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Summary 

Within the last decade cancer immunotherapy has changed the way cancer 

is being treated and is nowadays, in addition to surgery, radiotherapy, 

chemotherapy and molecular targeting therapy, referred to as the 5th pillar of 

cancer care. Central to this dogmatic shift is chimeric antigen receptor (CAR) T-

cell therapy, where the patients T-cells are collected and equipped with CARs 

before being reinfused into the patient to treat the malignancy. CARs are receptors 

that enable tumor cell recognition and T-cell activation with subsequent lysis of 

the tumor cells in a single molecule. Thus, CAR T-cell therapy is a highly 

personalized therapy, where the patient’s own immune cells are employed as the 

therapeutic agent and where the CAR is adapted to the patient’s tumor. The huge 

success of the therapy culminated ultimately in the clinical approval of six CAR T-

cell products for the treatment of B-cell-derived malignancies in the last six years 

and more are expected in the near future. 

 

 Before this form of therapy can be applied more broadly, there are several 

challenges that need to be overcome. Unfortunately, CAR T-cell therapy is 

associated with several severe adverse events, which can cause life-threatening 

symptoms, require intensive care and bring along huge amounts of treatment-

associated costs. So far, the success of CAR T-cell therapy for hematological 

malignances could not be translated to solid tumors, since these lack safe antigens 

to target, are defined by a high degree of tumor heterogeneity, are for immune 

cells hard to migrate to and infiltrate into and are characterized by a hostile tumor 

microenvironment. These factors, make it hard to design CAR T-cell therapy for 

solid tumors in the first place, but also limit therapy efficacy by impeding T-cell 

migration and function towards and in the tumor. Additionally, CAR T-cells have to 

be manufactured individually in a time-consuming and labor-intensive process for 

every patient, which limits CAR T-cell availability and results in immense therapy 

costs. 

 

 Within this dissertation, some of these issues are tackled to drive CAR 

therapy forward. The inclusion of novel hinges derived from human CD34 and 

NGFR, allows to easily detect CAR T-cells via flow cytometry and to enrich them 

with immunomagnetic reagents before a potential infusion into the patient and 

thus enables to produce pure and defined CAR T-cell products. In the future this 

system could be combined with suicide genes, which allow to eliminate CAR T-cells 

when serious adverse events occur, which is a prerequisite for the development of 

allogeneic therapies. Importantly, CARs equipped with these hinges were as 

efficacious in vitro as well in vivo as CARs that contained hinges from clinically 

approved constructs.  
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To improve CAR T-cell therapy for solid tumors, high-affinity CARs against 

CD44v6 as well as EGFR were developed from clinically approved monoclonal 

antibodies and afterwards validated regarding efficacy and specificity in various in 

vitro models, where both CARs proved to be highly efficacious and specific for their 

respective target. Moreover, since malignant cells are often epigenetically 

dysregulated to withstand apoptosis, solid tumor cell lines were sensitized with 

epigenetic inhibitors towards CAR T-cell mediated killing.  

 

Lastly, for the development of an allogeneic CAR therapy, NK cells were 

employed as effector cells. Here, an efficient workflow, including lentiviral 

transduction with subsequent immunomagnetic enrichment of the transduced cells, 

was established for the generation of CAR NK cells. Moreover, (CAR) NK cells were 

modified to express various IL15 constructs to improve NK cell persistence in vivo, 

which proved to be crucial for tumor control.  

 

 Taken together, these findings will hopefully help to enable off-the-shelf CAR 

therapies, which reduces treatment cost and time, and to close the gap between 

the treatment of hematological and solid tumors. Ultimately, both challenges must 

be overcome in order for CAR therapy to benefit as many patients as possible. 
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Zusammenfassung 

In den letzten zehn Jahren hat die Krebsimmuntherapie die Art und Weise 

der Krebsbehandlung verändert und wird heute neben Chirurgie, Strahlentherapie, 

Chemotherapie und molekularer zielgerichteter Therapie als fünfte Säule der 

Krebsbehandlung bezeichnet. Im Mittelpunkt dieses dogmatischen Wandels steht 

die chimäre Antigenrezeptor (CAR)-T-Zelltherapie, bei der die T-Zellen des 

Patienten gesammelt und mit CARs ausgestattet werden, bevor sie dem Patienten 

zur Behandlung des Krebses reinfundiert werden. CARs sind Rezeptoren, die die 

Erkennung von Tumorzellen und die Aktivierung von T-Zellen mit anschließender 

Lyse der Tumorzellen in einem einzigen Molekül ermöglichen. Die CAR-T-

Zelltherapie ist demnach eine hochgradig personalisierte Therapie, bei der die 

eigenen Immunzellen des Patienten als Therapeutikum eingesetzt werden und das 

CAR an den Tumor des Patienten angepasst wird. Der große Erfolg der Therapie 

resultierte in der klinischen Zulassung von sechs CAR-T-Zell-Produkten für die 

Behandlung von B-Zell-Malignomen in den letzten sechs Jahren, und weitere 

werden in naher Zukunft erwartet. 

 

 Bevor diese Therapie jedoch in größerem Umfang eingesetzt werden kann, 

müssen noch einige Herausforderungen bewältigt werden. Leider ist die CAR-T-

Zell-Therapie mit mehreren schwerwiegenden unerwünschten Ereignissen 

verbunden, welche lebensbedrohliche Symptome hervorrufen können, eine 

intensivmedizinische Betreuung erfordern und enorme Behandlungskosten 

verursachen. Bisher konnte der Erfolg der CAR-T-Zell-Therapie bei 

hämatologischen Malignomen nicht auf solide Tumore übertragen werden, da diese 

nicht über sichere Zielantigene verfügen, durch ein hohes Maß an 

Tumorheterogenität definiert sind, für Immunzellen schwer zu erreichen und zu 

infiltrieren sind und durch eine feindliche Tumormikroumgebung gekennzeichnet 

sind. Diese Faktoren erschweren nicht nur die Entwicklung einer CAR-T-

Zelltherapie für solide Tumore, sondern schränken auch die Wirksamkeit der 

Therapie ein, da sie die Migration und Funktion der T-Zellen zum und im Tumor 

behindern. Zusätzlich müssen CAR-T-Zellen für jeden Patienten einzeln in einem 

zeit- und arbeitsintensiven Prozess hergestellt werden, was die Verfügbarkeit von 

CAR-T-Zellen einschränkt und zu immensen Therapiekosten führt. 

 

 In dieser Dissertation werden einige dieser Probleme angegangen, um die 

CAR-Therapie voranzutreiben. Die Integration neuartiger Hinge-Domänen, die von 

humanem CD34 und NGFR abgeleitet sind, ermöglicht es, CAR-T-Zellen mittels 

Durchflusszytometrie leicht zu erkennen und sie vor einer potenziellen Infusion in 

den Patienten mit immunmagnetischen Reagenzien anzureichern und somit reine 

und definierte CAR-T-Zellprodukte herzustellen. In Zukunft könnte dieses System 

mit Suizidgenen kombiniert werden, die es ermöglichen, CAR T-Zellen zu 

eliminieren, wenn schwerwiegende Nebenwirkungen auftreten, was eine 
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Voraussetzung für die Entwicklung allogener Therapien ist. Wichtig ist, dass die 

mit diesen Hinges ausgestatteten CARs sowohl in vitro als auch in vivo genauso 

wirksam waren wie CARs, die Hinge-Domänen von klinisch zugelassenen 

Konstrukten enthielten. 

 

Zur Verbesserung der CAR-T-Zelltherapie bei soliden Tumoren wurden aus 

klinisch zugelassenen monoklonalen Antikörpern hochaffine CARs gegen CD44v6 

und EGFR entwickelt und anschließend in verschiedenen in-vitro-Modellen 

hinsichtlich ihrer Wirksamkeit und Spezifität validiert. Da Tumorzellen häufig 

epigenetisch dysreguliert sind, um der Apoptose zu widerstehen, wurden zudem 

Tumorzelllinien mit epigenetischen Inhibitoren für die CAR-T-Zell-vermittelte 

Abtötung sensibilisiert. 

 

Schließlich wurden für die Entwicklung einer allogenen CAR-Therapie NK 

Zellen als Effektorzellen eingesetzt. Hier wurde ein Protokoll, einschließlich 

lentiviraler Transduktion und immunomagnetischer Anreicherung der 

transduzierten Zellen, zur effizienten Herstellung von CAR NK Zellen etabliert. 

Zudem wurden (CAR-) NK-Zellen mit IL-15-Konstrukten modifiziert, um die NK-

Zellpersistenz in vivo zu verbessern, was sich als entscheidend für die 

Tumorkontrolle erwies. 

 

Zusammengenommen werden diese Ergebnisse hoffentlich dazu beitragen, 

Off-the-Shelf-CAR-Therapien, zur Reduzierung von Behandlungskosten und -zeit, 

zu ermöglichen, und die Lücke zwischen der Behandlung von hämatologischen und 

soliden Tumoren zu schließen. Letztlich müssen beide Herausforderungen 

überwunden werden, damit die CAR-Therapie möglichst vielen Patienten 

zugutekommen kann. 
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1 Introduction 

1.1 CAR therapy for hematological malignancies 

Leukemias and lymphomas are malignancies of the hematologic system and 

with about 1.1 million cases per year account for 5.7 % of all cancers and are 

attributed to 600,000 deaths annually 1. While leukemias generally arise from 

immature white blood cells/leukocytes in the bone marrow, lymphomas develop 

from mature B- or T-cells in lymphoid organs such as the lymph nodes. Depending 

on the lineage that the leukemia is arising from, there is a general distinction 

between lymphoid or lymphoblastic and myeloid or myeloblastic leukemias. The 

acute lymphoblastic leukemia (ALL), the most common pediatric leukemia and 2nd 

most common adult acute leukemia, is characterized by the predominant presence 

of lymphoid blasts in the bone marrow and blood, which can lead to bone marrow 

failure with consequent anemia, thrombocytopenia and immune suppression 2. 

Acute myeloid leukemia (AML) blasts arise from myeloid leukemic stem cells in the 

bone marrow and manifests with similar clinical symptoms. In the pathogenesis of 

the acute leukemias, consequential somatic hits in immature precursor cells are 

thought to give rise to uncontrolled proliferation and lacking differentiation in their 

progeny 3, 4. Both leukemias are generally treated with chemotherapy as well as 

stem cell transplantation for high-risk patients and patients that did not respond 

to or relapsed after previous chemotherapy. For both types of leukemias, remission 

and survival rates have dramatically improved within the last decades, basically 

through improved risk group stratification, risk-adapted therapy intensification and 

strongly improved supportive care. Although promising small molecule inhibitors 

and also biologics have been tested in clinical trials for both leukemias in the last 

years, a large number of patients still do not respond to the initial treatment 

('refractory') or relapse thereafter, in the following referred to as 

refractory/relapsed (r/r), novel therapy approaches are direly needed 4, 5, 6. Here, 

cellular therapies with genetically modified immune effector cells - especially CAR 

T-cells - have the potential to still provide curative approaches for a significant 

proportion of these patients. 

 

T-cells make up an integral part of the adaptive immune system, where they 

clear the body from infected or transformed cells. They are equipped with T-cell 

receptors (TCRs), which recognize foreign peptides presented on major 

histocompatibility (MHC) class I or class II molecules, leading to the elimination of 

the recognized cell(s). This elimination is mediated via the secretion of lytic 

molecules such as perforin and granzymes, but also by the upregulation of death 

receptor ligands, which induce apoptosis when bound to the targeted cell. 

Importantly, the binding of the TCR to MHC II is supported by CD4, expressed on 

T helper cells, while CD8, expressed on cytotoxic T-cells, is needed for the binding 

to MHC I 7, 8. The TCR itself consist of an α- and a β-chain and aggregates with the 
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δ/ε- and γ/ε heterodimers as well as ζ-homodimers of the CD3 complex (Figure 

1A). These are crucial for the signaling of the TCR and subsequent T-cell activation, 

which is mediated via the phosphorylation of immunoreceptor tyrosine activation 

motifs (ITAMs) within CD3δ, CD3ε, CD3γ (one ITAM each) and CD3ζ (three ITAMs 

per monomer) 9. 

 

However, before T-cells can use their TCRs to eradicate infected or 

malignant cells, they initially need to be specifically activated by antigen-

presenting cells (APCs) such as macrophages or dendritic cells. Central to this 

process are three signals the T-cells receives to drive its activation, proliferation 

and differentiation. Firstly, the APC presents a short peptide on its MHC complex 

to the TCR of the T-cell, thereby activating the CD3ζ chain. Secondly, the 

interaction of the surface molecules CD80 or CD86 on the APC with CD28 as co-

stimulatory activating receptor on the T-cell delivers crucial co-stimulation. Lastly, 

cytokines such as IFN, IL-2 and IL-6 (pro-inflammatory) or IL-10 (anti-

inflammatory) drive proliferation and differentiation or senescence and apoptosis 

of the T-cell 10, 11.  

 

Tumor manifestation as well as growth is at least partially the result of an 

impeded immune surveillance that ultimately fails to recognize and eliminate the 

autologous malignant cells during the growth and development of the tumor 12, 13. 

Thus, to redirect T-cells towards tumor cells, chimeric antigen receptors (CARs), 

which directly link tumor antigen recognition to T-cell activation, have been 

developed. These receptors are synthetic molecules that extracellularly carry a 

single chain fragment of the variable region (scFv) – the antigen-binding domain 

– of a monoclonal antibody 14, 15. This scFv is linked via a hinge and transmembrane 

domain to intracellular T-cell activation motifs (Figure 1A). After engagement of 

the CAR, an immunological synapsis is formed between the T- and its target cell 

leading to signaling and activation of the T-cell by the cytoplasmic portion of the 

CAR (Figure 1B), which will be discussed in the next chapter. After activation, the 

T-cell secretes lytic molecules such as granzyme B and perforin and upregulates 

FasL, the ligand of the apoptosis-inducing death receptor, FasR, to kill the target 

cell. Moreover, the secretion of pro-inflammatory and proliferative cytokines 

modulates the immune response and drive T-cell expansion 16. Importantly, unlike 

natural recognition of tumor cells by T-cells, where the TCR binds to an MHC-

presented peptide, CARs function without MHC restriction. Consequently, CARs 

remain functional even if the malignant cells lose MHC expression thereby trying 

to evade the immune system 17.  

