
Transparent high-speed networking for low
latency data center Java applications

Inaugural-Dissertation

Zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von
Fabian Ruhland

geboren in
Mettmann

Düsseldorf, 16.01.2024

aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Dr. Michael Schöttner

2. Prof. Dr. Stefan Conrad

Tag der mündlichen Prüfung: 18.04.2024

Abstract

Many big-data frameworks are written in Java, ranging from disk-based processing sys-
tems like Hadoop MapReduce to in-memory solutions like Apache Spark. The scalability
of any distributed cloud system is limited by the network speed. As a result, high-speed
networks, like InfiniBand, have become dominant in data centers, providing throughput
rates of up to 400 GBit/s and round-trip latency of less than 2 µs.

While it is possible to use InfiniBand and High-Speed Ethernet over traditional Java sock-
ets, this approach is not very efficient. Several projects addressed this problem in the past
with either transparent or non-transparent solutions for Java applications. Transparent
network acceleration libraries redirect data sent via traditional sockets over high-speed
networks, while non-transparent libraries offer an alternative, but more direct program-
ming interface to the network hardware. Naturally, the best performance can be achieved
by directly programming the hardware, but there are many pitfalls and often performance
may suffer from poor programming. Furthermore existing applications need to adapt their
(often complex) network code in order to integrate non-transparent libraries.

This thesis proposes hadroNIO, a novel transparent approach, accelerating Java NIO sock-
ets by replacing the Java NIO library. The architecture of hadroNIO is designed for highly
concurrent applications using asynchronous communication. On the lower level, hadro-
NIO relies on the Unified Communication X (UCX) framework, which provides a unified
networking API and supports several transports (e.g. InfiniBand or Ethernet), making
hadroNIO network agnostic.

hadroNIO has been evaluated using microbenchmarks and real-world applications on dif-
ferent hardware setups with 100 GBit/s high-speed networks and compared with libvma,
a highly efficient socket acceleration library developed by Mellanox, as well as traditional
Java sockets. First evaluations have shown, that the minimum achievable latency using
blocking NIO communication is around 3 µs, imposing only half a microsecond of over-
head compared to directly working with UCX in Java. Since then, hadroNIO has been
heavily optimized, leading to even less overhead.
Later measurement results with real-world frameworks and applications show, that full
end-to-end round-trip times of 5 µs can be achieved using asynchronous communica-
tion with the popular event-driven networking framework netty (used by many big-data
frameworks). Experiments with gRPC show a throughput increase of more than 50% over
classic sockets, while request latencies for Apache ZooKeeper have been reduced by 50%.
Connection scalability experiments show, that hadroNIO can efficiently handle hundreds
of connections. A microbenchmark based on netty demonstrates, that it is able to provide
average round-trip times of less than 10 µs with 80 connections all sending/receiving mes-
sages in parallel. hadroNIO outperforms libvma in each benchmark and works reliably in
scenarios where libvma shows stability issues and fails to finish benchmark runs.

Contents

1 Introduction 1
1.1 Motivation and Background . 1

1.1.1 Context . 1
1.1.2 Infiniband & Java . 2

1.2 Research Contributions . 3
1.2.1 Publications . 3
1.2.2 Software . 4

1.3 Project Hermes . 6
1.4 Thesis Structure . 7

2 Observatory benchmark 8
2.1 A unified InfiniBand benchmark . 8
2.2 InfiniBand monitoring . 9
2.3 Neutrino . 9
2.4 Contributions . 10

3 hadroNIO - Transparent Java network acceleration 39
3.1 Java NIO and Netty overview . 39
3.2 OpenUCX overview . 41
3.3 Transparency challenges . 43
3.4 Contributions . 44

4 Accelerating big-data applications with hadroNIO 61
4.1 Optimizations . 61
4.2 Contributions . 64

5 Conclusions and Outlook 81
5.1 Achievements . 81
5.2 Future Work . 82

Bibliography 86

Chapter 1

Introduction

1.1 Motivation and Background

1.1.1 Context

Digital networks have become such an integral part of our life and daily routines, that
it is hard to imagine a world without the degree of connectivity we have today. The
applications seem almost endless, with new technologies being innovated each year. Some
are obvious, like computers and smartphones, that we use to surf the web, connect with
other people around the world, track our health condition or manage our finances. Others
integrate seamlessly into everyday life, so that we do not notice them most of the time.
Examples for that are smart home appliances, which can regulate inside temperatures,
automatically close the blinds or even order food, when the fridge is empty.

Most of these applications, whether it being large scale social networks, or something as
simple as a smart light switch, need some form of data processing. This often happens
in cloud data centers, hosting hundreds or thousand of servers. Of course, these are not
only used to perform mundane tasks, simplifying our everyday life, but also to perform
big data computing assignments, like genome sequencing and simulating the impact of
certain molecules on life forms to develop new medicine.

To leverage the full potential of these compute servers, they are connected via high-speed
interconnects, such as InfiniBand [1] or High-Speed Ethernet, allowing them to exchange
data at rates of up to 400 GBit/s with latencies as low as 1-2 µs. This is achieved by
moving the network protocol stack onto the network interface device (NIC) itself, instead
of letting the operating system’s kernel handle the network traffic. While it is possible
to use the traditional socket API with High-Speed Ethernet, and a Linux kernel module
achieves the same for InfiniBand, this involves using the kernel’s network stack, requiring
context switches which introduce a large overhead. To leverage the full potential of mod-
ern high-speed NICs, the ibverbs library must be used. However, the programming model,
introduced by this library, differs vastly from sockets and introduces many challenges and
pitfalls.

Simultaneously, Java has become one of the most popular programming languages for
big-data frameworks and applications, with projects like Apache Spark [2], Apache Flink

1

CHAPTER 1. INTRODUCTION

[3], or Apache Cassandra [4] being implemented in Java. Low network latency and high
throughput is crucial for these types of applications, since distributed instances need to
communicate with each other as fast as possible. A slow network can easily become a
bottleneck, drastically limiting scalability. While modern interconnects like InfiniBand
offer the type of low latency communication desired in such scenarios, Java has no official
support for ibverbs. However, there have been several attempts at providing InfiniBand
support for Java. These can generally be divided into non-transparent libraries, which
port the ibverbs interface to Java, and transparent solutions, which redirect socket traffic
over high-speed interconnects, allowing programmers to profit from modern networking
hardware, while still using the traditional socket API.

The main focus of this thesis is on developing a new transparent acceleration library for
Java, outperforming existing solutions, while not requiring changes to the applications.
This new approach offers both low latency and high scalability regarding hundreds of
connections. Furthermore, it supports multiple modern interconnects.

1.1.2 Infiniband & Java

While transparency generally comes at the cost of some performance, using a non-transparent
InfiniBand library for Java forces programmers to learn the ibverbs API. Implementing a
scalable network system based on ibverbs requires a lot of experience [5]. On the other
hand, the JDK already comes with its own scalable network library, called Java NIO. This
library offers an asynchronous network API, based on classic sockets. Traditionally, send
and receive operations on sockets are blocking, meaning that the current thread cannot
do any other work, until the operation has finished. To support multiple connections,
each connection has to be managed by its own thread. Java NIO introduces non-blocking
operations, allowing threads to perform other tasks, while waiting for a message to arrive,
for example. Furthermore, a single thread can handle an arbitrary amount of connections,
giving the programmer control over how many network threads should run. This allows
for scalable applications, that do not overwhelm the CPU with hundreds of threads, each
handling only a single connection.

Today Java NIO is the de-facto standard for network programming in Java, partly because
of the popularity of Netty, an asynchronous event-driven network application framework
[6]. While Java NIO solves the problem of blocking socket connections, it also introduces
some complexity. For example, network buffers are not guaranteed to be processed fully
at once and may require multiple send operations to be transferred to their receivers.
Additionally, as with blocking sockets thread management is still left to the programmer,
and buffer allocation also has to be done manually, which may cause performance penal-
ties when done wrong (i.e. repeated allocations of small buffers). The Netty library solves
these problems by automatically starting enough threads to saturate, but not overwhelm,
the CPU and introducing a sophisticated buffer management, based on reference count-
ing. Many modern distributed Java applications and frameworks are based on Netty, for
example Apache BookKeeper [7] and gRPC [8]. Another example is Apache ZooKeeper,
a highly reliable key-value store, used to coordinate distributed cloud services [9]. It is
based on Java NIO directly by default, but can also be configured to use an experimental
Netty-based networking subsystem.

2

CHAPTER 1. INTRODUCTION

Java NIO, and thus Netty, still have one major drawback: With NIO being based on
traditional sockets, all network operations are still done via the kernel’s network stack,
rendering it unable to take full advantage of modern low latency networking hardware.
The solutions are transparent acceleration libraries, intercepting socket traffic and com-
pletely bypassing the kernel. However, most of these solutions are not being maintained
anymore and some of them come with unattractive caveats like being closed-source or re-
quiring root privileges. In this thesis, a new approach at transparent network acceleration
for Java applications has been developed. While existing libraries target traditional sock-
ets, offering high compatibility with native and Java applications, our approach is specif-
ically tailored towards accelerating Java NIO. This allows us to focus on non-blocking
asynchronous communication and omit some of the legacies coming from the traditional
socket interface, like working with raw byte arrays instead of more modern ByteBuffer
instances.

1.2 Research Contributions

The key contributions of this thesis are:

• An extensive overview of existing (transparent and non-transparent) InfiniBand
solutions for Java applications.

• Observatory, an extensible benchmarking framework, designed to evaluate and com-
pare different InfiniBand libraries for Java.

• Evaluation results of different high-speed networking solutions for Java using the
Observatory benchmark.

• hadroNIO, a transparent acceleration library for Java applications, based on the
popular NIO API.

• Evaluation results of hadroNIO, using a set of tests comprised of a synthetic mi-
crobenchmark and real-world applications, showing that hadroNIO outperforms ex-
isting solutions in synthetic and real-world loads.

1.2.1 Publications

All publications are full papers of 8 pages each.

International Conferences

• Fabian Ruhland, Filip Krakowski, Michael Schöttner. Performance analysis and
evaluation of Java-based InfiniBand Solutions. In Proceedings of the 19th IEEE
International Symposium on Parallel and Distributed Computing (ISPDC). 2020.

• Filip Krakowski, Fabian Ruhland, Michael Schöttner. Neutrino: Efficient Infini-
Band Access for Java Applications. In Proceedings of the 19th IEEE International
Symposium on Parallel and Distributed Computing (ISPDC). 2020.

3

CHAPTER 1. INTRODUCTION

• Fabian Ruhland, Filip Krakowski, Michael Schöttner. hadroNIO: Accelerating
Java NIO via UCX. In Proceedings of the 20th IEEE International Symposium on
Parallel and Distributed Computing (ISPDC). 2021.

• Filip Krakowski, Fabian Ruhland, Michael Schöttner. Infinileap: Modern High-
Performance Networking for Distributed Java Applications. In Proceedings of the
27th IEEE International Conference on Parallel and Distributed Systems (ICPADS).
2021.

• Fabian Ruhland, Filip Krakowski, Michael Schöttner. Transparent network accel-
eration for big data computing in Java. In Proceedings of the 26th IEEE Interna-
tional Conference on Computational Science and Engineering (CSE). 2023.

Technical Reports

• Stefan Nothaas, Fabian Ruhland Michael Schöttner. A Benchmark to Evaluate In-
finiBand Solutions for Java Applications. Published on arXiv e-prints. arXiv:1910.02245.
2019.

• Fabian Ruhland, Filip Krakowski, Michael Schöttner. Accelerating netty-based
applications through transparent InfiniBand support. Published on arXiv e-prints.
arXiv:2209.14048. 2022.

1.2.2 Software

Over the course of this thesis, the author was involved in developing the following libraries
and applications:

Observatory is a novel benchmarking framework, designed to compare different network
libraries for Java. It specifically targets InfiniBand libraries with support for RDMA, but
also contains an implementation using traditional sockets to analyse transparent accel-
eration solutions. The benchmark supports uni- and bidirectional connections and uses
a blocking communication pattern to evaluate the lowest possible latencies. To compare
InfiniBand performance of Java and native applications, the framework has additionally
been implemented in C++, with a binding based on the ibverbs library providing baseline
results. The project is open-source and available on GitHub [10].
Contributors (in chronological order): Fabian Ruhland (main development), Peter Rudenko
(JUCX benchmark).
Size and language(s): ∼11000 lines of code, Java and C++.

hadroNIO is a Java library, reimplementing parts of Java NIO. It replaces the default im-
plementation, based on traditional sockets with a new one, specifically designed to route
network traffic over high-speed networks using the Unified Communication X (UCX)
framework [11]. In contrast to classic socket implementations, the kernel is not involved
in any parts of the communication, fully alleviating the need for context switches, if an
appropriate NIC is available. The project is open-source and available on GitHub [12].
Contributors (in chronological order): Fabian Ruhland (main development), Edwin Stang
(fixed two possible null pointer exceptions).
Size and language(s): ∼7000 lines of code, Java.

4

CHAPTER 1. INTRODUCTION

neutrino is a new Java library, leveraging the Java Native Interface to expose native
ibverbs functionality to Java applications. Its core package provides wrapper classes for
native structs and functions, as well as methods to manipulate native buffers. The project
is open-source and available on GitHub [13].
Contributors (in chronological order): Filip Krakowski (main development), Fabian Ruh-
land (worked on core package, bringing native functionality to Java).
Size and language(s): ∼11000 lines of code (core package), Java and C++.

Infinileap is a new Java library, providing efficient access to the native UCX frame-
work and thus allows leveraging high-speed networks with Java. It is based on the new
Foreign Function & Memory API (Project Panama) [14], which are developed to super-
sede the Java Native Interface. Like neutrino, it has a core package, consisting of wrapper
classes around native structs and functions. The project is open-source and available on
GitHub [15].
Contributors (in chronological order): Filip Krakowski (main development), Fabian Ruh-
land (bugfixes and improvements to core package).
Size and language(s): ∼8400 lines of code (core package), Java.

Detector is a native library, offering a simple API to read statistics from InfiniBand
devices. It uses the libraries libibmad and libibnetdisc to discover all devices in a network
and read their performance counters. This way, the full data size, including protocol
overhead, can be measured on a per-device basis. Furthermore, it is possible to read error
counters, indicating problems with specific NICs or the network setup. The project is
open-source and available on GitHub [16].
Contributors (in chronological order): Fabian Ruhland.
Size and language(s): ∼1300 lines of code, C++.

jDetector is Java library, using the Java Native Interface to call native code from De-
tector and expose its functionality to Java applications. The project is open-source and
available on GitHub [17].
Contributors (in chronological order): Fabian Ruhland.
Size and language(s): ∼1400 lines of code, Java and C++.

ib-scanner is a terminal frontend for Detector, based on ncurses [18]. It provides a
simple UI, which can monitor up to 4 network devices at once and is fully controllable
via the keyboard. The project is open-source and available on GitHub [19]. Contributors
(in chronological order): Fabian Ruhland.
Size and language(s): ∼1500 lines of code, C++.

5

CHAPTER 1. INTRODUCTION

1.3 Project Hermes
Project Hermes is a research project, sponsored by Oracle, which aims at providing a
network agnostic ultra-fast communication solution for Java. While existing solutions
for high-speed networking in Java are either transparent or require using their own API,
Project Hermes targets both, by incorporating two separate libraries, aiming to work in
conjunction ultimately.

The aforementioned library Infinileap provides fast access to the native UCX framework
[11], which offers network-agnostic communication, supporting high-speed networks such
as InfiniBand. To access native functionality from Java, the new Foreign Function &
Memory APIs [14] are used.

The second project, hadroNIO, aims at transparently accelerating Java NIO traffic over
high-speed networks by using UCX. Development on hadroNIO started on the basis of
JUCX, the official Java binding for UCX, which is based on the traditional Java Native
Interface, which is soon to be replaced by the new the new Foreign Function & Mem-
ory APIs. This allowed Infinileap and hadroNIO to be developed in parallel and replace
JUCX with Infinileap later on.

Ultimately, Project Hermes has been evaluated on high performance bare-metal nodes in
the Oracle Cloud Infrastructure, connected via 100 GBit/s High-Speed Ethernet. Access
to these resources has been granted by the Oracle for Research program.

netty

Default NIO

Sockets

libvmaKernel

IP over
InfiniBand

Network Interface Card

TCP/IP Stack

hadroNIO

JUCX/
Infinileap

UCX

Java space

Native space

Application

Figure 1.1: Project Hermes architecture compared to existing solutions

6

CHAPTER 1. INTRODUCTION

1.4 Thesis Structure
In Chapter 1 the context and motivation of the research behind this thesis are presented.
Chapter 2 introduces the Observatory benchmark, elaborates on existing transparent
and non-transparent network acceleration solutions for Java and discusses the benchmark
results of the different libraries. A novel approach at redirecting Java NIO traffic over high-
speed networks, called hadroNIO, is presented in Chapter 3. Furthermore, benchmark
results using microbenchmarks based either directly on Java NIO or Netty are shown
and discussed. This constitutes the main research contribution of this thesis together
with Chapter 4, which presents optimizations to hadroNIO and results from real world
scenarios. A lot of effort has been put into optimizing hadroNIO for applications using
hundreds of connections, as well as keeping round-trip times as low as possible. The thesis
is concluded by Chapter 5, which also presents ideas for future work.

7

Chapter 2

Observatory benchmark

This chapter describes Observatory, a novel benchmarking framework to evaluate different
InfiniBand libraries for Java. Furthermore, it provides an overview of the benchmarked
libraries and elaborates on monitoring InfiniBand traffic for overhead calculations.

2.1 A unified InfiniBand benchmark

Observatory was developed as a successor to the Java InfiniBand Benchmark (JIB), a
suite consisting of several standalone microbenchmarks [20]. It contains a socket-based
benchmark to evaluate transparent acceleration solutions, as well as one benchmark for
each of the non-transparent libraries. The JIB suite supports the native ibverbs library
through a microbenchmark written in C, as well as jVerbs by IBM [21], which accesses
libibverbs via JNI. While the Java InfiniBand Benchmark was successfully used to analyse
InfiniBand libraries, it was hard to expand with support for new InfiniBand libraries, since
each new non-transparent solution requires its own standalone application in the JIB suite.
Additionally, there is a large portion of duplicated code between all microbenchmarks.
To this end, the Observatory benchmark was developed, aiming to unify the JIB’s stan-
dalone applications. Furthermore, Observatory simplifies the benchmark configuration
and result evaluation. The JIB applications must be configured via console arguments
and can only perform one benchmark run per invocation. A complicated bash-script is
used to perform a set of benchmark runs and gather results inside a CSV-file. In con-
trast, Observatory is able to perform a set of benchmark runs, described by a JSON-file,
per invocation and appends results consecutively to a CSV-file, omitting the need for a
bash-script.
Observatory defines a clear interface for network libraries, requiring only communication
connection setup routines to be implemented. The process of benchmarking and gathering
results is controlled by the framework, in contrast to the JIB suite, where each benchmark
application measures results by itself. This heavily simplifies the development of extending
Observatory with support for new InfiniBand solutions. As a result, not only jVerbs
is supported, but also its open-source counterpart the Direct Storage and Networking
Interface (DiSNI) [22]. Furthermore, Observatory also includes a binding for neutrino, a
JNI-based library aiming at fast access to native ibverbs, while bypassing the performance
problems that existing solutions are showing [23].

8

CHAPTER 2. OBSERVATORY BENCHMARK

2.2 InfiniBand monitoring

Both the JIB suite and Observatory support calculating the data overhead, produced by
different InfiniBand libraries. This is achieved by reading the performance counters from
the used network cards. Each InfiniBand NIC counts outgoing and incoming packets,
bytes and other statistics like different types of errors. These can be read via filesystem
nodes for local devices, or queried from the subnet manager to get statistics from remote
devices. To read these counters, the author implemented the C++-library Detector, which
supports both ways of reading the performance counters. A Java binding called jDetector
has been developed as a separate project, allowing to access Detector functionality via
JNI.

[ruhland@node80]$ ls /sys/class/infiniband/mlx4_0/ports/1/counters/
excessive_buffer_overrun_errors port_rcv_data port_xmit_discards
link_downed port_rcv_errors port_xmit_packets
link_error_recovery port_rcv_packets port_xmit_wait
local_link_integrity_errors port_rcv_remote_physical_errors symbol_error
multicast_rcv_packets port_rcv_switch_relay_errors unicast_rcv_packets
multicast_xmit_packets port_xmit_constraint_errors unicast_xmit_packets
port_rcv_constraint_errors port_xmit_data VL15_dropped
[ruhland@node80]$ cat /sys/class/infiniband/mlx4_0/ports/1/counters/port_xmit_data
6788618
[ruhland@node80]$ cat /sys/class/infiniband/mlx4_0/ports/1/counters/port_xmit_packets
116324
[ruhland@node80]$ cat /sys/class/infiniband/mlx4_0/ports/1/counters/port_xmit_discards
0

Figure 2.1: InfiniBand performance counters accessed via sysfs

Furthermore, the author has developed a monitoring tool based on Detector. This ap-
plication, called ib-scanner, scans the network for compatible devices and periodically
queries their performance counters. Each device’s port can be monitored separately and
up to 4 devices/ports may be displayed simultaneously in a terminal-based UI. While
ib-scanner is not mentioned in any of the author’s publications, it has proven to be a
valuable tool for debugging and error detection during development.

2.3 Neutrino

Neutrino is a non-transparent InfiniBand library for Java, developed at the operating sys-
tems department at Heinrich Heine University Düsseldorf. The in initial goal for Neutrino
was to provide access to native ibverbs functionality via a thin JNI layer. While similar
solutions, like jVerbs [21] and its open-source successor DiSNI [22] by IBM exist, they
both suffer from performance problems in certain scenarios, as shown by the JIB suite
and Observatory [20] [24]. Furthermore, performing calls to native functions with these
libraries requires serializing parameters into native structs, adding an overhead to network
operations. They try to alleviate this by implementing Stateful Verbs Methods (SVM),
which cache the serialized version of a native function call, eliminating the need for sub-
sequent serialization when the same parameters are used multiple times (e.g. the same
buffer is used for sending/receiving messages). However, theses stateful objects are not
flexible and calls with different parameters require serialization. Real world applications

9

CHAPTER 2. OBSERVATORY BENCHMARK

would probably only be able to reuse SVM objects for a part of their network commu-
nication, but not all of it. Fig 2.2 shows, that not using SVM at all adds an additional
microsecond of latency to each RDMA write operation on average, compared to using a
single SVM for all operations. While this might not sound like a lot, it means a 50%
latency increase for small payloads. Furthermore, only a single connection was used for
this measurement. The overhead may grow with an increasing amount of connections and
threads, putting more burden on the garbage collector. The measurement was performed
as part of the following paper about Observatory and in the same environment as all the
other measurements, but not included due to space constraints.

1 4 16 64 256 1 Ki 4 Ki 16 Ki 64 Ki 256 Ki 1 Mi
Size in Byte

100

101

102

La
te

nc
y

in

s

jVerbs jVerbs (no SVM)

Figure 2.2: RDMA write average latency with jVerbs, measuring the overhead of not
using Stateful Verbs Methods

Neutrino uses a different approach, that does not mirror native struct state in Java objects,
and serializes it back to native space when needed. Instead, Neutrino leverages the Unsafe
API, which allows working with off-heap memory, to manipulate native structs. Neutrino
offers getter- and setter-methods on each object, that directly influence the underlying
ibverbs structure. This way, serialization is not necessary when calling a native function,
because all objects used as parameters already have the required state in native space.

2.4 Contributions

The author has first developed throughput benchmarks and automation/evaluation scripts
for the JIB suite, supporting native ibverbs, IBM jVerbs and transparent acceleration li-
braries via a socket benchmark. The idea for an InfiniBand monitoring tool came from
Stefan Nothaas, but the author was fully responsible for developing Detector, jDetector

10

CHAPTER 2. OBSERVATORY BENCHMARK

and ib-scanner and integrated data overhead measurement into the JIB suite by himself.
The JIB applications have then been enhanced with latency measurements, supporting
percentile calculation, by Stefan Nothaas. The corresponding paper was written by Ste-
fan Nothaas, while the author and Michael Schöttner reviewed the paper and provided
feedback in several discussions.

Since Observatory is a successor to the JIB suite, its round-trip latency benchmark imple-
mentation is based on the latency benchmark by Stefan Nothaas, especially the percentile
calculation. The benchmarking process itself works fine in the JIB applications, but the
challenge was to create a unified, but extensible, benchmarking framework. To this end,
the Observatory architecture was designed and implemented. The main contributions of
this publication are the benchmark design and implementation in Java and C++, as well
as providing an overview of existing InfiniBand solutions for Java and evaluating them
using Observatory. It was written by the author of this thesis, while Filip Krakowski and
Michael Schöttner took part in many valuable discussions about the design and imple-
mentation of Observatory.

Regarding Neutrino, the author was involved in developing the project’s core function-
ality, which is offering the ibverbs API as a Java library. This was done in cooperation
with Filip Krakowski, who is the main developer of Neutrino. Once the main part of the
native functionality was available in the project and it was stable enough for use in larger
projects, the author went on to develop Observatory and compare Neutrino to other In-
finiBand libraries for Java. Filip Krakowski continued his work on Neutrino, aiming to
build a higher-level networking framework around it. The associated paper was written
by Filip Krakowski, while the author and Michael Schöttner were in involved in the form
of proofreading and various discussions.

11

A Benchmark to Evaluate InfiniBand Solutions for
Java Applications

Stefan Nothaas
Department of CS Operating Systems

Heinrich-Heine-Universität
Duesseldorf, Germany
stefan.nothaas@hhu.de

Fabian Ruhland
Department of CS Operating Systems

Heinrich-Heine-Universität
Duesseldorf, Germany
fabian.ruhland@hhu.de

Michael Schoettner
Department of CS Operating Systems

Heinrich-Heine-Universität
Duesseldorf, Germany

michael.schoettner@hhu.de

Abstract—Low-latency network interconnects, such as Infini-
Band, are commonly used in HPC centers and are even accessible
with todays cloud providers offering equipped instances for rent.
Most big data applications and frameworks are written in Java.
But, the JVM environment alone does not provide interfaces to
directly utilize InfiniBand networks.

In this paper, we present the “Java InfiniBand Benchmark”
to evaluate the currently available (and supported) “low-level”
solutions to utilize InfiniBand in Java. It evaluates socket- and
verbs-based libraries using typical network microbenchmarks
regarding throughput and latency. Furthermore, we present
evaluation results of the solutions on two hardware configu-
rations with 56 Gbit/s and 100 Gbit/s InfiniBand NICs. With
transparency often traded for performance and vice versa, the
benchmark helps developers with studying the pros and cons of
each solution and support them in their decision which solution
is more suitable for their existing or new use-case.

Index Terms—High-speed networks, Distributed computing

I. INTRODUCTION

RDMA capable devices have been providing high through-
put and low-latency to HPC applications for several years [18].
With todays cloud providers offering instances equipped with
InfiniBand for rent, such hardware is available to a wider range
of users without the high costs of buying and maintaining
it [25]. Many application domains such as social networks
[20], [29], [31], search engines [24], [36], simulations [37] or
online data analytics [21], [41], [42] require large processing
frameworks and backend storages. Many of these are written
in Java, e.g. big data batch processing frameworks [28], [33],
databases [1], [2] or backend storages/caches [3], [4], [7], [35].

These applications benefit from the rich environment Java
offers including automatic garbage collection and multi-
threading utilities. But, the choices for inter-node commu-
nication on distributed applications are limited to Ethernet-
based socket-interfaces (standard ServerSocket or NIO) on
the commonly used JVMs OpenJDK and Oracle. They do
not provide support for low-latency InfiniBand hardware. But,
there are external solutions available each with pros and cons.

This raises questions if a developer wants to chose a
suitable solution for a new use-case or an existing application:
What’s the throughput/latency on small/large payload sizes?
Is the performance sufficient when trading it for transparency
requiring less to no changes to the existing code? Is it worth
considering developing a custom solution based on the native

API to gain maximum control with chances to harvest the
performance available by the hardware?

In this paper, we address these questions by presenting a
“Java InfiniBand (JIB) benchmark” to evaluate existing solu-
tions to leverage the performance of InfiniBand hardware in
Java applications. The modular benchmark currently provides
implementations to evaluate three socket-based libraries and
implementations, IP over InfiniBand, libvma and JSOR, as
well as two verbs-based implementations, native C-verbs and
jVerbs. This paper focuses on the fundamental performance
metrics of low-level interfaces and not on higher-level network
subsystems with connection management, complex pipelines
and messaging primitives, e.g. MPI. We discuss and evaluate
these in a separate publication [34]. We used our benchmark
to evaluate the listed solutions on two hardware configurations
with 56 Gbit/s and 100 Gbit/s InfiniBand NICs. The contribu-
tions of this paper are:

• An overview of existing Java InfiniBand solutions
• An extensible and open source benchmark to easily

evaluate solutions to use InfiniBand in Java applications
• Extensive evaluation of existing Java libraries with 56

Gbit/s and 100 Gbit/s hardware
The remaining paper is structured as follows: Section II

discusses related work with socket-based (§II-A) and verbs-
based (§II-B) libraries. Section III presents the JIB Benchmark
Suite which is used to evaluate two verbs-based solutions
and three socket-based solutions in the following Section IV
regarding overhead (§IV-A), uni-directional (§IV-B) and bi-
directional (§IV-C) throughput, as well as one-sided latency
(§IV-D) and full round-trip-time using a ping-pong benchmark
(§IV-E). Conclusions are presented in Section V.

