Aus der Klinik für Anästhesiologie der Heinrich-Heine-Universität Düsseldorf Direktor: Univ. Prof. Dr. med Benedikt Pannen

Der Einfluss von Natriumthiosulfat auf die mitochondriale Funktion und den oxidativen Stress im septischen Rattenmodell

Dissertation

zur Erlangung des Grades eines Doktors der Medizin der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf

> vorgelegt von Yasin Danyal Kanatli 2024

Als Inauguraldissertation gedruckt mit Genehmigung der Medizinischen Fakultät der Heinrich-Heine-Universität Düsseldorf

gez.:

Dekan: Prof. Dr. med. Nikolaj Klöcker

Erstgutachter: Prof. Dr. med. Olaf Picker

Zweitgutachter: PD Dr. med. Joël Aissa

There must be a beginning of any great matter, but the continuing unto the end until it be thoroughly finished yields the true glory.

Sir Francis Drake 1587

Teile dieser Arbeit wurden veröffentlich:

J. Schulz, S. Kramer, Y. Kanatli, A. Kuebart, I. Bauer, O. Picker, C. Vollmer, R. Truse, A. Herminghaus; 2021 Sodium Thiosulfate Improves Intestinal and Hepatic Microcirculation Without Affecting Mitochondrial Function in Experimental Sepsis. Frontiers in Immunology; DOI: 10.3389/fimmu.2021.671935

Zusammenfassung

Einleitung: Die Mortalität der Sepsis, insbesondere des septischen Schocks mit Multiorganversagen (MODS) bleibt trotz einer leitliniengerechten Therapie hoch. [1] Beim Entstehen eines MODS spielen die mitochondriale Dysfunktion und der oxidative Stress eine entscheidende Rolle. [2] Eine Verbesserung dieser Komponenten könnte neue Therapieziele in der Sepsis darstellen. Es ist bekannt, dass ein erhöhter endogener H2S-Spiegel die Mortalität bei Schweinen im hämorrhagischen Schock und bei Mäusen, während einer LPS-Endotoxämie senken kann. [3; 4] Besonders die mitochondriale Funktion und der oxidative Stress werden durch H₂S positiv beeinflusst. [5; 6] Die Applikation von Natriumthiosulfat (STS) ist eine geeignete Methode, um den H₂S -Spiegel zu erhöhen und die beobachteten Effekte lassen sich durch die Blockade des ATP-abhängigen Kaliumkanals (K_{ATP}) mit Hilfe des Sulfonylharnstoffs Glibenclamid (GL) aufheben. [4; 7; 8] Welchen Einfluss ein erhöhter H₂S-Spiegel während einer Sepsis hat, wurde bislang nicht untersucht. Das Ziel dieses Projekts war es zu klären, wie sich ein medikamentös herbeigeführter Anstieg des endogenen H₂S-Spiegels im septischen Rattenmodell auf die mitochondriale Funktion und den oxidativen Stress in der Leber und im Colon auswirkt und ob GL die Wirkungen von STS aufhebt. Methoden: Nach Genehmigung durch die zuständige Behörde (AZ: 84-02.04.2015.A538) wurden 40 männliche Wistar-Ratten in 4 Gruppen randomisiert: 1. Kontrolle (Jonosteril/DMSO), 2. STS (1 g/kg in DMSO; i.p.), 3. GL (5 mg/kg in DMSO; i.p.), 4. STS + GL. Alle Gruppen erhielten eine abdominelle Sepsis mittels einer Colon Ascendens Stent Peritonitis (CASP)-Operation. Direkt nach dieser OP und 24h später erhielten die Tiere per intraperitonealer Injektion jeweils die oben angegebene Medikation. Nach der zweiten Injektion erfolgte die Re-Laparotomie, eine 120-minütige Messung der hämodynamischen und mikrozirkulatorischen Parameter und abschließend die Organentnahmen für die Messung der mitochondrialen Funktion und des oxidativen Stresses. Die mitochondriale Funktion wurde mittels Respirometrie in Gewebshomogenaten (Leber und Colon) erfasst, während der oxidative Stress indirekt über eine Bestimmung des Malondialdehyds in den Gewebeproben gemessen wurde. Unter Zugabe von Substraten für Komplex I (Glutamat + Malat) und Komplex II (Succinat) der Atmungskette konnte die basale (State 2) und nach Addition von ADP die maximale (State 3) Geschwindigkeit der oxidativen Phosphorylierung (OXPHOS) gemessen werden. Respiratory Control Ratio (RCR = State 3/State 2) und ADP/O Ratio (zugegebenes ADP/verbrauchter Sauerstoff) wurden als Parameter der mitochondrialen Funktion berechnet. Statistik: Kruskal-Wallis-Test mit Dunns Post-hoc-Test, p<0,05 wurde als signifikant betrachtet.

Ergebnisse: STS führte zu keiner Veränderung der mitochondrialen Funktion oder des oxidativen Stresses im Vergleich zur Kontrollgruppe. Die Blockade des K_{ATP} -Kanals durch GL hatte dabei sowohl mit als auch ohne STS keinen Effekt auf die erhobenen Parameter.

Schlussfolgerung: Die pharmakologische Erhöhung des endogenen H₂S-Spiegels durch STS während einer experimentell induzierten abdominellen Sepsis bei Ratten scheint keinen protektiven Effekt auf die mitochondriale Funktion oder den oxidativen Stress in Leber und Colon zu haben.

Abstract

Introduction: Sepsis is still a relevant problem in the intensive care. The mortality remains high especially by septic shock resulting in a multi organ failure syndrome (MODS). [1] As possible mechanisms underlying the MODS are considered mitochondrial dysfunction and increased oxidative stress. [2] The modulation of these states could be a new target of the sepsis therapy. Studies showed that a higher concentration of hydrogen sulfide (H₂S) can lead to reduced mortality by hemorrhagic shock in pigs and had the same effect by endotoxemia in mice. [3; 4] The protective effect of H₂S on mitochondrial dysfunction and oxidative stress are well known. [5; 6] The application of the drug sodium thiosulfate (STS) has been recognized as an effective technique to increase the concentration of endogenous H₂S, while the antagonization of the ATP-dependent potassium channel (K_{ATP}) with the sulfonylurea glibenclamide (GL) removed the observed effects of H₂S. [4; 7; 8] It is unknown, whether a higher H₂S concentration has positive effects during sepsis. The aim of our project was to find out how a higher H₂S concentration and whether the effects of STS are antagonizable by GL.

Methods: After getting the official authorization (AZ: 84-02.04.2015.A538) 40 male Wistar rats were randomized in 4 experimental groups: 1. control (Jonosteril/DMSO), 2. STS (1 g/kg in DMSO; i.p.), 3. GL (5 mg/kg in DMSO; i.p.), 4. STS+GL. All animals got a colon ascendens stent peritonitis (CASP)-surgery to induce abdominal sepsis. The medication was applied by intraperitoneal injection immediately after the CASP-surgery and 24 h later. The second application was followed by the relaparotomy, 120 min experiment for assessment of haemodynamic and microcirculatory variables and finally by the organ removal for the measurement of the mitochondrial function and oxidative stress. The mitochondrial function was measured in tissue homogenates (liver and colon) using respirometry and the oxidative stress was assessed indirectly by measuring the concentration of malondialdehyde (MDA) in the shock frozen tissue samples. Substrates to stimulate complex I (glutamate+malate) and complex II (succinate) to assess the basal O₂ consumption (State 2) of oxidative phosphorylation (OXPHOS) and additionally ADP for the maximum O₂ consumption (State 3) have been added. Respiratory Control Ratio (RCR = State 3/State 2) and ADP/O Ratio (added ADP/consumed oxygen) were calculated to evaluate the mitochondrial function. Statistics: Kruskal-Wallis test + Dunn's multiple comparison test, p < 0.05 was considered significant.

Results: STS affect neither the mitochondrial function nor the oxidative stress in relation to the control group. The antagonization of the K_{ATP} -Channel also had no effect on the measured parameters.

Conclusion: The pharmacological raise of the endogenous H_2S -concentration seems to have no protective effect on the mitochondrial function or the oxidative stress in liver and colon during an abdominal sepsis in a rodent model.

Abkürzungsverzeichnis

3-MOPS	3-(N-Morpholino)-1-Propansulfonsäure
3-MP	3-Mercaptorpyruvat
3-MST	3-Mercaptopyruvat-Sulfurtransferase
ADP	Adenosindiphosphat
ATP	Adenosintriphosphat
BSA	Bovines Serumalbumin
CASP	Colon Ascendens Stent Peritonitis
CAT	Cystein-Aminotransferase
CBS	Cystathionin-β-Synthase
СССР	Carbonylcyanid-m-chlorphenylhydrazon
cGMP	cyclisches Guanosinmonophosphat
CLP	cecal ligation and puncture
CO	Kohlenstoffmonoxid
CSE	Cystathionin-7-Lyase
DIC	Disseminierte intravasale Koagulopathie
dl	Deziliter
DNA	Desoxyribonukleinsäure
DNBS	2,4-dinitrobenzene sulfonic acid
EDTA	Ethylendiamintetraessigsäure
EGTA	Ethylenglycol-bis(aminoethylether)-N-,N,N',N'-Tetraessigsäure
ER	Endoplasmatisches Retikulum
FADH	Flavin Adenin Dinukleotid
FELASA	Federation for Laboratory Animal Science Association
FiO ₂	Inspiratorische Sauerstofffraktion
GCS	Glasgow Coma Scale
GH	Growth Hormone
GL	Glibenclamid
H_2S	Schwefelwasserstoff
HSP90	Heat Shock Protein 90
IFN-γ	Interferon y
IL1	Interleukin 1
IL6	Interleukin 6

IL10	Interleukin 10
iNOS	induzierbare NO-Synthase
К-АТР	ATP-abhängiger Kaliumkanal
KCl	Kaliumchlorid
KH ₂ PO ₄	Kaliumdihydrogenphosphat
КОН	Kaliumhydroxid
LPS	Lipopolysaccharid
MAP	mittlerer Arterieller Druck
MDA	Malondialdehyd
mg	Milligramm
mmHg	Millimeter Quecksilbersäule
mmol	Millimol
MODS	Multiorganversagen (multi organ dysfunction syndrome)
Na ₄ P ₂ O ₇	Tetrasodiumpyrophosphat
NAD+	Nikotinamid Adenin Dinukleotid
NADH	Nikotinamid Adenin Dinukleotid Hybrid
NADPH	Nikotinamid Adenin Dinukleotid Phosphat
NaHS	Natriumhydrogensulfid
NF-ĸB	Nuclear Factor kappa-light-chain-enhancer of activated B-cells
NO	Stickstoff Monoxid
Nrf2	Nuclear factor erythroid 2-related factor 2
ОР	Operation
OXPHOS	Oxidative Phosphorylierung
PALP	Pyridoxalphosphat
PAMP	Pathogen Associated Molecular Patterns
P _a O ₂	Sauerstoffpartialdruck
PGC-1a	Peroxisome proliferator-activated receptor gamma coactivator 1α
PRR	Pattern Recognition Receptor
qSOFA	quick Systemic Organ Failure Assessment
RCR	Respiratory Control Ratio
rcf	relative Zentrifugalbeschleunigung
RNS	Reactive Nitrogen Species
ROS	Reactive Oxygen Species
SIRS	Systemic Inflammatory Response Syndrome

SOD	Superoxid Dismutase
SOFA	Systemic Organ Failure Assessment
SQR	Sulfid Ubiquinon Oxidoreduktase
SRSS	Septic Rat Severity Score
STS	Natriumthiosulfat (Sodium Thiosulfate)
TBA	Thiobarbitursäure
TFAM	mitochondrialer Transkriptionsfaktor A
TGF-β	Transforming Growth Factor
TNF-α	Tumornekrosefaktor α
ZETT	Zentrale Einrichtung für Tierforschung und wissenschaftliche Tierschutzaufgaben

Inhaltsverzeichnis

Z	ısamme	enfas	sung	I	
A	bstract.			.II	
A	bkürzur	ngsve	rzeichnis	III	
1	Einle	eitun	g	. 1	
	1.1	Defi	nition Sepsis	. 1	
	1.2	Epid	lemiologie der Sepsis	. 2	
	1.3	Path	ophysiologie der Sepsis	. 2	
	1.4	Natr	iumthiosulfat	. 6	
	1.5	Glib	enclamid und KATP-Kanal	10	
	1.6	Frag	estellung	11	
2	Mate	erial	und Methoden	12	
	2.1	Tier	experimenteller Teil (AZ: 84-02.04.2015.A538).	12	
	2.1.1		Versuchstiere	12	
	2.1.2	2	CASP-OP	13	
	2.1.3	3	Organentnahme	13	
	2.2	Labo	prexperimenteller Teil	14	
	2.2.1		Herstellung der Homogenate	14	
	2.2.2	2	Bestimmung der Proteinkonzentration	14	
	2.2.3	3	Messung der mitochondrialen Funktion mithilfe der Respirometrie	15	
	2.2.4	ł	Messung der Malondialdehyd-Konzentration	17	
	2.3	Mate	erialliste	19	
	2.3.1		Materialien des tierexperimentellen Abschnitts	19	
	2.3.2	2	Materialien des laborexperimentellen Abschnitts	19	
	2.3.3	3	Chemikalien des laborexperimentellen Abschnitts	21	
	2.3.4	ł	Lösungen und Puffer	22	
3	Erge	bnis		24	
	3.1	Mito	ochondriale Funktion	24	
	3.2	Oxic	lativer Stress	28	
4	4 Diskussion				
	4.1 Methodendiskussion				
	4.2 Ergebnisdiskussion				
5	5 Schlussfolgerung				
6	6 Literaturverzeichnis				
A	Abbildungsverzeichnis				
A	nhang			45	
	6.1	Sept	ic Rat Severity Score	45	

1 Einleitung

1.1 Definition Sepsis

Die Definition der Sepsis wurde in der Vergangenheit mehrmals überarbeitet und aktualisiert. Zunächst wurden die Kriterien des *Systemic Inflammatory Response Syndrome* (SIRS) verwendet, um die Diagnose Sepsis zu stellen. Zu diesen Kriterien gehören eine erhöhte Herzfrequenz (> 90 /min), eine Tachypnoe (Atemfrequenz > 20/min) bzw. eine Hyperventilation, bei der ein CO₂ Partialdruck (pCO₂) unter 32 mmHg vorhanden ist und eine Leukozytose (> 12.000 /µl) bzw. Leukopenie (< 4.000 /µl). Neben diesen Faktoren wurden sowohl eine Hyper- als auch Hypothermie (Körpertemperatur > 38 °C bzw. < 36 °C) und ein Anteil an unreifen neutrophilen Granulozyten von über 10% miteinbezogen [9]. Traten diese Kriterien in Kombination mit einer Infektion auf, sprach man von einer Sepsis.

2016 wurden diese Kriterien aufgrund der geringen Spezifität reevaluiert. Patienten erfüllen die SIRS-Kriterien beispielsweise auch nach einem Myokardinfarkt oder körperlicher Aktivität [10]. Eine Task Force der *Surviving Sepsis Campaign* definierte die Sepsis als lebensbedrohliche Organdysfunktion, die aus einer dysregulierten Immunantwort des Wirtes resultiert [11]. Die SIRS-Kriterien werden dementsprechend nicht mehr in der Diagnostik verwendet. Stattdessen wird hier der *Sequential Organ Failure Assessment* (SOFA) Score angewendet, um eine Organdysfunktion festzustellen und deren Ausmaß zu erfassen (Tabelle 1). Zu den beurteilten Organen gehören das Gehirn, die Leber, die Niere und die Lunge. Außerdem wird neben den Organen auch die Kreislauffunktion in Form des mittleren arteriellen Drucks bzw. des bestehenden Bedarf an Katecholaminen beurteilt. Je nach gemessenem Laborwert wird diesen Kriterien ein Schweregrad der Dysfunktion mit einem Score zwischen 0 und 4 zugeordnet. Erhöht sich der Score in Assoziation mit einem Infekt um mehr als zwei Punkte, spricht man von einer Sepsis [12].

Um das Risiko einer Sepsis früh genug und ohne großen apparativen Aufwand zuordnen zu können, gibt es den *quick Sequential Organ Failure Assessment* (qSOFA) Score. Dieser beinhaltet drei Kriterien: Erhöhte Atemfrequenz (> 22/min), verminderte Vigilanz und einen erniedrigten systolischen Blutdruck (< 100 mmHg). Eine prognostisch ungünstige Form der Sepsis, die mit einer erhöhten Mortalität einhergeht, ist der septische Schock. Definitionsgemäß befindet sich ein Patient im septischen Schock, wenn der mittlere arterielle Druck (MAP) trotz einer Therapie mit Katecholaminen und einer ausreichenden Volumentherapie unter einen Wert von 65 mmHg fällt und/oder der Serum Laktat-Spiegel den Wert von 2 mmol/l überschreitet [11].

