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Zusammenfassung

Die Inzidenz maligner Erkrankungen wie Hautkrebs steigt seit Jahrzehnten an,

wobei der wesentliche Promotor dieser Entwicklung Umweltfaktoren sind. Forschungs-

bedarf besteht vor allem darin, die molekularen Mechanismen zu ergründen, da

Risikofaktoren zwar bekannt, aber beteiligte Signalwege noch unverstanden sind.

Neben ultravioletter Strahlung (UV) konnte nachgewiesen werden, dass auch chemis-

che Noxen wie polyzyklische Kohlenwasserstoffe (PAH) zu Hautkrebserkrankun-

gen führen können, wie zum Beispiel im Falle von Benz(a)pyren (BaP). Es ist ein

bekannter Ligand des Aryl Hydrocarbon Rezeptors (AHR), ein Transkriptionsfak-

tor, der in allen strukturellen Zellen der Haut vorkommt und bereits mit zahlreichen

dermatologischen Prozessen wie Hyperpigmentierung, Hautalterung und Hautkrebs

in Verbindung gebracht werden konnte. Der molekulare Mechanismus, über den

der AHR zur Entstehung von Malignomen beiträgt, ist bis heute Gegenstand der

Forschung. Eine wichtige Rolle bei der Kanzerogenese spielt die unkontrollierte Ak-

tivierung wachstumsfördernder Rezeptoren wie der Epidermal Growth Factor Re-

ceptor (EGFR). Mitglieder dieser Rezeptorenfamilie stehen ebenso im Verdacht, bei

der Entwicklung kutaner Malignome beteiligt zu sein. Ihre Aktivierung geschieht

durch Ligandenbindung mit anschließender Dimerisierung. Die Liganden liegen nor-

malerweise membrangebunden vor und müssen durch Matrix-Metalloproteinasen

(MMP) herausgelöst werden. Diese werden vorher durch Proteinkinasen aktiviert,

die zunächst selbst durch Tyrosinkinasen wie c-src phosphoryliert werden müssen.

C-src gehört zu dem Multiproteinkomplex, in dem der AHR in gebundener, inak-

tiver Form vorliegt. Nach Aktivierung des AHR ist es denkbar, dass die freige-

wordene Tyrosinkinase c-src den zellulären Signalweg beeinflusst an dessen Ende

der EGFR aktiviert wird. Ferner aktiviert BaP nicht nur den AHR, sondern führt

zu einer verstärkten Transkription von Aldo-Keto-Reduktasen (AKR), die als am

Prostaglandinstoffwechsel beteiligte Enzymfamilie daraufhin die spontane Bildung

von 15d-Prostaglandin J2 (15d-PGJ2) aus Prostaglandin D2 (PGD2) verhindern.

Ersteres dient dem Organismus normalerweise durch die Aktivierung des Peroxisom-

Proliferator-aktivierten Rezeptors gamma (PPARγ) als pro-apoptotischer Signal-

wegvermittler. Wird also weniger 15d-Prostaglandin J2 gebildet, kommt es zu einer

anti-apoptotischen Stoffwechsellage in Zellen, in der maligne Zellen potentiell bessere

Möglichkeiten haben, weiter zu mutieren und zu proliferieren. In dieser Arbeit kon-

nte gezeigt werden, dass die AKR-Familie C unter dem Einfluss des AHR zu stehen

scheint, durch Liganden des EGFR verstärkt und durch Blockierung der Protein

Kinase C (PKC) vermindert transkribiert wird. Zwischen dem AHR, dem EGFR

und den Enzymen der AKR1C-Familie könnte es demnach Interaktionen geben, die

erklären würden, wie PAH die Kanzerogenese in Hautkrebs fördern.
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Summary

The incidence of malignant diseases such as skin cancer has continuously been ris-

ing for decades, the main promotor of this development being environmental factors.

Therefore, it is crucial to understand the molecular mechanisms that drive carcino-

genesis. Since risk factors are well known today, the focus lies upon understanding

the signaling cascades that are affected by environmental changes. Besides UV radia-

tion, polycyclic aromatic hydrocarbons (PAH) like benzo-a-pyrene (BaP) are known

pollutants that induce malignant transformation in the skin. BaP is a ligand of the

aryl hydrocarbon receptor (AHR), a transcriptional factor ubiquitously present in

cutaneous cells and known to be involved in hyperpigmentation, skin ageing and skin

carcinogenesis. Another important driver of these processes is the epidermal growth

factor receptor (EGFR). Members of this receptor family are activated through lig-

and binding with a following dimerization process. The ligands are normally bound

to the cell membrane and require shedding by matrix-metalloproteniases (MMP).

Those need to be activated by protein kinases (PK) that in turn require phosphory-

lation to be active. This normally happens due to the activity of tyrosine kinases like

c-src. This kinase, in turn, is part of the multi-protein complex that holds the AHR

in its inactive state. Therefore, it is possible that, after activation by BaP, the AHR

releases c-src which then activates the EGFR. Interestingly, BaP not only activates

the AHR, it also leads to an enhanced transcription of aldo-keto reductases (AKR),

an enzyme family involved in the metabolism of prostaglandins. They inhibit the

spontaneous conversion of prostaglandin D2 (PGD2) to 15d-prostaglandin J2 (15d-

PGJ2). Usually, 15d-PGJ2 activates the peroxisome proliferator-activated receptor

gamma (PPARγ), a pro-apoptotic signaling receptor. Therefore, a low quantity of

15d-PGJ2 leads to an anti-apoptotic metabolic state, which in turn improves the

conditions for carcinogenesis. In this work, it could be shown that the AKR fam-

ily C depends on AHR signaling, its transcription is enhanced when exposed to

EGFR-ligands and lowered by inhibitors of the protein kinase C (PKC). Therefore,

a signaling cascade between the AHR, the EGFR and the AKR1C3 family that

could explain how PAH drive skin carcinogenesis seems to exist.
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Abbreviations

Abbreviation Meaning

5α-DHT 5-alpha-dihydrotestosterone

9α11β-PGF2 9-alpha-11-beta-prostaglandin F2

15d-PGJ2 15-deoxy-delta-12,14-prostaglandin J2

A/A antibiotics/antimycotics

AB Antibody

AD atopic dermatitis

ADAM a disintegrin and metalloproteinase

ADPF AHR degradation promoting factor

AEV avian erythroblastosis virus

AHR Aryl Hydrocarbon Receptor

AHRR AHR repressor

AIP AHR interacting protein

AK Actinic keratosis

AKR aldo-keto reductase

APS ammonium persulfate

AR androgen receptor

ARE antioxidant response element

AREG amphiregulin

ARNT AHR nuclear translocator

ATP adenosine triphosphate

BaP benzo[a]pyrene

BCA bicinchoninic acid

BCC basal cell carcinoma

BDE-47 2,2’,4,4’-Tetrabromodiphenyl ether

bHLH basic helix-loop-helix

BSA Bovine Serum Albumin

BTC betacellulin

cDNA complementary DNA

CNS central nervous system

COX2 cyclooxygenase 2

CPD cyclobutane pyrimidine dimers

CR cysteine-rich

cSCC cutaneous squamous cell carcinoma

dEGFR Drosophila melanogaster epidermal growth factor receptor

DMEM Dulbecco’s Modified Eagle Medium

III



Abbreviation Meaning

DMSO dimethyl sulfoxide

DNA deoxyribonucleic acid

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen

E. coli Escherichia coli

EDTA ethylenediaminetetraacetic acid

eJM extracellular juxtamembrane

EGF Epidermal Growth Factor

EGFR Epidermal Growth Factor Receptor

EGN epigen

EPR epiregulin

ER estrogen receptor

ErbB erythroblastosis oncogene B

EREG epiregulin

Erk1/2 extracellular signal-regulated kinase 1 and 2

EV empty vector

FCS fetal calf serum

FICZ 6-formylindolo[3,2-b]carbazole

G418 Geneticin™
GM3 monosialodihexosylganglioside

GPCR G-protein coupled receptor

H2ODEPC diethylpyrocarbonate water

HAH halogenated aromatic hydrocarbon

HB-EGF Heparin-binding EGF-like growth factor

HER human EGF receptor

HIF-1 hypoxia-inducible factor-1

HNSCC head-and-neck squamous cell carcinoma

HRP horseradish peroxidase

HSD hydroxysteroid dehydrogenase

HSP90 heat-shock protein 90

IGEPAL CA-630 Octylphenoxypolyethoxyethanol

iJM intracellular juxtamembrane

JM juxtamembrane

JMAD juxtamembrane activation domain

Keap1-Nrf2 Kelch-like ECH-associated protein 1 and nuclear factor

erythroid 2-related factor 2

KGF-2 keratinocyte growth factor 2

KIN I/II keratinocytic intraepidermal neoplasia I/II
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Abbreviation Meaning

KLF6 krüppel-like factor 6

LRR leucine rich repeat

MAPK mitogen-activated protein kinase

MMP matrix-metalloproteinase

NADP+/NADPH nicotinamide adenine dinucleotide phosphate

NC non-consensus

NER nucleotide excision repair

NES nuclear export signal

NFκB nuclear factor kappa-light-chain-enhancer of activated B-cells

NFDM nonfat dried milk

NLS nuclear localization signal

NMSC Non-melanoma skin cancer

NRG neuregulin

NSAID nonsteroidal anti-inflammatory drug

PAH poycyclic aromatic hydrocarbon

PAS PER-ARNT-SIM

PBS phosphate buffered saline

PC protein kinase

PCB126 polychlorinated biphenyl

PER period

PGD2 prostaglandin D2

PI3K phosphatidylinositol-3-kinase

PIC Protease Inhibitor Cocktail

PKC protein kinase C

PMSF phenylmethylsulfonyl fluoride

PPARγ peroxisome proliferator-activated receptor gamma

PR progesterone receptor

PTB phosphotyrosine binding domain

PTP protein tyrosine phosphatases

PVDF polyvinylidene fluoride

qRT-PCR quantitative reverse-transcriptase polymerase chain reaction

RNA ribonucleic acid

RNAseq RNA sequencing

ROI region of interest

ROS reactive oxygen species

RTK receptor tyrosine kinase

SDR short-chain dehydrogenases/reductases
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Abbreviation Meaning

SDS Sodium dodecyl sulfate

SFK Src-family tyrosine kinases

SH2 src homology 2

shAHR short-hairpin RNA for the AHR vector

SIM single-minded

siRNA small interfering RNA

SNP single point nucleotide polymorphism

TACE tumor necrosis factor alpha converting enzyme

TAD transactivation domain

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TEMED Tetramethylethylenediamine

TGFα transforming growth factor alpha

TKD tyrosine kinase domain

TM transmembrane

TNBC triple-negative breast cancer

TNFα tumor necrosis factor alpha

TRIS tris(hydroxymethyl)aminomethane

TTCA transcript time course analysis

UV ultraviolet radiation

WT wild type

XAP-2 Hepatitis B Virus X-associated protein 2

XRE xenobiotic responsive element

Table 1: List of abbreviations
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1 Introduction

Worldwide, cancer is the leading cause of death [2]. As the world’s population is in-

creasingly ageing due to improved socioeconomic developments, the threat of cancer

incidences and mortality have led to the necessity of understanding carcinogenesis

fundamentally. Nonmelanoma skin cancer (NMSC) presents an entity highly depen-

dent on age, socioeconomic behavior and exposure to environmental factors such as

UV radiation and chemical pollutants [3, 4]. In cutaneous squamous cell carcinoma

(cSCC), the drug pioglitazone inhibits further proliferation by agonizing the pro-

apoptotic receptor PPARγ [5]. The receptor requires activation by 15d-PGJ2, a

hormone spontaneously converted out of PGD2 [5]. Normally, PGD2 is metabolized

by AKR1C3, a member of an enzyme family involved in the metabolism of steroid

hormones [6]. The enzyme was found to be overexpressed in cSCC, leading to a

decreased amount of 15d-PGJ2 [5, 7]. In other malignancies such as triple-negative

breast cancer (TNBC), the expression of AKR1C3 depends on the AHR [8]. Another

receptor responsible for carcinogenesis in various tissues and overexpressed in cSCC

is the EGFR [9, 10]. In 2011, Lemjabbar-Alaoui et al. discovered that the subsequent

development of reactive oxygen species (ROS) in lungs exposed to tobacco smoke

triggered the phosphorylation of src kinase, that in turn phosphorylated PKC, which

ultimately activated tumor necrosis factor alpha converting enzyme (TACE) [11].

TACE is an important member of MMPs that enable ligand binding and therefore

activation of the EGFR [12, 13], while tobacco smoke triggers the activation of the

AHR and src is a member of its chaperoning protein complex [14, 15]. Summariz-

ing, there could be possible crosstalk between the AHR, the EGFR and AKR1C3

in cSCC. Hereafter, the human skin, carcinogenesis, the AHR, the EGFR and the

AKR1C subfamily will be presented to gain further understanding for the topic of

research.
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1.1 The human skin

1.1.1 General Biology

The skin protects underlying tissues against UV radiation, environmental pollutants,

water loss and possible pathogens as well as regulating body temperature, insulation

and sensation. The different requirements are fulfilled by forming a multilayered or-

ganization known as the cutis and subcutis, the former divided in epidermis and

dermis, the latter functioning as the insulating adipose tissue that parts the skin

from muscle fasciae. As the outermost layer, the epidermis covers the underlying

mesenchymal dermis, the two being connected by an intermediate basement mem-

brane. Among others, the main cell type of the epidermis is the keratinocyte, which

is followed by melanocytes, dendritic cells and inflammatory cells. Epithelial stem

cells located in the basal layer of the hair follicle bulge provide its lifelong renewal,

which guarantees constant protection but also leads to the general possibility of

carcinogenesis [16].

1.1.2 Epidermal architecture

As the supreme layer, the epidermis is constantly exposed to the environment and is

therefore composed of a multilayered keratinized squamous epithelium that provides

mechanical and antimicrobial protection. Keratinization is constantly implemented

by the main cell type of the epidermis, the keratinocyte, ensuring a complete re-

newal every four weeks [17]. Its differentiation process can be followed within the

five sublayers of the epidermis: The stratum basale, stratum spinosum, stratum

granulosum, stratum lucidum and stratum corneum. They are characterized by the

occurrence of different types of keratin molecules, with keratin K5 and K14 being

the proliferation-associated molecules in the basal layers and keratin K1 and K10 in

the upper layers [17]. The differentiation is mainly driven by the epidermal growth

factor (EGF), keratinocyte growth factor (KGF) and retinoic acid and is increased

during wound healing [18]. Every 10th cell in the stratum basale is a melanocyte,

ensuring DNA damage protection against UV radiation by concentrating melanin

around the nucleus of every keratinocyte [17]. Immunological protection of the epi-

dermis is provided by lymphocytes and the antigen-presenting Langerhans cells in

the Stratum spinosum [17]. The least common cell type of the epidermis are Merkel

cells, which function as mechano- and pressure-receptors [17].
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1.2 Carcinogenesis

Cancer is characterized by cells showing uncontrolled proliferation even in absence

of growth factors by profiting from an unlimited amount of cell divisions. Malignant

growth is invasive, without restraint and not affected by contact inhibition. During

their progression, they secrete angioproliferative factors that provide nutrition via

angiogenesis and de-differentiate from their cellular origin. In the end, they are im-

mune to apoptotic signaling, break loose and form secondary tumors by migrating

through blood or lymphatic vessels. This process, the conversion of a normal func-

tioning cell into a tumor cell, is called malignant transformation and begins either

with somatic mutations or the infection with a tumor-promoting virus [19]. In the

skin, besides UV-radiation that causes direct DNA-damage [20], also chemicals orig-

inated from environmental pollution and the individual workplace or lifestyle of a

person lead to carcinogenesis [21]. These compounds are mostly polycyclic aromatic

hydrocarbons (PAH) [20]. Their carcinogenic potential is fulfilled by following three

different pathways: the radical cation pathway dependent on P-450 peroxidases, the

diol epoxide pathway dependent on CYP1A1 and -1B1 and the o-Quinone pathway

dependent on AKRs [22]. Regarding the diol epoxide pathway, the needed presence

of CYP1A1 is regulated by the activity of the AHR, a receptor present in nearly

every cutaneous subpopulation [15, 23]. The CYP enzyme family is mainly respon-

sible for phase-I biotransformation, where compounds are modified to be soluble

in water [20]. When oxidized by CYP1A1, a conjugation to hydrophilic moieties

can be executed by phase-II metabolizing enzymes [20]. This process is eventu-

ally exhausted when exposed to PAHs permanently [20, 24]. Then, DNA-damaging

ROS develop and CYP1A1 is continuously active due to the permanently activated

AHR [20, 24]. Therefore, compounds undergo phase-I biotransformation without

being further metabolized, which then may lead to DNA damage [20]. Within the

o-Quinone pathway, CYP1A1-built chemicals are further metabolized by the AKR

enzyme family [22]. Being formal phase-I metabolic enzymes, their main function

is to catalyze the reduction of carbonyl to hydroxyl groups as well as the asso-

ciated reverse oxidation [22, 25]. Enhanced transcription of AKRs is caused by

oxidative stress due to chemical exposure or UV radiation [26]. In order to form

o-quinones, AKR family members such as AKR1A1 and AKR1C1-1C4 oxidize PAH-

trans-dihydrodiols previously build by CYP1A1 or -1B1 to ketols that spontaneously

form catechols [22, 27]. Being unstable, those catechols quickly autoxidize into PAH

o-quinones like BaP-7,8-dione [22]. Since o-quinones are electrophilic, they espe-

cially react with endogenous nucleophiles and DNA directly to cause stable adducts

[22]. Furthermore, they disturb ROS-eliminating processes by conjugating with glu-

tathione [22]. In turn, o-quinones can be reduced back to catechols enzymatically
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or non-enzymatically with NADPH, causing a redox-cycle in which more and more

ROS are built [22]. Regarding those mechanisms, analysis of the AHR and AKR

subfamilies in the skin may contribute to a greater understanding of the formation

of cSCC.

