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Zusammenfassung

Der Nobelpreis für Physik 2021 wurde Giorgio Parisi überreicht für die Entdeckung
des Zusammenspiels von Unordnung und Fluktuationen in physikalischen Systemen von
atomaren zu planetaren Skalen. Zu den ungeordneten Systemen gehören glasbildende
Flüssigkeiten, die der Gegenstand dieser Dissertation sind.

Ein Glas bildet sich wenn eine Flüssigkeit ohne zu kristallisieren hinreichend schnell
unter ihre Schmelztemperatur gekühlt wird. Ihre Viskosität steigt dabei so drastisch
an, dass die Flüssigkeit sich graduell in einen Festkörper transformiert. Während des
Kühlprozesses bleibt ihre mikroskopische Struktur jedoch ungeordnet (amorph).

Gläser und die Flüssigkeiten aus denen sie gebildet werden sind allgegenwertig und von
großer Bedeutung für die Industrie. Sie umspannen das archetypische Fensterglas als auch
die omnipräsenten Kunststoe. Dünne Glaslme werden in modernen technologischen
Anwendungen verwendet wie organischen licht-emittierenden Dioden (OLEDs) für TV-
Bildschirme, Tablets und Smartphones. Glasbildende Substanzen sind in jeder Kategorie
von Bindungen zu nden: Der Glasübergang ist ein universelles Phänomen.

Nach etwa 100 Jahren Grundlagenforschung über Gläser sind fundamentale Fragen
über den Bereich tiefer Temperaturen noch immer ungeklärt. Vermutlich am prominen-
testen ist die Frage, ob der Glasübergang mit einem thermodynamischen Phasenübergang
in Verbindung steht. Diese und ähnliche Fragen, die wir in dieser Arbeit angehen,
sind schwer zu beantworten aufgrund der starken Verlangsamung der Dynamik. Trotz
Fortschritten in der Rechenleistung von Computern decken Simulationen von Glasbild-
nern nur einen kleinen Zeitbereich ab, nur bis zu ∼ 10−5 Sekunden. Daher können glas-
bildende Flüssigkeiten nur bis zu moderaten Temperaturen im Gleichgewichtszustand
gehalten werden. Vor kurzem wurde jedoch gezeigt, dass Modelle von Gläsern mit einer
Größen-Polydispersität (einer breiten Verteilung von Teilchendurchmessern) bei beispiel-
los tiefen Temperaturen equilibriert werden können – mit einem Algorithmus, der Teilchen
austauscht, und dadurch die Dynamik um mehr als 10 Größenordnungen beschleunigt.

In der gesamten Dissertation nutzen wir ein solches polydisperses Modell. Wir haben
eine kritische Beobachtung über die Wahl der Teilchendurchmesser gemacht: Die konven-
tionelle stochastische Methode führt zu einer eingefrorenen Unordnung, die Fluktuationen
zwischen verschiedenen Proben erhöht. Wir schlagen eine neue deterministische Wahl von
Durchmessern vor und zeigen ihre signikant verbesserten statistischen Eigenschaften.

Eine oene Frage bezüglich polydisperser Modelle war, warum der Teilchenaustausch-
Algorithmus so ezient ist. In unserer Arbeit decken wir den mikroskopischen Mecha-

nismus hinter der beschleunigten Dynamik auf. Was die Anwendung des Algorithmus
betrit waren bisherige Implementierungen serieller Natur. Wir schlagen eine komplett-

parallelisierte Implementierung vor, die Simulationen auf großen Skalen ermöglicht.
Der Austausch-Algorithmus erlaubt uns den Glasbildner in einem Feld mit Replika-

Kopplung bei tiefen Temperaturen zu untersuchen. Hier tritt eine einem Phasenübergang
ähnliche Phänomenologie auf. Wir fordern diese beliebte Interpretation heraus. Wir
zeigen, dass es sich bei den Beobachtungen um einen Eekt aufgrund endlicher Sys-
temgröße handelt, der durch eine anwachsende statische Längenskala verursacht wird.

Eine aktuelle Studie brachte brüchiges Nachgeben von Gläsern bei Scherung ebenfalls
mit einem Phasenübergang in Verbindung. Wir zeigen, dass brüchiges Nachgeben nur
unterhalb der Modenkopplungstemperatur geschieht und geeignete Scherraten erfordert.

Zusammenfassend betrachtet bietet unsere Arbeit ein tieferes Verständnis von Glas-
bildnern bei tiefen Temperaturen, Polydispersität und den Austausch-Algorithmus.

vii



Abstract

The Nobel Prize in Physics 2021 was awarded to Giorgio Parisi for the discovery of the
interplay of disorder and uctuations in physical systems from atomic to planetary scales.
Among disordered systems are glassforming liquids, the subject of this dissertation.

A glass is formed when a liquid is (super)cooled suciently fast below its melting
temperature while crystallization is avoided. The viscosity increases drastically with de-
creasing temperature, such that the liquid gradually transforms into a solid material.
During cooling the microscopic structure of the glassforming liquid remains disordered.

Glasses and the liquids from which they are formed are ubiquitous and of huge impor-
tance to industry. They encompass the archetypal window glass but also the omnipresent
plastics. Thin glass lms are used in modern technological applications such as organic
light-emitting diodes for TV screens, tablets and smartphones. Glassforming substances
are found in every category of bond types: The glass transition is a universal phenomenon.

After around 100 years of research on glasses, fundamental questions about their low-
temperature regime are still open. Prominent is the quest for thermodynamic signatures
associated to the kinetic glass transition, which we address in this work. Glassforming
liquids are inherently dicult to study due to the drastic dynamical slowdown. Despite
advances in computer technology, simulations only cover a small time window (up to ∼
10−5 seconds) and thus can equilibrate glassformers only at moderately low temperatures.
However, recently it was shown that models with a size-polydispersity (broad distribution
of diameters) can be equilibrated at unprecedentedly low temperatures with a particle-
swap algorithm which accelerates the dynamics by more than 10 orders of magnitude.

Throughout this dissertation we use such a polydisperse model. We have made a criti-
cal observation about how the particle diameters are chosen: The conventional stochastic
choice imposes a quenched disorder, thereby increasing uctuations. We propose a new
deterministic diameter choice and show its signicantly improved statistical properties.

An open question with regard to polydisperse models has been why the particle-
swap algorithm is very ecient. In this work we unravel the microscopic mechanism

behind the accelerated dynamics induced by swaps. Regarding the application of the swap
algorithm, previous implementations were serial in nature. We propose a fully parallelized

implementation, paving the way for large-scale simulations at low temperatures.
The swap algorithm allows us to study the glassformer in a replica-coupling eld at

low temperatures, where a phenomenology reminiscent of a phase transition occurs. We
challenge this popular interpretation and provide evidence that the observations are the
result of a nite-size eect, caused by a growing static length scale.

A recent shear study has associated brittle yielding, as characterized by sharp stress
drops and shear bands, to a phase transition as well. We show that brittle yielding can
only occur below the mode-coupling temperature and for appropriate shear rates.

In summary, our work provides a more profound understanding of glassforming liquids
at low temperatures, size-polydispersity, and the swap algorithm.
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Chapter 1

Introduction

When a liquid is cooled suciently fast below its melting temperature, crystallization
may be avoided. During cooling, the viscosity of the liquid increases drastically: Below a
temperature referred to as Tg, viscous ow is so slow that it occurs on timescales larger
than any realistic observation time. Here the liquid has transformed into a solid ; it is
called a glass [1]. When we look at the molecules that constitute a glass, we see that
their positions are essentially frozen; each molecule rattles inside a cage formed by its
neighbors. The microscopic structure of a glass is disordered (amorphous), very similar
to how it was in the liquid before supercooling.

Glasses, and the liquids from which they are formed, are ubiquitous. The archety-
pal glass is window glass (whose main component is SiO2), but there are many more
glassforming substances made of various chemical compositions.

An example of glassforming liquids is glycerin (C3H8O3), a clear colorless liquid with a
sweet taste. Glycerin emerges as a byproduct when rapeseed oil is processed to biodiesel.
Is is used in around 1500 products across dierent industries, e.g., in food industry as a
sweetener (E 422) [2].

Plastics are found everywhere in everyday life; globally around 400 million tons are
produced every year [3]. All plastics are composed of polymers (long chain molecules of
repeating units) which undergo a glass transition. In aircrafts, bearings made of polymers
are replacing those of metal in lift-, tilt-, and pivotpoints of fuselage, wings and other
areas. Due to high requirements for quality and performance, bearings must tolerate
extreme temperatures and weather conditions, pressurized cabines as well as very high
loads. Polymer bearings oer substantial weight-reduction properties and, with a self-
lubrication service, require near-zero maintenance [4].

Even metals can form glasses [5]. In electric grids of modern power technology, trans-
formers are used at distribution places to down-regulate voltage [6]. Here amorphous

metal transformers (AMTs, whose ferromagnetic core is made of an amorphous alloy of
Fe + B + Si [7]) are highly ecient: Conventional transformers (made of crystalline sili-
con steel) account for a huge part of the total energy loss during power transmission and
distribution; around 40%. This transformer loss can be split up into no-load and load
loss, accounting for a ratio of about 60:40. With AMTs, however, the no-load loss can be
reduced by a whopping 70%. Thereby the total energy loss is reduced by 17% [8]. The
higher eciency of AMTs can be explained by their amorphous structure: The no-load
loss consists of two contributions: (i) hysteresis and (ii) eddy-current loss. First, since
amorphous metals have a higher magnetic permeability, hysteresis loss is lower. Second,
the electrical resistivity of amorphous metals is around an order of magnitude higher, so
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that eddy-current loss is reduced as well [7].

Another technologically relevant example are organic light-emitting diodes (OLEDs)
which are increasingly used in displays of smartphones, tablets and TV screens. The global
market size of OLEDs is currently accounted at USD 38 billion and it is expected to grow
to USD 260 billion by 2032 [9]. The active elements of OLEDs are thin glass lms of
organic semiconductors (small organic molecules). Under voltage these amorphous layers
transport electrons and holes, which recombine to an exciton and then emit light [10].
The amorphous structure of these lms ensures a nanometer-scale surface smoothness
without pinholes. This is critical for OLEDs as holes and electrons must be controlled in
the direction of small thickness [11]. The disordered structure is also directly related to
charge carrier mobility and photon coupling eciency [12].

All examples mentioned above emphasize the huge importance of glasses to everyday
life and industry. They show that the glass transition is not limited to a specic kind of
material: The glass transition is a universal phenomenon.

For around 100 years scientic research on glassforming liquids is being conducted.
In this time, experiments as well as computer simulations have revealed a very rich phe-
nomenology around glassforming liquids [13]. A selection of characteristic features that
are most relevant to this thesis is presented in Chap. 2. Here the goal is to provide the
reader with a basic understanding of glasses and to set the stage for our research project.

Despite a century of research, fundamental questions around the glass transition are
still open if not unclear: How is the slowdown of the dynamics linked to the microscopic
structure? Is it accompanied by the growth of a static length scale? Can a thermodynamic
phase transition be found below the kinetic glass transition? Generally, experiments and
simulations on glassforming liquids are inherently dicult due to the slow dynamics. An
overarching theory of the glass transition has yet to be developed and agreed on.

In a broad sense, our entire project is driven by the research question of how glass-
forming liquids behave at very low temperatures. For this purpose we rst need to dene
what low temperature actually means. A conventional denition of the glass-transition
temperature Tg is the temperature where the shear viscosity equals to 1013 poise [1]. This
means that Tg is not an intrinsic property of the liquid, as it merely shows the crossing
of the relaxation time with an (arbitrary) observation time.

However, a characteristic temperature Tc exists which marks a crossover between uid-
and solid-like behavior: T < Tc can be considered a low and T > Tc a high temperature.
In computer simulations and experiments of glassforming liquids, Tc can be identied as
the temperature where structural correlation functions (e.g., the mean-squared displace-
ment) just begin to develop a plateau-like region. This plateau is a manifestation of the
cage eect, the phenomenon describing that, at low temperature, particles are trapped
inside a cage formed by their neighbors over large timescales. In analogy to the Linde-
mann criterion for crystalline solids, Tc can be interpreted as the temperature where the
amorphous solid becomes unstable due to large in-cage uctuations [14].

Now we can specify our research question: What is the physics of glassforming liquids
at temperatures far below Tc? This is still an open question in many aspects, because
simulations of glassforming liquids only have access to short timescales, despite advances
in computer technology. Conventional simulations are not able to equilibrate the liquid
at temperatures much below Tc.

Only recently this timescale problem was overcome for a special class of glassformer
models, for which an ecient simulation technique works exceptionally well [15]. This
method is swap Monte Carlo which uses exchanges of particles in addition to transla-
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tional motion. While the algorithm was developed half a century ago [16], its eciency
was limited for a long time by small acceptance rates in the Metropolis criterion of swap
trials [17]. However, this has radically changed with the introduction of a soft-sphere
model with a size-polydispersity, referring to a broad distribution of particle diameters
[15]. When the dynamics of this model are augmented with swaps, structural relaxation
is accelerated by multiple orders of magnitude. Thereby equilibrium studies at unprece-
dentedly low temperatures are possible, far below Tc.

As a basis for our computational studies at low temperatures, Chap. 3 introduces the
size-polydisperse model and the swap algorithm mentioned above. The model is used
across the entire thesis and all four publications listed under Chap. 4.

We have made a critical observation about this model with regard to its key feature, the
size-polydispersity: The method of how the particle diameters are chosen (in preparation
of a sample) has a huge eect on sample-to-sample uctuations. This is analyzed in our
rst manuscript, where we compare the conventional stochastic choice of diameters with
a new deterministic method. While the consistency of both methods is guaranteed, our
method is shown to have signicantly superior statistical properties.

An open question with regard to polydisperse models has been, why the particle-swap
algorithm is so exceptionally ecient at low temperatures [15, 17–25]. In our second
manuscript, we identify the microscopic mechanism behind the drastic acceleration with
swaps.

To date, simulations of glassforming liquids using swap Monte Carlo have been imple-
mented only in a sequential way (running on a single CPU) or only partially in parallel

(simulating the local particle motion on multiple CPUs simultaneously but the swap part
in serial [26, 27]). We propose a fully parallelized implementation, paving the way for
large-scale simulations at very low temperatures.

With the polydisperse model and the ecient swap algorithm at hand, we want to
investigate the behavior of glassforming liquids when exposed to external elds.

Our rst study in an external eld [28] can be framed by a longstanding question:
Can a thermodynamic phase transition be found at a nite (Kauzmann) temperature TK

below the kinetic transition at Tg [29–45]? Since many decades it is conversely debated if
at the hypothetical TK the supercooled liquid has vanishing congurational entropy and
transitions to a disordered ground state, a fourth state of matter, an ideal glass.
In experiments and simulations the putative thermodynamic transition is never reached
as the kinetic glass transition intervenes. Due to the drastic slowdown of the dynamics on
cooling, research in this direction is inherently dicult. Even with the swap algorithm,
TK is out of reach.

How can we approach the quest for TK? The idea is to expose the liquid to an external
eld in order to raise the (hypothetical) thermodynamic transition from TK to a higher
(accessible) temperature. The required setup is very advanced; later we will describe it in
more detail, but here we want to briey sketch the project: An external eld of variable
strength ϵ is introduced that couples one liquid conguration (replica) to another frozen
one. Large ϵ constrain the liquid to congurations close to the reference one, while for
small ϵ the liquid can evolve rather independently. This coupling approach is motivated by
a class of lattice models of glasses (mean-eld spin-glasses, reference models for structural
glasses). Here, in an extended phase diagram of eld strength ϵ versus temperature
T , a line of phase transitions separates a conned from a deconned phase [46, 47].
Starting from a Kauzmann temperature TK at vanishing eld strength, the coexistence line
terminates in a critical point. Within the RFOT or mosaic scenario [41], it is believed that
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the mean-eld behavior also takes place in structural glassformers, for which numerical
studies have found a similar phenomenology [36, 47–49]. With our work [28] we want to
clarify whether those observations are the result of (i) a true thermodynamic transition
(as widely believed), (ii) just a nite-time eect caused by slow dynamics or (iii) a nite-
size eect caused by the growth of a static length scale. Does a critical point at the end
of the hypothesized line of phase transitions actually exist?

For our nal study [50] we analyze the response of the glassforming liquid to shear
forces. When do glasses yield in a ductile way and when, in contrast, do they break, as
characterized by macroscopic failure of the material?

We conclude with an overarching summary in Chap. 5. We discuss what we learned
about glassforming liquids and the methods we used and developed.
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Chapter 2

Phenomenology of glassforming

liquids

In this section we want to characterize glassforming (also called supercooled or viscous)
liquids. The aim is to provide the reader with necessary knowledge for our main projects.

We will start with a macroscopic description: Glassforming liquids show a drastic
increase in viscosity upon cooling. Due to this, they become solids at a suciently low
temperature. We will see that the temperature Tg, where this transition to a glass occurs,
only marks the crossing of an internal timescale with an (arbitrary) observation timescale.
Thus it does not provide much insight into the physics of a glassforming liquid.

Inspection of a liquid on a microscopic scale will show us that its structure, the way
its constituting particles are arranged, is amorphous (or disordered). This feature distin-
guishes glasses from crystalline solids which exhibit a periodic order. The so-called cage
eect, describing the rattling of a particle inside a cage formed by its neighbors, helps
us to understand the macroscopic behavior of glassforming liquids. Only at suciently
low temperature the cage eect manifests in the decay of structural correlation functions
via a plateau. This provides us with an intrinsic temperature Tc, indicating the crossover
from uid- to solid-like dynamics.

Glassy dynamics are very heterogeneous at low temperature, a feature referred to as
dynamic heterogeneity. A growing dynamic susceptibility that quanties this heterogene-
ity indicates the growth of a dynamic length scale. This leads us to the question whether
a static length scale can be identied and be shown to grow as well – despite the un-
remarkable amorphous structure. We will discuss the method of particle-pinning to see
that this is actually the case.

2.1 Drastic increase in viscosity

Some liquids ow better than others. The property related to this behavior is the viscosity
η, quantifying the resistance of a liquid to shear forces. The higher the viscosity η of
a substance, the less owable it is. Commonly η is given in units of poise, where
1 poise = 01Nsm−2 [1]. Around room temperature, air has a viscosity of 2× 10−4, water
10−2, sunower oil 05, honey and ketchup 20–200, and pitch 2× 109 poise [51].

For glassforming (or viscous) liquids, the viscosity η increases drastically with decreas-
ing temperature T , see Fig. 2.1. Here the logarithm of η is shown as a function of inverse
temperature, 1T , for many dierent glassforming substances. Clearly, most viscosities
increase super-exponentially, showing a dramatic (but continuous) solidication of the
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liquid.
What does this mean for a typical structural relaxation time τ required for molecules

to rearrange in the liquid (dened precisely below)? Let us apply the generalization of a
proportionality τ ∝ η. A viscosity η = 10−2 poise corresponds to τ = 10−12 seconds (s).
Then, at 1013 poise τ = 103 s ≈ 17minutes, which is a typical timespan of experiments.
At 1015 poise the relaxation time is 105 s ≈ 28 hours, roughly a day. Here the liquid has
eectively transformed into a solid material. It is called a glass [52].

This leads us to a rst and conventional denition of the glass-transition temperature
Tg via η(Tg) = 1013 poise. Illustratively, Tg marks the crossing of η(T ) with the dashed
horizontal line in Fig. 2.1.

Figure 2.1: Logarithm of viscosity as a function of inverse temperature for various sub-
stances (C. A. Angell, Formation of Glasses from Liquids and Biopolymers, 1995 [53]).

2.2 The glass transition

To understand what happens when a glassforming liquid is cooled, let us investigate the
specic volume vsp, the volume of a liquid normalized by its number of molecules.

Figure 2.2 shows vsp as a function of temperature T . At a temperature T above the
melting temperature Tm, the liquid is thermodynamically stable. Cooling decreases the
specic volume vsp in a continuous manner. However, when the liquid is cooled down to
the melting temperature Tm, crystallization can occur. For example, water turns into ice
at Tm = 0◦C. This event is indicated by a sharp discontinuous drop in the specic volume
vsp. Below Tm, the crystal is the thermodynamically stable (or equilibrium) state.

Supercooling. However, crystallization may be avoided on cooling below Tm, such
that the curve vsp(T ) follows that of the stable liquid branch in an unsuspicious manner.
Then the liquid is found in a state which is metastable (with respect to the crystal). It is
called a supercooled liquid. This state is a (metastable) equilibrium in the sense that its
observables are independent of the starting point of an observation.

Glass transition. Most liquids close to Tm exhibit low viscosities of the order of
10−2 poise [52]. Upon supercooling below Tm, though, a drastic increase in viscosity can
be observed (see above). At some point, molecular relaxation processes (see below) are
slower than the timespan of cooling. Then the molecules inside the liquid do not have
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sucient time to rearrange appropriately, as it would be necessary to reduce the volume
vsp to follow the (metastable) equilibrium branch of the supercooled liquid. Instead, a
kink in the curve vsp(T ) can be observed: The supercooled liquid falls out of (metastable)
equilibrium. This is known as the glass transition.

Figure 2.2: Specic volume as a function
of temperature. Reprinted with permission
from M. D. Ediger et al. [54]. Copyright
1996 American Chemical Society.

Glass-transition temperature. The
location of the kink in the curve vsp(T ), see
Fig. 2.2, denes a glass-transition tempera-
ture Tg. In this alternative denition, Tg de-
pends on the cooling rate |r|, which in exper-
iments typically is |r| = 01–100 K/min [54].
For two dierent cooling rates |r1| > |r2|,
the kink can be observed at temperatures
Tg1 > Tg2 , resulting in two dierent glasses 1
and 2 with specic volumes vsp

1
> vsp

2
. This

shows that the properties of a glass depend
on its production process, its history.

Aging. Since a glass is not in equilib-
rium, it suers from aging. This means that,
during observation, properties of the glass
can potentially change. For example, the
specic volume vsp of a glass can decrease
during observation, approaching that of the
supercooled-liquid branch. At suciently
low temperature, when relaxation processes
are much slower than the observation time,
aging phenomena might be not detectable.
Aging is a critical material property for application purposes.

Can all liquids form glasses? Are all liquids glassforming? A glass can be
formed provided the liquid is cooled fast enough to prevent crystallization. The question
then becomes not whether a given substance can vitrify [i.e., solidify to a glass], but under
what conditions it can do so [55]. Some liquids are more prone to crystallization than
others; e.g., glycerin has a low tendency to crystallize, while water has a higher one.

Many attempts have been made to understand the glassforming ability, i.e., the resis-
tance to crystallization. The one that remains most generally applicable is that due to
Turnbull (1969) [52] [56].

Usually crystallization is possible only in the temperature range between melting tem-
perature Tm down to the glass-transition temperature Tg. The closer these two temper-
atures are to each other, the greater the possibility that crystallization can be avoided on
cooling, giving a glass [56]. However, crystallization can be observed in MGs [metallic
glasses] well below Tg, a phenomenon almost unknown in oxide glasses [56].

A more insightful way to understand the glassforming ability is by the interplay be-
tween (i) structural relaxation time and (ii) required time for crystallization, see Ref. [55],
pp. 236–239. The timescale of crystallization is modeled via growth of crystallites. It
shows a non-monotonic temperature dependence as a result of the competition between
thermodynamic driving force for nucleation and the kinetics of growth. For good glass-
formers the crystallization timescale should be much larger than the structural relaxation
time for all temperatures down to Tg.

7



(a) T = 0.30 (b) T = 0.06

Figure 2.3: Slices through our three-dimensional glassformer model at two dierent tem-
peratures T . To the eye the amorphous structure appears very similar in both gures.

2.3 Amorphous microscopic structure

To understand the drastic increase in viscosity upon cooling (Fig. 2.1) and the metasta-
bility (Fig. 2.2) of a supercooled liquid, we need to inspect its microscopic structure.

In a liquid the constituting particles (molecules or atoms) are spatially arranged in
a seemingly random order. More precisely, the structure is referred to as amorphous

or disordered. As an example, Fig. 2.3 shows two slices through our glassformer model
(consisting of soft spheres with dierent diameters, see Sec. 3.1 for more details).

Radial distribution function. A typically used function that yields information
on the microscopic structure of a liquid is the radial distribution function (RDF), g(r).
To introduce this function, let N particles with positions ri, i = 1,    , N , in a box of
volume V be given. Around a reference particle i, consider a thin shell of with δr = 001
with inner radius r − δr2 and outer radius r + δr2. We count all other particles j

found within this shell by the number Ni(r) =
N

j ̸=i 1[r−δr, r+δr](|ri − rj|). Here 1 is
the indicator function. We average Ni(r) over all particles i and over the ensemble of
positions to obtain N(r) = ⟨N−1

N
i=1 Ni(r)⟩. In summary, N(r) counts the average

number of particles found within the shell at a distance r from a reference particle.

We want to compare the number N(r) for a liquid with the average number of particles
Nig(r) found within the given shell for an ideal gas. It is Nig(r) = N

V
Vshell(r) where

Vshell(r) =
4
3
π[(r + δr)3 − (r − δr)3] is the volume of the shell. Then the RDF is dened,

g(r) =
N(r)

Nig(r)
=

3V

4πN 2[(r + δr)3 − (r − δr)3]


N

i=1

N

j ̸=i

1[r−δr, r+δr](|ri − rj|)


 (2.1)

The RDF can be accessed in experiments of liquids: Using elastic scattering of neutrons
or X-rays, the static structure factor can be calculated, which then yields the RDF via a
Fourier transform [1].

Figure 2.4 shows the RDF for our glassformer model. In a liquid state, T = 03, g(r)
detects a short-ranged order spanning a few particle diameter: Particles within a distance
r  5 of a reference particle are (more likely to be) found within shells, indicated by
local maxima in g(r).
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Figure 2.4: Radial distribution function g as a function of distance r (measured in units
of the average diameter) for our glassformer with N = 8000 particles.

Amorphous solid. Characteristic of glassforming liquids is that they keep a dis-
ordered (amorphous) structure upon supercooling below Tm and even below the glass
transition at Tg. This is why glasses are also called amorphous solids.

Interestingly, upon cooling only a very small change in the amorphous structure occurs:
The snapshots of our glassformer model in Fig. 2.3 are taken (a) at a high temperature
T = 030 > Tc ≈ 011 (uid) and (b) at a low temperature T = 006 < Tc (amorphous
solid). Here Tc is the mode-coupling temperature (see below), distinguishing a liquid-
from a solid-like state. For the human eye, it is nearly impossible to detect any dierence
between both congurations. Even in the corresponding RDFs, cf. Fig. 2.4, only small
changes in the structure can be observed: For the lower temperature slightly sharper
peaks are found in g(r). Surprisingly, despite the structural similarity, the relaxation
time for T = 006 is increased by many orders of magnitude, as we will see shortly.

2.4 The cage eect

In this section we will see that the dense microscopic structure in a liquid (that we saw
before) is related to the drastic increase in viscosity. To quantify structural relaxation,
let us inspect the evolution of the particle positions ri(t), i = 1,    , N , with time t.

Mean-squared displacement. The mean-squared displacement (MSD) is a time-
dependent structural correlation function, dened as

MSD(t) = ⟨[ri(t)− ri(0)]
2⟩ (2.2)

While the RDF measures the structure within a single conguration, the MSD compares
a conguration at an initial time 0 with the one at a later time t.

For our glassformer model simulated with molecular dynamics, Figure 2.5 shows the
MSD as a function of time t for various temperatures T . The MSD strongly varies with
temperature; the lower T , the slower the structural relaxation. For short times t, at any
temperature, the particle motion is ballistic: ri(t) = ri(0) + vi(0)t + O(t2). In this time
regime, MSD ∝ t2. For very long times, particle motion is diusive: MSD ∝ t. At a high
temperature T = 03, the crossover from ballistic to diusive motion is indicated by a
kink. With decreasing T , however, the MSD develops a shoulder. At even lower T ,
a well-dened plateau emerges, which is stable for a very long timescale.
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Figure 2.5: Mean-squared displacement (MSD) as a function of time t for dierent tem-
peratures T . Black lines act as a guide to the eye. Reproduced from Ref. [57].

Figure 2.6: Schematic illus-
tration of the cage eect.

Cage eect. The emerging plateau in the MSD can
be explained with the so-called cage eect, schematically
illustrated in Fig. 2.6. It can be considered the foot-
print of glassy dynamics. The cage eect describes that,
in a dense liquid, each particle is surrounded by a cage
formed by its neighbors. With decreasing temperature (or
increasing density), it becomes increasingly dicult for a
particle to escape its cage. As a consequence, a particle
rattles inside its cage on a very large timescale such that
structural relaxation slows down dramatically.

Mode-coupling temperature. The cage eect,
which manifests in the MSD as an emerging plateau,
indicates a crossover from uid- to solid-like dynamics
around a characteristic temperature Tc. In the framework of the mode-coupling theory

(MCT) [14], Tc is well-dened and called mode-coupling temperature. Within MCT, ap-
proaching Tc from a temperature above is accompanied by a diverging relaxation time
(dened, e.g., via the overlap function below). Below Tc structural relaxation is com-
pletely frozen: MSD(t → ∞) = C < ∞, where the constant C decreases with decreasing
temperature. In this sense, for T > Tc the glassformer describes an ergodic liquid, while
for T < Tc it represents a non-ergodic amorphous solid.

The results of MCT can be interpreted in analogy to the Lindemann criterion: Melt-
ing of a crystalline solid is initiated when the amplitude l of particle uctuations around
their equilibrium positions exceeds a critical size lc ∼ 10−1a, where a is the lattice con-
stant. Transferring this idea to an amorphous solid, Tc can be considered its melting
temperature. The stability limit is reached once cage uctuations become too large [14].

MCT, which is based on the Zwanzig-Mori projection-operator formalism, predicts
the singularity in relaxation times at Tc solely based on structural information. This is a
remarkable result because there is no equivalent signature in, e.g., the RDF. A possible
explanation is a non-linear feedback mechanism in the MCT equations.

Note that in real experiments and simulations of glassforming liquids, the mode-
coupling transition, as predicted by the theory, does not exist: The relaxation time is
always nite. Nonetheless, a mode-coupling temperature Tc can be identied as the
temperature at which the plateau in the MSD ceases to exist or more precisely from
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numerical results using predictions of MCT: MCT describes the analytical form of the
decay of the MSD away from the plateau. In Refs. [50, 57], for our glassformer model,
we use ts to MSD data according to a von Schweidler law, MSD(t) = 6l2 + ctb. Our ts
break down around a temperature Tc ≈ 011, dening our mode-coupling temperature.

In the past, simulations on glassforming liquids were only able to equilibrate a liquid
slightly below Tc. This has recently changed for polydisperse glassformers, in particular
the one we use in all our works. For these models the ecient swap Monte Carlo algorithm
works exceptionally well. It equilibrates the liquid far below Tc [15].

2.5 Dynamic heterogeneity

Figure 2.7: Map of single-particle
displacements after a relaxation
timescale (from a simulation of a binary
two-dimensional Lennard-Jones mix-
ture). Reprinted with permission from
L. Berthier and G. Biroli [58]. Copyright
2011 by the American Physical Society.

The dynamics of particles in glassforming
liquids become increasingly heterogeneous as
temperature is decreased. This feature, known
as dynamic heterogeneity, is illustrated with
a spatial map in Fig. 2.7. Here arrows show
single-particle displacements during a trajec-
tory after a time similar to the relaxation time
(introduced below). The map indicates parti-
cles with dierent mobilities and also spatial
correlations between those [59].

Overlap function. We want to quan-
tify dynamic heterogeneities. For this purpose
let us introduce another time-dependent struc-
tural correlation function, the overlap function

Q(t) =
1

N

N

i=1

Θ (a− |ri(t)− ri(0)|)  (2.3)

Here Θ is the Heaviside step function and a is
a microscopic length scale, e.g., a = 03.

For our glassformer model simulated with
molecular dynamics, Fig. 2.8a shows the over-
lap Q as a function of time t. For each dierent temperature T , 60 individual trajectories
are shown as colored curves and their average E[Q] as a dashed black line. Q(t) behaves
similar to the incoherent intermediate scattering function at a wave number close to the
rst sharp diraction peak in the static structure factor. As long as most particles have
moved less than a distance a from their initial positions, Q(t) ≈ 1. For suciently long
times, when most particles have moved more than a distance a, Q(t) ≈ 0. On decreas-
ing temperature, the cage eect and the resulting dynamical slowdown manifests in Q(t)
similar as in the MSD, cf. Fig. 2.5. Spatially heterogeneous dynamics can be observed:
Individual trajectories Q(t) uctuate around the average dynamics E[Q](t).

Dynamic susceptibility. The uctuations in the overlap Q around E[Q] can be
measured with a four-point correlation function, the dynamic susceptibility

χ(t) = NVar[Q](t) = N [E[Q2]− (E[Q])2](t) (2.4)

Here Var denotes the variance with respect to the considered ensemble of trajectories.
Figure 2.8b shows χ as a function of time t for the same temperatures as in Fig. 2.8a.
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Figure 2.8: (a) Overlap Q as a function of time t. For each dierent temperature T we
show 60 independent trajectories (solid colored curves) and their corresponding averages
(dashed black lines). (b) Dynamic susceptibility χ(t) for each T . Corresponding maxima
are indicated by black arrows. For each trajectory N = 2048 particles were simulated.

The maximum of χ is found at t ≈ τ , where τ is the structural relaxation time dened by
E[Q](τ) = 1e. The maximum χ∗ = maxt{χ(t)} increases with decreasing temperature.

Polydisperse glassformers. A seemingly unimportant model detail for polydisperse
glassformers, namely uctuations in their diameter distribution, can have a huge eect
on the dynamic susceptibility: This is because, in the variance calculation of Eq. (2.4),
not only an ensemble but also a disorder average can be present. For more details, see
our rst manuscript [60] or Sec. 3.1.4 below.

Dynamic length scale. The dynamic susceptibility χ, in particular its maximum
χ∗, provides an estimate for a dynamic length scale ξd, a measure for the spatial size of
heterogeneous dynamics [61, 62]. Numerical and theoretical studies suggest χ∗ ∼ ξzd with
an exponent z ≈ 2–4 [62]. No matter the exact mathematical relation between χ∗ and
ξd, the growth of χ∗ with decreasing temperature (as observed in Fig. 2.8) undoubtedly
conrms an increasing dynamic length scale. This leads us to the question: Is the glass
transition also accompanied by the growth of a static length scale?

2.6 Growth of a static length scale

By means of dynamic heterogeneity, we observed the growth of a dynamic length scale
with decreasing temperature in the previous section. This dynamic length scale, however,
depends on the particle dynamics. For example, the dynamic susceptibility for molecular
dynamics is much smaller than for hybrid MD-SMC dynamics, see Fig. 9 in Ref. [60].

Thus the question suggests itself whether a static (or thermodynamic) length scale
ξs can be shown to grow as well, independent of the dynamics of the particles. Another
observation leading to this major theoretical question that is still not fully answered [63]
is that in critical phenomena a divergence in relaxation time is accompanied by a diverging
static length scale. It is plausible to believe that the dynamical slowdown in glassforming
liquids could be accompanied by the growth of a static length scale ξs as well. If this is
the case, how could we identify and measure ξs?

Long-ranged amorphous order? The eventual existence of a large static length
scale presupposes some kind of large spatial order. For the liquid-crystal phase transition,
order is easily detectable, as we have a clear understanding of what distinguishes a crystal
from a liquid: a periodic arrangement of particles. Here it is easy to dene an order
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parameter that distinguishes between both phases. For glassforming liquids, however, the
microscopic structure is amorphous and thus very unremarkable. In disordered systems
we have no intuitive understanding of order. Quite the contrary, amorphous order
apparently describes an oxymoron. The problem in dening an order parameter is that we
do not even know what we are looking for. Surprisingly, in glassforming liquids some kind
of order exists. However, we cannot measure it with point-to-point correlation functions,
such as the radial distribution function. We need a dierent observable (the overlap) and
approach (the pinning method).

Inspiration from Ising model. The idea to reveal the existence of long-ranged order
in a glassforming liquid is very similar to a procedure used for the 3D Ising model [64]:
By setting the spins at the boundary upward at low temperature, all other spins, even
far away from the boundary, will point upward. The problem for a similar setup in
glassforming liquids is that we do not know how the boundary should look like. The trick
behind the pinning method introduced below is to let the system choose its own boundary.
Order will then be identied using the overlap parameter.

Particle-pinning method. One of the rst simulations using pinning of particles
in a glassforming liquid was performed by A. Cavagna et al. [65] in 2007. Here the ther-
modynamics of a liquid sphere embedded in a frozen equilibrium environment is studied:
First a snapshot r0 of an equilibrated bulk conguration is taken. Then an imaginary
sphere of radius R is drawn in the simulation box and all particles on the outside of the
sphere are pinned in place. In contrast, the particles inside the sphere are still allowed
to move freely (but are constrained by the presence of the pinned ones). After a suf-
cient waiting time a new equilibrium conguration r (with respect to the pinning eld)
is obtained.

Now the question is, in analogy to the Ising-model case: How does the pinned boundary
aect the conguration r inside the sphere? In order to answer this question, we need to
dene an order parameter, the overlap, that measures the similarity between r and the
reference conguration r0.

Overlap parameter. To reveal amorphous order, the key idea is to compare two

congurations, r = (r1,    , rM ) and r0 = (r01,    , r
0
N ), rather than measuring anything

in only one conguration [66]. For this purpose the so-called overlap (parameter) Q
is deployed to measure the similarity between such two congurations. A conventional
denition very similar to Eq. (2.3) above reads

Q(r, r0) =
1

M

M

i=1

q(ri), q(ri) =

N

j=1

ω


|ri − r0j |

a


 (2.5)

Here q(ri) is the individual (local) overlap of particle i and a is a microscopic length scale,
e.g., a = 04. For the window ω(x) one can use a shifted Heaviside step function, Θ(1−x)
or a smooth approximation, dened in Ref. [28].

When two congurations are similar, it is Q ≈ 1. For independent congurations,
Q = Q0 ≈ 0 with a small random overlap Q0 ∝ a3 [28]. The overlap can be used
to detect glassy dynamics, with trajectories similar to those in Fig. 2.8a. Note, however,
that the denition of Q is dierent from Q(t) in Eq. (2.3).

