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Abstract

The swift progress of high-intensity lasers has opened new avenues for
exploring light-matter interactions, particularly in the field of quantum elec-
trodynamics (QED). High-intensity laser-plasma interactions provide an
ideal platform for probing QED processes as they generate strong electro-
magnetic fields and facilitate ultra-relativistic particle acceleration. This
research utilises particle-in-cell (PIC) code simulations to investigate QED
phenomena under such conditions, focusing on three distinct studies involv-
ing intense fields to prepare future experiments.

The first part of the research presents a Maxwell solver improving one-
dimensional field propagation simulations. It is demonstrated that the solver
effectively suppresses the numerical Cherenkov instability while minimizing
energy losses and self-interactions in the propagation of an ultra-relativistic
electron bunch. In a next step, the radiation reaction force, typically en-
countered in strong fields, is introduced. The influence of the force will be
discussed in regards of energy losses and beam dynamics. The second part
examines QED effects in the collision of electron bunches with laterally
shifted propagation axes. Due to the shift a higher number of electrons expe-
rience the strong field of the counter-propagating beam. The configuration
yields higher γ-photon emission and a subsequent higher number of decays
into electron-positron pairs. However, fewer particles reach the conjectured
nonperturbative QED regime, which is currently not experimentally feasible.
The third part proposes an experimental setup for future QED investigations.
This design incorporates two linearly polarized lasers, which approach a
solid-state target under a small angle. Due to the small angle electrons are
extracted and accelerated from the surface. As electrons reach the intersec-
tion of the laser propagation axes, they engage with counter-propagating
beams, potentially leading to a QED cascade under strong field conditions.
Subsequently, the study investigates the influence of various parameters on
particle spectra and yields, focusing on the intensity of the lasers and the
angle between the target and the laser.
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Zusammenfassung

Der rasche Fortschritt in der Entwicklung von Hochintensitätslasern hat
neue Wege zur Erforschung der Licht-Materie-Wechselwirkung erschlossen,
insbesondere im Bereich der Quantenelektrodynamik (QED). Hochinten-
sive Laser-Plasma-Interaktionen bieten eine ideale Plattform für die Un-
tersuchung von QED Prozessen, da sie starke elektromagnetische Felder
generieren und die ultra-relativistische Beschleunigung von Teilchen er-
möglichen. Diese Forschungsarbeit nutzt Simulationen mit Hilfe eines
Particle-in-Cell (PIC)-Code, um QED Phänomene unter solchen Bedingun-
gen zu untersuchen, wobei der Schwerpunkt auf drei verschiedenen Studien
liegt, die intensive Felder nutzen, um zukünftige Experimente vorzubereiten.

Der erste Teil der Forschung stellt einen verbesserten Maxwell-Solver für
Simulationen mit eindimensionaler Feldausbreitung vor. Es wird demon-
striert, dass der Solver die numerische Tscherenkow-Instabilität effektiv
unterdrückt, während er gleichzeitig Energieverluste und Selbstinteraktionen
bei der Ausbreitung eines ultra-relativistischen Elektronenbündels minimiert.
In einem nächsten Schritt wird die Strahlungsrückwirkungskraft hinzuge-
fügt, die typischerweise in starken Feldern auftritt. Der Einfluss der Kraft
wird hinsichtlich Energieverlusten und Teilchen-Dynamiken diskutiert. Der
zweite Teil befasst sich mit der Untersuchung von QED Effekten beim
Zusammenstoß von Elektronenbündel, deren Ausbreitungsachsen zueinan-
der transversal verschoben sind. Aufgrund der transversalen Verschiebung
sind mehr Elektronen dem starken Feld des entgegenlaufenden Strahls aus-
gesetzt. Diese Konfiguration resultiert in einer erhöhten γ-Photonenemission
und in der Folge in einer angestiegene Anzahl an Zerfällen in Elektron-
Positron-Paare. Allerdings erreichen weniger Teilchen das postulierte nicht-
perturbative QED-Regime, welches derzeit experimentell nicht realisierbar
ist. Der dritte Teil schlägt eine experimentelle Anordnung für zukünftige
QED Untersuchungen vor. Dieses Design beinhaltet zwei linear polar-
isierte Laser, die einem Festkörper unter einem kleinen Winkel nähern
und Elektronen aus dem Körper extrahieren und beschleunigen. Wenn die
Elektronen den Schnittpunkt der Ausbreitungsachsen der Laser erreichen,
interagieren sie mit den entgegenlaufenden Feldern, was potenziell zu einer
QED Kaskade unter starken Feldbedingungen führen kann. Nachfolgend
untersucht die Studie den Einfluss verschiedener Parameter auf die Partikel-
spektren und -ausbeuten, wobei der Schwerpunkt auf dem Winkel zwischen
dem Festkörper und dem Laser sowie der Intensität der Laser liegt.
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1 Introduction

In modern physics, the exploration of quantum electrodynamics (QED) is an experi-
mentally challenging frontier, presenting physicists with great obstacles. They rely on
developing new tools and theories to overcome these. With the advent of high-energy
particle beams, high-intensity laser systems, and numerical simulation tools, new avenues
for probing the complex theory of QED processes in regimes previously experimentally
inaccessible have opened.

The development of lasers began with theoretical groundwork done by Albert Einstein,
who proposed the process of stimulated emission [1]. This concept was brought to
fruition with the creation of the first working laser by Theodore H. Maiman [2]. Since
then, lasers have been deployed in nearly every aspect of life. Lasers provide coherence
and monochromaticity, which are especially useful in scientific experiments such as
trapping [3] and laser interferometry [4].
One significant breakthrough that has revolutionized the field is Chirped Pulse Am-
plification (CPA) [5], which has lead to continuous increase in peak intensities from
∼ 1015W cm−2 upward. This technique has been crucial in enabling interactions with
matter and unlocking a new domain of high-intensity physics.
Leading the frontier are major laser facilities such as ELI [6], SULF [7] and many
more [8–12], where CoReLS is the leading facility with a current peak intensity of
∼ 1023W cm−2 [13]. These facilities are not only impressive in their engineering but
also serve as tools for physicists, offering a wide array of experimental setups that can be
used to explore diverse physics[14].
High-intensity lasers have been instrumental in exploring plasmas, leading to ground-
breaking discoveries in high-energy density physics [15–17], especially laser-driven
fusion [18, 19] and particle acceleration [20–22]. Laser-plasma interaction has not only
deepened the understanding of fundamental processes but also spurred numerous prac-
tical applications, ranging from materials processing [23, 24] to medical technologies
[25, 26].

While laser technologies have been developing, parallel advancements have been made
in the area of particle accelerators. These machines accelerate particles to nearly the
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1 Introduction

speed of light, creating high-energy conditions needed for advanced studies. The types
of particle accelerators vary widely, including linear accelerators like SLAC [27, 28],
synchrotrons like the Large Hadron Collider (LHC) [29], and cyclotrons like FRIB [30].
High-energy charged particle beams serve as essential instruments for probing the
fundamental tenets of physics. These beams are employed in experimental settings to
investigate the Standard Model [31], explore the architecture of matter [32], and produce
rare atomic nuclei[33].

By combining both high-intensity lasers and high-energy electrons, researchers are poised
to explore uncharted territories in light-matter interactions. A more comprehensive un-
derstanding of radiation reaction [34, 35], an aspect of electrodynamics that remains
incompletely understood [36], can be researched with these lasers and electrons. Radia-
tion reaction is the force a charged particle experiences as a consequence of radiation
losses due to its acceleration in an intense field. Shifting finally to QED theory, the
radiation reaction becomes less important with stronger fields. In the description of QED
theory the radiation losses can be explained by the emission of high-energy photons by
charged particles. Theses photons can then decay to an electron-positron pair, which
influence plasma dynamics and is of a great interest for further study. As research has
been conducted in this field it is predicted that high-energy electrons play a critical role
in investigating the frontier of QED [37–40] and anticipate that the theory transitions into
a fully nonperturbative regime [41–43]. But the lack of experimental tools is the reason
why the research slows down at times and facilities try to reach higher laser intensities or
accelerate charged particles to higher energies.

However, experiments are unable to provide all the answers and physics research is there-
fore supported by numerics. One of the primary computational method for examining
the interactions between high-energy charged particles and electromagnetic fields is the
particle-in-cell (PIC) [44, 45] technique. This method is recognized as a fundamental
approach for studying a wide variety of topics. These include interactions between lasers
and relativistic plasmas [46–49], plasma-based acceleration [50, 51], and astrophysical
phenomena involving relativistic conditions [52, 53]. Within the PIC framework, matter
is represented as a collection of macro-particles. These macro-particles are moved ac-
cording to relativistic equations of motion. The resulting charge currents then serve to
update the electromagnetic fields, thereby enabling a self-contained representation of the
interactions [44]. These fields are typically updated using finite-difference time-domain
(FDTD) algorithms. Yee was among the pioneers in proposing a staggered grid for
solving the Maxwell equations using this approach [54].
This computational approach provides a robust framework for studying laser-plasma
interaction under relativistic conditions. PIC simulations can be extended for various
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1.1 Outline

cases, allowing for the fine-tuning of conditions to isolate specific events or phenomena
for detailed study.

As may already have become apparent, the present thesis aims to delve into configura-
tions for the study of QED events, focusing primarily on nonlinear Compton scattering
[55] and multi-photon Breit-Wheeler pair production [56]. These phenomena, as already
established, have remained largely unexplored in experimental setups, partly due to
the limitations in generating high-intensity laser fields and energetic particle beams.
However, with upcoming potential parameters in sight, QED processes will soon become
accessible for investigation.
The thesis examines this topic by using PIC simulations and extending the existing
PIC-code VLPL [45, 57]. Developed numerical tools, implemented in the existing PIC-
code, offer insights into potential methodologies for studying QED effects. Concerning
numerical instabilities are studied as well as they may threaten the results of the simu-
lations. Afterwards, understanding QED effects in possible configurations enabled by
innovations in particle accelerators and high-energy laser facilities is investigated. An
existing scheme, namely a head-on collision of ultrarelativistic bunches, modified for
study of QED processes, is considered. The other configuration involves high-intensity
lasers incident on a solid-state target at a grazing angle. Here, an abundant production of
secondary particles due to QED processes is examined.
Eventually, the introduction of these configuration can be used in new experiments
once the currently build laser facilities are finished and give insight on experimentally
unexplored regimes.

1.1 Outline

The thesis is structured as follows. Chapter 2 is an overview of the underlying physics
discussed throughout the thesis. Topics that will be addressed are general properties
of plasma and high-energy laser-plasma interactions. Afterwards, radiation processes
in the classical regime are explained and the chapter concludes with an overview of
the complex regime of strong-field QED. Here, processes like the high-energy photon
emission and the decay of such a photon into an electron-positron pair are a likely
occurrence. In a sufficiently strong field, the repetition of photon emission and pair
production may lead to development of a QED cascade resulting in a build up of an
electron-positron plasma. The following chapter 3 targets the methods and algorithms
used in this thesis. Here, the particle-in-cell (PIC) method will be described and its
extension through various physical modules and merging algorithms. Benchmarks for
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1 Introduction

the merging algorithm will be shown as well. These introductory chapters are followed
by the main part containing three chapters. The main chapters are devoted to the research
topics conducted by the author. The first topic tackles the suppression of non-physical
radiation losses in chapter 4. It is important to suppress non-physical behaviour in the
upcoming simulations, since additional strong-fields could increase secondary particle
production and alter the final result. Next up, in chapter 5 a previously introduced
head-on bunch collision configuration is investigated under a modification of the author.
The effects of the introduced modification are studied and its impact on reaching the fully
nonperturbative QED regime is discussed. Finally in chapter 6, a second configuration is
investigated. Extraction and acceleration of electrons from a solid-state target irradiated
with a high-intensity laser is researched. Here, the production of secondary particles
due to QED processes during the interaction of the extracted electrons with a counter-
propagating laser is discussed. The thesis finishes with a conclusion on the topics in
chapter 7.

1.2 Publication in peer-reviewed journals

The specific contributions are given at the end of the summary of each chapter. Following
studies have passed a peer-review process:

• M. Filipovic, C. Baumann, A. M. Pukhov, A. S. Samsonov and I.Yu. Kostyukov,
Effect of transverse displacement of charged particle beams on quantum electrody-
namic processes during their collision, Quantum Electronics 51 807(2021)

• A. S. Samsonov, E. N. Nerush, I. Yu. Kostyukov, M. Filipovic, C. Baumann and
A. Pukhov, Beamstrahlung-enhanced disruption in beam–beam interaction, New
Journal of Physics 23 103040(2021)

• M. Filipovic, C. Baumann, and A. Pukhov, Suppression of errors in simulated
ultrarelativistic bunch propagation using the X-dispersionless Maxwell solver,
Physical Review Accelerators and Beams 25, 054405(2022)

• M. Filipovic and A. Pukhov, QED effects at grazing incidence on solid-state
targets, European Physical Journal D 76, 187 (2022)

• A. S. Samsonov, I. Yu. Kostyukov, M. Filipovic, and A. Pukhov, Generation of
electron–positron pairs upon grazing incidence of a laser pulse on a foil. Kvanto-
vaya Elektronika, 53(2), 160-164, (2023).
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1.2 Publication in peer-reviewed journals

1.2.1 Proceedings

Following proceeding has been published;

• L. Reichwein, M. Filipovic, X. F. Shen, K. Jiang, C. Baumann, and A. Pukhov,
Interaction of Extremely Intense Flows of Electromagnetic Energy and QED
Processes in Supercritical Fields, published for the NIC Series (2022).
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2 Underlying Theory

Within the following chapter, the important theory, which appears in this study, is
discussed in detail. First, an in-depth overview of the physics and characteristics of a
plasma will be elaborated (see section 2.1). Subsequently, the chapter delves into the
influence of radiation losses on ultra-relativistic electrons, presented within a classical
framework (see section 2.3). The chapter concludes with a comprehensive description of
the QED effects examined in this study (see section 2.4). The content of this chapter is
an overview of the books on plasma theory and lectures [58–61].

2.1 Plasma

Regarded as the fourth fundamental state of matter, alongside solids, liquids, and gases,
plasma is a macroscopically neutral ensemble of unbound positive and negative particles,
comprised of ions and free electrons. Plasma is therefore called quasineutral, since at
microscopical lengths charge imbalances can be present, but observing it from afar and
as a whole the medium is neutral. Each particle exhibits influence on the neighbouring
particles via long-range electromagnetic forces. Due to their constant interaction various
collective behaviors are observed in plasma. There are certain criteria that must be met
in order to qualify a gas of ions and electrons as plasma. To define them, some insight
into the behaviour of plasma is required.

2.1.1 Debye shielding

One of the most important features of a plasma is the so-called Debye shielding. As
plasma consists of free charged particles, it possesses the ability to neutralize charge
imbalances. This allows it to effectively shield charges that are introduced externally.
Quasineutrality describes that the plasma may have differences in charge if locally
observed, but overall plasma is electrically neutral. In general, plasma tries to compensate
any charge imbalances to shield their electrostatic fields.
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2 Underlying Theory

Coming back to introducing a charge into the plasma enables one to define the shielding
process in more detail. As a test charge q is placed in a plasma consisting of electrons
and protons, on one hand charges with the same charge as the test-charge are pushed
back. On the other hand, charges with the opposite charge are attracted. Therefore, the
charge will be shielded. To explain this effect, the distribution of charges in the plasma
can be analyzed using the Poisson equation. The shielding described by the Poisson
equation reads

∇
2
φ =−4π (qδ (r)+ e(np −ne)) , (2.1.1)

with φ representing the electric potential, qδ (r) denotes a charge density of a point-
charge in the origin, here test-charge q, e is the elementary charge and np and ne being
the density of protons and electrons respectively. Supposing that the electrons in potential
φ have Boltzmann distribution

ne = n0 exp
(

eφ

kBT

)
, (2.1.2)

with n0 is the unperturbed plasma density, kB is the Boltzmann constant and T being the
temperature of electrons. Due to the large mass of protons it can be assumed that they
are immobile at a typical time-scale of electron interaction. Assuming that the argument
of the exponential function is eφ/(kBT ) ≪ 1 the electron distribution can be Taylor
expanded and inserted into equation 2.1.1 leading to

(
∆− 1

λ 2
D

)
=−4πqδ (r) , (2.1.3)

with ∆ = ∇2 and

λD =

√
kBT

4πne2 (2.1.4)

denotes Debye length. The Debye length describes the distance at which the potential
drops to the order of 1/e of the initial potential. Performing a Fourier transformation
obtains the solution to the Poison equation 2.1.3 and reads

φ =
q
r

exp
(
− r

λD

)
. (2.1.5)

This solution allows us to see that placing a test-charge in plasma will lead to the potential
being shielded off. Additionally, the argument of the exponential function shows, that
the potential decreases faster as a Coulomb potential with φ ∝ 1/r.

Understanding Debye shielding results in following additional criteria for classifying
a medium as plasma. First, the extent of the plasma system needs to be larger than
the Debye length, λD ≪ L. Second, the number of particles in the volume to shield
test-particles ND has to be very large

ND =
4
3

πλ
3
Dn0 ≫ 1. (2.1.6)
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2.1 Plasma

2.1.2 Plasma frequency

As the key feature of plasma has been described, it is of interest to understand certain
motions of plasma. Here, the notions of two new parameters, plasma frequency and
critical density, merit discussion. In the case that one of the particles species, for example
electrons, are shifted within the plasma, an electric field is induced between the different
charged particles. This displacement leads to oscillation of the electrons within the
plasma, as the plasma tries to restore the quasineutrality. The plasma frequency ωp is a
measure of how these oscillations in charge imbalances are restoring neutrality in plasma.
To derive the frequency, one begins with Ampère’s Law

∇×B =
1
c

∂E
∂ t

+
4π

c
J (2.1.7)

and with no magnetic field present, B = 0, eq. 2.1.7 simplifies to

−4π

c
J =

1
c

∂E
∂ t

. (2.1.8)

Here, J is the current density and reads

J =−env, (2.1.9)

where n is the number density of electrons and v is the velocity of the electrons. The
motion of an electron under the influence of an electric field is described by

me
dv
dt

=−eE, (2.1.10)

with me the electron mass. Next, it is assumed that the velocity v and the electric field E
are small perturbation, so the equation can be linearized. Substituting the current density
in Ampère’s Law leads to

4πen
c

v =
1
c

∂E
∂ t

. (2.1.11)

To be able to substitute eq. 2.1.11 in the equation of motion another approximation is
required. The total time derivative reads in detail

dv
dt

=
∂vv
∂ t

+(v ·∇v) . (2.1.12)

Assuming that a homogeneous and stationary plasma is at hand and perturbations are
small the spatial derivatives can be neglected. The total time derivative approximates to
∂v/∂ t.
Taking the time derivative of the equation of motion for electrons

∂

∂ t

(
m

∂v
∂ t

)
=−e

∂E
∂ t

(2.1.13)
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2 Underlying Theory

finally allows the substitution of eq. 2.1.11 into it, which transforms to

m
∂ 2v
∂ t2 =−4πne2v. (2.1.14)

For a sinusoidal velocity v ∼ exp(iωpt) the transformed equation above becomes

−mω
2
pv =−4πne2v. (2.1.15)

This equation can be solved for the plasma frequency ωp:

ωp =

√
4πne2

me
, (2.1.16)

Plasma frequency is an essential parameter because it sets the timescale for many plasma
processes, including wave propagation and scattering phenomena.

