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 I 

Summary 
 
The aging brain experiences changes in function and structure, which are accompanied by 

age-related cognitive decline. The degree to which healthy older adults encounter age-

related cognitive decline, however, varies greatly. In consideration of the growing aging 
population and the relevance of cognition for quality of life, research has embarked on 

exploring possible bases for this high inter-individual variability in aging. One potential 
explanation for cognitive performance differences may be alterations in the brain’s network 

architecture. Resting-state functional connectivity (RSFC) network estimates, which may 
centrally characterize this network architecture, already successfully distinguished between 

healthy older adults and patients with neurodegenerative diseases, e.g. Alzheimer’s 
disease. It, however, remains unknown whether functional network information can be used 

to distinguish and predict cognitive performance differences in healthy older adults and 

whether prediction performance may be boosted by using multimodal data, i.e. grey matter 
volume (GMV) and structural connectivity (SC) estimates. In this context, machine learning 

(ML) methods may be particularly suited to address these questions due to their ability to 
deal with high dimensional data and uncover hidden patterns in data. Further insight in this 

regard may be highly relevant on the road to developing a prognostic marker for age-related 
cognitive decline and to designing early targeted interventions to combat cognitive decline. 

Thus, this dissertation was aimed at systematically examining (1) whether functional brain 
network information, i.e. RSFC estimates, may classify and predict cognitive performance 

differences, (2) whether age-characteristic interrelations between RSFC and SC patterns 
and cognitive performance may be derived in older adults and (3) whether the integration 

of information across modalities, i.e. region-wise GMV, RSFC and SC estimates, may 

improve prediction performance of cognitive targets in healthy older adults (N>500, age: 
55-85) from the 1000BRAINS study using a set of ML approaches. In the first study, RSFC 

estimates led to low classifiability and predictability of global and domain-specific cognitive 
performance differences across different analytic choices. The second study revealed the 

existence of three prominent aging profiles based on connectivity data and cognition in older 
adults. In the third study, global and domain-specific cognitive targets could only be 

successfully predicted from multimodal data in absence of confounder control. 
Conclusively, this dissertation demonstrated that RSFC estimates may only serve to a 

limited degree as markers for age-related cognitive decline. Furthermore, it emphasized 
despite the possible benefits of using multimodal approaches in aging studies, the 

challenges that remain in developing a biomarker for age-related cognitive decline.  

 



 

 II 

Zusammenfassung 

Das alternde Gehirn verändert sich in Struktur und Funktion begleitet durch alters-

bedingten kognitiven Abbau. Das Ausmaß, mit dem gesunde ältere Menschen den 

kognitiven Abbau erleben, variiert jedoch stark zwischen Personen. Angesichts der 
zunehmend alternden Bevölkerung und der Wichtigkeit von Kognition für die Lebens-

qualität, wurde begonnen, nach möglichen Ursprüngen für die hohe inter-individuelle 
Variabilität zu suchen. Als eine mögliche Erklärung für die beträchtliche Varianz kommen 

Veränderungen in der Netzwerkarchitektur des Gehirns in Frage. Netzwerkparameter 
basierend auf funktioneller Konnektivität im Ruhezustand (RSFC), die diese Architektur 

genauer charakterisieren, wurden bereits erfolgreich genutzt, um zwischen normal 
alternden Personen und Patienten mit einer neurodegenerativen Erkrankung, z.B. 

Alzheimer Erkrankung, zu unterscheiden. Es bleibt jedoch unklar, ob funktionelle Netzwerk-

informationen auch Kognitionsunterschiede in gesunden älteren Menschen erkennen und 
vorhersagen können und ob die Vorhersagekraft durch einen multimodalen Ansatz 

gesteigert werden kann. Methoden des maschinellen Lernens (ML) scheinen besonders 
geeignet diese Fragestellungen zu adressieren, da sie versteckte Muster in Daten 

aufdecken können. Die Gewinnung weiterer Einblicke erscheint vor allem für die mögliche 
Entwicklung eines prognostischen Markers für altersbedingten kognitiven Abbau und den 

Entwurf von frühzeitigen individuellen Interventionen relevant. Folglich zielte diese 
Dissertation auf die systematische Untersuchung (1) der Klassifizier- und Vorhersagbarkeit 

von Kognitionsunterschieden basierend auf funktionellen Netzwerkinformationen, (2) des 
Zusammenhanges zwischen RSFC, struktureller Konnektivität (SC) und Kognition und (3) 

des möglichen Vorteils eines multimodalen Ansatzes, i.e. Volumen der grauen Substanz, 

RSFC und SC, für die Vorhersage von kognitiven Fähigkeiten in gesunden älteren 
Menschen (1000BRAINS, N>500, Altersspanne: 55-85 Jahre) mit Hilfe eines ML Ansatzes 

ab. In der ersten Studie erreichten funktionelle Konnektivitätsparameter nur eine geringe 
Klassifizier- und Vorhersagbarkeit von globalen und domänen-spezifischen Kognitions-

unterschieden. In der zweiten Studie konnten drei verschiedene Alterungsprofile basierend 
auf Konnektivitätsdaten und Kognition extrahiert werden. Die dritte Studie deutete darauf 

hin, dass Kognitionsunterschiede im Alter nur bei fehlender Kontrolle für Störfaktoren 
basierend auf multimodalen Daten vorhergesagt werden können. Insgesamt, hebt diese 

Dissertation das limitierte Potenzial von funktionellen Konnektivitätsparametern als alleinige 
Marker für kognitive Alterung hervor und unterstreicht trotz möglicher Vorteile eines 

multimodalen Ansatzes, die vielfältigen verbleibenden Herausforderungen bei der 

Entwicklung eines Markers für altersbedingten kognitiven Abbau.   
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1 Introduction  
1.1 General introduction 

Aging is typically accompanied by a decline in various cognitive functions (Salthouse, 

2010, 2004). Nonetheless, healthy older individuals vary markedly in the severity to which 

they experience age-related cognitive decline (Habib et al., 2007; Hedden and Gabrieli, 
2004). Understanding the sources for why some people experience cognitive decline earlier 

than others has become a pressing topic of our times as aging populations are increasing 
worldwide with accelerating pace (Cabeza et al., 2018). Numerically, this is expressed in a 

projected doubling of the number of people over the age of 60 to 2.1 billion individuals by 
2050 (World Health Organization, 2020). In turn, this demographic shift has extensive 

societal and economic consequences with the number of people needing care in the next 
years augmenting drastically (United Nations et al., 2020).  

Considering the steadily increasing number of older adults and the significance of 

cognition for the quality of life and functional independence of older adults, reliable and 
automated markers for individual cognitive ability in older age become more and more 

important (Beard et al., 2016; Dodge et al., 2006; Kwak et al., 2021b; Stites et al., 2018; 
Tomaszewski Farias et al., 2009; United Nations et al., 2020). With the many technological 

advances in neuroimaging and the upsurge of machine learning (ML) tools, a new era for 
biomarker development in the field of neuroscience has commenced. While many new 

insights have already been gained, the majority of successful prediction reports of cognitive 
functions from imaging data so far have been collected in healthy young adults. In normal 

aging, the search for a marker for cognitive performance has remained challenging. It is 
generally agreed upon that brain structure, function and network organization experience 

changes throughout the aging process (Cabeza, 2002; Cabeza et al., 2018; Ferreira and 

Busatto, 2013; Fjell et al., 2009; Grady, 2012; Kennedy and Raz, 2009; Madden et al., 2009; 
Raz et al., 2005). Further, these alterations have been linked to cognitive performance 

differences in healthy older adults (Andrews-Hanna et al., 2007; Chong et al., 2019; Fjell et 
al., 2016; Geerligs et al., 2015; Stumme et al., 2020). Nevertheless, it is still unclear what 

type of input feature may be best suited as a marker for age-related cognitive decline due 
to differences in samples, selected cognitive variables, input features and applied methods. 

The current dissertation, thus, aimed at contributing to the search for an imaging marker for 
age-related cognitive decline and providing a greater understanding of the structure-

function relation in aging and its link to cognition. Particularly, it was directed at (1) 
investigating the biomarker potential of functional brain network information for cognitive 

functioning, (2) examining age-characteristic interrelations between resting-state functional 
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connectivity (RSFC) and structural connectivity (SC) patterns and cognitive performance as 

well as (3) providing further insight into the usefulness of a multimodal approach for 

cognition prediction in normal aging in a comprehensive analysis of different ML approaches 
in a population-based study consisting of older adults, the German 1000BRAINS study 

(Caspers et al., 2014).  