When the overlap parameter Q is investigated in bulk, nothing too spectacular can
observed (except that Q is able to detect glassy dynamics). However, with a constraint

such as the particle-pinning method above, the growth of a static length scale can be
conrmed, as discussed below.
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Growth of a static length scale. First evidence for the growth of a static length
scale in a glassforming liquid was given by A. Cavagna et al. [65] via the spherical particle-
pinning method introduced above: Let q(R) be the overlap of particles inside the sphere
of radius R. For suciently large R it is q(R) ≈ Q0, as expected. Here the particles
inside the sphere are rather independent from the boundary. However, for small R it
is q(R) ≈ 1. Here the liquid conguration remains close to the reference conguration.
The lower the temperature T , the larger q(R) is at a given R. This shows an increasing
spatial correlation, as the inuence of the pinned boundary penetrates deeper into the
sphere. These results undoubtedly conrm the growth of a static length scale ξs. One can
quantify ξs(T ) via ts of a spatial correlation function (G(r) in Ref. [65]). In the pinned-
particle method, ξs is called point-to-set length scale because the involved overlap function
measures the correlation between a particle point and a set of pinned particles [66].

Simulation results. In the simulation study by A. Cavagna et al. [65], a binary
system was fully equilibrated down to TTc = 089 using swap Monte Carlo (SMC). A
length-scale parameter (λ) was reported to grow by a factor 7 in the considered temper-
ature range.

In a follow-up simulation study by G. Biroli et al. [67] in 2008, a length-scale growth
up to around 4 particle diameters was reported.

In 2013, G. Biroli et al. [64] compared the point-to-set length (ξPTS) with the scale
(ξλ) where the lowest eigenvalue of the Hessian matrix becomes sensitive to disorder.
Two model systems, the standard Kob-Andersen binary Lennard-Jones mixture and a
glassformer characterized by an inverse power-law potential, were considered. The authors
nd that both length scales show a similar temperature dependence. Thus they conclude
that both length scales are the same, providing mutual support to their relevance. Note,
however, that ξλ was rescaled by a constant pre-factor to match ξPTS. Together the length
scales increase from ∼ 11 to ∼ 25.

In 2015, a study by R. Gutiérrez et al. [23] showed that for a ternary system the point-
to-set length increases by a factor 5 for the lowest temperature accessible with SMC.

Experimental results. Random pinning was realized in experiments of colloidal
glassformers using holographic optical tweezers in 2014 [68]. In a similar experiment in
2015 [69], a planar wall in a binary mixture of colloids was frozen. Here a point-to-set
length reached a value ξs ≈ 5 in units of diameter of the smaller species.

A study by S. Albert et al. [70] from 2016 relies on an indirect measurement of ξs
without pinning: Via a fth-order dielectric susceptibility (χ5), they analyze the response
of the liquid to high electric elds. An associated static length scale ξ(T ) = (χ5T

2)1/6 is
shown to grow from ξ ∼ 14 to ∼ 17 according to the data compiled in Fig. 4f of Ref. [71].

An experimental technique called soft-pinning was introduced by R. Das et al. [72]
in 2017. The idea behind soft-pinning is that larger molecules of a co-solvent act as
pinning sites for smaller molecules of a solvent. In a follow-up study [71] from 2023,
soft-pinning was used for supercooled glycerin (solvent) with dilute amounts of sorbitol
or glucose (co-solvent). A length scale ξ was calculated from a pinning susceptibility (χp)
and another from relaxation times according to a scaling argument. Figure 4f in Ref. [71]
shows a mild increase of ξ from ∼ 12 to ∼ 16, consistent with the data from Ref. [70].

Theoretical results. The idea that a growing static length scale accompanies (and is
eventually the cause of) the tremendous increase in relaxation time also roots in theoretical
works on the glass transition:

• The theory by J. H. Gibbs and G. Adam [39] from 1965 postulates the existence of
cooperatively rearranging regions (CRRs), particle clusters that are shown to grow
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with decreasing temperature: The authors dene a CRR as the smallest region that
can undergo a transition to a new conguration without a requisite simultaneous
congurational change on and outside its boundary and a subsystem of the sample
which, upon a sucient uctuation in energy (or, more correctly, enthalpy), can
rearrange into another conguration independently of its environment.

The setup is as follows: Consider n non-interacting subsystems of z particles each.
Each of those CRRs can be found in Ω ≥ 2 dierent congurations (states). Then
the total number of states is given by ΩG = Ωn so that for the total congurational
entropy Sc ≡ kB ln(ΩG) = nkB ln(Ω). The total number of particles is zG = nz,
giving Sc = zGkB ln(Ω)z.

Now note that the congurational entropy Sc(T ) shrinks with decreasing the tem-
perature T , as observed, e.g., in the famous compilation of experimental data by
W. Kauzmann [29] in 1948. As a consequence, the CRR size z ∝ S−1

c increases
with decreasing temperature. Kauzmann’s extrapolated data suggest Sc(T ) → 0
for T → TK at a nite temperature TK > 0, a result that became famous as the
entropy crisis. A vanishing entropy at a nite temperature was also found in a
lattice theory by Gibbs with E. A. Dimarzio [38] in 1958. According to the Adam-
Gibbs theory, the vanishing Sc(T ) for T → TK results in a divergence of the CRR
size z(T ).

Note that z can be considered a static length as a consequence of the thermodynamic

description. Adam and Gibbs refer to their work as a kinetic theory because they
derive a link between the size z and the relaxation time τ : Via transition probabili-
ties W (T ) of CRRs they calculate τ ∝ W (T )−1 = A exp(z∆µkBT ), where ∆µ is a
chemical-potential dierence and A is considered approximately constant. Plugging
in the result z ∝ S−1

c yields the famous Adam-Gibbs relation τ = τ0 exp(∆(TSc)).
This equation accounts well for experimental data [30].

One of the criticized points about the Adam-Gibbs theory is that the number of
congurations Ω accessible to a CRR does not depend on its size z [30]. A more
profound criticism is: Are CRRs a valid concept for glassforming liquid at all?

• Another theory of the glass transition is the Random First-Order Transition (RFOT)
scenario (also called mosaic theory), developed by T. R. Kirkpatrick et al. [41] in
1989. It was reformulated by J-P. Bouchaud and G. Biroli [30] in 2004.

Within RFOT, it is believed that relaxation in glassforming liquids at low tempera-
tures occurs via a nucleation process between metastable states. While for typical
nucleation the thermodynamic driving force is the free energy, here it is argued to
be of entropic nature. For nucleation of a droplet of linear size ξ, a (generalized)
surface-tension term γξθ, where θ ≤ d− 1 and d is the dimension, and a bulk term
Tscξ

d (with an entropy density sc) are considered. Balancing both terms results
in a critical size ξ∗ = [γ(Tsc)]

1/(d−θ), the mosaic length. The supercooled liq-
uid is imaginated as a patchwork of such local metastable droplets, representing a
mosaic. Here the analogy to the CRRs of the Adam-Gibbs theory can be made.
Similar to how the CRR size z grows with decreasing congurational entropy on
decreasing temperature, so does the entropic-droplet size ξ∗, but with a dierent
functional dependence.

The (cavity) pinning method (see above) was introduced in the reformulation of
RFOT [30] as a fundamental tool to clarify the nucleation process described in the
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original work [41]. Consider the pinning eld realized by frozen particles outside of
a sphere with radius R. It favors a conguration of the inner particles which is sim-
ilar to the initial conguration α, because here the amorphous boundary perfectly
matches. Other congurations β are energetically punished by the non-matching
boundary. This can be described by means of a surface free-energy term which
α gains (or, equivalently, β looses). However, the set of other congurations β is
entropically favored, because there are many of those. Here the system gains cong-
urational entropy. As a consequence of these competing eects (see the calculation
above), there is a crossover size R = ξ∗. This length scale is identied as the typical
size of the mosaic state. For R > ξ∗, relaxation to other states β is inevitable (and
the mean-eld scenario of long-lived metastable states, see below, breaks down).
This process is referred to as entropy driven cluster melting [30].

In the numerical study from A. Cavagna et al. [65] in 2007, the mosaic scenario was
tested via the pinning method which is at the heart of RFOT. The numerical results
are not consistent with the mosaic scenario: For example, RFOT would expect a
sharp jump of the overlap q at R ∼ ξ∗, but this is not observed in the simulation
study. Instead, q(R) is always a smooth function without crossover values of R. A
follow-up study by G. Biroli et al. [67] from 2008 argues that the numerical results
in Ref. [65] do not contradict RFOT via a generalization of the theory.

RFOT establishes a profound analogy between a family of mean-eld spin-glasses
(the spherical p-spin model) and supercooled liquids: The equations of motion of
the p-spin model are equivalent to the mode-coupling equations and thus the model
exhibits a dynamical transition at a mode-coupling temperature Tc (cf. Sec. 2.4). In
mean-eld below Tc, the system is trapped in metastable states for innite times.
The p-spin model undergoes another but static transition at a temperature Ts < Tc

to a glassy phase. This thermodynamic transition has a discontinuous order param-
eter and is thus called discontinuous or random rst order. At Ts the congurational
entropy vanishes, so that Ts is identied with the Kauzmann temperature TK.

• In 2006, A. Montanari and G. Semerjian [73] have analytically demonstrated that
for glassy systems the point to set-length ξs and a relaxation time τ satisfy the
inequality C1ξs ≤ τ ≤ exp(C2ξ

d
s ), where d is the dimension. This implies that the

dramatic increase in τ on decreasing temperature must result in the growth of ξs.
As a side note, the authors were probably the rst to use the term point-to-set
length.

Conclusion. We see that the Adam-Gibbs-Dimarzio and the RFOT theories of the
glass transition are more accurately described as concepts or ideas. While the growth
of a static length scale is fundamental to both concepts and analytically described in the
work of A. Montanari and G. Semerjian [73], the results of simulations and experiments
presented above indicate only a moderate growth of static length scales so far. Note, how-
ever, that simulations are limited to rather small system sizes and structural information
is dicult to obtain from experiments of molecular glassforming liquids.
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Chapter 3

Methodology

Most of our research questions can be boiled down to, in a very broad sense, a single ques-
tion: How do glassforming liquids behave at very low temperatures? We deploy computer
simulations to approach this question. In contrast to experiments, computer simulations
do not require a carefully prepared laboratory. Protocols and their results can be readily
reproduced and without any signicant cost.

Subject of our research is a minimal numerical glassformer model of soft spherical
particles: We introduce this model in Sec. 3.1 and deploy it accross all our publications.
It exhibits all characteristic features of glassforming liquids that we discussed previously
in Chap. 2. The model is exceptionally well suited for our goal to equilibrate at very
low temperatures due to two key features: First, it has a continuous size-polydispersity
(i.e., particles have varying diameters distributed according to a probability density),
which makes it highly ecient for the particle-swap algorithm. Second, a nonadditivity
of the diameters prevents crystallization and ordering processes. We compare two dierent
methods of how the diameters can be chosen (in order to obtain the desired distribution):
(i) The conventional stochastic method which randomly draws the diameters with (ii) a
new deterministic construction that denes an appropriate set of diameters via a map.
Which method is chosen can have an astounding eect on sample-to-sample uctuations
and the statistical quality of a sample.

To simulate the glassformer, molecular dynamics (MD) will be used. In Sec. 3.2 we
briey introduce the MD method and the numerical scheme used therein to integrate the
equations of motion. The problem with conventional MD is that only short timescales
can be simulated: While in experiments on glassforming liquids 12–13 orders of glassy
slowdown can be observed, in simulations, due to a tiny time step, only roughly 4–5 orders
of magnitude are accessible [15].

To circumvent this timescale problem we augment MD with a highly ecient swap
Monte Carlo (SMC) algorithm, introduced in Sec. 3.3. Via articial particle exchanges in
addition to the conventional motion, SMC tremendously accelerates equilibration times: A
speedup of more than 10 orders of magnitude can be achieved at low temperatures, thereby
closing the gap between the accessible timescales in simulations and experiments [15].
While SMC was already used in 1978 to bypass slow dynamics [16], only in 2017 a highly
optimized glassformer model was proposed [15] (the one that we use) that truly exploits
the huge potential of SMC. Here we discuss previous attempts to explain the eciency
of SMC and then present the relaxation mechanism that we have identied. Our under-
standing of SMC leads us to the proposal of a fully parallelized variant of this algorithm.
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3.1 The (size-)polydisperse glassformer model

Our glassformer model consists of N soft spherical particles with short-ranged interactions
in a cubic box of length L, see Fig. 3.1. The specic model that we use was originally
proposed by Ninarello et al. [15] and is dened precisely below. It is characterized by
a continuous size-polydispersity, which means that the particles have many dierent di-
ameters. This feature impedes crystallization and makes the model well suited for the
application of the swap Monte Carlo (SMC) algorithm.

Why do we choose an atomistic glassformer? The model that we use is a
minimal numerical model that reproduces all the characteristic features of glassforming
liquids we described in Chap. 2. Following this line of thought, our hope is that we
can infer general information about glasses from the study of our specic model. The
microscopic structure of our model is similar to that measured in experiments of some
metallic and colloidal glasses, governed by a close-packing principle.

An atomistic glassformer model has crucial advantages over two other commonly used
model classes [74]: In lattice models, particles resemble points on a discrete grid. Here
a fundamental feature of structural glasses, the cage eect, is absent. At the same time
our model is simple enough to avoid the complexity of molecular glasses, where a single
molecule is comprised of at least two atoms. Molecular glasses involve rotational degrees
of freedom and thus are more dicult to analyze.

Classical mechanics. Our model is found in the realm of classical mechanics. The
positions of the particles are denoted by vectors ri and their momenta by pi, where
i = 1,    , N labels each particle. Each particle carries the same massm. Let us abbreviate
the positions as r = (r1,    , rN ) and the momenta as p = (p1,    ,pN ). The model is
completely dened by specication of its Hamilton function (Hamiltonian)

H(r,p) = K(p) + U(r) (3.1)

Here K =
N

i p2
i m is the kinetic energy. The potential energy U is a sum over all

particle pair-interactions as dened below.

3.1.1 Pair interaction: Soft repulsive potential

The particle interactions are assumed to be pairwise and additive, such that the total
potential energy is

U =

N−1

i=1

N

j>i

u


|ri − rj|

σij


 (3.2)

The double sum in Eq. (3.2) runs uniquely over all particle pairs. An eective interaction
diameter σij , introduced below, scales the distance |ri − rj| between two particles i and
j in the argument of the pair potential u. The latter is dened as

u(x) =


u0(x

−12 + c0 + c2x
2 + c4x

4), x < xc,

0, otherwise
(3.3)

Here the parameter u0 > 0 denes our unit of energy. The potential u is cut o at
a dimensionless distance xc = 125 in order to increase the eciency of our molecular
dynamics simulations, see Sec. 3.2 below. For example, a small cuto allows for small
Verlet and cell lists.
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Figure 3.1: Three snapshots of our glassformer model withN = 256 (left), N = 2048 (mid)
and N = 16000 (right panel) particles. Created with the visualization tool OVITO [75].

At short range the potential scales in a harsh repulsive way as u(x) ∼ x−12. This is
the most important feature of the pair potential which represents the repulsion caused
by overlap of outer electron shells [1]. It is responsible for the short-ranged order that
we saw in Sec. 2.3 [1]. The polynomial part in Eq. (3.3) is a slight tweak to smoothen
the potential at the cuto xc. More precisely, the constants c0 = −28x12

c , c2 = 48x14
c

and c4 = −21x16
c ensure continuity of u up to the second derivative. This feature makes

molecular dynamics simulations more stable in terms of energy conservation.

Does the exact functional form of u(x) matter? Probably the most commonly used
model for simple liquids is a Lennard-Jones model [1], dened via the pair potential
ũ(x) = 4ϵ[x12 − x−6]. Here the attractive term ∼ −x−6 is responsible for a cohesive
energy and thus for a liquid-gas transition. It is motivated by dipole-dipole interactions,
the leading term in a multipole series [1]. In our potential u, the absence of an attractive
term implies that only one uid phase exists. Nonetheless, we use the conventional term
glassforming liquid rather than glassforming uid. Since we are only interested in
dense liquid states in the context of glassforming liquids, it has no relevance to us that
the attractive term is missing. Generally, it is known that the structure of liquids close
to crystallization conditions does not depend in any signicant way from the choice of
the interatomic potential [1]. What is much more important to a glassformer model than
the functional form of u(x), however, is a size-polydispersity and a nonadditivity of the
diameters. These we want to introduce now.

3.1.2 Nonadditivity

Our particles have varying diameters, called size-polydispersity. The corresponding distri-
bution is introduced below. First we want to explain how the diameters σi and σj of two
particles i and j enter the term σij in the interaction potential u, Eq. (3.3). For a moment
consider two hard spheres [76]; their minimum (or contact) distance is (σi + σj)2. In
this sense the diameters of two hard spheres are additive. In contrast, our model deploys
a nonadditivity,

σij =
σi + σj

2
(1− 02|σi − σj|) (3.4)

In analogy to a hard-sphere uid, this means that two particles with dierent diameters
have a smaller contact distance than in the case of additive diameters. The nonadditivity
is a central ingredient to the model to suppress crystallization and demixing [15]. Models
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without this property become increasingly prone to crystallization when equilibrated to
very low temperatures with SMC.

Why does the nonadditivity work so well in stabilizing the liquid? This
can be understood by the fact that the nonadditivity [note the rst negative sign in
Eq. (3.4)] favors chemical compositions where particles are surrounded by others with
dierent diameters: Such mixed compositions have a smaller eective packing fraction
∼ 

ij σ
3
ij and thus lower energies. For a denition of an eective packing fraction, see

our rst manuscript [60].
What is the meaning of diameter? We want to discuss the physical meaning

of the term diameter for this model. For our soft spheres, dened via a continuous
potential u in Eq. (3.3), the term diameter has to be understood in a more general
way than for hard spheres. While for a hard sphere its diameter has a precise geometric
meaning and a sharp value, for a soft sphere this is no longer the case.

For our soft potential, the interpretation of σi as an eective diameter, analogue to that
of a hard sphere, can be justied as follows. Consider a collision between two particles i
and j with thermal kinetic energy Ethm ∼ kBT . The minimum distance r̃ up to which the
particles can approach each other is found by demanding u(r̃σij) = Ethm. Since the pair
potential u is dominated by the repulsive part, u(x) ∼ u0x

−12, it is r̃ ≈ σij(kBTu0)
−1/12.

Even for a very broad temperature range kBTu0 ∈ [001, 10], we have (kBTu0)
−1/12 ∈

[082, 147]. Note that all our considered temperatures are found in this range. As a result,
r̃ ≈ σij for the minimum distance. Approximation of the nonadditivity by σij ≈ (σi+σj)2
then justies the identication of our particle i as a soft sphere with diameter σi.

3.1.3 Size-polydispersity

A (size-)polydispersity means that particles have varying diameters. More traditional
numerical glassformer models use a small discrete number of dierent diameters; see, e.g.,
Refs. [16, 17, 22, 23, 77]. A typical example is a binary (or ternary) system, i.e., a mixture
of two (or three) dierent species with a certain diameter ratio between them. However,
these model liquids crystallize at moderately low temperatures when using SMC [15,
22]. At the same time, SMC itself is not very ecient for these models due to very low
acceptance rates of the swap trials, e.g., of the order of ∼ 10−4 [17].

To solve these problems, we use a continuous size-polydispersity, where the diameters
are distributed according to the probability density function [15]

f(s) =


As−3, σm ≤ s ≤ σM,

0, otherwise
(3.5)

This distribution is illustrated in Fig. 3.2 (green curve). It is continuous on the nite in-
terval [σm, σM], where σm is the minimum and σM the maximum diameter. The three
parameters in Eq. (3.5) are determined as follows. Via the normalization condition
f(s) ds = 1 we obtain A = 2(σ−2

m −σ−2
M ). We use the expectation value of the diameter

σ̄ ≡

sf(s) ds as our unit of length. Then this equation itself implies σM = σm(2σm−1).

The last degree of freedom of the distribution is xed via the choice σm := 0725, so that
σM = 2918 = 161 and A = 2922 = 1318.

A continuous size-polydispersity has been the subject of scientic research since many
decades [78, 79]. However, their phenomenal eciency with respect to the swap Monte
Carlo algorithm was recognized only recently [15]. With the particular size-polydispersity
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Figure 3.2: Distribution of particle diameters. Green curve: Probability density f as a
function of diameter s. Blue histogram: Exemplary realization when N = 500 diameters
are drawn randomly and independently from the distribution f (model S). Red curve:
Corresponding histogram for our deterministic construction (model D). From Ref. [60].

given by Eq. (3.5), the acceptance rate of swap trials is of the order of ∼ 10−1 [57], around
1000 times larger than for a binary system [17].

Functional form f(s). The idea behind the specic functional form f(s) ∝ s−3 is
that every two subpopulations of particles with the same diameter bin-width occupy the
same total volume in real space (note that the volume of a hard sphere with diameter s
is ∝ s3). It was shown that dierent analytical forms of the distribution f(s) produce
insignicantly dierent average relaxation dynamics in case that the degree of polydis-
persity δ is xed [25]. This parameter δ is a measure for the width of the distribution f

and is dened via δ2 :=

(s− σ̄)2f(s)dsσ̄2. For this model δ ≈ 2293%. Note, however,

that subpopulations of smaller and larger particles have signicantly dierent dynamics
and localization [80].

Confusion principle. The idea to stabilize the liquid with a size-polydispersity
against crystallization might be inspired by a very similar observation made in experiments
of metallic glasses. Here the general rule to promote glassformation has been to add more
components (in particular of dierent sizes). This is known as a confusion principle [5].

3.1.4 Choice of diameters

When we set up a sample of N particles, how should we choose the diameters σ =
σ1,    , σN such that their histogram approximates the target distribution f , Eq. (3.5)?

Stochastic method S. The more traditional route is to choose the diameters σ in a
stochastic way, i.e., to draw them randomly (and independently) from the distribution f .
We call this the model S approach in our rst manuscript [60]. It is used in most studies
of polydisperse glassforming liquids (e.g., in Refs. [15, 49, 81]). In independently set up
samples dierent realizations of diameters are found: Every histogram of N diameters
will be dierent. An exemplary realization is shown in Fig. 3.2 (blue histogram).

How is model S implemented? In order to draw a random diameter variable s dis-
tributed according to the density f(s), one rst chooses a random number ζ distributed
uniformly on [0, 1]. Then s = F−1(ζ) is dened, where F is the cumulative distribu-
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tion function F (s) =
 s

−∞ f(σ) dσ and F−1 is its inverse. This procedure is repeated
independently many times to draw a total of N diameters.

Deterministic method D. In our rst manuscript [60] we propose an alternative
method to choose the diameters, which constructs them in a deterministic way instead.
We call this the model D approach. Here we use a map to assign an appropriate set
of diameters to the particles. This has to be done in a consistent way such that the
histogram converges to the target distribution f for N → ∞, as it is the case for the
stochastic method. A histogram of a sample of size N prepared with the deterministic
method, see Fig. 3.2 (red curve), always looks the same (given a xed number of bins,
here 70).

Construction of model D. So, how are the diameters chosen in model D to initialize
a sample of size N? The idea is motivated by the implementation of method S (see above):
In model D, rst we equidistantly distribute N+1 nodes hi := iN , i = 0,    , N , on [0, 1],
the codomain of the cumulative distribution function F . This procedure mimics the draw
of uniformly distributed variables on [0, 1] in the stochastic method S. Then, analogue
to model S, the pre-images of the nodes are determined according to si := F−1(hi). In
principle, we could stop at this point and dene si as our diameters. However, we proceed
with a small twist (without destroying the correct distribution): We uniquely dene the

diameters via σD
i
3
= N

 si
si−1

σ3f(σ) dσ. In this way the hard-sphere packing-fraction has

the same value as its expectation value in model S. Most importantly, the distribution
of σD = σD

1 ,    , σ
D
N approximates the distribution f , as proven by us in Ref. [60].

What are the similarities and dierences between the stochastic and deterministic
approach? Do both methods only dier in terms of a nite-size eect or are there funda-
mental dierences? Which of these are these physically relevant? Is one method superior
to the other? In our rst manuscript [60] we extensively compare both methods and
discuss those questions.

Improved diameter distribution in model D. One of our results in Ref. [60]
involves the rate of convergence of the empirical diameter distribution to the target dis-
tribution. We prove that for the deterministic method D the distribution converges with
a rate of 1N and thus faster than for the stochastic model S which converges as fast as
1
√
N . Furthermore, model D has the advantage that it does not suer from statistical

outliers (i.e., very unlikely realizations of the diameters). This is especially important for
simulations of glassforming liquids, as these are limited to rather small system sizes N (see
our discussion in Sec. 3.2). Thus, with regard to statistical properties, our deterministic
model D is strictly superior to the conventional stochastic method S.

Sample-to-sample uctuations. The other main result in Ref. [60] revolve around a
stochastic and numerical analysis of uctuations of an observable among dierent samples.
We show that the sample-to-sample uctuations in model S are signicantly larger than in
model D, especially at low temperatures, caused by the additional diameter uctuations.

This can be understood and precisely described in the framework of statistical me-
chanics as follows. Starting point is our fundamental observation that the Hamiltonian
H = H(q|σ), see Eqs. (3.1)-(3.3), is not only a function of the phase-space coordinates
q, but also depends on the given set of diameters σ. For the stochastic method S, the
diameters σ are random variables that are xed before simulations are run. In this sense
they impose a quenched disorder onto the system. The set of diameters is distributed
according to

g(σ) =

N
i=1 f(σi), model S,N
i=1 δ(σi − σD

i ), model D
(3.6)
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Figure 3.3: Mean potential energy ⟨U⟩ normalized by the number of particles N as a
function of temperature T for diameter-choice methods S and D. For each case specied
by the legend, we show 60 time averages from independent simulations. From Ref. [60].

Here δ is the Dirac delta function. The expectation value B of a quantity B(σ) is calcu-
lated from the diameter distribution g(σ) as B =


B(σ)g(σ) dσ. In practice this disorder

average B is calculated by averaging over 60 independent samples.
In statistical mechanics, the states q of the phase space that are sampled during the

course of a simulation run are assumed to be distributed according to a phase-space
density ρ. In the canonical ensemble, by denition, it is

ρ(q|σ) = Z−1e−H(q|σ)/(kBT ), (3.7)

where Z is the normalizing partition function given by

ρ(q|σ) dq = 1. We recognize

that within our formalism ρ is a conditional probability. Now consider an observable
A = A(q, σ), which depends on the phase-space coordinates q and eventually on the
diameters σ. Its thermal average ⟨A⟩ is dened by ⟨A⟩(σ) =


A(q, σ)ρ(q|σ) dq and

depends on σ even if this is not the case for the observable A. In practice, ⟨A⟩ is calculated
separately for each simulation via a time-series.

In Fig. 3.3 the dependence of the thermal average ⟨A⟩ on the sample realization σ is
exemplied for A = U , the potential energy. Here the thermally averaged potential energy
⟨U⟩ is shown as a function of temperature T (equation of state). We show data for 60
independent simulations in each case specied by the legend. The curves of the stochastic
method S fan out, since each sample has a dierent diameter realization. In contrast, for
the deterministic method D all curves fall onto a single one, because each sample has the
same diameters. In model S, for the small system size N = 256, we can clearly recognize
the problem of statistical outliers. On increasing the system size to N = 2048, we see that

the disorder variance ⟨UN⟩2 − ⟨UN⟩2 decreases. However, the corresponding disorder

susceptibility [⟨U⟩2 − ⟨U⟩2]N remains nite in the thermodynamic limit N → ∞, as we
show in Ref. [60]. In this sense, the disorder uctuations in model S are not a trivial
nite-size eect. They superimpose thermal uctuations, as we want to show now.

Eve’s law. One has to be very careful when analyzing a set of independent samples
which have been prepared with the stochastic method S: Here the phase-space coordinates
q as well as the diameters σ uctuate among samples. Thus, the total variance Var(A) of
an observable A = A(q, σ) among samples is dictated by the joint-probability distribution

ρ(q|σ)g(σ), such that Var(A) = ⟨A2⟩ − ⟨A⟩2. These sample-to-sample uctuations can be
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split into two terms according to Eve’s law (or variance decomposition formula) [82] as

Var(A) = ⟨A2 − ⟨A⟩2⟩  
=E[Var(A|σ)]

+ ⟨A⟩2 − ⟨A⟩2  
=Var(E[A|σ])

 (3.8)

Here the left term describes intrinsic thermal uctuations, caused by variation of the
phase-space coordinates q. In contrast, the term on the right are the imposed disorder
uctuations, describing the eect of variation of the diameters between samples. Only
in the stochastic model S the disorder uctuations are present, those we already saw in
Fig. 3.3 for A = U . As an example where also thermal uctuations are present, consider
the dynamic susceptibility χ = NVar(Q), for which the overlap Q is the fundamental
observable. χ is a characteristic quantity in glassforming liquids, cf. Sec. 2.5, measuring
the uctuations around the average structural relaxation. In Ref. [60] we show that, in
the dynamic susceptibility χ, the disorder term dominates over the thermal one at low
temperature.

With a rigorous statistical analysis we demonstrate that disorder uctuations (caused
by N random variables σi) can be explained by uctuations of a single thermodynamically
relevant parameter, an eective packing fraction [60].

Our rst manuscript is of relevance for recent studies of glassforming liquids in external
elds [15, 49, 81] (and thus for our third manuscript [28]), where uctuations play a central
role and have to be analyzed carefully.

3.1.5 Periodic boundary conditions

We apply periodic boundary conditions (PBC) [76]. This means that our cubic simulation
box of length L is replicated along all three dimensions to form an innite lattice. Each
particle thus has an innite number of periodic images that are found with respect to the
original one displaced by multiples of L in every dimension. A particular particle and all
its periodic images are supposed to move in the same way. When a particle leaves the
simulation box at any side, one of its periodic images re-enters the box simultaneously at
the opposite side.

The purpose of PBC is to mimic the bulk behavior of a macroscopic experimental
system by avoiding articial surfaces [76]. This is especially important as simulations
are limited to small numbers of particles, typically N = 10–10000, where the surface-to-
volume ratio is not negligible [76]. In sharp contrast to simulations, in experiments of
liquids about N ∼ 1023 atoms can be found in only a single cubic centimeter.

Generally, for liquids with short-ranged interactions away from phase transitions, PBC
have only little eect on thermodynamic properties and microscopic structure [76].

However, for glassforming liquids close to the glass transition, it can be incorrect to
infer information from the nite system (with PBC) to the macroscopic system: In glass-
forming liquids, spatial correlations between particles increase on decreasing temperature
(see our discussions about dynamic heterogeneity in our rst manuscript [60] and about
amorphous order in our third one [28]). The nite size L of the simulation box, however,
puts an upper bound to those spatial correlations. When their spatial extent approaches
the size of the box, deviations from the bulk behavior can occur. In this case it is necessary
to study larger systems. In Ref. [60] we identify a simple mathematical criterion (based on
Popoviciu’s inequality on variances [83]) that tells us when such nite-size eects occur.
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3.2 Molecular dynamics (MD)

There are two dierent methods to simulate glassforming liquids [1]: The rst is molecu-
lar dynamics (MD), which calculates particle trajectories via a numerical solution of the
classical equations of motion. We will explain this method in this section. The second
method is (Markov-chain) Monte Carlo, which generates a sequence of congurations by
random steps in order to sample from a target distribution (most commonly the Boltz-
mann distribution). While we do not use this technique for the translational motion of
the particles, we apply it in the form of the swap algorithm, which is discussed in Sec. 3.3.

3.2.1 Classical equations of motion

In classical mechanics, the particle positions and momenta are supposed to evolve in time
according to Hamilton’s equations of motion

r =
∂H

∂p
, p = −∂H

∂r
 (3.9)

Here r and p denote the derivatives of r and p with respect to time t. We use a compact
notation as in Eq. (3.1), where a vector has 3N components, representing the three
coordinates of all N particles. For a Hamiltonian of the form of Eq. (3.1), Hamilton’s
equations are equivalent to Newton’s ones,

F(r) ≡ −∂U

∂r
(r) = mr̈ (3.10)

This is the famous equation force = mass× acceleration with F being the force vector.
Either formulation, Eq. (3.9) as well as Eq. (3.10), represents a coupled set of ordinary

dierential equations (ODEs), where the independent variable is the time t [note that
the partial derivatives are evaluated for a concrete form of the Hamiltonian, as given
by Eq. (3.1)]. While in Eq. (3.9) we have 6N rst -order ODEs, in Eq. (3.10) we have
3N second -order ODEs. By stating an initial condition at time t = 0, here r(0) = r0
and p(0) = p0, the ODE (3.9) turns into an initial value problem. The Picard–Lindelöf
theorem states that a unique solution r(t) and p(t) exists under appropriate mathematical
conditions, dening all coordinates at any later point in time. In this sense, the time
evolution of a classical system is deterministic.

3.2.2 Numerical integration scheme: Verlet algorithm

It is impossible to analytically solve Newton’s equations of motion (3.10) for a system
consisting of many particles. In molecular dynamics we solve the initial value problem
above numerically with a stepwise method: The goal is to obtain a discrete solution
rn which approximates the exact solution r(tn) along a time sequence tn = n∆t. Here
n = 1,    and ∆t is a time step. A numerical method should converge in the sense that
the global error |rn−r(tn)| → 0 when ∆t → 0. Dierent methods have dierent trade-os
between accuracy, computational run time, memory consumption and diculty of their
implementation.

Probably the simplest yet most successful algorithm is the one of Verlet [1, 84]. To
motivate its denition, we start with a Taylor expansion of the exact solution r(t). A
forward (+) and a backward (−) expansion at time t±∆t yields

r(t±∆t) = r(t)±∆t r(t) +
1

2
∆t2 r̈(t)±

1

6
∆t3

...
r (t) +O(∆t4) (3.11)
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One could simply dene a numerical scheme by truncating the forward expansion after
the second order, but Verlet’s method has smaller errors at a similar computational cost,
as we show below. We add both expansions in Eq. (3.11) to eliminate odd terms and
obtain

r(t+∆t) = −r(t−∆t) + 2r(t) +
∆t2

m
F(r(t)) +O(∆t4) (3.12)

Here we inserted Eq. (3.10). Based on Eq. (3.12), the Verlet algorithm is dened by the
recursive formula

rn+1 = −rn−1 + 2rn +
∆t2

m
F(rn) (3.13)

For the rst step we choose r1 = r0+∆tv0+
1
2
∆t2

m
F(r0) according to Eq. (3.11). A measure

for the quality of the approximation is the local error e, dened by e = |rn+1 − r(tn+1)|
under the assumption that the previous terms are exact, rn = r(tn) and rn−1 = r(tn−1).
When evaluating Eq. (3.12) at t = tn, we obtain e = O(∆t4). This is an order more
accurate than the truncation of the forward Eq. (3.11) after the second-order term, where
e = O(∆t3). The Verlet algorithm has many interesting properties from a physical point
of view: It is time reversible and conserves volume in the phase space [1]. The fact
that the Verlet algorithm preserves these key features of hamiltonian dynamics is almost
certainly the reason why it is numerically so stable. [1] The Verlet algorithm is at least
as satisfactory as higher-order schemes. [1]

What about the velocities? There are dierent versions of the Verlet algorithm
that give approximate calculations for the particle velocities v ≡ r. The velocity form of
the Verlet algorithm is dened as [1]

rn+1 = rn +∆tvn +
1

2

∆t2

m
F(rn), (3.14)

vn+1 = vn +
1

2

∆t

m
[F(rn+1) + F(rn)] (3.15)

This version yields exactly the same sequence of the positions as the original one dened
by Eq. (3.13), as can be shown via straightforward calculation. Its has the advantage over
the original version that it also provides velocities. In contrast to other versions, here the
velocities are evaluated at the same time step as the coordinates. From a computational
point of view, both versions are similar: While in the original form we keep track of two
position vectors at every time step, in the velocity form we keep track of one velocity and
one position vector. The local error e for the velocities is only of order O(∆t)2, but, due
to Eq. (3.13), velocities are irrelevant for the trajectories of the algorithm.

3.2.3 A tiny time step ∆t

For simulations of metallic glasses [85] and simple liquids in general [1], a tiny time
step ∆t ∼ 10−15 s [85] to ∆t ∼ 10−14 s [1] must be chosen to ensure a satisfying degree
of numerical energy conservation. The necessity of such a small value for ∆t can be
understood and derived via a crude estimate as follows.

As an example for a metallic glassformer, consider Ni81P19. In a melt at temperature
T = 1050◦C, an averaged nearest-neighbor distance R = 247A between atoms can be
identied via the main peak in the g(r) [86]. Now we can estimate a microscopic timescale
tmic ∼ Rvthm as the time in which a thermal Nickel atom of mass m and with veloc-
ity vthm(T ) ballistically moves the atomic distance R. Here a thermal velocity can be
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estimated via v2thm ∼ 3kBTm according to the equipartition theorem. Plugging in nu-
merical values (T = 132315K, m = 586934u, 1u = 1660538921×10−27kg, 1A = 10−10m,
kB = 1380649 × 10−23m2 kg s−2 K−1) yields tmic ∼ 3 × 10−13 s. In order to resolve this
small microscopic time tmic in MD simulations (and to guarantee a satisfying degree of
energy conservation), a comparatively even smaller time step ∆t must be chosen. A rule
of thumb is ∆t ∼ 10−1tmic [1], which demands ∆t ∼ 3× 10−14 s here.

3.2.4 Accessible timescales: simulations vs. experiments

The necessity of a small time step∆t ∼ 10−14 s, see Sec. 3.2.3, poses a huge problem to MD
simulations of glassforming liquids, as it drastically reduces the accessible observation time
tmax: Consider a typical MD simulation running for around 48 hours, using a sample of our
model with N = 8000 particles (at temperature T = 011 with a time step ∆t = 001t0
given in our time unit t0 = σ̄


mu0). In this simulation time around nmax = 107

time steps can be reached (hardware details: Intel(R) Xeon(R) CPU E5-2630 v4 Cores
@ 2.20GHz with about 64GB RAM). This corresponds to a short timespan of tmax =
nmax × ∆t ≈ 10−7 s and stands in huge contrast to experiments of glassforming liquids
which typically last 102–103 s, i.e., around 9–10 orders of magnitude times as long.