II. RELATED WORK

This section elaborates on existing “low-level” solu-
tions/libraries that can be used to leverage the performance
of InfiniBand hardware in Java applications. This does not in-
clude network or messaging stacks/subsystems implementing
higher-level primitives such as the Massage Passing Interface,
e.g. Java-based FastMPJ [22] providing a special transport to
use InfiniBand hardware. To the best of our knowledge, there
is no benchmark available to evaluate InfiniBand solutions in
Java.

ar
X

iv
:1

91
0.

02
24

5v
1

 [c
s.N

I]
 5

 O
ct

 2
01

9

CHAPTER 2. OBSERVATORY BENCHMARK

12

A. Socket-based Libraries

The socket-based libraries redirect the send and receive traf-
fic of socket-based applications transparently over InfiniBand
host channel adapters (HCAs) with or without kernel bypass
depending on the implementation. Thus, existing applications
do not have to be altered to benefit from improved performance
due to the lower latency hardware compared to commonly
used Gigabit Ethernet. The following three libraries are still
supported to date and evaluated in Section IV.

IP over InfiniBand (IPoIB) [27] is not a library but actually
a kernel driver that exposes the InfiniBand device as a standard
network interface (e.g. ib0) to the user space. Socket-based
applications do not have to be modified but use the specific
interface. However, the driver uses the kernel’s network stack
which requires context switching (kernel to user space) and
CPU resources when handling data. Naturally, this solution
trades performance for transparency.

libvma [10] is a library developed by Mellanox and in-
cluded in their OFED software package [11]. It is pre-loaded
to any socket-based application (using LD PRELOAD). It
enables full bypass of the kernel network-stack by redirecting
all socket-traffic over InfiniBand using unreliable datagram
with native C-verbs. Again, the existing application code does
not have to be modified to benefit from increased performance.

Java Sockets over RDMA (JSOR) [40] redirects all socket-
based data traffic in Java applications using native verbs, sim-
ilar to libvma. It uses two paths for implementing transparent
socket streams over RDMA devices. The ”fast data path” uses
native verbs to send and receive data and the ”slow control
path” manages RDMA connections. JSOR is developed by
IBM on only available in their proprietary J9 JVM.

The following libraries are also known in literature but are
not supported or maintained anymore.

The Sockets Direct Protocol (SDP) [23] redirects all
socket-based traffic of Java applications over RDMA with
kernel-bypass. It supported all available JDKs since Java 7
and was part of the OFED package until it was removed with
OFED version 3.5 [12].

Java Fast Sockets (JFS) [39] is an optimized Java socket
implementation for high speed interconnects. It avoids seri-
alization of primitive data arrays and reduces buffering and
buffer copying with shared memory communication as its main
focus. However, JFS relies on SDP (deprecated) for using
InfiniBand hardware.

Speedus [17] is a native library that optimizes data transfers
for applications especially on intra-host and inter-container
communication by bypassing the kernel’s network stack. It
is also advertised to support low-latency networking hardware
for inter-node communication. But, the latest available version
to date (2016-09-08) does not include such support.

B. Verb-based Libraries

Verbs are an abstract and low-level description of function-
ality for RDMA devices (e.g. InfiniBand) and how to program
them. Verbs define the control and data paths including RDMA
operations (write/read) as well as messaging (send/receive).

RDMA operations allow reading or writing directly from/to
the memory of the remote host without involving the CPU of
the remote. Messaging follows a more traditional approach by
providing a buffer with data to send and the remote providing
a buffer to receive the data to.

The programming model differs heavily from traditional
socket-based programming. Using different types of asyn-
chronous queues (send, receive, completion) as communica-
tion endpoints. The application uses different types of work-
requests for sending and receiving data. When handling data
to transfer, all communication with the HCA is executed
using these queues. The following libraries are verbs im-
plementations that allow the user to program the RDMA
capable hardware directly. The first two libraries presented are
evaluated in Section IV.

C-verbs are the native verbs implementation included in
the OFED package [13]. Using the Java Native Interface (JNI)
[30], this library can be utilized in Java applications as well in
order to create a custom network subsystem [22] [34]. Using
the Unsafe class [32] or Java DirectByteBuffers, memory can
be allocated off-heap to use it for sending and receiving data
with InfiniBand hardware (buffers must be registered with a
protection domain which pins the physical memory).

jVerbs [38] are a proprietary verbs implementation for Java
developed by IBM for their J9 JVM. Using a JNI layer,
the OFED C-verbs implementation is accessed. “Stateful verb
methods” (StatefulVerbsMethod Java objects) encapsulate the
verb to call including all parameters with parameter serializa-
tion to native space. Once the object is prepared, it can be
executed which actually calls the native verb. These objects
can be re-used for further calls with the same parameters to
avoid repeated serialization to native space and creating new
objects which would burden garbage collection.

Jdib [26] is a library wrapping native C-verbs function calls
and exposing them to Java using a JNI layer. According to the
authors, various methods, e.g. queue pair data exchange on
connection setup, are abstracted to create an easier to use API
for Java programmers. The fundamental operations to create
protection domains, create and setup queue pairs, as well as
posting data-to-send to queues and polling the completion
queue seem to wrap the native verbs and do not introduce
additional mechanisms like jVerbs’s stateful verb calls. We
were not able to obtain a copy of the library for evaluation.

III. A BENCHMARK FOR EVALUATING INFINIBAND
LIBRARIES FOR JAVA

To evaluate and compare the different libraries available, a
common set of benchmarks had to be implemented for two
programming languages (C and Java) and two programming
models (sockets and verbs). Existing solutions like the iperf [8]
tools for TCP/UDP or the ibperf tools included in the OFED
package [13] do not cover all libraries we want to evaluate
and do not implement all necessary benchmark types.

In this paper, we want to evaluate most of the available and
still maintained libraries (§II) in a fundamental point-to-point
setup regarding throughput and latency. Like other benchmarks

CHAPTER 2. OBSERVATORY BENCHMARK

13

(e.g. OSU [14]), we want to determine the maximum through-
put on uni-directional and bi-directional communication (e.g.
application pattern asynchronous “messaging”), as well as one-
sided latency and full round-trip-time (RTT) with a ping-
pong communication pattern (e.g. application pattern “request-
response”). These benchmarks allow us to determine the
fundamental performance of the presented solutions and are
commonly used to evaluate network hardware or applications
[8], [13], [14]. The evaluation of higher-level primitives, e.g.
collectives, and all-to-all communication is not possible with
fundamental low-level interfaces. These require a higher-level
networking stack with connection management and a complex
pipeline which is not the focus of this paper.

The Java InfiniBand Benchmark (JIB) provides implemen-
tations of the listed benchmarks for two verbs-based solutions
(C-verbs, jVerbs) and three socket-based solutions (IPoIB, lib-
vma, JSOR). It is open source and available at Github [9]. Each
benchmark run is configurable using command line parameters
such as the benchmark type (uni-/ bi-directional, one-sided
latency or ping-pong), the message size to send/receive and
the number of messages to send/receive. For convenience,
we refer to the payload size sent as messages independent
of how it is transferred (e.g. sockets, verbs RDMA or verbs
messaging). The context and all buffers are initialized before
the benchmark is started. Afterwards, the current instance
connects to the remote specified via command line parameters.
Once the connection is established, a dedicated thread is
started for sending data and another thread for receiving.
Today, we can expect this to run on a multicore system
with at least two physical cores to ensure that the send and
receive thread can be run simultaneously to avoid blocking one
another. The benchmark instance sends the specified number
of messages to the remote and measures the time it takes to
send the messages. Furthermore, we utilize the performance
counters of the InfiniBand HCA to determine the overhead
added by any software defined protocol which is especially
relevant for the socket-based libraries (§IV-A).

For socket-based libraries, the benchmark is implemented
in Java using TCP sockets with the ServerSocket, DataInput-
Stream and DataOutputStream classes. Sending and receiving
data is executed synchronously in a single loop on each thread.
No further adjustments are required because all libraries redi-
rect the normal send and receive calls of the socket libraries.
With IPoIB, we use the address of the exposed ib0 device.
The libvma library is pre-loaded to the benchmark using
LD PRELOAD. In order to use JSOR, we run the benchmark
in the J9-JVM and provide a configuration file specifying IP-
addresses whose traffic is redirected over the RDMA device.

The verbs-based benchmarks are implemented in C and
Java. Both implementations use RC queue pairs for RDMA
and message operations. UD queue pairs can also be used
for message operations but this option is currently not imple-
mented. On RDMA operations, we did not include immediate
data with a work request which would require a work comple-
tion on the remote (optional for signalling incoming RDMA
operations on the remote). When sending RDMA operations

to the HCA to determine the maximum throughput, we do not
repeatedly add one work request to the send queue, then poll
the completion queue waiting for that single work request to
complete. This pattern is commonly used in examples [16]
and even larger applications [15] but does not yield optimal
throughput because the queue of the HCA runs empty very
frequently. To keep the HCA busy, the send queue must be
kept filled at all times. Thus, we fill up the send queue
to the maximum size configured, first. Then, we poll the
completion queue and once at least one completion is available
and processed, we immediately fill the send queue again.
Naturally, this pattern cannot be applied to the ping-pong
latency benchmark executing a request-response pattern.

This data path is implemented in both, the C-verbs and
jVerbs implementation. The C implementation uses the verbs
implementation included in the OFED package and serves as a
reference for comparing the maximum possible performance.
To establish a remote connection, queue pair information is
exchanged using a TCP socket. The jVerbs implementation
has to implement the operations of the data path using the
previously described stateful verbs methods. Thus, the sending
of data on the throughput benchmark had to be altered slightly.
A single stateful verb call for posting work requests to the send
queue always posts 10 elements. Hence, new work requests are
added to the send queue once at least 10 work completions
were polled from the completion queue. We create all stateful
verbs calls before the benchmark and re-use them to avoid
performance penalties. On connection creation, queue pair
information is exchanged with the API provided by jVerbs
which is using the RDMA connection manager.

IV. EVALUATION

In this Section, we present the results of the evaluation
of the socket-based libraries/implementations IPoIB, libvma
and JSOR and the verbs-based libraries C-verbs and jVerbs
using our benchmark suite (§III). We analyze and discuss basic
performance metrics regarding throughput and latency using
typical benchmarks with a two node setup with 56 Gbit/s
and 100 Gbit/s interconnects. A summary of the benchmarks
executed with each library/implementation is given in Table I.
Due to space constraints, we limit the discussion of the results
to selected conspicuities of the plotted data.

Library/Benchmark OV Uni-dir Bi-dir Lat PingPong
C-verbs rdmaw x x x
C-verbs rdmar x x x
C-verbs msg x x x x x
jVerbs rdmaw x x x
jVerbs rdmar x x x
jVerbs msg x x x x x
IPoIB x x x x x
JSOR x x error x x
libvma x x x x x

TABLE I: Overview of libraries evaluated with benchmarks
available. Abbreviations: OV = Overhead, rdmaw = RDMA
write, rdmar = RDMA read, msg = messaging verbs

CHAPTER 2. OBSERVATORY BENCHMARK

14

find a suitable solution for their applications. The benchmark
is open source and can be extended to evaluate further li-
braries. We evaluate the available solutions on two hardware
configurations with 56 Gbit/s and 100 Gbit/s InfiniBand NICs.
As expected, the socket-based solutions provide a transparent
solution requiring low effort to get additional performance
from InfiniBand hardware for existing socket-based software
without requiring any changes. But, this comes at the price
that the full potential of the hardware cannot be exploited,
especially on bi-directional communication. Compared to the
performance of Gigabit Ethernet, latency is at least halved on
56 Gbit/s hardware and can even be as low as 2-5 µs for
small messages. Regarding throughput, one can get an at least
ten-fold increase and it is even possible to saturate 56 Gbit/s
hardware on uni-directional communication.

To leverage the true potential of the hardware, the verbs-
based solutions are a must. Overall, jVerbs is performing
very well and brings nearly native performance on RDMA
operations to the Java space with a few minor performance dif-
ferences. But, the inexplicable limited performance of jVerbs
messaging verbs does not allow any meaningful usage in
applications. With C-verbs, the full potential of the hardware
can be exploited on all communication methods. Thus, one has
to decide whether to stay entirely in Java space but having to
rely on the proprietary JV9 JVM or having the freedom to
write a custom network subsystem using C-verbs with JNI
which is more time consuming and challenging.

Our personal recommendations regarding the evaluation: we
consider libvma a good solution to benefit from some of the
performance of InfiniBand hardware without having to invest
a significant amount of time and work and not depending on
a proprietary JVM. But, we think that it is worth spending
additional work and time on implementing a custom network
subsystem based on C-verbs to leverage the true performance
of InfiniBand hardware if required for a target application.

REFERENCES

[1] Apache ignite. https://ignite.apache.org/.
[2] Cassandra. https://cassandra.apache.org/.
[3] Gemfire. https://pivotal.io/pivotal-gemfire.
[4] Hazelcast. https://hazelcast.com.
[5] Ibm. rdma communication appears to hang. https://www.ibm.com/

support/knowledgecenter/en/SSYKE2 7.0.0/com.ibm.java.lnx.70.doc/
diag/problem determination/rdma jsor hang.html.

[6] Ibm. rdma connection reset exceptions. https://www.ibm.com/support/
knowledgecenter/en/SSYKE2 7.0.0/com.ibm.java.lnx.70.doc/diag/
problem determination/rdma jsor connection reset.html.

[7] Infinispan. http://infinispan.org/.
[8] iperf - the ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/.
[9] Jib-benchmarks github. https://github.com/hhu-bsinfo/jib-benchmarks/.

[10] libvma github. https://github.com/Mellanox/libvma/.
[11] Mellanox. https://www.mellanox.com/.
[12] Ofed 3.5 release notes. https://downloads.openfabrics.org/OFED/

release notes/OFED 3.5 release notes.
[13] Openfabrics alliance. https://openfabrics.org/.
[14] Osu micro-benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.
[15] Ramcloud source code. https://github.com/PlatformLab/RAMCloud.
[16] Rdmamojo. blog by dotan barak. https://www.rdmamojo.com.
[17] Speedus. http://speedus.torusware.com/index.html.
[18] Top500 list.
[19] Infiniband architecture specification volume 1, release 1.3. http://www.

infinibandta.org/, 2015.

[20] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Work-
load analysis of a large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’12,
pages 53–64, 2012.

[21] P. Desikan, N. Pathak, J. Srivastava, and V. Kumar. Incremental page
rank computation on evolving graphs. In Special Interest Tracks and
Posters of the 14th International Conference on World Wide Web, WWW
’05, pages 1094–1095, 2005.

[22] R. R. Exposito, S. Ramos, G. L. Taboada, J. Touriño, and R. Doallo.
Fastmpj: a scalable and efficient java message-passing library. Cluster
Computing, 17:1031–1050, Sept. 2014.

[23] D. Goldenberg, T. Dar, and G. Shainer. Architecture and implementation
of sockets direct protocol in windows. 2006 IEEE International
Conference on Cluster Computing, pages 1–9, 2006.

[24] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion
pages. In Special Interest Tracks and Posters of the 14th International
Conference on World Wide Web, WWW ’05, pages 902–903, 2005.

[25] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan. The rise of “big data” on cloud computing: Review and
open research issues. Information Systems, 47:98 – 115, 2015.

[26] W. Huang, H. Zhang, J. He, J. Han, and L. Zhang. Jdib: Java applications
interface to unshackle the communication capabilities of infiniband
networks. In Proceedings of the 4th Annual Symposium on Cloud
Computing, pages 596–601, 10 2007.

[27] V. Kashyap. Ip over infiniband (ipoib) architecture. https://www.ietf.
org/rfc/rfc4392.txt, April 2006.

[28] J. Kreps, N. Narkhede, and J. Rao. Kafka: a distributed messaging
system for log processing. In NetDB 2011: 6th Workshop on Networking
meetsDatabases, 2011.

[29] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social
network or a news media? In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, pages 591–600, 2010.

[30] S. Liang. Java Native Interface: Programmer’s Guide and Reference.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[31] X. Liu. Entity centric information retrieval. SIGIR Forum, 50:92–92,
June 2016.

[32] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and
N. Nystrom. Use at your own risk: The java unsafe api in the wild.
SIGPLAN Not., 50:695–710, Oct. 2015.

[33] S. Mehta and V. Mehta. Hadoop ecosystem: An introduction. In
International Journal of Science and Research (IJSR), volume 5, June
2016.

[34] S. Nothaas, K. Beineke, and M. Schoettner. Ibdxnet: Leveraging in-
finiband in highly concurrent java applications. CoRR, abs/1812.01963,
2018.

[35] Oracle. Oracle coherence. https://www.oracle.com/technetwork/
middleware/coherence/overview/index.html.

[36] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-
66, November 1999. Previous number = SIDL-WP-1999-0120.

[37] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov,
M. R. Shirts, J. C. Smith, P. M. sson, D. van der Spoel, B. Hess, and
E. Lindahl. Gromacs 4.5: a high-throughput and highly parallel open
source molecular simulation toolkit. Bioinformatics, 29:845–854, 2013.

[38] P. Stuedi, B. Metzler, and A. Trivedi. jverbs: Ultra-low latency for data
center applications. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SOCC ’13, pages 10:1–10:14. ACM, 2013.

[39] G. L. Taboada, J. Touriño, and R. Doallo. Java fast sockets: Enabling
high-speed java communications on high performance clusters. Comput.
Commun., 31:4049–4059, Nov. 2008.

[40] S. Thirugnanapandi, S. Kodali, N. Richards, T. Ellison, X. Meng,
and I. Poddar. Transparent network acceleration for java-based
workloads in the cloud. https://www.ibm.com/developerworks/library/
j-transparentaccel/, January 2014.

[41] X. Wu, X. Zhu, G. Q. Wu, and W. Ding. Data mining with big data.
IEEE Transactions on Knowledge and Data Engineering, 26:97–107,
Jan. 2014.

[42] P. Zhao, Y. Li, H. Xie, Z. Wu, Y. Xu, and J. C. Lui. Measuring and
maximizing influence via random walk in social activity networks. pages
323–338, Mar. 2017.

CHAPTER 2. OBSERVATORY BENCHMARK

21

Neutrino: Efficient InfiniBand Access
for Java Applications

Filip Krakowski
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

filip.krakowski@hhu.de

Fabian Ruhland
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

fabian.ruhland@hhu.de

Michael Schöttner
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—Fast networks like InfiniBand are important for
large-scale applications and big data analytics. Current Infini-
Band hardware offers bandwidths of up to 200 Gbit/s with
latencies of less than two microseconds. While it is mainly used in
high performance computing, there are also some applications in
the field of big data analytics. In addition, some cloud providers
are offering instances equipped with InfiniBand hardware. Many
big data applications and frameworks are written using the
Java programming language, but the Java Development Kit
does not provide native support for InfiniBand. To this end we
propose neutrino, a network library providing comfortable and
efficient access to InfiniBand hardware in Java as well as epoll
based multithreaded connection management. Neutrino supports
InfiniBand message passing as well as remote direct memory
access, is implemented using the Java Native Interface, and
can be used with any Java Virtual Machine. It also provides
access to native C structures via a specially developed proxy
system, which in turn enables the developer to leverage the
InfiniBand hardware’s full functionality. Our experiments show
that efficient access to InfiniBand hardware from within a Java
Virtual Machine is possible while fully utilizing the available
bandwidth.

Index Terms—InfiniBand, Java Native Interface, Remote Di-
rect Memory Access

I. INTRODUCTION

RDMA capable devices are providing high throughput
and low latency to HPC applications for several years [1].
With todays cloud providers offering instances equipped with
InfiniBand for rent, such hardware becomes available to a
wider range of users without the high costs of buying and
maintaining it [2]. Many big data systems are written in Java
[3], [4] benefitting from the strong type system, the rich
libraries and the automatic garbage collection.

Distributed Java applications are limited to Ethernet-based
socket-interfaces (standard ServerSocket or NIO) on the com-
monly used JVMs OpenJDK and Oracle. These JVMs do
not provide support for low-latency InfiniBand hardware. But,
there are third-party solutions like for example DiSNI [5],
Ibdxnet [6], and jverbs [7] available each with pros and cons.

Ibdxnet is an InfiniBand message passing transport we
developed in the past for DXNet [8] both for distributed and
parallel Java applications. While our previous efforts are based
on transparent serialization of messaging objects we are now
developing the successor neutrino aiming at providing RDMA

for native data which is managed by Java applications and
can be accessed efficiently and easily. The latter is realized
by automatically generated proxy objects which are linked to
native C structs. This allows us to provide the full functionality
of the ibverbs library within the Java space and consequently
implement all logic that previously had to be implemented in
native code in Java. Similarly, these capabilities allow us to
provide an application library for developing RDMA-enabled
Java applications.

II. RELATED WORK

In the past, several attempts have been made to use the
ibverbs library from Java, such as jVerbs and the Direct Storage
and Networking Interface (DiSNI) library developed at the
IBM Research Lab [5], [7]. jVerbs is a proprietary library,
while DiSNI is an open source solution based on jVerbs
[9]. The authors also emphasize that native method calls are
expensive and therefore they need a solution that minimizes
these costs. To this end, the authors use a procedure which they
call "Stateful Verb Calls". The core function of this procedure
is to serialize operations allocated in Java space into the format
expected by ibverbs and to cache them for further calls. After
this step it is possible to execute the operation as often as
desired by passing the serialized state to the corresponding
ibverbs method using the Java Native Interface.

From our point of view, this approach has some disadvan-
tages. First, serialization logic as well as the memory layout
of the native structures for each operation must be laboriously
created by hand in Java. Second, ordinary Java objects are
serialized into a format understandable to ibverbs, resulting
in additional copies of the required structures. In addition, a
memory layout must also be adapted when changes are made
within the native library, otherwise it can lead to write or read
accesses at incorrect memory offsets and thus to undefined
behavior.

Jdib [10] is another library wrapping native ibverbs function
calls and exposing them to Java using a JNI layer. According
to the authors, various methods, e.g. queue pair data exchange
on connection setup, are abstracted to create an easier to
use API for Java programmers. The fundamental operations
to create protection domains, create and setup queue pairs,
as well as posting data-to-send to queues and polling the

CHAPTER 2. OBSERVATORY BENCHMARK

22

@LinkNative("ibv_ah")
public	class	AddressHandle	extends	Struct	{
			private	final	Context	context	=	referenceField("context");
			private	final	ProtectionDomain	protectionDomain	=	referenceField("pd");
			private	final	NativeInteger	handle	=	integerField("handle");
}

struct	ibv_ah	{
			struct	ibv_context	*context;
			struct	ibv_pd	*pd;
			uint32_t	handle;
};

Java C

Fig. 1. Example mapping between automatically generated Java proxy object and native C struct.

completion queue seem to wrap the native verbs and do not
introduce additional mechanisms like jVerbs’s stateful verb
calls. Unfortunately, we were not able to obtain a copy of
the library for further investigation.

III. EFFICIENT STRUCTURED ACCESS TO IBVERBS

The key objectives of neutrino include efficient access to
the functionality provided by ibverbs on any JVM. For this
reason, the idea of adapting the source code of one specific
JVM was not an option and we have developed a universally
applicable solution.

The approach we propose for a structured access to ibverbs
is a concept that allows programmers to link native structures
with automatically generated proxy objects in Java space and
pass them as efficiently as possible through the Java Native
Interface (JNI).

Interfacing with native methods from Java space is known to
be costly and can be measured on a per invocation basis [11].
To keep these costs as low as possible, we aim at minimizing
the number of border crossing calls and keep them as simple
as possible. This is achieved by passing only primitive data
types to the native part of neutrino. For this purpose, we
use automatically generated Java proxy objects in order to
write and read memory outside the Java managed heap in a
structured way. Since native memory is not managed by the
JVM, it is safe to share it with native code without having to
fear object movements by the garbage collector.

Proxy Object

Java

StructUnsafe API

virtual address

C

native memory

Fig. 2. Components of the structured native memory access.

As shown in Figure 2, each proxy object encapsulates the
virtual address of the corresponding native structure. This
approach allows direct access to native structures using Java’s
Unsafe class and its intrinsic methods [12]. Furthermore, our
proxy objects allow selective access to individual fields of
native structures. Special access objects for various native data
types are available to implement this property.

Figure 1 shows an example of a generated Java proxy object,
which includes references to two other generated proxy objects
(source code is not shown) and one access object for an integer
field. As can also be seen, the individual fields of the proxy
object use the names of the corresponding fields within the
native structure and the enclosing class has an annotation
containing the native structure’s name. Our system uses this
information to automatically create a mapping between each
pair of fields. To achieve this, the offsets of the individual
fields within the native structure must be known at runtime.

struct	MemberInfo	{
			char	name[32];
			int	offset;
};

struct	StructInfo	{
			int	structSize;
			int	memberCount;
			MemberInfo	*memberInfos;
};

Fig. 3. Metadata structs used to map proxy object fields onto native C struct
fields.

Our solution stores the metadata shown in Figure 3 in the
native code and makes it available to the Java space through
the JNI. This allows us to lookup and cache the names and
offsets of each field of a native structure. More importantly, the
metadata is stored in a form in which each field query can be
completed in a constant time. All metadata is automatically
generated in native code using macro functions that extract
the required information. This allows proxy objects to easily
retrieve the storage layout of their associated native structures
and configure their access objects accordingly.

memberInfosstructSize memberCount

20 3

name offset

context 0

pd 8

handle 16

Fig. 4. Generated metadata for the ibv_ah C struct.

Figure 4 shows an exemplary setup of the metadata for the
native structure ibv_ah shown in Figure 1. We need to know
the size of the structure (in this case 20 bytes) in advance in
order to allocate correspondingly large memory blocks in Java
space. Similarly, we need to know the number of fields (in

CHAPTER 2. OBSERVATORY BENCHMARK

23

this case 3) contained within the structure so that the list of
metadata generated for it can be traversed from Java space.

Because both data structures in Java and native space share
the same memory layout, we can safely and efficiently access
the Java space from native code. This is done by passing the
pointer encapsulated in a proxy object to a native method,
which in turn is now able to read and write to the referenced
memory in a structured way using a typecast. Since the
referenced memory exists on both sides, changes can be seen
immediately without copying data.

We use this concept for automatically generating Java
classes for all native structures contained in ibverbs. For this
purpose we have implemented a custom code generator, which
processes header files of native libraries and then creates the
corresponding Java classes. In this way, we are able to use
the full functionality of the library from within the Java space
and consequently implement all logic that previously had to
be implemented in native code in Java. Since the memory
addresses of the created objects do not change at runtime, it
is also possible for us to cache the created proxy objects in
Java space and keep them ready for future access. Thus, no
unnecessary instances of proxy objects are created and the
garbage collector is not burdened.

IV. NEUTRINO’S ARCHITECTURE

Developing an application using ibverbs and our JNI access
layer alone requires considerable effort and careful program-
ming. This is particularly the case for applications aiming at
high performance. In this section we propose neutrino, a net-
work library aiming at simplifying the development of RDMA-
enabled applications in Java. The provided functionalities
include connection management, concurrent messaging and
operations on remote storage. The core idea behind neutrino is
to use small messages to control the system and remote direct
memory accesses to transfer large amounts of data.

A. Connection management

Within the ibverbs library connections are abstracted in
the form of queue pairs. To manually establish a reliable
connection between two queue pairs, certain information must
be exchanged in advance. This includes the InfiniBand device
port’s local id and number and the local queue pair’s number.
Using this information the queue pairs can be configured
and transitioned into a state in which they can be used
for sending and receiving messages on both sides. Neutrino
handles this procedure transparently by using a TCP connec-
tion for the exchange of all necessary information. In this
way, the connection between two endpoints is established by
using an IP address and a port. The RDMA Communica-
tion Manager library [13] offers similar functionality and is
therefore also supported for connection establishment. While
being supported, we decided against its usage, because it sets
some parameters independently during the connection setup.
Configuration from the application side is therefore limited.

B. Threading model

To make optimal use of the available resources, neutrino
makes use of a thread pool and works event-based in a
non-blocking fashion. Besides this, as seen in Figure 5 the
processing of messages to be sent and received is handled
by separate threads which are created based on the available
number of CPU cores.

Buffer Pool

Buffer Pool

Send Thread #0

Send Thread #3

Receive Ring
epoll

Receive Ring

Receive Thread #0

Receive Thread #3

Connection #0

Connection #3

epoll

epoll

epoll

add

add

add

add

Fig. 5. Adding individual connections to sender and receiver threads.

Each connection is assigned to exactly one receive and one
send thread in a round robin fashion, which perform the pro-
cessing of the outgoing and incoming messages from this point
on. This architectural design decision offers the opportunity
to better configure individual endpoints in the network based
on their tasks. For example, an endpoint that is intended to
collect data can specify a greater weighting when creating
receive threads and thus process more received messages in
parallel. Similarly, an endpoint that only distributes data can
use more sender threads than receiver threads and therefore
process more outgoing messages in a concurrent fashion.

Queue
Pair

Completion
Queue

Producer

poll post

Queue
Pair

Completion
Channel

Producer

epoll_wait post

Fig. 6. Continuous polling of the completion queue (left) and notification
based waiting on completions (right).

The execution of operations such as accessing remote mem-
ory must be triggered within the underlying ibverbs library by
placing so-called work requests on the corresponding queue

CHAPTER 2. OBSERVATORY BENCHMARK

24

pair. Each completed work request optionally generates a work
completion, which the application can query to find out the
request’s status. For this purpose, each queue pair is assigned a
completion queue for sent and received messages. Whenever a
pending work request completes the network controller places
a work completion on the corresponding completion queue.
The application is then able to query these work completions
and use their metadata to call up the appropriate processing
function. By default, the query of completed requests is based
on polling. Since continuous polling of completion queues
results in high CPU usage while potentially not processing any
work completions, ibverbs provides also completion channels.
These contain a file descriptor which can be used with existing
IO multiplexing approaches like select, poll and epoll
as illustrated in Figure 6.