1.2 Age-related cognitive decline  
Cognition refers to mental processes of knowledge acquisition and comprehension 

through thinking, experiencing and perceiving that is fundamental to us in navigating and 

engaging with the world (Bayne et al., 2019). The overarching concept of cognition can be 
further divided into different domains that entail specialized forms of processing,                       

e.g. memory, attention, executive and language functions (Harvey, 2019).  
Across the aging process, declines in various cognitive functions have been reported 

with some cognitive domains being more strongly impacted by aging than others (Grady, 
2012; Hedden and Gabrieli, 2004; Salthouse, 2010). Particularly, processing speed, 

executive and memory functions tend to decline strongly with advancing age (Grady, 2012; 
Hedden and Gabrieli, 2004; Park and Reuter-Lorenz, 2009). Age-related performance 

alterations in these functions may already be observed before the age of 50 with more rapid 

declines in performance beginning around the age of 60 (LaPlume et al., 2022; Salthouse, 
2009, 2004). In contrast, some other cognitive abilities were found to increase up to the age 

of 60 and to remain rather stable during higher ages, e.g. verbal abilities and semantic 
knowledge (Hedden and Gabrieli, 2004; Mather, 2010; Salthouse, 2004). Thus, cognition 

per se is not a unitary concept, but includes distinct facets that may differ in their aging 
trajectories. 

In addition to this cross-domain variability in cognitive decline, the older adult population 
is characterized by a high inter-individual variability, i.e. individuals vary substantially in the 

degree to which they experience age-related cognitive decline (Cabeza, 2001; Damoiseaux 
et al., 2008; Habib et al., 2007; Hedden and Gabrieli, 2004; LaPlume et al., 2022; Raz, 

2000; Raz and Rodrigue, 2006). While some 80 year old individuals may perform cognitively 

like 60 year old individuals (e.g. show similar memory performance and capacity to learn 
new things, process information with a similar speed than younger older adults), others at 

the age of 60 may already display extensive cognitive performance declines. In this context, 
age-related deterioration of cognitive abilities may have far-reaching consequences for an 

individual’s quality of life, everyday functioning and independence (Beard et al., 2016; Kwak 
et al., 2021b; Stites et al., 2018). As such, maintaining cognitive functions to the best 

possible degree until old age is central for older adults to actively and independently 
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participate and engage in all activities of everyday life, which may foster their quality of life. 

Along the lines, given the accelerating aging population, it, thus, prospectively becomes 

important to identify those individuals, who will be most strongly affected by age-related 
cognitive decline, and provide preventive interventions early on to ensure functional 

independence at higher ages. To lay the foundation for such an endeavour, it becomes 
necessary to examine potential sources for the high variance and to investigate whether 

information on the root causes can be used to predict cognitive functioning.  
Thus, to understand the underlying mechanisms, research has turned to the brain, the 

examination of brain-behaviour relationships and the search for appropriate input features 
to act as markers for age-related cognitive decline in healthy older adults. With the help of 

new technological advances such as magnetic resonance imaging (MRI), it has been shown 
that brain structural and functional changes take place during aging accompanied by 

declines in cognition (Cabeza, 2002; Cabeza et al., 2018; Ferreira and Busatto, 2013; Fjell 

et al., 2009; Grady, 2012; Kennedy and Raz, 2009; Madden et al., 2009; Raz et al., 2005). 
Nevertheless, it still remains unclear what brain data may best explain the high inter-

individual variability in aging. In this context, recent studies have turned away from solely 
looking at brain structure and function, but to focus on the brain network organization, 

especially on the communication between brain regions, to address changes in cognition 
during aging. This is due to the fact that cognitive functions are thought to strongly rely on 

the integration of information across the brain and the connection between distinct brain 
regions (Betzel, 2022; Dhamala et al., 2021; Voss et al., 2013; Yarkoni and Westfall, 2017). 

As such, a network perspective capitalizing on the communication between different areas 
of the brain may aid in gaining a better understanding of age-related cognitive decline and 

the underlying sources of the high cognitive variance in healthy older adults, which will be 

more closely examined in the next section.  

1.3 Functional network reorganization during the aging process  
Functional network organization may be explored using RSFC, which may be computed 

between regions from resting-state functional MRI (rsfMRI) data (Sala-Llonch et al., 2015). 

In this context, RSFC refers to the time dependent coactivation of functionally related brain 
regions during rest, which is often represented by the Pearson’s correlation coefficient 

between the spontaneous fluctuations of pairs of regions (Biswal et al., 1995; Sala-Llonch 
et al., 2015). To further quantify and specify functional network organization, graph-

theoretical approaches may, for instance, be used, in which the brain is modelled as a graph 
composed of nodes and edges grouped into networks subserving specific functions (see 
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Figure 1) (Sporns et al., 2005; Stanley et al., 2013). These approaches may provide a 

mathematical description of networks and the connectivity between objects within a network  

 
Figure 1. Overview network perspective on brain. [A] Illustration of brain graph with nodes and edges 
projected onto brain surface, [B] Illustration of brain graph with an exemplary network projected onto 
brain surface. 

 

and allow the computation of specific measures dedicated to capture different network 
properties (Bullmore and Sporns, 2009; Bullmore and Bassett, 2011; Farahani et al., 2019; 

Rubinov and Sporns, 2010; Wig et al., 2011).  
Generally, the brain appears to strive for a balance between integration and 

segregation, i.e. two basic principles underlying cognition and behaviour (Cabral et al., 

2017; Perry et al., 2017). Segregation allows for specific information processing among a 
set of interrelated brain regions, while integration ensures the fast accommodation of 

discrete information from distinct brain networks (Rubinov and Sporns, 2010). During aging, 
the brain seems to experience a shift in the balance between integration and segregation, 

i.e. within- and inter-network RSFC, which has been related to cognitive performance 
differences in older age (Andrews-Hanna et al., 2007; Chan et al., 2014; Chong et al., 2019; 

Fjell et al., 2015; Grady et al., 2016; Nashiro et al., 2017; Onoda et al., 2012; Stumme et 
al., 2020). Particularly, a recurrent and stable finding across aging studies relates to 

decreases in within- and increases in inter-network RSFC hinting at networks becoming 
less segregated with age (Andrews-Hanna et al., 2007; Betzel et al., 2014; Chan et al., 

2014; Ferreira et al., 2016; Geerligs et al., 2015; Grady et al., 2016). In turn, networks tend 

to communicate more strongly with each other and become more integrated with age 
(Andrews-Hanna et al., 2007; Betzel et al., 2014; Chan et al., 2014; Ferreira et al., 2016; 

Geerligs et al., 2015; Grady et al., 2016). Across studies, a reduced specialized information 
processing (segregation) and more communication across networks (integration) is linked 
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to lower cognitive performance in older ages (Andrews-Hanna et al., 2007; Bagarinao et al., 

2019; Chan et al., 2014; Chong et al., 2019; Fjell et al., 2015; Grady et al., 2016; Ng et al., 

2016; Onoda et al., 2012; Stumme et al., 2020). For instance, lower episodic memory has 
been related to a decreased specialization, i.e. lower segregation of associative networks, 

e.g. default mode (DMN), frontoparietal (FPN), dorsal attention (DAN) and ventral attention 
(VAN) network (Chan et al., 2014). In turn, better fluid cognitive performance and learning 

rates have been associated with higher segregation of the VAN (Hausman et al., 2020; 
Iordan et al., 2018). Furthermore, Stumme et al. (2020) have found a link between lower 

within- and inter-network RSFC in primary processing networks, i.e. visual (VN) and 
somatomotor (SMN) network, as well as higher inter-network RSFC between higher order 

networks, e.g. DAN and VAN, and lower cognitive performance in healthy older adults 
(Stumme et al., 2020). These findings support the dedifferentiation theory in aging, in which 

the functional system is less able to use specialized modes of processing and express less 

variation in their activity patterns at higher ages accompanied by reduced task performance 
(Chan et al., 2017, 2014; Ferreira et al., 2016; Goh, 2011; Nashiro et al., 2017; Park et al., 

2004; Spreng et al., 2016; Spreng and Turner, 2019). Findings from longitudinal studies, 
further, support those from cross-sectional investigations. For example, it has been 

demonstrated that a decline in segregation of the FPN and an increased integration 
between the DMN and the FPN are related to declines in processing speed (Malagurski et 

al., 2020; Ng et al., 2016). Furthermore, a similar pattern of system segregation being 
beneficial for cognition, i.e. attenuated cognitive impairment, has also been encountered in 

individuals with neurodegenerative pathology (Ewers et al., 2021). Thus, previous research 
suggests a link between functional network architecture and cognitive performance in older 

age. Collectively, these findings hint at the potential use of functional brain network 

information, i.e. within- and inter-RSFC estimates, as imaging markers for individual 
cognitive functioning in healthy older adults, which has not been investigated so far. 