 

1.1.1 CAR design 

The 1st generation of CARs was already described in the 90s and carried 

only the CD3ζ chain of the TCR as signaling motif 14, 18, 19 (Figure 2). While these 
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cells recognize and eliminate antigen-bearing tumor cells in vitro, they failed to 

induce lasting remissions in patients as proliferation and cytokine production and 

thus persistence were lacking 20, 21. 

 

 

 

Figure 1: Structure and mechanism of action of CARs. A) CARs are constructed from 

domains of antibodies as well as T-cell cell surface receptors. B) Once the CAR binds a 

tumor-associated antigen (TAA), the T-cell is activated and induces apoptosis of the tumor 

cell as well as secretion of proinflammatory cytokines.  

 

Importantly, efficient T-cell activation by APCs normally involves signaling 

via co-stimulatory molecules such as CD28 or 4-1BB/CD137 to drive its activation, 

proliferation and cytokine secretion 8. Consequently, when integrated into the 2nd 

generation of CARs (Figure 2), the intracellular/cytoplasmic signaling units of 

co-stimulatory molecules boosted the primary signal from the CD3ζ chain 

engagement. 2nd generation CAR T-cells are indeed able to control tumor growth 

not only in vitro but also in vivo; in addition, numerous clinical trials have 

demonstrated the effectiveness of 2nd generation CARs in human disease, which 
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ultimately led to the approval of several CAR therapies by the United States Food 
and Drug Administration (FDA) and the European Medicines Agency (EMA; 22, 23). 
Here, CD28 and 4-1BB are the most used co-stimulatory domains and cause
profound differences on T-cell biology and function. When incorporated in 2nd

generation constructs, CD28 signaling induces strong but relatively short-lived T-
cell responses with faster exhaustion, while 4-1BB signaling is associated with
long-lasting T-cell persistence, but weaker responses 24, 25, 26, 27, 28. Other frequently 
used co-stimulatory domains used in preclinical trials are derived from OX40 29, 
2B4 30, CD27 31 or ICOS 32. In attempts to further increase the potential of CARs, 
additional generation of CARs have been developed (Figure 2). While the 3rd

generation includes two instead of only one co-stimulatory signal in combination 
with the CD3ζ chain 32, 33, 34, 35, the 4th generation, also known as T-cells redirected 
for antigen-unrestricted cytokine-initiated killing (TRUCKs) induce the expression 
of other transgenes like IL-7 36 or IL-18 37 to further stimulate the immune 
response. This is mediated via the activation of nuclear factor of activated T-cells
(NFAT) through CAR signaling, which binds the minimal IL-2 promoter in these 
constructs and thus drives the expression of these cytokines. In contrast, the 5th

generation includes intracellular signaling domains of interleukin receptors such 
as the IL-2 receptor, which signal via Janus kinase/signal transducer and activator 
of transcription proteins (JAK/STAT) pathways to drive expression of endogenous 
genes. These CARs showed superior proliferation and tumor control as well as 
reduced T-cell exhaustion compared to 2nd generation CARs 38. Apart from CD3ζ, 
also other primary signaling units have been tested, most notably FcεRIγ 39 and 
CD3ε 40, however, CD3ζ prevailed as the most commonly used one.

Figure 2: Five generations or CAR T-cells. The 1st generation of CARs solely contained 
the primary activation signal. In subsequent generations co-stimulatory domains were 
added. The 4th and 5th generation additionally induce the secretion of additional cytokines.
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While the signaling domains are crucial for T-cell activation, the antigen-

binding domain is – as the name suggests – essential for antigen binding and 

thus tumor cell recognition. Most commonly, this moiety is derived from the scFv 

of a monoclonal antibody and provides the antigen specificity for the CAR construct 
15, but also ligands 41, cytokines 42 or extracellular domains of receptors 43 have 

been used as binding moiety. Structurally, the antigen-binding domain is located 

at the N-terminus of the CAR, where e.g. both the heavy and the light chain of the 

scFv are joined to one continuous amino acid sequence by a short peptide linker 
15. Here, the best orientation of the variable heavy (VH) and light chain (VL) in the 

constructs (VH-linker-VL or VL-linker-VH) depends on the monoclonal antibody clone 

utilized 44. Besides the target antigen specificity, the affinity of the scFv determines 

how strongly this antigen is bound. The affinity is determined by the non-covalent 

bonds that can be formed between the scFv and the antigen and is the result of 

the association and dissociation equilibrium of the complex 45. Generally speaking, 

high-affinity CARs have been shown to confer stronger activation and killing 

capabilities and are generally more useful for targeting antigens which are 

expressed at lower levels. However, high affinity scFvs in CARs are also more prone 

to off-tumor toxicities as they also bind healthy tissues with low expression of the 

antigen in an on-target off-tumor reaction; importantly, high affinity CAR 

constructs can also lead to faster exhaustion of the T-cell 46, 47, 48, 49, 50, 51.  

 

In this dissertation, the antigens CD19, CD5, CD33, CD123 and ROR1 

(receptor tyrosine kinase-like orphan receptor 1) are, due to their overexpression 

on several leukemias and lymphomas, and CD44v6, EGFR (epidermal growth 

factor receptor) and ErbB2 (erythroblastic oncogene B2), due to their 

overexpression on solid tumors such as head and neck carcinoma, of special 

interest as target antigens. CD19 is a B-cell marker, which is overexpressed on 

most B-cell derived leukemias or lymphomas. Physiologically it plays a role during 

B-cell development and is critical for signaling of the B-cell receptor 52. CD5 is a 

pan T-cell marker and plays a role in T-cell development. Although its physiological 

role is not fully elucidated yet, it appears to negatively regulate T-cell function. 

Besides T-cells, CD5 is also expressed on a subset of B-cells and on T-cell derived 

malignancies like T-cell ALL and also on some B-cell cancers such as mantle cell 

lymphoma (MCL) 53, 54. CD33 is a differentiation marker on myeloid cells and is 

normally expressed on various myeloid cells. Its physiological role is not clearly 

understood, but evidence suggests that it negatively regulates immune responses. 

Therapeutically it is an intriguing target, especially for AML, since it is expressed 

on nearly all cases of AML 55. CD123 is the -chain of the IL-3 receptor and thus 

plays important roles in the proliferation and differentiation of immature 

hematopoietic cells in immune homeostasis. Importantly, CD123 is expressed on 

myeloid as well as lymphoid malignancies, making it an attractive target for 

immunotherapy 56. While ROR1 is highly expressed during embryonic 

development, expression recedes in adult tissues except for apart from low 
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expression in adipose tissues 57. Importantly, ROR1 is temporarily expressed 

during normal B-cell development, which might explain its expression on MCL and 

other B-cell malignancies 57, 58, 59. CD44v6 is a splice variant of CD44, which 

functions as hyaluronic acid receptor. While its expression on healthy tissues is 

restricted to keratinocytes in the skin and mucous membranes as well as some 

monocytic cells, it is abundantly expressed on cancers of the lung, skin, cervix and 

head and neck as well as multiple other malignancies including AML 60, 61. Both 

EGFR as well ErbB2 belong to the ErbB tyrosine receptor kinase family and are 

naturally expressed on various tissues including lung and skin. After ligand binding, 

both receptors stimulate cellular proliferation and survival, which might explain 

their overexpression on a range of solid malignancies including lung, breast as well 

as head and neck cancer. Moreover, high expression is associated with therapy 

resistance as well as metastasis, making them intriguing targets for 

immunotherapy 62, 63. 
 

The hinge, also referred to as linker or spacer, connects the scFv to the 

transmembrane domain and thus to intracellular signaling motifs. Although it does 

not bind the targeted antigen directly, it is still important for robust CAR function. 

The hinge gives the CAR the flexibility and length that is needed for the scFv to 

reach its target epitope. Hence, epitopes that are proximal to the membrane or 

embedded within areas with heavy glycosylation are often better targeted with 

longer hinges. In contrast, short hinges can be preferable, if the epitope on the 

target antigen is located distally from the membrane 39, 47, 64, 65, 66, 67, 68. Moreover, 

the incorporation of a hinge can improve CAR expression, T-cell expansion and T-

cell persistence 69, 70, 71, 72. While in most cases, the hinge is simply used as a linking 

motif between scFv and transmembrane domain, the integration of specific peptide 

or protein sequences confers additional properties to the CAR and the cell. For 

example, integration of parts of CD20 allows eradication of CAR T-cells by the 

administration of rituximab, a widely used and clinically approved monoclonal 

antibody against CD20, as a safety measure 73. Similarly, integration of nerve 

factor growth factor receptor (NGFR) sequences enables detection during as well 

as enrichment of CAR T-cells prior to therapy 74. In contrast, incorporation of IL-

15, a potent pro-inflammatory cytokine, into the hinge region improves CAR T-cell 

proliferation as well as persistence (patent EP3184546A1). 

 

Lastly, the transmembrane domain anchors the CAR in the cell membrane 

of the cell and provides the link between extracellular and intracellular domains. 

Frequently used are domains from proteins that are naturally expressed on T-cells 

such as CD3, CD8 or CD28 to ensure high and stable expression as well as long 

CAR T-cell persistence in vivo 75, 76. Here, CD8- and CD28-derived transmembrane 

domains proved to be superior to CD3-derived ones regarding CAR expression and 

effector functions 75, 76, 77. Notably, the transmembrane domain can lead to the 

homodimerization of CARs or heterodimerization with the molecules they are 
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derived from. While this can improve CAR function by trans-signaling of the innate 

receptor, this can also lead to tonic signaling of the CAR irrespective of antigen 

binding, which can cause unwanted adverse events in the patient 78, 79, 80, 81.  

 

1.1.2 Clinical treatment with autologous CAR T-cells 

During autologous CAR T-cell therapy, the patients white blood cells are 

collected, followed by activation and expansion of the T-cell population ex vivo via 

the stimulation of TCR and CD28 as well as cytokines such as IL-2 or IL-15 82, 83. 

After introduction of the CAR gene into the autologous activated T-cells, most 

frequently achieved via retroviral 84, 85, 86, 87, 88 or lentiviral vectors 89, 90, 91, 92, 93, 

which enable stable transduction of the target cells with high gene transfer 

efficiency 94, CAR T-cells are expanded, undergo quality controls and are finally re-

infused back into the patient (Figure 3). Prior to infusion of the autologous CAR 

T-cell products, the patients are commonly treated with fludarabine and 

cyclophosphamide as immunosuppressive conditioning, whereby autologous T- 

and NK cells are largely depleted and homeostatic cytokines induced. If the tumor 

cells are also sensitized for by the conditioning therapy, this can be an added 

benefit 90, 92, 95, 96. Depending on the protocol, typically between 1 x 106 to 1 x 107 

CAR T-cells per kg body weight of the patient are intravenously transferred 85, 88, 

89, 96, albeit higher 91, 97 and lower doses 92, 98 have also been used in clinical trials. 

After successful engraftment, the CAR T-cells ultimately migrate into all tissues of 

the body where they eliminate antigen-bearing normal and malignant cells. With 

a memory phenotype that promotes T-cell longevity, the CAR T-cells are 

considered to be a living drug, that in a high percentage of patients persists for 

years and can still mediate cancer clearance and keep the patient in remission 15, 

91, 99. Indeed, it has been shown that CAR T-cell products with profound central 

memory phenotype mediate a greater CAR T-cell persistence and thus therapy 

success 100, 101. Hence, the CAR T-cell therapy is a highly personalized treatment 

with the potential to mediate life-long protection. Interestingly, a recent study 

demonstrated that 10 years after the first application of CD19-directed CAR T-cells 

for leukemia patients, some patients remain in remission, probably as their CAR 

memory T-cells still persist 99. 

 

1.1.3 CD19 fuels CAR T-cell therapy 

Clinical breakthrough has been achieved with 2nd generation CARs against 

hematologic malignancies of the B-cell lineage by targeting CD19. First clinical 

trials with these CARs for patients with advanced CD19+ leukemias and 

lymphomas showed great promise with response rates of up to 90 % and the CAR 

T-cells were detected for several months or even years in the patients 89, 91, 92, 93.  
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Figure 3: Clinical application of autologous CAR T-cells. T-cells are isolated from a 
patient and sent to a centralized manufacture site, where they are lentivirally modified to 
express the CAR gene and expanded to reach treatment-relevant cell numbers. Afterwards, 
they are sent back to the treatment center, where they are reinfused into the patient.

Within the last six years, six CAR T-cell therapies were clinically approved 
(Table 1). In 2017, after highly successful clinical trials, the first two CD19-
targeted CAR T-cell products, namely Tisagenlecleucel/Kymriah by Novartis1 and 
Axicabtagene Ciloleucel/Yescarta by Kite/Gilead2, were approved by the United 
States FDA for the treatment of r/r diffuse large B-cell lymphoma (DLBCL), r/r B-
cell ALL and r/r primary mediastinal B-cell lymphoma (PMBCL). In 2018, market 
approval for Europe was also given by the EMA 22, 102. Both CARs utilize the same
CD19-recognizing scFv that is derived from the monoclonal antibody clone FMC63 
103. However, Kymriah is equipped with a 4-1BB co-stimulation along with a CD8-
derived hinge and transmembrane domain, while Yescartas hinge, transmembrane
and co-stimulatory domains are derived from CD28. In July 2020, Kite/Gilead 

1 https://www.fda.gov/news-events/press-announcements/fda-approval-brings-first-gene-therapy-united-
states
2 https://www.fda.gov/news-events/press-announcements/fda-approves-car-t-cell-therapy-treat-adults-
certain-types-large-b-cell-lymphoma

       

                

           

           

             

                
         
          
           

     

          
              

             
       

         
             

            

          

    

  

                  

              
                



Introduction 

9 
 

received the approval of Tecartus/brexucabtagene autoleucel also for the 

treatment of r/r MCL3. In February 2021, Juno Therapeutics Inc./Bristol Myers 

Squibb obtained FDA approval for another CD19-targeted CAR T-cell therapy, 

Breyanzi/lisocatbagene maraleucel, for the 3rd line treatment of r/r DLBCL4. As 

shown in Table 1, Celgene/Bristol Meyer Squibb received FDA approval in March 

2020 for the first B-cell maturation antigen (BCMA)-targeted CAR T-cell therapy, 

Abecma/idecabtagene vicleucel, for r/r multiple myeloma5. Most recently, Janssen 

were granted FDA approval for their BCMA-targeted CAR T-cell therapy 

Carvytki/ciltacabtagene autoleucel for the treatment of r/r multiple myeloma6. 