1.3 Nonmelanoma skin cancer

1.3.1 Epidemiology

With 1,198,073 new cases diagnosed in 2020, the incidence of nonmelanoma skin

cancer (NMSC) has continuously increased over the past fifty years with a growth

of 3% every year [2, 28]. The incidence is highest in countries with a high exposure

of UV radiation such as Australia and New Zealand, with 166.2 cases per 100,000

in males and 111.0 cases per 100,000 in females [2]. The second highest rate is seen

in North America with 90.4 cases per 100,000 in males and 43.3 cases per 100,000

in females. Europe follows with 37.5 cases (Western Europe), 30.2 cases (Nothern

Europe) and 8.5 cases (Eastern Europe) per 100,000 in males [2]. With 23.8 cases per

100,000 in males and 10.2 cases per 100,000 in females, Southern Africa is another

region with a high incidence [2]. Predilection sites are the naked skin such as face,

neck, lips, forearms and lower legs. Previously damaged tissues such as scars, chronic

ulcers, or skin suffering from Lupus vulgaris, chronic lymphedema or Lichen planus

also have a higher risk of developing skin cancer [29]. Although the cases of death,

63,731 in total in 2020, present one of the lowest of all cancer entities, its rising

incidence, risk of metastasizing and decrease in quality of life for patients indicate

that a deeper understanding of the underlying mechanisms is needed and essential

for its prevention and treatment.

1.3.2 Etiology and risk factors

NMSC are tumors of malignant degenerated keratinocyte stem cells of the epider-

mis [30], divided into the more frequent basal cell carcinoma (BCC) with 75% of all

NMSC cases and the cSCC for the remaining cases [3]. In both, the most frequent

tumor initiator is UV radiation, divided into UVA with a wavelength of 320-400 nm

and UVB with a wavelength of 290-320 nm [3]. While UVA, which comprises 95%

of the UV radiation that reaches the biosphere, penetrates deeper into the skin and

activates protein C kinases while decreasing tumor suppressor T-cell activity, UVB,

the remaining 5%, damages DNA directly causing mutations such as cyclobutane

pyrimidine dimers (CPDs) especially in the cell cycle controlling tumor suppressor

gene p53 [31–33]. Other risk factors are smoking, ionizing radiation, immunosup-
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pression, chronic inflammation, exposure to polycyclic hydrocarbons, photosensitiz-

ing drugs such as non-selective COX inhibitors, arsenic ingestion and phototherapy

with psoralens [3, 4].

1.3.3 Carcinogenesis of cutaneous squamous-cell carcinoma

Exposure to tumor initiators and presence of tumor promotors such as UV radiation

or chemical carcinogens may lead to precancerous lesions as, for example, actinic

keratoses (AKs), developed by malignant transformed keratinocytes [30]. On the

cellular level, repeated DNA damage causes enlarged, irregular and hyperchromatic

nuclei [30]. Clinically, the AK is detected as lesions of coarse, skin-colored or red-

brownish cornifications [29]. An increased number of degenerated keratinocytes is

used to build a three-tiered grading scale defining the stage of carcinogenesis: When

the lower third of basal keratinocytes are histologically atypic, the term keratinocytic

intraepidermal neoplasia I (KIN I) is used, KIN II is used when two thirds are af-

fected and KIN III when the whole epidermis shows atypical keratinocytes, defining

a carcinoma in situ [30]. The progress from a single AK to cSCC is between 0.0025%

to 16% per year, adjusted to the fact that many patients show at least 6 to 8 lesions

0.15% to 80% per year [30]. 58% mutations in the p53 tumor suppressor gene con-

stitute the majority of mutations induced by UVB radiation in NMSC and seem to

be the most frequent initial mutations that drive the transition from AKs to cSCC

[30]. Enhanced activation of the EGFR, Src-family tyrosine kinases (SFKs), both

down regulating p53, and Myc were found in both cSCC and BCC [34–36].

1.4 The Aryl Hydrocarbon Receptor

1.4.1 Introduction

One mechanism defending the organism against harmful environmental compounds

is the expression of half-life decreasing enzymes. The underlying physiological pro-

cess is described as biotransformation, a system in which exogenously and endoge-

nously occurring molecules are metabolized with the objective of elimination and

excretion. Furthermore, several chemicals unfold their chemical potential only when

metabolized during this process. It is divided into two phases guaranteeing a se-

quence of primary modifications by oxidation, reduction or hydrolysis and follow-

ing secondary conjugations, ultimately allowing elimination. The main drivers of

phase I biotransformation are cytochrome P450-dependent monooxygenases such

as CYP1A1. Its expression is mainly under the control of the transcriptional fac-
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tor aryl hydrocarbon receptor [37, 38]. The AHR was first discovered as a hith-

erto unknown binding species that enhanced CYP1A1 expression after exposure to

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [39, 40]. Although it was previously

known that polycyclic hydrocarbons like B(a)P were hydroxylated enzymatically by

the aryl hydroxylase, the activating mechanism of this reaction was a subject of re-

search [41]. The newly found receptor closed the search for a link between treatment

with xenobiotics, enhanced aryl hydroxylase activity and intensified transcription of

CYP1A1 [39, 40, 42].

1.4.2 Structure

The 96kDa AHR protein is composed of 848 amino acids [43, 44] and expressed by a

gene located on chromosome 7p21 [45]. It is a ligand-activated transcriptional factor

that shares its structure with the superfamily of basic helix-loop-helix PER-ARNT-

SIM proteins (bHLH-PAS) [38, 43]. The bHLH domain is found at its N-terminal

region. It includes two amphipathic α-helices built by conserved amino acids and

attached via an unconserved loop [46]. The domain mediates both DNA binding

and protein dimerization [47]. Adjacent, there is a region of basic amino acids

[46] and the nuclear localization signal (NLS) [48]. The PAS domain is located in

C-terminal direction to the bHLH domain. It is a motif built by the Drosophila

melanogaster protein period (PER), the human AHR nuclear translocator (ARNT)

and the Drosophila melanogaster protein single-minded (SIM) [46]. Originally, these

proteins were independently reported. PER is a product of the per gene and in-

volved in the modulation of the circadian rhythm [49, 50]. As PER, the SIM protein

derives from DNA of Drosophila melanogaster, but regulates midline cell lineage [51].

ARNT was first revealed as an essential dimerization partner of the AHR before the

discovery that it is also part of the PAS domain [52]. Furthermore, two sequences of

degenerated repeats were discovered within the PAS domain and called PAS-A- and

B-subdomain [51–53]. The B-subdomain partially overlapps with the binding region

that is required for building the inactive cytosolic complex of the AHR [54]. It has

therefore been proposed that this unique domain is required for both homotypic

interactions with other PAS proteins [46], heterotypic interactions with chaperones

[46] and binding of AHR ligands [55]. Additionally, the PAS domain also includes

a nuclear export signal (NES) [48]. Finally, the C-terminus of the AHR contains a

transactivation domain (TAD) where co-activators bind and complete target gene

activation [56].

In its inactive state, different chaperones conserve the AHR, generating both pro-

tection from degradation and uncontrolled nuclear translocation as well as keeping

it in a ligand-affinely conformation [55, 57]. Initially, two heat-shock protein 90
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(HSP90) proteins were revealed while investigating the AHR inactively residing in

the cytosol [58]. The first masks the ligand binding site within the PAS domain [59],

whereas the second rests covering both the NLS in the bHLH domain and another

part of the PAS domain [60]. Directly interacting with HSP90 and the AHR is the

second chaperoning member, the AHR interacting protein (AIP) [61], later identi-

fied as the Hepatitis B Virus X-associated protein 2 (XAP2) [62, 63]. It protects

the AHR from uncontrolled nuclear shuttling by inhibiting importin β [64], prevents

ubiquitylation and proteasomal degradation [65], and seems to work as an enhancer

on AHR activation [62, 63]. Degradation of the AHR is also prevented by the third

member, p23 [66]. New insight revealed that p23, in contrast to earlier studies, binds

to the AHR HSP90 independently and might also protect the AHR from autophagy

[67]. Additionally, the chaperoned and inactive AHR is associated with the protein

kinase c-src [14]. It has been revealed that it is the activation of c-src after ligand

binding to the AHR that mediates especially its non-canonical pathways such as

expression of cyclooxygenase 2 (COX2) [68], phosphorylation of the EGFR [69] and

activation of the extracellular signal-regulated kinase 1 and 2 (Erk1/2), suppressing

the expression of PPARγ [70].

1.4.3 Ligands

The AHR provides a binding pocket for mainly planar molecules with an approx-

imated dimension of 14 x 12 x 5 Å [71]. With the first discovered ligands being

TCDD, polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydro-

carbons (HAHs) derived from tobacco smoke, coal tar and traffic-derived particles

[15, 72], it was long thought only exogenous compounds could activate the AHR.

However, endogenously occurring receptors had to be developed during evolution

predominantly in order to perform normal cellular functions and had to be activated

by ligands of physiological origin. [38]. The first activator ever found that was not

a xenobiotic was UV radiation [73]. It was revealed that particular photoproducts

of the amino acid tryptophan induced by UV radiation activate the AHR with high

affinity [74]. The most potent member in this class of ligands is 6-formylindolo[3,2-

b]carbazole (FICZ) [75]. Further investigation classified flavonoids like diosmetin

[76], polyphenols like curcumin [77], alkaloids like rutaecarpine [55] and other indole

derivates like FICZ [75] as AHR agonists. Thus, compounds especially derived from

cruciferous vegetables seem to be the main source of endogenous ligands [57, 78].

Regarding xenobiotics, other synthetic agonists than dioxins, PAHs and HAHs were

identified, for example the proton pump inhibitor omeprazole [79], the nonsteroidal

anti-inflammatory drug (NSAID) diclofenac [80] or chemicals like thiabendazole and

carbaryl, both used in pesticides [81]. In summary, agonists of anthropogenic and
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natural origin both appear to activate the AHR, their number continuously grow-

ing to date. The only AHR-specific agonists used to test the hypothesis of this

work were the PAH benzo[a]pyrene (BaP) and the HAH polychlorinated biphenyl

(PCB126).

1.4.4 Pathway

Generally, the term ”canonical pathway” is used in reference to established sig-

naling cascades with common features. Alternative and less known pathways are

labeled non-canonical. In the case of the AHR, activation of a pathway requires

the binding of an agonist. Without it, the AHR resides in the cytosol in an inac-

tive state [55]. Its activation leads to conformational change, separation from its

chaperones and uncovering of the NLS in its N-terminal domain [82]. Binding of

importin-β to the NLS allows translocation into the nucleus [83]. There, the AHR

dimerizes with ARNT [52] via interaction of the bHLH and the PAS domains of

both proteins [84]. Their conjunction is the crucial step to accomplish the following

induction of gene expression since only the heterodimer of both proteins binds to

the specific DNA (short for: deoxyribonucleic acid) sequence of interest, which is

labeled xenobiotic responsive element (XRE) [84], a motif of a 5’-TNGCGTG-3’

core surrounded by variable nucleotides [85]. Then, several co-activators, reviewed

by Hankinson et al. [86], are recruited to facilitate the launch of the transcrip-

tional machinery by loosening the chromatin structure of the DNA and relaxing the

nucleosomes [55]. Finally, the ribonucleic acid (RNA) polymerase II starts DNA

transcription, with the expression of CYP1A1 being the best investigated terminus

addressed in the canonic pathway of the AHR [42, 82]. Other motifs controlled by

the AHR are named non-consensus (NC): The 5’-GGGA-3’-tetranucleotide motif

which for example codes for plasminogen-activator-inhibitor-1 [87], estrogen respon-

sive DNA elements [88, 89] or genes also recognized by krüppel-like factor 6 (KLF6)

[90]. Furthermore, several crosstalks with other cellular components like nuclear fac-

tor kappa-light-chain-enhancer of activated B-cells (NfκB) [91] or hypoxia-inducible

factor-1 (HIF1) [92] were identified. These non-canonical pathways possibly add

tissue-, cell- and microenvironment-specific functions to the AHR metabolism [20].

Rapidly after fulfilling induction of gene transcription, the AHR is exported, ubiq-

uitinated and degraded by the 26S proteasome [93]. This process is initiated by

phosphorylation of the amino acid serine 68 in the NES of the AHR [94]. For ubiq-

uitination, the E3 ubiquitin ligase is recruited by the AHR degradation promoting

factor (ADPF) [95], the latter interacting with the AHR via its C-terminal TAD

[96]. Dampening AHR function is also executed by a negative feedback mechanism

since binding to XRE also leads to the expression of an AHR repressor (AHRR),
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competing with the AHR on binding to ARNT [97].

1.4.5 Function and role in the skin

The AHR is a transcriptional factor first known as regulator of the dioxin response

in the organism [39]. After decades of research, its presence has been demonstrated

in a large variety of organs and tissues [38, 82]. This work will focus on its role in

the skin, in particular in carcinogenesis of nonmelanoma skin cancer.

Investigations revealed the existence of the AHR in nearly every cutaneous sub-

population [15]. Activation in cells of the skin is executed as previously described:

Binding of exogenous, topic or systemically uptaken dioxins, PAHs and HAHs [98,

99] and endogenous tryptophan metabolites [100]. The latter can be induced by ex-

posure to UV radiation or produced by skin inhabiting bacteria [101]. In the case of

Staphylococcus epidermidis, bacteria can also activate the AHR directly [102]. Ad-

ditionally, newly found agonists originate from skin-residing yeast [103]. After acti-

vation, the AHR physiologically contributes to the transcription of genes needed for

epidermal [104–106] and sebocyte differentiation [107], lipid synthesis [108], melano-

genesis [109] and epidermal barrier function [20, 110, 111]. However, the AHR is

involved in a large spectrum of different skin diseases. The first reported hint was

given when TCDD was linked to the development of chloracne [112]. Evidence of

AHR-dependency in dioxin toxicity was later proven while analyzing AHR-deficient

mice [113]. It is known that the AHR affects various other skin diseases such as

atopic dermatitis, psoriasis, vitiligo and some types of skin cancer [20]. Due to this

observation, it was found that the receptor seems to play a janus-faced role in skin

metabolism, since either activation or inhibition of the receptor was of use in pre-

vention and treatment of several skin disorders [114]. These findings suggested that

executed pathways of the AHR might vary between healthy and inflamed skin [111].