Although functional brain network information may be a suitable candidate in the search 
for a biomarker for age-related cognitive decline, the underlying mechanisms and the origin 

of age-related functional network reorganizations accompanied by cognitive decline still 
remain unclear. In this context, the closer examination of brain structural information and 

with it of other brain modalities may provide further insight into potential root causes for 
these functional changes. In a similar vein, it has been suggested that functional brain data 

may not fully account for cognitive performance differences in older age (Alm et al., 2022; 
Damoiseaux, 2017; Fjell et al., 2016; Patel et al., 2022). Instead, it appears that brain 

structural information, e.g. SC and grey matter volume (GMV), may also explain their share 
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of variance in cognition in healthy older adults (Cox et al., 2019; Ritchie et al., 2015). As 

such, a multimodal perspective may allow for a more complete description of brain-

behaviour relationships in older age. Thus, in the next section the focus will shift from a 
unimodal to a multimodal perspective on age-related cognitive decline in an attempt to 

explain the high inter-individual variability among older adults and its potential benefits in 
ML cognition prediction in healthy older adults.  

1.4 A multimodal perspective on age-related cognitive decline   
Aging has been found to affect all aspects of the system-level brain organization, i.e. 

brain structure, function and connectivity. Thus, focusing only on one modality will most 

likely not fully explain cognitive performance differences and with it the high inter-individual 
variability in normal aging. It may, in turn, neglect that the functional network organization 

does not exist in isolation, but possesses a structural backbone facilitating the 
communication between regions. For instance, the brains’ grey matter (GM), composed of 

neuronal cell bodies forming the cerebral cortex, sustains the processing capacity of the 

brain (Colom et al., 2010). In turn, the brains’ white matter (WM) allows for the effective 
transfer of information across the brain via major white matter pathways or tracts (Colom et 

al., 2010).  
Focusing at first on gaining a greater understanding of the root causes for age-related 

shifts in functional network architecture and the associated cognitive performance declines, 
the closer investigation of the structural network organization may be of help. This is due to 

the fact that structural networks are thought to be closely coupled to functional networks 
and to provide a framework for functional network organization (Baum et al., 2020; Honey 

et al., 2009; O’Reilly et al., 2013; Suárez et al., 2020; Voineskos et al., 2012). Thereby, 
connectivity in a structural network may be characterized by diffusion-weighted MRI (dMRI), 

which is sensitive to the diffusion of water molecules in the brain and measures the 

diffusivity direction (Beaulieu, 2002; Damoiseaux and Greicius, 2009). This information can, 
then, be used to deduce the orientation of the brain’s white matter tracts (Beaulieu, 2002; 

Damoiseaux and Greicius, 2009). Along the lines, SC represents the anatomical or physical 
links, i.e. white matter fibre tracts, between brain regions, which may be reconstructed using 

fibre tracking or tractography and may be captured by streamline counts between each pair 
of regions (Alfaro-Almagro et al., 2018; Behrens et al., 2007; Fornito et al., 2013; Jbabdi 

and Johansen-Berg, 2011; Sarwar et al., 2019; Sotiropoulos and Zalesky, 2019; Yeh et al., 
2021).Turning back to the aging context, declines in SC and reductions in the efficiency of 

structural networks in the course of aging have been reported across studies (Bennett and 
Madden, 2014; Brickman et al., 2012; Li et al., 2020; Madden et al., 2012, 2009; Salami et 
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al., 2012; Wen et al., 2011). Particularly, disruptions of both the integration and segregation 

of structural brain networks may be encountered in aging, which have been linked to lower 

cognitive performance in older age (Li et al., 2020). These age-related structural network 
alterations, in turn, may be related to encountered shifts in functional network 

reorganization. Nevertheless, the exact relationship between RSFC and SC changes in 
aging and its connection to cognition is still highly debated.  

In this context, prior studies have mostly separately addressed changes in brain 
function and structure in the aging process (Alm et al., 2022; Damoiseaux, 2017; Fjell et al., 

2016; Jockwitz and Caspers, 2021). In turn, joint investigations of structure-function 
relationships in aging and their link to cognitive performance differences in older age remain 

relatively scarce. Prior joint research has suggested that the underlying SC may to a certain 
degree exert an influence on functional network organization (Betzel et al., 2014; Madden 

et al., 2020; Straathof et al., 2019; Zimmermann et al., 2016), although it should be 

mentioned that results appear to be mixed in this regard (Fjell et al., 2017; Hirsiger et al., 
2016; Tsang et al., 2017). Thus, SC alterations in aging may potentially offer an explanation 

for age-related functional reorganization, i.e. shifts in the balance between integration and 
segregation, accompanied by cognitive decline (Betzel et al., 2014; Madden et al., 2020; 

Straathof et al., 2019; Zimmermann et al., 2016). Nevertheless, the interrelation between 
RSFC and SC changes during aging linked to cognition has not been comprehensively 

investigated so far in older age. Further research on this may, however, shed light on 
possible root causes for functional network shifts and allow for examining the sources for 

the high inter-individual variability in aging in more detail. As such, laying the foundation 
and providing further support for using multimodal data in a next step in a prediction setting.  

Functional and structural network architecture may be further complemented by 

information from GM to explain cognitive performance differences in older age. The aging 
process has been associated with extensive structural decline, e.g. loss in GMV, measured 

by structural MRI (sMRI). In turn, greater regional atrophy has been related to lower 
performance in specific cognitive functions (Fjell and Walhovd, 2010; Jessen et al., 2006; 

Kennedy and Raz, 2009; Lemaitre et al., 2012; Persson et al., 2006; Raz et al., 2005; Raz 
and Rodrigue, 2006; Salat, 2004; Whalley et al., 2004). It has, for instance, been shown 

that declines in executive functions were related to greater atrophy in the prefrontal cortex 
(PFC), while reductions in volume of the medial temporal lobe (MTL) and hippocampus 

were associated with reduced episodic memory performance in older adults (Jessen et al., 
2006; Persson et al., 2006; Raz and Rodrigue, 2006). Thus, not only functional and 

structural network architecture may explain unique variance in cognitive performance and 



 

 8 

provide information relevant for prediction, but also brain structural data (Cox et al., 2019; 

Ritchie et al., 2015). 

Ultimately, both brain structure and function support cognitive functioning. The different 
characteristics of brain organization uniquely contribute to our comprehension of the aging 

process and offer the possibility to examine distinct sources for the high inter-individual 
variability in cognition. Thus, they conjointly tend to describe age-related cognitive changes 

more comprehensively than on their own (McConathy and Sheline, 2015; Pacheco et al., 
2015; Tomasi and Volkow, 2012; Vieira et al., 2022a). For example, it has been shown that 

both RSFC of the VAN and the WM microstructure, i.e. radial diffusivity, of particular MTL 
regions are separately related to memory performance in older adults (Alm et al., 2022). 

Findings from longitudinal settings further have revealed that each connectivity measure, 
i.e. RSFC and SC, may explain a substantial amount of unique variance in age-related 

cognitive decline and distinct cortical measures, i.e. GM and WM information, may 

differentially relate to specific patterns of individual longitudinal cognitive change (Fjell et 
al., 2016; Patel et al., 2022).  

Complementing functional network information with those from brain structure, i.e. 
GMV, and structural network architecture, i.e. SC estimates, thus, may add unique and 

highly relevant information to the ML setting that might not be covered by brain functional 
data alone. ML models based on multimodal data may, hence, more completely capture the 

relation between brain and cognition in older age. As such, a multimodal approach may 
encourage the establishment of a more accurate and dependable marker for age-related 

cognitive decline, which has not yet been investigated comprehensively in normal older 
adults. In the next section, the current state of the field with regards to classification and 

prediction of cognitive functioning in healthy older adults from imaging data, i.e. unimodal 

and multimodal, will be outlined in more detail. Before turning to these results, a general 
introduction to ML will be provided to allow for the contextualization of subsequent ML 

findings.    

1.5 Introduction to ML 
 The last decades have been marked by many technological advances. One of the 

major advances has been the shifting of attention to artificial intelligence and with it to 

machine learning (ML) methods. Use cases extend across different sectors from business 
applications to medical questions (Davenport and Ronanki, 2018). ML methods have also 

rapidly entered the neuroimaging field and have been increasingly adopted in a great variety 
of studies. ML methods as analytic tools develop techniques and algorithms to automatically 

find patterns or information in data (Hastie et al., 2009; Koutsouleris et al., 2016). In this 
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context, they may be an optimal choice in the study of biomarkers as they succeed at 

handling complex data, identifying associations, which may go undetected by univariate 

methods, and making assessments at the individual level (Dadi et al., 2019; Orrù et al., 
2012; Woo et al., 2017; Zarogianni et al., 2013).  

ML is commonly divided into two approaches, i.e. supervised and unsupervised 
learning. The focus in this dissertation will be with supervised ML, as we possess a labelled 

dataset consisting of input data and the respective correct outputs or target values for a ML 
model to train on. Supervised ML may be further divided into classification and regression 

(see Figure 2).  
 