Thus, the field is rapidly gaining traction and more approvals are expected within 

the upcoming months and years.  

 

Table 1: Summary of clinically approved CAR T-cell products 104.  

 Kymriah Yescarta Tecartus Breyanzi Abecma Carvykti 

Company Novartis Kite/Gilead Kite/Gilead Juno/BMS Celgene/BMS Janssen 

Indication 
B-ALL, 

DLBCL 

DLBCL, 

PMBCL 

MCL DLBCL, 

PBMCL 

MM MM 

Gene transfer Lentiviral Lentiviral Lentiviral Lentiviral Lentiviral Lentiviral 

Target CD19 CD19 CD19 CD19 BCMA BCMA 

scFv clone FMC63 FMC63 FMC63 FMC63 C11D5.3 VHH1/2* 

Hinge CD8 CD28 CD28 IgG4 CD8 CD8 

Transmembrane CD8 CD28 CD28 CD28 CD8 CD8 

Co-stimulation 4-1BB CD28 CD28 4-1BB 4-1BB 4-1BB 

Primary signal CD3ζ CD3ζ CD3ζ CD3ζ CD3ζ CD3ζ 

B-ALL, B-cell acute lymphoblastic leukemia; BCMA, B-cell maturation antigen; BMS, Bristol Meyer Squibb; DLBCL, diffuse large 

B-cell lymphoma; MCL, mantle cell lymphoma; MM, multiple myeloma; PMBCL, Primary mediastinal B-cell lymphoma 

* uses a nanobody instead of a monoclonal antibody-derived scFv 

 

ZUMA-1 and JULIET are the pivotal clinical trials that led to the rapid 

approval of Yescarta and Kymriah, respectively. In ZUMA-1 105, 106, 101 heavily-

pretreated r/r DLBCL patients with a median age of 58 years were treated with 

Yescarta, after having failed multiple lines of therapy including autologous stem-

cell transplantation and/or CD20-targeted antibody immunotherapy. Initially, 

83 % of patients responded to the treatment and 58 % showed a complete 

response. However, 95 % of patients suffered severe adverse events including 

cytokine release syndrome and neurological toxicities and two patients died due 

to treatment-related complications. In JULIET 90, 93 patients were treated with 

Kymriah after they have failed first and second line therapies or relapsed after a 

stem cell transplant for DLBCL. Here initially, 52 % of the treated patients showed 

 
3 https://www.fda.gov/news-events/press-announcements/fda-approves-first-cell-based-gene-therapy-adult-
patients-relapsed-or-refractory-mcl 
4 https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-adults-relapsed-or-
refractory-large-b-cell-lymphoma 
5 https://www.fda.gov/news-events/press-announcements/fda-approves-first-cell-based-gene-therapy-adult-
patients-multiple-myeloma 
6 https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ciltacabtagene-autoleucel-

relapsed-or-refractory-multiple-myeloma 
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a response, including 40 % complete responses. Every treated patient had adverse 

events associated with the disease and 85 % experienced severe adverse events. 

In a similar study for pediatric B-cell lymphoblastic leukemia (ELIANA; 107), 

Kymriah was administered to 75 children and young adults with an 81 % remission 

rate at 3 months after treatment. Overall survival was 90 % and 76 % at 6 and 

12 months, respectively. Also here, every patient suffered from adverse events 

and 88 % of the patients experienced grade III/IV severe side effects. Importantly, 

the response rates in the clinical studies of Kymriah and Yescarta carried over to 

the real-world, as 59.6 % of patients with r/r DLBCL 108 and 88 % of patients with 

r/r ALL 109 responded to Kymriah and 82 % of r/r DLBCL patients responded after 

Yescarta treatment 110. 

 

1.2 Clinical challenges of CAR T-cell therapy 

1.2.1 Toxicities and adverse events 

In general, infusion of in vitro expanded autologous T-cells transduced with 

a large variety of CAR constructs was not associated with any autoimmunity of the 

re-infused T-cells, despite the presence of the endogenous TCRs on the CAR T-

cells. Nonetheless, CAR T-cell therapy is associated with severe/profound 

toxicities: Cytokine release syndrome (CRS), neurotoxicity and reactivity against 

non-malignant cells (on-target off-tumor cross-reactions).  

The cytokine release syndrome is the most common CAR-associated 

toxicity and generally describes a rapid inflammatory response that is caused by 

the massive parallel CAR T-cell activation following infusion. Mechanistically, the 

CAR T-cells react against target antigen-positive cells and produce, as do other 

cells that are recruited by the CAR T-cells, high levels of cytokines, most notably 

IL-6, TNF-α, IFN-γ, IL-10 and IL-2 111. Therefore, patients after infusion of the CAR 

T-cell products frequently experience a wide spectrum of symptoms, from 

relatively mild symptoms like fever, malaise and fatigue to severe organ toxicities 

like cardiac dysfunction and hypertension and also be potentially life-threatening 

liver and kidney failure 112. Here, the severity, duration and onset of CRS can vary 

from patient to patient, but there seems to be a direct connection to disease 

burden prior lymphodepletion and the CAR T-cell dose 113. Moreover, the CAR 

design seems to have a role in the development and course of CRS. Yescarta, 

which harbors a CD28 co-stimulation, shows a median time of two days (range 1 

to 12 days) for the onset of CRS 88, while the 4-1BB-equipped Kymriah shows a 

median time of three days (range 1 to 22 days) for the onset of CRS 107. These 

findings support the hypothesis that CD28 induces very strong initial responses, 

while CARs equipped with 4-1BB induce weaker and more long-lived T-cell 

reactions 114. Therapeutically, the treatment of CRS is a balancing act between 

reducing CRS-mediated symptoms and upholding the anti-tumor effect of the CAR 

T-cells. Corticosteroids can be used to reduce systemic inflammation and thus 

resolve CRS, however, the use in CAR T-cell therapy is controversial. While some 
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groups reported that corticosteroid treatment can dampen CAR T-cell proliferation 

and thus therapy efficacy 115, others have shown that glucocorticoids do not 

impede the effects of the CAR T-cells 116. Alternatively, inhibition of the IL-6 

receptor with tocilizumab, a clinically approved immunosuppressive monoclonal 

antibody, has proven to be very effective at reducing CRS symptoms without 

hampering CAR T-cell activity 115, 117. Thus, IL-6 receptor blockade is currently the 

gold standard of treatment of (severe) CRS. Most CRS-related symptoms resolve 

within the two weeks following CAR T-cell administration 112. 

Neurotoxicities are the 2nd most common adverse event during CAR T-cell 

therapy. As for CRS, the symptoms and severity can vary greatly from patient to 

patient. Mild symptoms include general headaches and mild dizziness, while very 

severe cases suffer from seizures and encephalopathies 112. Less frequently, 

neurotoxic complications lead to the death of the patient 118, 119. Neurotoxicities 

usually occur after CRS, suggesting that the immune activation with subsequent 

cytokine secretion during CRS plays a role in the onset of neurological toxicities 
120, 121, 122. Recently, it became evident that CD19 is also expressed on mural cells, 

which line endothelial cells of the blood-brain-barrier and thus are integral to its 

barrier function in the brain 123. Upon lysis of these cells by CD19 CAR T-cells, the 

blood-brain-barrier is compromised, thereby leading to a leakage of high levels of 

cytokines from the blood into the cerebrospinal fluid with activation of endothelial 

cells 119. Importantly, this neurotoxicity of the treatment with CD19 CAR T-cells 

could be reproduced in a murine system 123 and similar effects were also observed 

with bispecific T-cell engagers, which link CD19 and CD3, thereby crosslinking 

tumor and T-cells 124. However, since neurotoxicities also occur when other B-cell 

antigens on malignant cells such as CD22 or BCMA are targeted 125, 126, toxicity 

against CD19+ mural cells is not sufficient to fully explain the mechanisms leading 

to neurotoxicities. 

On-target off-tumor toxicities might be the most serious concern during 

CAR T-cell therapy but often can be anticipated as the expression profiles for the 

target antigens on normal cells are generally known. Most antigens are not truly 

tumor-specific but rather tumor-associated, as they are also expressed to some 

extent on healthy tissues. Consequently, treatment with CAR T-cells not only leads 

to clearance of malignant cells, but also healthy cells that express the antigen. 

Here, CD19 is the most prominent example, as CD19 is expressed on all B-cells 

and hence, CD19 CAR T-cell therapy leads to B-cell aplasia and consequently 

hypogammaglobulinemia, which can partially be treated with immunoglobulin 

infusions 127. Thus, while CD19 CAR-mediated on-target off-tumor toxicities can 

be managed, targeting other antigens with CARs can cause more severe outcomes. 

EGFR and ErbB2 are frequently overexpressed on various solid tumors and thus 

are considered promising CAR targets. However, EGFR- and ErbB2-redirected CAR 

T-cells commonly cause toxicities of the skin or lung distress, due to the expression 

of these antigens on cells in skin and lung tissue 128, 129. More dramatically, 
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targeting EGFR with the scFv of the commonly used high-affinity EGFR antibody, 

cetuximab, as targeting moiety in the CAR, resulted in the death of a colon cancer 

patient 130. Similarly, also ErbB2-targeted CAR T-cells caused the death of a patient 

with colon carcinoma 131. In both cases, the expression of EGFR and ErbB2, 

respectively, caused severe lung distress and pulmonary failure, which was 

thought to be responsible for the death of the patients.  

 

Off-target off-tumor reactions can be caused by scFv-unrelated 

reactions of the CAR constructs with other antigens and tissues. In the past, hinges 

that consist of the second and third constant heavy domain (CH2CH3) of human 

IgG1, IgG2 or IgG4 have widely been used in preclinical studies. These hinges lead 

to efficient receptor dimerization and increased expression of the CAR. Moreover, 

they provide the necessary length and flexibility for a broad band of CARs and 

hence can be used in CARs directed against a variety of target antigens. However, 

some of these hinges also bind Fc receptors (FcRs) on other immune cells such as 

NK cell or macrophages/monocytes, as they are derived from the FcR-binding 

fragment of antibodies. Consequently, CAR T-cells equipped with these hinges bind, 

activate and ultimately eliminate FcR-bearing cells, which can be abolished by 

mutating amino acids that are crucial for FcR-binding 132. In vivo studies clearly 

demonstrated that CH2CH3-hinged CARs were ineffective to clear the malignant 

cells in immunodeficient mouse models - in contrast to hinges with missing or 

mutated CH3 motifs 68, 72. Here, CAR T-cells sequestered in the lungs of the mice, 

where they interacted with macrophages and hence were not able to control tumor 

progression 68. 

 

1.2.2 CAR T-cell therapy for solid tumors 

In recent years, CAR T-cell therapy has also been employed as an 

experimental last line treatment for several solid malignancies including 

glioblastoma, head and neck cancer, breast cancer, lung cancer and colon cancer 
133. With just over 18 million new cases and about 9.3 million cancer-related deaths, 

solid cancers make up the vast majority of cancer patients and cancer-related 

deaths. Here, head and neck squamous cell carcinoma, which are a focus of this 

dissertation, account for about 700,000 new cases with a mortality rate of up to 

50 % 134. However, while CAR T-cell therapy has been quite the success story for 

hematological cancers, the translation to solid malignancies is lagging far behind 

for several reasons 15, 135, 136. The first obstacle is the absence of tumor-specific 

and homogenously expressed antigens. Solid cancer CAR therapy therefore must 

rely on the expression of antigens that are relatively safe to target; however, the 

most prominent CAR targets for e.g. head and neck and bladder cancers include 

EGFR and ErbB2, which are also expressed on lung, gastrointestinal, skin and other 

epithelia and thus can cause severe toxicities in these tissues after CAR T-cell 

infusion 135, 136. Another major challenge is the lack of trafficking of the CAR T-cells 
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into the solid tumor. While CAR T-cells can easily traffic within the blood and 

lymphatic system to target hematological malignancies, they cannot do so in the 

case of solid tumors, where fibroblasts and the densely packed extracellular matrix 

(ECM), along with a poor vascularization, presents a physical barrier 135, 136. 

Moreover, solid tumors secrete chemokines that prevent migration and infiltration 

of T-cells towards and into the tumor, as the corresponding receptors are lacking 

on T-cells 136, 137. Arguably the biggest barrier that prevents/impedes successful 

CAR therapy application in solid malignancies is the hostile tumor 

microenvironment (TME), which malignant cells form to promote their growth 

and mediate immune escape. On the cellular level, the TME is characterized by the 

presence of fibroblasts, regulatory T-cells (Treg cells), myeloid-derived suppressor 

cells (MDSCs) and tumor-associated macrophages, which create an 

immunoinhibitory milieu via the secretion of TGF-β, IL-4, IL-10 and other 

cytokines/chemokines 138. Together with the expression of inhibitory cell surface 

molecules such as PD-L1 and CTLA-4 by tumor and immunosuppressive cells, this 

environment limits T-cell proliferation and drives T-cell inhibition, anergy and 

exhaustion leading ultimately to CAR T-cell therapy failure 15, 136. Also, the absence 

of sufficient nutrients along with a poor oxygen supply greatly impedes T-cell 

function. The presence of adenosine and the lack of essential amino acids, e.g. 

degradation of arginine by arginase-1, further diminishes T-cell survival in this 

hostile environment 136, 139. Taken together, CAR T-cell therapy encounters various 

challenges when targeting solid tumors and appropriate solutions need to be 

adopted to overcome these and reach success of CAR T-cell therapy for 

hematological malignancies.  