We decided to use epoll because of its good scalability with
many connections. Each thread within the system receives
its own epoll file descriptor, which is used to monitor the
connections assigned to it for corresponding events. In this
way it is possible to distribute connections to different threads
for load balancing purposes. At the same time we avoid
synchronization issues, because the data structures for sending
and receiving messages of a connection are accessed only by
a single thread. This also minimizes the necessary number
of atomic operations on data structures and allows to avoid
context switches.

C. Send request processing

InfiniBand offers two possibilities to exchange data between
two network participants. On the one hand, it is possible to
send data as messages, which must be actively processed by
the other side. Alternatively, it is also possible to read or write
remote memory using RDMA operations without including
the CPU of the other node. A pre-requisite for both modes
is the registration of so-called memory regions, which can
then be used for the above operations. This is necessary since
the InfiniBand hardware must know the physical addresses of
the memory to be used. Furthermore, the mapping of virtual
to physical memory addresses within the registered memory
must not change during the runtime of the application. The
corresponding pages are therefore additionally pinned by the
operating system.

Neutrino aims at supporting both modes and therefore needs
an abstraction layer that allows applications to easily send
messages and work with remote memory without the need
to perform the mentioned steps. For this purpose, certain data
structures are created within connections as well as within
the send threads, which enable easier handling of registered
memory and facilitate the creation of work requests.

Each send thread allocates a configurable contiguous block
of memory at the beginning of its execution. This memory
block is registered with the InfiniBand hardware and then
divided into smaller slices. The default size for each slice
is the maximum MTU supported by the network card. Each
slice is assigned a unique identifier and put into a send buffer
array of memory blocks using the identifier as the index. A

work request allows setting user-defined data for recognizing
the corresponding work completion only within the id field,
which is a 64 bit number. We therefore use this id field to
store the index of the buffer belonging to the request. This
later helps to release buffers processed or sent by the network
controller. Finally, each slice is placed in a bounded multi-
producer multi-consumer queue[14], the send buffer queue,
which is used for borrowing memory blocks.

Send	Ring
SEND READ SEND WRITE

tail

0

1 4

Send	Buffer	Queue

process

notify

Queue	PairCompletion	Channel

epoll_wait

SEND

head

Application Send	Thread

release

post

append

borrow
available borrowed

free occupied

Send	Buffer	Array

1 2 3 4 5 6 7 8 9

3 5 7 6

Fig. 7. Processing of outgoing operations using a ring buffer for requests and
a queue of buffers for writing messages.

As shown in Figure 7, the send buffer array contains a fixed
number of memory blocks ready for application requests. Each
buffer may be available (white), and thus enqueued within the
send buffer queue for borrowing, or borrowed (grey) and in the
process of being accessed by the InfiniBand hardware. Sorting
within the queue (1,4,3,...) can be arbitrary, as we cannot
guarantee in which order an application will pass its borrowed
buffers to a send thread for processing. However, this is not
a problem because the buffers can be used in any order. An
application borrows a buffer by polling the send buffer queue’s
next element.

We decided to register one memory region per thread instead
of one memory region per connection as registering many
scattered memory regions consumes additional resources of
the InfiniBand hardware. The hardware needs to copy the
registered memory regions using direct memory access. By
using many scattered memory regions the hardware’s access
pattern is unpredictable, which can seriously affect perfor-
mance. Also, caching within the hardware benefits of less
memory regions, because there are only a few resources to be
cached. In addition, we also align memory areas so that the
network controller may transfer them using as few as possible
direct memory accesses. Using our interface for accessing
native memory, we are also able to wrap the buffers borrowed
from the send thread with the help of a proxy object and
thus write directly and in a structured way into the memory
intended for sending. This way copies of the messages or data
to be sent within the Java managed heap are avoided.

CHAPTER 2. OBSERVATORY BENCHMARK

25

The network controller accesses borrowed buffers using
information (virtual memory address, size and access key)
contained within work requests. These work requests are
stored in a modified version of Agrona’s ring buffer[15] by
the application. We call this ring buffer send ring since it does
only contain work requests. Furthermore, each connection has
its own send ring. Our modification to the original version was
needed as the standard implementation only allows consuming
messages or events written to the ring buffer isolated from each
other. Since ibverbs offers the possibility to post requests in
batches by linking work requests together, we needed a way
to access successive requests within the send ring in order to
chain them. As a first step, the application reserves an area
large enough for storing its work request. This is done by
atomically incrementing the send ring’s tail index. Afterwards
a work request is written directly into the reserved area. In
the case of a message to be sent, this work request contains a
reference to the borrowed buffer so that it can be released after
processing. Finally, the written work request is committed to
the send ring so that the send thread can consume it.

The send thread is responsible for posting pending work
requests within the connection’s send ring to the queue pair
associated with the connection the send ring belongs to. To do
this, the send thread first identifies and extracts the readable
area of the send ring. Afterwards the work requests contained
within the extracted area are chained together so that they can
be transferred to the hardware in one batch. After the work
requests have been transmitted, the send thread increments
the head index of the send ring, freeing the extracted area
for new work requests. The work requests can be released
immediately after they are posted because ibverbs copies them
into an internal representation for the hardware.

The other task of the send thread is the notification of
completed work requests. For this purpose, the completion
channel belonging to the connection is monitored using the
epoll file descriptor of the send thread. As soon as a work
completion is generated for a connection, the corresponding
send thread is woken up. At this point it starts polling the
completion queue of the associated connection and notifies the
application of each completed work request. After processing
is complete, the send thread waits for further notifications
using the epoll_wait call.

D. Receive request processing

Just like the execution of outgoing requests, the receipt
of messages requires the creation of work requests. Within
these work requests the registered memory area in which
data is received is referenced. It is important to provide large
enough buffers so that the InfiniBand hardware is able to
process incoming messages. For example, it is not sufficient
to post several small buffers to receive one large message,
because the hardware consumes exactly one work request for
each incoming message. Likewise, work requests must also
be provided to the hardware in order to receive messages,
otherwise the network controller does not know in which
memory areas it should place the incoming data. In case no

work request is provided or the memory region is not large
enough, the network controller of the receiving side sends a so-
called RNR (receiver not ready) NACK, whereupon the sender
waits a certain time until the message is transmitted again. This
can lead to a severe drop in performance.

RECEIVE RECEIVE RECEIVE RECEIVE

Receive	Ring

current

BUFFER BUFFER BUFFER BUFFER

Receive	Thread

circular
link

Shared	Receive	Queue

post

Completion	Channel

epoll_wait

handle

RECEIVE

BUFFER

process

Application

Receive	Buffers

usable posted

Fig. 8. Processing of incoming messages using a circular linked list of pre-
allocated work requests.

Similar to the concept of the send ring owned by each
connection, the receive thread creates a data structure, which
bundles work requests and their corresponding buffers for the
received data. We call this data structure the receive ring
(see Figure 8). Within the receive ring, all work requests
are connected to their successor and the last to the first.
These preallocated work requests are later used for receiving
messages.

In normal mode, work requests for receiving messages
as well as for sending messages are posted to the queue
pair assigned to the connection. To avoid having to fill each
queue pair individually with new work requests for receiving
messages, ibverbs provides the shared receive queue. It can be
assigned to several queue pairs, whereupon these can consume
the work requests on it collectively when receiving messages.
This helps to reduce the total number of work requests
on the recipient side. Each receive thread creates its own
shared receive queue, which is associated with its assigned
connections. Since a connection is associated with exactly one
receive thread, it can therefore fill the shared receive queue
assigned to it when it receives work completions.

The handling of incoming messages is implemented in a
way in which the shared receive queue is refilled as quickly
as possible, because missing work requests can lead to the
before-mentioned loss of performance. Similar to the send
thread, the receive thread first waits for new notifications
regarding new work completions via the epoll_wait call.
After a notification is received, the work completions on the
completion queue belonging to the connection are polled but
not yet processed. Immediately after polling, the number of
existing work completions is determined and the same number
of work requests are refilled in the shared receive queue.

CHAPTER 2. OBSERVATORY BENCHMARK

26

write accesses can thus also be used to exchange large amounts
of data between two nodes.

VI. CONCLUSION

The Java Development Kit and the Java Virtual Machine do
not yet offer an official solution to use InfiniBand hardware
for the implementation of network applications. In this paper
we propose neutrino, a system aiming at providing efficient
means for accessing InfiniBand hardware from Java space
through usage of the Java Native Interface as well as building
an abstraction layer above the native ibverbs library. This
system works in a multithreaded non-blocking fashion using
thread pools for performing work and grants users access to
messaging and remote direct memory access functionalities
through a simple programming interface. Examples for the
usage of our system can be found in the public GitHub
repository.[16]. Our experiments show that neutrino is well
suited for use with InfiniBand hardware and reaches saturation
in case of network throughput of remote memory accesses.
When sending small messages we can also show that neutrino
benefits from the multithreading architecture and with its
help reaches up to about 14 million messages per second on
average. In summary, it can be said that the use of InfiniBand
hardware within the Java Virtual Machine is quite possible
and practical in terms of performance and usability as shown
within our experiments and examples.

VII. OUTLOOK

In our future work we plan on focusing neutrino on the use
with Apache Arrow [17], which provides an platform inde-
pendent columnar memory format for representing in-memory
data sets. Since each column’s data is stored in contiguous
memory areas, they are very well suited for remote memory
accesses. In the long term, we hope to enable integration with
Apache Flight [18], which is designed to transport Arrow in-
memory data. The core idea is to implement control messages
for looking up data locations via messaging and the retrieval
of the actual data via remote memory accesses. We assume
that applications which transfer and process large amounts of
data should benefit greatly from these efforts.

REFERENCES

[1] TOP500 Supercomputer Sites. [Online]. Available:
https://top500.org (visited on 04/15/2020).

[2] I. Hashem, I. Yaqoob, N. Anuar, S. Mokhtar, A. Gani,
and S. Khan, “The rise of “Big Data” on cloud com-
puting: Review and open research issues,” Information
Systems, vol. 47, pp. 98–115, Jul. 2014. DOI: 10.1016/
j.is.2014.07.006.

[3] S. Mehta and V. S. Mehta, “Hadoop Ecosystem : An
Introduction,” 2016.

[4] J. Kreps, “Kafka : a Distributed Messaging System for
Log Processing,” 2011.

[5] P. Stuedi. “Direct Storage and Networking Interface
(DiSNI).” (2018), [Online]. Available: https://developer.
ibm.com/open/projects/direct-storage-and-networking-
interface-disni (visited on 04/15/2020).

[6] S. Nothaas, K. Beineke, and M. Schöttner, “Leveraging
InfiniBand for Highly Concurrent Messaging in Java
Applications,” 2019 18th International Symposium on
Parallel and Distributed Computing (ISPDC), pp. 74–
83, 2019.

[7] P. Stuedi, B. Metzler, and A. Trivedi, “JVerbs: Ultra-
Low Latency for Data Center Applications,” in Proceed-
ings of the 4th Annual Symposium on Cloud Computing,
ser. SOCC ’13, Santa Clara, California: Association for
Computing Machinery, 2013, ISBN: 9781450324281.
DOI: 10.1145/2523616.2523631.

[8] K. Beineke, S. Nothaas, and M. Schöttner, “Efficient
Messaging for Java Applications Running in Data Cen-
ters,” 2018 18th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID),
pp. 589–598, 2018.

[9] DiSNI GitHub repository. [Online]. Available: https://
github.com/zrlio/disni (visited on 04/15/2020).

[10] W. Huang, H. Zhang, J. He, J. Han, and L. Zhang,
“Jdib: Java Applications Interface to Unshackle the
Communication Capabilities of InfiniBand Networks,”
in 2007 IFIP International Conference on Network
and Parallel Computing Workshops (NPC 2007), 2007,
pp. 596–601.

[11] D. Kurzyniec and V. Sunderam, “Efficient cooperation
between Java and native codes–JNI performance bench-
mark,” Jan. 2001.

[12] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza,
M. Hauswirth, and N. Nystrom, “Use at Your Own
Risk: The Java Unsafe API in the Wild,” SIGPLAN
Not., vol. 50, no. 10, pp. 695–710, Oct. 2015, ISSN:
0362-1340. DOI: 10.1145/2858965.2814313.

[13] RDMA communication manager. [Online]. Available:
https://www.ibm.com/support/knowledgecenter/ssw_
aix_72/communicationtechref/rdma_cm.html (visited
on 04/15/2020).

[14] Agrona ManyToManyConcurrentArrayQueue. [Online].
Available: https://github.com/real- logic/agrona/blob/
master / agrona / src /main / java /org / agrona / concurrent /
ManyToManyConcurrentArrayQueue . java (visited on
04/16/2020).

[15] Agrona RingBuffer. [Online]. Available: https://github.
com/real- logic/agrona/blob/master /agrona/src/main/
java/org/agrona/concurrent/ringbuffer/RingBuffer.java
(visited on 04/16/2020).

[16] Neutrino github. [Online]. Available: https://github.com/
hhu-bsinfo/neutrino (visited on 06/21/2020).

[17] Apache Arrow Explained by Dremio. [Online]. Avail-
able: https://www.dremio.com/apache-arrow-explained
(visited on 04/19/2020).

[18] W. McKinney. “Introducing apache arrow flight: A
framework for fast data transport.” (2019), [Online].
Available: https://arrow.apache.org/blog/2019/10/13/
introducing-arrow-flight (visited on 04/19/2020).

CHAPTER 2. OBSERVATORY BENCHMARK

29

Performance analysis and evaluation of Java-based
InfiniBand Solutions

Fabian Ruhland
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

fabian.ruhland@hhu.de

Filip Krakowski
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

filip.krakowski@hhu.de

Michael Schöttner
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—Low-latency network interconnects, such as Infini-
Band, are widely used in HPC centers and are becoming available
in public cloud offerings, too. For MPI applications accessing
InfiniBand is transparent, but many big-data applications are
written in Java, which does not provide direct access to Infini-
Band networks, but relies on thid-party libraries. In this paper,
we present Observatory, a benchmark for evaluating low-level
libraries, providing InfiniBand access for Java applications. Ob-
servatory can be used for evaluating and comparing socket- and
verbs-based libraries regarding throughput and latency. With
transparency often traded for performance and vice versa, the
benchmark helps developers with studying the pros and cons of
each solution and supports them in their decision which solution
is more suitable for their existing or new use-case. We also give
an overview of existing and maintained InfiniBand libraries for
Java and evaluate them with the proposed benchmark.

Index Terms—High-speed Networks, InfiniBand, Remote Di-
rect Memory Access

I. INTRODUCTION

RDMA capable devices have been providing high through-
put and low-latency to HPC applications for several years
[13]. With todays cloud providers offering instances equipped
with InfiniBand (IB) for rent, such hardware is available to a
wider range of users without the high costs of buying and
maintaining it [18]. Many big data frameworks these days
are written in Java, e.g. batch processing frameworks [23],
databases [1] or backend storages/caches [5].

These applications benefit from the rich environment Java
offers, including automatic garbage collection and multi-
threading utilities. But, the choices for inter-node commu-
nication on distributed applications are limited to Ethernet-
based socket-interfaces (standard ServerSocket or NIO) on the
commonly used JVMs OpenJDK and Oracle. They do not
provide support for low-latency IB hardware. However, there
are external solutions available each with pros and cons.

This raises questions if a developer wants to choose a
suitable solution for a new use-case or an existing application:
What’s the throughput/latency on small/large payload sizes?
Is the performance sufficient when trading it for transparency
requiring less to no changes to the existing code? Is it worth
considering developing a custom solution based on the native
API to gain maximum control with chances to harvest the
performance available by the hardware?

In this paper, we address these questions by proposing
the Observatory benchmark to evaluate existing libraries to
leverage the performance of IB hardware in Java applications.
Existing benchmark tools like iperf [6] for TCP/UDP or the
ibperf included in the OFED package [11] do not support
Java libraries. Observatory has a modular design and currently
supports implementations to evaluate four verbs-based libraries
(ibverbs, jVerbs, DiSNI and neutrino), as well as socket-based
implementations, of which we evaluated IP over IB, libvma
and JSOR. This paper focuses on the fundamental performance
metrics of low-level interfaces and not on higher-level network
subsystems with connection management, complex pipelines
and messaging primitives like for example provided by MPI.
The proposed benchmark is used to evaluate the libraries
mentioned above with 56 Gbit/s IB NICs. The contributions
of this paper are:

• An overview of existing Java IB solutions
• The design and implementation of Observatory, an exten-

sible and open-source benchmark to evaluate Java-based
IB solutions

• Evaluation results using Observatory
The paper is structured as follows: Section II discusses

related work, Section III presents existing IB solutions with
socket-based (§III-A) and verbs-based (§III-B) libraries. Sec-
tion IV presents the Observatory benchmark, followed by Sec-
tion V with the evaluation results. Conclusions are presented
in Section VI.

II. RELATED WORK

Java networking performance with and without IB networks
has been evaluated in literature. However, to the best of our
knowledge, there is no benchmark aiming at comparing both
socket- and verbs-based libraries for Java.

In 2007 Jnetperf has been implemented analog to the
netperf utility to evaluate Gigabit Ethernet and 20 Gbit/s IB
in Java [31]. Jnetperf and netperf were then used to analyze
the throughput and round-trip latency achievable in Java and
native applications with TCP/IP, IP over IB and the now
discontinued Socket Direct Protocol. Regarding latency, the
native ibverbs API has also been evaluated to set a baseline
for the remaining solutions. While insightful results could be
achieved with Jnetperf, many new solutions for leveraging IB

CHAPTER 2. OBSERVATORY BENCHMARK

30

in Java have been developed since then. Especially in the field
of making ibverbs available in the JVM, several attempts were
made, which will be evaluated in this paper.

In 2012 Vienne et al. evaluated IB and RoCE (RDMA over
Converged Ethernet) for HPC and Cloud Computing scenarios
[30]. While they evaluated raw network level performance,
their main focus was on MPI and the impact, that different
hardware solutions have on middleware applications in the
cloud. With Observatory, we focus solely on network level
performance and solutions that work on the network level,
instead of the application level.

In 2014 Ekanayake et al. have shown, that MPI performance
in Java has vastly improved over the preceeding years and
concluded, that the gap between Java and native performance
is decreasing continuosly [15]. However, their focus was
completely on MPI, which is not what we intend to evaluate
with our benchmark.

III. INFINIBAND LIBRARIES

This section elaborates on existing low-level solu-
tions/libraries that can be used to leverage the performance
of InfiniBand hardware in Java applications. This does not
include network or messaging systems, implementing higher-
level primitives such as the Message Passing Interface, e.g.
Java-based FastMPJ [16] providing a special transport to use
InfiniBand hardware.

A. Socket-based libraries

The socket-based libraries redirect the send and receive traf-
fic of socket-based applications transparently over InfiniBand
host channel adapters (HCAs) with or without kernel bypass
depending on the implementation. Thus, existing applications
do not have to be altered to benefit from improved performance
due to the lower latency hardware compared to commonly
used Gigabit Ethernet. The following three libraries are still
supported to date and evaluated in Section V.

IP over InfiniBand (IPoIB) [20] is not a library but actually
a kernel driver that exposes the InfiniBand device as a standard
network interface (e.g. ib0) to the user space. Socket-based
applications do not have to be modified but use the specific
interface. However, the driver uses the kernel’s network stack
which requires context switching (kernel to user space) and
CPU resources when handling data. Naturally, this solution
trades performance for transparency.

libvma [7] is a library developed by Mellanox and included
in their OFED software package [8] and is preloaded to any
socket-based application (using LD PRELOAD). It enables
full bypass of the kernel network-stack by redirecting all
socket-traffic over InfiniBand using unreliable datagram with
native ibverbs. Again, the existing application code does not
have to be modified to benefit from increased performance.

Java Sockets over RDMA (JSOR) [29] redirects all socket-
based data traffic in Java applications using native verbs, sim-
ilar to libvma. It uses two paths for implementing transparent
socket streams over RDMA devices. The “fast data path” uses
native verbs to send and receive data and the “slow control

path” manages RDMA connections. JSOR is developed by
IBM and only available in their proprietary J9 JVM.

The following libraries are also known in literature but are
not supported or maintained anymore.

The Sockets Direct Protocol (SDP) [17] redirects all
socket-based traffic of Java applications over RDMA with
kernel-bypass. It supported all available JDKs since Java 7
and was part of the OFED package until it was removed with
OFED version 3.5 [10].

Java Fast Sockets (JFS) [28] is an optimized Java socket
implementation for high speed interconnects. It avoids seri-
alization of primitive data arrays and reduces buffering and
buffer copying with shared memory communication as its main
focus. However, JFS relies on SDP (deprecated) for using
InfiniBand hardware.

B. Verbs-based Libraries

Verbs are an abstract and low-level description of function-
ality for RDMA devices (e.g. InfiniBand) and how to program
them. Verbs define the control and data paths including RDMA
operations (write/read) as well as messaging (send/receive).
RDMA operations allow reading or writing directly from/to
the memory of the remote host without involving the CPU of
the remote. Messaging follows a more traditional approach by
providing a buffer with data to send and the remote providing
a buffer to receive the data to.

The programming model differs heavily from traditional
socket-based programming. Using different types of asyn-
chronous queues (send, receive, completion) as communica-
tion endpoints. Applications use different types of work re-
quests to send and receive data. When handling data transfers,
all communication with the HCA is executed using these
queues. The following libraries are verbs implementations that
allow programming RDMA capable hardware directly. The
first four libraries presented are evaluated in Section V.

ibverbs are the native verbs implementation included in the
OFED package [11]. Using the Java Native Interface (JNI)
[21], this library can be utilized in Java applications as well
in order to create a custom network subsystem [16] [24]. Using
the Unsafe class [22] or Java DirectByteBuffers, memory can
be allocated off-heap to use it for sending and receiving data
with InfiniBand hardware (buffers must be registered with a
protection domain which pins the physical memory).

jVerbs [27] is a proprietary verbs implementation for Java,
developed by IBM for their J9 JVM. Using a JNI layer,
the OFED ibverbs implementation is accessed. “Stateful verb
methods” (StatefulVerbsMethod Java objects) encapsulate the
verb to call including all parameters with parameter serializa-
tion to native space. Once the object is prepared, it can be
executed, which actually calls the native verb. These objects
are reusable for further calls with the same parameters, to
avoid repeated serialization and creating new objects which
would burden garbage collection. However, if a program works
with constantly changing buffer addresses, thus calling verbs
with different parameters, repeated serialization is inevitable.

CHAPTER 2. OBSERVATORY BENCHMARK

31

DiSNI [26] is an open source solution based on jVerbs [2]. It
utilizes the same “Stateful verb method” mechanism as jVerbs.

neutrino [9] is our own approach at making verbs accesible
from within the JVM. It allows structured access to native
structures with automatically generated proxy objects in Java
space. This allows manipulating native structures and calling
native methods without any form of serialization or copying.
neutrino aims to be more flexible than jVerbs and DiSNI, while
still offering high throughput rates and low latency.

Jdib [19] is a library wrapping native ibverbs function calls
and exposing them to Java using a JNI layer. According to the
authors, various methods, e.g. queue pair data exchange on
connection setup, are abstracted to create an easier to use API
for Java programmers. The fundamental operations to create
protection domains, create and setup queue pairs, as well as
posting data-to-send to queues and polling the completion
queue seem to wrap the native verbs and do not introduce
additional mechanisms like jVerbs’s stateful verb methods. We
were not able to obtain a copy of the library for evaluation.

IV. OBERVATORY BENCHMARK

In this section we describe the architecture and implemen-
tation aspects of the Observatory benchmark which aims at
allowing to compare different Java-based IB solutions (§III)
with each other, as well as comparing them to C-based
libraries. The latter include the ibverbs library to provide a
baseline for performance measurements.

A. Communication patterns

Observatory aims at evaluating a fundamental point-to-
point connection regarding throughput and latency. Like other
benchmarks (e.g. OSU [12]), we want to determine the max-
imum throughput on unidirectional and bidirectional commu-
nication (e.g. application pattern asynchronous “messaging”),
as well as one-sided latency and full round-trip-time (RTT)
with a ping-pong communication pattern (e.g. application
pattern “request-response”). These communication patterns are
commonly used to evaluate network hardware or applications
[6], [11], [12] and allow us to determine the fundamental per-
formance of a Java-based IB library. Complex communication
patterns, like for example all-to-all and multi-threading are
planned, but not implemented so far.

B. Architecture

The work on Observatory began as continuation of our
Java InfiniBand Benchmark [25], which consisted of multiple
standalone micro benchmarks for each library. Our goal with
Observatory is to develop a coherent benchmark architecture
for Java libraries and C/C++ solutions, see Fig. 1. This led us
to an architecture, that is easier to extend and results in less du-
plicate code compared to the Java InfiniBand Benchmark. The
benchmark needs to support two programming languages (C
and Java) and two programming models (sockets and verbs),
as well as two different forms of network communication
(messaging and RDMA). The benchmark provides a flexible
interface with default implementations for standard message

passing and RDMA operations, so it is not necessary to always
implement all methods for each library.

Observatory
Benchmark

Java

Interface Interface

Socket
binding

jVerbs
binding

ibverbs
binding

Reflection

Phases

Ex
ec

ut
es

R
et

ur
ns

 S
ta

tu
s

Config (JSON)
className: Socket

parameters: { ... }

operations: [{

 name: Msg Latency

 repetitions: 5

 iterations: [

 { size: 1, count: 10000},
 { size: 2, count: 10000},

 ...]

}]

Loads

(className from config)

Output file

(CSV)

Observatory
Benchmark

C++

Fig. 1: Observatory architecture design

Observatory can be configured through a JSON file, includ-
ing the communication pattern (uni-/bidirectional throughput,
latency, etc.), buffer sizes, the number of repitions, and a
potential warmup phase.

C. Benchmark phases

Each benchmark run is made up of the following six phases,
which call methods that need to be implemented by each
library binding:

1) Initialization. During this phase, the client should allocate
any needed resources (e.g open an IB context and allocate
a Protection Domain). Client-specific configuration pa-
rameters, that are defined in the configuration file (JSON),
are passed to the client as key-value tuples. This can be
used to pass IB related parameters to the client (e.g. the
device and port number).

2) Connection. A connection is setup, after IB connection
information has been exchanged (e.g. via TCP sockets).

3) Preparation. The operation size, which dictates the size of
the messages being sent, respectively the size of RDMA
writes/reads being performed, is passed to the client,
allowing it to allocate matching buffers to use in the
benchmark. It is also reasonable to preallocate reusable
Work Requests during this phase.

4) Warmup. A configurable amount of operations are ex-
ecuted as a warmup, allowing the JVM and its JIT to
optimize the benchmark code.

5) Operation. This is the main phase of the benchmark,
executing the configured amount of operations. If a bidi-
rectional benchmark run is performed, dedicated threads
for sending and receiving are started. If a throughput
benchmark is being performed, two timestamps will be
taken right before the first operation starts and right
after the last one has finished. Otherwise, if a latency
measurement is performed, the time needed for each

CHAPTER 2. OBSERVATORY BENCHMARK

32

operation is measured and stored in an array. This allows
calculating percentiles afterwards.
Furthermore, the benchmark utilizes the performance
counters of the IB HCA to determine the raw amount of
data being sent/received. This enables us to calculate the
overhead added by any software defined protocol which is
especially relevant for the socket-based libraries (§V-B).

6) Cleanup. The benchmark is finished, resources shall be
freed and all connections shall be closed.

The benchmark automatically fills up the receive queue
before the warmup and operation phases in order to avoid
Receiver Not Ready (RNR) timeouts, which would force the
sender to wait for a short amount of time, before retrying to
send a message.

After a benchmark run has finished successfully, the mea-
sured results are appended to a CSV-file, which can later be
plotted with a Python script, that is bundled with Observatory.

V. EVALUATION

In this Section, we present the evaluation results using
Observatory (§IV). An overview of all experiments is shown
in the following Table I.

Library/Benchmark OV Unidir Bidir Lat PingPong
ibverbs RDMA write x x x
ibverbs messaging x x x x x
jVerbs RDMA write x x x
jVerbs messaging x x x x x
DiSNI RDMA write x err x
DiSNI messaging err err err err err
neutrino RDMA write x x x
neutrino messaging x x x x x
IPoIB messaging x x x x x
JSOR messaging x x err x x
libvma messaging x x x x x

TABLE I: Overview of all experiments; OV = overhead.

The verbs-based libraries showed similar behaviors regard-
ing RDMA write and read, so that no additional insights could
be gained by analyzing both. For this reason, we decided to
only discuss RDMA write results.

In the following text we use the terms “operation” (op) and
“message” (msg) for referring only to the payload, excluding
overhead of the network protocols. Each throughput focused
benchmark run executes 100 million operations and each
latency focused benchmark run executes 10 million operations.
Starting with 8 KiB payload size, the amount of operations
is incrementally halved to avoid unnecessary long running
benchmark runs. We evaluated payload sizes of 1 byte to 1
MiB in power-of-two increments. When discussing the results,
we focus on the operation rate on small operations, with
payload sizes less than 1 KiB and on the throughput on middle
sized and large operations, starting at 1 KiB.

