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Summary

The aging brain experiences changes in function and structure, which are accompanied by
age-related cognitive decline. The degree to which healthy older adults encounter age-
related cognitive decline, however, varies greatly. In consideration of the growing aging
population and the relevance of cognition for quality of life, research has embarked on
exploring possible bases for this high inter-individual variability in aging. One potential
explanation for cognitive performance differences may be alterations in the brain’s network
architecture. Resting-state functional connectivity (RSFC) network estimates, which may
centrally characterize this network architecture, already successfully distinguished between
healthy older adults and patients with neurodegenerative diseases, e.g. Alzheimer’s
disease. It, however, remains unknown whether functional network information can be used
to distinguish and predict cognitive performance differences in healthy older adults and
whether prediction performance may be boosted by using multimodal data, i.e. grey matter
volume (GMV) and structural connectivity (SC) estimates. In this context, machine learning
(ML) methods may be particularly suited to address these questions due to their ability to
deal with high dimensional data and uncover hidden patterns in data. Further insight in this
regard may be highly relevant on the road to developing a prognostic marker for age-related
cognitive decline and to designing early targeted interventions to combat cognitive decline.
Thus, this dissertation was aimed at systematically examining (1) whether functional brain
network information, i.e. RSFC estimates, may classify and predict cognitive performance
differences, (2) whether age-characteristic interrelations between RSFC and SC patterns
and cognitive performance may be derived in older adults and (3) whether the integration
of information across modalities, i.e. region-wise GMV, RSFC and SC estimates, may
improve prediction performance of cognitive targets in healthy older adults (N>500, age:
55-85) from the 1000BRAINS study using a set of ML approaches. In the first study, RSFC
estimates led to low classifiability and predictability of global and domain-specific cognitive
performance differences across different analytic choices. The second study revealed the
existence of three prominent aging profiles based on connectivity data and cognition in older
adults. In the third study, global and domain-specific cognitive targets could only be
successfully predicted from multimodal data in absence of confounder control.
Conclusively, this dissertation demonstrated that RSFC estimates may only serve to a
limited degree as markers for age-related cognitive decline. Furthermore, it emphasized
despite the possible benefits of using multimodal approaches in aging studies, the

challenges that remain in developing a biomarker for age-related cognitive decline.



Zusammenfassung

Das alternde Gehirn veréandert sich in Struktur und Funktion begleitet durch alters-
bedingten kognitiven Abbau. Das AusmaB, mit dem gesunde Aaltere Menschen den
kognitiven Abbau erleben, variiert jedoch stark zwischen Personen. Angesichts der
zunehmend alternden Bevélkerung und der Wichtigkeit von Kognition fir die Lebens-
qualitéat, wurde begonnen, nach mdglichen Urspriingen fir die hohe inter-individuelle
Variabilitdt zu suchen. Als eine mégliche Erklérung fur die betréchtliche Varianz kommen
Veranderungen in der Netzwerkarchitektur des Gehirns in Frage. Netzwerkparameter
basierend auf funktioneller Konnektivitdt im Ruhezustand (RSFC), die diese Architektur
genauer charakterisieren, wurden bereits erfolgreich genutzt, um zwischen normal
alternden Personen und Patienten mit einer neurodegenerativen Erkrankung, z.B.
Alzheimer Erkrankung, zu unterscheiden. Es bleibt jedoch unklar, ob funktionelle Netzwerk-
informationen auch Kognitionsunterschiede in gesunden é&lteren Menschen erkennen und
vorhersagen kénnen und ob die Vorhersagekraft durch einen multimodalen Ansatz
gesteigert werden kann. Methoden des maschinellen Lernens (ML) scheinen besonders
geeignet diese Fragestellungen zu adressieren, da sie versteckie Muster in Daten
aufdecken kénnen. Die Gewinnung weiterer Einblicke erscheint vor allem fur die mégliche
Entwicklung eines prognostischen Markers fir altersbedingten kognitiven Abbau und den
Entwurf von frihzeitigen individuellen Interventionen relevant. Folglich zielte diese
Dissertation auf die systematische Untersuchung (1) der Klassifizier- und Vorhersagbarkeit
von Kognitionsunterschieden basierend auf funktionellen Netzwerkinformationen, (2) des
Zusammenhanges zwischen RSFC, struktureller Konnektivitat (SC) und Kognition und (3)
des mdglichen Vorteils eines multimodalen Ansatzes, i.e. Volumen der grauen Substanz,
RSFC und SC, fir die Vorhersage von kognitiven Fahigkeiten in gesunden Alteren
Menschen (1000BRAINS, N>500, Altersspanne: 55-85 Jahre) mit Hilfe eines ML Ansatzes
ab. In der ersten Studie erreichten funktionelle Konnektivitdtsparameter nur eine geringe
Klassifizier- und Vorhersagbarkeit von globalen und doménen-spezifischen Kognitions-
unterschieden. In der zweiten Studie konnten drei verschiedene Alterungsprofile basierend
auf Konnektivitdtsdaten und Kognition extrahiert werden. Die dritte Studie deutete darauf
hin, dass Kognitionsunterschiede im Alter nur bei fehlender Kontrolle fur Storfaktoren
basierend auf multimodalen Daten vorhergesagt werden kénnen. Insgesamt, hebt diese
Dissertation das limitierte Potenzial von funktionellen Konnektivitdtsparametern als alleinige
Marker flir kognitive Alterung hervor und unterstreicht trotz moglicher Vorteile eines
multimodalen Ansatzes, die vielfaltigen verbleibenden Herausforderungen bei der

Entwicklung eines Markers fir altersbedingten kognitiven Abbau.
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1 Introduction
1.1 General introduction

Aging is typically accompanied by a decline in various cognitive functions (Salthouse,
2010, 2004). Nonetheless, healthy older individuals vary markedly in the severity to which
they experience age-related cognitive decline (Habib et al., 2007; Hedden and Gabrieli,
2004). Understanding the sources for why some people experience cognitive decline earlier
than others has become a pressing topic of our times as aging populations are increasing
worldwide with accelerating pace (Cabeza et al., 2018). Numerically, this is expressed in a
projected doubling of the number of people over the age of 60 to 2.1 billion individuals by
2050 (World Health Organization, 2020). In turn, this demographic shift has extensive
societal and economic consequences with the number of people needing care in the next
years augmenting drastically (United Nations et al., 2020).

Considering the steadily increasing number of older adults and the significance of
cognition for the quality of life and functional independence of older adults, reliable and
automated markers for individual cognitive ability in older age become more and more
important (Beard et al., 2016; Dodge et al., 2006; Kwak et al., 2021b; Stites et al., 2018;
Tomaszewski Farias et al., 2009; United Nations et al., 2020). With the many technological
advances in neuroimaging and the upsurge of machine learning (ML) tools, a new era for
biomarker development in the field of neuroscience has commenced. While many new
insights have already been gained, the majority of successful prediction reports of cognitive
functions from imaging data so far have been collected in healthy young adults. In normal
aging, the search for a marker for cognitive performance has remained challenging. It is
generally agreed upon that brain structure, function and network organization experience
changes throughout the aging process (Cabeza, 2002; Cabeza et al., 2018; Ferreira and
Busatto, 2013; Fjell et al., 2009; Grady, 2012; Kennedy and Raz, 2009; Madden et al., 2009;
Raz et al., 2005). Further, these alterations have been linked to cognitive performance
differences in healthy older adults (Andrews-Hanna et al., 2007; Chong et al., 2019; Fjell et
al., 2016; Geerligs et al., 2015; Stumme et al., 2020). Nevertheless, it is still unclear what
type of input feature may be best suited as a marker for age-related cognitive decline due
to differences in samples, selected cognitive variables, input features and applied methods.
The current dissertation, thus, aimed at contributing to the search for an imaging marker for
age-related cognitive decline and providing a greater understanding of the structure-
function relation in aging and its link to cognition. Particularly, it was directed at (1)
investigating the biomarker potential of functional brain network information for cognitive

functioning, (2) examining age-characteristic interrelations between resting-state functional



connectivity (RSFC) and structural connectivity (SC) patterns and cognitive performance as
well as (3) providing further insight into the usefulness of a multimodal approach for
cognition prediction in normal aging in a comprehensive analysis of different ML approaches
in a population-based study consisting of older adults, the German 1000BRAINS study
(Caspers et al., 2014).

1.2 Age-related cognitive decline

Cognition refers to mental processes of knowledge acquisition and comprehension
through thinking, experiencing and perceiving that is fundamental to us in navigating and
engaging with the world (Bayne et al., 2019). The overarching concept of cognition can be
further divided into different domains that entail specialized forms of processing,
€.g. memory, attention, executive and language functions (Harvey, 2019).

Across the aging process, declines in various cognitive functions have been reported
with some cognitive domains being more strongly impacted by aging than others (Grady,
2012; Hedden and Gabrieli, 2004; Salthouse, 2010). Particularly, processing speed,
executive and memory functions tend to decline strongly with advancing age (Grady, 2012;
Hedden and Gabrieli, 2004; Park and Reuter-Lorenz, 2009). Age-related performance
alterations in these functions may already be observed before the age of 50 with more rapid
declines in performance beginning around the age of 60 (LaPlume et al., 2022; Salthouse,
2009, 2004). In contrast, some other cognitive abilities were found to increase up to the age
of 60 and to remain rather stable during higher ages, e.g. verbal abilities and semantic
knowledge (Hedden and Gabrieli, 2004; Mather, 2010; Salthouse, 2004). Thus, cognition
per se is not a unitary concept, but includes distinct facets that may differ in their aging
trajectories.

In addition to this cross-domain variability in cognitive decline, the older adult population
is characterized by a high inter-individual variability, i.e. individuals vary substantially in the
degree to which they experience age-related cognitive decline (Cabeza, 2001; Damoiseaux
et al., 2008; Habib et al., 2007; Hedden and Gabrieli, 2004; LaPlume et al., 2022; Raz,
2000; Raz and Rodrigue, 2006). While some 80 year old individuals may perform cognitively
like 60 year old individuals (e.g. show similar memory performance and capacity to learn
new things, process information with a similar speed than younger older adults), others at
the age of 60 may already display extensive cognitive performance declines. In this context,
age-related deterioration of cognitive abilities may have far-reaching consequences for an
individual’s quality of life, everyday functioning and independence (Beard et al., 2016; Kwak
et al.,, 2021b; Stites et al., 2018). As such, maintaining cognitive functions to the best

possible degree until old age is central for older adults to actively and independently



participate and engage in all activities of everyday life, which may foster their quality of life.
Along the lines, given the accelerating aging population, it, thus, prospectively becomes
important to identify those individuals, who will be most strongly affected by age-related
cognitive decline, and provide preventive interventions early on to ensure functional
independence at higher ages. To lay the foundation for such an endeavour, it becomes
necessary to examine potential sources for the high variance and to investigate whether
information on the root causes can be used to predict cognitive functioning.

Thus, to understand the underlying mechanisms, research has turned to the brain, the
examination of brain-behaviour relationships and the search for appropriate input features
to act as markers for age-related cognitive decline in healthy older adults. With the help of
new technological advances such as magnetic resonance imaging (MRI), it has been shown
that brain structural and functional changes take place during aging accompanied by
declines in cognition (Cabeza, 2002; Cabeza et al., 2018; Ferreira and Busatto, 2013; Fjell
et al., 2009; Grady, 2012; Kennedy and Raz, 2009; Madden et al., 2009; Raz et al., 2005).
Nevertheless, it still remains unclear what brain data may best explain the high inter-
individual variability in aging. In this context, recent studies have turned away from solely
looking at brain structure and function, but to focus on the brain network organization,
especially on the communication between brain regions, to address changes in cognition
during aging. This is due to the fact that cognitive functions are thought to strongly rely on
the integration of information across the brain and the connection between distinct brain
regions (Betzel, 2022; Dhamala et al., 2021; Voss et al., 2013; Yarkoni and Westfall, 2017).
As such, a network perspective capitalizing on the communication between different areas
of the brain may aid in gaining a better understanding of age-related cognitive decline and
the underlying sources of the high cognitive variance in healthy older adults, which will be
more closely examined in the next section.

1.3 Functional network reorganization during the aging process

Functional network organization may be explored using RSFC, which may be computed
between regions from resting-state functional MRI (rsfMRI) data (Sala-Llonch et al., 2015).
In this context, RSFC refers to the time dependent coactivation of functionally related brain
regions during rest, which is often represented by the Pearson’s correlation coefficient
between the spontaneous fluctuations of pairs of regions (Biswal et al., 1995; Sala-Llonch
et al., 2015). To further quantify and specify functional network organization, graph-
theoretical approaches may, for instance, be used, in which the brain is modelled as a graph

composed of nodes and edges grouped into networks subserving specific functions (see



Figure 1) (Sporns et al., 2005; Stanley et al., 2013). These approaches may provide a

mathematical description of networks and the connectivity between objects within a network
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Figure 1. Overview network perspective on brain. [A] lllustration of brain graph with nodes and edges
projected onto brain surface, [B] lllustration of brain graph with an exemplary network projected onto

brain surface.

and allow the computation of specific measures dedicated to capture different network
properties (Bullmore and Sporns, 2009; Bullmore and Bassett, 2011; Farahani et al., 2019;
Rubinov and Sporns, 2010; Wig et al., 2011).

Generally, the brain appears to strive for a balance between integration and
segregation, i.e. two basic principles underlying cognition and behaviour (Cabral et al.,
2017; Perry et al., 2017). Segregation allows for specific information processing among a
set of interrelated brain regions, while integration ensures the fast accommodation of
discrete information from distinct brain networks (Rubinov and Sporns, 2010). During aging,
the brain seems to experience a shift in the balance between integration and segregation,
i.e. within- and inter-network RSFC, which has been related to cognitive performance
differences in older age (Andrews-Hanna et al., 2007; Chan et al., 2014; Chong et al., 2019;
Fjell et al., 2015; Grady et al., 2016; Nashiro et al., 2017; Onoda et al., 2012; Stumme et
al., 2020). Particularly, a recurrent and stable finding across aging studies relates to
decreases in within- and increases in inter-network RSFC hinting at networks becoming
less segregated with age (Andrews-Hanna et al., 2007; Betzel et al., 2014; Chan et al.,
2014; Ferreira et al., 2016; Geerligs et al., 2015; Grady et al., 2016). In turn, networks tend
to communicate more strongly with each other and become more integrated with age
(Andrews-Hanna et al., 2007; Betzel et al., 2014; Chan et al., 2014; Ferreira et al., 2016;
Geerligs et al., 2015; Grady et al., 2016). Across studies, a reduced specialized information

processing (segregation) and more communication across networks (integration) is linked



to lower cognitive performance in older ages (Andrews-Hanna et al., 2007; Bagarinao et al.,
2019; Chan et al., 2014; Chong et al., 2019; Fjell et al., 2015; Grady et al., 2016; Ng et al.,
2016; Onoda et al., 2012; Stumme et al., 2020). For instance, lower episodic memory has
been related to a decreased specialization, i.e. lower segregation of associative networks,
e.g. default mode (DMN), frontoparietal (FPN), dorsal attention (DAN) and ventral attention
(VAN) network (Chan et al., 2014). In turn, better fluid cognitive performance and learning
rates have been associated with higher segregation of the VAN (Hausman et al., 2020;
lordan et al., 2018). Furthermore, Stumme et al. (2020) have found a link between lower
within- and inter-network RSFC in primary processing networks, i.e. visual (VN) and
somatomotor (SMN) network, as well as higher inter-network RSFC between higher order
networks, e.g. DAN and VAN, and lower cognitive performance in healthy older adults
(Stumme et al., 2020). These findings support the dedifferentiation theory in aging, in which
the functional system is less able to use specialized modes of processing and express less
variation in their activity patterns at higher ages accompanied by reduced task performance
(Chan et al., 2017, 2014; Ferreira et al., 2016; Goh, 2011; Nashiro et al., 2017; Park et al.,
2004; Spreng et al., 2016; Spreng and Turner, 2019). Findings from longitudinal studies,
further, support those from cross-sectional investigations. For example, it has been
demonstrated that a decline in segregation of the FPN and an increased integration
between the DMN and the FPN are related to declines in processing speed (Malagurski et
al., 2020; Ng et al., 2016). Furthermore, a similar pattern of system segregation being
beneficial for cognition, i.e. attenuated cognitive impairment, has also been encountered in
individuals with neurodegenerative pathology (Ewers et al., 2021). Thus, previous research
suggests a link between functional network architecture and cognitive performance in older
age. Collectively, these findings hint at the potential use of functional brain network
information, i.e. within- and inter-RSFC estimates, as imaging markers for individual
cognitive functioning in healthy older adults, which has not been investigated so far.
Although functional brain network information may be a suitable candidate in the search
for a biomarker for age-related cognitive decline, the underlying mechanisms and the origin
of age-related functional network reorganizations accompanied by cognitive decline still
remain unclear. In this context, the closer examination of brain structural information and
with it of other brain modalities may provide further insight into potential root causes for
these functional changes. In a similar vein, it has been suggested that functional brain data
may not fully account for cognitive performance differences in older age (Alm et al., 2022;
Damoiseaux, 2017; Fjell et al., 2016; Patel et al., 2022). Instead, it appears that brain

structural information, e.g. SC and grey matter volume (GMV), may also explain their share



of variance in cognition in healthy older adults (Cox et al., 2019; Ritchie et al., 2015). As
such, a multimodal perspective may allow for a more complete description of brain-
behaviour relationships in older age. Thus, in the next section the focus will shift from a
unimodal to a multimodal perspective on age-related cognitive decline in an attempt to
explain the high inter-individual variability among older adults and its potential benefits in
ML cognition prediction in healthy older adults.

1.4 A multimodal perspective on age-related cognitive decline

Aging has been found to affect all aspects of the system-level brain organization, i.e.
brain structure, function and connectivity. Thus, focusing only on one modality will most
likely not fully explain cognitive performance differences and with it the high inter-individual
variability in normal aging. It may, in turn, neglect that the functional network organization
does not exist in isolation, but possesses a structural backbone facilitating the
communication between regions. For instance, the brains’ grey matter (GM), composed of
neuronal cell bodies forming the cerebral cortex, sustains the processing capacity of the
brain (Colom et al., 2010). In turn, the brains’ white matter (WM) allows for the effective
transfer of information across the brain via major white matter pathways or tracts (Colom et
al., 2010).

Focusing at first on gaining a greater understanding of the root causes for age-related
shifts in functional network architecture and the associated cognitive performance declines,
the closer investigation of the structural network organization may be of help. This is due to
the fact that structural networks are thought to be closely coupled to functional networks
and to provide a framework for functional network organization (Baum et al., 2020; Honey
et al., 2009; O’Reilly et al., 2013; Suarez et al., 2020; Voineskos et al., 2012). Thereby,
connectivity in a structural network may be characterized by diffusion-weighted MRI (dMRI),
which is sensitive to the diffusion of water molecules in the brain and measures the
diffusivity direction (Beaulieu, 2002; Damoiseaux and Greicius, 2009). This information can,
then, be used to deduce the orientation of the brain’s white matter tracts (Beaulieu, 2002;
Damoiseaux and Greicius, 2009). Along the lines, SC represents the anatomical or physical
links, i.e. white matter fibre tracts, between brain regions, which may be reconstructed using
fibre tracking or tractography and may be captured by streamline counts between each pair
of regions (Alfaro-Almagro et al., 2018; Behrens et al., 2007; Fornito et al., 2013; Jbabdi
and Johansen-Berg, 2011; Sarwar et al., 2019; Sotiropoulos and Zalesky, 2019; Yeh et al.,
2021).Turning back to the aging context, declines in SC and reductions in the efficiency of
structural networks in the course of aging have been reported across studies (Bennett and
Madden, 2014; Brickman et al., 2012; Li et al., 2020; Madden et al., 2012, 2009; Salami et



al., 2012; Wen et al., 2011). Particularly, disruptions of both the integration and segregation
of structural brain networks may be encountered in aging, which have been linked to lower
cognitive performance in older age (Li et al., 2020). These age-related structural network
alterations, in turn, may be related to encountered shifts in functional network
reorganization. Nevertheless, the exact relationship between RSFC and SC changes in
aging and its connection to cognition is still highly debated.

In this context, prior studies have mostly separately addressed changes in brain
function and structure in the aging process (Alm et al., 2022; Damoiseaux, 2017; Fijell et al.,
2016; Jockwitz and Caspers, 2021). In turn, joint investigations of structure-function
relationships in aging and their link to cognitive performance differences in older age remain
relatively scarce. Prior joint research has suggested that the underlying SC may to a certain
degree exert an influence on functional network organization (Betzel et al., 2014; Madden
et al., 2020; Straathof et al., 2019; Zimmermann et al., 2016), although it should be
mentioned that results appear to be mixed in this regard (Fjell et al., 2017; Hirsiger et al.,
2016; Tsang et al., 2017). Thus, SC alterations in aging may potentially offer an explanation
for age-related functional reorganization, i.e. shifts in the balance between integration and
segregation, accompanied by cognitive decline (Betzel et al., 2014; Madden et al., 2020;
Straathof et al., 2019; Zimmermann et al., 2016). Nevertheless, the interrelation between
RSFC and SC changes during aging linked to cognition has not been comprehensively
investigated so far in older age. Further research on this may, however, shed light on
possible root causes for functional network shifts and allow for examining the sources for
the high inter-individual variability in aging in more detail. As such, laying the foundation
and providing further support for using multimodal data in a next step in a prediction setting.

Functional and structural network architecture may be further complemented by
information from GM to explain cognitive performance differences in older age. The aging
process has been associated with extensive structural decline, e.g. loss in GMV, measured
by structural MRI (sMRI). In turn, greater regional atrophy has been related to lower
performance in specific cognitive functions (Fjell and Walhovd, 2010; Jessen et al., 2006;
Kennedy and Raz, 2009; Lemaitre et al., 2012; Persson et al., 2006; Raz et al., 2005; Raz
and Rodrigue, 2006; Salat, 2004; Whalley et al., 2004). It has, for instance, been shown
that declines in executive functions were related to greater atrophy in the prefrontal cortex
(PFC), while reductions in volume of the medial temporal lobe (MTL) and hippocampus
were associated with reduced episodic memory performance in older adults (Jessen et al.,
2006; Persson et al., 2006; Raz and Rodrigue, 2006). Thus, not only functional and

structural network architecture may explain unique variance in cognitive performance and



provide information relevant for prediction, but also brain structural data (Cox et al., 2019;
Ritchie et al., 2015).

Ultimately, both brain structure and function support cognitive functioning. The different
characteristics of brain organization uniquely contribute to our comprehension of the aging
process and offer the possibility to examine distinct sources for the high inter-individual
variability in cognition. Thus, they conjointly tend to describe age-related cognitive changes
more comprehensively than on their own (McConathy and Sheline, 2015; Pacheco et al.,
2015; Tomasi and Volkow, 2012; Vieira et al., 2022a). For example, it has been shown that
both RSFC of the VAN and the WM microstructure, i.e. radial diffusivity, of particular MTL
regions are separately related to memory performance in older adults (Alm et al., 2022).
Findings from longitudinal settings further have revealed that each connectivity measure,
i.e. RSFC and SC, may explain a substantial amount of unique variance in age-related
cognitive decline and distinct cortical measures, i.e. GM and WM information, may
differentially relate to specific patterns of individual longitudinal cognitive change (Fjell et
al., 2016; Patel et al., 2022).

Complementing functional network information with those from brain structure, i.e.
GMV, and structural network architecture, i.e. SC estimates, thus, may add unique and
highly relevant information to the ML setting that might not be covered by brain functional
data alone. ML models based on multimodal data may, hence, more completely capture the
relation between brain and cognition in older age. As such, a multimodal approach may
encourage the establishment of a more accurate and dependable marker for age-related
cognitive decline, which has not yet been investigated comprehensively in normal older
adults. In the next section, the current state of the field with regards to classification and
prediction of cognitive functioning in healthy older adults from imaging data, i.e. unimodal
and multimodal, will be outlined in more detail. Before turning to these results, a general
introduction to ML will be provided to allow for the contextualization of subsequent ML
findings.

1.5 Introduction to ML

The last decades have been marked by many technological advances. One of the
major advances has been the shifting of attention to artificial intelligence and with it to
machine learning (ML) methods. Use cases extend across different sectors from business
applications to medical questions (Davenport and Ronanki, 2018). ML methods have also
rapidly entered the neuroimaging field and have been increasingly adopted in a great variety
of studies. ML methods as analytic tools develop techniques and algorithms to automatically

find patterns or information in data (Hastie et al., 2009; Koutsouleris et al., 2016). In this



context, they may be an optimal choice in the study of biomarkers as they succeed at
handling complex data, identifying associations, which may go undetected by univariate
methods, and making assessments at the individual level (Dadi et al., 2019; Orru et al.,
2012; Woo et al., 2017; Zarogianni et al., 2013).

ML is commonly divided into two approaches, i.e. supervised and unsupervised
learning. The focus in this dissertation will be with supervised ML, as we possess a labelled
dataset consisting of input data and the respective correct outputs or target values for a ML
model to train on. Supervised ML may be further divided into classification and regression

(see Figure 2).

Supervised Machine Learning

Classification Regression
Group 1

Predicted

Group 2 True

Figure 2. Overview Supervised ML.

Classification aims at predicting different group memberships from input data, e.g.
patient group vs. healthy control group, while regression is aimed at predicting a continuous
target from input data, e.g. age prediction (see Figure 2) (Orru et al., 2012). Over the past
decades, a variety of different classification and regression algorithms have been
developed and introduced to the neuroimaging field (Cui and Gong, 2018; Mwangi et al.,
2014). While the different ML algorithms have a similar goal, they use different approaches
to provide a solution to a circumscribed problem (Cui and Gong, 2018; Mwangi et al., 2014).
In this context, recent studies have compared prediction performances between different
algorithms for different ML targets (Cui and Gong, 2018; Jollans et al., 2019). Results have
suggested that despite performance differences between algorithms, deriving definite
conclusions about the optimal algorithm is difficult and algorithm-related differences depend
on the data set used for ML classification and prediction (Cui and Gong, 2018; Jollans et
al.,, 2019). It, thus, appears advisable to examine ML performance across a range of
different algorithms to ensure generalizability of results.

In general, the subsequent steps are followed to establish a ML model: (a) an ML
algorithm is first trained on a training data set to establish a decision rule and (b) then

applied to a new independent test data set to be evaluated. For performance estimation,



cross-validation (CV) is typically chosen as the most appropriate method for model
evaluation (Varoquaux et al., 2017). It makes use of resampling to obtain training and test
data. In k-fold CV, a particular form of CV, data is split into k folds. One fold is iteratively
used as test data, while the remaining folds together form the training data. For example,
in 5-fold CV, the data is split into five parts. In the first iteration, one fold is used as the test
data, while the remaining four folds constitute the training data. This is repeated until each
individual fold has served as test fold once. For each training/test set, a model is trained,
evaluated on the test data and a prediction error is obtained (Gabrieli et al., 2015). To
retrieve an estimate of generalization ability, prediction performance is, then, averaged
across the number of splits. The current gold standard for performance estimation, if
external validation is not feasible, is the use of a nested CV scheme. It allows tuning
hyperparameters, i.e. parameters that allow configuring the ML algorithm to the data and
with it regulate the learning process (Arbabshirani et al., 2017; Bergstra et al., 2013; Lemm
et al., 2011; Sipper, 2022), in an inner CV loop and evaluating the generalization ability in
an outer CV loop, while preventing data leakage (see Figure 3) (Filzmoser et al., 2009;
Lemm et al., 2011).

Outer Loop: CV2

Test
Set
- Inner Loop: CV1
@ Validation
Set
7Y
o = [ p——
@ raslgll:ng @ T:ra‘il:i?;g ! Hyperparameter i
@ Set 1 Optimization
— - )

N _/

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold1 Fold2 Fold3 Fold4 Fold5
‘\—| Train with optimal parameters }—2

| J | J
Performance estimation Model Selection

Figure 3. lllustration nested cross-validation (CV).

In nested CV, data is split into training and test sets on both an outer (CV2) and an
inner (CV1) loop as it avoids biased estimations of performance (Lemm et al., 2011).
Hyperparameters are tuned on the inner loop based on the inner CV performance, whereas
in the outer loop established models are examined according to their generalization ability
(see Figure 3) (Lemm et al., 2011). Due to its ability to tackle some of the biases and issues
in performance evaluation, nested CV has become frequently implemented in neuroimaging
ML studies and is considered essential, when one desires to tune hyperparameters

(Varoquaux et al., 2017). Some studies have additionally opted to repeat the whole CV
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cycle, e.g. using repeated nested CV, for a given number of times to address potential
biases based on the initial splitting of the data and to obtain an even more generalizable
estimate of performance (Franzmeier et al., 2020; Kong et al., 2019; Koutsouleris et al.,
2014, 2012). All of the aforementioned measures are undertaken to reduce overoptimistic
results and to better approximate the true performance of a ML model.

Importantly, ML performance has been found to be impacted by a variety of different
factors. For instance, sample size and characteristics, feature selection steps, and the
deconfounding strategy may all affect classification and prediction accuracies (Arbabshirani
et al., 2017; Cui and Gong, 2018; Guyon and Elisseeff, 2003; Hua et al., 2009; Jollans et
al., 2019; Mwangi et al., 2014). Up to date, the field of ML using neuroimaging data is lacking
a standard ML pipeline, which might be due to the high variability in data sets (Paulus and
Thompson, 2021). Thus, it appears warranted to systematically assess different analytical
options, when addressing neuroimaging questions with a ML approach. After providing a
general introduction to ML and its use in neuroimaging, the following two subsections will
provide an overview of the current research state regarding classification and prediction of
cognitive performance differences in older age based on functional brain network (i.e.
unimodal) data (1.5.1) and multimodal brain data (1.5.2).