Regarding initiators of skin carcinogenesis, one of the most potent drivers is UV

radiation [30]. In general, it induces the generation of DNA photoproducts in the

nucleus and activation of cell surface receptors [100, 115]. As a result, it increases

the expression of CYP1A1 [23]. Another enzyme family that is upregulated by ex-

posure to UV radiation c-src-dependently are COX, COX-2 in particular [68, 69].

It is responsible for generation of pro-inflammatory and anti-apoptotic functioning

metabolites of arachidonic acid that are strongly linked with tumor development

[116]. Additionally, UV exposed skin shows an upregulation of MMPs, an enzyme

family known to contribute to tumor development [117]. The expression of all named

actors is under control of the AHR [118, 119], pointing out the strong connection

between UV radiation, AHR signaling and skin carcinogenesis. Additionally, the re-

searchers associated with Dr.Haarmann-Stemmann showed that the AHR inhibits
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nucleotide excision repair (NER), a mechanism needed for the removal of UV in-

duced cyclobutane pyrimidine dimers (CPD) [120, 121]. The results strenghten the

evidence of involvement of the AHR in photocarcinogenesis since inhibition of the

AHR leads to p27-mediated increased NER [121]. Furthermore, the elevated risk of

developing squamous cell carcinoma in smokers [122] is linked with AHR activating

PAHs found in tobacco smoke [123]. In summary, AHR signaling was revealed as sig-

nificantly involved in tumor cell migration and invasion in SCC [124]. Genome wide

studies also showed significance regarding genomic translation [125]. Nevertheless,

designating prevention and treatment recommendations regarding UV-dependent

AHR signaling requires further investigation.

1.5 Epidermal Growth Factor Receptor

1.5.1 Introduction

Regarding carcinogenesis, constitutive activation of the EGFR was identified to be

crucial for the carcinogenesis in various tissues and organs such as lung, colon or

breast [10]. Furthermore, over 90% of primary head-and-neck SCC (HNSCC) show

an overexpression of this receptor family [9, 126]. Activation depends on ligand bind-

ing that can only happen after shedding their connection to the membrane surface

through MMPs like TACE. Lemjabbar-Alaoui et al. discovered that in lungs exposed

to tobacco smoke, TACE was phosphorylated by PKC, which in turn was activated

by src [11]. With src being a member of the chaperoning complex that surrounds

the AHR in its inactive state and involved in the phosphorylation of the EGFR [69],

the receptor was added as a subject of research to this work in order to test whether

the AHR and AKRs would be connected through the EGFR in keratinocytes or if

it would be more likely that the AHR affects AKR activity EGFR-independently.

The cellular events of differentiation, proliferation, apoptosis and survival are key

points in every higher organism and strictly controlled by multiple mechanisms.

One of the most important mediators of these crucial processes is the evolutionary

ancient epidermal growth factor receptor (EGFR) [127]. Carpenter et al. discovered

in 1978 that EGF, already known as a promoter of cell differentiation [128–130],

not only leads to increased cell growth but also enhances phosphorylation of cy-

tosolic proteins [131]. Later, it was revealed that the link between EGF binding

and phosphorylation of endogenous compounds was executed by the same protein,

designated EGF receptor [132]. Possession of an extracellular binding site attached

to an intracellular kinase that to that date was a new class of receptors, with the

EGFR as its first member [133]. Its initiation of cell signaling cascades requires two

members that, after ligand binding, dimerize and transphosphorylate each other’s
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intracellular tyrosine residues [134, 135]. Regarding its ubiquitous appearance in

higher organisms, the EGFR and its three other family members that were discov-

ered later are referred to as HER (short for: human EGF receptor) when it is needed

to emphasize facts applying exclusively to the human form. Due to the discovery

that the avian erythroblastosis virus (AEV) encodes a protein that is structurally

homologous to the EGFR, the avian erythroblastosis oncogene B (ErbB), the term

ErbB1-4 was established as another synonym [136]. This term will mainly be used in

the next sections of this work. The second member of EGFR-like receptor tyrosine

kinases (RTK), ErbB2 was designated HER2/neu, being the human counterpart of

the rodent oncogene neu that is responsible for the formation of neuroblastomas in

rats [137, 138]. The third and fourth member complete the class of ErbB receptors

[139, 140]. In humans, they are found in cells of mesodermal and ectodermal origin

where they are responsible for normal cellular differentiation processes but, when

dysregulated, also for carcinogenesis [127].

1.5.2 Structure

Although the EGFR family members are structurally and functionally related, the

locations of their encoding genes differ. The ErbB1 gene is found on chromosome

7p12 [141], ErbB2 on chromosome 17q12 [142], ErbB3 on chromosome 12q13 and

ErbB4 on chromosome 2q34 [143]. They share a common structure composed of a

620 amino-acid extracellular domain that is required for ligand binding, a 23 amino-

acid transmembrane domain and a 540 amino acid intracellular domain ending in a

carboxy terminal tail [127, 144].

The extracellular domain is built by four subdomains of two different types, termed

I, II, III and IV or L1, CR1/S1, L2 and CR2/S2 from the most amino-terminal

residue in carboxy-terminal direction [145, 146]. The first and third subdomains are

two large (L) members of the leucine rich repeat (LRR) family [144]. They are com-

posed of a six turn right handed β-helix ending in a disulfide bond and an α-helix

[144, 147]. The second and fourth subdomains contain multiple cysteine-rich (CR)

elements that show disulfide-bonded motifs similar to tumor necrosis factor α recep-

tor [148, 149]. Abe et al. specified that subdomain II contains eight and subdomain

IV seven of these motifs [150]. Linkage between the subdomains is established be-

tween the most amino-terminal C2 motif of the first CR element and the attached L

subdomain [144]. In contrast to the structural resemblance, the subdomains II and

IV differ greatly in their function. An additional loop inserted in the subdomain II

acts as a ”dimerization arm” [151]. In the inactive monomer, dimerization is autoin-

hibited by molecular interactions between the subdomains II and IV, whereas after

ligand binding, a conformational change allows dimerization by interaction between
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the subdomain II and its corresponding domain in another ErbB molecule [148].

The extracellular domain is followed by a single transmembrane (TM) domain that

links the receptor’s extra- with its intracellular region [152]. Analysis of the lipid

membrane of Escherichia coli (E. coli) revealed that the TM domain associates itself

with the cell membrane through at least two GxxxG motifs that also take part in

the linkage between two ErbB dimerization partners [153–155].

The intracellular domain is built by a tyrosine kinase domain (TKD) and a carboxy

terminal tail that contains at least five tyrosine residues that work as autophos-

phorylation sites [152, 156]. When phosphorylated, they provide docking sites for

the adaptors that initiate the different cell signaling cascades of ErbB receptors, src

homology 2 (SH2) and phosphotyrosine binding domain (PTB) [157]. Interestingly,

the protein kinase c-src is able to phosphorylate the EGFR at the residue Tyr-845

even in absence of an EGFR ligand [158]. Furthermore, the tail executes a twofold

regulatory function by modulating both autoinhibition and active signaling [152].

The structural properties of ErbB receptors are completed by extra- and intracellu-

lar bound juxtamembrane (JM) regions that are greatly described elsewhere [152].

The description above appears to be typical for the EGFR/ErbB1. In contrast,

significant differences appear among the other members of the ErbB receptor family

that are of functional importance. Although ErbB2 has a ligand binding domain,

no ligand has been found to date that binds with high affinity to it [127]. A hypoth-

esis proposed that the ErbB2 could be evolved as a shared subunit for the other

members [159]. Indeed, ErbB2 is the preferred dimerization partner for every other

ErbB receptor family member [160]. In contrast to ErbB2, ErbB3 is capable of lig-

and binding, but devoid of its kinase activity [161] due to replacement of important

amino acid residues in its intracellular domain [162]. New research has revealed that

ErbB3 is indeed capable of binding adenosine triphosphate (ATP) and initializing

autophosphorylation [162]. However, its kinase activity is about 1000-fold weaker

than in measurements analyzing the EGFR/ErbB1 [162]. Finally, ErbB4 has both

a potent ligand binding domain and kinase domain like the EGFR/ErbB1, but ap-

pears in two splice variants that differ in their eJM domain. A third variant that is

unable to bind phosphatidylinositol-3-kinase (PI3K) due to lack of 16 amino acids in

the carboxy terminal tail was designated as ErbB4 CYT-2, the originally discovered

form being ErbB4 CYT-1 [163].

1.5.3 Ligands

Signaling processes that drive growth in the organism have been investigated since

the 1930’s and eventually led to the identification of a nerve growth factor when

nerve cells stopped their expansion after removement of the limb bud [10]. It did
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not take much time to reveal other members of growth regulating factors like EGF

[128]. To date, seven ligands are known to bind and activate the different ErbB

receptors with high affinity: EGF, transforming growth factor alpha (TGFα), be-

tacellulin (BTC), heparin-binding EGF-like growth factor (HB-EGF), amphiregulin

(AREG), epiregulin (EREG/EPR) and epigen (EGN) [152]. They are transmem-

brane polypeptides with a common structure of an EGF-like domain as the amino-

terminal extension linked to a JM stalk, a TM domain and a carboxy terminal

cytoplasmic tail [164]. The extension regularly includes heparin-binding sites, gly-

cosylated linkers and immunoglobulin-like domains [127], a motif of 150 amino acids

that build seven to nine antiparallel β-strands [165]. Responsible for binding with

ErbB receptors, the EGF module plays a central role within the general structure

[164]. It is a sequence of 40 amino acids wherein six cysteine residues build three

intramolecular disulfide bonds, generating a mainly β-sheet structure with three

loops [127, 164]. Only one amino acid divides the second from the third loop, a

feature that is believed to provide a hinge, adding flexibility to the overall structure

[164]. Although being the functional relevant motif, possession of an EGF module

alone does not define a high-affinity ligand for ErbB receptors. However, an onset

of three additional features does: First, presence of a splice site between the fourth

and fifth cysteine residues within the EGF module coded by two exons [166], sec-

ond, location of the functional EGF module responsible for ligand binding within

25 residues of the TM domain [164, 167] and third, spacing of the cysteines in the

sequence CX7CX4−5CX10CX8C [164, 167]. Correct trafficking after their translation

and delivery to the cell membrane is provided by the cytoplasmic tail, first observed

regarding TGFα and AREG shuttling [168, 169]. Furthermore, the cytoplasmic tail,

set free after shedding, enables retrograde derepression of the genes coding for its

former ligand [170]. Every further deviation from the described structure distin-

guishes the seven high-affinity ligands from others such as the family of neuregulins

(NRG) [164]. These are encoded by four genes, NRG1-4, and share the typical EGF

domain that allows them to bind to ErbB receptors [152]. The resulting polypep-

tides were not used in this research and are extensively reviewed elsewhere [171].

Each ErbB receptor ligand shows tissue specificity and binding preferences. EGF,

AREG, TGFα and EPN primarily bind to the EGFR/ErbB1 [172, 173], BTC, HB-

EGF and EREG both ErbB1 and ErbB4 [172]. NRG1 and NRG2 activate both

ErbB3 and ErbB4 [174–176], whereas NRG3 and NRG4 bind only to ErbB4 [172,

177, 178]. The receptors ErbB3 and ErbB4, revealed as binding partners for both

neuregulins and the primary ligands, were therefore designated as ”bispecific” [179].

As mentioned before, no ligand has been found to bind to ErbB2 yet [10].
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1.5.4 Pathway

In their inactive condition, ErbB receptors rest as high-affinity, tethered monomers

within the cell membrane. In this form, the II/S1 subdomain, responsible for dimer-

ization, is beyond reach and autoinhibited by interactions with the subdomain IV/S2

[144, 152, 180]. Generally, eight dimeric receptor combinations are possible since

neither ErbB2 nor ErbB3 form homodimers [181, 182]. Binding preferences differ

largely between the receptors, but ErbB2 is the favored dimerization partner [160].

Induction of any signaling cascade of ErbB receptors begins with dimerization oc-

curing by ligand binding [183]. As previously mentioned, the ligands are placed

within the cell membrane and require shedding by proteolysis [184]. Here, release

of EGF and BTC is executed by the matrix-metalloproteinase ADAM10 (short for:

a disintegrin and metalloproteinase), and shedding of AREG, HB-EGF, EREG and

EGN is provided by ADAM17/TACE [12, 13]. In turn, the sheddases are activated

by separation from their amino-terminal pro-domain, performed by different protein

kinases (PC) including src [185, 186]. The now freed ligand binds both subdomain

I/L1 and III/L2 of the extracellular ErbB receptor domain, inducing a conforma-

tional change which exposes the dimerization arm of subdomain II/S1 [147, 151]. In

summary, a shed ligand like EGF binds to an ErbB receptor like EGFR and builds

a stable 1:1 EGF-EGFR homodimer that changes to an asymmetrical conforma-

tion. This exposes the subdomain II dimerization arm and enables bonding with

the same arm of another EGF-EGFR monomer leading to an active 2:2 EGF-EGFR

complex [151, 183]. Shortly after, the intracellular kinase of one receptor starts

phosphorylation of the tyrosine residues of the other [187]. Here, one receptor func-

tions primary as the activator, whereas the other presents the receiver [188]. The

purpose of the phosphorylated tyrosine residues is to serve as docking sites for the

next regulatory elements in the different ErbB pathways, SH2 and PTB [148, 157].

These effector proteins are essential to start further downstream signaling pathways.

In spite of the high-affinity ligands, input for ErbB receptor activation is also pro-

vided by hormones, neurotransmitters, lymphokines and mediators of the cellular

stress response [189]. Furthermore, the ErbB receptors are linked to pathways under

the control of G-protein coupled receptors (GPCR), which also mediate their src-

dependent phosphorylation [190]. As diverse as the possible activating mechanisms

are the resulting intracellular signaling cascades, depending on tissue, dimer and

bound ligand. In epithelial cells alone, there are over a 1000 genes affected by active

ErbB receptor signaling [191]. One of the best investigated is the mitogen-activated

protein kinase (MAPK) pathway, its downstream signaling promoting cell cycle en-

try and regulation of proliferation, differentiation and apoptosis [192]. Aside from
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the MAPK pathway, ErbB receptor downstream signaling controls many other cas-

cades such as the lipid and protein supplying phosphatidylinositol 3-kinase (PI3K)

or the JAK/STAT pathway (short for: Janus tyrosine kinase/signal transducer and

activator of transcription) [193, 194]. Other pathways and crosstalks, for example

with the NfκB pathway are not of interest for this work and therefore disregarded

here [195].

Regarding the endpoints of ErbB signaling, it needs to be highlighted that the

affected genes are categorized into four groups, according to a strict time man-

agement: immediately up- or downregulated microRNA (IU-/ID-miRs), immediate

early genes (IEGs), delayed early genes (DEGs) and delayed up- and downregulated

genes (DUGs/DDGs) [10]. After the IU- or ID-miRs occur, it takes about 20 min-

utes until the expression of IEGs reaches its peak [10]. Approximately 2 hours after

ligand binding, the DEGs are activated [10], and 30 minutes later, the DUGs and

DDGs [10], which reach their maximum 4-8 hours after ErbB receptor activation

[196]. In contrast to the other categories in which the expression decreases after

reaching a maximum, the genes of the ”delayed” type persist in a steady state and

maintain long-term phenotypic changes [10]. Generally, the output depends on lig-

and, formed dimer and tissue [127].

The termination of ErbB receptor activity is mainly provided by endocytosis [127].

Shortly after ligand binding, clathrin-coated regions in the cell membrane form vesi-

cles that mature to endosomes capable of receptor degradation or recycling [127, 197,

198]. The outcome is determined by the composition of the dimer and continued

phosphorylation of the residue Tyr-1068 in the endosome.