2.1.3 Electromagnetic waves in plasma

Due to the focus on laser-plasma interaction in the thesis it is important to examine
the interplay between light waves and the plasma. Interaction between those can be
connected by the dispersion relation of light waves in a plasma

ω
2 = ω

2
p + c2k2, (2.1.17)

with ω the angular frequency of the light wave, c the speed of light and k the wave
number. The dispersion relation shows us that only waves with a frequency ω0 greater
than the plasma frequency are able to propagate through a plasma. The physical reason
is that electron oscillations cannot keep up with the wave as their response time is slower
than the fast oscillation of the wave. But if the wave frequency is smaller than the plasma
frequency, the electrons can respond to reflect the incoming wave. In this case, k becomes
imaginary.

In such cases the skin depth ls is the most important parameter to see how far a wave can
enter the plasma and is described as

ls =
c√

ω2
p −ω2

0

. (2.1.18)

As a second quantity to see, whether waves can penetrate plasma a description void of
the plasma frequency is desirable. This quantity is the critical density ncr, the density at
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2.2 Laser pulses

which the plasma frequency equals the frequency of an externally applied electromagnetic
wave. In this case ncr is the density of which a wave of frequency ω0 can propagate
through the plasma. It can be represented as

ncr =
meω2

p

4πe2 ≈ 11.15×1012

(λ0/cm)2 cm−3 (2.1.19)

Again, if ne < ncr the plasma is transparent and called under-dense, where as ne > ncr the
plasma is opaque and called over-dense for waves with a frequency of ω0. The concept
of critical density is crucial in applications like controlled fusion and plasma diagnostics.
It is also an important normalization unit in numerical simulation and allows, at a glance
to determine, if a plasma is opaque or transparent for a light with a frequency of ω0.

2.2 Laser pulses

After covering one of the main topics of the theory in this thesis the second major part is
laser pulses and their fields. It is important to provide some insight as one of the chapters
will dive into laser-plasma interaction. This section will display only some aspects of the
very broad subject of lasers. The content of this chapter is knowledge from books on
laser pulses and lectures on electrodynamics [62–67], where a more in-depth description
can be found.

To define a laser pulse, it is required that the pulse be a solution of the wave equation
(

∆− 1
c2

∂ 2

∂ t2

)
E = 0⃗, (2.2.1)

where ∆ = ∇2 denotes the Laplace operator and E the electric field vector. This equation
describes the behaviour of electromagnetic waves in a vacuum.

Among various types of laser pulses, the thesis is mainly interested in Gaussian pulses
due to their wide applicability and use within experiments. The main characteristic of
such a pulse is the usage of a Gaussian distribution within its spatial and temporal profile.
For a Gaussian pulse the electric field reads

E (r,z, t) = E0
w0

w(z)
exp
[
− r2

w(z)
− ikz− ikr2

2R(z)
+ iζ (z)

]
exp(iωt). (2.2.2)

Here, E0 is the peak amplitude, w = w0

√
1+
(

z
zR

)2
is the beam waist with zR = πw2

0/λ0

the Rayleigh length, where λ0 is the wavelength of the light and w0 defines the focal spot

11



2 Underlying Theory

size. Further, k = 2π/λ0 denotes the wavenumber and R(z) = z
[
1+
( zR

z

)2
]

being the
radius of curvature. The final parameters of the eq. 2.2.2 are ζ (z) = arctan(z/zR) as the
Gouy phase shift and ω the angular frequency of the pulse.

An important parameter which describes the strength of a laser and summarizes the most
important quantities is the normalized laser vector potential or dimensionless vector
potential

a0 =
eEL

mecω0
. (2.2.3)

The parameter demonstrates that as soon as a0 exceeds unity the electron enters the
relativistic regime. Specifically, it describes an electric field of strength EL that accelerates

an electron to an energy of mec2
√

1+a2
0 over the length of reduced wavelength λ0/(2π).

The parameter can be cast into a form containing the peak intensity of a wave I0 and
reads

a0 = λ0 [µm]×
√

I0
[
W cm−2]

1.37×1018 ×ζ
(2.2.4)

with ζ the polarization of the wave. A ζ = 1 would describe a linearly polarized wave,
whereas a ζ = 2 would be a circularly polarized wave.

2.3 Classical radiation reaction

So far, accelerating electrons to the relativistic regime has been described, but it also
needs to be considered that electrons emit radiation within strong fields. In classical
electrodynamics, the motion of an electron is not only influenced by the Lorentz force.
An extra force accounts for the energy and momentum loss of an accelerated electron that
emits electromagnetic waves. As a result, the trajectory of the electron is altered from
the predicted one by Lorentz force alone. This phenomenon is considered as radiation
reaction or short RR. One of the earliest historical descriptions of this force employs the
Larmor formula [68]

PL =
2
3

e2

m2
ec3

(
dp
dt

)2

. (2.3.1)

This equation defines the power of the emitted radiation by an electron under an external
force. It is necessary to include a radiation reaction dampening force since its recoil is
not captured by the Lorentz force, which reads

FL = q
(

E+
v
c
×B

)
, (2.3.2)
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2.4 Strong-field quantum electrodynamics

with FL the force of electromagnetic fields. The additional force can be encapsulated
by the Lorentz-Abraham equation, the force experienced by a charged particle due to
radiation reaction

Frad = τ
dF
dt

(2.3.3)

with τ = 2
3

q2

mc3 the time scale of radiation reaction. The problem of this equation is that
it is not ideal, as it produces inconsistent runaway solutions. In order to find a better
description the Landau-Lifshitz approach [35] in its covariant form

fµ

LL =
2q3

3mc2 (∂αFµνuνuα)+
2q4

3m2c4

[
FµνFναuα +

(
Fνβ uβ Fναuα

)
uν

]
, (2.3.4)

is able to eliminate most issues, where uµ is the particle four-velocity and Fµν being the
electromagnetic tensor.

2.4 Strong-field quantum electrodynamics

Reaching even stronger fields will require to move on to a quantum mechanical descrip-
tion. The quantum non-linearity parameter is an important quantity to classify the regime
and determine the occurrence of various processes in this regime. The parameter is
defined as

χ =
eℏ

m2c3

√(
γE+

p
mc

×B
)2

−
( p

mc
·E
)2

=
Erest

Ecrit
(2.4.1)

with Ecrit = m2
ec3/(eℏ) ≃ 1.3× 1016Vcm−1 being the critical field of QED [69]. The

critical field, also known as the Schwinger limit [69], describes a limit for vacuum
breakdown and the point at which the theory becomes nonlinear. The quantum non-
linearity parameter can be perceived as the ratio of the electric field a charged particle
experiences in its own rest frame to the critical field. If the quantum non-linearity
parameter exceeds unity for a charged particle, QED effects become important.

As a support to understand quantum processes in the following and to implement nu-
merically, an assumption is necessary. Typical fields are complex because they vary in
time and space making calculations difficult. An assumption that can be made is that
particles regard the local field as constant. This assumption is the locally constant-field
approximation [55, 70]. It can be employed if the pair-formation length lC = ℏ/mc2 is
much smaller than the field related length λ0. Therefore, one can just use the local value
of χ .

The obvious choice to apply this approximation is to establish a static magnetic field [55]
or a constant-crossed field, where the fields are perpendicular to each other and have the
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2 Underlying Theory

same magnitude. The latter case is of special interest as it helps to model laser-plasma
interaction for relativistic particles.

With this assumption the key QED effects in this thesis will be described in the following
subsections.

2.4.1 Nonlinear Compton scattering

One of the fundamental QED processes affecting a charged particle is the emission of
radiation due to acceleration in an external field. The name of the process is the nonlinear
Compton scattering, but it can be also described as the quantum synchrotron radiation.

To observe this process, no specific initial energy or intensity requirement needs to be
met. The direction of the momentum of a photon emitted by a particle with γ ≫ 1 is
nearly parallel to the propagation direction of the emitting particles. The direction is
defined by a cone with an opening angle of ∼ 1/γ [71].

A description of the process for an electron can be

e−+nℏω → e−+ γ, (2.4.2)

with e− as an ultra-relativistic electron interacting with a number of n photons ℏω

provided by an external field.

The energy distribution of the probability rate of this process is given by

dWrad
(
εγ

)

dεγ

=−αm2c4

ℏε2
e

{ˆ
∞

x
Ai(ξ )dξ +

(
2
x
+χγ

√
x
)

Ai′ (x)
}

(2.4.3)

with x =
(
χγ/χeχ ′

e
)2/3, Ai(x) = (1/π)

´
∞

0 cos
(
ξ 3/3+ξ x

)
dξ the Airy function, χ ′

e =

χe−χγ and εe and εγ the energy of the initial electron and emitted photon respectively [72,
73]. Examining the energy distribution of the probability rate, it is clear that the equation
describes the process of an electron with energy εe losing energy and becoming an
electron, which emitted a photon of energy εγ . Through integration of 2.4.3 one can
derive the total emission rate [74]

Wrad =

ˆ
εe

0

dWrad
(
εγ

)

dεγ

dεγ =
α

3
√

3π

mc2

ℏγ

ˆ
∞

0

5x2 +7x+5

(1+ x)3 K2/3

(
2x
3χ

)
dx (2.4.4)

with K2/3(·) the modified Bessel function of the second kind. Taking the inverse of the
equation 2.4.4 describes the photon emission time by an ultra-relativistic electron. The
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2.4 Strong-field quantum electrodynamics

photon emission time estimates the time between two emission processes of a particle.
Should the implementation of this process be considered it is preferred to suppress the
integral expression in 2.4.4. In order do that, one can use a precalculated table for various
integral solutions. The upper limit of the integration cannot be higher than the initial
electron energy εe. Here the total emission rate can be described by using asymptotic
expressions in the limit of a large quantum non-linearity parameter [72]

Wrad ≈ 1.46
αm2

ec4

ℏεe
χ

2/3
e ,χe ≫ 1. (2.4.5)

2.4.2 Multi-photon Breit-Wheeler pair production

The second important QED process focused on is the conversion of a high-energy
photon into an electron-positron pair, also known as the multi-photon Breit-Wheeler pair
production process [56]. Similar to the nonlinear Compton scattering process one can
establish the energy distribution of the probability rate by hard photons, photons with an
energy of εγ ≫ mc2, which reads

dWpair (εe)

dεe
=

αm2c4

ℏε2
γ

{ˆ
∞

x
Ai(ξ )dξ +

(
2
x
−χγ

√
x
)

Ai′ (x)
}
, (2.4.6)

with x =
(

χe/χγ χ ′
γ

)2/3
[72, 75]. In this case the equation 2.4.6 describes the positron

created by the process. Again, integrating the equation 2.4.6 yields the total rate for the
process, which is here

Wpair =
α

3
√

3π

m2c4

ℏε

ˆ 1

0

9− x2

1− x2 K2/3

(
8mc2Ecrit

3(1− x2)ℏωB

)
dx. (2.4.7)

For a simpler equation, equation 2.4.7 can be rewritten with an asymptotic expression
for the limit of large χγ

Wpair ≈ 0.38
αm2c4

ℏεγ

χ
2/3
γ ,χγ ≫ 1. (2.4.8)

Taking the inverse of the total pair-creation rates 2.4.7 and 2.4.8 gives one the pair
production time, the time until a photon with high enough energy converts to an electron-
positron pair [72].

2.4.3 Neglected processes

These above mentioned processes are by far not the only QED effects that are important
and occur at this fields. Additional effects are the pair annihilation to one photon as well
as the absorption of a photon by an electron or positron in a strong external field [71, 76].
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2 Underlying Theory

Both of these processes are neglected due to the assumption of constant crossed fields,
as these processes are suppressed by the aforementioned process of nonlinear Compton
scattering and pair production. Additionally, to simulate such processes the collision
angle Θ between for an example an electron-positron pair for annihilation needs to be
Θ ≤ 10−5rad [71, 76].
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3 Numerical tools and algorithms

To understand physical phenomena in complex situations, numerical tools are a great
method to fully understand the mechanics behind it. Specifically for plasma dynamics
and laser-plasma interaction, the toolset provided by particle-in-cell codes, in short
PIC codes, is a great way to obtain results. Because of that, this chapter will first
give an introduction to the PIC method in its basic form and explain further how to
implement classical synchroton radiation, quantum-electrodynamic processes relevant
in the high-energy regime and mitigation of abundance of macro-particles by QED
processes to prevent ever increasing computational loads. These algorithms are deployed
in the code VLPL developed by A. Pukhov [45, 57]. The merging module, which has
been implemented throughout the thesis in the current version of VLPL are tested in the
respective subsection.

3.1 General concept of PIC codes

PIC codes tackle a problem with plasma interaction. As it was previously established,
plasma consists of a great number of particles (see section 2.1). If one were to consider
simulating each particle in an electromagnetic field, the simulation will require a vast
number of calculations to retrieve new particle positions and updated momenta. There
are three key points the PIC codes generally need to accomplish. Firstly, in order to
minimize the computational effort particles should be summarized into macro-particles, a
charge density of particles. Theses macro-particles must abide by the same physical laws
as particles not grouped. In doing so the number of calculations is significantly reduced
and even becomes practicable on slower computer cores. Secondly, electromagnetic
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3 Numerical tools and algorithms

fields need to be updated for the ongoing simulation. Therefore, the Maxwell equations

∇×E =−1
c

∂B
∂ t

(3.1.1)

∇×B =
1
c

∂E
∂ t

+
4π

c
J (3.1.2)

∇ ·E = 4πρ (3.1.3)

∇ ·B = 0 (3.1.4)

need to be solved numerically. But in doing so errors are often introduced. Most Maxwell
solvers have cases where they suppress errors in certain situations [45, 77–79], while
others introduce only a general small error [80]. Finally, the particles need to undergo a
momentum change once a force is applied to them. Here, particle pusher algorithms are
used and expanded with additional modules.

These key points will be explained briefly in the following sections, but an extensive
description for PIC codes can be found in [44].

3.1.1 The Vlasov equation

As a starting point for the PIC code it is important to understand the kinetics [57]. Here,
the requirement is to find a source term which is the current density j. To acquire this
source term, the description of the distribution function

FN (x1,p1, ...,xN ,pN) (3.1.5)

is necessary, with xn the position and pn the momentum of the n-th particle. It has been
shown, that the single-particle distribution f (x,p, t) for each species in the system is
needed to have the information for the full system. The Boltzmann-Vlasov equation
gives then the evolution of the single particle distribution in the following:

∂ f
∂ t

+
p

mγ
∇ f +

F
m

∇p f = St (3.1.6)

Here, St is the collisional term. In the next step, this equation must be solved, but
due to the complex nature of the equation solving it analytically will lead to a high
computational cost.

Solving the partial differential equation can be done in two different ways. The first
approach involves using finite differences in a grid structure of the phase space. Using
this approach is straightforward, but harbors a great problem. This method requires
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b)

P

X
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plasma distribution functionplasma distribution function

unfilled phase spaceunfilled phase space

P
X

plasma distribution functionplasma distribution function

sampling with macro-particlessampling with macro-particles

Figure 3.1.1: a) shows the plasma function distribution in a regular phase space at a
certain time. b) Here, the plasma distribution function is sampled by
numerical macro-particles.

intensive calculations and a massive amount of computational resources. Lots of the
calculations might get "wasted" when considering phase space where no particles are
present as figure 3.1.1 a) demonstrates. The grid spans across the whole phase space,
including unfilled phase space.

Therefore, an additional simplification is necessary to solve the six-dimensional equa-
tion [57].

Introducing the finite element method allows to approximate the single-particle distribu-
tion function with finite phase-fluid elements

f (x, p) = ∑
n

W ph
n Sph (x− xn, p− pn) (3.1.7)

where W ph
n is the weight of the n-th element and Sph the shape in phase space. This

method is showcased in figure 3.1.1 b) using macro-particles across the plasma particle
distribution. Now the centers of the finite phase fluid elements can be developed to
retrieve relativistic equations of motions

dxn

dt
=

pn

mγ
, (3.1.8)

dpn

dt
= F+FSt (3.1.9)

with FSt the collisional force by the collisional term in the Boltzmann-Vlasov equation.
This allows the use of a grid configuration to solve Maxwell equations, since the grid
now only has thee dimensions.
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3.1.2 Maxwell solvers

To update the electromagnetic fields for each step it is required to solve the Maxwell
equations 3.1.1, 3.1.2, 3.1.3 and 3.1.4 numerically. Different Maxwell solvers were
developed over the last years [45, 54, 77, 81]. While using Maxwell solvers these
algorithms normally impose criteria to guarantee stability over the simulation time. They
are necessary to display field structures like laser pulses in detail without of loss of
information due to the grid structure. Further, the Courant-Friedrichs-Lewy (CFL) [82]
condition needs to be fulfilled to ensure stability, which reads:

c∆t ≤ 1√
∆x−2 +∆y−2 +∆z−2

(3.1.10)

Here ∆x,∆y and ∆z are the grid steps in their corresponding direction and ∆t the time
step fields should not propagate further in a time step than a whole grid cell.

As mentioned, various Maxwell solvers are available for PIC codes, but the focus lies on
two methods in this thesis. One solver is the historically first, which is the Yee solver [54],
to give insight into the general approach of solving the equations numerically, and the X-
dispersionless solver [77], otherwise known as Rhombi-In-plane (RIP) solver developed
by A. Pukhov. Both of these solvers are capable of solving Maxwell’s equations, but
each one can exceed the other in different configurations. A comparison, where the RIP
solver is significantly better than the Yee solver will be shown later in a study of an
ultra-relativistic electron bunch propagation in vacuum.