1.5.1 Unimodal prediction of cognitive abilities in normal aging

With the rise of large neuroimaging cohorts, we have entered a time with access to
ample data that is required for training reliable and generalizable ML models, which tackle
complex neuroscientific questions (Varoquaux et al., 2017). As such, research efforts have
also turned to the investigation of brain-behaviour relationships and the prediction of
cognitive abilities using ML approaches. Due to the well-established relation between
behavioural constructs and functional networks, a multitude of studies have concentrated
on the use of RSFC data in ML classification and prediction (Khosla et al., 2019). Most of
the studies so far have concentrated on the prediction of cognitive ability in younger adults.
For example, general intelligence could be successfully predicted from RSFC patterns in a
large sample of younger adults from the Human Connectome Project (HCP) and a
developmental cohort from the Adolescent Brain Cognitive Development (ABCD)
consortium (Dubois et al., 2018; Sripada et al., 2020b). In healthy older adults, initial
promising results have already been obtained in the prediction of specific cognitive functions
using mainly RSFC matrices, either covering the whole brain or specific networks (Gao et
al., 2020; He et al., 2020; Jiang et al., 2022; Kwak et al., 2021a; Plaschke et al., 2020; Wu
et al., 2022). For instance, Plaschke et al. (2020) showed that working memory performance

could be successfully predicted by specific RSFC patterns in meta-analytically defined brain
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networks in an older age group using relevance vector regression (RVR). Furthermore, Gao
et al. (2020) demonstrated that processing speed could be successfully predicted from
RSFC data in older adults using a connectome-prediction model. Along the lines, RSFC
effectively predicted neuropsychological test performances, e.g. amongst others Trail
Making Test A and B, semantic fluency, digit span and Boston naming test, and fluid
intelligence in three large samples across the lifespan and in older age using different ML
approaches (He et al., 2020; Jiang et al., 2022; Kwak et al., 2021a). However, functional
brain network data, i.e. within- and inter-network RSFC estimates, which capture more
specifically information on network integration and segregation than RSFC matrices and
have been shown to relate to cognitive performance differences in normal aging, has not
been investigated yet as input features to ML (Stumme et al., 2020). In clinical settings,
RSFC graph metrics targeting basic principles of network organization have already been
successfully used as diagnostic marker to distinguish between healthy older adults and
patients with neurodegenerative diseases, i.e. Alzheimer’s disease (AD) and mild cognitive
impairment (MCI) (Hojjati et al., 2017; Khazaee et al., 2016). Whether this also holds true
for healthy older adults, remains to be examined.
1.5.2 Multimodal prediction of cognitive abilities in normal aging

While cognitive abilities may already be successfully predicted from one modality, a
more complete picture may arise from a multimodal perspective. Given cognition may rely
on different neurobiological substrates, i.e. brain structure, function and connectivity, a
multimodal approach may, thus, characterize these brain-behaviour relationships more
comprehensively and support the development of a more reliable, inclusive and potentially
powerful marker for age-related cognitive decline (Dhamala et al., 2021). Research has
lately started on this objective of integrating information across modalities in ML
classification and prediction studies (Dhamala et al., 2021; Dyrba et al., 2015; Engemann
et al., 2020; Hojjati et al., 2019, 2018; Liem et al., 2017; Rahim et al., 2016; Rasero et al.,
2021; Tsapanou et al., 2020; Wee et al., 2012; Xifra-Porxas et al., 2021). Initial encouraging
results emphasize that the use of multimodal data may be beneficial for ML performance.
For example, Rasero et al. (2021) found improved prediction accuracies of different
cognitive abilities, i.e. global and domain-specific cognition, from multimodal data, i.e.
RSFC, GMV, cortical thickness, surface area and local connectome features, in a large
sample of healthy young adults from the HCP. Across the life span, Tsapanou et al. (2020)
have shown that more variance in fluid intelligence and vocabulary is explained by
integrating information from white and grey matter than by single modalities. In healthy older

adults, evidence on a multimodal benefit is limited. In this context, initial findings from the
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UK Biobank suggest that fluid intelligence may be successfully predicted from multimodal
brain imaging data, i.e. brain volumetric data, white matter information and RSFC (Dadi et
al., 2021). Further support for a predictability benefit for multimodal data in older samples
comes from investigations into neurodegenerative diseases (Dyrba et al., 2015; Hojjati et
al., 2018, 2018; Wee et al., 2012). Better classifiability of patients with MCI and AD from
healthy controls (HC) was reached for a combination of RSFC- and SC-derived graph
metrics, which encompass information on network integration and segregation, compared
to single modalities (Hojjati et al., 2019, 2018). As such, prior research suggests that using
different combinations of multimodal data may be helpful in cognitive prediction settings in
aging. It, however, remains to be investigated whether specifically integrating information
from brain network architecture, i.e. RSFC and SC estimates, and brain morphology, i.e.
region-wise GMV, may improve prediction performance of cognitive performance
differences in healthy older individuals compared to single modalities. On the basis of
findings suggesting that changes in all three modalities are linked to cognitive performances
differences in older age, the combination of information is expected to explain more
variance in cognition than each of them on their own (Dadi et al., 2021; Rasero et al., 2021;
Vieira et al., 2022a).
1.6 Ethics approval

The 1000BRAINS study protocol was approved by the ethics committee of the
University of Duisburg-Essen (reference number: 11-4678, 12-5199-BO). The study
procedures comply with the Declaration of Helsinki and informed consent was obtained
from all participants prior to participation in 1000BRAINS.
1.7 Aim of the studies

This dissertation is intended to advance the search for an imaging marker for age-
related cognitive decline, provide new insights into the predictive power of imaging data for
cognitive performance prediction in normal aging and a greater understanding of the
structure-function relation in aging and its link to cognition. In detail, it is aimed at
investigating (1) whether RSFC estimates of within- and inter-network connectivity may
reliably classify and predict cognitive performance differences, (2) how RSFC and SC
patterns as well as cognitive performance are interrelated in aging and (3) whether the
combination of region-wise GMV, RSFC and SC estimates may lead to better prediction
performance of different cognitive targets compared to single modalities using a systematic
evaluation of different ML approaches in large samples of healthy older adults from the
1000BRAINS study. Thus, adding to laying a foundation for the development of a

prospective marker for age-related cognitive decline.
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ABSTRACT

Age-related cognitive decline varies greatly in healthy older adults, which may partly be
explained by differences in the functional architecture of brain networks. Resting-state
functional connectivity (RSFC) derived network parameters as widely used markers describing
this architecture have even been successfully used to support diagnaosis of neurodege nerative
diseases. The current study aimed at examining whether these parameters may also be useful
in classifying and predicting cognitive performance differences in the normally aging brain by
using machine leaming (ML). Classifiability and predictability of global and domain-specific
cognitive performance differences from nodal and network-level RSFC strength measures were
examined in healthy older adults from the TO00BRAINS study (age range: 55-85 years). ML
performance was systematically evaluated across different analytic choices in a robust cross-
validation scheme. Across these analyses, classification performance did not exceed 60%
accuracy for global and domain-specific cognition. Prediction performance was equally low
with high mean absolute errors (MAEs = (0.75) and low to none explained variance (R* =0.07)
for different cognitive targets, feature sets, and pipeline configurations. Cumrent results highlight
limited potential of functional network parameters to serve as sole biomarker for cognitive aging
and emphasize that predicting cognition from functional netwark patterns may be challenging.

AUTHOR SUMMARY

In recent years, new insights into brain network communication related to cognitive

performance differences in older age have been gained. Simultaneously, an increasing number
of studies has turned to machine learning (ML) approaches for the development of biomarkers
in health and disease. Given the increasing aging population and the impact cognition has on
the quality of life of older adults, automated markers for cognitive aging gain importance. This
study addressed the classification and prediction power of resting-state functional connectivity
(RSFC) strength measures for cognitive performance in healthy older adults using a battery of
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Machine learning (ML):

Set of methods used to automatically
find pattems in data that allow
classification and prediction.

Network Neuroscience

standard ML approaches. Classifiability and predictability of cognitive abilities was found to be
low across analytic choices. Results emphasize limited potential of these metrics as sole
biomarker for cognitive aging.

INTRODUCTION

Healthy older adults vary greatly in the extent to which they experience age-related cognitive
decline (Habib et al., 2007). While some older adults seem to maintain their cognitive abilities until
old age, others show higher rates of cognitive decline during the aging process (Cabeza, 2001;
Damoiseaux et al., 2008; Hedden & Gabrieli, 2004; Raz, 2000; Raz & Rodrigue, 2006). In light
of the continuously growing aging population, the impact of cognitive decline on everyday func-
tioning of older adults has gained momentum in research (Avery etal, 2020; Deary et al., 2009;
Depp & Jeste, 2006; Fountain-Zaragoza et al., 2019; Luciano et al., 2009; Vieira et al., 2022).

In this context, differences in the functional architecture of brain networks have been iden-
tified as a potential source of variance explaining cognitive performance differences during
aging (Chan et al., 2074; Summe et al, 2020). Age-related differences have been linked to
changes in resting-state functional connectivity (RSFC) of major resting-state networks, for exam-
ple, the default mode network (DMN), the se nsorimotor network (SMN), and the fronto-parietal
and visual networks (Andrews-Hanna et al., 2007; Chong et al., 2019: Ng et al., 2016; Stumme
et al, 2020). In detail, age-related cognitive decline is associated with both decreases in the
functional specialization of brain networks (reduced network segregation) and increasingly
shared coactivation patterns between functional brain networks (increased network integration)
{Andrews-Hanna et al., 2007; Chan et al., 2014; Chong et al., 2019; Fjell et al., 2015; Grady
et al., 2016; Ng et al., 2016; Onoda et al.,, 2012; Stumme et al., 2020). Furthermore, RSFC dif-
ferences in older age may differentiate between healthy older adults and individuals suffering
from mild cognitive impairment (MCI) or Alzheimer's disease (AD). For instance, both MCl and
AD have been related to reduced RSFC within the DMN and SMN, the degeneration of specific
brain hubs, and aberrant functional brain network organization (Daiet al, 2015; Farahani et al.
2019; Sanz-Arigita et al., 2010; Supekar et al., 2008; Wang et al., 2013).

Given the role of RSFC network pattems in cognition in healthy and pathological aging,
research on neurodegenerative diseases has started to embark on the development of diagnos-
tic biomarker for automatic patient classification based on RSFC. For the development of diag-
nostic biomarkers, machine learning (ML) methods may be particularly suited. This is due to
their ability to deal with high-dimensional data and to detect spatially distributed effects in the
brain that might otherwise not be detected using univariate approaches (Dadi et al., 2019;
O et al., 2012; Woo et al., 2017; Zamogianni et al., 2013). In this context, RSFC-derived
metrics capturing network integration and segregation have already been successfully used
as diagnostic markers for MCIl and AD, using ML approaches (Hojjati et al., 2017; Khazaee
et al., 2016). In healthy older populations, functional network measures have also provided
new insights into brain network communication related to cognitive performance differences
(Chan et al, 2014; Chong et al., 2019; Stumme et al., 2020). Specifically, a previous study has
demonstrated that shifts in within- and inter-network connectivity may be linked to differences
in cognitive performance in older age (Stumme et al., 2020). Thus, RSFC network properties
may also constitute potential meaningful candidates in search for a marker for nonpathological
age-related cognitive decline (Chan et al., 2014; Stumme et al., 2020).

Previous studies have mainly used RSFC matrices, either containing information across the
whole-brain or within specific networks, as input features to ML revealing initial promising
results in the prediction of different cognitive facets in older adults (Awery et al, 2020; He

123
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t al., 2020; Kwak et al., 2021; Plaschke et al., 2020). For instance, it has been shown that
working memory performance could be predicted by specific RSFC patterns in meta-analytically
defined brain networks in an older but not younger age group by using relevance vector regres-

sion (RVR) (Plaschlke et al, 2020). Futhermore, a variety of neuropsychological test scores and
fluid intelligence could be successfully predicted from RSFC in large older samples using ML (H:
etal, 2020; Kwalket al, 2027). Nevertheless, it remains unclear if RSFC strength measures tar-

geting network integration and segregation may provide additional useful information in classi-
fying and predicting global and domain-specific cognitive performance in older adults ("

tal., 2020; Duboiset al., 2018; He etal., 2020; Kwak etal., 2021; Plaschke et al., 2020). Furl:her
knowledge in this context may be helpful on the road to building a reliable and accurate
hiomarker for cognitive performance in healthy older adults that could ultimately be used to pre-
dict prospective cognitive decline. The curmrent investigation, therefore, aims to systematically
examine whether RSFC strength parameters, capturing within- and inter-network connectivity,
may reliably classify and predict cognitive performance differences in a large sample of older
adults (age: 55-85) from the T000BRAINS study by using a battery of standard ML approaches.

MATERIALS AND METHODS

Participants

Data for the current investigation stems from the 1000BRAINS project (Casperset 2l 2014), an
epidemiologic population-based study examining variability of brain structure and function

during aging in relation to behavioral, environmental, and genetic factors. The TOD0BRAINS
sample was drawn from the 10-year follow-up cohort of the Heinz Nixdorf Recall Study and

the associated MultiGeneration study (Schmermund et al., 2002). As 1000BRAINS aims at the
characterization of the aging process in the general population, no exclusion criteria other than
eligibility for MR measurements (Caspers ef al, 20714) were applied. In the curent study, 966

participants were included within the age range 55 to 85 years. From this initial sample, 99
participants were excluded due to missing resting-state functional magnetic resonance imaging
(fMRI) data or failed preprocessing. Furthermore, 25 participants were excluded due to insuf-
ficient quality of the preprocessed functional data described in further detail below (see Data
Acquisition and Preprocessing section). Another 27 participants with missing scores on the
DemTect, a dementia screening test, or those scoring smaller or equal to 8 were excluded
due to the possibility of substantial cognitive impairment (<albe et al., 2004). Finally, two par-
ticipants were excluded due to more than three missing values within the neuropsychological
assessment (see Cognitive Performance section). This resulted in an initial (unmatched) sample
of 813 participants [3?2 females, Mage = 66.99, 5D = 6.70; see Table 14 and Figur

Sample). All subjects provided written consent prior to inclusion and the study protocol of
1000BRAINS was approved by the Ethics Committee of the University of Essen, Germany.

Table 1.  Demographic information for unmatched and matched samples regarding age, educational level, and risk of dementia

A. Unmatched sample

B. Matched sample

N Age Education N Age Education DemTect
Female 372 66.38 (6.53) 593 (1.84) 232 65.33 (5.48) 5.88 (1.7) 15.43 (2.22)
Male 441 67.5 (6.8) 6.95 (1.91) 286 67.81 (6.44) 6.96 (1.87) 14.45 (2.25)
Total 813 66.99 (6.70) 6.48 (1.94) 518 66.7 (6.15) 6.48 (1.87) 14.89 (2.29)
Mote. Mean displayed with standard deviation (50) appearing in parentheses.
Network Neuroscience 124
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Global cognition:

General cognitive ability that
encompasses cognitive functioning
across different domains.

Network Neuroscience

Cognitive Performance

All subjects underwent a large neuropsychological assessment testing the cognitive domains atten-
tion, executive functions, episodic memory, working memory (WM), and language (for further

details, see Caspers e al., 201 4). Fourteen cognitive variables targeting selective attention, process-
ing speed, figural and verhal fluency, problem solving, vocabulary, WM, and episodic memory
were selected for the purpose of the current study (see Fizure 1: Cognitive performance). Further

information on the tests and variables chosen in the current investigation are found in Supporting

tormation Table 51, In case of missing values (more than three missing values led to exclusion) in
the neuropsychological assessment, missing values were replaced by the median for respective sex
{males, females) and age groups (55-64 years, 65-74 years, 75-85 years). Imputation of missing
values was performed to avoid further loss of information and power. In a next step, raw scores from
all 14 neuropsychological tests used in the analysis were transformed into z-scores. For interpret-
ability purposes, scores for neuropsychological tests with higher values meaning lower perfor-
mance (i.e., ime to complete the tasks or number of errars made) were inverted.

Neuropsychological test performance was reduced to cognitive composite scores using
principal component analysis (PCA). To disentangle effects specific to certain cognitive
facets, global and domain-specific cognitive performance were examined (Tucker-Drob
2011). PCA was used to extract a one-component solution for global cognition and a multi-
component solution for cognitive subdomains based on eigenvalues >1. Lastly, varimax rota-
tion was applied to enhance the interpretability of extracted components. Individual global
and domain-specific component scores obtained from the PCA were used as targets in ML
prediction of cognitive performance differences.

For classification of cognitive pedformance differences, the initial (unmatched) sample was
separated into high- and low-performing groups. To do so, a median split was performed based
on each ofthethree cognitive component scores (as extracted inthe PCA). To remove the effect of
potential confounders, the high- and low-performance groups derived from global cognition
were additionally matched with respect to age, sex, and educational level by using propensity
score matching, which constitutes a statistical approach to match participants based on their pro-

pensity scores (McDermott et al., 2016; Randolph et al., 2014; Stern et al., 1994; Vemuri et al.
20114). This led to a matched sample with N = 518 (232 females, My = 66.7, 5D, = 6.15; see

able 18 and Figure 1: Sample and Cognitive performance). Further demographic information
regarding age, educational level, and sex distribution between high- and low-performance
groups in the unmatched and matched sample can be found in Table 2. All cognitive analyses
were performed using IBM SPSS Statistics 26 (https:/www.ibm.com/de-de/analytics/spss
-statistics-sofware) and customized Python (Version 3.7.6) and R scripts (Version 4.00).
Functional Imaging

Data acquisition and preprocessing. Imaging datawas acquired usinga 3T Siemens Tim-TRIO MR
scanner with a 32-channel head coil. Out of the whole MR imaging protocol (for details, see
Caspers et al. 2014), the current study used for surface reconstruction the 3D high-resolution
T1-weighted magnetization-prepared rapid acquisition gradient-echo (MPRAGE) (176 slices,
slice thickness = 1 mm, TR = 2,250 ms, TE = 3.03 ms, FoV = 256 x 256 mm?, flip angle = 9°,
voxel resolution =1 x 1 x 1 mm’); and for resting-state analyses, the 11:30 minutes resting-state
iMRI with 300 EPI (gradient-echo planar imaging) volumes (slices 36, slice thickness = 3.1 mm,
TR = 2,200 msec, TE = 30 msec, FoV =200 = 200 mm?, voxel resolution = 3.1 x 3.1 x 3.1 mm"®).
During the resting-state scan, participants were instructed to keep their eyes closed, to relax and
let their mind wander, but not to fall asleep. This was checked during a postscan debriefing.
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Preprocessing steps closely followed those from Stumme and colleagues (2020, During pre-
processing, the first four volumes from the 300 EPl were removed for each participant. All func-
tional images were corrected for head movement using a two-pass procedure. First, all volumes
were aligned to the first image and then to the mean image using affine registration. Spatial
nomalization to the MNI152 template (2-mm-voxel size) of all functional images was achieved
by using a “unified segmentation” approach as previous studies have shown increased registra-

tion accuracies compared to nommalization based on T1-weighted images (A shburner & Friston
2005; Calhoun et al., 2017; Dohmatob et al., 2018). Furthermare, ICA-AROMA, that is, ICA-
based automatic removal of motion artifacts (Pruim et al., 2015), which constitutes a data-

driven method for the identification and removal of motion-related components from MRI data,
was applied. Additionally, global signal regression (GSR) was performed in order to minimize

the association between mation and RSFC (Burgess et al, 2016; Circ et al, 2017; Parkes et al.
2018). Moreover, GSR has been found to improve behavioral prediction performance and to
enhance the link between RSFC and behavior (Li et al, 2079). In a final step, a band-pass filter

was applied (0.01-0.1 Hz). As a quality check for our preprocessing, further steps were imple-
mented. Initially, we checked for potential misalignments in the mean functional AROMA data
with the chedk sample homogeneity option in the Computational Anatomy Toolbox (CAT 12)
{(Caser et al, 2022). Participants detected as outliers with =2 SD away from the mean were
excluded. Additionally, we checked for volume-wise severe intensity dropouts (DVARS) in the
preprocessed data by using an algorithm by Afvouni and Nichols (2018). For each participant,
p values for spikes are generated, and participants with more than 10% of the 300 volumes
detected as dropouts were excluded from further analyses. To check the quality control applied,
we assessed the correlation between age and motion after the application of AROMA and the
exclusion of deviating participants and found it to be nonsignificant (percentage (%) of corrupted
volumes * age, r= .03, p= .39).

Functional connectivity analyses. For connectivity analyses, the 400-node cortical parcellation

by Schaefer and colleagues (2018) was adopted. The 400 regions of interest from the parcella-
tion scheme can be allocated to seven network parcels of known functional resting-state net-
waorks (Yeo et al, 20711). These include the visual, sensorimotor, limbic, fronto-parietal, default

mode, dorsal, and ventral attention netwark.

Awhole-brain graph was established from functional data (Rubinov & Sporns, 2010). This
included, (i) a mean time series extraction for each node using fslmeants (Smith et 2l 2004),
(ii) individual edge definition as the Pearson’s correlation of respective average time series of
two nodes, (iii) a statistical significance test of each correlation coefficient using the Fourier trans-
form and permutation testing (repeats = 1,000) with nonsignificant edges at p = 0.05 being set
to zero (Stumme et al, 2020; Zalesky et al, 2012), and (iv) Fisher's r-to-ztransformation applied
to the 400 x 400 adjacency matrix. Furthermore, since there is still debate about the true nature
of anticomelations in the brain, only positive correlations were considered in subsequent analyses
(negative correlations were set to zero) (Murphy et al., 2009; Mumphy & Fox, 2017; Saad et al.
2011 2). Finally, no further thresholding related to network density or network size was applied to
the brain graph as it may, in addition to controlling the absolute number of edges, also increase
the number of false positives and induce systematic differences in overall RSFC (Stumme et al.
2020 vanden Heuvel etal, 201 7svan Wijketal., 2010). For the estimation of strength measures,
the final network used, thus, may be described as a positively weighted network.

In a next step, connectivity estimates were calculated using the software bctpy with net-
work parameters defined as in Rubinov and Spoms (2010) (hitps://pypi.org/project/betpy).
All metrics estimated in the current investigation are based on the estimation of strength
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Inter-network RSFC:

Connectivity strength estimate of one
node (nodal) or all nodes (network)
within a network to all nodes outside
its network.

Ratio-score:

A metric capturing within-network
RSFC of one node (nodal) or all
nodes (network) within a network in
relation to its inter-network RSFC.

Within-network RSFC:

Connectivity strength estimate of one
node (nodal) or all nodes (network)
within a network to all nodes within
its network.

Feature set:

The specific combination of input
features used in ML.
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values, which do not appear to be distorted by varying amounts of edges and have been
shown to reliably quantify networks (Finn et al., 2015). In total, seven parameters were com-
puted for later use in ML. Within- and inter-network RSFC as well as a ratio-score indicating
network segregation were obtained at both network and nodal level (see Figure 1: RSFC; for
further details on network parameters, see Stumme et al., 2020). Within-network RSFC was
defined as the sum of strength values from all nodes (network) or one node (nodal) within a
network to all nodes within its related network divided by the number of existing edges in the
network (network: 7 features; nodal: 400 features). Inter-network RSFC referred to the sum of
strength values from all nodes (network) or one node (nodal) within a network to all nodes
outside its network divided by the number of all edges in the network (network: 7 features;
nodal: 400 features). The ratio-score captured within-network RSFC of all nodes (network)
or one node (nodal) in relation to its inter-network RSFC (network: 7 features; nodal: 400 fea-
tures). Additionally, the strength of each node was calculated as the sum of all connectivity
weights attached to a node (i.e., 400 features). In total, the feature vector for each subject
consisted of 1,621 features (4 x 400 = 1,600 nodal features and 3 x 7 = 21 network-level
features). From this, four different feature sets were derived and used in ML (21 features: all
network-level features; 421 features: node strength and all network-level features; 1,200 fea-
tures: nodal within- and inter-network and ratio of within/inter-network RSFC; 1,621 features:
all features).

Systematic Application of a Battery of Standard Machine Learning Approaches

ML was used to assess whether RSFC strength measures can be used to distinguish (i.e.,
classification) and predict (i.e., regression) cognitive performance differences in older adults.
As there is currently no agreement on a standard ML pipeline using neuroimaging data given
the high varability in dataset properties, we systematically evaluated different analytical
choices (see Figure 1: ML algorithms and pipeline). Performance of different ML algorithms,
pipeline compositions, extents of deconfounding, and variations in feature set and sample
sizes were assessed (Arbabshirani et al., 2017; Cui & Gong, 2018; Khazaee et al., 2016;
2020). As such, we tested
a total of 556 unique pipelines in the classification (406 pipelines) and regression (150 pipe-
lines) setting. The scikit-leam library (version: 0.22.1) in Python (Version 3.7.6) (Pedregosa
et al, 2011; httpsy//scikit-leam.org/stable/index.html) was used for all ML analyses unless
specified.

Mwangi et al., 2014; Paulus & Thompson, 2021; Pervaiz et al.

ML algorithms. For classification, Five different algorithms were examined: support vector
machine (SVM), K-nearest while (KNN), decision tree (DT), naive Bayes (NB) and linear dis-
criminant analysis (LDA). Further information on the algorithms can be found in the Supporting

MA

nformation Methods.

For regression, five different algorithms were assessed: support vector regression (SVR),
RVR, Ridge regression (Ridge), least absolute shrinkage and selection operator regression
(LASSQ), and elastic net regression (Elastic Net) (Cui & Cong, 20718). The package scikit-

rvm compatible with scikit-learn by James Ritchie (hitps/zithub com/lamesRitchie/scikit
-rvm) was used for RVR computation. Further information on the regression algorithms can
be found in the Supporting Information Methods.

Basic ML pipeline. The basic ML pipeline was constructed as follows: the previously calculated
connectivity estimates were used as input features for the ML workflow. Targets varied
between classification (high vs. low cognitive performance group; matched sample) and
regression (global and domain-specific cognitive scores; unmatched sample) (see Cognitive
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Pipeline configuration:
A specific setup of an ML pipeline to
be tested in the analysis.

Domain-specific cognition:
Cognitive processes that are linked
and dedicated to specific mental
abilities, e_g., executive and memory
functions.

Network Neuroscience

Performance section in Materials and Methods). Input features were scaled to unit variance in
a first step in all pipeline configurations within the cross-validation setting. All models were
evaluated using a repeated 10-fold cross-validation (CV) (five repeats). In case of an additional
hyperparameter optimization (HPO) step, a repeated nested CV scheme was implemented for

selecting optimal parameters (outer and inner loop: 10 folds x 5 repeats) (see Figure 1: CV
scheme; Lermm et al., 2011). This was done to avoid data leakage and to obtain an unbiased
estimate of the generalization performance of complete models (Lernm et al., 2017). Balanced

accuracy (BAC) was used to assess classification performance. It was chosen to account for
potential group size differences in domain-specific cognition. Sensitivity and specificity were
also calculated to provide a more complete picture and can be found in the Supporting Infor-
mation. Mean absolute error (MAE) and coefficient of determination (R*) were computed in the
prediction setting.

Systematic evaluation of ML pipeline options. Regarding pipeline configurations, different pipe-
line configurations were investigated. Pedformance of baseline models were compared to
those from pipelines with feature selection (FS) and HPO as they have been found to greatly
impact ML performance (Brown & Hamarneh, 2016; Guyon & Elisseeff, 2003; Hua et al.
2009; Mwangi et al., 2014). For baseline models, algorithms were run with default settings
from scikit-leam without additional FS and HPO steps (pure pipeline). If FS was not performed
in conjunction with HPQ, default parameters were equally used. We investigated different FS
methods in the present study (\Viwang et al, 2074).

For classification, two univarate filters, that is, ANOVA Ftest and mutual information,
were compared to L1-based (using a linear SVM) and hybrid FS. For the univariate filters,
the top 10% of features were selected. Furthermare, L1-hased (i.e., regularization) FS using a
linear SVM to create sparse models in combination with the five classifiers was examined.
Finally, a hybrid FS methad, which combines both filter and wrapper methods, was consid-
ered (Kazeminejad & Sotero, 2019; Khazaee et al., 2016). Initially, a univariate filter
(ANOWA F-test) was applied selecting 50% of the top performing features. On the remaining
half of the features, a sequential forward floating selection wrapper was used to determine
the top 10 features contributing to the classification using the mixtend package for Python
(Khazaee et al., 2016; Pudil et al., 1994; Raschka, 2018). FS was always performed on the
training set.

Different FS methods were also examined in ML regression. A univariate comrelation-based
filter was applied in case of SVR, RVR, and Ridge regression (7 inn et al, 20715; Cuyon &
lisseeft, 2003). Again the top 10% of features were selected. In contrast, LASSO and Elastic
Net regression are embedded FS algorithms. Due to their regularization penalty, only features
with a high discriminatory power will have a nonzero weight and will contribute to the task
at hand (Zou & Hastie, 2005). Thus, they enforce sparsity and with it integrate FS in their
optimization problem (\Mwangi et al, 2074).