1.5.5 Function and role in the skin

The ErbB receptor family controls cell division, migration, adhesion, apoptosis and

differentiation in multiple tissues of the organism [127]. Generally, ErbB1 primar-

ily promotes the progress of epithelial proliferation and differentiation in the skin,

lung, pancreas and the gastrointestinal tract [127]. The other members were found

to especially mediate cardiac development and function [199]. Together, they are

crucial for the correct development of the central nervous system (CNS), although

ErbB2-4 seem to be more important in this process [200]. The search for the precise

biological function of a receptor often includes the creation of knockout mice. Many

experiments share that EGFR knockout leads inevitably to death of the organism,

although the specific moment of death ranges from embryonic lethality to death at

birth to postnatal death after a period of living [201]. Nevertheless, these results

emphasize the crucial need for ErbB receptor signaling beginning at the implanta-

tion of an embryo [201].
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Being capable of producing the ErbB ligands TGFα, AREG and HB-EGF, ker-

atinocytes autonomously maintain their replication as well as inhibit their apoptosis

and further differentiation, due to the ErbB network [202, 203]. Already known as

the main sheddase of these ligands, ADAM17 is unsurprisingly found to be the pri-

mary expressed metalloproteinase in keratinocytes [204]. Additionally, treatment of

superficial wounds with the ErbB1 ligand EGF showed faster healing due to accel-

erated epithelialization, highlighting the impact of ErbB signaling in the skin [18].

The receptors expression varies within the different layers of the epidermis, from

the highest expression in the proliferating basal keratinocytes to low expression in

keratinocytes of the upper layers [205]. Besides its proliferative activity, ErbB recep-

tor signaling is also crucial to establishing and maintaining a functioning epidermal

barrier and antimicrobial response while it also controls inflammation [205–208]. If

the ligands are overexpressed, the ErbB network contributes to the development of

a variety of skin disorders that include hyperkeratinization, as can be seen in psori-

asis [209, 210]. Further deregulation of the ErbB network leads to defective wound

healing, disrupted hair follicle development and carcinogenesis [210].

Overexpression of ErbB receptors in cancer was first indicated by the observation

that HER2/neu is homologous to the rat oncogene neu [136]. Indeed, constitutive

activation of ErbB signaling was identified to be crucial for carcinogenesis of various

tissues and organs like lung, colon or breast [10]. Evidence of disrupted ErbB sig-

naling in skin cancer has been shown in HNSCC cell lines as well as in primary and

metastasized HNSCC [211, 212]. Over 90% of primary HNSCC show overexpression

of ErbB receptors [9], which maintain continuous proliferation and prevent terminal

differentiation [126]. Aside from analyzing its downstream signaling and promotion

of carcinogenesis, there have been just as many attempts at understanding how the

ErbB signaling is disrupted in the first place. Being responsible for nearly 90% of

SCC, UV exposure as a known initiator and promotor of DNA damage has been the

major target of interest. A first link was the observation that beside its direct impact

on the DNA, UV produces ROS that were found to inactivate protein tyrosine phos-

phatases (PTPs), enzymes responsible for the dephosphorylation of RTKs like ErbB

receptors [213]. Additionally, phosphorylation of ErbB receptors by exposure to UV

was shown to be dependent on ligand binding due to increased metalloproteinase

activity [213]. Not only do ROS inactivate PTBs, they also trigger the cleavage of

the pro-domain of TACE [214]. Additionally, Lemjabbar-Alaoui et al. found that

in lungs exposed to tobacco smoke, the development of ROS triggered the phos-

phorylation of src kinase, that then in turn phosphorylated PKC, which ultimately

activated TACE [11]. Here, a possible crosstalk between the AHR and the EGFR

becomes possible.
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1.6 Aldo-keto reductase 1C subfamily

1.6.1 Introduction

The enzyme AKR1C3 describes another protein which expression is upregulated

in SCC [5]. Mantel et al. discovered that it protects tumor cell lines from SCC

from antiproliferative effects [5]. Being mainly involved in the metabolism of steroid

hormones, AKR1C3’s tumor promoting effects were mostly studied in malignancies

originated from the breast or the prostate [5]. In 2019, Yamashita et al. discovered

that in triple-negative breast cancer (TNBC), chemotherapy efficacy is regulated

by AKR1C3 in an AHR-dependent manner [8]. Taken together, the enzyme was

selected to be tested whether it would be dependent on the AHR in normal ker-

atinocytes as well or not.

Ligand controlled receptor signaling is one of the major mechanisms with which

the organism regulates physiological functions. It represents the communication

system besides direct cell-cell interactions and electrochemical impulses. Messen-

ger substances serving as such ligands are designated hormones, neurotransmitters

or cytokines, depending on the system in which they are active. Hormones are

secreted by endocrine glands or specific tissues. Important members of this sys-

tem are steroid hormones. Locally produced, they trans-activate nuclear receptors

like the androgen, estrogen, progesterone, mineralocorticoid or glucocorticoid re-

ceptor [215, 216]. Prior, they undergo prereceptoral modifications by a system

of enzymes which interconvert their inactive precursors to potent hormones [215,

216]. These enzymes belong to the family of hydroxysteroid dehydrogenases (HSDs),

which can be divided into NADPH (short for: nicotinamide adenine dinucleotide

phosphate)-dependent ketosteroid reductases and NAD+-dependent hydroxysteroid

oxidases [216]. HSDs are members of two protein superfamilies, the short-chain de-

hydrogenases/reductases (SDRs) and the aldo-keto reductases (AKRs) [216]. AKRs

combine NAD(P)(H)-dependent oxidoreductases that are encoded by 15 genes and

divided into three families and seven subfamilies [25]. They are classified by us-

ing a nomenclature based on amino acid sequence similarities established by Jez et

al. in 1997 [217]. Here, a root AKR is followed by a number that designates the

family in which all enzymes have 40% sequence similarity. Next, a letter indicates

the subfamily where 60% sequence similarities have been revealed. Finally, another

number represents the unique protein sequence. Therefore, AKR1A1 describes the

first AKR in family 1, subfamily A, and AKR1C3 the third protein in family 1,

subfamily C [217]. The different members are widely expressed and metabolize a

variety of substrates.
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1.6.2 Structure

Most AKRs are monomeric proteins composed of approximately 320 amino acids

with an average mass between 34 and 37 kDa [218, 219]. Apart from this generally

found composition, members of the families six and seven build dimers, or even

tetramers [220, 221]. Analysis of their crystal structure revealed a triosephosphate

isomerase, more specifically an (α/β)8 motif, where eight α helices that proceed

antiparallel surround eight parallel β strands that merge in the center and shape

the ”staves” of a barrel [218, 222]. At its back, three large loops, designated A-loop,

B-loop and C-terminal loop, determine substrate specificity [218]. Two additional

helices, H1 and H2, are located in the C-terminal region outside of the barrel [219].

The active site of the enzyme is located in its base and built by the positions Asp-

50, Tyr-55, Lys-84 and His-117 [25, 219]. The highly conserved residues Thr-24,

Asp-50, Ser-166, Asn-167, Gln-190, Tyr-216, Leu-219, Ser-221, Arg-270, Phe-271,

Ser-272, Arg-276, Glu-279, and Asn-280 function as the cofactor binding site [218].

Here, both NADPH and NADH can bind, although NADPH is preferred due to the

additional phosphoryl group [223]. Substrate binding happens within a pocket often

built by 14 residues in five loops, predominately in the A-, B- and C-terminal loop

[219].

As mentioned before, members of the same family or subfamily show high sequence

similarities that explain the shared structure, resembling a barrel. Residues cru-

cial for catalytic activity seem to be conserved, whereas the residues of the loops

vary greatly between the enzymes [218]. Therefore, some AKRs can change their

conformation, increasing the affinity to their cofactor, and others are devoid of this

ability. A great example is AKR1B1, where the residues 210 to 212 and 213 to 216

of its β-strand 7 are involved in the formation of a clamping loop that locks NADPH

into the binding cleft by building van der Waals and electrostatic linkages with the

cofactor [224]. In contrast, AKR1C family members do not form this conformation

[219]. Regarding the stereochemical outcomes, only one single point mutation in

the active site of an enzyme can lead to a different product. AKR1C1 exhibits a

20α-HSD activity and differs from AKR1C2 by seven residues, but exchange at the

position 54 in its active site with the residue found at the same position in AKR1C2

forces AKR1C1 to execute the 3α-HSD activity of AKR1C2 [225, 226]. AKR1C3,

in turn, has other unique properties, but has Leu-54 in its active site like AKR1C1

[227]. Additionally, the outcome of the chemical reaction catalyzed by AKRs is

determined by various possible steroid-binding poses [219]. This explains why the

AKR1C1-4 have the ability to act as 3-, 17- or 20-ketosteroid reductases [219].

AKR genes are located on chromosome 10p15 to 10p14 [228]. As being part of the

defense system against oxidative stress, their gene promotors contain antioxidant
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response elements (AREs) through which they can be regulated by the Keap1-

Nrf2 (short for: Kelch-like ECH-associated protein 1 and nuclear factor erythroid

2-related factor 2) system [229]. Unsurprisingly, upregulation occurs through the in-

fluence of ROS, electrophiles and Nrf2 activators [219]. According to RNA sequenc-

ing (RNAseq), additional splice variants have been identified, three for AKR1C2,

and two for AKR1C3. Evidence of their transcription, translation, and catalytic

activity is poor and it is believed that only one transcript per AKR gene encodes for

the active protein [219]. Furthermore, there exist multiple single point nucleotide

polymorphisms (SNPs) that are evolutionarily conserved and/or alter the executed

chemical reactions [230].

1.6.3 Metabolism

AKR enzymes are primarily located in the cytosol where they regulate ligand occu-

pancy for steroid receptors [219]. Exceptions have been demonstrated with AKR1C1-

3 additionally secreted with surfactant by alveolar type II cells, AKR1B15 found in

mitochondria and AKR1B10 present in lysosomes [231–233]. Highly differentiating,

AKR6 family members are associated with membrane bound voltage channels, and

AKR7A2 probably with the Golgi apparatus [25, 221]. Generally, they catalyze

the reduction of carbonyl to hydroxyl groups, and the associated reverse oxidation

[25]. Here, due to the excess of NADPH over NAD+ in cells, the reaction favors

reduction of molecules [25]. It follows a bi-bi kinetic mechanism, where the cofac-

tor binds first and leaves last [25, 234, 235]. The exact kinetics were exceptionally

reviewed by Penning et al. 2019 [219]. The following description of the catalyzation

sequence was observed in AKR1C2 and AKR1C9, the latter being the prototype

of the AKR1C family [219]. The initial event that allows further reactions is the

binding of a NADP(H) to the enzyme, and performed in three steps [234–236]. It

is mainly mediated by the highly conserved residues Arg-276 and -270, which allow

quick formation of a loose complex by building salt bridges with the 2’-phosphate of

the AMP proportion of a NADP(H) molecule [237, 238]. Shortly after, a conforma-

tional change enables strengthening linkages between loop β1, α1, and loop B, which

lead to the formation of a tunnel that locks the cofactor in its place. Then, hydro-

gen bonds between its nicotinamide head group and the cofactor binding residues

of the enzyme are established [219, 238]. Due to the structure of NADP(H), in

which its ribose moiety is bound to the nicotinamide head group by a N-glycosidic

bound, these binding processes occur in anti-conformation [219]. Furthermore, the

head group of NADP(H) associates with Tyr-216 by π-π stacking, its carboxamide

side chain with Ser-166, Asn-167, and Gln-190 [219]. Reaching this conformation

enables the 4-proR-hydride transfer [229]. Prior, a substrate associates with the
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binding pocket of the enzyme. Within the catalytic tetrad, Tyr-55 now has a key

role due to its ability to act as a diprotic general acid/base [239]. Its ionization is

provided by a ”push-pull” mechanism, where the adjacent residues His-117 and Lys-

84 facilitate proton donation and removal, respectively [239]. Regarding the favored

reduction direction, protonated TyrOH2
+ at a pH optimum of 6 is able to polarize

the carbonyl group of an AKR substrate to facilitate hydride transfer [239]. In the

following, stereospecific reaction, the hydride is removed from the C4 position of the

nicotinamide ring of NADP(H) and added at the C3 position of the substrate [239].

The reverse reaction, oxidation of a substrate by hydride transfer from its alcohol

group to a bound NAD(P)+, takes place in a pH optimum of 9 and is implemented

by TyrO- acting as a general base [239]. As previously described, this phenolate

form of Tyr-55 exists due to Lys-84, which, in turn, is salt-linked to and deproto-

nated by Asp-50 [239]. After the successful hydride transfer, the product leaves the

enzyme first and is followed by the utilized cofactor [219]. Now, the process can

begin from the start. Here, AKR1C family members especially reduce the positions

C3, C5, C17 and C20 on the targeted steroid [240].

1.6.4 Function and role in the skin

The expression of AKR enzymes has been determined to steroidogenic organs. This

includes the male and female reproductive system, the testis and prostate and the

breast, endometrium, uterus and ovaries, respectively [6]. Furthermore, in both

sexes, the enzymes are expressed in the CNS, lung, adrenal kidney, liver and adi-

pose tissue [6, 219]. Generally, AKRs influence the availability of a ligand for their

target receptors, the androgen (AR), estrogen (ER), and progesterone receptor (PR),

respectively [6]. Since they catalyze both oxidation and reduction, they transform in-

active metabolites into potent, active hormones and vice versa [241]. Here, AKR1C1

and -1C2 seem to act in ligand decreasing direction by favoring inactivating reac-

tions [241, 242]. In contrast, AKR1C3 converts the weak estrogen to the potent

17β-estradiol in women, the essential hormone for reproduction and development

of the female secondary sexual characteristics [6]. In male biology, this process is

mirrored by the production of testosterone out of ∆4-androstene-3,17-dione [6]. Fur-

thermore, AKR1Cs are involved in virilization and the development of the genitalia

by being part of the pathway that produces 5α-dihydrotestosterone (5α-DHT) [243].

AKR1C4 is liver-specific and needed for the reduction of 5α-pregnane-3,20-dione to

3α-hydroxy-5α-pregnan-20-one[240, 244]. Notably, the residues 117-237 of AKR1C3

were found to have the ability to directly bind the AR, enabling its recruitment to

androgen responsive genes [245]. Besides the metabolism of sexual hormones, both

AKR1B1 and -1C3 have a prostaglandin F synthase activity [246, 247]. AKR1C3 is
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able to catalyze the reduction of PGD2 to 9α11β-prostaglandin F2 (9α11β-PGF2)

[7]. Normally, PGD2 would spontaneously be converted into 15d-PGJ2, which is

an agonist of PPARγ [5]. Absence of this agonist due to overly active AKR1C3

is therefore proposed as a tumor promoting mechanism [5]. Higher affinity and

stronger catalytic activity for PGD2, AKR1C3 and not -1C1 or -1C2, is mainly

responsible for this process [248, 249]. This statement was strengthened by the rev-

elation that AKR1C3 is strongly expressed in the differentiated suprabasal layers

of the skin and upregulated in PGD2 promoted atopic dermatitis (AD) [241]. Un-

surprisingly, the skin as well is considered to be a steroidogenic organ [250]. Here,

the highest expression of AKR1C members was measured in mid-term epidermis

and in the stratum spinosum [241]. The importance of sex hormone metabolism

for the skin is shown by their involvement in its lipid barrier, hydration, elastic-

ity, firmness, and wrinkle formation [251, 252]. The accompanying expression of

AKR1C1 and -1C2 has been previously described in cultured human keratinocytes,

although their occurrence in human skin, exact biology, and the additional expres-

sion of AKR1C3 was first noted in 2009 by Yaŕı E.Maŕın [26, 253, 254]. This group

demonstrated the occurrence of AKR1C family members in keratinocytes, fibrob-

lasts, and melanocytes. The transcription of AKR1C1-3 was increased after they

exposed HaCaT cells to UV or hydrogen peroxide-derived ROS, suggesting a role

in keratinocyte stress response [26]. Exposure to small-interfering RNA (siRNA)

against AKR1Cs led to a decreased number of living cells after incubation for 72

hours [26]. The amount was even lower when the transfected cells were exposed to

UVB as well [26]. In summary, first evidence of AKRs playing a key role as survival

factor for keratinocytes was concluded [26]. Their protective behavior is supported

by the observation that 17β-estradiol, known to be produced by AKR1C3, prevents

H2O2-induced apoptosis in human keratinocytes [255]. However, mediating a general

cellular survival response despite harmful pathogens is a possible mechanism that

also enables carcinogenesis. Indeed, AKR1Cs were revealed as being overexpressed

in the cutaneous SCC cell line A431 [256]. Downregulation of AKR1C expression

again led to increased apoptosis after UV and bleomycin exposure [26, 256]. Finally,

Mantel et al. revealed the overexpression of AKR1C3 in SCC samples from tumor

patients [5]. Furthermore, treatment with PGD2, 15d-PGJ2, and with the PPARγ

agonist pioglitazone inhibited further SCC proliferation [5].
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1.7 Aim of the research

Understanding the mechanisms of early carcinogenesis is the key to determine pre-

ventive measures. In cSCC, AKR1C3 and the EGFR are over-expressed and for

TNBC, the expression of AKR1C3 depends on the AHR. This leads to the hypoth-

esis that the expression of AKR1C3 depends on the AHR in healthy skin as well.