In general, Maxwell solvers are using finite-difference time domain method, where
derivatives are replaced by finite differences such as

d f (x)
dx

∣∣∣∣
x=x0

≈
f
(

x0 +
δ

2

)
− f

(
x0 − δ

2

)

δ
. (3.1.11)

3.1.2.1 Yee algorithm

For the Yee solver, finite differences replace the derivatives in each component of the
Maxwell equations 3.1.1 and 3.1.2. The other two Maxwell equations 3.1.3 and 3.1.4
are initial conditions [57]. Solving these equations leads to the update equations. For
example the Bx-update equations reads

B
n+ 1

2
x|i, j+ 1

2 ,k+
1
2
−B

n− 1
2

x|i, j+ 1
2 ,k+

1
2

∆t
=

En
y|i, j+ 1

2 ,k+1
−En

y|i, j+ 1
2 ,k

hz
−

En
z|i, j+1,k+ 1

2
−En

z|i, j,k+ 1
2

∆t
(3.1.12)
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Figure 3.1.2: Grid placement of the Yee Maxwell solver. Magnetic fields are shifted
by an half grid step.

with i, j and k indexing the grid index in the corresponding x,y and z direction, and n

indexes the n-th time step. This equation can be rearranged for the variable B
n+ 1

2
x∥i, j+ 1

2 ,k+
1
2

so it can be used within the PIC code. The remaining update equations can be determined
in the same way leading to the Yee solver.

3.1.2.2 X-dispersionless Maxwell solver

The RIP scheme, on the other hand, is a more complex Maxwell solver. The full
description of this solver can be found in [77]. The key aspects of the Maxwell solver
are that it is dispersionless along one dimension and that transverse fields are known
on the same grid points. This benefits configurations simulating field propagation in
one direction as it removes most numerical errors. To derive the RIP solver, the starting
point is the Maxwell equations and electromagnetic waves propagating in X-direction.
Following Maxwell equations are obtained per component

1
c

∂Ex

∂ t
=Γx,

1
c

∂Bx

∂ t
=Φx, (3.1.13)

1
c

∂Ey

∂ t
=− ∂Bz

∂x
+Γy,

1
c

∂By

∂ t
=

∂Ez

∂x
+Φy, (3.1.14)

1
c

∂Ez

∂ t
=

∂By

∂x
+Γz,

1
c

∂Bz

∂ t
=− ∂Ey

∂x
+Φz. (3.1.15)
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with Γ⃗ the vacuum diffraction of E, J the current and Φ⃗ the vacuum diffraction operator
of B reading

Γx =
∂Bz

∂y
− ∂By

∂ z
− Jx, Φx =− ∂Ey

∂ z
+

∂Ez

∂y
, (3.1.16)

Γy =
∂Bx

∂ z
− Jy, Φy =− ∂Ez

∂x
, (3.1.17)

Γz =− ∂Bx

∂y
− Jz, Φz =

∂Ey

∂x
. (3.1.18)

Discretization of the transverse fields in a three-dimensional framework is done by a
semi-implicit trapezoidal scheme. For the lattice indexing the same scheme is used as in
the Yee lattice. Afterwards transport components are derived for the case cτ = hx = ∆

En+1
x|i = ∆Γ

n+1/2
x|i +En

x|i, (3.1.19)

En+1
y|i =

1
2

(
En

y|i−1 +En
y|i+1

)
− 1

2

(
Bn

z|i+1 −Bn
z|i−1

)
+

+
∆

2

(
Γ

n+1/2
y|i−1/2 +Φ

n+1/2
z|i−1/2 +Γ

n+1/2
y|i+1/2 −Φ

n+1/2
z|i+1/2

)
, (3.1.20)

En+1
z|i =

1
2

(
En

z|i−1 +En
z|i+1

)
+

1
2

(
Bn

y|i+1 −Bn
y|i−1

)
+

+
∆

2

(
Γ

n+1/2
z|i−1/2 −Φ

n+1/2
y|i−1/2 +Γ

n+1/2
z|i+1/2 +Φ

n+1/2
y|i+1/2

)
, (3.1.21)

Bn+1
x|i = ∆Φ

n+1/2
x|i +Bn

x|i, (3.1.22)

Bn+1
y|i =

1
2

(
Bn

y|i−1 +Bn
y|i+1

)
+

1
2

(
En

z|i+1 −En
z|i−1

)
+

+
∆

2

(
−Γ

n+1/2
z|i−1/2 +Φ

n+1/2
y|i−1/2 +Γ

n+1/2
z|i+1/2 +Φ

n+1/2
y|i+1/2

)
, (3.1.23)

Bn+1
z|i =

1
2

(
Bn

z|i−1 +Bn
z|i+1

)
− 1

2

(
En

y|i+1 −En
y|i−1

)
+

+
∆

2

(
Γ

n+1/2
y|i−1/2 +Φ

n+1/2
z|i−1/2 −Γ

n+1/2
z|i+1/2 +Φ

n+1/2
y|i+1/2

)
. (3.1.24)

The typical Yee grid (see figure 3.1.2) can be projected on a Y Z-plane. Figure 3.1.3
displays the new planar grid where its second name stems from as it becomes a Rhombi-
In-Plane. Here, it becomes apparent that the transverse fields are known on the same
vertices. This is advantageous, because certain interpolations for field initialization
are not necessary. Longitudinal fields like Ex and Bx are known at full integer vertices
(i, j,k), where indexing is similar to the Yee solver. Transverse fields are located on
points shifted by half grid step. This leads to the following exemplary diffraction and
refraction equations for a full three-dimensional RIP solver
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Figure 3.1.3: Rhombi-in-plane grid of the X-dispersionless Maxwell solver. One can
see transverse fields are located on the same grid point.

Γ
n+1/2
y|i+1/2, j+1/2,k =

(
∂Bx

∂ z
− jy

)
|n+1/2
i+1/2, j+1/2,k =−1

2

(
jn+1/2
y|i, j+1/2,k + jn+1/2

y|i+1, j+1/2,k

)
+

+
Bn+1/2

x|i, j+1/2,k+1/2 +Bn+1/2
x|i+1, j+1/2,k+1/2 −Bn+1/2

x|i, j+1/2,k−1/2 −Bn+1/2
x|i+1, j+1/2,k−1/2

2hz
,

(3.1.25)

Γ
n+1/2
z|i+1/2, j,k+1/2 =

(
−∂Bx

∂y
− jz

)
|n+1/2
i+1/2, j,k+1/2 =−1

2

(
jn+1/2
z|i, j,k+1/2 + jn+1/2

z|i+1, j,k+1/2

)
−

−
Bn+1/2

x|i, j+1/2,k+1/2 +Bn+1/2
x|i+1, j+1/2,k+1/2 −Bn+1/2

x|i, j−1/2,k+1/2 −Bn+1/2
x|i+1, j−1/2,k+1/2

2hy
,

(3.1.26)
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Γ
n+1/2
x|i, j,k =

(
∂Bz

∂y
− ∂By

∂ z
+ jx

)
|n+1/2
i, j,k =− jn+1/2

x|i, j,k +

+
Bn+1/2

z|i, j+1/2,k −Bn+1/2
z|i, j−1/2,k

hy
−

Bn+1/2
y|i, j,k+1/2 −Bn+1/2

y|i, j,k−1/2

hz
, (3.1.27)

Φ
n+1/2
y|i+1/2, j,k+1/2 =−

En+1/2
x|i, j,k+1 +En+1/2

x|i+1, j,k+1 −En+1/2
x|i, j,k −En+1/2

x|i+1, j,k

2hz
, (3.1.28)

Φ
n+1/2
z|i+1/2, j+1/2,k =

En+1/2
x|i, j+1,k +En+1/2

x|i+1, j+1,k −En+1/2
x|i, j,k −En+1/2

x|i+1, j,k

2hy
, (3.1.29)

Φ
n+1/2
x|i, j+1/2,k+1/2 =−

(
∂Ez

∂y
− ∂Ey

∂ z

)
|n+1/2
i, j+1/2,k+1/2

=−
En+1/2

z|i, j+1,k+1/2 −En+1/2
z|i, j,k+1/2

hy
+

En+1/2
y|i, j+1/2,k+1 −En+1/2

y|i, j−1/2,k+1/2

hz
.

(3.1.30)

Equations for the fields are obtained in a similar way as previously, except fields and
currents are shifted by a half time step [77].

Additional comparison regarding numerical Cherenkov instability in the regime of QED
will be discussed in chapter 4. In order to use the RIP solver, an additional condition is
imposed on grid steps and time steps of the simulation. To guarantee stability the grid
step, in the direction where a dispersionless property is desired, needs to be equal to
the normalized time leading to hx = c∆t. Stability of the Maxwell solvers is also part of
chapter 4.

3.1.3 Particle pusher

To update the momentum of a particle different particle pushers were developed. One
which has been widely used is the Boris scheme [44, 83]

p1 −p0
∆t

= e

(
E+

1
c

p1 +p0
2γ1/2

×B

)
. (3.1.31)

Here momenta indexed 0 are before being updated and 1 after applying the Lorentz
force. The γ-factor γ1/2 is the factor at half time step ∆t. E and B fields in the scheme
are interpolated to the particle position. This scheme can be analytically solved for the
updated momentum making it usable for the PIC method. The method used throughout
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the thesis is the implicit mid-point pusher

a = p0 +
q∆t
2

E, (3.1.32)

b =
q∆tB

2
, (3.1.33)

s =
1+a2 −b2

2
, (3.1.34)

γ1 =

√
s+
[
s2 +b2 +(a ·b)2

]1/2
, (3.1.35)

p1 = 2
γ2

1 a+ γ1a×b+(a ·b)b
γ2

1 +b2 −p0 (3.1.36)

of which derivation can be found in [57, 77] is used. The pusher will also be extended
by the dampening force imposed by the radiation reaction later on. These are by far not
the only pusher for PIC codes. Various other groups developed their own particle pusher.
For example the particle pusher of Li et al. developed in their work [84] a particle pusher
that works in 9D space, using analytical solutions to advance momentum and spin. They
also implement semi-classical radiation reaction as well as spin evolution described by
the Bargmann-Michel-Telegdi equation. Gordon et al. also improves certain expressions
within the 9D pusher to develop the special unitary particle pusher [85] which upgrade
push rates and preserve invariance properties.

3.1.4 Basic PIC loop

With the key steps explained, a PIC code can be built. In general, a PIC code progresses
a simulation through time steps, during which various algorithms are performed. These
time steps are repeated until the desired number of time steps has been reached.

At first the configuration file is read, which provides information on the grid, modules,
fields and particles in the simulation domain. Modules in this case describe, whether
collisional ionization, QED processes, or particle merging should be called during the
simulation. It can also be decided whether particles dynamics are disabled for a certain
period of time to reduce numerical fields and whether observed simulation domain
shifts as time progresses. Boundary conditions for particles and fields are defined in the
configuration file too, as well as which algorithm is used to solve the Maxwell equations
and to interpolate fields for the particle pusher.

The PIC loop can then be summarized in four basic steps, beginning after the initialization
of fields and density distribution within the simulation. A basic PIC loop is outlined in
figure 3.1.4.
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Figure 3.1.4: General scheme of a particle-in-cell time step with QED module location
in VLPL. Here, the index n denotes the n-th particle and the index Grid
describes that the fields are only known on grid vertices.

First, fields are interpolated, since the fields are stored on grid vertices, as clarified in
the description of Maxwell solvers. This is necessary since the particle positions have
an exact position xn. By interpolating the fields a more reliable particle motion can be
ascertained.
Second, particles are pushed. The momentum of the particle is updated by the forces it
interacts with. This can be done by the introduced particle pusher or various other ones
[81, 83]. Additional forces can be added at this point.
Third, the updated particles deposit their currents on the grid after being sampled onto it.
The fourth and final step is updating the fields with the new currents.

These steps conclude a PIC loop until the desired time is reached. The PIC code is
reliable in displaying laser-plasma interaction if the aforementioned criteria for stability
are guaranteed throughout the simulation. Additional modules can now be implemented
to study new phenomena and specialize the code for certain research topics. VLPL is not
the only PIC-code in use. Other PIC-codes are EPOCH [86], SMILEI [87], OSIRIS [88],
WarpX [89] and many more. Further, modules are required to guarantee the functionality
of the code in even higher field strengths, which are described in the following sections.
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3.2 Poisson solver

In order to simulate an ultra-relativistic electron bunch in vacuum in chapter 4 the fields
of the bunch need to be initialized before the simulation begins. A method of initializing
these fields is the use of a Poisson solver.
The algorithm description and equations of this chapter are reused, adapted and extended
from the Suppression of errors in simulated ultra-relativistic bunch propagation using
the X-dispersionless Maxwell solver, by Filipovic, M., Baumann, C. and Pukhov, A.
(2022). Physical Review Accelerators and Beams, 25(5), 054405, licensed under CC BY
4.0 (https://creativecommons.org/licenses/by/4.0/). The algorithm was developed by A.
Pukhov and M.F. wrote the manuscript.

The Poisson-solver considers the implemented charge distribution ρ(r) and assumes it
propagates with the velocity v. v is assumed to be close to the speed of light. Considering
a cross-section where the charge distribution passes through, the section can be described
as

j = qcρ. (3.2.1)

Using the current density, one can calculate the magnetic field B,

∇×B = j (3.2.2)

as well as

B = ∇⃗×A (3.2.3)

with A being the magnetic vector potential. In the next step, a Fast-Fourier Transforma-
tion is applied on the charge density, resulting in

−∇⃗
2
⊥A = J (3.2.4)

The vector potential can be calculated by the Fourier image of the real current Ĵ = FFT[J].
One gets

A =
i

k2 Ĵ (3.2.5)

for the vector potential. The Fourier image of the magnetic field is then

B̂F = ik×A (3.2.6)

Finally, using an inverse Fast-Fourier transformation retrieves the magnetic field in the
cell.
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It is important to note that the exact implementation of the Poisson solver may vary
in the PIC code depending on the Maxwell solver used. The reason lies within the
structure of the grid. In the case of the Yee solver the electric and magnetic fields are
shifted by a half step due to the structure of the update equation as displayed in figure
3.1.2. Due to the complexity of the grid the algorithm is only adapted for simulations
using a single processing core. It has been considered that implementing it in a parallel
computing environment would be unnecessary as newer and improved Maxwell solver
exists. Previously, electromagnetic fields generated by moving charges were manually
implemented by determining the electric and magnetic fields and entering them at
simulation begin using a configuration file.
As for the RIP solver, the transverse field components are known on the same vertices of
the grid (compare figure 3.1.3). This simplifies the interpolation process and the Poisson
solver is modified to function on a single core as well as utilizing parallel computing.

3.3 Radiation reaction in particle-in-cell codes

After building a general PIC code, additional physical behaviours for particles can be
added. So far, only the influence of the Lorentz force on particle motion has been imple-
mented. Beyond that, once intensities increase charged particles emit high-frequency
radiation. To include radiation reaction under the locally constant field approximation
with the code an additional force on the momentum is required as a dampening force.
The Lorentz-Abraham-Dirac (LAD) equation [34] is a first general description of the
radiation reaction. But due to unpredictability such as pre-acceleration and runaway-
solutions, it is not a perfect description. VLPL applies a damping force by determining
the total emitted power, which is given by the relativistic Larmor formula [35],

Prad =
2
3

α
m2c4

ℏ
χ

2. (3.3.1)

This leads to a radiation reaction force of

FRR =−2
3

α
mc2

ℏ
χ

2 G(χ)
p
γ
≡−νRR p (3.3.2)

with νRR the characteristic radiation loss frequency. Additionally, the gaunt factor G(χ)

mitigates errors once the quantum non-linearity parameter approaches unity and QED
effects may become important [90, 91]. The Gaunt factor is

G(χ) =−
ˆ

∞

0

12+5χs3/2 +12χ2s3

(
1+χs3/2

)4 Ai′ (s)s ds. (3.3.3)

28



3.4 QED events in particle-in-cell codes

One can see it includes an integral leading to a high computational effort if calculated
within the PIC code. VLPL uses an approximation to speed up calculation of the factor
reading

G(χ)≈
(
1+18χ +69χ

2 +73χ
3 +5.806χ

4)−1/3
. (3.3.4)

The quantum non-linearity parameter is calculated by averaging its value before and after
the particle push.

In a final step, the radiation reaction force is applied to the momentum of the particle. In
the case of VLPL, the dampening force is directly applied after the particle push algorithm
by using

pRR =
p1

(1+νRRτ)
, (3.3.5)

with p1 being the momentum after the particle push.

One has to note, that once the criteria χ > 1 is met, the classical description of these
radiation losses is not valid. The code needs to use a different approach for this physical
phenomenon, since the classical approach describes the losses as continuous. If the
quantum non-linearity parameter exceeds unity greatly, the classical description will
result in photon emission with energies greater than the emitting particle and violate
conservation of energy. Therefore, the following section will discuss the implementation
of a QED module in the regime of χ ≫ 1.

3.4 QED events in particle-in-cell codes

Moving onto even stronger fields, where particles interact with stronger forces, new
physical phenomena are assumed and discovered. These effects have to be implemented
as well in the PIC code. The effects that become visible are the QED processes such as
the nonlinear Compton scattering and Breit-Wheeler pair production. QED processes
were previously mentioned in the theory section of this thesis, but an adequate algorithm
is required for their thoughtful implementation in PIC codes. Various groups have
developed successful QED-PIC codes with the underlying principle of incorporating the
stochastic nature of it using a Monte-Carlo algorithm. As one of the key aspect of this
thesis, a QED module has been implemented in the current VLPL version and corresponds
the alternative event generator from the publication by Elkina et al. [72].
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The implementation of the QED module in VLPL has been split into two blocks. One block
simulates the high-energy photon emission, otherwise known as the nonlinear Compton
scattering process. The second block is the pair production for the Breit-Wheeler process.