Organ	Parameter	1 Punkt	2 Punkte	3 Punkte	4 Punkte
Lunge	P _a O ₂ / FiO ₂	< 400	< 300	< 200	< 100
_	(mmHg)				
Niere	Serum-Kreatinin	1,2 - 1,9	2 - 3,4	3,5 - 4,9 oder	> 5 oder Anurie
	(mg/dl)			Oligurie	
Leber	Bilirubin (mg/dl)	1,2 - 1,9	2-5,9	6 – 11,9	> 12
Gehirn	GCS	13-14	10 - 12	6 - 9	< 6
Blutbild	Thrombozyten	< 150	< 100	< 50	< 20
	(/nl)				
Kreislauf	MAP (+	< 70	niedrige	mittlere	hohe
	Katecholamine)		Katecholamindosis	Katecholamindosis	Katecholamindosis

Tabelle 1: SOFA-Score Lunge: Horovitz-Quotient, arterieller Sauerstoffpartialdruck (P_aO_2)/ inspiratorische Sauerstofffraktion (FiO₂), Niere: Oligurie < 500 ml Harnproduktion/Tag, Anurie < 100 ml Harnproduktion/Tag, GCS: Glasgow Coma Scale Kreislauf: niedrige Katecholamindosis: Dopamin < 5 µg/kgKG/min oder Dobutamin (unabhängig von Dosis); mittlere Katecholamindosis: Dopamin > 5 µg/kgKG/min oder Noradrenalin/Adrenalin < 0,1 µg/kgKG/min; hohe Katecholamindosis Dopamin > 15 µg/kgKG/min oder Noradrenalin/Adrenalin > 0,1 µg/kgKG/min;

1.2 Epidemiologie der Sepsis

Die Sepsis und der septische Schock bleiben besonders in der Intensivmedizin weiterhin ein relevantes Thema. Im Jahr 2017 erkrankten weltweit ca. 48,9 Millionen Menschen neu an einer Sepsis, 11 Millionen Menschen starben daran [13]. Die Mortalität wird in Krankenhäusern auf ca. 26,7 % geschätzt [14]. Metaanalysen zeigen, dass insbesondere auf Intensivstationen die Relevanz der Sepsis hoch ist. So wird die Inzidenz dort auf etwa 58/100.000 Personenjahre geschätzt, während die Mortalität bei ca. 42 % liegt [14]. Trotz leitliniengerechter Therapien ist die Zahl der Sepsis Erkrankungen weltweit weiterhin hoch und neue Therapieoptionen bleiben ein relevantes Thema in der Forschung.

1.3 Pathophysiologie der Sepsis

Aus der aktuellen Definition der Sepsis geht bereits hervor, dass die dysregulierte Immunantwort bei diesem Krankheitsbild im Vordergrund steht. Die Reaktion des Immunsystems kann über mehrere Faktoren zu einem Multiorganversagen (MODS) führen; dazu gehören die mitochondriale Dysfunktion, der erhöhte oxidative Stress, sowie eine Störung der Mikrozirkulation und der Gerinnung [2; 15; 16]. In dieser Dissertation liegt der Fokus besonders auf der mitochondrialen Dysfunktion und dem oxidativen Stress.

Das Immunsystem besteht aus zwei verschiedenen Teilen: die angeborene und die adaptierte Immunität [17]. Bei der Entstehung einer Immunantwort im Rahmen eines Infektes lösen *Pathogen Associated Molecular Patterns* (PAMP) als Liganden für *Pattern Recognition Receptors* (PRR) die Transkription proinflammatorischer Zytokine aus. Der Transkriptionsfaktor ist dabei der *Nuclear Factor kappa-light-chain-enhancer of activated B-cells* (NF- κ B) [18–20]. Die Gene der Zytokine Interleukin-1 (IL1), Interleukin-6 (IL6) und Tumornekrosefaktor- α (TNF- α) werden transkribiert und translatiert, sodass eine Entzündungsreaktion initiiert werden kann [20]. Physiologisch folgt darauf eine antiinflammatorische Reaktion, welche das Immunsystem inhibiert [17; 18]. Dieser Ausgleich entfällt bei septischen Patienten. Es entsteht eine initial überschießende Immunreaktion auf einen Erreger, welche anschließend in eine dysregulierte antiinflammatorische Reaktion übergeht [21]. Das Risiko einer erneuten Infektion und Reaktivierung latenter Virusinfektionen bleibt damit auch bei einer ausgeheilten Sepsis erhöht [18; 21]. Pathophysiologisch entsteht durch die Inflammation eine generalisierte Vasodilatation und ein ausgeprägter Volumenverlust durch endotheliale Lecks [22]. Die Folge sind Blutdruckabfälle, welche bis hin zu einem septischen Schock reichen können. Bislang ist das Risiko eines MODS auch bei einer medikamentösen Einstellung des Blutdrucks hoch. Dabei scheinen die mitochondriale Dysfunktion und der oxidative Stress neben der gestörten Mikrozirkulation eine entscheidende Rolle zu spielen. Das MODS-Risiko steigt mit dem Ausmaß dieser pathophysiologischen Komponenten [15; 23; 24].

Von besonders hoher Relevanz ist während der Sepsis die Funktion der Mitochondrien [25]. Im physiologischen Zustand synthetisieren die Mitochondrien über die oxidative Phosphorylierung (OXPHOS) den Energieträger Adenosintriphosphat (ATP) [26]. Während der OXPHOS fließen Elektronen über die Komplexe I bis IV der inneren mitochondrialen Membran. Parallel dazu werden H⁺ Ionen aus der mitochondrialen Matrix in den Intermembranraum gepumpt. Daraus entsteht ein H⁺ Gradient zwischen diesen beiden Räumen, welcher vom Komplex V für die ATP-Synthese benötigt wird. Über diesen Komplex folgen die H⁺ Ionen dem Konzentrationsgradienten und diffundieren zurück in die mitochondriale Matrix, wodurch ein Konzentrationsausgleich stattfindet und gleichzeitig ADP zu ATP phosphoryliert wird [26]. Die Mitochondrien haben durch die OXPHOS einen Anteil von etwa 90 % am Sauerstoffverbrauch des Körpers und werden daher maßgeblich durch die Hypoxie beeinträchtigt [2]. Ergebnisse von Studien bezüglich der mitochondrialen Funktion im septischen Zustand variierten je nach untersuchtem Gewebe und Zeitpunkt der Messung [27–30]. Unsere Arbeitsgruppe konnte im abdominellen Sepsis-Modell bei Ratten bereits eine veränderte mitochondriale Aktivität in der Leber nachweisen [27]. Die Aktivität der Mitochondrien stieg in den ersten 48 Stunden an und nahm nach 72 Stunden ab, um sich nach 96h wieder zu normalisieren. Im Colon hingegen konnte keine Veränderung der mitochondrialen Funktion festgestellt werden [27]. Andere Studien zeigten, dass die mitochondriale Funktion besonders in der Niere und im Herzen im Verlauf der Sepsis sinkt, was die Ausbildung einer akuten Nierenschädigung bzw. einer Kardiomyopathie fördern kann [28; 29; 31]. Eine mögliche Ursache für die mitochondriale Dysfunktion ist die aus der Störung der Mikrozirkulation resultierende Hypoxie [26]. Der hohe Metabolismus der Zellen, insbesondere in den ersten 24 Stunden der Sepsis, begünstigt die Hypoxie durch den erhöhten Sauerstoffbedarf [32]. Da die Mitochondrien den höchsten Anteil am Sauerstoffverbrauch ausmachen liegt eine Dysfunktion aufgrund der Hypoxie nahe. Das Resultat ist eine eingeschränkte ATP-Synthese [33]. Eine intakte Organperfusion schließt das Auftreten einer mitochondrialen Dysfunktion jedoch nicht aus. In septischen Organismen kann eine sogenannte zytopathische Hypoxie auftreten, welche eine eingeschränkte Sauerstoffverwertung

der Zellen trotz einer adäquaten Perfusion bezeichnet [32; 34]. Ein wichtiger Auslöser für die zytopathische Hypoxie ist der anfallende oxidative Stress in Form von reaktiver Sauerstoffspezies (ROS) und reaktiver Stickstoffspezies (RNS). Diese treten in Form von Radikalen wie beispielsweise O2⁻ und NO auf und können durch ihre hohe Bindungsaffinität den Elektronentransport der OXPHOS durch eine Inhibition der Komplexe verlangsamen oder komplett blockieren. [35] Durch diese Inhibition wird die ATP-Synthese stark eingeschränkt. So konnte in Skelettmuskelbiopsien bei septischen Menschen eine reziproke Korrelation zwischen der Aktivität des Komplex I und der Schwere der Erkrankung festgestellt werden. [36] Daneben besitzen Zellen, besonders Kardiomyozyten, die Fähigkeit, den Metabolismus während einer Ischämie vorübergehend zu reduzieren, sodass der Sauerstoffbedarf sinkt. Dieser Prozess nennt sich Hibernation und wirkt sich besonders auf die OXPHOS aus und damit zusätzlich negativ auf die ATP-Synthese [26; 32]. Auch die Transkription mitochondrialer Proteine sinkt während der Sepsis, wodurch die Biogenese der Mitochondrien inhibiert wird [37]. Aus diesen Gründen können die Mitochondrien je nach untersuchtem Gewebe in ihrer Funktion durch die Sepsis eingeschränkt sein, was wiederum die Organfunktion beeinträchtigt. Je schwerwiegender die mitochondriale Dysfunktion ausfällt, desto schlechter ist die Prognose der Erkrankung [23]. Bislang existiert noch keine wirksame Therapie, welche die mitochondriale Funktion in der Sepsis aufrechterhalten kann.

Neben der mitochondrialen Dysfunktion stellt der erhöhte oxidative Stress ein weiteres pathophysiologisches Problem der Sepsis dar [34]. Oxidativer Stress entsteht nicht nur durch exogene Faktoren wie Noxen oder Strahlung, sondern auch durch physiologische intrazelluläre Prozesse [38]. Die Hauptursache stellt die OXPHOS in den Mitochondrien dar [38; 39]. 0,1 bis 2 % der Elektronen, welche von Komplex I bis Komplex IV fließen, können durch eine nichtenzymatische Reaktion auf O2 übertragen werden [39]. Daraus entsteht das der ROS zugeordnete Superoxid Anion O₂⁻. Bei einer Dysfunktion der Mitochondrien tritt dieser Prozess verstärkt auf, was den Anfall von oxidativem Stress während der Sepsis begünstigt [40]. RNS, welche durch die induzierbare NO-Synthase (iNOS) entstehen können, sind eine weitere Art des oxidativen Stresses [34]. Im physiologischen Zustand werden diese anfallenden ROS oder RNS durch antioxidative Systeme der Zellen gepuffert; die Superoxid-Dismutasen (SOD), die Glutathion Peroxidase und die Katalase gehören zu diesen Systemen [41]. Die SOD kann an unterschiedliche Metalle gebunden sein, was zur Differenzierung verschiedener Formen des Enzyms führt, welche jeweils in anderen Zellorganellen lokalisiert sind. Die an Zink oder Kupfer gebundene SOD befindet sich im Zytoplasma, während die Mangan-SOD in Peroxisomen und in den Mitochondrien vorkommt [42]. Die Expression der SOD wird über intra- und extrazelluläre Faktoren reguliert. Proinflammatorische Zytokine wie TNF- α und Interferon- γ (IFN- γ), können die Transkription der SOD erhöhen, während Wachstumsfaktoren, wie das Growth Hormone (GH) und Transforming Growth Factor- β (TGF- β), diese inhibieren [43]. Die SOD katalysiert die Reaktion von O_2^- zu Wasserstoffperoxid (H₂O₂) [44]. Das anfallende H₂O₂ wird anschließend durch die Katalase zu H₂O und O₂ reduziert. Die Katalase ist in den Peroxisomen lokalisiert [41].

Abbildung 1: Pufferung des Superoxid-Anions (O2⁻) durch die SOD (Superoxiddismutase) und Reduktion des daraus resultierenden H₂O₂ durch die Katalase

Zusätzlich katalysiert auch die Glutathion-Peroxidase die Reduktion von H₂O₂ [34; 45]. Dieses Enzym besitzt im aktiven Zentrum eine Selenol-(SeH)-Gruppe, welche im ersten Schritt der Reaktion mit H₂O₂ zu SeOH oxidiert. Als Produkt entsteht ein H₂O-Molekül. Glutathion reduziert im nächsten Schritt das SeOH, wodurch ein weiteres H₂O-Molekül als Produkt freigesetzt wird. Die daraus entstandene Selenyl-Sulfyl-Verbindung wird im letzten Schritt der Reaktion durch ein weiteres Glutathion Molekül reduziert, sodass die ursprüngliche SeH Gruppe regeneriert wird. Die funktionellen Thiolgruppen (SH) der Glutathion-Moleküle geben während dieser Reaktionen ihre H⁺ Ionen ab und verbinden sich zu Disulfidbrücken [46]. Die Produkte dieser Reaktion sind Glutathiondisulfid, was die oxidierte Form des Glutathions darstellt und zwei H₂O-Moleküle [46; 47]. Durch die Glutathion Reduktase wird das Glutathion wieder in seine reduzierte Form umgewandelt und kann erneut als antioxidativer Puffer dienen [47; 48]. Beide Enzyme kommen im Zytosol, in den Mitochondrien und im endoplasmatischen Retikulum (ER) vor [48].

Abbildung 2: Reduktion von H_2O_2 durch die Glutathion-Peroxidase (GPO); SeH \rightarrow Selenolgruppe des Selenocysteins im Enzym GPO; GSH \rightarrow Glutathion; Se-GS \rightarrow Selenyl-Sulfyl-Verbindung zwischen Selen und Glutathion; GSSG \rightarrow Glutathiondisulfid

Diese Prozesse werden durch die Sepsis inhibiert, was das Auftreten von oxidativem Stress begünstigt [34]. Bekannt ist auch, dass die Aktivität der iNOS und der NADPH-Oxidase steigt, welche die Entstehung von oxidativem Stress verursachen. In einer LPS-induzierten Endotoxämie wurde eine erhöhte Aktivität dieser Enzyme gemessen [49]. ROS und RNS sind sehr bindungsaffin und können dadurch Proteine und die DNA beschädigen. So kann Peroxynitrit, das Produkt der Reaktion von NO und O₂⁻, die Komplexe der Mitochondrien irreversibel inhibieren. [41; 50] Aufgrund der Nähe zur inneren mitochondrialen Membran ist die mitochondriale DNA (mtDNA) besonders gefährdet, durch oxidativen Stress beschädigt zu werden, da durch die Atmungskette hier die Konzentration von ROS hoch ist [41]. Die hohe Anfälligkeit der mtDNA besteht zudem darin, dass hier der Schutz durch Histone fehlt. Darüber hinaus kommen in der mtDNA nur kodierende Abschnitte vor, was die Wahrscheinlichkeit irreversibler Schäden in wichtigen Sequenzen erhöht. [23; 51]. Mitochondriale Schäden können zu dessen Schwellung führen, welche eine Ruptur der Membran und anschließend eine Apoptose der Zellen verursacht [16]. Der oxidative Stress begünstigt demnach die mitochondriale Dysfunktion. Umgekehrt sind die Mitochondrien durch die OXPHOS, insbesondere während einer Dysfunktion, die Hauptquelle von oxidativem Stress [16; 40; 41]. Während der Sepsis laufen also beide Prozesse parallel ab und verstärken sich gegenseitig. Ein wirksames Sepsis-Medikament, welches den oxidativen Stress reduziert, ist bislang nicht bekannt. Auch der oxidative Stress ist maßgeblich an der Organschädigung beteiligt und resultiert in einer schlechteren Prognose [34].

1.4 Natriumthiosulfat

Natriumthiosulfat (STS) ist das Natriumsalz der Thioschwefelsäure mit der Summenformel Na₂S₂O₃ und bereits ein etabliertes Medikament in der Klinik [52–56]. Die Applikation erfolgt in der Regel intravenös, kann aber in experimentellen Modellen auch intraperitoneal durchgeführt werden. STS ist ein Schwefelwasserstoff-(H₂S)-Donor, da durch seine Einnahme der endogene H₂S-Spiegel ansteigt. Dies entsteht durch eine Reaktion von STS und Glutathion, welche durch das Enzym Rhodanase katalysiert wird. Die Produkte dieser Reaktion sind H₂S, H₂SO₃ und die oxidierte Form des Glutathions [57].

H₂S ist der dritte sogenannte endogene Gasotransmitter neben NO und CO. [58; 59] Dieses farblose Gas ist für seinen auffälligen Geruch nach faulenden Eiern bekannt. [58] Endogen kann H₂S durch die Enzyme Cystathionin-β-Synthase (CBS), Cystathionin-γ-Lyase (CSE) und 3-Mercaptopyruvat-Sulfurtransferase (3-MST) synthetisiert werden. [60–62] CBS und CSE sind jeweils Enzyme, welche die prosthetische Gruppe Pyridoxalphosphat (PALP) besitzen [58]. Lokalisiert ist die CBS hauptsächlich im Gehirn, in der Leber und der Niere, während sich die CSE zusätzlich auch in glatten Muskelzellen von Blutgefäßen, wie der thorakalen Aorta, der Portalvene und auch in den mesenterialen Arterien befindet [7; 44; 57]. Das Substrat der Enzyme ist L-Cystein. [8] Der Unterschied zwischen den beiden PALP-abhängigen Enzymen und der 3-MST ist hier, dass bei der 3-MST ein Zwischenschritt benötigt wird. So werden im ersten Schritt L-Cystein und α-Ketoglutarat mithilfe der Cystein-Aminotransferase (CAT) in 3-Mercaptorpyruvat (3-MP) und Glutamat umgewandelt, wodurch im nächsten Schritt von der 3-MST mit der Abspaltung von Pyruvat H₂S freigesetzt werden kann [57; 62].

Abbildung 3: Endogene H₂S-Synthese aus L-Cystein; CBS: Cystathionin- β -Synthase, CSE: Cystathionin- γ -Lyase, CAT: Cystein-Aminotransferase, 3-MP: 3-Mercaptopyruvat, 3-MST: 3-Mercaptopyruvat-Sulfurtransferase

Die Elimination von H₂S findet hauptsächlich über eine hepatische Oxidation von Sulfid zu Sulfat und eine anschließende renale Elimination statt [44; 58]. Auf zellulärer Ebene wird H₂S über die Sulfid-Ubiquinon-Oxidoreduktase (SQR) innerhalb der Mitochondrien oxidiert, während es im Zytosol durch eine Methylierung inaktiviert wird [58; 63]. Neben diesen Optionen kann H₂S an Proteine wie Methämoglobin oder Glutathion binden [44; 64].