The throughput results are depicted as line plots with the left
y-axis showing the throughput in million operations per second
(Mop/s) and the right y-axis showing the throughput in GB/s.
For the latency results, the left y-axis shows the latency in µs
and the right y-axis the throughput in Mop/s. The dotted lines

always represent the operation throughput while the solid lines
represent either the throughput in GB/s or the latency in µs,
depending on the benchmark. For the overhead results, a single
y-axis describes the overhead in percentage in relation to the
amount of payload transferred on a logarithmic scale. On all
plot types, the x-axis depicts the size of the payload in power-
of-two increments from 1 byte to 1 MiB. Each benchmark run
was executed five times and the average is used to depict the
graph, while the error bars visualize the standard deviation.

A. Configuration

We ran all experiments on two servers with the following
hardware: Intel Xeon CPU E5-1650 v3 @ 3.50GHz (6 cores,
12 threads), 64 GB RAM, Mellanox ConnectX-3 HCA, 56
Gbit/s IB (Link width 4x), MTU size 4096. Both nodes run
CentOS 8.1 with the Linux Kernel version 4.18.0-151
The software used included OpenJDK 11.0.6, IBM SDK
8.0.6.6 with the J9 JVM 2.9, rdma-core v28.0, libvma 9.0.2,
gcc 8.3.1.

libvma. Flow steering must be activated for libvma
to redirect all traffic over IB, by setting the parameter
log num mgm entry size to -1 in the configuration file
/etc/modprobe.d/mlnx.conf for the IB kernel module. Other-
wise, libvma falls back to sockets over Ethernet.

JSOR. For JSOR, we set the send and receive buffer sizes
to 1 MiB, to avoid hanging connections [3]. However, the bidi-
rectional throughput benchmark did not terminate for buffer
sizes greater than 32 KiB. Furthermore, sudden disconnects
occurred for buffer sizes smaller than 512 byte. This seems to
be a known problem [4], but increasing the send and receive
queue size did not solve this issue.

DiSNI. There seems to be a problem with memory man-
agement in DiSNI, which causes the JVM to crash during
the benchmark. When looking at the stacktrace after a crash,
we observed that the last method call was either a malloc()
or free(). We tried to compile and run the benchmark with
different JDKs/JVMs (OpenJDK 8, OpenJDK 11, IBM SDK
8), but the problem could not be fixed. The crashes did not
occur after a certain amount of operations or time. However,
most of the times, we were not able to run Observatory with
DiSNI for more than a few minutes. The only benchmark type
that finished successfully was the unidirectional RDMA write
benchmark.

B. Overhead

In this Section, we present the results of the overhead
measurements of the described libraries/implementations. As
overhead, we consider the additional amount of data that is
sent along with the payload data of the user. This includes
any data of any network layer down to the HCA. We measured
the amount of data emitted and received by the port using the
performance counters port xmit data and port rcv data of the
HCA. These counters contain the amount of byte sent/received
per lane, which means the values need to be multiplied with
the link width to get the correct amount of data. The cards in

CHAPTER 2. OBSERVATORY BENCHMARK

33

[4] Ibm. rdma connection reset exceptions. https://www.ibm.com/support/
knowledgecenter/en/SSYKE2 7.0.0/com.ibm.java.lnx.70.doc/diag/
problem determination/rdma jsor connection reset.html.

[5] Infinispan. http://infinispan.org/.
[6] iperf - the ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/.
[7] libvma github. https://github.com/Mellanox/libvma/.
[8] Mellanox. https://www.mellanox.com/.
[9] neutrino github. https://github.com/hhu-bsinfo/neutrino.

[10] Ofed 3.5 release notes. https://downloads.openfabrics.org/OFED/
release notes/OFED 3.5 release notes.

[11] Openfabrics alliance. https://openfabrics.org/.
[12] Osu micro-benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.
[13] Top500 list.
[14] Infiniband architecture specification volume 1, release 1.3. http://www.

infinibandta.org/, 2015.
[15] S. Ekanayake and G. Fox. Evaluation of java message passing in high

performance data analytics. 03 2014.
[16] R. R. Exposito, S. Ramos, G. L. Taboada, J. Touriño, and R. Doallo.

Fastmpj: a scalable and efficient java message-passing library. Cluster
Computing, 17:1031–1050, Sept. 2014.

[17] D. Goldenberg, T. Dar, and G. Shainer. Architecture and implementation
of sockets direct protocol in windows. 2006 IEEE International
Conference on Cluster Computing, pages 1–9, 2006.

[18] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan. The rise of “big data” on cloud computing: Review and
open research issues. Information Systems, 47:98 – 115, 2015.

[19] W. Huang, H. Zhang, J. He, J. Han, and L. Zhang. Jdib: Java applications
interface to unshackle the communication capabilities of infiniband
networks. In Proceedings of the 4th Annual Symposium on Cloud
Computing, pages 596–601, 10 2007.

[20] V. Kashyap. Ip over infiniband (ipoib) architecture. https://www.ietf.
org/rfc/rfc4392.txt, April 2006.

[21] S. Liang. Java Native Interface: Programmer’s Guide and Reference.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[22] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and
N. Nystrom. Use at your own risk: The java unsafe api in the wild.
SIGPLAN Not., 50:695–710, Oct. 2015.

[23] S. Mehta and V. Mehta. Hadoop ecosystem: An introduction. In Int.
Journal of Science and Research (IJSR), volume 5, June 2016.

[24] S. Nothaas, K. Beineke, and M. Schoettner. Ibdxnet: Leveraging in-
finiband in highly concurrent java applications. CoRR, abs/1812.01963,
2018.

[25] S. Nothaas, Ruhland. A benchmark to evaluate infiniband solutions for
java applications. Technical report, 8 2019.

[26] P. Stuedi. Direct storage and networking inter-
face (disni). https://developer.ibm.com/open/projects/
direct-storage-and-networking-interface-disni/, 2018.

[27] P. Stuedi, B. Metzler, and A. Trivedi. jverbs: Ultra-low latency for data
center applications. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SOCC ’13, pages 10:1–10:14. ACM, 2013.

[28] G. L. Taboada, J. Touriño, and R. Doallo. Java fast sockets: Enabling
high-speed java communications on high performance clusters. Comput.
Commun., 31:4049–4059, Nov. 2008.

[29] S. Thirugnanapandi, S. Kodali, N. Richards, T. Ellison, X. Meng,
and I. Poddar. Transparent network acceleration for java-based
workloads in the cloud. https://www.ibm.com/developerworks/library/
j-transparentaccel/, January 2014.

[30] J. Vienne, J. Chen, M. Wasi-Ur-Rahman, N. S. Islam, H. Subramoni, and
D. K. Panda. Performance analysis and evaluation of infiniband fdr and
40gige roce on hpc and cloud computing systems. In IEEE 20th Ann.
Symposium on High-Performance Interconnects, pages 48–55, 2012.

[31] H. Zhang, W. Huang, J. Han, J. He, and L. Zhang. A performance study
of java communication stacks over infiniband and giga-bit ethernet. In
2007 IFIP International Conference on Network and Parallel Computing
Workshops (NPC 2007), pages 602–607, 2007.

CHAPTER 2. OBSERVATORY BENCHMARK

38

Chapter 3

hadroNIO - Transparent Java network
acceleration

This chapter introduces hadroNIO, a transparent network acceleration library, that re-
places the JDK’s default NIO implementation. Using OpenUCX for data transmission
enables it to leverage modern high-speed network interconnects, such as InfiniBand.

3.1 Java NIO and Netty overview
As described in Section 1, Java NIO offers an asynchronous (non-blocking) socket-based
network API, as opposed to the classic Java sockets, which only offer synchronous (block-
ing) communication. It was designed with scalability in mind and allows developers to
implement applications that are adaptable to the target platforms amount of available
CPU cores. To achieve this, Java NIO introduces socket channels with similar semantics
to traditional sockets. In the default JDK implementation, these channels actually work
on an underlying socket, but have the ability to switch between blocking and non-blocking
mode. In blocking mode, they work exactly like sockets, with each write operation block-
ing until all bytes are processed and read operations only returning, once at least on byte
has been received or the connection is canceled. In non-blocking mode however, a write
request only processes as many bytes as the underlying socket can handle at the moment,
while read operations may return without any bytes read, if the underlying socket has no
bytes in its internal receive buffer (i.e. no bytes have been received since the last read
request).

The key part of Java NIO is the selector, which is used to query multiple socket channels
for operation readiness. Each channel may be registered at exactly one selector at any
given time. When registering a socket channel, the selector returns a selection key, which
indicates the associated channels readiness. This way, a channel can signal that it is
ready to perform a certain operation. Each type of operation is represented by one of the
following flags:

• OP_WRITE: The channel is ready to perform a write operation (i.e. the underlying
socket’s internal write buffer is not full).

• OP_READ: Data has been received from the remote side and may now be retrieved
by the application using a read operation.

39

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

• OP_CONNECT: Either a connection has been established successfully and may now be
finalized by calling finishConnect(), or a connection error has occurred.

• OP_ACCEPT: This flag is only valid for server socket channels, and indicates either a
pending connection request from a remote client, or an error.

By registering multiple socket channels at a single selector, it is possible to query the
readiness of all these channels at once. This is called a select operation and it allows for
multiplexing socket channels in a single thread (see Fig. 3.1). This way, a single thread is
able to handle an arbitrary number of channels, instead of just one socket, as it is the case
with the classic blocking API. If, for example, a select operation results in OP_READ readi-
ness signals on multiple channels, the thread can read the incoming data from all these
channels one after another, before calling select() once again. Contrary to this, when
using traditional sockets, one might miss incoming data on other sockets, while waiting
for a read() call to return. Furthermore, NIO based applications can be implemented
to scale with a system’s CPU by starting one thread per CPU core, with each thread
handling its own selector. Channels can then be distributed over the selectors (i.e. CPU
cores), utilizing the CPU’s full capacity without overwhelming it with too many threads.

Application

Selector ServerSocketChannel

OP_ACCEPT Handler
Handles connection

requests

1. select() 3. Selected Keys accept() Connected
Channel

OP_READ Handler
Reads available data

from channel

read() Received Data

SocketChannel

OP_READ Handler
Reads available data

from channel

read() Received Data

2. Check Readiness

4. Call handlers for
selected keys

SocketChannel

Figure 3.1: Example diagram of a Java NIO setup with two active connections

While Java NIO allows for a flexible connection handling, it is rather complicated to use.
Programmers are still responsible for managing threads and buffers manually. To this end,
many applications do not use NIO directly, but are instead based on Netty. This asyn-
chronous networking framework allows applications to handle network communication in
an even-driven manner. It manages threads automatically, according to the amount of
available CPU cores, but also allows programmers to use their own thread pool imple-
mentations. This makes it scalable out of the box, but still flexible enough to be adapted
to specific use cases. Furthermore, Netty implements a pooling mechanism for buffers to
lessen the pressure on the garbage collector. It also comes with pre-implemented protocols

40

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

like HTTP/2 and TLS [6].
These features render Netty a viable choice for modern network development in Java.
Setting up an application with Netty is much easier than using raw NIO methods. De-
velopers can choose to implement low-level protocols based on TCP/UDP (e.g. Apache
ZooKeeper [9]) or benefit from a high-level protocol with encryption support (e.g. gRPC
[8]).

3.2 OpenUCX overview

Unified Communication Framework X (UCX) is a networking framework, providing a
unified API for different communication patterns like message passing, streaming, or re-
mote direct memory access (RDMA). It supports several transports, such as InfniBand
or High-Speed Ethernet, but can also use TCP as a fallback [11]. The fastest transport is
automatically chosen and it is even possible to combine multiple transports in a multi-rail
setup. UCX is written in C/C++, but supports Java via a binding called JUCX, based
on the Java Native Interface (JNI).

Figure 3.2: UCX architecture layers [25]

UCX is divided into a low-level and a high-level package. The low-level library is called
UCT, providing a thin layer over libraries like ibverbs. It offers functions that are still
close to the hardware, with all implying advantages and disadvantages. It serves as the
base foundation for the UCX architecture. While it may be useful for some cases, most
projects based on UCX, including this dissertation, use the high-level package UCP. It
provides the main API, abstracting the low-level programming interfaces of the supported
transports.

In UCP, connections are abstracted by endpoints. Each endpoint represents one side of
a connection. Connection setup works similar to sockets, with the server side setting up
a listener and the client side creating an endpoint with the server’s address as a param-

41

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

eter. This works using traditional IP-addresses. Once a listener receives a connection
request, it can create an endpoint, connected to the client. Now, both sides have created
an endpoint instance that is configured to communicate with the remote side. However,
to finish connection setup, a message must be exchanged manually. The first data ex-
change between two endpoints triggers UCP’s internal wire-up protocol. On success, the
connection setup is finished, but if the operation fails, the endpoints may not be regarded
as connected and the application has to handle this connection setup error appropriately.

The most important UCP structure is the worker. Workers can abstract multiple network
interfaces and manage the operations of multiple endpoints. They play a key part in
connecting the high-level UCP API with the low-level network interfaces, by implementing
a progress engine. UCP operations like messaging or RDMA are initiated via requests. A
request (e.g. sending/receiving a message) can be handled directly by the UCX framework,
if the requested operation is small and the appropriate resources are available. However,
most requests are handled asynchronously, in which case UCP creates a unique handle
for each request. While the operation can be executed in the background by the network
hardware, the associated worker’s progress engine needs to be advanced in order for the
application to be notified about the success or failure of a request (see Fig. 3.3). This
needs to be done manually by the application, by calling a progress() method, which
updates the state of each finished request. An application can either poll the state of a
request to see if it is finished, or associate a callback with it, which will be called by the
progress engine, once the request has been processed.

Application

Worker
Listener Callback
Handles connection

requests

1. progress()

Connection request

Receive Callback
Processes received

data

Received Data

Receive Callback
Processes received

data

Received Data

2. C
heck progress

Listener

Endpoint

Endpoint

3. Run callbacks for new events

Figure 3.3: Example diagram of a UCP setup with two active connections

42

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

3.3 Transparency challenges

It would also be possible to reimplement the classic Java Socket API to accelerate both,
applications build upon that, as well as applications using Java NIO. However, basing
hadroNIO on Java NIO was a deliberate choice by the author, since it provides a more
modern API, designed around asynchronous communication and is used by most modern
Java network applications already. Furthermore, it is a much better match for UCX than
the traditional Socket API, with both NIO and UCX offering an asynchronous program-
ming model, with a central part that allows multiplexing connections, in form of the UCP
worker and the NIO selector, respectively. However, there are some challenges, that need
to be addressed.

Specifically, NIO allows socket channels to change the selector they are registered at.
While this is not a common practice, hadroNIO needs to be aware of that to be fully
compliant with the Java NIO specification. In UCP, the connection between an endpoint
and a worker is fixed and cannot be changed later on. To solve this problem, hadroNIO
creates one worker per connection (i.e. per endpoint) and a selector needs to poll multiple
workers. While this sounds more complicated than just creating one UCP worker per
selector, it actually solves another problem, caused by UCX: The amount of endpoints
per worker is limited, which means in order to support an arbitrary number of socket
channels per selector, a single worker does not suffice.

Furthermore, there is a considerable incompatibility between the send and receive func-
tions of NIO and UCP. Both APIs work in an asynchronous manner, meaning that the
functions will not block until the network operation is finished. Instead, they will just
initiate the operation and return. In Java NIO, socket channels offer write() and read(),
both taking a buffer as parameter.
When SocketChannel.write() returns, the passed buffer can be reused directly, even
though the send operation might not have been finished yet. This is the case, because the
buffer’s content has been copied into the underlying socket’s internal buffer, from where it
is then being processed by the network card. UCP on the other hand, works directly with
the buffer, handed over as parameter. This means, when sending a message via UCX,
the user may not alter the buffer’s content, until the request has been finished. Elsewise,
data corruption might occur on the receiving side.
A similar incompatibility exists receiving data: SocketChanne.read() copies received
data from the underlying socket’s internal buffer into the target buffer, specified by the
user. When it returns, the target buffer contains the received data and the user can di-
rectly work with it. When working with UCP, the buffer’s content may only be considered
complete, after the receive request has been finished. Reading from the target buffer after
initiating a receive operation, but without checking the request’s status, may result in
incomplete or corrupted data being read.
To address these problems, hadroNIO implements intermediate buffers for sending and
receiving data. This means, that a single copy operation is needed for each network
operation, which causes a small overhead, compared to using UCX directly. A detailed
description of how the intermediate buffer’s work and how large of an overhead is imposed
by hadroNIO is presented in the following paper.

43

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

3.4 Contributions
The author is the main developer of hadroNIO and has implemented most of the code
by himself. This project is the main research contribution of this dissertation, with two
papers and a technical report. However, the ring buffer implementation used for the inter-
mediate buffering mechanism is largely based on the OneToOneRingBuffer class from the
Agrona library [26]. It has been altered by Filip Krakowski to support a two-step write
mechanism, where a slice of the buffer may first be reserved and then written to later.
The original implemenation only supported directly writing to the ring buffer’s current
position.

Both of the following papers were written by the author, while Filip Krakowski and
Michael Schöttner took part in many discussions about the design and implementation of
hadroNIO.

Furthermore, there has been a minor external contribution by Edwin Stang on GitHub,
fixing some possible null pointer exceptions when closing a UCP endpoint or listener [27].
Additionally, Peter Rudenko from Mellanox has extended the Observatory benchmark to
support JUCX [28].

44

hadroNIO: Accelerating Java NIO via UCX
Fabian Ruhland

Department Operating Systems
Heinrich Heine University

Düsseldorf, Germany
fabian.ruhland@hhu.de

Filip Krakowski
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

filip.krakowski@hhu.de

Michael Schöttner
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—InfiniBand networks with bandwidths up to 400
Gbit/s and sub-microsecond latencies are more and more popular
in HPC and cloud data centers. Many big-data frameworks, such
as Apache Spark and Cassandra, are written in Java and use Java
NIO socket channels, which are designed for Ethernet networks.
Rewriting network code for such complex systems is typically not
an option and thus, transparent solutions like IP over InfiniBand
are used.
In this paper, we present hadroNIO, a Java library, that transpar-
ently replaces the default NIO implementation, providing support
for InfiniBand (as well as Ethernet and other transports) through
the Unified Communication X (UCX) library. We compare our
library against other transparent network acceleration solutions
in an InfiniBand environment and also evaluate the overhead,
that is introduced by using hadroNIO versus directly accessing
UCX. We show that it is possible to achieve latencies as low
as 3.1 µs, while also being able to leverage the full bandwidth
of InfiniBand hardware with our fully transparent acceleration
solution. In the future we aim at extending hadroNIO, and thus
the NIO API, with RDMA directives.

Index Terms—High-speed Networks, InfiniBand, OpenUCX,
Java, Remote Direct Memory Access

I. INTRODUCTION

Java NIO is the standard for modern network development
on the Java platform for many years now. With its elegant API
for asynchronous communication, it empowers application
developers to handle several connections with just a single
thread, while still being flexible to scale with large thread
counts. Additionally, it supports blocking communication,
resembling the traditional Java socket API. Its success is
underlined by the amount of projects based on NIO (or netty,
building upon NIO [6]), such as Spark [16] or Cassandra [2].

However, since the NIO implementation relies on classic
sockets, applications are limited to using Ethernet for com-
munication. While there are several successful approaches
mitigating this problem by transparently offloading socket
traffic to fast networks like InfiniBand [5] [10] [15], our past
research shows, that none of them are capable of leveraging
the full potential of the underlying InfiniBand hardware [13].

Unified Communication X (UCX) is a native framework,
aiming to provide a unified API for multiple transport types
[14]. The UCX API offers several forms of communication,
such as tagged messaging, active messaging, streaming or
RDMA. Application developers do not need to target a specific
network interconnect, since UCX automatically scans the
system for available transports and chooses the fastest one

(e.g. Ethernet or InfiniBand). Since it also provides a Java-
binding called JUCX (based on JNI), this framework can also
be used in Java applications [4].

In this paper, we propose hadroNIO, aiming at accelerating
Java communication using JUCX. Instead of offloading the
traffic to a specific type of transport, we leverage UCX to
benefit from several transports. We aim at enabling NIO
based applications to transparently use the full potential of the
available hardware, regarding both high throughput with NIO’s
non-blocking API, as well as low latencies with blocking
socket channels. Developers do not have to specifically build
their applications against hadroNIO, but can just use the
standard NIO API. In the future, we plan to provide RDMA
functionality by extending the NIO API with new directives
for remote reading and writing. This would allow applications,
that are aware of hadroNIO, to use RDMA features, without
requiring developers to learn a new API from the ground up.
The contributions of this paper are:

• An overview of existing socket acceleration solutions for
Java applications

• The design and implementaion of hadroNIO, a library to
transparently accelerate Java NIO using UCX, enabling
developers to benefit from several types of interconnects
without learning a new API

• Evaluation of hadroNIO against IP over InfiniBand and
directly using JUCX with blocking and non-blocking
socket channels

The paper is structured as follows: Section II discusses
related work and presents some of the existing acceleration
solutions. Section III discusses hadroNIO’s architecture fol-
lowed by Section IV with the evaluation results. Conclusions
are presented in Section V.

II. RELATED WORK

To the best of our knowledge, there are no alternative NIO
implementations, but there are multiple solutions (some of
them still actively maintained) aiming to accelerate traditional
Java sockets by offloading the send and receive traffic of
socket-based applications to InfiniBand host channel adapters
(HCAs). Since NIO is based on classic Java sockets, these
solutions also work with applications based on Java NIO.
In the past, we have already evaluated some of them using
Observatory, our networking micro-benchmark suite, tailored
towards evaluating InfiniBand solutions for Java applications.

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

45

IP over InfiniBand (IPoIB) [10] is a kernel module,
that exposes the InfiniBand device to the user space as a
standard network interface (e.g. ib0). Applications can just
bind their sockets to an IP-address associated with such a
network interface, making IPoIB transparent to use. However,
since it uses the kernel’s network stack, thus requiring context
switching between user and kernel space, there is a relatively
high performance penalty (especially regarding latency).

libvma [5] is a native open source library, developed by
Mellanox, that can be preloaded to any socket-based appli-
cation (using LD PRELOAD). It enables full bypass of the
kernel’s network stack by redirecting all socket traffic over
InfiniBand using a custom protocol based on unreliable data-
gram communication. While existing application code does
not have to be modified to benefit from increased performance,
libvma requires the CAP NET RAW capability, as well as flow
steering to be enabled, which might not be available depending
on the cluster environment.

Java Socket over RDMA (JSOR) is a java library, devel-
oped by IBM, which redirects all socket traffic over high-speed
networks using RDMA. It is included in IBM’s Java SDK and
requires their proprietary J9 JVM, thus only supporting Java
versions up to 8, so far. While JSOR has shown promising
results, there are known problems with connections getting
stuck [8] and exceptions [9]. Additionally, when evaluating
JSOR, we were not able to perform a full benchmark run with
a bidirectional connection, using separate threads for sending
and receiving [13]. These problems and its dependency on
proprietary technology limit its usability.

The Sockets Direct Protocol (SDP) leverages RDMA with
full kernel bypass to accelerate all socket traffic of Java
applications. It was part of the OFED and introduced into
the JDK starting with Java version 7. However, support has
officially ended and it has been removed from the OFED since
version 3.5 [7].

Java Fast Sockets is an optimized Java socket implemen-
tation for high-speed interconnects. It avoids serialization of
primitive data arrays and reduces buffering and buffer copying
with shared memory communication as its main focus. While
JFS provides InfiniBand access, it relies on SDP, which is
deprecated.

III. HADRONIO ARCHITECTURE

This section presents the architecture of hadroNIO and the
challenges we solved when interfacing between Java NIO and
UCX, as well as the benefits of using UCX.

A. Replacing the default NIO implementation

Per JDK specification, a socket channel may either be
configured to be blocking or non-blocking [3]. In blocking
mode, each write() operation will block until all bytes from
the source buffer have been processed. This does not imply,
that all bytes have been received by the remote side, but that
the data has at least been copied to the underlying socket’s
buffer. A similar norm applies to the read() method, as in

blocking mode it must block until at least one byte may be
read from the underlying socket’s buffer.

NIO’s non-blocking API works quite different from that,
since a call to write() or read() is not obligated to
block, but is allowed to return after processing only part of
the source buffer and in fact may not process any data at
all (e.g. if the underlying socket’s buffer is full or empty).
To check which operations are eligible to be performed on a
socket channel, NIO introduces the concept of selectors and
selection keys. Each socket channel may be registered with
one selector. This registration is represented by a selection key,
which signals the associated channel’s current state (e.g. if the
channel is readable/writeable). To refresh the information held
by a selection key, the select() method of the appropriate
selector must be called. The selector will then check the
state of each associated channel and refresh the selection keys
accordingly. Additionally, an object may be attached to each
key. Typically, applications attach Runnable instances and
execute each attachment (commonly called handler) after the
selection operation, to handle the associated channel’s state
(e.g. perform a read or write operation).

To transparently accelerate existing NIO applications,
hadroNIO needs to fully substitute the involved classes,
including SocketChannel, ServerSocketChannel,
Selector and SelectionKey. The Java platform pro-
vides a comfortable way of exchanging the default NIO
implementation through a class called SelectorProvider.
This class offers methods to create instances of the different
NIO components (e.g. SocketChannel or Selector). To
accelerate an NIO based application, users simply need add to
the hadroNIO JAR file to the classpath and configure the JVM
to use the hadroNIO selector provider by setting the property
java.nio.channels.spi.SelectorProvider.

SocketChannel Selector

hadroNIO

ServerSocketChannel

JUCX

Endpoint WorkerCallback

pr
og

re
ss

create

co
nn

ec
t send/

receiveno
tif
y

Java Application

Ethernet Infiniband Shared Memory...
Hardware

Java space

Native space UCX

Fig. 1. Architecture overview

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

46

B. UCX request processing
UCX’s tagged messaging API, which we used to build

hadroNIO, generally works in a non-blocking fashion. While
operations with small buffers may be completed directly,
the majority of requests are executed asynchronously. To
keep track of a request’s state, a handle is created for each
asynchronous request. These handles may be used to check
if a request is completed, still in progress or was aborted
with an error. Asynchronous requests do not get executed
automatically, but are processed by so called workers. In
UCX, a worker abstracts one or multiple network resources
(e.g. HCA ports). To complete an asynchronous request, the
worker, associated with the network device to which the
request has been issued, needs to be progressed manually.
Optionally, a callback can be associated with each request and
be automatically executed once the request has been finished
or aborted. This asynchronous communication concept fits
well with NIO’s non-blocking API, since UCX requests can
be issued within the read() and write() methods of the
SocketChannel class, while the responsible workers can
be progressed in the select() method of the Selector
class (see Fig 1). However, mapping this concept to blocking
socket channels proved to be more challenging (see Section
III-E).

C. Buffer management for writing
Buffers are managed differently in UCX and NIO: In the

default NIO implementation, calling write() will copy the
the source buffer’s content into the underlying socket’s buffer
and return. Even though the actual process of sending the data
is then performed asynchronously, the source buffer may be
reused and altered by the application. UCX’s behaviour differs
from that by not allowing the source buffer to be modified until
the request is completed.

We address this by introducing an intermediate buffer to our
SocketChannel implementation. In its write() method,
the source buffer’s content is copied into the intermediate
buffer and all UCX send requests will only operate on the
copied data. Since we want to be able to handle multiple active
send requests, a simple yet thread-safe memory management
is needed to manage the space inside the intermediate buffer.
To achieve this, the buffer is implemented as a ring buffer,
based on Agrona’s OneToOneRingBuffer. Agrona is a library
providing multiple lock-free thread-safe data structures [1].
The full write mechanism can be divided into the following
steps (also depicted in Fig. 2):

1) Allocate the needed amount of space inside the interme-
diate buffer.

2) Copy the source buffer’s content into the newly allocated
space.

3) Issue a send request via UCX.
4) Return to the application. The source buffer may now

be reused and the actual process of sending the data to
a remote receiver is performed asynchronously.

5) Once the request has been completed by UCX, a call-
back is invoked.

6) The space inside the intermediate buffer is not needed
anymore and is freed by the callback routine.

Send Buffer: 1 MiB

SocketChannel.write(ByteBuffer source)

Source Buffer: 4 KiB

1. Claim 4 KiB of space

2. Copy source buffer
into send buffer

Copied Buffer: 4 KiB

3. Invoke an async send
via UCX

4. Return to application

UCX send (async) UCX Callback
5. Callback is
invoked when

finished sending

6. Free claimed space

Fig. 2. Write mechanism with a 4 KiB source buffer and a 1 MiB intermediate
buffer

D. Buffer management for reading

In the traditional NIO implementation, all received data
is first being stored in the underlying socket’s internal
buffer and the read() method copies this data into
the application’s target buffer. A similar technique is ap-
plied in hadroNIO’s read() implementation: Equivalent
to the write() method, an intermediate buffer is used
to store asynchronously received data and read() just
needs copy this data. To issue receive requests to UCX,
the method fillReceiveBuffer() is introduced to the
SocketChannel class. This method allocates several slices
of the same length inside the intermediate buffer and creates
a receive request for each of these slices. This implies,
that send requests, issued by write(), may not be larger
than the slices created by fillReceiveBuffer(). To
accommodate for that, write() divides larger buffers into
multiple smaller send requests, that fit into the slices inside the
remote’s receive buffer. To ensure that hadroNIO never runs
out of active receive requests, fillReceiveBuffer() is
called once a connection has been established, and afterwards
inside each selection operation. The full read mechanism can
be divided into the following steps (also depicted in Fig. 3):

1) Slices inside the intermediate receive buffer are allocated
by fillReceiveBuffer().

2) A receive request is issued for each of the newly
allocated slices.