Starting with the photon emission algorithm, the PIC code iterates through each macro-
particle. Every particle that is able to emit high energy photons enters the routine. First,
the module generates a uniformly distributed random number r1 ∈ [0,1]. r1 is used to
guess a possible photon energy

εγ = r1εe, (3.4.1)

as a fraction of the initial particle energy εe with εe = (γe −1)mec2 being the emitted
particle’s energy. r1 also leads to the momentum of the photon that might be emitted:

pγ = r1pe (3.4.2)

Here, pe is the momentum of the emitting particle. The direction of the emitting photon
will be assumed to be in the same direction as the emitting particle. Afterwards, the
quantum non-linearity parameter is calculated for both the emitting particle (χe) and the
possible photon

(
χγ

)
. The code uses the interpolated fields on the particle position. With

these information one can calculate the energy distribution per unit time of an emitting
particle dWrad/dεγ . For the Airy-integral within this expression, a pre-calculated table of
values is loaded at runtime. This table contains 105 entries for various lower limits of the
integral. Solving such an integral numerically is time consuming and has been avoided
by this method. The probability that this generated photon is emitted in the current time
step of the simulation ∆t is defined as

Wrad =
dWrad

(
εγ

)

dεγ

εe∆t. (3.4.3)

To determine whether the particle is emitted, a second uniformly distributed random
number r2 ∈ [0,1] is generated and compared to the probability 3.4.3. If r2 < Wrad is
fulfilled, the event occurs. This means a photon with εγ and pγ will be emitted. In the
PIC code, a new photon macro-particle is implemented with the energy and momentum
used in the algorithm at the position of the emitting particle. The emitting particle gets
its properties adjusted and modified by the conservation of momentum reading

pe,new = pe −pγ . (3.4.4)

The criteria which the module needs to uphold is

∆t ≪
[

dWrad
(
εγ

)

dεγ

εe

]−1

. (3.4.5)
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If the condition is not fulfilled the process cannot be resolved in the time step of the
simulation.

The process for converting a high-energy γ-photon into an electron-positron pair is
similarly structured as the photon emission block. Every γ-photon will be subject to
this algorithm. The algorithm produces a random number that is uniformly distributed
r′1 ∈ [0.1] and uses its value to declare an electron momentum

pe− = r′1pγ . (3.4.6)

Again, the quantum non-linearity parameters for the converting photon and the electron of
the pair are calculated and used to derive the probability for the process of pair production
by a decaying photon

Wpair =
dWpair (εe−)

dεe−
εγ∆t. (3.4.7)

The pair production process occurs if a second generated uniformly distributed random
number r′2 ∈ [0,1] satisfies r′2 >Wpair. Should the condition be met, the macro-particle
representing the photon is deleted from the simulation, and macro-particles for both an
electron and positron are added. The weight of the new macro-particles is equal to the
deleted photon macro-particle. The remaining positron momentum can be determined by
following the conservation of momentum

pe+ = pe− −pγ . (3.4.8)

These two blocks conclude the QED module of the PIC code and are found in VLPL.

These concludes the theoretical background and numerical tools for the QED processes.
In the following the code VLPL will be extended with a merger module mitigating the
increase of computational load by the production of vast secondary particles by QED
processes.

3.5 Merging algorithms

PIC codes can also benefit from extending their functionality without implementing
new physical phenomena. Certain configurations may create drawbacks, such as QED
experiments [72, 92–94] and ionization processes [95, 96]. In these cases, an abundance
of new particles is introduced to the simulation, leading to more calculation operations
that increase compute time. Subsequently, the increased number of particles may lead to
load imbalance if the code is run with multiple nodes working on different domains of the
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simulation. Various research groups have attempted to tackle this issue by introducing
algorithms that merge particles with similar properties into a new more massive macro
particle [97, 98]. It is important, that after the merge algorithm is performed, physical
phenomena are still coherent with particles which have not undergone the merge algo-
rithm.
The simple merging algorithm, currently implemented in VLPL, attempts to overcome the
problem of great numbers of macro-particles. But the simple merging algorithm had sig-
nificant drawbacks in configurations where the scattering and various particle trajectories
were present. These drawbacks lead to not upholding the conservation of momentum
and energy and inaccurate particle behaviour. An explanation of the algorithm and its
drawbacks will be given in the subsequent subsections.

To facilitate a comprehensive discussion about merging algorithms, it is important to
establish a framework where the algorithms and functions can be called. The module
allows different settings. Settings include the choice of merger algorithm, a threshold of
minimum particles per cell to start a merging attempt, and the time period to determine
how much time should pass until the next merge attempt. Additional settings become
available once an algorithm is chosen in order to fine-tune the merge process.

This section tackles the implementation of merger algorithms within VLPL. The code was
extended by two new merger algorithms and compared to the current algorithm to be
available for future simulations. First, the simple merging algorithm and its problems
will be explained. Secondly, a brief summary of the new mergers will be given. The
algorithms discussed are the Two-particle merger by Vranic et al. [99] and the Voronoi
merger by Luu et al. [100]. But of course there exist many more algorithms [101–103].
Finally, the mergers will be compared in different simulations to see, whether physical
properties are retained and how efficient the merger rate is.

3.5.1 Simple merging algorithm

As the first implemented particle merger in VLPL, a simple summation of particles was
considered.
Before merging, the algorithm retrieved the maximum allowed number of particles per
cell from the configuration file. If the number of particles exceeds this value the merger
starts the actual merging process. Here, the list of all particles within the cell is retrieved.
This list is then sorted in ascending order according to particle weight. Afterwards,
the merging algorithm picks the first two particles of the sorted list, which are now the
lightest particles, and compares their weights. The heavier particle will become the
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particle where the other particle will be merged into. Merging two particles will be done
by averaging particle position and particle momentum. Once the averaged position and
momentum is given to the heavier particle the weight of the lighter one is added to it.
Finally, the lighter particle is deleted from the simulation and the list gets adapted. The
algorithm continues until the initially given particle limit per cell is reached.

This method of particle merging guarantees a reduction of particle at all times despite
huge variances in their physical properties. The algorithm is also fast since it uses built-in
functions by C++, simple averaging to merge particles, and requires no temporary storage
of data.

But the simplicity is also one of its biggest disadvantages, since already mentioned
similarity in physical properties are not considered. This can be fatal if particle bunches
are set up in a collision and the number of particles abruptly rises within cells. Particles
get merged into a single particle and momentum and energy might not be conserved,
which will be shown later. Super massive particles will dominate the simulation and
eliminate the physical properties of particles initially not merged. Certain scenarios like
QED processes can be disastrous with those particles, since they are the biggest source
of secondary particle. These problems will be later seen in the benchmarks provided in
the upcoming sections. Therefore, extending the PIC code with improved mergers is
essential

3.5.2 Two-particle merger

One of the merger algorithms added over the course of the work on this thesis in the tool
set of VLPL is the merging algorithm by Vranic et al. [99]. Figure 3.5.1 demonstrates
the general scheme of the merging algorithm. After initializing the module, each spatial
merge cell exceeding the previously set minimum particle per cell number is subjected
to the merge algorithm. First, the minimum and maximum of each spatial cell in each
direction is determined. Figure 3.5.1 (a) shows a random distribution of particles in a
local grid cell, where 15 particles of the same species are located. In the next step, the
spatial cell is divided into sub-groups in momentum space, which can be considered as
momentum cells (compare figure 3.5.1 (b) arrows indicate the momentum vector of the
particle.). The number of momentum cells can be determined by the merge module. At
this point, information of the momentum cells are retrieved. This includes the minimum
and maximum momentum per component and the range between those values. Each
particle is now grouped in the corresponding merge cell. It can be assumed, that particles
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Figure 3.5.1: General scheme of two particle merger [99]. a) shows the local space of a
grid cell, b) particles are grouped in momentum cells, c) macro-particles
in a momentum cell are merged into two new macro-particles. Newly
merged particles are red and have a bigger radius due to their higher
weight.

of the same species in each momentum cell exhibit similar properties as they are closely
grouped spatially and similar in momentum.

After the grouping, general data of the momentum cell are retrieved. The algorithm
calculates the total weight wtot, momentum of the cell ptot, and energy of the cell εtot by

wtot =
N

∑
i=1

wi, (3.5.1)

ptot =
N

∑
i=1

wipi, (3.5.2)

εtot =
N

∑
i=1

wiεi (3.5.3)

with N the number of particles of a species, wi the weight, pi the momentum and εi

the energy of the i-th particle in the momentum cell respectively. The particles of a
momentum cell can be merged if the cell has more than two particles in it. Having less
than three particles in a momentum cell indicates that the momentum cell is finished with
the merging. The reason for merging into two particles is is the conservation of energy
and momentum simultaneously. An example given by Vranic et al. in their work [99]
involves the merge process between two particles with opposite momenta. Calculating
the total statistics of the cell would lead to a total momentum of ptot = 0⃗, wtot = 2w and
εtot = 2wε . Appointing the total statistics to the newly merged particle would lead to an
invalid energy to momentum connection, as a zero value for a momentum cannot lead to
a non-zero energy. But in the case of merging into two new particles these quantities can
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be conserved with

wtot = w1 +w2, (3.5.4)

ptot = w1p1 +w2p2, (3.5.5)

εtot = w1ε1 +w2ε2 (3.5.6)

with index 1 and 2 indicating the new particles the algorithm merges into. Additionally,
one needs to distinguish between photons and electrons due to their mass. The two new
particles will have the same weight and the momentum can be constructed with

d = (±∆px,±∆py,±∆pz) , (3.5.7)

cos(ω) = ptot/(wtot p1) , (3.5.8)

e1 = ptot/ptot, (3.5.9)

e2 = e1 × e3, (3.5.10)

e3 =
d× e1

d
(3.5.11)

with p1 = ε1 for photons and p1 =
√

ε2
1 −1 for electrons. With these equations the new

particle momenta are

p1 =p1 (cos(ω)e1 + sin(ω)e2) , (3.5.12)

p2 =p1 (cos(ω)e1 − sin(ω)e2) . (3.5.13)

Figure 3.5.2 illustrates the different momenta, their connection with each other and the
construction of the two new particle momenta.
The new particles are now placed in the simulation domain (see figure 3.5.1 subplot c)).
Choosing a location for the new particles can involve either taking an arbitrary particle
position of the to be merged particles or by averaging the particle position between those
particles. After placing the new particles the old particles are deleted. A special case can
be constructed if all particles are propagating in the same direction. If this is the case, the
particle merging algorithm merges the particles into one particle as the total momentum
of the cell ptot is parallel to the direction vector d leading to the support vector |e3|= 0.

Settings that can be adjusted for this algorithm are the dimension of the momentum cell as
well as the number of partitions of the momentum cell in each direction. Additionally, the
momentum cells can be divided into more packets if the particle number is significantly
greater than two per momentum cell, to avoid drastically reducing the number of particles
in the simulation.
An improvement on the algorithm can be considered if the momentum of particles varies
over several magnitudes. In this case the binning of the momentum cells can be changed
from a linear approach to a logarithmic one. Enabling such a feature should only be
considered on a case by case situation.
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Figure 3.5.2: Plane of the new particles momentum. Based on [99]. The red star is the
summation of information of a single momentum cell. The frame of the
merging process is given by (e1,e2,e3).

3.5.3 Voronoi centroid merger

Having thoroughly examined the first merger algorithm to be included in VLPL, a second
algorithm is now introduced. The Voronoi particle merging algorithm by Luu et al. in
their work [100] is described next. There an extensive description can be found. The
merge algorithm shows similarities to the two-particle merger algorithm by Vranic and
can incorporate merging into two particles. The major difference lies in dividing the
particles to be merged in reasonable groups. As the name implies, the grouping uses the
Voronoi diagram [104]. Figure 3.5.3 shows an example cell with particles of the same
particle species. On the right hand side, the cell is divided by the Chebyshev partitioning
into a Voronoi diagram. The Chebyshev distance is described as

dist(p,q) = max |qi − pi| (3.5.14)

with p and q two vectors of an arbitrary quantity [100].

The algorithm works as follows. Before beginning a merge attempt, two parameters need
to be set by the user. These parameters are the tolerances for position Tr and momentum
Tp. Beginning with the initial cell, the algorithm declares this cell as the first Voronoi cell
with all particles. Similar to the two-particle merger by Vranic and their group, the total
weight W0 is calculated, as well as the average position R0 and momentum P0. These
averages together create the centroid of the Voronoi cell, described by capital letters.
Next, the standard deviation in each dimension j of the phase space is calculated

σR0, j =
√

W−1
0 ∑

i
wi
(
xi, j −R0, j

)2
, (3.5.15)

σP0, j =
√

W−1
0 ∑

i
wi
(

pi, j −P0, j
)2
. (3.5.16)

36



3.5 Merging algorithms

Local space Chebyshev partitioning

Figure 3.5.3: Chebyshev measure used for Voronoi diagram. Enclosed areas are
Voronoi cells with red hexagons indicating Voronoi centroid of the cell
cell.

Afterward, the so-called coefficient of variation ∆ is determined for each direction by

∆R0, j =
σR0, j

LR0, j

, (3.5.17)

∆P0, j =
σP0, j

P0, j
(3.5.18)

with LR0 the lengths of the first Voronoi cell. Now a condition is imposed on the
Voronoi cell. If the coefficient of variations is bigger than the tolerances in any of
the six dimensions of the phase space, the Voronoi cell is subject to be divided into
smaller Voronoi cells. Division of the cell is along the dimension where the coefficient of
variation has the largest deviation. As the Voronoi cell is divided the particles within the
cells are redistributed between the two new cells. From this point on the algorithm repeats
from the point where its statistics W,R and P are calculated. Further division continues
until every new Voronoi cell succeeds in the condition of coefficient of variations being
smaller than the chosen tolerances. At this point the values of the centroids are chosen as
merged particles and the old particles are deleted. It can be noted that after the particles
are distributed into meaningful Voronoi cells, instead of using the centroids as new
particles, the two-particle merge algorithm can be used.

This concludes the description of the two algorithms and their implementation into the
current version of VLPL. The following section discusses the algorithms in benchmarks
for reliability and rate of success.
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3.5.4 Comparison

To benchmark the merger algorithms in VLPL two commonly used tests are performed
for each algorithm and compared against simulations without applying a merger module.
The first test uses two plasma blocks propagating towards each other. Here, the number
of particles will be reduced as the two blocks overlap. In a second test a magnetic shower
will be simulated, where the simulation domain, full of energetic charged particles, is
under the influence of a constant magnetic field. Secondary particles are emitted by the
charged particles and the emitted photons decay into electron-positron pairs.

3.5.5 Overlapping plasma blocks

As mentioned earlier, the general merge capabilities are tested with propagating plasma
blocks that overlap. Therefore, two plasma blocks of electrons are initialized in the
framework of two-dimensional PIC simulations. The normalization of all lengths in this
case is l0 = 0.8µm. Each block has a length and height of 2l0. The initial momentum
of each particle in one block is +150mec, and in the other block, it is −150mec. The
grid parameters are 0.1l0 as step width in both the x- and y-directions. The time step
chosen is ∆t = 0.005l0/c. Each cell is initiated with 15 particles, and the merge module
triggers as soon as more than 15 particles are located within a cell. The density of each
cell is 100ncr, with ncr ≈ 1.74×1021cm−3, the critical density for l0. To avoid observing
additional physics, the interaction of the fields with particles has been disabled. The
additional parameters for the Voronoi particle merging algorithm are tolerances Tr = 0.4
and Tp = 0.015. A merge attempt is performed every time step.

In this simulation, the plasma blocks only propagate through each other and end up on
the opposite side. This test allows one to determine whether the phase-space is preserved
with this method. Therefore, the density distribution of the plasma block is captured as
well as the momentum distribution. Figure 3.5.4 displays the density distribution at the
end of the simulation. The simple merger clearly fails to retain the block shapes and
densities. Looking at the particle merging algorithm of Luu and Vranic, the shapes of
the plasma blocks retain their initial dimensions. Examining the density distribution for
Vranic shows a compression at the front of the plasma blocks, where the density increases
to 126.64ncr. These are the areas, where the plasma blocks first experienced the overlap.
Certain cells undergo multiple merge attempts and merged multiple macro-particles,
while removing them in a different column. In the case of the Voronoi merger merging
attempt with the plasma blocks, the density distribution remains unchanged compared to
the data obtained without a merger.
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Figure 3.5.4: Density distribution at the end of the simulation for different parti-
cle merging algorithms. Simulation of temporally overlapping plasma
blocks.

For the momentum distribution (see figure 3.5.5), all simulations, except for the simple
merger, demonstrate similar results by maintaining the same numbers of particles at
±150mec. Both newly implemented mergers effectively preserve the momentum distribu-
tion. As for the number of particles in figure 3.5.6, the simulation holds 46800 particles,
at the end of the simulation Vranic particle merging algorithm reduces the number of
particles to 17316, whereas Voronoi particle merging algorithm merges them to a total
number of 15093 macro-particles. Both new particle merging algorithms continue merge
operations until the blocks stop overlapping.

In an attempt to minimize the compression of the plasma blocks, the time between merge
attempts is increased and merges are only attempted at the point of complete overlap.
Therefore, the merge period, which defines the time between merging attempts, is set at
400∆t. In the case of Vranic merger, the number of particles is still significantly reduced
to 18720 particles, while the Voronoi algorithm reduces them to 15600 particles. The
density distribution is now better retained for the Vranic merger, as seen in figure 3.5.7.
It is important to ensure that the merging frequency is not smaller than the characteristic
time scale of the system. Otherwise, there is no guarantee that all relevant physics are
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Figure 3.5.5: Phase space distribution at the end of the simulation for different parti-
cle merging algorithms. Simulation of temporally overlapping plasma
blocks.

accurately modeled [99]. Vranic et al. suggests merging after every five time steps in
general.

3.5.6 Magnetic shower

The second test employs the QED module to enable QED effects within the simulation.
The test uses initial electrons with non-zero momentum and a strong external magnetic
field to trigger a QED cascade due to multiple photon emissions and pair production
processes. Electrons are assigned a momentum of px = 3000mec in an external magnetic
field of Bz = 2800(2πmec2)/l0 = 7.47×1010G. The simulation is performed in a two-
dimensional PIC framework. The spatial grid width is 0.04l0 in all directions and a time
step of ∆t = 0.005l0/c is chosen, with l0 = 4×10−4cm the normalization of all lengths.
Each cell has five particles per cell and the merge algorithm is triggered if at least 10
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Figure 3.5.7: Density distribution at the end of the simulation for different particle
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particles are in a cell. Voronoi particle merging algorithm uses the tolerances Tr = 1.0
and Tp = 0.2. Merge period in this simulation is 50∆t.

In this test, the initial electrons emit photons by interacting with a strong external
magnetic field. These photons in fact can decay into electron-positron pairs, giving the
simulation an abundance of secondary particles. This is a useful test as it challenges the
merging algorithms with a dynamic number of particles while trying to retain physical
properties like energy spectra. These quantities can once again be compared with an
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initial simulation conducted without using a merger. Energy spectra are particularly
useful as they allow an observation of what kind of particles are merged and the energy
they obtain. This information could be helpful in identifying which particles are prone to
merging.