In terms of HPO, three of the five classification algorithms had hyperparameters to be
tuned, that is, SVM, KNN, and DT. HPO was carried out for (i) regularization parameter C
for SWM (107* to 10", 10 steps, logarithmic scale) for linear, radial basis function (RBF) and
polynomial (poly) kernel, (ii) maximum tree depth (4, 6, 8, 10, 20, 40, None) and optimum
criterion (gini impurity vs entropy) for DT, and (iii) number of neighbors for KNN (1, 3,5, 7, 9,
11,13, 15, 17,19, 21, 23, 25). HPO was assessed with and without additional FS (ANOVA
F-test) in classification. The following hyperparameters were tuned in ML prediction: (i) regu-
larization parameter lambda 4 for LASSO and Ridge regression (LASSO: 10" to 10°, Ridge:
10 to 10°, 10 steps, logarithmic scale); (i) parameters lambda, A, and alpha, e, for Elastic Net
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Deconfounding strategy:

The approach of how to control for
the impact of potential confounders,
eg., age or sex.
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(4 :107" o 107, 10 steps, logarithmic scale; e: 0 to 1, 10 steps); and (jii) regularization param-
eter C for SVR (10 *to 10", 10 steps, logarithmic scale) and kernel type (linear, RBF, and paly).
HPO was assessed in conjunction with FS in prediction as some algorithms incorporated
embedded feature selection. All HPO was performed on the inner loop using grid search
assessing the performance of all parameter combinations and choosing the best one in terms
of inner loop performance. All pipeline options were explored for feature sets without (nr con-
dition) and with deconfounding (cr, nr-cr, cr-cr condition) applied.

For deconfounding strategy, if deconfounding was applied, the covariates age, sex and edu-
cational level were regressed from features/targets. To avoid data leakage, confound regression
was always camried out within the ML pipeline. Following Rasero and colleagues (2021), con-
founders were regressed from targets/features by using a linear regression model, which was fit
using only the training set and then applied to bath training and test data to obtain residuals.
Different extents of deconfounding (nr = no deconfounding; classification: cr = confounders
regressed from features; regression: nr-cr = confounders regressed from targets, cr-cr = con-
founders regressed from both features and targets) were implemented to assess its impact on
ML performance (Pervaiz et al., 2020).

For ML validation analyses, we performed several further analyses to validate our ML
approach. First, we investigated the influence of a finer grained parcellation on ML perfor-
mance (Dadi et al., 2019; Khazaee et al, 2016). Therefore, we compared ML perfarmance
results obtained from using a 400-node and 800-node parcellation (Schacier e al., 2018).
Additionally, ML performance was explored separately in males and females, given the
well-established gender differences in RSFC and its potential impact on ML performance
(Nostro et al., 2018; Stumme et al., 2020; Weis et al., 2019). Furthermore, we examined
whether the inclusion of information from negative correlations in terms of functional connec-
tivity may alter ML performance results. In this context, we calculated our strength measures
based on (i) the absolute values from both positive and negative comelations and (ii) only on
the absolute values from negative correlations and used these separately as features to ML.
Additionally, we investigated how classification performance changes when only extreme
groups, defined as the highest and lowest 25% of individuals scoring on the global cognition
component, are included (Dadi et al., 2027; Vieira et al., 2022). Classification performance
was examined in unmatched and matched (for age, sex, and education) samples (see Support-
ng Information Tables S2-573). In terms of validating our pipeline, we tested our ML pipelines
in the context of age, which has repeatedly been shown to be successfully predicted from
RSFC patterns (Liem et al., 2017; Meier et al., 2012; Plaschke et al., 2017; Vergun et al.
20713). To adapt this to our classification setting, we examined the classification of extreme
age groups (old vs. young; see Supporting Information Tables S4-55) in feature set 421 (Viela
et al, 2022). In the prediction setting, age was predicted continuously. Prediction analyses
were carried out for extreme groups, the unmatched sample and the whole age range of the
T000BRAINS cohort (18-85 age) (see Supporting Information Tables 54-55).

Model Comparisons and Statistical Analyses

To assess the reliability and stability of the derived principal components (PCs), we performed
two additional analyses. First, we checked for the robustness of the PCA against the imputation
of missing values on different cognitive tests. Therefore, we obtained a validation sample, in
which all participants with missing values in any of the cognitive tests were excluded from the
unmatched sample (N = 749, 343 females, Mage = 66.86, 5040, = 6.62). Then, we compared
component loadings from the original PCA results to the recalculated ones in the validation
sample by calculating Pearson’s comelations. Second, we turned to the stability of the PCs
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across data splits to address the dependency between training and test sets introduced by per-
forming PCA as a first step in the analysis outside of the ML framework. In case of stability of
PCs, we may assume that this dependency will not affect our results. Therefore, we addition-
ally divided the data into two subsamples (random split-half procedure was implemented ;

Sripada et al, 2020b; Thompson et al, 2019) and performed a PCA on each sample sepa-
rately. Component loadings from the split halves were compared to the original loadings by
computing Pearson’s correlations (see Supporting Information Tables S9-510).

To assess the relation between cognitive scores derived from PCA and potential confounding
factors, we calculated partial correlations between all cognitive scores (global and domain
specific) and age (corrected for education and sex) as well as education (corrected for age and
sex) inthe unmatched sample. Furthermore, fo examine sex differences in cognitive scores, a mul-
tivariate analysis of covariance (MANCOWA) was computed with cognitive scores as dependent
variables, sex as the independent variable, and the inclusion of age and education as covariates.

For checking the quality of the dichotomization into a high- and low-performance group,
we performed independent samples t-tests to test for significant differences in cognitive per-
formance (global and domain specific) between high- and low-performance groups in the
unmatched and matched sample. Additionally, we assessed the relation between confounding
factors and group membership. Thus, we performed independent samples ttest to examine
group differences in terms of age and education and chi-square tests for independence to
assess differences in the sex distribution across high- and low-performance groups in
unmatched and matched samples.

To contextualize ML performance and obtain a chance-level prediction equivalent, we
compared ML model estimations to those from a reference model, that is, dummy classifier
and regressor, given the low computational costs of dummy estimates and their similarity in
distribution to approaches based on permutation (Engemann et al., 2020; Vieira et al., 2022).
In this case, the percentage of folds, for which the ML models were better than the reference
model in terms of accuracy (classification) and R* (regression), was calculated with higher per-
centages (>80%) indicating robust outperformance of the reference model.

RESULTS

We performed twofold analyses to investigate whether cognitive performance differences
could be distinguished and predicted based on RSFC strength measures. In a first step, a simple
classification setting was chosen to examine if high- and low-performance groups can be
accurately classified from RSFC strength parameters using different ML pipeline configurations,
analytic choices, and feature sets. In a second step, we sought to address if the continuous
prediction of cognitive scores leads to ML performance differences compared to the classifi-
cation. Thus, we implemented a regression framework to analyze, whether cognitive perfor-
mance differences could be predicted from RSFC strength measures.

Cognitive Performance Across Unmatched and Mat ched Samples

A one-component solution for global cognition and a multicomponent solution for cognitive
subdomains based on the eigenvalue criterion (eigenvalue > 1) were extracted. Data suitability
for PCA was tested with the Kaiser-Meyer-Olkin (KMO) index examining the extent of com-
mon variability. With a value of KMO = 091, data appeared suitable for PCA. Component
scores from the one-component solution were stored as the COGNITIVE COMPOSITE (ie.,

glohal cognition) score for each individual (see Figure 2 and Supporting Information Tables 56
and 57 and Figure 58). With regards to domain-specific cognitive scores, two components could
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Figure 2. Factor loadings of each cognitive function on the one-component and multicomponent solution extracted from PCA analysis (after
varimax rotation).

be discovered from the PCA (see Figure 2 and Supporting Information Tables 56 and 57). The
first component mainly covered performance in visual spatial and spatial WM, figural mem-
ory, problem solving, selective attention, and processing speed (NON-VERBAL MEMORY &
EXECUTIVE component; see Figure 2 and Supporting Information Table 57). The second
component centrally reflected performance on semantic and phonemic verbal fluency, vocab-
ulary, and verbal episodic memory (VERBAL MEMORY & LANGUAGE component; see
Figure 2 and Supporting Information Table 571 In terms of robustness and stability of PCs,
component loadings for all three extracted components were highly similar across the original
sample, the random split half samples and the validation sample (r> 0.86, p> 0.01; Supporting
Information Tables 59 and 510) indicating that PCs appear stable across subsets of data and
robust against the imputation of missing values. Age was significantly negatively comelated with
global and domain-specific cognitive performance scores (controlled for sex and educational
level; COGNITIVE COMPOSITE: r = —.48, p< .001; NON-VERBAL MEMORY & EXECUTIVE:
r=—43, p<.001; VERBAL MEMORY & LANGUAGE: r=—.19, p < .001). Higher educational
level was significantly associated with higher global and domain-specific cognitive perfor-
mance (COGNITIVE COMPOSITE: r= .40, p < .001; NOMN-VERBAL MEMORY & EXECUTIVE:
r=.21, p<.001; VERBAL MEMORY & LANGUAGE: r= 35, p < .001; controlled for age and
sex). A multivariate analysis of covariance (MANCOVA) with age and education as covariates
revealed males to perform significantly better than females on the NON-VERBAL MEMORY &
EXECUTIVE component (F(1, 809) = 30.22, p< 001, qﬁ = 0.036), while females outperformed
males on the VERBAL MEMORY & LANGUAGE compaonent (F(1, 809) = 46.11, p< .001, nf, =
0.056). In turn, no sex differences were found for global cognition (COGNITIVE COMPOSITE:
F1,809)=0.024, p= 877, nf, = (.0). Component scores (global and domain-specific) obtained
from PCA were used as targets in ML prediction.

For classification of cognitive performance differences, high- and low-performance groups
were created by a median split after the extraction of participants’ component scores (as
extracted in the PCA). High- and low-performance groups in the initial (unmatched) sample
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differed significantly in global and domain-specific cognitive performance, as well as in terms

of age, educational level, and sex (see Table 2). The high-performing group was found to be

significantly younger and better educated than the low-performing group (see Table 2). More

males than females were represented in the high-performance group for the COGNITIVE

COMPOSITE and the NON-VERBAL MEMORY & EXECUTIVE component (see Table 2).

The reversed pattern was found for the VERBAL MEMORY & LANGUAGE component (see
able 2).

To control for the impact of confounding factors, high- and low-performance groups of the
COGNITIVE COMPOSITE component were matched on age, educational level, and sex. This
led to a matched subsample (N = 518; see [ igure 1: Sample and Table 1B). High- and low-
performance groups again differed significantly in their global and domain-specific cognitive
performance (see Table 7). No significant group differences were encountered in terms of
age, educational level and sex distribution for the COGNITIVE COMPOSITE component
(see Tzable 2). Participants in the low-performance group on the NON-VERBAL MEMORY &
EXECUTIVE and VERBAL MEMORY & LANGUAGE component were found to be significantly
less educated than participants in the high-performance group. A similar significant pattem for
differences in the sex distribution was encountered as in the unmatched sample (see Table 2).
Group memberships (high vs. low) were used as targets in ML classification.

Classification Results

Classification performance across global cognition and cognitive domains. ML was used in a first
step to assess the usefulness of RSFC strength measures to distinguish cognitive performance
differences in older adults. All algorithms were first implemented in a feature set with 421 fea-
tures to examine classification performance of global and domain-specific cognitive perfor-
mance differences in the matched sample. Across all implemented ML pipelines with and
without univariate feature selection (FS), performance did not exceed 60% accuracy (see

gure 3A and Supporting Information Table 511). Mean BACs ranged between 48.68% to
58.33% for global cognition and 50.21% to 58.44% for domain-specific cognition. These
results were further supported by the comparison to the dummy classifier. The majority of
models did not outperform the dummy classifier in more than 80% of folds. Higher accuracies
compared to the dummy were achieved mainly in no maore than 50% to 80% of folds, sug-
gesting rather modest overall performance and limitations in reliability (see Supporting Infor-
mation Table 512). Classification accuracies for the NON-VERBAL MEMORY & EXECUTIVE
component were marginally higher than for the VERBAL MEMORY & LANGUAGE compo-
nent, which was also supported by results from comparisons to the dummy estimate (see

gure 2A and Supporting Information Tables 511=513). No systematic differences between
models based on features with (cr) or without (nr) deconfounding, that is, controlling for the
effects of age, sex, and education on features, could be observed (Figure 2A). Initial results

suggested poor discriminatory power of RSFC strength measures for global and domain-
specific cognitive performance differences in a large population-based older sample.

Classification performance across different pipeline configurations for global cognition. To examine
the impact of different pipeline configurations, we investigated ML performance in a pure
pipeline, that is, without FS, and in FS/hyperparameter optimization (HPO) pipelines, that
is, additional step of feature selection (FS) and HPO, for global cognition. All algorithms were
first implemented in a pure pipeline using 421 features. Baseline results revealed classification
accuracies between 48.68% to 58.33% (see Fizure 105). Baseline results were then compared
to those from different FS/HPO pipelines. Estimations from FS/HPO pipelines were found to be
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Figure 3. Classification performance results of cognitive performance differences (based on global and domain-specific scores) from RSFC
strength measures. Classification results across algorithms: Support Vector Machine (SVM) with Radial Basis Function (RBF), linear and polyno-
mial (poly) kemel, K-Nearest Neighbour (KNN), Decision Tree (DT), Naive Bayes (NB), Linear Discriminant Analysis (LDA). Results shown for (A)
different targets (cognitive composite and cognitive components), (B) pipeline configurations (pure (no FS/HPO) vs. F§'HPO pipelines), (C) sam-
ples (matched vs. unmatched sample) and feature set sizes (21, 421, 1,200, 1,621). Error bars comespond to standard deviation (50); nr = no
confound regression applied to features; cr = age, sex, and education regressed from features; unless otherwise specified, cr condition showed.
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similar to baseline estimations (Mg, range: 48.77-58.46%; in 42-96 % of folds BAC >

dummy classifier; see Figure 38 and Supporting Information Tables S14=576). Thus, additional
pipeline steps, that is, FS and HPQ, which are commaonly found to enhance performance, did
not substantially increase classification accuracies in the current study (Brown & Hamameh

2016; Mwangi et al., 2014).

Classification performance across different feature sets and sample sizes for global cognition.
Classification performance for global cognition was also examined for varying feature sets (ie.,
21, 421, 1,200, 1,621) and sample sizes (matched vs. unmatched). No performance improve-
ments could be observed for greater feature set sizes (Feature sets 21 and 421: Mgac range:
48.42-59.31%, in 34-98% of folds BAC > dummy classifier; feature sets 1,200 and 1,621:
Mgac range: 48.96-58.72%, in 38-94% of folds BAC = dummy classifier) in both samples
across pipeline configurations and algorithms (see Figure 3C and Supporting Information

ables 517-520). A small difference between samples emerged in the nr condition. Relatively
higher accuracies across feature sets were found in the nr condition of the unmatched sample
than in the matched sample (Unmatched sample: Mgac range nr: 49.33-59.31%, in 44-98%
of folds BAC > dummy classifier; Matched sample: Mgac range nr: 48.96-57.41%, in 40-86%
of folds BAC > dummy classifier; see Supporting Information Tables 517=520). This effect was
no longer found in the cr condition (Unmatched sample: Mg, range cr: 50.00-56.81%, in
42-94% of folds BAC = dummy classifier; Matched sample: Mgac range cr: 48.42-58.33%, in
34-94% of folds BAC > dummy classifier; see [izure 3C and Supporting Information Tables
517=520). ML performance in this specific case (nr condition/unmatched sample), however, is
most likely influenced by confounds. Overall, findings suggest that increasing feature set and
sample size may not systematically aid classification performance in our study. It, however,
further underlines the relatively low discriminatory power of the specific RSFC strength mea-
sures for the research question at stake.

Regression
Prediction performance of global cognition and cognitive domains across pipeline configurations. Ina
second step, ML was used to assess whether RSFC strength measures can be used to contin-
uously predict cognitive performance in older adults. ML prediction performance of global and
domain-specific cognition from RSFC strength measures was initially evaluated in feature set
421 in the unmatched sample. Across pipeline configurations and deconfounding strategies,
MAEs obtained for global and domain-specific cognition were high, ranging between 0.76 and
1.14 (see Figure 44). Simultaneously, the coefficient of determination (R%) was found to be low
(=0.06) or even negative, indicating that predicting the mean of cognitive scores would have
yielded better results than our model’s predictions (see Figure 48 and Supporting Information
ables 5271 and 522). The NON-VERBAL MEMORY & EXECUTIVE component revealed
slightly lower MAE and higher R than the VERBAL MEMORY & LANGUAGE component
across conditions (see Figure 44 and B and Supporting Information Tables 527 and 522). New-
ertheless, predictability compared to global cognition was similar in range. Furthermore,
results were comparable for different algorithms except for Ridge regression in pure pipelines,
which showed markedly elevated MAE, and reduced explained variance for all targets for
default values of the hyperparameter lambda (see Supporting Information Table 521). Manual
adjustment of the hyperparameter led to similar performance to other algorithms (see
Figure 44 and B and Supporting Information Table 521). No systematic predictive performance
differences were found for FS and HPO pipelines (see Fizure 44 and B and Supporting Infor-
mation Tables 5271 and 522). In terms of different extents of deconfounding, the nr condition
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A Prediction performance of global and domain-specific cognitive performance differences:
Mean Absolute Error (MAE) across folds for different pipeline configurations in feature set 421
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Figure 4. Regression performance results of cognitive performance differences (based on global and domain-specific cognitive scores) from RSFC
strength measures. Regression performance across algorithms: Support Vector Regression (SVR), Relevance Vector Regression (RVR), Elagtic Net, LASSO
and Ridge Regression. Results shown for (A and B) cognitive compaosite and cognitive component scores, (A and O different pipeline configurations
{pure (no FS/HPO) vs.FS and HPO pipelines), and (C) feature set sizes (421, 162 1) (C). Ridge*: default values in pure pipeline manually adjusted; nr= no
confound regression; nr-cr = age, sex, and education regressed from target; cr-cr = age, sex, and education regressed from target and features.
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resulted in slightly better prediction results compared to the other two conditions (nr: MAEs =

0.76; R = 0.06; nr-cr and cr-cr: MAEs = 0.79; R = 0.00; see Supporting Information
able 521). This was also reflected in an improved robustness against the dummy regressor
(see Figure 4C and Supporting Information Table 522). Nevertheless, it should be kept in mind

that <till only a limited number of models were consistently outperforming the dummy esti-
mates in more than 80% of folds. Jointly, these results suggest that RSFC strength measures
may not contain sufficient information to reliably predict global and domain-specific cognitive
performance in older adults from a population-based cohort.

Prediction performance across varying feature set sizes for global cognition. Feature set size did
only have minimal impact in the classification setting. To verify the impact of varying feature
combinations and number of features in ML prediction, feature set 421, which was used for
comparability purposes throughout the analyses, and 1,621, which contains all possible fea-
tures, were chosen for closer examination in the regression setting. Thus, ML performance esti-
mations were examined in different pipeline configurations for global cognition. Across feature
sets and deconfounding strategies, the MAE was again found to be high (=0.75) and the coef-
ficient of determination to be low (=0.07) (see Supporting Information Tables 525 and 524).
The impact of different algorithms, pipeline configurations, and extents of deconfounding on
ML performance was again found to be minimal and to follow a similar pattem as before (see
Figure 40). No significant performance differences in terms of MAEand R* emerged for differ-
ent feature set sizes (see Figure 4C and Supporting Information Tables 523 and 524). Thus,
findings suggest in addition to minimal discriminatory power also low predictive potential
of cognitive performance differences in healthy older adults across feature sets, deconfounding
strategies, and pipeline configurations from RSFC strength measures.

Validation Analyses
Finally, we investigated the impact of a finer grained parcellation on ML performance. Results
suggest that a higher granularity has only little impact on ML performance. Classification accu-
racies ranged between 47.79% and 56.53% across feature sets and pipeline configurations for
the 800-node parcellation (see Supporting Information Tables 525 and 526 and Figure S28A),
compared to the 48.42% to 58.33% range obtained for the 400-node parcellation. Prediction
performance was found to be equally low as in the initial parcellation with high MAEs (=0.75)
and low to none explained variance (R* < 0.07) for different feature sets and pipeline config-
urations (see Supporting Information Table 527 and Figure S28E). Thus, no benefit of a higher
granularity was observed. Furthermore, ML performance was examined in males and females
separately. Classification performance in male and female samples equally did not exceed
60% accuracy for global cognition (Mgac: 49.69-55.57%; see Supporting Information
ables 529 and 530 and Figure S32A). Prediction performance in male and female samples
revealed comparable high MAFs (=0.73) and low R (=0.04) (see Supporting Information
able 537 and Figure S32B). Findings, hence, further emphasize results found in the main anal-
ysis. Moreover, classification and prediction performance was assessed using connectivity esti-
mates based on (i) positive and negative corelations and (ii) only negative correlations. For
connectivity estimates based on positive and negative correlation values, classification perfor-
mance varied between 47.91% to 56.25% BAC for global cognition across algorithms, feature

sets and pipeline configurations (see Supporting Information Table 537 and Figure S35A). Pre-
diction performance equally resembled results from the main analysis (MAEs = 0.75; R® <
0.08; see Supporting Information Table 534 and Figure S35B). A similar pattern of results

emerged faor strength measures derived from negative comelations. Classification performance
varied between 48.42% to 54.73% BAC for global cognition across algorithms, feature sets,
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and pipeline configurations (see Supporting Information Table S26). In turn, prediction perfor-
mance was found to be equally low (MAEs = 0.77; R* = 0.05; see Supporting Information
able 537). Adding further information from anticorrelations, thus, did not appear to improve
ML performance. Furthermore, we investigated classification performance in extreme cogni-
tive groups. Across samples, pipelines, feature sets, and algorithms, classification performance
ranged between 49.70% to 62.50% BAC (see Supporting Information Tables 538 and 539).
Although slightly better classification results were achieved for extreme cognitive groups, over-
all performance remained limited. This suggests that low classification results may not be pri-
marily driven by difficulties in identifying participants close to the median and provides further
sustenance to our findings from the main analyses. An age prediction and classification frame-
work was chosen for validating our ML pipeline. In the classification of extreme age groups,
highest classification performance was obtained for linear SYM in the pure and HPO pipeline
with 85.13% and 83.13% accuracy, respectively (see Supporting Information Table S40). For
the continuous prediction of age, RSFC strength measures were found to overall predict age
reasonably well with R in the best cases ranging between 0.3 and 0.4 (extreme and whole
sample across age spectrum; see Supporting Information Table S41). In comparison to dummy
estimates, these models also showed reliably higher pedormance (see Supporting Information
able 542). While the obtained MAFs across samples were not competitive with those reported
in the literature, results from the validation analyses, nevertheless, generally support the view
that the current pipeline may yield reasonable prediction and classification performances
{Liem et al., 2017; Plischke et al., 2017; Vergun et al., 2013; Vieira et al., 2022). Thus, the
low ML performance estimates may be specific to the setting of classifying and predicting cog-
nitive performance differences from RSFC strength measures in healthy older adults rather than
a general finding pertained to the ML setup, parcellation granularity, sampling, or features.

DISCUSSION

The aim of the current investigation was to examine whether global and domain-specific cog-
nitive perdformance differences may be successfully distinguished and predicted from RSFC
strength measures in a large sample of older adults by wsing a systematic assessment of stan-
dard ML approaches. Results showed that classification and regression performance failed to
reach adequate discriminatory and predictive power at the individual level. Importantly, these
results persisted across different feature sets, algorithms, and pipeline configurations.

The present findings add to the notion that predicting cognition from the functional network
architecture may yield heterogeneous findings (Dubois et al, 2018: Finn et al, 2015; Rasemn
etal, 2021; Vieira et al, 2022). For instance, RSFC pattems expressed in functional connec-
tivity matrices have been shown to explain up to 20% of variance in a composite cognition
score (NIH Cognitive Battery) and in a general intelligence factor (factor analysis) in two sam-
ples of the Human Connectome Project (HCP) 51200 young adult release (Dhamala et al.
2027; Dubois et al, 2018). In contrast, global cognition (NIH Cognitive Battery; cf. Dhamala
et al, 2021) was predicted to a notably smaller degree from RSFC in young adults (median
R® = 0.016) (Rasero et al., 2021). In older adults, Vieira et al, (2022) reported RSFC to not
predict prospective global cognitive decline, that is, change in two clinical assessments
(OASIS-3 project; median R*yse = 0; median R2cpg = 0.01). Our results further emphasize
that across different analytic choices RSFC strength measures may not reliably capture cogni-
tive performance varations in older aged adults. In light of our goal of robust and accurate
classification and prediction at the individual level, the minimum acceptable prediction accu-
racy is achieved only if the model outperorms the dummy estimate in more than 80% of the
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folds. This threshold is not met by the majority of our classification and prediction models,
hinting at a limited potential as biomarker for age-related cognitive decline. Validation anal-
yses further highlight the specificity of our results to cognitive abilities. RSFC strength measures
could be used to successiully classify extreme age groups and moderately predict age (Meier
et al, 2012; Plaschke et al., 2017; Vergun et al,, 2013). RSFC patterns underying cognition,
however, may be more difficult to discern with current analytic tools, leading to mixed or null
results. It should be stressed that null results may be highly informative as they provide impor-
tant insights for future research, support a more realistic and unbiased view on brain-behavior
relations, and allow for learning from experiences across the field (Janssen et al., 20718;
Masouleh et al., 2019). Nevertheless, they tend to be underreported in the literature, leading
to a potential publication bias (Janssen et al, 20718).

Successful prediction or classification of cognitive functioning from RSFC patterns has been
reported previously (Dhamala et al., 2021; Dubois et al., 2018; Hojjati et al., 2017; Khazaee
et al., 2016; Rosenberg et al,, 2016; Yoo et al., 2018). One possible explanation for the fact
that the results could not be replicated is related to the composition of the sample. Most pre-
vious studies reporting satisfactory ML performance focused on younger cohorts or patient
populations (Dhamala et al., 2021; Dubois et al., 2018; Hojjati et al., 2017; Khazaee et al.
2076; Rosenberg et al, 2016; Yoo et al, 2018). In comparison to younger samples (Mage < 30),
low discriminatory and predictive power in the current study may be attributable to a more
complex link between RSFC and cognition evolving during the aging process (Dhamala et al.
2021; Dubois et al., 2018; Rosenberg et al., 2016; Yoo et al., 2018). Aging is not only asso-
ciated with cognitive decline and functional network reorganization, but also with an increas-
ing interindividual varability (Andrews-Hanna et al., 2007; Chan et al., 2014; Chong et al.
2019; Fjell et al., 2015; Grady et al., 2016; Habib et al., 2007; Hartshorne & Gemine, 2015;

Hedden & Gabrieli, 2004; Mowinckel et al., 2012; Ng et al., 2016; Onoda et al., 2012;
Stumme et al., 2020). Consequently, the RSFC pattems that explain cognitive performance
levels in older adults are more difficult to identify (Scarpazza et al, 2020).

When comparing promising patient classification results to the current results, effect sizes
might be responsible for the unsatisfactory ML performance (\maeiule et al, 2021; Cul &
Cong, 2018; Kwak et al, 2027). For example, patients with MCl and AD show markedly
altered functional network organization compared to cognitively normal older adults (2 adhwar
et al., 2017; Brier et al., 2014; Buckner et al., 2009; Greicius et al., 2004; Sanz-Arigita et al.
2010; Wang et al, 2013). The sizable alterations related to pathological aging are reflected in
encouraging results in patient classification (de Vos et al., 20718; Dyrba et al., 201 5; Hojjat
etal, 2007 Khazaee etal, 2016; Teipel et al, 2017). For instance, ML performance in patient
classification (HC vs. MCl vs. AD) based on RSFC graph metrics reached above 88% accuracy
(Hojjat et al, 2017; Khazaee et al, 2016). Nevertheless, these effect sizes may not be found
for healthy older populations. For instance, cognition could be significantly predicted in sam-
ples of cognitive normal and clinically impaired older adults from whole-brain RSFC patterns (r
= 0.08-0.44) (Kwak et al., 2027). However, prediction accuracy dropped substantially once
models were trained only on clinically unimpaired older adults (r= —0.04-0.24) (Kwak et al.
20121). Accurate cognitive performance prediction from RSFC patterns in older aged adults
without the inclusion of clinical populations may, hence, be impeded by small effect sizes.

Another aspect that needs to be addressed when discussing the low ML performance con-
cerns the cognitive parameters used. Most studies including older cohorts have focused on
specific cognitive abilities (Avery et al., 2020; Fountain-Zaragoza et al., 2019; Gao et al.
2020; Kwakoetal, 2027 Plaschke et al, 2020). For instance, WM capacity could be success-
fully predicted from meta-analytically defined RSFC networks in older individuals (7l2schle
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etal., 2020). This may be due to a more explicit mapping of RSFC patterns to specific cognitive
abilities than for general or clustered cognitive abilities, which we were interested in (fwery
et al., 2020; Gao et al., 2020; Kwak et al., 2021).

Furthermore, most prior studies have used pair-wise functional connectivity as input fea-

tures (Avery al., 2020; Dhamala et al., 2021; Dubois et al., 2018; Gao et al., 2020; He

et al, 2020; Plaschlke et al., 2020). We used functional connectivity estimates linked to cog-
nitive performance differences in aging and with promising classification performance in neu-
rodegenerative diseases (Chan et al., 2014; Hausman et al., 2020; Hojjati et al., 2017; lordan
et al., 2018; Khazaee et al., 2016; Malagurski et al., 2020; Ng et al., 2016; Stumme et al.