Additionally, it might be possible that the EGFR is a link in the signaling cascade

between the AHR and AKR1C3. We suggest a possible, hitherto unknown path-

way between those receptors and the enzyme. The aim of this work is to test how

AKR1C3’s gene transcription and protein translation depends on the activity of

the AHR or the EGFR and whether the suggested pathway between the AHR, the

EGFR and AKR1C3 exists. The data was collected exposing HaCaT-keratinocytes

to agonists of the AHR or the EGFR and different inhibitors. Gene transcription

was measured using qRT-PCR, protein expression by using Western Blot.
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2 Materials and Methods

2.1 Chemicals and Reagents

2.1.1 Chemicals

Agent Reference

2-mercaptoethanol Sigma Aldrich, St. Louis, MO, USA

2-propanol Carl Roth GmbH & Co KG, Karlsruhe

Ammonium persulfate (APS) Sigma Aldrich, St. Louis, MO, USA

Bromophenol blue SERVA Electrophoresis GmbH, Heidelberg

Bovine Serum Albumin (BSA) Carl Roth GmbH & Co KG, Karlsruhe

Color Protein Standard New England Biolabs, Ipswich, MA, USA

Dimethyl sulfoxide (DMSO) Carl Roth GmbH & Co KG, Karlsruhe

Dulbecco’s Modified Eagle PAN-Biotech GmbH, Aidenbach

Medium (DMEM)

dNTP-Mix Jena Bioscience GmbH, Jena

Ethylenediaminetetraacetic acid Sigma Aldrich, St. Louis, MO, USA

(EDTA)

Ethanol, denatured Roth, Karlsruhe

Geneticin™ Selective Antibiotic Biochrom GmbH, Berlin

(G418)

Glycine NeoFROXX GmbH, Einhausen

Hydrochloric Acid Carl Roth GmbH & Co KG, Karlsruhe

Methanol Carl Roth GmbH & Co KG, Karlsruhe

Non-fat dried milk powder AppliChem GmbH, Darmstadt

Octylphenoxypolyethoxyethanol ICN Biomedicals Inc., Irvine, CA, USA

(IGEPAL CA-630)

Oligo (dT)15 Primer Jena Bioscience GmbH, Jena

Phenylmethylsulfonyl fluoride Sigma Aldrich, St. Louis, MO, USA

(PMSF)

Phosphate buffered saline (PBS) PAN-Biotech GmbH, Aidenbach
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Agent Reference

Polyvinylidene fluoride (PVDF) GE Healthcare, Chicago, IL, USA

membrane

Protease Inhibitor Cocktail (PIC) Merck Millipore, Burlington, MA, USA

Restore™ WB Stripping buffer Thermo Fisher Scientific, Waltham, MA

USA

Reverse Transcriptase Promega, Madison, WI, USA

Roctiphorese® Gel 40 (29:1) Carl Roth GmbH & Co KG, Karlsruhe

Acrylamide/Bisacrylamid solution

Sodium azide Sigma Aldrich, St. Louis, MO, USA

Sodium chloride Carl Roth GmbH & Co KG, Karlsruhe

Sodium deoxycholate Sigma Aldrich, St. Louis, MO, USA

Sodium dodecyl sulfate (SDS) Carl Roth GmbH & Co KG, Karlsruhe

Sodium fluoride Sigma Aldrich, St. Louis, MO, USA

Sodium orthovanadate Sigma Aldrich, St. Louis, MO, USA

Sucrose Carl Roth GmbH & Co KG, Karlsruhe

Tetramethylethylenediamine Sigma Aldrich, St. Louis, MO, USA

(TEMED)

Tris ultrapure AppliChem GmbH, Darmstadt

Tween® 20 Sigma Aldrich, St. Louis, MO, USA

WesternBright™ ECL Advansta, Menlo Park, CA, USA

Table 2.1: List of chemicals

2.1.2 Stimulants

Agent Reference Target structure

Amphiregulin (AREG) PeproTech Epidermal Growth Factor Receptor

Benzo[a]pyrene (BaP) Sigma Aldrich Aryl Hydrocarbon Receptor

Bosutinib Carl Roth Tyrosine kinases

Epidermal growth Sigma Aldrich Epidermal Growth Factor Receptor

factor (EGF)

Epiregulin (EREG) PeproTech Epidermal Growth Factor Receptor

Marimastat Santa Cruz Bio- Matrix metalloproteinase

technology

Polychlorinated bi- LGC Standards Aryl Hydrocarbon Receptor

phenyl (PCB126)

Transforming growth PeproTech Epidermal Growth Factor Receptor
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Agent Reference Target structure

factor alpha (TGFα) Receptor

Tumor necrosis factor R&D Systems Tumor necrosis factor receptor 1/2

alpha (TNFα)

Table 2.2: List of stimulants

2.1.3 Kits

Designation Reference

peqGOLD Total RNA-Kit VWR International, Langenfeld, NRW, Germany

Pierce BCA protein assay kit Thermo Fisher Scientific, Waltham, MA, USA

Table 2.3: List of Kits

2.1.4 Devices

Device Reference

Leitz Labovert inverse phase- LEITZ ACCO Brands GmbH & Co KG,

contrast microscope Stuttgart

HERAcelll® 150 CO2 cell Heraeus Holding GmbH, Hanau

incubator

Hettich Mikro 22R Andreas Hettich GmbH & Co.KG, Tuttlingen

OPTIMAX PROTEC GmbH & Co. KG, Oberstenfeld

Rotor-Gene Q QIAGEN N.V., Venlo, NLD

Tecan Infinite® M200 PRO Tecan Trading AG Switzerland, Männedorf, CHE

Table 2.4: List of Devices

2.1.5 Software

Software Reference

Excel 365 Microsoft

GraphPad Prism GraphPad Software, Inc.

Tecan Software Tecan Trading AG Switzerland

TexMaker Freeware, Copyright (c) 2003-2017, Pascal Brachet

Table 2.5: Software

28



2.1.6 Antibodies

2.1.6.1 Primary antibodies

Antigene Source Dilution Catalog# Company

Anti-EGFR mouse / #05-104 Upstate

AKR1C3 mouse 1:1000 #MAB7678 R&D Systems

AKR1C3 rabbit 1:1000 #ab209899 Abcam

Akt rabbit 1:1000 #9297 Cell Signaling

β-Actin mouse 1:10000 #3700 Cell Signaling

β-Tubulin mouse 1:20000 #T-7816 Sigma Aldrich

EGFR rabbit 1:500 #2232 Cell Signaling

p44/42 MAPK rabbit 1:1000 #9102 Cell Signaling

phospho-p44/42 MAPK rabbit 1:1000 #9101 Cell Signaling

phospho-Akt rabbit 1:1000 #4060 Cell Signaling

phospho-EGFR rabbit 1:1000 #3777 Cell Signaling

phospho-Src rabbit 1:1000 #6943 Cell Signaling

phospho-TACE rabbit 1:1000 #12033 SAB

Src mouse 1:1000 #05-184 Upstate

TACE mouse 1:1000 #sc-390859 Santa Cruz

Table 2.6: List of primary antibodies

2.1.6.2 Secondary antibodies

Antigene Source Dilution Catalog# Company

IgG-HRP Anti-mouse horse 1:2000 #7076 Cell Signaling

IgG-HRP Anti-rabbit goat 1:2500 #7074 Cell Signaling

Table 2.7: List of secondary antibodies
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2.2 Cell Culture

2.2.1 Cultivation of cells

For this work, the adherent growing aneuploidy immortal keratinocyte cell line Ha-

CaT, purchased from the Deutsche Sammlung von Mikroorganismen und Zellkul-

turen (DSMZ), and two variants previously established by the lab of Dr.Haarmann-

Stemmann were used, as can be seen below (Table 3.8).

Name Description Medium composition

HaCaT aneuploidy immortalized DMEM, 10% FCS, 10µg/ml A/A

human keratinocytes

HaCaT-EV HaCaT cells stably trans- DMEM, 10% FCS, 10µg/ml A/A,

fected with pCL1P.THPC 6,8ml (0,54mg/ml) G418

(empty vector)

HaCaT-shAHR HaCaT cells, stably trans- DMEM, 10% FCS, 10µg/ml A/A

fected with pCL1P.THPC 6,8ml (0,54mg/ml) G418

(sh RNA for AhR vector)

Table 2.8: Human Cell Lines

The cells were constantly stored under standard conditions at 37°C and at 5% CO2 in

175 cm2 cell culture flasks. They were cultured in a solution of Dulbecco’s modified

eagle medium (DMEM), antibiotics/antimycotics (A/A 10,000 µg/ml) and fetal calf

serum (FCS). Geneticin™ Selective Antibiotic (G418) was added to the two variants

to prevent a mix of wild type and modified cell lines. Their medium was changed

every 5th day. When a confluence of 90% was reached, the cell cultures were split in

a ratio of 1:60. The growth medium was removed and the cells were washed in 10ml

of phosphate-buffered saline (PBS). After the PBS had been aspirated, the cells were

incubated with 2ml of Trypsin/EDTA at 37°C for 15 minutes. When detached, 8ml

of medium were added in order to wash the cells and stop trypsinization. 600 µl of

the resulting suspension were then added to new culture flasks previously prepared

with 20ml of DMEM and directly stored under standard conditions. The remaining

cells were counted, diluted again, and seeded.
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2.2.2 Counting of cells and Seeding

In order to gain the fixed confluence that is needed in an experiment, the cells were

counted before the seeding using the Neubauer Zählkammer. The average number of

cells per square was used to calculate the cell concentration of the suspension using

the following formula:

Total cells/ml = Average cell count * 10.000 cells/ml (1)

The seeding was done afterwards, using a solution prepared according to the follow-

ing formulas:

Cell suspension needed in ml = (cells per well * wells + 1 well) / total cells/ml (2)

Mastermix needed in ml = 2ml/well * wells + 2ml (3)

Medium needed in ml = Mastermix in ml - cell suspension in ml (4)

After 2ml had been added to each well, they were inspected under the microscope

to check if the needed confluence was reached. The dishes were finally stored under

standard conditions overnight, allowing the adherent growing cells to attach and

replicate.

2.2.3 Stimulation of Cells

After the cells had been incubated overnight, the medium was removed and the cells

were washed twice with 2ml of PSB, in order to remove all remaining FCS. As a

promoting growth factor, it would otherwise potentially interfere with the reagents

used further on and alter the result of the experiments. Therefore, after the PBS

had been aspirated, 2ml of medium without FCS were added to each well and they

were again stored under standard conditions overnight. That way, the cells were

synchronized within the cell cycle and the induction of receptors, enzymes and their

pathways could be related exactly to both the time point when the reagents were

added and their concentrations used. In all further experiments, DMSO was used

as the negative and B(a)P as the positive control.

The first experiment was designed in order to test the influence of the AHR towards

the expression of different AKR family members. Therefore, B(a)P and PCB126,

both ligands of the AHR, were diluted in FCS-free medium to a concentration of

1,5µM for PCB126 and 2,5µM for B(a)P. Induction of the AKR’s gene expression

was analyzed via PCR afterwards by comparing the amount of transcribed AKR1C-

DNA in EV- and shAhR cell lines. Therefore, the reagents were added to wells

either containing starved EV- or starved shAhR-HaCaT cells in the concentrations

given below.
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AHR ligands Concentration

DMSO 0.20%

B(a)P 2.5µM

PCB126 1.5µM

Table 2.9: AHR ligands

Figure 2.1: Stimulation of cells with AHR ligands

In the second experiment, WT-HaCaT keratinocytes were exposed to the EGFR-

ligands EGF, TGFα, AREG and EREG to test whether the EGFR plays a role in

the transcription of AKR1C DNA.

EGFR ligands Concentration

DMSO 0.20%

B(a)P 2.5µM

PCB126 1.5µM

EGF 1µg/ml

TNFα 1µg/ml

TGFα 1 ng/ml

AREG 1ng/ml

EREG 1ng/ml

Table 2.10: EGFR ligands
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How EGFR ligands affected the transcription of AKR1C subfamily members was

tested afterwards by exposing EV- and shAHR-HaCaT cells to different concentra-

tions of EGF or AREG, respectively.

EGFR ligands Concentration

DMSO 0.20%

B(a)P 2.5µM

EGF 1µM

10µM

20µM

AREG 1µM

10µM

20µM

Table 2.11: Concentration series of EGF and AREG

In order to clarify the influence of the EGFR, the amount of transcribed AKR1C

DNA was measured after WT-HaCaT were exposed to an anti-EGFR antibody

(AB).

Anti-EGFR Antibody Concentration

DMSO 0.20%

B(a)P 2.5µM

B(a)P + anti-EGFR-AB 2.5µM/4µg/ml

Table 2.12: Anti-EGFR antibody

The keratinocytes were also simultaneously exposed to B(a)P and Marimastat, an

inhibitor of MMPs, or Bosutinib, an inhibitor of tyrosine kinases, to test the amount

of AKR1C subfamily gene transcription after cell signaling that would normally

activate the EGFR had been inhibited.

Reagents Concentration

DMSO 0.20%

B(a)P 2.5µM

PCB126 1.5µM

B(a)P + PCB126 2.5µM/1.5µM

B(a)P + Marimastat 2.5µM/1µM

B(a)P + Bosutinib 2.5µM/1µM

Table 2.13: Pathway promoters and inhibitors
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Whether a transcriptional factor like the AHR has an influence towards the gene

expression of another receptor or a certain enzyme needs to be tested by measuring

the amount of the translated, mature protein of interest as well. Here, western

blot (WB) was used, testing if the mRNA translation of AKR1C family members is

influenced by the AHR. Therefore, again EV- and shAHR-HaCaT cells were, after

starvation, treated with either B(a)P or PCB126 for 24 hours.

Reagents Concentration

DMSO 0.20%

B(a)P 2.5µM

PCB126 1.5µM

Table 2.14: AHR ligands for WB

2.3 Protein Biochemistry

2.3.1 Cell lysate preparation

In order to analyze the expression levels of the proteins in question via SDS-PAGE

and WB, a lysate of each sample was prepared. Therefore, the cells were washed two

times with 2ml of PSB, and re-suspended in 200µl of lysis buffer after the processes

of starvation and incubation were finished.