Figure 3.5.8 shows the time evolution of photon macro-particles. Photons were chosen
because they are the majority of secondary particles produced, and low-energy photons
are unable to decay into an electron-positron pair. Both particle merging algorithms
cap the number of macro-particles within the domain. Energy is correctly conserved, as
can be seen in figure 3.5.9. Only the simple merger fails to conserve the energy in the
system. Finally, energy spectra are obtained at the end of the simulation and summarized
in figure 3.5.10. The Voronoi particle merging algorithm is in great agreement for the
photons. Slight differences are only visible in the low energy part of the spectrum. The
reason for that is the momentum tolerance Tp for this simulation. Greater differences are
visible in the simulation using the Vranic particle merging algorithm. Here, it appears
that a broader range of low-energy photons have been merged by the algorithm, leading
to a peak in the spectra at ∼ 3MeV. For energies above 30MeV, both particle mergers
are in good agreement with the reference simulation that did not use a merger. Particle
spectra for electrons and positrons are nearly identical. Differences are only visible in
the low-energy region, where the noise in the spectrum appears to have been merged into
higher energies.
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3.5.7 Summary

This section has conducted an in-depth comparative analysis of three distinct merging
algorithms: the simple merger, the two-particle merger by Vranic and the Voronoi particle
merger. The central focus of the investigation revolved around two tests, designed to
probe the efficiency and reliability of these algorithms.

Both the two-particle merger and the Voronoi particle merger demonstrated improvement
over the simple merger. In the first test, these algorithms showed good capabilities in
successfully merging while retaining the underlying physics. The second test further
corroborated these results, with both algorithms accurately reproducing the correct energy
spectra. These outcomes substantially reinforce the viability of these two algorithms as
robust computational tools within the PIC code VLPL
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It is important to note that a reasonable merge period is necessary to prevent non-physical
merge attempts from accumulating and introducing new structures in the simulation. An
inadequately calibrated merge period could potentially undermine the reliability of the
algorithms, rendering the resulting data susceptible to inaccuracies.

Contribution of the author: The contribution of the author to the subsection ’Merging
algorithms’ is detailed here. M.F. implemented the framework for the merging algorithm
and the merging algorithms. M.F. carried out all simulations and performed data analysis.
M.F. also wrote the code for the data analysis.
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4 Mitigation of errors in
simulation of ultra-relativistic
bunch propagation

After covering the numerical tools necessary for the study within this thesis, the following
chapter will investigate the numerical tools further. As mentioned in the previous
chapter, numerically solving the equations for the electromagnetic fields might introduce
additional errors. Since most configurations in this thesis are using one-dimensional field
propagation it is possible to mitigate them with the RIP solver.
Therefore, the following chapter aims to discuss the suppression of errors by the RIP
solver in comparison to the Yee solver. The subject of study is the propagation of an ultra-
relativistic electron bunch in a vacuum. Such bunches, used in bunch-bunch collisions in
the following chapter, provide a good introduction to the subsequent chapters. Problems
that may arise are the numerical Cherenkov instability and the phenomenon of self-
interaction. For this purpose, the electron-bunch is propagated with the Yee solver for an
initial review and then compared to the simulation with the RIP solver. It becomes visible
that the simulation with the Yee solver deforms the electron bunch. On the other hand
the RIP solver preserves the electron bunch density profile over the whole simulation.

In a second simulation series radiation reaction has been enabled. With radiation reaction,
the instability that appeared in the simulation with the Yee solver lead to additional
nonphysical behaviour. The electron bunch in the simulation with the Yee solver lost
∼ 91.4% of its energy. Such nonphysical losses are mitigated if the RIP solver is used
for the bunch propagation. Finally, selected particle trajectories will be shown for the
Yee simulation to demonstrate the deformation of the bunch.

The results and content of this chapter are reused in a shortened form and adapted
from the Suppression of errors in simulated ultra-relativistic bunch propagation using
the X-dispersionless Maxwell solver, by Filipovic, M., Baumann, C. and Pukhov, A.
(2022). Physical Review Accelerators and Beams, 25(5), 054405, licensed under CC
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BY 4.0 (https://creativecommons.org/licenses/by/4.0/). In detail, section 4.1 is reused
in a shortened version and sections 4.2, 4.3 and 4.4 are reused from [105], with the RR
results and conclusion also being extended.

4.1 Introduction

The Yee algorithm, introduced in section 3.1.2, is subject to numerical errors, which
results in a reduced velocity along all axes except maybe the grid diagonals. This is
known as numerical dispersion and may trigger numerical instabilities, thus giving rise
to non-physical behavior. One prominent example is the numerical Cherenkov instability
(NCI) in relativistic plasma simulations [83, 106, 107]. The instability is linked to the
well-known Cherenkov radiation that is emitted when charges are faster than the phase
velocity in the current medium. The numerical counterpart arises accordingly, i.e. when
charged particles are faster than the numerical phase velocity, it comes to a nonphysical
coupling between electromagnetic modes and the particles. Physically, there should be
no Cherenkov radiation in plasmas, because the phase velocity of electromagnetic modes
in a background plasma is higher than the speed of light c. Unfortunately, simulations
using the FDTD method such as the Yee scheme may show reduced phase velocities due
to numerical dispersion. Therefore, NCI becomes visible once particle speed and phase
velocity match.

The NCI has been studied by several groups over the past years [78, 79, 108–112] and
solutions to suppress it have already been proposed since its first observation. Different
options on how to achieve this are suggested in the literature like, for instance, the
artificial increase of the speed of light in the field equations [107, 113], the definition
of magnetic and electric field on the same spatial grid [107], the Galilean grid shift
for a plasma flowing with uniform velocity [114] and other modification to the finite-
difference time-domain algorithm [78]. Some other Maxwell solvers have also achieved
the suppression of non-physical Cherenkov radiation from a relativistic beam [79, 111].
Implementations of the latter methods are described in the works [109, 115–119].

Apart from NCI, the Yee solver can also lead to a phenomenon known as numerical
self-interaction. In that context, consider an ultra-relativistic high-current beam with
Lorentz factor γ0 ≫ 1 and normalized velocity β∥ ≈ 1 in vacuum. From the physics
point, the electromagnetic self-field generated by such a beam is mainly transverse
in the laboratory frame, and its electric and magnetic field are linked via the relation
B⊥ = β∥E⊥ [120]. These beam fields cause an intrinsic force on a beam electron with
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charge −e itself,

F⊥ =−e
(
E⊥−β∥B⊥

)
=−e

(
E⊥−β

2
∥ E⊥

)
=−eE⊥

γ2
0
, (4.1.1)

which is negligible in the ultra-relativistic limit. It is also noted, that relativistic electrons
are subjected to a similar force when they are co-propagating with a laser wave [121].

Unfortunately, the Yee scheme can overestimate the intrinsic self-force by orders of
magnitude, which is a result from the staggered definition of electric and magnetic fields
on the Yee lattice. As will be shown later, this causes dramatic energy losses of the
high-current beam with time when the RR effect is taken into account. Such artifacts
of induced radiation losses due to the numerically enhanced self-interaction are highly
undesirable for many reasons. First, they hinder the analysis from numerical modeling
of RR, as it might be unclear what causes specific energy losses. And second, they can
strongly alter the dynamics of a system. This is especially unwanted when radiation
losses have to be avoided (see, for instance, the discussion on the fully nonperturbative
regime of QED in references [37–40]). In other words, the Yee solver is not optimal for
high-energy particle beams and should not be the first choice for accurate modeling.

In this chapter, the aforementioned problems will be tackled through the RIP solver
initially developed for plasma-based acceleration [77]. The solver is dispersionless along
the field propagation direction and the fields build rhombi-in-plane patterns. The scenario
in which the problems are studied will be the vacuum propagation of a relativistic
bunch, where non-physical Cherenkov radiation has been observed and linked to the Yee
solver [78, 79].

4.2 Vacuum bunch propagation with different

Maxwell solvers

Numerical simulations of the propagation of an ultra-relativistic electron bunch in vacuum
are performed. The simulations are run with the two different solvers, namely the Yee and
the RIP solver. Please note that the simulations are first conducted without considering
RR.

4.2.1 Simulation setup

The vacuum bunch propagation is simulated within the framework of full three-dimensional
PIC simulations using the code VLPL [45, 57]. This code can either use the Yee or the
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RIP [77] Maxwell solver to advance electromagnetic fields. All simulations utilize the
moving window approach in a simulation box with dimensions 20σ0 ×40σ0 ×40σ0 in
X ×Y ×Z direction, where σ0 represents the normalization of length. The transverse cell
size is always set to 0.1σ0×0.1σ0. However, the longitudinal cell size is different for the
two Maxwell solvers. Along X , it is 0.1σ0 for Yee and 0.05σ0 for RIP. The difference
in the longitudinal step size results from the stability condition of the different solvers.
The time step is cτ = 0.05σ0 in all simulations. The implemented electron bunch is
configured as a spherical cloud with a Gaussian density profile ne = n0 e−r2/(4σ2

r ), where
n0 and σr are the bunch’s peak density and root mean square (rms) width, respectively.
In these simulations, 8 particles per cell are used. Further, the electrons are propagating
in x-direction with a momentum of p0 = (px0,0,0). The boundaries of the simulation
domain are absorbing for particles. At the beginning of the simulation, the fields on the
grid generated by the electron bunch are initialized with a Poisson solver, using periodic
boundaries as the initial condition. For the fields, the transverse boundaries are periodic
and the longitudinal ones are absorbing.

In particular, the specific simulation parameters are: the peak density is n0 = 5nc (here,
nc = mec2π/e2σ2

0 is the "normalized density"), the initial momentum is px0/(mec) =
2.5×105 (me is the electron mass), and the radius parameter is σr = σ0 = 10 nm (Density
in this configuration is normalized in a similar way as in laser plasma simulations, since
VLPL is a relativistic PIC-code for such applications and ties densities to the normalization
of all lengths.). Please note that the parameters are motivated by the electron bunch used
in [38]. Such ultra-relativistic particle beams may radiate massively due to numerical
self-action. For that reason it is important to minimize numerical errors and to ascertain
the origin of the radiation. This numerical instability can pose a limitation on the bunch
length when simulating beam-beam collisions. Increasing the bunch length as an example
in beam-beam collisions [38] increases the total simulation time where numerical errors
can occur. In these simulations, the particles are not pushed until time ≈ 9Tb, where Tb

is the inverse of the relativistically corrected beam plasma frequency,

Tb = ω
−1
b =

√
γ0me/(4πe2n0). (4.2.1)

This time-frame ensures that small non-physical fields emerging due to bunch initializa-
tion are cleared away and do not spoil the particle dynamics once momentum updates
are applied. In this sense, the bunch propagates in self-consistent numerical grid fields,
so that vacuum propagation can be simulated with higher accuracy for the case using the
Yee solver. Subsequently, time t = 0 is measured relative to this time period.
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4.2.2 Simulation results

Figure 4.2.1 presents data in the x-y-plane for the electron density and the transverse
force obtained in simulations with the Yee solver [see subplots (a) and (c)] and the RIP
solver [see subplots (b) and (d)]. After a simulation time of t/Tb = 10, the electron
bunch is strongly deformed with the Yee solver [see Fig. 4.2.1(a)]. The bunch has been
compressed which increases the peak density to 18.3nc. In addition, the initial Gaussian
density profile cannot be recognized anymore. The right-hand side of the bunch focuses
and the left-hand side smears out. Similar observations can be seen in the transverse
force. It should be noted that the transverse force is slightly redefined with respect to
Eq. (4.1.1). From now on, the transverse force is calculated from Fy = Ey −Bz, which
has the advantage to be expressed solely by the fields and corresponds to ultra-relativistic
particles moving with nearly speed of light, β = 1. Figure (4.2.1)(c) shows similar
deformations also in the force. One can see waves at the rear that are too slow to co-
move with the bunch and form the Cherenkov cone. In addition, the force has built up
significant amplitudes during the simulation. For instance, peak values of approximately
29 mec2/σ0 can be retrieved from the data which are definitely not negligible, so clearly
indicating the onset of an instability.

The RIP solver in comparison does not create any visible numerical error during the
simulation. The initial density profile is still preserved, which is expected for an ultra-
relativistic electron bunch propagating in vacuum as it experiences almost no self-
interaction. The transverse force in this case is 10 orders of magnitude lower than in
the simulation with the Yee scheme after the same simulation time. Moreover, the
RIP simulation precisely reproduces the prediction for the self-force. Analytically, the
self-force can be written along the y-axis as Fy (y) =−eEy(y)/

(
2γ2

0
)

[see the additional
factor 1/2 compared to Eq. (4.1.1) due to the re-definition of F⊥]. Figure 4.2.2 shows
the transverse force Fy as a function of y at time t/Tb = 10 for a fixed x-value of
(x− ct)/σ0 = 10. The analytical solution is in a good agreement with the simulation
data obtained by the RIP solver, whereas the data obtained by the Yee solver is ruined
by numerical artefacts. Here, the faulty transverse force has been amplified and is 10
orders of magnitudes bigger than the expected analytical solution. The transverse force
obtained by the RIP solver shows a small discrepancy at large values of y (|y|> 7.5σ0)

in comparison to the analytical solution. This is due to the chosen periodic boundary
conditions, which means that there is another electron bunch beyond the transverse
boundaries. Their fields are directed such, that they cancel the field of the main bunch at
large coordinates and therefore the transverse force decreases faster in the simulations
than the analytical solution. This effect becomes less prominent if one increases the
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Figure 4.2.1: Ultra relativistic electron bunch propagating in vacuum without RR.
Data for electron density [see (a) and (b)] and transverse force [see (c)
and (d)] are shown at time t/Tb = 10. Subplots (a) and (c) show the
results for the Yee solver, while (b) and (d) show the results for the
RIP scheme. It is further noted that the data in (d) are scaled in order
to apply the same colorbar. Source: [105], licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

transverse size of the simulation domain. It can already be seen that the RIP solver yields
a reduction of numerical errors.

4.2.3 Numerical Cherenkov instability in Maxwell solvers

To identify the observed numerical error in the configuration as the NCI, a brief explana-
tion is necessary to understand how the numerical approach gives rise to instabilities in
the simulation. For that reason, it is important to take a look at the dispersion relation of
the algorithms which are used to solve Maxwell equations.

The numerical instability appears if the dispersion relation of a numerical Maxwell solver
allows electromagnetic modes which have a lower phase velocity vph than the speed of
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light c. Particles that travel close to c are now able to excite these modes and produce
numerical Cherenkov radiation [114]. Therefore, it is likely that an ultra-relativistic
electron bunch propagating in vacuum can excite such modes.

To determine the modes that are excited, it is first necessary to find the dispersion relations
for the Maxwell solvers. This is usually done by inserting plane waves of the form

A = A0 exp(−iωt + ikr) (4.2.2)

into the numerical marching equations of the Maxwell solver (a detailed calculation can
be found in [122]). The plane-wave analysis gives for the Yee solver
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(4.2.3)

and for the RIP solver in the special case of cτ = hx
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The Yee dispersion relation suffers from vph different of c for all wavenumbers except
electromagnetic waves running along the grid diagonals, of kx = ky, kx = kz or ky = kz

under the upper limit of the Courant-Friedrichs-Lewy (CFL) condition. The RIP solver
is dispersionless for propagations along the x-axis and exhibits similar properties in
one dimensional problems as the 1D advective solver by Birdsall and Langdon [44, 77].
Both solvers store the transverse fields on the same integral positions and require the
longitudinal grid step to be equal to the timestep. These properties suppress non-physical
effects for khx ∼ ±π [44]. Inserting ky = kz = 0 in the RIP dispersion relation (Eq.
4.2.4) the equation reduces to kx = ω/c. For purely transverse wavenumbers with kx = 0
the RIP dispersion relation transforms to the 2D Yee dispersion relation [77]. One
needs to be aware, that just by plugging in ky = kz = 0 into the Yee dispersion relation
the Maxwell solver does not become dispersion free. Stability of a Maxwell solver
is as above mentioned also described by the CFL-condition. The condition describes
whether the used domain step sizes of the grid and the timestep can guarantee, that
the propagation of fields is not faster than the phase velocity. The CFL condition of

the Yee solver in a 3D-space reads cτ < 1/
√

(1/hx)
2 +(1/hy)

2 +(1/hz)
2 [54, 80]. The

dispersionless property of the RIP solver should become advantageous for the considered
configuration in this chapter, since the electron bunch produces an electromagnetic field,
which co-propagates along the x-axis.

Linking the observed instability to the numerical Cherenkov instability can be confirmed
the same way as performed by Lehe et al. in their study of the numerical Cherenkov
effect [79]. Here, the solution of the Yee dispersion relation for excitable modes by
the NCI are calculated and compared the 2D-FFT of the Ey-component. Figure 4.2.3
displays the FFT of the component and highlighting the excitable mode with a dashed
line similarly. This figure greatly coincides with the result in the work of Lehe et al. [79].

4.3 Vacuum bunch propagation with radiation

reaction

In this section, the impact of RR on the vacuum bunch propagation of an ultra-relativistic
electron bunch is studied for two Maxwell solvers. The other simulation parameters
are unchanged with regard to the previous section. Figure 4.3.1 shows the results of
the simulations with the additional force, again showing the density of the electron
bunch [see Fig. 4.3.1(a) and (b)] and the transverse force Fy [see Fig. 4.3.1(c) and (d)].
Again, one can observe a disruption of the electron bunch when using the Yee solver
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Figure 4.2.3: Intensity of the spatial 2D-FFT Ey-component for kz = 0 at time t/Tb =

10. Dashed line indicate the mode satisfying dispersion relation for vph =

c. Source: [105], licensed under CC BY 4.0 (https://creativecommons.
org/licenses/by/4.0/).

[Fig. 4.3.1(a)]. This time the peak electron density is about ≈ 11.96nc which is lower in
comparison to the case Yee solver without RR. This already indicates that RR further
alters the bunch dynamics. In contrast, the RIP solver once more does not show an
instability and preserves the distribution of the electron bunch.

The maximum value of the transverse force is reduced in comparison to the simulation
without RR [Fig. 4.3.1(c)], which is a result of the stronger electron bunch defocusing.
One can see that the simulation performed with the RIP solver does not show these
shortcomings and the behavior of the electron bunch is similar to the previous simulation,
so that it is not further influenced by enabling RR.