 

1.2.3 Need for autologous therapy 

In the six approved clinical CAR T-cell products, autologous T-cells from the 

patients are used to generate the cellular product. This procedure generates vast 

economical and logistical problems as the CAR T-cells need to be individually 

produced for every patient in order to prevent life-threatening graft-versus-

host-disease (GvHD). Since T-cells efficiently recognize MHC molecules, this can 

be caused by the infusion of allogeneic (CAR) T-cells from a donor to a non-

completely human leukocyte antigen (HLA)-matched patient. Here, the donor T-

cells recognize the recipient's cells due to a different MHC composition/signature 

as foreign and start to strongly attack every organ system in the recipient. The 

resulting symptoms initially manifest at the liver, gut and skin and can range from 

local inflammations/immune reactions to multi-organ failure 140. Often, these 

strong autoimmune reactions are extremely difficult to control, as has been 

learned when peripheral blood-derived donor T-cells from HLA-matched stem cell 

donors were used in patients experiencing disease recurrence after allogeneic stem 

cell transplantation for leukemias 141. 
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Currently, CAR T-cell products are manufactured at centralized sites, e.g. 

the Fraunhofer Institute for Cell Therapy and Immunology in Leipzig, Germany, as 

one of three sites where Kymriah is being manufactured in Europe 142. This means 

that the patients' blood cells have to be harvested by apheresis and sent to these 

centers, where they are genetically modified and expanded to reach CAR T-cell 

numbers that are needed for the therapy of each patient. Afterwards, they are 

frozen and sent back to one of the 150 treatment sites in Europe, where they are 

finally infused into the patient. The whole process takes about three to four weeks 

and requires immense resources, which in the U.S. results in therapy costs of  

$ 373,000 to 475,000 - in addition to treatment and care costs of close to half a 

million US dollar per patient 143. Moreover, since the process takes several weeks, 

the cancer can progress too quickly in this time, thereby rendering the patients 

ineligible for CAR T-cell therapy or even resulting in the death of the patient. Here, 

an off-the-shelf CAR therapy would drastically reduce the treatment time as well 

as costs. Additionally, cancer and especially pediatric patients have, due to disease 

progression and previous rounds of chemotherapy, often a damaged immune 

system and hence cannot provide sufficient T-cells to generate CAR T-cells from 144. 

Thus, a donor-derived off-the-shelf therapy would provide a solution for these 

patients. 

 

1.3 Alternative immune effector cells for CAR therapy 

Natural killer (NK) cells are professional immune effector cells of the innate 

immune system whose main function is the immunosurveillance and subsequent 

clearance of infected as well as malignant cells 145. Similar to T-cells, NK cells 

induce lysis of infected or malignant cells via the release of cytotoxic granules and 

through death receptor signaling. However, the mode of activation is completely 

different, as NK cells, unlike T-cells, are not MHC-restricted and as such do not 

recognize intracellularly processed peptides on MHC molecules. Rather, they 

harbor an array of cell surface receptors by which they survey the environment for 

cells that have lost so-called self-signals or which express stress or danger signals 

(Figure 4) 146. Importantly, NK cell activation depends on the net 

activation/inhibition signaling that is conveyed via these cell surface receptors, e.g. 

if the NK cell detects self-signals, most prominently HLA class I, and/or does not 

detect danger signals, the NK cell stays inactive. However, once self-signals are 

missing on cells, the corresponding inhibitory receptors on the NK cell are no longer 

triggered and the net activation/inhibition signal shifts towards NK cell activation. 

Similarly, the net signal also shifts towards NK cell activation when stimulatory 

receptors recognize danger or stress signals. Both, the loss of self-signals as well 

as the expression of danger or stress signatures are hallmark events in cancer 

cells, thus making NK cells a key player in tumor immunosurveillance 146, 147. 
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NK cells have clinically already been used for more than 20 years as a form 

of adoptive cellular therapy for various cancer entities 148. They also play a major 

role during hematopoietic stem cell transfer since they are the first lymphocytic 

population to be reconstituted after engraftment 149. Importantly, even the 

administration of large number of allogeneic NK cells proved to be well tolerated 

and safe, since NK cells do not cause GvHD 150. However, even repeated infusions 

of unmodified allogeneic NK cells were not sufficient to induce/uphold long-term 

clearance/remission in cancer patients 151. Since NK cells are able to mediate 

antibody-dependent cellular cytotoxicity (ADCC), they are prime candidates for 

combination therapies with monoclonal antibodies, which are recognized by the 

FcR CD16 on the NK cells 152. More sophisticatedly, bi- and trispecific killer 

engagers (BiKEs and TriKEs), which consist of two to three linked scFvs, allow the 

crosslinking of up to two antigens to CD16. Preclinically, this platform has been 

used to target CD19, CD20, CD33 and/or CD123 for hematologic cancers and 

ErbB2, EGFR and EpCAM for solid tumors 153.  Currently, a TriKE, which crosslinks 

CD16 and CD33 and stimulates the IL-15 receptor 154 is under clinical investigation 

(NCT03214666). Another approach is to equip NK cells with CARs, thereby 

redirecting NK cells towards malignant cells and hence improving tumor control. 

Indeed, NK cells can be transduced with lentiviral CAR vectors and CAR NK cells 

show disease control in preclinical models as well as in a first clinical trial for the 

treatment of CD19+ malignancies 155. Since NK cells are not MHC-restricted, NK 

cell products can be manufactured from healthy donors, which is paramount to 

drive cellular therapies from an autologous towards an off-the-shelf approach, 

where (CAR) NK cells can be produced from one donor and then given to multiple 

patients (Figure 4) 155. Moreover, NK cells seem to cause less severe CRS and 

neurotoxicities, possibly because a narrower array of cytokines is secreted by NK 

cells compared to T-cells 156. Besides reducing costs and time for manufacturing of 

adoptive cellular products, this also enables to treat patients, whose immune 

systems are already impaired from previous rounds of chemotherapies or disease 

progression. 

 

However, while NK cells are a highly promising effector cell type for CAR 

therapy, there are still hurdles to be overcome before CAR NK cell therapy reaches 

or even surpasses the success of CAR T-cell therapy (Figure 4). First, while 

transduction and manufacturing protocols are already established for CAR T-cells, 

the widely used lentiviral envelope pseudotype, vesicular stomatitis virus 

glycoprotein (VSV-G), does not suffice to reach desirable transduction efficiencies 

in NK cells 157, 158. Moreover, unlike T-cells, which can stimulate themselves by 

autocrine feedback loops for proliferation and survival (e.g. IL-2), NK cells do not 

possess comparable self-stimulation and thus need extrinsic growth signals for 

longer-term persistence that appears necessary for successful tumor control 159. 

Historically, NK cells have been cultured on (genetically-modified) feeder cells such 

as K562 160 to promote their growth in vitro. However, from a regulatory point of 



Introduction 

16 
 

view in Europe, the use of malignant or at least immortalized feeder cells is a major 

concern and thus will be a hurdle in clinical approval of NK cell therapies.  

 

 

Figure 4: Key points about using NK or T-cells for CAR therapy. NK cells recognize 

tumors with an array of cell surface receptors and not the T-cell receptor complex. NK cells 

are MHC-unrestricted and can be given allogeneically to multiple donors. However, NK cells 

are unable to stimulate their proliferation via cytokines and the widely used VSVG envelope 

is not sufficient to transduce NK cells. 

 

 

As CAR NK cell therapy is gaining traction in recent years, there is an 

increasing focus on the merits of their use. Consequently, important milestones 

for producing allogeneic CAR NK cells for clinical use have been reached in recent 

years, including alternative lentiviral envelopes 161, 162, feeder cell-free good 

manufacturing practice (GMP)-compliant NK cell media and expansion protocols 
163, 164 and approaches to improve NK cell persistence in vivo 165. As shown below, 

a part of this dissertation is the generation of a GMP-compliant workflow for the 

efficient generation of CAR NK cells using lentiviral vectors and a newly developed 

CD34-hinge, which enables immunomagnetic purification of CAR NK cell 

populations that can be used for allogeneic therapies in the future. 
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1.4 Aims of this dissertation 

The aim of this dissertation is to optimize CAR designs for improved cellular 

therapy of various cancer entities. To achieve this aim, three aspects of CAR 

therapy were addressed. 

 

1 Development of new hinges for CARs 

The first part of this thesis focuses on the development of novel CAR hinges 

derived from CD34 and NGFR that allow detection and enrichment of CAR T- or NK 

cells with clinical-grade immunomagnetic reagents. These hinges were also tested 

with regard to safety and CAR efficacy in in vitro and in in vivo models. 

 

2 Improving CAR T-cell therapy for solid tumors 

To further develop CAR T-cell therapy for solid cancers, high-affinity CAR 

constructs targeting EGFR and CD44v6 were established, that allow efficacious 

eradication of head and neck carcinoma cell lines. Moreover, to improve efficacy 

against urothelial and head and neck cancer cells, the combination therapy with 

epigenetic drugs was investigated.  

 

3 NK cells as an alternative immune effector cell 

To further develop allogeneic NK cells for off-the-shelf usage in CAR 

therapies, the last part of this dissertation established an optimal protocol for the 

generation of CAR NK cells under GMP-compliant conditions. In addition, our 

strategies also included engineering of the NK cells to improve their persistence 

and thus tumor control in vivo
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2 Results 

The following results section comprises six manuscripts, which were done in close 

cooperation with the Department of Hematology, Oncology and Clinical 

Immunology of the Heinrich-Heine-University, the Department of Experimental 

Medical Physics of the Heinrich-Heine-University, the Urological Research 

Laboratory of the Heinrich-Heine-University, the Institute for Pharmaceutical and 

Medical Chemistry of the Heinrich-Heine-University, the Biological and Medical 

Research Center of the Heinrich-Heine-University, the Department of Pediatric III 

of the University of Duisburg-Essen and the German Research Center for 

Environmental Health of the Helmholtz Center Munich. For each manuscript the 

own work was assessed regarding design, execution and analysis of experiments, 

supervision of students as well as writing and correction of the manuscript. 

Moreover, for each manuscript the current status (submitted/accepted/published) 

and a very short summary are given. 

 

2.1 New hinge domains for CAR T-cells 

2.1.1  CD34 hinge for CAR T-cell detection & enrichment 

Title: A novel CD34-derived hinge for rapid and efficient detection 

and enrichment of CAR T-cells 

 

Authors: Arthur Bister, Tabea Ibach, Corinna Haist, Denise Smorra, Katharina 

Roellecke, Martin Wagenmann, Kathrin Scheckenbach, Norbert 

Gattermann, Constanze Wiek*, Helmut Hanenberg* 

* These authors contributed equally and share last authorship. 

 

Status: Published 

Journal: Molecular Therapy Oncolytics; Impact factor 6.311 

DOI: 10.1016/j.omto.2021.11.003 

 

Own work: 50 % - Design, execution and analysis of most experiments; 

generation of manuscript figures; writing and correction of the 

manuscript  

 

This manuscript describes the development of a hinge, derived from human 

CD34, that when incorporated into the CAR backbone allows immunomagnetic 

enrichment of CAR T-cells and their detection in the blood stream. Since CARs 

equipped with this hinge are as efficacious in vitro as well as in vivo as CARs with 

a clinically approved CD8 hinge, this hinge could be an alternative to the widely 

used CD8- and CD28-hinges for a clinical application, especially since it allows to 

generate more defined CAR T-cell products. 

https://doi.org/10.1016/j.omto.2021.11.003
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On the cover: Formation of immunological synapses between CD19 CAR 

T-cells and CD19+ REH ALL cells. Three genetically modified T-cells (blue cells) 
attack via their CD19 CAR construct (red membrane staining) either single (top), 
two (middle) or three (bottom) REH cells (green cells).  
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2.1.2   NGFR hinges for CAR T-cell detection & enrichment 

Title: Optimized NGFR-derived hinges for rapid and efficient 

enrichment and detection of CAR T-cells 

 

Authors: Arthur Bister, Tabea Ibach, Corinna Haist, Denise Smorra, Gina 

Gerhorst, Katharina Roellecke, Martin Wagenmann, Kathrin 

Scheckenbach, Norbert Gattermann, Constanze Wiek*, Helmut 

Hanenberg* 

 * These authors contributed equally and share last authorship. 

 

Status: Published 

Journal: Molecular Therapy Oncolytics, Impact factor 6.311 

DOI: 10.1016/j.omto.2022.05.012  

 

Own work: 50 % - Design, execution and analysis of most experiments; 

supervision of students; generation of manuscript figures; writing and 

correction of the manuscript  

 

This manuscript describes the development of two hinges derived from 

human NGFR. Similar to the CD34 hinge, both hinges allow immunomagnetic 

enrichment of CAR T-cells to generate pure CAR T-cell products and the detection 

of CAR T-cells in the blood stream. CARs equipped with the NGFR hinges proved 

to be as efficacious as counterparts equipped with a CD8 hinge in vitro as well as 

in vivo. Together with the CD34-derived hinge, they could be useful for 

applications where two distinct CARs (e.g. dual or Split-CARs) are needed to 

discriminate expression of the two CARs. 
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2.2  Improving CAR T-cell therapy for solid malignancies 

2.2.1  CD44v6 as target for CAR T-cell therapy for HNSCC 

Title: CD44v6-targeted CAR T-cells specifically eliminate CD44 

isoform 6 expressing head/neck squamous cell carcinoma 

cells 

 

Authors: Corinna Haist, Elena Schulte, Nina Bartels, Arthur Bister, Zoe 

Poschinski, Tabea Ibach, Katja Geipel, Constanze Wiek, Martin 

Wagenmann, Cornelia Monzel, Kathrin Scheckenbach*, Helmut 

Hanenberg* 

 * These authors contributed equally and share last authorship. 