Reagent Volume

Tris-HCl, pH 7,4 from a stock solution of 1M in Aq. dest 10ml

NaCl from a stock solution of 2M in Aq. dest 15ml

EDTA, pH8.0 from a stock solution of 1mM in Aq. dest 20ml

Deoxycholate from a stock of 10% in Aq. dest 20ml

SDS from a stock of 10% in Aq. dest 2ml

NaN3 from a stock of 10% in Aq. dest 500µl

IGEPAL CA-630 2ml

H2O add to 100ml

Table 2.15: 2 x RIPA buffer

The cells were scraped from the surface of the well using a cell scraper and transferred

into a chilled Eppendorf® Tube. The tubes were incubated for 30 minutes at 4°C
on the rotation wheel and then centrifuged for 15 minutes at 14.000 g at 4°C. The
supernatant was transferred into a new chilled Eppendorf® Tube. Afterwards, the

protein concentration was determined, using the bicinchoninic acid (BCA) assay.
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Reagent Volume

2 x RIPA buffer 500µl

PMSF 10µl

Protease Inhibitor Cocktail (PIC) 4µl

NaF 20µl

Na3VO4 20µl

H2O 446ml

Table 2.16: 1ml completed lysis buffer

2.3.2 Protein concentration determination with BCA assay

Analyzing the expression of a certain protein in different samples requires that the

same amount of protein lysate is loaded into each well of the SDS-PAGE. The stan-

dardization procedure used in this work is the bicinchoninic acid (BCA) assay that

measures the quantity of total protein in a lysate using the principle of colorimet-

ric detection. In an alkaline medium, proteins reduce Cu2+ to Cu1+, which forms

a chelate with two molecules of BCA. This reaction product causes a strong ab-

sorbance at 562 nm that is almost linear between 20-2000 µg/ml. The absorbance

of each sample and therefore its amount of protein can then be detected with a

spectrophotometer [257].

The BCA working reagent was freshly prepared by adding 50 parts of reagent A to

1 part of reagent B. In a 96-well plate, 25µl of previously produced BSA-standard

solutions were added in triplets and 25µl of each protein lysate were added in

doubles. To start the reaction, 200µl of the working reagent were mixed with

the samples and incubated at 37°C for 30 minutes. Afterwards, the absorbance

was measured with the Tecan Infinite® 200M PRO spectrophotometer and used to

determine the protein concentration of each lysate. Standardization was achieved

by diluting the lysates with (H2ODEPC) and 4x Laemmli buffer to a concentration

of 10µg protein per 20µl.

Reagent Volume/Weight

Sucrose 20 g

Tris-HCl pH6.8 from a stock solution of 1M 20ml

SDS 2 g

Bromophenol blue 0.1 g

2-mercaptoethanol 1ml

Table 2.17: 4 x Laemmli sample buffer
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The finished sample solutions were then boiled at 95 °C for 10 minutes in order

to unfold the proteins by breaking the secondary and tertiary structure. Disulfide

bridges were cut with 2-mercaptoethanol that was added to the Laemmli buffer.

This way, long, rod-like conformations were created that could easily be separated

by their size. The samples were either directly used or stored at -20 °C overnight.

2.3.3 Sodium-Dodecyl-Sulfate Polyacrylamide Gel-Electro-

phoresis (SDS-Page)

The most common method to analyze and compare proteins in different samples

is the Sodium-Dodecyl-Sulfate Polyacrylamide Gel-Electrophoresis (SDS-Page). In-

vented by U.K. Laemmli in 1970 [258], the method takes advantage of the fact that

negatively charged proteins can be sized by their molecular weight while travelling

through a sieve-like matrix in an electric field. The matrix is usually formed by a gel

of polyacrylamide, its percentage determining its viscosity and therefore how fast

the proteins can migrate. It is chosen in advance to gain a good separation in the

region of interest. With protein sizes ranging from 42 kDa to 175 kDa, a 10% gel

was used for this work.

Reagent Volume running gel Volume stacking gel

for 15ml for 6ml

H2O 7.1ml 4.3ml

Acrylamide 3.8ml 0.8ml

1,5µM TRIS 3.9ml (pH 8.8) 0.8ml (pH 6.8)

10% SDS 0.075ml 0.03ml

10% APS 0.075ml 0.03ml

TEMED 0.006ml 0.006ml

Table 2.18: SDS-polyacrylamide gel 10%

The added anionic surfactant sodium-dodecyl-sulfate (SDS) forms a non-covalently

bound complex with the proteins, masking their intrinsic charge and leading to the

required charge that needs to be negative. With 1,4 g SDS binding 1 g protein, a

similar charge-to-mass ratio for all proteins in a sample is reached. Thereby, the

separation of the proteins is independent from charges and results solely because of

the different molecular weights.

A successful way to improve the results of the Western blot is by using a discon-

tinuous SDS-Page system. It consists of a large pore stacking gel on top of a small

pore resolving gel. With an electric field applied and running buffer added, the

introduced proteins migrate fast through the upper gel while being sandwiched in

a voltage gradient made up of a leading border of Cl− ions in front and a trailing
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border of glycinate ions behind. While the Cl− ions are already present within the

gel, the glycinate ions are added with the running buffer. Change in pore size and

pH in the migration zone between both gels allows the glycinate ions to overtake

the protein-SDS complexes which highly increases the protein concentration in a

small zone. This allows the formation of clear and tight bands improving the overall

resolution of the method. In order to measure the height and therefore the molecu-

lar weight of the different proteins, a color protein standard was added to the first

and the last well of the stacking gel. For the first hour, the system was run with a

current of 90V. It was stopped when the dye front reached the migration zone and

adjusted to 120V for two hours.

Reagent Quantity

Glycine 144.1 g (0.384M)

TRIS 30.3 g (0.05M)

SDS 5.0 g (0.1%)

H2O add to 1000ml

Table 2.19: SDS-Page, 5x Running buffer

2.3.4 Western Blot

Detection and quantification of proteins requires that they reside on a solid mem-

brane that immobilizes them, increasing their durability and allowing specific prob-

ing with antibodies [259]. The transferring process was first described in 1979 [260,

261] and has constantly been improved since then. In this work, polyvinylidenfluorid

membranes (PVDF) that bind proteins through hydrophobic interactions were used.

The membrane needed to be soaked in methanol to decrease its hydrophobicity and

to ease the infiltration of the transfer buffer (Table 3.18) together with the proteins.

It was directly placed upon the finished polyacrylamide gel and sandwiched between

two Whatmann-papers. A falcon tube was carefully rolled over the system to re-

move trapped air bubbles, which would have inhibited the transfer. The system was

afterwards coated with two sponges and placed inside the blot carrier, which was

added to the blot tank. The tank was filled with cold transfer buffer and placed in

an ice bath to keep the temperature low. Migration of the proteins was achieved by

running the system with a current of 100V for 1,5 h.

Reagent Quantity

Glycine 144.1 g (0.384M)

TRIS 30.3 g (0.05M)

H2O add to 1000ml
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Reagent Quantity

Table 2.20: Western blot, 5 x transfer buffer

Reagent Quantity

Transfer buffer 400ml

Methanol 400ml

H2O 1200ml

Table 2.21: Western blot, 2 l finished transfer buffer

2.3.5 Antibody treatment and detection

The finished PVDF membrane was cut to separate the proteins of interest and

incubated in washing buffer (Table 3.19) containing either 5% bovine serum albumin

(BSA) or 5% nonfat dried milk (NFDM) for one hour in order to block the areas that

do not contain any proteins. This prevents non-specific binding of the antibodies.

Depending on the blocking solution, the primary antibodies were also diluted in

either 5% BSA or NFDM following the manufacturer’s instructions. After blocking,

the membrane pieces were incubated with the primary antibodies at 4C° overnight.
The next morning, the membranes were washed three times with washing buffer for

10 minutes each. Depending on the source of the primary antibody, the secondary

antibodies, conjugated to the enzyme horseradish peroxidase (HRP), were prepared

again in 5% BSA or NFDM, following the manufacturer’s instructions, added to

the blot and incubated at room temperature for 1 hour. The washing step was

repeated and a 1:1 solution of WesternBright™ ECL Luminol/enhancer solution and

Peroxide Chemiluminescent Detection Reagent were prepared. As a substrate of

HRP, had already been added with the secondary antibody, the luminol emits light

when reduced by the peroxidase in the presence of H2O2 [262]. Enhancement of the

signal is provided by the enhancer solution containing phenol derivates [263]. The

protein of interest is therefore detected by binding of the primary, protein specific

antibody, binding of a matching, HRP conjugated secondary antibody and adding

of a light emitting HRP substrate. Finally, the emitted light is detected by using a

X-ray film in a dark room and developing the film with a X-ray developer. During

this research, the PROTEC OPTIMAX was used.

Reagent Quantity

TRIS 24.2 g (20mM)

NaCl 80.0 g (137mM)

Tween® 20 10ml (0.1%)
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Reagent Quantity

HCl add to pH = 7.6

H2O add to 1000ml

Table 2.22: Western blot, 10 x washing buffer

2.3.6 Western blot quantification

The detected protein bands were analyzed using the software ImageJ, a freeware

created by Wayne Rasband from the National Institute of Health (USA). After

the scanning process, ImageJ was executed. The options ”Mean Gray Value” and

”Display label” were chosen within the ”Set Measurements” option of the ”Analyze”

menu. Then, the image of the scanned WB was opened and set to 32bit to set the

picture mode to grayscale. Within the first band of the first row, the region of

interest (ROI) was defined, by selecting the ”Rectangle” tool of the program and

drawing the frame around the band. The ROI was saved as ”Selection” so that the

same rectangle would be retrievable again if the size was mistakenly changed. By

pressing ”Strg + M ” on the keyboard while the frame was adjusted on the band,

the mean gray value was detected. This step was repeated with every band of the

row that needed to be analyzed. The resulting data was transferred to a separate

spreadsheet (Microsoft Excel). Then, by placing the frame above or below the

measured band, the background was measured as well and added to the spreadsheet.

Calculation included the following steps:

inverted protein x = 255 - protein x (1)

inverted background x = 255 - background x (2)

net protein = inverted protein x - inverted background x (3)

The same calculations were done with the loading control. In this work, both β-actin

and β-tubulin were used.

inverted loading control x = 255 - loading control x (4)

inverted background x = 255 - background x (5)

net loading control = inverted loading control x - inverted background x (6)

The resulted measurements first needed to be deducted from 255 as this number rep-

resents the mean gray scale of the detected image. After the calculations above were

finished, the ratio between the detected protein of interest and its loading control

was calculated, preventing false results due to different sample sizes. These calcu-

lated results were set in ratio with the amount of detected protein in the negative

control.
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ratio protein x = net protein x / net loading control x (7)

ratio negative control = ratio protein x / ratio negative control (8)

These steps were executed according to the protocol of Hossein Davarinejad, pro-

vided by York University. It can be found by following www.yorku.ca > yisheng >

Internal > Protocols > ImageJ.

2.4 mRNA Analysis

2.4.1 RNA isolation

The question if a certain receptor or agent has an influence on any other can also

be answered by analyzing the amount of expressed mRNA encoding for the protein

of interest with the quantitative reverse transcription polymerase chain reaction

(qRT-PCR). In this two-step procedure, purified RNA is transcribed into its com-

plementary DNA strand (cDNA) and multiplied by thermostable DNA polymerases

in a thermocycler afterwards. Purification of the RNA of each sample was conducted

using the peqGOLD Total RNA-Kit by VWR International.

The previously starved and stimulated cells were washed with 3ml of PBS after the

medium had been removed. 400µl of RNA lysis buffer T were added to each well,

the cells were removed from the surface using a cell scraper, and transferred to a

DNA removing column. They were spun down at 12.000 g for 1 minute and the flow-

through was carefully mixed with 350µl of 70% ethanol to enhance the solubility of

the RNA. The mixtures were added to Perfect-Bind RNA columns and again spun

down at 10.000 g for 1 minute. The columns were washed afterwards with 500 µl of

RNA wash buffer I, spun down at 10.000 g for 15 seconds, again washed with 600 µl

of RNA washing buffer II and again spun down at 10.000 g for 15 seconds. The flow-

through was discarded in every step. Before the purified RNA could be removed

from the binding columns, it needed to be dried by centrifugation at 10.000 g for

2 minutes to enhance its concentration and remove any remaining buffers. Finally,

50µl of diethylpyrocarbonate water (H2ODEPC), used because DEPC eliminates

possibly existing RNase [264], were added to each column. They were incubated at

room temperature for 3 minutes and spun down directly into fresh Eppendorf tubes

at 5.000 g for 1 minute. The amount of isolated RNA was analyzed via TECAN.

2.4.2 cDNA Synthesis

After purification, each sample was diluted to a concentration of 500 ng RNA per

7.5µl H2ODEPC , according to the results of the TECAN analysis. The reagents used

for primer annealing (Table 3.20) were added to each sample and incubated at 60C°
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for 5 minutes. Afterwards, the reagents including reverse transcriptase (Table 3.21)

were added and the probes were incubated at 37C° for 60 minutes. The synthesis

was finished at 70C° for 10 minutes. The finished cDNA was diluted in a 1:3 ratio

with H2ODEPC and could have been frozen at -20C° at this point or directly used

in the PCR.

Reagent Quantity

Oligo (dT)15 Primer 1.25µl

dNTP 1.00µl

500 ng RNA in H2ODEPC 7.5µl

Table 2.23: Synthesis Step 1: Primer annealing

Reagent Quantity

Reverse Transcriptase 1,00µl

5 x RT-buffer 4.00µl

H2ODEPC 5.00µl

Table 2.24: Synthesis Step 2: cDNA-Synthesis

2.4.3 Quantitative PCR

Gene specific primers enclosing the DNA section that encodes for the protein of

interest were prepared together with the QIAGEN SYBR Green FAST standard

reagent (Table 3.22). Hereby, every sample of cDNA needed to be combined once

with every primer mix to test a possible affection. A reference gene known not to be

affected by the further experiments and nearly equally expressed in every sample is

needed as an internal reaction control. In this research, this was fulfilled by either

β-actin or β-tubulin.

Reagent Quantity

SYBR Green FAST reagent 7.5µl

forward primer 2.5µl

reverse primer 2.5µl

cDNA 3.0µl

Table 2.25: PCR reaction mixture
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The finished PCR reaction mixtures were transferred to the Rotor Gene® Q of

the company QIAGEN. The qRT-PCR was executed cycling 40 times through the

following phases:

Phase Time in seconds Temperature in °C
Denaturation 15 94

Annealing 30 56

Elongation 30 72

Table 2.26: qRT-PCR Sequences

First, the double-stranded DNA was denatured at 94°C for 15 seconds. Afterwards,

the added primer hybridized with the complementary single-stranded DNA at 56°C
for 30 seconds (annealing). Beginning at the 3’OH-end of the primer, a DNA poly-

merase replicated the DNA strand at 72°C for 30 seconds (elongation). Then, the

next cycle started over with the denaturation of the newly created DNA double-

strands.

Quantification happens by measuring the fluorescence signal that occurs due to the

reaction between the cDNA and the added DNA-binding fluorescent dye SYBR

Green [265]. Here, the fluorescence signal increases linearly with the increase in

DNA after each cycle. Therefore, the signal can be used to measure the amount of

cDNA present in a sample.

Finally, the gene expression was calculated using the ∆∆Ct-method established by

Livak & Schmittgen in 2001 [266]. The cycle threshold (Ct) of each RNA of interest

was read out using the Rotor-Gene Q Series 2.0.2 program provided by the company

QUIAGEN. The results were transferred into a Microsoft Excel® spreadsheet. After

obtaining a sufficient amount of repeats of the same experiment, the mean Ct-value

of the gene expression in cells only treated with DMSO, the negative control, was

calculated. Before, the Ct-value of the control, a housekeeping gene whose expression

is known not to be affected by the experimental setup, was subtracted from the Ct-

value of the negative control.

∆Ct (DMSO) = Ct (DMSO) - Ct (control gene) (1)

mean Ct (DMSO) = ∆ (DMSO) (n1 + n2 + ... + nx) / number of repeats (2)

Then, the Ct-value of the control gene was subtracted from every other gene analyzed

in the experiment as well. From this result, the mean Ct-value of DMSO was

subtracted.
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∆Ct (target gene) = Ct (target gene) - Ct (control gene) (3)

∆∆Ct (target gene) = ∆Ct (target gene) - mean Ct (DMSO) (4)

Afterwards, the difference between the expression of the target gene in cells treated

with the substrate was set in relation to the expression of the target gene in cells

treated with the negative control.

ratio (target gene) = 2-∆∆Ct (target gene) (5)

fold of DMSO = ratio (target gene) / ratio (DMSO) (6)

Finally, the fold of DMSO was used to plot a chart that shows the difference between

the expression of the target gene in WT-, EV- or shAHR-HaCaT-keratinocytes that

had been treated with different stimulants.
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3 Results

3.1 AKR gene transcription

The first question that needed to be investigated was whether the transcription of

AKR subfamily genes is affected by the AHR at all and to what extent. Analysis

answering this task was executed by culturing EV and shAHR HaCaT keratinocytes,

previously established by the research group of Dr. Thomas Haarmann-Stemmann,

followed by exposure to different AHR or EGFR ligands and inhibitors. Afterwards,

the amount of translated DNA was measured using qRT-PCR. The tested AKR

genes were selected regarding whether they contain AREs and therefore implicate

involvement in the antioxidant stress response [267] or XREs, suggesting a regulation

by the AHR [268]. The former are included in the genes encoding for the enzymes

AKR1C family members 1-4 and AKR1B10, the latter in AKR1A1, -1B1, -7A1 and

-2 [267, 268].