In the next step, spatial Fourier transforms of the field Ey will be used as a diagnostic
for NCI. Figure 4.3.2 shows the Fourier transform of Ey for all previous simulations in
the x-y plane. The Yee-scheme produces, regardless of whether the radiation reaction
is enabled or not, the typical signal, which was earlier concluded to be the one excited
through the NCI. The proposed RIP scheme produces no additional transverse signals
and has only visible amplitude at low kx values. Since the signal is not visible in the
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Figure 4.3.1: Ultra-relativistic electron bunch propagating in vacuum with RR. Normal-
ized electron density in ne/nc and the transverse force in dimensionless
unit (Fyσ0)/(mec2) are shown after t/Tb = 10. Subplots (a) and (c) show
the data of the Yee solver and subplots (b) and (d) the RIP solver. RR
force is enabled in both simulations. Peak density of the data produced
with the Yee solver increases to ne ≈ 11.96nc. Source: [105], licensed
under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

simulation data produced with the RIP solver, numerical Cherenkov radiation has been
suppressed in this diagnostic.

In principle, an ultra-relativistic bunch propagating purely along X should not be accom-
panied by a longitudinal magnetic field component Bx [120]. Therefore, the field energy
associated with the longitudinal magnetic field component,

WBx =
1

8π

ˆ
B2

x dV, (4.3.1)

can be used as a further tool to check for the validity of all simulations. Figure 4.3.3
presents the longitudinal magnetic field energy (calculated with eq. 4.3.1) as a log-plot.
The data show that both simulations with the RIP solver generate a negligible field,
which is many orders of magnitudes below the level of the Yee simulations. Moreover,
the RR does not impact the RIP simulations. On the contrary, one can immediately see
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Figure 4.3.2: Intensity of the 2D-FFT Ey-component for kz = 0 at time t/Tb = 10.
Subplots (a) and (b) are the solution of the Yee scheme and (c) and (d)
subplots data of the RIP scheme. (a) and (c) have disabled RR, (b) and
(d) have enabled RR. NCI is visible for Yee solver, because of the evident
outline of a mode.

that significant longitudinal magnetic fields are generated in the Yee simulations, which
rise further within the simulation. In the beginning, the evolution of WBx shows a linear
course in the log-plot and is also independent of the RR force. After the distortion of
the electron bunch the linear trend changes and a second jump becomes apparent. In
the following, one can observe that the evolution with and without RR splits up, and
the simulation with enabled RR increases further to a certain value after which it slowly
decays. The data obtained without RR rises slower from that time, so that it looks like
the instability is enhanced when the RR force is included.

It can be seen that the RR leads to additional numerical artifacts in the vacuum propaga-
tion when using the Yee solver. However, there is even another quantity that gets strongly
affected and clearly shows non-physical behavior. As the correct self-force is miniscule
[(F⊥σ0)/(mec2)∼ 10−10 according to Eq. (4.1.1)], the characteristic radiation loss time
ν
−1
RR is very long compared to the timescale Tb. Physically, this means that electrons

should not suffer synchrotron radiation losses. Figure 4.3.4 depicts the simulation results
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Figure 4.3.3: Longitudinal magnetic field energy evolution for different Maxwell
solvers and with or without accounting for RR. Additionally, the yellow
line represents the simulation, where the fields are updated with the
Yee solver, and the particles are solely pushed by the RR force, i.e. the
momentum change by the Lorentz force (LF) has been ignored. Source:
[105], licensed under CC BY 4.0 (https://creativecommons.org/licenses/
by/4.0/).

for the energy ε of the electron bunch as a function of time (Yee and RIP solver with and
without RR). In the simulation with RR and the Yee solver (blue curve), the particles
are losing a significant amount of their initial energy ε0 over time. The onset of the
energy loss starts at time t/Tb ≈ 2, which is also roughly the time at which the NCI
begins. Afterwards a major drop of the particle energy can be observed. Till the end of
the simulation time the energy of the electrons is reduced by ∼ 91.4%. Such a dramatic
drop in energy cannot be observed in any of the other simulations, so that it is not the
result of the NCI alone.

In the other simulations, the particles are losing ∼ 4.4% of their initial energy, and the
energy loss scales linearly with time. This linear behavior comes from the non-vanishing
field Ex, which is doing work of −eExct on the bunch electrons. Thereby, the RIP
simulation is in excellent agreement with the corresponding loss of energy when using
the numerical data for Ex. The Ex field emerges in the PIC simulations because of the
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Figure 4.3.4: Relative particle energy over time for an ultra-relativistic electron bunch
propagating in vacuum. Additionally, the yellow line represents the
simulation, where the fields are updated with the Yee solver, and the
particles are solely pushed by the RR force, i.e. the momentum change
by the Lorentz force (LF) has been ignored. Source: [105], licensed
under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

finite transverse size of the simulation box L⊥ and scales as Ex ∼ L−2
⊥ .

In a next step, it is of interest to confirm, whether the rapid growth of the instability is due
to the feedback loop between the emission of electromagnetic fields and their influence
on the particle. To clarify the instability, an additional simulation has been performed
with the same parameters, but removed the Lorentz force from the particle pusher. Yet,
the radiation reaction force is kept being calculated on the electromagnetic fields at the
particle position. In this regard the feedback of emitted fields is suppressed on particles
via Lorentz force.

The simulation data shows that indeed the radiation of the electron bunch does not change
significantly in this case. A relative energy loss of 5.82% at t/Tb = 10 has been recorded
and can be seen in Figure 4.3.4 (yellow curve). Therefore, the enabled RR force is not
the primary factor causing the massive energy loss that has been observed earlier with all
forces taken in consideration. Figure 4.3.5 shows the maximum quantum parameter in a
cell with the electrons density overlapped at t/Tb = 10 with subplot (a) showing the slice
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Figure 4.3.5: 3D PIC simulation result of an electron bunch propagating in a vacuum.
Simulations have been performed with the Yee solver, activated radiation
reaction force and disabled Lorentz force. Subplot (a) shows the electron
density in critical densities and maximum quantum parameter within
a cell for a fixed (x− ct)/σ0 = 20 and z/σ0 = 0. Subplot (b) shows
electron density and χmax for a fixed y/σ0 = 1.8 and z/σ0 = 0, which
slices the domain through the highest recorded quantum parameter value.
Source: [105], licensed under CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/).

through the maximum electron density and (b) the slice through the maximum quantum
parameter. Here, the electron bunch has not been deteriorated by the RR force alone. The
reason for that lies within the quantum parameter, which is still low and higher values
can only be found at low electron density regions, as the maximum quantum parameter is
not located in the center of the bunch. In contrast the maximum quantum parameter rises
to a value of 153.16 at t/Tb ∼ 2.68 for the simulation with both the Yee mesh and the
RR-module used. This brings the electron bunch into a region, where QED effects would
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Figure 4.3.6: 3D PIC simulation result of an electron bunch propagating in a vacuum.
Here, 18 different particles have been tracked and the transverse force
in their cell documented. Simulations have been performed with the
Yee solver and activated radiation reaction force. Subplot (a) shows
the particle displacement in x and y direction. (b) shows the tracked
particles in a x− r−Fy-plot. The trajectories are colored according to
the simulation time. The points on certain times is color coded according
to the transverse force within the cell, where the particle is currently
located. Only transverse force values bigger than 2 have been displayed.
Forces are displayed for 2 particles at an initial (x − ct)/σ0 = 9.00,
(x− ct)/σ0 = 9.75 and (x− ct)/σ0 = 10.50. Source: [105], licensed
under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

become likely and the RR force applies a strong dampening on the particles. Therefore,
the Lorentz force is necessary to grow the feedback between the fields and the dynamics
of the particles and characteristic for a numerical Cherenkov instability.

Finally, to advance the discussion of particle dynamics within the electron bunch several
particles have been tracked through the vacuum propagation computed with the Yee
solver and taking the RR force in consideration. Particles which have been tracked were
chosen at various position within the electron density. The tracked particle results are
summarized in figure 4.3.6. Subplot (a) shows the trajectories of the tracked particle in
the yz-plane with the time being color coded. Once the instability takes place particles
are scattered to the edge. Subplot (b) adds the transverse force Fy while showing the
radial and longitudinal displacement. Particles start to deflect only radially first, since
they are impacted by the transverse force. The first major transverse force influence
occurs at t ∼ 2.5Tb. Once the initial displacement takes place all particles decelerate and
fall behind, reducing their initial x-position within the bunch. No strong transverse force
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can be seen at that point. After getting decelerated the particles start to leave the moving
simulation domain and are finally lost.

In summary, the data of the energy loss show that the Yee solver may lead to completely
wrong predictions. This in turn can have major impact on the system dynamics.

4.4 Conclusion

In this chapter, the vacuum propagation of an ultra-relativistic electron bunch was studied
in the framework of PIC simulations. Special focus was laid on the question how the
bunch dynamics will change if different Maxwell solvers are used. The standard Yee
solver was shown to be plagued with the NCI. As a result, the density profile of the
ultra-relativistic electron bunch was significantly deformed over time. The addition of
the RR effect in the simulation aggravates numerical problems of the Yee solver and
leads to non-physical energy losses. The bunch electrons lost about 90% of their initial
energy.

In contrast, these numerical artefacts were absent when using the RIP solver. This solver
has the advantage to define electric and magnetic field at same grid points and to be
dispersion-free. The density profile of the electron bunch remained preserved over the
entire simulation time.The incorporation of the RR force did not cause any numerical
problems in this case. In particular, non-physical radiation losses were not detected.

In conclusion, the RIP solver showed very good results in the considered configuration
and is a potential method to suppress the NIC as well as non-physical radiation losses
and thus is a very good choice for high energy physics simulations. It makes it possible
to study high-energy particle beams in quasi 1D problems for several periods, such as
long bunch propagation, beam-beam collisions along one axis with high bunch lengths,
and laser wake field acceleration.

This research topic is essential as it functions as an introduction to the following study of
the collision of ultra-relativistic electron bunches. It helps establish that the RIP solver is
a great Maxwell solver for these kind of scenarios and will be used onward in this thesis.

As a prospect for future studies the improvement of the current Maxwell solvers can
be considered since one-dimensional field propagation are not the only topics in laser-
plasma interaction. In a later chapter the laser approaches the target under an angle and
scatters on the surface, therefore a different Maxwell solver might be beneficial and
should be compared for different solvers.

60



4.4 Conclusion

Contribution of the author: The chapter contains the results and discussion of the
publication [105]. A.P. conceived the configuration and M.F. carried out all simulations
and performed data analysis. M.F. wrote the code for the data analysis. C.B., M.F.
and A.P. clarified details of the physics. C.B. wrote the part about self-force in the
introduction and the implementation of RR and M.F. wrote the rest of the manuscript.
All authors commented on it.
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5 Reaching nonperturbative QED
in modified bunch collision
configuration

After establishing that the RIP Maxwell solver is the preferred option in simulating
field developments for one dimensional propagation, the study shifts the focus on con-
figurations to study QED processes. Therefore, a previously published discussion on
bunch-bunch collision [38] is revisited to research the possibility to reach an extremely
high-value of the quantum non-linearity parameter with a modification of the config-
uration. The modification at hand shifts the propagation axis of both bunches slightly
in transverse direction. The aim is that each bunch propagates through the field max-
imum of the counter-propagating bunch to interact with strong fields. This leads to
an increased production of secondary particles by QED effects. It is conjectured that
when the quantum non-linearity parameter χ reaches ∼ 1600, the QED theory becomes
fully nonperturbative [42, 43]. Nearly ∼ 33% of the initial particles reach the fully
nonperturbative regime in the modified configuration.

Additionally, longer bunches and their influence on secondary particles were considered.
The bunch length has been increased in 10nm increments. These results were compared
to literature [123, 124], where they were in a great agreement for shorter bunch lengths.
For longer bunch lengths the results were still in a good agreement, but the ratio of new
particles per initial particles hints at a different trend.

The results and content of this chapter are adapted and reused from the Effect of transverse
displacement of charged particle beams on QED processes during their collision by
Filipovic, M., Baumann, C., Pukhov, A., Samsonov, A. and Kostyukov, I. (2021),
Quantum Electronics, 51, 807. Copyright 2021 Kvantovaya Elektronika, Turpion Ltd
and IOP Publishing Ltd. Reproduced with permission. All rights reserved. In detail,
section 5.3 has been reused and sections 5.4 and 5.5 have been reused and extended from
the aforementioned work [125].
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5 Reaching nonperturbative QED in modified bunch collision configuration

5.1 Introduction

With the previous chapter finishing the discussion of numerical tools and instabilities
the following parts propose configurations for the study of QED effects. As already
covered in section 2.4 the quantum parameter χ classifies different regimes. The su-
percritical regime is defined as χ ≳ 1 [126] and for χ ≳ 1600 the theory becomes fully
nonperturbative. Reaching these regimes is desired as they are only partially understood.
QED theory was already probed for χ ≲ 1 with the experiment E-144 at the Stanford
Linear Accelerator Center [27, 28]. In these experiments four laser photons interact
with an electron during multiphoton Compton scattering which are in agreement with
theories, as well as inelastic light by light scattering producing positrons is observed.
Other experiments followed in the study of QED [127–129], but were not able to achieve
χ ≫ 10.
At stronger fields and higher particle energies, radiative corrections become increasingly
important. Here, cascade-like behaviour can be observed. High-energy particles emit
virtual photons and high-energy photons temporary decay in a virtual electron-positron
pair occurs. Multiple generations of these processes can be described as a QED cascade.
It was conjectured by Ritus and Narozhny that the perturbative approach of the loop
corrections breaks down after realizing the condition αχ2/3 ≥ 1 [41, 42] with α being
the fine structure constant. Therefore, reaching the fully nonperturbative QED requires
the quantum non-linearity parameter of ∼ 1600.
Experimentally it is not yet feasible to achieve the fully nonperturbative QED regime,
but various initial analytic studies were conducted [43, 130, 131] and configurations
proposed [39, 40, 132]. A different approach and the focus of the chapter is the proposed
configuration of Yakimenko et al. [38] that uses collisions between high-energy electron
bunches or electron bunch on positron bunch to reach the regime. These bunches require
energies of 100GeV and to be tightly compressed and focused to minimize radiation
losses. The electromagnetic field generated by the ultra-relativistic bunches would suffice
to reach the threshold of the fully nonperturbative QED regime. The particle bunches
propagate towards each other on the same axis and have Gaussian charge-density distri-
butions similar as in section 4.2.3. Parts of high-density bunches of charged particles
interacting with the field of the counter-propagating bunch would reach the fully nonper-
turbative QED regime.
Here, a modification on the configuration of Yakimenko et al. [38] is proposed. The
propagation axes of the high-density bunches are shifted. It is desired that the peak den-
sity of one bunch interacts with the maximum field of the counter-propagating electron
bunch. Doing so, an increased secondary particle production by the nonlinear Compton
scattering and multi-photon Breit-Wheeler pair production is witnessed. Triggering in
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general more of these processes will also result in higher energy losses of the electron
bunches. Further, shifting the propagation axis has an influence on beam dynamics as
the self-generated fields disrupt the counter-propagating bunch and should be compared
in-depth with the head-on collision. It is necessary to study such a configuration as the
QED theory is not established in the regime of fully nonperturbative QED.
One might contemplate replacing one of the electron bunches with a laser to achieve a
sufficiently strong electromagnetic field to reach the fully nonperturbative QED regime
and to mitigate the difficulties of performing a precise head-on collision. But even in
facilities with a peak power of 10PW the collision would require an electron bunch with
a Lorentz factor of γ = 107. Therefore this approach is difficult to be seen in the near
future and the focus remains on bunch-bunch collisions.

In this chapter, the nonperturbative collider configuration proposed by Yakimenko et
al. [38] will be compared by the configuration with shifted propagation axes proposed
in this thesis. Thereafter, the influence of longer bunches in the head-on collision
and configuration with shifted propagation axis is studied. In the framework of three-
dimensional PIC simulations the comparison of particle yields, energy spectra and
particles reaching the χ ≳ 1600 threshold for the fully nonperturbative QED regime will
be discussed.

5.2 Reference particle collider to reach

nonperturbative QED regime

Yakimenko et al. proposed in their work [38] the use of a bunch-bunch collider to probe
the fully nonperturbative QED regime. The reason for such an approach is the mitigation
of radiative losses through beamstrahlung. The proposed configuration uses 100 GeV
electron-electron bunch or electron-positron bunch collisions to reach the regime. Both
bunches should have similar parameters with σx = 10nm bunch length, σr = 10nm bunch
radius and IA = 1.7MA peak current. These parameters are chosen, because they achieve
a disruption parameter of D ≪ 1. The disruption parameter defines the transverse motion
of the particles within a bunch. The disruption parameter scales as

D ∼ NαλCσx

σ2
r

(5.2.1)

with N the number of particles per bunch, α ≈ 1/137 the fine-structure constant and λC

the reduced Compton wavelength [38]. An illustration of the scheme can bee seen in
figure 5.2.1. Both bunches propagate towards each other on the same axis to facilitate
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5 Reaching nonperturbative QED in modified bunch collision configuration

Figure 5.2.1: Scheme of the bunch-bunch collider proposed by Yakimenko et al. [38].
Arrows indicate the propagation direction. In the interaction region both
bunches start to overlap and nonlinear Compton scattering and Breit-
Wheeler pair production process can occur.

their interaction.
Their simulation results, which were presented to demonstrate the feasibility of the

collider, showed that 38% of the bunch electrons reached the fully nonperturbative QED
regime, satisfying the requirement αχ2/3 ≥ 1. During the collision, the bunches lost a
maximum of only ≲ 5% of their beam energy [38]. These simulations will be replicated
with similar parameters in the following.

5.3 Transverse displacement of electron bunches

during their collision

To compare the collision of bunches, numerical simulations by the particle-in-cell
(PIC) method using the virtual laser plasma laboratory (VLPL) code [45, 57] in three-
dimensional geometry are performed. The simulation domain is 20σ0, 30σ0, and 30σ0

along the x, y, and z axes, respectively, where σ0 = 10nm is the characteristic spatial
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size used for normalization in each simulation. The grid steps are 0.025σ0, 0.1σ0, and
0.1σ0 along the same axes. The diameter and length of the bunches are 10nm (unless
indicated otherwise), the peak current is Imax = 1.7MA, the Lorentz factor of the par-
ticles is γ = 2.5× 105, and a Gaussian ellipsoid is used as the density profile. For all
the calculations performed, the transverse boundary conditions are periodic, and the
longitudinal ones are absorbing. QED processes in this code are simulated using the
Monte Carlo method [72, 133]. In the calculations performed, two QED processes are
taken into account, the nonlinear Compton scattering and the Breit–Wheeler process.
In this chapter, two possible configurations are considered. In the first configuration,
hereinafter called ‘undisplaced’, the transverse positions of the centres of the two electron
bunches coincide. The second configuration, called ‘displaced’, is schematically shown
in Figure 5.3.1. In this case, one of the two electron bunches is displaced relative to the
other in the direction of the y axis by a distance d0. This distance is chosen such that
the density maximum of one electron bunch passes through the electric field maximum
of the counter-propagating bunch. The expressions for the electric and magnetic field
strengths can be derived from the Gauss theorem [120]:

E =−4πσ2
r n0e
r

exp

(
−(x− vt)2

2σ2
x

)[
1− exp

(
− r2

2σ2
r

)]
er (5.3.1)

B =−4πσ2
r n0e
r

v
c

exp

(
−(x− vt)2

2σ2
x

)[
1− exp

(
− r2

2σ2
r

)]
eφ (5.3.2)

where σr is the root-mean-square bunch radius; σx is the root-mean-square length of
the bunch (note that below the results of modelling with different bunch lengths σx will
be presented); v ≈ c is the speed of the bunch particles; and n0 is the peak density of
bunch particles [120]. For the simulation parameters above, the maximum electric field
Emax = 13.8

(
2πmec2)× (eσ0)

−1 is achieved at rmax ≈ 1.59σr. Thus, the optimal shift
for the displaced configuration is d0 = rmax ≈ 15.9nm.