 
 

 

 
 

 

 

Figure 2. Overview Supervised ML. 

Classification aims at predicting different group memberships from input data, e.g. 
patient group vs. healthy control group, while regression is aimed at predicting a continuous 

target from input data, e.g. age prediction (see Figure 2) (Orrù et al., 2012). Over the past 
decades, a variety of different classification and regression algorithms have been 

developed and introduced to the neuroimaging field (Cui and Gong, 2018; Mwangi et al., 
2014). While the different ML algorithms have a similar goal, they use different approaches 

to provide a solution to a circumscribed problem (Cui and Gong, 2018; Mwangi et al., 2014). 

In this context, recent studies have compared prediction performances between different 
algorithms for different ML targets (Cui and Gong, 2018; Jollans et al., 2019). Results have 

suggested that despite performance differences between algorithms, deriving definite 
conclusions about the optimal algorithm is difficult and algorithm-related differences depend 

on the data set used for ML classification and prediction (Cui and Gong, 2018; Jollans et 
al., 2019). It, thus, appears advisable to examine ML performance across a range of 

different algorithms to ensure generalizability of results. 
In general, the subsequent steps are followed to establish a ML model: (a) an ML 

algorithm is first trained on a training data set to establish a decision rule and (b) then 

applied to a new independent test data set to be evaluated. For performance estimation, 
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cross-validation (CV) is typically chosen as the most appropriate method for model 

evaluation (Varoquaux et al., 2017). It makes use of resampling to obtain training and test 

data. In k-fold CV, a particular form of CV, data is split into k folds. One fold is iteratively 
used as test data, while the remaining folds together form the training data. For example, 

in 5-fold CV, the data is split into five parts. In the first iteration, one fold is used as the test 
data, while the remaining four folds constitute the training data. This is repeated until each 

individual fold has served as test fold once. For each training/test set, a model is trained, 
evaluated on the test data and a prediction error is obtained (Gabrieli et al., 2015). To 

retrieve an estimate of generalization ability, prediction performance is, then, averaged 
across the number of splits. The current gold standard for performance estimation, if 

external validation is not feasible, is the use of a nested CV scheme. It allows tuning 
hyperparameters, i.e. parameters that allow configuring the ML algorithm to the data and 

with it regulate the learning process (Arbabshirani et al., 2017; Bergstra et al., 2013; Lemm 

et al., 2011; Sipper, 2022), in an inner CV loop and evaluating the generalization ability in 
an outer CV loop, while preventing data leakage (see Figure 3) (Filzmoser et al., 2009; 

Lemm et al., 2011). 
 

 
 

 
 

 

Figure 3. Illustration nested cross-validation (CV).  

In nested CV, data is split into training and test sets on both an outer (CV2) and an 

inner (CV1) loop as it avoids biased estimations of performance (Lemm et al., 2011). 
Hyperparameters are tuned on the inner loop based on the inner CV performance, whereas 

in the outer loop established models are examined according to their generalization ability 
(see Figure 3) (Lemm et al., 2011). Due to its ability to tackle some of the biases and issues 

in performance evaluation, nested CV has become frequently implemented in neuroimaging 
ML studies and is considered essential, when one desires to tune hyperparameters 

(Varoquaux et al., 2017). Some studies have additionally opted to repeat the whole CV 



 

 11 

cycle, e.g. using repeated nested CV, for a given number of times to address potential 

biases based on the initial splitting of the data and to obtain an even more generalizable 

estimate of performance (Franzmeier et al., 2020; Kong et al., 2019; Koutsouleris et al., 
2014, 2012). All of the aforementioned measures are undertaken to reduce overoptimistic 

results and to better approximate the true performance of a ML model.  
Importantly, ML performance has been found to be impacted by a variety of different 

factors. For instance, sample size and characteristics, feature selection steps, and the 
deconfounding strategy may all affect classification and prediction accuracies (Arbabshirani 

et al., 2017; Cui and Gong, 2018; Guyon and Elisseeff, 2003; Hua et al., 2009; Jollans et 
al., 2019; Mwangi et al., 2014). Up to date, the field of ML using neuroimaging data is lacking 

a standard ML pipeline, which might be due to the high variability in data sets (Paulus and 
Thompson, 2021). Thus, it appears warranted to systematically assess different analytical 

options, when addressing neuroimaging questions with a ML approach. After providing a 

general introduction to ML and its use in neuroimaging, the following two subsections will 
provide an overview of the current research state regarding classification and prediction of 

cognitive performance differences in older age based on functional brain network (i.e. 
unimodal) data (1.5.1) and multimodal brain data (1.5.2).  

1.5.1 Unimodal prediction of cognitive abilities in normal aging  
With the rise of large neuroimaging cohorts, we have entered a time with access to 

ample data that is required for training reliable and generalizable ML models, which tackle 
complex neuroscientific questions (Varoquaux et al., 2017). As such, research efforts have 

also turned to the investigation of brain-behaviour relationships and the prediction of 
cognitive abilities using ML approaches. Due to the well-established relation between 

behavioural constructs and functional networks, a multitude of studies have concentrated 

on the use of RSFC data in ML classification and prediction (Khosla et al., 2019). Most of 
the studies so far have concentrated on the prediction of cognitive ability in younger adults. 

For example, general intelligence could be successfully predicted from RSFC patterns in a 
large sample of younger adults from the Human Connectome Project (HCP) and a 

developmental cohort from the Adolescent Brain Cognitive Development (ABCD) 
consortium (Dubois et al., 2018; Sripada et al., 2020b). In healthy older adults, initial 

promising results have already been obtained in the prediction of specific cognitive functions 
using mainly RSFC matrices, either covering the whole brain or specific networks (Gao et 

al., 2020; He et al., 2020; Jiang et al., 2022; Kwak et al., 2021a; Pläschke et al., 2020; Wu 
et al., 2022). For instance, Pläschke et al. (2020) showed that working memory performance 

could be successfully predicted by specific RSFC patterns in meta-analytically defined brain 



 

 12 

networks in an older age group using relevance vector regression (RVR). Furthermore, Gao 

et al. (2020) demonstrated that processing speed could be successfully predicted from 

RSFC data in older adults using a connectome-prediction model. Along the lines, RSFC 
effectively predicted neuropsychological test performances, e.g. amongst others Trail 

Making Test A and B, semantic fluency, digit span and Boston naming test, and fluid 
intelligence in three large samples across the lifespan and in older age using different ML 

approaches (He et al., 2020; Jiang et al., 2022; Kwak et al., 2021a). However, functional 
brain network data, i.e. within- and inter-network RSFC estimates, which capture more 

specifically information on network integration and segregation than RSFC matrices and 
have been shown to relate to cognitive performance differences in normal aging, has not 

been investigated yet as input features to ML (Stumme et al., 2020). In clinical settings, 
RSFC graph metrics targeting basic principles of network organization have already been 

successfully used as diagnostic marker to distinguish between healthy older adults and 

patients with neurodegenerative diseases, i.e. Alzheimer’s disease (AD) and mild cognitive 
impairment (MCI) (Hojjati et al., 2017; Khazaee et al., 2016). Whether this also holds true 

for healthy older adults, remains to be examined.  
1.5.2 Multimodal prediction of cognitive abilities in normal aging 

While cognitive abilities may already be successfully predicted from one modality, a 
more complete picture may arise from a multimodal perspective. Given cognition may rely 

on different neurobiological substrates, i.e. brain structure, function and connectivity, a 
multimodal approach may, thus, characterize these brain-behaviour relationships more 

comprehensively and support the development of a more reliable, inclusive and potentially 
powerful marker for age-related cognitive decline (Dhamala et al., 2021). Research has 

lately started on this objective of integrating information across modalities in ML 

classification and prediction studies (Dhamala et al., 2021; Dyrba et al., 2015; Engemann 
et al., 2020; Hojjati et al., 2019, 2018; Liem et al., 2017; Rahim et al., 2016; Rasero et al., 

2021; Tsapanou et al., 2020; Wee et al., 2012; Xifra-Porxas et al., 2021). Initial encouraging 
results emphasize that the use of multimodal data may be beneficial for ML performance. 

For example, Rasero et al. (2021) found improved prediction accuracies of different 
cognitive abilities, i.e. global and domain-specific cognition, from multimodal data, i.e. 