3.2.5 Neighbor lists

In MD simulations, we need current information of the forces between particles at every
time step. To calculate all particle pair-interactions, cf. Eq. (3.2), a brute-force calculation
would demand O(N 2) operations. However, a nite cuto xc was introduced in the
pair potential Eq. (3.3) such that only spatially close particles interact in a non-trivial
way. This drastically reduces the number of necessary calculations to O(N), since each
particle only interacts with a small number of neighboring particles. To actually reduce
the number of performed calculations to O(N) in practice, we use the following data
structures of neighbor and cell lists [76]. The idea behind Verlet lists is to keep track of a
list of neighbors for each particle which can be iterated through eciently to calculate
the necessary forces. A tolerance width allows some particle motion without requiring
updates to the lists. The updates to the lists are performed very eciently by sorting the
particles into cells rst and iterating over adjacent cells after.

Denition and parameters. In order to identify particle neighbors, Verlet neighbor
lists introduce a Verlet distance rV = rc + dV. Here rc = xc max{σij | i < j} is the
maximum interaction distance (respecting the size-polydispersity and nonadditivity) and
dV = 01 is a Verlet shell width. At the start of the simulation, all particle pairs are
identied which have a distance smaller than rV. The identied particle-pair indices are
stored in the form of full lists and half lists. Each particle owns a half and a full list: A
full list of a particle i contains all other particles j within a distance rV. Similarly, as the
denotation suggests, the half list of particle i contains particle j if and only if i is not in
the list of j.

How to use Verlet lists. During the MD simulation, to calculate the forces at a
given time step, we iterate over all half lists. Thereby we uniquely nd all particle pairs
that might interact in a non-trivial way. This reduces the computational complexity to
O(N), since each particle only has a small number of neighbors within its half list. The
average number of these neighbors can be estimated via the particle density. In some
simulations we apply swap Monte Carlo. When proposing a particle exchange, we need
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to calculate an energy dierence in the Metropolis criterion, see Sec. 3.3 below. Here we
need to iterate over the full lists of both involved particles.

When to update Verlet lists. The trick behind the use of Verlet lists is that they
do not need to be updated at every time step due to the tolerance width dV. Updates
of neighbor lists are necessary as soon as any two particles have moved a total distance
larger than the Verlet shell width dV, in respect to their pinned positions belonging the
last update. This is the moment where neighbor lists are no more current as those two
particles could eventually interact without our lists noticing.

How to update Verlet lists: Cell structures. The initial construction as well as
the updates of the Verlet neighbor lists can be carried out eciently using cell structures.
This avoids a brute-force calculation of a total of O(N 2) distances between all particle
pairs. First we divide the simulation box into cells of width≥ rV . Then particles are sorted
into these cells (implemented as lists or arrays containing particle indices) with O(N)
operations. To construct the neighbor lists, we need information on the local geometry of
these cells: For each cell we use a xed list of neighboring cells: In three dimensions each
cell has 8 adjacent cells when periodic boundary conditions are accounted for. Then we
iterate in a unique way over the cells and their adjacent cells. Here one has to be careful
that the iteration does count adjacent cell pairs exactly one time. This iteration is used
to check the distance between all particles in the involved cells to ll the full and half lists
appropriately with indices of particle pairs that have a distance smaller than rV. This
procedure only requires O(N) operations: While the number of cells increases as ∼ N at
constant density and constant cell width, the number of involved particles for a given cell
index is of O(1).

Eciency for glassforming liquids. Verlet lists are especially ecient for glass-
forming liquids, where neighbors of particles may remain unchanged for many time
steps during MD: In particular at low temperatures, due to the cage eect, congurations
do hardly change over huge timescales. Here updates of Verlet lists are infrequent.

3.2.6 Simulation details

The simulations were implemented in the computer language C++. Generated data were
processed with Python scripts. In all our analyses, the temperature T is the control
parameter, measured in units of u0kB, where u0 is the amplitude in the pair potential
Eq. (3.3) and kB is the Boltzmann constant. The density is xed to NV = 1. Here N

is the number of particles and V the volume of the simulation box. The unit of time is
given by t0 = σ̄


mu0, where σ̄, the expectation value of the diameters, is the unit of

length. We numerically integrate Newton’s equations of motion using the velocity form of
the Verlet algorithm, see Secs. 3.2.1 and 3.2.2. A small time step ∆t = 001 is necessary
as discussed in Sec. 3.2.3.

Hybrid MD-SMC scheme. When pure MD dynamics are used via the Verlet
algorithm, the simulated ensemble is the NV E (microcanonical) one, since the number of
particles N , the volume V , and the total energy H = E are conserved. To combat the slow
MD dynamics intrinsic to glassforming liquids, we also use a hybrid scheme [26] where MD
is augmented with swap Monte Carlo (SMC). In hybrid MD-SMC, see Fig. 3.4, molecular
dynamics is paused every tMD simulation time to insert N × s consecutive elementary
particle-swap trials. An elementary swap attempt is performed by randomly choosing a
particle pair, proposing a swap between them, and eventually accepting the trial based
on the Metropolis criterion. A number of N swap trials constitute one sweep, so that the
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Figure 3.4: Schematic illustration of the hybrid MD-SMC scheme. Adapted from Ref. [26].

number of sweeps s denes a swap density in a system-size-independent way. The swap
algorithm and its variants are dened and discussed in the next Sec. 3.3. Hybrid MD-SMC
drastically accelerates structural relaxation. Thereby samples can be fully equilibrated at
very low temperatures, far below the glass transition of pure MD (see below).

Equilibration protocol. We use the fast hybrid MD-SMC dynamics to equilibrate
samples of our glassformer model at dierent temperatures. The protocol is described in
detail in Ref. [57], here we want to briey sketch it: For any given number N of particles
(which sets the system size), we prepare 60 independent samples, each at many dierent
temperatures T . A given sample is initialized by choosing the diameters as described
in Sec. 3.1.4. Particles are placed on a periodic grid; this crystal is melted at a very
high initial temperature using the Lowe-Andersen thermostat [87]. Here any memory of
the liquid on the initial structure is lost. We rapidly attain (quench to) the target
temperature T by setting the temperature parameters in the Lowe-Andersen thermostat
and in the Metropolis criterion of the swap Monte Carlo algorithm equal to T . We allow
structural relaxation at T during a long simulation run of length tmax ∼ 105. The nal
samples that we obtain with the protocol above are the starting congurations of our
productions runs used for all our analyses.

Glass-transition temperatures. We identify T SMC
g ≈ 006 as the (numerical) glass-

transition temperature for hybrid MD-SMC dynamics via a pronounced drop in the spe-
cic heat [60]. Thus, for T  T SMC

g our samples are not fully equilibrated; in this case
they are glasses and suer from aging. For reference, the glass-transition temperature for
pure MD dynamics is TNV E

g ≈ 011 [60].

3.3 Swap Monte Carlo (SMC)

In Secs. 3.2.3 and 3.2.4, we saw that molecular-dynamics simulations are limited to small
simulation times tmax ∼ 10−7 s, which is the result of (i) a tiny time step ∆t ∼ 10−14 s,
necessary to resolve a small microscopic timescale, and (ii) a limited number of nmax ∼ 107

time steps due to limited computational power. In contrast, experiments on glassforming
liquids last for 102–103 s; here a slowdown of glassy dynamics can be observed spanning
a huge time window of up to 15 orders of magnitude, see the viscosity–temperature plot
in Fig. 2.1 again.

How can we overcome this accessibility gap between simulations and experiments?
Improvement of computer hardware has only increased the time window by at most 3
orders of magnitude in the last decades [15].

A more promising approach is the development of alternative simulation techniques.
Of particular interest to us is the method of Markov-chain Monte Carlo (MC), a very
general strategy that we will introduce in Sec. 3.3.1. After that, in Sec. 3.3.2, we present
dierent MC techniques which have been used in an attempt to speed up simulations
of dense liquids. Here we highlight the exceptional standing of swap Monte Carlo (ab-
breviated as SMC or SWAP). In Sec. 3.3.3, an overview of the historic development of

29



SMC is presented. Then, in Sec. 3.3.4, we point out the surprising similarity of SMC to
physical vapor deposition, an experimental technique to produce a glass. In Sec. 3.3.5, we
discuss previous attempts to explain the astounding eciency of SMC, before we provide
a microscopic explanation based on our results. In the last Sec. 3.3.6, we propose a full
parallelization of hybrid SMC dynamics, unprecedented at this point in time.

3.3.1 What is (Markov-chain) Monte Carlo (MC)?

Markov-chain Monte Carlo (MC) is a class of algorithms that uses the construction of a
Markov chain in order to sample from a wanted target distribution. Below we present
the Metropolis-Hastings algorithm, a large subclass of (Markov-chain) MC that nds
widespread applications in physics. It is the mathematical basis of swap Monte Carlo
which we introduce in Sec. 3.3.2.

Metropolis-Hastings algorithm. The Metropolis-Hastings algorithm [88, 89] con-
structs a sequence of states, (x0, x1, x2,    ), in an iterative manner such that the states xn

for suciently large n follow a given target distribution W (x). Here a state (or congura-
tion) x is a point of the phase space Γ. In the case of our glassformer, Γ is 6N -dimensional,
including all positions and momenta of the N particles. In physics most commonly the
Boltzmann distribution on Γ is used for which W (x) ∝ e−H(x)/(kBT ).

Pseudocode for the Metropolis-Hastings algorithm is presented in Fig. 3.5. Assume
that a conguration xn−1 at a time step n − 1 is given. In order to obtain the next
conguration xn, rst a trial conguration x∗ is generated according to a proposal proba-

bility q(  |xn−1). Via the choice of q(  |  ) the specic MC variant is dened. For example,
standard local MC proposes a uniformly distributed displacement of a randomly picked
particle. Other MC examples will be given below in Sec. 3.3.2. The trial state x∗, how-
ever, is only accepted with a certain probability α(xn−1, x∗). In the case of acceptance,
xn := x∗. Otherwise the trial is rejected, xn := xn−1. The acceptance probability reads

α(x, y) = min


1,

W (y)q(x|y)

W (x)q(y|x)


 (3.16)

In case that the proposal probability q is symmetric, i.e., q(x|y) = q(y|x), and that W (x)
is the Boltzmann distribution, Eq. (3.16) becomes the famous Metropolis criterion

α(x, y) = min

1, e−[H(y)−H(x)]/(kBT )


 (3.17)

In this case of symmetric proposal probability and Boltzmann target distribution the
algorithm is known as the original one by Metropolis et al. [90].

1Choose initial conguration x 0
2for( n = 1, 2, ...){
3Propose trial conguration x ∗ [according to proposal probability q( . | x {n−1})]
4Calculate acceptance probability alpha( x {n−1}, x ∗)
5Draw uniform random number Z on [0,1]
6if( Z < alpha ) x n = x ∗ // accept
7else x n = x {n−1} // reject
8}

Figure 3.5: Pseudocode for the Metropolis-Hastings algorithm.
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Theoretical remarks. The mathematical treatment of a Markov chain living on a
nite or countably innite state space Γ is more simple than for an uncountably innite
one. Fortunately, for the swap Monte Carlo algorithm on a frozen conguration, the state
space Γ is nite as it consists of N ! < ∞ permutations of the initial conguration x0.

By construction, the Metropolis-Hastings algorithm satises the detailed balance con-
dition W (x)P (y|x) = W (y)P (x|y) where P (y|x) = α(x, y)q(y|x) is the transition proba-
bility from state x to state y. Detailed balance ensures that the target distribution W (x)
is a stationary distribution in the sense that


x W (x)P (y|x) = W (y).

Under appropriate mathematical conditions (aperiodicity, irreducibility, and existence

of a stationary distribution W ) an ergodic theorem holds [91]. It states that the probability
to nd the system in state x after n steps converges to the stationary distribution W (x)
in the limit n → ∞. Then, in particular, the choice of the starting conguration x0

does not matter, and we will reach any state x with the wanted probability W (x). In
our second manuscript [57], we explicitly formulate this ergodic theorem and prove for
the three variants of the SMC algorithm introduced below that the previously named
conditions of this theorem are satised.

3.3.2 MC candidates for fast simulations of dense liquids

In the past, dierent MC techniques were developed in an attempt to accelerate simula-
tions of dense liquids. Here we want to briey introduce and discuss these methods.

1. Replica-exchange molecular dynamics [92] simulates many noninteracting sys-
tems simultaneously. In each system the energy is controlled with a dierent pa-
rameter. During the simulation, attempts to exchange the parameters are made
based on the Metropolis criterion (3.17). While a speedup of simulations of a factor
10–100 was claimed based on an increased diusion constant [92], this criterion was
disputed in Ref. [93]. Here data of inherent structure energy clearly show that the
algorithm achieves no improvement in equilibration rates of the slow congurational
degrees of freedoms at all.

2. Cluster (pivot) Monte Carlo [94] rotates a copy of a conguration with respect
to a randomly chosen pivot point. Via an overlap criterion, groups of particles are
identied. These are ipped, resulting in non-local moves in the original congura-
tion. This algorithm was found to be less ecient than swap Monte Carlo [22] and
breaks down at high densities [95].

3. Event-chain Monte Carlo moves many particles at once in a billiard fashion.
The algorithm was invented for hard spheres [95] and then extended to soft poten-
tials [96, 97]. It was shown to equilibrate about ve times faster than the best
molecular-dynamics implementation. [95]

4. Swap Monte Carlo (SMC) deploys an exchange trial of two particles: Either their
coordinates or, equivalently [57], their diameters are exchanged. The swap attempts
augment the translational motion. The resulting hybrid dynamics is realized either
in an MC-SMC scheme [16, 17] or with an MD-SMCmethod [26, 98]. Note that SMC
cannot be applied to models of molecular glasses. For continuously polydisperse
systems, however, a massive reduction of relaxation times of more than 10 orders of
magnitude can be achieved at low temperatures [15]. In our second manuscript [57]
we analyze three dierent variants of SMC, which are illustrated in Fig. 3.6:
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Figure 3.6: Illustration of three dierent variants of SMC algorithms: standard (left), local
(mid), and size-bias SMC (right panel). Starting from a randomly picked blue particle,
all of its legitimate swap candidates are colored in green. A swap proposal between
one of these and the blue particle is indicated via a red arrow. In contrast, the grey
particles are not considered for swaps with the blue particle. While for standard SMC
all transpositions are allowed, for local SMC only neighbors of the blue sphere are valid
swap partners, quantied by the open blue circle. For size-bias SMC, only swaps of the
blue particle with particles of similar size are allowed. Reprinted from our Ref. [57].

• Standard SMC is the original variant [16, 17, 98]. A swap between two
randomly picked particles is proposed.

• Local SMC only swaps between spatially close particles, as quantied by a
maximum distance parameter ∆r. We have shown that the corresponding pro-
posal probability is symmetric [57], in contrast to prior belief when local SMC
was introduced [77]. For our polydisperse model for small ∆r, local SMC is less
ecient than standard SMC, but for ∆r  3 the eciency is quantitatively
similar [57]. The idea of local SMC is at the heart of our parallelization of
hybrid MD-SMC presented in Sec. 3.3.6.

• Size-bias SMC was originally introduced as swap-sector Monte Carlo [22].
This variant only proposes swaps between particles of similar size, identied
via a maximum size dierence ∆σ. Thereby it avoids the proposal of swaps
that are rejected with a high probability. For our model at low temperatures,
we nd an optimum value ∆σ ≈ 01 by minimizing the relaxation time of a
diameter correlation function [57].

We see that SMC is by far the most successful of these MC techniques for the simulation
of dense liquids. Before we discuss why swap dynamics is so ecient in Sec. 3.3.5, we give
an overview of the historic development of the SMC algorithm.

3.3.3 About the history of SMC

Here we want to give an overview of the historical development of the swap Monte Carlo
algorithm (SMC) and discuss the physical context in which it has been used. We highlight
studies that we personally deem important cornerstones. We will see that the SMC
algorithm has shaped our understanding of glasses at multiple points in history.

The mathematical foundation for SMC was laid in 1953 when Metropolis et al. [90]
proposed their groundbreaking algorithm, which we presented in Sec. 3.3.2. In their study
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they analyzed the two-dimensional hard-sphere gas.

First use cases of swap algorithms were not aimed at studying the glass transition.
Eventually the rst concept of a particle swap algorithm traces back to L. D. Fosdick [99]
in 1959. He applied SMC to an Ising lattice model, a binary alloy with a face-centered
cubic structure, to investigate order-disorder phenomena. The SMC moves were applied
locally between neighboring atoms and constituted the entire dynamics.

In 1978, N.-H. Tsai et al. [16] were probably the rst who applied SMC to a structural
(o-lattice) particle model. Their hybrid swap Monte Carlo scheme has remained nearly
unchanged when compared to state-of-the-art versions of SMC almost 50 years later.
N.-H. Tsai et al. studied microclusters in uid, solid and quenched amorphous states
with a binary Lennard-Jones model. In the framework of a hybrid MC-SMC scheme,
they attempted a non-local swap trial after every nine consecutive attempts of spatial
displacements. Swaps were performed between randomly chosen dierent-type particles.
The authors identied the huge potential of SMC for slow dynamics: [...] because of the
very low ’diusivity’ of the atoms at low temperatures (i.e., in the solid state), the rate
of convergence to compositional equilibrium will be very slow. In order to accelerate the
convergence of the Monte Carlo procedure, an additional ’exchange’ process was adopted
in addition to the trial displacement [...] In this way, the equilibrium compositional
distribution is rapidly attained.

In 1989, D. Gazzillo and G. Pastore [100] applied SMC to a binary mixture of hard
spheres with non-additive diameters to validate their analytical extension of the Carnahan-
Starling equation of state. In a similar use case and in the same year, W. G. T. Kra-
nendonk and D. Frenkel [98] used SMC to equilibrate a binary hard-sphere mixture with
additive diameters for their study of the solid-liquid coexistence. Eventually they were
the rst to make use of the term swapping and to embed SMC into an MD simulation,
using one permutation per 100 collisions.

In 1993, R. F. Cracknell et al. [101] simulated the adsorption of mixtures in slit pores
with graphite properties. They used Lennard-Jones models for methane and ethane at
super critical temperatures. A standard grand-canonical Monte Carlo, in which particles
are created and deleted, was compared with a swap algorithm that attempted identity
changes of single particles. Note the use of the term swap in an unconventional way
here. The authors evaluated the sampling quality of the swap and non-swap algorithms
by analyzing statistical uctuations of the mole fraction of the mixture. They found that
[...] while both algorithms lead to the same results, the algorithm incorporating particle
swaps is far less prone to statistical error than the algorithm without.

In 2001, D. Goulding et al. [102] studied a ternary hard-sphere mixture in cylindrically
conned geometries inspired by the physiologically crucial problem of selectivity of ion
channels through membranes. They applied SMC in a grand-canonical Monte Carlo
simulation in order to achieve optimal ergodic properties of the minority species in the
pores. They recognized the problem that swap of identity between solvent and solute
particles has a very low acceptance probability.

In the same year, T. S. Grigera and G. Parisi [17] were probably the rst to apply SMC
to glassforming liquids in bulk. The only change to the MC-SMC algorithm proposed by
N.-H. Tsai et al. [16] 23 years earlier is a probability parameter according to which a non-
local swap or a spatial displacement is attempted (rather than periodically alternating
between MC and SMC). Their model was a binary repulsive soft-sphere system. Due to a
large diameter ratio of 12, they found very low acceptance rates, around 001%, of SMC
trials. Hence they concluded that the model will need some modication to achieve a
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reasonable swap acceptance ratio. In their work [17], T. S. Grigera and G. Parisi observed
a peak in the heat capacity, which they associated with the existence of a thermodynamic
glass transition driven by an entropy crisis.

In 2004, Y. Brumer and D. R. Reichman [22] challenged the interpretation of the
results in Ref. [17]. They studied the same model and found that the peak in the heat
capacity is the result of an exotic crystallization phenomena and their results suggest
that previous numerical claims in favor of and a against a thermodynamic transition at a
nite [temperature] TK must be reevaluated.

Another model used in Ref. [22] was size-polydisperse with a uniform distribution.
Here the authors countered the problem of low acceptance probability via a minor mod-
ication of SMC, by swapping only between particles that dier in radius less than a
tunable parameter ∆σ. The authors call this method swap-sector Monte Carlo, which
we refer to as size-bias SMC. In the limit of large ∆σ, standard SMC is recovered. ∆σ
can be optimized for eciency; a large ∆σ yields a low acceptance ratio, and a small ∆σ
allows pairs of particles to be swapped back and forth repeatedly. [22]

In 2007, L. A. Fernandez et al. [77] also proposed a modication, the local SMC. Here
only spatially close particles are swapped, i.e., those that have a distance smaller than a
given parameter ∆r. In our second manuscript, we point out an error in the acceptance
probability proposed in Ref. [77]. For their binary model, L. A. Fernandez et al. nd
that their local SMC performs better than standard SMC. For our polydisperse system
in Ref. [57], SMC performs worse than other SMC variants. However, with a suciently
large ∆r, local SMC is as ecient as standard SMC. The idea behind local SMC is the
central ingredient to our proposed parallel implementation of SMC in Sec. 3.3.6.

In 2015, R. Gutiérrez et al. [23] used SMC in a glassformer to show an increase
of a static length scale of about 500%, unprecedented at this point in time. Here a
ternary system was used to avoid crystallization which was observed in the original binary
system [17, 22].

In 2017, the idea to construct a model that (i) avoids crystallization and (ii) allows
high acceptance rates for the application of SMC was pushed to an extreme. When the
glassforming ability increases from a binary to a ternary model, could it be improved even
more if the number of particle types is increased to four, ve or even higher? This trend
to stabilize the liquid by adding more components (in particular dierent atomic sizes)
is known from metallic glasses and referred to as a confusion principle [5]. Eventually
following this reasoning and to face the problem of low acceptance rates of previous
models, A. Ninarello et al. presented an optimized glassformer model with a continuous

size-polydispersity in a groundbreaking work [15]. Continuously distributed diameters
result in large acceptance rates, optimized with a size-bias variant as in Ref. [22]. A
central feature of the model to suppress ordering processes such as crystallization and
fragmentation, is a nonadditivity of the diameters. The model is presented in detail in
Sec. 3.1 and we use it in all our publications. It can be equilibrated at exceptionally
low temperatures: With SMC one achieves over 10 orders of magnitude gain in the
equilibration time scale [...], thus paving the way to computational studies of static and
thermodynamic properties under experimental conditions [15].

In 2019, L. Berthier et al. [25] showed that the performance of SMC decreases rapidly
on increasing dimension d = 2–8 but generically delays the glass transition when compared
to conventional dynamics. For a two-dimensional glassformer, L. Berthier et al. [103]
conservatively estimated a speedup of 42 orders of magnitude. Translated to experimental
values, the model can be equilibrated at temperatures with relaxation times as large as
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1018 times the age of the universe [103].

The swap dynamics have also been studied within theoretical frameworks. In 2017,
H. Ikeda et al. [18], in an attempt to clarify the physics underlying the acceleration by
SMC, studied the problem within the mean-eld replica liquid theory. Their glassformer
was a binary mixture of the Mari-Kurchan model. They nd that the predicted dynamic
transition shifts to lower temperatures when particle swaps are used.

In 2018 and the following year [20, 21], G. Szamel treated particle swaps in the frame-
work of a mode-coupling theory. Similar to Ikeda et al. [18], he also nds a shift of
the dynamic transition to lower temperature in his theory. Additionally, the localization
length at the transition point is found to increase with SMC.

In the same years, C. Brito et al. [24] and G. Kapteijns et al. [104] provided a new
description of SMC dynamics by treating particle diameters as additional degrees of free-
dom. For this purpose they augment the potential energy via a chemical potential. A
problem of this approach is that the functional form of the chemical potential, which
would result in a specic target distribution of the diameters, is not known a priori.

3.3.4 Experimental analogon: Physical vapor deposition

While the dynamics with swap Monte Carlo are articial and have no direct experimental
correspondence, an experimental technique called physical vapor deposition (PVD) shows
a surprising similarity to SMC. PVD is an alternative experimental route to produce a
glass, dierent from the conventional way of supercooling. In a vacuum chamber a thin
glass lm is produced on a cooled substrate by condensating gas molecules. It is used, for
example, in the production of organic light-emitting diodes. While SMC bypasses kinetic
barriers with nonphysical non-local particle transpositions, PVD avoids kinetic barriers
in a dierent manner.

In 2007, S. F. Swallen et al. discovered that PVD can be used to create glasses with
exceptional properties [105]: Physical vapor deposition can produce glassy materials
that have extraordinary energetic and kinetic stability and unusually high densities.
Kinetic glass stability can be dened by rapidly heating a glass above the glass-transition
temperature, then measuring the time it takes the glass to melt. The ratio of this time
divided by the equilibrium relaxation-time at the melting temperature is the stability
ratio [106]. Vapor-deposited glasses can be higher in density and modulus than any
glass that can be prepared by the more traditional route of cooling a liquid. Such glasses
are near the limits of what is possible for amorphous packing arrangements. [107].

M. D. Ediger [107] pointed out the similarity between PVD experiments and SMC
simulations. Both methods circumvent high energy barriers, but in dierent ways: PVD,
on the one hand, bypasses slow dynamics only during glass formation. The physical
mechanism of how PVD creates ultra-stable glasses has been identied as enhanced
mobility within a few nanometers of the glass surface during deposition. [105] SMC, on
the other hand, overcomes slow dynamics via non-local particle swaps. The underlying
microscopic origin of the accelerated structural relaxation with SMC is explained in our
second manuscript [57] and in Sec. 3.3.5 below. In simulations using SMC, C. J. Fullerton
and L. Berthier [106] showed that kinetic glass stabilities around 105 can be achieved,
similar to those with PVD in experiments.

The PVD method has inspired algorithms that mimic the deposition process, but these
are not a promising method for equilibration speedup [74].
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3.3.5 Why is SMC dynamics so fast?

Why is the particle dynamics accelerated so drastically when swaps are deployed? This
is the central research question of our second manuscript [57]. In dynamic theories of
the glass transition, SMC is shown to delay the transition point to lower temperatures
or, equivalently, higher densities [18, 20, 21]. These theories, however, do not provide a
microscopic picture on how SMC accelerates the dynamics. In recent studies the following
arguments were made to explain the speedup by SMC:

• [Despite small acceptance rates,] a small fraction of particles can escape the cage
eect, with dramatic consequences for the dynamics. [17]

• Even if such moves are rarely accepted, they greatly accelerate sampling by pro-
viding routes for relaxation (e.g., the hopping of a particle out of the cage composed
of its neighbors) that would take many local Monte Carlo moves to achieve. [22]

• [Particle swaps] greatly accelerate equilibration by providing a way for the particles
to break away from the cages in which they would be otherwise stuck. [23]

• [Particle-size uctuations] help uncage particles in SWAP dynamics. [25]

• SWAP can still break cages [in high dimension d]. [25]

• In Ref. [24], swaps are taken into account as additional degrees of freedom by an
eective potential. The Hessian is diagonalized to extract the density of states.
Our analysis unravels the soft elastic modes responsible for the speed-up induced
by swap [...] This analysis thus predicts an entire temperature range in which the
non-SWAP dynamics is slowed down by activation, whereas with SWAP dynamics
the system can ow along unstable modes [...] In real space, the unstable modes
that render activation useless involve both translational degrees of freedom as well
as swelling and shrinking of the particles [...] The system can rearrange locally
without jumping over barriers if there are enough unstable modes.

• We conclude that it is the ecient dynamics in diameter space that drives the
structural relaxation in position space and, therefore, the ecient thermalization of
the system. [15]

• A naive physical explanation would be that a caged particle with a large diameter
could start diusing by shrinking its radius, thus being able to squeeze and escape
through a small channel. We now demonstrate that the physics is actually more
complicated and more collective than this naive image [...] [15] The authors analyze
the dynamics of diameters and positions and nd that sudden jumps in diameter
space occur at similar times as the sudden jumps of the particle in real space,
which indicates that diameter dynamics can trigger diusion. However, we can
also detect jumps occurring in real space without clear counterparts in diameter
space, and vice versa. These observations suggest that changing the diameter of a
single particle is not necessarily enough to trigger a rearrangement, and they also
suggest that changes in the neighborhood of one particle may be enough to trigger
a displacement. Overall, the physical picture is that relaxation in these supercooled
states is a collective process, and the ecient thermalization with swap cannot be
explained on the basis of a simple single-particle argument. [15]
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• Larger in-cage uctuations suggest a possible ’softening’ of local cages, which seems
to correlate well with an acceleration of the dynamics. [15]

• We suggest that the eciency of SWAP stems from a postponed onset of glassy
dynamics. [19]

Many of these explanations are tautological or imprecise. What does it mean that a
particle breaks away from its cage or becomes uncaged? The simple picture that a
particle hops out of its cage via swaps is not satisfying, since the swapped particle is
actually replaced by another particle which then occupies the caged position itself, and
it jumps to a position where another particle is caged, too. Therefore, it is not clear that
the cage is aected at all after a swap move, and this simple explanation cannot explain
the speedup of the dynamics. [15] In summary, we see that a clear understanding of the
involved microscopic mechanism underlying the drastic speedup is missing.

The microscopic mechanism behind the drastic acceleration via SMC. For
the accelerated relaxation of particle dynamics induced by SMC at low temperature, we
propose the following microscopic mechanism in our second work [57]. Roughly speaking,
the accelerated relaxation can be described as successive re-arrangements of cages or,
more explicitly, as shifts in the mean positions of the particles caused by changes in
their surrounding cage geometry. Below we precisely explain this mechanism and back
it up with strong numerical evidence. Our approach is based on the idea to disentangle
diameter swaps from translational motion.

Consider an equilibrated particle conguration at a low temperature, e.g., for our
model, T = 007. Here, for conventional MD, particles rattle inside their cage over
long timescales, t  105. This rattling motion can be observed in a pronounced plateau
in the mean-squared displacement (MSD). Collisions with neighbors decorrelate particle
velocities on a short microscopic timescale tmic ≈ 02, as quantied by the decay of
a velocity autocorrelation function [57]. Now consider a hybrid MD-SMC scheme, see
Fig. 3.4 again. At periodic intervals of time length tMD we pause MD and apply s × N

diameter-swap trials on the currently frozen conguration, keeping the positions xed. A
sucient number of swap trials (s  10) thermalizes the diameter conguration in the

Figure 3.7: a) Mean-squared displacement (MSD) as a function of time t at a low tem-
perature T = 007. Colored numbers denote dierent values of tMD, the timespan of MD
dynamics between subsequent diameter thermalizations with SMC. Blue dashed lines act
as a reference. b) Time derivative of the MSD as a function of t−tMD (except for tMD = ∞,
black dashed line, the x-axis depicts t instead). Blue vertical curve indicates the micro-
scopic timescale tmic ≈ 02. N = 8000, s = 103. From Ref. [57].
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Figure 3.8: Schematic illustration of our proposed microscopic mechanism behind the
drastic acceleration of the dynamics with SMC at low temperature. a) Before SMC, we
show each particle at its time-averaged position around which it vibrates during MD. b)
After SMC, particles are shown at exactly the same positions, but with dierent diameters.
As a consequence of the altered cage geometry, each particle will vibrate around a slightly
dierent mean position during MD. These shifts of mean positions are indicated by arrows.

sense that the diameter autocorrelation function decays onto a well-dened plateau [57].
When we choose tMD ≫ tmic, we decouple the SMC part from the MD part, as can
be seen in Fig. 3.7a. Here the MSD as a function of time t is shown. After every full
thermalization of the diameters with SMC, a jump in the MSD occurs during the
subsequent MD. This leads to a stepwise increase by alternating between MD and SMC.
When we analyze the jumps in Fig. 3.7b, we see that they occur on the microscopic
timescale tmic.

We interpret these results as follows, as illustratively explained in Fig. 3.8. Diameter
exchanges via SMC change the cage geometry around each particle. As a consequence,
each particle rattles inside a new cage, accompanied by a new average position (averaged
over a time larger than the microscopic timescale but much smaller than the structural
relaxation time). Alternating between SMC and MD in the hybrid scheme then allows
the particles to move via subsequent shifts of their mean positions.

Our proposed mechanism is consistent with all empirical results on hybrid SMC dy-
namics. Most importantly, it is able to explain the drastic speedup of the dynamics:
While SMC is applied instantaneously (as it is not taken into account for the MD-time
measurement), the relaxation to new average positions occurs on a short microscopic

timescale.

3.3.6 Parallelization of MD-SMC

Swap Monte Carlo in its conventional hybrid MC-SMC form [15–17] is used as a sequential
algorithm, i.e., as a simulation that is executed on a single CPU. It is of widespread interest
to nd a parallelization of SMC, i.e., a formulation of the algorithm that distributes the
workload among multiple CPUs to massively accelerate the simulation.

Recent attempts to parallelize MD-SMC. For a hybrid MD-SMC scheme the
sole MD part has been parallelized before, while the SMC part was executed in serial [26].
This partial parallelization performs poorly: At a wanted swap frequency fSMC ≈ 20–
100 (where hybrid MD-SMC in serial is computationally most ecient [26, 57]) parallel
simulations are actually slower than a run on a single CPU [26]. Clearly, SMC is the
computational bottleneck here. This is because inter-processor communications dominate
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the CPU time in this regime [26].

Very recently a fast parallel MD package (hdMD) for glassformers in arbitrary dimen-
sion was proposed [27]. While the routine incorporates SMC, the crucial issue is not xed
because the actual swapping is executed serially by the master thread.

To our knowledge a full parallelization of (MD/MC-)SMC has not been proposed
before. Below we will discuss why it is dicult to parallelize SMC, identify a solution,
and nally propose a fully parallelized algorithm.

We want to use a hybrid MD-SMC scheme [26] as a basis. Here SMC trials are inserted
periodically into conventional molecular dynamics (MD) simulation. The MD part can be
readily and eciently parallelized when short-ranged particle interactions are used [108].
The remaining task is to parallelize the SMC algorithm on a frozen conguration, the
setup that was comprehensively studied by us in Ref. [57].

Apparent problem: Serial nature of MC. A parallelization of SMC is inherently
dicult due to the sequential nature of Metropolis Monte-Carlo simulations: In general,
every trial move depends on the previous one, because any move can change the potential
energy and thus the acceptance probability in the Metropolis criterion for the next step.
How can we resolve this issue?

Spatial partition of coordinate space. A common approach to circumvent the
serial nature of Monte Carlo simulations is the decomposition of the simulation box into a
four-color checkerboard [109]. Here particles in dierent boxes belonging to the same color
can be updated simultaneously (by dierent processes). Moves across cell boundaries must
be rejected to keep parallel processes independent. A new cell grid is rebuilt periodically
to ensure ergodicity.

A variation of this idea was formulated for an event-chain Monte Carlo. Here the simu-
lation box is decomposed into horizontal stripes separated by frozen isolation layers [110].
The thickness of the latter must be greater than two particle radii.

We want to adopt the latter strategy [110] to decompose the simulation box into
processor-specic sub-boxes separated by small frozen margins. Each processor owns
one sub-box. For standard SMC the apparent problem is that swap trials are global in
nature, occuring across the whole simulation box. We solve this problem by swapping
only between particles belonging to the same sub-box. Our idea is inspired by the local

SMC scheme [77].

A sketch of our partition for four processors is shown in Fig. 3.9. Each red sub-
box is separated by gray frozen margins from an inner blue box. Processor r is only
allowed to swap the particles within its own inner blue box r. Particles within gray
margins are excluded from swap attempts, i.e., frozen. The margins exploit short-ranged
particle interactions: Their width w is chosen such that the swaps inside a box do not
aect the potential energy between particle pairs belonging to other boxes. This requires
w to be larger than every pair-interaction distance, i.e., 2w ≥ σij rc for all particle pairs
(i, j). Here rc is the cuto distance of the interaction potential. Maximum computational
eciency is obtained by minimizing the size of the margins, w = 05max{σij} rc. With
this construction particle swaps can be processed in parallel: When every processor r

attempts nr local swap trials (and the resulting particle permutations are appropriately
merged), the same permutation is obtained as if one processor would perform all thoseR−1

r=0 nr swap attempts sequentially.

What about the margins? Apparently there is a problem that particles inside the
margins are not swapped. A simple solution is to periodically and randomly shift the

partition of the simulation box [109, 110].
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Figure 3.9: Schematic illustration of the spatial partition of the coordinate space in-
volved in our parallelized implementation of the hybrid MD-SMC algorithm. The two-
dimensional simulation box is partitioned into R = 4 subboxes (red). In each of these an
inner subbox (blue) is created with a margin of width w to the outer one. Each processor
r is uniquely assigned to one red box and is only allowed to swap particles that are inside
its inner blue box.

The parallelized MD-SMC algorithm. Pseudocode for our parallelized version
of the MD-SMC algorithm is shown in Fig. 3.10 and explained in more detail below. An
implementation and evaluation are work in progress and have yet to be published.

At the initialization stage a particle conguration is loaded or constructed. Then the
simulation box is divided into R sub-boxes, see Fig. 3.9 again, where R is the number
of processors. Each processor r = 0,    , R − 1 is uniquely assigned to one of these
boxes and its constituent particles. Appropriate data structures such as Verlet lists are
constructed [108]. Then we enter the loop for the hybrid MD-SMC dynamics. Here the
numerical time integration and the particle swaps are performed alternately as follows.
First the MD block of timespan tMD is performed in parallel [108]. Each processor r only
advances the coordinates of the particles it owns. After every time step ∆t, Verlet lists are
updated if necessary. Communication between adjacent sub-boxes is necessary to keep the
information about the particle coordinates current [108]. After the parallel MD part, the
parallel SMC part on the frozen conguration is performed. Here processor r determines
all particles in its box that have a distance larger than w to the boundaries (i.e., the blue
particles of box r in Fig. 3.9). Then processor r sequentially attempts a number of nswap

elementary swaps between the selected particles. After the SMC block we shift the whole
partition of the simulation box randomly by a vector Z. This ensures that, during the
next SMC block, gray margins that were previously omitted can be aected by swaps.
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Figure 3.10: Pseudocode for a parallelized version of the MD-SMC algorithm.