3) Once a request has been completed by UCX, a callback
is invoked.

4) The callback routine notifies the socket channel, that a
new buffer slice has been filled with data. The channel
keeps an internal counter of how many of the allocated
slices contain valid data.

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

47

5) When the application calls read(), the content of a
buffer slice is copied into the destination buffer. If a
slice has been read fully, the allocated space is freed
and reused the next time fillReceiveBuffer() is
called.

Receive Buffer: 1 MiB

SocketChannel.read(ByteBuffer destination)

Destination Buffer

Slice: 32 KiB

2. Invoke async
receives via UCX

UCX receive (async) UCX Callback
3. Callback is
invoked when

finished receiving 4. Notify SocketChannel

...Slice: 32 KiB

5. Copy buffer slice
into destination buffer

1. Allocate slices
inside receive buffer

fillReceiveBuffer()

Fig. 3. Read mechanism with 32 KiB buffer slices and a 1 MiB intermediate
buffer.

Additionally, each buffer slice is preceded by an 8-byte long
header, consisting of two 4-byte fields. The first field indicates
the length of valid data inside the slice and is needed to
accommodate for the case that the remote side sends a buffer
smaller than the length of a slice. The second field keeps track
of the amount of data, that has already been copied to an
application buffer by read(). In case the destination buffer
is not large enough to fit a whole slice, only part of it may be
copied and this header field gets updated.

The size of the send and receive intermediate buffers, as
well as the slice length, have a large impact on hadroNIO’s
performance. For example, too small slices will result in
lower bandwidths, while extremely large slices can lead to
a lot of wasted memory, since each slice will probably not
be filled completely. It is also important to keep in mind
how many slices fit inside an intermediate buffer, since this
number limits the amount of active requests and thus directly
affects performance. However, large slice lengths do not affect
latency and for the evaluation in section IV, we found that 64
KiB slices suffice to saturate bandwidth on our test hardware.
Nevertheless, all three of these values are configurable via
Java properties, allowing hadroNIO to be tuned to specific
application scenarios.

E. Blocking vs. non-blocking socket channels

As mentioned before, to actually send or receive data with
UCX, the appropriate worker instance needs to be progressed.
In non-blocking mode, this is done inside the associated
selector’s select() method. However, in blocking mode no
selector is involved, which means that the worker has to be
progressed elsewhere.

For write(), this is done right after the send request
for the last buffer slice has been issued, implying that in
contrary to non-blocking mode, the data to send has already
been processed by UCX, once write() returns. Naturally,
this approach favours latency over throughput. An alternative
might be to constantly progress the worker in a separate thread.
While this would benefit throughput, it would also have a
negative impact on latency.

For read(), the worker is progressed and
fillReceiveBuffer() called every time there are
no slices left to be read from the intermediate receive buffer.

F. Sender throttling

While evaluating hadroNIO, we noticed that receiving mes-
sages in non-blocking mode caused high memory usage. UCX
buffers received data, that can not be directly processed by a
receive request. For that purpose, a pool of memory, that grows
as needed, is used. In our test case, data was sent faster than
the receiving side could process it, causing the buffer pool to
grow, thus resulting in high memory usage. We address this
by introducing a flush mechanism into our implementation.
In fixed intervals (e.g. every 1000 requests), a socket channel
waits for the remote side to finish processing the received data.
During that time, a socket channel will no longer indicate to be
writeable. Once the remote side has finished receiving, it will
send a short acknowledgment message, causing the waiting
channel to be writeable again. After implementing this mech-
anism, we did not see an increased memory usage anymore,
implying the receiving side is no longer unable to cope with
the amount of incoming messages. This mechanism works
fully transparent and does not affect application developers
in any way.

Since the interval size may have a huge impact on perfor-
mance, it is also configurable via a Java property. However,
we found 1024 to be a good size, since with that, we did
not see any negative effect on performance and in fact even
saw an increased bandwidth, compared to not using any flush
mechanism at all. This is probably due to the fact, that UCX
no longer needs to allocate memory for the growing buffer
pool, causing the receiving side to slow down even more.

IV. EVALUATION

This section presents the evaluation results, comparing
hadroNIO against IPoIB with blocking and non-blocking
socket channels, as well as directly using JUCX on 56 GBit/s
InfiniBand hardware.

A. Evaluation setup

To evaluate hadroNIO, we used Observatory, our micro-
benchmark suite targeting InfiniBand solutions for Java. It
aims at evaluating both messaging and RDMA performance
with single point-to-point connections, regarding throughput
and latency. It has already proven its usability with verbs-based
libraries (i.e. directly programming the InfiniBand hardware),
as well as socket-based solutions using traditional Java sockets
[13]. For the purpose of evaluating hadroNIO, we enhanced

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

48

[5] libvma GitHub. https://github.com/Mellanox/libvma/.
[6] Netty related projects. https://netty.io/wiki/related-projects.html.
[7] OFED 3.5 release notes. https://downloads.openfabrics.org/OFED/

release notes/OFED 3.5 release notes.
[8] IBM. RDMA communication appears to hang.

https://www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-communication-appears-hang.

[9] IBM. RDMA connection reset exceptions. https:
//www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-connection-reset-exceptions.

[10] V. Kashyap. IP over InfiniBand (IPoIB) Architecture. https://www.ietf.
org/rfc/rfc4392.txt, April 2006.

[11] P. Rudenko. Observatory pull request 1. https://github.com/hhu-bsinfo/
observatory/pull/1.

[12] P. Rudenko. Observatory pull request 2. https://github.com/hhu-bsinfo/
observatory/pull/2.

[13] F. Ruhland, F. Krakowski, and M. Schöttner. Performance analysis
and evaluation of Java-based InfiniBand Solutions. In 2020 19th Inter-
national Symposium on Parallel and Distributed Computing (ISPDC),
pages 20–28, 2020.

[14] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, et al. UCX:
an open source framework for HPC network APIs and beyond. In
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,
pages 40–43. IEEE, 2015.

[15] S. Thirugnanapandi, S. Kodali, N. Richards, T. Ellison, X. Meng,
and I. Poddar. Transparent network acceleration for Java-based
workloads in the cloud. https://www.ibm.com/developerworks/library/
j-transparentaccel/, January 2014.

[16] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica. Apache Spark: A Unified Engine
for Big Data Processing. Commun. ACM, 59:56–65, Oct. 2016.

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

52

Accelerating netty-based applications through
transparent InfiniBand support

Fabian Ruhland
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

fabian.ruhland@hhu.de

Filip Krakowski
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

filip.krakowski@hhu.de

Michael Schöttner
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—Many big-data frameworks are written in Java,
e.g. Apache Spark, Flink and Cassandra. These systems use
the networking framework netty which is based on Java NIO.
While this allows for fast networking on traditional Ethernet
networks, it cannot fully exploit the whole performance of
modern interconnects, like InfiniBand, providing bandwidths of
100 Gbit/s and more.
In this paper we propose netty support for hadroNIO, a Java
library, providing transparent InfiniBand support for Java ap-
plications based on NIO. hadroNIO is based on UCX, which
supports several interconnects, including InfiniBand. We present
hadroNIO extensions and optimizations for supporting netty. The
evaluations with microbenchmarks, covering single- and multi-
threaded scenarios, show that it is possible for netty applications
to reach round-trip times as low as 5 µs and fully utilize the
100 Gbit/s bandwidth of high-speed NICs, without changing
the application’s source code. We also compare hadroNIO with
traditional sockets, as well as libvma and the results show, that
hadroNIO offers a substantial improvement over plain sockets
and can outperform libvma in several scenarios.

Index Terms—High-speed networks, Cloud computing, Ether-
net, InfiniBand, OpenUCX, Java

I. INTRODUCTION

Modern big-data applications need to operate on large data
sets, often using well-known big-data frameworks, such as
Apache Spark [37], Flink [1] or Cassandra [11]. Many of
these systems are written in Java, relying on Java NIO. Java
NIO provides developers with the tools for building large-scale
networking applications, by allowing a single thread to handle
multiple connections asynchronously, thus being able to scale
with the amount of CPU cores available in a system.

However, its API has a steep learning curve compared
to traditional Java sockets, thread management is still being
left to the programmer and buffers need to be allocated
manually, requiring a sophisticated buffer management to
prevent performance penalties by repeated allocations. Thus,
many applications do not use Java NIO directly, but are based
on netty, an asynchronous event-driven network application
framework [22]. It abstracts the complexity introduced by Java
NIO, implements buffer pooling based on reference counting,
and automatically uses as many worker threads, as there are
CPU cores available. It is also highly configurable, rendering
it a powerful, yet easy-to-use networking library.

Netty is widely adopted in the Java community as the
standard framework for fast and scalable networking and is
used in many projects, e.g. Apache BookKeeper [9] or Ratis
[30], which implements the Raft [27] algorithm in Java. Ad-
ditionally, it serves as the base for other networking libraries,
like the widely used RPC framework gRPC [2], as well as
many more projects [23]. Its relevance is further underlined
by the amount of organizations, that incorporate netty into
their projects, such as Google, Facebook and IBM [24].

However, since netty is based on Java NIO, which relies on
traditional sockets, it cannot use the full potential of modern
network interconnects, like InfiniBand or high-speed Ethernet.
While the socket API is compatible with high-speed Ethernet
NICs and can be used with InfiniBand cards via the kernel
module IP over InfiniBand [10], it uses the kernel’s network
stack, involving context switches between user and kernel
space, for exchanging network data, thus imposing a high
performance penalty, especially regarding latency.

This problem has been addressed in the past, with different
native and Java-based solutions, which came in form of user
space TCP-stacks, transparent libraries offloading traffic to
high-speed NICs or kernel modules, replacing the traditional
TCP implementation. However, many of these solutions are
not supported anymore and introduce their own sets of prob-
lems, which we discuss in Section II.

We proposed hadroNIO in 2021 [32], a Java library, which
transparently replaces the default NIO implementation, of-
floading traffic via the Unified Communication X framework
(UCX) [33]. UCX is a native library, providing a unified API
for multiple transport types (including InfiniBand) and offering
a multitude of communication models, such as streaming,
tagged messaging, active messaging and RDMA. It automati-
cally detects all available transports and chooses the fastest
one, but can also be configured to use a specific NIC or
utilize multiple interconnects in a multi-rail setup. It officially
supports Java via a JNI-based binding called JUCX. We
already have shown that hadroNIO provides huge perfor-
mance improvements over using traditional sockets in a single-
connection setup, using a microbenchmark based directly on
Java NIO [32].

In this paper, we present the extensions and optimizations,
introduced in hadroNIO and evaluate its performance with

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

53

netty-based microbenchmarks using multiple connections on
high-speed networking hardware, capable of 100 Gbit/s band-
width.

The contributions of this paper are:
• An overview of existing netty-compatible acceleration

approaches
• Design and implementation of hadroNIO extensions for

supporting netty
• Evaluations using microbenchmarks on 100 GBit/s hard-

ware, showing the benefits of the proposed solution
The paper is structured as follows: Section II presents

related work, discussing alternative acceleration solutions.
Section III elaborates on updates to hadroNIO, followed by
Section IV, which presents the architecture of our microbench-
marks. Evaluation results are discussed in Section V, while
Section VI concludes this paper and provides ideas for future
work.

II. RELATED WORK

Modern high-speed NICs from Mellanox can be configured
to use either InfiniBand or Ethernet as link layer protocol.
Choosing Ethernet makes these cards fully compatible with
the standard socket API, while still being programmable via
the ibverbs library. Regardless of the link layer protocol,
traditional sockets do not suffice for using the full potential of
such a NIC.

While we are not aware of any alternative NIO implemen-
tations, there are several solutions for accelerating traditional
sockets, with only few being still actively maintained. Typi-
cally, these can come in three different shapes: kernel modules,
native libraries and Java libraries. Since the default NIO
implementation is based on classic sockets, these solutions
can be used to accelerate Java NIO applications. We have
already evaluated some of these solutions, using socket-based
microbenchmarks [31] and compared them to hadroNIO with
another microbenchmark, directly using the NIO API [32].

A. Kernel modules

IP over InfiniBand [10] exposes InfiniBand devices as
standard network interfaces, enabling applications to use them
by simply binding to an IP address, associated with such
a device. This solution does not require any preloading of
libraries, making it the easiest to use. However, it relies on the
kernel’s network stack, thus requiring context switches which
impose a large performance overhead, rendering it unattractive
for applications requiring low latency.

Fastsocket [16] replaces the Linux kernel’s TCP implemen-
tation, aiming to provide better scaling with multiple CPU
cores. It has been evaluated using up to 24 cores using 10
Gbit/s Ethernet NICs, showing much better scalability than
the default TCP implementation. Fastsocket consists of kernel
level optimizations, a kernel module and a user space library. It
requires a custom kernel, based on Linux 2.6.32 and officially
only supports CentOS 6.5, which is outdated by now. While
it would be interesting to see how such an integrated solution

would perform on modern high-speed Ethernet hardware, it
does not seem to be in active development anymore.

B. Native libraries

mTCP [8] is a TCP-stack, running completely in user
space. As Fastsocket, it primarily aims at high scalability,
which it achieves by being independent from the kernel’s
network stack, alleviating the need for context switches in
network applications. Contrary to the other solutions, it is
not transparent and requires rewriting parts of an application’s
network code. It has no official support for Java, but there is
an unofficial binding called JmTCP, based on the Java Native
Interface (JNI). However, it does not seem to be actively
maintained, probably requiring Java applications to manually
access mTCP via JNI or the experimental Foreign Function
& Memory API (Project Panama) [6]. Since it is neither
transparent, nor officially supports Java, mTCP does not fit
our use case of accelerating netty-based applications.

libvma [13] is a library developed in C/C++ by Mellanox,
transparently offloading socket traffic to high-speed Ethernet
or InfiniBand NICs. It can be preloaded to any socket-based
application (using LD PRELOAD), enabling full kernel bypass
without the need to modify an application’s code. However,
libvma requires the CAP NET RAW capability, which might
not be available, depending on the cluster environment.

While it is highly configurable by exposing many parame-
ters, allowing users to tune the library to the needs of a specific
applications, the resulting performance can actually be worse
compared to using the traditional socket implementation, as
we show in Section V. Additionally, the default configuration
is only suited to basic use cases (e.g. single threaded appli-
cations), requiring some time being spent on finding the right
configuration for complex applications, using multiple threads
and connections.

SocksDirect [12] is a closed source library from Microsoft,
written in C/C++. Like libvma, it works by preloading it
to socket-based applications, redirecting socket traffic via a
custom protocol based on RDMA. It also supports acceleration
of intra-host communication via shared memory. It achieves
low latencies and a high throughput by removing large parts
of the synchronization and buffer management involved in tra-
ditional socket communication, while being fully compatible
with linux sockets, even when process forking is involved.

We were able to get access to the source code from the
authors and have successfully tested it with native applications,
but so far we could not get the library working with Java
applications. Additionally, SocksDirect uses the experimental
verbs API, only available in the Mellanox OFED up to version
4.9 [21].

C. Java libraries

The Sockets Direct Protocol) SDP [20] provided transpar-
ent offloading of socket traffic via RDMA, fully bypassing the
kernel’s network stack. It was part of the OFED package and
introduce into the JDK starting with Java 7. However, support

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

54

has officially ended and it has been removed from the OFED
in version 3.5 [19]

Java Sockets over RDMA (JSOR) [3] has been developed
by IBM with the goal to offload all socket traffic of Java
applications to high-speed NICs using RDMA. It is included
in the IBM SDK up to version 8, requiring their proprietary J9
JVM. JSOR is not available in newer SDK versions and while
the old SDK still receives security updates, applications using
features not available in Java 8 cannot be used with JSOR.

While it has shown promising results in our benchmarks,
there are known problems with connections getting stuck [4]
and exceptions [5]. Additionally, we were not able to evaluate
JSOR using a bidirectional connection with separate threads
for sending and receiving. These problems and its reliance
on on proprietary technology limit its usability, especially for
modern applications.

D. Application-specific solutions

Other approaches aim at accelerating network performance
of a specific application or framework. In 2014, a successful
attempt at redesigning Spark’s shuffle engine for RDMA usage
has been made [17] and refined in 2016 [18]. Similar solutions
have been implemented for Apache Storm: In 2019, RJ-Netty
has been proposed as a replacement for netty in Apache Storm
[36], while in 2021 another approach at integrating RDMA
into Storm, based on DiSNi [34] (formerly jVerbs [35]) has
been implemented [38].

While these solutions show, that the performance benefit
for using high-speed networking hardware can be huge, they
are specific to a single framework only and can not be used
for general purpose network programming, like transparent
acceleration libraries.

III. SUPPORTING NETTY IN HADRONIO
While hadroNIO has been working with applications di-

rectly using Java NIO, we encountered new challenges with
netty-based applications. This section presents these chal-
lenges and their solutions, as well as changes in the design
of hadroNIO. For a general overview of our architecture and
the Java NIO API, as well as UCX, we refer to our original
paper [32].

The full application stack for hadroNIO, libvma, IP over In-
finiBand and traditional sockets from netty to NIC is depicted
by Fig. 1.

A. Providing a direct socket reference for netty

A Java NIO SocketChannel provides access to its un-
derlying socket via the socket() method. Since this would
defeat the purpose of NIO, accessing a socket directly via a
channel, is generally not done. However, netty keeps a refer-
ence to the socket of each channel to access its configuration
(e.g. buffer size).

Since hadroNIO directly replaces the default NIO imple-
mentation, there is no underlying socket. In contrast to the
aforementioned transparent acceleration solutions, we con-
sciously chose to intercept traffic at the NIO level, in-
stead of the socket level, since it fits well with the UCX

netty

Default NIO

Sockets

libvmaKernel

IP over
InfiniBand

Network Interface Card

TCP/IP Stack

hadroNIO

JUCX

UCX

Java space

Native space

Application

Fig. 1. Application stack overview

API and has a more modern interface than traditional Java
sockets. In its initial version, hadroNIO would throw an
UnsupportedOperationException when socket()
is called. However, for compatibility with netty, we needed to
provide a workaround for the socket access, which we imple-
mented in the form of two classes called WrappingSocket
and WrappingServerSocket, extending the JDK’s
Socket and ServerSocket classes. They wrap an instance
of a SocketChannel, or ServerSocketChannel re-
spectively, and implement methods to access connection at-
tributes, such as IP addresses and buffer sizes.

Once a connection has been terminated, the respective
socket channel becomes readable, indicated by the OP_READ
flag. However, each attempt at actually reading data from
the channel will return -1, signalling a closed connection.
This behaviour was not implemented in earlier version of
hadroNIO, since it only affects connection termination and
our benchmarks would run without it. However, for full
compatibility with the NIO specifications, we retrofitted it.

B. UCX worker management

UCX uses so called endpoints to represent connections.
However, these endpoints cannot send/receive data on their
own. Instead UCX introduces the concept of workers, which
serve as an abstraction between endpoints and network re-
sources (i.e. NICs). Each worker can be associated with
multiple endpoints.

In the original design of hadroNIO, we used a single worker
for all connections. However, since there is a limit on the
maximum amount of connections a worker can handle, we

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

55

refined our architecture to use multiple workers. Originally,
we planned to use one worker per selector, which appeared
as a natural fit, because a selector is used to query multiple
channels, while a worker can progress multiple endpoints.
However, NIO allows reassigning of channels to different
selectors, which is not possible with UCX endpoints and
workers. Ultimately, we settled on using a single worker per
connection. This added complexity to our selector implemen-
tation, since it now has to poll multiple workers, but makes
channels independent from selectors and allows reassignments.

C. Supporting netty write aggregation
Java NIO offers two methods for sending data via a socket

channel: One only takes a single buffer, while the other one is
prescribed by the interface GatheringByteChannel [7],
thus capable of gathering write operations, accepting an array
of buffers to send. Gathering writes are used heavily by netty
(see chapter IV-B) to bundle multiple send requests into a
single method call, in order to achieve higher throughputs.
However, in the initial hadroNIO version, we implemented the
gathering write method by simply looping over all buffers,
sending each one separately using the single buffer write
method. While this implementation worked correctly, it did
not offer any performance improvements, which is why we
reimplemented it. Now, as many buffers as possible are merged
into a single contiguous space inside hadroNIO’s outgoing ring
buffer, requiring only a single UCX write request to send.
This massively improved throughput rates with netty-based
applications.

IV. BENCHMARK ARCHITECTURE

To evaluate the performance of different acceleration so-
lutions with netty-based applications, we designed and im-
plemented two microbenchmarks, using netty for connection
establishment and data exchange: One is focussed on through-
put while the other implements a ping-pong pattern to measure
round-trip times. The benchmarks are designed to work on two
nodes of a cluster environment with one acting as a server and
one acting as a client. Both support on or multiple connections
between server and client and each connection is handled by a
separate thread. Measurements are taken per connection, and a
final result, taking all measurements into account, is calculated
at the end.

A. Connection setup
The connection setup is similar for both benchmarks: On

startup, the server sets up a server channel to listen for
incoming connections. It then waits until a specified amount of
connections has been established. Once the amount is reached,
all threads start sending messages at the same time (throughput
benchmark) or send a single message to kick off the ping-pong
pattern (latency benchmark). Before the actual benchmark
starts, a tenth of the operations are executed as warm up,
without taking any measurements.

The client on the other side just needs to establish the
specified amount of connections and wait for the server to
start the benchmark.

B. Throughput benchmark

Once all connections are set up, the server starts a separate
thread for each connection, responsible only for sending
messages through the respective channel. Once all warmup
messages are sent, the thread waits for a synchronization
message from the client, signalling that all messages have
been received successfully. Each thread then needs to pass a
barrier, ensuring that all threads start the benchmark at the
same time. After all benchmark messages have been sent,
the client once again sends a signal to server, finishing the
benchmark. Times are measured once after the warmup barrier
has been passed and after the second signal from the client has
been received. allowing us to calculate the average data and
operation throughput rates.

When sending a buffer via netty, it is not transmitted
directly, but first stored in an instance of a class called
ChannelOutboundBuffer [25], which accumulates out-
going write requests. To make sure, that data is actually
transmitted, applications need to manually flush the respective
channel. The data, contained in a buffer, is not copied, but
only references to all outgoing buffers stored. Once netty is re-
quested to perform a flush operation, all buffers are send with a
minimal amount of write operations, using the gathering write
method described in chapter III-C. This aggregation strategy
allows netty to reach high throughputs without requiring any
buffer copies. Our throughput benchmark can be configured
to use a specific interval (e.g. every 64 buffers) for flushing
a channel, allowing us to analyse performance with different
amounts of aggregated buffers.

C. Latency benchmark

The latency benchmark does not start threads on its own,
but makes use of netty’s worker threads. Each time data is
received, a worker thread invokes a method in the respective
handler (instance of ChannelInboundHandlerAdapter
[26]) and once our handler implementation has received a
full message, it issues a write request, following a ping-pong
pattern. We configure netty to start as many worker threads,
as there are connections, with each thread opening its own
selector and connections being assigned to these selectors in
a round-robin fashion. This ensures, that each connection has
its own thread, responsible only for handling requests on that
specific connection. Times are measured before each send call
and after each received message, allowing us to gather the
round-trip latencies of all operations.

V. EVALUATION

This section presents and discusses the evaluation results,
comparing default netty performance using sockets via Ether-
net versus accelerating netty with hadroNIO and libvma using
100 GBit/s high-speed NICs.

A. Evaluation setup

We used the microbenchmarks described in chapter IV
for evaluating messaging performance with netty, regarding
throughput, as well ass round-trip latency in two different

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

56

cluster environments. To test the scalability of each solution,
we increased the connection count step-wise from 1 to 16.

Our benchmark environment consisted of two identical bare-
metal nodes, provided by the Oracle Cloud Infrastructure,
using the HPC Cluster Terraform stack [28]:

CPU 2x Intel(R) Xeon(R) Gold 6154 CPU (18
Cores/36 Threads @3.00 GHz)

RAM 384 GB DDR4 @2933 MHz
NIC Mellanox Technologies MT28800 Family

[ConnectX-5] (100 GBit/s) Ethernet
OS Oracle Linux 7.9 with Linux kernel 3.10.0-

1160
OFED MLNX 5.3-1.0.0.1

Java OpenJDK 17.0.2
UCX 1.12.1

hadroNIO 0.3.2
libvma 9.5.0

Fig. 2. Hardware specification of the OCI systems.

We evaluated throughput and latency with small (16 byte)
mid-sized (1 KiB) and large (64 KiB) messages. For evaluating
throughput, we sent 100 million messages per benchmark run,
while 10 million round-trip operations were executed during
each latency benchmark run. For the large buffers, we used
10 million and 1 million messages respectively and evaluated
with up to 12 connections, to avoid unnecessary long running
benchmarks. The amount of connections is always depicted by
the y-axis, while the x-axis shows the data throughput in MB/s
or GB/s when looking at throughput results, and the round-trip
time in µs when evaluating latency. Each benchmark run was
executed five times and the graph depicts the average values,
while the error bars show the standard deviation.

B. Configuration and Optimizations

Each of the OCI nodes had two CPUs with 18 cores and
36 threads each at its disposal. To optimize performance, we
used the tool numactl to bind the JVM process to the processor,
that the network card is connected to. Since a single CPU has
18 cores, it should not be overwhelmed by 16 connections at
once. The ConnectX-5 NICs were configured to use Ethernet
as the link layer protocol, making them fully compatible with
traditional sockets.

To improve performance regarding the throughput bench-
marks, we did not flush the channels after each written
message, but gave netty the chance to gather multiple message
and send them at once. For small messages, we flushed each
time 64 messages were written and for mid-sized and large
messages, we used intervals of 16 and 4 messages respectively.

To work correctly, libvma needs to either be executed by
the root user or with the CAP NET RAW privilege. We tried
granting CAP NET RAW as described in libvma’s README
file [15], but could not get it to offload traffic. Fortunately,
running as the root user worked in the OCI environment.

Additionally, we set the amount of hugepages to 800
and shmmax to 1000000000, as recommended [15]. Fur-

thermore, libvma exposes a lot of configuration parameters,
settable via environment variables. As endorsed by the lib-
vma wiki, we set VMA RING ALLOCATION LOGIC RX
and VMA RING ALLOCATION LOGIC TX to 20, which
should improve multithreading performance [14]. We also
needed to increase the amount of receive buffers via
VMA RX BUFS to 800000, otherwise the benchmark would
sometimes not finish with 12 or more connections, because
libvma ran out of buffers. For the round-trip measurements,
we set VMA SPEC to latency.

For hadroNIO, we used the default configuration with 8
MiB large ring buffers and a slice length of 64 KiB.

C. Small messages (16 byte)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Connections

0

5

10

15

20

25

30

La
te

nc
y

in

s

Ethernet hadroNIO libvma

Fig. 3. Average round-trip times with 16-byte messages

Starting with 16-byte messages, Fig. 3 shows the round-trip
times for traditional Ethernet, hadroNIO and libvma. As can be
seen, libvma offers the best latency, with almost no overhead
being generated by using multiple connections. Starting with
4.7 µs using a single connection, it still manages to yield
round-trip times of 5.8 µs with 16 parallel connections.

While hadroNIO offers similarly low latencies with few
connections, starting with 6 µs, it breaks the 10 µs mark using
8 connections. From there on, each additional connection adds
around 1 µs of latency.

However, both acceleration solutions offer a substantial
performance improvement over plain Ethernet, which starts at
20 µs using a single connection. Curiously, round-trip times
fall to around 18 µs for 2-4 connections but constantly rise
starting with 5 connections.

The throughput values, depicted by Fig. 4, paint a different
picture. When using only one connection, all three solutions
offer similar performance between 28 and 35 MB/s, with
hadroNIO having a slight advantage. However, with a rising
connection count, the gap between hadroNIO and Ether-
net/libvma grows larger, with libvma even offering slightly
lower throughput values than plain Ethernet. Starting with 13
connections, libvma almost completety stops scaling, reaching
around 250 MB/s, while hadroNIO scales further to 380 MB/s
using 16 connections.

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Connections

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 in

 M
By

te
/s

Ethernet hadroNIO libvma

Fig. 4. Average throughput with 16-byte messages

While libvma offers the smallest round-trip times with
small messages, its throughput rates are slower than using
Ethernet, whereas hadroNIO scales much better than the other
candidates in our throughput benchmark.

D. Mid-sized messages (1 KiB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Connections

0

5

10

15

20

25

30

La
te

nc
y

in

s

Ethernet hadroNIO libvma

Fig. 5. Average round-trip times with 1 KiB messages

Looking at the round-trip times for 1 KiB payloads (see Fig.
5), the three solutions perform almost the same compared to
the 16-byte results, apart from an offset being added to all
latencies. Again, libvma scales almost perfectly, starting with
5.9 µs for a single connection and only rising to 7.4 µs using
16 connections, while hadroNIO starts with 7.6 µs, with slowly
rising latencies up to 10.5 µs using 7 connections and linear
increasing values from there on.

The throughput values, shown in Fig. 6, demonstrate that
hadroNIO again scales well with an increasing amount of
connections, reaching more than 11 GB/s at the end, thus
almost saturating the 100 GBit/s hardware. On the other side,
libvma scales much slower and reaches its top speed of just
3.4 GB/s with 10 parallel connections. The same throughput
can be achieved using hadroNIO with only 4 connections and
even using no acceleration solution at all is substantially faster,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Connections

1
2
3
4
5
6
7
8
9

10
11
12

Th
ro

ug
hp

ut
 in

 G
By

te
/s

Ethernet hadroNIO libvma

Fig. 6. Average throughput with 1 KiB messages

surpassing libvma’s maximum throughput using 5 threads and
reaching around 6.6 GB/s with 16 threads.

