Corporation, Sep. 2023.

[31] Wikipedia contributors, Direct memory access, [Online; accessed 16-November-

2023], 2023. [Online]. Available: https://en.wikipedia.org/w/index.php?

title=Direct_memory_access&oldid=1165054892.

[32] Oracle, Java® Platform, Standard Edition & Java Development Kit Version 21

API Specification - Class ByteBuffer. [Online]. Available: https://docs.oracle.

com/en/java/javase/21/docs/api/java.base/java/nio/ByteBuffer.html.

[33] F. Klein and M. Schottner, Dxram: A persistent in-memory storage for billions

of small objects, 2013. doi: 10.1109/pdcat.2013.23.

113

https://doi.org/10.1109/TC.2006.107
https://www.oracle.com/technical-resources/articles/java/g1gc.html
https://www.oracle.com/technical-resources/articles/java/g1gc.html
https://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
https://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
https://doi.org/10.1109/pccc.2004.1395032
https://doi.org/10.1145/2814270.2814313
https://doi.org/10.1145/3295739
https://doi.org/10.1145/3295739
https://en.wikipedia.org/w/index.php?title=Direct_memory_access&oldid=1165054892
https://en.wikipedia.org/w/index.php?title=Direct_memory_access&oldid=1165054892
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/nio/ByteBuffer.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/nio/ByteBuffer.html
https://doi.org/10.1109/pdcat.2013.23

BIBLIOGRAPHY

[34] S. Patidar, D. Rane, and P. Jain, “A survey paper on cloud computing”, in

2012 Second International Conference on Advanced Computing & Communica-

tion Technologies, 2012, pp. 394–398. doi: 10.1109/ACCT.2012.15.

[35] J. Moura and D. Hutchison, “Review and analysis of networking challenges

in cloud computing”, Journal of Network and Computer Applications, vol. 60,

pp. 113–129, 2016, issn: 1084-8045. doi: https://doi.org/10.1016/j.jnca.

2015.11.015. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S108480451500288X.

[36] T. Chen, X. Gao, and G. Chen, “The features, hardware, and architectures of

data center networks: A survey”, Journal of Parallel and Distributed Computing,

vol. 96, pp. 45–74, 2016, issn: 0743-7315. doi: https://doi.org/10.1016/j.

jpdc.2016.05.009. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0743731516300399.

[37] L. Kalita, “Socket programming”, International Journal of Computer Science and

Information Technologies, vol. 5, no. 3, pp. 4802–4807, 2014.

[38] Day, J.D. and Zimmermann, H., “The osi reference model”, 12, vol. 71, 1983,

pp. 1334–1340. doi: 10.1109/PROC.1983.12775.

[39] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch”, in Proceed-

ings of the 2007 Workshop on Experimental Computer Science, ser. ExpCS ’07,

San Diego, California: Association for Computing Machinery, 2007, 2–es, isbn:

9781595937513. doi: 10.1145/1281700.1281702. [Online]. Available: https:

//doi.org/10.1145/1281700.1281702.

[40] NVIDIA, ConnectX-7 400G Adapters. [Online]. Available: https : / / nvdam .

widen.net/s/csf8rmnqwl/infiniband- ethernet- datasheet- connectx-

7-ds-nv-us-2544471.

[41] G. Kerr, “Dissecting a small infiniband application using the verbs API”, CoRR,

vol. abs/1105.1827, 2011. arXiv: 1105.1827. [Online]. Available: http://arxiv.

org/abs/1105.1827.

[42] Wikipedia contributors, Pci express, [Online; accessed 16-November-2023], 2023.

[Online]. Available: https://en.wikipedia.org/w/index.php?title=PCI_

Express&oldid=1183939525.

[43] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia, “A remote direct

memory access protocol specification”, Tech. Rep., 2007.

114

https://doi.org/10.1109/ACCT.2012.15
https://doi.org/https://doi.org/10.1016/j.jnca.2015.11.015
https://doi.org/https://doi.org/10.1016/j.jnca.2015.11.015
https://www.sciencedirect.com/science/article/pii/S108480451500288X
https://www.sciencedirect.com/science/article/pii/S108480451500288X
https://doi.org/https://doi.org/10.1016/j.jpdc.2016.05.009
https://doi.org/https://doi.org/10.1016/j.jpdc.2016.05.009
https://www.sciencedirect.com/science/article/pii/S0743731516300399
https://www.sciencedirect.com/science/article/pii/S0743731516300399
https://doi.org/10.1109/PROC.1983.12775
https://doi.org/10.1145/1281700.1281702
https://doi.org/10.1145/1281700.1281702
https://doi.org/10.1145/1281700.1281702
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://arxiv.org/abs/1105.1827
http://arxiv.org/abs/1105.1827
http://arxiv.org/abs/1105.1827
https://en.wikipedia.org/w/index.php?title=PCI_Express&oldid=1183939525
https://en.wikipedia.org/w/index.php?title=PCI_Express&oldid=1183939525