1// Initialization (r = label of processor and corresponding box)
2p = initialize particles( .. )
3create partition of coordinate space( r, p )
4t = 0
5
6while( t < t max ){
7
8// parallel MD
9for( i=0; i<= t MD/dt; i++ ){
10t += dt
11perform parallelized MD step( r, p, .. )
12communicate new information between processors( p, .. )
13}
14
15// parallel SMC
16for( n=0; n<=n swap; n++ ){
17perform local SMC( r, p, .. )
18}
19
20Z = global random shift( .. ) // 3d random vector
21shift partition of coordinate space( p, Z, .. ) // demands communication
22}

Optimal parameter choices. Optimal parameter choices for the parallel algorithm
can be understood in consideration of Ref. [57], where we analyzed the microscopic mech-
anism of the drastically enhanced MD-SMC dynamics.

Concerning the MD block, a timespan tMD  tmic should be chosen. Here tmic ≈ 02 is
the microscopic relaxation time of our glassformer model. For larger tMD the structural
relaxation with MD-SMC can lose eciency [57].

For the SMC block, a number of swaps nswap should be chosen such that the Nblue

diameters in the blue inner box are thermalized every microscopic time tmic [57]. For-
mally this means for the density of swaps that nswap(NbluetMD) = sreltmic. Here srel
is the time to relax the diameter correlation function (of the bulk system). For our
glassformer model srel ≈ 10.

In Ref. [57] we showed that the local SMC variant is as ecient as the standard SMC
(for our model) when for the distance parameter it is ∆r  3. From this we conclude
that, concerning the partition of the simulation box, the inner blue box should have a side
length greater than 3. To increase the computational eciency even more, the presented
SMC should be complemented with the size-bias variant that only exchanges particles
with a similar diameter.

The choice of the random shift Z of the partition can be optimized in the following
way: On the one hand, the elements Zk must be suciently small so that communication
is only necessary between adjacent sub-boxes. The smaller Zk is, the less communication
is necessary. On the other hand, too small values might cost sampling eciency, as
we want to cover previous margins with a new partition as early as possible. Due to
this competition we propose Zk to be of the order of the width w of the margins, i.e.,
Zk ∼ w ∼ rc. We do not expect the functional form of the distribution of Zk to matter too
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much, but it must have a nite range. In practice a uniform distribution on the interval
[−w, w] should be ne.

Expectations. In consideration of our second manuscript [57], we expect our paral-
lelized version of hybrid MD-SMC to be able to equilibrate polydisperse glassformers to
unprecedentedly low temperatures. Similarly, it should allow equilibration of unprecedent-
edly large systems. This could turn out to be a crucial contribution to the glass-physics
community. An ecient parallel algorithm could serve in a vast number of numerical
applications. It could help to approach the fundamental question of the glass transition,
whether a thermodynamic phase transition lies below the kinetic glass transition.

Remarks regarding a parallelized event-chain Monte Carlo. In a study by
T. A. Kampmann et al. [111] an event-chain Monte Carlo simulation [95] (moving many
particles at once in a billiard fashion) together with swap moves has been parallelized.
Here a dense polymer melt of exible chains of mono-disperse hard spheres is studied.
A parallelization is achieved via a spatial decomposition of the simulation box. Swaps
are attempted between colliding spheres of dierent polymers during the event-chain
construction. The authors believe that [...] there is no straightforward analogue of
the EC [event-chain] swap move in a standard MC simulation with local moves. They
argue that simply proposing the nearest neighbor for swapping would violate detailed
balance. Here it seems that they make the same mistake with regard to detailed balance
as the authors in Ref. [77], as we explained in Ref. [57]: When neighboring particle pairs
are chosen randomly and swaps are proposed between them, detailed balance is indeed
preserved as the proposal probability is symmetric.
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Chapter 4

Publications

4.1 Preamble

Arguably the most prominent feature of glassforming liquids is the drastic increase in
viscosity upon cooling, which results in the kinetic glass transition. Within the Adam-
Gibbs-Dimarzio and RFOT scenarios (Sec. 2.6), the viscosity increase is associated to
a thermodynamic phase transition to an ideal glass at a (Kauzmann) temperature Ts

below the glass-transition temperature. These theories are built upon the idea of an
increasing static length scale. However, in experiments and simulations the putative
transition at Ts cannot be accessed before the kinetic glass transition intervenes. So far
only moderate growths of static lengths have been conrmed quantitatively (see Sec. 2.6).

Recently there has been new incentive to study these questions because the size-
polydisperse model that we use can be equilibrated to exceptionally low temperatures
with swap Monte Carlo. We have already characterized this model and algorithm in
Chap. 3 and provide a more profound analysis in the rst two manuscripts listed below.

Even with the ecient swap algorithm the hypothetical temperature Ts cannot be
accessed. An idea to circumvent this problem is to introduce an external eld in order
to raise the transition at Ts to higher accessible temperatures T . For example, in replica
coupling the liquid is linearly coupled to a reference conguration by adding a term
∝ −ϵ Q to the hamiltonian. Here ϵ ≥ 0 is the eld strength and Q the overlap between
the congurations. While for small ϵ the liquid can explore the phase space in a rather
undisturbed way ( Q ∼ 0), for large ϵ the liquid is kept close to the reference conguration
( Q ∼ 1). At an intermediate value of ϵ, ϵ∗(T ), overlap uctuations are maximal. Along
this line in the ϵ−T diagram, the overlap distribution qualitatively changes its shape: At
high temperatures it is unimodal, but it becomes broader with decreasing temperature and
becomes bimodal at low temperatures. Bimodality is reminiscent of a phase transition
occurring between a delocalized uid and a localized glass phase. With our third
manuscript we want to clarify whether this phenomenology is the result of (i) a true
phase transition as widely believed in the scientic community, (ii) a nite-time (or non-
equilibrium) eect caused by slow dynamics or (iii) a nite-size eect caused by the growth
of a static length scale exceeding the size of the simulation box.

As in replica coupling, the yielding behavior of glassforming liquids under shear has
been associated to a phase transition in the past. In our fourth manuscript we discuss
under which conditions brittle yielding occurs in a Couette-ow geometry, as characterized
by sharp stress drops and shear bands. Brittle yielding can only be found below the mode-
coupling temperature because only such states are solid-like, albeit for a nite lifetime.
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Choice of diameters in a polydisperse model glassformer: Deterministic or stochastic?

Niklas Küchler and Jürgen Horbach
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1,

40225 Düsseldorf, Germany

(Received 29 September 2022; accepted 15 November 2022; published 2 December 2022)

In particle-based computer simulations of polydisperse glassforming systems, the particle diameters σ =

σ1, . . . , σN of a system with N particles are chosen with the intention to approximate a desired distribution
density f with the corresponding histogram. One method to accomplish this is to draw each diameter randomly
and independently from the density f . We refer to this stochastic scheme as model S . Alternatively, one can
apply a deterministic method, assigning an appropriate set of N values to the diameters. We refer to this
method as model D. We show that, for sample-to-sample fluctuations, especially for the glassy dynamics at
low temperatures, it matters whether one chooses model S or model D. Using molecular dynamics computer
simulations, we investigate a three-dimensional polydisperse nonadditive soft-sphere system with f (s) ∼ s−3.
The swap Monte Carlo method is employed to obtain equilibrated samples at very low temperatures. We show
that for model S the sample-to-sample fluctuations due to the quenched disorder imposed by the diameters σ

can be explained by an effective packing fraction. Dynamic susceptibilities in model S can be split into two
terms: one that is of thermal nature and can be identified with the susceptibility of model D, and another one
originating from the disorder in σ . At low temperatures the latter contribution is the dominating term in the
dynamic susceptibility. Our study clarifies the pros and cons of the use of models S and D in practice.

DOI: 10.1103/PhysRevE.106.064103

I. INTRODUCTION

Many of the colloidal systems that have been used to study
the glass transition are polydisperse [1]. While monodisperse
colloidal fluids crystallize very easily, with the introduction of
a size polydispersity they become good glassformers [2–9].
As a matter of fact, the degree of polydispersity δ, defined as
the standard deviation of the particle diameter divided by the
mean particle diameter, may strongly affect glassy dynamics.
For example, for three-dimensional hard-sphere colloids, it
has been shown that, for moderate polydispersity δ < 10%,
a dynamic freezing is typically seen for a packing fraction
φg ≈ 0.58, while for δ  10%, the dynamics are more hetero-
geneous with the large particles undergoing a glass transition
at φg while the small particles are still mobile (note that this re-
sult is dependent on the distribution of particle diameters) [8].
An interesting finding regarding the effect of polydispersity on
the dynamics has been reported in a simulation study of a two-
dimensional Lennard-Jones model [10]. Here, Klochko et al.

show that polydispersity is associated with composition fluc-
tuations that, even well above the glass-transition temperature,
lead to a two-step relaxation of the dynamic structure factor at
low wave numbers and a long-time tail in the time-dependent
heat capacity. These examples demonstrate that polydispersity
and the specific distribution of particle diameters may strongly
affect the static and dynamic properties of glassforming
fluids.

In a particle-based computer simulation, one can assign to
each particle i a “diameter” σi. Note that, in the following, the
diameter of a particle does not refer to the geometric diameter
of a hard sphere, but in a more general sense it is a parameter

with the dimension of a length that appears in the interac-
tion potential between soft spheres (see below). To realize a
polydisperse system in the simulation of an N-particle system,
one selects the N particle diameters to approximate a desired
distribution density f (σ ) with the corresponding histogram.
Here, two approaches have been used in previous simulation
studies. In a stochastic method, referred to as model S in the
following, one uses random numbers to independently draw
each diameter σi from the distribution f . As a consequence,
one obtains a “configuration” of particle diameters that differs
from sample to sample. Alternatively, to avoid this disorder,
one can choose the N diameters in a deterministic manner, i.e.,
one defines a map ( f , N ) → (σ1, . . . , σN ), which uniquely
determines N diameter values. In the following, we refer to
this approach as model D. The diameters in model D should
be selected such that in the limit N → ∞ the histogram of
diameters converges to f as being the case for model S .
Unlike model S , each sample of size N of model D has exactly
the same realization of particle diameters.

Recent simulation studies on polydisperse glassformers
have either used model S (see, e.g., Refs. [8,10–17]) or model
D schemes (see, e.g., Refs. [18–20]). However, a systematic
study is lacking where both approaches are compared. This
is especially important when one considers states of glass-
forming liquids at very low temperatures (or high packing
fractions) where dynamical heterogeneities are a dominant
feature of structural relaxation. For polydisperse systems,
such deeply supercooled liquid states have only recently be-
come accessible in computer simulations, using the swap
Monte Carlo technique [21,22]. For these states, the additional
sample-to-sample fluctuations in model S are expected to
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45



NIKLAS KÜCHLER AND JÜRGEN HORBACH PHYSICAL REVIEW E 106, 064103 (2022)

strongly affect static and dynamic fluctuations in the system,
as quantified by appropriate susceptibilities.

We emphasize that sample-to-sample fluctuations should
not be confused with ensemble fluctuations [23]. To un-
derstand the conceptual difference, note that the quenched
disorder in model S is imposed via the stochastic selection
of the diameters and is therefore fixed during the simula-
tion of a given sample. On the contrary, the choice of the
physical ensemble determines the dynamics of a sample by
either constraining thermodynamic variables, such as particle
number, volume, etc., or allowing fluctuations of these vari-
ables. However, below we will see that sample-to-sample fluc-
tuations due to the quenched disorder can cause similar effects
as ensemble fluctuations, as reported, e.g., in Refs. [24,25].

Note that the models S and D are only different with
respect to sample-to-sample fluctuations. These fluctuations
are in the focus of this article. However, as we will see below,
both models have the same Hamilton function and the his-
tograms of the diameters of both models converge to the same
target distribution f . In this sense, both models are consistent.
Thus, one expects to measure the same intrinsic observables,
independently of the model, for sufficiently large system
size N .

In this work, we compare a model S to a model D approach
for a polydisperse glassformer, using molecular dynamics
(MD) computer simulations in combination with the swap
Monte Carlo (SWAP) technique. This hybrid scheme allows
us to equilibrate samples at very low temperatures far below
the critical temperature of mode coupling theory. We analyze
static and dynamic susceptibilities and their dependence on
temperature T and system size N , keeping the number density
constant. We show that in the thermodynamic limit, N → ∞,
the sample-to-sample fluctuations of model S lead to a finite

static disorder susceptibility of extensive observables. This
result is numerically shown for the potential energy. More-
over, we analyze fluctuations of a time-dependent overlap
correlation function Q(t ) via a dynamic susceptibility χ (t ). At
low temperatures, χ in model S is strongly enhanced when
compared with the one in model D. This finding indicates
that it is crucial to carefully analyze the disorder due to size
polydispersity when one uses a model S approach. Below, in
the conclusions, we discuss the pros and cons of models S

and D with respect to their use in simulations of polydisperse
systems.

In Sec. II, we introduce the model for a polydisperse soft-
sphere system and define the models S and D. The main
details of the simulations are given in Sec. III. Then, Sec. IV
is devoted to the analysis of static fluctuations of the poten-
tial energy. Here, we discuss in detail thermal fluctuations in
terms of the specific heat CV (T ) and static sample-to-sample
fluctuations by a disorder susceptibility. In Sec. V, dynamic
fluctuations of the overlap function Q(t ) are investigated. Fi-
nally, in Sec. VI, we summarize and draw conclusions.

II. POLYDISPERSE MODEL SYSTEM

AND CHOICE OF DIAMETERS

Particle interactions. As a model glassformer, we consider
a polydisperse nonadditive soft-sphere system of N parti-
cles in three dimensions. This model has been proposed by

Ninarello et al. [14]. The particles are placed in a cubic box of
volume V = L3, where L is the linear dimension of the box.
Periodic boundary conditions are imposed in the three spatial
directions. The particles have identical masses m and their
positions and velocities are denoted by ri and vi, i = 1, . . . , N ,
respectively. The time evolution of the system is given by
Hamilton’s equations of motion with the Hamiltonian H =

K + U . Here, K =
N

i=1 p2
i /m is the total kinetic energy and

pi = mvi is the momentum of particle i. Interactions between
the particles are pairwise such that the total potential energy
U can be written as

U =

N−1∑

i=1

N∑

j>i

u(ri j/σi j ). (1)

Here the argument of the interaction potential u is x = ri j/σi j ,
where ri j = |ri − r j | denotes the absolute value of the dis-
tance vector between particles i and j. The parameter σi j is
related to the “diameters” σi and σ j , respectively, as specified
below. The pair potential u is given by

u(x) = u0(x−12 + c0 + c2x2 + c4x4) (xc − x), (2)

where the Heaviside step function  introduces a dimension-
less cutoff xc = 1.25. The unit of energy is defined by u0.
The constants c0 = −28/x12

c , c2 = 48/x14
c , and c4 = −21/x16

c

ensure continuity of u at xc up to the second derivative.
We consider a polydisperse system, i.e., each particle is al-

lowed to have a different diameter σi. In the following, lengths
are given in units of the mean diameter σ̄ , to be specified
below. A nonadditivity of the particle diameters is imposed
in the sense that

σi j =
σi + σ j

2
(1 − 0.2|σi − σ j |). (3)

This nonadditivity has been introduced to suppress crystalliza-
tion [14] which is in fact provided down to temperatures far
below the critical temperature of mode coupling theory.

Choice of particle diameters. The diameters σi of the
particles are chosen according to two different protocols. In
model S , each diameter is drawn independently from the same
probability density f (σ ). In model D, the diameters for a
system of size N are chosen in a deterministic manner such
that their histogram approximates f in the limit N → ∞. As
in Ref. [14], we consider a function f (σ ) ∼ σ−3. In the case
of an additive hard-sphere system, this probability density
ensures that, within each diameter interval of constant width,
the same volume is occupied by the spheres.

Model S . For model S , particle diameters σi are indepen-
dently and identically distributed, each according to the same
distribution density

f (σ ) = Aσ−31[σm,σM](σ ). (4)

Here 1B(σ ) denotes the indicator function, being one if σ ∈ B

and zero otherwise. The normalization


f (σ ) dσ = 1 is pro-
vided by the choice A = 2/(σ−2

m − σ−2
M ). We define the unit

of length as the expectation value of the diameter,

σ̄ =

∫
σ f (σ ) dσ, (5)

which implies σM = σm/(2σm − 1). We set the lower diam-
eter bound to σm = 29/40 = 0.725. Thus, the upper bound
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is given by σM = 29/18 = 1.61 and the amplitude in Eq. (4)
is A = 29/22 = 1.318. Note that the ratio σm/σM = 20/9 =

2.2, chosen in this work, deviates by less than 0.24% from
the values 2.219 and 2.217 reported in Refs. [14] and [26],
respectively. The degree of polydispersity δ can be defined
via the equation δ2 =


(s − σ̄ )2 f (s)ds/σ̄ 2 and has the value

δ ≈ 22.93% in our case.
In practice, random numbers σ following a distribution f

can be generated from a uniform distribution on the interval
[0,1] via the method of inversion of the cumulative distribu-
tion function (CDF). The CDF is defined as

F (σ ) =

∫ σ

−∞
f (s) ds. (6)

Its codomain is the interval [0,1]. Now the idea is to use a
uniform random number Y ∈ [0, 1] to select a point on the
codomain of F . Then, via the inverse of the CDF, F−1 :
[0, 1] → [σm, σM], one can map Y to the number

σ = F−1(Y ) =


1

σ 2
− 2

A
Y

−1/2

, (7)

which follows the distribution f as desired.
The empirical CDF FN associated with a sample of N

diameter values reads

FN (σ ) = N−1
N∑

i=1

1(−∞,σ ](σi ). (8)

Since for model S the diameters σi are independently and
identically distributed according to the CDF F , the following
relation holds for all σ ∈ R:

lim
N→∞

FS
N (σ )

almost surely
= F (σ ). (9)

This follows from the strong law of large numbers.
Additive packing fraction. To a hard-sphere sample with

particle diameters σi, i = 1, . . . , N , one can assign the addi-
tive hard-sphere packing fraction

φhs =
1

V

N∑

i=1

π

6
σ 3

i . (10)

For model S , the value of φhs fluctuates among independent
samples of size N around the expectation value

φ∞
hs := ES [φhs] =

πn

6
A(σM − σm ) ≈ 0.612. (11)

Here n = N/V is the number density and the expectation
ES [. ] is calculated with respect to the diameter distribution∏N

i=1 f (σi ) on the global diameter space. The variance of φhs

can be written as

VarS (φhs) = N−1


πn

6

2

VarS (σ 3), (12)

where VarS (σ 3) is the variance of σ 3
i for a single particle. The

fluctuations VarS (φhs) ∝ N−1 vanish for N → ∞. Beyond
that, the disorder susceptibility

χS
dis[φhs] = NVarS (φhs) = const. > 0 (13)

is constant and finite for model S . In Sec. IV B, the disorder
fluctuations for model S will be discussed and analyzed in
more depth.

Note that φhs is not an appropriate measure for a nonad-
ditive polydisperse model that we use in our work. Therefore,
later on, we define an effective packing fraction φeff to account
for nonadditive particle interactions.

Model D. For model D, we also use the CDF F to obtain
the particle diameters σi, i = 1, . . . , N , but now we generate
them in a deterministic manner. Our upcoming construction
will satisfy the following three conditions:

(1) The construction is deterministic. The system size N

uniquely defines the diameters,

N → σ1, . . . , σN . (14)

(2) Convergence: the empirical CDF FD
N approximates F .

The convergence is uniform,

lim
N→∞

FD
N

uniform
= F. (15)

Thus, models S and D are consistent.
(3) Constraint: for a given one-particle property θ (σ ) of

the diameter, the following constraint is fulfilled:

1

N

N∑

i=1

θ (σi ) = ES [ θ ]. (16)

This means that the empirical mean of the function θ (σi )
equals the corresponding expectation ES [ θ (σi ) ] in model S .
To ensure this, θ is required to be a strictly monotonic function
in σ .

For our work, we use θ (σ ) = π
6 σ 3, inspired by the additive

hard-sphere packing fraction, cf. Eq. (10). Here, Eq. (16)
ensures that φhs has the same value for any N ,

φD
hs = ES [φhs] ≡ φ∞

hs . (17)

So, how do we define the N diameters σi in the framework
of model D? First, we introduce N + 1 equidistant nodes
along the codomain of F ,

hi = i/N, i = 0, . . . , N. (18)

Their pre-images si are found on the domain of F ,

si = F−1(hi ). (19)

We then define particle diameters σi, i = 1, . . . , N , via

θ (σi ) = N

∫ si

si−1

θ (σ ) f (σ ) dσ. (20)

Since θ is assumed to be strictly monotonic, its inverse θ−1 ex-
ists and σi is uniquely defined by Eq. (20). By summing over
i the constraint Eq. (16) is fulfilled. The proof of the uniform
convergence limN→∞ FD

N = F is presented in Appendix A.
Note the analytical nature of the convergence for model D in
contrast to the stochastic one for model S , cf. Eq. (9).

Equation (20) with the choice θ (σ ) = π
6 σ 3 is a sensi-

ble constraint for an additive hard-sphere system. For our
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(a)

(b)

FIG. 1. (a) Histogram of N = 500 particle diameters σi of mod-
els S (blue) and D (red), respectively. For model S a single
realization is shown, where each σi is drawn independently from
the density f (σ ) (green). In both histograms, 70 bins are used. The
vertical arrows indicate the minimum and maximum diameters σm

and σM, respectively. (b) Cumulative distribution function (CDF) F

(green) and empirical CDF FD

N for model D (red) as a function of
diameter σ for the example N = 10. The diameters σi are constructed
from Eqs. (18)–(20), as graphically illustrated for σ6.

nonadditive soft-sphere system it is a minor tweak and not
an essential condition. Another reasonable choice would be
θ (σ ) = σ , which ensures that the empirical mean of the di-
ameters exactly equals the unit of length σ̄ . Alternatively, one
could ignore the constraint Eq. (16) and thus also Eq. (20)
entirely and define σi = si via Eq. (19)—note that one obtains
N + 1 diameters in this case. The latter approach was used in
Ref. [20]. We expect that all these options are equivalent in
the limit N → ∞.

Figure 1(a) illustrates the distribution of diameters for the
models S and D. In each case, we show one histogram for
N = 500 particles, in comparison to the distribution density

f . For a meaningful comparison, we have chosen the same
number of 70 bins for both histograms. Since model S is of
stochastic nature, we show the histogram for a single realiza-
tion of diameters. In contrast, for model D the histogram at
a given N and bin number is uniquely defined (assuming an
equidistant placement of bins on [σm, σM]). The fluctuations
around f for model S appear to be larger than for D. In the
paragraph below, “Order of convergence,” we put this finding
on an analytical basis.

Figure 1(b) illustrates the construction of diameters σi for
model D, based on the CDF F , for a small sample size
N = 10. For the resulting diameters the empirical CDF FD

N

is shown.
Order of convergence. Having established the convergence

limN→∞ FN = F for models S and D, we now compare their
order of convergence. To this end, we calculate F , defined
as the square-root of the mean-squared deviation between FN

and F ,

F = {E[(FN − F )2]}1/2. (21)

Here, E[. ] refers to the expectation with respect to the global
diameter distribution. For model D, the expectation E[. ] is
trivial and we obtain FD = |FD

N − F |. As shown in the
Appendixes A and B, the results for model D and S are,
respectively,

FD  N−1, (22)

FS = [F (1 − F )]1/2N−1/2. (23)

This means that the order of convergence for model D is at
least 1, in contrast to model S where the order is only 1/2. In
this aspect, model D is superior to model S , since its diameter
distribution approaches the thermodynamic limit faster. Nu-
merically, from the equations above, one has maxσ FD 
maxσ FS already for N  4.

III. SIMULATION DETAILS

Depending on the protocols introduced below, different
particle-based simulation techniques are used, among which
are molecular dynamics (MD) simulations, the swap Monte
Carlo (SWAP) method, and the coupling of the system to a
Lowe-Andersen thermostat (LA).

In the MD simulations, Newton’s equations of motion are
numerically integrated via the velocity form of the Verlet
algorithm by using a time step of t = 0.01 t0 (with t0 =

σ̄
√

m/u0 setting the unit of time in the following). We employ
the SWAP method in combination with the MD simulation
[27]. To this end, every 25 MD steps, N trial SWAP moves
are performed. In a single SWAP move, a particle pair (i, j)
is randomly selected, followed by the attempt to exchange
their diameters (σi, σ j ) according to a Metropolis criterion.
The probability PSWAP to accept a SWAP trial as a func-
tion of T is shown in Fig. 2. It indicates that even deep in
the glassy state (far below the glass-transition temperature
T SWAP

g ≈ 0.06, which we define later on), the acceptance rate
for a SWAP move is still 4% for T  0.01. The latter is the
lowest temperature shown here.

During the equilibration protocols, in each step, we couple
the system to a Lowe-Andersen thermostat [28] for identical
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FIG. 2. Acceptance rate PSWAP of diameter exchange trials as a
function of temperature T .

masses m to reach a target temperature T : For each particle
pair (i, j) closer than a cutoff RT and with a probability t

new velocities are generated as

vnew
i/ j = vi/ j ±

1

2


ζ

√
2kBT

m
− (vi − v j ) · r̂i j


r̂i j, (24)

where r̂i j = ri j/|ri j | and ζ is a normally distributed variable
with expectation value of 0 and variance of 1. This means that
only the component of the relative velocity parallel to r̂i j is
thermalized, preserving the momentum as well as the angular
momentum. We choose RT = xc and  = 4.

Both for model S and model D, we consider different
system sizes N = 256, 500, 1000, 2048, 4000, and 8000 par-
ticles at different temperatures T . In each case, we prepare
60 independent configurations as follows: The initial positions
are given by a face-centered-cubic lattice (with cavities in case
that N = 4k3 for all integers k), while the initial velocities
have a random orientation with a constant absolute value
according to a high temperature T = 5. The total momen-
tum is set to 0 by subtracting


i vi/N from the velocity of

each particle. The initial crystal is melted for a simulation
time tmax = 2000 with t = 0.001, applying both the SWAP
Monte Carlo and the LA thermostat. Then we cool the sample
to T = 0.3 for the same duration, followed by a run with
t = 0.01 over the time tmax = 105 at the target temperature
T . After that we switch off SWAP (to ensure that the mean
energy remains constant in the following) and measure a time
series H (t ) of the total energy over a time span of 0.75tmax,
with tmax = 105. Then we calculate the corresponding mean
Hav and the standard deviation sd(H ), and as soon as the
condition |H (t ) − Hav| < 0.01 sd(H ) is met, we switch off the
LA thermostat and perform a microcanonical NV E simulation
for the remaining time up to t = tmax. This procedure reduces
fluctuations in the final temperature T for subsequent NV E

production runs.
For the analysis that we present in the following, we mostly

compare NV E with SWAP production runs (in both cases
without the LA thermostat). Also, we perform MD produc-
tion runs with the coupling to the LA thermostat but without
applying the SWAP, and accordingly refer to these runs as
the LA protocol. For all of these production runs, the initial
configurations are the final samples obtained from the equi-
libration protocol described above. We emphasize that the
SWAP dynamics are not realistic in the sense that it cannot
be realized experimentally.

For the LA thermostat and the SWAP Monte Carlo, pseu-
dorandom numbers are generated by the Mersenne Twister

algorithm [29]. For each sample, a different seed is chosen to

ensure independent sequences. For an observable we eventu-
ally determine its 95% confidence interval from its empirical
CDF, which is calculated via Bootstrapping [30] with 1000
repetitions.

IV. STATIC FLUCTUATIONS

In the following two sections “Thermal fluctuations” and
“Disorder fluctuations,” we consider two kinds of fluctua-
tions. Thermal fluctuations quantify intrinsic fluctuations of

phase-space variables for a given diameter configuration.
These intrinsic observables are expected to coincide for both
models S and D, provided that N is sufficiently large. As an
example, we study thermal energy fluctuations, as quantified
by the specific heat (here, numerical results are only shown
for model D). Below, we use this quantity to determine the
glass-transition temperatures for the different dynamics.

In model S , the dependence of thermally averaged observ-
ables on the diameter configuration leads to sample-to-sample
fluctuations that are absent in model D. We measure these
fluctuations in terms of a disorder susceptibility, exemplified
via the potential energy.

A. Thermal fluctuations

Let us consider an N-particle sample of our system. An ob-
servable O that characterizes the state of this sample depends
in general on the particle coordinates r = (r1, . . . , rN ), the
momenta p = (p1, . . . , pN ), and the particle diameters σ =

(σ1, . . . , σN ). When we denote the phase-space configuration
by q = (r, p), we can write the observable as O = O(q, σ ). Its
thermal average can be expressed as

O(σ ) = E(O|σ ) =

∫
O(q, σ )ρ(q|σ ) dq, (25)

where ρ(q|σ ) is a conditional phase-space density. In the case
of the canonical NV T ensemble, it is given by

ρ(q|σ ) = Z−1 exp[−H (q|σ )/(kBT )], (26)

with Z =


exp[−H (q|σ )/(kBT )] dq being the partition func-
tion and H = K + U the Hamiltonian, cf. Sec. II.

In the simulations, we compute O(σ ) via the average
of an equidistant time sequence q(ti ) (with #ti = 5000) over
a time window tmax = 105. This approach is valid for an
ergodic system—by definition—in case sufficient sampling
is ensured. Then, the result does not depend on the initial
condition q(0). However, it does depend on the realization of
σ and, of course, the ensemble parameters, e.g., the temper-
ature T .

Thermal fluctuations of the observable O can be quantified
in terms of the thermal susceptibility

χthm[O] = Var(O|σ )/N = O2 − O2/N. (27)

Here the variance Var(. ) is calculated according to the phase-
space density (26). The normalization for χthm is chosen such
that, for an extensive observable O, we expect finite values for
limN→∞ χthm[O].

An important quantity that is related to the thermal suscep-
tibility of the potential energy U is the excess specific heat at
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FIG. 3. Specific heat CV as a function of temperature T for
model D with N = 2048 particles. The solid lines indicate the glass
transition temperatures, corresponding to the microcanonical MD
simulations (green, T NV E

g = 0.11) and the simulations with SWAP
dynamics (blue and red, T SWAP

g = 0.06). Coupling to the LA thermo-
stat but without SWAP is represented by the orange line. The black
arrow indicates the Dulong-Petit limit, CV = 3/2.

constant volume, defined by

CV =
1

N

∂U 
∂T

. (28)

In the canonical NV T ensemble, the relation between CV and
the thermal susceptibility χNV T

thm [U ] is

CV = χNV T
thm [U ]/T 2. (29)

This formula can be converted to the microcanonical NV E

ensemble to obtain [23]

CV =
χNV E

thm [U ]

T 2 − (2/3)χNV E
thm [U ]

. (30)

Figure 3 shows CV as a function of temperature T for the dif-
ferent dynamics, namely, the microcanonical MD via Eq. (30),
the MD with SWAP using Eqs. (28) and (29), and the MD with
LA thermostat employing again Eq. (29).

At high temperatures, T  0.11, the specific heat CV from
the different calculations is in perfect agreement. Upon de-
creasing T , one observes relatively sharp drops in CV for the
microcanonical NV E and the SWAP dynamics. The drops
occur at the temperatures T NV E

g = 0.11 and T SWAP
g = 0.06,

respectively, and indicate the glass transition of the different
dynamics. These estimates of the glass-transition tempera-
tures Tg are consistent with those obtained from dynamic
correlation functions presented in Sec. V.

Another conclusion that we can draw from Fig. 3 is that
fluctuations in U , as quantified by the CV from the SWAP dy-
namics simulations, correctly reproduce those in the canonical
NV T ensemble. This can be inferred from the coincidence
of the blue and the red data points at temperatures T >

T SWAP
g . For the NV E dynamics at T < T NV E

g , albeit using
fully equilibrated samples as initial configurations for T >

T SWAP
g , relaxation times become too large to correctly resolve

the fluctuations, as quantified by χNV E
thm [U ]. We underestimate

them within our finite simulation time and effectively mea-
sure a frequency-dependent specific heat [31]. Thus, from the
monotonicity of Eq. (30), CV is underestimated as well. Fur-
thermore, from the coincidence of the green with the orange
data points, corresponding to the NVE and LA dynamics,
respectively, we can conclude that the LA thermostat correctly
reproduces the fluctuations in the canonical NV T ensemble.

For the NV E as well as LA dynamics, we see the Dulong-
Petit law, i.e., for T → 0 the specific heat approaches the
value CV = 3/2. An exception to this finding are the results
calculated from the SWAP dynamics. This can be understood
by the fact that the SWAP dynamics are associated with fluc-
tuating particle diameters even at very low temperatures; thus
the resulting dynamics cannot be described in terms of the
harmonic approximation for a frozen solid.

B. Disorder fluctuations

In model S , the Hamiltonian H (q|σ ) is parametrized by
random variables σ and this imposes a quenched disorder onto
the system. This leads to fluctuations that can be quantified
in terms of a disorder susceptibility that we shall define and
analyze in this section.

To this end, we first introduce the diameter distribution
density for both models,

g(σ ) =

{

N
i=1 f (σi ) for modelS

N
i=1δD

(

σi − σD
i

)

for modelD,
(31)

where δD denotes the Dirac delta function.
Let us consider a variable B = B(σ ). This could be a

function such as the additive hard-sphere packing fraction φhs

or the thermal average of a phase-space function at a given
diameter configuration σ , e.g., U . The disorder average of
B, denoted by B, is the expectation value of B with respect to
the distribution density g,

B = E(B) =

∫
B(σ )g(σ ) dσ. (32)

Note that, in our analysis below, disorder averages are calcu-
lated by an average over all samples, i.e., over 60 realizations
of σ .

Fluctuations of an extensive quantity B ∼ N and its cor-
responding “density” b = B/N can be measured by disorder
susceptibilities, defined as

χdis[B] = Var(B)/N = B2 − B
2
/N, (33)

χdis[b] = NVar(b). (34)

These two different definitions have to be applied for a mean-
ingful scaling, i.e., to ensure χdis[B] = χdis[b]. For model D,
we have χD

dis[B] = 0 for any B. In contrast, for model S , the
variable B(σ ) fluctuates from sample to sample as quantified
by χdis[B]. Here, in general, limN→∞ χdis[B] = 0, as exem-
plified by the fluctuations of the additive packing fraction:
In Sec. II, we showed VarS (φhs) ∝ 1/N , and thus we have
χS

dis[φhs] = const. > 0.
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(a)

(b)

FIG. 4. (a) Mean potential energy U (σ ) as a function of tem-
perature T . For model S , individual curves for each of the 60 samples
are shown for systems with N = 256 (blue lines) and N = 2048
(orange lines) and for model D for the system with N = 256. (b) Dis-
order susceptibility χdis[U ] for different values of N .

Potential energy. Having introduced the disorder average
and susceptibility, we consider the variable B(σ ) = U (σ ),
corresponding to the thermal average of the potential energy
for a given sample with diameter configuration σ .

In Fig. 4(a) the dependence of U (σ ) on temperature T is
shown. For a given model and system size N , we present 60
curves corresponding to 60 independent samples. For model
S , results for N = 256 and 2048 are shown. Here, the di-
ameter configurations σ vary among the samples and thus,
the potential energy fans out into various curves U (T ). If
we measure the fluctuations of the mean potential energy
per particle, U (σ )/N , with its variance, the fluctuations
decrease with increasing N , as expected. For model D, we
show the curves of 60 independent samples at N = 256; here,
sample-to-sample fluctuations are completely absent and all
data collapse onto a single curve.

Figure 4(b) shows the disorder susceptibility χdis[U ] of
model S for different system sizes. As can be inferred from
the figure, in a nonmonotonic manner, χdis[U ] seems to
approach a finite temperature-dependent value in the limit

FIG. 5. Reduced effective packing fraction φeff/φ∞
hs as a func-

tion of temperature T . The inset zooms into a region around
φeff/φ∞

hs = 0.775.

N → ∞,

lim
N→∞

χS
dis[U ] = constant(T ) > 0. (35)

Effective packing fraction. Now, we show that the disorder
fluctuations in the potential energy U (σ ) and the empirical
limit value for χS

dis[U ], as given by Eq. (35), can be ex-
plained by fluctuations in a single scalar variable, namely, an
effective packing fraction φeff . The additive packing fraction
φhs, cf. Eq. (10), is not an appropriate measure of a packing
fraction for the nonadditive soft-sphere system that we con-
sider in this study. Therefore, we define an effective packing
fraction φeff to take into account the nonadditivity of our
model system.

The idea is to assign to each particle i an “average” volume
Vi that accounts for the nonadditive interactions. For this pur-
pose, we first identify all |Ni| neighbors of i within a given
cutoff rc,

Ni = { j ∈ {1, . . . , N} | j = i, ri j < rc}. (36)

Here rc = 1.485 is chosen, which corresponds to the location
of the first minimum of the radial distribution function at
the temperature T = 0.3. Then, the volume Vi of particle i is
defined as

Vi =
1

|Ni|

∑

j∈Ni

π

6
σ 3

i j, (37)

where nonadditive diameters σi j are given by Eq. (3).
Now we define an effective packing fraction φeff as

φeff = V −1
N∑

i=1

Vi. (38)

Note that different from the hard-sphere packing fraction φhs,
the value of the effective packing fraction φeff of a given sam-
ple not only depends on the diameters σi, but it also depends
on the coordinates ri. Thus, in our simulations of glassforming
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liquids, it is a thermally fluctuating variable. Therefore, we
will use its thermal average φeff in our analysis below.