RSFC, GMV, cortical thickness, surface area and local connectome features, in a large 
sample of healthy young adults from the HCP. Across the life span, Tsapanou et al. (2020) 

have shown that more variance in fluid intelligence and vocabulary is explained by 
integrating information from white and grey matter than by single modalities. In healthy older 

adults, evidence on a multimodal benefit is limited. In this context, initial findings from the 
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UK Biobank suggest that fluid intelligence may be successfully predicted from multimodal 

brain imaging data, i.e. brain volumetric data, white matter information and RSFC (Dadi et 

al., 2021). Further support for a predictability benefit for multimodal data in older samples 
comes from investigations into neurodegenerative diseases (Dyrba et al., 2015; Hojjati et 

al., 2018, 2018; Wee et al., 2012). Better classifiability of patients with MCI and AD from 
healthy controls (HC) was reached for a combination of RSFC- and SC-derived graph 

metrics, which encompass information on network integration and segregation, compared 
to single modalities (Hojjati et al., 2019, 2018). As such, prior research suggests that using 

different combinations of multimodal data may be helpful in cognitive prediction settings in 
aging. It, however, remains to be investigated whether specifically integrating information 

from brain network architecture, i.e. RSFC and SC estimates, and brain morphology, i.e. 
region-wise GMV, may improve prediction performance of cognitive performance 

differences in healthy older individuals compared to single modalities. On the basis of 

findings suggesting that changes in all three modalities are linked to cognitive performances 
differences in older age, the combination of information is expected to explain more 

variance in cognition than each of them on their own (Dadi et al., 2021; Rasero et al., 2021; 
Vieira et al., 2022a).  

1.6 Ethics approval 
The 1000BRAINS study protocol was approved by the ethics committee of the 

University of Duisburg-Essen (reference number: 11-4678, 12-5199-BO). The study 
procedures comply with the Declaration of Helsinki and informed consent was obtained 

from all participants prior to participation in 1000BRAINS. 

1.7 Aim of the studies 
This dissertation is intended to advance the search for an imaging marker for age-

related cognitive decline, provide new insights into the predictive power of imaging data for 

cognitive performance prediction in normal aging and a greater understanding of the 
structure-function relation in aging and its link to cognition. In detail, it is aimed at 

investigating (1) whether RSFC estimates of within- and inter-network connectivity may 

reliably classify and predict cognitive performance differences, (2) how RSFC and SC 
patterns as well as cognitive performance are interrelated in aging and (3) whether the 

combination of region-wise GMV, RSFC and SC estimates may lead to better prediction 
performance of different cognitive targets compared to single modalities using a systematic 

evaluation of different ML approaches in large samples of healthy older adults from the 
1000BRAINS study. Thus, adding to laying a foundation for the development of a 

prospective marker for age-related cognitive decline. 
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Classification and prediction of cognitive performance 
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multimodal neuroimaging data 
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5 General Discussion  
The current dissertation aimed at promoting the search for an imaging marker for age-

related cognitive decline, providing a greater insight into the predictive power of imaging 

data for cognitive performance prediction in normal aging and advancing our understanding 
of the structure-function relationship in aging linked to cognition. In the first study, the 

biomarker potential of functional brain network information for age-related cognitive decline 
was addressed. In the second study, the age-characteristic interrelations between RSFC 

and SC patterns and cognitive performance were examined in older adults. In the third 
study, the potential benefit of using multimodal data, i.e. region-wise GMV, RSFC and SC 

estimates, for the prediction of cognitive performance in healthy aging was investigated.  
The first study focussed on the classification and prediction of cognitive performance 

differences from RSFC estimates in healthy older adults. Across a systematic analysis of 
ML approaches, predictability of global and domain-specific cognition from RSFC estimates 

remained low with models failing to reliably outperform dummy models (Krämer et al., 

2023). Thus, results hinted at limited utility of currently employed RSFC estimates as single 
biomarkers for age-related cognitive decline. The second study targeted the closer 

examination of structure-function relationships linked to cognition in aging and revealed the 
existence of three prominent aging profiles in older adults, which were associated with 

specific interrelations of RSFC, SC and cognitive performance (Stumme et al., 2022). In 
turn, the third study examined whether integrating information across modalities, i.e. region-

wise GMV, RSFC and SC estimates, may boost the predictability of global and domain-
specific cognitive performance in healthy older adults in a systematic evaluation of different 

ML approaches. Findings demonstrated moderate prediction performance across analytic 
choices in absence of confounder control (Krämer et al., 2024). In this context, a small trend 

for better prediction performance in multimodal compared to unimodal models and 

differences in prediction accuracies across modalities and cognitive targets were observed. 
These aforementioned effects could no longer be seen, once the effects of age, sex and 

education were controlled for. Results, thus, suggested the great impact of demographic 
factors, e.g. age, sex and education, despite a potential benefit of using multimodal data in 

the prediction of cognitive functioning in healthy older adults. Jointly, the results from this 
dissertation emphasize the challenges on the road to ultimately developing an imaging 

marker for age-related cognitive decline and the manifold insights that may be gained from 
a multimodal approach to study aging.  
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5.1 Effect sizes in brain-behaviour relationships in older age 
In recent years, the number of studies in samples of younger adults and 

neurodegenerative patients reporting successful prediction and classification from imaging 

data in the realm of cognition has continuously increased (Cui and Gong, 2018; Dhamala 
et al., 2021; Dubois et al., 2018; Hojjati et al., 2017; Jiang et al., 2020; Khazaee et al., 2016; 

Sripada et al., 2020b). Nevertheless, these promising findings could not be translated to 
large samples of healthy older adults from the 1000BRAINS study in the current dissertation 

(Krämer et al., 2024, 2023). One potential explanation for this result may relate to small 
effect sizes in brain-cognition relationships encountered in older age. In comparison to 

younger cohorts, the heterogeneity of the aging process may pose unique obstacles to the 
identification of an accurate and reliable biomarker of cognitive abilities and thus, may 

attenuate effect sizes (Lin et al., 2018). The aging process is marked by brain structural and 
functional rearrangements and substantial inter-individual variability at the brain and 

cognitive level, which may lead to a convoluted link between cognition and brain in aging 

(Andrews-Hanna et al., 2007; Chan et al., 2014; Chong et al., 2019; Fjell et al., 2015; Grady 
et al., 2016; Habib et al., 2007; Hedden and Gabrieli, 2004; Jockwitz et al., 2019, 2017a, 

2017b; Mowinckel et al., 2012; Ng et al., 2016; Onoda et al., 2012; Stumme et al., 2020). 
In turn, this may pose difficulties for identifying brain patterns linked to cognitive 

performance differences in healthy older adults, negatively impact on effect sizes and may 
explain the low discriminatory and predictive power across the first and third study of this 

dissertation (Scarpazza et al., 2020). This notion is further supported by a recent study by 
Kandaleft et al. (2022), which showed in a sample from the CamCAN study that fluid 

intelligence could only be predicted from RSFC in younger adults (18-40 years old), but not 
in middle aged (41-60 years old) or older adults (> 61 years old) (Kandaleft et al., 2022). 

Expanding on this, it has been shown that models derived from young adults using RSFC 

and SC information may not generalize well to older adults in the prediction of a variety of 
cognitive functions (Yu and Fischer, 2022). This, in turn, suggests age-specific brain-

behaviour associations and profound differences between age groups. Thus, it appears that 
clear predictability differences between younger and older aged individuals may emerge 

and that increases in heterogeneity among individuals with advancing age may pose 
difficulties for accurate classification and prediction of cognitive abilities in older age.  

Comparing the results to those extracted from patient samples, low classification and 
prediction performance may be linked to more pronounced differences between HC and 

patients (Amaefule et al., 2021; Kwak et al., 2021a). In this context, it has, for example, 
been shown that patients with MCI and AD display pronounced changes in brain structure, 
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e.g. extensive volume loss in medial temporal lobe structures, and function, i.e. shifts in 

network communication and the connectivity of central hub regions of the brain, compared 

to cognitively healthy older adults (Dai et al., 2015; Duara et al., 2008; Farahani et al., 2019; 
Lin et al., 2018; Sanz-Arigita et al., 2010; Supekar et al., 2008). ML classification and 

prediction studies on patient samples further support this argument. For instance, patients, 
i.e. MCI and AD, could be distinguished from HC based on RSFC graph metrics with high 

accuracies (maximum classification accuracy for three groups, i.e. HC, MCI and AD = 
88.42%) as well as converters from MCI to AD from non-converters (maximum classification 

accuracy = 91.4%) (Hojjati et al., 2017; Khazaee et al., 2016). Similarly, a recent study has 
reported prediction accuracies of up to R2 = 0.55 for memory performance based on 

morphometric information, e.g. grey matter density, demographic features and ApoE4 in a 
large sample (N=959) of HC, MCI and AD patients from the DZNE-longitudinal cognitive 

impairment and dementia study (Nemali et al., 2022). These magnitudes of effects may be 

more difficult to observe in a healthy population. This is supported by findings showing that 
training a model on data from healthy participants and neurodegenerative patients leads to 

higher prediction accuracies on different cognitive tests than when a model is trained solely 
on healthy participants (Kwak et al., 2021a). As such, ML models in healthy older adults 

may be hampered by smaller effect sizes (Krämer et al., 2023). In future studies, it might 
be valuable to investigate whether cognitive performance prediction in healthy older adults 

benefits from training on mixed populations and applying it in a second step to only healthy 
older adults.  