BIBLIOGRAPHY

[44] G. Shainer, P. Lui, and T. Liu, “The development of mellanox/nvidia gpudirect

over infiniband: A new model for gpu to gpu communications”, in Proceedings

of the 2011 TeraGrid Conference: Extreme Digital Discovery, ser. TG ’11, Salt

Lake City, Utah: Association for Computing Machinery, Jul. 18, 2011, p. 1, isbn:

9781450308885. doi: 10.1145/2016741.2016769. [Online]. Available: https:

//doi.org/10.1145/2016741.2016769.

[45] S. Liang, Java Native Interface: Programmer’s Guide and Specification. 1999.

[Online]. Available: https://api.semanticscholar.org/CorpusID:58765427.

[46] D. Kurzyniec and V. Sunderam, “Efficient cooperation between java and native

codes–jni performance benchmark”, in The 2001 international conference on par-

allel and distributed processing techniques and applications, 2001.

[47] P. Sandoz, 8193033: Remove terminally deprecated sun.misc.unsafe.defineclass,

Mar. 20, 2018. [Online]. Available: https://github.com/openjdk/jdk/commit/

cfb102ab895e503d96ee273eb920f054bb861840.

[48] Oracle, Jep 412: Foreign function & memory api (incubator), Apr. 10, 2021.

[Online]. Available: https://openjdk.org/jeps/412.

[49] Oracle, Calling native functions with jextract. [Online]. Available: https://docs.

oracle.com/en/java/javase/21/core/call-native-functions-jextract.

html.

[50] F. Krakowski, Gradle-jextract. [Online]. Available: https://github.com/krakowski/

gradle-jextract.

[51] M. Cimadamore and F. Krakowski, Panama-dev mailing list : [foreign-jextract]

jextract-generated methodhandle is null, Sep. 18, 2020. [Online]. Available: https:

//mail.openjdk.org/pipermail/panama- dev/2020- September/010826.

html.

[52] Oracle, Java® Platform, Standard Edition & Java Development Kit Version 20

API Specification | Class String. [Online]. Available: https://docs.oracle.

com/javase/8/docs/api/java/lang/String.html.

[53] A. Zakusylo, java-native-benchmark. [Online]. Available: https://github.com/

zakgof/java-native-benchmark/tree/master.

[54] UCX Developers, Unified Communication X Architecture. [Online]. Available:

https://github.com/openucx/ucx#architecture.

[55] OpenUCX Developers, Openucx documentation - frequently asked questions. [On-

line]. Available: https://openucx.readthedocs.io/en/master/faq.html?

highlight=multi%20rail#what-is-the-default-behavior-in-a-multi-

rail-environment.

115

https://doi.org/10.1145/2016741.2016769
https://doi.org/10.1145/2016741.2016769
https://doi.org/10.1145/2016741.2016769
https://api.semanticscholar.org/CorpusID:58765427
https://github.com/openjdk/jdk/commit/cfb102ab895e503d96ee273eb920f054bb861840
https://github.com/openjdk/jdk/commit/cfb102ab895e503d96ee273eb920f054bb861840
https://openjdk.org/jeps/412
https://docs.oracle.com/en/java/javase/21/core/call-native-functions-jextract.html
https://docs.oracle.com/en/java/javase/21/core/call-native-functions-jextract.html
https://docs.oracle.com/en/java/javase/21/core/call-native-functions-jextract.html
https://github.com/krakowski/gradle-jextract
https://github.com/krakowski/gradle-jextract
https://mail.openjdk.org/pipermail/panama-dev/2020-September/010826.html
https://mail.openjdk.org/pipermail/panama-dev/2020-September/010826.html
https://mail.openjdk.org/pipermail/panama-dev/2020-September/010826.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://github.com/zakgof/java-native-benchmark/tree/master
https://github.com/zakgof/java-native-benchmark/tree/master
https://github.com/openucx/ucx#architecture
https://openucx.readthedocs.io/en/master/faq.html?highlight=multi%20rail#what-is-the-default-behavior-in-a-multi-rail-environment
https://openucx.readthedocs.io/en/master/faq.html?highlight=multi%20rail#what-is-the-default-behavior-in-a-multi-rail-environment
https://openucx.readthedocs.io/en/master/faq.html?highlight=multi%20rail#what-is-the-default-behavior-in-a-multi-rail-environment

BIBLIOGRAPHY

[56] K. L. Calvert and M. J. Donahoo, TCP/IP sockets in Java: practical guide for

programmers. Morgan Kaufmann, 2011.