An alternative effective packing fraction can be defined
by assigning an average diameter Si = 1

|Ni|


j∈Ni

σi j instead
of an average volume Vi to each particle. The corresponding
packing fraction is given by

φ̃eff = V −1
N∑

i=1

π

6
S3

i . (39)

Below, we use the effective packing fractions φeff and φ̃eff

to analyze the sample-to-sample fluctuations in model S . Al-
though both definitions lead to similar results, we shall see
that φeff seems to provide a slightly better characterization
of the thermodynamic state of the system than φ̃eff . Figure 5
displays the temperature dependence of φeff. It is almost
constant over the whole considered temperature range. This
is a plausible result when one considers the weak temperature
dependence of the structure of glassforming liquids. As we
can infer from the inset of this figure, φeff increases mildly
from about 0.772 at T = 0.3 to about 0.779 at T = 0.01.
Now, we will use the variable φeff to quantify the sample-
to-sample fluctuations of the potential energy per particle
U (σ )/N .

In Fig. 6(a), we show U (σ )/N as a function of the mean
packing fraction φeff(σ ) at the temperature T = 0.10. Here,
we have used the data for N = 256, 500, and 2048 particles.
The plot suggests that the fluctuations of U  can be explained
by the variation of φeff. We elaborate this finding by calcu-
lating the coefficient of determination R2 of a linear-regression
fit with dependent variable U /N and regressor φeff.

In Fig. 6(b) we show R2 as a function of T for the sys-
tem size N = 8000. The linear regression analysis shows that
approximately 99.5% of the fluctuations can be explained
by φeff. This is a striking but physically plausible result,
as it shows how a reduction from N degrees of freedom
given by σ to one degree of freedom given by a thermo-
dynamically relevant parameter φeff is sufficient to explain
nearly all of the fluctuations. Also included in Fig. 6(b) is
the coefficient of determination R2 using φ = φhs and φ̃eff
as a regressor. While we obtain R2 ≈ 0.95 for φ = φhs, i.e.,
clearly below the value for φeff, the value of R2 for φ̃eff
is only slightly smaller, R2 ≈ 0.99. Thus, among the three
measures of the packing fraction, the variable φeff gives the
best results. Note that the glass transition at T SWAP

g ≈ 0.06 is

associated with a small drop of R2 for the effective packing
fractions.

Figure 6(c) displays the temperature dependence of R2

for φeff for different system sizes N . The plot indicates
a significant decrease of R2 with decreasing N , especially
at low temperatures around the glass-transition temperature
T SWAP

g ≈ 0.06. The reason is that a linear relationship be-
tween U (σ )/N and φeff is expected to only hold in the
vicinity of the disorder-averaged value φeff. For small sys-
tem sizes, however, relatively large nonlinear deviations from
this value occur that are reflected in a lower value of the
coefficient of determination, R2. Moreover, for small N , the
discretized nature of the diameter configuration does not any
longer allow a description in terms of a single variable such as
φeff.

(a)

(b)

(c)

FIG. 6. (a) Scatter plot showing data points
(φeff(σ ), U (σ )/N ) for model S at T = 0.10 and different
system sizes N . Each tuple belongs to a particular diameter
realization σ . The red line is obtained via a linear-regression model
φ → U  with dependent variable U  and regressor φ = φeff
for N = 2048. Its coefficient of determination is R2 ≈ 0.984.
(b) Coefficient of determination R2 of the linear regression model
φ → U  as a function of T for N = 8000, using φ = φhs (red
triangles), φeff (brown circles), and φ̃eff (orange crosses) as
regressors φ. (c) Similar to (b), but here R2 as a function of T is
shown for regressor φ = φeff only, however for different system
sizes N .

Our empirical results justify the idea to replace the depen-
dency of U  on the diameter configuration σ by one on the
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single parameter φeff,
U (σ ) ≈ U ∗(φeff(σ ))

≈ U ∗(φeff) +
∂U ∗

∂φ

∣∣∣∣
φ=φeff 

(φeff − φeff). (40)

Here U ∗ is an unknown function in a scalar variable. Ac-
cording to the Taylor expansion above, fluctuations in U  are
inherited from those in φeff as

Var(U ∗) ≈


∂U ∗

∂φ

2∣∣∣∣
φ=φeff 

Var(φeff). (41)

Since φeff should scale similarly to the additive hard-sphere
packing fraction φhs, we have Var(φeff) ∝ 1/N . Then, since
U ∗ is extensive, Eq. (35) is confirmed.

V. STRUCTURAL RELAXATION

In this section, the dynamic properties of the models S and
D are compared. To this end, we analyze a time-dependent
overlap function that measures the structural relaxation of
the particles on a microscopic length scale. The timescale
on which this function decays varies from sample to sample;
these fluctuations around the average dynamics can be quanti-
fied in terms of a dynamic susceptibility. We shall see that the
susceptibility in model S can be split into two terms. While
the first term is due to thermal fluctuations and also present
in model D, the second term is due to the disorder in σ . At
low temperatures, the contribution from the disorder is the
dominant term in the susceptibility.

For our analysis, we consider MD simulations in the micro-
canonical ensemble as well as hybrid simulations, combining
MD with the swap Monte Carlo technique (see Sec. III). In the
following, we refer to these dynamics as “NV E” and “SWAP,”
respectively.

Glassy dynamics. A peculiar feature of the structural
relaxation of glassforming liquids is the cage effect. On inter-
mediate timescales, each particle gets trapped in a cage that
is formed by its neighboring particles. To analyze structural
relaxation from the cages, we therefore have to look at density
fluctuations on a length scale a similar to the size of the
fluctuations of a particle inside such a cage. On a single-
particle level, a simple time-dependent correlation function
that measures the relaxation is the self part of the overlap
function, defined by

Q(t ) =
1

N

N∑

i=1

(a − |ri(t ) − ri(0)|). (42)

Here, we choose a = 0.3 for the microscopic length scale. The
behavior of Q(t ) is similar to that of the incoherent intermedi-
ate scattering function at a wave-number corresponding to the
location of the first sharp diffraction peak in the static structure
factor. We note that we have not introduced any averaging
in the definition (42). In the following, we display the decay
of Q(t ) for 60 individual samples at different temperatures.
The corresponding initial configurations at t = 0 were fully
equilibrated with the aid of the SWAP dynamics before, as
explained in Sec. III.

Figure 7 shows the overlap function Q(t ) for model S and
model D, in both cases for the NV E and the SWAP dynamics.
In all cases, we can see the typical signatures of glassy dynam-
ics. At a high temperature, T = 0.3, the function Q(t ) exhibits
a monotonic decay to zero on a short microscopic timescale.
Upon decreasing the temperature first a shoulder and then a
plateau-like region emerges on intermediate timescales. This
plateau extends over an increasing timescale with decreasing
temperature and indicates the cage effect. Particles are es-
sentially trapped within the same microstate in which they
were initially at t = 0. At the high temperature T = 0.3 the
decay of Q(t ) is very similar for NV E and SWAP dynamics.
Toward low temperatures, however, the decay is much faster
in the case of the SWAP dynamics, as expected. A striking
result is that, at lower temperatures, the individual curves in
model S show much larger variation than those in model D.
In the following, these sample-to-sample fluctuations shall be
quantified in terms of a dynamic susceptibility.

Relaxation time τ . From the expectation of the overlap
function, E[Q](t ) (black dashed lines in Fig. 7), we extract
an alpha-relaxation time τ , defined by E[Q](τ ) = 1/e. In
Fig. 8, the logarithm of the timescale τ as a function of
inverse temperature 1/T is shown. Also included in this plot
are the times t∗ where the fluctuations of Q(t ) are maximal,
which will be discussed in the following paragraph “Dynamic
susceptibility.” One observes an increase of τ by about five
orders of magnitude upon decreasing T . This increase is much
quicker for the NV E than for the SWAP dynamics, reflecting
the fact that T SWAP

g is much lower than T NV E
g (cf. Fig. 3). The

glass-transition temperatures defined in Sec. IV via the drop
in the specific heat CV (T ) are approximately consistent with
the alternative definition via τ (Tg) = 105.

Dynamic susceptibility χ (t ). A characteristic feature of
glassy dynamics is the presence of dynamical heterogeneities
that are associated with large fluctuations around the “aver-
age” dynamics. These fluctuations can be quantified in terms
of a dynamic (or four-point) susceptibility. For the overlap
function Q(t ), this susceptibility χ (t ) can be defined as

χ (t ) = NVar(Q(t )). (43)

The function χ (t ) measures the fluctuations of Q(t ) around
the average E[Q](t ). In practice, we use the data of Q(t ) from
the ensemble of 60 independent samples.

Figure 9 shows the dynamic susceptibility χ (t ) for the
same cases as for Q(t ) in Fig. 7. As a common feature
of glassy dynamics [32,33], χ (t ) exhibits a peak χ∗ :=
maxt χ (t ) at t = t∗. The timescale t∗ is roughly equal to
the alpha-relaxation time τ , see Fig. 8. At the temperatures
T = 0.1 for the NV E and T = 0.06 for the SWAP dynamics,
χ∗ is more than one order of magnitude larger for model S
than for model D. This indicates that the disorder in σ of
model S strongly affects the sample-to-sample fluctuations. In
the following paragraph “Variance decomposition” we present
how one can distinguish disorder from thermal fluctuations.
Figure 10 shows the maximum of the dynamic susceptibility
χ∗ as a function of inverse temperature, 1/T , for NV E and
SWAP dynamics. In both cases, the results for model S (χ∗

S
)

and model D (χ∗
D

) are included, considering systems with
N = 8000 particles. In all cases χ∗ increases with decreasing
temperature T , as expected for glassy dynamics. For both
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FIG. 7. Overlap Q(t ) as a function of time t for NV E (left column) and SWAP dynamics (right column) for models S and D. For the
selected temperatures T the initial configurations are in equilibrium. Solid colored lines represent 60 individual simulations, while black
dashed lines indicate their sample average. All results correspond to systems with N = 8000 particles.

types of dynamics the difference χ∗ = χ∗
S

− χ∗
D

increases
with decreasing temperature as well. The lowest temperatures
for which we can calculate χ∗ are (i) T = 0.09 with a rela-

FIG. 8. Relaxation time τ as extracted from the expectation of
the overlap function E[Q](t ) and the time t∗ = arg maxt χ (t ), where
the maximum of the dynamic susceptibility χ (t ) occurs, for NV E

and SWAP dynamics. Here, a system with N = 8000 particles is
considered.

tive deviation χ∗/χ∗
D

≈ 18 for the NV E and (ii) T = 0.065
with χ∗/χ∗

D
≈ 23 for the SWAP dynamics.

Variance decomposition. To understand the difference
χ∗ between χS and χD, we decompose the dynamic sus-
ceptibility χS of model S into one term that stems from
the thermal fluctuations of the phase-space variables, and a
second term that is caused by the sample-to-sample variation
of the diameters σ .

As a matter of fact, in model S the overlap function Q(t )
and similar correlation functions depend on two random vec-

tors, namely, the initial phase-space point q0 = (r(0), p(0))
and the diameters σ . As a consequence, we define and calcu-
late χ = NVar(Q) on a probability space with respect to the
joint-probability density

ρ(q0, σ ) = ρ(q0|σ )g(σ ). (44)

Here ρ(q0|σ ) is the conditional phase-space density intro-
duced in Eq. (26) and g(σ ) is the diameter distribution defined
by Eq. (31).

Now, since Q depends on two random vectors q0 and σ ,
we can decompose χ = NVar(Q) according to the variance

decomposition formula, also called law of total variance or
Eve’s law [34]:

Var(Q) = E[Var(Q|σ )] + Var(E[Q|σ ]) (45)

≡ Q2 − Q2 + Q2 − Q2
. (46)
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(a) (b)

(c) (d)

FIG. 9. Dynamic susceptibility χ as a function of time t for different temperatures T and systems with N = 8000 particles. Results for all
four combinations of NV E and SWAP dynamics with models S and D are shown, as labeled in panels (a)–(d). Maxima of χ (t ) are marked by
arrows. Prior to their calculation we performed a moving average over the raw data.

Here, E[Var(Q|σ )] describes intrinsic thermal fluctuations,
while the term Var(E[Q|σ ]) expresses fluctuations induced by
the disorder in σ .

The first summand in Eq. (45) is expected to coincide for
both models S and D for sufficiently large N , as Var(Q|σ )
describes intrinsic thermal fluctuations for a given realization
of σ , which are calculated via the model-independent condi-
tional phase-space density ρ(q0|σ ). The physical observable
Var(Q|σ ) should not depend on microscopic details of the
diameter configuration σ for sufficiently large N . For the
cumulative distribution functions of the diameters, the con-
sistency equation limN→∞ FS

N (s) = F (s) = limN→∞ FD
N (s)

holds. Thus, we expect that ES [Var(Q|σ )] ≈ ED[Var(Q|σ )].
This equation should be exact in the limit N → ∞. We have
implicitly used this line of argument also in Sec. IV, where
we have only shown numerical results of the specific heat
for model D. Furthermore, for model D we have exactly
ED[Var(Q|σ )] = Var(Q|σD ) = VarD(Q), since here there is
only one diameter configuration σ = σD for a given system
size N .

Summarizing the results above, we can express the dy-
namic susceptibility for model S as follows:

VarS (Q) = VarD (Q) + VarS (E[Q|σ ]). (47)

Now the aim is to estimate the second summand in Eq. (47).
We assume that we can describe the disorder in σ by a single
parameter, namely the thermally averaged effective packing

fraction φeff(σ ), defined by Eq. (38). This idea has already
been proven successful in Sec. IV, when we described the
disorder fluctuations of the potential energy. Similarly, we
write

E[Q|σ ] ≡ Q(σ ) ≈ Q∗(φeff(σ )), (48)

assuming that the values of Q(σ ), which depend on N

degrees of freedom, can be described by a function Q∗ that
only depends on a scalar argument, the scalar-valued function
φeff(σ ). The function Q∗ is unknown, but can be estimated
numerically with a linear-regression analysis, predicting Q
with the regressor φeff. Insertion of Eq. (48) into Eq. (47)
gives

VarS (Q) ≈ VarD(Q) + VarS (Q∗(φeff)). (49)

We can write this equation in terms of susceptibilities,

χS ≈ χD + χφ, (50)

χφ := NVarS (Q∗(φeff)). (51)

Along the lines of Eq. (41) in Sec. IV, we can expand the
overlap function Q∗ around φeff to obtain

VarS (Q∗(φeff)) ≈ VarS (φeff)


∂Q∗(φ)

∂φ

∣∣∣∣
φ=φeff 

2

. (52)
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(a)

(b)

FIG. 10. Maximum of the dynamic susceptibility,
χ∗ = maxtχ (t ), as a function of 1/T for (a) the NV E and
(b) the SWAP dynamics. Results are shown for models S (blue
line) and D (red line) with N = 8000 particles. The green solid line
displays χ∗

S
− χ∗

φ , i.e., the total susceptibility minus the explained
part caused by the packing-fraction fluctuations.

Since VarS (φeff) ∼ VarS (φhs) ∝ N−1 and Q∗ ∼ Q ∈ O(1),
this equation implies that the susceptibility χφ , to leading
order, does not depend on N . Moreover, for a given tem-
perature T and time t , it approaches a constant value in the
thermodynamic limit, N → ∞. For small system sizes, how-
ever, higher-order corrections to Eq. (52) cannot be neglected.
Beyond that, the discretized nature of the system at small N

will lead to a failure of the “continuity assumption” (48) itself.
Finite-size effects of χ will be analyzed below.

In Fig. 10, we show for the system with N = 8000 parti-
cles that χ∗

φ , i.e., χφ evaluated at t = t∗, indeed captures the
sample-to-sample fluctuations in model S due to the disorder
in σ . Both for NV E and SWAP dynamics, it quantitatively
describes the gap between χ∗

S
and χ∗

D
. In Ref. [25], a similar

effect was observed for a binary hard-sphere system. How-

FIG. 11. χ∗
S

as a function of 1/T for different system sizes N

using NV E dynamics. The dashed lines denote N/4, which is the
upper bound according to Popoviciou’s inequality on variances, see
Eq. (53).

ever, in that case, fluctuations of the packing fraction, that
occur in the grand canonical ensemble, were identified as the
dominating term contributing to the dynamic susceptibility.
These fluctuations are conceptually different from our sample-
to-sample fluctuations due to the disorder of the diameters.
However, the successful encoding of the diameter fluctuations
in terms of the effective packing fraction φeff suggests that
both fluctuations might have the same physical origin. In
both cases, the dominating term is proportional to the square
of an overlap function response to “the” packing fraction,
(∂Q/∂φ)2, see Eq. (52).

Finite-size effects: Popoviciou’s inequality on variances.

Here, we analyze finite-size effects of the dynamic suscep-
tibility χ . To this end, we again consider the temperature
dependence of the maximum of the dynamic susceptibility,
χ∗, considering only the case of the NV E dynamics. Note
that for model D finite-size effects in the considered temper-
ature range 0.09  T  0.3 are negligible; therefore we only
discuss model S in the following.

Figure 11 shows χ∗
S

as a function of 1/T for N = 256,
500, and 8000. At high temperatures T , where fluctuations
are small, there is hardly, if any, dependency on the system
size N . However, upon lowering T a saturation occurs at least
for the small systems. This behavior can be understood by a
hard stochastic upper limit on fluctuations, which is given by
Popoviciou’s inequality on variances [35]. This inequality is
valid for any bounded real-valued random variable X : Let c

and C be the lower and upper bound of X , respectively, then
Popoviciou states that Var(X )  (C2 − c2)/4. Applying this
result to X = Q with sharp boundaries c = 0 and C = 1 yields

χ ≡ NVar(Q)  N/4. (53)

Our data show that this upper bound is quite sharp for N =

256 and N = 500 at low T . This can be understood by the
fact that the equality of the inequality (53) holds precisely
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when Q is a Bernoulli variable, i.e., when there are exactly
two outcomes Q = 0 or Q = 1 each with probability 1/2. In
this sense, the saturation of χ should occur at temperatures T

and system sizes N at a given t when Q(t ) for approximately
half of the samples has decayed close to 0 while for the other
half Q is still close to 1.

The inequality (53) is very useful to estimate how large
a system size N needs to be to avoid this kind of finite-size
effect: All one has to do is to compare the measured χ at a
given N to the number χc := N/4. In the case that χ ≈ χc,
one has to consider larger system sizes N .

VI. SUMMARY AND CONCLUSIONS

In this work, we use molecular dynamics (MD) computer
simulations in combination with the SWAP Monte Carlo tech-
nique to study a polydisperse model glassformer that has
recently been introduced by Ninarello et al. [14]. Two meth-
ods are used to choose the particle diameters σ1, . . . , σN to
obtain samples with N particles. Both of these approximate
the desired distribution density f (σ ) ∼ σ−3 with their his-
togram. In model S the diameters are drawn from f (σ ) in
a stochastic manner. In model D the diameters are obtained
via a deterministic scheme that assigns an appropriate set
of N values to them. We systematically compare the prop-
erties of model S to those of model D and investigate how
the sample-to-sample variation of the diameters in model S
affects various quantities: (i) classical phase-space functions
such as the potential energy U and its fluctuations, and (ii)
dynamic correlation functions such as the overlap function
Q(t ) and its fluctuations as well.

Obviously, model D has the advantage that always “the
most representative sample” [20] is used for any system size
N , while model S may suffer from statistical outliers, espe-
cially in the case of small N . This indicates that the quenched
disorder introduced by the different diameter configurations in
model S may strongly affect fluctuations that we investigate
systematically in this work.

Our main findings can be summarized as follows: The
sample-to-sample fluctuations in model S can be described
in terms of a single scalar parameter, namely the effective
packing fraction φeff(σ ), defined by Eq. (38). In terms of
this parameter, one can explain the disorder fluctuations of
the potential energy (cf. Fig. 6) as well as the gap between
the dynamic susceptibilities of models S and D (cf. Fig. 10).
The sample-to-sample fluctuations of the potential energy in
model S can be quantified in terms of the disorder suscepti-
bility χS

dis which is a nontrivial function of temperature (cf.
Fig. 4) and finite in the thermodynamic limit N → ∞. In
model S , at very low temperatures, the dynamic susceptibility
is dominated by the fluctuations due to the diameter disorder.
Thus, if one is aiming at analyzing the “true” dynamic hetero-
geneities of a glassformer, that stem from the intrinsic thermal
fluctuations, one may preferentially use model D. Note that
it is possible to calculate the same thermal susceptibility in
model S as in model D; however, the calculation in S is
more difficult because it demands an additional average over
the disorder, as shown in Sec. V. This implies that model S
requires more sampling in this case.

Our findings are of particular importance regarding recent
simulation studies of polydisperse glassforming systems in
external fields [15,17,26,36,37] where a model S approach
was used to select the particle diameters. However, in these
works sample-to-sample fluctuations due to the diameter dis-
order have been widely ignored. Exceptions are the studies
by Lerner et al. [36,37] where samples whose energy de-
viates from the mean energy by more than 0.5% were just
discarded. Here the use of a model D scheme would be a more
efficient alternative. However, one should still keep in mind
that with regard to a realistic description of experiments on
polydisperse colloidal systems, it might be more appropriate
to choose model S . This, of course, depends on the specific
experimental setup and protocol.

Finally, we mention that it would be interesting to perform
a similar analysis as presented in this work also for other poly-
disperse glassformers. Work in this direction is in progress.

APPENDIX A: CONVERGENCE OF THE CUMULATIVE

DISTRIBUTION FUNCTION F
D

N

Here, we prove that the empirical cumulative distribution
function (CDF) FD

N of model D, see Eqs. (8) and (18–20),
converges uniformly to the exact CDF F defined by Eq. (6).
As we shall see below, the order of convergence is at least 1.
For the strictly monotonic function θ , that we have introduced
in Sec. II, we assume that it is strictly increasing, but the proof
is analogous for a strictly decreasing θ .

In the first step, we show that

σi ∈ [si−1, si], i = 1, . . . , N. (A1)

The starting point is Eq. (20), from which we estimate

θ (σi )  N

∫ si

si−1

θ (si ) f (σ ) dσ (A2)

= Nθ (si )

∫ si

si−1

f (σ ) dσ (A3)

= Nθ (si )[F (si ) − F (si−1)] (A4)

= Nθ (si )


i

N
− i − 1

N


= θ (si ). (A5)

Since θ is strictly increasing, its inverse θ−1 exists and is
strictly increasing, too. Applying θ−1 to the inequality above
yields σi  si. Similarly, we obtain σi  si−1. This confirms
Eq. (A1).

In the second step, we consider an arbitrary  > 0 and
natural numbers N  N0 with N0 = −1. Now we select
σ ∈ R. For σ < σm or σ > σM, we trivially have FD

N (σ ) =

F (σ ). In the remaining case σm  σ  σM, an index i exists
such that si−1  σ  si. The latter statement is true, because
the union of all intervals [si−1, si] yields the total interval
[σm, σM]. From Eq. (A1) it follows that there are exactly i or
i − 1 particles with σi  σ , so that FD

N (σ ) = i/N or FD
N (σ ) =

(i − 1)/N , respectively.
In the third step, we point out that F (σ ) is a monotonically

increasing function so that

i − 1

N
= F (si−1)  F (σ )  F (si ) =

i

N
. (A6)
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Subtracting FD
N (σ ) yields

∣∣FD
N (σ ) − F (σ )

∣∣  1/N  1/N0 < . (A7)

This proves the uniform convergence

lim
N→∞

FD
N = F (A8)

of the order of convergence of at least 1.

APPENDIX B: CONVERGENCE OF THE CUMULATIVE

DISTRIBUTION FUNCTION F
S

N

To find the order of convergence for limN→∞ FS
N = F

of model S , we measure deviations by F = (ES [(FS
N −

F )2])1/2, see Eq. (21). We first calculate

(

FS
N − F

)2
=

1

N2

N∑

i=1

N∑

j=1

(1i − F )(1 j − F ), (B1)

1i(σ ) := 1(−∞,σ ](σi ). (B2)

Here, we abbreviated the full notation of the indicator function
1. Its expectation is given by

ES [1i(σ )] = 1 P(σi  σ ) + 0 P(σi > σ ) = F (σ ). (B3)

Here, P denotes the appropriate probability for model S .
When calculating the expectation ES of Eq. (B1), only the di-
agonal terms i = j remain due to the stochastic independence
of the diameters σi and σ j for i = j. We end up with

ES
[(

FS
N − F

)2]
= F (1 − F )N−1, (B4)

⇒ FS = [F (1 − F )]1/2 N−1/2. (B5)

This means the order of convergence for model S is only 1/2.
Concerning the prefactor, we have maxσ F (1 − F ) = 1/4 at
the σ where F (σ ) = 1/2. Thus it is

max
σ

FS = 1
2 N−1/2. (B6)

Note that no inequality is used in the calculations above and
thus the order of convergence is sharp.
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Understanding the swap Monte Carlo algorithm in a size-polydisperse model glassformer
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The dynamics of a polydisperse model glassformer are investigated by augmenting molecular dynamics (MD)
simulation with swap Monte Carlo (SMC). Three variants of the SMC algorithm are analyzed with regard to
convergence and performance. We elucidate the microscopic mechanism responsible for the drastic speed-up of
structural relaxation at low temperature. It manifests in a stepwise increase of the mean-squared displacement
when the timescale between the application of swap sweeps is significantly larger than a characteristic micro-
scopic timescale. Compared to Newtonian dynamics, with the hybrid MD-SMC dynamics the glass transition
shifts to a lower temperature and a different temperature dependence of the localization length is found.

DOI: 10.1103/PhysRevE.108.024127

I. INTRODUCTION

The swap Monte Carlo (SMC) algorithm [1–3] has been
proven successful to efficiently equilibrate glassforming liq-
uids with a size polydispersity [4–15]. SMC introduces trial
moves attempting to exchange the diameters between par-
ticles. In combination with conventional canonical Monte
Carlo (MC) or molecular dynamics (MD) simulation, a
dynamics is realized where the positional changes of the
particles are accompanied by the fluctuations of their diam-
eters. Ninarello et al. [5] optimized a model toward such
a hybrid MC-SMC or MD-SMC dynamics to obtain ultra-
stable amorphous solid states. These states are comparable
to those realized in experiments of structural glassformers
and are far out of reach for any conventional MC or MD
simulation.

Apart from the issue of generating well-equilibrated sam-
ples, the investigation of hybrid MC-/MD-SMC dynamics
has been used to discuss fundamental aspects of the glass
transition. SMC provides a proper sampling of the canonical
ensemble on a frozen configuration (see also below) and thus
its use does not affect thermodynamic properties of liquid
and amorphous solid states in equilibrium. Based on this fact,
Wyart and Cates [16] argued that the observed acceleration
of the dynamics via SMC is not consistent with theories that
explain the glass transition in terms of a growing static length
scale. Via the analysis of the Hessian of soft- and hard-sphere
systems, Brito et al. [8] associated the speed-up due to SMC
with the appearance of soft-elastic modes. They also demon-
strated that the jamming transition is strongly altered by SMC.
An interesting simulation study of a two-dimensional polydis-
perse soft-sphere system by Gopinath et al. [14] introduced a
swap model where only a selected fraction of particles can
swap locally with neighboring particles. The authors inter-
preted the resulting “defect diffusion” in terms of a kinetically
constrained lattice model. For such a lattice system, the kinet-
ically constrained East model, Gutiérrez et al. [17] showed
that swap moves lead to the suppression of dynamic hetero-
geneities, as also seen in polydisperse structural glassformers
(see, e.g., Ref. [15]).

The SMC dynamics has also been investigated in the
framework of dynamic theories that predict a transition from
a liquid to a nonergodic amorphous solid, varying a control
parameter such as temperature T or packing density η. In this
manner, Szamel [18,19] added a swap term to the mode cou-
pling theory (MCT) [20] equations for a binary hard-sphere
system. Here MCT predicts a liquid-solid transition at a crit-
ical packing fraction ηc that depends on the size ratio of the
hard-sphere species. While ηc is around 0.515 without swaps,
it increases up to about 0.535 with swaps. Note that a similar
shift of the glass transition was found in the framework of
a replica liquid theory by Ikeda et al. [21,22]. The dynamic
MCT transition is intimately related to the cage effect, i.e.,
each particle is localized in a cage formed by the neighboring
particles. According to MCT, in the nonergodic solid state, the
particles are trapped in their cages. However, on decreasing
the packing density toward ηc (or increasing the temperature
toward a critical Tc), the length l that quantifies the localiza-
tion of the particles in their cages increases toward a critical
value lc at which the amorphous solid becomes unstable and
transforms to a liquid state. In this sense, lc can be interpreted
in terms of a Lindemann criterion for amorphous solids [20].
Remarkably, Szamel’s MCT as well as the replica approach
by Ikeda et al. indicate that with swaps the value of lc is
significantly smaller than without swaps.

The latter theoretical approaches predict that swaps lead
to a modification of the cage dynamics and a shift of the
kinetic glass transition. However, these works do not provide
a microscopic picture on how swaps change the structural
relaxation of particles without affecting static equilibrium
properties of the system. In the present work, we use hybrid
MD-SMC simulations of a polydisperse model glassformer to
address this issue and thus elucidate why swaps accelerate the
dynamics so drastically.

A central idea of our work is to disentangle the effects of
diameter fluctuations from the Newtonian dynamics of the
particles. To this end, we first consider the application of
swap moves on a given equilibrated configuration, keeping
the positions of the particles fixed. We discuss different SMC
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algorithms, specified by the proposal probability with which
the particle pairs for a diameter exchange are selected. Here,
in particular, we find that a size-bias SMC scheme (or swap-
sector scheme in Ref. [23]), selecting only particle pairs that
have a similar diameter, is more efficient than the standard
SMC where one randomly chooses a pair of particles. With
a diameter correlation function, we estimate the number of
swap sweeps, srel, required to thermalize the diameter config-
uration on a fixed set of particle positions (here one sweep
corresponds to N trial swaps, where N is the number of par-
ticles). At low temperatures, we find srel ≈ 3 for the size-bias
SMC and srel ≈ 13 for the standard SMC. This information
is used in a second step where we consider the full hybrid
MD-SMC dynamics. First, we show that MD-SMC can be
used to properly adjust the temperature of the system without
the need for another thermostat. Then, to study the struc-
tural relaxation, we vary the time tMD between swap sweeps.
We identify the “physically” (however, not computationally)
most efficient MD-SMC scheme, for which srel sweeps are
performed every integration time step t , i.e., tMD = t .
Choosing a sufficiently large tMD at low temperatures allows
to infer the effect of the swap moves. After srel sweeps, the
diameter permutation instantaneously imposes a new cage
geometry around each particle. Then, during the subsequent
MD part, the particles shift to new mean positions on a mi-

croscopic timescale. In this sense, this mechanism explains
the drastic speed-up of the dynamics. It is reflected, e.g.,
in plateau steps of the mean-squared displacement (MSD).
The steplike behavior turns into a continuous increase of the
MSD when tMD = t is chosen. In the latter case we find, in
agreement with the MCT prediction, that the glass transition
shifts to a lower temperature in comparison to the pure Newto-
nian dynamics, accompanied by a smaller critical localization
length lc.

Section II is on the glassformer model and the simulation
details. Section III presents the theory of SMC, assuming a
fixed set of particle coordinates. Furthermore, we introduce
three different SMC schemes with regard to the selection of
particle pairs for the swap trial moves. In Sec. IV, we study the
relaxation dynamics of particle diameters using SMC on fixed
particle configurations. The full hybrid MD-SMC dynamics is
analyzed in Sec. V. Finally, we draw conclusions in Sec. VI.

II. MODEL AND SIMULATION DETAILS

A. Model

1. Interaction model

The model of the polydisperse glassforming system that
we use in this work was proposed by Ninarello et al. [5].
It has exceptional glassforming abilities, hindering crystal-
lization and demixing down to temperatures far below the
mode coupling temperature. Due to the continuous particle-
size polydispersity (see below), this model is very well suited
for the application of SMC. Here, compared to conventional
MD or MC simulation, SMC provides a speed-up in equilibra-
tion time by many orders of magnitude. Thereby, samples can
be obtained from the simulation that are similar to those of
experiments of glassforming liquids at very low temperature.

We consider N particles with varying diameters σ =

σ1, . . . , σN and identical masses m in a cubic box of volume
V = L3, using periodic boundary conditions. As specified
below, the diameters are chosen according to a probabil-
ity density f . In the following, positions and momenta of
the particles are respectively denoted by the vectors ri and
pi, i = 1, . . . , N . The velocity vi of particle i is given by
vi = pi/m. The particles move according to Hamilton’s equa-
tions of motion with a Hamilton function H = K + U . Here
K =

N
i=1 p2

i /m is the kinetic energy and the total potential
energy U can be written as

U =

N−1

i=1

N

j>i

u(ri j/σi j ) , (1)

u(x) = u0(x−12 + c0 + c2x2 + c4x4) (xc − x), (2)

where the function u describes the interaction between a
particle pair (i, j), separated by the distance ri j = |ri − r j |.
The argument of u is scaled by the “interaction diameter” σi j

that is related to the diameters σi and σ j , as specified below.
With the Heaviside step function  a dimensionless cutoff
xc = 1.25 is introduced. The unit of energy is defined by u0.
The constants c0 = −28/x12

c , c2 = 48/x14
c , and c4 = −21/x16

c

ensure continuity of u at xc up to the second derivative.
The interaction diameter σi j introduces a nonadditivity of

the particle diameters,

σi j =
σi + σ j

2
(1 − 0.2|σi − σ j |), (3)

which is a significant ingredient to the model to suppress
crystallization and demixing [5]. This is especially important
when swap Monte Carlo is used, since this algorithm provides
the equilibration of samples at very low temperatures, where
models with additive diameters become increasingly prone to
crystallization.

2. Polydispersity

The target distribution f of the diameters is defined via the
probability density,

f (s) =


As−3, σm  s  σM ,

0, otherwise.
(4)

Here a minimum σm and maximum diameter σM are intro-
duced. The normalization condition


f (s) ds = 1 sets A =

2/(σ−2
m − σ−2

M ). The unit of length is defined as the expec-
tation value of the diameter, σ̄ =


σ f (σ ) dσ . This implies

σM = σm/(2σm − 1). The distribution f has one degree of
freedom left, which is fixed by the choice σm = 0.725. Then
the upper bound is given by σM = 29/18 = 1.61 and the
amplitude by A = 29/22 = 1.318. In our work, the ratio
σM/σm = 20/9 = 2.2 deviates by less than 0.24% from the
value 2.219 reported in Ref. [5]. The degree of polydisper-
sity δ can be defined via δ2 =


(s − σ̄ )2 f (s) ds/σ̄ 2 so that

δ ≈ 22.93%. A study by Berthier et al. [9] compared the
effect of functional forms of the diameter distribution on the
particle dynamics, considering f (s) ∼ 1, ∼ s−3, and ∼ s−4.
They found that the degree of polydispersity, δ, “is the most
relevant parameter”: At a fixed δ the functional form f (s)
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does not significantly affect the pure MC nor the fast hybrid
MC-SMC dynamics.

3. Deterministic diameter choice

In Ref. [5], the diameters σ were chosen randomly and in-
dependently from the density f . Different from this stochastic
approach, we use a deterministic method that we extensively
compared to the stochastic approach in Ref. [15]. The deter-
ministic method has the following advantages: (i) It leads to
smaller finite-size effects, as the “most representative sample”
[24] is used for any system size N . Statistical outliers are
prevented in this way. This is especially important for glass-
forming liquids at low temperatures, which are very sensitive
to density fluctuations. (ii) The histogram of the diameters
converges to f faster than for the stochastic approach. (iii) A
quenched disorder in the diameters is excluded, which would
otherwise be present and superimpose sample-to-sample fluc-
tuations. The latter point is not crucial to our analysis though,
since we do not investigate sample-to-sample fluctuations
here.

For the deterministic method the N diameters are
constructed as follows. In the first step, we introduce
N + 1 equidistant nodes hi = i/N , i = 0, . . . , N , along the
codomain [0,1] of the cumulative distribution function F (s) = s

−∞ f (σ ) dσ . The preimages si = F−1(hi ) are well-defined,
since F is strictly monotonic and thus bijective when re-
stricted to [σm, σM ]. Finally, the diameters σi are defined via
σ 3

i = N
 si

si−1
σ 3 f (σ ) dσ . This scheme provides the same set

of diameters for each sample. More details can be found in
Ref. [15].

B. Simulation details

1. Simulation methods

In all simulated samples, the number density is fixed to
N/V = 1. The temperature T is used as a control parameter.
For the parts that include MD simulations, we numerically
integrate the equations of motion via the velocity form of
the Verlet algorithm with a time step t = 0.01 t0. Here
t0 = σ̄

√
m/u0 defines the unit of time. Eventually, for the

hybrid scheme (MD-SMC) combining MD with SMC as in-
troduced in Ref. [10], we apply N × s elementary SMC trials
after every tMD simulation time of MD dynamics. Here N

trials define one sweep so that s defines an SMC density in
a system-size-independent way. One elementary SMC trial
refers to an attempt to exchange the diameters of a single
pair of particles according to the Metropolis criterion. Which
of the N (N − 1)/2 pairs are chosen depends on the proposal

probability (also called a priori probability), defining the spe-
cific SMC variant. Three different variants will be discussed in
Sec. III. Unless noted otherwise, we apply the standard SMC
variant for which a random particle pair is chosen.

2. Equilibration protocol

To equilibrate the samples, we use the hybrid MD-SMC
scheme with tMD = 0.25 and s = 1. Only during equilibration
do we couple the system to the Lowe-Andersen thermostat
[25] for identical masses m with a frequency T = 4 and a
cutoff RT = xc. We consider different system sizes, specified

by the number of particles, N = 256, 500, 2048, and 8000.
For each system size, we initialize 60 samples and each of
these samples is equilibrated at many different temperatures
T . Thus, we prepare a total number of N × 60 × T samples.
The equilibration of each of these samples is done according
to the following protocol.