Physiologisch spielt H₂S besonders bei der Regulation des Gefäßtonus, der Regeneration antioxidativer Systeme und der mitochondrialen Funktion eine tragende Rolle. Je nach untersuchter Spezies, Organ und verwendeter Dosierung löst extern zugeführtes H₂S eine Vasodilatation oder Vasokonstriktion aus [65]. So führten höhere Dosierungen (100 nM) des H₂S-Donors NaHS bei Hasen zu einer Kontraktion der glatten Muskulatur in der Aorta, den A. iliacae, A. renales und der A. carotis, während niedrigere Dosierungen (3 nM) eine leichte Relaxation verursachten [66]. Dagegen zeigten sich in der Aorta von Ratten vasokonstriktive Effekte durch eine NaHS-Konzentration von 5×10⁻⁶ mM bis 10⁻⁴ mM, welche über diese Dosis hinaus nachließen [67]. Weitere Studien zeigten eine vasodilatierende Wirkung von H₂S während einer PEEP (Positive End Expiratory Pressure)-induzierten abdominellen Ischämie im Schweinemodell. Hier konnten 70 % des präischämischen mesenterialen Blutflusses bei einer Dosierung von 1000 µg/kg NaHS wiederhergestellt werden [68]. So konnte die mesenteriale Mikrozirkulation durch den H₂S-Donor NaHS verbessert werden. Die Regulation des Gefäßtonus ist abhängig vom Sauerstoffgehalt des Blutes. Dadurch führte H₂S in Kombination mit einer geringen Sauerstoffkonzentration (40 µM O₂) zur Vasodilatation, während eine Vasokonstriktion bei erhöhtem Sauerstoffgehalt (200 µM O₂) ausgelöst wurde [69]. Der Wirkmechanismus für die Vasodilatation ist der agonisierende Effekt von H₂S am K_{ATP}-Kanal, welcher im nächsten Kapitel genauer erläutert wird. Durch eine Blockade des

Kanals konnte die vasodilatierende Wirkung vollständig antagonisiert werden [7; 8; 44]. Die Wirkung von H_2S auf die Gefäße und die Mikrozirkulation während einer Sepsis ist noch unvollständig untersucht

Zahlreiche Studien zeigen, dass H₂S-Donoren den oxidativen Stress senken können [6; 70–76]. So führte STS bei Ratten mit einer renovaskulären Hypertonie zu einer Reduktion von H₂O₂ [71]. Weiterhin konnte während einer kardialen, hepatischen und renalen Ischämie/ Reperfusion durch eine Präkonditionierung mit STS die MDA-Konzentration verringert werden [6; 72-74]. Auch während einer Behandlung mit dem Chemotherapeutikum Doxorubicin, was unter anderem über einen gesteigerten oxidativen Stress zu einer myokardialen Fibrose führt, konnte STS die kardiale MDA-Konzentration senken [75; 76]. Da während der Sepsis der hohe oxidative Stress mit dem MODS-Risiko korreliert, könnten H₂S-Donoren eine neue Therapieoption darstellen. Untersuchungen dazu gibt es bislang an Mäusen mit einer LPS-induzierten Endotoxämie und im CLP-Modell. Gemessen wurde der oxidative Stress in den Nieren und in der Lunge; In der Niere reduzierte sich der oxidative Stress durch NaHS, während STS diesen in der Lunge verringerte [77; 78]. Das LPS-Modell spiegelt den klinischen Verlauf der Sepsis nicht vollständig wider, weshalb es nicht mehr als Sepsis-Modell empfohlen wird [79]. Die Wirkung von H₂S-Donoren hinsichtlich des oxidativen Stresses im septischen Zustand bedarf also weiterer Untersuchungen. Der Wirkmechanismus, welcher zu einer Senkung des oxidativen Stresses führt, betrifft mehrere Faktoren: Einerseits wird die Aktivität der Katalase, der SOD und der Glutathion-Peroxidase verstärkt [44; 57; 70; 80]. Diese stellen, wie im vorherigen Kapitel bereits erwähnt, wichtige Bestandteile des antioxidativen Systems dar. Auf der anderen Seite ist H₂S in der Lage ROS und RNS direkt zu puffern und hemmt deren Produktion durch eine Inhibition der NADPH.Oxidase und iNOS [80].

Viele Studien belegen außerdem einen dosisabhängigen Einfluss von H₂S auf die Mitochondrien [5; 73; 74; 81–83]. So konnte H₂S bei niedrigen Konzentrationen (<20 μ M) die ATP-Synthese über die Aktivität der OXPHOS stimulieren, während diese bei höheren Dosierungen (>30 μ M) über eine Inhibition der Cytochrom-C-Oxidase und des Komplexes IV gehemmt wurde [63]. Dabei kann H₂S als Substrat der Komplexe in der oxidativen Phosphorylierung den Elektronentransport stimulieren. Die bei der Oxidation von H₂S frei werdenden Elektronen werden auf Ubichinon und anschließend auf Komplex III übertragen [63; 84]. Außerdem wurde die Aktivität der Komplexe durch niedrige H₂S-Dosierungen direkt stimuliert [63]. Zudem scheint H₂S die Biogenese von Mitochondrien zu beeinflussen [85]. Diese wird physiologisch über den *Peroxisome Proliferator-activated Receptor* γ -*co-activator 1a* (PGC-1a) reguliert, was den Transkriptionsfaktor A (TFAM) aktiviert. Diese Faktoren transkribieren Genabschnitte von mitochondrialen Proteinen [63]. Studien haben gezeigt, dass H₂S über eine Persulfidation von Nrf2 und TFAM die Aktivität dieser Transkriptionsfaktoren erhöhen kann, was die Biogenese der Mitochondrien anregt [85]. Hohe Dosierungen von H₂S wirken

dagegen zytotoxisch. Neben der vollständigen Blockade des Elektronentransports, werden proapoptotische Prozesse in Gang gesetzt. So kommt es zu einer Translokation des Bcl-2-associated X-Protein (BAX) in die Mitochondrien, was zu einer Öffnung von mitochondrialen Permeabilitäts-Transitions-Poren (mPTP) führt [63; 86]. Durch diese Poren kann Cytochrom C aus dem Intermembranraum in das Zytosol diffundieren und über eine Aktivierung von Caspase 9 den Zelltod induzieren [87]. Der Einfluss von H2S auf die Mitochondrien wurde hinsichtlich verschiedener Krankheitsbilder untersucht. Bei kardialen und renalen Ischämie/Reperfusions-Modellen konnte die mitochondriale Funktion durch die Zufuhr des H2S-Donors STS erhalten und dadurch der Gewebsschaden verringert werden [5; 73; 74]. So zeigte sich auch eine Reduktion der Infarktgröße durch den protektiven Einfluss von STS auf die mitochondriale Funktion und den oxidativen Stress [81]. Auch im septischen Zustand konnten H₂S-Donoren über ihren Einfluss auf die Mitochondrien das Risiko eines MODS senken [82; 83]. Dabei konnte NaHS während einer Pneumokokken Sepsis den Abfall der mitochondrialen Funktion in der Leber und in der Lunge verhindern und die Ausschüttung proinflammatorischer Zytokine senken [82]. In anderen Untersuchungen verbesserte NaHS die mitochondriale Funktion im Diaphragma septischer Ratten und reduzierte die Mortalität [83].

Aufgrund der Effekte eines erhöhten endogenen H2S-Spiegels könnten H2S-Donoren neue Möglichkeiten der medikamentösen Sepsis-Therapie öffnen, da genau die pathophysiologischen Komponenten beeinflusst werden, welche mit einem erhöhten MODS-Risiko assoziiert sind. Die Effekte während einer Sepsis müssen diesbezüglich noch intensiver untersucht werden. Für die Prognose der Sepsis besonders entscheidende Organe sind die Leber und das Colon. Besonders das Colon ist als Motor der Sepsis bislang außen vor geblieben. Unabhängig vom Infektfokus hält die gestörte Barrierefunktion des Colons den Prozess der Bakteriämie aufrecht, wodurch eine Verbesserung der Organfunktion hier besonders entscheidend für die Prognose wäre [88–90]. Der Erhalt der Leberfunktion während der Sepsis ist ebenfalls prognoserelevant, diese nicht vorübergehend durch apparative Verfahren ersetzt werden kann, wie es bei der Niere durch die Dialyse oder der Lunge mittels extrakorporaler Membranoxygenierung (ECMO) der Fall ist. Aus diesem Grund wäre die Auswirkung von Sepsis Medikamenten besonders bezüglich dieser beiden Organe von großer Bedeutung. STS könnte sich im Falle eines positiven Einflusses auf die mitochondriale Funktion und den oxidativen Stress in der Leber bzw. im Colon zu einer neuen Therapieoption der Sepsis entwickeln. Dieses Medikament hat den Vorteil, dass es klinisch etabliert ist und seine Verträglichkeit beim Menschen bereits nachgewiesen wurde. So wird es als Antidot bei einer Zyanidintoxikation, bei einer Calciphylaxie, welche eine Komplikation der Niereninsuffizienz darstellt, und während einer Cisplatin-Chemotherapie eingesetzt [52-56]. Dabei konnte STS die Ototoxizität von Cisplatin bei Kindern mit Hepatoblastomen reduzieren [91].

1.5 Glibenclamid und KATP-Kanal

Ein Hauptteil des Wirkmechanismus von H₂S läuft über den Agonismus am ATP-abhängigen Kaliumkanal (K_{ATP}). Dieser besteht aus vier einwärts gerichteten Untereinheiten. Außerdem besitzt er vier Rezeptoren, an denen die Medikamentengruppe der Sulfonylharnstoffe bindet und ihre Wirkung entfalten kann [59]. Durch die Öffnung des Kanals strömt Kalium aus den Zellen heraus, was zu einer Hyperpolarisation führt. Dadurch wird der Calciumeinstrom durch spannungsabhängige L-Typ-Calciumkanäle reduziert. In den glatten Muskelzellen der Blutgefäße führt dieser Mechanismus zu einer Relaxation und damit zur Vasodilatation [44]. Ein weiteres Resultat der Öffnung der Kanäle ist ein Signalweg, welcher eine Apoptose verhindert. Diese wird in der Regel durch eine Inhibition der Proteinkinase C induziert, welche aus einer Hypoxie oder Ischämie entsteht. Durch die Öffnung dieses Kanals wird die Proteinkinase C aktiviert, welche wiederum das *Heat Shock Protein* 90 (HSP90) stimuliert. HSP90 ist in der Lage, die Apoptose zu verhindern [59]. Aus diesem Grund hat der K_{ATP}-Kanal eine besondere Stellung in Assoziation mit dem Wirkmechanismus von H₂S.

Durch eine Blockade des K_{ATP}-Kanals war die Wirkung eines erhöhten H₂S-Spiegels in vergangenen Studien reversibel [92; 93]. Dabei gibt es sowohl physiologische als auch von extern zugeführte Antagonisten des K_{ATP}-Kanals. Dazu gehört im Rahmen der physiologischen Reaktion ATP. Im Pankreas ist dies von großer Bedeutung, da ein erhöhtes Kontingent an Glukose zu einer vermehrten ATP-Synthese führt. Somit dient ATP als Indikator eines erhöhten Blutglukosespiegels. ATP führt zu einer Schließung des Kanals und damit zu einer Depolarisation, welche letztendlich in einer Insulinsekretion resultiert [94]. Dieser Mechanismus wird im Rahmen der medikamentösen Diabetestherapie durch die Sulfonylharnstoffe imitiert. Glibenclamid zählt zu diesen Substanzen und ist ein pharmakologischer Antagonist zu H₂S am K_{ATP}-Kanal. Um die Relevanz des K_{ATP}-Kanals zu überprüfen, wurde bereits in vergangenen Studien mit H₂S-Donoren, Glibenclamid als Antagonist des K_{ATP}-Kanals verwendet [8; 92; 93]. Dementsprechend wurde auch in unserer Studie Glibenclamid als Antagonist des K_{ATP}-Kanals eingesetzt, um die Rolle des Kanals bei einem potenziellen Einfluss von STS im septischen Zustand zu erfassen.

Zusammenfassend kann man feststellen, dass die Mortalität aufgrund eines MODS trotz einer leitliniengerechten Therapie während der Sepsis erhöht bleibt. Dies lässt sich insbesondere auf die mitochondriale Dysfunktion und den vermehrt anfallenden oxidativen Stress zurückführen. H₂S-Donoren konnten diese beiden Faktoren bereits in vergangenen Studien bei verschiedenen Krankheitsbildern positiv beeinflussen. Das Ziel dieses Projekts ist die Untersuchung, ob der H₂S-Donor STS als weitere Option in der Sepsis-Therapie infrage kommt. Dafür untersuchten wir STS im septischen Rattenmodell hinsichtlich des Einflusses auf die oben genannten Komponenten in Leber und Colon, da die Prognose besonders durch diese Organe beeinflusst wird, und formulierten folgende Fragen:

1.6 Fragestellung

- 1. Welchen Einfluss hat das STS auf die **mitochondriale Funktion** im septischen Rattenmodell in den Organen Colon und Leber?
- 2. Welchen Einfluss hat das STS auf den **oxidativen Stress** im septischen Rattenmodell in den Organen Colon und Leber?
- 3. Ist der potenzielle Einfluss von STS durch eine Blockade des K_{ATP} Kanals mithilfe von Glibenclamid antagonisierbar?

2 Material und Methoden

2.1 Tierexperimenteller Teil (AZ: 84-02.04.2015.A538).

2.1.1 Versuchstiere

Die Versuche wurden an 40 jungen und gesunden Wistar-Ratten mit einem Körpergewicht zwischen 320 und 380 g durchgeführt. Die Sepsis wurde durch eine Colon-Ascendens-Stent-Peritonitis (CASP) OP induziert, da diese den klinischen Verlauf einer Anastomoseninsuffizienz im Darm widerspiegelt. Es wurden ausschließlich männliche Ratten einbezogen, um einen Einfluss der hormonellen Schwankungen bei weiblichen Ratten auszuschließen. Die Tiere wurden in Janvier (Frankreich) gezüchtet und stammen aus der Zentralen Einrichtung für Tierforschung und Tierschutzaufgaben (ZETT) Düsseldorf. Dort wurden sie in Makrolon®-Einzelkäfigen vom Typ 3 gehalten, wobei sie unter klimatisierten Bedingungen (Raumtemperatur 22 (+/-)2 ° C, relative Luftfeuchtigkeit 50 (+/-) %, Luftumwälzrate 16-20/h) und unter einem 12-Std.-Tag-Nacht-Wechsel mit weißem Kunstlicht mit einer Intensität von 300-320 Lux leben. Das Einstreu war entkeimtes Weichholzgranulat (Familie Rettenmaier & Söhne GmbH und Co KG, Rosenberg) und wurde zweimal pro Woche gewechselt. Als Nahrung haben die Tiere Alleinfuttermittel für Ratten und Mäuse (Ssniff Spezialitäten GmbH, Soest) erhalten. Sowohl die Nahrung als auch das entkeimte Trinkwasser (ozonisiert und mit HCl angesäuert mit einem pH-Wert von 2,6-3,0) wurde den Tieren ad libitum zur Verfügung gestellt. Die Versuche wurden ausschließlich an gesunden Tieren ohne Krankheitszeichen durchgeführt. Vor Versuchsbeginn unterlagen die Tiere einer Adaptationszeit von 7 Tagen. Gemäß den FELASA-Richtlinien erfolgte hier die Hygieneüberwachung.

Die Versuchstiere wurden in vier Gruppen aufgeteilt, von denen jeweils alle eine CASP-OP bekamen, jedoch einer unterschiedlichen Behandlung unterlagen.

Gruppe	Behandlung	Tieranzahl (n)
1 - Kontrolle	Jonosteril + DMSO i.p.	10
2 - nur Medikament	Natriumthiosulfat (1 g/kg) in DMSO i.p.	10
3 - nur Blocker	Glibenclamid (5 mg/kg) in DMSO i.p.	10
4 - Medikament + Blocker	Natriumthiosulfat (1 g/kg) + Glibenclamid (5 mg/kg) in DMSO i.p.	10

Tabelle 2: Versuchsgruppen mit entsprechender Medikation und Anzahl an Versuchstieren DMSO: Dimethylsulfoxid - Trägersubstanz

2.1.2 CASP-OP

Das hier verwendete Sepsis Modell ist das CASP-Modell, welches von Traeger, Stübs, Lustig et al. entwickelt wurde [95-97]. 30 Minuten vor dem Versuch wurde den Tieren subkutan das Opioidanalgetikum Buprenorphin (0,1 mg/kg KG) verabreicht. Nachdem die Ratte gewogen wurde, erfolgte die Einleitung mithilfe des volatilen Anästhetikums Sevofluran. Unter erhaltener Spontanatmung wurde die Narkose mit einer Sevofluran-Konzentration von 3,0 bis 3,2-Volumenprozent aufrechterhalten. Währenddessen befand sich das Versuchstier auf einer Wärmematte. Es erfolgte eine 2 cm lange mediane Laparotomie. Dabei wurde das Zökum aufgesucht, um dann jeweils 1 cm und 2 cm distal des ileozökalen Übergangs einen etwa 8 mm langen Stent in Form von zwei peripheren Venenverweilkanülen (Kaliber 16 G) zu setzen. Nach der Punktion des Zökums und der Fixation der Stents an der Darmwand wurden diese 3 mm von der Naht entfernt abgeschnitten. Die Durchgängigkeit der Stents wurde überprüft, indem ein Tropfen Fäzes durch den Darm in die entstandene Verbindung zum Peritoneum gedrückt wurde. Zur Flüssigkeitssubstitution folgte die intraperitoneale Gabe von 5 ml körperwarmer physiologischer Ringer-Lösung. Nach Annaht der Stents und Prüfung der Durchlässigkeit erfolgte der Verschluss der Bauchdecke mit einer 4.0 Naht. Im Rahmen der postoperativen Analgesie wurden 8 und 16 Stunden nach der CASP-OP jeweils subkutan 0,1 mg/kg Buprenorphin appliziert. Sowohl Nahrung als auch Flüssigkeit wurde den Versuchstieren im Überangebot zur Verfügung gestellt. Die Medikamente für die jeweilige Versuchsgruppe sind in Tabelle 2 angegebenen. Die angegebene Dosis wurde unmittelbar nach der Operation und 24 Stunden später kurz vor der Relaparotomie verabreicht. Die Applikation erfolgte als intraperitoneale Injektion in Form eines Bolus. Nach der CASP-OP kamen die Tiere wieder in ihren Käfig und wurden bis zum vollständigen Abklingen der Narkose überwacht. Um den klinischen Zustand der herbeigeführten Sepsis beurteilen zu können erhob ein nicht verblindeter Untersucher den sogenannten Septic Rat Severity Score (SRSS, vgl. Anhang). Dabei wurden folgende Kriterien jeweils mit je 0 bis 4 Punkten beurteilt: äußeres Erscheinungsbild, Aktivität, Bewusstsein, Antwort auf einen Stimulus, Augenreaktion, Atemfrequenz, Atemgeräusche. Je höher die Punktzahl, desto schwerwiegender der klinische Verlauf der Sepsis. Im Falle eines Überschreitens von insgesamt 10 Punkten erfolgte eine fachgerechte Euthanasie des Tieres.