[57] D. Kegel, The C10K problem. [Online]. Available: http://www.kegel.com/

c10k.html.

[58] Oracle, More New I/O APIs for the Java Platform. [Online]. Available: https:

//openjdk.org/projects/nio/.

[59] L. Gammo, T. Brecht, A. Shukla, and D. Pariag, “Comparing and evaluating

epoll, select, and poll event mechanisms”, in Linux Symposium, vol. 1, 2004.

[60] N. Maurer, Netty in action, M. Wolfthal, Ed. Shelter Island: Manning, 2016,

279 pp., isbn: 9781617291470.

[61] Oracle, Oracle Labs Homepage. [Online]. Available: https://labs.oracle.com/

pls/apex/r/labs/labs/about.

[62] F. Krakowski, 8248415: Create VarHandles for pointer fields through the Mem-

oryHandles API. [Online]. Available: https://github.com/openjdk/panama-

foreign/pull/216.

[63] M. Cimadamore, JEP 454: Foreign Function & Memory API. [Online]. Available:

https://openjdk.org/jeps/454.

[64] Netty Developers, New proposed API for buffers in Netty. [Online]. Available:

https://github.com/netty/netty-incubator-buffer-api.

[65] Dremio, Apache Arrow Explained by Dremio. [Online]. Available: https://www.

dremio.com/apache-arrow-explained (visited on 04/19/2020).

[66] Wikipedia contributors, Zero-copy — Wikipedia, the free encyclopedia, [Online;

accessed 7-December-2023], 2023. [Online]. Available: https://en.wikipedia.

org/w/index.php?title=Zero-copy&oldid=1168039071.

[67] W. McKinney. “Introducing apache arrow flight: A framework for fast data trans-

port”. (2019), [Online]. Available: https://arrow.apache.org/blog/2019/10/

13/introducing-arrow-flight (visited on 04/19/2020).

116

http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
https://openjdk.org/projects/nio/
https://openjdk.org/projects/nio/
https://labs.oracle.com/pls/apex/r/labs/labs/about
https://labs.oracle.com/pls/apex/r/labs/labs/about
https://github.com/openjdk/panama-foreign/pull/216
https://github.com/openjdk/panama-foreign/pull/216
https://openjdk.org/jeps/454
https://github.com/netty/netty-incubator-buffer-api
https://www.dremio.com/apache-arrow-explained
https://www.dremio.com/apache-arrow-explained
https://en.wikipedia.org/w/index.php?title=Zero-copy&oldid=1168039071
https://en.wikipedia.org/w/index.php?title=Zero-copy&oldid=1168039071
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight
https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight

List of Figures

1.1 Project Hermes Overview. (see 4.4) . 5

2.1 Surviving objects get moved into the S0 survivor space. 10

2.2 The Garbage Collector switches Survivor Spaces. 10

2.3 Accessing the JDKs Unsafe API through the use of Reflection. 12

2.4 Allocating an instance using the Unsafe API. 13

2.5 Executing a Compare-And-Swap Operation using the Unsafe API. . . . 15

2.6 A failing direct memory access after heap compaction. 16

2.7 Direct write access to an object’s private field using the Unsafe API. . . 17

3.1 Bypassing the kernel in an InfiniBand-enabled application. 30

3.2 Selected components belonging to the Verbs API. 31

3.3 Accessing memory regions using a remote key. 34

3.4 Interconnecting Java code with native functionalities. 35

4.1 Using the gradle-jextract plugin to access native functions. 58

4.2 Code generated by jextract for calling the native printf function. 59

4.3 Calling the native printf function from Java code using generated bindings. 60

4.4 The Unified Communication X framework’s architecture[54]. 62

4.5 Basic UCX components required for establishing a network connection. 63

5.1 Establishing a blocking socket connection with a remote server. 84

5.2 Starting a blocking server instance and receiving data. 85

5.3 Asynchronous processing of multiple connections using a selector. . . . 86

5.4 Execution of a read operation on a ByteBuffer instance. 88

117

LIST OF FIGURES

118

Eidesstattliche Versicherung
nach §5 der Promotionsordnung vom 15.06.2018

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig

und ohne unzulässige fremde Hilfe unter Beachtung der „Grundsätze zur

Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität

Düsseldorf“ erstellt worden ist. Die aus fremden Quellen direkt oder in-

direkt übernommenen Inhalte wurden als solche kenntlich gemacht. Die

Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei

keiner anderen Fakultät eingereicht. Ich habe bisher keine erfolglosen Pro-

motionsversuche unternommen. Ich versichere weiterhin, dass alle von mir

gemachten Angaben wahrheitsgemäß und vollständig sind.

Hilden, January 2024

Filip Krakowski