 

Status: Published 

Journal: Oral Oncology; Impact factor 5.972 

DOI:  10.1016/j.oraloncology.2021.105259  

 

Own work: 10 % - Support during design, execution and analysis of some 

experiments; partial supervision of students; correction of the 

manuscript  

 

This manuscript describes the generation of a high-affinity CD44v6 CAR, 

derived from a clinically approved monoclonal antibody against CD44v6 and 

demonstrates the feasibility to target CD44v6 for the treatment of head and neck 

carcinoma. CD44v6 is overexpressed on a various cancers, including head and 

neck squamous cell carcinoma cell lines, which are efficaciously eradicated by T-

cells equipped with the newly developed CD44v6 CAR. Importantly, the CAR 

proved to be specific for CD44v6, since it does induce lysis against cells which 

express CD44, but not CD44v6.  
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2.2.2  Optimization of CARs for head and neck cancer 

Title: Engineering a single-chain variable fragment of cetuximab for 

CAR T-cell therapy against head and neck squamous cell 

carcinomas 

 

Authors: Corinna Haist, Zoe Poschinski, Arthur Bister, Michèle J. Hoffmann, 

Camilla M. Grunewald, Alexandra Hamacher, Matthias Kassack, 

Constanze Wiek, Kathrin Scheckenbach*, Helmut Hanenberg* 

 * These authors contributed equally and share last authorship. 

 

Status: Published 

Journal: Oral Oncology; Impact factor 5.972 

DOI:  10.1016/j.oraloncology.2022.105867  

 

Own work: 10 % - Support during design, execution and analysis of some 

experiments; partial supervision of students; correction of the 

manuscript  

 

Within this study, a high-affinity CAR is engineered from the clinically 

approved EGFR monoclonal antibody cetuximab. In contrast to a previously 

described cetuximab-based CAR, the newly engineered CAR construct allows more 

efficient lentivirus production as well as T-cell transduction, which is crucial for 

cost-effective production of CAR T-cells. Moreover, the CAR mediates efficacious 

eradication of EGFR+ head and neck squamous cell carcinoma and other solid 

tumor cell lines, even when EGFR is only minimally expressed on the cell surface. 
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2.2.3  Combination therapy with epigenetic modulators 

Title: Epigenetic priming of bladder cancer cells with decitabine 

increases cytotoxicity of human EGFR and CD44v6 CAR 

engineered T-cells 

 

Authors: Camilla Grunewald*, Corinna Haist*, Carolin König, Patrick Petzsch, 
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Status: Published 
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DOI: 10.3389/fimmu.2021.782448 

 

Own work: 10 % - Support during design, execution and analysis of some 

experiments; correction of the manuscript  

 

Since cancer cells are often epigenetically dysregulated, this study explored 

the possibility to combine epigenetic drugs with CAR T-cell therapy. Here, the DNA 

methyltransferase inhibitor decitabine improved cytotoxicity of the previously 

described CD44v6 and EGFR CARs against urothelial carcinoma cell lines, but not 

against healthy control cells. While this effect was not due to changes in antigen 

or immune checkpoint expression, decitabine altered the balance of pro- and anti-

apoptotic gene expression to an apoptosis-sensitive state, which included the 

upregulation of BID and downregulation of BCL2L1. 
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2.3 Alternative cell types for CAR therapy 

2.3.1 Genetic engineering of NK cells for CAR therapy 

Title: Genetic engineering and enrichment of human NK cells for 

CAR-enhanced immunotherapy of hematological malignancies 
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Denise Smorra, Maryam Hejazi, Markus Uhrberg, Kathrin 

Scheckenbach, Cornelia Monzel, Constanze Wiek, Dirk Reinhardt, 

Naghmeh Niktoreh, Helmut Hanenberg 

* These authors contributed equally and share first authorship. 

 

Status: Published 

Journal: Frontiers in Immunology; Impact factor 8.787 

DOI: 10.3389/fimmu.2022.847008  
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 While all previous manuscripts employed T-cells as effector cell, this study 

focusses on the use of NK cells for CAR therapy. To improve CAR NK cell generation, 

a protocol for the efficient transduction of NK cells was generated by comparing 

various lentiviral envelope proteins as well as transduction enhancers and the 

MPSV promoter was determined as most suited to drive high-level transgene 

expression in NK cells. Also here, immunomagnetic reagents can be used to 

produce pure and well defined CAR NK cell populations. Furthermore, to improve 

the limited persistence of NK cells in vivo, NK cells were engineered with IL-15 

constructs, which improves their persistence and ultimately also tumor control in 

an ALL xenotransplantation model. 
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3  Discussion: Challenges of CAR therapy 

Cancer therapy has made significant progress within the last two decades. With a 

profound switch from traditional and non-tumor specific systemic therapies 

towards targeted and personalized approaches, these novel strategies have 

achieved dramatically increased response and survival rates and especially long-

term therapy outcomes improving for poor-prognosis cancer patients. 

Immunotherapies with antibodies or CARs, declared as the scientific breakthrough 

of the year 2013 by the Journal SCIENCE, are on the forefront of this paradigm 

shift 166. Especially cellular therapies, which employ genetically-modified immune 

cells for the treatment of cancer, are a promising approach to induce tumor 

clearance and stable disease remission. Since their first description in 1989 as 

chimeric antigen receptors 18, CAR cellular products have come a long way and it 

took more than 20 years for their breakthrough in clinical studies and almost 30 

years for their market approval. Currently, more than 500 clinical trials are utilizing 

CAR T-cells for the treatment for various malignancies and, in addition to the six 

already approved ones, more CAR T-cell products are expected on the market in 

the upcoming years 23. Nonetheless, while the field rapidly advanced within the 

last decade, CAR designs still need to be optimized and the broad applicability of 

this type of therapy for cancer is still a great challenge to overcome. In this thesis, 

I describe CAR design improvements, which tackle different aspects of CAR therapy. 

These were:  

 

1) The establishment of novel hinge domains derived from human CD34 and 

NGFR/CD271 enables the detection and enrichment of CAR T- as well as NK cells, 

which will be a key factor to drive allogeneic therapies forward. In various systems, 

these two hinges proved to be as safe and as effective as widely used and clinically 

approved hinge domains.  

 

2) CAR T-cell therapy for solid cancers is still lagging behind mainly due to 

the lack of safe antigens, heterogeneity of solid tumors, impeded T-cell trafficking 

as well as the hostile TME. To improve the therapy for head and neck as well as 

bladder cancer, CD44v6 was established as an important target antigen, an EGFR-

targeting CAR was engineered to improve lentiviral production and T-cell 

transduction, and the combination therapy with the epigenetic drug decitabine 

enabled to prime tumor cells towards apoptosis to increase CAR T-cell efficacy. 

 

3) NK cells could be superior to T-cells as effector cells for broader cellular 

immunotherapy for several reasons, including inherent anti-tumor responses, risks 

for fewer adverse events and the potential for allogeneic off-the-shelf therapies. 

As part of this dissertation, a workflow for the generation of (pure) allogeneic CAR 

NK cell products was established. 
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3.1 Engineering the optimal CAR construct 

When constructing a CAR, each domain has distinct effects on the function 

and thus the cellular consequences for the CAR expressing cell. Obviously, the 

antigen-binding domain dictates to which target antigen the CAR binds and thus 

which cells are being eliminated. The most successful CAR target by a good margin 

has been CD19, which is almost exclusively expressed on cells of the B-cell lineage 

and also uniformly present on B-cell leukemias and lymphomas. Especially the 

high-affinity clone FMC63, on which all clinically approved CD19 CAR T-cell 

products are based upon, proved to be highly effective in controlling tumor growth 

and induce remission in patients 88, 89, 107. Also in this dissertation, the FMC63 scFv 

was used to efficaciously eradicate various CD19+ leukemia and lymphoma cell 

lines or as a widely accepted negative control for solid cancer cells. Similarly to 

scFv-engineering as a parameter to tune CAR affinity and consequently the 

required antigen threshold for activation signaling in the CAR cell 46, the linker 

between the heavy and the light chain can influence dimerization and signaling of 

the CAR construct, thereby ultimately affecting efficacy and therapy outcome in 

cellular studies 167. Here, we employed scFv-engineering to shorten the 

Cetuximab-derived scFV for an EGFR-CAR. While these changes did not confer 

improved effector function to the T-cells, the lentiviral vector production as well as 

transduction efficiency of primary human T-cells was dramatically improved. With 

the lentiviral vector and subsequent CAR T-cell manufacture being a main cost 

factor in CAR T-cell therapy, such an improvement will be key to reduce costs for 

a potential clinical application. Besides scFvs, CAR constructs can be also equipped 

with ligands 41, cytokines 42, extracellular parts of receptors 43 or nanobodies 168 to 

recognize their target antigens on malignant cells. Recently, CARs with antigen-

binding domains derived from TCRs have been established as an intriguing option 

to target intracellular proteins 169, which nevertheless require presentation on MHC 

molecules and thus are prone to MHC loss by the tumor cells.  

 

Throughout this dissertation, the combination CD28-CD3ζ was used as 

signaling domains in 2nd generation CARs for targeting hematological as well as 

solid cancer cells. However, it is still a matter of discussion, which co-stimulatory 

domain will provide the most utility to CARs. Although CD28 and 4-1BB are 

currently the most employed options 170, it is widely accepted that CD28 leads to 

a more rapid and strong T-cell proliferation as well as anti-tumor response 15 and 

requires a lower antigen threshold for signaling 171. Due to this stronger response 

and the induction of IL-2, which counteracts TGF-β-mediated immunosuppression 

in the TME 36, CD28 is thought to be the better candidate for solid tumors. This 

hypothesis has been confirmed in preclinical solid tumor models, where CD28-co-

stimulated CARs showed better tumor infiltration, expansion and tumor clearance 
172. Also for hematological malignancies, CD28-equipped CD19 CARs showed 

superior response and survival rates in the treatment of DLBCL patients when 

compared to 4-1BB-equipped counterparts 173. These studies therefore indicate, 
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that CD28 indeed seemed to be the correct choice for the applications within this 

thesis.  

 

Nonetheless, further engineering of the CAR constructs by adapting the co-

stimulatory domain could significantly change the CAR signaling. Importantly, 

CD28 signaling in CARs is more prone to cause T-cell exhaustion and activation-

induced cell death 25, 26. To counteract CD28-mediated exhaustion, the CD28 

endodomain 174 or ITAMs within CD3ζ 175 can be mutated to reduce the signaling 

strength of the CAR without losing CAR efficacy. This might also help to reduce 

neurotoxicities, as these side-effects are attributed to strong CAR T-cell activation 

and are more frequent in CD28-based CARs compared to 4-1BB-based constructs 
176. Moreover, CD28 also induces IL-10 production and secretion, which can inhibit 

immune cells. Here, the coupling of CD28 with OX40 signaling, which represses 

IL-10 secretion, is an option to prevent IL10-mediated immunosuppression 29.  

 

NK cells are an attractive effector cell type for CAR therapy, since these cells 

are not MHC-restricted in their capacity to kill malignant cells and can be used 

independent of any HLA constellations for allogeneic therapies 155. In contrast to 

T-cells, however, NK cells do not physiologically express CD28. Nonetheless, 

CD28-based CARs are completely functional when expressed in NK cells, although 

their signaling does not induce autocrine expression of proliferative cytokines such 

as IL-2 177, 178, 179. Thus, CAR NK cells heavily rely on further stimulation on top of 

the CAR signaling to improve in vivo persistence, as was shown in the ALL mouse 

model, when CD19 CAR NK cells with a CD28-CD3ζ configuration could not control 

the progression of the CD19+ ALL blasts (see section 2.3). Only co-expression of 

the CD19 CAR with either soluble or membrane-tethered IL-15 improved the 

persistence of NK cells in vivo and impeded the ALL progression. Similar results 

were obtained in comparable preclinical studies 177, 178 and also in a clinical trial 180, 

where IL15-armored NK cells achieved complete remission in 7 out of 11 patients 

without observable toxicities. Interestingly, while NK cells do not carry TCRs, they 

still do e press CD3ζ, which comple es with the Fc receptor CD16 to mediate ADCC 

of pathogens or cancerous cells 152. Thus, when incorporated in CARs and 

expressed in NK cells, the ITAMs within the CD3ζ shift the net activation signal to 

induce elimination of the targeted cell. Although CD3ζ remains the gold standard, 

the intracellular domains of NK cell-associated activation domains such as DNAX-

activation protein 10 or 12 (DAP10, DAP12) or NKG2D have also been used as 

primary activation signal for CAR engagement in NK cells 15, 179. 

 

The hinge domain plays a crucial role in CAR design as it gives the CAR 

the flexibility and length to reach its target and thus indirectly mediates CAR 

signaling. Currently, CD8- and CD28-derived hinges are the go-to-candidates for 

clinical applications, but as for the co-stimulating domains, the best choice is still 

a matter of discussion and might rely on the specific situation. In 2nd generation 
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CAR constructs with a CD28-CD3ζ configuration expressed in human T-cells, 

CD28-hinged CD19 CAR constructs were reported to produce higher levels of 

cytokines, especially IL-2, exhaust more quickly and are more prone to activation-

induced cell death (AICD) when compared to their CD8-hinged counterparts 181. 

While both CD8- and CD28-derived hinges are relatively short, appr. 40 aa (amino 

acids), and are already well established in clinical CAR products, both antigens are 

naturally present on T-cells and partially also on NK cells. In contrast, the 

immunoglobulin-derived CH2CH3 hinges are much longer, approximately 230 aa, 

and if non-mutated associated with off-target toxicities 132. As longer hinges are 

needed to reliably target membrane-proximal and sterically-hindered epitopes, our 

CD34- and NGFR-derived hinges with lengths of 99 aa (C6), 120 aa (N3) and 162 

aa (N4) are certainly attractive options to target antigens, for which the CD8- and 

CD28-derived hinges are not long enough. From these three, each has its merits 

and thus also here it is a matter of functional testing, which one is the best 

candidate for a clinical application. Obviously, N4 should mediate the best binding 

for membrane-proximal epitopes, while C6 and N3 on the other hand might be 

better suited for an one-size-fits-all approach.  

 

Indeed, when incorporated into the respective CAR, the CD34-derived C6-

hinge mediated not only eradication of CD19, CD5, ROR1, CD5, CD33 or CD123 

leukemia and lymphoma cells (see section 2.1.1), but also of EGFR- or CD44v6-

positive head and neck as well as urothelial carcinoma cells (see section 2.2). In 

addition, CD34 selection with immunomagnetic reagents is in clinical use for more 

than 15 years for hematopoietic stem cell transplantation and CD34-fusion 

proteins have been used to select transgenic T-cells in clinical trials 182. Thus, using 

CD34 as a selection marker with subsequent magnetic selection is highly feasible 

for a clinical application within CAR therapy.  