2.1.3 Organentnahme

24 Stunden nach der CASP-OP erfolgte unter Pentobarbital-Narkose eine Tracheotomie sowie die Anlage eines arteriellen und eines venösen Zugangs mit anschließender Relaparatomie. Die Messung der Mikrozirkulation am Colon und der Leber wurde mittels Reflexions-Spektroskopie (O₂C, Lea Medizintechnik Gießen) im Zeitraum von 90 min durchgeführt. Dabei wurden die Sauerstoffsättigung, die Hämoglobinmenge, der relative Blutfluss und die Blutflussgeschwindigkeit erfasst. Anschließend wurden die Tiere durch eine schmerzlose Exsanguination getötet. Im Anschluss wurde der rechte Leberlappen und Colongewebe (ca. 1.5 cm distal des Zökums) für weitere Versuchszwecke entnommen. Ein Teil des Gewebes wurde nun direkt für die Messung der mitochondrialen Funktion in ein Becherglas mit etwa 4 °C kaltem Isolationspuffer gelegt und das übrige Gewebe in flüssigem Stickstoff schockgefroren und bei -80 °C gelagert.

2.2 Laborexperimenteller Teil

2.2.1 Herstellung der Homogenate

Nach der Organentnahme wurden Leber und Colon zunächst in ein mit 4 °C kaltem Isolationspuffer (siehe Tabelle 3) gefülltes Becherglas gegeben und abgewogen. Die benötigte Menge Lebergewebe betrug 1 g. Dieses wurde in etwa 2-3 mm³ große Stücke zerkleinert und mithilfe des Isolationspuffers gespült, um Blutreste zu entfernen. Das zerkleinerte Gewebe der Leber wurde in 10 ml Isolationspuffer gegeben, so dass ein 1:10 (Leber (Gewicht in g):Isolationspuffer (Volumen in ml)) Verhältnis entstand. Das Colon wurde nach dem Abwiegen in eine befeuchtete Petrischale gelegt. Hier wurde es längs aufgeschnitten, die Mukosa freigelegt und Fett- und Kotreste mithilfe einer Kompresse entfernt. Anschließend wurde gewichtsadaptiert Trypsin auf das frei liegende Colon getropft, damit sich die Zellverbände lockern (Colongewicht (g) $\times 2 = ml$ Trypsin). Nach 5 Minuten Inkubationszeit wurde das Colon wieder in ein Becherglas mit Isolationspuffer in einem Verhältnis von 1:4 (Colon (Gewicht in g):Isolationspuffer (Volumen in ml)) und zusätzlich mit Proteaseinhibitoren (cOmplete[™]) und 20 mg/ml bovinem Serumalbumin (BSA) gelegt. Analog zur Präparation der Leber wurde auch diese Probe mithilfe einer Schere in 2-3 mm³ großen Stücken zerkleinert. Nach diesem Prozess wurden beide Proben mit einem Potter-Elvehjem-Homogenisierungsstab bei 2000 rpm homogenisiert und in Zentrifugenröhrchen jeweils 50 ml abgefüllt.

2.2.2 Bestimmung der Proteinkonzentration

Nachdem die Homogenate in den Zentrifugenröhrchen fertig gestellt waren, erfolgte mithilfe der Photometrie in Anlehnung an die Proteinbestimmung nach Lowry die Bestimmung der Proteinkonzentration [98]. Dabei spielen zwei Reaktionen eine entscheidende Rolle: Im Rahmen der ersten Reaktion entstehen Komplexe zwischen Peptidbindungen und Kupfer-(Cu)-(II)-Ionen. Das ist eine sogenannte Biuretreaktion,. Cu(II) wird zu Cu(I) reduziert. Im nächsten Schritt reduziert Cu(I) das später dazu gegebene Folin-Ciocalteu-Reagenz zu Molybdänblau, was zu einem Farbumschlag der Lösung führt. Die Blaufärbung der Lösung konnte mithilfe der Photometrie quantifiziert werden, in dem bei einer Wellenlänge von 750 nm die Extinktion gemessen wurde. Vorher wurde eine Standardverdünnungsreihe mit einer definierten Proteinkonzentration vorbereitet (Tabelle 3). Dabei wurde BSA in aufsteigender Konzentration in sieben verschiedene Eppendorf Gefäße pipettiert. Mithilfe dieser Standardreihe entstand eine Standardkurve aus Extinktion und Proteinkonzentration bei der Messung via Photometrie. Dadurch ist es unter Anwendung des Lambert-Beer'schen Gesetzes möglich jeweils die Proteinkonzentrationen innerhalb des Colon- und des Leberhomogenates zu bestimmen.

Standard	0	1	2	3	4	5	6
Proteinkonzentration (µg/ml)	0	62,5	125	250	500	750	1000

Tabelle 3 Verwendete Konzentrationen in der Standardverdünnungsreihe zur Bestimmung der Proteinkonzentration

Die Homogenate wurden mit Aqua dest. in einem Verhältnis von 1:100 verdünnt. Sowohl von der Standardreihe als auch von den Homogenaten wurden 100 µl entnommen und zusammen mit 500 µl Lösung 1 (siehe Tabelle 5) in ein Reaktionsgefäß gegeben. Diese wurde dann für 10 Minuten bei Raumtemperatur inkubiert. Nach der Inkubationszeit wurden jeweils 50 µl Lösung 2 (siehe Tabelle 5) in die Reaktionsgefäße hinzugefügt, worauf eine weitere Inkubationszeit von 30 Minuten bei Raumtemperatur folgte. Die daraus entstandenen Lösungen wurden dann auf eine 96-Well Mikrotitrierplatte pipettiert. Dabei wurden aus jeder Lösung zweimal 200 µl verwendet. Zum Schluss konnte danach mithilfe der Software Synergy[™] 2 Multi-Mode Microplate Reader und dem Programm Gen51.11 die Proteinkonzentration bestimmt werden. Dafür wurde die Extinktion bei einer Wellenlänge von 750 nm gemessen. Für jedes Organ wurde die Proteinbestimmung jeweils dreimal durchgeführt und anschließend der Mittelwert bestimmt.

2.2.3 Messung der mitochondrialen Funktion mithilfe der Respirometrie

Um die mitochondriale Funktion beurteilen zu können, wurde der Sauerstoffverbrauch innerhalb eines definierten Zeitraums (Respirationsrate) und unter Zugabe verschiedener Substrate gemessen. Möglich war dies mithilfe einer Clark-Type-Elektrode, durch welche die Respirationsrate polarographisch mittels elektrochemischer Messmethode erfasst und in einer Grafik angezeigt wurde (Model 782, StrathKelvin, Glasgow Schottland). Die Kalibrierung der Elektrode erfolgte mit Aqua dest. als Positivkontrolle und Natriumsulfid als Negativkontrolle. Die Homogenate wurden der mit dem auf 30 °C erwärmten Respirationspuffer (siehe Tabelle 4) vermischt. Mithilfe der vorher ermittelten Proteinkonzentration der Homogenate konnte nun ein Verhältnis aus Respirationspuffer und Homogenat berechnet werden, sodass für die Respirometrie eine definierte Proteinkonzentration verwendet wurde. Die Messungen wurden mit einer Konzentration von jeweils 6 mg/ml Colon und 4 mg/ml Leber durchgeführt; es erfolgte geweils eine dreifache Messung. Die Mischungen wurden in eine Messkammer gegeben, in der die Sauerstoffkonzentration kontinuierlich erfasst wurde. Aus den Messungen wurden sogenannte States berechnet, in denen sich die OXPHOS befand. Zu Beginn der Messungen befand sich die OXPHOS im State 1, da noch keine Substrate der Lösung zugegeben worden waren. Mit der Zugabe der Substrate, welche den Komplex I (Glutamat (2,5 mM) und Malat (2,5 mM)) bzw. den Komplex II (Succinat (10 mM bei der Leber, 5 mM beim Colon)) stimulierten, erreichte die OXPHOS State 2. Succinat wurde mit Rotenon (0,5 µM) als Inhibitor des Komplexes I kombiniert. Durch die Glutamat- und Malat-Dehydrogenase wurden die jeweiligen Substrate oxidiert, wodurch NAD+ zu NADH reduziert wurde, während Glutamat zu α-Ketoglutarat und Malat zu Oxalacetat wurde. Das entstandene NADH diente als Substrat für den Komplex I und stimulierte dadurch die OXPHOS. Die Succinat-Dehydrogenase oxidierte Succinat, wodurch FAD zu FADH₂ reduziert wurde. FADH2 führte als Substrat des Komplexes II zu dessen Stimulation. Durch die Addition des stärksten physiologischen Aktivators ADP (250 µM bei der Leber und 50 µM beim Colon), wurde der maximale Sauerstoffverbrauch der OXPHOS induziert, welcher als State 3 definiert ist. Mit dem Erreichen von State 4 wurden die Messungen beendet. Dieser Zustand ist erreicht, wenn das extern zugeführte ADP aufgebraucht ist. State 5 wurde in unseren Messungen nicht erreicht. In diesem Zustand ist der Sauerstoffmangel der limitierende Faktor der OXPHOS. In Abbildung 4 ist der charakteristische Kurvenverlauf dargestellt. Neben diesen Respirationsstadien wurden nach den Messungen Parameter zur Beurteilung der Effizienz der OXPHOS und der Kopplung zwischen der Atmungskette und der ATP-Synthese berechnet. Der ADP/O-Quotient ist ein Maß für die Effizienz der Atmungskette. Dabei wurde die injizierte Menge an ADP ins Verhältnis zum Sauerstoffverbrauch in State 3 gesetzt. Je höher dieser Wert ist, desto mehr ATP wurde pro verbrauchter Sauerstoff-Menge synthetisiert, desto höher war also die Effizienz der OXPHOS. Die Respiratory Control Ratio (RCR) (State 3/State 2) ist ein Maß für die Kopplung der Substratoxidation und der ATP-Synthese. Je höher dieser Wert, desto stärker sind diese beiden Prozesse gekoppelt. Zur Qualitätskontrolle wurden für jedes Organ auch Kontrollmessungen durchgeführt, um Schäden in den Mitochondrien festzustellen, die durch die Vorbereitung der Organe entstanden sein könnten. Dabei wurde neben den Substraten und ADP zusätzlich Cytochrom C (2,5 µM) und der Inhibitor der OXPHOS Oligomycin (0,05 µg/ml) hinzugefügt. Cytochrom C ist ein physiologischer Aktivator der Atmungskette und wird durch die Cytochrom-C-Oxidase im Komplex IV oxidiert, wodurch O2 zu H2O reduziert wird. Durch diesen Prozess werden Protonen aus der mitochondrialen Matrix in den Intermembranraum gepumpt. Während der Vorbereitungen der Homogenate hätte es hier durch Schäden in der äußeren Mitochondrienmembran zu einem Verlust von Cytochrom C kommen können. In diesem Fall würde durch eine externe Zufuhr von Cytochrom C die Aktivität der Atmungskette wieder zunehmen, was sich in einem steigenden Sauerstoffverbrauch zeigen würde. Die Zugabe erfolgte in der Phase des maximalen Sauerstoffverbrauchs in State 3. Blieb die Reaktion auf Cytochrom C aus, wurde der Lösung Oligomycin zugeführt. Oligomycin ist ein Antibiotikum aus der Klasse der Makrolide, das die ATP-Synthase (Komplex V) der Atmungskette inhibiert. Es verhindert dabei den Rückstrom der Protonen aus dem Intermembranraum in die mitochondriale Matrix. Dadurch sinkt unter physiologischen Bedingungen der Sauerstoffverbrauch der Atmungskette. Mithilfe des Oligomycins ließ sich also feststellen, ob der durch die OXPHOS entstandene H⁺-Gradient intakt ist. Durch die Vorbereitungen entstandene Schäden der inneren mitochondrialen Membran hätten hier zu einem Zusammenbruch des H⁺-Gradienten geführt, da die Protonen unabhängig von der ATP-Synthase zurück in die

mitochondriale Matrix geflossen wären. Unter diesen Bedingungen sinkt durch die Applikation von Oligomycin die Aktivität der Atmungskette nicht, da hier die OXPHOS stärker aktiv bleibt, um den H⁺-Gradienten wiederherzustellen. Während der Kontrollmessungen der Leberhomogenate wurde zusätzlichen der Stoff Carbonylcyanid-m-chlorphenylhydrazon (CCCP) in drei 0,5- μ M-Schritten hinzugefügt. CCCP ist eine Substanz, welche als Ionophor dient, wodurch Protonen aus dem Intermembranraum in die mitochondriale Matrix diffundieren können. Das Resultat ist eine Entkoppelung der ATP-Synthese von der Atmungskette mit einer Induktion des maximalen Elektronenflusses und Sauerstoffverbrauchs. Dieser kann zum maximalen Elektronenfluss und Sauerstoffverbrauch im nicht-entkoppelten Zustand ins Verhältnis gesetzt werden und fällt physiologisch höher aus, da die ATP-Synthese den limitierenden Faktor des Sauerstoffverbrauchs darstellt. Bei geschädigten Mitochondrien, welche unter Umständen eine bereits entkoppelte Zustand identisch. Während des gesamten Prozesses der mitochondrialen Messungen betrug die Sauerstofflöslichkeit 223 µmol O₂/l bei 30 °C. Alle Respirationsraten wurden mit der Einheit nmol/min/mg Protein angegeben.

Abbildung 4: Grafische Darstellung der Respirometrie: Y-Achse: O₂ - Sauerstoffgehalt innerhalb des Systems; X-Achse: Zeit während der Messung; Substrat = Glutamat/Malat oder Rotenon/Succinat; RCR = Respiratory Control Ratio – O₂-Verbrauch State 3/ O₂-Verbrauch State 2; ADP/O = Menge des zugeführten Adenosindiphosphat (ADP)/ verbrauchter Sauerstoff im State 3;

2.2.4 Messung der Malondialdehyd-Konzentration

Für die Beurteilung des oxidativen Stresses der Organe wurde die Konzentration von Malondialdehyd (MDA) bestimmt. MDA entsteht durch die Oxidation mehrfach ungesättigter Fettsäuren innerhalb der Peroxisome. Bei der MDA-Bestimmung wurde Thiobarbitursäure (TBA) verwendet, da dieses mit dem zu messenden Molekül MDA eine Reaktion eingeht. Dabei bilden zwei Moleküle TBA zusammen mit einem Molekül MDA einen rosa Farbumschlag, welcher mit der

Photometrie quantitativ gemessen werden kann. Hier wurde analog zur Proteinbestimmung eine Standardverdünnungsreihe vorbereitet und auf Eis gestellt.

Bei der Messung dieser Standardreihe ergab sich eine Standardkurve aus Extinktion und MDA-Konzentration. Ähnlich wie bei der Proteinbestimmung, die vor der Respirometrie durchgeführt wurde, kann hier ebenfalls mithilfe des Lambert-Beer'schen Gesetzes die MDA-Konzentration in Allerdings wird hier den jeweiligen Proben erfasst werden. als MDA-Standard Malondialdehydbismethylacetal (1,1,3,3- Tetramethoxypropan) verwendet. Bei der Herstellung der Proben wurden jeweils 50 mg Colon bzw. Leber in schockgefrorenem Zustand mit 500 µl 1,15 %iger KCl-Lösung homogenisiert. Zu diesem Homogenat wurde anschließend 1500 µl 1 %-ige Phosphorsäure (H₃PO₄) und 500 µl 0,6 %-ige TBA addiert. Im nächsten Schritt wurde die Lösung für 45 Minuten auf 95° C erhitzt. Danach wurde sie zur Abkühlung auf Eis gestellt. Als Nächstes wurden 2000 µl n-Butanol zugegeben und das Gemisch anschließend für 15 Minuten bei 4 °C und 2900 rcf zentrifugiert. Der Überstand wurde aufgefangen. Die MDA-Konzentration konnte durch die Differenz der Lichtabsorption zwischen der Wellenlänge 535 nm und einer Referenzwellenlänge von 520 nm berechnet werden. Nach dieser Berechnung und mithilfe der Proteinbestimmung nach Lowry konnte dann die MDA-Konzentration standardisiert als nmol MDA/mg Protein angegeben werden. Die Bestimmung der Protein- und MDA-Konzentration erfolgte über die Software SynergyTM 2 Multi-Mode Microplate Reader mit dem Programm Gen51.11.