We start with the assignment of N diameters as described
in the previous subsection. The particles are placed on a face-
centered-cubic lattice in the cubic box of length L, eventually
with cavities in the case that N = 4n3 for all natural numbers
n. The velocities vi are initialized with a constant absolute
value as v2

i = 3T/m at the very high temperature T = 5, but
each with a random orientation. We subtract the mean momen-
tum

N
i=1 pi/N from each pi to set the total momentum vector

to zero. Then the initial crystal is melted for a simulation time
of t = 2 × 103 with a short time step t = 10−3 while the
hybrid MD-SMC scheme and the Lowe-Andersen thermostat
(both their temperature parameters are set to T = 5) are ap-
plied. After that, we cool to T = 0.3 for the same duration.
“Cooling” to this (still high) temperature T = 0.3 allows us to
use a larger time step, t = 0.01, in the following. Here (and
below), the process of “cooling” (or heating) to a temperature
T is done by choosing T as a temperature parameter in the
Lowe-Andersen thermostat as well as in the SMC algorithm.
This procedure leads to a quick change of the temperature,
controlled by the thermostat frequency T = 4. As T = 0.3
is far above the glass-transition temperature of our simulation
(as discussed below), the samples are fully equilibrated. Then
each of these samples is quenched to different target temper-
atures T at which a long run over a time span of t = 105 is
performed. After that, we switch off the SMC algorithm and
continue each simulation for another t = 0.8 × 105. Switch-
ing off SMC ensures that the mean total energy H̄ remains
constant independent of temperature T (either the samples
are already in equilibrium, or they are far below the glass-
transition temperature of MD without SMC). During this run,
the average H̄ and standard deviation of the energy H , std(H ),
are calculated from a time series (for each run separately).
Then we simulate for t = 0.2 × 105. Here, as soon as the
condition |H − H̄ | < 0.01 × std(H ) is satisfied, we switch off
the thermostat to ensure that the energy H is constant (except
for the error resulting from the numerical integration scheme)
for the remaining time. This last part of our equilibration
protocol reduces energy fluctuations. The final configurations
that we obtain are the starting point of all simulations below
and are considered as “equilibrated.”

For temperatures T  0.06 ≡ T SMC
g , the prepared samples

are fully equilibrated. Here T SMC
g is the glass-transition tem-

perature for the standard MD-SMC with tMD = 0.25 and s =

1, which was identified in Ref. [15] via a pronounced drop in
the specific heat. We do not observe any signs for ordering
processes above T SMC

g , consistent with Ref. [5]. Note that the

value of T SMC
g generally depends on the parameters tMD and s

and the chosen SMC variant. For numerically efficient choices
(see below), we expect T SMC

g ≈ 0.06 to be less sensitive on the
exact choices. As a reference point, for pure MD simulations
in the microcanonical ensemble (NV E ), the glass-transition
temperature is at T = T NVE

g ≈ 0.11 (also identified via a drop
in the specific heat) [15].
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FIG. 1. Illustration of three SMC algorithms: standard (left), local (mid), and size-bias SMC (right panel). For a given blue particle, the
green particles represent all of its allowed transposition candidates. One of the possible swap attempts is indicated by a red arrow. The gray
particles are not allowed to be exchanged with the blue one. For the standard SMC, transpositions between all particle pairs are considered.
For the local SMC, only neighbors of the blue particle are allowed candidates, as indicated by the open blue circle. For the size-bias SMC,
only particles with a similar diameter are considered.

We draw pseudorandom numbers with the Mersenne

Twister algorithm [26]. A different seed for each sample is
used to ensure independent sequences of these random num-
bers. The latter are used, e.g., for the random velocities in
the sample initialization, for the thermostat, and for SMC.
Thus, the 60 equilibrated samples at a given T and N can be
considered as independent.

III. THEORY OF SMC ON A FROZEN CONFIGURATION

In this section, we give an explicit mathematical descrip-
tion of SMC when applied to a fixed set of coordinates. By
exchanging particle coordinates, SMC samples from a con-
strained phase space, the space of all particle permutations of
a given configuration. Note that it is completely equivalent,
as we will show below, to exchange the diameters of the
particles while their coordinates are fixed instead. Mathemat-
ically, SMC represents a discrete-time Markov chain, created
via the Metropolis-Hastings algorithm [27] with the canonical
distribution as a target distribution. We analyze three different
SMC variants that only differ with respect to the proposal

probability, i.e., the selection of particle pairs, see Fig. 1:
(i) the standard SMC in Sec. III B, which allows transposi-
tions between all particles; (ii) a local SMC, for which only
neighboring particles are exchanged in Sec. III C; and (iii)
a size-bias SMC, which only selects particles with similar

diameters in Sec. III D. We discuss under which conditions
each SMC variant converges.

A. Mathematical description

1. Notation

We denote phase-space coordinates as a matrix x ∈ R
6×N .

Here the nth column of x contains all coordinates of particle
n, i.e., x:,n = (rx

n, r
y
n, rz

n, px
n, p

y
n, pz

n)T , where rk
n and pk

n are
components of the vectors rn and pn, respectively. Similarly,
the diameters of the particles are given by σ = (σ1, . . . , σN ) ∈
R

1×N . In the following, we consider an arbitrary initial con-
figuration x0.

2. Transpositions τi j

Starting from x0, each SMC algorithm below subsequently
performs transpositions. A transposition τi j of particles i = j

is defined as

(τi j (x)):,n =

⎧
⎪⎨
⎪⎩

x:,i if n = j,

x:, j if n = i,

x:,n otherwise.

(5)

This corresponds to an exchange of columns i and j in a
configuration x. Trivially, a transposition conserves the total
momentum.

3. Permutations π

From an algebraic perspective, a composition of transpo-
sitions is a permutation π . The reverse is also true: Each
permutation can be written as the composition of transposi-
tions, such that the set P of all permutations is given by

P =


K

k=1

τik jk | K ∈ N, ik = jk ∈ {1, . . . , N}


, (6)

with
K

k=1

τik jk = τiK jK ◦ · · · ◦ τi1 j1 . (7)

P defines a group where the group operation is the composi-
tion, ◦. The number of elements in P is |P | = N!.

4. Symmetry

A permutation of the coordinates x is equivalent to the
inverse of the same permutation of the diameters σ . This
symmetry can be formulated in terms of the Hamilton function
H as

H ( π (x) | σ ) = H ( x | π−1(σ )), ∀π ∈ P . (8)

This identity can be verified as follows: Applying a permu-
tation π simultaneously to the coordinates x as well as the
diameters σ is just a relabeling of the particles. Thus, we have
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H (π (x)|π (σ )) = H (x|σ ), from which Eq. (8) follows. Note
that here we assume identical particle masses in the model
definition. Otherwise one had to incorporate the different
masses into a generalized parameter matrix σ ∈ R

2×N . Equa-
tion (8) implies that in simulations computationally efficient
diameter exchanges can be used [right-hand side of Eq. (8)],
but we can interpret their effect in terms of a sampling from a
phase space at a fixed σ [left-hand side of Eq. (8)].

5. Phase space x0

By sequentially applying swap moves, we sample from a
discrete phase space x0 and eventually visit the set of all N!
possible permutations π of the configuration x0,

x0 = {π (x0), π ∈ P}. (9)

Note that x0 has exactly the same number of elements as P ,
since ri = r j for i = j is guaranteed by the pair interaction
potential u. We emphasize that x0 is only a subset of the total
phase space of the hybrid MD-SMC dynamics.

6. Target distribution W

The Metropolis-Hastings algorithm involves a target dis-
tribution W . We impose the canonical distribution with a
temperature parameter TSMC on the phase space x0 , i.e.,

W (x) = Z−1
x0

e−H (x|σ )/(kBTSMC ), x ∈ x0 , (10)

Zx0 =


π∈P
e−H (π (x0 )|σ )/(kBTSMC ). (11)

Here Zx0 is the partition sum with respect to the frozen con-
figuration x0. Note that for the sake of readability we leave
out the index x0 from the target distribution W and other
expressions below.

7. Metropolis-Hastings algorithm

SMC uses the Metropolis-Hastings algorithm [27] to
construct a Markov chain (x0, x1, x2, . . . ). In each of the fol-
lowing SMC schemes, the same target distribution W (defined
above) is used, starting from the configuration x0. Assume a
configuration xn−1 at “time” step n − 1. To obtain the next
configuration xn, one first generates a trial configuration x∗
from a proposal probability q(. |xn−1). The choice of q(. |.)
defines the different SMC variants, discussed below. The trial
configuration x∗ is accepted with a probability α(xn−1, x∗). If
it is accepted, then xn := x∗; otherwise, it is rejected, setting
xn := xn−1. Here the acceptance probability is defined as

α(x, y) = min


1,

W (y)q(x|y)

W (x)q(y|x)


. (12)

We will show that the proposal probability q for each of the
SMC schemes considered below is symmetric, i.e., q(x|y) =

q(y|x), so that the acceptance probability α simplifies to the
special case of the Metropolis criterion,

α(x, y) = min(1, e−[H (y|σ )−H (x|σ )]/(kBTSMC )). (13)

8. Convergence

Now we discuss the conditions under which the SMC al-
gorithm converges to the target distribution W . The transition

probability P(y|x) to migrate from a state x to a state y is a
conditional probability,

P(y|x) = α(x, y)q(y|x). (14)

Since the state space x0 is finite, |x0 | = N! < ∞, P(y|x)
can be identified with a finite-dimensional transition matrix
P. The matrix notation demands that we count the state space
and uniquely identify each state with one of these numbers.
Similarly, let us denote the n-step transition probability to
migrate from state x to y after n steps by P(n)(y|x). Here the
Kolmogorov-Chapman equation [28] hold for all n, m  0,

P(n+m)(y|x) =


z∈x0

P(m)(y|z)P(n)(z|x). (15)

They can be used to express P(n)(y|x) by the associated entry
of the matrix Pn. By construction, the Metropolis-Hastings
method satisfies the detailed-balance condition

W (x)P(y|x) = W (y)P(x|y), (16)

which is also called reversibility of the chain. It guarantees
that W is a stationary distribution of the Markov chain, in the
sense that



x∈x0

W (x)P(y|x) = W (y). (17)

In general, the existence of a stationary distribution itself is
not sufficient to imply convergence. Before we state a the-
orem of convergence, we first need to define the properties
aperiodicity and irreducibility.

9. Aperiodicity

If a return to state x can only occur in a multiple of k steps,
then x is said to have a period of k. The period k of a state x is
formally defined as

k(x) = gcd{n  1 | P(n)(x|x) > 0}, (18)

where gcd denotes the greatest common divisor. The Markov
chain is said to be aperiodic if at least one state x is aperiodic
in the sense that k(x) = 1.

The Metropolis-Hastings algorithm with (i) a canonical
distribution W [cf. Eqs. (10) and (11)] as a target distribu-
tion and with (ii) a symmetric proposal probability q is also
called Metropolis algorithm. In this case, the Markov chain
is aperiodic under a very weak physical condition: Consider
that any state x ∈ x0 exists from which a state x∗(x) with
a higher energy can be proposed. Formally, this means that
we assume q(x∗(x)|x) > 0 and H (x|σ ) < H (x∗(x)|σ ). Then
there is a finite probability to reject x∗, cf. Eq. (13), since
α(x, x∗) < 1. Therefore, P(1)(x|x)  (1 − α(x, x∗))q(x∗|x) >

0 and thus k(x) = 1.

10. Irreducibility

A state y is said to be accessible from another state x if the
probability to transition from x to y in a finite number of steps
is finite, i.e., if an integer k(x, y)  0 exists with P(k)(y|x) >

0. If x is accessible from y and y from x, then both states are
said to communicate. Communication defines an equivalence
relation, whereby the maximal sets of communicating states

024127-5

63



NIKLAS KÜCHLER AND JÜRGEN HORBACH PHYSICAL REVIEW E 108, 024127 (2023)

represent equivalence classes. A Markov chain is said to be
irreducible if each state communicates with each of the other
states, i.e., the whole state space is one communicating class.

11. Ergodic theorem [28]

Assume that a Markov chain is irreducible and aperiodic
and that a stationary distribution W exists. Then W is the only
stationary distribution and the Markov chain converges to W ,
in the sense that

lim
n→∞

P(n)(y|x) = W (y). (19)

This type of weak convergence states that, no matter in which
state x we currently are, after a sufficient number of steps we
reach any state y with probability W (y).

In the following, three SMC schemes are discussed.
For each variant, we introduce the algorithm, calculate its
corresponding proposal probability q, and show that q is sym-
metric. The question of convergence comes down to whether
the Markov chain is irreducible, since the Metropolis method
ensures that (i) the target distribution W is a stationary dis-
tribution and (ii) aperiodicity is guaranteed except for trivial
configurations x0.

B. Standard SMC

The standard SMC, to be introduced below, was first ap-
plied to binary mixtures [1,2,29,30]. An illustration of this
swap variant can be found in the left panel of Fig. 1. In the case
of a polydisperse system, one randomly chooses a particle
pair (i, j) from a given configuration x ∈ x0 and attempts
a transposition to obtain the trial configuration x∗ = τi j (x).
Since each transposition is attempted with the same proba-
bility, the proposal probability q(.|x) is a uniform distribution
on the space of transpositions of x,

q(y|x) =


2

N (N−1) , if i = j exist : y ≡ τi j (x),

0, otherwise.
(20)

The symmetry q(y|x) = q(x|y) holds since τi j[τi j (x)] = x.
In the following we show that the Markov chain of the

standard SMC converges to the target distribution W . First,
we note that the Markov chain is aperiodic (except for trivial
energetically degenerated configurations x0, as discussed be-
fore) and that W is a stationary distribution. Both statements
hold since SMC is a Metropolis algorithm. As a next step,
irreducibility will be shown; then all three conditions of the
ergodic theorem above are satisfied, so that convergence to-
ward W is established in the sense of Eq. (19).

Let x, y ∈ x0 be any configurations from the phase space
of particle permutations, as introduced above. Since y =

π1(x0) and x = π2(x0) for some π1, π2 ∈ P , we can write y =

π (x) with π = π1 ◦ π−1
2 . According to group theory, every

permutation can be written as a composition of transpositions.
This means π =

K
k=1 τik jk for a K ∈ N and transpositions

τik jk . Let us now recursively define zk := τik jk (zk−1) with z0 :=
x. This implies zK ≡ y. From the Kolmogorov-Chapman
Eq. (15), the inequality P(K )(y|x)  K

k=1 P(zk|zk−1) follows,
which describes that the probability to transition from x to
y in K steps along any path is greater than (or equal to) the
probability to transition along the unique path specified by the

K transpositions. Now, by definition (14), we express the one-
step transition probability P(zk|zk−1) = α(zk−1|zk )q(zk|zk−1)
via the acceptance probability (13) and proposal distribution
(20). Both probabilities are finite; it is q(zk|zk−1) > 0 because
zk = τik jk (zk−1) is a transposition of zk−1. Therefore, we have
P(K )(y|x) > 0, i.e., the state y is accessible from x. Since the
states x and y are arbitrary, the Markov chain is irreducible by
definition.

C. Local SMC

The local SMC was introduced by Fernandez et al. [3]. The
idea of this method is to only exchange particles for which
the distance ri j ≡ |ri − r j | is smaller than a parameter r > 0
(cf. the mid panel of Fig. 1). Given a configuration x ∈ x0 ,
let N (x) denote the list of all particles which have at least one
neighbor,

N (x) = { i = 1, . . . , N | ∃ j = i : ri j < r }. (21)

For r  1 and dense liquid samples with number den-
sity N/V = 1 considered in our work, we have N (x) =

{1, . . . , N} for all typical configurations. Analogously, let
Ni(x) be the list of all the neighbors of a particle i,

Ni(x) = { j = 1, . . . , N | j = i, ri j < r }. (22)

In the trivial case where no neighboring particles at all exist,
|N (x)| = 0, we propose x∗ = x such that q(x|x) = 1. In the
nontrivial case, the local SMC algorithm first randomly picks
a particle i ∈ N (x), subsequently chooses a random neighbor
j ∈ Ni(x), and then proposes the transposition x∗ = τi j (x).
The corresponding proposal probability is

q(y|x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
|N (x)|


1

|Ni (x)| + 1
|N j (x)|


, if ∃ i ∈ N (x)

∧ ∃ j ∈ Ni(x) :

y ≡ τi j (x),

0, otherwise.

(23)

The sum in the first row accounts for the two possibilities
by which a transposition τi j (x) can be proposed with the
algorithm: One option is to first choose the particle i and then
to pick j ∈ Ni(x). The second option is to first choose j and
then select i ∈ N j (x).

One can show the symmetry q(y|x) = q(x|y) as follows:
The neighbors of particle i in configuration x are the same as
the neighbors of particle j in configuration y = τi j (x), since
j now occupies the former coordinates of i. This means that
N j (y) = Ni(x). Similarly, the particles with neighbors remain
the same, i.e., N (x) = N (y).

Regarding the question of convergence, in the most general
case, irreducibility of the SMC Markov chain depends on the
relation between the swap range r and the frozen configu-
ration x0 (and thus the density and the temperature at which
x0 was prepared). In the case that r is too small (smaller
than the typical distance between neighboring particles),
there might exist distinct communicating classes (separated
clusters of particles), between which particles cannot be
exchanged.

A sufficient condition for the convergence of the local
SMC, which should be satisfied in typical configurations of
dense liquids, can be obtained as follows. We assume that for
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any two particles (i, j) we can find a path from i to j along a
chain of neighboring particles. Formally, this means that par-
ticle indices ik exist such that ri − r j =

K
k=1 rik − rik+1 is a

telescoping sum with |rik − rik+1 | < r for all k = 1, . . . , K .
Note that i1 ≡ i and iK+1 ≡ j. Then the transposition τi j

can be obtained by a sequence of swaps between neigh-
boring particles, τi j = (

K−1
k=1 τiK−k iK−k+1 ) ◦ (

K
k=1 τik ik+1 ). This

expression means that we first sequentially swap particle i

until we reach j and then reversely swap j along the same
path to the former position of i. Now that we can realize
any transposition with a finite sequence of the local SMC,
also any permutation can be obtained, cf. Eq. (6). Thus we
can transition from any state to any other in a finite number
of steps with a finite probability (for more mathematical de-
tails, see the proof of irreducibility for the standard SMC).
Hence the Markov chain is irreducible by definition and it
converges according to the ergodic theorem above in the sense
of Eq. (19).

From the local SMC, the standard SMC can be recovered
in the limit r → ∞. In our simulations the algorithms are
identical if r  L

√
3/2.

In the introduction of the local SMC algorithm in Ref. [3],
an erroneous assumption about the proposal probability q was
made. Here the authors did not take into account the second
summand in the first row of Eq. (23), and thus the proposal
probability q that they assumed was not symmetric. With this
q, an incorrect expression for the acceptance probability was
obtained.

The local SMC might be well suited as a potential candi-
date for a parallelized implementation of SMC.

D. Size-bias SMC

The size-bias SMC was introduced in a work by
Brumer and Reichman [23] who referred to this method
as “swap-sector Monte Carlo.” The idea of this variant
is to avoid attempts of transpositions which are rejected
with a high probability due to a large difference between
the diameters (see right panel of Fig. 1). The anatomy
of the size-bias SMC is similar to the local SMC, ex-
cept that the metric to identify “neighboring” particles is
applied within the diameter space with a cutoff σ > 0.
Formally, we adopt exactly the same algorithm and definitions
as in Sec. III C, but we replace ri j by |σi − σ j | and r by σ .
Note that here we do not take into account the nonadditivity
of the diameters.

While the convergence of the local SMC generally de-
pends on the configuration x0, the convergence of the size-bias
Markov chain toward the target distribution W can always be
ensured by the choice of a sufficiently large system size N :
Again, the question of convergence boils down to whether all
states communicate with each other (irreducibility). To this
end, we have to show that we can realize any permutation
with the size-bias SMC. Here the argumentation is as follows.
As before, we only need to show that any transposition τi j

between any two particles (i, j) can be realized, because each
permutation can be written as a composition of transpositions,
see Eq. (6). The apparent problem for the size-bias SMC is,
however, that only transpositions between similar diameters
are allowed. To this end, let us first assume, without loss of
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FIG. 2. Probability Paccept of accepting a trial diameter exchange
as a function of temperature T for three SMC schemes.

generality, that the diameters σk are sorted in any order. For
any given σ > 0, we can choose a sufficiently large system
size N such that |σk+1 − σk| < σ for all k = 1, . . . , N − 1.
This means that each particle has a smaller and a larger
”neighbor” within the cutoff σ , except for the boundary
particles. Note that this assumes a deterministic method [15]
to choose the diameters in the polydisperse model, as well
as a compact domain of the diameter distribution density f ,
cf. Sec. II A. Then each transposition τi j can be obtained by
swapping sequentially only between particles with a similar
diameter: τi j = [

 j−i−1
k=1 τ( j−k) j] ◦ (

 j

k=i+1 τik ).
An efficient implementation of the proposal part of the

size-bias SMC with pseudo code reads:

This short code snippet illustrates the simplicity of the
algorithm: In comparison to the standard SMC, we only add
the calculation of |σi − σ j | alias “dij” in line 4 and a float
comparison “dij < DS” in line 5.

For our model, the size-bias SMC outperforms the local as
well as the standard SMC, as we will show in Sec. IV.

IV. NUMERICAL RESULTS FOR SMC

ON A FROZEN CONFIGURATION

In this section, we consider SMC on a frozen configuration
x0 and evaluate the performance of the three SMC schemes in-
troduced above. To this end, we determine the acceptance rate
Paccept, a diameter correlation function Cσ , and a relaxation
time srel. For an initial configuration x0 that was equilibrated
at a specific temperature T before, cf. Sec. II B, we now apply
SMC at the same temperature, i.e., TSMC = T in Eq. (13). In
this sense, the numerical results of this section can be trans-
ferred to the equilibrium simulations with hybrid MD-SMC in
Sec. V.

A. Acceptance rate Paccept

In Fig. 2, we show the acceptance rate Paccept of trial swaps
as a function of temperature T . Here Paccept is calculated
by dividing the number of accepted attempts x∗ by the total
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number of attempts of a Markov chain of length 103 × N ,
averaged over 60 initial configurations x0 with N particles
each. Under equilibrium conditions, i.e., for temperatures T >

T SMC
g ≈ 0.06, the acceptance rates are above 8.4% for all

three specified SMC methods.
In the work of Fernandez et al. [3], local SMC for a binary

system is proposed, resulting in a larger acceptance rate Paccept

than for the standard SMC. In contrast, for our polydisperse
model, the local SMC with r = 1.5 has a slightly smaller
Paccept than the standard scheme. This qualitatively different
behavior presumably results from a different chemical order-
ing in a binary and a polydisperse system.

We emphasize that Paccept is not a suitable measure to
compare the performance of SMC algorithms. This will be-
come clear for the size-bias SMC below: While decreasing
σ always leads to higher acceptance rates, the SMC moves
between too similar diameters are inefficient. Instead, we
will now propose a diameter relaxation function as a rea-
sonable performance measure. From this correlation function,
we shall infer that the local SMC is inferior to the standard
SMC for any r (for our model system at a low temperature
T = 0.065).

1. Diameter autocorrelation function Cσ

An appropriate quantity to compare the performance of
the different SMC methods is a diameter (auto-)correlation
function Cσ (s). Here we swap (permute) the diameters of
the particles while their phase-space coordinates x0 are fixed
instead, cf. Eq. (8). In order to measure the elapsed “time”
s in a system-size independent way, we use the number of
swap sweeps; here one sweep is defined as N elementary SMC
trials. The function Cσ (s) quantifies the time correlation of a
diameter fluctuation σi(s) − σav around the average diameter
σav = 1

N

N
i=1 σi ≈ σ̄ . It is defined by

Cσ (s) =
E

N
i=1(σi(s) − σav)(σi(0) − σav)



E
N

i=1[σi(0) − σav]2
 . (24)

Here E[.] denotes an expectation value with respect to the
Markov chain as well as the distribution of initial config-
uration x0. In practice, we use only one realization of the
Markov chain at a given x0 and then average over the ensemble
of 60 independent samples x0. In Fig. 3(a), we show Cσ (s)
for different temperatures T . One observes that in the long-
time limit the correlation function decays onto a well-defined
temperature-dependent plateau,

C∞
σ := lim

s→∞
Cσ (s) > 0. (25)

A finite value means that the system keeps some memory
of its initial diameter configuration forever. From a numerical
perspective, large values Cσ (s) > 0.75, even at a very high
temperature T = 1, imply that the “allowed” diameter fluctu-
ations within a frozen configuration are rather small.

Figure 3(b) shows Cσ (s) at a fixed temperature T = 0.065
for the three SMC variants. For the size-bias SMC (red line,
σ = 0.1), the function Cσ (s) decays much faster than for the
standard SMC (dashed black line), which in turn outperforms
the whole set of local SMC algorithms (blueish lines). On
increasing r for the local SMC, Cσ (s) continuously ap-
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C
σ

(a)
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0.95

1.00

100 101 102 103 104
0.97

0.98

0.99

1.00

C
σ

size-bias SMC standard SMC

local SMC

(b)

FIG. 3. Correlation function Cσ as a function of time s (corre-
sponding to the number of swap sweeps) in frozen configurations,
obtained by averaging over 60 samples with N = 2048 particles
each. (a) Standard SMC for different temperatures T = 1, 0.5, 0.3,
0.25, 0.2, 0.15, 0.12, 0.11, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04,
0.03, 0.02, 0.01. Color changes with decreasing temperature from
red (lower curve) to blue (upper curve). (b) At the fixed temperature
T = 0.065 for the standard SMC (dashed black line), the size-bias
SMC with σ = 0.1 (red line), and the local SMC for r = 1, 1.25,
1.5, 1.75, 2, 3, 4 (with increasing r the color of the curves changes
from turquoise over blue to purple).

proaches that of the standard SMC. Already for r = 3 the
curves of the local and standard SMC are very close. This
finding is relevant with respect to a possible parallelization of
SMC using the local SMC. Independent of the SMC variant,
the function Cσ (s) seems to approach the same plateau value
C∞

σ as s → ∞; this numerical result is an implication of our
analytical result from Sec. III that each SMC scheme con-
verges to the same target distribution W (under the conditions
elaborated in Sec. III).

Figure 4 shows the plateau height C∞
σ as a function of

temperature T . The function C∞
σ (T ) is monotonically de-

creasing, which means that the lower T is, the smaller is
the “accessible” diameter space of each particle. This finding
represents an analogy to the cage effect, where an increasing
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FIG. 4. Plateau C∞
σ ≡ lims→∞ Cσ (s) as a function of T .

localization of the particles on decreasing T can be observed
(see below).

2. Relaxation time srel

To quantify how fast SMC “thermalizes” the diameters, we
first measure the decay of Cσ (s) onto the plateau C∞

σ with
a normalized correlation function C̃σ (s) and then define a
relaxation time srel. To this end, we introduce

C̃σ (s) =
Cσ (s) − C∞

σ

Cσ (0) − C∞
σ

. (26)

In Fig. 5, we display C̃σ as a function of s for the standard
SMC at the same temperatures T as in Fig. 3(a). We define a
relaxation time srel via

C̃σ (srel) = e−1. (27)

If we ignore the lowest five temperatures T < T SMC
g cor-

responding to glassy nonequilibrium states, then we find a
relaxation time srel ≈ 10, almost independent of the temper-
ature T .

Figure 6 shows the relaxation time srel as a function of the
parameter σ of the size-bias SMC for the temperatures T =

0.065, 0.1, and 0.3. We observe that srel(σ ) has a minimum,
σmin(T ). For the specified temperature range we have 0.1 
σmin  0.2. Since we are interested in optimizing SMC
at low temperatures close to the numerical glass-transition
temperature T SMC

g ≈ 0.06, we propose σmin = 0.1 as the
optimized value for this model system. The existence of a
minimum for the size-bias SMC is intuitively clear: While too
large σ lead to “unnecessary” SMC trials which are rejected

100 101 102 103
0.0

0.2

0.4

0.6

0.8

1.0

C̃
σ

FIG. 5. Correlation function C̃σ (s), see Eq. (26), as a function of
SMC sweeps s in frozen coordinates. Temperatures T increase from
blue to red; see the caption of Fig. 3(a).
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FIG. 6. Relaxation time srel as a function of the parameter σ of
the size-bias SMC for the three different temperatures T = 0.3 (red
triangles), T = 0.10 (brown circles), and T = 0.065 (blue squares).
The dashed horizontal lines denote the relaxation times of the stan-
dard SMC. The black arrow marks σM − σm, the difference between
the maximum and minimum diameter.

most of the times, too small values are also inefficient since
then only very similar diameters are exchanged such that the
swap moves have essentially no effect.

3. Computational efficiency

Above, we have quantified the “physical” performance of
the different SMC schemes in terms of the diameter corre-
lation function Cσ (s). However, this does not fully account
for the computational efficiency, for which the computational
load has to be considered as well. We find that the three
considered SMC variants can be implemented efficiently, as
we demonstrated with the code snippet in Sec. III D. Their
computational load is similar, as we will see below in Fig. 11
in Sec. V.

V. HYBRID MD-SMC DYNAMICS

A. Definition and parameters

In this section, we analyze the hybrid MD-SMC dynamics,
introduced in Ref. [10]. This dynamics consists of micro-
canonical (NV E ) MD simulation where, periodically after a
time interval tMD, s consecutive swap sweeps are inserted.
Here one sweep is defined by N subsequent elementary SMC
attempts to exchange the diameters of particle pairs while
the coordinates are frozen, as defined in Sec. III. The nu-
merical results presented below refer to the standard SMC
scheme; however, similar results are expected for the other
two variants. Their efficiency is different but with the choice
of appropriate parameters they sample from the same target
distribution.

Following Ref. [10], we define the SMC frequency

fSMC =
s

tMD
(28)

to fully characterize MD-SMC by these three parameters,
among which only two are independent. In the following, we
will refer to MD-SMC with a specific choice of tMD and s as
SMC(tMD, s). By a comprehensive analysis of SMC(tMD, s)
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with varying tMD and s, we give insight into the mechanism of
the drastically accelerated structural relaxation. Before that,
we demonstrate that the system is properly thermostatted
when coupled to SMC. Unless noted otherwise, we use tMD =

0.01 ≡ t as a default value in the following.

B. MD-SMC as a thermostat

The sole addition of SMC to microcanonical MD can be
used to adjust the temperature T of the system. Thus, it
is not necessary to couple MD to a thermostat such as the
Nosé-Hoover or the Berendsen thermostat [31] or the Lowe-
Andersen thermostat applied in our equilibration protocol, cf.
Sec. II B. To see this, we perform the following protocol: We
start from equilibrated configurations at the initial tempera-
ture T0 = 0.30, followed by MD-SMC simulation at a target
temperature TSMC that enters the Metropolis criterion of the
swap moves, cf. Eq. (13). We determine the instantaneous
temperature T :=  2K

3N
, averaged over 60 simulations, via the

kinetic energy K of a sample with N particles. Figure 7(a)
shows the instantaneous temperature T as a function of time
t for the target temperatures TSMC = 0.07 (dashed lines) and
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FIG. 7. (a) Instantaneous temperature T as a function of time t

with MD-SMC dynamics (tMD = 0.01). The initial temperature is
T0 = 0.30 for each curve. Two different target temperatures TSMC

are imposed [cf. Metropolis criterion of swap trial moves, Eq. (13)];
results for TSMC = 0.07 are shown as dashed lines and TSMC = 0.50
as solid lines. The frequency fSMC is varied for both TSMC, as in-
dicated. For the computationally demanding value fSMC = 105, we
only simulate up to t = 20. (b) Relaxation time τT , see Eq. (29), as a
function of frequency fSMC for the two target temperatures TSMC used
in (a). The dashed black line indicates a proportionality τT ∝ f −1

SMC.
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FIG. 8. Velocity correlation function Cv (t ) for N = 8000 parti-
cles and the two temperatures T = 0.06 and T = 0.30, computed for
pure NV E dynamics (solid lines) and for NV E dynamics subjected

to a singular distortion at t = 0 (circles). The distortion is defined
as a full thermalization of diameters by performing 103 × N swap
attempts.

TSMC = 0.50 (solid lines), i.e., a very low and a relatively
high temperature (see below). For the frequencies fSMC ∈
{10−1, 1, 102}, both target temperatures are approached on
a timescale that decreases with increasing frequency fSMC.
A nonmonotonic behavior occurs for fSMC = 105, where the
timescale increases again.

For a quantitative analysis, let us introduce the relaxation
time τT of the temperature, defined by

T (τT ) − TSMC

T0 − TSMC
= e−1. (29)

Figure 7(b) shows τT as a function of fSMC for TSMC = 0.07
and TSMC = 0.50. The quantitative behavior is very similar
in both cases. For fSMC  10, we observe τT ∝ f −1

SMC. Then,
on increasing fSMC, the relaxation time τT reaches a shallow
minimum at a value τmin

T ≈ 2 around f min
SMC ≈ 102. For larger

fSMC, τT increases mildly and then saturates at the values
τT ≈ 6 for TSMC = 0.07 and τT ≈ 4 for TSMC = 0.50. The
saturation of τT can be understood from our findings for SMC
on a frozen configuration in Sec. IV. Here we saw that about
srel ≈ 10 swap sweeps are required for the decay of the diam-
eter correlation function onto a plateau. By performing more
than srel swap sweeps per microscopic timescale tmic ≈ 0.2 (to
be defined shortly), we expect a saturation of the MD-SMC
dynamics with respect to the speed with which the target
temperature is approached. The swap frequency at which this
saturation threshold is approached can be estimated as f ∗

SMC =

srel/tmic ≈ 50 which roughly corresponds to the “onset” of the
shallow minimum in τT . The reason for the increase from
f min
SMC to the final saturation above f min

SMC is, however, not clear
to us.

A microscopic timescale tmic can be estimated via the first
zero-crossing of the velocity autocorrelation function,

Cv (t ) = v(t )v(0)/v2(0). (30)

Thus, the microscopic timescale is given by tmic =

min{t |Cv (t ) = 0}. As we shall see below, a similar estimate
of tmic is the location of the maximum of the derivative of the
mean-squared displacement. As can be inferred from Fig. 8
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FIG. 9. Instantaneous temperature T as a function of time t at
TSMC = T0 = 0.30. For NV E dynamics (brown curve), MD-SMC
with the default time step t = 0.01 (green curve), and MD-SMC
with t = 0.002 (blue curve). For the MD-SMC dynamics, fSMC =

1000 with tMD = 0.01 is chosen. Curves are averaged over 60 sam-
ples (each with N = 2048 particles).

for the two temperatures T = 0.06 and T = 0.30, the mi-
croscopic timescale is tmic ≈ 0.2. Note that the temperature
dependence of tmic is very weak for T ∈ [0.06, 0.30], as ex-
pected.

1. Temperature shift?

As already reported in Ref. [10], there can be a problem
with a slight temperature shift if one chooses tMD = 0.01,
which coincides with the time step t = 0.01. Here we
show that this is not a principal problem of the choice of
a very small time tMD. Instead, it is a numerical problem
with regard to the integration of the equations of motion
and can be simply solved by choosing a smaller time step.
This is demonstrated in Fig. 9, plotting the instantaneous
(but sample-averaged) temperature T as a function of time
t for the example TSMC = T0 = 0.3, choosing fSMC = 1000
with tMD = 0.01 and the two integration time steps t = 0.01
(green curve) and t = 0.002 (blue curve). For the pure NV E

dynamics (brown curve), the time step t = 0.01 is suffi-
ciently small to maintain the correct temperature. In contrast,
for the MD-SMC dynamics with the same time step, a relative
temperature shift |T − T0|/T0 ≈ 0.7% occurs. With a smaller
time step t = 0.002, one avoids this shift within the accu-
racy of our measurement. We have checked that the small
shift for t = 0.01 has a negligible effect on the properties
reported below; especially at temperatures T0 < 0.3 this effect
tends to be even smaller. Thus, we keep using the time step
t = 0.01 in the following.

2. Microscopic equilibrium

We have seen that MD-SMC guarantees a correct ther-
mostatting of the system, provided that the time step for the
integration of the equations of motion is sufficiently small.
Now we show that, after the application of swap moves in
frozen coordinates, the particle velocities remain in equilib-
rium (during the subsequent MD time; remember that SMC
itself does not affect the velocity distribution at all). To
this end, we reconsider the velocity autocorrelation func-
tion in Fig. 8. Here the solid lines refer to standard NV E

dynamics, while the circles correspond to NV E dynamics
with an imposed singular distortion of the system at time t = 0
by performing 103 × N swap trials. That the circles are on
top of the solid lines indicates that the Maxwell-Boltzmann
velocity distribution is stationary during MD-SMC simula-
tion. In this sense, MD-SMC seems to preserve microscopic
equilibrium.

C. Structural relaxation

In this section we investigate the structural relaxation
with MD-SMC and aim at elucidating the mechanisms how
MD-SMC affects dynamic processes. The starting point for
all simulations discussed below are configurations that were
equilibrated via MD-SMC (see Sec. II B; for T  0.06 sam-
ples were fully equilibrated, as identified via a drop in the
specific heat). For the analysis of the dynamics, we consider
the MSD,

MSD(t ) = (r(t ) − r(0))2, (31)

and the self-part of the overlap function,

Q(t ) = (a − |r(t ) − r(0)|). (32)

In these definitions, the angular brackets . indicate the par-
ticle as well as ensemble average, r(t ) is the particle position
vector at time t ,  the Heaviside-step function, and a = 0.3 a
microscopic length scale. We use the overlap function Q(t ) to
define a relaxation time τ via

Q(τ ) ≡ e−1. (33)

For the results below, we have chosen tMD = t ≡ 0.01 and
thus we vary fSMC via the parameter s, cf. Eq. (28). In
Fig. 10(a), we show the time dependence of the overlap
function Q at a low temperature T = 0.07. For pure NV E dy-
namics ( fSMC = 0), we observe that Q(t ) falls onto a plateau
the value of which is close to 1. Thus the system behaves
like an amorphous solid on the considered timescales. In
fact, the glass-transition temperature of NV E dynamics is
T NVE

g ≈ 0.11 if one considers timescales up to about 105

[15]. On increasing the swap frequency fSMC, the timescale
on which Q(t ) decays first rapidly decreases and eventually
saturates for fSMC  103.