To conclude the evaluation of mid-sized messages, libvma
continues to offer the best performance with regards to round-
trip times, but comparing the results of the throughput bench-
mark, it falls behind hadroNIO and even plain Ethernet by
far.

E. Large messages (64 KiB)

1 2 3 4 5 6 7 8 9 10 11 12
Connections

0

50

100

150

200

250

La
te

nc
y

in

s

Ethernet hadroNIO libvma

Fig. 7. Average round-trip times with 64 KiB messages

Continuing with large 64 KiB payloads, the latency results,
depicted by Fig. 7, differ from the previous ones. While libvma
yields the lowest round-trip times for up to 4 connections (44-
69 µs), values increase faster from there on, rising by around
20-25 µs per additional connection. Starting with 9 parallel
connections, libvma performs worse than plain Ethernet and
the gap grows further with an increasing thread count. While
hadroNIO yields higher latencies than libvma for 1-4 connec-
tions (67-76 µs), it offers the best performance using 5 or more
parallel connections, reaching round-trip times of only 94 µs
using 12 threads, while libvma is 2.5 times slower with around
235 µs.

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

58

1 2 3 4 5 6 7 8 9 10 11 12
Connections

4
5
6
7
8
9

10
11
12

Th
ro

ug
hp

ut
 in

 G
By

te
/s

Ethernet hadroNIO libvma

Fig. 8. Average throughput with 64 KiB messages

We close the evaluation, by looking at the throughput values
using 64 KiB messages. Both acceleration solutions offer sim-
ilar performance, managing to saturate the NIC with more than
12 GB/s using 3 or more connections. For a single connection,
libvma is faster with 5.5 GB/s versus 4.6 GB/s, but with 11
and 12 connections, libvma becomes somewhat unstable and
falls slightly behind hadroNIO. Using plain Ethernet offers
acceptable performance, but 12 GB/s cannot be reached and
the results are not stable, with standard deviations sometimes
as high as 1 GB/s.

Concluding the large payload results, both libvma and
hadroNIO are able to saturate the hardware, but regarding
round-trip times, it depends on the amount of connections,
which solution performs best.

VI. CONCLUSTIONS & FUTURE WORK

In this paper, we presented hadroNIO extensions to sup-
port netty and compared the performance of netty based on
hadroNIO versus libvma and traditional sockets over Ethernet
using two microbenchmarks, for evaluating round-trip times
and throughput. Our results show, that hadroNIO offers a
substantial performance improvement over Ethernet on the
same NIC, without needing elevated privileges or complex
configurations. All results were achieved using hadroNIO’s
default configuration values. While libvma offers the lowest
latency with small and mid-sized messages, preloading it to a
netty-based application can actually worsen performance and
it may not be usable in every environment due to it being
dependent on CAP NET RAW or root privileges..

Future work includes evaluating hadroNIO with large netty-
based applications and frameworks, such as Apache Cassandra
and gRPC. We also aim to improve our selector implemen-
tation, by leveraging epoll, since it is currently based on
busy polling. Additionally, we are working on integrating
Infinileap , a UCX binding for Java, based on the experimental
Foreign Function & Memory API (Project Panama) [6], into
hadroNIO to see if the overhead introduced by JNI calls can be
alleviated. Furthermore, we want to evaluate hadroNIO with

GraalVM [29], offering low-cost interoperability between Java
and native code.

VII. ACKNOWLEDGMENT

We thank Oracle for their sponsorship in the context of this
work.
This work was supported in part by Oracle Cloud credits
and related resources provided by the Oracle for Research
program.

REFERENCES

[1] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink™: Stream and batch processing in a single
engine. IEEE Data Eng. Bull., 38:28–38, 2015.

[2] gRPC. https://grpc.io/.
[3] Java Sockets over Remote Direct Memory Access (JSOR).

https://www.ibm.com/docs/en/sdk-java-technology/7?topic=
networking-java-sockets-over-remote-direct-memory-access-jsorl.

[4] IBM. RDMA communication appears to hang.
https://www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-communication-appears-hang.

[5] IBM. RDMA connection reset exceptions. https:
//www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-connection-reset-exceptions.

[6] Project Panama. https://openjdk.java.net/projects/panama/.
[7] Javadoc: GatheringByteChannel. https://docs.oracle.com/javase/7/docs/

api/java/nio/channels/GatheringByteChannel.html.
[8] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and

K. Park. mTCP: a highly scalable user-level TCP stack for multicore
systems. In 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 489–502, Seattle, WA, Apr. 2014.
USENIX Association.

[9] F. P. Junqueira, I. Kelly, and B. Reed. Durability with bookkeeper.
SIGOPS Oper. Syst. Rev., 47(1):9–15, jan 2013.

[10] V. Kashyap. IP over InfiniBand (IPoIB) Architecture. https://www.ietf.
org/rfc/rfc4392.txt, April 2006.

[11] A. Lakshman and P. Malik. Cassandra: A decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, apr 2010.

[12] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang. Socksdirect: Datacenter
sockets can be fast and compatible. In ACM SIGCOMM Conference
(SIGCOMM), August 2019.

[13] libvma GitHub. https://github.com/Mellanox/libvma/.
[14] VMA Parameters. https://github.com/Mellanox/libvma/wiki/

VMA-Parameters.
[15] libvma README. https://github.com/Mellanox/libvma/blob/master/

README.
[16] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi. Scalable kernel

tcp design and implementation for short-lived connections. SIGPLAN
Not., 51(4):339–352, mar 2016.

[17] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda.
Accelerating spark with rdma for big data processing: Early experi-
ences. In 2014 IEEE 22nd Annual Symposium on High-Performance
Interconnects, pages 9–16, 2014.

[18] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda. High-performance
design of apache spark with rdma and its benefits on various workloads.
In 2016 IEEE International Conference on Big Data (Big Data), pages
253–262, 2016.

[19] OFED 3.5 release notes. https://downloads.openfabrics.org/OFED/
release notes/OFED 3.5 release notes.

[20] Sockets Direct Protocol. https://docs.oracle.com/javase/tutorial/sdp/
sockets/index.html.

[21] Statement on support of experimental verbs. https://forums.developer.
nvidia.com/t/verbs-exp-h-no-such-file-or-directory/206300/2.

[22] Netty. https://netty.io/index.html.
[23] Netty related projects. https://netty.io/wiki/related-projects.html.
[24] Netty adopters. https://netty.io/wiki/adopters.html.
[25] Netty Javadoc: ChannelOutboundBuffer. https://netty.io/4.1/api/io/netty/

channel/ChannelOutboundBuffer.html.
[26] Netty Javadoc: ChannelInboundBuffer. https://netty.io/4.1/api/io/netty/

channel/ChannelInboundHandlerAdapter.html.

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

59

[27] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, USENIX ATC’14, page 305–320, USA,
2014. USENIX Association.

[28] Oracle Marketplace: HPC Cluster Terraform Stack. https://
cloudmarketplace..com/marketplace/en US/listing/67628143.

[29] GraalVM. https://www.graalvm.org/.
[30] Apache Ratis. https://ratis.apache.org/.
[31] F. Ruhland, F. Krakowski, and M. Schöttner. Performance analysis

and evaluation of Java-based InfiniBand Solutions. In 2020 19th Inter-
national Symposium on Parallel and Distributed Computing (ISPDC),
pages 20–28, 2020.

[32] F. Ruhland, F. Krakowski, and M. Schöttner. hadronio: Accelerating
java nio via ucx. In 2021 20th International Symposium on Parallel and
Distributed Computing (ISPDC), pages 25–32, 2021.

[33] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, et al. UCX:
an open source framework for HPC network APIs and beyond. In
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,
pages 40–43. IEEE, 2015.

[34] P. Stuedi. Direct storage and networking inter-
face (disni). https://developer.ibm.com/open/projects/
direct-storage-and-networking-interface-disni/, 2018.

[35] P. Stuedi, B. Metzler, and A. Trivedi. jverbs: Ultra-low latency for data
center applications. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SOCC ’13, pages 10:1–10:14. ACM, 2013.

[36] S. Yang, S. Son, M.-J. Choi, and Y.-S. Moon. Performance improvement
of apache storm using infiniband rdma. The Journal of Supercomputing,
75:6804–6830, 2019.

[37] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica. Apache Spark: A Unified Engine
for Big Data Processing. Commun. ACM, 59:56–65, Oct. 2016.

[38] Z. Zhang, Z. Liu, Q. Jiang, J. Chen, and H. An. Rdma-based apache
storm for high-performance stream data processing. International
Journal of Parallel Programming, 49:671–684, 2021.

CHAPTER 3. HADRONIO - TRANSPARENT JAVA NETWORK ACCELERATION

60

Chapter 4

Accelerating big-data applications with
hadroNIO

In this chapter, hadroNIO is evaluated using real-world applications. For this purpose,
performance problems observed in the previous publications were addressed. To this end,
the chapter starts with optimizations in hadroNIO, including performance improvements
for handling many connections.

4.1 Optimizations

While hadroNIO has been tested successfully with Netty and was even able to outperform
libvma in some scenarios, it has also shown performance degradation with a rising amount
of connections when latency is important. To alleviate this, multiple optimizations have
been implemented in hadroNIO. The biggest performance increase has been achieved by
using Infinileap, which is an alternative Java binding for UCX. Instead of using the tradi-
tional Java Native Interface like the official JUCX binding, Infinileap leverages the new
Foreign Function Interface and Foreign Memory API, allowing to interact with native
code more efficiently. By switching from JUCX to Infinileap, the latency increase per ad-
ditional connection, observed in the previous Netty benchmark results, has been shrinked
drastically. More details on the benefits of Infinileap and the new foreign access APIs
are given in the following paper. Infinileap has been developed by Filip Krakowski at the
Operating Systems Group at Heinrich Heine University Düsseldorf [29].

Besides this large improvement, the author spent a lot of time with smaller optimizations,
in order to get the most performance out of hadroNIO. Most of them aim at reducing the
amount of heap allocations, since each chunk of allocated memory may increase the time
needed by the garbage collector. Especially for latency critical applications, it is crucial to
keep garbage collections times as low as possible. Switching to Infinleap, combined with
the other improvements, allow hadroNIO to even outperform libvma in latency focused
scenarios, which was not possible before. The following optimizations have been applied:

Remove anonymous (lambda) functions
Each time an anonymous function is called in Java, a wrapper object for this function is
instantiated and occupies heap memory, burdening the garbage collector. In hadroNIO,
such functions were used as callbacks, which are called each time a message has been sent

61

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

or received. This can easily be avoided by outsourcing these lambda functions into their
own classes, which only get instantiated once per connection.

Reduce message header size
As mentioned in the original hadroNIO paper (see page 47), each message sent by hadro-
NIO is preceded by a header, consisting of the buffer length and an offset, each occupying
4 bytes. This header has been shrinked to 6 bytes, by only using 3 bytes per value. This
reduces the data overhead, introduced by hadroNIO, especially for small buffers. For
example, if a program sends 16 bytes, hadroNIO actually transfers 24 bytes including the
header, resulting in a 50% data overhead. By shaving two bytes off of the header, only 22
bytes are transferred, posing a reduced data overhead of 37.5%. Of course, the benefit of
this optimization becomes negligible with larger buffers, but is a welcome improvement
for small messages.

Use optimized hash set from Agrona library
When iterating over a collection in Java, a new Iterator instance is allocated and used
to iterate over each object, one after another. In hadroNIO, registered selection keys
are stored inside hash sets by the selector. In fact, multiple hash sets are needed: One
to store all registered keys and one to store all keys that are currently selected for an
operation. Furthermore, the selector has two copies of each of these sets. One is des-
ignated for internal use only and the other represents the public view on the keys and
is meant to be accessed by the application. The public key sets are not modifiable, so
that the application is not able to manipulate the selector’s internal state. There is also
a fifth hash set, used to store keys which are due for removal. With a select operation
iterating over the set of all keys and keys due for removal, and the application needing
to iterate over the set of selected keys, at least three iterators are instantiated each time
the application wants to query its socket channels for updates. These allocations can be
bypassed, by using the ObjectHashSet class from Agrona [26], which caches and reuses a
single iterator instance per set. Doing so is highly dangerous for many use cases, because
iterators are not thread safe. However, since the selector is synchronized according to the
NIO guidelines and NIO applications in general do not access the public key sets of one
selector from multiple threads, this approach works well for hadroNIO.

Cache memory segments
This optimization only concerns Infinileap. When working with the new Foreign Memory
API, addresses are not handled as primitive long values, but are wrapped in MemorySegment
instances. This class is used to manage a chunk of memory, denoted by an address and
a size. It provides convenient methods to copy data from other memory segments and to
read and write primitive data types from/to memory. It also makes sure, that accesses
are within the bounds of a specific chunk of memory. Infinileap uses memory segments
to interact with native memory and requires instances of this class to be passed to its
send and receive methods. This results in an allocation of a MemorySegment instance
each time hadroNIO issues a network request to Infinileap. However, at least for receiv-
ing data, this can be alleviated. Since the receive buffer slices have a fixed size and are
reused over and over again, because of the ring buffer mechanism, it is possible to cache
the MemorySegment instances, eliminating the need to allocate a new one for each receive
request. This does not work for send requests, because the size of the buffers slices varies

62

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

and depends on the data sent by the application.

Fix memory leak in JUCX
When working with the Java Native Interface, it is possible to create a global reference
to a Java object from native code. This reference can be used to access and manipulate
the object. An object addressed by such a reference is guaranteed to not be garbage
collected until the reference is deleted manually. JUCX creates a global reference for each
request and passes this reference to the native callback method, which is called when a
request is finished. The reference is needed to manipulate the status of the Java object,
representing the request. Once the native callback is called, it accesses the respective
object and sets the requests status accordingly (i.e finished successfully or an error code).
However, JUCX does not always delete the global reference, so that the garbage collector
is never allowed to free the request object, although it is not needed anymore. This causes
a memory leak on the Java heap, which can cause the JVM to crash over an extended
period of time. Furthermore, garbage collection times are increased, since each of the
leaked objects is still checked by the garbage collector. While it was hard to find the root
of this problem, it could easily be fixed and the bugfix has already been merged into the
official UCX source code [30].

Remove debug log messages
For debugging purposes, hadroNIO uses a lot of log messages, especially in the selector
implementation and when sending/receiving data. These log messages can be deactivated
by setting the log level of the logging framework, but the method for logging these mes-
sages sill gets called. It returns quickly after checking the log level, but still poses a small
overhead, just by being called. Furthermore, the messages themselves are allocated as
strings on the heap, increasing the burden put on the garbage collector. To avoid this
overhead, a static boolean constant, indicating if debug log messages are activated, has
been introduced. Each debug logger call is then moved inside an if-clause, checking if
that static constant is true. At first glance, this sounds like even more overhead is in-
troduced by first checking the constant. However, since the constant’s value is known at
compile-time, the compiler will just completely omit these logger calls, if the value is true.

With all these optimizations applied, hadroNIO itself does not allocate any heap memory
during send, receive and select operations, besides the MemorySegment instances needed
for Infinileap receive requests. However, JUCX and and Infinileap may still cause alloca-
tions (especially JUCX). For example, each time a request is issued via JUCX, an object
used to keep track of the request’s status is allocated and returned. Normally, this is not
a huge problem, since the whole Java programming language is build around allocating
object instances on the heap. Only primitive data type can be stored on the stack, ev-
erything else requires allocated heap memory. Avoiding such allocations is generally hard
and not how Java is intended to be used. However, in the context of high-speed networks,
delays of less than 1 µs are measurable. Thus, hadroNIO aims to be a hyper-thin layer
between Java NIO and OpenUCX, requiring as little resources as possible and not causing
any avoidable delays. Compared to JUCX, Infinileap puts less pressure on the garbage
collector, since it does not allocate any additional objects when sending/receiving mes-
sages.

63

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

With the aforementioned optimizations and the following benchmarks, hadroNIO develop-
ment has been focused on scalable applications, relying on asynchronous communication.
Because of that, the throughput drops observed when using blocking socket channels with
hadroNIO have not been fixed. Blocking socket channels are not widely used, since they
cannot be multiplexed with a selector, like non-blocking socket channels, thus they do
not fit well with large scale applications. They only provide a latency advantage for ap-
plications with only one or few connections and as the previous benchmarks have shown,
hadroNIO works excellent in such scenarios.

4.2 Contributions
The author implemented all optimizations by himself. For the evaluation part, an existing
benchmark was used (Yahoo! Cloud Serving Benchmark [31]). However, some wrapper
code was needed to control the benchmark and convert results into into the CSV-format.
This was also implented by the author. The benchmarked gRPC application is based on a
simple key-value store, supporting only a single server, implemented by Carl Mastrangelo
[32]. It has been modified and transformed into a distributed key-value store, supporting
multiple servers.

The hadroNIO evaluation paper has been written by the author, while Filip Krakowski
and Dr. Michael Schöttner took part in many discussions about the performance anal-
ysis of hadroNIO and provided valuable input regarding some of the applied optimizations.

Infinileap has been developed by Filip Krakowski, who has also written the corresponding
paper. However, the author participated in many discussions about its development and
contributed several bugfixes and improvements.

64

Infinileap: Modern High-Performance Networking
for Distributed Java Applications based on RDMA

Filip Krakowski
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

filip.krakowski@hhu.de

Fabian Ruhland
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

fabian.ruhland@hhu.de

Michael Schöttner
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—In this paper, we propose Infinileap, a modern net-
working framework enabling high-performance memory transfer
mechanisms like Remote Direct Memory Access (RDMA) for
applications written in Java. Infinileap is based on the Open
Communication X (UCX) framework, which is accessed from
Java. This is accomplished through Oracle’s Project Panama,
which is currently in the preview phase and aims to significantly
improve interoperability between Java and "foreign" languages,
such as C. In contrast to often used internal and unsupported
JDK APIs, Project Panama’s APIs are explicitly intended for
use and developers are encouraged to adapt their existing code
accordingly. Using Project Panama, we implement an object
as well as future-oriented framework based on UCX. Our
experiments show that Infinileap and thus Project Panama’s
innovations work reliably and efficiently under heavy load and
also, within benchmarks implemented for this purpose based on
the Java Microbenchmark Harness (JMH), achieve very good
performance results with over 110 million messages per second
and round-trip latencies below two microseconds with a single
ConnectX-5 InfiniBand (single-port) network interface controller.

Index Terms—OpenUCX, Project Panama, Java, InfiniBand,
Remote Direct Memory Access

I. INTRODUCTION

Driven by the ever-increasing demands that modern dis-
tributed applications place on their underlying systems,
RDMA-enabled hardware like InfiniBand is increasingly being
adopted in more and more areas of cloud computing. Public
platforms such as Amazon Web Services or Microsoft Azure
already offer instances that support RDMA. In addition to the
usual advantages such as low latency and high bandwidth,
this type of hardware also offers offloading techniques such
as tag matching or adaptive routing, which relieve the system’s
CPU and thus allow more computing time for application
threads. Work is also in progress on so-called Data Processing
Units (DPUs), which aim to perform data reception and
transmission as well as programmable computations directly
on a SmartNIC like NVIDIA’s Bluefield-2 without having to
use the PCI bus for larger data transfers. All these technologies
have in common that, from the developer’s point of view,
the programming differs significantly from traditional socket
programming.

On the one hand, low-level user-space libraries like libib-
verbs allow full and direct control over InfiniBand hardware,
but on the other hand, these require a lot effort and expertise

on hardware details in order to achieve reasonable results
regarding network latency and throughput - especially for
tuning configuration parameters.

Considering this background, the Unified Communicaton X
(UCX) project was founded by leading industrial as well as
academic institutions, addressing the mentioned challenges[1].
As the name suggests, the project aims to unify network
communication between heterogeneous systems using differ-
ent transport techniques (including RDMA), under a single
abstract interface thus making the aforementioned advantages
more accessible to the masses. Instead of different APIs for
different transports, the developer is provided with one API
for many transports. This allows programs based on the UCX
framework to be executed on different computer and network
architectures without changing the program code.

Many of the Big Data frameworks available today, such as
Apache Spark or Apache Flink, continue to use ordinary socket
communication for data exchange between cluster participants.
This is no different for message broker services such as
Apache Kafka or latency-critical coordination services such
as Apache ZooKeeper. This is not because the developers
behind these projects do not want to use fast interconnects,
but rather because they cannot use them easily. All of the
aforementioned projects are based on the Java platform, which
does not yet offer the possibility of network communication
outside the domain of ordinary sockets. This circumstance
could be improved by the introduction of OpenJDK’s Project
Panama, which pursues the goal of being able to communicate
with native libraries from Java as well as work with native
memory outside the Java domain. Most of the functionality
has already been rolled out with the release of OpenJDK 16
in incubator status and can therefore be tested with the official
releases.

The contribution of this paper is Infinileap, a modern object-
oriented networking framework based on UCX and purely
written in Java. It enables Java-based distributed systems to use
RDMA as well as other functionalities such as tag matching or
atomic operations on remote memory. Unlike previous work,
Infinileap relies on cutting-edge future-proof technologies,
provides users with an easy-to-use API that greatly simplifies
programming in the context of RDMA and is publicly avail-
able under an open-source license[2]. The core focus of our

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

65

framework lies within an easy integration into existing projects
as well as the availability of the source code itself. Initial
experiments also show that the use of this new technology is
efficient and reliable under load. Similarly, we show by means
of our benchmarks running on the Java Virtual Machine (JVM)
that message rates of over 100 million messages per second
between two Network Interface Controllers (NICs) are within
the realm of possibility.

II. RELATED WORK

The idea of accelerating applications in the Java domain by
means of RDMA has already been studied in literature. Very
prominent are custom implementations of the Apache Spark
Shuffle Manager, which distributes the data to be processed
within the Spark cluster, using RDMA for data transport[3]–
[7]. Efforts have also been made to accelerate message broker
services such as Apache Kafka using RDMA[8]. On the
one hand, these implementations offer a high increase in
performance, but on the other hand, they are not publicly
available. Likewise, according to the architectures described,
they are highly tailored to their intended use and thus cannot
be readily deployed in third-party projects.

Another type of accelerated network communication was
also investigated using socket-intercepting plugin mecha-
nisms[9], [10]. In this case, ordinary socket calls were inter-
cepted and passed on to the InfiniBand hardware by means of
suitable operations. A major advantage of this approach is that
the code of existing applications does not have to be modified.
Likewise, however, the user is still bound to the semantics of
ordinary sockets and thus can not explicitly perform RDMA
operations or even control how they are executed by specifying
configuration parameters available at the native layer.

Another research focus, which has formed in the area of
RDMA within the Java domain, is the efficient connection
of native libraries for the use of functionalities which would
not be available otherwise. Many of the solutions imple-
mented in this field establish a Java Native Interface-based
connection to the native libibverbs library in order to be
able to use functionalities of RDMA-capable network cards
on the Java side[11]–[13]. Within the experiments carried
out by the authors, very good results were also achieved in
this case with regard to data throughput, latency as well as
scalability. An important fact that should not be neglected is
that previous projects have always relied on Java’s Unsafe
API for accessing off-heap memory that is not managed by
the Java Virtual Machine, which is not well received within
end-user software[14]. Lastly, there are frameworks providing
a binding for the native libibverbs library based on the Java
Native Interface as well as the Unsafe API, which aim at
making native structs accessible in Java by means of so-called
proxy objects and thus grant access to the functionality of the
native library in a structured way[15].

III. PROJECT PANAMA

The ability to call native functions from Java has been
existing for a long time and has evolved from the Native

Method Interface (NMI) in version 1.0 of the JDK, which
was subsequently removed in version 1.2, to the Java Native
Interface (JNI). The use of the JNI is challenging. As a
basis for the native interface a wrapper around the native
code that is to be called from Java must be implemented
using the native programming language and compiled into a
shared library for all targeted platforms. In addition, during
the implementation of this wrapper code, some important
properties of the JNI must be taken into account, otherwise the
overhead of the interface can have a strong negative impact on
the performance of the application[16], [17]. Likewise, there
are limitations regarding the access to native memory. The
java.nio.ByteBuffer class used for this purpose uses a
32-bit value as the offset for accessing individual values in the
underlying memory block. Since Java also works exclusively
with signed primitive data types, this results in the restriction
that a single memory block can contain a maximum of two
gigabytes of memory. To work around these limitations, many
applications that need to work with native memory resort
to using the JDK’s internal Unsafe APIs, which offer no
guarantees of support or future availability and may crash the
JVM if handled wrong.

Oracle intends to solve these problems with its Project
Panama in the form of a Foreign Linker API[18] as well as a
Foreign Memory Access API[19]. Both components together
allow the developer to call native functions from Java without
adding an additional external layer, as well as manage native
memory without practical size constraints. A central tool
for linking native functionality in Java is Project Panama’s
jextract and its ability to parse C header files of existing
native libraries and generate Java code from them that reflects
the defined functions as well as data structures.

C

jextract

libclang

JAVA

Fig. 1. Jextract’s process of generating native bindings.

The foundation for this is the native libclang library,
which, with the help of components provided by Project
Panama, is used to generate an abstract syntax tree (AST) of
the header file to be processed. Subsequently, the resulting
AST is used to generate Java code that reflects the elements
it contains. This process is depicted in Figure 1. The resulting
source code can be used afterwards to call native functions
and to allocate and manipulate native structs. It should also
be noted that jextract is not a mandatory component,
but merely assists the programmer in creating bindings.
The following basic building blocks are provided by Project
Panama for the integration of native functions as well as data
structures.

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

66

• jdk.foreign.incubator.MemoryAddress

A simple wrapper class which stores a memory address
in the form of a primitive long value.

• jdk.foreign.incubator.MemorySegment

A class that describes a memory segment including its
access rights and owner or associated thread. An instance
of MemorySegment can only be accessed by the associ-
ated thread, but ownership can be given to other threads.

• jdk.foreign.incubator.MemoryAccess

A helper class which allows to read and write individual
values within the memory area of a MemorySegment
instance.

• jdk.foreign.incubator.MemoryLayout

A class which is used to describe layouts within memory.
This is primarily used to describe the layout of native
structs.

• jdk.foreign.incubator.CLinker

A class that allows to look up symbols within
a shared library and link instances of the
java.lang.invoke.MethodHandle class to
them, in order to call them afterwards.

The code generated by jextract uses the preceding
classes to establish the native interface. Building on this code,
we then implement Infinileap.

IV. INFINILEAP ARCHITECTURE

This section describes Infinileap’s design and addresses
which obstacles currently exist, how they are solved, and
which opportunities will exist in the future.

A. Framework Design

Infinileap builds on top of the aforementioned jextract
tool for generating the native interface and offers the
developer an object-oriented API for using UCX. In addition,
some helper functions exist to facilitate the processing of
requests.

Wrapper
Classes

Native
PrimitivesMultiplexing Request

Handling

INFINILEAP

jextract

Context EndpointWorker

UCX

Epoll

SYSTEM

MemorySegment MemoryAccess

PROJECT PANAMA

N
A
T
I
V
E

J
A
V
A

Fig. 2. Infinileap’s architecture and dependencies.

The architecture as well as its individual components and
dependencies are shown in Figure 2 and can be described as
follows.

• Wrapper Classes
The UCX library nearly always works with handles (i.e.
memory addresses) within the high-level API, so that a
high compatibility between the individual versions can
be guaranteed. For these handles, Infinileap provides
wrapper classes that bundle the functions belonging
to the corresponding category (Context, Worker,
Endpoint, etc.) using the bindings generated by
jextract. These wrapper classes extend a common
super class NativeObject, which, by implementing
java.lang.AutoCloseable, allows resources, such
as configuration parameters, to be temporarily created
using try-with-resources statements and automatically
released afterwards. The Infinileap API only accepts
instances of these wrapper classes and thus prevents the
incorrect use of memory addresses which can lead to
segmentation faults and program crashes.

• Multiplexing
The UCX API provides the developer with two
mechanisms for asynchronous processing of requests.
Both use the underlying Worker abstraction of the
framework. The first and simpler variant is to use
existing functions of the framework to wait for new
events of the worker. Internally, the framework uses
multiplexing functions of the operating system for
this purpose. Since it is only possible to wait for a
specific worker and several of these workers can exist,
a filedescriptor belonging to the worker can also be
queried and used for polling with epoll. To provide this
second variant within the Infinileap API, the necessary
epoll functions are also provided using the bindings
generated by jextract at the Java level in the form
of an object-oriented API.

• Native Primitves
Project Panama provides with its MemoryAccess
class the possibility to read and write single values
at specific memory addresses. Since UCX provides
an API for performing atomic operations on 4 and 8
byte values within remote memory, this class is an
excellent foundation for it. To avoid errors in function
calls, classes (referred to as Native Primitives in
Figure 2) are developed that represent primitive values
in the form of objects (similar to Java’s boxing) and
manipulate them using the MemoryAccess class. Just
like the previously mentioned wrapper classes, instances
of these classes are accepted within the Infinileap API
to perform atomic operations on remote memory.

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

67

• Request Handling
Latency-critical systems often work with synchronous
network APIs, since the overhead caused by adding
asynchronous mechanisms is unacceptable. UCX returns
a handle (i.e. memory address) to a request for each
network operation. This can subsequently be used to
query the current status of the operation and thus achieve
very low latency times by means of busy-polling. For this
purpose Infinileap provides helper functions which wait
for the completion of a request by means of busy-polling.
This allows the developer to implement synchronous
communication within an application and at the same
time provides a simple abstraction for processing network
operations.