5.4 Results

First of all, particles were able to reach the fully nonperturbative QED regime, realised
under the condition αχ2/3, or χ ≥ 1600. Figure 5.3.2 shows the maximum values of
the parameter χ in the yz plane at complete overlap of both bunches. Large χ values are
observed in a ring around the bunch propagation axis for an undisplaced configuration
(Fig. 5.3.2(a)) and in two rings for a displaced configuration (Figs 5.3.2(b), 5.3.2(c)).
The reason for this distribution of the parameter χ is related to its dependence on the
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5 Reaching nonperturbative QED in modified bunch collision configuration

Figure 5.3.1: Scheme of the modified electron-bunch collision configuration. Purple
and yellow spheres are the electron density of each bunch, Ey-component
of the electron bunch are illustrated in red-blue colour scheme. Ar-
rows indicate propagation direction direction of the respective bunches.
Dashed lines are the propagation axis of each bunch as they intersect
with the maximum (densest part of field) of the counter-propagating
field. Source: [125] ©2021 Kvantovaya Elektronika and IOP Publishing
Limited. Reproduced with permission. All rights reserved.

strength of the electric field, which has axial symmetry and possesses a maximum at some
distance from the centre of the bunch (see Eq 5.3.1). The maximum value of χ is 1695 in
both configurations, which confirms reaching of the fully nonperturbative QED regime.
An estimate shows that in an undisplaced configuration, about 34% of the bunch electrons
reach this regime. This value is in agreement with the estimate obtained by Yakimenko
et al. [38] where they achieved 38%. For comparison, the fraction of electrons reaching
the supercritical regime in the displaced configuration is about 33%. Despite this, in
the displaced configuration, the yield of both photons and electron–positron pairs is
higher (see below). This spatial distribution of the parameter χ directly affects the QED
processes. In particular, Fig. 5.4.1 shows the energy density distributions of the emitted
photons in both configurations. Since the probability of photon emission is related to
the value of the parameter χ , in the undisplaced configuration the emitted photons are
located symmetrically around the bunch propagation axis and are almost absent in a
small channel along the x-axis. In the displaced configuration, the photons are located
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Figure 5.3.2: χmax of each cell at time of full overlap in yz-plane. Subplot(a) show
the cross-section of undisplaced configuration, (b) and (c) show the
displaced configuration and the bunch moving in positive x-direction and
in negative x-direction, respectively. Black circle in subplot (b) and (c)
have a radius of σr and the cross is the bunch center. Source: [125] ©2021
Kvantovaya Elektronika and IOP Publishing Limited. Reproduced with
permission. All rights reserved.

near the axes of propagation of both bunches because the centres of the bunches lie
in the region of the maximum electric field. Before further analysis of the simulation
results, estimates of the secondary particle yield are obtained from [123]. It shows that
the ratio of the total number of photons to the initial number of electrons in the bunch
can be expressed in terms of the average value of the parameter χ , which is analytically
calculated for the Gaussian distribution of the bunch concentration as

χ
av = ϒ ≈ 5

12
Ne0αγλ 2

C
σrσx

, (5.4.1)

where Ne0 is the initial number of electrons in the bunch. With the chosen interaction
parameters and a bunch charge of 0.14nC, the parameter ϒ is equal to 990. The average
value χav of the parameter χ , calculated from the results of numerical simulation, is
∼ 790 in the undisplaced configuration and ∼ 787 in the displaced configuration at
the moment of the complete overlapping of the bunches. Since the parameter χav is
determined by the field of each bunch, its values are close in both configurations. In the
limit ϒ ≫ 1, the ratio of the number of photons to the initial number of electrons in the
bunch can be estimated as

Nγ

Ne0

≈ 2.57
(

σx

γλC
αϒ

2/3
)
. (5.4.2)

Substitution of the value of the parameter ϒ into this formula gives the ratio Nγ/Ne0 ≫
0.193, which is in good agreement with the simulation results, according to which this
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Figure 5.4.1: Photon energy density per cell in xy-plane after interaction. Subplot (a)
shows the initial configuration and subplot (b) the modified configura-
tion. Source: [125] ©2021 Kvantovaya Elektronika and IOP Publishing
Limited. Reproduced with permission. All rights reserved.

ratio is ∼ 0.203 for the undisplaced configuration and ∼ 0.210 for the displaced one. It is
also possible to estimate the energy losses εe, which are directly related to the emission
of photons by electrons [123]:

∆εe

εe
≈−0.689

(
σx

γλC
αϒ

2/3
)
. (5.4.3)

According to this estimate, the energy loss is ∆εe/εe ≈ 5.18% for the parameters used in
the numerical simulation. This estimate also agrees well with the results of numerical
simulations, in which ∆εe/εe ≈ 5.01% in the undisplaced configuration and ∼ 5.14% in
the displaced configuration.

Similar estimates can be made for another QED process under consideration, namely,
the production of electron-positron pairs from photons emitted by electrons. In Ref.
[124], the ratio of the number of produced electron-positron pairs to the initial number
of electrons in the bunch is estimated as

Npairs

Ne0

≈ 10.4
√

3
25π

(
σx

γλC
αϒ

2/3
)2

lnϒ (5.4.4)

for ϒ ≫ 1. For the simulation parameters, this estimate gives the ratio Npairs/Ne0 ≈
0.0089, which is in good agreement with the results of numerical simulations, according
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to which Npairs/Ne0 ≈ 0.0084 in the undisplaced configuration and ∼ 0.0087 in the
displaced one.

5.4.1 Impact of increased bunch lengths on electron bunch
colliders
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Figure 5.4.2: Fraction of quantities between secondary particles and initial number of
electrons compared to literature [123] estimates (red line) acquired by
equations 5.4.2 - 5.4.4. Subplot (a) emitted photons per initial electron
number, (b) is the energy loss by electrons and (c) is the number of
protons to initial electron number. Source: [125] ©2021 Kvantovaya
Elektronika and IOP Publishing Limited. Reproduced with permission.
All rights reserved.

Concluding with the initial comparison between the displaced and undisplaced config-
uration, the study now shifts to the effect of the bunch length on the applicability of
analytical estimates. To this end, a series of numerical simulations is carried out for the
bunch length varying with a step of 10nm. In this case, the maximum concentration of
electrons and bunch size σr were the same as in the simulation described above. Figure
5.4.2(a) shows the ratios of the number of photons to the initial number of electrons in
the bunch, obtained as a result of numerical simulation and using analytical estimate
5.4.2 under the assumption that χav ≈ ϒ. It can be seen that in both configurations the
photon yield increases with increasing bunch length, and hence the bunch interaction
time. The energy losses and the yield of electron–positron pairs shown in Figs 5.4.2
(b) and (c), respectively, reflect the same regularity. The simulation results show that
the simultaneous displacement of the bunch centres and increase in their length gener-
ally increase the yield of secondary particles. Thus, in the displaced configuration for
bunches with a length of 10nm, the photon yield increases by ∼ 3.3%, and the yield
of electron-positron pairs by ∼ 4.4% compared to the undisplaced configuration, while
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5 Reaching nonperturbative QED in modified bunch collision configuration

for bunches with a length of 50nm, the increase is ∼ 5.4% for photons and ∼ 4.9% for
pairs. It should be noted that the simulation results and analytical estimates are in good
agreement for short bunches, but slightly differ for longer bunches. It can be seen from
Fig. 5.4.2 that, although analytical estimates still give the correct order of magnitude
for bunches with a length greater than 30nm, the predicted functional dependence is
somewhat different from that observed in the simulation. This is partly explained by the
fact that with increasing bunch lengths the transverse dynamics of particles becomes
important.
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Figure 5.4.3: Spectrum of all positrons at the end of the simulation for electron bunches
with a bunch length of 50nm. Axes are logarithmic. Source: [125] ©2021
Kvantovaya Elektronika and IOP Publishing Limited. Reproduced with
permission. All rights reserved.

The average values of the transverse momentum of the initial electrons after a complete
crossing of the bunches are presented in table 5.4.1, from which follows the direct
dependence of this quantity on the bunch length. With an increase in the transverse
momentum of the bunch particles, the change in the charge distribution in the bunch
becomes more significant, which in turn leads to a change in the distribution of the
electromagnetic field. This causes the discrepancy between the analytical estimates,
which were obtained under the assumption that the field distribution remains unchanged,
with the results of modelling the collision of extended bunches. An influence of transverse
particle dynamics on collisions of bunches is studied in detail in Ref. [68].

In addition, the displacement of the propagation axis exhibits a difference on the energy
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Bunch length
σx/nm

1000pav
⊥ /p0

undisplaced
configuration

displaced
configuration

10 0.69 0.72
20 1.36 1.39
30 1.97 2.02
40 2.51 2.59
50 2.97 3.10

Table 5.4.1: Average transverse momentum pav
⊥ of initial electrons after interaction in

simulations with different bunch lengths. Here, p0 is the intial momen-
tum. Source: [125] ©2021 Kvantovaya Elektronika and IOP Publishing
Limited. Reproduced with permission. All rights reserved.

of secondary particles. Figure 5.4.3 shows the energy spectrum of positrons in both
configurations for bunches with a length of σx = 50nm. One can see that the displaced
configuration contains a greater number of low-energy positrons than the undisplaced
one.

For the sake of completeness, it should be mentioned that disruption of bunches was
studied in the work of Samsonosov et al. in [134]. Here, an analytical solution of the
equation of motion was derived which also included radiation reaction. The model shows
that the bunch radius and the quantum non-linearity parameter are of importance in the
focusing or disruption of the bunches.

5.5 Conclusion

Thus, an improvement in the configuration by the previously proposed work [38], aimed
at increasing the yield of particles, while remaining in the nonperturbative QED regime,
has been suggested. Collisions with electron bunches, shifted across their axes so that
the maximum density of one bunch passed through the maximum of the field of the
counter-propagating bunch, have been considered. It was shown that in this configuration,
a higher yield of both photons and electron-positron pairs compared to the collision of
non-shifted bunches was observed. The study was carried out using three-dimensional
modelling with the particle-in-cell method.

A comparison of the results obtained with previous works, which provided analytical
estimates of the particle yield, shows that the data and the estimates are in good agreement
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5 Reaching nonperturbative QED in modified bunch collision configuration

with the results of numerical simulations in the case of short bunches. However, they start
to differ from the simulation results in the collision of long bunches, when the transverse
dynamics of particles becomes essential.

This modification could be considered in experiments once particle accelerators are able
to achieve similar particle bunch parameters. Also, the modified configuration and the
initial proposal for the collider could finally be able to access the currently unexplored
QED regime and establish a theory on light-matter interactions at these very strong fields.
Whether or not the modification helps understand this regime, it is of great interest to
observe the radiation losses in a non-perfect head-on collision.

Contribution of the author: The chapter contains the results and discussion of the
publication [125]. C.B. conceived the configuration and M.F. carried out all simulations
and performed data analysis. M.F. wrote the code for the data analysis. C.B., M.F., A.P.
and I.K. clarified details of the physics. The first draft was written by M.F. and all author
commented on it. Translating the manuscript into Russian was done by A.S.
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6 Study of QED effects at grazing
incidence on solid-state targets

So far, the thesis focused on using high-energy electron bunches produced in conventional
accelerators to study QED effects. In the following chapter, the focus now lies to using
near-future lasers with peak intensities of > 1024W cm−2 to extract electrons from a
target and accelerate them. Using such lasers would provide high-energy electrons
and strong-fields to trigger QED effects as the perceived field by the electrons is then
greater than the Schwinger limit. The configurations uses two high-energy lasers, which
propagate towards a solid-state target. The lasers are aimed at the target at a grazing
angle, nearly propagating parallel to the target. Furthermore, these lasers are propagating
along the surface and approach symmetrically from two sides. Two-dimensional particle-
in-cell simulations are performed in this study. Accelerated electrons and lasers interact
with each other, fueling QED process. A minimum laser intensity of ∼ 1024W cm−2 is
necessary to trigger pair production process and an even higher intensity to maintain the
production of an electron-positron plasma. This plasma is created due to the repeated
processes of photon emission and pair production.

Finally, it is shown, that using the solid-state target is beneficial in comparison of an
imperfect vacuum, where remnants of electrons remain. Ionizing the vacuum is difficult,
as more generations of QED effects are necessary to create an electron-positron plasma.
Using the solid-state target as source of electrons is more advantageous, even though
the acceleration path within an imperfect vacuum is unobstructed and allows for higher
electron energies to be achieved.

The results and content of this chapter are reused and adapted from the QED effects at
grazing incidence on solid-state targets by Filipovic, M. and Pukhov, A. (2022), The
European Physical Journal D, 76(10), 187. Copyright 2022 the authors Marko Filipovic
and Alexander Pukhov. This work is licensed under CC BY 4.0 (https://creativecommons.
org/licenses/by/4.0/). In detail, sections 6.1 and 6.3 are reused and slightly modified from
the aforementioned work [135]. Additionally, sections 6.4, 6.5 and 6.6 are reused from
above mentioned work [135].
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6 Study of QED effects at grazing incidence on solid-state targets

6.1 Introduction

Until now, QED effect have been studied with high-energy electron bunches, but with
lasers that have an intensity of > 1023W cm−2, probing QED theory is attainable with
these lasers as well. A high quantum parameter χ requires that the particles interact with
a strong field, which was previously obtained by a counter-propagating beam and its
field.

Future lasers-facilities will be able to provide the necessary parameter of χ ≫ 1 to
witness relativistic particles and observe QED effects within promising configurations.
Configurations using laser on near-critical plasma [136–139] or thin foils [140] have
been previously proposed.

This chapter focuses on the interaction of high-intensity lasers at grazing incidence to
study QED effects and QED cascades on a solid density target. Utilizing a laser to
scrape the surface of a solid-state target, by approaching the target under a grazing
incidence allows to extract and accelerate electrons. The counter-propagating laser also
generates similar electrons but is primarily essential to overcome the Schwinger limit for
the electrons accelerated by the other laser in their rest frame.
Consequently, the proposed configuration uses two high-intensity lasers that intersect
on the target’s surface. Employing a small grazing incidence for the lasers achieves a
higher Lorentz-factor for the extracted particles and a greater current of the extracted
electron bunch [141]. The extracted electrons can then interact with the field of the
counter-propagating laser beam.

6.2 Acceleration of particles near surface

Before examining the simulation results a more in-depth look on the acceleration process
is necessary. Here, only a brief explanation of the process is given. The content of this
section summarizes the analysis of [141], where a more extensive discussion can be
found. For now, it is considered that a p-polarized wave propagates at a grazing incidence
towards a reflective surface. This surface would reflect a wave fully. The coordinate
system places the x-axis parallel to the surface and z-axis normal to the polarization
plane. The superposition of the incident and reflected fields is then

Ex = 2E0 sinΘsin(kysinΘ)sin(kxsinΘ−ωt +φ0), (6.2.1)

Ey = 2E0 cosΘcos(kysinΘ)cos(kxcosΘ−ωt +φ0), (6.2.2)

Bz = 2E0 cos(kysinΘ)cos(kxcosΘ−ωt +φ0) (6.2.3)
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with E0 the amplitude of the field, Θ the grazing angle, k the vacuum wavenumber, ω the
angular frequency of the wave and φ0 the initial phase [141]. Even though the incident
and reflected fields are propagating under an angle, the superposition of those is a wave
traveling along x with vph = c/cosΘ phase velocity of, and λ0 = λ/cosΘ denoting the
wavelength [141].

Placing an electron in this field at y = λ/(4sinΘ) at an initial time t = 0 and it is
assumed that no transverse instability occurs the resulting transverse fields Ey and Bz

are zero. Only the Ex component is non-zero. This field can accelerate an electron to
relativistic energies if the amplitude is sufficiently high. How long a particle remains in
the acceleration fields though depends on the initial phase and the incident angle [141].

With these information one can determine the phase displacement of the electron. Since
the phase velocity of the wave is higher than the electron speed ve the particle will only
remain a certain number of periods N in the field. The phase displacement is then

∆φ = 2π
Lwave −Le

λ0
≈ 2π

λ0

( c
cosΘ

− c
)

NT (6.2.4)

where Lwave = cNT/cosΘ is the distance the wave travels and Le ≈ cNT is the distance
an electron travels within the wave are [141]. Using this the number of field periods that
an electron can remain at max in which it gets accelerated can be derived

Nacc (Θ) =
1

2(1− cosΘ)
(6.2.5)

and demonstrates that a small grazing angle is favourable [141]. Finally, with the
maximum number of periods an electron can be accelerated, the attainable Lorentz-factor
of the electron can be found as

γmax = 1+
|e|ExNaccλ

mc2 ≈ 1+
4 |e|E0Naccλ sinΘ

πmc2 ≈ 1+
4a0 sinΘ

1− cosΘ
(6.2.6)

with Ex ≈ 4E0 sinΘ/π being the average over time of the Ex-component, m denoting the
electron mass and e the electron charge [141].

6.3 Prediction on QED cascade occurrence

In this field, photon emission and pair production may continue repetitively and lead
to QED cascades [72, 93, 142–147]. Here, an electron-positron plasma of high density
builds up at the surface of the target. This happens, due to electrons and positrons

77



6 Study of QED effects at grazing incidence on solid-state targets

oscillating in the strong electromagnetic fields and emitting photons, while the new
photons decay again to an electron-positron plasma. The new particle then have the
possibility to repeat the cycle, if sufficient energy remains in the system.