In Fig. 10(b), the relaxation time τ , as extracted from Q(t ),
is displayed as a function of inverse temperature 1/T for
different values of fSMC. Note that a similar plot is shown in
Ref. [10]. As pointed out in this work, even at very small fre-
quencies (the smallest one here is fSMC = 0.0125, red curve)
the gap in τ between NV E and SMC, τ := τNVE/τSMC, cov-
ers several orders of magnitude at low T . This gap increases
on decreasing T . On increasing fSMC  103 (corresponding
to s  10 here), there is the aforementioned saturation of τ .
For the most efficient parameters, we have τ ≈ 0.5 × 104

at T = 0.09. If one extrapolates τ for NV E dynamics below
T = 0.09, as done in Ref. [10], then the gap τ covers many
more orders of magnitude. In this sense, the gap between sim-
ulations and experiments of glassforming liquids is eventually
closed.
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FIG. 10. (a) Overlap function Q as a function of time t at the
temperature T = 0.07 for different values of fSMC. (b) Relaxation
time τ as a function of inverse temperature 1/T for the same values
of fSMC as in (a). The upper x axis is inverted, showing the values T =

1/(1/T ). Systems with N = 8000 particles are chosen for fSMC = 0,
0.0125, and 0.1, with N = 500 particles for fSMC = 1 and 10, and
with N = 256 particles for fSMC = 102, 103, and 105. The large black
circles show results for fSMC = 10 with the time step t = 0.002
(otherwise the time step t = 0.01 is used).

1. Asymptotic SMC∞

As observed in Fig. 10, variation of the number of sweeps
s ∝ fSMC, cf. Eq. (28), interpolates between two limiting cases
of MD-SMC dynamics: (i) for s = 0 (or fSMC = 0), pure NV E

dynamics is recovered and (ii) for s → ∞ ( fSMC → ∞), MD-
SMC is “physically most efficient” in the sense of a minimum
relaxation time τ . Formally, we define

SMC∞ := SMC(tMD → 0, s → ∞) (34)

≈ SMC(tMD = 0.01, s = 103). (35)

Of course, the value tMD = 0.01 ≡ t is the smallest possible
value for MD simulations with a time step t (with the caveat

10−2 10−1 100 101 102 103

fSMC

0
2
4
6
8

10

t C
P
U
/t

N
V
E

C
P
U standard SMC

size-bias SMC (Δσ = 0.1)

FIG. 11. Normalized CPU time tCPU/tNVE
CPU of MD-SMC as a func-

tion of fSMC for the temperature T = 0.07 and N = 2048 particles.

that there might be a small temperature shift if t is too large,
see Fig. 9).

The observation that the asymptotic behavior occurs at
s  10 ≈ srel is perfectly reasonable with regard to Sec. IV,
where we saw that for the standard SMC the diameter autocor-
relation function decays onto a plateau after a relaxation time
srel ≈ 10, almost independently of the temperature T . Thus
for s  srel we expect a “full thermalization” of the diameters
and asymptotic behavior of MD-SMC.

Note that the SMC∞ is by far not the computationally most
efficient parameter setting.

2. Computationally most efficient SMC

To find the frequency f ∗
SMC for the computationally most

efficient SMC, one has to take into account the required CPU
time tCPU of MD-SMC simulations. In Fig. 11, inspired by
Ref. [10], we show tCPU, normalized by that of the pure NV E

dynamics, as a function of fSMC. Obviously, the additional
computational load of the size-bias SMC compared to the
standard SMC is negligible. To estimate f ∗

SMC, a reasonable
approach is to minimize the product of CPU time tCPU with
relaxation time τ . This method was proposed in Ref. [10] and
the authors found f ∗

SMC ∈ [20, 100]. In the latter interval, the
SMC part requires between 50% and 240% of the CPU time
of the MD part. We can understand this range of values for
f ∗
SMC a priori from the discussion in Sec. IV, from which

we expect f ∗
SMC := srel/tmic ≈ 50. A similar estimate can be

obtained by f ∗
SMC := srel/tvib, where tvib is the microscopic

timescale on which a particle rattles inside its cage in an amor-
phous solid state. The latter timescale can be estimated via
tvib := l/vthm, with l (T ) a temperature-dependent localization
length and vthm(T ) the average thermal velocity of a particle
at temperature T . The localization length l can be calculated
from the MSD, see Eq. (36) below. For an amorphous solid
at T = 0.07, we obtain l (T ) ≈ 0.063, vthm(T ) ≈ √

kBT/m ≈
0.26 and thus f ∗

SMC = srel
vthm/l ≈ 40.

3. Variation of tMD

Now we analyze how the MD-SMC dynamics changes un-
der the variation of tMD, keeping the number of swap sweeps
fixed to large value s = 103. As we shall see below, the choice
tMD  tmic ≈ 0.2 enables us to disentangle the Newtonian
dynamics of MD from the effect of swapping with SMC.

Figure 12 shows the relaxation time τ as a function of
tMD for different temperatures T . For all considered temper-
atures, the relaxation time increases on increasing tMD, as
the diameters are thermalized less frequently, reducing the
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FIG. 12. Relaxation time τ as a function of tMD for different
temperatures T (decreasing from bottom to top, as indicated). A fixed
value s = 103 and N = 2048 particles are used. The dashed lines
indicate a proportionality τ ∝ tMD, while the dotted black line shows
τ = tMD.

effect of SMC on the dynamics. On increasing tMD beyond
the microcanonical (NV E ) relaxation time τNVE, the chrono-
logically first full thermalization of the diameters at t = tMD

has no influence on the calculation of the relaxation time τ ,
see Eq. (33). Thus we have τSMC ≡ τNVE for tMD  τNVE. The
equality can numerically only be observed for the two higher
temperatures, as for the other T the NV E relaxation times are
beyond the viable simulation time.

Now let us analyze the other limit: On decreasing tMD

and approaching a microscopic timescale, tMD ≈ tmic ≈ 0.2, a
saturation sets in. For tMD = 0.01 ≡ t the curves have con-
verged within numerical precision. In the previous subsection
we showed that, for any given T , SMC(tMD = 0.01, s) has
numerically converged with respect to s if s  103. Now we
see that SMC(tMD, s = 103) has also numerically converged
with respect to the parameter tMD when close to 0.01. We can
conclude that SMC(tMD = 0.01, s = 103) in fact resembles
the converged SMC∞ dynamics up to a decent numerical
precision, confirming Eq. (35).

A remarkable observation in Fig. 12 is that a linear regime
develops for T below the microcanonical glass-transition tem-
perature T NVE

g ≈ 0.11. It seems that τ ∝ tMD when tmic <

tMD < τNVE. To understand this observation, we analyze the
MSD at a low temperature T = 0.07 in the next subsection.

D. The relaxation mechanism of MD-SMC

in an amorphous solid

1. Stepwise increase of MSD

We saw that hybrid MD-SMC is particularly efficient at
low temperatures, i.e., at temperatures T far below the glass-
transition temperature T NVE

g ≈ 0.11 of a conventional MD
simulation. This is possible since MD-SMC opens a new
relaxation channel, the origin of which shall be revealed in
the following. For this purpose we consider the temperature
T = 0.07, which was characterized as an amorphous solid
state of pure MD before: In Fig. 10(a), we showed that the
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FIG. 13. (a) MSD as a function of time t for different values of
tMD, as indicated by the colored numbers. Blue dotted lines act as a
guide to the eye. (b) The derivative dMSD/dt as a function of t − tMD

for finite values of tMD and as a function of t for tMD = ∞ (black
dashed line). The vertical dotted line marks the microscopic time
tmic = 0.2. In both panels, number of swap sweeps s = 103 and N =

8000 particles.

overlap function Q(t ) has a pronounced plateaulike region up
to a timescale t ≈ 104.

In Fig. 13(a), we show the MSD as a function of time t

for relatively short times, t < 102. For NV E dynamics (black
dashed curve, tMD = ∞), the MSD exhibits a plateau, which
quantifies the localization of each particle inside its cage. The
colored curves and numbers represent the hybrid MD-SMC
dynamics for varying tMD. After every tMD, we perform a full
thermalization of the diameters, i.e., 103 × N swap moves are
attempted. An intriguing feature of the MSDs in Fig. 13(a)
is that, after every tMD, there is a jump of the plateau value
to a higher level (for tMD  5). Here the MSD at time t ∈
[ntMD, (n + 1)tMD] only depends on n ∈ N, the number of
jumps or diameter thermalizations, as indicated by the blue
horizontal lines. This explains the linear regime τ ∝ tMD ob-
served in Fig. 12 and Ref. [10]. The timescale tjmp of the
jumps, i.e., the relaxation time from one plateau to the next, is
short but finite.

In Fig. 13(b), we quantify the timescale tjmp of the jumps
by plotting the derivative dMSD/dt as a function of t − tMD

for different values of tMD. For tMD = ∞ (black dashed line),
we show t on the x axis instead. We can infer from the
figure that the timescale tjmp coincides with the microscopic
timescale tmic ≈ 0.2 (vertical blue line) on which a particle
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relaxes within its cage as a consequence of collisions with its
neighbors during MD.

For tMD  1, the timescale tMD starts to interfere with the
microscopic timescale tmic ≈ 0.2. Here tMD is too short to
allow a complete relaxation onto a new plateau before just
another thermalization of the diameters is imposed by SMC.
Thus, in Fig. 13(a), the phenomenology of a stepwise relax-
ation vanishes for tMD  1.

2. Relaxation mechanism

The stepwise increase of the MSD reveals the origin of
the very efficient structural relaxation at low temperatures
via the MD-SMC dynamics. The occurrence of a plateau in
the MSD indicates a “frozen” structure where each particle
is localized in a cage formed by surrounding neighboring
particles. A step in the MSD after a thermalization with
swap moves is associated with a rearrangement of the cage
structure: As shown in Sec. III, the application of SMC on
a configuration with fixed particle coordinates assigns a new
(equilibrium) permutation of diameters and thereby a new
cage geometry around each particle is imposed. After SMC,
during MD over the time tMD, each particle continues to
perform vibrations in a cage, however, and this is the crucial
point, now within a differently shaped cage. Here the particle
can explore a (slightly) different region in coordinate space.
The relaxation toward a new mean position, as manifested
by a jump in the MSD, occurs on a microscopic timescale
tmic, cf. Fig. 13. The proposed mechanism clarifies the drastic
speed-up of the dynamics: While the diameters are exchanged
instantaneously during the SMC part, the subsequent re-
laxation within a new cage occurs on a short microscopic

timescale.
To reveal this relaxation mechanism, we disentangled the

SMC from the MD part by choosing a relatively large (com-
putationally inefficient) value tMD > tmic ≈ 0.2. The stepwise
increase of the MSD turns into a continuous increase for
small values of tMD, cf. Fig. 13(a). Here MD-SMC is most
efficient.

Figure 14 schematically illustrates the MD-SMC relax-
ation mechanism. Before SMC, each particle is trapped inside
a cage with a specific geometry [Fig. 14(a)]. We show each
particle at its assumed time-averaged position. After the di-
ameters were swapped via SMC, the cage geometry around
each particle has changed [Fig. 14(b)]. Thus, during the sub-
sequent MD part, each particle will fluctuate around a new
mean position. The corresponding shifts of the mean positions
are indicated by black arrows. As an example, for the red
sphere labeled by 0, the green sphere shows its new average
position after SMC. In the illustration, we purposely did not
change the diameter of particle 0. Thereby we want to em-
phasize that the altered cage environment of a tagged particle
is the essential ingredient to the relaxation mechanism.
In this sense, the mechanism is consistent with the find-
ing in Ref. [5] that the displacement of a tagged par-
ticle via SMC is not always linked to a change of its
own diameter.

Above, we identified the timescale tjmp = tmic ≈ 0.2 on
which the jumps in the MSD occur. To quantify the distri-
bution of jump lengths, we measure shifts x̄ of subsequent
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FIG. 14. Schematic illustration of the proposed relaxation mech-
anism of the MD-SMC dynamics. A sketch of a two-dimensional
system is shown (a) just before SMC and (b) immediately after SMC;
the particle positions are exactly the same in (a) and (b). Before SMC,
each particle is shown at its assumed time-averaged position. After
SMC, each particle finds itself in a new cage geometry, and thus each
mean position has changed. The corresponding shifts are indicated
by black arrows. As an example, for the red sphere labeled by 0, its
new mean position is indicated by the green sphere.

mean positions x̄n, which are triggered by the application of

SMC. Here x̄ = x̄n+1 − x̄n, where x̄n = t−1
MD

 (n+1)tMD

ntMD
x(t ) dt

is calculated by averaging the x coordinate of a particle over
the nth MD block of time span tMD. These definitions are
robust when tmic  tMD  τNVE.

In Fig. 15, we show the distribution of x̄ (blue), consid-
ering many particles and MD blocks. As a reference, we show
a zero-centered normal distribution (black dashed line) with a
variance calculated from the data.

We want to compare x̄ with the fluctuations of the par-
ticles inside their cage during the MD part. To this end,
we introduce ξ (t ) = x(t ) − x̄n on the interval t ∈ [ntMD, (n +

1)tMD]. The distribution of ξ over many particles and MD
blocks is shown in Fig. 15 (red). Also here we plot a zero-
centered normal distribution (black solid line) with a variance
calculated from the data. We find that the distribution of
the mean-position shifts x̄ is comparable to, but slightly
narrower than, the fluctuations ξ of the particles inside their
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FIG. 15. Probability distributions of x̄ = x̄n+1 − x̄n (blue) and
of ξ (t ) = x(t ) − x̄n (red). For both quantities, a fit of a normal distri-
bution is shown (black lines). Results are calculated from a sample
with N = 8000 particles, considering 10 MD time blocks, each of
length tMD = 100.
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FIG. 16. Mean-squared displacement MSD as a function of time
t for NV E (solid lines) and SMC∞ dynamics (dashed lines) for
different temperatures T , respectively. In (a) equilibrium data (higher
T ), while in (b) nonequilibrium curves (lower T ) are shown. For
T = 0.04 and SMC∞, we fit a solid black curve according to a von

Schweidler law, cf. Eq. (36). The fitting interval is indicated by dotted
vertical lines.

cage. Note that the variance of ξ (with ξ  = 0) is related
to the MSD via ξ 2 = 1

6 MSD = l2. Here we introduced
a localization length l , which is in the focus of the next
section.

E. Glass transition: NV E vs. SMC∞

We saw that the stepwise increase of the MSD is associ-
ated with a sequence of rearrangements of the cage structure
around each particle. In each of these steps, the particles shift
to new mean positions. However, this dynamic process cannot
be described as a random walk, since the new configuration
after the rearrangement of cages is still strongly correlated
with the previous one. This correlation manifests in a shoulder
of the MSD on intermediate timescales—even when the phys-
ically most efficient SMC [SMC∞, see Eq. (34)] is used. At
sufficiently low T , we can identify a plateau in the MSD also
for SMC∞ dynamics. In this section, we extract the associated
length scale with a von Schweidler law and compare it with
that of NV E dynamics.

Note that now we include temperatures T < T SMC
g ≈ 0.06

below the glass-transition temperature. Here our preparation
protocol no longer provides fully equilibrated configurations.

In Fig. 16, we show the MSD as a function of time t

for NV E (solid lines) and SMC∞ dynamics (dashed lines).
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FIG. 17. Localization length l as a function of temperature T for
NV E and SMC∞ dynamics. The plateau height l is calculated from
the MSDs via a von Schweidler fit; see Fig. 16. The vertical lines
indicate the critical temperatures Tc.

We cover a wide range of temperatures: In Fig. 16(a), re-
sults for four higher temperatures T are displayed, for which
the initial configurations were fully equilibrated with MD-
SMC. In Fig. 16(b), the dynamics for lower temperatures
are shown, where the initial configurations could not be
fully equilibrated. We observe the typical phenomenology of
glassforming liquids, i.e., the MSDs develop shoulders and
plateaus on decreasing the temperature T . These plateaus
reflect the localization of the particles in a cage. Their height
describes a characteristic squared length scale which is sig-
nificantly smaller than the squared nearest-neighbor distance
between particles.

Interestingly, in Fig. 16(b) it seems that the overshoots
in the MSDs around a time t ≈ 1 for NV E dynamics are
absent for SMC∞. Since the overshoot is associated with
particle vibrations, its absence in MD-SMC seems plausible
in consideration of the proposed relaxation mechanism, which
qualitatively changes the cage dynamics.

MCT [20] predicts the asymptotic behavior of the MSD
around the plateau region. According to this theory, the initial
increase from the plateau toward the diffusive regime is given
by a von Schweidler law. This is a power law that can be seen
as a fingerprint of glassy dynamics. It reads

MSD(t ) = 6l2 + ctb, (36)

where the exponent b is predicted to be universal for a given
system and c > 0 is a critical amplitude. We use fits to
Eq. (36) to estimate the temperature dependence of the lo-
calization length l from the MSDs. We choose b = 0.7 and a
time interval t ∈ [3, 30]. Then the parameters l2 and c appear
linear in Eq. (36) and thus they can be calculated via a linear
regression model. An example of such a fit for the temperature
T = 0.04 and SMC∞ dynamics is shown in Fig. 16(b).

Figure 17 shows the localization length l as a function of
temperature T for NV E dynamics (blue circles) and SMC∞
(red squares). The vertical lines show the respective critical
MCT temperatures Tc, identified by the maximal T beyond
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which the fitting procedure (subjectively) fails. MCT predicts
that coming from temperatures T < Tc the localization length
reaches a critical value lc at Tc that marks the stability limit of
the amorphous solid state and thus above Tc the system is in a
liquid state.

In experiments and simulations of glassforming liquids, an
ideal glass transition, as predicted by MCT, does not exist.
In real systems, the temperature Tc can be interpreted as
a crossover temperature between a liquidlike dynamics for
T > Tc and a solidlike dynamics for T < Tc. We use the von
Schweidler law (36) with the aim to determine the localization
length l . While at low temperatures the estimated values for l

are very robust, the fitting procedure becomes more problem-
atic at higher temperatures where a plateau or even a shoulder
in the MSD can hardly be identified. However, this behavior
of the MSD manifests the gradual crossover from a solid-
to a liquidlike dynamics with increasing temperature. In the
real system, when the temperature is increased from below
Tc, the stability limit is associated with a vanishing lifetime
of the amorphous solid state and thus the plateau in the MSD
gradually disappears when Tc is approached [13].

In correspondence with MCT, we observe a saturation of
the localization length at the critical values lSMC

c ≈ 0.067
for SMC∞ and lNVE

c ≈ 0.081 for NV E dynamics. That
the critical localization length lc is significantly smaller
for the SMC∞ than for the NV E dynamics is in agreement
with the theoretical prediction of Szamel [19] in the frame-
work of an MCT model.

We find lSMC > lNVE (for T < T SMC
c , where the compar-

ison is meaningful). This result can be understood with a
simple geometric picture: Let us pin all coordinates of all
particles except for one tagged particle. When the diameters
of the particles which form a cage around the tagged one fluc-
tuate, the tagged particle can explore a slightly larger region
in its cage than without SMC.

We can also infer from Fig. 17 that toward low tempera-
tures the localization lengths of SMC∞ and NV E dynamics
tend to approach each other. In fact, this is expected from
the geometric picture above and our finding in Fig. 4 that the
plateau value of Cσ approaches 1 for T → 0. This explains
that the thermalization of diameters has a diminishing effect
on the localization length l with decreasing temperature.

VI. CONCLUSIONS

In this work, we have investigated a polydisperse model
glassformer by augmenting MD simulations with SMC. Our
aim has been to reveal the mechanisms by which MD-SMC
allows to obtain equilibrated states at very low temperatures
that are far below the glass-transition temperature of any
viable pure MD. In fact, ultrastable states can be generated

that are comparable to those realized in typical experiments
of glassforming systems. As we have shown in this work,
this is possible because the MD-SMC dynamics qualitatively
changes the caging of each particle in a dynamic manner while
it provides a proper equilibrium sampling. As a consequence,
the glass transition as identified via the critical MCT tempera-
ture Tc shifts to a much lower temperature when compared to
pure Newtonian dynamics and the critical localization length
at Tc is significantly lower, lSMC

c ≈ 0.067 < lNVE
c ≈ 0.081.

A central idea of our study has been to disentangle the
effect of swap moves from the exploration of coordinate space
via Newtonian dynamics. To this end, we first studied SMC on
a frozen configuration. Here we worked out a full mathemat-
ical description of SMC as a Metropolis-Hastings algorithm
on a confined phase space of particle permutations. Three
different SMC variants (standard, size-bias, and local) were
introduced and characterized by symmetric proposal proba-
bilities. For each variant, we discussed the conditions under
which the Markov chain converges to the target distribution.
Numerically, we compared the performance of each SMC
variant with a diameter correlation function and its relaxation
time srel. For the standard SMC, we found that srel ≈ 10 swap
sweeps are required to “thermalize” the diameters on a frozen
configuration. For the size-bias SMC, we found the optimized
parameter σ ≈ 0.1. At a low temperature, this optimized
size-bias SMC only requires about 1/4 of the swap trials of
the standard SMC. The local SMC scheme tends to have the
worst performance for the considered polydisperse system,
but if one chooses r  3 for the range of the local SMC,
it is as efficient as the standard SMC. The local SMC is
particularly interesting as a possible candidate for a parallel
implementation of SMC for large systems, with the option
to optimize the efficiency by combining it with the size-bias
SMC.

For the hybrid MD-SMC dynamics, we have shown that it
is not necessary to use an additional thermostat (provided that
the time step t is sufficiently small); MD-SMC itself guaran-
tees a proper thermostatting of the system. To implement the
physically most efficient MD-SMC, denoted by SMC∞ above,
the time tMD between swap sweeps is as small as possible
(i.e., tMD = t) and in each swap round at least srel sweeps
are performed.

We have shown how SMC qualitatively changes the dy-
namics at low temperatures by choosing tMD such that it is
significantly larger than the microscopic timescale tmic ≈ 0.2.
Then the MSD shows a stepwise increase with MD-SMC
(instead of a single plateau for pure MD dynamics). At each
of these steps, a new diameter permutation is instantaneously
imposed with SMC, changing the cage geometry around each
particle. Then, during MD, a shift of the mean position of
each particle occurs on the microscopic timescale tmic. It is this
mechanism that explains the drastic speed-up of the dynamics.
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ABSTRACT

Molecular dynamics computer simulations of a polydisperse softsphere model under shear are presented. The starting point for these simu
lations are deeply supercooled samples far below the critical temperature, Tc, of mode coupling theory. These samples are fully equilibrated
with the aid of the swap Monte Carlo technique. For states below Tc, we identify a lifetime τlt that measures the time scale on which the
system can be considered as an amorphous solid. The temperature dependence of τlt can be well described by an Arrhenius law. The existence
of transient amorphous solid states below Tc is associated with the possibility of brittle yielding, as manifested by a sharp stress drop in the
stress–strain relation and shear banding. We show that brittle yielding requires, on the one hand, low shear rates and, on the other hand, the
time scale corresponding to the inverse shear rate has to be smaller or of the order of τlt. Both conditions can only be met for a large lifetime
τlt, i.e., for states far below Tc.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086626

I. INTRODUCTION

Glassforming liquids exhibit a dramatic slowing down of their
dynamics with decreasing temperature T. Important insight on the
origin of this slowing down has been given by the mode coupling
theory (MCT) of the glass transition.1 This theory predicts a diver
gence of the structural relaxation time of the liquid when decreasing
T toward a critical temperature Tc. At Tc, a transition from an
ergodic liquid state to a nonergodic amorphous solid state occurs.
The order parameter of this transition is associated with the local
ization of each particle in the cage that is formed by neighboring
particles. Thus, in the framework of MCT, the glass transition can
be seen as a localization transition where, approaching the transition
from temperatures T ≜ Tc, i.e., from below, the critical temperature
Tc marks the stability limit of the amorphous solid. At Tc, the length
scale, ξ, that measures the localization of the particles in their cages
reaches a critical value such that the amorphous solid state cannot
be stable anymore (note the analogy with the Lindemann criterion
for crystalline solids2).

In real glassforming systems, a transition as predicted by MCT
is not observed. However, using the predictions of MCT, a criti
cal temperature Tc can be identied around which the dynamics
of the supercooled liquid gradually change from a liquidlike to a

solidlike dynamics.3 In an amorphous solid state, the system is
arrested in amicrostate, as reected by a plateau in quantities such as
the taggedparticle meansquared displacement (MSD). The height
of the plateau in the MSD corresponds to approximately one sixth
of the localization length ξ (see below). In fact, a supercooled liquid
far below Tc can be found in the state of an amorphous solid, albeit
this state has only a nite lifetime τlt that corresponds to the time
scale over which the plateau in theMSD can be observed (see below).
Then, there is a crossover to a diffusional regime on a time scale
τD ≫ τlt, where the ergodicity of the system is restored via structural
rearrangements of the particles. Below Tc, the decrease of the local
ization length ξ with decreasing temperature is accompanied by a
rapid increase of τD and therefore also with an increase of the
lifetime τlt of the amorphous solid state such that, at sufciently low
temperatures below Tc, the lifetime τlt may reach macroscopic time
scales.

One may expect that the response of a supercooled liquid to an
external mechanical load, such as a shear eld, is qualitatively dif
ferent far below Tc from the response above and around Tc. This is
due to the solidlike behavior over a large time scale τlt in the former
case. A system in an ideal amorphous solid state (i.e., with τlt =∞)
is associated with a broken continuous translation symmetry,
which implies its rigidity and the presence of longrange density
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correlations4 as well as a fareld decay of frozenin stress uctu
ations.5 When shearing a threedimensional ideal amorphous solid
with a constant strain rate γ̇ in a planar Couette ow geometry, in
the steady state, a owing uid state with a constant shear stress σss
is obtained. In the limit γ̇ → 0, the stress σss is nonzero and reaches
the yield stress σyield. Note that extensions of MCT to glassforming

liquids under shear have been proposed.6–9 In the framework of the
MCT by Fuchs and Cates,6 a yield stress is predicted for systems
below Tc.

10,11

Thus, in an ideal amorphous solid, due to the broken transla
tion symmetry, the shear viscosity η is innitely large and one does
not obtain a Newtonian behavior with σss = ηγ̇ in the limit γ̇ → 0.
However, this is certainly different in a supercooled liquid far below
Tc that is associated with a large but nite value of the time scale τlt
on which it can be considered to be in an amorphous solid state. In
such a system, one expects, on the one hand, a Newtonian behavior
for γ̇−1 ∈ τD and, on the other hand, a solidlike response for shear
rates with γ̇−1 ≜ τlt ≜ τD. Note that, in the latter case, the condition
γ̇−1 ≜ τlt is crucial to obtain a solidlike shear response. For times
larger than τlt, dynamic processes occur that are associated with the
breaking of cages, and thus the more the time scale γ̇−1 exceeds that
of τlt the more liquidlike is the response to the external shear. On
the other hand, also important for a solidlike shear response is the
condition that shear rates have to be sufciently small such that the
resulting steadystate stress σss is only slightly larger than an appar
ent yield stress that can be obtained via extrapolation to the limit
γ̇ → 0 (see below).

In this work, the latter regime is studied for amodel glassformer
using nonequilibriummolecular dynamics (NEMD) computer sim
ulation. Themodel under consideration is a polydisperse softsphere
system that has been recently proposed by Ninarello et al.12 It allows
the application of the swap Monte Carlo technique13 in combina
tion withMD simulation fromwhich we obtain equilibrated samples
far below Tc, which we use as starting congurations for NEMD
simulations under shear. At sufciently low shear rates, the sim
ulations of the sheared samples far below Tc show features that,
in computer simulations, have been encountered so far only for
outofequilibrium glass states at very low or zero temperature. In
particular, we observe the occurrence of brittle yielding,14 as mani
fested by a sharp stress drop in the stress–strain relation at a strain of
the order of 0.1.15–17 Thereby, we demonstrate that, for an appropri
ate choice of the shear rate and temperature T ≜ Tc, brittle yielding
and shear banding can be seen in a supercooled liquid state, provided
that this state exhibits transient elasticity over a signicant time
scale τlt.

Our investigations are complementary to a recent study by
Ozawa et al.15 where, for the same model glassformer, rst fully
equilibrated samples at different initial temperatures Tini above,
around, and far below Tc were generated, followed by a quench to
zero temperature and subsequent shear simulations using the ather
mal quasistatic shear (AQS) protocol. As we shall see below, our
ndings are similar to those of Ozawa et al. when comparing the
stress–strain relation of our shear simulations at a given temper
ature T and nite shear rate with their AQS calculations for the
corresponding temperature T ini = T. As in our case, they observe
brittle yielding for “wellannealed” samples at Tini ≪ Tc, while for
temperatures T ini around and above Tc, a more ductile response is
seen. The similar response in the AQS calculations and our shear

simulations is remarkable, keeping in mind that, in our simulations,
we shear supercooled liquids at a nite shear rate. In the limit γ̇ → 0,
i.e., in the “quasistatic” limit, these supercooled liquid states always
show the ductile mechanical response of a Newtonian liquid. This is
also true for temperatures below Tc where elasticity has to be con
sidered as a transient phenomenon, albeit over a very long time scale
τlt for temperatures far below Tc. The fact that the AQS simulations
do not show a Newtonian response for initial temperatures Tini ≜ Tc

indicates that, for wellannealed samples, processes that would lead
to a Newtonian response are suppressed in the framework of the
AQS scheme and one obtains the response of a solid with a nite
yield stress.

The occurrence of brittle yielding is associated with the forma
tion of shear bands. Shear banding is a ubiquitous phenomenon in
glasses undermechanical load.14,15,18–39 Especially inmetallic glasses,
shear bands lead to inhomogeneities in the microstructure and can
cause a catastrophic failure of the material.14,22,25 In AQS simu
lations of a glassforming binary LennardJones mixture, Parmar
et al.39 have demonstrated that shearbanded states can be stabilized
by applying oscillatory shear with an appropriate strain amplitude,
thereby obtaining states where a uidized band coexists with a stress
released amorphous solid. This indicates that, at a given strain above
the yield strain, the shearbanded states minimize the energy of the
system.

Unlike previous studies, in this work, we observe brittle yielding
and shear banding in transient amorphous solids under equilibrium
conditions. We nd two types of shearbanded states right after the
yielding transition, namely, states with horizontal and states with
vertical shear bands. The formation of both types of shear bands
is an efcient way of releasing stresses, i.e., the magnitude of the
stress drops is similar in both cases. However, in the case of the ver
tical bands, the stress shows an increase with strain up to a second
maximum and a second, albeit smaller, stress drop which is asso
ciated with the formation of a horizontal shear band in addition
to the vertical one. The formation of shear bands is also associ
ated with a drop of the potential energy such that, after the drop,
the potential energy is monotonously increasing toward the steady
state value. Recently, the occurrence of horizontal and vertical shear
bands has been also observed in sheared lowtemperature glass states
of a binary LennardJones mixture;37 however, in the present study,
we nd these features in equilibrated systems.

The rest of the paper is organized as follows: In Sec. II, the
details of the model potential, the simulation techniques, and the
simulation protocols are reported. Section III presents results on
the equilibrium dynamics of supercooled liquids, focusing on the
change of the dynamics around the MCT critical temperature.
Section IV is devoted to the analysis of supercooled liquids under
shear. Here, we address the question under which brittle yielding
and shear banding occur. Finally, Sec. V summarizes the results and
draws conclusions.

II. MODEL AND DETAILS OF THE SIMULATION

We consider a model of polydisperse nonadditive soft spheres
that has been recently proposed by Ninarello et al.12 In this model,
interactions between particles are pairwise additive. To each par
ticle i, a diameter σi is assigned according to a probability dis
tribution Pσ = Aσ−3 with A = 2/σ−2min − σ−2max. We have chosen
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σmin = 0.725 σ̄ and σmax = σmin/2σmin − 1 ≈ 1.611 σ̄. This choice of
σmin and σmax provides that the rst moment of Pσ is equal to σ̄;
σ̄ = 1.0 is used as the length unit in the following. The interac
tions between pairs of particles depend on the variable xij = rij/σij,
where rij = ∣r⃗i − r⃗j∣ is the distance between particle i at position r⃗i,
and particle j at position r⃗j and σij = 0.5σi + σj 1 − 0.2∣σi − σj∣
introduces the nonadditivity of the particle diameters. Note that the
nonadditivity is essential to avoid any crystallization when the swap
Monte Carlo method is applied (see below).

The interaction potential between a pair of particles is
dened by

Vx = ⎧⎪⎪⎨⎪⎪⎩
V0x−12 + c0 + c2x

2
+ c4x

4 for x ≜ xc,

0 for x ≥ xc,
(1)

where the cutoff xc = 1.25 is chosen. The terms with the parameters
c0 = −28/x12c , c2 = 48/x14c , and c4 = −21/x16c ensure the smoothness
of the function Vx at x = xc. The parameter V0 = 1.0 sets the unit
of energy in the following.

The simulations at constant particle number N, constant vol
ume V, and constant temperature T are performed with the Large
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
package.40 The number density is xed at  = N/V = 1.0. Themasses
of the particles are set to m = 1.0. In the molecular dynamics (MD)
simulations, Newton’s equations of motion are integrated by the
velocity Verlet algorithm41 using a time step of δt = 0.01τMD [with

τMD = σ̄ 2m/V01/2].
The temperature is kept xed using dissipative particle dynam

ics (DPD).41,42 The DPD equations of motions are as follows:

˙⃗ri = p⃗i/m, (2)

˙⃗pi =∑
j≠i [F⃗ij + F⃗

D
ij + F⃗

R
ij], (3)

with p⃗i the momentum of particle i and F⃗ij the force of particle j on
particle i due to the interaction potential (1).

The dissipative force, F⃗D
ij , is given by

F⃗
D
ij = −ζω2rij(ˆ⃗rij ⋅ v⃗ij)ˆ⃗rij, (4)

with ζ a friction coefcient, ˆ⃗rij the unit vector of r⃗ij, and v⃗ij = v⃗i − v⃗j

the relative velocity of the particle pair ij. The weight function ωr
is chosen to be ωr = 1.0 for r ≤ 1.3xc and ωr = 0 otherwise. The
friction coefcient is set to ζ = 1.0. With this choice of ζ , inertial
effects are not important for the response to the external shear,
in particular, the equations of motion do not correspond to the
underdamped regime reported in the simulation study of Ref. 43.

The force F⃗R
ij in Eq. (3) represents the random force, dened as

F⃗
R
ij =

√
2kBTζωrijθijˆ⃗rij, (5)

where θij are uniformly distributed randomnumbers with zeromean
and unit variance.

The DPD thermostat locally conserves the momentum and
is Galilean invariant. This is especially advantageous for the non
equilibrium MD simulations under shear because the Galilean
invariant thermostat does not introduce any bias with respect to the
direction of the velocity ow.

To obtain fully equilibrated samples at very low temperatures,
a combination of MD simulation and the swap Monte Carlo (SMC)
technique13 is used. In a “trial SMC move,” one randomly selects a
pair of particles and exchanges their diameters. Then, this move is
accepted or rejected according to a Metropolis criterion.41 In our
hybrid scheme, every 25 MD steps N trial SMC moves are per
formed. In the considered temperature range, 0.01 ≤ T ≤ 0.3, the
acceptance rate for the SMC moves varies between 10% and 22%
(with a decreasing acceptance rate with decreasing temperature).
The longest equilibration runs with the hybrid MDSMC method
were over 8 × 107 time steps, which allowed to fully equilibrate the
samples with N = 1372, 2048, 6000, and 10 000 particles at the tem
perature T = 0.06, corresponding to the glass transition temperature
T g in our study. To see whether the system is in full equilibrium, we
determined the selfpart of the overlap function, as dened by

Qt = ⟨ 1

N

N∑
i=1

Θa − ∣r⃗it − r⃗i0⟩, (6)

where Θ is the Heaviside function, ⋅ ⋅ ⋅ represents an ensemble as
well as time average, and the length a is set to a = 0.3. In Fig. 1, we
show Qt, as measured via the hybrid SMCMD dynamics, at dif
ferent temperatures for a system of N = 2048 particles. To compute
these Qt, at each temperature, we used 60 independent samples
as initial congurations that had been annealed in SMCMD runs
over 107 time steps for T ≥ 0.07 and 8 × 107 time steps for T ≤ 0.065.
With this protocol, we observe a decay of Qt for T ≥ 0.06, while
this is not the case for lower temperatures (dashed lines in Fig. 1).
From this, we estimate the glass transition temperature as Tg = 0.06
(of course, at this temperature, the system is still fully equilibrated).
Note that our protocol to equilibrate the samples is similar to the one
used by Ninarello et al.12 and Ozawa et al.15 who studied the same
model system.

FIG. 1. Overlap function Qt for systems with N = 2048 particles for the temper
atures T = 0.3, 0.2, 0.15, 0.12, 0.105, 0.09, 0.08, 0.07, 0.065, 0.6 (solid lines from
left to right) and T = 0.055, 0.05, 0.04, 0.03, 0.02, 0.01 (dashed lines from left to
right).
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Nonequilibrium MD simulations are employed to shear the
samples in a planar Couette ow geometry. The shear is solely
imposed via boundaries using Lees–Edwards boundary conditions44

along the xz plane in the direction of x. For the simulations under
shear, we have integrated the equations of motion with the time
step δt = 0.001τMD. Most of the data shown below correspond to
the temperatures T = 0.15, 0.11, 0.09, 0.07, and 0.06 for a system of
N = 10 000 particles. At each temperature, 30 runs were performed,
starting from statistically independent samples that were fully equi
librated via the MDSMC method. The considered shear rates range
from γ̇ = 10−6 to γ̇ = 10−3. For the calculation of the stress–strain
relations, we have performed a running average over strain windows
of width δγ = 10−4.

In our simulations, we use a boundarydriven method to shear
the samples. To this end, the DPD equations of motion, as given by
Eqs. (2)–(5), are solved in combination with Lees–Edwards bound
ary conditions. An alternative approach is provided by the SLLOD
equations of motion45 that homogenize the shear ow and enforce a
linear shear prole. We think that the use of the SLLOD approach is
particularly problematic in investigations of the transient dynamics
where inhomogeneous ow patterns, such as shear bands, may occur
(see below). In this case, the SLLOD equations tend to suppress
inhomogeneities and, thus, as concluded in a paper by Sodde
mann et al.,42 “produce incorrect physics.” In contrast to that, our
boundarydrivenmethod allows the system to choose its own prole.
Note, however, that in the case of our boundarydriven approach,
it is crucial to use a proleunbiased thermostat, such as the DPD
thermostat.