2020). Findings highlight that for reliably detecting cognitive performance differences in nor-
mally aging individuals, the additional dimensionality reduction inherent to the calculation of
RSFC strength values may be too extensive, that is, relevant information for ML was lost during
the computation (Cui & Cong, 2018; Leietal, 2020). Also, redundancy of feature information,
that is, within- and inter-network connectivity, may have resulted in poorer ML performance,
especially in larger feature sets (\Vwang et al., 20714).

Methodological Considerations and Future Qutlook

While the cumrent investigation concentrated on RSFC strength measures, future studies might
use other imaging features, that is, more complex graph metrics, such as betweenness centrality
or madularity, multimodal or task-based iMRI1 data, to improve the prediction of cognitive per-
formance in older age (Draganski et al., 2013; Gbadeyan et al., 2022; McConathy & Sheline
2015; Pacheco et al., 2015; Sripada et al., 2020b; Vieira et al., 2022). For example, prior
research has shown thal global cognitive abilities could be better predicted from task-based than
resting-state fMRI data in large samples of younger adults from the HCP dataset (Crecne e

2078; Soipada et al, 2020z). Along these lines, it may be interesting to investigate whether task-
based iMRI data in these circumstances also cutperforms RSFC in older adults. Likewise, it is also
warranted to keep a distinction between basic research and clinical applicability. Classification
and prediction results might already be informative, if they are statistically significant in
healthy subjects; however, they may not be practically relevant for the clinical context.

Furthermore, only cross-sectional data has been used in the current investigation. Although
important insights can be gained cross-sectionally, the investigation of longitudinal data
becomes indispensable in the biomarker development for prospective age-related cognitive
decline (Davatzikos et al., 2009; Liem et al., 2021). Initial efforts to predict future cognitive
decline from imaging and nonimaging data have revealed promising results (\Vieira et al, 2022).

A further methodological consideration pertains to the choice of data preparation steps, for
example, the parcellation scheme and choice of network assignment (Dubois et al, 20718). In
the cument investigation, a functional network parcellation derived from younger brains was
used, which directly links brain networks to behavioral processing and is commaonly used in
lifespan studies (Schaefer ef al,, 2018; Yeo et al, 2011). Although ML performance in the
current study was low regardless of data preparation, that is, parcellation granularity, and
ML model choices, future studies are warranted to examine generalizability to other
population-based cohorts of older aged adults and other functional network divisions.

Conclusions
The present study addressed the biomarker potential of RSFC strength measures for cognitive

performance differences in normal aging in a systematic evaluation of standard ML
appmaches. Present results across different analytic choices emphasize that the potential of
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RSFC strength measures as sole biomarker for age-related cognitive decline may be limited.
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due to small effects, high heterogeneity, and the removal of relevant information during the
computation of these parameters. Although current results are far from promising, they still
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Abstract

In the normal aging process, the functional connectome restructures and shows a
shift from more segregated to more integrated brain networks, which manifests itself
in highly different cognitive performances in older adults. Underpinnings of this reor-
ganization are not fully understood, but may be related to age-related differences in
structural connectivity, the underlying scaffold for information exchange between
regions. The structure-function relationship might be a promising factor to under-
stand the neurcbiological sources of interindividual cognitive variability, but remain
unclear in older adults. Here, we used diffusion weighted and resting-state functional
magnetic resonance imaging as well as cognitive performance data of 573 older sub-
jects from the 1000BRAINS cohort (55-85 years, 287 males) and performed a partial
least square regression on 400 regional functional and structural connectivity
(FC and SC, respectively) estimates comprising seven resting-state networks. QOur aim
was to identify FC and SC patterns that are, together with cognitive performance,
characteristic of the older adults aging process. Results revealed three different aging
profiles prevalent in older adults. FC was found to behave differently depending on
the severity of age-related 5C deteriorations. A functionally highly interconnected
system is associated with a structural connectome that shows only minor age-related
decreases. Because this connectivity profile was associated with the most severe
age-related cognitive decline, a more interconnected FC system in older adults points
to a process of dedifferentiation. Thus, functional network integration appears to
increase primarily when SC begins to decline, but this does not appear to mitigate

the decline in cognitive performance.
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connectivity
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1 | INTRODUCTION

Age-related decreases in cognitive performance have been assodated
with numerous neural substrates (Hedden et al., 2014 MacDonald &
Pike, 2021; Whalley et al, 2004) including age-related differences in
the brain network configuration {for reviews, see, Damoiseaux, 2017;
Salat, 2011; Sporns, 2013; Wig, 2017, Zuo et al, 2017). Brain net-
works comprise sets of brain regions (nodes) and their connections
(edges) which together are associated with solving spedific behavioral
tasks (Schaefer et al., 2018; Smith et al, 2009; Yeo et al, 2011).
Thereby, brain regions belonging to the same network are more highly
connected (intra-network) as compared to regions outside its related
network (inter-network). The entirety of all connected regions within
and across networks forms the whole-brain connectome (Bullmore &
Sporns, 2009, 2012; Fomito, 2016; Fomito et al., 2013) that seems to
be subject to age-related reorganization in terms of both, functional
as well as structural connectivity (FC and SC).

In young adults, an effident functional network configuration,
which is associated with high cognitive performance, is characterized
by a balance between connections of regions belonging to the same
and other networks (Bullmore & Spoms, 2012; Sadaghiani
et al, 2015; Sporns, 2013; Wig, 2017). With increasing age, howewver,
this segregated and specialized network configuration decomposes,
showing a shift towards a higher network integration, that is, decreas-
ing intra-network FC and increasing inter-network FC (Betzel
et al., 2014; Cao et al., 2014; Chan et al, 2014; Ferreira et al., 2016;
He et al, 2020; Mowinckel et al, 2012; Tsvetanov et al., 2016;
Varangis et al, 201%9). Across the adult lifespan, intra-network FC
decreases predominantly pertain to higher-order networks, for exam-
ple, the default mode network (DMN) and frontoparietal network. In
contrast, primary processing networks, for example, the sensorimotor
(SMN) and visual network (VM) remain rather stable (Betzel
et al., 2014; Chan et al, 2014; Ferreira et al, 2014; Geerigs
etal., 2015; Grady et al., 2016; Jockwitz & Caspers, 2021; Mowinckel
et al, 2012; Siman-Tov et al., 201é4; Spreng et al., 2016; Varangis
etal, 2019). In older adults, though, differences in primary processing
networks become highly apparent with age-related intra-network FC
decreases together with FC increases with higher order networks
(Edde et al., 2021; Perry et al., 2017; Stumme et al, 2020; Zonneveld
etal., 2019).

The origins of these age-related FC changes, from segregated
toward integrated networks, are not fully understood and their effect
is ambiguously interpreted. On one hand, the functional recruitment
of additional brain networks is understood as a compensation strategy
in older adults, in which age-related decreases in intra-network FC
may be compensated by functional adaptations (Cabeza et al, 2002;
Marstaller et al, 2015; Pistono et al, 2021; Reuter-Lorenz &
Cappell, 2008) to countervail cognitive performance decline (Bartres-
Faz & Arenaza-Urquijo, 2011; Spreng & Tumer, 201%; Stern, 2002,
2009). On the other hand, age-related shifts toward increasing inter-
network connectivity are thought to result from longer latencies in
dynamic functional states, that is, a deareased varance in functional
dynamics across time (Battaglia et al, 2020; Maik et al, 2017). A

functional system with less variance in functional dynamics is under-
stood as a dedifferentiated system in which the ability to recruit spe-
dalized neural mechanisms and to switch between brain states is
reduced, followed by a cognitive dedine (Chan et al, 2014, 2017;
Colcombe et al, 2005; Goh, 2011; Mashiro et al, 2017; Park
et al, 2004). In fact, the origin of these age-related functional reorga-
nizations and the underlying mechanism, being it compensation or
dedifferentiation, stil remains unclear. To further eluddate this, the
additional analysis of SC could be helpful as it provides the structural
framework for FC.

SC was found to decrease across aging, spanning the whole brain
but with a particular vulnerability of the frontal lobe (Antonenko &
Floel, 2014; Betzel et al., 2014; Gunning-Dixon et al., 2009; Puxeddu
et al., 2020; Westlye et al, 2010; Zhao et al., 2015; Zuo et al., 2017).
In a recent study of older adults, age-related disruption of the struc-
tural connectome was found to impair both network segregation and
network integration (Li et al., 2020). As such, age-related alterations in
SC may relate to the disrupted balance between network integration
and segregation in FC. So far, the interrelation between 5C and FC
and their differences across aging are still a matter of debate. While
there exist many studies characterizing age-related differences in
terms of functional and structural networks in isolation (for reviews,
see, Damoiseaux, 2017; Jockwitz & Caspers, 2021; Wig, 2017; Zuo
et al., 2017), there are fewer studies that have jointly examined FC
and SC in the aging process (for review, see, Lynn & Bassett, 2019;
Straathof et al., 201%). Results on the direct relation between FC and
SC in terms of age-related differences appear mixed. On the one
hand, FC and 5C were found to change mostly independently across
the lifespan (Fjell et al., 2017; Hirsiger et al., 2016; Tsang et al, 2017)
as well as in older adults (Hirsiger et al., 2016) indicating that SC only
weakly influences or constricts age-related differences in FC. On the
other hand, studies suggest that SC and FC are interrelated, and that
during adolescence changes in the structural connectome are associ-
ated with the development and specialization of functional systems
(Baum et al, 2020). Across the lifespan, Zimmermann et al. (2016)
found increasing age to be accompanied by a greater coupling
between SC and FC, which may be explained by the fact that more
strongly integrated functional systems (as present in older adults)
were found to be more strongly rely on existing structural pathways
(Fukushima et al, 2018). With regards to cognitive performance,
Davis et al. (2012) found that functional overactivation in older adults
during task execution, for example, in contralateral regions, depends
on the integrity of the interhemispheric SC. This suggests that func-
tional restructuring in older adults is related to 5C in the sense that
the ability to recruit additional brain areas, that is, to meet increasing
task demands, is mediated by the underying SC. To date, however, no
study has looked at the relationship between whole-brain structural,
functional connectivity, and cognition in older adults. By analyzing this
triad, we aim to shed light on the possible causes of the functional
shift in older adults.

Specifically, we took advantage of a large sample of older adults
from the 1000BRAIMS study to investigate SC and FC differences
that are jointly age-characteristic and related to cognition. To
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TABLE 1 Descriptives of the study Agein Educati
sample
n, proportion in % Mean (SD) Min Max Mean (SD) Min Max
All 573, 100% 66.9 (6.7) 551 B854 6.5(1.9) 3 10
Male 287,501% 67.6(7.0) 55.1 B854 7.1(19) 3 10
Female 286,499% 66.2 (6.4) 55.2 854 6.0(19) 3 10

investigate this, we used partial least squares regression (PLSR)
{Mevik et al, 2018), which, in contrast to univariate approaches, has
the great potential to effectively deal with high dimensional data.
PLSR capitalizes on the potential to detect interrelations between var-
ious predictor varables such as region-wise connectivity estimates
{comprising all networks) and cognition (Chen et al., 201%; Krishnan
et al., 2011; Mcintosh & Lobaugh, 2004; Yoo et al, 2018). PLSR
decomposes predictor variables (cognition, 5C, and FC estimates) into
smaller sets of independent components, that is, aging profiles, that
are maximally correlated with age. These aging profiles unveil region-
wise estimates of SC and FC that are together related to cognition
and particularly age-characteristic. As we investigate an older adult
sample (55-85 years), we assume low FC of primary processing net-
works together with high FC between higher-order networks to be
age-characteristic. With respect to 5C, we hypothesize that older
adults have lower connectivity overall, particularly in regions of the
frontal lobe. How region-wise age-related SC and FC differences are
interrelated, tough, is uncertain and analyzed from an explanatory,
haolistic perspective.

2 | METHODS

21 | Subjects

The subjects of the current study are drawn from 1000BRAINS
(Caspers et al, 2014), a large longitudinal population-based cohort
study investigating the interndividual varability in brain structure,
function, and connectivity and its relations to behavioral, environmen-
tal and genetic factors. Subjects induded in 1000BRAINS were
recruited from the 10-year follow-up of the epidemiological
population-based Heinz Mixdorf Recall Study, a study investigating
risk factors for atherosclerosis, cardiovascular disease, cardiac infarc-
tion, and cardiac death (Schmermund et al, 2002). 1000BRAINS aims
at characterizing the aging process at the level of the general popula-
tion, therefore no exdusion criteria other than eligibility for MR mea-
2014) were applied 1000BRAINS
comprises 969 older adults aged between 55 and 88 years of one

surements (Caspers et al,

measurement time point, as relevant for the current cross-sectional
study design. From the initial sample, 114 participants had to be
exduded due to preprocessing failure caused by artifacts in structural
T1 scans, problems during normalization procedure, or insuffident
AROMA-denoising (n = 98). Subsequently, functional data were qual-
ity checked and excluded in cases of insufficient quality (n = 16, see

Section 222 for description of qualty control). OFf these

855 participants, 720 subjects also had diffusion-weighted images
available, from which another 69 were excluded after quality control
of the diffusion-weighted images (see Section 2.2.1 for the descrip-
tion of quality control). Finally, participants with missing information
on education (n = 1), the dementia screening test (n = 13, DemTecdt;
Kalbe et al., 2004), or those with indication for potential cognitive
impairment (score of eight or lower, n = 1) according to the dementia
screening test were excluded. After the exdusion of participants with
more than three missing values in the cognitive performance tests as
well as outliers (mean + 3 * standard deviation[SD]), the final study
sample comprises n = 573 subjects (Table 1). All subjects gave written
informed consent prior to inclusion in 1000BRAINS. The study proto-
col of 1000BRAINS was approved by the Ethics Committee of the
University of Essen, Germany. Due to local regulations of data acquisi-
tion and usage, data of 1000BRAINS are available upon request from
the responsible principal investigator.

22 | Imaging

Magnetic resonance imaging was performed using a 3T Siemens Tim-
TRIO MR scanner with a 32-channel head coil (Edangen, Germany).
For the investigation of SC and FC, different sequence images were
included in the current study (see Caspers et al. (2014) for a detailed
description of the 1000BRAINS study protocol): For surface recon-
struction, a high-resolution T1 weighted
magnetization-prepared rapid acquisition gradient-echo (MPRAGE)

three-dimensional

anatomical scanwas acquired [176 slices, slice thickness 1 mm, repeti-
tion time (TR) = 2250 ms, echo time (TE) = 3.03 ms, field of view
(FoV) = 256 x 256 mm? flip anglke =

1% 1% 1mm®. For structural connectivity analyses, high-angular

%, woxel resolution
resolution diffusion imaging (HARDI) data with the following parame-
ters were used: (1) 120 directions dataset; EPl, TR = 8 s
TE = 112ms, 13 b0-images (interdeaved), 120 images with
b= 2700 s/mm?, voxel resolution = 24 » 24 « 2.4 mm® (2) 60 direc-
tion subset (out of 120 direction dataset); EPI, TR = 6.3 s
TE = 81 ms, 7 bO-images (intedeaved), 60 images with b = 1000 s/
mm?, voxel resolution = 2.4 « 2.4 « 2.4 mm® For functional connec-
tivity analysis, resting-state functional MRI data were acquired as a
blood-oxygen level-dependent (BOLD) gradient-echo planar imaging
(EPI) sequence with 36 transversally oriented slices (slice thickness
34 mm, TR = 2200 ms, TE = 30 ms, FoV = 200 »« 200 mm?, voxel
resolution 3.1 = 3.1 = 3.1 mm®) was used, lsting for ~11 min and
producing 300 volumes, During RS image acquisition, participants
were instructed to keep their eyes closed, be relaxed, let their mind
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wander, and to not fall asleep. The latter was assured by postscan
debriefing.

221 | Structural image processing

For each participant, tissue probability maps (TPM) for grey matter
(GM), white matter (WM) as well as corticospinal fluid (CSF) were
computed from T1 data using the Computational Anatomy Toolbox
(CAT12; Gaser & Dahnke, 2016) implemented in SPM12
(Ashburner, 2009; for a listing of software used see Table 51). To opti-
mally extract the brain from the T1 data, brain masks were used ore-
ated by superimposing the three probability maps and thresholding
them at 0.5 (small enclosed holes were filled). Using the FSL toolbox
(FMRIB Software Library: http/ fwwew fmriboox.acuk/fsl; Jenkinson
et al, 2012), the T1 brain image was bias field corrected, rigidly
aligned to MNI152 template space, and resampled to 1.25 mm isotro-
pic voxel size. These scans were then used as coregistration image for
the subseguent alignment of the similarly resampled diffusion data
(see below) to the MMI152 template [in accordance with standard
pipelines as used in, eg, the human connectome project (www.
humanconnectomeproject.org) or the UK Biobank {www.ukbiobank.
ac.uk)]. Diffusion MRl data [dMRI) were corrected for eddy current
and motion artifacts including interpolation of slices with signal drop-
outs [Andersson et al., 2016; Andersson & Sotiropoulos, 2016). Visual
quality control was performed to check for ghosting, remaining signal
dropouts, or very noisy data. Suboptimal volumes or datasets were
removed from further analyses (n = 49). For dMRI-T1 alignment, the
first b0 images from each dMRI data with b1000 and b2700 were
extracted and rigidly aligned to T1 dataset using mutual information
as a cost function (Wells et al,, 1996). Based on the corresponding
transforms, all dMRI data were registered to the individual T1 space,
separately for the two b-values. The realignment implicitly resampled
the data to 1.25 mm and b-vectors were rotated according to the
transformations. To account for susceptibility artifacts and optimize
image registration, we computed Anisotropic Power Maps (APM;
Dell Acqua et al., 2014) from the b2700 dMRI data. Since the APM
contrast is very similar to the T1 image, they provide an optimal basis
for image registration. Accordingly, APMs were used to compute the
nonlinear transformation from diffusion to anatomical space addition-
ally taking EPl-induced distortions into account using ANTSs (https://
stnavagithub.io/AMNTs/). The derived nonlinear transformations were
then used to transform the TPMs to diffusion space. Finally, the two
datasets with b1000 and b2700 were merged into one single file and
cormrected for different echo times. This correction was computed by a
voxelwise multiplication of the b2700 data with the ratio of the
nondiffusion-weighted data, respectively, for the two datasets. Subse-
quently, local modeling and probabilistic streamline tractography were
performed using the MRtrix software package (Toumnier et al, 2012)
version 0.3.15. The constrained spherical deconvolution (CSD) local
model was computed using multi-tissue CSD of multi-shell data
{Jeurissen et al., 2014) using all shells and a maximal spherical har-

monic order of 8. Ten milion streamlines were computed with

dynamic seeding in the grey-white matter interface for every subject
using the probabilistic iFOD2 algorithm with a maximal length of
250 mm and a cut-off value of 0.06.

222 | Functional image processing

Functional image preprocessing was performed using the F5SL toolbox
(FMRIB Software Library: http://www.fmrib.oxac.uk/fsl; Jenkinson
et al, 2012). For each participant, the first four echo-planar imaging
(EPI) volumes were discarded. Using a two-pass procedure, all func-
tional images were corected for head movement using rigid-body
registration. First, all volumes were aligned to the first image on which
a mean image was created serving as the basis to which secondly, all
volumes were aligned. To identify and remove motion-related inde-
pendent components from functional MRI data, ICA-based Automatic
Removal Of Motion Artifacts (ICA-AROMA; Pruim et al., 2015) was
applied. According to current suggestions for minimizing the relation-
ship between motion and resting-state FC (Burgess et al,, 2014; Ciric
et al, 2017; Parkes et al., 2018), AROMA was combined with global
signal regression in the current study. Finally, all resting-state fMRI
images were bandpass filtered (0.01-0.1 Hz) and registered to the
standard space template (MNI152) using the unified segmentation
approach (Ashburmer & Friston, 2005). This was preferred to normali-
zation based on T1 weighted images as previous studies indicated
increased registration accurades (Calhoun et al, 2017; Dohmatob
et al., 2018). With AROMA, particularly focusing on the correction of
intensity artifacts induced by head motion, we further on took advan-
tage of an established algorithm by Afyouni and Nichols (2018) to
check for each partidpant's volume-wise severe intensity dropouts by
generating p values for spikes (DVARS) on the already preprocessed
functional data. In the current study, volumes with corrupted spikes
are indicated and participants for which more than 10% of the
300 volumes (Stumme et al,, 2020) were detected as dropouts were
excluded from further analyses (n = 8). Further, based on the prepro-
cessed mean AROMA, functional data, we checked for potential mis-
alignments by performing the “check sample homogeneity using
standard deviation across sample” function provided by the CAT12
toolbox (Gaser & Dahnke, 2016) and exduded participants for which
the individual image did not align to the MMNI152 template (=2
SO, n = 8).

2.3 | Connectivity analyses

To analyze FC and SC data, we parcellated the whole brain into
400 different regions comprising seven networks [visual (VN), sensori-
mator (SMM), limbic {LN), frontoparietal (FPN), default mode (DMN),
dorsal (DAN), and ventral attention network (VAN]], as defined in Yeo
et al. {2011) using the predefined cortical parcellation of Schaefer
et al. (2018). This was done according to recent studies, which found
a resolution of 300-600 nodes to be optimal for functional (Schaefer
et al., 2018) and structural analyses (Warikuti et al, 2018).
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In terms of FC, mean time-series spanning 2946 time points (first
four of in total 300 volumes were discarded) were extracted node-
wise from the preprocessed resting-state fMRI data [fsimeants (Smith
et al., 2004)] averaging the timeseries of all voxels corresponding to
that node. FC between nodes was estimated using Pearson's
product-moment comrelation of the respective average BOLD time
series resulting in a symmetric 400 x 400 matrix, with each entry
(i.e., edge) representing a Pearson's correlation coefficient between
the respective nodes. To minimize the number of edges caused by
noise, we included the statistical significance of each correlation coef-
ficient as an additional preprocessing step. Therefore, the observed
time-series were randomized by taking its Fourier transform, scram-
bling its phase, and then inverting the transform (Stumme et al., 2020;
Zalesky et al, 2012). This procedure was repeated 1000 times and fol-
lowed by a permutation test (nonsignificant edges at p z .05 were set
to zero). The adjacency matrix was then transformed into z-scores by
applying a Fishers r-to-z transformation. Integrating both, positive as
well as negative weights into the estimation of strength values leads
to a mutual suppression by canceling each other out. Therefore, we
separated the FC matrices, with one containing only positive comrela-
tions (FCue) and the second containing only the absolute values of
negative correlations (FC,..), with the other values set to zero in
each case.

Regarding SC, the parcellation template was first warped to indi-
vidual diffusion space by combining the nonlinear warps of the spatial
T1 registration to MMNI152 template and the distortion correction with
the APMs. Since streamlines are generated seeding from the grey-
white matter interface and the predefined parcellation scheme only
covers cortical grey matter, we expanded the template adding voxels
towards the grey-white matter boundary so that all regions also
include the seeding points. To increase the biological accuracy of 5C,
we converted streamline counts between each pair of nodes into
weighting factors using a cross-sectional area multiplier (SIFT -2; Smith
et al, 2015). Finally, the derived 400 x 400 matrix was logl0
transformed.

Each of the 5C, FC,.. as well as FC,,.; whole brain connectomes
(i.e., 400 = 400 connectivity matrices) were then transformed into a
triangular matrix (diagonal set to NaN) as only unidirectional informa-
tion of edges was used. Based on the three different matrices, we cal-
culated two different parameters for each node:

i. Intra-network connectivity estimate comprising the sum of
weights (i.e, connectivity values) of edges from one node to all
nodes within its corresponding network divided by the number
of all edges in the network (for n nodes, there are n*[n - 1)/2
possible edges in a fully connected network)

ii. Inter-network connectivity estimate comprising the sum of edge
weights from one node to all nodes outside its comesponding
network divided by the number of the respective edges.

Thus, for each node, six different strength values were calculated,
three intra-network (SC, FC,.., and FC,.;) and three inter-network
estimates (SC, FC s, and FC,, ), in total comprising 2400 connectivity

WILEY_5¥

values (400 nodes x & strength values) for each subject. Of note, den-
sity values for functional inter- and intra-network parameters can be
found in Table 52.

24 | Cognitive performance

All subjects underwent comprehensive neuropsychological assess-
ment addressing a wide range of cognitive functions including the
domains of attention, episodic and working memory, executive as well
as language functions (for a detailed description of neuropsychological
tests, see, Caspers et al, 2014; Jockwitz et al, 2017; Stumme
et al, 2020). In cases of one (n = 31) or two (n = &) missing values in
the neuropsychological assessment (23 missing values led to exclu-
sion, see above), they were replaced by the appropriate median (calcu-
lated separately for sex and age decades: 55-64 years, 65-74 years,
75-80, and =85 years). Principal component analysis (PCA) was
applied to reduce the neuropsychological data to one cognitive per-
formance component (COG). Previously, data was tested on suitability
for PCA, using the Kaiser-Meyer-Olkin (KMO) index indicating suit-
ability of data for PCA (KMO = 0.89; Tabachnick et al., 2007).

2.5 | Statistics

To unveil FC and SC patterns that are, together with cognitive perfor-
mance, characteristic for the older adults' aging process, we per-
formed a partial least square regression (PLSR; Mevik et al, 2018)
with COG, whole-brain region-wise SC, FCp.., and FC,.; values as
predictor variables (corrected for sex and education) and chronological
age as the response variable. PLSR is a multivariate statistical
approach that has the advantage of effectively dealing with multiple
predictor variables that may even extend the number of observations
and depict high collinearity (Haenlein & Kaplan, 2004; Krishnan
et al,, 2011; Mcdntosh & Lobaugh, 2004). In PLSR, predictor variables
are decomposed into a smaller set of independent components {using
a nonlinear iterative partial least squares algorithm, NIPALS) on which
a least square regression is performed to define components that are
maximally correlated with the response variable. Hence, within one
component predictor variables (COG, 5C, FC,.., and FCMK] are dus-
tered in a unique combination, such that a unique amount of variance
is used to explain the highest possible amount of variance in age. In
the following, the components are called “aging profiles,” that is, com-
prising both the connectivity predictors (connectivity profile) and the
cognitive performance predictor.

To extract the number of components that explain a significant
proportion of variance in age without overfitting the model, a permu-
tation approach with cross-validation is included in PLSR (Mevik
et al., 2018; Mevik & Wehrens, 2015). Thereby, PLSR is repeatedly
calculated with the inclusion of different numbers of components,
each run omitting one individual and determining cross-validated
residual values (leave one out cross-validation to depict the difference

between the actual response and predicted response value). For each
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Cognitive Performance Factor (COG)

Loading

Coagnitive Performance Variables

model (different number of components included), the root mean
squared error of prediction (RMSEP) is calculated by summing all
squared prediction errors. Based on the derived RMSEP for each com-
ponent, a permutation test is used to determine the number of com-
ponents to be induded until there s no further significant
improvement in predictive performance (¢ = 01; for a detailed
description of PLSR, also see, Mevik and Wehrens (2015) and Mevik
et al. (2018)].

For each component, PLSR provides loading values for each
predictor variable indicating the association between predictor and
age (whether the predictor shows age-related connectivity
increases or decreases). Components-derived loading values then
reveal how region-wise connectivity estimates are combined, that
is, how they are together age-characteristic. Furthermore, with
COG being included as a predictor variable, components-derived
connectivity profiles can additionally be related to cognitive
performance.

To assure that results of the PLSR are applicable and robust
across multiple datasets, we split the whole sample into 1000 differ-
ent training (B0%, n = 458) and test datasets (20%, n = 115), per-
formed PLSR on the training datasets and applied the derived model
to the remaining test datasets to predict age (based on their predictor
variables). Further, to validate that PLSR on real data performs signifi-
cantly better as compared to random data, we reran all analyses with
1000 null models (created by randomly scrambling age and connectiv-
ity estimates) and compared model performances. All PLSRs were
additionally performed with only the inclusion of cognition and FC or
cognition and SC. To ensure that the results are not dependent on the
spedfic sample split that was used, we also performed the same ana-
lyses by using three other sample divisions (90/10%, 70/30%, and
60/40%). Finally, to ensure that results were robust to partidpant's
health status, we reran PLSR with the additional indusion of available
covariates indicative of our participants' state of health [total grey
matter volume (ml), white matter lesions (mm®), blood pressure
(mmHg), blood glucose concentration (%), and BMI (body mass index]].
For details, see Figure 51 and Table 53.

After model validation, the different PLSR-derived components,
that is, aging profiles, were inspected. As stated above, for each of the

FIGURE 1 PCA derived factor
loadings for the cognitive
performance, ordered descendent
according to the strength of loading,
STM, short-term memory; WM,
working memory

1000 permutations, PLSR provides loading values for each predictor
variable in each component. To make the strength of loadings more
easily interpretable across networks, we alculated network-wise
average mean loading values (the average across all mean loading
values within one network). With regards to previous literature indi-
cating that the frontal lobe is structurally more sensitive to age-
related decreases as compared to the rest of the brain, we statistically
tested this by calculating the average mean loading values of regions
located within the frontal lobe and compared these to the average
mean loading values located in the rest of the brain using an undi-
rected two-sample t-test (Figure Sé).

3 | RESULTS

3.1 | Cognitive performance

Using PCA, we reduced the cognitive performances across 16 different
cognitive test scores into one comprehensive cognitive performance
component (Figure 1). Relating the cognitive factor to age, sex, and
education revealed a significant negative correltion with age
(r=—44,p < .001, corrected for sex and education), a significant pos-
itive relation to education (r = .40, p < 001, corected for age and
sex), and no sex-related performance differences (F = 2.31, p = .129,
corrected for age and education).