In the work of Grismayer et al. [93] configurations maximizing the pair growth in QED
cascades were studied. For this reason setups that provide the highest values of the
quantum-parameter are likely to produce a cascade. The quantum-parameter as described
in eq. 2.4.1 increases with greater γ-values. Taking a look now at laser beams at grazing
incidence, which are used here, eq. 6.2.6 demonstrates lowering Θ gains higher γ-values.
An estimation with eq. 6.2.6 gives a γmax of ∼ 1.2×104 for Θ = 15◦ and a0 = 400 if the
particle remains in the maximum number of field periods, where it can be accelerated
[141]. These high-energy electrons support the cascade when considering the probability
rates of photon emission and pair production.

Simple asymptotic expression in the limit of large χe for electrons and χγ were provided
in [72] and previously mentioned in section 2.4 reading

Wrad ≈ 1.46
αm2c4

ℏεe
χ

2/3
e (6.3.1)

and

Wpairs ≈ 0.38
αm2c4

ℏεγ

χ
2/3
γ (6.3.2)

with Wrad the probability rate for photon emission, Wpair the probability rate for pair
creation by hard photons and ε as the energy of the appropriate particle. Here, it can
be seen that electrons with a high χ are more likely to emit photons and high-energy
γ-photons decay easier to electron-positron pairs since the probabilities increase with
higher χ . In the proposed configuration the second counter-propagating laser beam,
respectively for both sides, supplies a strong electromagnetic field to increase the χ-
parameter. Therefore, multiple generations of QED processes can occur, which leads to
cascading.

6.4 Simulation setup

The particle-in-cell (PIC) simulations are performed in a two-dimensional (2D) geometry
using the Virtual Laser Plasma Lab (VLPL) code [45, 57]. The simulation domain is
100λ0 and 50λ0 in x and y direction (λ0 = 910nm is the laser wavelength) with a spatial
grid step of 0.02λ0 ×0.05λ0, respectively. The electromagnetic fields are updated with
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Figure 6.4.1: Configuration of two high-intensity lasers grazing a solid-state target.
Arrows indicates the trajectory of each laser beam. The lasers are focused
on the centre of the upper edge of the target. Both lasers are incident
on the same angle Θ. The orange half ellipsis shows the region where
secondary particles from QED effects will be located after the interaction.
Source: [135], licensed under CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/).

the X-dispersionless Maxwell solver [77], also known as RIP-solver. The Maxwell-
solver requires hx = cτ = 0.02λ0 with hx the longitudinal grid step and τ the time step. A
simulation runs for 120T0 with T0 ≈ 3.04fs being the laser period. The basic configuration
is shown in Fig. 6.4.1. The solid-state-target is located in the lower half of the simulation
domain. The electron density is 505.55ncr. Here, ncr ∼ 1.35×1021cm−3 is the critical
density for the considered wavelength λ0. Absorbing boundary conditions were chosen
for the domain. The electrons are represented by four particles per cell.

Both lasers are linearly p-polarized Gaussian beams with

a = a0 exp

(
−(x− ct)2

τ2 − y2

σ2
y

)
(6.4.1)

with τ = 8.240T0 and σy = 5.978λ0. The two lasers are scraping the target at grazing
angle in the range 2.5◦ ≥ Θ ≥ 15◦ (1/72π ≥ Θ ≥ 1/12π) and are initialized 75λ0 away
from their point of incidence. Point of incidence of both laser propagation axes is at the
centre of the upper edge of the target.
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Figure 6.5.1: Ey-component in dimensionless units (first row), electron density dis-
tribution in critical densities (second row), positron density in critical
densities (third row), and energy density of emitted photons (fourth
row) at different time instances in QED-PIC simulation with parame-
ters a0 = 1200 and θ = 15◦. Source: [135], licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

6.5 Results

The first simulation presented uses lasers with an incident angle of Θ = 15◦ and an
a0 = 1200. After the initialization, the lasers propagate along the surface extracting,
capturing and accelerating electrons in the electromagnetic fields of the lasers (see Fig.
6.5.1 first row). These electrons co-move with the laser along the surface (see figure
6.5.1 second row t = 55T0). In the process the particles of the target emit photons, which
can be seen in Fig. 6.5.1 (fourth row). The energy density of the emitted photons is
similarly structured to the propagating electromagnetic waves since the probability rate
of the process is tied to the χ-parameter, which includes the electromagnetic fields.

The trapped electrons and emitted photons produced by one laser beam collide with the
counter-propagating laser beam and particles. In the interaction region, where both laser
beams overlap, the non-linear Breit-Wheeler pair production becomes likely. At this
point the χ-parameter rises to a value of 9.65 due to the strong field that a particle comes
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in contact within its rest frame. Photons decay in an electron-positron pair, which is
represented by Fig. 6.5.1 (third row) during the overlap (middle column) at t = 75T0. An
electron-positron plasma builds up in the region and expands outwards in the positive y-
direction, where the target is not obstructing fields and particle dynamics, while reaching
a higher peak density than the initial solid-state target. Recording of pair production
processes start once the counter-propagating beam reaches the centre, since the fields
near the surface are not sufficient to trigger the effect with the co-moving photons. In
addition to the emitted photons by grazing the target, the collision of the extracted
electrons and the counter-propagating laser triggers photon emission again, which fuels
the electron-positron plasma. Once the field is partially absorbed by the electron-positron
plasma, the new plasma is shielded by the remaining electromagnetic field (see Fig. 6.5.1
first row) at t = 85T0. Several cycles of the emission of hard photons and the conversion
of electron-positron pairs are observed leading to the electron-positron plasma by this
QED cascade.

Figure 6.5.2 shows the spectra of electrons, positrons and γ-photons at four different
time instances. At t = 55T0 the energy spectra after extracting and accelerating some
electrons by the incident laser beams are shown. Electrons, represented in subplot (a), are
accelerated up to 3GeV. Pair production at the early stage without interacting with the
counter-propagating electromagnetic field (see subplot c) occurs only in a low number.
Here, it can be seen, that the positron spectrum at t = 55T0 only shows some noise in the
low energy region by a low number of pair production processes. This observation is in
agreement with the rise of the electron-positron plasma shown earlier in Fig. 6.5.1.

Continuing with the photon emission, γ-photons are emitted at two points in the configu-
ration. First, photon emission takes place once the laser beam comes into contact with
the target and then continuously emits photons while scraping the surface, which can be
seen in the energy densities of Fig. 6.5.1 (fourth row). The corresponding spectra to the
displayed energy densities are shown in Fig. 6.5.2 (b). At t = 55T0 the continuous photon
spectrum contains mainly low-energy photons. Second, the accelerated and extracted
electrons collide with the counter-propagating beam and radiate high-energy photons due
to the stronger electromagnetic field perceived in the electrons rest frame. The photon
spectrum at t = 65T0 gains, in comparison to the previous time, photons across the whole
recorded energy range, as the front of the counter-propagating laser reaches the point,
where the propagation axes of both laser beams intersect at the surface (see Fig. 2 at
t = 65T0). In the time instance t = 75T0 and forward the number of photons increases
by several orders of magnitudes. The radiation-reaction is now significantly stronger
leading to the great yield of emitted γ-photons. Additionally, the maximum energy of the
γ-photons slightly decreases between the times t = 65T0 and t = 75T0. The reason for
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Figure 6.5.2: Particle spectrum of electrons (a), photons (b) and positrons (c) at t =
55T0,65T0,75T0 and 85T0. The highest peak of the laser beam reaches
the centre of the surface at t = 75T0. Laser parameters are a0 = 1200
and angle of incidence is Θ = 15◦. Source: [135], licensed under CC
BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

this change is the high probability of high-energy photons undergoing the pair-production
process.

As the electron beam interacts with the counter-propagating laser beam the number
of positrons increases (see Fig. 6.5.2 (c)). This indicates that the probability for pair
production processes became more likely and the process is triggered. Both the electron
and positron spectrum roughly coincide. With both laser beams starting to overlap the
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Figure 6.5.3: Double logarithmic spectrum of emitted photons (a), and logarithmic
spectrum of positrons (b) after the overlap of the high-intensity lasers for
different a0 pulses. Angle of incidence for both configuration is Θ = 15◦.
Source: [135], licensed under CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/).

maximum recorded electron and positron energy drops to ∼ 1GeV by t = 75T0. The
electrons and positrons lose their energy due to the radiation-reaction with the laser
beams. It can be observed as the increase of low-energy electrons and positrons in their
respective spectrum. At the same time more γ-photons are emitted that further produce
electron-positron pairs. This is shown by the positron spectrum in subplot (c) at t = 75T0.

In a next step, the influence of the laser parameters will be discussed. Figure 6.5.3 shows
the photon spectrum and positron spectrum for different laser amplitudes ranging from
400 to 2000. In general, increasing the energy of the laser beam boosts the secondary
particle spectra. Additionally, the cutoff energy of the photon drifts to a higher value by
increasing a0. In the special case of a0 = 400 the characteristic spectrum of positrons is
not reproduced since the statistic is insufficient and the electromagnetic fields are not
strong enough to develop the positron spectrum. Only by reaching an a0 ∼ 800 pair
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Figure 6.5.4: Ratio of emitted photons to the initial number of electrons (a), ratio of
electron-positron pairs to the initial number of electrons (b). a0 is set to
800. Source: [135], licensed under CC BY 4.0 (https://creativecommons.
org/licenses/by/4.0/).

processes are sufficiently witnessed and an electron-positron plasma builds up.

The other laser parameter in the proposed configuration is the angle of incidence Θ.
In a second simulation series the angle has been varied between 2.5− 15 [deg] while
maintaining the dimensionless vector amplitude at a0 = 800. Figure 6.5.4 shows the
ratios for emitted photons (subplot a) and positrons (subplot b) per initial electron. In
general, fractions of secondary particles increase with a larger angle Θ. Further, positrons
of the pair production per initial electrons are maximized at an angle of ∼ 10◦, whereas
photons remain to increase with bigger angles. A possibility for this observation may be
the energy loss of the electromagnetic fields. The lasers are absorbed by the electron-
positron plasma in the interaction region. When the laser energy is depleted, the pair
production ceases and the ratio of positrons per initial electrons is maximized. While this
is the case for pair production, photons may still be emitted with a weaker field. Fraction
of photons per initial electron continue to rise after an incident angle of 10◦.

The previous results showed that QED effects were observed in the proposed configu-
ration. In a final step, the configuration will be compared to a seeded vacuum cascade
[92, 142, 148]. Setting up a configuration for a vacuum cascade appears to be simpler,
therefore it is reasonable to compare both configurations. A seeded vacuum may re-
semble an imperfect vacuum, where a small impurity remains after trying to create a
vacuum. Seed electrons are necessary to initiate QED effects in the code. Fig. 6.5.5
shows a comparison between the proposed configuration and the seeded vacuum within
the secondary particle spectra for lasers with a0 = 800 and θ = 12◦. 72 seed electrons are
initialized in two cells where the propagation axis of both lasers intersect. The electron
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density in those cells is 7.39×10−7ncr. Here, the solid-state-target emits many order
of magnitudes of photons more than the seeded vacuum cascade. While emitting less
photons the vacuum cascade manages to accelerate the positrons created by pair produc-
tion process to an energy of ∼ 3GeV seen in the increased cutoff energy. The proposed
configuration still outperforms the vacuum scenario in the yield of pairs. However, the
maximum photon energy achieved is ∼ 1400MeV.

6.6 Conclusion

In this chapter, the interaction of two high-intensity lasers and a solid-state target was
studied in the framework of PIC simulations. Focus was placed on QED processes
occurring where both lasers overlap and interact with extracted and accelerated electrons.
The large number of extracted electrons escalates into a QED cascade, creating an

85

https://creativecommons.org/licenses/by/4.0/


6 Study of QED effects at grazing incidence on solid-state targets

electron-positron plasma once the laser intensity becomes sufficiently high. A comparison
of the plasma with a seeded vacuum cascade demonstrated that using a target outperforms
an imperfect vacuum.

Furthermore, increasing the angle of incidence reached an upper limit on the pairs
produced by QED effects in the electron-positron plasma and higher lasers intensities
showed that a certain laser intensity is necessary to trigger pair production processes.

Additional studies should be performed using different potential target materials and
other target shapes to enhance the achieved quantum parameter or increase the number
of QED processes.

In the near future, when higher intensities are reached, this configuration may be repli-
cated experimentally and help to achieve even not yet experimentally explored regimes
like the fully nonpertubative regime.

Contribution of the author: The chapter contains the results and discussion of the
publication [135]. A.P. conceived the configuration and M.F. carried out all simulations
and performed data analysis. M.F. and A.P. clarified details of the physics. The first draft
of the manuscript was written by M.F. and A.P. commented on it.
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7 Conclusion

This thesis on the investigation of QED effects in strong-field interactions introduced
numerical tools and configurations to prepare key experiments that will test QED in the
near future. The study has focused on four key areas: merging algorithms in numerical
particle-in-cell code simulations, mitigation of errors occurring in numerical simulations
of ultrarelativistic particles, optimization of particle yield in the non-perturbative regime
of QED, and the interaction of high-intensity lasers with solid-state targets.

Chapter 2 described the necessary theory behind plasmas, lasers and QED effects essential
to the topic of the thesis and was followed by a short summary of the numerical techniques
in chapter 3. This was necessary, since all simulation results have been obtained with the
particle-in-cell code VLPL. Special focus was laid on the QED module in section 3.4, as
the majority of the results included QED events. To improve the PIC code, new merging
methods have been implemented. They are needed to compensate the increased load
by the vast secondary particle production and are described in section 3.5. The merger
module was then thoroughly benchmarked in section 3.5.4.

In the first part of the study, presented in chapter 4, the vacuum propagation of ultra-
relativistic electron bunches was examined within the framework of particle-in-cell
simulations. The central research question concerned the changes in bunch dynamics
when different Maxwell solvers were used and the energy losses the electrons underwent.
The results showed that the standard Yee solver encountered significant issues with numer-
ical instabilities, leading to non-physical energy losses. Conversely, the X-dispersionless
Maxwell solver (RIP solver) demonstrated excellent performance, maintaining the elec-
tron bunch’s density profile and avoiding numerical problems, thus proving to be an ideal
choice for high-energy physics simulations.
The source of the major instability was located within the numerical Cherenkov instabil-
ity by identifying excited modes in the dispersion relation.
Afterwards, radiation reaction was considered in the simulation which increased non-
physical radiation losses in the Yee simulation. Again, the density distribution was
not maintained, but the electron bunch lost the majority of its initial energy. Tracking
individual particles here showed that the particles interacted with a strong force and were
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propagated outwards from the electron bunch. On the other hand, the simulation with the
RIP solver sustained its distribution and exhibited minuscule energy losses. Comparing
the Ey-component an excited mode was visible in the Yee simulations, but missing in
the RIP solver. For future advancements, improving Maxwell stencils in PIC-code may
reduce instabilities in numerical simulations. New Maxwell solver must again undergo
similar benchmarks in that regard to be reliable in PIC simulations. Other improvements
should be considered too, as particle pushers are also a source of introducing numerical
instabilities.

Establishing that the RIP Maxwell solver for particle propagation in one direction is a
suitable option, chapter 5 of the thesis proposed an adjustment to a previous work with
the aim of achieving higher particle yields while reaching the fully non-perturbative
regime of QED. Here, the fully nonperturbative regime of QED and its interest of study
were described, as it is currently not experimentally observed. The configuration uses
two ultra-relativistic electron bunches propagating towards each other. Since an electron
bunch interacts with a strong electromagnetic field it was deduced that it would be
sufficient to reach the new regime. The thesis introduced a shift of the propagation axis
in order to interact the maximum electron density of one bunch with the maximum of
the counter-propagating electromagnetic field generated by the respective other electron
bunch. The main finding was that a transverse displacement of the bunch propagation
axes in bunch-bunch collisions led to higher photon emission and pair production. This
adjustment was supported by 3D PIC simulations and a comparison with previous
literature, which agreed with the data. A slightly smaller amount of particles would reach
the new regime, but the configuration would produce more secondary particles. Data and
literature estimates were in a good agreement but had limitations with longer bunches.
An additional phenomenon, which was observed, was the pinching of the bunches with
increased bunch lengths. This phenomena should be studied further in its impact on
secondary particle generation and reaching the fully non-perturbative QED regime.

Chapter 6 as the final part of the study, continued the study for possible configurations
to understand QED effects further. Here, the interaction between two high-intensity
lasers and a solid-state target was investigated using two-dimensional PIC simulations.
The emphasis was placed on QED processes occurring in regions where both lasers
converge and interfere with electrons that have been extracted and accelerated. Due
to the accelerated electron interacting with a strong counter-propagating laser beam
the quantum non-linearity parameter is high. This lead the particles to undergo QED
processes. It has been determined that extracted electrons initiated multiple generations
of QED processes, developing a plasma comprised of electrons and positrons. It was
possible once the laser intensity reached ∼ 1024W cm−2. During such a numerical
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experiment, the electrons would gain energy as the laser beam begins to scrape the
surface of the target. After the interaction with the counter-propagating beam, most
extracted electrons would lose their energy by emitting photons. The new photons would
finally decay into an electron-positron pair. Theses processes repeat, leading to the
mentioned QED cascade.
The study also analyzed the impact of different incidence angles of the lasers as well as
different laser intensities. The former showed that by increasing the angle the secondary
particle production by QED events would increase until a limit is finally reached. As
for the latter simulation series, increasing the laser intensity allows more secondary
particles to fuel the buildup of the electron-positron plasma. Finally, it was discovered
that employing a target is more effective than using an imperfect vacuum, as the target
supplies initial electrons for QED processes. This configuration should be further studied
by shifting the incidence point of the lasers or using different materials. By doing this,
the configuration can be further optimized until laser facilities are finally able to reach
the necessary intensities and perform the experiments.

Questions discussed in this thesis are important for the field of high-energy physics,
particularly in the development and optimization of particle acceleration and exploring
QED. These configurations could not only help to validate predictions and models de-
veloped in this research but also uncover new phenomena and insights that can further
advance the understanding of QED and high-energy physics. However, the study also
has limitations, such as the need for further research into various target materials and
shapes to maximize the quantum nonlinearity parameter and boost the quantity of QED
processes. Future research is required to explore QED theory in leading facilities with
appropriate experiments.
In addition to the immediate applications to study QED, the problems of this thesis are
relevant for other related fields, such as astrophysics and nuclear physics. For instance,
the study of QED processes in high-intensity laser-plasma interactions can provide valu-
able information on the behaviour of matter and radiation under extreme conditions,
which are important to understand astrophysical phenomena such as gammma-ray bursts
and neutron star mergers.
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