III. FROM LIQUID TO AMORPHOUS SOLID:
EQUILIBRIUM DYNAMICS

The dynamics of supercooled liquids is associated with the cage
effect. At sufciently low temperatures, the particles are trapped
in cages formed by the surrounding particles and the breaking of
cages requires collective particle rearrangements that slow down
with decreasing temperature. As we shall see below, around the crit
ical temperature of mode coupling theory (MCT), Tc, the system
gradually transforms from a liquidlike state to a state that can be
characterized as an amorphous solid. This transition is due to the
localization of the particles in their cages, and, as we shall see in
Sec. IV, the response to an external shear changes drastically from
the liquidlike state above Tc to the amorphous solid well below
Tc, especially with respect to the yielding behavior. In this section,
we rst present the “equation of state” of our system, i.e., the tem
perature dependence of the potential energy per particle and then
study the oneparticle dynamics in terms of the meansquared dis
placement (MSD) of a tagged particle. From the MSD, a localization
length is determined that indicates the transition from a liquid to
solidlike behavior around Tc. Furthermore, we estimate the lifetime
τlt of the amorphous solid as a function of temperature. We have
computed the equation of state from fully equilibrated congura
tions that we have obtained via hybrid MDSMC simulations at
constant temperature. For the calculation of the MSD, we have
used such fully equilibrated samples as starting congurations for
microcanonical runs where we have switched off the SMC and the
coupling to the thermostat.

FIG. 2. Potential energy per particle, epot, as a function of temperature T . The
solid line is a t with the function fT = A + BTγ with A = 0.012 001 7, B =
1.4999, and γ = 0.637 135. Indicated are the locations of the critical mode coupling
temperature, Tc = 0.104, and the glass transition temperature, T g = 0.06.

Figure 2 shows the potential energy per particle, epot, as a func
tion of temperature. In this plot, the critical MCT temperature at
Tc = 0.104 as well as the glass transition temperature at T g = 0.06
are indicated. The MCT temperature Tc was determined from ts
to dynamic quantities, such as the meansquare displacement (see
below). Below T g , the hybrid MDSMC runs on the time scale of
105τMD are no longer sufcient to fully equilibrate the system. The
data for T ≥ T g can be well described by the function (solid line in
Fig. 2)

f T = A + BT
γ
, (7)

with A, B, and γ being t parameters. While the density functional
theory of Rosenfeld and Tarazona46 predicts the exponent γ = 0.6
for simple highdensity softsphere uids, we nd the exponent
γ ≈ 0.64, which is very close to this prediction. Note that Eq. (7)
with a value of γ around 0.6 also provides a good approximation
for other glassforming liquids with a 1/rntype interactions at low
temperature (for a detailed discussion, see Ref. 47).

Now we come to the oneparticle dynamics of the system and
investigate the MSD of a tagged particle, dened by

δr2t = 1

N

N∑
i=1

∣r⃗it − r⃗i0∣2, (8)

with r⃗it the position of particle i at time t. The brackets ⋅ ⋅ ⋅
represent an ensemble as well as a time average over the differ
ent samples. Note, however, that for states below T g , we have only
applied an ensemble average. The MSDs are calculated from micro
canonical MD simulation for a system of N = 2048 particles, using
as initial congurations 60 independent samples from the MDSMC
simulations.

In Fig. 3(a), MSDs are plotted doublelogarithmically for differ
ent temperatures. Here, we have marked the different temperature
regimes. The red solid lines correspond to temperatures above Tc at
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FIG. 3. (a) MSD as a function of time for temperatures T ≜ T g (dashed blue lines),
T g ≤ T ≜ Tc (solid blue lines), and T ∈ Tc (red solid lines). (b) MSDs at T = 0.11,
T = 0.09, T = 0.07, and T = 0.06. The dashed lines are ts to Eq. (9), and the
lled circles mark the location of the lifetime τlt for different temperatures (see the
text). The inset is a schematic plot of the MSD that illustrates the denition of τlt.
(c) lifetime τlt as a function of inverse temperature. The solid line is a t with an
Arrhenius law (see the text). The MSDs in (a) and (b) correspond to systems with
N = 2048 particles.

T = 0.105, 0.11, 0.115, 0.12, 0.125, 0.13, 0.14, 0.15, 0.16, 0.18, 0.20,
0.22, 0.25, and 0.3. At the highest temperature, T = 0.3, the MSD
displays a ballistic regime ∝ t2 at very short times, an emerging
shoulder at intermediate times, and a diffusive regime ∝ t in the
longtime limit. With decreasing temperature, the diffusive regime
shifts to longer times and the intermediate time regime evolves
into a plateau. The blue solid lines show the MSDs for tempera
tures T g ≜ T ≜ Tc at T = 0.06, 0.065, 0.0675, 0.07, 0.075, 0.0775, 0.08,
0.0825, 0.085, 0.0875, 0.09, 0.0925, 0.095, 0.0975, 0.10, and 0.1025.
Here, the initial congurations are fully equilibrated samples from
the MDSMC simulations. However, the microcanonical MD runs
over a time scale of 105τMD are not long enough to reach a diffu
sive regime far below Tc. So, at T = 0.06, we hardly see deviations
from the plateau at long times. The MSDs below T g in Fig. 3(a)
(blue dashed lines) correspond to the temperatures T = 0.01, 0.015,
0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, and 0.055. Here, the MSDs
display a plateau for 1 ≤ t ≤ 105, the height of which decreases
with decreasing temperature. Note that the small overshoot in the
lowtemperature MSDs around t ≈ 0.8 is associated with the micro
scopic dynamics.48,49 This feature disappears for larger system sizes
(e.g., for our model, it cannot be seen any more for systems with
N = 10 000 particles).

The emergence of a shoulder that evolves into a plateau at
low temperature manifests the caging of the particles. MCT pro
vides detailed predictions about the behavior of the MSD around
the plateau (as well as corresponding predictions for the plateau
like regions in intermediate scattering functions1). One of them
describes the initial increase of the MSD from the plateau and is
given by1

ϕt = δr2plateau + ht
b
+ h2t

2b
. (9)

This equation corresponds to a von Schweidler law, extended by a

correction term ∝ t2b. δr2plateau quanties the height of the (emerg
ing) plateau in the MSD, h and h2 are temperaturedependent
amplitudes, and the exponent b is expected to be universal for a
given system (but it may vary for different systems in the range
0 ≜ b ≤ 1). Figure 3(b) shows the MSDs at T = 0.11, 0.09, 0.07, and
0.06 together with ts to Eq. (9). These ts and also the ts to the
MSDs at the other temperatures were performed with the constant
exponent value b = 0.59. Note, however, that the values for δr2plateau,
as obtained from the t to Eq. (9), are not very sensitive with respect
to the choice of the exponent b.

Using the ts to Eq. (9), we can now introduce a denition of
the lifetime τlt of the transient amorphous solid state for the differ
ent temperatures. To this end, we dene τlt as the time for whichδr2τlt/δr2plateau = 1.3 [see the inset of Fig. 3(b) for an illustration
of this denition]. The locations of τlt for the MSDs in Fig. 3(b) are
marked as lled circles.

Figure 3(c) shows the logarithm of the time scale τlt as a func
tion of inverse temperature. For T ≲ 0.09, the data can be well tted
by an Arrhenius law f T = τ0 expEA/T, which is represented by
the bold solid line in the gure. The values of the t parameters are
τ0 = 3.3 × 10−6 and EA = 1.436 41. Here, the energy EA can be inter
preted as an activation energy. The application of the Arrhenius law
and, thus, the interpretation of a kinetic process as an activated one
are only sensible if the ratio of the activation energy to the thermal
energy, EA/T, is much larger than unity.50 In our case, this ratio
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varies between about 16 at T = 0.09 and about 24 at T = 0.06, which
is consistent with the condition EA/T ≫ 1. At temperatures T ≳ Tc,
we observe signicant deviations from the Arrhenius behavior and
τlt is close to the microscopic time scale τMD. From the tempera
ture dependence of τlt, we can conclude that around Tc, there is
a gradual crossover toward an activated dynamics with decreasing
temperature.

In the framework of the Gaussian approximation,51–53 one can
relate δr2plateau to a localization length ξ as

ξ2 = 1

6
δr2plateau. (10)

Figure 4 shows the temperature dependence of ξ, scaled with the
average nearestneighbor distance d̄ ≈ 1.07 (we have estimated d̄
from the location of the rst peak of the radial distribution function
at T = 0.06). At T = 0.01, i.e., far below T g , the reduced localization

length is ξ/d̄ ≈ 0.02. It increases with increasing temperature. At T g ,

ξ/d̄ slightly changes the slope and then increases roughly linearly up
to Tc where it reaches the constant ξc/d̄ ≈ 0.077. The critical value,
ξc, of the localization length marks the stability limit of the amor
phous solid, i.e., for T ∈ Tc, the system is in a liquid state. In analogy
to crystalline solids, the critical value ξc/d̄ can be interpreted as a
Lindemann criterion for the stability of an amorphous solid.1 Note
that Fuchs et al.53 have obtained ξc/d̄ ≈ 0.0746 in a calculation for a
hard sphere system in the framework of MCT, thus, a value that is
very close to our nding.

The behavior of both τlt and ξ indicates a gradual change of
the dynamics around Tc. Below Tc, the localization of particles in
their cages, as quantied by ξc/d̄, is below the stability limit, given by
ξc/d̄ ≈ 0.077. As a consequence, there is the emergence of transient
amorphous solid state for T ≜ Tc, the lifetime τlt of which follows an
Arrhenius law with an activation energy of about 1.44. The gradual
change from liquidlike to solidlike dynamics is also associated with
a qualitative change of the system’s response to an external shear. As

FIG. 4. Localization length divided by the mean nearestneighbor distance, ξ/d̄,
as a function of temperature. The dashed red line marks the critical value of the
reduced localization length, ξc/d̄ ≈ 0.077.

we shall see in Sec. IV, brittle yielding and the formation of shear
bands can be observed in the supercooled liquid below Tc. These
features are typical for the response of lowtemperature glasses to a
mechanical load. In the following, we shall analyze the conditions
for the occurrence of brittle yielding and shear banding in deeply
supercooled liquids. An important parameter in this context is the
time scale τlt. For example, for T = 0.06, the lifetime τlt is of the order
of 105 [Fig. 3(c)]. Therefore, for γ̇ ≳ 10−5, the product γ̇τlt is lower
equal unity and one may expect the shear response of an amorphous
solid.

IV. SUPERCOOLED LIQUIDS UNDER SHEAR

Now we analyze the results for equilibrated supercooled liquids
under shear. Our focus is on the temperature range 0.06 ≤ T ≤ 0.15
to study the response to the external shear from liquidlike states
slightly above Tc to the solid states far below Tc. As we have seen
in Sec. III, the latter states can be characterized via the localization
length ξ being signicantly lower than the critical value ξc.

Stress–strain relations at different shear rates for the temper
atures T = 0.11 and 0.06, i.e., above Tc and signicantly below Tc,
respectively, are shown in Fig. 5. While the strain is given by γ = γ̇t,
the stress σ was computed from the virial equation, as described
in Ref. 37.

For both temperatures, different regimes can be identied in
the stress–strain relations at the different shear rates. First, the stress
increases almost linearly up to a maximum value σmax, which is
reached at a strain of the order of 0.1. The occurrence of this over
shoot indicates a nonNewtonian response of the system. It marks
the transition from an elastic deformation of the “solid” to the onset
of plastic ow. During the plastic deformation, the stress drops from
σmax toward the steadystate stress σss, which can be quantied by
Δσ = σmax − σss [see the inset of Fig. 5(b)]. In the steady state, the sys
tem can be described by a owing homogeneous liquid. At T = 0.11,
for all the considered shear rates the overshoot in the stress–strain
relation becomes more pronounced with increasing shear rate γ̇
[Fig. 5(a)]. The reason is that, with increasing γ̇, the shear response
becomes more and more different from that of a Newtonian liquid
for which one would not expect the occurrence of an overshoot in
the stress–strain relation.37 We also note that the decay from σmax

to σss at T = 0.11 occurs on a strain window of the order of 0.1 for
all the considered shear rates in Fig. 5(a). Above and around the
MCT critical temperature (or in colloidal hardspherelike systems
around the MCT critical packing density), this is a common fea
ture in glassforming uids under shear and it has been seen, e.g., in
computer simulation studies of binary LennardJones mixture,37,54

Yukawa uid,55,56 and hard spheres57 as well as in experiments of
colloidal systems.10,55,57,58

The behavior of the stress–strain relations at T = 0.06 is qual
itatively different from that at T = 0.11 [see Fig. 5(b)]. Now, for
γ̇ ≤ 10−4, a sharp stress drop is observed at a strain of the order of
0.1. In the following, we refer to this rapid stress release as brittle
yielding. The sharp stress drop is followed by the occurrence of a
second maximum at a strain of the order of 0.3. Below we show that
the latter features are associated with heterogeneous ow patterns
and we elucidate their morphology.

In Fig. 6, the steadystate stress σss as a function of the shear rate
γ̇ (i.e., the ow curve) is plotted doublelogarithmically for different
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FIG. 5. (a) Stress–strain relation at the temperature T = 0.11 for the shear rates
γ̇ = 5 × 10−3, 10−3, 10−4, and 10−5. (b) Stress–strain relation at the temperature
T = 0.06 for the shear rates γ̇ = 10−3, 10−4, 10−5, and 10−6. The inset shows

again the stress–strain relation for γ̇ = 10−3, indicating the maximum σmax, the
steadystate stress σss, and the denition of the stress drop Δσ. Both in (a) and
(b), systems with N = 10 000 particles are considered.

temperatures above and below Tc. For sufciently low shear rates,
one expects that the system behaves like a Newtonian uid with a lin
ear increase of the stress as a function of the shear rate, σss = ηγ̇ (with
η being the shear viscosity). At T = 0.15, we can still identify a New
tonian regime (dashed line), followed by sublinear shearthinning
regime for γ̇ ∈ 5 × 10−4. At T = 0.11, the Newtonian regime is not
anymore in the window of considered shear rates γ̇ ≥ 10−6. Here,
we observe an emerging plateau around γ̇ = 10−4 that becomes more
pronounced at T = 0.09, and eventually, at T = 0.06, the data can be
well tted by a Herschel–Bulkley law59 (solid line), σss = σyield + Aγ̇ α

with the yield stress σyield = 0.090 026 5, the amplitude A = 1.574 46,
and the exponent α = 0.477 008. Note that, at T = 0.07, the ow
curve is very similar to that at T = 0.06. So, at the lowest consid
ered temperatures where we are able to obtain a fully equilibrated

FIG. 6. Flow curves for the temperatures T = 0.06, 0.09, 0.11, and 0.15. The solid
line is a t with a Herschel–Bulkley law to the data for T = 0.06 (see the text). The
dashed line indicates a linear behavior, σss ∝ γ̇.

state, our system can be seen as a yield stress material in equilibrium
(although we also expect, at these temperatures, the occurrence of a
Newtonian regime at extremely low shear rates).

Having characterized the steadystate behavior of our system
under shear, we now investigate the relaxation of the stress from the
onset of plastic ow (marked by the maximum stress σmax at a given
temperature) to the steadystate stress. To this end, we dene the
reduced stress

σ⋆ = σ − σss
σmax − σss

, (11)

which is displayed in Fig. 7 for three shear rates and three tem
peratures below Tc as a function of γ − γmax (with γmax the strain

corresponding to σmax). At γ̇ = 10−3 [Fig. 7(a)], the decay of σ⋆
for T = 0.09 can be described by the compressed exponential
exp−γ − γmax/δγ⋆ace with δγ⋆ = 0.115 946 and ace = 1.332 97.
Note that here and in the following the compressed exponential is
just used as a t function that provides an accurate description of
the decay of σ⋆ as a function of γ − γmax. Also, for the two lower
temperatures T = 0.06 and 0.07, the reduced stress decays on a strain
scale δγ⋆ ≈ 0.1, but the functional form of its decay changes around
γ − γmax ≈ 0.08 in that the compressedexponentiallike decay is fol
lowed by a logarithmic one ∝ lnγ − γmax/1.073 53 [dotted line
in Fig. 7(a), tted to the “tail” of the T = 0.06 curve]. The difference
in the decay of σ⋆ with respect to temperature becomes more pro
nounced at the lower shear rates 10−4 [Fig. 7(b)] and 10−5 [Fig. 7(c)].
While, at T = 0.09, the reduced stress still decays essentially with
a compressed exponential on the strain scale δγ⋆ ≈ 0.1, at the two
lower temperatures, the initial decay is signicantly faster and σ⋆
exhibits a local maximum around γ − γmax ≈ 0.2. The strain scale of
the initial decay decreases with decreasing temperature and shear
rate. At T = 0.06 and γ̇ = 10−5, the reduced stress σ⋆ decays on the
strain scale δγ⋆ ≈ 0.01.

Also included in Fig. 7(c) are data for N = 12 000 and
N = 96 000, as adapted from the simulation study of Ozawa et al.15
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FIG. 7. Reduced stress σ⋆ as a function of γ − γmax at the different tempera
tures T = 0.06, 0.07, and 0.09 for the shear rates: (a) γ̇ = 10−3, (b) γ̇ = 10−4, and
(c) γ̇ = 10−5. The data correspond to systems with N = 10 000 particles. In (c),
the dotted lines correspond to data for N = 12 000 and N = 96 000, as adapted
from Ref. 15. The dashed and the dotted lines in (a) are ts with a compressed
exponential and a logarithm, respectively (see the text).

using an AQS protocol. It is remarkable that the reduced stress for
N = 12 000 from Ozawa et al. agrees well with our data for a compa
rable system of N = 10 000 particles, although we consider a system
at a nite temperature as well as a nite strain rate, and, more
over, our system is in an equilibrated supercooled liquid state (note,
however, that σmax is signicantly larger in the athermal case).

For athermal glasses, studied with the AQS protocol, different
scenarios for the occurrence of a rapid stress drop, associated with
brittle yielding, have been proposed.15,17,60,61 For example, Ozawa
et al.15 interpreted this feature as a rstorder phase transition, while
Barlow et al.17 proposed a shearband instability. In both scenar
ios, the yielding transition shows a strong dependence on the system
size. The interpretation of the stress drop as a phase transition would
be appropriate in the limit of zero shear rate, γ̇ → 0. In our case, we
have to take this limit in some sensible manner, keeping in mind
that the expected true behavior of the system in the zero shearrate

limit is that of a Newtonian uid for which σss ∝ γ̇ and the absence
of any stress drop in the stress–strain relation. However, the uid
curves for T ≤ 0.07 suggest that the systems can be considered as a
yield stress uid also at very low shear rates and one obtains σyield
by extrapolation via the Herschel–Bulkley law. Below, we perform a
similar extrapolation to obtain the initial strain scale δγ⋆ with which
the stress decays from σmax to σss in the limit γ̇ → 0.

If the yielding transition was a rstorder transition, it would
be rounded for nite systems, becoming sharper with increasing
system size. Figure 8 shows the decay of the reduced stress σ⋆ for
different system sizes at the temperatures T = 0.09, 0.07, and 0.06
in panels (a)–(c), respectively. For all three temperatures, the shear
rate is γ̇ = 10−5. For T = 0.09, there is almost no dependence of
σ⋆ on the system size. This is expected due to the short lifetime
τlt ≈ 28 at this temperature [cf. Fig. 3(c)]. Thus, here we observe
the nonNewtonian response of a liquid and not that of a frozen
in amorphous solid. The situation is different when one considers
quenches of liquid samples above and around Tc to zero tempera
ture. For the resulting “poorly annealed” glass samples, it has been
proposed60,61 that, in the limit of very large system sizes, they show
brittle yielding, i.e., sharp stress drop, under AQS conditions. In
our case, we see such a behavior for the two lower temperatures for
which the decay of σ⋆ becomes signicantly sharper with increas
ing system size. For T = 0.07 [Fig. 8(b)], we have also included the
reduced stress for the lower shear rate γ̇ = 10−6 and N = 10 000 that
exhibits a less rapid decay than the corresponding result for γ̇ = 10−5.
This can be explained in terms of the lifetime τlt in relation to the
shear rate γ̇. Above we have estimated τlt ≈ 3300 for T = 0.07 [cf.
Fig. 3(c)], and, thus, the time scale γ̇−1 is much larger than τlt for
both shear rates 10−5 and 10−6. The yielding of the system interferes
with structural relaxation processes in this case and this certainly
in a more pronounced manner for γ̇ = 10−6 than for γ̇ = 10−5.
Therefore, the reduced stress decays faster for the higher shear rate
of γ̇ = 10−5.

The dashed lines in Fig. 8 are ts with compressed exponen
tials. In these ts, the exponent ace is around 3.0 and the strain
scale changes from δγ⋆ ≈ 0.027 for N = 1000 to δγ⋆ ≈ 0.012 for
N = 10 000. While the initial decay of σ⋆ strongly depends on N,
the second feature in σ⋆, the appearance of a local maximum at
γ − γmax ≈ 0.2, does not show signicant nitesize effects.

In the following, we do not use the strain scale, as directly
obtained from the ts to the compressed exponentials. In lieu
thereof, we use the value where the reduced stress, as described by
the compressed exponential, has decayed to 0.2. We denote this
quantity by δγ̃⋆. Figure 9 displays the shearrate dependence of δγ̃⋆
for T = 0.07 in (a) and T = 0.06 in (b) and different system sizes. In
the case of T = 0.07, the transition becomes signicantly sharper for
all shear rates when changing the particle number from N = 1500 to
6000. However, only small changes are observed when going from
N = 6000 to 10 000 (at γ̇ = 10−6, the values for δγ̃⋆ are essentially
equal for the two system sizes). This is due to the fact that the
lifetime τlt is smaller than the time scale γ̇−1 for γ̇ ≤ 10−4, and thus
the yielding transition interferes with relaxation processes in the
liquid.

In Fig. 9(b), for T = 0.06, the solid lines correspond to the t
function gγ̇ = δγ̃⋆0 + Aγγ̇ cγ , with δγ̃⋆0 the estimate of δγ̃⋆ at zero
shear rate, Aγ an amplitude, and cγ an exponent that has value of
about 0.62 in the ts of Fig. 9(b). Thus, the zero shearrate values
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FIG. 8. Reduced stress σ⋆ as a function of γ − γmax at the shear rate γ̇ = 10−5
and temperatures (a) T = 0.09, (b) T = 0.07, and (c) T = 0.06 for different system
sizes, as indicated. The dashed lines are ts with compressed exponentials (see
the text). Also included in (b) is the reduced stress for γ̇ = 10−6 and N = 10 000.

FIG. 9. Strain scale δγ̃⋆ as a function of shear rate γ̇ at the temperatures T = 0.07
(a) and T = 0.06 (b) for different system sizes. In (b), the solid lines are ts with
the function gγ̇ = δγ̃⋆

0
+ Aγγ̇ cγ (for details, see the text). The inset shows δγ̃⋆

0

as a function of N−1.

of the strain scale can be well estimated via a “Herschel–Bulkley
like” law. The inset of Fig. 9(b) shows δγ̃⋆0 as a function of N−1.
In the considered range of system sizes, we observe a weak depen
dence of δγ̃⋆0 on the system size. The data suggest that there might
be a regime ∝ 1/N for large N, similar to what one expects for a
rstorder phase transition. However, our data are not conclusive to
support this interpretation. To check whether there is an asymptotic
1/N regime, one has to perform simulations of much larger systems.
Note that the ow patterns in the smallest system with N = 1372
particles are qualitatively different from those in the larger systems,
e.g., the system with N = 1372 particles is too small to clearly show
shear bands that are observed for the larger systems at sufciently
low shear rates (see below). Thus, probably systems with up to 105

particles have to be considered to probe the asymptotic regime with
a 1/N scaling. Furthermore, to avoid nitetime effects at low shear
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rates, i.e., for γ̇τlt ≜ 1, it would be desirable to consider systems that
are fully equilibrated at temperatures below T = 0.06. So, in forth
coming studies, we plan to consider fully equilibrated systems with
up to 105 particles at temperatures T ≜ 0.06 and shear rates γ̇ ≤ 10−6.

However, what happens at this yielding transition? What is the
meaning of the second feature in σ⋆, i.e., the increase of σ⋆ up to
a maximum around γ − γmax = 0.2? Below we show that both fea
tures are connected to the formation of shear bands. The rapid initial
decay of σ⋆ is a manifestation of brittle yielding.

To analyze the behavior of the system around yielding, we now
consider individual runs at the temperature T = 0.06 and the shear
rate γ̇ = 10−5. Among the 30 independent runs for the systems with
N = 10 000 particles, we nd two types of stress–strain relations.
In both cases, we observe an initial sharp drop, indicating brittle
yielding. However, while we see in the rst type only the initial
stress drop [Fig. 10(a)], in the second one there is an additional
increase after the rst drop up to γ ≈ 0.32, followed by a second
drop of the stress [Fig. 10(b)]. The rst type of stress–strain rela
tion corresponds to the formation of a horizontal shear band, i.e.,
the occurrence of a thin melted layer with an orientation parallel to
the ow direction. The second type of stress–strain relation corre
sponds to the initial formation of a vertical shear band where the
melted thin layer is oriented perpendicular to the ow direction.
Note that among the 30 runs, we have observed horizontal and verti
cal shear bands in 18 and in 12 cases, respectively. In Fig. 10, the grey
lines correspond to the individual runs and black ones to the average
over these runs in each case. The insets of Fig. 10 show the aver
aged stress–strain relations for different shear rates. For γ̇ ≤ 10−4,
a qualitatively similar behavior is seen with essentially the initial
stress drop getting slightly sharper with decreasing shear rate (cf.
Fig. 9). At γ̇ = 10−3, however, the yielding transition is washed out,
and, instead of the second maximum in the stress–strain relation
for the vertical shear bands, there is a logarithmic decay around
γ̇ = 0.3 [cf. Fig. 7(a)].

The brittle yielding is also reected in the behavior of the poten
tial energy per particle, epot, as a function of the strain γ. In the case
of the horizontal shear bands at T = 0.06 and γ̇ = 10−5 [Fig. 11(a)],
there is rst a drop of epot at the yield point, followed by a slow
increase toward the steadystate value, which is at about ēpot = 0.305
(horizontal dashed line). As can be inferred from the gure, there
is a large scatter in the values of epot from sample to sample. This
is due to the polydispersity of the samples. However, the shape of
the curves for the different samples is very similar, and they are
essentially shifted with respect to each other. This is also true for
the behavior of epot vs γ for the case of the vertical shear bands
[Fig. 11(b)]. Here, after the rst drop of the energy, it increases
to a value that is close to the steadystate value, and then, around
γ ≈ 0.3 (corresponding to the local maimum in the stress–strain rela
tion), it slightly decreases before it increases toward the steadystate
value. For the case of the vertical shear bands, the system reaches
the steady state much faster than in the case of the horizontal shear
bands. The behavior of epotγ for the different shear rates (see
insets of Fig. 11) is similar to that of the corresponding stress–strain
relations.

To visualize the shear bands, mobility color maps36 are com
puted. To this end, we determine, for each particle i, the non
averaged MSDs δy2i t and δz2i t in the neutral y direction and
the sheargradient z direction, respectively. From this, we obtain

FIG. 10. Stress–strain relations for (a) horizontal shear bands and (b) vertical shear
bands at the temperature T = 0.06 and the shear rate γ̇ = 10−5 in the main gures
and for different shear rates in the insets. The grey lines in the main plots are the
stress–strain relations for the individual runs, and the black lines correspond to the
average over these runs.

the “mobility displacement” Δit =√
δy2i t + δz2i and we assign

a color to the magnitude of Δi. The time origin for the calcula
tion of Δi, t = 0, corresponds to the time where the external shear
is switched on. For the snapshots in Fig. 12 at different values of
the strain, we have selected a sample with a horizontal shear band
[(a)–(c)] and one with a vertical shear band [(d)–(f)], both samples
are at T = 0.06 and γ̇ = 10−5. At γ = 0.1024, i.e., just before the onset
of plastic ow, the system is in a homogeneously deformed state,
and therefore, the mobility of the particles is close to zero, as repre
sented by the blue color. At the strain γ = 0.1472 a horizontal shear
band has been formed in the rst sample [Fig. 12(b)] and a verti
cal one in the second sample [Fig. 12(e)]. In both cases, the uidized
regions along the band are represented by particles, colored in green.
The horizontal shear band exhibits a slow growth as a function of
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FIG. 11. Potential energy per particle as a function of strain for (a) horizontal shear
bands and (b) vertical shear bands at the temperature T = 0.06 and the shear rate
γ̇ = 10−5 in the main gures and for different shear rates in the insets. The grey
lines in the main plots are the stress–strain relations for the individual runs and
the black lines correspond to the average over these runs. The horizontal dashed
lines in both panels mark the average steadystate value, ēpot = 0.305.

strain, as reected, e.g., in a slow increase of the potential energy
of the system [cf. Fig. 11(a)]. At γ = 0.495, the thickness of the hor
izontal shear band corresponds to about 5–6σ, i.e., a few liqueed
layers [Fig. 12(c)]. The behavior is different in the case of the vertical
shear band. Here, the thickness of the vertical band rst increases,
which is accompanied by an increase of the stress with increasing
strain [cf. Fig. 10(b)]. The stress drop at γ ≈ 0.3 is associated with the
formation of an additional horizontal shear band that grows with
increasing strain [cf. Fig. 12(f)].

We have seen that brittle yielding, as observed for sufciently
low shear rates at temperatures far below Tc, is associated with
the formation of shear bands. We note that we do not see any
shear banding for temperatures above Tc. However, slightly below
Tc, we also observe—albeit in a less pronounced manner—shear
banding, although, in this case, the onset of plastic ow cannot be

FIG. 12. Mobility maps at T = 0.06 and γ̇ = 10−5 for a sample with the formation
of a horizontal shear band for (a) γ = 0.1024, (b) γ = 0.1472, and (c) γ = 0.495
and a sample with the formation of a vertical shear band for the same values of γ,
(d)–(f).

FIG. 13. Mobility maps at T = 0.09 and γ̇ = 10−5 for two different samples. The
strain in both cases is γ = 0.5.

characterized as brittle yielding. As an example, Fig. 13 showsmobil
ity color maps at a strain of γ = 0.5 for two different samples at the
temperature T = 0.09 and the shear rate γ̇ = 10−5. Although one can
identify a vertical and a horizontal shear band in the left and right
panel, respectively, there are mobile spots everywhere in the system,
and there is no clear separation between shearbanded and immobile
regions, as in the cases for T = 0.06 in Fig. 12.

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated the yielding behavior of
a glassforming softsphere model under shear. Using molecular
dynamics (MD) simulation in combination with the swap Monte
Carlo (SMC) technique, fully equilibrated supercooled liquid sam
ples around and far below the critical mode coupling temperature
Tc were obtained.

First, these samples served as starting congurations for simu
lations in the microcanonical ensemble to study how the dynamics
of the supercooled liquid changes when decreasing the temperature
from above to far below Tc. In qualitative agreement with the mode
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coupling theory (MCT), we have seen that the reduced localization
length ξ/d̄, as extracted from the mean squared displacement, shows
a kink at Tc, changing from ξc/d̄ = 0.077 for T ∈ Tc to a roughly
linearly decreasing function for decreasing temperature below Tc.
Here, the critical value ξc/d̄ marks the stability limit of the amor
phous solid. In fact, the decrease of ξ with decreasing temperature is
accompanied by an exponential increase of a time scale τlt that mea
sures the lifetime of the amorphous solid state. The Arrhenius law
that we nd for the temperature dependence of τlt is consistent with
the interpretation of an activated dynamics for structural relaxation
processes below Tc.

The gradual change of structural relaxation from a liquidlike
to a solidlike dynamics around Tc is associated with a change of the
system’s response to a mechanical load, in particular, with respect
to the yielding of the system. In this work, we have studied sheared
supercooled liquids in a planar Couette ow geometry, applying a
constant shear rate γ̇. We have shown that the emergence of a tran
sient amorphous solid state implies the possibility of brittle yielding,
which is characterized a sharp stress drop in the stress–strain rela
tion. This means that, around a strain of the order of 0.1, the stress
shows a sudden decrease on a strain scale δγ̃⋆ much less than 0.1
(this value is found for the stress decay at yielding for temperatures
above and around Tc). For example, at a temperature T = 0.06 and a
shear rate γ̇ = 10−5, we nd δγ̃⋆

= 0.014. While at low temperatures,
T ≪ Tc, δγ̃⋆ signicantly decreases with increasing system size, our
data are not conclusive with respect to the question whether brittle
yielding can be interpreted in terms of an underlying kinetic rst
order transition in the limit γ̇ → 0. Anyway, at a nite temperature,
such an interpretation has to be taken with a grain of salt. On the one
hand, the signatures of a rstorder transition can be only seen on
the time scale τlt and thus for shear rates γ̇with γ̇τlt ≳ 1 (note that for
γ̇τlt ≪ 1, one expects Newtonian behavior). On the other hand, at a
given temperature T ≜ Tc, the shear rate has to be small enough that
the steadystate stress is close to the apparent yield stress, as obtained
from the extrapolation to γ̇ → 0 in terms of a Herschel–Bulkley law.
Thus, the time scale τlt has to be very large in order to see the signa
tures of a rstorder transition and this is the case for temperatures
far below Tc. Similar interplay of time scales has been recently found
by Shrivastav and Kahl,62 studying the yielding in a cluster crystal.

Brittle yielding is associated with horizontal or vertical shear
bands. Both types of shear bands are equally efcient to release
the stress at the yield strain. The mechanism of the formation
of such shear bands at nite temperatures and shear rates is still
not well understood, but for the transient amorphous solid states
under equilibrium conditions, as studied in this work, techniques
and theoretical frameworks can be adapted that have been pre
viously mainly used for athermal systems, such as an analysis of
soft modes determined from the dynamical matrix.63–65 Another
promising framework to investigate the yielding transition and
shear banding in amorphous solids is the analysis in terms of non
afne displacements,66–70 as recently applied to elucidate plasticity
and yielding in crystalline solids.71–73 Work in this direction is in
progress.
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Chapter 5

Conclusion

Summary. With this work we have contributed to a more profound understanding
of size-polydisperse glassforming liquids. Our goal was to address questions about the
low-temperature regime, in particular the longstanding question whether signatures for
thermodynamic transitions accompany the glass transition. Here the problem is that
conventional simulations of glassforming liquids have access only to a short timespan,
up to ∼ 10−5 s, as they require a small time step in the numerical integration scheme.
However, only recently it was shown that glassformer models with a size-polydispersity can
be equilibrated at unprecedentedly low temperatures (far below the critical temperature
of mode-coupling theory) with a particle-swap algorithm which accelerates the dynamics
by more than 10 orders of magnitude.

We used such a polydisperse glassformer throughout this dissertation and rst wanted
to understand fundamental properties of this model, in particular the eect of its size-
polydispersity. A seemingly subtle detail of the model preparation, the stochastic choice
of diameters, was shown to impose a quenched disorder that dominates sample-to-sample
uctuations at low temperatures. We demonstrated that these uctuations can be com-
pletely explained by a single thermodynamically relevant parameter, namely an eective
packing fraction. To optimize the glassformer, we proposed a deterministic diameter
choice. This method avoids the quenched disorder and thereby reduces (or even elimi-
nates) sample-to-sample uctuations. In this way we signicantly improved the statistical
properties of the model. Our new method is of general signicance for simulations as these
are limited to rather small system sizes and thus often suer from poor statistics.

Until now it was not clear why swap Monte Carlo accelerates the dynamics of polydis-
perse models so drastically. By precisely dissecting the swap algorithm, we unraveled the
microscopic mechanism underlying its eciency. It can be described as successive shifts
of the mean positions of the particles caused by changes in the local cage geometry via
diameter swaps. Besides accelerating dynamics, we showed that the swap algorithm can
also be used to thermostat the liquid. We also aimed to understand the swap algorithm
from a mathematical perspective. For this purpose we developed a theory for swapping
on a frozen conguration, encompassing three dierent variants: standard, local, and size-
bias swap Monte Carlo. We have proven the convergence of the corresponding Markov
chains in each case. Our study of the swap algorithm was completed with an analysis of
the computational eciency of each swap variant. Here a diameter correlation function
allowed us to optimize their parameters.

The polydisperse model and the swap algorithm then enabled our low-temperature
studies. We approached the quest for thermodynamic signatures associated to the glass
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transition in the framework of replica coupling. A popular belief in the scientic com-
munity is that replica coupling induces a line of phase transitions ending in a critical
point. We provided evidence that the associated phenomenology is not the result of a
phase transition but instead a nite-size eect, caused by a static length scale that grows
beyond the size of the simulation box.

Similar to replica coupling, the yielding behavior of glassforming liquids under shear
was recently claimed to be associated with a critical point. We demonstrated that brit-
tle yielding, as characterized by sharp stress drops and shear banding, can only occur
in amorphous-solid states, i.e., below the mode-coupling temperature, and only for su-
ciently fast shearing, i.e., the timescale of the inverse shear rate must be smaller than the
lifetime of the amorphous solid.

In summary, in this work a glassforming liquid was studied via computer simulations.
We obtained equilibrium states at low temperatures by using a size-polydisperse model
for which the swap Monte Carlo algorithm tremendously accelerates the dynamics. We
characterized and optimized the polydisperse model and the swap algorithm from phys-
ical and mathematical perspectives. We have learned that glassforming liquids have to
be analyzed very carefully to correctly understand uctuations and structural-relaxation
processes. Concerning our studies of the glassformer in the presence of external elds,
our results do not support or are not conclusive about the existence of phase transitions.

Outlook. Our understanding of swap Monte Carlo inspired us to propose a fully
parallelized variant of this algorithm which could be run simultaneously on multiple CPUs.
The suggested parallelization makes use of a spatial decomposition of the simulation box
and swaps only locally. While a proof of concept is still work in progress, the results of this
thesis give reason for condence that there are no principal problems for a parallelization.
A successful implementation would pave the way for low-temperature simulations at very
large scales. Simulations of large systems should shed more light on the nature of the
yielding transition as well as the growth of static length scales. How much do static length
scales grow? Do they diverge at a nite temperature? These are important questions at
the heart of theories of the glass transition.
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