3.1.1 Analysis of the AHR knockdown

Figure 3.1: Stable knockdown of the AHR in shAHR HaCaT keratinocytes shown
after exposure to the ligands B(a)P and PCB126. Two-way ANOVA, n = 5, p >=
0.05, Tukey’s multiple comparisons test, error bar = SD
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As being an established outcome of the AHR’s transcriptional activity, the stability

of the knockdown in shAHR HaCaT keratinocytes was tested measuring the expres-

sion of CYP1A1. The transcription was significantly decreased in shAHR HaCaT

cells exposed to B(a)P in comparison to HaCaT cells transfected with an empty

vector. The same observation was obtained regarding exposure to the AHR-agonist

PCB126.

3.1.2 Role of the AHR

The first experiment focused on the question whether the AHR has an influence

on the expression of AKRs in general. After exposure to the agonists B(a)P and

PCB126, the transcribed DNA was measured via qRT-PCR.

Figure 3.2: AKR1C1, -C2 and C3 transcription in EV and shAHR HaCaT after
treatment with DMSO, B(a)P and PCB126. n = 6, Two-way ANOVA-test, p >=
0.05, Tukey’s multiple comparisons test, error bar = SD

The results of the qRT-PCR for AKR1C1, -C2 and -C3 can be seen in 3.2. Gener-

ally, the amount of transcribed AKR genes in HaCaT keratinocytes transfected with

an EV is significantly higher than that measured in shAHR HaCaT cells. AKR1C1

transcription is increased up to 41.42-fold of EV DMSO, AKR1C2 13.18-fold and

AKR1C3 26.46-fold in EV-HaCaT cells exposed to B(a)P. Interestingly, the tran-

scription was not equally increased by both AHR ligands. In fact, B(a)P showed a

significantly higher transcription rate of AKR genes than PCB126 did.
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Figure 3.3: AKR1A1, -B1 and -B10 transcription in EV and shAhR HaCaT after
treatment with DMSO, B(a)P and PCB126. n = 6, Two-way ANOVA-test, p >=
0.05, Tukey’s multiple comparisons test, error bar = SD

The increase of the expression of AKR1A1 was significant, although the amount of

transcribed DNA was 1.95-fold of DMSO, which is much less compared to AKR1C

subfamily’s expression. Furthermore, EV- and shAHR HaCaT cells did not show a

difference in AKR1A1 expression after exposure to PCB126. Although the transcrip-

tion of AKR1B1 showed an increase after treatment with either B(a)P or PCB126,

the result was not statistically significant. Again, a difference between EV- and

shAHR HaCaT cells could not be detected, especially regarding the exposure to

PCB126. The transcription of AKR1B10 showed a similar pattern compared to

the AKR1C subfamily members. In EV-HaCaT cells, its expression increased sig-

nificantly to a 9.84-fold of DMSO after treatment with B(a)P. Again, a significant

increase was not detected in shAHR cells.

Figure 3.4: AKR7A2 & -3 transcription in EV and shAhR HaCaT after treatment
with DMSO, B(a)P and PCB126. n = 6, Two-way ANOVA-test, p >= 0.05, Tukey’s
multiple comparisons test, error bar = SD
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The transcription of both AKR7A2 and -3 showed little difference between EV- and

shAHR HaCaT cells. Although the transcription increased after treatment with the

agonists, the result was not statistically significant.

3.1.3 Role of the EGFR

Analyses of an influence of the EGFR receptors towards the expression of AKR’s

were performed using the receptor’s ligands EGF, TGFα, AREG and EREG. Being

an activator of the MAPK pathway, TNFα was added in the experiments as well

[269]. It was implemented in WT or EV-HaCaT keratinocytes to analyze if there

would be any connection between EGFR signaling and AKR gene transcription.

Figure 3.5: AKR1C1, -C2 and -C3 transcription in WT HaCaT after treatment with
DMSO, B(a)P, EGF, TGFα, TNFα, AREG and EREG. n = 6, Kruskal-Wallis-test,
p >= 0.05, Dunn’s multiple comparisons test, error bar = SD

The transcription of AKR1C subfamily genes increased in cells exposed to the AHR

ligand B(a)P as expected, regarding the previous experiment. With 11-fold of

DMSO, EGF enhanced the transcription of AKR1A1 significantly. The same could

be seen after exposure to AREG, which increased the transcription of AKR1A1

10.52-fold of DMSO. Although the other ligands showed similar patterns, measure-

ments were not statistically significant in every other 1C subfamily member.
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Figure 3.6: AKR1A1, -1B1 and -1B10 transcription in WT HaCaT after treatment
with DMSO, B(a)P, EGF, TGFα, TNFα, AREG and EREG. n = 1 for AKR1A1
and -B1, n = 6 for AKR1B10, Kruskal-Wallis-test, p >= 0.05, Dunn’s multiple
comparisons test, error bar = SD

Both AKR1A1 and AKR1B1 genes did not show any enhanced transcription after

exposure to ligands of the EGFR. Due to the fact that their gene transcription was

not increased significantly by exposure to agonists of either the AHR or the EGFR,

further experiments were performed without testing them. Additionally, AKR1B10

was disregarded in further experiments as well. Although its transcription was

significantly increased after exposure to B(a)P, no statistically significant outcome

resulted after the exposure to ligands of the EGFR.

3.1.4 Ligands of the EGFR regulate the expression of AKR1C

genes in a dose dependent manner

In order to determine if a higher concentration of ligands of the EGFR causes a

higher transcription rate of AKR1C genes, a concentration series was implemented.

The ligands were chosen whether they showed significant results in the previous

experiment, which was fulfilled by EGF and AREG. They were added in EV- and

shAHR HaCaT keratinocytes, analyzing the influence of the AHR towards EGFR

ligand-induced AKR gene transcription.
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Figure 3.7: AKR1C1, -1C2 and -1C3 gene transcription in EV- and shAHR HaCaT
after treatment with medium, DMSO, B(a)P, EGF and AREG. n for EGF = 4, n
for AREG = 2, Two-way ANOVA, p >= 0.05, Turkey’s multiple comparison test,
error bar = SD

Exposure to B(a)P led to an increased transcription of every measured AKR1C

subfamily member. In fact, AKR1C1 was increased to 34.99-fold of EV-DMSO,

AKR1C2 34.14-fold, and AKR1C3 25.79-fold, which was significant for AKR1C1,

-2 and -3 compared to the amount of transcribed DNA in shAHR cells exposed to

B(a)P. The exposure to ligands and the amount of transcribed AKR genes correlated

positively. Overall, EV-HaCaT keratinocytes showed higher amounts than shAHR

cells. Exceptions were the amount of transcribed AKR1C3 DNA in cells exposed to

1 and 10 ng/ml of AREG, and the amount of AKR1C2 transcripts in cells exposed to

1 ng/ml of EGF. For AKR1C1, every concentration of EGF used led to significantly

higher amounts of transcribed DNA in EV-HaCaT cells compared to shAHR cells.

In AKR1C2, this significant difference was only shown between EV- and shAHR-

HaCaT keratinocytes exposed to 20 ng/ml EGF. Regarding AKR1C3, again only

the concentration of 20 ng/ml EGF led to a significant difference between the used

cells. Unfortunately, the data sheet was devoid of a third n for AREG and the level

of significance could not be calculated.

3.1.5 Influence of the inhibition of the EGFR

Since the influence of the AHR and the EGFR towards the expression of AKR1C

subfamily members had been investigated, it was necessary to analyze if both recep-
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tors would have a functional connection to each other. Therefore, HaCaT wt cells

were exposed to either B(a)P or B(a)P in combination with an EGFR-blocking AB.

Afterwards, the expression of AKR1C subfamily members was measured.

Figure 3.8: AKRC1, -2 & 3 transcription after exposure anti-EGFR antibody. Ex-
ecuted by Dr. rer. nat. Christian Vogeley, n = 4, ordinary one-way ANOVA-test, p
>= 0.05, Tukey’s multiple comparisons test, error bar = SD

The expression of AKR1C1 and -1C2 was significantly decreased when simultane-

ously exposed to an EGFR-blocking AB and B(a)P. After B(a)P, the expression

of AKR1C1 was increased to 26.42-fold of DMSO. By adding an EGFR-blocking

AB, an increase of 12.77-fold of DMSO was measured, which was statistically sig-

nificant compared to the exposure of B(a)P alone. AKR1C2’s expression decreased

from a 38.08-fold of DMSO after exposure to B(a)P down to 13.45-fold of DMSO in

cells exposed to the EGFR-blocking AB, which, again, was significant. Regarding

AKR1C3, it’s gene expression was increased to 23.17-fold of DMSO in cells exposed

to B(a)P, and increased to 13.1-fold of DMSO in cells exposed to both B(a)P and

the AB. However, the calculated result was not significant.

3.1.6 Influence of the inhibition of MMPs and tyrosine ki-

nases

Finally, checkpoints of the postulated pathway were tested. Therefore, WT-HaCaT

keratinocytes were exposed to Marimastat, an inhibitor of MMPs like TACE, and

Bosutinib, an inhibitor of tyrosine kinases like PKC or c-src. Additionally, the cells

were simultaneously exposed to B(a)P and PCB126 to analyze if the combination

of those agonists of the AHR would have an influence towards the gene expression

of AKR1C subfamily members.
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Figure 3.9: AKRC1, -2 & 3 transcription after exposure to DMSO, B(a)P, PCB126,
B(a)P + PCB126, B(a)P + Marimastat and B(a)P + Bosutinib. n = 4, RM one
way ANOVA, p >= 0.05, Tukey’s multiple comparisons test, error bar = SD

Marimastat significantly decreased the gene transcription of AKR1C1. Cells ex-

posed to B(a)P alone showed an increase up to 31.55-fold of DMSO, whereas, com-

bined with Marimastat, an increase of 13.62-fold of DMSO was detected. With

only 2.29-fold of DMSO, Bosutinib dampened the effect of B(a)P towards the gene

transcription of AKR1C1 significantly. AKR1C2’s gene expression showed a similar

pattern. Cells exposed to both B(a)P and Marimastat showed a gene transcription

of 13.70-fold of DMSO, whereas it’s transcription was 37.31-fold of DMSO when

exposed to B(a)P alone. The combination of B(a)P and Bosutinib led to a gene

expression of 2.59-fold of DMSO. Both measurements were statistically significant.

Measurements of AKR1C3’s gene transcription were similar. Cells exposed to B(a)P

alone showed an expression 25.04-fold of DMSO. Combined with Marimastat, the

effect of B(a)P was dampened to 11.69-fold of DMSO and combined with Bosutinib,

3.1-fold of DMSO. Compared to the effect of B(a)P alone, the combination of B(a)P

and PCB126 led to no statistically significant difference in the gene expression of

AKR1C1, -C2 or C3.
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3.2 AKR1C3 protein level

3.2.1 Role of the AHR

Strengthening the results of the mRNA analysis, the next step was to investigate if

the transcription process is followed by translation as well. In the experimental setup

EV- and shAHR-HaCaT keratinocytes were either exposed to B(a)P or PCB126.

After 24 hours, the amount of AKR1C3 protein was determined using WB.

Figure 3.10: Western blot of AKR1C3 in EV- and shAHR-HaCat after treatment
with DMSO, B(a)P and PCB126. n = 4. The arrow points at the protein band of
AKR1C3.

The first experiment can be seen above. The loading control used was β-actin with

a mass of 42 kDa. With a mass of 36 kDa, AKR1C3 was successfully detected. At

approximately 45 kDa, an unspecific band was detected as well.
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Figure 3.11: Western blot of AKR1C3 in EV- and shAHR-HaCat after treatment
with DMSO, B(a)P and PCB126. n = 4. The arrow points at the protein band of
AKR1C3.

The second experiment showed a similar pattern as the first. Again, β-actin and

AKR1C3 were detected, an unspecific band at 45 kDa additionally.

Figure 3.12: Western blot of AKR1C3 in EV- and shAHR-HaCat after treatment
with DMSO, B(a)P and PCB126. n = 4. The arrow points at the protein band of
AKR1C3.

In the third and fourth experiment, the loading control changed from β-actin to β-

tubulin, another housekeeping protein with a mass of 55 kDa. Again, both proteins

of interest were detected, as well as another unspecific band at approximately 70 kDa.
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Figure 3.13: Western blot of AKR1C3 in EV- and shAHR-HaCat after treatment
with DMSO, B(a)P and PCB126. n = 4. The arrow points at the protein band of
AKR1C3.

The fourth experiment showed a similar pattern as the third. Then, the intensity of

protein bands was calculated into a graph to make them easily comparable.

Figure 3.14: Densitometric of western blot of AKR1C3 in EV- and shAHR-HaCat
after treatment with DMSO, B(a)P and PCB126. n = 4, Two-way ANOVA, p >=
0.05, Tukey’s multiple comparisons test, error bar = SD

In EV-HaCaT cells, the intensity of the protein bands were higher compared to

those of shAHR cells. With a mean protein ratio of 1.14, the intensity was highest

in EV-HaCaT cells exposed to B(a)P. In order to calculate significance, a two-way

ANOVA with a Tukey’s multiple comparisons test as a follow-up test were per-

formed. Between B(a)P-exposed EV- and shAHR-HaCaT keratinocytes, no statis-

tically significant difference was determined.
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4 Discussion

Defense mechanisms against exogenous influences protect life despite a possibly

harmful environment. In contrast, dysregulation of such mechanisms eventually

leads to acute or chronic diseases. In the skin, the AHR is an important mediator

of the xenobiotic response [38]. In SCC of the skin, AKR1C3 is upregulated and its

PGF-synthase activity is proposed as a major contributor to carcinogenesis [5]. In

2019, the research team of Yamashita et al. proved that the expression of AKR1C3

is under control of the AHR in TNBC [8]. We proposed that the enzyme could be

mediated by the AHR in the skin as well, especially because both are considered

as negative regulators of apoptosis [38, 255]. Furthermore, AHR activating tobacco

smoke was found to activate TACE through PKC and src, predicting a possible link

towards the EGFR [11, 213]. In conclusion, these findings raised the question of

a possible crosstalk between the AHR, the EGFR and AKR1C3. Analysis of such

a pathway was performed by measuring the amount of transcribed AKR genes in

EV- and shAHR HaCaT keratinocytes via qRT-PCR. Measurements of the mature

AKR1C3 protein were done using western blot. Our findings reveal a significant

difference in the expression of AKR1C subfamily enzymes between EV- and shAHR

cells, substantiating the possibility of interactions between the AHR and this en-

zyme family in the skin. In contrast, linking the EGFR into the pathway could not

be shown on protein level, although the measurements of AKR’s gene transcription

after exposure to ligands of the EGFR were promising.