3.2 | PLSR—Model validation

Results from the PLSR model validation revealed that the inclusion of
three components appears optimal in the current context, that is, the
model explains suffident variance, while preventing an overfitting of
the model. Importantly, PLSR on real models performed significantly
better as compared to null models [RMSEPsy = 545 (07);
RMSEP, sy = 7.68 (23); Figure 2a, Table 2]. Additively including
information of the first, second, and third components revealed a suc-
cessive increase of explained variance in age (first: R? = 22.7%; sec-
ond: R® = 44 9%; third: R® = 56.2%) and an increasing correlation
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FIGURE 2 PLSR model description. (a) Model performance across 1000 real models (green) or null models (grey): RMSEP (SD) as bars and
explained variance in age (%, R%) as lines including up to 10 components. Dashed line indicating the utilized model in the current study.

{b) Prediction accuracies derived from applying the PLSR model on 80% of the sample to unseen test datasets (20% of the sample): Correlation
between predicted and chronological age including the information of only the first component, the first and second component, or all three
components. Individual score values depict the mean scores across 1000 permutations

between predicted and chronological age (first: r = .41, p < .001; sec-
ond: r= 54, p < 001, third: r = 6, p < .001; Figure 2h).

Of note, the indusion of various covariates addressing the partici-
pants' health status did not result in any significant alterations of the
presented effects (Figure 51, Table 53). Further, performing PL5SR on
different training and test sample sizes (60%/40%, 70%/30%,
800:/20%, 90%/10%) revealed highly comparable results across all
sample splits (Figure 52, Tables 54-56). Finally, PLSR based on either
cognition with 5C or cognition with FC revealed both models to sig-
nificantly outperform null models, though with better model perfor-
mances based on SC as compared to FC (Figure 52, Tables 55 and 5&).

3.3 | PLSR: Aging profiles

The PLSR model validation revealed the wariance in age to be
described by three different components, that is, aging profiles.
Within each component, predictor variables (COG and connectivity
estimates) were combined in a unique way such that they show the

highest possible correlation with age. All components show a negative

correlation with age (first component: r = 44, p < .001, second com-
ponent: r = 5 p<.001, third component r = .35 p<.001;
Figure 3a). Within each component, this age-related shift can com-
prise age-related increases or decreases of predictors, determined for
each predictor variable separately and indicated by the respective
loading value.

We found cognitive performance to be depicted by positive load-
ing values in all components with an emphasis on the second compo-
nent (first component: COG,eanso =022 (.002), second component:
COGnemsn) = -030 (.005), third component: COGpeansm = 021
(.002); Figure 3b) indicating that higher ages are related to lower
global cognitive performance, especially in the second component.

Regarding the connectivity profiles, that is, how region-wise con-
nectivity predictors are combined in each aging profile, we plotted
region-wise mean loading values (the mean of a predictor's loading
values derived from 1000 permutations) for intra- and inter-network
SC, FCpos and FC,,.; onto the brain surface (Figure 3c). While positive
loading values indicate age-related connectivity decreases (blue color),
negative loading values show the opposite association, that is, age-
related connectivity increases (red color). Overall higher loading values
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FIGURE 3 (a) Model derved individual score values for the first, second, and third components in relation to the participant's chronological
age. (b) Loading values for cognitive performance in the first, second, and third components: Higher loadings indicate lower cognitive
perfarmance at higher ages. (c) Region-spedfic loading values for the first (A, B, C), second (D, E, F), and third component (G, H, |): Intra- and inter-
network SC (A, D, G, FCp. (B, E H), and FC,., (C, F, 1) plotted onto the brain surface. Blue colors indicate lower and red colors higher

connectivity values being characteristic for higher ages

indicate a stronger association with age underpinning these connec-
tivity estimates to be highly age-characteristic. In the following sec-
tions, the three derived age-related connectivity profiles will be
successively described by referring to the concurrent effects of 5C,
FCpos and FC,.. As outlined in Section 2, network-wise mean loading
values were calculated to make the strength of loadings more easily
interpretable across networks (Figure 4). For results on region-wise
loading, which are informative about the distribution of loadings
within networks, refer to Figures $3-55.

34 | First component

In the first component, 8% of the variance in the predictor variables is
used to explain the highest varance in age (23%) indicating that this
connectivity profile is most applicable to older adults. Within this
component, older age is characterized by overall low SC. Looking at
the region-wise loading values for SC (Figure 3c-A), age-related
decreases seem to particularly affect the frontal lobe. Statistically
comparing loading values in frontal brain areas to the rest of the brain
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indeed revealed intra-network SC (t = 4.7, p < .001) as well as inter-
network 5C (t = 5.3, p < .001) to be significantly higher in frontal brain
parts (Figure S6). Metwork-wise, the FPN, DMM, and SMMN are
depicted by the strongest age-related decreases, while the FPN,
DMN, and VAN are most sensitive in terms of age-related inter-
network S5C decreases. Because the FPN, SMN, DMN, and VAN have
regions located in both frontal as well as more posterior brain parts,
5C decreases seem to affect regions in the frontal lobe independent
of their network affiliation.

This age-related decrease in SC is accompanied by overall age-
related decreases of the intra-network FCu.. (Figure 3c-B) and
increases of intra-network FC,., (Figure 3c-C) pertaining to all net-
works distributed across the whole brain. Hence, while coactivations
of regions within networks decrease with higher age, their anticorrela-
tions show an opposite trajectory. Thereby, loading values of primary
processing networks are notably high [FCpue: VN meanisoy = (027 (.002),
SMNeanisp) = 2033 (002); FCoeg VN mearsoy = 021 (.002), SMN o,
1soy = 015 (002), Figure 4a] indicating the strongest age-related dif-
ferences in both positive connections and anticorrelations. Concur-
rently, the inter-network FC.. shows age-related decreases
(Figure 3c-B). This, however, is not applicable to higher order net-
works: regions inside the VAN, LN, FPN, and DMN show age-related
increases, mainly pertaining to the FPN and DMN [FPN .o
sy = —.001 (.003), DMMN oz = —.004 (003); Figures 3c-B and
da). Anticorrelations show decreases across all networks indicating
less network-spedfic coactivations, but more simultaneous activations
of regions from different networks.

Cohesively, the first connectivity profile implies age-related
decreases in SC and FC.. accompanied by increasing anticorrelations
within all networks and across the whole brain. Specifically, as the
age-related decline of SC affects the whole brain, we see age-related
decreases of the intra-network FC,.. in particularly primary proces-
sing networks together with age-related increases of inter-network
FCpos of higher-order networks. Regarding cognition, increasing age is
associated with decreasing performance that is comparable to the
third component and slightly less advanced compared to the second
component [first component: COG eqnismy = 022 (002), second com-
ponent COGpeawssy = 030 (005), third component: COG e
sm = 021 (1002); Figure 3b].

35 | Second component

In the second component, another 4% of the variance in the predictor
variables is clustered such that it explains another 22% of the variance
in age. In contrast to the first component, the second component
comprises a connectivity profile in which age-related 5C decreases
only affect the frontal lobe and parts of the parietal lobe, while
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regions within the temporal, and occipital lobe and the insula remain
rather stable (Figure 3c-D). This is applicable to both, intra- and inter-
network SC. Accordingly, SC decreases in frontal brain areas are again
significantly stronger as compared to the rest of the brain (intra-
network SC: t = 2.5, p = .015; inter-network 5C: t = 2.7, p = 008,
Figure 5&). Inspecting the loading values across networks (Figure 4b,
Figure 54), each network comprises regions with positive as well as
negative loading values indicating age-related differences of regions
to be rather independent of their network affiliation.

In terms of FC, the second component FC,.. is (in contrast to the
first component) overall high in older adults (Figure 3c-E). This is appli-
cable to the FC,.. within- as well as between-networks, with an
emphasis on the SMN (intra-network: SMNcams = 043 (1006);
inter-network: SMMN meawsy = 052 (006); Figure 4b). Furthermore,
especially between networks, anticorrelations show age-related
increases, indicating that networks do not only show more coactiva-
tions, but also higher anticorrelations in higher ages (Figure 3c-F). Of
note, comparing the intra-network SC and FC (left column in
Figure 3c-D, E, F) one can see that regions which remain rather stable
in SC across age (superior temporal lobe and insular) seem to show
comparably low increases in FCp., and FC,,... In contrast, regions with
stronger age-related decreases in SC show stronger increases in both,
FCpos as well as FC,,.,. Remarkably, the second component is associ-
ated with the strongest age-related differences in cognitive perfor-
mance as indicated by the highest COG loading value (Figure 3b).

3.6 | Third component

As compared to the first and second components, the third compo-
nent explains less variance in age (11%) by using 7% of the variance of
the predictors. Therefore, this connectivity profile is comparably less
representative for older adults. Here, the SC show overall negative
loading values indicating a stable SC system across age (Figure 3c-G)
with no age-related SC decreases affecting either the intra- or inter-
network SC of any networks (Figure dc). Remarkably, this overall sta-
ble SC profile is clustered together with overall low FC.. (Figure 3c-
H) as well as low FC.. (Figure 3c-l). Thereby, the intra- and inter-
network FC.., as well as inter-network FC,,., of primary processing
networks, show the strongest relations to age, indicating that these
networks are most age-characteristic and showing the strongest age-
related decreases [intra-network FCuo.: VNpeawsoy = 024 (1003),
SMNmeanso) = 024 (003); inter-network FCpoet VMNmmnsoy = 038
(003), SMMpmmsmy = 040 (003); inter-network FCoep: VNpwn
oy = 035 (003), SMN pamsp) = 033 (004); Figure 4cl. In terms of
cognitive performance, this connectivity profile is similar to the first
component accompanied by cognitive performance decreases
(Figure 3b).

FIGURE 4 MNetwork-wise mean loading values (5D) for the first, second, and third components visualized as bar plots: Inter- and inter-
network 5C, FCp.., and FC,,., (colored according to their respective network, from top to bottom: Brown = DMN, orange = FPN, grey = LM,

pink = VAN, green = DAN, blue = SMN, violet = VN)
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4 | DISCUSSION

As we age, the functional connectome undergoes a process of reorga-
nization that manifests itself in a shift from segregated to more inte-
grated brain networks and which was found to be relevant in terms of
cognitive performance. The causes of this functional restructuring are
not yet fully understood, but are related to differences in SC. Since 5C
is the underying scaffold for information exchange between regions,
age-related SC differences may explain age-related FC reorganiza-
tions. Here, we took advantage of a large cohort of older adults and
performed a multivadate statistical approach (PLSE) on the partid-
pant's regions-wise FC, SC and global cognitive performance. Specifi-
cally, we examined how region-wise FC and 5C are together age-
characteristic and related to cognitive performance. In doing so, we
aim to contribute to the understanding of age-related functional
restructuring by considering SC differences that are assodated with it.

Results of PLSR indicate that the variance in age is explained by
three different aging profiles. Of note, sensitivity analyses indicate
these aging profies to be robust across multiple sample splits and
independent of the overall health status of partidpants. In line with
previous research PLSR with only cognition and 5C explhined more
variance in age as compared to cognition and FC (Cole, 2020).
Inspecting the aging profiles in detail revealed interesting interrela-
tions of region-wise FC and 5C estimates, which will be discussed as
follows.

With regards to previous research, we assumed age-related
decreases in SC across the whole brain with a particular focus on the
frontal lobe. This is exactly what is captured by the first aging profile
(first component). Here, SC across the whole brain was characteristic
for higher ages and the strongest age-related decreases in 5C pertain
to the frontal lobe. These effects were very similar not only for the
two hemispheres, but also for 5C within and between networks.
Hence, decreases affect the SC between any regions (in all networks),
but especially those located in the frontal lobe. Previous results on
lifespan changes indicate that white matter of the frontal lobe is par-
ticularly wulnerable to the aging process showing the greatest deterio-
rations across ages while white matter of temporal and occipital
regions seem to be relatively preserved (Antonenko & Floel 2014;
Gunning-Dixon et al, 2009; Rojkova et al., 2014; Salat, 2011; Salat
et al,, 2005; Zhao et al., 2015). In the current sample of older adults,
we found the first component to capture SC decreases that affect the
whole brain. Thereby, decreases in frontal brain areas are indeed most
age-spedfic, but the rest of the brain is additionally affected, though
to a somewhat lesser extent. These effects may represent a more
advanced picture of aging (in older adults as compared fo lifespan
samples) that has additionally affected SC in parietal and temporal
regions.

This SC profile is clustered together with a FC profile that very
much matches the typical FC aging pattern described in previous
research on older adults (Edde et al, 2021; Perry et al., 2017; Stumme
et al., 2020; Zonneveld et al, 2019). The functional profile of the first
component is in line with our hypothesis that higher age is character-
ized by lower intra-network FC of particularly primary processing

networks together with a higher integration between higher-order
networks. The strongest age-related decreases of intra- and inter-
network FC pertain to the VN and SMN indicating that in older adults
areduced FC,.. of particularly primary processing networks is charac-
teristic for higher ages. Concurrently, higher order networks (espe-
dally the DMN and FPN) show higher positive inter-network FC at
higher ages, perfectly reflecting the assumed age-related shift towards
a stronger network integration of higher order networks (Betzel
et al, 2014; Edde et al., 2021; Ferreira et al., 2014; He et al., 2020;
Stumme et al., 2020; Tsvetanov et al., 2016; Varangis et al, 2019).
Complementary to positive FC, FC anticorrelations within networks
show overall age-related increases in FC which could indicate that
regions within a network work less coherently at higher ages. How-
ever, these results must be viewed with caution, as anticorrelation
within networks are rather unlikely and may be caused by a topo-
graphical deviation of older adults to the younger adults parcellation
used in the current study (further discussed in the methodological
considerations). In turn, anticorrelations between networks decrease,
indicating a reduced ability to deactivate brain networks while activat-
ing another, and thus leading to a shift towards greater inter-network
integration (Edde etal.,, 2021; Ferreira et al., 2016; Keller et al, 2015;
Spreng et al., 2014). Current research agrees that lower intra-network
FC is assodated with lower performances, meaning that less coherent
networks result in poorer cognitive functioning (Ewers et al., 2021;
Felletal., 2015; Marques et al., 2016; Stumme et al., 2020).

In turn, inter-network FC increases can be interpreted in two
ways: as a compensatory attempt or a dedifferentiation process. In
terms of compensation, the additional functional recruitment of higher
order networks may be understood as the attempt to more intensively
involve additional control processes (eg., monitoring, introspection,
and attention processes) to maintain cognitive performances despite a
decay of network coherence. A higher recruitment of brain regions
may be accompanied by increasing wiring costs, but may ako be
accompanied by a higher cognitive reserve, that is, performance main-
tenance (Festini et al., 2018; Franzmeier et al, 2018). As discussed in
Stumme et al. (2020), specific coactivations may indeed be beneficial
for cognitive maintenance. However, with an increasing number of
coactivations, specific access to the auxiliary functions and thus the
compensatory purpose of the system may be lost and replaced by a
rather dedifferentiated system. A functionally dedifferentiated system
is characterized by a reduced distinctiveness of activity patterns
throughout the brain (Edde et al, 2021; Ferreira et al., 2016; Keller
et al,, 2015; Spreng et al, 2014) limiting the access to spedific cogni-
tive processing, which is assodated with impaired performances
(Monteiro et al., 201%; Spreng & Turner, 201%). The first component is
accompanied by age-related decreases in cognitive performance indi-
cating that the additional recruitment of higher order networks during
rest cannot hinder a cognitive decline. In view of the large age range
(55-85 years), the strong cognitive changes in older subjects
(Hedden & Gabrieli, 2004; Salthouse, 2019) and the widely affected
SC decreases, a halt of cognitive loss is not to be expected. Collec-
tively, the first component captures a connectivity profile in which
both, FC and 5C show their previously described typical age-related
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differences in parallel. Accordingly, this aging profile explains the most
variance in age.

The second component explains only slightly less variance in age
as compared to the first component, indicating that there exists
another aging profile that is particularly age-characteristic in older
adults. Here, the overall SC is less affected by age with only the fron-
tal lobe showing age-related decreases, while the parietal and occipital
lobes remain stable. As discussed above, this may comprise a less
advanced aging process (Antonenko & Foel, 2014; Gunning-Dixon
et al, 2009; Rojkova et al, 2016; Salat, 2011; Salat et al,, 2005; Zhao
et al., 2015), in which SC decreases have not yet affected the whole
brain. In the case of initially decreasing SC in the frontal lobe while
simultaneously large parts of the brain remain structurally intact, the
brain exhibits a functionally maximally interconnected system. In fact,
previous work suggests a functional over-recruitment of brain areas
to be a response to age-related structural changes that itself would
cause a poor processing of cognitive functions (Marstaller et al, 2015;
Park & Reuter-Lorenz, 2009; Pistono et al, 2021; Reuter-Lorenz &
Park, 2014). In response to decreasing white matter pathways, the
aging brain must seek alternative functional routes to maintain com-
munication between regions (Maik et al, 2017). In this regard, overall
high functional interactions could be an adaptive recalibration process
resulting from the initial dedine of the frontal lobe to maintain cogni-
tive performance. Unlike the first component, the second component
still has a large portion of 5C paths that can be used to select alternate
routes so that an exchange of information is maintained. However,
because the second component is associated with the strongest age-
related cognitive decline, this supports the dedifferentiation theory, in
which spedfic access to desired functions is reduced (Edde
et al, 2021; Ferreira et al, 2016; Keller et al, 2015; Spreng
etal., 2014). As discussed above, in a compensation process we might
expect more specific coactivations that recruit specific functions to
maintain cognitive performance. As the recruitment of additional brain
regions increases (either on purpose or due to necessary detours),
increasing inter-network FC may no longer be supported, but rather
result in a decreased functional diversity of brain networks, Hence,
although a compensation process may have aspired, a supportive
character of increasing coactivations may at some point be replaced
by a decreased functional diversity of brain networks. In this context,
it is highly interesting that more and more research additionally
includes time into the analyses of brain function locking at functional
connectivity dynamics (FCD), that is, how the FC varies across time. It
has been found that with increasing age the time-dependent variance
of functional states, called metastability, declines (Battaglia
et al., 2020; Lou et al, 201%9; Maik et al., 2017; Xia et al., 2019). Here,
the functional activity is characterized by reduced differentiated activ-
ity states, meaning that a high proportion of functional systems are
activated in parallel. A lower metastability is, thereby, characterized
by a lower ability of the functional system to transition between dif-
ferent cognitive states, that is, if the whole system is similarly acti-
vated, the potential to switch between states diminishes. This is
thought to reduce the capadty to alko behaviorally switch between
concepts and to slow the rate of functional adaptations to external

influences (Escrichs et al, 2021; Lee et al.,, 201%; Xia et al., 2019).
Computational models showed that reduced metastability is a
response to SC decline (Deco & Kringelbach, 2016; Lavanga
et al., 2022; Maik et al., 2017). Hence, the functionally highly intercon-
nected system found in the second component could point towards a
low capacity to switch between functional states potentially resulting
from the incipient 5C decline and would explain the strongest associa-
tion with cognitive performance decline. Including FCD estimates in
this context, thus, would be highly promising for future research.

It remains open why the brain assodated with the most severe
SC decline (as in the first component) does not show a highly inter-
connected functional system. Participants with minor SC deterioration
may experience an onset of cognitive decline, that is find the everyday
tasks more difficult, but still strive to maintain cognitive performance,
which may then be addressed by an increase in functional intercon-
nectivity (Gaviria et al, 2021). However, with regards to the “Com-
pensation-related utilization of neural drouits hypothesis” (Reuter-
Lorenz & Cappell, 2008), the functional capacity to respond to
increasing task difficulty is exhausted at some point and the attempt
to compensate for increasing task complexity by functional overacti-
vation is no longer even considered. Further, an overall reduced SC in
the first component limits the possibility of akemative routes and
may logistically not allow information to be relayed via many different
regions.

Following the course of descending severity of SC decline from
the first over the second to the third component, the third component
reflects a connectivity profile which we may consider as well pre-
served. In this case, higher age is depicted by comparably high 5C,
while the overall FC is low. Overall high 5C points to a well-preserved
underying architecture that enables an efficient exchange of informa-
tion between regions while consuming as little energy as possible
(Lynn & Bassett, 2019). The associated resting brain exhibits rather
weak FC both within and between all networks. Higher overall com-
munication in the brain, that is, connectivity, requires higher energy
consumption (Tomasi et al., 2013). At the same time, a highly inter-
connected functional system reduces the ability to efficiently switch
between brain states (Chan et al., 2014, 2017; Colcombe et al, 2005;
Goh, 2011; Mashiro et al, 2017; Park et al, 2004), which is associated
with lower cognitive performance (Lavanga et al., 2022). Accordingly,
the functional connectivity system of this third component could
reflect a rather low-energy state of the resting brain, which at the
same time may involve a high ability to efficiently adapt to external
stimuli. However, this connectivity profile is comparatively less repre-
sentative in older adults, which is plausible in light of previous results
showing a continuous SC decline into old age (Cox et al, 2016;
Gunning-Dixon et al., 200%; Li et al., 2020).

Collectively, we found three different connectivity profiles to be
related to age in older adults. Each connectivity profile is depicted by
different severity of SC dedine. While a well-preserved SC system is
accompanied by a comparably low interconnected functional system,
a decline in SC seems to go along with an increase in the brain
FC. The functionally highest interconnected system is present when
the underlying white matter pathways are only slightly damaged. This
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could indicate that an increasing FC is the reaction to an incipient
decline of the underlying 5C construct, which logistically allows the
transmission of information in various detours. However, we found
that the highest interconnected functional system was assodated
with the greatest dedine in cognitive performance, indicating a shift
towards higher network integration to represent a dedifferentiation
process. In fact, the compensation and dedifferentiation theories do
not cancel each other out. Instead, an interlocking process in which a
benefidal compensation process is replaced by a steadily decreasing
diversity of functional systems may be conceivable.

41 | Methodological considerations

The results of the present study are based on a cross-sectional design.
The current cross-sectional design has the advantage of a large sam-
ple size representative of and thus, largely generalizable for, the gen-
eral older population in West Germany. For capturing the
intraindividual age-related changes in the relationship between 5C
and FC, however, longitudinal studies are warranted.

A potential limitation of the current study pertains to the spe-
cific functional network parcellation used, which is based on resting-
state data from younger adults. Methods for such imaging-based
brain parcellations improved considerably over the recent decade
(Eickhoff et al., 2018). Mevertheless, so far, no whole brain network
parcellation based on older adults exists integrating both, structural
and functional information. Within the current study, we chose the
current parcellation based on previous work on functional (Schaefer
et al., 2018) and anatomical data (Varikuti et al., 2018) indicating
fine-grained parcellations of 300-400 nodes to be optimal. Espe-
cially using fine-grained parcellations, however, transformation pro-
cedures between image modalities could influence inter-subjects’
varance. Hence, changes in the parcellation granularity and further,
the inclusion of subcortical structures would be interesting for future
studies focusing on SC-FC relations during aging and their link to
cognitive performance.

SC evolves, rearranges, and strengthens in developmental stages,
after brain injuries as well as across the lifespan as a result of, for
example, leaming processes (Fields, 2005; Salat, 2011; Yeatman
et al, 2014). However, in older ages, increases in SC are rather
unlikely and may point to yet unresolved methodological constraints.
In addition, tractography on diffusion imaging data is not a direct mea-
surement, but only an estimation of amatomical connectivity
(Sotiropoulos & Zalesky, 2019) known to under-represent long-
distance white matter connections (de Reus & van den Heuvel, 2013).
Across the aging process the paudty of long-distance connections
even increases, which may foster increasing short-range connections
(Puxeddu et al., 2020; Zhao et al., 2015). So far, a ground truth for
structural connectomes has not yet been developed. To optimally pic-
ture the biological 5C, we conducted streamlined filtering as an addi-
tional step in diffusion MRl denoising (Smith et al, 2015).
Furthermore, particularly for SC, network properties are known to

depend on the methodology applied, which potentially makes specific
network results less generalizable (Qi et al., 2015).

As compared to previous studies on age prediction our model
explains less wariance in age. Although the validation process
revealed our PLSR model to perform significantly better as compared
to random data underpinning the model's prediction ability. So far,
the optimal method for age prediction is still under debate (Smith
et al., 2019). Predictions were found to perform best using structural
brain volume data (Cole et al., 2017; Cole & Franke, 2017; Franke
et al, 2010; Liem et al., 2017), while age prediction on connectivity
data was found to perform significantly lower explaining about
A40%-60% of the varance in age (Dosenbach et al, 2010; Han
et al., 2014; Li et al, 2018; Vergun et al., 2013). With respect to the
current study, the intended restriction to region-wise connectivity
estimates limits the informative value for age prediction to only par-
ticular connectivity values. The inclusion of more specific connectiv-
ity measures, for example, individual edge weights, may potentially
increase prediction accuracy.

Finally, it should be noted that FC anticorrelations imply a qualita-
tively distinct type of interaction between brain regions, which is not
yet clearly interpretable (Chai et al, 2012; Fomito et al, 2013;
Murphy & Fox, 2017). Negative correlations may be artificially
induced, when using global signal regression in functional imaging pre-
processing (Fox et al, 2009; Murphy et al, 2009, Mumphy &
Fox, 2017). Therefore, results on negative correlations have been
included in this study as additional complementary evidence for the
general relation between FC and SC, without demanding clear inter-
pretability on its own.

5 | CONCLUSION

The normal aging process is accompanied by a restructuring of the
functional connectome, characterized by a shift from more segregated
to more integrated brain networks which was found to be important
for changes in our cognitive performance. Causes of the functional
restructuring remain undear, but may be associated with age-related
SC differences, depicting the underlying scaffold for information
exchange between regions. By performing PLSR with FC and 5C esti-
mates as well as cognitive performance data from a large cohort of
older adults, we investigated the interdependency of region-wise 5C
and FC differences and how these are, together with cognitive perfor-
mance, characteristic of older adults' age. Our results revealed three
different aging profiles to be prevalent in older adults. Overall, it
appears that the frontal lobe of older adults is particularly affected by
aging with respect to SC showing the greatest age-related dedine. In
terms of brain function, primary processing networks are most indica-
tive of the older adult's age. In this context, the functional activity pat-
tern seems to behave differently depending on the severity of SC
deterioration. In a well-preserved structural connectome, the brain
exhibits a less interconnected system at rest, characterized by particu-
larly low connections between networks. In turn, when 5C shows
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minor age-related deteriorations affecting the frontal lobe, the brain
exhibits a functionally maximally connected system. Because this con-
nectivity pattern was assodated with the most severe age-related
cognitive dedine, a more interconnected functional connectivity sys-

tem in older adults points to a process of dedifferentiation.
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Abstract Differences in brain structure and func-
tional and structural network architecture have been
found to partly explain cognitive performance differ-
ences in older ages. Thus, they may serve as poten-
tial markers for these differences. Initial unimodal
studies, however, have reported mixed prediction
results of selective cognitive variables based on these
brain features using machine learning (ML). Thus,
the aim of the current study was to investigate the
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general validity of cognitive performance prediction
from imaging data in healthy older adults. In particu-
lar, the focus was with examining whether (1) mul-
timodal information, i.e., region-wise grey matter
volume (GMYV), resting-state functional connectivity
(RSFC), and structural connectivity (SC) estimates,
may improve predictability of cognitive targets, (2)
predictability differences arise for global cognition
and distinct cognitive profiles, and (3) results gener-
alize across different ML approaches in 594 healthy
older adults (age range: 55-85 years) from the
1000BRAINS study. Prediction potential was exam-
ined for each modality and all multimodal combina-
tions, with and without confound (i.e., age. education,
and sex) regression across different analytic options,
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i.e., variations in algorithms, feature sets, and multi-
modal approaches (i.e., concatenation vs. stacking).
Results showed that prediction performance differed
considerably between deconfounding strategies. In
the absence of demographic confounder control, suc-
cessful prediction of cognitive performance could be
observed across analytic choices. Combination of dif-
ferent modalities tended to marginally improve pre-
dictability of cognitive performance compared to sin-
gle modalities. Importantly, all previously described
effects vanished in the strict confounder control con-
dition. Despite a small trend for a multimodal benefit,
developing a biomarker for cognitive aging remains
challenging.

Keywords Cognition - Aging - Machine learning -
Multimodal analyses - Graph theoretical approaches

Introduction

The aging population experiences declines in many
cognitive functions, e.g., memory and executive func-
tions [1, 2]. In groups of healthy older adults, age-
related cognitive decline has been partly explained
by alterations in network architecture, structural (8C)
and resting-state functional connectivity (RSFC) of
major resting-state networks (RSNs), and grey mat-
ter (GM) atrophy [1, 3-13]. However, despite robust
findings at the group level, cognitive performance
has been found to vary greatly at the individual level
[1, 14]. particularly in the older ages. In light of the
increasing aging population and high relevance of
cognitive health for the quality of life of healthy older
adults, research has turned to searching for a neuro-
imaging marker for individual cognitive ability in
aging [11, 15-20].