2.3 Materialliste

2.3.1 Materialien des tierexperimentellen Abschnitts

Beatmungsgerät	Inspira asv, Harvard Apparatus, Holliston,
	Massachusetts, USA
Buprenorphin s.c.	Temgesic®, Reckitt Benckiser, Mannheim,
	Deutschland
Desinfektionsmittel	Kodan® Tinktur forte, farblos, Schülke &
	Mayr GmbH, Norderstedt, Deutschland
Einmalkanüle	Sterican® 20 G, B.Braun Melsungen AG,
	Melsungen, Deutschland
Einmalkanüle	Sterican® 27 G, B.Braun Melsungen AG,
	Melsungen, Deutschland
Einmalskalpell	Skalpellklinge, B.Braun Aesculap AG;
	Tuttlingen, Deutschland
Einmalspritze	Injekt® 5 ml, B.Braun Melsungen AG,
	Melsungen, Deutschland, 4606051V
Einmalspritze	Injekt® 10 ml, B.Braun Melsungen AG,
	Melsungen, Deutschland, 4606108V
Lochtuch	Foliodrape®, Paul Hartmann AG,
	Heidenheim, Deutschland
Maske	Henry Schein Medical GmbH, Hamburg,
	Deutschland, No. 730-240
Peripherer Venenverweilkatheter	16 G PP Braunüle MT®, B.Braun Melsungen
	AG, Melsungen, Deutschland, 4206142
Ringerlösung	B.Braun Melsungen AG, Melsungen,
	Deutschland, ZulNr. 6737462.00.01
Thermometer (rektale Temperatur)	Microlife® Vet-Temp, Microlife AG, Widnau,
	Schweiz, MT1831
Waage	Henry Schein Medical GmbH, Hamburg,
	Deutschland, No. 730-240
Wärmematte	Julabo 6, Labortechnik GmbH, Seelbach,
	Deutschland

2.3.2 Materialien des laborexperimentellen Abschnitts

Borosilikatglas	VWR International GmbH, Darmstadt,		
	Deutschland		
Eismaschine	AF 80, Scotsman, Mailand, Italien		
Gewebehomogenisierer Potter-Elvehjem	Pro Scientific, Swedesboro, New Jersey,		
	U.S.A.		
Homogenisatorgefäß	Sartorius AG, Göttingen, Deutschland		
Homogenisierer	IKA® EUROSTAR 20 digital 2000 rpm,		
	IKA®-Werke GmbH & Co. KG, Staufen,		
	Deutschland		
Homogenisierstation	Dispergierstation T 8.10 mit Metallpotter, IKA		
	Labortechnik, Staufen, Deutschland		
Injekt Spritze MS-R25	Ito Corporation Exmire, Fuji, Japan		
Mirkotitrierplatten	Mikrotestplatte 96-Well F, SARSTEDT,		
_	Nürnbrecht, Deutschland		
Multi-Detektions-Plattenlesegerät	BioTEK Synergy 2 mit Software Gen5 TM		
	Version 1.11, Winooski, USA		

pH-Meter	Digital-pH-Meter 646, Knick Elektronische
	Messgeräte GmbH & Co. KG, Berlin,
D'	
Pipette	5000 µl Eppendorf, Hamburg, Deutschland
Pipettenspitze	10 ml Graduated Tip, Starlabgroup, Hamburg,
	Deutschland
Pipettenspitze	10 µl Graduated Tip, Starlabgroup, Hamburg,
	Deutschland
Pipettenspitze	200 µl Graduated Tip, Starlabgroup, Hamburg,
	Deutschland
Pipettenspitze	1000 μl Graduated Tip, Starlabgroup,
	Hamburg, Deutschland
Pipettenspitze	5000 μl Graduated Tip, Starlabgroup,
	Hamburg, Deutschland
Pipetus	Pipetus, Hirschmann Laborgeräte, Eberstadt,
	Deutschland
Reaktionsgefäß	Safe-Lock-Tubes 1,5 ml, Eppendorf,
	Hamburg, Deutschland
Reaktionsgefäß	Safe-Lock-Tubes 2 ml, Eppendorf, Hamburg,
	Deutschland
Respirometer	MT200 und SI 782, Strathkelvin Instruments,
•	North Lanarkshire, Schottland
Respirometer Software	782 System Version 4.4 HID, Strathkelvin
	Instruments, North Lanarkshire, Schottland
Statistiksoftware und graphische Darstellung	GraphPad Prism Version 6.0, GraphPad
	Software, Inc, La Jolla, USA
Tiefkühlschrank	Forma 900 Ultratiefkühlschrank, Thermo
	Fisher Scientific, Waltham MA, USA
Trockenschrank	UT 6060, Hereaus Holding GmbH, Hanau,
	Deutschland
Vortexgerät	Vortex Genie Touch Mixer 1, Scientific
	Industries, New York, USA
Waage	LA230S, Sartorius, Göttingen, Deutschland
Zentrifuge	Eppendorf Zentrifuge 5810 R, Eppendorf,
-	Hamburg, Deutschland
Zentrifugenröhrchen	Falcon [™] 15ml, SARSTEDT, Nürnbrecht,
	Deutschland
Zentrifugenröhrchen	Falcon [™] 50ml, SARSTED, Nürnbrecht,
	Deutschland

1, 1, 3, -Tetramethoxypropan	Sigma-Aldrich Chemie GmbH, Steinheim,
	Deutschland
1-Butanol	Merck, Darmstadt, Deutschland
2-Thiobarbitursäure	Merck, Darmstadt, Deutschland
3-MOPS	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland
Adenosindiphosphat	Sigma Aldrich Chemie GmbH, Steinheim, Deutschland
Antimycin	Sigma Aldrich Chemie GmbH, Steinheim, Deutschland
Aqua dest.	Merck, Darmstadt, Deutschland
Bovine Serum Albumin	Sigma Aldrich Chemie GmbH, Steinheim, Deutschland
СССР	Sigma Aldrich Chemie GmbH, Steinheim, Deutschland
cOmplete TM (Protease Inhibitor Cocktail)	Roche Life Science, Mannheim, Deutschland
Cytochrom C	Sigma Aldrich Chemie GmbH, Steinheim, Deutschland
D(+)-Saccharose	Carl Roth GmbH & Co. KG. Karlsmithe
	Deutschland
EGTA	Carl Roth & Co. KG, Karlsruhe, Deutschland
Flüssiger Stickstoff	Linda, Duisburg, Deutschland
Folin-Ciocalteu-Reagenz	Sigma Aldrich Chemie GmbH, Steinheim,
	Deutschland
Glutamat	Fluka Chemie GmbH, Buchs, Schweiz
Kaliumchlorid (KCl)	Fluka Chemie GmbH, Buchs, Schweiz
Kaliumdihydrogenphosphat (KH ₂ PO ₄)	Merck, Darmstadt, Deutschland
Kaliumhydroxid (KOH)	Carl Roth & Co. KG, Karlsruhe, Deutschland
Kalium-Natrium-Tartrat	Merck, Darmstadt, Deutschland
Kupfer(II)-Sulfat-Pentahydrat	Merck, Darmstadt, Deutschland
Malat	SERVA, Heidelberg, Deutschland
Mannitol	Carl Roth & Co. KG, Karlsruhe, Deutschland
MDA (Tetramethoxypropan)	Sigma-Aldrich Corportation, St. Louis MO, USA
MOPS-MG (3-(N-Morpholino) -	Carl Roth GmbH + Co.KG, Karlsruhe,
propansulfonsäure	Deutschland
Natriumcarbonat, wasserfrei	Fluka Chemie GmbH, Buchs, Schweiz
Natriumhydroxid	Merck, Darmstadt, Deutschland
Oligomycin	Calbiochem by Merck, Darmstadt, Deutschland
Phosphorsäure 85%	AppliChem GmbH & Co. KG. Karlsruhe
	Deutschland
Rotenon	Sigma Aldrich Chemie GmbH, Steinheim,
	Deutschland
Sodium sulfite	Sigma Aldrich Chemie GmbH, Steinheim, Deutschland
Succinat	Sigma Aldrich Chemie GmbH, Steinheim, Deutschland
Tetrasodiumpyrophosphat (Na ₄ P ₂ O ₇)	Sigma Aldrich Chemie GmbH, Steinheim, Deutschland
Trypsin-EDTA (Ethylendiamintetraacetat)	Thermo Fisher Scientific, Dreieich, Deutschland

2.3.3 Chemikalien des laborexperimentellen Abschnitts

2.3.4 Lösungen und Puffer

T 1 4	200 MOH 0
Isolationsputter	$200 \text{ mM C}_6\text{H}_{14}\text{O}_6$
	$50 \text{ mM D}(+) \text{ C}_{12}\text{H}_{22}\text{O}_{11}$
	5 mM KH ₂ PO ₄
	5 mM 3-MOPS
	0,1 % BSA
	1 mM EGTA
	4 M KOH
	Erhitzung von Aqua dest. und Mannitol bei ca.
	90°C für 30 Minuten. Danach Addition der oben
	genannten Substanzen. Am Ende mit Hilfe von
	KOH den pH des Puffers auf 7,15 titrieren.
Respirationspuffer	130 mM KCl
	5 mM KH ₂ PO ₄
	20 mM 3-MOPS
	2,5 mM EGTA
	$1 \ \mu M \ Na_4 P_2 O_7$
	0,1 % BSA
	4 M KOH
	Lösung der oben genannten Substanzen in Aqua dest. und anschließende Titration des pH-Werts mit Hilfe von KOH auf 7,4.

Tabelle 4: Puffer der mitochondrialen Messungen

Lowry Lösung 1	15 ml Reagenz A (10 g Natriumbikarbonat in
	500 ml Natriumhydroxid)
	150 μl Reagenz B (2 g Kalium-Natrium-Tatra in
	100 ml Aqua dest.)
	150 μl Reagenz C (1 g Kupfer (II)-Sulfat-
	Pentahydrat in 100 ml Aqua dest.)
Lowry Lösung 2	2 ml Folin-Ciocalteu-Reagenz
	2 ml Aqua dest.

Tabelle 5: Lösungen der Proteinmessungen nach Lowry

KCl-Lösung 1,15% (MDA-Messung)	0,575 g in 50 ml Aqua dest.
Phosphorsäure-Lösung 1%	0,5 ml Phosphorsäure (85%) in 42 ml Aqua dest.
2-Thiobarbitursäure 0,6%	0,3 g in 50 ml Aqua dest.

Tabelle 6: Lösungen der Malondialdehyd-Messungen

3 Ergebnis

3.1 Einfluss von Natriumthiosulfat auf die mitochondriale Funktion im Colon und in der Leber unter septischen Bedingungen

Die mitochondriale Funktion wurde durch die berechneten Werte aus der Respirometrie ermittelt. Dafür wurden die *Respiratory Control Ratio* (RCR) und der ADP/O Quotient berechnet. Beim Vergleich der 4 Gruppen mit je 10 Versuchen ergaben sich keine signifikanten Unterschiede in der mitochondrialen Funktion (Abbildung 5 & 6).

Abbildung 5: Mitochondriale Funktion im Colon - RCR (State 3/State 2) und ADP/O des Colons: RCR des Komplex I (A) und Komplex II (B); ADP/O des Komplex I (C) und Komplex II (D); berechnete Werte dargestellt als Boxplots (alle Gruppen jeweils n = 10

Colon Komplex I

RCR (State 3/State 2)

Colon Komplex I

ADP/O:

	Kontrolle	Thiosulfat	Glibenclamid	Thiosulfat + Glibenclamid
Minimum	2,10	2,30	2,69	2,15
25. Perzentile	2,62	2,58	2,91	2,74
Median	3,24	3,12	3,29	3,23
75. Perzentile	4,60	3,80	3,86	3,71
Maximum	4,92	4,91	4,06	4,97
Spannweite	2,82	2,61	1,37	2,82
Mittelwert	3,48	3,29	3,34	3,30

В

А

	Kontrolle	Thiosulfat	Glibenclamid	Thiosulfat + Glibenclamid
Minimum	1,11	1,63	1,34	1,13
25. Perzentile	1,92	2,02	1,96	1,76
Median	2,09	2,47	2,19	1,92
75. Perzentile	2,26	2,81	2,73	2,37
Maximum	2,81	3,68	3,18	2,75
Spannweite	1,70	2,05	1,84	1,62
Mittelwert	2,08	2,49	2,30	1,97
Colon Komplex I	1			

С

Colon Komplex II

RCR (State 3/State 2)

ADP/O:

D

	Kontrolle	Thiosulfat	Glibenclamid	Thiosulfat + Glibenclamid		Kontrolle	Thiosulfat	Glibenclamid	Thiosulfat + Glibenclamid
Minimum	3,14	3,25	2,77	2,89	Minimum	0,71	0,83	0,61	0,62
25. Perzentile	3,94	3,38	3,47	3,49	25. Perzentile	0,85	0,97	0,82	0,87
Median	4,31	3,81	3,84	3,80	Median	1,07	1,41	1,22	1,16
75. Perzentile	4,91	4,39	4,29	4,11	75. Perzentile	1,25	1,61	1,77	1,28
Maximum	7,03	5,45	5,13	4,78	Maximum	1,44	1,93	2,13	1,51
Spannweite	3,89	2,2	2,36	1,89	Spannweite	0,73	1,1	1,52	0,89
Mittelwert	4,53	3,99	3,86	3,80	Mittelwert	1,06	1,34	1,30	1,09

Tabelle 7: Mitochondriale Funktion im Colon - RCR (State 3/ State 2) und ADP/O des Colons: RCR des Komplex I (A) und des Komplex II (B); ADP/O des Komplex I (C) und des Komplex II (D); zugehörige absolute Werte der in Abbildung 5 dargestellten Boxplots

Abbildung 6: Mitochondriale Funktion in der Leber - RCR (State 3/State 2) und ADP/O der Leber: RCR des Komplex I (A) und Komplex II (B); ADP/O des Komplex I (C) und Komplex II (D); berechnete Werte dargestellt als Boxplots; (alle Gruppen jeweils mit n = 10

Leber Komplex I

RCR (State 3/State 2)

2)

Leber Komplex I

ADP/O:

	Kontrolle	Thiosulfat	Glibenclamid	Thiosulfat + Glibenclamid
Minimum	8,36	10,22	8,24	9,57
25. Perzentile	9,75	10,50	11,15	10,48
Median	10,55	12,07	12,92	12,41
75. Perzentile	13,40	13,18	14,26	13,96
Maximum	15,75	13,77	17,09	15,26
Spannweite	7,39	3,55	8,85	5,69
Mittelwert	11,50	12,02	12,70	12,23
Lobor Komplay				

А

	Kontrolle	Thiosulfat	Glibenclamid	Thiosulfat + Glibenclamid
Minimum	2,78	3,46	3,86	3,83
25. Perzentile	3,45	3,93	4,90	4,12
Median	5,10	4,56	5,86	5,08
75. Perzentile	5,54	5,79	6,41	5,45
Maximum	6,19	5,98	6,74	5,64
Spannweite	3,41	2,52	2,88	1,81
Mittelwert	4,74	4,71	5,65	4,86
Leber Komplex	1			

С

Leber Komplex II

RCR (State 3/State 2)

ADP/O:

D

	Kontrolle	Thiosulfat	Glibenclamid	Thiosulfat + Glibenclamid
Minimum	7,18	7,29	8,01	7,09
25. Perzentile	7,67	7,97	8,49	7,72
Median	8,49	8,51	8,60	8,21
75. Perzentile	9,19	9,19	8,79	8,79
Maximum	9,63	10,01	9,84	9,95
Spannweite	2,45	2,72	1,83	2,86
Mittelwert	8,42	8,59	8,69	8,34

В

	Kontrolle	Thiosulfat	Glibenclamid	Thiosulfat + Glibenclamid
Minimum	1,79	2,42	2,55	2,23
25. Perzentile	2,59	2,73	3,07	2,46
Median	3,28	3,20	3,94	2,90
75. Perzentile	3,87	3,31	4,32	3,40
Maximum	4,24	3,55	4,48	4,04
Spannweite	2,45	1,13	1,93	1,81
Mittelwert	3,17	3,05	3,74	2,96

Tabelle 8: Mitochondriale Funktion in der Leber – RCR (State 3/ State 2) und ADP/O der Leber: RCR des Komplex I (A) und Komplex II (B); ADP/O des Komplex I (C) und Komplex II (D); zugehörige Werte, der in Abbildung 6 dargestellten Boxplots

3.2 Einfluss von Natriumthiosulfat auf die Produktion reaktiver Sauerstoffspezies im Colon und in der Leber unter septischen Bedingungen

Zur Beurteilung der Produktion von reaktiver Sauerstoffspezies wurde die Menge der Substanz Malondialdehyd (MDA) in der Leber und im Colon gemessen, welche als Nebenprodukt während der Fettsäureoxidation entsteht. Hierbei ergab sich zwischen den 4 Versuchsgruppen ebenfalls keine signifikante Änderung der Konzentration durch die einzelnen Behandlungen. (siehe Abbildung 7)

Abbildung 7 Oxidativer Stress in Leber und Colon: Malondialdehyd (MDA) Konzentration in Leber und Colon;Einheit nmol MDA/ mg Protein; Werte dargestellt als Boxplots; (alle Gruppen jeweils mit n = 10);

Colon MDA

Leber MDA

	Kontrolle	Thiosulfat	Glibenclamid	Thiosulfat + Glibenclamid		Kontrolle	Thiosulfat	Glibenclamid	Thiosulfat + Glibenclamid
Minimum	0.01	0.02	0,01	0.14	Minimum	0,01	0,01	0,01	0,01
25. Perzentile	0,16	0,04	0,03	0,26	25. Perzentile	0,02	0,02	0,02	0,03
Median	0,22	0,15	0,14	0,30	Median	0,06	0,09	0,03	0,07
75. Perzentile	0,29	0,27	0,44	0,45	75. Perzentile	0,15	0,22	0,10	0,09
Maximum	0,38	0,40	0,50	0,64	Maximum	0,34	0,37	0,20	0,45
Spannweite	0,37	0,38	0,49	0,50	Spannweite	0,33	0,36	0,19	0,44
Mittelwert	0,21	0,17	0,20	0,35	Mittelwert	0,10	0,13	0,06	0,10

Tabelle 9: Oxidativer Stress in Leber und Colon: Malondialdehyd (MDA) Konzentration in Leber und Colon; Einheit: nmol MDA/ mg Protein; zugehörige Werte der in Abbildung 5 dargestellten Boxplot

4 Diskussion

Das Ziel unserer Studie war es, den Effekt von STS auf die mitochondriale Funktion und den oxidativen Stresses in der Leber und im Colon während der Sepsis zu untersuchen. Das Medikament hat sich in vergangenen Untersuchungen als sicherer H₂S-Donor herausgestellt. Ein dadurch erhöhter H₂S-Spiegel führte in Studien zu Verbesserungen der mitochondrialen Funktion und des oxidativen Stress, was in der Therapie der Sepsis eine vielversprechende neue Option darstellen könnte [4; 57]. Die in der Einleitung formulierten Fragen können nach dem experimentellen Teil dieses Projekts folgendermaßen beantwortet werden:

- Die Erhöhung des endogenen H₂S-Spiegels durch die Applikation von STS hat im septischen Rattenmodell weder auf die mitochondriale Funktion des Colons noch auf die der Leber einen signifikanten Effekt gezeigt.
- Der oxidative Stress in der Leber und im Colon im septischen Rattenmodell wurde durch die Erhöhung des endogenen H₂S-Spiegels durch die Gabe von STS ebenfalls nicht signifikant beeinflusst.
- Die Blockade des K_{ATP}-Kanals Glibenclamids hatte in dem Projekt dementsprechend auch keine signifikante Wirkung. Weder die mitochondriale Funktion noch der oxidative Stress in der Leber und im Colon wurden dadurch verändert.