B. Garbage Collector Overhead

One of the JVM’s mechanisms which can have a negative
impact on performance is garbage collection. In the software
development context, Java’s garbage collector offers a major
advantage over languages without automatic memory manage-
ment. For example, developers do not have to worry about
freeing allocated memory, since it is automatically freed by
the JVM as soon as it is no longer reachable. In performance-
critical systems, however, this process can have a strong
negative impact on the execution of the program. This is due
to the fact that so-called "Stop the World" events occur, which
stop the application threads in the course of cleanup.

Project Panama’s jextract tool generates bindings
which, if a pointer is returned from the native code, create
an instance of the MemoryAddress class and store the
returned value in it. In the case of a few calls, such as
for configuration or establishing connections, this situation
does not have a negative effect, since the garbage collector
only has to release comparatively few objects. When network
operations are executed, which can occur several million times
per second, a large number of references are generated on the
Java heap at the same time, which place a heavy load on the
garbage collector.

We address this problem by using only primitive data types,
which do not create objects in the heap managed by the JVM,
for parameter and return types in the data path (i.e. sending and
receiving data) of our framework. To achieve this we slightly
modify the bindings generated by jextract, in the case
of the data-path functions, so that they return values of type
long (64 bit value) instead of MemoryAddress instances.
This prevents the creation of references to objects that the
garbage collector would otherwise have to clean up leading to
"Stop the World" events.

Another way to address this problem is described by
the Java Enhancement Proposal on so-called Primitive Ob-
jects[20]. Unlike ordinary Java objects, instances of primitive
objects are treated just like primitive data types, and instead
of the Java heap, the stack is used for storage. Since it often
makes sense to encapsulate primitive data types in objects for
abstraction reasons, such as in the case of Project Panama’s
MemoryAddress class, Primitive Objects provide a very

good solution for avoiding garbage collector overhead due to
the elimination of ordinary object overhead, while also being
more memory efficient. After rolling out this new feature,
Project Panama’s MemoryAddress class would be a good
candidate for adoption, as this would eliminate the need
to allocate additional ordinary objects within jextract-
generated bindings for returning memory addresses on the Java
heap.

V. EXPERIMENTS

In this chapter, we first present the architecture of our
implemented benchmarks and show which problems have been
solved. Afterwards, we take a closer look at the test setup and
the subsequent results of all benchmarks and analyze them.

A. Benchmark Implementation

Since Java is a dynamically compiled programming lan-
guage, the runtime behavior is often unpredictable and can
change between individual program calls, which can lead to
unexpected results, especially in the case of benchmarks. For
example, the JVM uses a just-in-time compiler (JIT), which
compiles the generated intermediate code (Java bytecode) into
platform-dependent machine code at runtime. This has the
great advantage that the intermediate code can be analyzed
at runtime and thus optimizations can be made based on
findings from real code behavior. In the context of benchmarks,
however, this behavior can turn into a disadvantage, since the
functions implemented by the developer can, in the worst case,
be removed entirely by optimizations and results thus do not
reflect expectations[21].

In order to address these challenges, the OpenJDK project
provides the Java Microbenchmark Harness[22] (JMH), which
is a framework for the development and execution of bench-
marks written in Java. In addition to many configuration
options as well as a simple API for third-party applications, it
also provides a rich set of examples that present and explain
best practices in benchmark development.

Since JMH’s intended use lies primarily in the area of local
microbenchmarks, we need to add a thin application layer
enabling it for the use in distributed benchmarks over the
network. JMH provides phases for initialization as well as
release of resources, which are very suitable for establishing
connections between network partners. Likewise, the already
existing support for multithreaded benchmarks is used to cre-
ate multiple connections in different threads and for utilizing
the available processor cores.

As a counterpart to the client on which JMH is executed,
we implement a server application that responds to the client’s
requests using a simple protocol and performs appropriate
actions. The basic flow of a benchmark run can be described
as follows.

• SETUP - Phase in which resources such as threads and
buffers are initialized.

1) Send a START_RUN command to tell the server to
start the next or first run.

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

68

REFERENCES

[1] P. Shamis, M. G. Venkata, M. G. Lopez, et al., “Ucx:
An open source framework for hpc network apis and
beyond,” (Aug. 26–28, 2015), IEEE, Aug. 26–28, 2015,
pp. 40–43, ISBN: 978-1-4673-9160-3. DOI: 10 . 1109 /
HOTI.2015.13.

[2] F. Krakowski and F. Ruhland, Infinileap GitHub Reposi-
tory. [Online]. Available: https://github.com/hhu-bsinfo/
infinileap.

[3] B. Liu, F. Liu, N. Xiao, and Z. Chen, “Accelerating
spark shuffle with RDMA,” in 2018 IEEE International
Conference on Networking, Architecture and Storage,
NAS 2018, Chongqing, China, October 11-14, 2018,
IEEE, 2018, pp. 1–7. DOI: 10.1109/NAS.2018.8515724.

[4] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda, “High-
performance design of apache spark with rdma and its
benefits on various workloads,” (Dec. 5–8, 2016), IEEE,
Dec. 5–8, 2016, pp. 253–262, ISBN: 978-1-4673-9006-
4. DOI: 10.1109/BigData.2016.7840611.

[5] H. Li, T. Chen, and W. Xu, “Improving spark perfor-
mance with zero-copy buffer management and rdma,”
(Apr. 10–14, 2016), IEEE, Apr. 10–14, 2016, pp. 33–38,
ISBN: 978-1-4673-9956-2. DOI: 10.1109/INFCOMW.
2016.7562041.

[6] X. Lu, M. Wasi-ur-Rahman, N. S. Islam, D. Shankar,
and D. K. Panda, “Accelerating spark with RDMA for
big data processing: Early experiences,” in 22nd IEEE
Annual Symposium on High-Performance Interconnects,
HOTI 2014, Mountain View, CA, USA, August 26-28,
2014, IEEE Computer Society, 2014, pp. 9–16. DOI:
10.1109/HOTI.2014.15.

[7] Y. Wang, C. Xu, X. Li, and W. Yu, “Jvm-bypass for
efficient hadoop shuffling,” (May 20–24, 2013), IEEE,
May 20–24, 2013, pp. 569–578, ISBN: 978-0-7695-
4971-2. DOI: 10.1109/IPDPS.2013.13.

[8] M. H. Javed, X. Lu, and D. K. Panda, “Cutting the tail:
Designing high performance message brokers to reduce
tail latencies in stream processing,” (Sep. 10–13, 2018),
IEEE, Sep. 10–13, 2018, pp. 223–233, ISBN: 978-1-
5386-8320-0. DOI: 10.1109/CLUSTER.2018.00040.

[9] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krish-
namoorthy, J. Wu, and D. K. Panda, “Sockets direct
protocol over infiniband in clusters: Is it beneficial?,”
(Mar. 10–12, 2004), IEEE, Mar. 10–12, 2004, pp. 28–
35, ISBN: 0-7803-8385-0. DOI: 10.1109/ISPASS.2004.
1291353.

[10] IBM, Java sockets over remote direct memory access.
[Online]. Available: https : / / www. ibm . com / support /
knowledgecenter/SSYKE2_7.1.0/com.ibm.java.lnx.71.
doc/diag/understanding/rdma_jsor.html.

[11] S. Nothaas, K. Beineke, and M. Schoettner, “Leverag-
ing infiniband for highly concurrent messaging in java
applications,” (Jun. 3–7, 2019), IEEE, Jun. 3, 2019,
pp. 74–83, ISBN: 978-1-7281-3802-2. DOI: 10 . 1109 /
ISPDC.2019.00013.

[12] P. Stuedi, B. Metzler, and A. Trivedi, “JVerbs: Ultra-
Low Latency for Data Center Applications,” in Proceed-
ings of the 4th Annual Symposium on Cloud Computing,
ser. SOCC ’13, New York, NY, USA: Association for
Computing Machinery, 2013, ISBN: 9781450324281.
DOI: 10.1145/2523616.2523631.

[13] W. Huang, H. Zhang, J. He, J. Han, and L. Zhang, “Jdib:
Java applications interface to unshackle the communica-
tion capabilities of infiniband networks,” (Sep. 18–21,
2007), IEEE, Sep. 18–21, 2007, pp. 596–601, ISBN:
978-0-7695-2943-1. DOI: 10.1109/NPC.2007.111.

[14] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza,
M. Hauswirth, and N. Nystrom, “Use at your own
risk: The java unsafe API in the wild,” in Proceedings
of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, part of SPLASH
2015, Pittsburgh, PA, USA, October 25-30, 2015, J.
Aldrich and P. Eugster, Eds., ACM, 2015, pp. 695–710.
DOI: 10.1145/2814270.2814313.

[15] F. Krakowski, F. Ruhland, and M. Schöttner, “Neu-
trino: Efficient infiniband access for java applications,”
(Jul. 5–8, 2020), IEEE, Jul. 5–8, 2020, pp. 12–19, ISBN:
978-1-7281-8947-5. DOI: 10.1109/ISPDC51135.2020.
00012.

[16] D. Kurzyniec and V. Sunderam, “Efficient coopera-
tion between java and native codes – jni performance
benchmark,” in In The 2001 International Conference
on Parallel and Distributed Processing Techniques and
Applications, 2001.

[17] M. Dawson, G. Johnson, and A. Low. “Best practices
for using the java native interface.” (Jul. 7, 2009),
[Online]. Available: https://developer.ibm.com/articles/
j-jni.

[18] M. Cimadamore. “Jep 393: Foreign-memory access api
(third incubator).” (Sep. 21, 2020), [Online]. Available:
https://openjdk.java.net/jeps/393.

[19] M. Cimadamore. “Jep 389: Foreign linker api (incu-
bator).” (Jul. 20, 2020), [Online]. Available: https : / /
openjdk.java.net/jeps/389.

[20] D. Smith. “Jep 401: Primitive objects (preview).”
(Aug. 13, 2020), [Online]. Available: https://openjdk.
java.net/jeps/401.

[21] K. Shiv, R. Iyer, C. Newburn, J. Dahlstedt, M. Lager-
gren, and O. Lindholm, “Impact of jit/jvm optimizations
on java application performance,” IEEE, 2003, pp. 5–13,
ISBN: 0-7695-1889-3. DOI: 10 . 1109 / INTERA . 2003 .
1192351.

[22] OpenJDK, Java microbenchmark harness. [Online].
Available: https://github.com/openjdk/jmh.

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

72

Transparent network acceleration for big data
computing in Java

Fabian Ruhland
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

fabian.ruhland@hhu.de

Filip Krakowski
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

filip.krakowski@hhu.de

Michael Schöttner
Department Operating Systems

Heinrich Heine University
Düsseldorf, Germany

michael.schoettner@hhu.de

Abstract—HPC and cloud data centers offer an increasing
amount of cores per CPU, GPUs and high-speed networks like
InfiniBand with up to 400 Gbit/s. Scaling out big-data computing
is mostly limited by the network performance. However, many
big data frameworks are written in Java (often using netty),
which cannot fully exploit the performance of such networks. The
reason is found in Java NIO, which is based on traditional sockets,
while InfiniBand provides ibverbs, a totally different interface, to
the operating system and applications. This challenge has been
addressed by different approaches, providing transparent and
non-transparent acceleration via high-speed NICs, many of them
no longer maintained.

In this paper, we propose hadroNIO, a Java library, providing
transparent network acceleration for Java NIO applications,
based on Unified Communication X (UCX). The latter is written
in C, providing efficient access to different network technologies.
hadroNIO has been extended to use Infinileap for efficiently
accessing UCX. Infinileap is using the new Foreign Function &
Memory APIs of Oracle’s Project Panama to access native code.

Our evaluation results show, that hadroNIO allows netty to
achieve round-trip times of less than 5 µs on a 100 GBit/s network
and efficiently handle hundreds of connections per server. We
compare the raw performance of hadroNIO with traditional Java
sockets and libvma using a netty microbenchmark and include
experiments with gRPC and Apache ZooKeeper. The measure-
ments show, that hadroNIO outperforms existing solutions, while
being transparent for applications and developers.

Index Terms—High-speed Networks, Cloud Computing, Eth-
ernet, InfiniBand, OpenUCX, Java

I. INTRODUCTION

With increasing CPU core counts and the availability of
high-speed networks, distributed applications need to be scal-
able to take advantage of modern hardware. Java and its
library ecosystem provide developers with the tools to write
scalable distributed applications. Programmers can choose to
write low-level network code using Java NIO (e.g. Apache
ZooKeeper [5]), or implement their projects using high-level
RPC frameworks, such as gRPC [4]. However, most modern
big-data Java applications are based on netty [30] (e.g. Apache
Cassandra [18], Apache Bookkeeper [13]), which offers full
control over the data being sent and received, while its event-
driven architecture abstracts the complexity of Java NIO. It
utilizes the CPU to its full potential by executing multiple
event loops, each in its own thread, and distributing connec-
tions evenly over them. Scalability with modern processors is

achieved, by automatically detecting the amount of available
cores and starting an appropriate amount of threads.
Whether developers choose to use Java NIO directly, or base
their projects on netty or an even higher level framework, there
is one major drawback to these solutions, as they are ultimately
based on NIO, which still uses classic sockets for communica-
tion. While this suffices to saturate traditional Gigabit Ethernet
hardware, fully exploiting modern network equipment requires
more sophisticated programming. InfiniBand and high-speed
Ethernet NICs can both be accessed using the native ibverbs
library, which offers full kernel bypass and thus much lower
latencies than the traditional socket API, but implements a
vastly different programming model and cannot be accessed
directly by Java programs.

There have been several attempts at combining the ac-
cessibility of the socket API with the speed of ibverbs, by
implementing libraries, which transparently offload socket
traffic to high-speed networks using the ibverbs API. However,
most of these solutions are not maintained anymore.

To this end, we proposed hadroNIO in 2021 [34], a Java
library, which transparently replaces the default NIO imple-
mentation and offloads traffic via the Unified Communication
X framework. UCX is a native library, providing multiple
communication APIs, including streaming, message passing,
active messaging and rdma, and automatically detects the
fastest network available to send/receive traffic. Developers
can take advantage of a unified set of APIs, while UCX takes
care of the low-level network implementation, supporting for
example InfiniBand, high-speed Ethernet and shared memory.
It can also use classic TCP sockets as a fallback, when no
high-speed interconnect is available.

UCX provides an official Java binding called JUCX, which
is based on the Java Native Interface. For a long time, JNI was
the only way to interface between Java and native code. It al-
lows Java programs to call native functions and provides many
ways to interact with a Java program from native code (e.g.
object creation and method upcalls). However, it is not possible
to call native functions directly, requiring developers to write
glue code. Furthermore, interacting with the JVM from native
code may cause performance issues. While we have shown,
that JNI can be used for fast access to native functionality [15],
it is complex to use and holds several pitfalls for developers.

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

73

To allow for easier interoperability between Java and native
code, the OpenJDK is currently incorporating Project Panama,
which offers new ways to interface between Java and native
functions, and access off-heap memory, aiming to replace the
JNI. The project is available as a preview feature in OpenJDK
20 and can therefore be used with official releases.

Based on Project Panama, we proposed Infinileap in 2021,
a Java library providing access to UCX via the new Foreign
Function & Memory API, as an alternative to JUCX [16].
Since then, we incorporated Infinileap into hadroNIO, allowing
users to choose between acceleration via JUCX for higher
backwards compatibility down to Java 11, or Infinileap for
better performance, but requiring execution on a Java 20 JVM.

The contributions of this paper are:
• Evaluations with hundreds of connections, using a netty-

based microbenchmark, as well as the industry proven
Yahoo Cloud Serving Benchmark [2] on real world appli-
cations.

• Optimizations in hadroNIO and extensions for using
Infinileap

• An overview of existing socket acceleration solutions for
Java

The paper is structured as follows: Section II discusses
related work by presenting existing acceleration solutions.
Section III presents optimizations to hadroNIO for supporting
hundreds of connections and providing low latencies. Section
IV presents the benchmarks used for performance evaluation,
followed by a the results in Section V. Conclusions are
presented in Section VI

II. RELATED WORK

Modern high-speed NICs from Mellanox can be configured
to use either InfiniBand or Ethernet as link layer protocol.
Choosing Ethernet makes these cards fully compatible with
the standard socket API, while still being programmable via
the ibverbs library. Regardless of the link layer protocol,
traditional sockets do not suffice to fully exploit such a NIC.

While we are not aware of any alternative NIO implemen-
tations, there are several solutions for accelerating traditional
sockets, with only few being still actively maintained. Typi-
cally, these can come in three different shapes: kernel modules,
native libraries and Java libraries. Since the default NIO
implementation is based on classic sockets, these solutions
can be used to accelerate Java NIO applications. We have
already evaluated some of these solutions, using socket-based
microbenchmarks [33] and compared them to hadroNIO with
another microbenchmark, directly using the NIO API [34].

A. Kernel modules

IP over InfiniBand [14] exposes InfiniBand devices as
standard network interfaces, enabling applications to use them
by simply binding to an IP address, associated with such
a device. This solution does not require any preloading of
libraries, making it the easiest to use. However, it relies on the
kernel’s network stack, thus requiring context switches which

impose a large performance overhead, rendering it unattractive
for applications requiring low latency.

Fastsocket [23] replaces the Linux kernel’s TCP implemen-
tation, aiming to provide better scaling with multiple CPU
cores. It has been evaluated using up to 24 cores and 10
Gbit/s Ethernet NICs, showing much better scalability than
the default TCP implementation. Fastsocket consists of kernel
level optimizations, a kernel module and a user space library. It
requires a custom kernel, based on Linux 2.6.32 and officially
only supports CentOS 6.5, which is outdated by now. While
it would be interesting to see how such an integrated solution
would perform on modern high-speed Ethernet hardware, it
does not seem to be in active development anymore.

B. Native libraries

mTCP [10] is a TCP-stack, running completely in user
space. As Fastsocket, it primarily aims at high scalability,
which it achieves by being independent from the kernel’s
network stack, alleviating the need for context switches in
network applications. Contrary to the other solutions, it is
not transparent and requires rewriting parts of an application’s
network code. It has no official support for Java, but there is
an unofficial binding called JmTCP, based on the Java Native
Interface (JNI). However, it does not seem to be actively
maintained, probably requiring Java applications to manually
access mTCP via JNI or the experimental Foreign Function
& Memory API (Project Panama) [9]. Since it is neither
transparent, nor officially supports Java, mTCP does not fit
our use case of accelerating netty-based applications.

libvma [20] is a library developed in C/C++ by Mellanox,
transparently offloading socket traffic to high-speed Ethernet
or InfiniBand NICs. It can be preloaded to any socket-based
application (using LD PRELOAD), enabling full kernel bypass
without the need to modify an application’s code. However,
libvma requires the CAP NET RAW capability, which might
not be available, depending on the cluster environment.

While it is highly configurable by exposing many parame-
ters, allowing users to tune the library to the needs of a specific
applications, the resulting performance can actually be worse
compared to using the traditional socket implementation, as
we have shown in previous experiments [35] and it may
even not work at all for some distributed scenarios (see V).
Additionally, the default configuration is only suited to basic
use cases (e.g. single threaded applications), requiring some
time being spent on finding the right configuration for complex
applications, using multiple threads and connections.

SocksDirect [19] is a closed source library from Microsoft,
written in C/C++. Like libvma, it works by preloading it
to socket-based applications, redirecting socket traffic via a
custom protocol based on RDMA. It also supports acceleration
of intra-host communication via shared memory. It achieves
low latencies and a high throughput by removing large parts
of the synchronization and buffer management involved in tra-
ditional socket communication, while being fully compatible
with linux sockets, even when process forking is involved.

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

74

We were able to get access to the source code from the
authors and have successfully tested it with native applications,
but so far we could not get the library working with Java
applications. Additionally, SocksDirect uses the experimental
verbs API, only available in the Mellanox OFED up to version
4.9 [29].

C. Java libraries

The Sockets Direct Protocol) SDP [28] provided transpar-
ent offloading of socket traffic via RDMA, fully bypassing
the kernel’s network stack. It was part of the OFED package
and introduced into the JDK starting with Java 7. However,
support has officially ended and it has been removed from the
OFED in version 3.5 [27]

Java Sockets over RDMA (JSOR) [6] has been developed
by IBM with the goal to offload all socket traffic of Java
applications to high-speed NICs using RDMA. It is included
in the IBM SDK up to version 8, requiring their proprietary J9
JVM. JSOR is not available in newer SDK versions and while
the old SDK still receives security updates, applications using
features not available in Java 8 cannot be used with JSOR.

While it has shown promising results in our benchmarks,
there are known problems with connections getting stuck [7]
and exceptions [8]. Additionally, we were not able to evaluate
JSOR using a bidirectional connection with separate threads
for sending and receiving. These problems and its reliance on
proprietary technology limit its usability, especially for modern
applications.

netty

Default NIO

Sockets

libvmaKernel

IP over
InfiniBand

Network Interface Card

TCP/IP Stack

hadroNIO

JUCX/
Infinileap

UCX

Java space

Native space

Application

Fig. 1. Application stack overview for different acceleration solutions

D. Application-specific solutions

Other approaches aim at accelerating network performance
of a specific application or framework. In 2014, a successful
attempt at redesigning Spark’s shuffle engine for RDMA usage
has been made [25] and refined in 2016 [26]. Similar solutions
have been implemented for Apache Storm: In 2019, RJ-Netty
has been proposed as a replacement for netty in Apache Storm
[38], while in 2021 another approach at integrating RDMA
into Storm, based on DiSNi [36] (formerly jVerbs [37]) has
been implemented [39].

While these solutions show, that the performance benefit
for using high-speed networking hardware can be huge, they
are specific to a single framework only and can not be used
for general purpose network programming, like transparent
acceleration libraries.

III. HADRONIO OPTIMIZATIONS

In our past benchmark results, we saw that hadroNIO
provides a substantial acceleration for netty-based applications
regarding throughput and is able to saturate high-speed NICs.
While it also yields very low round-trip times of around 5 µs
when only a single connections is used, latencies rise fast with
an increasing amount of connections, making libvma the better
solution for applications, that rely on low latency transfers of
small messages [35]. Since then, we focused on decreasing
round-trip times and provide much better scalability.

A. Faster UCX access via Project Panama

UCX provides an official Java binding called JUCX, which
is based on JNI. While JUCX provides full access to the
native API, it does not call native methods in an optimized
fashion. JNI requires creating a native wrapper library, which
can be called from Java code and handles the interaction with
the desired native functions. The wrapper library also has
the ability to interact with the JVM, for example by creating
and manipulating Java objects. However, fast access to native
functionality is best achieved by keeping the wrapper code
short and performing as little upcalls to Java space as possible
[17] [3]. Unfortunately, the native part of JUCX performs a
lot of interactions with the JVM, such as object manipulation,
throwing exceptions, as well as creation and deletion of global
references, slowing down general JUCX performance.

Project Panama avoids such pitfalls, by omitting the need
for a wrapper library. Instead it provides a Foreign Function
Interface, enabling Java programs to directly call functions
from native libraries, such as UCX. Additionally, the Foreign
Memory Interface allows to manipulate off-heap memory from
Java space. This way, Java programs can access native struc-
tures and process return values coming from native functions.

In 2021, we proposed Infinileap an alternative Java binding
for UCX, based on Project Panama, providing ultra-low round
trip times of less than 2µs and offering great scalability with
multiple connections [16]. It successfully utilizes the Foreign
Function Interface to efficiently call native UCX functions
and makes use of the Foreign Memory Interface to interact
with native off-heap structures, returned by these functions.

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

75

Furthermore, Infinileap avoids some design decisions, made
by JUCX, that lead to a lower performance. For example,
send and receive requests are generally processed in an
asynchronous manner by UCX. The programmer can either
manually check if a request is finished, or register a callback
to be notified about a completion. UCX may however decide
to directly process small requests to achieve lower latencies.
In these cases, it will ignore the callback and instead signal
the completion via the return value. However, in case of such
an immediate request completion, JUCX will manually call
the registered Java callback, thus performing an unnecessary
upcall. This is done to simplify the API, but comes at the cost
of increased latencies, limiting performance. Infinileap on the
other hand, provides a true representation of the native UCX
API, allowing programmers to leverage the full potential of
the UCX framework.

B. Integrating epoll support

Asynchronous network requests in UCX are handled by
workers. Each worker can have multiple connections associ-
ated with it and in order to be notified about completed re-
quests, the programmer must call progress(). This method
will gather all finished requests on a specific worker and call
the associated callback of each request. It can be called in a
blocking or non-blocking way, where blocking lets the calling
thread sleep until a request is finished (or aborted) and non-
blocking returns directly, regardless of request states. In UCX,
connections are represented by endpoints. Each endpoint must
be associated with a worker at the time of its creation, and
cannot be transferred to another worker at a later time. Because
of this, hadroNIO uses one worker per connection, instead
of one worker per selector. This forces us to use the non-
blocking version of progress(), because by calling the
blocking version on one worker, we might miss events on
other workers, which would lead to stuck connections. This
busy polling implementation works best, when the amount
of network threads does not exceed the amount of CPU
cores. While it provides very low latencies, we encountered
problems when opening hundreds of connections between two
nodes, with connection setup times taking over one second per
connection. Furthermore, this approach wastes CPU resources,
since the selector is working without interruption, even when
there is no event to be polled from a worker.

To mitigate these effects, we implemented epoll-based
polling. By using epoll, one can monitor multiple file de-
scriptors at once (including event file descriptors). The calling
thread sleeps until there is an update on at least one of the
descriptors and receives a list of descriptors ready for I/O,
once it is woken. UCX workers use event file descriptors
internally for their blocking progress() implementation
and also expose them via a getter-function. This feature was
only available in the native UCX library, but we wrapped it
in Infinileap and also ported this functionality to JUCX [12].
However, epoll is not available with the standard Java tools.
In order to use it, we leveraged the open source library linux-

epoll.java, which exposes native epoll functionality via the
Java Native Access library [24] [11].

While epoll might help saving resources, letting a thread
sleep and wakeup costs time and affects latency negatively,
especially with only a few active connections. Once an event
has been processed, it is advisable to keep the thread active
for a short amount of time, so that following events can
be processed faster. Our epoll-based selector implementation
respects that, by using busy polling first, and leveraging epoll
after no event has ben processed for a configurable amount of
time (default: 20 µs).

IV. BENCHMARKS

We evaluated hadroNIO in three different scenarions using
a netty-based microbenchmark, a distributed key-value store
build on top of gRPC [4] and ZooKeeper [5]. This chapter
elaborates on the different applications and benchmarks used
for these experiments.

A. Netty Microbenchmark
Our microbenchmark measures round-trip times using netty.

It runs on two nodes (server/client) and supports an arbitrary
number of connections. All communication is done directly in
the netty channel handlers. Once a handler reads an incoming
message from a channel, it directly sends an answer. This
way, no additional threads are needed and the benchmark
solely uses the netty worker threads, allowing us to saturate
the CPU with a number of threads matching the number of
logical cores, but not overwhelming it with too many threads.

B. gRPC Key-Value Store
gRPC is a framework to perform remote procedure calls

in distributed systems [4]. It uses HTTP/2 as its transport
protoctol and supports multiple programming languages. Its
Java implementation is based on netty, rendering it a candidate
for acceleration via hadroNIO. However, by default gRPC
uses netty’s epoll-based channel implementation, instead of the
NIO-based one. This can easily be changed, but needs updates
in a few lines of the application’s setup code. Receiving
requests is handled by a netty worker thread pool, while a
separate executor thread pool performs the requested method
calls. Both are configurable by the programmer.

To evaluate gRPC performance we implemented a dis-
tributed key-value store, originally based on the example code
by Carl Mastrangelo [1]. We implemented safe access from
multiple clients at once by using a ConcurrentHashMap
and enhanced the store with support for multiple servers, by
implementing client-side static hashing and distributing keys
over servers according to their hash values.

For benchmarking, we decided to use the Yahoo! Cloud
Serving Benchmark (YCSB) [2], an industry approved bench-
mark for evaluating (distributed) cloud databases. It expects
data to be stored in records, which have unique keys assigned
with them and each record containing an arbitrary number of
fields. During the benchmark, records are read (or updated)
and the time for each operation is measured. Results can be
given as a histogram or time series.

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

76

C. Apache ZooKeeper

Apache ZooKeper is a highly reliable hierarchical key-value
store, used for coordination of distributed cloud services [5].
Data is stored on disk and can be replicated on multiple
servers to increase reliability. The values are organized in
nodes and the key naming scheme follows a hierarchical
structure, resembling a filesystem. ZooKeeper uses the Java
NIO API directly, instead of being built on top of netty. Like
gRPC, it uses one thread pool for network communication,
called the selector thread pool, and one worker thread pool
for performing I/O. It may however be configured to do all
work inside the selector threads and omit second thread pool.

The YCSB repository contains an official binding for
ZooKeeper, making it the obvious choice for our evaluation.

V. EVALUATION

This sections presents the evaluation results, comparing
hadroNIO based on Infinileap and JUCX with libvma and
classic sockets using 100 GBit/s high-speed NICs.

A. Evaluation setup

We used our netty microbenchmark, as well as the YCSB
(described in chapter IV) to evaluate application performance.
We look at two types of figures: For scalabilty evaluation,
we use graphs with an increasing amount of connections on
the x-axis, and either the round-trip time in microseconds
or the operation throughput on the y-axis. In such cases,
all benchmark runs were executed 5 times and the graphs
depict average values with the error bars showing the standard
deviation. To get a better idea of the latency variation, we
also executed time series benchmarks using the YCSB with a
granularity of 1 ms and a fixed connection count. We depcit
the results as scatter plots with the elapsed time in seconds on
the x-axis and the request time in microseconds on the y-axis.
We cut off the first 30 seconds as warmup time.