Machine learning (ML) approaches may be par-
ticularly appropriate to search for an imaging marker
for age-related cognitive decline. This is due to the
fact that they may provide information at the indi-
vidual level and may find patterns in high-dimen-
sional data that might be difficult to capture with
univariate methods [21]. Initial ML approaches
investigating either resting-state functional connec-
tivity (RSFC), structural connectivity, or grey matter
volume (GMV), revealed mixed prediction perfor-
mance of cognitive measures [15, 18, 19, 22-27]. For
instance, by investigating SC, i.e., nodal global and

@ Springer

local efficiency, Li et al. could successfully predict
attention and executive function in a large sample of
healthy older adults (N=633, age range: 45-86 years)
[25]. In turn, regional GMV was found to predict
fluid reasoning abilities across the adult popula-
tion (N=3335, age range: 20-80 years) in a study
by Tsapanou et al. [26], while Hilger et al. revealed
decidedly error-prone prediction of intelligence in a
large sample of healthy adults (N=308, age range:
1860 years) [27]. Moreover, recent results from our
group emphasize low classifiability and predictabil-
ity of RSFC strength measures for both, global and
domain-specific cognitive abilities, in a large sample
of older adults (age range: 55-85 years) [24]. Thus,
these partially promising results seem to be rather cir-
cumscribed to specific settings, as previous studies all
differ in, e.g., their study characteristics, input modal-
ities, and cognitive target variables. To make more
general predictions of cognition based on imaging
data, however, it may become necessary to directly
compare prediction performance across different cog-
nitive variables and input modalities within one sam-
ple and the same ML framework.

Furthermore, most previous studies have focused
on a single modality in the prediction of cognitive
ability in healthy older adults neglecting that brain-
behavior relationships arise through the complex
interplay between different organizational levels of
the brain and its network architecture. Research on
neurodegenerative diseases has recently started to
integrate information across different modalities in
diagnostic classification studies revealing a benefit for
multimodal approaches in terms of ML performance
[28-30]. For instance, a combination of functionally
and structurally derived graph metrics, which may
allow to specifically characterize the network archi-
tecture of the brain, led to better classification perfor-
mance in distinguishing patients with mild cognitive
impairment (MCI) and Alzheimer's disease (AD)
from healthy controls (HC) [29, 30]. Results from
combining multimodal data in healthy older adults
and across the lifespan in the prediction of cognitive
targets also appear promising [31-33]. For exam-
ple, Xiao et al. have shown that multimodal imaging
models, i.e., amplitude of low-frequency fluctuations
(ALFF), fractional anisotropy (FA). and GMV, per-
formed mostly better than unimodal ones in the pre-
diction of visual working memory in a large sample
across the lifespan (age range: 18-88 years) [33].
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Furthermore, Dadi et al. have demonstrated that fluid
intelligence could be predicted from brain volumet-
ric measures, RSFC, and diffusion-derived param-
eters in a large sample of older adults from the UK
Biobank (age range: 4070 years) [31]. Nevertheless,
it remains elusive, if combining information from a
functional and structural network perspective, which
has already been successfully employed in patient
samples, combined with morphologic brain data, i.e.,
region-wise GMV, may lead to equally promising
prediction results especially in higher older ages.

Finally, switching to a methodological perspective,
prior studies have shown that prediction accuracies
may be affected by the use of different algorithms,
feature set sizes, feature selection steps, and decon-
founding strategies [34-38]. There is currently no
agreement on a standard ML pipeline using neuroim-
aging data [39] and given the high variability in ML
approaches used throughout the field, it may become
difficult to compare and discern informational value
of each modality for prediction. It, thus, appears war-
ranted to systematically evaluate different analytical
choices and their impact on prediction performance.

The current study, hence, aimed at examining the
general validity of the prediction of cognitive per-
formance from imaging data in healthy older adults.
Particularly, it was directed at investigating whether
(1) combining information from a network perspec-
tive, i.e., RSFC and SC estimates, with morphologi-
cal brain data, ie., region-wise GMYV, may lead to
better predictability of different cognitive targets than
unimodal models, (2) differences emerge in the pre-
diction of global cognition and distinct cognitive pro-
files, and (3) results generalize across different ML
pipeline configurations and approaches, i.e., differ-
ent modality combinations, algorithms, feature sets,
deconfounding analyses, and multimodal approaches,
in a large sample of healthy older adults from the
1000BRAINS study.

Methods

Participants

Data for the current analyses was derived from the
1000BRAINS study [40], which aims at investigating

age-related variability in brain structure and function
in light of environmental, behavioural and genetic

factors in an epidemiologic population-based design.
The 10-year follow-up cohort of the Heinz Nixdorf
Recall Study and the MultiGeneration Study was
used to define the 1000BRAINS sample [41]. A total
of 966 participants of the whole sample met the age
criteria of the current study (age range: 55-85 years).
Missing resting-state functional magnetic resonance
imaging (fMRI), structural magnetic resonance imag-
ing (sMRI), or diffusion-weighted imaging (DWT)
data or failed preprocessing of functional and strue-
tural imaging data led to the exclusion of 248 par-
ticipants from the initial sample. In a next step, 95
participants were excluded as preprocessed data did
not meet quality standards described in more detail
below. Further, 27 participants with missing values
on the dementia screening test DemTect or scor-
ing< 8 were excluded in light of potential cognitive
impairment [42]. More than three missing values in
the neuropsychological assessment led to the exclu-
sion of additional 2 participants. A final sample of
594 participants (296 females, Masc:lﬂﬁ.SB years,
SD‘@:G.ISE see Table 1) was used for further
analyses. The study protocol of 1000BRAINS was
approved by the Ethics Committee of the University
of Essen, Germany, and all subjects provided written
consent prior to inclusion.

Functional and structural brain data

Functional and structural imaging data was acquired
on a 3T Siemens TimTRIO MR scanner with
a 32-channel head coil. A 3D high-resolution
T1-weighted magnetization prepared rapid acquisition
gradient-echo (MPRAGE) sequence was obtained for
subsequent surface reconstruction and brain struec-
tural analyses (176 slices, slice thickness=1 mm,
TR=2250 ms, TE=3.03 ms, FoV=256x256 mm’,

Table 1 Demographic information of sample regarding age,
educational level and risk of dementia

N Age (inyears) Education DemTect score

(measured by

ISCED)
Female 296 66.26(6.44) 5.99 (1.83) 15.55(2.25)
Male 298 67.530(6.84) 703(191) 14.41 (2.34)
Total 594 6688 (6.67) 6.51(1.94) 14.98 (2.36)

Mean displayed with standard deviation (SD) appearing in
parentheses
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4Fig. 1 Schematic overview of workflow

flip angle=9°, voxel resolution=1x1x1 mm-).
Resting-state fMRI was acquired for about 11 min
resulting in 300 EPI (gradient-echo planar imag-
ing) volumes (slices=36, slice thickness=3.1 mm,
TR =2200 ms, TE=30 ms, FoV=200x200 mm’,
voxel resolution=3.1%3.1x3.1 mm’). During the
resting-state scan, participants were asked to keep
their eyes closed, to relax and let their mind wander,
but not to fall asleep. A post-scan debriefing was used
as a check. Additionally, high-angular resolution dif-
fusion imaging (HARDI) data was obtained using
the following parameters: (i) 60 direction subset;
EPI, TR=6300 ms, TE=81 ms, 7 b0-images (inter-
leaved), 60 images with b= 1000 s/mm?, voxel reso-
lution=2.4»x2.4x2.4 mm3; (11) 120 direction sub-
set; EPL, TR=8000 ms, TE=112 ms, 13 bl-images
(interleaved), 120 images with b=2700 s/mm?, voxel
resolution=2.4x 2.4 % 2 4mm’.

Image preprocessing

The Tl-weighted 3D anatomical images were pre-
processed using the “recon-all” automated corti-
cal reconstruction pipeline of the FreeSurfer 7.1.0
Software package [43] as described under http://
surfer.nmr.mgh.harvard.edu. The original pipe-
line includes a range of brain parcellations derived
from cortical surface models constructed from
manually or automated labelled training sets. We
adapted the original pipeline to also include the
400-node Schaefer parcellation, which is based on
cortical surface models calculated from rstMRI
measurements of 1489 participants using a gradi-
ent weighted Markov random field approach [44].
First, the parcellation was transformed to individual
subject space using FreeSurfer’s mris_ca_label tool.
Then, morphology values were gathered for every
transformed node using FreeSurfer's mris_anatomi-
cal_stats tool. Afterwards measures, such as surface
area, grey matter volume (GMV), and cortical thick-
ness of every node for the left and right brain hemi-
sphere, were summarized in separate tables using
FreeSurfer’s aparcstats2table utility. The GMV val-
ues for each node (=400) were used as features in
the ML pipeline (see Fig. 1: Features). To ensure
data quality, mean GMYV values were calculated

and participants with values greater than 1.5 times
the inter-quartile range were excluded from further
analyses.

Functional and diffusion tensor images were
preprocessed according to an established pipeline
by [12]. For all functional images, this included
(1) deletion of the first four EPI volumes, (2) head
movement correction using a two-pass procedure,
(2) application of ICA-based Automatic Removal
of Motion Artifacts (ICA-AROMA) [45] combined
with global signal regression, (3) application of a
band-pass filter (0.01-0.1 Hz), and (4) registration
to MNI152 template using a unified segmentation
approach [46]. An additional quality check for the
preprocessing of functional images was carried
out according to [12], which included (1) checking
for potential misalignments in the mean functional
AROMA data with the check sample homogene-
ity option in the Computational Anatomy Toolbox
(CAT12) [47] (participants identified as outliers
with> 2 SD away from the mean excluded) and (2)
checking for volume-wise severe intensity dropouts
(DVARS) in the preprocessed data using an algo-
rithm by [48] (participants with more than 10% of
the 300 volumes detected as dropouts excluded).

Diffusion image processing involved (1) calcula-
tion of tissue probability maps (TPM) for grey mat-
ter (GM), white matter (WM), and cerebrospinal
fluid (CSF) trom T1 data using CAT 12 toolbox [47].
(2) extraction of brain from T1 data by using brain
masks created by superimposing the three probabil-
ity maps, (3) bias field correction of T1 data, rigid
alignment to the MNI152 template and resampling
to 1.25 mm isotropic voxel size, (4) correction of
dMRI data for eddy currents and motion artefacts,
(3) visual quality control to remove remaining noisy
data, (6) alignment of dMRI data to individual T1
space, (7) computation of anisotropic power maps
(APMs) from b2700 dMRI data for image registra-
tion, (8) transformation of TPMs to diffusion space
via APMs, (9) merging of the two dMRI datasets
(b1000 & b2700) into one, (10) computation of
the constrained spherical deconvolution (CSD)
model using multi-tissue CSD with multi-shell data
[49], and (11) application of probabilistic stream-
line tractography and computation of 10 million
streamlines with dynamic seeding at the grey-white
matter interface using the iIFOD2 algorithm (max.
length =250 mm; cut-oft value =0.06).
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Functional and structural connectivity analyses

For connectivity analyses, the same protocol as in
[12] was followed. The brain was parcellated into
400 cortical parcels according to [44]., which were
assigned to seven known resting-state networks
(visual, sensorimotor, limbic, frontoparietal, default
mode, dorsal, and ventral attention network) [50].
Each parcel served as nodes in the subsequent graph-
theoretical analysis.

For both functional and structural connectivity,
a 400x400 adjacency matrix for each participant
was obtained. For functional data, each matrix entry
reflected the Pearson’s correlation of the average time
series of two nodes. As an additional step, a statistical
significant test of each correlation coefficient was per-
formed making use of the Fourier transform and per-
mutation testing (1000 repeats) to reduce the amount
of spurious correlations [11, 12, 51]. Non-signifi-
cant edges at p>0.05 were set to zero. Afterwards,
a Fisher's r-to-z-transformation was used to trans-
form the 400> 400 adjacency matrix. In subsequent
analyses only positive correlations were considered
and no further thresholding in terms of network size
and network density was applied to the brain graph.
Thus, a positively weighted network was used for the
computation of connectivity estimates. For diffusion
data, each matrix entry constituted a weighting factor
derived from streamline counts between each pair of
nodes using a cross-sectional area multiplier (SIFT-2)
[52]. Before obtaining each matrix entry, the follow-
ing steps were performed: (1) warping of the parcel-
lation template to individual diffusion space using the
combination of nonlinear warps of spatial T1 regis-
tration to MINI152 template and distortion correction
with APMs, (2) expansion of template by adding vox-
els towards the grey-white matter boundary for seed-
ing points to be included in regions. Ultimately, the
diffusion matrix was log10 transformed.

In a final step, connectivity estimates were cal-
culated from both functional and structural connec-
tome data using the software becipy with network
parameters defined as in [33] (https://pypi.org/proje
ct/betpy/) (see Fig. 1A). For both RSFC and SC,
the focus was with nodal-level (1) within-network
connectivity (400 features) defined as the sum of
weights of one node attached to all nodes within its
respective network divided by the total number of
edges in the network, (2) inter-network connectivity
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(400 features) defined as the sum of weights from
one node to all nodes outside its respective network
divided by the number of edges in the network as
well as (3) a ratio score (400 features) defined as
within-network connectivity of a node in relation
to its inter-network connectivity [12]. The total fea-
ture vector for each participant encompassed 2,800
features (1200 RSFC estimates+ 1200 SC esti-
mates +400 region-wise GMV values). Two differ-
ent feature sets were obtained from this and used
in the ML framework explained below (Feature Set
(FSet) A: 2x400 within- & inter-network connec-
tivity for FC & SC +400 region-wise GMV =2000
features; Feature Set (FSet) B: 2x 400 ratio-score
for FC & SC+400 region-wise GMV=1200 fea-
tures; see Fig. 1A).

Cognitive performance

All subjects took part in extensive neuropsychologi-
cal assessment. For the current analyses, 14 cognitive
tests spanning the cognitive domains attention, execu-
tive functions, episodic memory, working memory
(WM) and language were selected (for details regard-
ing test and variables chosen, see Suppl. Table S1)
[40]. Due to the differential impact of aging on spe-
cific cognitive functions, we were interested in the
examination of both global cognition and specific
cognitive profiles in the prediction setting [1]. There-
fore, we derived composite cognition scores follow-
ing [24]. In summary, this included (1) replacement
of missing values by the median for respective sex
(males, females) and age groups (55—64 years,
65—74 years, 75— 85 years), (2) conversion of raw
scores Into z-scores, (3) inversion of test scores with
higher values meaning lower performance (i.e., time
to complete the tasks or number of errors made), and
(4} reduction of test performance to a global com-
posite (one component solution) and distinct cog-
nitive profiles (multicomponent solution based on
eigenvalues > 1) using principal component analysis
(PCA). Targets in ML prediction of cognitive perfor-
mance constituted the individual global component
and cognitive profile scores extracted from the PCA
(see Fig. 1B). All cognitive analyses were performed
using IBM SPSS Statistics 26 (https:/www.ibm.com/
de-defanalytics/spss-statistics-software) and custom
Python (Version 3.7.6) code.
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Machine learning framework

To answer the main question of this study, whether
cognitive performance in healthy older adults can be
predicted more accurately by multimodal information
(region-wise GMV, RSFC & SC estimates) than by
single modalities, a comprehensive ML framework
approach was chosen. A schematic overview of the
workflow can be found in Fig. 1D. Previous studies
have shown that the use of a stacking approach in a
multimodal context may be beneficial for prediction
performance [54, 55]. To systematically examine
a potential additional benefit of stacking for predic-
tion accuracy, multimodal analyses were carried out
both in a concatenation and stacking approach. In
the concatenation approach, feature vectors in the
multimodal settings were simply concatenated into
one feature vector and entered into the ML pipeline.
In contrast, stacking refers to an ensemble learning
paradigm, which comprises two levels of learning
[54, 55]. In the first layer, a machine learning (ML)
model is obtained from each modality separately and
each modality is in turn used to predict the cognitive
variable of interest. The cross-validated predictions
from the single-modality models are then used as the
new feature vector for the second layer. In the second
layer, the new input vector is used to train a meta-esti-
mator and used for final predictions.

ML estimations were obtained for all single
modalities, for pairwise combinations, and for a
three-way combination (see Fig. 1C: Modality com-
binations as input features). Performance of differ-
ent prediction algorithms were compared, which
have been frequently applied in similar settings [32,
54-58]. These included Ridge regression, linear Sup-
port Vector Regression (inSVR), LASSO regression,
Elastic Net (EN) regression, and Random Forest (RF)
regression [32, 34-56, 539] (see Fig. 1D: Algorithms).
The different algorithms were used in concatenation
and in the first layer of the stacking approach. As the
meta-estimator in stacking, a RF regressor was imple-
mented according to recommendations in the litera-
ture [54-56, 538, 60, 61].

Following [62], ML model performance was
evaluated using a repeated nested 10-fold cross-
validation with 10 repeats (see Fig. 1D: ML
approaches & cross-validation (CV) scheme). All
hyperparameters were optimized in the inner folds
to avoid data leakage (5-fold CV). In an initial step

of the ML pipeline, all input features were scaled
using the StandardScaler from scikit-learn within
the cross-validation setup to ensure comparability
in magnitudes of input features. In stacking, splits
into training and test sets for single modalities were
retained for training the second layer meta-estimator,
i.e., RF regressor, to ensure separation of training and
test set across layers and avoid data leakage [62]. To
obtain the new input data for the second layer for each
modality, predictions in the training set were obtained
for each iteration of the repeated 10-fold CV based on
the optimal hyperparameter configuration determined
by an inner 5-fold CV. Those cross-validation
predictions were then stacked for each iteration of
the outer CV cycle and used as the new training set
for the second layer. In turn, predictions on the test
set for each iteration of the repeated tenfold CV were
obtained, stacked and used as the new test set for
the second layer. This procedure was performed to
ensure that throughout all layers the training and test
set were kept separate and that final stacked models
were tested on previously unseen predictions [62].
Hyperparameters, i.e., number of trees and tree depth,
of the meta-estimator were optimized in inner folds.
The best parameter combination in terms of inner
fold performance (i.e., MAE) was selected, applied
to the outer fold training set and tested on the outer
test set to evaluate ML performance. The following
hy perparameters were tuned in both the concatenation
and stacking approach: (i) regularization parameter
C for linSVR (C: 10~* to 10', 10 steps, logarithmic
scale), (ii) regularization parameter lambda A for
Lasso (4: 107! to 10, 10 steps) and Ridge (4:107° to
10°, 10 steps, logarithmic scale), (iii) regularization
parameter lambda, 4, and alphae, for EN (i 10!
to 102, 10 steps, logarithmic scale:a: 0.1 to 1, 10
steps), and (iv) number of trees and tree depth for
RF (number of trees: 100 or 1000; tree depth: 4, 6,
8, 10, 20, 40, None). Mean absolute error (MAE)
and coefficient of determination (R%) were used to
assess prediction performance. For completeness,
(r) between true and
predicted targets was also calculated and reported in
the Supplement. All machine learning analyses were
performed using the scikit-learn library (version:
0.22.1) in Python [63] (https://scikit-learn.org/stable/
index.html). Scripts for stacking were based on those
from [62] (https://github.com/axifra/BrainAge_MRI-
MEG) and adapted for the current study.

the Pearson’s correlation
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Confounder analyses

As ML performance may be extensively impacted
by confounding variables, two different confounder
analyses were carried out in the current study. First,
we investigated prediction performance in conditions
with different extents of deconfounding, i.e., with-
out (no-deconf. condition) and with (deconf. condi-
tion) demographic confound regression (see Fig. 1C:
Deconfounding). In both conditions, we controlled
for the influence of estimated total intracranial vol-
ume (eTIV) by regressing it from the target [27, 53,
64]. In the deconf. condition, we additionally con-
trolled for the demographic variables age, sex, and
educational level in a similar fashion [55]. Confound
regression was always performed within the ML pipe-
line to avoid data leakage [24, 35]. Second, prediction
performance was examined in models using age, sex,
and educational level as extra features (see Fig. 1C:
Additional input features) [55]. ML estimations were
obtained for demographic variables only and for all
combinations with brain features.

Feature importance

Feature importance information was derived at two
levels, i.e., feature and modality level, in the current
study. For a more fine-grained anatomical explora-
tion of the most relevant features (i.e., feature level),
we decided to investigate results from the concatena-
tion approach. To identify important features, mean
coeflicients were calculated by averaging coeflicients
across all CV folds for each ML model. For com-
plexity reduction, we focused on the concatenation
approach in the no-deconf. condition and models, in
which all features were combined, to extract relevant
features for prediction. The analyses of meaningful
features were separately performed for models with-
out and with extra features to gain a greater insight
into the relevance of demographic features and the
added benefit of using brain features for predic-
tion. In an initial step, the 20 features with the high-
est coefficients were selected for each target in each
algorithm (i.e., 1inSVR, Ridge, EN, Lasso, RF) and
feature set (FSet A & FSet B). To ensure that fea-
tures were consistently highly ranked across differ-
ent analytic choices, only those features present in all
algorithms and feature sets for each target were kept.
Then, centroid coordinates of selected nodes in MNI
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space were retrieved from the 400-node Schaefer par-
cellation. Ultimately, an anatomical label using the
cytoarchitectonically defined Julich-Brain atlas [65]
implemented in the EBRAINS multilevel atlas frame-
work (https://ebrains.ew/) was provided. In cases, in
which a node was found within a gap map, the Desi-
kan-Killiany atlas [66] implemented in FreeSurfer's
freeview was additionally used.

For the closer examination at the modality level,
feature importance information was derived from the
second layer, i.e., meta-learner RE, of the stacking
approach. Mean feature importances for each modal-
ity were calculated in the same way as in the feature
level analysis. Again, to reduce complexity, focus
was with the no-deconf. condition and models, in
which all modalities, i.e., FC+S8C +GMV, were com-
bined. Feature importance analyses were performed
for models without and with extra features. Each
modality was ranked based on the feature importance
results across analytic choices for each cognitive tar-
get. The most common ranking was reported in the
Supplement.

ML wvalidation analyses

We performed further analyses to wvalidate our
ML approach. Firstly, prediction performance was
assessed for a theoretically defined composite (global)
cognitive score to evaluate whether similar results are
achieved as in our data-driven approach. To obtain a
theoretically defined composite cognition score, test
performance on the 14 cognitive tests (i.e., Z-scores)
was averaged for each individual and used as targets
in ML. Additionally, we chose to validate our findings
by classifying extreme cognitive groups using a linear
Support Vector Classifier (linSVC), Logistic Regres-
sion (Log), Ridge and Random Forest (RF) classifier.
Extreme groups were defined as the top 25% (high
cognitive performers) and lowest 25% (low cognitive
performers) of individuals scoring on the global cog-
nition component [31, 32]. Groups were matched for
age, educational level, sex, and eTTV using propensity
score matching (N=116, 56 temales, Magczﬁ.'i.ﬁﬂ,
SDE@:L‘:.OL‘:; see Suppl. Table §3-4). Moreover, we
investigated the impact of including RSFC estimates
derived from negative correlations on prediction per-
formance exemplary for global cognition in the con-
catenation approach across analytic choices (FSet
C: 2x 400 within- & inter-network connectivity for
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positive FC, 2x400 within- & inter-network con-
nectivity for negative FC, 2x400 within- & inter-
network connectivity for SC+400 region-wise
GMV =2800 features). To validate our ML pipeline
and to gain a greater insight into the confounding
variables, we also performed age, educational level,
and sex (matched for age, education & eTIV: N= 2340,
170 females, Magt:ﬁﬁ.ﬁ?, SDE\Fzﬁ.T?; see Suppl.
Table 52) predictions.

Model comparison and statistical analyses

Partial correlations between cognitive scores and age
(corrected for education and sex) as well as education
(corrected for age and sex) were computed to exam-
ine the link between potential confounders and cogni-
tive performance, as summarised by the components
derived from the PCA. A multivariate analysis of
covariance (MANCOWVA) was calculated to examine
sex differences in cognitive variables (DV = cognitive
scores, IV = sex, covariates= age and education).

ML performance was compared to estimations
from a reference model, i.e., Dummy regressor [56].
In this case, the percentage of folds, for which the
ML models were better than the reference model, was
calculated. Further, two different types of multimodal
bonus, B, and B,_,, were calculated for each mul-
timodal combination according to [53]. B, reflects
the difference in performance between each multi-
modal model and the average of single modalities,
while B, constitutes the difference in performance
between the multimodal model and the best single
modality.

Results

Cognitive composite scores derived from principal
component analysis

Principal component analysis (PCA) was used to
derive cognitive composite scores, i.e., global cogni-
tion and specific cognitive profiles. First, the Kaiser-
Meyer-Olkin (KMO) index was used to assess data
suitability for PCA. The index was found to be sat-
isfactory with a value of 0.91. Cognitive composite
scores for each participant were defined as compo-
nent scores derived from a one component solution.
Cognitive profile scores for each individual were

extracted from a solution based on the eigenvalue cri-
terion> 1. In this context, two components could be
identified by PCA (see Suppl. Tables 55-6 & Suppl.
Fig. §7). The first component mostly related to (work-
ing) memory and executive functions, i.e., visual, vis-
ual spatial, and verbal WM, figural memory, problem
solving, concept shifting, and susceptibility to inter-
ference (non-verbal memory & executive component;
see Fig. 2 & Suppl. Table 56). The second component
primarily pertained to verbal memory and language
functions, i.e., semantic and phonemic verbal fluency,
vocabulary, and verbal episodic memory (verbal
memory & language component; see Fig. 2 & Suppl.
Table §6).

All three cognitive scores were significantly neg-
atively associated with age (cognitive composite:
r=—0.45, p<0001, non-verbal memory & execu-
tive: r=—041, p<0.001, verbal memory & lan-
guage: r= —0.16, p<0.001; adjusted for educational
level and sex). Higher performance in all cognitive
scores was significantly correlated with higher educa-
tional level (cognitive composite: r=0.43, p<0.001,
non-verbal memory & executive: r=0.21, p<0.001,
verbal memory & language: r=0.39, p<0.001).
No sex differences were found for the global com-
posite cognitive score using a MANCOVA with
age and education as covariates (cognitive compos-
ite: F(1,390)=0.83, p=10.36, qu=(}.0(}1). How-
ever, significant performance differences between
males and females emerged for the two cognitive
profiles (memory & executive: F(1,590)=16.52,
p<0001, #.2=0.03 verbal memory & language:

P
F(1,590)=43.04, p<0.001, ,>=0.07).

ML results

Prediction results from unimodal and multimodal
brain fearures for global cognition

Initially, ML was used to assess the prediction
power of multimodal brain features, i.e., region-
wise GMV, RSFC, and SC estimates, for global cog-
nitive performance in older adults. Prediction per-
formance across algorithms, feature sets, and ML
approaches differed greatly between deconfounding
strategies. Satisfactory prediction performance was
only observed when no deconfounding was applied
(Mean MAE: 0.74-0.79, Mean R% 0.02-0.14,
in 65-100% of folds R%?>dummy regressor; sce
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Suppl. Tables S8-9, 11-16 & Suppl. Fig. S10).
In this setting, multimodal models (Mean MAE:
0.74-0.78, Mean R%: 0.03-0.14) tended to slightly
better predict global cognitive performance than
unimedal models (Mean MAE: 0.75-0.79, Mean
R%: 0.02-0.1 1) in different approaches, feature sets,
and algorithms (see Figs. 3, 4 & Suppl. Tables S8-
9, 11-16 & Suppl. Fig. S10). Across cognitive
domains, a prediction performance gain in the best
cases of up to 0.04 (best unimodal, B, ) to 0.06
(average unimodal, B,) in R? could be observed
in multimodal compared to unimodal models (see
Suppl. Tables §17-20). Among single modalities,
RSFC estimates (Mean MAE: 0.77-0.79, Mean
R%: 0.02-0.04) were found to be least predictive
of global cognition across analytic choices (S8C &
GMV: Mean MAE: 0.75-0.78, Mean R 0.05-0.1 1;
see Figs. 3, 4 & Suppl. Tables 58-9, 11-16 Suppl.
Fig. 510). Once we controlled for age, sex, and edu-
cation, global cognition could no longer be success-
fully predicted and all previously reported differ-
ences between modalities disappeared (Mean MAE:
0.79-0.80, Mean R%: —0.04-0.01, in 3-77% of folds
R® > dummy regressor; Suppl. Tables S8-9, 11-16
& Suppl. Fig. §10). Thus, successful prediction
of global cognition based on structural as well as
structural and functional connectivity neuroimaging
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features along with a tendency for a multimodal
benefit was only found in absence of confounder
control.

Prediction results for global cognition using
demographic features, i.e., age, sex, and education,
and brain features plus extra demographic features

To get a better understanding of the impact of
demographic feature on the cognitive performance
prediction, prediction performance for global
cognition was then investigated for models using
only demographic features and models using brain
features plus demographic features in absence of
confounder control. Across approaches, algorithms,
and feature sets, models including demographic
features (i.e.. age, sex, and education) could predict
global cognition to a much greater degree than
models solely based on brain features (Without
extra features: Mean MAE: 074079, Mean
R%:—0.02-0.14, in 65-100% of folds R* > dummy
regressor; With extra features: Mean MAE:
0.64-0.75, Mean R%: 0.12-0.34, ie., in 92-100%
of folds R*> dummy regressor; see Fig. 4 & Suppl.
Tables §21-24). Numerically, models with extra
features could explain up to 20% more variance
(R%) in global cognition compared to those without.
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A) Mean Absolute Error across folds
for different combinations of input modalities
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B) Coefficient of Determination across folds
for different combinations of input modalities
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Fig. 3 Prediction performance for global cognition using uni-
modal and mulimodal data across feature sets (FSet) A and B
in the concatenation approach. A Mean absolute error (MAE)
and B coefficient of determination [Rz} shown across folds
for different algorithms (linear Support Vector Regression

FSet B | deconf. | Lasso

]
[ FSet B | no-decont. | EN I FSetB | deconf. | EN
]

FSet B | no-decont. | RF FSet B | decont. | RF

(linSVR), Ridge. Lasso, Elastic Net (EN) and Random Forest
(RF) regression) and deconfounding strategies (no-deconf. =no
deconfounding except for controlling for eTIV in target
deconf. = confound regression of age, sex. education, & eTIV)
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4Fig. 4 Prediction performance for global cognition using
unimodal and multimodal data across feature sets (FSet) A
and B in the concatenation and stacking approach with and
without extra features. Coefficient of determination (R?) dis-
played across folds for different algorithms (linear Support
Vector Regression (linSVR), Ridge, Lasso, Elastic Net (EN)
and Random Forest (RF) regression). Results shown for A the
concatenation approach without extra features, B the stacking
approach without extra features, C the concatenation approach
with extra features, I) the stacking approach with extra fea-
tures. Only no-deconf. condition shown

Importantly, it should be highlighted that solely
demographic features (Mean MAE: 0.64-0.65,
Mean R%: 0.32-0.34, in 100% of folds R?> dummy
regressor) predicted global cognition to a
similar or even higher extent than brain features
combined with demographic features (Mean
MAE: 0.64-0.75, Mean R 0.12-0.33; see Fig. 4
& Suppl. Tables S521-24). Thus, demographic
information, ie., age, sex, and education, were
found to be highly predictive of global cognitive
performance in older subjects (once these are not
strictly controlled for by confound regression).