4.1 Methodendiskussion

Zur Induktion der Sepsis wurde die sogenannte CASP-Operation eingesetzt. Dabei wird ein Stent in das Colon implantiert, wodurch kontinuierlich Fäzes in das Peritoneum eindringt. Dies führt im weiteren Verlauf zu einer Peritonitis, welche in eine Sepsis übergeht. Dabei besteht die klinische Vergleichbarkeit zu einer Anastomoseninsuffizienz nach einem darmchirurgischen Eingriff. Das CASP-Modell ist ein weit verbreitetes und in unserer Arbeitsgruppe bereits gut etabliertes Sepsis-Modell, was es für dieses Projekt besonders geeignet macht [27; 99; 100]. Eine alternative Methode stellt die sogenannte *Cecal Ligation and Puncture* (CLP) dar. In diesem Modell wird ein Teil der Blutversorgung des Zökums unterbunden, welches danach mithilfe eines Venenverweilkatheters punktiert wird. Studien zeigen, dass mit dieser Methode eher eine fokale Infektion in Form eines intraabdominellen Abszesses entsteht, als dass eine systemische Beteiligung stattfindet [101]. LPS-induzierte Endotoxämien führen nicht zu dem klinischen Bild einer Sepsis und werden daher nicht mehr als Sepsis Modelle empfohlen [79].

Um den endogenen H₂S-Spiegel zu erhöhen, kam in unserem Projekt STS als Medikament zum Einsatz. STS wurde mit einer Dosis von insgesamt 2 g/kg über zwei intraperitoneale Injektionen verabreicht. Die Dosis richtet sich nach bereits erfolgten Experimenten mit STS. So konnte STS in dieser Dosierung in einer Studie mit endotoxämischen Mäusen die Mortalität reduzieren [4]. In

unserem Projekt wurde zu zwei verschiedenen Zeitpunkten jeweils die Hälfte der Dosis verabreicht. Die erste Dosis erfolgte unmittelbar nach der CASP-Operation, die zweite 24 Stunden später. Zur weiteren Untersuchung des Wirkmechanismus wurde das Medikament Glibenclamid verwendet. Diese Substanz gehört zur Gruppe der Sulfonylharnstoffe und ist ein Antagonist des K_{ATP}-Kanals [102; 103]. Um die Rolle dieses Kanals zu überprüfen wurde Glibenclamid sowohl allein als auch in Kombination mit STS verabreicht. Dadurch konnte man feststellen, ob ein potenzieller Einfluss von STS über die Blockade des Kanals reversibel ist.

Um die mitochondriale Funktion zu messen, wurden in unserem Projekt Gewebshomogenate und keine isolierten Mitochondrien verwendet. Die Isolation der Mitochondrien stellt eine potente Aufbereitungsmethode dar, um die mitochondriale Funktion messen zu können. Voraussetzung ist jedoch dabei, dass die Mitochondrien nicht bei der Präparation beschädigt und dadurch die Messergebnisse verfälscht werden. Verantwortlich dafür sind Lecks, welche in den mitochondrialen Membranen entstehen können, wodurch das Transmembranpotenzial zusammenbrechen kann. Hier bieten sich aufgrund der geringeren Wahrscheinlichkeit einer Schädigung der Mitochondrien Gewebshomogenate an, da hier vergleichbare Parameter in der Respirometrie gemessen werden können [104; 105].

4.2 Ergebnisdiskussion

Zur Beurteilung der mitochondrialen Funktion wurden in unserer Studie die RCR und ADP/O Werte aus der Respirometrie verwendet. Es hat sich dabei kein signifikanter Effekt von STS auf die mitochondriale Funktion in Leber und Colon herausgestellt.

Bekannt ist bereits, dass der Effekt von H₂S konzentrations- und gewebeabhängig ist. Geringe Konzentrationen von H₂S (0,1 - 1 μ M) haben stimulierende Effekte auf die OXPHOS gezeigt, während sich höhere Mengen (3 – 30 μ M) inhibierend auswirkten [106]. Welche Konzentrationen an H₂S in Leber und Colon jeweils erreicht wurden, wurde in unserer Untersuchung nicht gemessen. Lediglich aus einer Studie an Mäusen ist ein Anstieg des H₂S-Spiegels um 50 % in Gehirn und Niere durch eine subkutane Verabreichung von NaHS bekannt, in der Leber erhöhte sich der H₂S-Spiegel um 18 % [107]. Unklar ist jedoch, ob eine subkutane Applikation von NaHS einen vergleichbaren Anstieg des H₂S-Spiegels wie bei einer intraperitonealen Injektion von STS hervorruft.

Datzmann et al. kamen bezüglich der Mitochondrien zu einem ähnlichen Ergebnis wie unsere Studie der Leber. Dabei fanden sie primär heraus, dass STS im hämorrhagischen Schweinemodell zu einer verbesserten Mikrozirkulation im Gastrointestinaltrakt führte. Zusätzlich wurde die mitochondriale Funktion der Zellen im Gehirn, der Niere, im Herz und in der Leber gemessen, wobei kein signifikanter Einfluss auf die Leber festgestellt wurde [3]. Ein Erklärungsansatz könnte der bereits vorliegende Hypermetabolismus in der frühen Phase der Sepsis sein. So konnten Herminghaus et al. bereits eine initial gesteigerte Aktivität der Lebermitochondrien in den ersten 24 Stunden nach einer CASP-OP nachweisen [27]. In diesem hypermetabolischen Zustand findet eine gesteigerte ATP- Synthese statt, um dem erhöhten systemischen Energiebedarf nachzukommen. Möglicherweise sind während dieser Phase die Mechanismen ausgeschöpft, mit denen die OXPHOS stimuliert werden kann, sodass ein erhöhter H₂S-Spiegel keinen weiteren Effekt auf die Mitochondrien hat. Da die erreichte H₂S-Konzentration im Gewebe nicht gemessen wurde, besteht außerdem die Möglichkeit, dass diese nach der STS-Applikation zu niedrig war, um die mitochondriale Funktion zu beeinflussen. In der Literatur findet man auch Berichte über einen protektiven Effekt von STS auf Lebermitochondrien [108; 109]. So war das Resultat einer früheren Studie an Ratten von Myslovaty et al. eine verbesserte mitochondriale Funktion durch STS während einer biliären Obstruktion [108]. Der Unterschied zu unserer Studie war hier, dass keine Gewebshomogenate, sondern isolierte Mitochondrien in die Messungen eingeschlossen wurden. Außerdem wurde, anders als in unserem Projekt, eine intramuskuläre Injektion von STS mit einer anderen Dosierung verabreicht. Dadurch sind womöglich andere Gewebskonzentrationen in der Leber erreicht worden. Das Ergebnis einer neueren Studie von Shirozu et al. weist ebenfalls auf protektive Effekte von H₂S auf die Mitochondrien von Mäusen hin. So wurde während einer LPS-induzierten akuten Leberschädigung der Abfall des mitochondrialen Transmembranpotenzials durch STS verhindert [109]. Dabei wurde dieselbe Dosierung und Applikationsform von STS wie bei unserer Studie verwendet. Dies widerspricht nicht zwangsläufig unserem Ergebnis, da während unserer Versuche andere Parameter oxidativen Phosphorylierung gemessen wurden. Da lediglich ein Abfall der des Transmembranpotentials verhindert wurde, wäre eine Veränderung in der oxidativen Phosphorylierung nicht zwangsläufig zu erwarten. Weil in unserem Projekt Ratten und keine Mäuse verwendet wurden, sind die Ergebnisse zudem schwierig zu vergleichen. Möglicherweise herrscht bei Mäusen ein anderer Stoffwechsel in Bezug auf STS, wodurch andere H₂S-Konzentrationen in der Leber entstehen als bei Ratten. Yu et al. zeigten, dass ein erhöhter H₂S-Spiegel auch während einer nicht alkoholischen Fettlebererkrankung (NAFLD) den Zusammenbruch des mitochondrialen Transmembranpotenzials verhindern kann [110]. Dabei wurde kein STS, sondern der H2S-Donor AP39 verwendet, welcher intravenös appliziert wurde. Es besteht die Möglichkeit, dass AP39 neben einer höheren systemischen H₂S-Konzentration auch zu einer höheren Gewebskonzentration in der Leber geführt hat.

Es existieren vergleichbare Untersuchungen zum Einfluss von H₂S auf die mitochondriale Funktion im Colon [111]. Diese fanden jedoch nicht unter septischen Bedingungen statt. Bekannt ist, dass das Colon im physiologischen Zustand bereits einer hohen H₂S-Konzentration ausgesetzt ist. Womöglich bestehen hier Kompensationsmechanismen in den Zellen, mit denen H₂S schneller metabolisiert wird. So zeigten Libiad et al., dass H₂S-Konzentrationen im Bereich von <20 μ M die OXPHOS in Colonzellen stimulieren, während sie bei anderen Organen durch die überwiegende Cytochrom IV Inhibition zytotoxisch wirkten [111]. Der Mechanismus liegt hier in einer erhöhten Expression des Enzyms SQR, was die Oxidation von H₂S katalysiert. Erst ab einer Konzentration von 30 μ M überwogen im Colon die inhibitorischen Effekte von H₂S auf die OXPHOS. So könnte die in dieser Studie erreichte H₂S-Konzentration im Colon ebenfalls zu gering gewesen sein, als dass eine Veränderung in der mitochondrialen Funktion hätte stattfinden können.

Die Auswirkungen von STS auf den oxidativen Stress wurden in unserer Studie mit Hilfe der MDA-Konzentration in der Leber und im Colon ermittelt. Auch hier wurde in beiden Organen keine signifikante Veränderung durch das Medikament festgestellt.

Das Ergebnis deckt sich auch hinsichtlich des oxidativen Stresses mit der Studie von Datzmann et al., die ebenfalls keine Veränderung durch STS in der Leber feststellen konnten [3]. Mathangi et al. zeigten dagegen, dass STS während einer Zyanidintoxikation in der Lage ist, die antioxidativen Systeme der Leber zu regenerieren und damit den oxidativen Stress zu reduzieren [112]. Eine mögliche Erklärung für diesen Unterschied in den Ergebnissen wäre, dass der oxidative Stress im septischen Zustand stärker ansteigt als während einer Zyanidintoxikation. Das hätte zur Folge, dass ein erhöhter H₂S-Spiegel durch STS während einer Sepsis nicht ausreicht, um dem oxidativen Stress entgegenzuwirken. Andere Studien haben zudem gezeigt, dass H₂S in der Lage ist den oxidativen Stress in der Leber zu reduzieren [110; 113; 114]. So konnte in der Studie von Yu et al. während einer NAFLD neben der Protektion der mitochondrialen Funktion durch AP39 auch die MDA-Konzentration reduziert werden, während die GSH-Konzentration und die SOD-Aktivität stiegen [110]. Außerdem zeigten Tan et al., dass durch eine intraperitoneale Applikation des H₂S-Donors NaHS der gleiche Effekt, während einer durch Carbontetrachlorid ausgelösten Leberzirrhose eintritt [113]. Auch Liu et al. konnten zeigen, dass durch eine intraperitoneale Injektion von NaHS der oxidative Stress während einer Intoxikation mit Paraquat abfällt [114]. Diese Studien verwendeten alle einen anderen H₂S-Donor, was die unterschiedliche Wirkung auf den oxidativen Stress in der Leber erklären kann. Die Pathologie war außerdem jeweils keine Sepsis. Es ist bekannt, dass während einer Sepsis der oxidative Stress durch eine Inhibition der antioxidativen Systeme ansteigt [34]. Enzyme, welche für die Entstehung des oxidativen Stresses verantwortlich sind, sind dagegen stärker aktiv [30]. Herminghaus et al. konnten diesbezüglich zeigen, dass besonders in den ersten 24 Stunden während einer abdominellen Sepsis der oxidative Stress in der Leber ansteigt [27]. Im Vergleich zu den Krankheitsbildern, welche von Liu et al. und Yu et al. untersucht wurden, scheint der oxidative Stress während der Sepsis höher zu sein. Interessanterweise gibt es in der Literatur auch Berichte, über einen konträren Effekt von H2S auf den oxidativen Stress. So konnten Guo et al. einen erhöhten oxidativen Stress im LPS-Modell durch einen erhöhten H₂S-Spiegel in der Leber nachweisen [115]. Dieser wurde jedoch durch eine inhalative H₂S-Exposition ausgelöst, wodurch möglicherweise toxische Konzentrationen in der Leber erreicht wurden.

Welche Auswirkung ein erhöhter H₂S-Spiegel während der Sepsis auf den oxidativen Stress im Colon hat ist bislang unvollständig untersucht und die Wirkung von STS ist diesbezüglich noch komplett unbekannt. Dementsprechend sind die Ergebnisse schwer mit anderen Studien vergleichbar. In einer Untersuchung von Liu et al. konnte NaHS den intestinalen oxidativen Stress während eines Ischämie/Reperfusion-Modells reduzieren. Dabei verringerte sich die MDA-Konzentration, während die antioxidativen Systeme GSH und SOD regeneriert wurden [116]. In dieser Studie wurde jedoch das Ileum und nicht das Colon untersucht. Womöglich ist das Ileum im physiologischen Zustand keiner hohen H₂S-Konzentration ausgesetzt, weshalb es keine Kompensationsmechanismen besitzt, um H₂S effektiver zu metabolisieren. Dadurch könnten bereits geringere H₂S-Konzentrationen hier einen Einfluss auf den oxidativen Stress haben. Außerdem konnten Herminghaus et al. nachweisen, dass der oxidative Stress im Colon während einer abdominellen Sepsis nicht ansteigt [27]. Dies wäre eine mögliche Erklärung für die ausbleibende Wirkung von STS bezüglich der MDA-Konzentration.

Neben STS wurde in zwei unserer Versuchsgruppen Glibenclamid appliziert. Dieser Sulfonylharnstoff wird in der Therapie des Typ 2 Diabetes als orales Antidiabetikum verabreicht. Durch eine Blockade des pankreatischen K_{ATP}-Kanals kommt es zur Depolarisation der Zellen und dadurch zu einer Insulinfreisetzung [94]. Dieser Antagonismus des KATP-Kanals wurde in unserer Studie genutzt, um den Wirkmechanismus von STS weiter zu untersuchen, da in vergangenen Studien die Wirkung eines erhöhten H₂S-Spiegels dadurch reversibel war. In unserer Studie zeigte sich sowohl mit als auch ohne die Kombination mit STS kein signifikanter Effekt von Glibenclamid auf die mitochondriale Funktion und den oxidativen Stress in Leber und Colon. Hinsichtlich der Mitochondrien und des oxidativen Stresses während der Sepsis gibt es bislang keine vergleichbaren Untersuchungen zu Glibenclamid. Dessen Wirkung von Glibenclamid auf den oxidativen Stress wurde überwiegend während eines diabetischen Stoffwechsels untersucht. So reduzierte Glibenclamid in der Studie von Dwivedi et al. den oxidativen Stress in der Leber während einer durch Typ-2-Diabetes induzierten NAFLD und verringerte darüber das Maß der Organschädigung [117]. Auch in Studien von Aloud et al. und Alotaibi et al. sank durch Glibenclamid der oxidative Stress in der Leber diabetischer Ratten signifikant [118; 119]. In diesen Untersuchungen wurde Glibenclamid für mehrere Wochen täglich als orales Antidiabetikum verabreicht, wodurch die Exposition deutlich länger war als in unserer Studie. Der Wirkmechanismus bestand hauptsächlich in der Reduktion des Blutglucose-Spiegels und einer damit einhergehenden Verbesserung der NAFLD gegenüber einem direkten Effekt auf die antioxidativen Systeme. Auch im Colon konnte Glibenclamid den oxidativen Stress beeinflussen. So zeigten Chidrawar et al., dass Glibenclamid 2,4-Dinitrobenzene-Sulfonic-Acid-(DNBS)-induzierten während einer gastrointestinalen Inflammation die MDA-Konzentration im Colon reduzierte [120]. Gleichzeitig regenerierten sich die SOD- und GSH-Konzentration im Colon schneller. Bei einer Dosierung von 0,5 mg/kg wurde keine intraperitoneale Injektion, sondern eine orale Applikation durchgeführt, was eventuell zu einer besseren Verfügbarkeit des Medikaments in den Colonzellen geführt hat. Außerdem scheint der oxidative Stress im Colon während einer abdominellen Sepsis keine große Rolle zu spielen, sodass er durch Glibenclamid nicht weiter beeinflusst werden kann [27]. Valdivieso et al. fanden zusätzlich heraus, dass Glibenclamid in der Lage ist die Aktivität des Komplexes I in Mitochondrien des Colons zu inhibieren [121]. Dabei wurde Zellkulturen 100 µM Glibenclamid zugeführt, wodurch auch hier die Colonzellen womöglich einer höheren Konzentration ausgesetzt waren als in unserer Studie. Zusammenfassend kann Glibenclamid also einen protektiven Effekt auf den oxidativen Stress des Colons und der Leber im Rahmen eines Typ-2-Diabetes haben. Im septischen Zustand scheint dieser Einfluss jedoch nicht ausgeprägt genug auszufallen, damit ein signifikanter Effekt hätte beobachtet werden können.