 

The safety of cytoplasmatically truncated NGFR as a selection marker has 

been controversially discussed in the past. An early study reported leukemia 

induction after transduction of murine hematopoietic stem/progenitor cells with 

oncoretroviral vectors expressing truncated NGFR; this malignant transformation 

was presumably caused by the specific insertion locus and by dimerization and 

signaling of other growth factor receptors with the truncated NFGR 183. Thereafter, 

however, another study demonstrated safe transduction of truncated NGFR into 

more than 9 x 109 bone marrow cells and primary T-cells of various species 184 and 

truncated NGFR has been used as selection marker in various clinical trials 

including a recently started trial with Δ   R-hinged CD44v6 CAR T-cells 

(NCT04097301; 74). Regarding the NGFR hinges, N3 could potentially be the safer 

option compared to N4, as it lacks the 2nd CRD, which is apparently needed for 

binding of NGF and other neurotrophins 185. Generally speaking, when designing 

new CAR hinges, potential unknown binding partners should be kept in mind, as 

these could cause specific off-target toxicities, as we saw with the longer CD34 
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hinge, C7, which caused unspecific toxicity against a not yet identified antigen on 

various AML cell lines. Although the only described ligands for CD34 are selectins 
186, we could exclude these since their binding to CD34 relies on glycosylation of 

CD34 187, 188 and the unspecific toxicity even occurred when the C7-hinge was 

mutated to prevent glycosylation (see section 2.1). Similarly, CD80 has been 

described as an unexpected binding partner for NGFR 189, although the 

physiological role of this interaction is still unclear. 

 

Marking of transgenic cells with a cell surface marker is a desirable feature 

for cellular therapy, as it allows to track and eventually also eliminate the 

transgenic cells. In line with this, the lentiviral vector of Breyanzi™, the CD19 CAR 

T-cell therapy by Juno Therapeutics/Bristol Meyer Squibb, contains a truncated 

EGFR as such a marker. Consequently, CAR T-cells can be easily detected in the 

bloodstream of the patient by staining with EGFR antibodies and also be eliminated 

in case of adverse reaction by the administration of the clinically used EGFR 

antibody cetuximab 190, 191. As the persistence of CAR T-cells is a key indicator for 

therapy success, tracking of CAR T-cells in the bloodstream can be used to predict 

therapy outcome. The direct incorporation of such a marker into the CAR backbone 

carries additional benefits, as this reduces the vector size compared to a vector 

expressing the CAR and a second cell surface marker; it also opens up the space 

for expression of a 2nd transgene in the vector. The reduction of the vector size is 

an option to increase virus titers and to improve the transduction efficiency 192, 

which then reduces the costs of CAR T-cell manufacture and thus CAR therapy 

itself. As second transgene, especially suicide genes such as the inducible Caspase-

9 193 are an intriguing option to eliminate the CAR T-cells in vivo when needed. In 

contrast to the elimination by an antibody, e.g. cetuximab, the suicide gene 

specifically eliminates only transgenic cells and thus causes less side effects, as 

systemically administered antibodies would also damage healthy tissues carrying 

the marker. Artificial sequences to detect and eliminate CAR T-cells have also been 

incorporated into the CAR backbone 194, 195, but due to their artificial nature, they 

are more likely to provoke immunogenic reactions.  

 

If the hinge within the CAR construct not only allows detection, but also 

enrichment with e.g. immunomagnetic reagents under GMP conditions, which is 

readily possible with our C6, N3 and N4 hinges, inclusion of a suicide gene would 

facilitate to generate a pure transgenic cell product that is completely controllable 

by the suicide gene. This approach is the prerequisite for the generation of 

allogeneic CAR therapies (if the TCR is not knocked-out), as a potential graft-

versus-host-disease can be stopped via suicide gene activation. Thus, our newly 

developed hinges present an essential first step towards the establishment of 

allogeneic CAR T-cell therapies.  
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3.2 Alternative CAR designs to improve therapy efficacy 

While CAR T-cell therapy demonstrated unpreceded response rates for r/r 

malignancies with historically bad prognoses and outcomes, resistance and relapse 

mechanisms that prevent straight-forward CAR T-cell application are emerging in 

the clinical trials 15. The most common relapse mechanism, that has been reported 

so far, is the loss of the targeted antigen leading to the outgrowth of an antigen-

negative tumor cell population. Between 10 and 20 % of ALL patients treated with 

CD19 CAR T-cells relapse with CD19- disease 196. In a recent study, even as many 

as 12 out of 17 ALL patient relapsed due to CD19 loss 197. On a genomic level, 

each of these patients had a unique mutation which truncated CD19 before or in 

the transmembrane domain and thus abolished cell surface expression. Similarly, 

also the down-regulation of the target antigen, albeit not complete loss, as 

observed after CD33 CAR T-cell therapy, can induce relapse 198. Here, it also has 

been reported that CARs can pull out their target antigen from the tumor cell 

membrane and internalize it in a process called trogocytosis, which results in tumor 

cell populations with decreased antigen expression 199.  esides simply “losing” 

antigen expression, other mechanisms could also result in evasion from the CAR 

T-cells. Here, especially mutations in the epitope region of the antigen mediate 

CAR unresponsiveness and thus loss of CAR efficacy 200. Through alternative 

splicing the recognized epitopes can be spliced out of the protein, which has been 

reported for CD19 CAR T-cell therapy 200 and treatment of AML with gemtuzumab-

ozogamicin, a CD33-directed antibody-drug-conjugate. Another rare event, that 

can cause relapse, is the unfortunate transduction of leukemic blasts present in 

the apheresis product with CARs leading to the masking of the target epitope. Here, 

the transduction of a single leukemic blast has been reported to be enough to 

cause relapse after CD19 CAR T-cell therapy 201.  

 

All of these mechanisms, which can be summarized under “antigen 

escape”, enable the malignant cells to hide from and evade the CAR T-cells. 

Underlying is a selective pressure, as antigen-positive tumor cells are eradicated 

by the CAR T-cells, thus giving a growth advantage to tumor cells with lost, 

mutated or masked epitopes. To prevent or at least reduce the risk of antigen-

negative relapse in the first place, the simultaneous treatment with two or more 

2nd or 3rd CARs has been under both preclinical as well as clinical evaluation 

(Figure 5). When using these dual CARs, it is feasible to co-target antigens from 

the same lineage, which ensures to restrict the on-target off-tumor toxicities to 

this lineage; for B-cell malignancies, CD19 has been co-targeted with CD20 202 or 

CD22 CARs 203. When using two CAR constructs in one T-cell, it has been reported 

that the transmembrane as well as hinge domains of the CARs enable dimerization 

with innate receptors on T-cell such as CD8 and CD28 81. Thus, to prevent 

dimerization of the two CARs with one another or with these molecules, which is a 

driver of tonic signaling and unspecific CAR activation, each CAR should be 

equipped with a unique hinge and transmembrane domain. Here, the C6 and N3 
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or N4 hinge are prime candidates for hinges to be used in such dual-CAR systems, 

since neither CD34 nor NGFR are expressed on T- or NK cells, which means that 

they cannot form heterodimers with native CD34 or NGFR on T- or NK cells. CD34 

and NGFR are also not known to interact with each other, thus reducing the risk 

that the CARs themselves could form heterodimers via the interaction of their two 

hinges. Importantly, when one CAR is equipped with C6 and the other one with an 

NGFR-derived hinge, T- or NK cells can be enriched for cells expressing both CARs 

to produce a homogenous dual CAR T- or NK cell product. 

 

 In general, the transfer of two complete CARs represents a higher genetic 

load compared to a bi-cistronic CAR. However, there are multiple ways to 

transduce the CARs into the T-cells: The two receptors can either be expressed in 

mono-cistronic cassettes using two vectors or in a single bi-cistronic gene 

expression cassette using a single vector. Here, bi-cistronic cassettes are 

preferable as they require the production of only one (lentiviral) vector, which 

reduces therapy costs and eases the running/application of clinical trials and 

market approval. Regarding one-vector systems, two-promoter and IRES systems 

do not necessarily result in adequate expression of both transgenes 204. In contrast, 

a 2A site, as was already employed on several occasions in this dissertation and is 

used in Breyanzi™, the CD19 CAR T-cell therapy by Juno Therapeutics/Bristol 

Meyer Squibb, drives robust and proportional co-expression of two transgenes 204 

and thus might be the best option to co-express two CARs.  

 

 

Figure 5: Alternative CAR designs to improve CAR therapy efficacy. In contrast to 

approaches with standard 2nd generation CARs with one scFv targeting moiety, dual and 

bi-specific CARs allow to target two antigens by expressing two CARs with distinct antigen 

specificity or adding a 2nd scFv to the CAR, respectively. 

 

Alternatively, CARs can be equipped with two separate scFvs to enable the 

effector cell to respond to two different antigens (Figure 5). Bi-specific CARs 

require the expression of one only construct and thus do not need bi-cistronic gene 

expression cassettes or more than one vector; however, one has to pay close 

attention to the design of the construct regarding the two scFvs. Depending on 

                                 

    

    

    

    

    

    

    

    

       



Discussion 

120 
 

where the scFvs bind the corresponding antigen, as in proximally to or distally 

from the membrane, the orientation of the scFvs is crucial to ensure binding of 

both domains to its antigens 205. Consequently, in a CD19/CD20 bi-specific CAR, 

the CD20 scFv, which binds a membrane-proximal epitope and thus requires a 

long hinge for antigen binding in a classical mono-specific construct, had to be 

located at the N-terminus of the bi-specific CAR 205. Here, the downstream located 

CD19-scFv presumably functioned as an additional spacer to bridge the CD20-scFv 

to its epitope. Importantly, in bi-specific antibody preparations, mispairing of the 

heavy and light chains is a serious problem, which could generate new scFvs with 

unknown specificity 206. Although this has not been reported for bi-specific CARs 

so far, it remains at least a theoretical risk associated with bi-specific CARs. 

Interestingly, a CD19/CD22 bi-specific CAR required a looping configuration, 

where the two chains of the CD19-scFv surround the CD22-scFv chains resulting 

in a CD19VH-CD22VH-CD22VL-CD19VL sequence 125. In a recent trial, six out of six 

patients completely responded to a CD19/CD22 bi-specific CAR, although one 

patient finally relapsed due to lost CD19 and reduced CD22 expression 207. 

 

3.3 Alternative CAR designs to improve therapy selectivity 

On-target off-tumor toxicities are still one of the main concerns and 

limitations of CAR T-cell therapy. While the eradication of the normal B-cells 

regularly occurs in the CD19 CAR therapies for B-cell malignancies, regular 

immunoglobulin infusions can be used for these patients to cope with the B-cell 

aplasia. Beyond CD19 and other B-cell associated antigens, however, only few cell 

surface antigens can be targeted without risking or causing severe toxicity 15. 

Hence, CAR T-cell therapy for other hematologic malignancies, which are not B-

cell derived, is lagging far behind.  

 

AML is derived from progenitor/precursor cells in the myeloid lineage and 

has a relatively dire prognosis in adult patients. Therefore, new treatment 

modalities are direly needed for r/r both pediatric and adult patients. However, the 

two most intriguing CAR targets on AML, CD33 and CD123, are expressed across 

the myeloid hematopoietic system including very early hematopoietic precursor 

cells, thus posing a risk of lasting myeloid immunosuppression, especially anemia, 

agranulocytosis and thrombocytopenia, or even myeloablation 208. Nonetheless, 

clinical studies to assess CAR therapy for AML are ongoing. The first patient treated 

with CD33 CAR T-cells showed severe adverse events during therapy including 

cytopenias 198. Initially, CD33 CAR T-cells markedly reduced AML burden, but 

CD33+ AML blasts reoccurred in the presence of CD33 CAR T-cells and the patient 

succumbed to his disease. Another recent phase I study investigated the feasibility 

and safety of CD33-targeted CAR T-cells for heavily pretreated r/r AML patients 
209. To limit toxicity, a low dose of just 3 x 105 cells per kg of body weight was 

used. While the therapy was well tolerated, success was quite limited, as none of 
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the patients responded and all died within one month following CAR T infusion due 

to disease progression. Similarly, first results with transiently expressed CD123 

CARs showed only temporary adverse events, but also no antileukemic effect, as 

the disease quickly progressed in all treated patients 210. On the contrary, 

lentivirally transduced CD123 CAR T-cells induced complete responses and 

remissions in some patients without overt toxicity and treatment-related cytopenia 
211. Importantly, all studies experienced problems regarding the manufacture of 

CAR T-cell products in time, as r/r AML is an aggressive disease with rapid 

progression and patients commonly died before being able to receive CAR T-cells. 

Moreover, the manufacture process itself proved to be problematic, as the patients’ 

immune systems were frequently damaged due to previous treatments and AML 

burden, leading to the production of insufficient CAR products. 

 

There are several systems to potentially limit the toxicity of CAR T-cell 

against healthy tissues. In Split-CARs, the signaling domains of a 2nd or 3rd 

generation CAR are split into two distinct CARs, each targeting a different antigen 

(Figure 6). Thus a 1st generation CAR with the CD3ζ domain targets the first 

antigen, while a co-stimulatory receptor carrying one or more co-stimulatory 

domains targets the second antigen. While engagement of only one receptor 

diminishes or even abolishes T-cell activation, only the simultaneous binding of 

both receptors induces full T-cell activation and efficient target cell lysis. 

Consequently, the Split-CAR system creates, in contrast to the bi-specific CARs, 

an “A D-gate”, where both targets need to be bound simultaneously by two first 

generation CARs. Therefore, this approach allows to increase the specificity from 

a single-targeting to a dual-targeting strategy. In preclinical research, this system 

has already been successfully used to co-target ErbB2 and MUC1 for breast cancer 
212, mesothelin and a-folate receptor for ovarian cancer 213, CEA and mesothelin 

for pancreas carcinoma 214, PSMA and PSCA for prostate carcinoma 215 and CD13 

and TIM3 for AML 216. While the Split-CAR is an attractive approach to tune CAR 

T-cell specificity, the translation could prove to be difficult as the system requires 

a delicate balance between the two CARs and stable expression of two antigens. 