All experiments were performed on identical nodes, pro-
vided by the Oracle Cloud Infrastructure, using the HPC
Cluster Terraform stack [31].

CPU 2x Intel(R) Xeon(R) Gold 6154 CPU (18
Cores/36 Threads @3.00 GHz)

RAM 384 GB DDR4 @2933 MHz
NIC Mellanox Technologies MT28800 Family

[ConnectX-5] (100 GBit/s) Ethernet
Storage Oracle 6.4 TB NVMe SSD v2

OS Oracle Linux 8.7 with Linux kernel 4.18.0-425
OFED MLNX 5.4-3.6.8.1

Java OpenJDK 20.0.1
UCX 1.14.1

libvma 9.8.30

Fig. 2. Hardware specification of the OCI systems.

Each of the OCI nodes disposes of two CPUs in distinct
sockets, which can hurt performance, if applications are not
aware of that. To avoid such problems, we used the tool

numactl to pin our benchmark processes to the CPU, which
the network card is connected to. For our gRPC scenario, we
started two servers on one node, with each server instance
being pinned to an individual CPU.

Regarding libvma, some setup is needed for it to
work properly. To accommodate that, we set the amount
of hugepages to 16384, as recommended by the libvma
readme file [22] (shmmax was already pre-configured with
a high enough value). Furthermore, we followed the in-
structions in the official libvma wiki and set the en-
vironment variables VMA RING ALLOCATION RX and
VMA RING ALLOCATION TX to 20, while also increasing
the amount of receive buffers to 2000000 to improve per-
formance with multiple network threads [21]. For the netty
micro-benchmark, we set VMA SPEC to latency, while in the
other scenarios, libvma performed better without it. Lastly,
we ran our benchmarks with root privileges, when using
libvma, because just granting CAP NET RAW did not work
as described.

For hadroNIO, we used the default configuration with 8
MiB large send and receive buffers and a buffer slice length
of 64 KiB.

B. Netty microbenchmark results

We used our netty microbenchmark to measure round-trip
times with 16 byte messages and up to 512 connections in
increments of 8. However, for libvma we do not have results
for more than 96 connections, because we faced problems with
hanging connections, causing the benchmark to not finish. This
also occurred with less connections, forcing us to restart the
benchmark multiple times, but when using more than 100 con-
nections, it happened so often, that it was not practical to get
more libvma results. Furthermore, we aborted the benchmark
with hadroNIO based on JUCX at 128 connections, because
it became so slow, that letting it run further would haven
taken too long. To achieve such a high connection count with
hadroNIO, we used our epoll-based selector implementation.
We configured netty to use 36 worker threads, matching the
amount of logical CPU cores available.

11 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Connections

0

25

50

75

100

125

150

175

La
te

nc
y

in

s

Ethernet
hadroNIO (Infinileap)

hadroNIO (JUCX) libvma

Fig. 3. Netty microbenchmark round-trip times with 16 byte messages

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

77

Depicted by Fig. 3, we see hadroNIO and libvma starting
very close to each other, with hadroNIO based on Infinileap
having a marginal advantage over libvma (4.5 µs vs. 4.7 µs)
and our JUCX-based solution yielding slightly higher latencies
of around 5.6 µs. However, all perform better than classic
Ethernet which needs almost 25 µs on average per iteration.

Going further, latencies rise fast using JUCX and getting
even slower than Ethernet from 32 connections onward. With
Infinileap, round-trip times climb slowly, staying under 10
µs up to 80 connections, with the gap between hadroNIO
(Infinileap) and libvma also growing slowly. libvma breaks
10 µs at 32 connections and the last result we got for it is
around 19 µs with 96 connections. At that point, the Infinileap-
based solution still yields latencies of 11-12 µs, while Ethernet
measures 65 µs and JUCX is by far the slowest with 126 µs.

Going over 100 connections, the values rise moderately for
hadroNIO, but never exceed 45 µs, even with more than 500
connections. We can see a slight sawtooth pattern coming from
the use epoll. Each time a multiple of 36, which matches the
amount of active worker threads, is reached, it performs best
and latencies rise up to the next multiple of 36, where a slight
drop, of at maximum 5 µs, can be observed.

Overall, hadroNIO based on Infinileap performs by far the
best, offering a 5x performance improvement over Ethernet for
up to 256 connections, and still a 3.5x improvement with 512
connections. The official Java binding for UCX, (JUCX) seems
overwhelmed by this synthetic scenario, while libvma offers
good performance but cannot handle over 100 connections.

C. gRPC key-value store benchmark results

For our gRPC evaluation, we started two key-value store
servers on one node, each pinned to an individual CPU and
three clients on different nodes requesting data from the
servers. To evaluate performance with small values, we took
the YCSB workload configuration workload C and altered it to
use records containing only a single 16 byte field, with 1000
records being distributed evenly over the two servers. Each
client started off with a single benchmark thread performing
1 million get requests, and added one thread and another 1
million requests with each iteration. At the end, each client
had 36 active connections to each server, equalling a total
amount of 216 connections being managed by the server
node’s HCA. On the server side, we used 18 netty worker
threads and 18 executor threads to process the method calls,
while each client also started 18 netty worker threads and one
YCSB benchmark thread per connection. We found that in this
scenario, hadroNIO performs best with a busy polling selector,
so we used that instead of the epoll-based selector used
in the netty microbenchmark. Unfortunately, we experienced
problems with hanging connections when using libvma during
some benchmark runs and with more than 5 benchmark threads
per client, exceptions in netty’s HTTP/2 module occurred. Due
to this, we decided to exclude libvma from the scalability test.
However, we can get an idea of libvma’s performance with
gRPC from Fig. 5.

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Connections per client

100

200

300

400

500

Th
ro

ug
hp

ut
 in

 K
Op

er
at

io
ns

/s

Ethernet hadroNIO (Infinileap) hadroNIO (JUCX)

Fig. 4. gRPC key-value store request times 3 clients and 1x16 byte records

Starting with 1 connection per client (6 connections in total),
we see a speedup of around 70% for hadroNIO based on JUCX
compared to classic sockets (∼50 KOp/s vs. ∼29 KOp/s, see
Fig 4). Using Infinileap yields another 3.5 KOp/s over JUCX,
resulting in a total performance gain of more than 80%. With
a rising amount of connections, the absolute gap between
hadroNIO and Ethernet grows further, reaching around 100
KOp/s with 10 connections per client, amounting to a 50%
improvement. It reaches its maximum around 16 connections
with a difference of more than 150 KOp/s.

Interestingly, the difference between JUCX and Infinileap
ist much smaller, compared to the netty microbenchmark.
JUCX is still generally slower than Infinileap throughout the
benchmark (e.g. ∼426 KOp/s vs. ∼454 KOp/s with 16 con-
nections per client), but in terms of scalability, both solutions
perform similarly. Round-trip times in gRPC are much higher
than in our netty microbenchmark, starting at around 50µs.
This results in less pressure on the JVM, caused by object
allocations and upcalls from the native part of JUCX. We
think, that for this reason the performance difference between
JUCX and Infinileap is much less drastic here.

With 28 or more connections per client, there is virtually no
difference between using hadroNIO with JUCX or Infinileap.
From there on, we can see no more throughput growth, as
it seems like a point of saturation has been reached. When
increasing the connection count further, hadroNIO manages to
maintain a stable rate of 500-530 KOp/s. With 36 connections,
Ethernet ist still slower than hadroNIO with around 495
KOp/s, but the difference is smaller than before.

Fig. 5 presents an in-depth look at gRPC request latencies
using the same setup as before, with 3 connections per client
(18 connections in total). Ethernet not only yields the slowest
performance, but also has more spread out values than the ac-
celeration libraries, with request times generally lying between
90 and 110 µs and a considerable amount of requests even
reaching up to 130 µs. As the slowest acceleration solution,
libvma still outperforms classic sockets, with most requests
being served in less than 90 µs and some reaching answer
times of less than 75 µs. However, the best performance is

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

78

based on gRPC and Apache ZooKeeper using the YCSB.
Our results show, that hadroNIO is able to outperform libvma
in each of these scenarios. Furthermore, libvma has shown
problems with high connection counts, not being able to finish
all of our benchmarks, while also requiring root privileges.

Depending on the workload, hadroNIO yields an increase
in performance of roughly 50% over classic Ethernet sockets
and can scale with hundreds of connections in gRPC. For
Apache ZooKeeper we saw a 2-3x speedup. Looking at the
netty microbenchmark results, one can see that there is much
acceleration potential left for real-world applications, with
hadroNIO being able to achieve average round-trip times of
10 µs with around 100 connections working concurrently.

Our benchmark results show, that Infinileap, based on
Project Panama, performs better than the JNI-based JUCX. In
our netty microbenchmark, JUCX has shown unusable perfor-
mance, even being slower than classic Ethernet with more than
32 connections. However, in our gRPC and ZooKeeper tests,
JUCX performs admirably, albeit still slower than Infinileap.

Future plans include a more in-depth evaluation of
ZooKeeper performance in different scenarios, as well as
performing benchmarks with other real-world applications.
Successful tests with Apache Ratis [32] and Apache Book-
Keeper [13] have already been executed.

VII. ACKNOWLEDGMENT

We thank Oracle for their sponsorship in the context of this
work.

This work was supported in part by Oracle Cloud credits
and related resources provided by the Oracle for Research
program.

REFERENCES

[1] Carl Mastrangelo. gRPC Key Value store. https://github.com/
carl-mastrangelo/kvstore.

[2] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC ’10, page 143–154,
New York, NY, USA, 2010. Association for Computing Machinery.

[3] M. Dawson, G. Johnson, and A. Low. Best practices for using the java
native interface.

[4] gRPC. https://grpc.io/.
[5] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-

free coordination for internet-scale systems. In Proceedings of the
2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, page 11, USA, 2010. USENIX Association.

[6] Java Sockets over Remote Direct Memory Access (JSOR).
https://www.ibm.com/docs/en/sdk-java-technology/7?topic=
networking-java-sockets-over-remote-direct-memory-access-jsorl.

[7] IBM. RDMA communication appears to hang.
https://www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-communication-appears-hang.

[8] IBM. RDMA connection reset exceptions. https:
//www.ibm.com/docs/en/sdk-java-technology/7?topic=
problems-rdma-connection-reset-exceptions.

[9] Project Panama. https://openjdk.java.net/projects/panama/.
[10] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and

K. Park. mTCP: a highly scalable user-level TCP stack for multicore
systems. In 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 489–502, Seattle, WA, Apr. 2014.
USENIX Association.

[11] Java Native Access. https://github.com/java-native-access/jna#readme.
[12] UCX Pull Request 8453. https://github.com/openucx/ucx/pull/8453.

[13] F. P. Junqueira, I. Kelly, and B. Reed. Durability with bookkeeper.
SIGOPS Oper. Syst. Rev., 47(1):9–15, jan 2013.

[14] V. Kashyap. IP over InfiniBand (IPoIB) Architecture. https://www.ietf.
org/rfc/rfc4392.txt, April 2006.

[15] F. Krakowski, F. Ruhland, and M. Schöttner. Neutrino: Efficient
infiniband access for java applications. In 2020 19th International
Symposium on Parallel and Distributed Computing (ISPDC), pages 12–
19, 2020.

[16] F. Krakowski, F. Ruhland, and M. Schöttner. Infinileap: Modern high-
performance networking for distributed java applications based on rdma.
In 2021 IEEE 27th International Conference on Parallel and Distributed
Systems (ICPADS), pages 652–659, 2021.

[17] D. Kurzyniec and V. Sunderam. Efficient cooperation between java and
native codes – jni performance benchmark. In In The 2001 International
Conference on Parallel and Distributed Processing Techniques and
Applications, 2001.

[18] A. Lakshman and P. Malik. Cassandra: A decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, apr 2010.

[19] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang. Socksdirect: Datacenter
sockets can be fast and compatible. In ACM SIGCOMM Conference
(SIGCOMM), August 2019.

[20] libvma GitHub. https://github.com/Mellanox/libvma/.
[21] VMA Parameters. https://github.com/Mellanox/libvma/wiki/

VMA-Parameters.
[22] libvma README. https://github.com/Mellanox/libvma/blob/master/

README.
[23] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi. Scalable kernel

tcp design and implementation for short-lived connections. SIGPLAN
Not., 51(4):339–352, mar 2016.

[24] linux-epoll.java. https://github.com/helins/linux-epoll.java.
[25] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda.

Accelerating spark with rdma for big data processing: Early experi-
ences. In 2014 IEEE 22nd Annual Symposium on High-Performance
Interconnects, pages 9–16, 2014.

[26] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda. High-performance
design of apache spark with rdma and its benefits on various workloads.
In 2016 IEEE International Conference on Big Data (Big Data), pages
253–262, 2016.

[27] OFED 3.5 release notes. https://downloads.openfabrics.org/OFED/
release notes/OFED 3.5 release notes.

[28] Sockets Direct Protocol. https://docs.oracle.com/javase/tutorial/sdp/
sockets/index.html.

[29] Statement on support of experimental verbs. https://forums.developer.
nvidia.com/t/verbs-exp-h-no-such-file-or-directory/206300/2.

[30] Netty. https://netty.io/index.html.
[31] Oracle Marketplace: HPC Cluster Terraform Stack. https://

cloudmarketplace..com/marketplace/en US/listing/67628143.
[32] Apache Ratis. https://ratis.apache.org/.
[33] F. Ruhland, F. Krakowski, and M. Schöttner. Performance analysis

and evaluation of Java-based InfiniBand Solutions. In 2020 19th Inter-
national Symposium on Parallel and Distributed Computing (ISPDC),
pages 20–28, 2020.

[34] F. Ruhland, F. Krakowski, and M. Schöttner. hadronio: Accelerating
java nio via ucx. In 2021 20th International Symposium on Parallel and
Distributed Computing (ISPDC), pages 25–32, 2021.

[35] F. Ruhland, F. Krakowski, and M. Schöttner. Accelerating netty-based
applications through transparent infiniband support, 2022.

[36] P. Stuedi. Direct storage and networking inter-
face (disni). https://developer.ibm.com/open/projects/
direct-storage-and-networking-interface-disni/, 2018.

[37] P. Stuedi, B. Metzler, and A. Trivedi. jverbs: Ultra-low latency for data
center applications. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SOCC ’13, pages 10:1–10:14. ACM, 2013.

[38] S. Yang, S. Son, M.-J. Choi, and Y.-S. Moon. Performance improvement
of apache storm using infiniband rdma. The Journal of Supercomputing,
75:6804–6830, 2019.

[39] Z. Zhang, Z. Liu, Q. Jiang, J. Chen, and H. An. Rdma-based apache
storm for high-performance stream data processing. International
Journal of Parallel Programming, 49:671–684, 2021.

CHAPTER 4. ACCELERATING BIG-DATA APPLICATIONS WITH HADRONIO

80

Chapter 5

Conclusions and Outlook

The following chapter concludes this thesis, by summarizing the achievements, that have
been accomplished for network performance in Java. Furthermore, an outlook for possible
future work with regards to further enhancements to Java NIO is provided.

5.1 Achievements

The thesis provides an overview of existing solutions for using high-speed networks with
Java, with a focus on InfiniBand. Both transparent acceleration libraries, as well as direct
Java bindings for the native ibverbs libraries are presented and benchmarked against each
other. The results show, that each of the transparent solutions comes with its own set of
problems, ranging from high latencies (IP over InfiniBand) and limited throughput (lib-
vma) to general problems, causing connections to hang or crash (JSOR). Regarding the
verbs-based libraries, a similar impression is gained, with both jVerbs and DiSNI showing
massive problems when it comes to messaging. The only library showing good perfor-
mance across all results is neutrino, where the author of this thesis contributed. Neutrino
avoids the problems jVerbs and DiSNI have, while providing a simpler API compared to
the Stateful Verbs Methods of IBM’s solutions.

However, working with the low-level ibverbs API is challenging and a lot of groundwork
is required for building scalable network applications upon it. Therefore, the Unified
Communication X (UCX) Framework was chosen as a basis for this thesis’ main project.
It provides a network agnostic API, supporting multiple high-speed interconnects and is
maintained by a large consortium.

The Java ecosystem already provides many networking frameworks and big data appli-
cations, including Netty, looking upon years of development and a large community of
developers, so it was not deemed feasible by the author to compete against them. The ob-
jective was to provide a transparent way of integrating high-speed networks into the Java
ecosystem, without the problems that existing solutions have. This has been achieved
by developing hadroNIO, replacing the default Java NIO implementation with a new ap-
proach, based on UCX.

During this thesis, hadroNIO has been successfully tested with well-known Java frame-
works, namely Netty, gRPC and Apache ZooKeeper. Evaluation results with 100 GBit/s

81

CHAPTER 5. CONCLUSIONS AND OUTLOOK

hardware show, that Netty accelerated by hadroNIO can achieve end-to-end round-trip
times of less than 5 µs with small messages and a single connection. hadroNIO scales
very well, which is proven by the results shown in the evaluation paper (see page 76),
where it was able to provide average round-trip times of less than 10 µs with 80 active
connections, outperforming existing solutions.
Furthermore, hadroNIO works well with hundreds of connections, where other solutions
fail to yield comparable performance or do not work at all.
When used with real-world applications, hadroNIO has proven its capabilities by accel-
erating gRPC by more than 50% over using traditional sockets and drastically lowered
response times of Apache ZooKeeper. Compared to libvma, hadroNIO performs better in
all benchmarked scenarios without the need for complex configuration, while not requiring
any elevated priviliges and being much more compatible with the tested applications (see
pages 77-78). It truly acts as a link between the high-level world of Java big data comput-
ing and the low-level environment of high-speed networking in HPC systems, combining
ease-of-use and high performance into a single transparent library.

5.2 Future Work
hadroNIO can be evaluated with more real applications. For example, successful tests with
the log-structured distributed storage service Apache BookKeeper [7] and the consensus
library Apache Ratis [33] have been done, but an in-depth performance analysis is still
needed. Apache BookKeeper is an especially interesting showcase, since it relies on Apache
ZooKeeper for metadata management. In such a rather complicated setup, hadroNIO has
to accelerate two different distributed applications communicating with each other. First
tests have shown, that such a setup works, proving hadroNIO’s compatibility with the
NIO standard.
Since gRPC acceleration is already working, any projects based on gRPC could be ac-
celerated and benchmarked. One such project is Apache Arrow, more specifically its
communication framework Arrow Flight RPC. Apache Arrow specificies a standardized
columnar data format, tailored towards in-memory analytics and query processing [34].
Arrow Flight RPC provides high-performance remote procedure calls for transferring Ar-
row data, built on top of gRPC [35]. It would be interesting to see, how hadroNIO can
improve performance in such a complex application stack.
Furthermore, newer InfiniBand hardware with up to 400 GBit/s is available by now. This
could enable even lower latencies for Java networking and especially large-scale distributed
applications, accelerated by hadroNIO, could profit from the increased bandwidth.

Besides these obvious directions, there is also a more interesting route to explore: While
hadroNIO enables Java applications to fully exploit messaging performance of high-speed
networks, there is still no official support for Remote Direct Memory Access (RDMA)
in Java. In Chapter 2, some libraries allowing to access the native ibverbs API, includ-
ing RDMA functionality, from Java are presented. However, working with the ibverbs
interface is complex and none of these solutions are actively maintained anymore. An
alternative strategy might be to enhance the NIO API with RDMA semantics, allowing
developers to access remote memory without having to learn a new API from scratch. It
would be interesting to see, how well RDMA directives can be integrated into the socket
interface provided by Java NIO.

82

CHAPTER 5. CONCLUSIONS AND OUTLOOK

83

Acronyms

ACK Acknowledgement

API Application Programming Interface

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSV Comma Separated Values

DiSNI Direct Storage and Network Interface

gRPC gRPC Remote Procedure Calls

HCA Host Channel Adapter

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

IB InfiniBand

IP Internet Protocol

IPoIB Internet Protocol over InfiniBand

JDK Java Development Kit

JNI Java Native Interface

JFS Java Fast Sockets

JIB Java InfiniBand Benchmark

JSON JavaScript Object Notation

JSOR Java Sockets over RDMA

JVM Java Virtual Machine

MPI Message Passing Interface

MSG Message

MTU Maximum Transmission Unit

84

CHAPTER 5. CONCLUSIONS AND OUTLOOK

NACK Negative Acknowledgement

NIC Network Interface Card

NIO New Input/Output

OCI Oracle Cloud Infrastructure

OFED OpenFabrics Enterprise Distribution

OP Opertation

OSU Ohio State University

RAM Random Access Memory

RC Reliable Connected

RDMA Remote Direct Memory Access

RNR Receiver Not Ready

RPC Remote Procedure Call

RoCE Remote Direct Memory Access over Converged Ethernet

RTT Round Trip Time

SDK Software Development Kit

SSD Solid State Disk

SDP Sockets Direct Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UCX Unified Communication Framework X

UD Unreliable Datagram

UDP Unreliable Datagram Protocol

UI User Interface

YCSB Yahoo! Cloud Serving Benchmark

85

Bibliography

[1] M. T. Inc., “Introduction to Infiniband”, 2003.

[2] M. Zaharia, R. S. Xin, P. Wendell, et al., “Apache Spark: A Unified Engine for Big
Data Processing”, Commun. ACM, vol. 59, pp. 56–65, Oct. 2016.

[3] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas,
“Apache flink™: Stream and batch processing in a single engine”, IEEE Data Eng.
Bull., vol. 38, pp. 28–38, 2015.

[4] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage system”,
SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, Apr. 2010, issn: 0163-5980.
doi: 10.1145/1773912.1773922. [Online]. Available: https://doi.org/10.1145/
1773912.1773922.

[5] K. Beineke, S. Nothaas, and M. Schöttner, “Dxnet: Scalable messaging for multi-
threaded java-applications processing big data in clouds”, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:250921021.

[6] Netty, https://netty.io/index.html.

[7] F. P. Junqueira, I. Kelly, and B. Reed, “Durability with bookkeeper”, SIGOPS Oper.
Syst. Rev., vol. 47, no. 1, pp. 9–15, Jan. 2013, issn: 0163-5980. doi: 10.1145/
2433140.2433144. [Online]. Available: https://doi.org/10.1145/2433140.
2433144.

[8] gRPC, https://grpc.io/.

[9] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free coordina-
tion for internet-scale systems”, in Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, ser. USENIXATC’10, Boston, MA: USENIX
Association, 2010, p. 11.

[10] Fabian Ruhland, Observatory, https://github.com/hhu-bsinfo/observatory.

[11] P. Shamis, M. G. Venkata, M. G. Lopez, et al., “UCX: an open source framework
for HPC network APIs and beyond”, in 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, IEEE, 2015, pp. 40–43.

[12] Fabian Ruhland, hadroNIO, https://github.com/hhu-bsinfo/hadronio.

[13] Filip Krakowski, Fabian Ruhland, neutrino, https://github.com/hhu-bsinfo/
neutrino.

[14] Maurizio Cimadamore, Alex Buckley, John Rose, Paul Sandoz, Brian Goetz, Foreign
Function & Memory API (Preview), https://openjdk.org/jeps/424.

[15] Filip Krakowski, Fabian Ruhland, infinileap, https://github.com/hhu-bsinfo/
infinileap.

86

https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://api.semanticscholar.org/CorpusID:250921021
https://netty.io/index.html
https://doi.org/10.1145/2433140.2433144
https://doi.org/10.1145/2433140.2433144
https://doi.org/10.1145/2433140.2433144
https://doi.org/10.1145/2433140.2433144
https://grpc.io/
https://github.com/hhu-bsinfo/observatory
https://github.com/hhu-bsinfo/hadronio
https://github.com/hhu-bsinfo/neutrino
https://github.com/hhu-bsinfo/neutrino
https://openjdk.org/jeps/424
https://github.com/hhu-bsinfo/infinileap
https://github.com/hhu-bsinfo/infinileap

BIBLIOGRAPHY

[16] Fabian Ruhland, Detector, https://github.com/hhu-bsinfo/detector.

[17] Fabian Ruhland, jDetector, https://github.com/hhu-bsinfo/jdetector.

[18] Zeyd Ben-Halim, Eric S. Raymond, Jürgen Pfeifer, Thomas E. Dickey, ncurses,
https://invisible-island.net/ncurses/announce.html.

[19] Fabian Ruhland, ib-scanner, https://github.com/hhu-bsinfo/ib-scanner.

[20] S. Nothaas, F. Ruhland, and M. Schöttner, A benchmark to evaluate infiniband
solutions for java applications, 2019. arXiv: 1910.02245 [cs.NI].

[21] P. Stuedi, B. Metzler, and A. Trivedi, “Jverbs: Ultra-low latency for data center
applications”, in Proceedings of the 4th Annual Symposium on Cloud Computing,
ser. SOCC ’13, ACM, 2013, 10:1–10:14.

[22] P. Stuedi, Direct storage and networking interface (disni), https://developer.
ibm . com / open / projects / direct - storage - and - networking - interface -
disni/, 2018.

[23] F. Krakowski, F. Ruhland, and M. Schöttner, “Neutrino: Efficient infiniband access
for java applications”, in 2020 19th International Symposium on Parallel and Dis-
tributed Computing (ISPDC), 2020, pp. 12–19. doi: 10.1109/ISPDC51135.2020.
00012.

[24] F. Ruhland, F. Krakowski, and M. Schöttner, “Performance analysis and evalu-
ation of Java-based InfiniBand Solutions”, in 2020 19th International Symposium
on Parallel and Distributed Computing (ISPDC), 2020, pp. 20–28. doi: 10.1109/
ISPDC51135.2020.00013.

[25] Openucx documentation, https://openucx.org/documentation/.

[26] Agrona github, https://github.com/real-logic/Agrona.

[27] E. Stang, Hadronio pull request by edwin stang, https://github.com/hhu-bsinfo/
hadroNIO/pull/3.

[28] P. Rudenko, Observatory pull request by peter rudenko, hhttps://github.com/
hhu-bsinfo/observatory/pull/1.

[29] F. Krakowski, F. Ruhland, and M. Schöttner, “Infinileap: Modern high-performance
networking for distributed java applications based on rdma”, in 2021 IEEE 27th
International Conference on Parallel and Distributed Systems (ICPADS), 2021,
pp. 652–659. doi: 10.1109/ICPADS53394.2021.00087.

[30] UCX Pull Request 8829, https://github.com/openucx/ucx/pull/8829.

[31] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-
marking cloud serving systems with ycsb”, in Proceedings of the 1st ACM Sym-
posium on Cloud Computing, ser. SoCC ’10, Indianapolis, Indiana, USA: Asso-
ciation for Computing Machinery, 2010, pp. 143–154, isbn: 9781450300360. doi:
10.1145/1807128.1807152. [Online]. Available: https://doi.org/10.1145/
1807128.1807152.

[32] Carl Mastrangelo, gRPC Key Value store, https://github.com/carl-mastrangelo/
kvstore.

[33] Apache Ratis, https://ratis.apache.org/.

87

https://github.com/hhu-bsinfo/detector
https://github.com/hhu-bsinfo/jdetector
https://invisible-island.net/ncurses/announce.html
https://github.com/hhu-bsinfo/ib-scanner
https://arxiv.org/abs/1910.02245
https://developer.ibm.com/open/projects/direct-storage-and-networking-interface-disni/
https://developer.ibm.com/open/projects/direct-storage-and-networking-interface-disni/
https://developer.ibm.com/open/projects/direct-storage-and-networking-interface-disni/
https://doi.org/10.1109/ISPDC51135.2020.00012
https://doi.org/10.1109/ISPDC51135.2020.00012
https://doi.org/10.1109/ISPDC51135.2020.00013
https://doi.org/10.1109/ISPDC51135.2020.00013
https://openucx.org/documentation/
https://github.com/real-logic/Agrona
https://github.com/hhu-bsinfo/hadroNIO/pull/3
https://github.com/hhu-bsinfo/hadroNIO/pull/3
hhttps://github.com/hhu-bsinfo/observatory/pull/1
hhttps://github.com/hhu-bsinfo/observatory/pull/1
https://doi.org/10.1109/ICPADS53394.2021.00087
https://github.com/openucx/ucx/pull/8829
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://github.com/carl-mastrangelo/kvstore
https://github.com/carl-mastrangelo/kvstore
https://ratis.apache.org/

BIBLIOGRAPHY

[34] Apache arrow, https://arrow.apache.org/docs/index.html.

[35] Arrow flight rpc, https://arrow.apache.org/docs/format/Flight.html.

88

https://arrow.apache.org/docs/index.html
https://arrow.apache.org/docs/format/Flight.html

Eidesstattliche Erklärung
laut §5 der Promotionsordnung vom 15.06.2018

Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzuläs-
sige fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter wissenschaftlicher
Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist. Die aus fremden
Quellen direkt oder indirekt übernommenen Inhalte wurden als solche kenntlich gemacht.
Die Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner anderen
Fakultät eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternom-
men. Ich versichere weiterhin, dass alle von mir gemachten Angaben wahrheitsgemäß
und vollständig sind.

Düsseldorf, 16.01.2024

Fabian Ruhland

	Introduction
	Motivation and Background
	Context
	Infiniband & Java

	Research Contributions
	Publications
	Software

	Project Hermes
	Thesis Structure

	Observatory benchmark
	A unified InfiniBand benchmark
	InfiniBand monitoring
	Neutrino
	Contributions

	hadroNIO - Transparent Java network acceleration
	Java NIO and Netty overview
	OpenUCX overview
	Transparency challenges
	Contributions

	Accelerating big-data applications with hadroNIO
	Optimizations
	Contributions

	Conclusions and Outlook
	Achievements
	Future Work

	Bibliography