Prediction results for global cognition
in the concatenation and stacking approach

As previous studies have reported a benefit of
stacking in terms of prediction accuracy, ML
performance for global cognition was compared
between a concatenation and stacking approach.
In the current study, global cognition was pre-
dicted to a similar extent in the stacking (Mean
MAE: 0.64-0.81, Mean R%:—0.03-0.34) and the
concatenation (Mean MAE: 0.64-0.80, Mean
RY:—0.04-0.34) approach (see Fig. 4 & Suppl.
Tables S8-9, 11-16, 21-24). Only in models with
extra features, differences between approaches
emerged for two algorithms, i.e., linSVR and Ridge
regression. Here, the prediction behaviour was
found to be more stable in the stacking approach
(see Fig. 4B, D). Nonetheless, the overall benefit of
using a stacking approach remained marginal in the
current investigation. Results for the two specific
cognitive profiles are reported in the Supplement
(see Suppl. Tables 525-48) and follow a similar
pattern as global cognition.

Prediction results for global cognition and specific
cognitive profiles

To address potential predictability differences across
cognitive domains, prediction performance was fur-
ther considered separately for global cognition and
distinct cognitive profiles. Results revealed that
global cognition and the two cognitive profiles may
be predicted to different extents in absence of con-
founder control. Across modalities, pipeline configu-
rations and algorithms, multimodal imaging data best
predicted global cognition (Mean MAE: 0.74-0.79,
Mean R%:—0.04-0.14) followed by the non-verbal
memory & executive functions component (Mean
MAE: 0.74-0.78, Mean R%: — 0.03-0.11) and the ver-
bal memory & language component (Mean MAE:
0.79-0.82, Mean R%:—003-0.05; see Fig. 5A &
Suppl. Tables S8-9, 11-16, 21-48). It should be
emphasized that while ML models could explain at
least a moderate amount of variance in both global
cognition and the non-verbal memory & executive
functions component, this was not the case for the
verbal memory & language component (see Fig. 5A).
Despite an overall increase in prediction performance,
predictability differences between targets were also
found in models with extra features and disappeared
altogether, when we controlled for age, sex, and edu-
cation (see Fig. 5B, C). Hence, results hint at consid-
erably lower predictability of language functions in
older age based on currently employed multimodal
input features.

Relevant features for the prediction of cognitive
performance in older age

The analyses of important features were performed
at both feature and modality level. In the feature
level approach, analyses were separately carried out
for models with and without extra features for the
different cognitive targets and age in the concatenation
approach. Across models without extra features, top
ranked features for prediction of cognitive targets
either belonged to the modality SC or GMV. In case
of SC, inter-network connectivity features were more
frequently found among the top ranked features than
within-network features (see Fig. 6 & Table 2). For
global cognition, nodes found in the rostral middle
frontal gyrus (GMV; DMN) and the inferior temporal/
parahippocampal gyrus (SC; limbic network) were
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4Fig. 5 Prediction performance for global cognition (Cog.
Comp.) and specific cognitive profiles (Non-vbl. Mem. & EF,
Vbl. Mem., & Lang.} using unimodal and multimodal data in
feature set (FSet) A in the concatenation approach with and
without extra features. Coefficient of Determination (R*) dis-
played across folds for different algorithms (linear Support
Vector Regression (linSVR), Ridge, Lasso, Elastic Net (EN)
and Random Forest (RF) regression). Results shown for A no-
deconf. condition without extra features, B deconf. condition
without extra features, C no-deconf. condition with extra fea-
tures

found to be important (see Fig. 6 & Table 2).
In turn for the non-verbal memory & executive
functions component, nodes in the parahippocampal
[ fusiform gyrus (SC; visual network) and temporal
pole / entorhinal cortex (SC; limbic network) were
relevant for prediction. For the verbal memory &
language component, relevant nodes were found
in the lingual / fusiform / parahippocampal gyrus
(SC; visual network) and the angular gyrus (GMV;
DMN)}) (see Fig. 6 & Table 2). For the age prediction,
important nodes were found in the left and right
parahippocampal gyrus (SC; wvisual and limbic
network) and right fusiform / lingual gyrus (SC; visual
network). Overlap was encountered in one feature
with the non-verbal memory & executive functions
component (see Fig. 6 & Table 2). In contrast, in
models with extra features, the most relevant features
constituted the demographic extra features and nearly
no brain features reappeared among the top ranked
features (see Table 2). For global cognition and the
non-verbal memory & executive functions component,
age and education were now found to be the most
important features for prediction. A node in the
temporal polefentorhinal cortex (SC; limbic network)
was additionally relevant for the prediction of the
non-verbal memory & executive functions component
(see Fig. 6 & Table 2). Interestingly, age seemed less
important for the prediction of the verbal memory &
language component. In this case, education appeared
to be the sole feature with a consistently high mean
coefficient across algorithms and feature sets. This
also fits with our univariate results, which revealed
a stronger correlation between the verbal memory &
language component and education than with age.
Results from the feature level were complemented
by those from the modality level. Across analytic
choices and cognitive targets, SC and GMV were
commonly ranked as the most important modalities in

the second level of the stacking approach (see Suppl.
Table §49). Along the lines, FC was ranked regularly
as the least important modality in the current analy-
ses for all cognitive targets. Once the extra features,
i.e., age, sex, and education, were added to the mod-
els, these were found to be the most relevant modality
in all models (see Suppl. Table S49). Nevertheless,
the pattern of differences between brain modalities,
i.e,, FC, 8C, and GMV, was mostly preserved. Thus,
results from the modality level, further, supported
those from the feature level and emphasized that brain
structural features appear more important than brain
functionally derived ones in predicting cognitive
performance within in the current sample of healthy
older adults from the 1000BRAINS study.

Validation results

Prediction performance was initially compared
between the PCA-derived (used in the main analy-
sis) and a theoretically defined global cognitive score
(i.e., average test performance across 14 different
cognitive tests). Across different options, predic-
tion accuracies were found to be very similar for the
two definitions of global cognition (PCA-defined:
Mean R%:—0.04-0.14; theoretically defined: Mean
R%:—0.04-0.14; see Suppl. Tables S50-57 & Suppl.
Fig. §58). Additionally, we investigated the clas-
sification performance of extreme groups to fur-
ther substantiate findings from the main analysis.
Results suggested that the multimodal input data
could not reliably distinguish between extreme cog-
nitive groups with best performing models achiev-
ing only 63% accuracy (Mean accuracy: 45.5-654%;
see Suppl. Tables S39 & Suppl. Fig. $60). As groups
were matched for all confounders, these results fur-
ther substantiated findings from our main analyses
in the deconf. condition. Moreover, including RSFC
estimates derived from negative correlations as addi-
tional input features (i.e., FSet C) revealed a relatively
similar pattern of results as observed in the main
analysis (FSet C: Without extra features: Mean RL
0.05-0.14 (no-deconf.¥-0.01-0.01 (deconf.); with
extra features: Mean R%: 0.10-0.34; FSet A&B: With-
out extra features: Mean R 0.02-0.14 (no-deconf.)
f—0.02-001 (deconf.); with extra features: Mean
R 0.12-0.34; see Suppl. Tables S8, §13, 8§21, §23,
S561-63 & Suppl. Fig. S64). Similarly as in the main
analysis, FC estimates were found to lead to lowest
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Fig. 6 Mapping of relevant
features for the prediction
of cognitive performance

in older age to brain. A-C
Nodes (in different colors
labelled for different tar-
gets) relevant for prediction
with no extra features, I)
node relevant for prediction
with extra features.

A) LH: lateral view

[2]

C) Bottom view

(

Prediction
targets

prediction performance compared to SC estimates
and region-wise GMV (see Suppl. Tables 561-63 &
Suppl. Fig. 564). Thus, the inclusion of negative edge
values in the estimation of RSFC estimates did not
seem to boost signal for the ML models. Furthermore,
to validate our ML pipeline and gain a greater insight
into the confounding variables, we examined the pre-
dictability of age, sex, and educational level from our
input features. Age (Mean R%: 0.05-0.44; see Suppl.
Tables S65-66 & Suppl. Fig. S67) and sex (Mean
accuracy: 60.5-83.0%: see Suppl. Tables S68 &
Suppl. Fig. 569) could be predicted with high accura-
cies. In contrast, educational level could be predicted
less reliably from our features (Mean R _045-0.04;
see Suppl. Tables ST0 & Suppl. Fig. 871).

Discussioi
The aim of the current study was to investigate the

general validity of the prediction of cognition from
imaging data in healthy older adults. Thereby, we

@ Springer
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were specifically interested in whether (1) integrat-
ing information from a network perspective, ie.,
RSFC and SC estimates, with morphological brain
data, i.e., region-wise GMV, may lead to better pre-
diction performance of different cognitive targets
than unimodal models, (2) global cognition and
distinct cognitive profiles differ in their predict-
ability from imaging data, and (3) results general-
ize across different ML pipeline configurations and
approaches, i.e., different modality combinations,
algorithms, feature sets, deconfounding analyses and
multimodal approaches, in a large sample of healthy
older adults from the 1000BRAINS study. Across a
variety of different analytic choices, moderate predic-
tion performance of cognitive variables could solely
be observed in absence of confounder control. In
this context, we found only a slight trend for better
predictability in multimodal than unimodal models,
higher prediction accuracies for SC and GMV than
RSEC and for global cognition compared to specific
cognitive profiles. Noticeably, once age. sex. and
education were controlled for, all previously reported

77



GeroScience

Table 2 Highly ranked features (according to mean coefficient) across algorithms and features sets in models with and without extra

features in the concate nation approach

Model Target Feature Centroid Coordi-  Desikan-Killiany Atlas | Julich-Brain Atlas
nates
Modality | Hemi- X y z
sphere | Network |
Node
—extra features  Global cognition 1 GMV —22 50 32  Rostral middle frontal gyrus | Frontal-1 (Gap
LHIDMNIPFC 15 Map)
2  SC: within —38 -6 —42 Inferior temporal & parahippocampal gyrus |
LH | Limbic | Node 6 Temporal-to-Parietal (Gap Map)
Comp 1 1 SC:inter —30 -32 —18 Parahippocampal & fusiform gyrus | Tempo-
LH I Visual | Node 2 ral-to-Parietal (Gap Map)
2 SC:inter -24 6 —40 Temporal pole & entorhinal cortex | Temporal-
LH | Limbic | Node 7 to-Parietal (Gap Map)
Comp 2 1 SC:inter —-24 -534 -8 Fusiform & lingual gyrus | Phl (PhG)
LH I Visual | Node 4
2 GMV —48 —60 46  Inferior parietal lobule & angular gyrus | PGa
LHIDMN | Par 7 {IPL)
Age 1 SC:inter —30 —32 —18 Parahippocampal gyrus | Temporal-to-Parietal
LH | Visual | Node 2 {Gap Map)
2 SC:inter 26 —52 —8 Parahippocampal gyrus | Ph3 (PhG)
RH | Visual | Node 36
3  SC:inter 22 —18 -28 Fusiform & lingual gyrus | Temporal-to-Pari-
FH | Limbic | Node 26 etal (Gap Map)
+extra features  Global cognition 1 Age - - - -
2  Education - - - -
Comp | 1 Age - - - -
2  Education - - - -
3 SC:inter -4 6 -40  Temporal pole & entorhinal cortex | Temporal-
LH | Limbic | Node 7 to-Parietal (Gap Map)
Comp 2 1  Education - - - -

Comp | =non-verbal memory & executive functions component; Comp 2=verbal memory & language component; LH=left hemi-
sphere; RH = right hemisphere; DMN = default mode network; Visual = visual network: Limbic = limbic network: PFC = prefron-

tal cortex; Par = parietal

effects disappeared and rather low predictability was
observed. Subsequent analyses showed that demo-
graphic variables alone already explained a substan-
tial amount of variance in the target variables. Thus,
results emphasize despite a small potential benefit of
a multimodal approach, the considerable impact of
factors such as age, sex, and education on the predic-
tion of cognitive targets in healthy older adults.
Cognition emerges from the complex interaction
of multiple organizational levels in the brain. As such,
differences in structural and functional brain network
architecture as well as in morphological brain fea-
tures have been related to cognitive performance dif-
ferences in older age [ 1, 3-13]. In terms of prediction,

most prior studies have focused on the usage of sin-
gle modalities to predict cognitive ability in healthy
older adults. A multimodal approach, however, may
allow for a more complete description of age-related
cognitive decline than each single modality as aging
has been found to affect the brain at all levels [67].
Initial encouraging results in different samples have
demonstrated that the use of mulimodal data may
improve prediction performance for different cogni-
tive abilities, e.g., fluid intelligence. global cogni-
tive function, visual working memory, fluid reason-
ing, vocabulary [26, 31, 33, 55, 68]. For example,
multimodal models, including information from
structural and functional imaging, yielded improved
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prediction accuracies of up to R> = 0035 compared
to R?=0.02-0.04 in unimodal models for fluid intel-
ligence in a large sample from the UK Biobank [31].
Similarly, in a longitudinal setting, changes in a clini-
cal score, i.e., Clinical dementia rating (CDR), were
found to be predicted with higher accuracies from
different multimodal models (R? range =0.34-042),
including non-brain information and brain features,
than from single modalities (R? range=0.01-0.28} in
a large sample from the OASIS-3 project [32]. Our
findings extend prior research by revealing moderate
prediction performance of different cognitive vari-
ables (global and domain-specific) across different
analytic choices using combined parameters of brain
structure and network architecture, ie., region-wise
GMV, RSFC, and SC estimates, and no demographic
deconfounding. In the no deconfounding conditions,
the best performing unimodal model (SC estimates)
was found to explain up to 11% of variance (R%) in
our global cognitive target, while the best multimodal
model (GMV +RSFC +SC) explained 14% of vari-
ance (R?). In terms of magnitude of prediction per-
formance, current results, thus, fall into the range of
what has been reported in prior studies. Noticeably,
this hints at a slight benefit of integrating information
across different imaging modalities for the prediction
of cognition in healthy aging.

Focusing on the single modalities, the lowest pre-
dictability was encountered for RSEC estimates. This
further substantiates results from previous analyses of
limited predictive potential of RSFC strength meas-
ures in different feature set combinations and hints at
variations in prediction potential of RSFC for cog-
nitive targets [24, 31, 54, 55, 67, 69]. For example,
RSFC data led to lower prediction results (RI=0.01)
than anatomical markers (R? = 0.28), e.g., mean cor-
tical thickness, cerebral GMY, and volumes of sub-
cortical areas, in predicting cognitive decline (CDR
change) in a sample of older adults from the OASIS-3
project [32]. Thus, it appears that cognitive perfor-
mance differences in older age may be less clearly
encoded in functional connectivity, especially in
RSFC estimates, but more so in brain structural infor-
mation. This may be due to the fact that brain func-
tion, i.e., RSFC and task-based FC, responds more
adaptively to aging. Aging is accompanied by both
increases and decreases in RSFC, which successively
have been related to cognitive performance altera-
tions [70]. Importantly, it has been postulated that

‘ﬂ Springer

the brain may engage into compensatory scaffolding
and the recruitment of additional neural resources,
e.g., connectivity, in an attempt to maintain cognitive
function, when confronted with brain functional and
structural decline [71, 72|. In this context, whether
the additional neural response will lead to preserved
cognition, will depend on the degree of scaffolding
available and with it on the extent of neural insults
that might have already taken place [71, 72]. Thus, it
may be argued that age-related RSFC alterations and
their relation to cognition are subject to high variabil-
ity, which may complicate a clear mapping between
RSEC patterns and cognitive performance in predic-
tion. In contrast, age-related structural decline once
having reached a sufficient degree typically results in
cognitive performance decreases [73-76]. This clear
correspondence may, in turn, be well captured by
ML prediction models and may explain the moderate
predictability based on SC estimates and region-wise
GMYV in the current study. Current results, in turn,
emphasize that brain structural measures may be cen-
tral to cognitive aging and suggest a prediction power
advantage of brain structural information over RSFC
patterns for cognitive abilities in older age [77].

Some cognitive functions are more strongly
aftected than others during the aging process, e.g.,
executive and memory functions [1]. This may also
be expressed in different extents of predictability. To
investigate this further, we considered different cogni-
tive targets in our sample of older adults, ie., global
cognition and distinct cognitive profiles, in the pre-
sent study. Results showed that global cognition was
best predicted, followed by the non-verbal memory
& executive functions component and finally the ver-
bal memory & language component across analytic
choices in the no-deconf. condition. One potential
explanation for the performance benefit of global cog-
nition over specific cognitive profiles may be related
to cognitive aging being thought of as a largely
domain-general process [T8-81]. As such, it may be
argued that general cognitive performance differences
in older age may be much more prominent and in turn
may also be more detectable at the whole-brain level
than domain-specific alterations. In terms of relevant
features for prediction, results revealed regions in
the frontal and temporal lobe to be most predictive,
which have been implicated in healthy and pathologi-
cal aging as well as have been associated with age-
related cognitive decline [82-86]. Specifically, our
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results suggest that alterations in the communication
within the limbic network and structural properties of
the middle frontal gyrus in the DMN may be critical
for identitying individual ditferences in global cogni-
tive performance in older age.

The non-verbal memory & executive functions
component was predicted second best. Highest load-
ings on this component were found for cognitive tests
on problem-solving, figural memory as well as visual
and visual-spatial WM. The structural wiring of the
parahippocampal/fusiform gyrus (visual network)
and temporal pole/entorhinal cortex (limbic network)
to other networks throughout the brain were found
to be important for prediction. Thus, predictive fea-
tures spanned regions that are typically thought to
be involved in cognitive tasks related to visual and
memory-related processes [87-95]. Thus, global and
domain-specific cognitive functions may not only be
captured by distinct neural correlates, but may also
differ in their most predictive features.

Interestingly, lowest prediction performance was
observed for the verbal memory & language compo-
nent in the current investigation. Results from prior
prediction studies with older adults fit this account
[26, 96, 97]. For example, language functions (HCP-
A: r=0.23, BARBI: r=0.12) have been shown to
lead to lower prediction performance than executive
functions (HCP-A: r=0.32, BARBI: r=0.28) and
attention (HCP-A: r=0.37, BARBI: r=0.23) in two
independent samples based on SC data [96]. Thus,
results are comparable to our SC results. Across algo-
rithms, feature sets and multimodal approaches, we
found correlation values between true and predicted
scores to range from r=0.19 to 0.34 for global cogni-
tion and non-verbal memory & executive functions,
while for the verbal memory & language component
smaller correlation values in a range of r=0.08 to
0.23 were observed. Language functions, thus, not
only appear to differ in aging trajectories (e.g., tend
to remain more stable than for example executive and
memory functions), but also in their predictability
to other cognitive domains, e.g., processing speed,
memory and executive functions, in older aged indi-
viduals [97]. A potential explanation may be that fac-
tors like education or occupational attainment may be
highly relevant for the prediction of language-related
cognitive performance overshadowing the predic-
tive utility of brain features [26, 98]. This is also
supported by the feature importance analyses in the

current study. Without the addition of extra features,
relevant regions for prediction included parts of the
lingual/fusiform/parahippocampal gyrus (visual net-
work) and the inferior parietal lobule/angular gyrus
(DMN), which not only seem to be involved in differ-
ent language-related functions, but also to be predic-
tive of language abilities in older age [17, 99-102].
However, once added to the ML models, educational
level appeared to be the most important feature for
the prediction of verbal memory & language and with
it to explain a large portion of variance in the target,
which corresponds to prior research reporting strong
associations between language measures and educa-
tional level [103, 104]. Current findings, thus, add to
previous research by emphasizing the unique role of
language functions in aging and stressing the intricate
link to educational measures in older age.

Importantly, all previously described effects of
successful prediction and emerging differences
between modalities and cognitive targets were no
longer encountered, once age, sex and education
were controlled for. The significant drop in prediction
performance after confounder control has to some
degree also been reported in former studies [15, 18,
105]. For example, Kwak et al. reported a drop in
mean prediction accuracy of neuropsychological test
performance from RSFC in models adjusted for age
(without confounder control: r=0.253, adjustment
for age: r=0.179) [18]. Nevertheless, different cog-
nitive targets could still be successfully predicted in
healthy older adults after controlling for demographic
factors across various studies. A potential explanation
for divergent results in the current study compared to
studies reporting successftul prediction even after con-
founder control may be differences in samples, ML
approaches, features, and targets used.

Therefore, to further evaluate the relevance of
demographic variables in the prediction setting we
investigated the individual contributions of age, sex,
and education to the prediction by including these
as extra features to the ML model. We found that
the addition of age, sex, and education to our brain
models drastically increased predictability of cog-
nitive targets, in line with prior studies [31, 32, 55,
106, 107]. For example, Dadi et al. showed that fluid
intelligence and neuroticism were more successfully
predicted when sociodemographic information was
included into the model in a large sample from the
UK Biobank (N=11,175) [31]. Similarly, Rasero

) Springer

80



GeroScience

et al. found that multimodal brain features together
with age, sex, and education led to a prediction per-
formance increase from median R*=0.078 to median
R*=0.197 for global cognition [55]. Dadi et al.
even reported fluid intelligence prediction based on
all sociodemographic measures to perform slightly
better without (RZ=0.17) than with brain imaging
(R?=0.16) [31]. The high relevance of demographic
features for prediction was also mirrored in the cur-
rent study. Present findings showed that joined mod-
els of brain features and demographic variables per-
form similar or even worse than models based only
on the demographic features. Age, sex, and educa-
tion were thereby found to reliably rank in the top
features in joined models of brain and demographic
features. Thus, it appears that the brain features, i.e.,
region-wise GMV, RSFC, and SC estimates, did not
add substantial information to the prediction of cog-
nitive performance in our older sample. Jointly, cur-
rent results from the confounder analyses particularly
accentuate the high impact of age, sex, and educa-
tion and the limited informational value of currently
employed brain features in the prediction of different
cognitive variables in a large sample of healthy older
adults. Given that age, sex, and education may have
a substantial influence on prediction performance, it
appears highly important to consider the influence of
demographic features on results in future prediction
studies in healthy aging. Along the lines, results from
ML prediction without control for demographic fac-
tors should be considered with caution as results may
not show the true predictive power of respective input
features.

Methodological considerations and future outlook

In the current study, we employed both a concat-
enation and stacking approach to examine whether
performance benefits may be observed for one over
the other. Against initial predictions, the stacking
approach did not reliably boost prediction accuracies
[54-56, 58, 62]. Results from both approaches were
found to be more or less comparable across a wide
range of algorithms, feature sets, deconfounding strat-
egies, and cognitive targets. Thus, current results pro-
vide further sustenance to prior work showing that a
stacking benefit may not always be observed and dif-
ferent approaches should be compared to delineate,
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which one offers the best results for the question at
stake [108].

Furthermore, it should be pointed out that a func-
tionally derived cortical brain parcellation was used
for all input modalities in the current study. The 400-
nodes Schaefer parcellation was applied for RSFC,
SC, and GMV to ensure comparability between
modalities and to other prediction and lifespan studies
[44, 50]. In future prediction studies, it might be valu-
able to explore the addition of subcortical regions,
which are not covered by the current parcellation and
have been shown to be highly relevant for distinct
cognitive processes [109].

Another aspect to consider is that a significance-
based threshold derived from null models based on
randomization of time series information and permu-
tation testing was included for resting-state connec-
tivity matrices in the present study [11, 12, 51, 110].
While there are various studies that utilize resting-
state connectivity matrices without a threshold, it was
implemented here to reduce the amount of spurious
correlations, which have been frequently encountered
in RSFC [11, 12, 51, 53, 110-113]. Despite the poten-
tial of smaller correlations carrying meaningful infor-
mation, no thresholding bears the risk of adding fur-
ther noise into the analyses [11, 12]. As such, we have
decided on a more conservative approach of using
a threshold [53]. Furthermore, given that prediction
performance appears generally low for FC based on
the thresholded correlation matrices, we would antici-
pate that including those potentially smaller correla-
tion values would not significantly impact ML pre-
diction performance and boost the overall signal in
the FC data, but rather add further noise to the ML
models.

Additionally, it might become necessary in future
studies to include other information about the aging
process into prediction models for cognitive perfor-
mance and prospective future cognitive decline. In
the current study, we specifically investigated the use
of RSFC and SC estimates due to the role of brain
network patterns in aging and cognition. Nonetheless,
their computation inherently includes a dimensional-
ity reduction step and the loss of potentially relevant
information. Similar to studies in younger cohorts, the
use of raw connectivity measures (RSFC & SC) may
be explored in future studies targeting the prediction
of cognitive performance in older age. Moreover, one
might consider adding FC dynamics and task-based
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fMRI information to prediction models of cognitive
variables in older age [114-117]. Beyond brain fea-
tures, it may also be interesting to integrate non-brain
information that may be relevant in terms of cognitive
aging into ML models, such as genetic information,
health or environmental features, to further improve
and stabilize models [118§].

In addition, newest studies have revealed that sam-
ples > 1000 or larger may be necessary to reliably
detect brain-behavior relations with small effect sizes
[68, 119, 120]. In this realm, our sample of N=3594
may not be large enough to obtain robust findings and
higher prediction accuracies.

Moreover, the current study focused solely on a
cross-sectional examination of prediction potential
of cognitive performance in older age. To develop a
marker for prospective cognitive decline in the future,
it becomes necessary to shift attention to the investi-
gation of longitudinal data and whether specific brain
patterns may relate to later cognitive performance of
an individual [121, 122].

Conclusions

The present study addressed the universality of cog-
nitive performance prediction from imaging data
in a large sample of healthy older adults using dif-
ferent ML approaches. Specifically, the benefit of
integrating information across brain structure, i.e.,
region-wise GMV, and network organization, i.e.,
region-wise GMV, RSFC, and SC estimates, for the
prediction of cognition compared to unimodal models
as well as predictability differences between global
cognition and two cognitive profiles were examined
across a systematic analysis of different ML pipe-
line configurations. Present findings hint at moderate
prediction performance of different cognitive targets
from multimodal data in absence of confounder con-
trol. In this setting, we observed a small tendency for
multimodal outperforming unimodal models in terms
of prediction accuracy. Additionally, we observed
higher predictability based on structural compared to
functional brain features as well as better predictabil-
ity of global cognition in comparison to distinct cog-
nitive profiles. After controlling for age, sex, and edu-
cation, previously described effects vanished stressing
the intricate link between cognition and demographic

factors at the brain level. Thus, present results empha-
size the importance of considering these variables,
i.e., age, sex, and education, in aging studies using a
prediction framework. Furthermore, in future studies,
it appears warranted to consider the usage of alter-
native input features in the search for a marker for
age-related cognitive decline. Overall, present results
suggest that although multimodal data may be ben-
eficial for prediction of cognitive functioning in older
cohorts, developing a marker for age-related cogni-
tive decline may be aggravated by the influence of,
e.g., demographic factors.
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5 General Discussion

The current dissertation aimed at promoting the search for an imaging marker for age-
related cognitive decline, providing a greater insight into the predictive power of imaging
data for cognitive performance prediction in normal aging and advancing our understanding
of the structure-function relationship in aging linked to cognition. In the first study, the
biomarker potential of functional brain network information for age-related cognitive decline
was addressed. In the second study, the age-characteristic interrelations between RSFC
and SC patterns and cognitive performance were examined in older adults. In the third
study, the potential benefit of using multimodal data, i.e. region-wise GMV, RSFC and SC
estimates, for the prediction of cognitive performance in healthy aging was investigated.