This might also be the reason that in the almost 10 years since first being described, 

the Split-CAR was only tested a handful of times in preclinical studies and the 

concept has not been introduced in clinical trials. 
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Figure 6: Alternative CAR designs to improve CAR therapy selectivity. In Split-CARs, 

the signaling domains of a 2nd generation CAR are separated into two distinct CARs, each 

targeting a different antigen. synNotch receptors induce the expression of a second fully 

functional CAR when activated. Adaptor CARs rely on the supplementation of an adaptor 

molecule, that mediates the interaction between the target and the CAR T-cells, and 

thereby dictates the antigen specificity. 

 

Synthetic Notch (synNotch) receptors (Figure 6) 217 are also able to 

increase CAR T-cell specificity, however, they do not require such a delicate design 

and are more straightforward to establish. Here, the first CAR carries intracellularly 

a transcription factor that is cleaved off the receptor upon ligand binding. The 

transcription factor then induces expression of a second functional 2nd or 3rd 

generation CAR targeting a different antigen. Preclinically, this system has been 

successfully used in mouse models against hematologic 218 as well as solid tumor 

cell lines 219. However, in contrast to the Split-CAR, the synNotch system employs 

a boolean “I -THE ”-gate rather than an “A D”-gate. Thus, since a fully functional 

2nd or 3rd generation CAR is expressed, the risk of on-target off-tumor adverse 

events remains, especially if the two antigens are co-expressed on co-localized or 

locally proximal tissues 219. Consequently, the system cannot be used for every 

target antigen combination and the antigens need to be carefully chosen with 

regards to expression in the body. 

 

A more sophisticated approach to limit off-tumor toxicities is the use of 

adaptor-based CAR designs (Figure 6), which are currently in preclinical 

development. Here, the T-cells are transduced with a CAR construct that lacks a 

specific antigen-binding domain. Thus, the activation of the CAR T-cells and the 

killing of the target cells rely on the addition of an adaptor molecule that links the 

CAR to a target antigen 220. These adaptor systems usually use CARs which binding 

a distinct tag recognizing the tagged antibodies or scFvs that bind the TAA of choice. 

Here, FITC 221, small peptides 222, 223, 224, avidin 225, α-biotin linkers 226 or leucine-

zipper motifs 227 have been used as tags that mediate CAR binding and activation. 

Theoretically, the therapy can be adapted to the needs by increasing or decreasing 

the adaptor affinity or dose to reduce off-tumor toxicities or increase anti-tumor 

efficacy 227. Adaptor molecules can have a serum half-life ranging from just a few 
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minutes or hours to several days 220. Thus, CAR T-cell activity relies on 

repeated/continuous administration of the adaptor fragments, offering another 

possibility to control the therapy. As the adaptor system not only allows to increase 

the affinity but also to switch the target itself, this approach is also suited to target 

the heterogeneity of solid tumors or other malignancies that developed antigen 

escape mechanisms during immunotherapy. Here, adaptors against different 

antigens can either be administered simultaneously or subsequentially, depending 

on the degree of T-cell activity one wants to achieve. Moreover, to increase 

specificity, adaptor systems can be used for a combinatorial antigen targeting, 

where the threshold for T-cell activation can only be achieved via the binding of 

multiple adaptors and thus antigens 226. However, the biggest hurdle of this 

approach will be to deliver both the T-cells as well as adaptor molecules to the 

sites, where the malignant cells reside. 

 

3.4 Improving CAR therapy for solid malignancies 

As part of this dissertation, CARs against CD44v6 and EGFR were developed 

for the treatment of head and neck as well as urothelial carcinomas. As previously 

mentioned, CAR T-cell therapy for solid tumors is lagging behind due to the lack 

of safe antigens, the high tumor heterogeneity, the poor infiltration of immune 

cells into the tumors and the hostile tumor microenvironment (TME). Ongoing 

research tries to address these issues and will be discussed in the following chapter 

(Figure 7).  

 

Choosing a suitable antigen 

The ideal CAR target should be abundantly expressed on tumor tissues 

but not on healthy tissue. However, this has been a pipedream in the field of 

immunotherapy for the longest time. While the antigen expression for CD19 is 

highly stable and homogenous on malignant B-cells, this is rarely the case for solid 

tumors, where antigen expression patterns not only differs between different 

tumor locations but also within the same tumor nodule, thus limiting CAR T-cell 

efficacy 228. To counteract this heterogeneity, multiple antigens have been targeted 

with CAR T-cells. Here, a bi-specific CAR against ErbB2 and IL 3Rα  not only 

proved to be more efficacious than the single-specificity CARs, but also mitigated 

antigen escape in a preclinical model of glioblastoma 229. Similarly, a scFv 

recognizing EGFR as well as the mutant EGFR splice variant EGFRvIII was, when 

expressed in a CAR construct on a NK cell line, effective against glioblastoma cells 

even when only one antigen was present 230. A ligand-based CAR, which 

recognizes all four members of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4) 

proved to be effective when targeting heterogeneous mesothelioma 231 and a 

clinical trial testing with the multivalent ErbB CAR for head and neck cancer is 

currently ongoing (NCT01818323, 232).  
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However, targeting of multiple antigens also increases the risk of 

considerable adverse events as was seen for an advanced cholangiocarcinoma 

patient, who was treated with successive administration of EGFR- and CD133 CAR 

T-cells 233, suggesting that tumor-specific rather than tumor-associated antigens 

should be targeted. Here, CD44v6, a splice variant of the hyaluronic acid receptor 

CD44, is an intriguing target, as it is expressed on AML, head & neck, colon and 

several other solid cancers, but expression in healthy tissues is largely restricted 

to keratinocytes in the skin and oral mucosa and monocytes. Moreover, CD44v6 

expression promotes epithelial-to-mesenchymal transition and thus metastasis as 

well as invasiveness, making it an intriguing target for immunotherapy 234. Indeed, 

as part of this dissertation, T-cells were redirected towards CD44v6+ head and 

neck as well as urothelial carcinoma cells with high specificity, as CD44v6- cells 

were not targeted, suggesting that it is feasible to target CD44v6 for a clinical 

application. Likewise, other groups used CD44v6 CARs for lung and ovarian cancer 
235 as well as sarcoma 236 in in vitro and in vivo models. Currently, three clinical 

trials employ CD44v6-targeted CAR T-cells for AML and multiple myeloma 

(NCT04097301), breast cancer (NCT04430595) and various other solid 

malignancies (NCT04427449), although no results have been reported yet. Here, 

first reports will also indicate whether treatment with CD44v6 CARs is tolerable 

and which toxicities occur. Another intriguing target for solid malignancies is 

EGFRvIII, since this genomic deletion of exons 2 to 8 appears to be specific for 

malignant cells 237. In contrast to CD44v6, EGFRvIII has been intensively 

investigated as CAR target and several preclinical studies evaluated efficacy for 

brain 238, lung 239 and liver cancer 240. Clinically, EGFRvIII is targeted especially for 

recurrent brain tumors, mostly gliomas, glioblastomas and gliosarcomas. Here, 

EGFRvIII-directed CAR T-cells demonstrated tumor control and prolonged survival 

beyond the expected outcome of recurrent disease 241. However, similar to other 

malignancies and CAR targets, EGFRvIII loss or mutation has been reported as 

evasion mechanism 242 and thus also here combinations with other high-affinity 

CARs will be key to ensure successful therapy outcome.  

 

One of the biggest drawbacks of conventional CARs is that they are 

restricted to targeting cell surface antigens, as the sc v can only “see” what is 

expressed on the cell but not what is present inside. However, being able to target 

also intracellular proteins would open the door to a whole new world of antigens 

to target, as only about 1 % of the human proteome is expressed on the cell 

surface 243. As a surveillance mechanism and to detect infected or transformed 

cells, the complete proteasome of a cell is constantly being processed via a 

complex machinery involving proteases, chaperones and transporters, thus 

generating peptides, which are presented on MHC molecules on the cell surface. 

T-cells screen such peptides via their endogenous TCR; in case of a match between 

peptide-loaded MHC and a specific TCR, the T-cell becomes activated and lyses 

the target cell 244. Thus, to redirect T-cells towards intracellular proteins, T-cells 
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have been transduced with exogenous TCRs, which recognize distinct MHC:peptide 

complexes. Especially neoantigens that arise due to mutations of intracellular 

proteins are an ideal candidate to target, as these are highly tumor-specific and 

thus should not cause on-target off-tumor toxicities 245. Here, well-known tumor-

specific mutations of e.g. in KRAS were already targeted with exogenous TCRs 

(NCT03745326, NCT03190941). To drive the identification of other suitable 

neoantigens forward, screening platforms based on exome sequencing 246 or 

screening libraries 247, 248 have been utilized. Such platforms might be employed in 

the future to detect patient- or tumor-specific neoantigens, identify reactive T-cell 

clones and their TCRs and thus use highly personalized TCRs for cancer therapy 
249. Another class of intriguing intracellular targets are antigens that are expressed 

in cancers, but only in immune-privileged tissues in the human body such as the 

testis or only during embryonic development. MAGE-A4 and NY-ESO1 are so called 

cancer testis antigens due to their abundant expression in various malignancies 

but restricted expression in the testis in the body 250, 251. Both antigens have been 

targeted with TCR-modified T-cells for solid malignancies including esophageal 

cancer 252 and sarcoma 253, although with limited success. Recently, so-called TCR-

mimic CARs were developed to target intracellular targets with CARs rather than 

TCRs. To do so, the variable domains of TCRs or scFvs that recognize a distinct 

MHC:peptide complex rather than a cell surface antigen have been used as 

antigen-binding motifs. After successful preclinical testing of these constructs 

against WT-1 169, NY-ESO1 254, SSX2 255, MELAN-A and TGFbR2 256, the first TCR-

mimic CARs are currently under clinical investigation 257 .  

 

Improving tumor infiltration 

In contrast to hematological malignancies, which are mostly present in the 

blood and lymphatic system and thus easily accessible for CAR T-cells, solid tumors 

frequently form dense ECM formations and stroma that represents a physical 

barrier for the CAR T-cells 258. In order to overcome this barrier, CAR T-cells have 

been modified to express enzymes to degrade ECM components 259 or to eliminate 

fibroblasts within the TME; this latter approach improved CAR T-cell infiltration into 

the tumor and thus helped to clear tumors in preclinical lung cancer 260 and ovarian 

carcinoma mouse models 261. Also the overexpression of chemokine receptors 

such as CXCR2 262, 263, 264 or CCR2b 265, that match the chemokines present in the 

tumor microenvironment, directs the T-cells towards the tumor site. In preclinical 

models, these strategies improved CAR T-cell infiltration into the tumor and 

efficacy against brain 265, pancreas 262 and liver cancer 264. The local application 

of CAR T-cells directly into the tumor site however proved to be superior compared 

to intravenous injection 266, 267, 268. Clinically, this route proved to be more effective 

in the treatment of glioblastoma 269 as well as head and neck cancer 232. 

Importantly, the local administration not only mitigates the need of the CAR T-

cells to traffic to and infiltrate into the tumor, but also limits on-target off-tumor 
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toxicities as the CAR T-cells mostly remain in the tumor site and thus do not 

eliminate antigen-positive normal cells in other tissues. 

 

Armoring T-cells against the TME 

The TME not only presents a physical barrier for infiltrating immune cells, 

but is also a hostile environment, where immune cells are inhibited or driven into 

anergy or even apoptosis by inhibitory cytokines or checkpoint molecules. 

Here, strategies to either make the tumor cells more susceptible to T-cell killing, 

disrupt T-cell inhibition or armor T-cells for the hostile TME are being researched. 

As the expression of inhibitory receptors on tumor and tumor-resident cells greatly 

impedes CAR T-cell function and persistence, blockade of these receptors is a 

straightforward approach to improve therapy outcome. Importantly, several 

checkpoint inhibitors against PD-1 (Nivolumab, Pembrolizumab, Cemiplimab), PD-

L1 (Avelumab, Atezolizumab) and CTLA-4 (Ipilimumab) are approved for clinical 

use for patients with melanoma, renal, colorectal and urothelial carcinoma, breast, 

lung, bladder and head and neck cancer as well as several lymphomas 270, thereby 

paving the way for a combination therapy. Indeed, in preclinical models blockade 

of the PD-1/PD-L1 axis improved cytotoxicity, cytokine production as well as 

proliferation of GD2 271, CEA 272, ErbB2 273, 274 and mesothelin CAR T-cells 275. 

Clinical data on these combination therapy approaches are still limited, but first 

clinical trials for patients with malignant pleural mesothelioma 276 and 

neuroblastoma 277 showed promising outcomes and, most importantly, no 

combination therapy-associated toxicities. Nonetheless, the extrinsic modification 

of the T-cell response has inert drawbacks, as therapy success also here depends 

on sufficient delivery or local application of the checkpoint inhibitors. More 

sophisticatedly, researchers have established T-cell intrinsic strategies to 

overcome checkpoint-mediated T-cell inhibition. As such, the CRISPR/Cas9-

mediated knockout of PD-1 278, 279, 280, 281 or CTLA-4 282 in the CAR T-cells greatly 

improves T-cell effector functions. Likewise, the truncation of inhibitory receptors, 

which still bind the ligand but lack signaling 275, 283, or the fusion of the extracellular 

domain of PD-  or the T  β receptor to an intracellular CD   or IL-7 chain, which 

switches the inhibitory signal into a stimulatory one 284, 285, greatly improve anti-

tumor effects of these armored CAR T-cells. However, to date there are not enough 

clinical data of these approaches to give clear-cut answers regarding their 

effectiveness. Also the use of 4th generation CARs/TRUCKs secreting pro-

inflammatory and proliferation-stimulating cytokines such as IL-12 286 or IL-18 37 

to improve T-cell persistence and modulate the immune response is in pre-clinical 

development as well as under clinical investigation (NCT03542799, NCT03932565, 
287). 
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Figure 7: Improving CAR therapy for solid tumors. Since solid tumors present a 

hostile environment, are difficult to infiltrate and good and safe target antigens are lacking, 

there is a need address these issues to improve CAR T-cell therapy against solid tumors. 