5 Schlussfolgerung

Die pharmakologische Erhöhung des endogenen H₂S-Spiegels durch eine intraperitoneale Injektion von STS führte im septischen Rattenmodell zu keinem signifikanten Einfluss auf die mitochondriale Funktion und den oxidativen Stress in der Leber und im Colon. Die Rolle des K_{ATP}-Kanals im Falle der potenziellen Wirkung von STS sollte durch den Antagonisten Glibenclamid untersucht werden. Sowohl allein als auch in der Kombination mit STS führte Glibenclamid zu keinem weiteren Effekt auf die gemessenen Parameter. Da durch STS allein bereits kein Effekt auftrat, gab es dabei auch keine zu antagonisierende Wirkung durch Glibenclamid. Die Ergebnisse dieses Projekts beziehen sich zunächst nur auf das Rattenmodell und lassen keine vollständige Übertragung auf den menschlichen Organismus zu.

6 Literaturverzeichnis

- Fleischmann, C, Scherag, A, Adhikari, NKJ, Hartog, CS, Tsaganos, T, Schlattmann, P, Angus, DC, Reinhart, K (2016): Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. American journal of respiratory and critical care medicine, 193(3):259–272.
- [2] Brealey, D, Karyampudi, S, Jacques, TS, Novelli, M, Stidwill, R, Taylor, V, Smolenski, RT, Singer, M (2004): Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. American journal of physiology. Regulatory, integrative and comparative physiology, 286(3):R491-7.
- [3] Datzmann, T, Hoffmann, A, McCook, O, Merz, T, Wachter, U, Preuss, J, Vettorazzi, S, Calzia, E, Gröger, M, Kohn, F, Schmid, A, Denoix, N, Radermacher, P, Wepler, M (2020): Effects of sodium thiosulfate (Na2S2O3) during resuscitation from hemorrhagic shock in swine with preexisting atherosclerosis. Pharmacological research, 151:104536.
- [4] Tokuda, K, Kida, K, Marutani, E, Crimi, E, Bougaki, M, Khatri, A, Kimura, H, Ichinose, F (2012): Inhaled hydrogen sulfide prevents endotoxin-induced systemic inflammation and improves survival by altering sulfide metabolism in mice. Antioxidants & redox signaling, 17(1):11–21.
- [5] Ravindran, S, Kurian, GA (2019): Preconditioning the rat heart with sodium thiosulfate preserved the mitochondria in response to ischemia-reperfusion injury. Journal of bioenergetics and biomembranes, 51(3):189–201.
- [6] Jha, S, Calvert, JW, Duranski, MR, Ramachandran, A, Lefer, DJ (2008): Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. American journal of physiology. Heart and circulatory physiology, 295(2):H801-6.
- [7] Zhao W, Zhang J, Lu Y, and Wang R. (2001): The vasorelaxant effects of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016.
- [8] Cheng, Y, Ndisang, JF, Tang, G, Cao, K, Wang, R (2004): Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. American journal of physiology. Heart and circulatory physiology, 287(5):H2316-23.
- [9] Bone, RC, Balk, RA, Cerra, FB, Dellinger, RP, Fein, AM, Knaus, WA, Schein, RM, Sibbald, WJ (1992): Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest, 101(6):1644–1655.
- [10] Churpek, MM, Zadravecz, FJ, Winslow, C, Howell, MD, Edelson, DP (2015): Incidence and Prognostic Value of the Systemic Inflammatory Response Syndrome and Organ Dysfunctions in Ward Patients. American journal of respiratory and critical care medicine, 192(8):958–964.
- [11] Singer, M, Deutschman, CS, Seymour, CW, Shankar-Hari, M, Annane, D, Bauer, M, Bellomo, R, Bernard, GR, Chiche, J-D, Coopersmith, CM, Hotchkiss, RS, Levy, MM, Marshall, JC, Martin, GS, Opal, SM, Rubenfeld, GD, van der Poll, T, Vincent, J-L, Angus, DC (2016): The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8):801–810.
- [12] Lambden, S, Laterre, PF, Levy, MM, Francois, B (2019): The SOFA score-development, utility and challenges of accurate assessment in clinical trials. Critical care (London, England), 23(1):374.
- [13] Rudd, KE, Johnson, SC, Agesa, KM, Shackelford, KA, Tsoi, D, Kievlan, DR, Colombara, DV, Ikuta, KS, Kissoon, N, Finfer, S, Fleischmann-Struzek, C, Machado, FR, Reinhart, KK, Rowan, K, Seymour, CW, Watson, RS, West, TE, Marinho, F, Hay, SI, Lozano, R, Lopez, AD, Angus, DC, Murray, CJL, Naghavi, M (2020): Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet, 395(10219):200–211.
- [14] Fleischmann-Struzek, C, Mellhammar, L, Rose, N, Cassini, A, Rudd, KE, Schlattmann, P, Allegranzi, B, Reinhart, K (2020): Incidence and mortality of hospital- and ICU-treated sepsis:

results from an updated and expanded systematic review and meta-analysis. Intensive care medicine, 46(8):1552–1562.

- [15] Lipinska-Gediga, M (2016): Sepsis and septic shock-is a microcirculation a main player? Anaesthesiology intensive therapy, 48(4):261–265.
- [16] Huang, M, Cai, S, Su, J (2019): The Pathogenesis of Sepsis and Potential Therapeutic Targets. International journal of molecular sciences, 20(21).
- [17] Andersson, U, Tracey, KJ (2012): Reflex principles of immunological homeostasis. Annual review of immunology, 30:313–335.
- [18] Angus, DC, van der Poll, T (2013): Severe sepsis and septic shock. The New England journal of medicine, 369(9):840–851.
- [19] Zhang, Q, Raoof, M, Chen, Y, Sumi, Y, Sursal, T, Junger, W, Brohi, K, Itagaki, K, Hauser, CJ (2010): Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 464(7285):104–107.
- [20] Takeuchi, O, Akira, S (2010): Pattern recognition receptors and inflammation. Cell, 140(6):805–820.
- [21] Boomer, JS, To, K, Chang, KC, Takasu, O, Osborne, DF, Walton, AH, Bricker, TL, Jarman, SD, Kreisel, D, Krupnick, AS, Srivastava, A, Swanson, PE, Green, JM, Hotchkiss, RS (2011): Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA, 306(23):2594–2605.
- [22] Arina, P, Singer, M (2021): Pathophysiology of sepsis. Current opinion in anaesthesiology, 34(2):77–84.
- [23] Supinski, GS, Schroder, EA, Callahan, LA (2020): Mitochondria and Critical Illness. Chest, 157(2):310–322.
- [24] Qiu, C, Wu, J, Pei, F, Wang, L, Mei, M, Guan, X, Ouyang, B (2019): Correlation between oxidative stress factors and prognosis of patients with sepsis. Zhonghua wei zhong bing ji jiu yi xue, 31(7):847–851.
- [25] Rachel Pool, Hernando Gomez, John A. Kellum: Mechanisms of Organ Dysfunction in Sepsis.
- [26] Singer, M (2014): The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence, 5(1):66–72.
- [27] Herminghaus, A, Papenbrock, H, Eberhardt, R, Vollmer, C, Truse, R, Schulz, J, Bauer, I, Weidinger, A, Kozlov, AV, Stiban, J, Picker, O (2019): Time-related changes in hepatic and colonic mitochondrial oxygen consumption after abdominal infection in rats. Intensive care medicine experimental, 7(1):4.
- [28] Yang, H, Zhang, Z (2021): Sepsis-induced myocardial dysfunction: the role of mitochondrial dysfunction. Inflammation research : official journal of the European Histamine Research Society ... [et al.], 70(4):379–387.
- [29] Sun, J, Zhang, J, Tian, J, Virzì, GM, Digvijay, K, Cueto, L, Yin, Y, Rosner, MH, Ronco, C (2019): Mitochondria in Sepsis-Induced AKI. Journal of the American Society of Nephrology : JASN, 30(7):1151–1161.
- [30] Arulkumaran, N, Deutschman, CS, Pinsky, MR, Zuckerbraun, B, Schumacker, PT, Gomez, H, Gomez, A, Murray, P, Kellum, JA (2016): Mitochondrial Function in Sepsis Shock (Augusta, Ga.), 45(3):271–281.
- [31] Stanzani, G, Duchen, MR, Singer, M (2019): The role of mitochondria in sepsis-induced cardiomyopathy. Biochimica et biophysica acta. Molecular basis of disease, 1865(4):759–773.
- [32] Kohoutová, M, Dejmek, J, Tůma, Z, Kuncová, J (2018): Variability of mitochondrial respiration in relation to sepsis-induced multiple organ dysfunction. Physiological research, 67(Suppl 4):S577-S592.
- [33] Kozlov, AV, Lancaster, JR, Meszaros, AT, Weidinger, A (2017): Mitochondria-meditated pathways of organ failure upon inflammation. Redox biology, 13:170–181.
- [34] Mantzarlis, K, Tsolaki, V, Zakynthinos, E (2017): Role of Oxidative Stress and Mitochondrial Dysfunction in Sepsis and Potential Therapies. Oxidative medicine and cellular longevity, 2017:5985209.

- [35] Wu, Y, Yao, Y-M, Lu, Z-Q (2019): Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. Journal of molecular medicine (Berlin, Germany), 97(4):451–462.
- [36] Brealey, D, Brand, M, Hargreaves, I, Heales, S, Land, J, Smolenski, R, Davies, NA, Cooper, CE, Singer, M (2002): Association between mitochondrial dysfunction and severity and outcome of septic shock. The Lancet, 360(9328):219–223.
- [37] Carré, JE, Orban, J-C, Re, L, Felsmann, K, Iffert, W, Bauer, M, Suliman, HB, Piantadosi, CA, Mayhew, TM, Breen, P, Stotz, M, Singer, M (2010): Survival in critical illness is associated with early activation of mitochondrial biogenesis. American journal of respiratory and critical care medicine, 182(6):745–751.
- [38] Rinnerthaler, M, Bischof, J, Streubel, MK, Trost, A, Richter, K (2015): Oxidative stress in aging human skin. Biomolecules, 5(2):545–589.
- [39] Brand, MD (2016): Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free radical biology & medicine, 100:14–31.
- [40] Murphy, MP (2009): How mitochondria produce reactive oxygen species. The Biochemical journal, 417(1):1–13.
- [41] Galley, HF (2011): Oxidative stress and mitochondrial dysfunction in sepsis. British journal of anaesthesia, 107(1):57–64.
- [42] Zelko, IN, Mariani, TJ, Folz, RJ (2002): Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine, 33(3):337–349.
- [43] Dhar, SK, St Clair, DK (2012): Manganese superoxide dismutase regulation and cancer. Free radical biology & medicine, 52(11-12):2209–2222.
- [44] Guo, W, Kan, J, Cheng, Z, Chen, J, Shen, Y, Xu, J, Wu, D, Zhu, Y (2012): Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxidative medicine and cellular longevity, 2012:878052.
- [45] Brigelius-Flohé, R, Flohé, L (2020): Regulatory Phenomena in the Glutathione Peroxidase Superfamily. Antioxidants & redox signaling, 33(7):498–516.
- [46] Heverly-Coulson, GS, Boyd, RJ (2010): Reduction of hydrogen peroxide by glutathione peroxidase mimics: reaction mechanism and energetics. The journal of physical chemistry. A, 114(4):1996–2000.
- [47] Pompella, A, Visvikis, A, Paolicchi, A, Tata, V de, Casini, AF (2003): The changing faces of glutathione, a cellular protagonist. Biochemical Pharmacology, 66(8):1499–1503.
- [48] Calabrese, G, Morgan, B, Riemer, J (2017): Mitochondrial Glutathione: Regulation and Functions. Antioxidants & redox signaling, 27(15):1162–1177.
- [49] Quoilin, C, Mouithys-Mickalad, A, Lécart, S, Fontaine-Aupart, M-P, Hoebeke, M (2014): Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury. Biochimica et biophysica acta, 1837(10):1790–1800.
- [50] Brown, GC, Borutaite, V (2004): Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochimica et biophysica acta, 1658(1-2):44–49.
- [51] Remmen, H (2001): Oxidative damage to mitochondria and aging. Experimental Gerontology, 36(7):957–968.
- [52] Peng, T, Zhuo, L, Wang, Y, Jun, M, Li, G, Wang, L, Hong, D (2018): Systematic review of sodium thiosulfate in treating calciphylaxis in chronic kidney disease patients. Nephrology (Carlton, Vic.), 23(7):669–675.
- [53] Petrikovics, I, Budai, M, Kovacs, K, Thompson, DE (2015): Past, present and future of cyanide antagonism research: From the early remedies to the current therapies. World journal of methodology, 5(2):88–100.
- [54] Hayden, MR, Goldsmith, DJA (2010): Sodium thiosulfate: new hope for the treatment of calciphylaxis. Seminars in dialysis, 23(3):258–262.
- [55] Bebarta, VS, Brittain, M, Chan, A, Garrett, N, Yoon, D, Burney, T, Mukai, D, Babin, M, Pilz, RB, Mahon, SB, Brenner, M, Boss, GR (2017): Sodium Nitrite and Sodium Thiosulfate Are

Effective Against Acute Cyanide Poisoning When Administered by Intramuscular Injection. Annals of Emergency Medicine, 69(6):718-725.e4.

- [56] Zhang, MY, Dugbartey, GJ, Juriasingani, S, Sener, A (2021): Hydrogen Sulfide Metabolite, Sodium Thiosulfate: Clinical Applications and Underlying Molecular Mechanisms. International journal of molecular sciences, 22(12).
- [57] Kimura, H (2010): Hydrogen sulfide: from brain to gut. Antioxidants & redox signaling, 12(9):1111–1123.
- [58] RUI WANG (2002): Two's company, three's a crowd: can H₂S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798.
- [59] Peers, C, Bauer, CC, Boyle, JP, Scragg, JL, Dallas, ML (2012): Modulation of ion channels by hydrogen sulfide. Antioxidants & redox signaling, 17(1):95–105.
- [60] Dilek, N, Papapetropoulos, A, Toliver-Kinsky, T, Szabo, C (2020): Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacological research, 161:105119.
- [61] Martin, GR, McKnight, GW, Dicay, MS, Coffin, CS, Ferraz, JGP, Wallace, JL (2010): Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 42(2):103–109.
- [62] Mikami, Y, Shibuya, N, Kimura, Y, Nagahara, N, Ogasawara, Y, Kimura, H (2011): Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. The Biochemical journal, 439(3):479–485.
- [63] Murphy, B, Bhattacharya, R, Mukherjee, P (2019): Hydrogen sulfide signaling in mitochondria and disease. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 33(12):13098–13125.
- [64] J. Furne, J. Springfield, T. Koenig, E. DeMaster, and M. D. Levitt (2001): Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rattissues a specialized function of the colonic mucosa. Biochemical Pharmacology,vol.62,no. 2:255–259.
- [65] Lv, B, Chen, S, Tang, C, Jin, H, Du, J, Huang, Y (2021): Hydrogen sulfide and vascular regulation - An update. Journal of advanced research, 27:85–97.
- [66] Caprnda, M, Qaradakhi, T, Hart, JL, Kobyliak, N, Opatrilova, R, Kruzliak, P, Zulli, A (2017): H2S causes contraction and relaxation of major arteries of the rabbit. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 89:56–60.
- [67] Orlov, SN, Gusakova, SV, Smaglii, LV, Koltsova, SV, Sidorenko, SV (2017): Vasoconstriction triggered by hydrogen sulfide: Evidence for Na+,K+,2Cl-cotransport and Ltype Ca2+ channel-mediated pathway. Biochemistry and biophysics reports, 12:220–227.
- [68] V. Pavoni, P. Nicoletti, S. Benemei, S. Materazzi, F. Perna, S. Romagnoli (2015): Effects of hydrogen sulfide (H2S) on mesenteric perfusion in experimental induced intestinal ischemia in a porcine model. Heart, lung and vessels:231–237.
- [69] Jeffrey R. Koenitzer, T. Scott Isbell, Hetal D. Patel, Gloria A. Benavides, Dale A. Dickinson, Rakesh P. Patel, Victor M. Darley-Usmar, Jack R. Lancaster, Jr, Jeannette E. Doeller, and David W. Kraus: Hydrogen sulfide mediates vasoactivity in an O2-dependent manner.
- [70] Grover, P, Khanna, K, Bhatnagar, A, Purkayastha, J (2021): In vivo-wound healing studies of sodium thiosulfate gel in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 140:111797.
- [71] Chou, P-L, Chen, Y-S, Chung, S-D, Lin, S-C, Chien, C-T (2021): Sodium Thiosulfate Ameliorates Renovascular Hypertension-Induced Renal Dysfunction and Injury in Rats. Kidney & blood pressure research, 46(1):41–52.
- [72] Sun, W-H, Liu, F, Chen, Y, Zhu, Y-C (2012): Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion. Biochemical and biophysical research communications, 421(2):164–169.
- [73] Mohan, D, Balasubramanian, ED, Ravindran, S, Kurian, GA (2017): Renal mitochondria can withstand hypoxic/ischemic injury secondary to renal failure in uremic rats pretreated with sodium thiosulfate. Indian journal of pharmacology, 49(4):317–321.