Besides differences in samples, it is generally still unclear to what extent cognition and 
behaviour can be predicted based on brain imaging information (Easley et al., 2023; Genon 

et al., 2022; Schulz et al., 2022; Woo et al., 2017). Thus, the identification of neuroimaging 

markers for cognitive abilities or behavioural constructs has remained challenging similarly 
to developing diagnostic markers for diseases (Woo et al., 2017). It appears that only a 

small portion of variance in cognition and behaviour may be captured by brain features that 
have been investigated so far (Cui and Gong, 2018). This is represented in moderate 

prediction performance across a range of different studies and stands in contrast to prior 
and current results on the prediction of, for example, demographic factors, specifically age 

(Bittner et al., 2021; Cole, 2020; Krämer et al., 2024, 2023; Liem et al., 2017; Stumme et 
al., 2022). Even when attempts are being made to systematically increase effect sizes,           

e.g. extending fMRI features, averaging target phenotypes and using a more balanced 
sample, explained variance in cognitive targets was found to only increase marginally 

(Easley et al., 2023). As such, it has been shown that employing the aforementioned steps 
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might only increase explained variance (R2) from 3% to 6% in fluid intelligence in a large 

sample of older adults from the UK Biobank based on fMRI information (Easley et al., 2023). 

Results from the current investigations further support this view and extend it to the use of 
brain network information, i.e. FC and SC estimates, and region-wise GMV. Across the first 

and third study, best models were based on multimodal brain information and did not explain 
more than 15% of variance in the different cognitive targets in absence of confounder 

control (Krämer et al., 2024, 2023). Thus, it may be argued that currently tested brain 
features may not be optimally suited to explain high amounts of variance in cognitive 

targets, but rather quickly reach a limit beyond which no increases in prediction performance 
are to be expected. Nevertheless, it should be pointed out that this may only apply to the 

types of features that have been tested so far and not necessarily extend to those 
developed in the future. Furthermore, to obtain a more realistic insight into brain-behaviour 

relationships and uncover potential replicability issues, even findings with moderate effect 

sizes or null results should be reported (Janssen et al., 2018). This may, in turn, also inform 
about possible new research avenues. 

5.2 The role of RSFC for cognition prediction in healthy older adults 

In recent years, a multitude of ML studies have been published on the use of RSFC 
information in the prediction of cognition and behaviour in different sample populations. This 

may be due to the ease of application of rsfMRI and the established link of RSFC to task 
performance (Nashiro et al., 2017). In this context, a majority of studies have reported 

successful prediction of cognitive variables, e.g. fluid intelligence, processing speed and 
working memory, based on RSFC information with high prediction accuracies in younger 

and older adults (Dhamala et al., 2021; Dubois et al., 2018; Gao et al., 2020; Pläschke et 
al., 2020). Until very recently, initial findings have been published revealing a more diverse 

picture in terms of the prediction potential of RSFC for cognitive variables (Dadi et al., 2021; 
Rasero et al., 2021; Vieira et al., 2022a). As such, several studies began to show reduced 

predictability of cognitive variables based on RSFC across datasets (Dadi et al., 2021; 

Heckner et al., 2023; Rasero et al., 2021; Tetereva et al., 2022; Vieira et al., 2022a). For 
example, RSFC patterns led to lower predictability of different cognitive measures,                   

e.g. global cognition, fluid intelligence, and prospective global cognition and fluid 
intelligence, in large samples of young and older adults (i.e. from the HCP, UK Biobank and 

OASIS-3 project) compared to other imaging information, e.g. structural brain data (Dadi et 
al., 2021; de Dieu Uwisengeyimana et al., 2022; Rasero et al., 2021; Vieira et al., 2022a). 

Present findings add to this growing literature of limited predictability of cognitive and 
behavioural constructs based on RSFC, further expand it to RSFC estimates targeting 
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network integration and segregation and thus, stand in sharp contrast to earlier studies in 

the field. In the first study, it was shown that RSFC estimates led to low classifiability and 

predictability of cognitive performance across a wide range of analytic choices (Krämer et 
al., 2023). Results from the third study further corroborated initial findings and emphasized 

that among single modalities RSFC estimates led to the lowest prediction results compared 
to region-wise GMV and SC estimates (Krämer et al., 2024). Across analytic choices, mean 

prediction accuracies ranged between 2 to 4% explained variance for RSFC estimates 
compared to 5 to 11% explained variance in structural brain features for global cognition 

(Krämer et al., 2024). Overall, results suggest that functional connectivity, specifically RSFC 
estimates derived from graph-theoretical approaches, may capture cognitive performance 

differences in older age only to a limited extent (Krämer et al., 2024, 2023). In turn, current 
results emphasize that structural information may be more informative and predictive of 

these differences (Krämer et al., 2024). This is in line with prior studies showing high 

relevance of structural measures for cognitive aging and the successful prediction of 
cognitive abilities from SC features and structural information in health and disease (Feng 

et al., 2022; Li et al., 2020; Litwińczuk et al., 2022; Lockhart and DeCarli, 2014; Yu et al., 
2020). In this context, it should be noted that one potential explanation for structural features 

outperforming functional ones may be related to the increased variability in brain function 
compared to structure in the aging process that may also complicate the link to cognition 

(Grady, 2012; Sala-Llonch et al., 2015). Both compensatory and dedifferentiation 
tendencies may be at work making a clear mapping between RSFC patterns and cognitive 

performance difficult for a ML model to establish in older adults (Goh, 2011; Reuter-Lorenz 
and Cappell, 2008; Sala-Llonch et al., 2015; Stumme et al., 2022). Along the lines, the low 

ML performance of RSFC for cognition prediction in older age observed in the first and third 

study of the present dissertation might have been further aggravated by the inherent 
dimensionality reduction of graph-theoretical approaches (Cui and Gong, 2018). This, in 

turn, might have caused relevant information for prediction to be lost ultimately resulting in 
low ML accuracies (Cui and Gong, 2018). Furthermore, only static RSFC has been 

examined in the current dissertation disregarding the time-varying nature of RSFC and 
richness in data across time (Petkoski et al., 2023). Given that age-related differences in 

the dynamic configuration of functional networks may be associated with cognitive 
performance, a shift in perspective to investigations of dynamic functional connectivity 

(dFC) in future studies may allow taking into consideration information beyond that of static 
RSFC, more fully capturing the variability in older age and with it enriching the information 

content to be used by a ML model (Battaglia et al., 2020; Viviano et al., 2017; Xia et al., 
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2019; Yang et al., 2023). To sum up, results from this dissertation highlight that brain 

structural patterns may carry important information about cognitive performance differences 

in older age and in turn, question the usability of static RSFC measures, particularly graph-
theoretically derived metrics, for cognitive performance prediction in older ages. 

5.3 Multimodal aging profiles integrating SC, RSFC and cognition  
Age-related cognitive decline is accompanied by macroscopic changes in brain 

structure, function and connectivity between brain regions. In this context, the usage of a 

multimodal approach is thought to allow for a more comprehensive description of cognitive 
aging and for the in-depth investigation of the relationship between brain structure, function 

and cognition in older age. Thus, supporting a more mechanistic understanding of age-
related cognitive changes. In this context, recent research has embarked on examining the 

interrelation between RSFC and SC in aging and how it relates to cognition to foster a 
greater understanding for the causes of age-related functional network changes (Betzel et 

al., 2014; Fjell et al., 2017; Hirsiger et al., 2016; Madden et al., 2020; Straathof et al., 2019; 
Tsang et al., 2017; Zimmermann et al., 2016). Along the lines, prior studies have revealed 

mixed results. As such, some studies have suggested that RSFC and SC change 

independently across the life span and in higher ages (Fjell et al., 2017; Hirsiger et al., 2016; 
Tsang et al., 2017), while others have demonstrated SC to correlate with RSFC and to exert 

at least a partial influence on it (Betzel et al., 2014; Madden et al., 2020; Straathof et al., 
2019; Zimmermann et al., 2016). Adding cognition to the equation, it also seems that no 

clear pattern may be observed. In this context, it has, for example, been found that only 
RSFC mediated the relationship between age and executive functions decline, but not SC 

(Madden et al., 2020). In contrast, Pur et al. (2022) showed in a longitudinal multivariate 
study that older adults with reduced processing speed capacity tended to show reduced SC 

primarily in frontal regions accompanied by decreases in FC in cingulo-opercular and DMN 
regions (Pur et al., 2022). Results from the second study of this dissertation add to the 

growing literature of structure-function relationships in the aging context and support 

previous results revealing joined patterns of RSFC and SC alterations in aging that may be 
related to cognitive performance differences. Along the lines, current findings demonstrated 

that three different aging profiles may be derived from multivariate analyses, i.e. partial least 
squares regression (PLSR), with distinct patterns of RSFC, SC and cognitive alterations, 

which may all be highly characteristic of the aging process (Stumme et al., 2022). 
Particulary, it was shown that the profiles may be distinguished by different acuteness of 