The first study focussed on the classification and prediction of cognitive performance
differences from RSFC estimates in healthy older adults. Across a systematic analysis of
ML approaches, predictability of global and domain-specific cognition from RSFC estimates
remained low with models failing to reliably outperform dummy models (Kramer et al.,
2023). Thus, results hinted at limited utility of currently employed RSFC estimates as single
biomarkers for age-related cognitive decline. The second study targeted the closer
examination of structure-function relationships linked to cognition in aging and revealed the
existence of three prominent aging profiles in older adults, which were associated with
specific interrelations of RSFC, SC and cognitive performance (Stumme et al., 2022). In
turn, the third study examined whether integrating information across modalities, i.e. region-
wise GMV, RSFC and SC estimates, may boost the predictability of global and domain-
specific cognitive performance in healthy older adults in a systematic evaluation of different
ML approaches. Findings demonstrated moderate prediction performance across analytic
choices in absence of confounder control (Kramer et al., 2024). In this context, a small trend
for better prediction performance in multimodal compared to unimodal models and
differences in prediction accuracies across modalities and cognitive targets were observed.
These aforementioned effects could no longer be seen, once the effects of age, sex and
education were controlled for. Results, thus, suggested the great impact of demographic
factors, e.g. age, sex and education, despite a potential benefit of using multimodal data in
the prediction of cognitive functioning in healthy older adults. Jointly, the results from this
dissertation emphasize the challenges on the road to ultimately developing an imaging
marker for age-related cognitive decline and the manifold insights that may be gained from

a multimodal approach to study aging.
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5.1 Effect sizes in brain-behaviour relationships in older age

In recent years, the number of studies in samples of younger adults and
neurodegenerative patients reporting successful prediction and classification from imaging
data in the realm of cognition has continuously increased (Cui and Gong, 2018; Dhamala
et al., 2021; Dubois et al., 2018; Hojjati et al., 2017; Jiang et al., 2020; Khazaee et al., 2016;
Sripada et al., 2020b). Nevertheless, these promising findings could not be translated to
large samples of healthy older adults from the 1000BRAINS study in the current dissertation
(Kramer et al., 2024, 2023). One potential explanation for this result may relate to small
effect sizes in brain-cognition relationships encountered in older age. In comparison to
younger cohorts, the heterogeneity of the aging process may pose unique obstacles to the
identification of an accurate and reliable biomarker of cognitive abilities and thus, may
attenuate effect sizes (Lin et al., 2018). The aging process is marked by brain structural and
functional rearrangements and substantial inter-individual variability at the brain and
cognitive level, which may lead to a convoluted link between cognition and brain in aging
(Andrews-Hanna et al., 2007; Chan et al., 2014; Chong et al., 2019; Fjell et al., 2015; Grady
et al., 2016; Habib et al., 2007; Hedden and Gabrieli, 2004; Jockwitz et al., 2019, 2017a,
2017b; Mowinckel et al., 2012; Ng et al., 2016; Onoda et al., 2012; Stumme et al., 2020).
In turn, this may pose difficulties for identifying brain patterns linked to cognitive
performance differences in healthy older adults, negatively impact on effect sizes and may
explain the low discriminatory and predictive power across the first and third study of this
dissertation (Scarpazza et al., 2020). This notion is further supported by a recent study by
Kandaleft et al. (2022), which showed in a sample from the CamCAN study that fluid
intelligence could only be predicted from RSFC in younger adults (18-40 years old), but not
in middle aged (41-60 years old) or older adults (> 61 years old) (Kandaleft et al., 2022).
Expanding on this, it has been shown that models derived from young adults using RSFC
and SC information may not generalize well to older adults in the prediction of a variety of
cognitive functions (Yu and Fischer, 2022). This, in turn, suggests age-specific brain-
behaviour associations and profound differences between age groups. Thus, it appears that
clear predictability differences between younger and older aged individuals may emerge
and that increases in heterogeneity among individuals with advancing age may pose
difficulties for accurate classification and prediction of cognitive abilities in older age.

Comparing the results to those extracted from patient samples, low classification and
prediction performance may be linked to more pronounced differences between HC and
patients (Amaefule et al., 2021; Kwak et al., 2021a). In this context, it has, for example,

been shown that patients with MCI and AD display pronounced changes in brain structure,

89



e.g. extensive volume loss in medial temporal lobe structures, and function, i.e. shifts in
network communication and the connectivity of central hub regions of the brain, compared
to cognitively healthy older adults (Dai et al., 2015; Duara et al., 2008; Farahani et al., 2019;
Lin et al., 2018; Sanz-Arigita et al., 2010; Supekar et al., 2008). ML classification and
prediction studies on patient samples further support this argument. For instance, patients,
i.e. MCl and AD, could be distinguished from HC based on RSFC graph metrics with high
accuracies (maximum classification accuracy for three groups, i.e. HC, MCI and AD =
88.42%) as well as converters from MCI to AD from non-converters (maximum classification
accuracy = 91.4%) (Hojjati et al., 2017; Khazaee et al., 2016). Similarly, a recent study has
reported prediction accuracies of up to R2 = 0.55 for memory performance based on
morphometric information, e.g. grey matter density, demographic features and ApoE4 in a
large sample (N=959) of HC, MCI and AD patients from the DZNE-longitudinal cognitive
impairment and dementia study (Nemali et al., 2022). These magnitudes of effects may be
more difficult to observe in a healthy population. This is supported by findings showing that
training a model on data from healthy participants and neurodegenerative patients leads to
higher prediction accuracies on different cognitive tests than when a model is trained solely
on healthy participants (Kwak et al., 2021a). As such, ML models in healthy older adults
may be hampered by smaller effect sizes (Kramer et al., 2023). In future studies, it might
be valuable to investigate whether cognitive performance prediction in healthy older adults
benefits from training on mixed populations and applying it in a second step to only healthy
older adults.

Besides differences in samples, it is generally still unclear to what extent cognition and
behaviour can be predicted based on brain imaging information (Easley et al., 2023; Genon
et al., 2022; Schulz et al., 2022; Woo et al., 2017). Thus, the identification of neuroimaging
markers for cognitive abilities or behavioural constructs has remained challenging similarly
to developing diagnostic markers for diseases (Woo et al., 2017). It appears that only a
small portion of variance in cognition and behaviour may be captured by brain features that
have been investigated so far (Cui and Gong, 2018). This is represented in moderate
prediction performance across a range of different studies and stands in contrast to prior
and current results on the prediction of, for example, demographic factors, specifically age
(Bittner et al., 2021; Cole, 2020; Kramer et al., 2024, 2023; Liem et al., 2017; Stumme et
al.,, 2022). Even when attempts are being made to systematically increase effect sizes,
e.g. extending fMRI features, averaging target phenotypes and using a more balanced
sample, explained variance in cognitive targets was found to only increase marginally

(Easley et al., 2023). As such, it has been shown that employing the aforementioned steps
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might only increase explained variance (R?2) from 3% to 6% in fluid intelligence in a large
sample of older adults from the UK Biobank based on fMRI information (Easley et al., 2023).
Results from the current investigations further support this view and extend it to the use of
brain network information, i.e. FC and SC estimates, and region-wise GMV. Across the first
and third study, best models were based on multimodal brain information and did not explain
more than 15% of variance in the different cognitive targets in absence of confounder
control (Kramer et al., 2024, 2023). Thus, it may be argued that currently tested brain
features may not be optimally suited to explain high amounts of variance in cognitive
targets, but rather quickly reach a limit beyond which no increases in prediction performance
are to be expected. Nevertheless, it should be pointed out that this may only apply to the
types of features that have been tested so far and not necessarily extend to those
developed in the future. Furthermore, to obtain a more realistic insight into brain-behaviour
relationships and uncover potential replicability issues, even findings with moderate effect
sizes or null results should be reported (Janssen et al., 2018). This may, in turn, also inform

about possible new research avenues.

5.2 The role of RSFC for cognition prediction in healthy older adults

In recent years, a multitude of ML studies have been published on the use of RSFC
information in the prediction of cognition and behaviour in different sample populations. This
may be due to the ease of application of rsfMRI and the established link of RSFC to task
performance (Nashiro et al., 2017). In this context, a majority of studies have reported
successful prediction of cognitive variables, e.g. fluid intelligence, processing speed and
working memory, based on RSFC information with high prediction accuracies in younger
and older adults (Dhamala et al., 2021; Dubois et al., 2018; Gao et al., 2020; Plaschke et
al., 2020). Until very recently, initial findings have been published revealing a more diverse
picture in terms of the prediction potential of RSFC for cognitive variables (Dadi et al., 2021;
Rasero et al., 2021; Vieira et al., 2022a). As such, several studies began to show reduced
predictability of cognitive variables based on RSFC across datasets (Dadi et al., 2021;
Heckner et al., 2023; Rasero et al., 2021; Tetereva et al., 2022; Vieira et al., 2022a). For
example, RSFC patterns led to lower predictability of different cognitive measures,
e.g. global cognition, fluid intelligence, and prospective global cognition and fluid
intelligence, in large samples of young and older adults (i.e. from the HCP, UK Biobank and
OASIS-3 project) compared to other imaging information, e.g. structural brain data (Dadi et
al., 2021; de Dieu Uwisengeyimana et al., 2022; Rasero et al., 2021; Vieira et al., 2022a).
Present findings add to this growing literature of limited predictability of cognitive and

behavioural constructs based on RSFC, further expand it to RSFC estimates targeting
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network integration and segregation and thus, stand in sharp contrast to earlier studies in
the field. In the first study, it was shown that RSFC estimates led to low classifiability and
predictability of cognitive performance across a wide range of analytic choices (Kramer et
al., 2023). Results from the third study further corroborated initial findings and emphasized
that among single modalities RSFC estimates led to the lowest prediction results compared
to region-wise GMV and SC estimates (Kramer et al., 2024). Across analytic choices, mean
prediction accuracies ranged between 2 to 4% explained variance for RSFC estimates
compared to 5 to 11% explained variance in structural brain features for global cognition
(Kramer et al., 2024). Overall, results suggest that functional connectivity, specifically RSFC
estimates derived from graph-theoretical approaches, may capture cognitive performance
differences in older age only to a limited extent (Kramer et al., 2024, 2023). In turn, current
results emphasize that structural information may be more informative and predictive of
these differences (Kramer et al., 2024). This is in line with prior studies showing high
relevance of structural measures for cognitive aging and the successful prediction of
cognitive abilities from SC features and structural information in health and disease (Feng
et al., 2022; Li et al., 2020; Litwinczuk et al., 2022; Lockhart and DeCarli, 2014; Yu et al.,
2020). In this context, it should be noted that one potential explanation for structural features
outperforming functional ones may be related to the increased variability in brain function
compared to structure in the aging process that may also complicate the link to cognition
(Grady, 2012; Sala-Llonch et al.,, 2015). Both compensatory and dedifferentiation
tendencies may be at work making a clear mapping between RSFC patterns and cognitive
performance difficult for a ML model to establish in older adults (Goh, 2011; Reuter-Lorenz
and Cappell, 2008; Sala-Llonch et al., 2015; Stumme et al., 2022). Along the lines, the low
ML performance of RSFC for cognition prediction in older age observed in the first and third
study of the present dissertation might have been further aggravated by the inherent
dimensionality reduction of graph-theoretical approaches (Cui and Gong, 2018). This, in
turn, might have caused relevant information for prediction to be lost ultimately resulting in
low ML accuracies (Cui and Gong, 2018). Furthermore, only static RSFC has been
examined in the current dissertation disregarding the time-varying nature of RSFC and
richness in data across time (Petkoski et al., 2023). Given that age-related differences in
the dynamic configuration of functional networks may be associated with cognitive
performance, a shift in perspective to investigations of dynamic functional connectivity
(dFC) in future studies may allow taking into consideration information beyond that of static
RSFC, more fully capturing the variability in older age and with it enriching the information

content to be used by a ML model (Battaglia et al., 2020; Viviano et al., 2017; Xia et al.,
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2019; Yang et al., 2023). To sum up, results from this dissertation highlight that brain
structural patterns may carry important information about cognitive performance differences
in older age and in turn, question the usability of static RSFC measures, particularly graph-

theoretically derived metrics, for cognitive performance prediction in older ages.

5.3 Multimodal aging profiles integrating SC, RSFC and cognition

Age-related cognitive decline is accompanied by macroscopic changes in brain
structure, function and connectivity between brain regions. In this context, the usage of a
multimodal approach is thought to allow for a more comprehensive description of cognitive
aging and for the in-depth investigation of the relationship between brain structure, function
and cognition in older age. Thus, supporting a more mechanistic understanding of age-
related cognitive changes. In this context, recent research has embarked on examining the
interrelation between RSFC and SC in aging and how it relates to cognition to foster a
greater understanding for the causes of age-related functional network changes (Betzel et
al., 2014; Fjell et al., 2017; Hirsiger et al., 2016; Madden et al., 2020; Straathof et al., 2019;
Tsang et al., 2017; Zimmermann et al., 2016). Along the lines, prior studies have revealed
mixed results. As such, some studies have suggested that RSFC and SC change
independently across the life span and in higher ages (Fjell et al., 2017; Hirsiger et al., 2016;
Tsang et al., 2017), while others have demonstrated SC to correlate with RSFC and to exert
at least a partial influence on it (Betzel et al., 2014; Madden et al., 2020; Straathof et al.,
2019; Zimmermann et al., 2016). Adding cognition to the equation, it also seems that no
clear pattern may be observed. In this context, it has, for example, been found that only
RSFC mediated the relationship between age and executive functions decline, but not SC
(Madden et al., 2020). In contrast, Pur et al. (2022) showed in a longitudinal multivariate
study that older adults with reduced processing speed capacity tended to show reduced SC
primarily in frontal regions accompanied by decreases in FC in cingulo-opercular and DMN
regions (Pur et al., 2022). Results from the second study of this dissertation add to the
growing literature of structure-function relationships in the aging context and support
previous results revealing joined patterns of RSFC and SC alterations in aging that may be
related to cognitive performance differences. Along the lines, current findings demonstrated
that three different aging profiles may be derived from multivariate analyses, i.e. partial least
squares regression (PLSR), with distinct patterns of RSFC, SC and cognitive alterations,
which may all be highly characteristic of the aging process (Stumme et al.,, 2022).
Particulary, it was shown that the profiles may be distinguished by different acuteness of
SC decline. Thereby, the first profile demonstrated a pattern of SC and RSFC alterations

most commonly found in prior literature, i.e. declines in SC across the whole brain, lower
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segregation of primary processing networks and higher integration of higher order networks
in terms of RSFC and age-related impairments in cognitive performance (Betzel et al., 2014;
Madden et al., 2020; Perry et al., 2017; Stumme et al., 2022; Zhao et al., 2015). Along the
lines, the second profile revealed SC declines pertaining to the frontal lobe only and a
strongly interconnected functional system, which was accompanied by the strongest age-
related cognitive decline (Stumme et al., 2022). Lastly, the third profile exhibited rather
preserved SC and comparably low overall RSFC, which was associated with similar
cognitive performance declines as in the first profile (Stumme et al., 2022). Thus, current
results suggest that the relationship between SC, RSFC and cognition during the aging
process appears to be best captured by distinct patterns highlighting the complex
interconnectedness of fuctional and structural systems supporting cognition in aging.
Particularly, the severity of SC decline seems to play a fundamental role for age-related
functional network reorganization and with it for cognition. Along the lines, current findings
provide support for the dedifferentiation account in aging with the most strongly integrated
functional system found to be associated with the greatest cognitive decline (Goh, 2011;
Koen et al., 2020; Koen and Rugg, 2019). In this context, beginning SC decline was found
to be related to increases in RSFC, although this additional recruitment did not appear to
lead to higher cognitive maintenance. Thus, results from the second study emphasized that
distinct patterns of interrelations between RSFC and SC changes during aging may be
encountered, which may differentially relate to cognition (Stumme et al., 2022). In turn,
these would have not been discovered by separate analysis of the two modalities and
provide a framework for functional network shifts and related cognitive performance
declines. Along the lines, multimodal analyses may offer new perspectives on the
underlying root causes of age-related cognitive decline and support the view that they may

more fully capture cognitive aging than single modalities on their own.

5.4 Potential benefits of multimodal data for cognition prediction in aging

Multimodal approaches may not only be informative in terms of a more detailed
mechanistic understanding of the structure-function relationship in aging and its relation to
cognition, but may also have a positive impact on predictability of cognitive performance in
older age. Following this view, prediction performance should be boosted by including
multimodal brain data as more information should be available characterising the
relationship between brain and behaviour. This is indeed what has been reported in recent
multimodal prediction studies on different cognitive functions cross-sectionally across the
lifespan and in older cohorts as well as longitudinally (Cole, 2020; Dadi et al., 2021; Jiang
et al., 2020; Rasero et al., 2021; Schulz et al., 2022; Tsapanou et al., 2020; Vieira et al.,
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2022a; Xiao et al., 2021). Results from this dissertation extend prior findings by highlighting
a similar tendency in multimodal models based on brain network information and region-
wise GMYV for the prediction of global and domain-specific cognitive performance in a large
sample of healthy older adults in absence of confounder control, although only to a small
extent (Kramer et al., 2024). While the first study was marked by low classification and
prediction performance based on a single modality, i.e. RSFC estimates, the third study
showed slightly improved prediction performance for multimodal models (Kramer et al.,
2024, 2023). In this context, the best multimodal model (all brain features; mean R2 = 0.14)
outperformed the best single modality (SC estimates; mean R?=0.11) by 3% more variance
explained in the global cognitive target (Kramer et al., 2024). In terms of effect size, findings
correspond to ranges reported in the literature (Dadi et al., 2021; Vieira et al., 2022a; Xiao
et al., 2021). Overall, results from this dissertation suggest a small potential benefit of
integrating information across modalities, i.e. region-wise GMV, RSFC and SC estimates,
for cognitive performance prediction in healthy older adults by providing slightly more

accurate approximations of cognition than single modalities.

5.5 Predictability differences among cognitive targets in older age

Distinct cognitive functions may be differentially affected by the aging process
(e.g. processing speed, executive and memory functions tend to be more strongly impacted
by aging than verbal abilities and semantic knowledge), which may result in predictability
differences between them (Grady, 2012; Hedden and Gabrieli, 2004; Park and Reuter-
Lorenz, 2009; Mather, 2010; Salthouse, 2004). This view is supported by present results
pointing at considerable differences in prediction performance between different cognitive
domains, i.e. global and domain-specific cognition, in healthy older adults (Kramer et al.,
2024, 2023). In the first and third study, global cognition tended to be best predicted,
followed by the non-verbal memory & executive component and the verbal memory &
language component in absence of confounder control (Kramer et al., 2024, 2023).
Superiority of global cognition in terms of predictability may be related to the fact that it may
account for the greatest amount of variance in inter-individual differences in cognition and
may, thus, be better predicted (Tucker-Drob, 2011; Tucker-Drob et al., 2014; Tucker-Drob
and Salthouse, 2013). Further support for this stems from prior studies in primarily younger
cohorts showing greater prediction accuracies for global compared to domain-specific
cognition from imaging data (Sripada et al., 2020b; Vieira et al., 2022b). Current results
expand on this and emphasize that a similar pattern may also emerge in healthy older

adults.
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By far, lowest prediction performance across the first and third study was observed for
language functions (Kramer et al., 2024, 2023). Even when not controlling for demographic
confounders, i.e. age, sex and education, language abilities failed to be successfully
predicted in healthy older adults in this dissertation. These findings are in line with recent
accounts in the literature across the lifespan and in older cohorts (Feng et al., 2022; Shafto
and Tyler, 2014; Tsapanou et al., 2020). For instance, multimodal data could better predict
fluid reasoning capabilities than vocabulary or language function in different large samples
across the lifespan and in older adults (Tsapanou et al., 2020; Feng et al., 2022). A potential
explanation may be that differences in language abilities are much more related to factors
such as educational and occupational attainment and less so encountered in specific brain
patterns, which was supported by the feature importance analysis in the third study (Kramer
et al., 2024; Oschwald et al., 2019; Tsapanou et al., 2020). Findings from this dissertation,
thus, hint at an exclusive role of language functions in aging and place emphasis on the link
to measures such as educational attainment in older age. Overall, it appears that ML
performance differences may partly be explained by differences in cognitive targets, with
global cognition showing a predictability advantage compared to domain-specific
constructs, when using a whole-brain approach. Whether these predictability differences in
older adults also persist in, for example, a network-based approach (i.e. using features from
only one specific network, e.g. FPN, as input to ML, which may be particularly important for
a specific cognitive function, e.g. executive functions), remains to be investigated in future

studies.

5.6 Relevance of demographic factors for cognition prediction in older adults

In ML classification and prediction studies, as in any other study, the variable of interest
may not only be linked to the feature of choice, but also share relations with other factors,
which may not be of principal interest and instead may overshadow or influence the
examination of the link between feature and target (Boeke et al., 2020). These are often
termed confounding variables or covariates to a study question. With the rise of ML studies
in the neuroimaging field, also confounding variables have moved to the centre of attention
with experiments showing their impact in various different ML settings and new methods
being developed to control for these (Chyzhyk et al., 2022; Snoek et al., 2019). As prior
studies have shown that the influence of covariates on ML performance may be substantial,
different forms of confounder analyses were conducted in the studies of this dissertation
(Omidvarnia et al., 2023; Rasero et al., 2021; Snoek et al., 2019). These included 1) varying
degrees of deconfounding, i.e. controlling for age, sex and education (study 1 & 3), and 2)

the usage of age, sex and education as extra features in the ML models (study 3) (Kramer
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et al., 2024, 2023). Current results suggest a substantial impact of demographic factors on
prediction performance and a strong link between those factors and cognition in healthy
older adults (Kramer et al., 2024; Stumme et al., 2022). Particularly in the third study,
controlling for age, sex and education caused prediction levels to drop to chance level, and
with it, differences between modalities and cognitive targets to vanish (Kramer et al., 2024).
In contrast, the addition of demographic factors to brain models led to drastic increases in
prediction performance, similarly to findings reported in the literature (Dadi et al., 2021;
Rasero et al., 2021; Vieira et al., 2022a; Yeung et al., 2022; Yu et al., 2020). Reconciling
these two findings, it may be argued that confounder adjustment may have removed
essential variance for the accurate prediction of cognition and that age, sex and education
explain a substantial amount of variance in the cognitive targets. In the literature, findings
regarding the loss of effects after confounder control remain relatively scarce. Nevertheless,
there is initial evidence that controlling for demographic factors, e.g. age, may eliminate
previous successful prediction results of cognitive targets in healthy older adults (Gbadeyan
et al., 2022). Current results extend prior findings and suggest that age, sex and education
appeared to have a particularly strong effect on cognition in the present samples (Kramer
et al., 2024). Findings from this dissertation, thus, stress the importance of considering
demographic factors in future prediction studies in the aging context and delineating their

impact on prediction.

5.7 Systematic assessment of ML approaches

With the advance of ML techniques in recent years, a multitude of new approaches
have entered the neuroimaging field. While there exist initial studies comparing the effect
of different ML pipeline options and preprocessing steps on ML performance, there is
currently no agreement on a standard ML pipeline to be used and substantial variability in
pipelines tested (Arbabshirani et al., 2017; Dadi et al., 2019; Feng et al., 2022; Jollans et
al., 2019; Pervaiz et al., 2020). Optimal choices may strongly depend on the dataset as one
setup may simply not fit all (Dadi et al., 2019; Jollans et al., 2019; Paulus et al., 2019).
Furthermore, currently limited insight is available regarding pipeline configurations for the
use of graph-theoretically derived metrics (Dadi et al., 2019). Thus, different pipeline
configurations were systematically evaluated across the first and third study in light of
factors that have previously been shown to exert an influence on ML performance,
e.g. algorithms, feature sets, sample size, feature selection/hyperparameter optimization
steps and multimodal approaches (Kréamer et al., 2024, 2023). Across analytic choices,
current results were mostly consistent and did not differ substantially between pipeline

options. This emphasizes a certain generalizability of the findings across analytic options
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and thus, greater independence from analytic choices. In turn, this also means that there
was not a single pipeline that was advantageous throughout. The exploration of different
analytic choices inherently comes with exploiting researcher's degrees of freedom
(Varoquaux et al., 2017). Keeping this in mind, for future studies it appears advisable to set
up finely balanced analyses assessing, whether findings generalize across different ML
pipeline configurations. In any case, it appears crucial to report variations in pipelines and
corresponding results transparently and completely without the intentional leaving out of
analytic choices that may be less favourable to provide a full account of the results (Janssen
et al., 2018).

5.8 Limitations

One major methodological consideration relates to the choice of input features used
across the three studies (Kramer et al., 2024, 2023; Stumme et al., 2022). Overall,
prediction performance was limited (study 1 & 3) or explained less variance than prior
studies (study 2) hinting at the fact that the selected features might have not been
informative enough or at least possessed lower informational value compared to other input
features. This appears to be especially true for the RSFC estimates. As already mentioned
in paragraph 5.2, one potential explanation for current results pertains to the inherent
dimensionality reduction step of graph-theoretical approaches potentially leading to the loss
of relevant information (Cui and Gong, 2018). Additionally, only a limited range of graph-
theoretical metrics were examined, which may be extended in future studies to include
information on hubness, small-worldness and modularity (Betzel, 2022; Betzel et al., 2014;
Sporns, 2011). Given that also the multimodal setup provided only limited prediction value,
it might be further necessary to include other brain information into the models for accurate
cognitive performance prediction in older age. Potential candidates based on initial
promising findings in the literature in mostly younger cohorts are raw connectivity measures,
task-based fMRI, dFC and edge time series information among others (Feilong et al., 2021;
Sasse et al., 2022; Soch et al., 2022; Sripada et al., 2020a). In the future, it may also be
valuable to look beyond brain information and integrate other factors that may be of
importance in this context, i.e. genetic, health and environmental information, to obtain
higher prediction performance and larger effect sizes (Murdaca et al., 2021).

Turning to the other part of the equation, also the target and its reliability may be
reconsidered. For generalizable and reliable ML prediction, it is not only important to build
models on input features that reliably carry sufficient signal for the task at hand, but also to
provide a target variable that reliably measures and captures what it is intended to measure.

As such, there is very recent evidence that a lack in reliability of a cognitive or behavioural
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target variable may equally lead to poor prediction performance and potentially
irreproducible effects (Gell et al., 2023; Nikolaidis et al., 2022). Potentially, providing an
explanation for the low effect sizes encountered despite larger sample sizes (Nikolaidis et
al., 2022). Additionally, the defined target may simply constitute a noisy representation of
the underlying construct intended to be measured, which may provide an explanation for
why targets such as age and sex yield consistently higher and more stable prediction results
compared to cognitive factors and behavioural markers (Easley et al., 2023). An effect that
was also observed across the three studies of this dissertation with cognition being far less
reliably predicted from imaging data than age (Kramer et al., 2024, 2023; Stumme et al.,
2022). In the future, it might, therefore, be advisable to pay more attention to the reliability
of a measure, built on information from multiple time points and more rigorously address
the construct validity of a given target variable.

Another point to consider is that solely cross-sectional data was used in this dissertation
(Kramer et al., 2024, 2023; Stumme et al., 2022). Although interesting insights can be
gained cross-sectionally and it offers the possibility to test different potential candidates as
imaging marker for cognitive performance differences in older age, it only addresses the
relation between cognition and brain at one time point (Damoiseaux, 2017; Salthouse,
2011). Aging is an inherently dynamic process and as such, brain and cognitive changes
may evolve with time (Damoiseaux, 2017; Salthouse, 2011). Thus, a longitudinal
perspective becomes essential, if we one day wish to develop a prospective marker for age-
related cognitive decline and better understand the origins for the high inter-individual
variability in aging.

Furthermore, it should be emphasized that ML may be complemented by other
approaches that may lead to new and interesting insights beyond mere pattern recognition
to characterize brain-behaviour relationships. Particularly, computational modelling
approaches, such as for example The Virtual Brain (TVB) as a tool, may allow for causal
discoveries and a deeper mechanistic understanding of the relation between brain
structure, functional dynamics and observable behaviour, e.g. cognition (Falcon et al., 2016;
Ritter et al., 2013). This may be achieved by the formulation and testing of distinct
hypotheses within a brain network model driven by underlying biology (Falcon et al., 2016;
Ritter et al., 2013). Fields of application vary from normal aging to neurodegenerative
diseases (Falcon et al., 2016; Lavanga et al., 2022; Petkoski et al., 2023; Yalginkaya et al.,
2023). In turn, further insights from these approaches may not only potentially foster our
knowledge on the underlying root causes for the high inter-individual variability in aging, but

may also provide potential candidate biomarkers to be used in a ML predictive setting. Thus,
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predictive analyses may in the future benefit from integrating information from
computational models and from operating alongside these approaches, e.g. TVB, in the

search for a reliable biomarker for age-related cognitive decline.

5.9 General Conclusion

This dissertation, particularly, investigated the biomarker potential of RSFC estimates
targeting network integration and segregation, the age-characteristic interrelations between
RSFC and SC patterns and cognitive performance and in turn, the benefit of using
multimodal brain data, i.e. region-wise GMV, RSFC and SC estimates, for the prediction of
cognitive performance differences in large (N>500) samples of healthy older adults from the
1000BRAINS cohort. Jointly, the three studies in this dissertation add to the literature by
showing that currently employed RSFC estimates may only carry limited predictive value
for cognitive performance differences in older age, that particular RSFC and SC patterns
together with cognitive performance may be summarized in distinct aging profiles and that
moderate prediction performance based on multimodal data may only be observed in
absence of confounder control. Along the lines, results strongly emphasize the substantial
impact demographic factors, i.e. age, sex and education, may have on ML performance and
the criticality in considering these factors in prediction studies of cognition in healthy older
age. Furthermore, current results highlight the various insights that may be gained by using
a multimodal approach in different application contexts. In future studies, it might be
worthwhile to investigate other input features including imaging and non-imaging data, to
externally validate findings in larger cohorts of older adults and to move to a longitudinal
setting. Furthermore, it should be stressed that while overall ML performance was limited
in the first and third study of this dissertation, there is an intrinsic benefit in reporting null
results and full accounts of ML pipelines tested to increase transparency throughout the
field, to provide insight into potential future research avenues and draw a more realistic view
of the state of the field. This dissertation can be viewed as a little puzzle piece that ties in
with a growing number of ML studies in the neuroimaging field answering questions and at
the same time raising new ones. There still remain many puzzle pieces to be solved in the
coming years having the ultimate goal of developing a marker for prospective cognitive

decline and providing early targeted interventions in mind.
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