- [74] Ravindran, S, Boovarahan, SR, Shanmugam, K, Vedarathinam, RC, Kurian, GA (2017): Sodium Thiosulfate Preconditioning Ameliorates Ischemia/Reperfusion Injury in Rat Hearts Via Reduction of Oxidative Stress and Apoptosis. Cardiovascular drugs and therapy, 31(5-6):511–524.
- [75] Li, Y, Chandra, TP, Song, X, Nie, L, Liu, M, Yi, J, Zheng, X, Chu, C, Yang, J (2021): H2S improves doxorubicin-induced myocardial fibrosis by inhibiting oxidative stress and apoptosis via Keap1-Nrf2. Technology and health care : official journal of the European Society for Engineering and Medicine, 29(S1):195–209.
- [76] Shekari, M, Gortany, NK, Khalilzadeh, M, Abdollahi, A, Ghafari, H, Dehpour, AR, Ghazi-Khansari, M (2022): Cardioprotective effects of sodium thiosulfate against doxorubicininduced cardiotoxicity in male rats. BMC pharmacology & toxicology, 23(1):32.
- [77] Chen, Y, Jin, S, Teng, X, Hu, Z, Zhang, Z, Qiu, X, Tian, D, Wu, Y (2018): Hydrogen Sulfide Attenuates LPS-Induced Acute Kidney Injury by Inhibiting Inflammation and Oxidative Stress. Oxidative medicine and cellular longevity, 2018:6717212.
- [78] Sakaguchi, M, Marutani, E, Shin, H, Chen, W, Hanaoka, K, Xian, M, Ichinose, F (2014): Sodium thiosulfate attenuates acute lung injury in mice. Anesthesiology, 121(6):1248–1257.
- [79] Libert, C, Ayala, A, Bauer, M, Cavaillon, J-M, Deutschman, C, Frostell, C, Knapp, S, Kozlov, AV, Wang, P, Osuchowski, MF, Remick, DG (2019): Part II: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Types of Infections and Organ Dysfunction Endpoints. Shock (Augusta, Ga.), 51(1):23–32.
- [80] Lorigados, CB, Soriano, FG, Szabo, C (2010): Pathomechanisms of myocardial dysfunction in sepsis. Endocrine, metabolic & immune disorders drug targets, 10(3):274–284.
- [81] Ravindran, S, Gopalakrishnan, S, Kurian, GA (2020): Beneficial effect of sodium thiosulfate extends beyond myocardial tissue in isoproterenol model of infarction: Implication for nootropic effects. Journal of biochemical and molecular toxicology, 34(12):e22606.
- [82] Aslami, H, Pulskens, WP, Kuipers, MT, Bos, AP, van Kuilenburg, ABP, Wanders, RJA, Roelofsen, J, Roelofs, JJTH, Kerindongo, RP, Beurskens, CJP, Schultz, MJ, Kulik, W, Weber, NC, Juffermans, NP (2013): Hydrogen sulfide donor NaHS reduces organ injury in a rat model of pneumococcal pneumosepsis, associated with improved bio-energetic status. PloS one, 8(5):e63497.
- [83] Hai-Xia Zhang , Jun-Ming Du, Zhong-Nuo Ding, Xiao-Yan Zhu, Lai Jiang, Yu-Jian Liu (2017): Hydrogen sulfide prevents diaphragm weakness in cecal ligation puncture-induced sepsis by preservation of mitochondrial function. J Transl Res.
- [84] Goubern, M, Andriamihaja, M, Nübel, T, Blachier, F, Bouillaud, F (2007): Sulfide, the first inorganic substrate for human cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 21(8):1699–1706.
- [85] Untereiner, AA, Fu, M, Módis, K, Wang, R, Ju, Y, Wu, L (2016): Stimulatory effect of CSEgenerated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric oxide, 58:67–76.
- [86] Baskar, R, Li, L, Moore, PK (2007): Hydrogen sulfide-induces DNA damage and changes in apoptotic gene expression in human lung fibroblast cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 21(1):247–255.
- [87] Brentnall, M, Rodriguez-Menocal, L, Guevara, RL de, Cepero, E, Boise, LH (2013): Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC cell biology, 14:32.
- [88] Otani, S, Coopersmith, CM (2019): Gut integrity in critical illness. Journal of intensive care, 7:17.
- [89] Yoseph, BP, Klingensmith, NJ, Liang, Z, Breed, ER, Burd, EM, Mittal, R, Dominguez, JA, Petrie, B, Ford, ML, Coopersmith, CM (2016): Mechanisms of Intestinal Barrier Dysfunction in Sepsis. Shock (Augusta, Ga.), 46(1):52–59.
- [90] Li, Q, Zhang, Q, Wang, C, Liu, X, Li, N, Li, J (2009): Disruption of tight junctions during polymicrobial sepsis in vivo. The Journal of pathology, 218(2):210–221.

- [91] Brock, PR, Maibach, R, Childs, M, Rajput, K, Roebuck, D, Sullivan, MJ, Laithier, V, Ronghe, M, Dall'Igna, P, Hiyama, E, Brichard, B, Skeen, J, Mateos, ME, Capra, M, Rangaswami, AA, Ansari, M, Rechnitzer, C, Veal, GJ, Covezzoli, A, Brugières, L, Perilongo, G, Czauderna, P, Morland, B, Neuwelt, EA (2018): Sodium Thiosulfate for Protection from Cisplatin-Induced Hearing Loss. The New England journal of medicine, 378(25):2376–2385.
- [92] Geng, B, Yang, J, Qi, Y, Zhao, J, Pang, Y, Du, J, Tang, C (2004): H2S generated by heart in rat and its effects on cardiac function. Biochemical and biophysical research communications, 313(2):362–368.
- [93] Mustafa, AK, Sikka, G, Gazi, SK, Steppan, J, Jung, SM, Bhunia, AK, Barodka, VM, Gazi, FK, Barrow, RK, Wang, R, Amzel, LM, Berkowitz, DE, Snyder, SH (2011): Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circulation research, 109(11):1259–1268.
- [94] Yang, W, Yang, G, Jia, X, Wu, L, Wang, R (2005): Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. The Journal of physiology, 569(Pt 2):519–531.
- [95] Lustig, MK, Bac, VH, Pavlovic, D, Maier, S, Gründling, M, Grisk, O, Wendt, M, Heidecke, C-D, Lehmann, C (2007): Colon ascendens stent peritonitis--a model of sepsis adopted to the rat: physiological, microcirculatory and laboratory changes. Shock (Augusta, Ga.), 28(1):59–64.
- [96] Traeger, T, Koerner, P, Kessler, W, Cziupka, K, Diedrich, S, Busemann, A, Heidecke, C-D, Maier, S (2010): Colon ascendens stent peritonitis (CASP)--a standardized model for polymicrobial abdominal sepsis. Journal of visualized experiments : JoVE, (46).
- [97] Stübs, CCM, Picker, O, Schulz, J, Obermiller, K, Barthel, F, Hahn, A-M, Bauer, I, Beck, C (2013): Acute, short-term hypercapnia improves microvascular oxygenation of the colon in an animal model of sepsis. Microvascular Research, 90:180–186.
- [98] Lowry, O.H., Rosebrough, N.J., Farr., A.L., Randall, R.J. (1951): Protein measurement with the folin phenol reagent. J.Biol.Chem., (193):265–275.
- [99] Schulz, J, Vollmer, C, Truse, R, Bauer, I, Beck, C, Picker, O, Herminghaus, A (2020): Effect of Pravastatin Pretreatment and Hypercapnia on Intestinal Microvascular Oxygenation and Blood Flow During Sepsis. Shock (Augusta, Ga.), 53(1):88–94.
- [100] Schulz, J, Schöneborn, S, Vollmer, C, Truse, R, Herminghaus, A, Bauer, I, Beck, C, Picker, O (2018): Hypercapnia-Induced Amelioration of the Intestinal Microvascular Oxygenation in Sepsis is Independent of the Endogenous Sympathetic Nervous System. Shock (Augusta, Ga.), 49(3):326–333.
- [101] Maier, S, Traeger, T, Entleutner, M, Westerholt, A, Kleist, B, Hüser, N, Holzmann, B, Stier, A, Pfeffer, K, Heidecke, C-D (2004): Cecal ligation and puncture versus colon ascendens stent peritonitis: two distinct animal models for polymicrobial sepsis. Shock (Augusta, Ga.), 21(6):505–511.
- [102] Hajhashemi, V, Amin, B (2011): Effect of glibenclamide on antinociceptive effects of antidepressants of different classes. Clinics (Sao Paulo, Brazil), 66(2):321–325.
- [103] Spiller, F, Orrico, MIL, Nascimento, DC, Czaikoski, PG, Souto, FO, Alves-Filho, JC, Freitas, A, Carlos, D, Montenegro, MF, Neto, AF, Ferreira, SH, Rossi, MA, Hothersall, JS, Assreuy, J, Cunha, FQ (2010): Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. American journal of respiratory and critical care medicine, 182(3):360–368.
- [104] Pecinová, A, Drahota, Z, Nůsková, H, Pecina, P, Houštěk, J (2011): Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion, 11(5):722–728.
- [105] Kozlov, AV, Duvigneau, JC, Hyatt, TC, Raju, R, Behling, T, Hartl, RT, Staniek, K, Miller, I, Gregor, W, Redl, H, Chaudry, IH (2010): Effect of estrogen on mitochondrial function and intracellular stress markers in rat liver and kidney following trauma-hemorrhagic shock and prolonged hypotension. Molecular medicine (Cambridge, Mass.), 16(7-8):254–261.
- [106] Módis, K, Coletta, C, Erdélyi, K, Papapetropoulos, A, Szabo, C (2013): Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial

electron flow and supports cellular bioenergetics. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 27(2):601–611.

- [107] Mitchell TW, Savage JC, Gould DH, Mitchell, TW, Savage, JC, Gould, DH (1993): High-performance liquid chromatography detection of sulfide in tissues from sulfide-treated mice // High-performance liquid chromatography detection of sulfide in tissues from sulfide-treated mice. J Appl Toxicol JAT, 13(6):389–394.
- [108] Myslovaty, B, Kyzer, S, Levinsky, H, Chaimoff, C (1995): Improvement of rat survival and liver mitochondrial function in biliary obstruction after treatment with sodium thiosulfate. HPB surgery : a world journal of hepatic, pancreatic and biliary surgery, 8(4):249–252.
- [109] Shirozu, K, Tokuda, K, Marutani, E, Lefer, D, Wang, R, Ichinose, F (2014): Cystathionine γ-lyase deficiency protects mice from galactosamine/lipopolysaccharide-induced acute liver failure. Antioxidants & redox signaling, 20(2):204–216.
- [110] Yu, Y, Ye, S-M, Liu, D-Y, Yang, L-Q (2021): AP39 ameliorates high fat diet-induced liver injury in young rats via alleviation of oxidative stress and mitochondrial impairment. Experimental animals, 70(4):553–562.
- [111] Libiad, M, Vitvitsky, V, Bostelaar, T, Bak, DW, Lee, H-J, Sakamoto, N, Fearon, E, Lyssiotis, CA, Weerapana, E, Banerjee, R (2019): Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. The Journal of biological chemistry, 294(32):12077–12090.
- [112] Mathangi, DC, Shyamala, R, Vijayashree, R, Rao, KR, Ruckmani, A, Vijayaraghavan, R, Bhattacharya, R (2011): Effect of alpha-ketoglutarate on neurobehavioral, neurochemical and oxidative changes caused by sub-chronic cyanide poisoning in rats. Neurochemical research, 36(3):540–548.
- [113] Tan, G, Pan, S, Li, J, Dong, X, Kang, K, Zhao, M, Jiang, X, Kanwar, JR, Qiao, H, Jiang, H, Sun, X (2011): Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats. PloS one, 6(10):e25943.
- [114] Liu, Z, Wang, X, Li, L, Wei, G, Zhao, M (2020): Hydrogen Sulfide Protects against Paraquat-Induced Acute Liver Injury in Rats by Regulating Oxidative Stress, Mitochondrial Function, and Inflammation. Oxidative medicine and cellular longevity, 2020:6325378.
- [115] Guo, J-M, Xing, H-J, Cai, J-Z, Zhang, H-F, Xu, S-W (2021): H2S exposure-induced oxidative stress promotes LPS-mediated hepatocyte autophagy through the PI3K/AKT/TOR pathway. Ecotoxicology and environmental safety, 209:111801.
- [116] Liu, H, Bai, X-B, Shi, S, Cao, Y-X (2010): Hydrogen sulfide protects from intestinal ischaemia–reperfusion injury in rats. Journal of Pharmacy and Pharmacology, 61(2):207–212.
- [117] Dwivedi, DK, Jena, GB (2020): NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. Naunyn-Schmiedeberg's archives of pharmacology, 393(4):705–716.
- [118] Alotaibi, MR, Fatani, AJ, Almnaizel, AT, Ahmed, MM, Abuohashish, HM, Al-Rejaie, SS (2019): In vivo Assessment of Combined Effects of Glibenclamide and Losartan in Diabetic Rats. Medical principles and practice : international journal of the Kuwait University, Health Science Centre, 28(2):178–185.
- [119] Aloud, AA, Veeramani, C, Govindasamy, C, Alsaif, MA, Al-Numair, KS (2018): Galangin, a natural flavonoid reduces mitochondrial oxidative damage in streptozotocininduced diabetic rats. Redox report : communications in free radical research, 23(1):29–34.
- [120] Chidrawar, V, Alsuwayt, B (2021): Defining the role of CFTR channel blocker and ClC-2 activator in DNBS induced gastrointestinal inflammation. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 29(4):291–304.
- [121] Valdivieso, AG, Clauzure, M, Marín, MC, Taminelli, GL, Massip Copiz, MM, Sánchez, F, Schulman, G, Teiber, ML, Santa-Coloma, TA (2012): The mitochondrial complex I activity is reduced in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. PloS one, 7(11):e48059.

Abbildungsverzeichnis

Abbildung 1: Puffer Superoxid Anion und Katalase	5
Abbildung 2: Reduktion von H2O2 durch die GPO (Glutathion-Peroxidase)	5
Abbildung 3: Endogene H ₂ S-Synthese aus L-Cystein	7
Abbildung 4: Graphische Darstellung der Respirometrie	17
Abbildung 5: Mitochondriale Funktion im Colon	24
Abbildung 6: Mitochondriale Funktion in der Leber	26
Abbildung 7 Oxidativer Stress in Leber und Colon	28

Tabelle 1: SOFA-Score	2
Tabelle 2 Verwendete Konzentrationen in der Standardverdünnungsreihe	15
Tabelle 3: Puffer der mitochondrialen Messungen	22
Tabelle 4: Lösungen der Proteinmessungen nach Lowry	22
Tabelle 5: Lösungen der Malondialdehyd-Messungen	23
Tabelle 6: Mitochondriale Funktion - RCR (State 3/ State 2) und ADP/O des Colons	25
Tabelle 7: Mitochondriale Funktion – RCR (State 3/ State 2) und ADP/O der Leber	27
Tabelle 8: Oxidativer Stress in Leber und Colon	29

Anhang

Untersuchung	Ergebnis	Bewertung
Körpergewicht	1. präoperatives Gewicht (pG) g	Δ% < 5 = 0 P
_	2. Momentanwert (mW) g	Δ% < 15 = 2 P
	3. Δ-% des mW vom pG Δ%	∆% < 20 = 3 P
		∆% > 20 = 10 P
Erscheinung	1. normale Erscheinung, Fell anliegend, sauber geputzt	→ 0 P
	2. geringes Pflegedefizit, Fell gesträubt	→1P
	3. zunehmendes Pflegedefizit, Ränder an Auge/Anus	→ 2 P
	4. deutliches Pflegedefizit, Augen verklebt, Einstreu haftet am Anus	→3 P
Spontanverhalten	1. Ratte erkundet Käfig, aktiv	→ 0 P
	2. Ratte sitzt auf einer Stelle, Ganzkörperbewegung vorhanden	→1P
	3. buckelige Haltung, schwankender Gang	→ 3 P
	4. immobil, Seitenlage	→ 10 P
Provoziertes Verhalten	1. Ratte flieht bei Käfigöffnung, starker Muskeltonus	→ 0 P
	2. Ratte flieht erst bei Annäherung der Hand	→1P
	3. Ratte flieht erst bei Berührung	→ 2 P
	4. Fluchtreflex erloschen	→ З Р
Atemfrequenz	1. präoperativ Wert (pW)/min	Δ% < 10 = 0 P
	2. Momentanwert (mW)/min	Δ% < 20 = 1 P
	3. Δ-% des mW vom pW/Δ%	Δ% < 50 = 2 P
		Δ% > 50 = 3 P
Exspiratorisches	Nein	→ 0 P
Atemgeräusch	Ja	→1P
Abdomenpalpation (AP)	1. kein Druckschmerz bei AP, weiches Abdomen	→ 0 P
	2. geringe Reaktion auf AP, weiches Abdomen	→1P
	3. deutliche Schmerzzeichen auf AP, abdominelle Resistenz	→ 2 P
	4. deutliche Schmerzzeichen auf AP, hartes Abdomen	→ 3 P
Kotbeschaffenheit	1. viel normaler Kot im Käfig, koten während der Untersuchung	→ 0 P
	2. viel Kot im Käfig, Kot blutig, dünnflüssig oder schleimig	→1P
	3. wenig Kot im Käfig, unabhängig von Beschaffenheit	→ 2 P
	4. kein Kot im Käfig, (seit letzter Untersuchung)	→ 3 P

6.1 Septic Rat Severity Score

Erklärung: bewertet wird jeweils nur einmal die maximal erreichte Punktzahl pro Kategorie. Ist in wenigstens zwei Kategorien die maximal erreichbare Punktzahl von 3 Punkten erreicht, werden alle 3-Punkte Werte auf 4 Punkte aufgewertet. Opferung des Tieres bei 10 und mehr Punkten.

Danksagung

Zu Beginn richte ich meinen Dank an meinen Doktorvater Herr Prof. Dr. med Olaf Picker für die Möglichkeit die Doktorarbeit in dieser Arbeitsgruppe unter seiner Betreuung durchführen zu können.

Ein großer Dank geht ich an dieser Stelle auch an PD Dr. med Anna Herminghaus für die sehr gute Betreuung und Unterstützung im Labor und nicht zuletzt für die Arbeit, welche in die Korrektur dieser Dissertation geflossen ist.

Außerdem danke ich Frau Prof. Inge Bauer, sowie den freundlichen Labormitarbeiterinnen Frau Claudia Dohle und Frau Birgitt Berke für die Hilfe und Erklärungen während meiner Versuche.

Zu guter Letzt möchte ich mich bei meiner Familie, meiner Freundin und meinen Freunden für die jahrelange Unterstützung und insbesondere für die aufbauenden Worte während der stressigen und anstrengenden Phasen bedanken.