SC decline. Thereby, the first profile demonstrated a pattern of SC and RSFC alterations 
most commonly found in prior literature, i.e. declines in SC across the whole brain, lower 
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segregation of primary processing networks and higher integration of higher order networks 

in terms of RSFC and age-related impairments in cognitive performance (Betzel et al., 2014; 

Madden et al., 2020; Perry et al., 2017; Stumme et al., 2022; Zhao et al., 2015). Along the 
lines, the second profile revealed SC declines pertaining to the frontal lobe only and a 

strongly interconnected functional system, which was accompanied by the strongest age-
related cognitive decline (Stumme et al., 2022). Lastly, the third profile exhibited rather 

preserved SC and comparably low overall RSFC, which was associated with similar 
cognitive performance declines as in the first profile (Stumme et al., 2022). Thus, current 

results suggest that the relationship between SC, RSFC and cognition during the aging 
process appears to be best captured by distinct patterns highlighting the complex 

interconnectedness of fuctional and structural systems supporting cognition in aging. 
Particularly, the severity of SC decline seems to play a fundamental role for age-related 

functional network reorganization and with it for cognition. Along the lines, current findings 

provide support for the dedifferentiation account in aging with the most strongly integrated 
functional system found to be associated with the greatest cognitive decline (Goh, 2011; 

Koen et al., 2020; Koen and Rugg, 2019). In this context, beginning SC decline was found 
to be related to increases in RSFC, although this additional recruitment did not appear to 

lead to higher cognitive maintenance. Thus, results from the second study emphasized that 
distinct patterns of interrelations between RSFC and SC changes during aging may be 

encountered, which may differentially relate to cognition (Stumme et al., 2022). In turn, 
these would have not been discovered by separate analysis of the two modalities and 

provide a framework for functional network shifts and related cognitive performance 
declines. Along the lines, multimodal analyses may offer new perspectives on the 

underlying root causes of age-related cognitive decline and support the view that they may 

more fully capture cognitive aging than single modalities on their own.  

5.4 Potential benefits of multimodal data for cognition prediction in aging  

Multimodal approaches may not only be informative in terms of a more detailed 

mechanistic understanding of the structure-function relationship in aging and its relation to 
cognition, but may also have a positive impact on predictability of cognitive performance in 

older age. Following this view, prediction performance should be boosted by including 
multimodal brain data as more information should be available characterising the 

relationship between brain and behaviour. This is indeed what has been reported in recent 
multimodal prediction studies on different cognitive functions cross-sectionally across the 

lifespan and in older cohorts as well as longitudinally (Cole, 2020; Dadi et al., 2021; Jiang 
et al., 2020; Rasero et al., 2021; Schulz et al., 2022; Tsapanou et al., 2020; Vieira et al., 
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2022a; Xiao et al., 2021). Results from this dissertation extend prior findings by highlighting 

a similar tendency in multimodal models based on brain network information and region-

wise GMV for the prediction of global and domain-specific cognitive performance in a large 
sample of healthy older adults in absence of confounder control, although only to a small 

extent (Krämer et al., 2024). While the first study was marked by low classification and 
prediction performance based on a single modality, i.e. RSFC estimates, the third study 

showed slightly improved prediction performance for multimodal models (Krämer et al., 
2024, 2023). In this context, the best multimodal model (all brain features; mean R2 = 0.14) 

outperformed the best single modality (SC estimates; mean R2 = 0.11) by 3% more variance 
explained in the global cognitive target (Krämer et al., 2024). In terms of effect size, findings 

correspond to ranges reported in the literature (Dadi et al., 2021; Vieira et al., 2022a; Xiao 
et al., 2021). Overall, results from this dissertation suggest a small potential benefit of 

integrating information across modalities, i.e. region-wise GMV, RSFC and SC estimates, 

for cognitive performance prediction in healthy older adults by providing slightly more 
accurate approximations of cognition than single modalities.  

5.5 Predictability differences among cognitive targets in older age  

Distinct cognitive functions may be differentially affected by the aging process                 
(e.g. processing speed, executive and memory functions tend to be more strongly impacted 

by aging than verbal abilities and semantic knowledge), which may result in predictability 
differences between them (Grady, 2012; Hedden and Gabrieli, 2004; Park and Reuter-

Lorenz, 2009; Mather, 2010; Salthouse, 2004). This view is supported by present results 
pointing at considerable differences in prediction performance between different cognitive 

domains, i.e. global and domain-specific cognition, in healthy older adults (Krämer et al., 
2024, 2023). In the first and third study, global cognition tended to be best predicted, 

followed by the non-verbal memory & executive component and the verbal memory & 
language component in absence of confounder control (Krämer et al., 2024, 2023). 

Superiority of global cognition in terms of predictability may be related to the fact that it may 

account for the greatest amount of variance in inter-individual differences in cognition and 
may, thus, be better predicted (Tucker-Drob, 2011; Tucker-Drob et al., 2014; Tucker-Drob 

and Salthouse, 2013). Further support for this stems from prior studies in primarily younger 
cohorts showing greater prediction accuracies for global compared to domain-specific 

cognition from imaging data (Sripada et al., 2020b; Vieira et al., 2022b). Current results 
expand on this and emphasize that a similar pattern may also emerge in healthy older 

adults.  
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By far, lowest prediction performance across the first and third study was observed for 

language functions (Krämer et al., 2024, 2023). Even when not controlling for demographic 

confounders, i.e. age, sex and education, language abilities failed to be successfully 
predicted in healthy older adults in this dissertation. These findings are in line with recent 

accounts in the literature across the lifespan and in older cohorts (Feng et al., 2022; Shafto 
and Tyler, 2014; Tsapanou et al., 2020). For instance, multimodal data could better predict 

fluid reasoning capabilities than vocabulary or language function in different large samples 
across the lifespan and in older adults (Tsapanou et al., 2020; Feng et al., 2022). A potential 

explanation may be that differences in language abilities are much more related to factors 
such as educational and occupational attainment and less so encountered in specific brain 

patterns, which was supported by the feature importance analysis in the third study (Krämer 
et al., 2024; Oschwald et al., 2019; Tsapanou et al., 2020). Findings from this dissertation, 

thus, hint at an exclusive role of language functions in aging and place emphasis on the link 

to measures such as educational attainment in older age. Overall, it appears that ML 
performance differences may partly be explained by differences in cognitive targets, with 

global cognition showing a predictability advantage compared to domain-specific 
constructs, when using a whole-brain approach. Whether these predictability differences in 

older adults also persist in, for example, a network-based approach (i.e. using features from 
only one specific network, e.g. FPN, as input to ML, which may be particularly important for 

a specific cognitive function, e.g. executive functions), remains to be investigated in future 
studies.   

5.6 Relevance of demographic factors for cognition prediction in older adults 

In ML classification and prediction studies, as in any other study, the variable of interest 
may not only be linked to the feature of choice, but also share relations with other factors, 

which may not be of principal interest and instead may overshadow or influence the 
examination of the link between feature and target (Boeke et al., 2020). These are often 

termed confounding variables or covariates to a study question. With the rise of ML studies 

in the neuroimaging field, also confounding variables have moved to the centre of attention 
with experiments showing their impact in various different ML settings and new methods 

being developed to control for these (Chyzhyk et al., 2022; Snoek et al., 2019). As prior 
studies have shown that the influence of covariates on ML performance may be substantial, 

different forms of confounder analyses were conducted in the studies of this dissertation 
(Omidvarnia et al., 2023; Rasero et al., 2021; Snoek et al., 2019). These included 1) varying 

degrees of deconfounding, i.e. controlling for age, sex and education (study 1 & 3), and 2) 
the usage of age, sex and education as extra features in the ML models (study 3) (Krämer 
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et al., 2024, 2023). Current results suggest a substantial impact of demographic factors on 

prediction performance and a strong link between those factors and cognition in healthy 

older adults (Krämer et al., 2024; Stumme et al., 2022). Particularly in the third study, 
controlling for age, sex and education caused prediction levels to drop to chance level, and 

with it, differences between modalities and cognitive targets to vanish (Krämer et al., 2024). 
In contrast, the addition of demographic factors to brain models led to drastic increases in 

prediction performance, similarly to findings reported in the literature (Dadi et al., 2021; 
Rasero et al., 2021; Vieira et al., 2022a; Yeung et al., 2022; Yu et al., 2020). Reconciling 

these two findings, it may be argued that confounder adjustment may have removed 
essential variance for the accurate prediction of cognition and that age, sex and education 

explain a substantial amount of variance in the cognitive targets. In the literature, findings 
regarding the loss of effects after confounder control remain relatively scarce. Nevertheless, 

there is initial evidence that controlling for demographic factors, e.g. age, may eliminate 

previous successful prediction results of cognitive targets in healthy older adults (Gbadeyan 
et al., 2022). Current results extend prior findings and suggest that age, sex and education 

appeared to have a particularly strong effect on cognition in the present samples (Krämer 
et al., 2024). Findings from this dissertation, thus, stress the importance of considering 

demographic factors in future prediction studies in the aging context and delineating their 
impact on prediction. 