4.1 Active AHR signaling influences AKR1C sub-

family gene expression

After the exposure to B(a)P, the DNA transcription of AKR1C1, -1C2 and 1C3 in-

creased significantly in EV-HaCaT keratinocytes. In contrast, we could not observe

this effect in shAHR cells, clearly demonstrating a link between activation of the

AHR and gene expression of the AKR1C subfamily. The significance of this result is

emphasized by a p-value of p < 0.001 for AKR1C1, -2 and -3. The interaction could

not be shown in the other investigated enzymes, which were AKR1A1, -1B1, -7A2,

and -7A3. Therefore, they were disregarded in the following experiments. In sum-
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mary, the transcription of AKR1C subfamily members is connected to the presence

of agonists of the AHR. The results were obtained using B(a)P in a concentration

of 2.5µM in vitro. Determining the concentration of B(a)P in the environment re-

mains difficult due to the ”broad range of potential sources and ubiquitous nature of

contamination” [270]. For instance, the concentration of B(a)P found in Australian

soil was estimated to range from 0.5-1,000mg/kg, with higher amounts found in

areas known to have been used as industrial workplaces [270]. Comparing the con-

centrations, it is very likely that humans are exposed to a concentration of B(a)P

that could have an effect of AKR1C transcription in vivo. Furthermore, the AHR

also increases the availability of NADPH, the cofactor of AKR1C subfamily enzymes

[38].

Our finding that the transcription of AKR1C subfamily genes is increased in cells

exposed to agonists of the AHR runs in contrary to other published research. Sur-

prisingly, the research team of Burczynski et al. reported, that there was no enhanced

AKR1C subfamily gene transcription after they exposed HepG2 hepatoma and HT29

colon carcinoma cells to the high-affinity AHR ligand TCDD [271]. Additionally,

they stated that only AKR1C1 would be inducible by PAH’s [271]. Furthermore,

they suggested that the AKR1C subfamily genes would be regulated by AREs and

not by XREs [271]. With XREs as the target gene structures of the AHR [84], their

theory suggests that AKR1C subfamily members could not be regulated by the

AHR. In 2007, Penning et al. even proposed, that the interaction was reverse: The

AKR1C subfamily metabolize PAH’s to provide the availability of ligands for the

AHR just as they do for steroid receptors [268]. Maybe, the regulation of AKR1C

subfamily members by the AHR is as Janus-faced as the receptor’s role in healthy

versus inflamed skin [114] and different regulatory pathways exist between cancer-

and cell lines that are immortalized.

In contrast to the work of Burczynski et al. and Penning et al. the work of Yamashita

et al. supports our findings. Similar to the designed experimental setup shown in 3.2,

they also created MDA-MB 231 cells in which the AHR was knocked out [8]. Just

as the results presented here, the expression of AKR1C3 was significantly lower in

AHR knocked out cells compared to WT cells, reported in both RT-qPCR and WB

[8]. Besides, it has to be noted that certain splice variants of AKR1C3, therefore,

dependent on the primer used for the annealing, ”PCR may give false estimate of

the expression of mature transcripts that would be translated in full-length, active

protein” [219]. Here, the solution could be the usage of RNAseq, an analysis more

reliable for expressional studies of AKR1C3 [219].
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4.2 The EGFR affects the AKR1C subfamily on

the RNA level

Active EGFR signaling enhanced the transcription of AKR1C subfamily members.

Further, significance was only measured regarding EGF and AREG, and only for

AKR1C1 in particular. When those ligands were investigated, their concentration

correlated positively with the expression of AKR1C subfamily members. Addi-

tionally, the blockage of the EGFR with an AB did show a significant decrease

in AKR1C1 and -C2 transcription. The decrease was also detected in AKR1C3,

although it was not statistically significant. Finally, the blockage of MMPs by Mari-

mastat and tyrosine kinases by Bosutinib led to a significant decrease in AKR1C1-3’s

gene expression. Although the analysis by WB did not produce usable results for

the EGFR (data not shown), the data obtained from the experiments where cells

were exposed to ligands of the EGFR, an AB against the EGFR and Marimastat

strongly implicate a connection between EGFR signaling and AKR expression.

Our hypothesis relied on the observation that in lungs exposed to tobacco smoke,

TACE was activated through src [11]. We suggested that in this setup, src origi-

nated from the AHR, because it is one of its chaperoning members in its inactive

state and tobacco smoke is a known activator of the AHR [14, 15]. As previously

mentioned, the EGFR can be phosphorylated by c-src at Tyr-845 even in absence

of a ligand [158]. Therefore, in one experimental setup in this research, the AB

against the EGFR phosphorylated at the residue Tyr-1068 ensured to detect only

ligand-bound EGFR. Unfortunately, the data obtained from those WBs could not

be used for further calculations.

As mentioned before, the gene expression mediated by the EGFR follows a strict

time course [10]. The experimental setup designed for this research scheduled the

measurement of phosphorylated EGFR, phosphorylated Erk and phosphorylated

TACE after an incubation time of 1, 3 or 6 hours (data not shown). Probably,

this time period was too long to measure the actual amount of translated protein

due to the different time courses. Additionally, it is unknown whether AKR1C3

could belong to the immediate early, the delayed early, or the delayed up- or down-

regulated genes controlled by the EGFR. If further analysis reveals a significant

connection between the EGFR and AKR1C3, designing a setup in which the time

course mirrors the dynamics of EGFR controlled gene expression should possibly

be considered. Potentially, transcript time course analysis (TTCA) could clarify

this question, the method being known to detect ”transient dynamics and slow

expression changes” where other methods often fail [10]. Additionally, Singh et

al. reported, that phosphorylated EGFR was detectable after ”10 minutes post-UV
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radiation, remained high for up to 2 hr, [and] returning to lower levels after 6 hr.”

in HaCaT keratinocytes [213]. Although this time dependency was detected after

UV radiation, this report emphasizes that another scheduling could have been in

use for the detection of phosphorylated EGFR in this research as well. In the same

experimental setup, the team noted that EGFR signaling is highly affected by cell

culture conditions [213]. When they analyzed the amount of phosphorylated EGFR,

PBS covered cells had decreased levels after exposure to UV compared to DMEM

covered cells [213]. Therefore, analyses of how culture conditions affect the signaling

pathway could have been implemented here as well.

Regarding the ligands of the EGFR, it has to be noted that AREG and EREG are

low affinity ligands [173]. Therefore, when used in the same concentration as EGF,

misleading results could result. This was prevented by the setup of a concentra-

tion series, revealing a positive correlation between a higher concentration of both

EGF and AREG and the expression of AKR1C subfamily members. Importantly,

AREG is the main ligand in keratinocytes, strengthening the measurements in which

it enhances AKR1C subfamily transcription significantly [202, 272]. Interestingly,

HB-EGF and EGN are other ligands that are expressed in keratinocytes and EGN

is considered as an epithelial mitogen [167, 202, 203]. When future experiments

are designed to further investigate the link between the EGFR and AKR gene ex-

pression, it should be considered whether analyses of those two ligands including

neuregulins would be useful.

Regarding EGFR signaling, it is known that ADAM10 is the main sheddase of EGF.

However, this does not mean that ADAM17/TACE is not involved in this process

at all [12]. As already noted, AKR1C3 is controlled by the AHR in TNBC. In-

terestingly, ADAM10 is responsible for the constitutive kinase activity of Her2/neu

in breast cancer by shedding its ectodomain [273]. Just recently, src was identi-

fied as a promotor of ADAM10 activity [274]. Further experiments could there-

fore focus on the question of whether ADAM17/TACE or ADAM10 is the link

between AHR and EGFR activity. Additionally, ADAM17/TACE is known to be

activated by p38/MAPK [275, 276]. In recent studies, BDE-47 (short for: 2,2’,4,4’-

Tetrabromodiphenyl ether) was able to activate a variety of compounds, including

p38/MAPK [277]. Interestingly, BDE-47 is an agonist of the AHR. This finding

strengthens the research hypothesis that the EGFR could be activated by active

AHR signaling, but p38/MAPK and not src is their possible link.

In summary, more experiments would have been needed to clarify if a pathway exists

where the EGFR is activated by the AHR and, in turn, activates AKR1C3. Notably,

it is already known that AKRs are controlled by the Keap1/Nrf-2 pathway [229].

Interestingly, this pathway, in turn, is controlled by the AHR [278]. Recently, it was

found that skin damage induced by UV was enhanced through KGF-2 (short for:
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keratinocyte growth factor 2), activating the AHR that then triggers Nrf-2 signal-

ing [279]. Maybe, analysis of the link between AHR, Nrf-2 and AKR1C3 could be

investigated in further experiments.

4.3 The postulated pathway could not be shown

on the protein level

The postulated pathway rooted from the reports of Lemjabbar-Alaoui et al. in 2011

and Mantel et al. in 2014. The first paper noted that TACE was activated in smoke

exposed lungs [11]. Therefore, our working group concluded that this mechanism

could happen due to active AHR transcriptional activity. Due to the fact that it

were the ROS that induced the phosphorylation of TACE, experiments where AHR,

TACE, EGFR and AKR1C3 activity is measured in HaCaT cells exposed and not

exposed to different inducers of ROS might be a potential setup that could emp-

hazise the findings reported here.

Regarding the cells, it has to be noted that the behavior of primary keratinocytes

was not investigated. This might lower the relevance of the results presented here in

vitro. However, primary keratinocytes show poor transfection efficiency, therefore

the implementation of shAHR keratinocytes could have been of unnecessary diffi-

culty [26]. Instead, establishing a stable knockdown is much more effective when

using HaCaT cells [26]. In order to emphasize the possible overexpression or en-

hanced activity of the AHR, EGFR and AKR1C3, a research setup analyzing SCC

cell lines such as Ca127, HN6, or HN12 could have been additionally used [280].

Furthermore, it could have been useful to test the expression of AKR1C3 and the

amount of 9α11β-PGJ2 in EGFR-dependent cell lines like HN31 or UMSCC25 [280].

4.4 Conclusion

In summary, this work strongly indicates a link between the transcriptional activity

of the AHR and the expression of AKR1C subfamily members, especially AKR1C3.

Additionally, experiments focusing on active EGFR signaling led to statistically

significant results. However, proving a link between src and TACE was not pos-

sible, nor was it possible to investigate if the Ras/Raf pathway, activated through

the EGFR, led to enhanced AKR1C3 activity. The results presented here strongly

implicate a connection between the AHR and AKR1C3 in keratinocytes in vitro.

Additional experiments that include further analyses of the role of the EGFR and
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the behavior of AHR metabolism towards AKR1C3 in keratinocytes in vivo need to

be carried out. During the research, it became clear that AKR1C3 and the EGFR

are expressed in different locations in the epidermal architecture [205, 241]. The

enzyme enhances the differentiation process in the upper layers while the EGFR is

responsible for replicative processes in the basal layers [205, 241]. However, hints

that the AHR, the EGFR and AKR1C3 are connected somehow were given during

this research and reported elsewhere. In order to answer the aim of this work, more

experiments are needed, maybe considering the suggestions of using other cell lines

or testing other possible links. This research concludes with the answer that the

transcription of AKR1C3 is upregulated in HaCaT keratinocytes exposed to ago-

nists of the AHR and that this could be a mechanism how carcinogenesis of the skin

is initiated and enhanced as can be seen in TNBC [8].
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26. Maŕın YE, Seiberg M, and Lin CB. Aldo-keto reductase 1C subfamily genes

in skin are UV-inducible: Possible role in keratinocytes survival. Experimental

Dermatology 2009;18:611–8.

27. Burczynski ME, Harvey RG, and Penning TM. Expression and characteri-

zation of four recombinant human dihydrodiol dehydrogenase isoforms: Oxi-

dation of trans-7,8-dihydroxy-7,8- dihydrobenzo[a]pyrene to the activated o-

quinone metabolite benzo[a]pyrene- 7,8-dione. Biochemistry 1998;37:6781–90.

28. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, and Jemal A. Global

cancer statistics 2018: GLOBOCAN estimates of incidence and mortality

worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clin-

icians 2018.
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35. Toll A, Salgado R, Yébenes M, et al. Epidermal growth factor receptor gene

numerical aberrations are frequent events in actinic keratoses and invasive

cutaneous squamous cell carcinomas. 2010. doi: 10.1111/j.1600-0625.

2009.01028.x.

36. Zhao L, Li W, Marshall C, et al. Srcasm inhibits fyn-induced cutaneous car-

cinogenesis with modulation of Notch1 and p53. Cancer Research 2009.

37. Mescher M and Haarmann-Stemmann T. Modulation of CYP1A1 metabolism:

From adverse health effects to chemoprevention and therapeutic options.

Pharmacology & therapeutics 2018;187:71–87.

38. Nebert DW. Aryl hydrocarbon receptor (AHR): “pioneer member” of the

basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of for-

eign and endogenous signals. 2017. doi: 10.1016/j.plipres.2017.06.001.

39. Poland AP, Glover E, Robinson JR, and Nebert DW. Genetic expression of

aryl hydrocarbon hydroxylase activity. Induction of monooxygenase activities

and cytochrome P1-450 formation by 2,3,7,8 tetrachlorodibenzo p dioxin in

mice genetically ’nonresponsive’ to other aromatic hydrocarbons. Journal of

Biological Chemistry 1974;249:5599–606.

40. Poland A, Glover E, and Kende AS. Stereospecific, high affinity binding of

2,3,7,8 tetrachlorodibenzo p dioxin by hepatic cytosol. Evidence that the bind-

ing species is receptor for induction of aryl hydrocarbon hydroxylase. Journal

of Biological Chemistry 1976;251:4936–46.

41. Conney AH, Miller EC, and Miller JA. Substrate-Induced Synthesis And

Other Properties Of Benzpyrene Hydroxylase In Rat Liver. Journal of Bi-

ological Chemistry 1957;228:753–66.

42. Elferink CJ and Whitlock JPJ. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-inducible,

Ah receptor-mediated bending of enhancer DNA. The Journal of biological

chemistry 1990;265:5718–21.

43. Burbach KM, Poland A, and Bradfield CA. Cloning of the Ah-receptor cDNA

reveals a distinctive ligand-activated transcription factor. Proceedings of the

National Academy of Sciences of the United States of America 1992;89:8185–

9.

44. Dolwick KM, Schmidt JV, Carver LA, Swanson HI, and Bradfield CA. Cloning

and expression of a human Ah receptor cDNA. Molecular pharmacology 1993;44:911–

7.

64



45. Ema M, Matsushita N, Sogawa K, et al. Human Arylhydrocarbon Receptor:

Functional Expression and Chromosomal Assignment to 7p211. The Journal

of Biochemistry 1994;116:845–51.

46. Gu YZ, Hogenesch JB, and Bradfield CA. The PAS Superfamily: Sensors of

Environmental and Developmental Signals. Annual Review of Pharmacology

and Toxicology 2000;40:519–61.

47. Murre C, Bain G, Dijk MA van, et al. Structure and function of helix-loop-

helix proteins. 1994. doi: 10.1016/0167-4781(94)90001-9.

48. Ikuta T, Eguchi H, Tachibana T, Yoneda Y, and Kawajiri K. Nuclear local-

ization and export signals of the human aryl hydrocarbon receptor. Journal

of Biological Chemistry 1998;273:2895–904.

49. Reddy P, Jacquier AC, Abovich N, Petersen G, and Rosbash M. The period

clock locus of D. melanogaster codes for a proteoglycan. Cell 1986;46:53–61.

50. Citri Y, Colot HV, Jacquier AC, et al. A family of unusually spliced biologi-

cally active transcripts encoded by a Drosophila clock gene. Nature 1987;326:42–

7.

51. Nambu JR, Lewis JO, Wharton KA, and Crews ST. The Drosophila single-

minded gene encodes a helix-loop-helix protein that acts as a master regulator

of CNS midline development. Cell 1991;67:1157–67.

52. Hoffman EC, Reyes H, Chu FF, et al. Cloning of a factor required for activity

of the Ah (dioxin) receptor. Science 1991;252:954–8.

53. Jackson FR, Bargiello TA, Yun SH, and Young MW. Product of per locus of

drosophila shares homology with proteoglycans. Nature 1986;320:185–8.

54. Coumailleau P, Poellinger L, Gustafsson JA, and Whitelaw ML. Definition

of a minimal domain of the dioxin receptor that is associated with Hsp90

and maintains wild type ligand binding affinity and specificity. Journal of

Biological Chemistry 1995;270:25291–300.

55. Abel J and Haarmann-Stemmann T. An introduction to the molecular basics

of aryl hydrocarbon receptor biology. Biological Chemistry 2010;391:1235–48.

56. Rowlands JC, Mcewan IJ, and Gustafsson JÅ. Trans-activation by the human
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