5.7 Systematic assessment of ML approaches  

With the advance of ML techniques in recent years, a multitude of new approaches 
have entered the neuroimaging field. While there exist initial studies comparing the effect 

of different ML pipeline options and preprocessing steps on ML performance, there is 
currently no agreement on a standard ML pipeline to be used and substantial variability in 

pipelines tested (Arbabshirani et al., 2017; Dadi et al., 2019; Feng et al., 2022; Jollans et 
al., 2019; Pervaiz et al., 2020). Optimal choices may strongly depend on the dataset as one 

setup may simply not fit all (Dadi et al., 2019; Jollans et al., 2019; Paulus et al., 2019). 

Furthermore, currently limited insight is available regarding pipeline configurations for the 
use of graph-theoretically derived metrics (Dadi et al., 2019). Thus, different pipeline 

configurations were systematically evaluated across the first and third study in light of 
factors that have previously been shown to exert an influence on ML performance,                   

e.g. algorithms, feature sets, sample size, feature selection/hyperparameter optimization 
steps and multimodal approaches (Krämer et al., 2024, 2023). Across analytic choices, 

current results were mostly consistent and did not differ substantially between pipeline 
options. This emphasizes a certain generalizability of the findings across analytic options 
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and thus, greater independence from analytic choices. In turn, this also means that there 

was not a single pipeline that was advantageous throughout. The exploration of different 

analytic choices inherently comes with exploiting researcher’s degrees of freedom 
(Varoquaux et al., 2017). Keeping this in mind, for future studies it appears advisable to set 

up finely balanced analyses assessing, whether findings generalize across different ML 
pipeline configurations. In any case, it appears crucial to report variations in pipelines and 

corresponding results transparently and completely without the intentional leaving out of 
analytic choices that may be less favourable to provide a full account of the results (Janssen 

et al., 2018).  

5.8 Limitations 

One major methodological consideration relates to the choice of input features used 

across the three studies (Krämer et al., 2024, 2023; Stumme et al., 2022). Overall, 
prediction performance was limited (study 1 & 3) or explained less variance than prior 

studies (study 2) hinting at the fact that the selected features might have not been 
informative enough or at least possessed lower informational value compared to other input 

features. This appears to be especially true for the RSFC estimates. As already mentioned 

in paragraph 5.2, one potential explanation for current results pertains to the inherent 
dimensionality reduction step of graph-theoretical approaches potentially leading to the loss 

of relevant information (Cui and Gong, 2018). Additionally, only a limited range of graph-
theoretical metrics were examined, which may be extended in future studies to include 

information on hubness, small-worldness and modularity (Betzel, 2022; Betzel et al., 2014; 
Sporns, 2011). Given that also the multimodal setup provided only limited prediction value, 

it might be further necessary to include other brain information into the models for accurate 
cognitive performance prediction in older age. Potential candidates based on initial 

promising findings in the literature in mostly younger cohorts are raw connectivity measures, 
task-based fMRI, dFC and edge time series information among others (Feilong et al., 2021; 

Sasse et al., 2022; Soch et al., 2022; Sripada et al., 2020a). In the future, it may also be 

valuable to look beyond brain information and integrate other factors that may be of 
importance in this context, i.e. genetic, health and environmental information, to obtain 

higher prediction performance and larger effect sizes (Murdaca et al., 2021).  
Turning to the other part of the equation, also the target and its reliability may be 

reconsidered. For generalizable and reliable ML prediction, it is not only important to build 
models on input features that reliably carry sufficient signal for the task at hand, but also to 

provide a target variable that reliably measures and captures what it is intended to measure. 
As such, there is very recent evidence that a lack in reliability of a cognitive or behavioural 
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target variable may equally lead to poor prediction performance and potentially 

irreproducible effects (Gell et al., 2023; Nikolaidis et al., 2022). Potentially, providing an 

explanation for the low effect sizes encountered despite larger sample sizes (Nikolaidis et 
al., 2022). Additionally, the defined target may simply constitute a noisy representation of 

the underlying construct intended to be measured, which may provide an explanation for 
why targets such as age and sex yield consistently higher and more stable prediction results 

compared to cognitive factors and behavioural markers (Easley et al., 2023). An effect that 
was also observed across the three studies of this dissertation with cognition being far less 

reliably predicted from imaging data than age (Krämer et al., 2024, 2023; Stumme et al., 
2022). In the future, it might, therefore, be advisable to pay more attention to the reliability 

of a measure, built on information from multiple time points and more rigorously address 
the construct validity of a given target variable.  

Another point to consider is that solely cross-sectional data was used in this dissertation 

(Krämer et al., 2024, 2023; Stumme et al., 2022). Although interesting insights can be 
gained cross-sectionally and it offers the possibility to test different potential candidates as 

imaging marker for cognitive performance differences in older age, it only addresses the 
relation between cognition and brain at one time point (Damoiseaux, 2017; Salthouse, 

2011). Aging is an inherently dynamic process and as such, brain and cognitive changes 
may evolve with time (Damoiseaux, 2017; Salthouse, 2011). Thus, a longitudinal 

perspective becomes essential, if we one day wish to develop a prospective marker for age-
related cognitive decline and better understand the origins for the high inter-individual 

variability in aging.  
Furthermore, it should be emphasized that ML may be complemented by other 

approaches that may lead to new and interesting insights beyond mere pattern recognition 

to characterize brain-behaviour relationships. Particularly, computational modelling 
approaches, such as for example The Virtual Brain (TVB) as a tool, may allow for causal 

discoveries and a deeper mechanistic understanding of the relation between brain 
structure, functional dynamics and observable behaviour, e.g. cognition (Falcon et al., 2016; 

Ritter et al., 2013). This may be achieved by the formulation and testing of distinct 
hypotheses within a brain network model driven by underlying biology (Falcon et al., 2016; 

Ritter et al., 2013). Fields of application vary from normal aging to neurodegenerative 
diseases (Falcon et al., 2016; Lavanga et al., 2022; Petkoski et al., 2023; Yalçınkaya et al., 

2023). In turn, further insights from these approaches may not only potentially foster our 
knowledge on the underlying root causes for the high inter-individual variability in aging, but 

may also provide potential candidate biomarkers to be used in a ML predictive setting. Thus, 
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predictive analyses may in the future benefit from integrating information from 

computational models and from operating alongside these approaches, e.g. TVB, in the 

search for a reliable biomarker for age-related cognitive decline.   

5.9 General Conclusion   

This dissertation, particularly, investigated the biomarker potential of RSFC estimates 
targeting network integration and segregation, the age-characteristic interrelations between 

RSFC and SC patterns and cognitive performance and in turn, the benefit of using 

multimodal brain data, i.e. region-wise GMV, RSFC and SC estimates, for the prediction of 
cognitive performance differences in large (N>500) samples of healthy older adults from the 

1000BRAINS cohort. Jointly, the three studies in this dissertation add to the literature by 
showing that currently employed RSFC estimates may only carry limited predictive value 

for cognitive performance differences in older age, that particular RSFC and SC patterns 
together with cognitive performance may be summarized in distinct aging profiles and that 

moderate prediction performance based on multimodal data may only be observed in 
absence of confounder control. Along the lines, results strongly emphasize the substantial 

impact demographic factors, i.e. age, sex and education, may have on ML performance and 

the criticality in considering these factors in prediction studies of cognition in healthy older 
age. Furthermore, current results highlight the various insights that may be gained by using 

a multimodal approach in different application contexts. In future studies, it might be 
worthwhile to investigate other input features including imaging and non-imaging data, to 

externally validate findings in larger cohorts of older adults and to move to a longitudinal 
setting. Furthermore, it should be stressed that while overall ML performance was limited 

in the first and third study of this dissertation, there is an intrinsic benefit in reporting null 
results and full accounts of ML pipelines tested to increase transparency throughout the 

field, to provide insight into potential future research avenues and draw a more realistic view 
of the state of the field. This dissertation can be viewed as a little puzzle piece that ties in 

with a growing number of ML studies in the neuroimaging field answering questions and at 

the same time raising new ones. There still remain many puzzle pieces to be solved in the 
coming years having the ultimate goal of developing a marker for prospective cognitive 

decline and providing early targeted interventions in mind.  
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