 

 

 Epigenetic combination therapy 

One of the hallmark events that lead to cancer development and progression 

is the altered epigenetic landscape, leading to transcriptional imbalance and the 

up-regulation of pro-proliferative and down-regulation of pro-apoptotic genes, 

thereby causing cell cycle dysregulation 13. This helps cancer cells, even in the 

presence of apoptosis-inducing factors, to continue proliferating without entering 

cell cycle arrest, becoming senescent or undergoing apoptosis. Thus, epigenetic 

treatment to inhibit DNA methyltransferases (DNMTs) and/or histone deacetylases 

(HDACs) leads to the activation of epigenetically silenced genes and is already 
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under pre-clinical as well as clinical investigation for several malignant entities and 

combination therapy with CAR T-cells 288.  

 

Decitabine blocks DNA methylation by inhibiting DNMTs and is in clinical use 

for myelodysplastic syndrome and AML 289. In our hands, decitabine primed 

urothelial carcinoma cells for more efficacious lysis by CAR T-cells, which was at 

least partly to the decitabine-induced upregulation of BID and downregulation of 

BCL2L1, both members of the BCL2 family. In another study, decitabine up-

regulated CD19 on lymphoma cells, thus priming the cells for elimination by CD19 

CAR T-cells in vitro and also in vivo in two r/r B-cell lymphoma patients 290. 

Currently, two clinical trials prime tumor cells for a combination therapy with CAR 

T-cells and decitabine in r/r B-cell lymphoma (NCT04850560). Importantly, 

epigenetic treatment does not only affect the tumor cells, but can also modulate 

T-cell phenotype and responses. TET2 is a DNA demethylase, which is a key 

regulator of hematopoiesis. Interestingly, disruption of TET2 massively improves 

CAR T-cell proliferation and induced tumor clearance 291. Similarly, decitabine has 

been reported to drive favorable T-cell phenotypes 292 and improve tumor rejection 

in a AML xenograft mouse model 293. Currently, decitabine-primed CAR T-cells are 

employed in a clinical trial for patients with B-cell lymphomas (NCT04697940).  

 

Outlook: A non-viral & decentralized allogeneic CAR therapy 

Ten years after the first application of CD19-targeted 2nd generation CARs 

for the treatment of chronic lymphocytic leukemia, a high percentage of patients 

with B-cell malignancies remain in remission, due to CAR T-cells still circulating in 

their bloodstream 99. These findings make hope that CAR T-cell therapy for B-cell 

malignancies is indeed truly curative rather than a bridge-to-transplant treatment. 

Nonetheless, autologous CAR T-cell therapy remains a last-line option and, due to 

its hefty price tag and individualized manufacturing for every patient, not 

applicable on a broad basis. Thus, one of the next steps for CAR therapy will be to 

make this immunological therapy broadly available with decreased costs, de-

centralized production and shorter manufacturing times. To address these 

problems, allogeneic immune effector cells may be an attractive alternative to 

autologous T-cells in CAR therapy. Currently, there are three main approaches that 

are being employed to drive allogeneic CAR therapies forward.  

 

Switching to allogeneic cells for CAR therapy 

The first one comprises, like done in this thesis, the use of NK cells as 

effector cells. Unlike T-cells, NK cells do not recognize peptide-loaded MHC 

molecules and consequently do not cause GvHD when infused into patients. 

However, NK cell therapy is significantly lagging behind CAR T-cell therapy 23. In 

2020, there were only 17 clinical trial employing CAR NK cells – a fraction 

compared to the over 500 reported clinical trials with CAR T-cells 23. One of the 



Discussion 

129 
 

main reasons remains the challenge in the efficient large-scale generation of CAR 

NK cells, however significant progress has been made here in recent years and the 

translation of these findings to the clinic is just a matter of time.  

 

The two other strategies employ allogeneic T-cells as immune effector cells. 

Here, in order to prevent MHC-restricted GvHD, α β T-cells genetically modified 

to lose expression of the T-cell receptor or γ/δ T-cells, which lack expression of a 

TCR that recognizes MHC proteins, have been used. The knockout of the TCR of 

α/β T-cells has been accomplished using CRISPR-Cas9 to specifically target the 

TRAC and TRBC loci. The CRISPR-Cas9 system has also been used to knock-in the 

CAR constructs into one of these loci, which apparently stabilizes CAR expression, 

reduces tonic signaling and improves ALL rejection by the CAR T-cells 294.  

 

In contrast to α/β T-cells, the TCR of γ δ  -cells does not bind MHC 

molecules. Rather, the γ/δ TCR binds antigens directly with a particular variable 

region. These antigens cover a range of potentially immunogenic ligands and 

include metabolites 295, stress signals 296 and stress receptors 297. As such, γ/δ T-

cells form a bridge between the innate and adaptive immune system and, similar 

to NK cells, take up a prominent role during infection and tumor 

immunosurveillance.  

 

All three of these approaches have their strengths, but also merits. Due to 

their role in tumor immunosurveillance,  K and γ/δ T-cells are destined to be used 

in adaptive cellular therapies. However, they are only fraction of peripheral blood 

mononuclear cells (PBMCs), in contrast to α/β T-cells, which make up about 70 % 

of PBMCs 298, 299. Consequently, larger starting materials (e.g. apheresis products) 

or longer ex vivo cultivation times would be required to reach the critical cell 

number for an adoptive therapy. However, these cells do not need additional 

genetic modifications besides the CAR integration, as there is no need to knockout 

the TCR to prevent GvHD. This not only prevents potential problems associated 

with the knockout or additional transduction procedures, but also eases the 

regulatory framework needed for approval.  

 

Decentralizing CAR T- or NK cell production 

As previously mentioned, CAR T-cells are currently produced at centralized 

locations, e.g. the Fraunhofer Institute for Cell Therapy and Immunology in Leipzig, 

Germany, from where they are sent to the treatment sites 142. The whole process 

is quite time consuming, labor-intense and requires an elaborate infrastructure, 

which is reflected by the price as well as the production time for the CAR T-cell 

products. Consequently, to decrease costs and accelerate treatment, there is a 

need to decentralize the whole process. Here, fully-automated and closed systems, 

such as the Prodigy™ or Cocoon™ devices developed by Miltenyi Biotec and Lonza, 

respectively, offer a means to equip a great number of university treatment 
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centers with stations to manufacture adoptive cellular products themselves. After 

programming, the machines automatically run the manufacturing of CAR products, 

including selection of the initial effector cell type, transduction with CAR genes and 

subsequent expansion. Importantly, both NK 300 as well as T-cells 301, including γ/δ 

T-cells 302, are compatible with these platforms and as such these can be used for 

allogeneic CAR therapies employing the three previously mentioned approaches.  

 

Translating non-viral gene transfer methods to CAR therapy 

The use of lentiviral vectors for cell and gene is controversially discussed, 

especially since long-term effects in patients are not well known yet. While 

lentiviral vectors enable great transductions efficiencies with stable transgene 

expression, also when transducing T- or NK cells and non- or rarely replicating 

cells such as stem cells 303 in different pseudotypes 304, these vectors still do 

integrate randomly into the genome 305. Theoretically, this random integration 

poses the risk of activating oncogenes or inactivating tumor suppressor genes, 

especially when multiple copies of the vector are integrated into the genome. This 

insertional mutagenesis also translates to the regulatory framework, where the 

safety of the cellular products has to be demonstrated in surrogate tests e.g. by a 

maximum of vector copy number integrations into the genome of the transduced 

cells. Moreover, lentiviral vectors make up a significant amount of the therapy 

costs, since the lentiviral vectors have to be produced under biosafety level II 

conditions in an extremely regulated GMP environment. Thus, in order to avoid 

these issues and reduce therapy costs, non-viral methods might be the go-to 

approach in the future. Here, the development of transposon-based system as well 

as CRISPR/Cas9 and its most recent iterations could provide means to do so. 

 

 In recent years, the sleeping beauty (SB) transposition system has 

gained momentum for use in cell and gene therapy. The SB transposon, which was 

originally found in fish genomes, is a synthetic DNA transposon that stably 

integrates its template into the genome via a cut-and-paste mechanism 306. As it 

is more likely to integrate into safe harbors and thus less likely to integrate close 

to cancer-related genes and also simply DNA, it is presumably safer 305 and 

certainly cheaper to use compared to lentiviral vectors. Very recently, a new study 

demonstrated feasible and efficient electroporation-mediated introduction of CD19 

CARs into TCR-KO T-cells with the SB transposon system 307. These cells mediated 

efficient control of leukemia and lymphoma cells in vitro as well as in vivo and thus 

prove the feasibility for SB-mediated CAR T-cell generation. Indeed, an ongoing 

phase I/II clinical trial assesses the use of allogeneic SB-engineered CD19 CAR T-

cells for r/r pediatric and adult ALL patients and found promising response rates 

especially for patients treated with a high-dose of CAR T-cells, as here six out of 

seven patients showed complete responses and CAR T-cells persisted for up to 10 

months 308. Importantly, the treatment proved to be safe without severe toxicities 

and with a favorable transgene integration profile. The SB system has also been 
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used to modify NK cells to express CD19 CARs against ALL; although the generated 

CAR NK cells were functional with a favorable transgene integration, the gene 

transfer rates were lower compared to the previously mentioned study employing 

T-cells 309. Thus, at this stage the CD34- or NGFR-derived hinges could be used to 

enrich the CAR NK cell fraction to generate a uniform cellular product. 

 

Novel CRISPR/Cas9-based technologies could represent the most 

exciting alternative to transfer CAR genes into T- or NK cells. Nowadays, these 

systems even allow integration of genes into the genome without causing DNA 

double strand breaks or without the need to deliver an exogenous template 310. 

Both for T- 311 as well as NK cells 312 electroporation protocols to introduce 

ribonucleoproteins (RNPs) or mRNAs encoding for Cas9 are readily available. As 

for the SB transposon system, the production of RNPs or mRNAs costs only a 

fraction of that of lentiviral vectors, which would help to scale down costs of the 

therapy. Most importantly, the integration site of the CAR cDNA can be specifically 

chosen by the guide RNA, which dictates where the Cas9 cuts or nicks the genome. 

Therefore, CARs can specifically be introduced into the TCR locus 294 and thereby 

simultaneously achieve a knockout of the TCR TRAC and TRBC genes. Alternatively, 

CAR genes can be specifically integrated into safe harbor sites such as ROSA26 in 

the genome to prevent the random activation of oncogenes or inactivation of tumor 

suppressor genes 313. Targeting to specific genomic loci also limits the number of 

genomic integration loci of the CAR cDNA to two, since the gene can only be 

integrated once per allele. This ensures genomic stability of the CAR effector cells 

and also eases the regulatory framework since cellular products have to 

demonstrate safe vector copy numbers, before they can be administered to the 

patient. 

 

In recent years, so-called nanoblades have been developed to efficiently 

transfer genes into primary cells 314. These are virus-like particles that can be 

loaded with Cas9 protein and a template to integrate the gene of interest into the 

target cell. Similar to viral particles, they carry envelope proteins such as VSV-G 

on their surface, which enables efficient transfer into cells carrying the respective 

entry receptor and also to alter tropism by adjusting the envelope protein. Indeed, 

nanoblades have also been pseudotyped with the baboon endogenous virus (BaEV) 

glycoprotein, which enabled efficient gene editing not only in human T- but also 

B-cells and hematopoietic stem cells and allowed gene knock-in into hematopoietic 

stem cells 315. Although not being tested in NK cells so far, BaEV-pseudotyped 

nanoblades are an intriguing tool to transfer CAR genes into NK cells, since they 

are highly efficiently transduced with this glycoprotein (see section 2.3).  

 

Conclusion 

We have come a long way since chimeric antigen receptors have been 

described for the first time in 1989 19, which ultimately resulted in the approval of 



Discussion

six CAR T-cell therapies just within the last six years. So far CAR therapy remains 
a last-line therapy approach and cannot be used on a broad basis due to its 
immense price tag and some safety concerns. However, by transitioning to a 
donor-based therapy, where CAR T- or NK cells are produced by non-viral means 
on site in GMP-compatible closed systems (Figure 8), therapy costs will come 
down and the inclusion of suicide genes or switches will allow to stop the therapy 
in case of serious adverse events. Thus, it remains just a matter of time and 
coordination, until we will see the next step of the CAR-driven immunotherapy 
revolution, where CAR therapies can be employed as a safe first-line therapy for 
hard-to-treat malignancies to a huge amount of patients.

Figure 8: Proposed clinical application of allogeneic CAR T- or NK cells. Contrary 
to autologous CAR T-cell therapy, T- or NK cells are isolated from a donor and modified 
with a non-viral system to transfer to express a CAR and a suicide gene. After magnetic 
enrichment (enabled via CD34- or NGFR-derived hinges), pure CAR T- or NK cells are 
expanded and administered to multiple patients.
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6  List of abbreviations 

A 
aa   Amino acid 
AICD   Activation-induced cell death 
ALL    Acute lymphoblastic leukemia 

AML   Acute myeloid leukemia 
ANOVA  Analysis of variance 

APC   Antigen presenting cell 
appr.   Approximately 

 
B 

BaEV   Baboon endogenous virus 

BCL2   B-cell lymphoma 2 (antigen) 
BCMA   B-cell maturation antigen 

BFP   Blue fluorescent protein 
BID   BH3 interacting domain death agonist 

BiKE   Bispecific killer engager 
 

C 

CAR   Chimeric antigen receptor 
CD (e.g. CD19) Cluster of differentiation 

CD44v6  CD44 variant 6 
CEA    Carcinoembryogenic antigen 

CH2CH3  Constant heavy 2 constant heavy 3 
CRISPR  Clustered regularly interspaced short palindromic repeats 
CRS   Cytokine release syndrome 

CTLA-4  Cytotoxic T-lymphocyte-associated protein 4 
 
D 

DAP10   DNAX-activation protein 10 

DAP12   DNAX-activation protein 12 
DEC   Decitabine 

DLBCL  Diffuse large B-cell lymphoma 
DNA   Deoxyribonucleic acid 
DNMT   DNA methyltransferase 

DNMTi  DNA methyltransferase inhibitor 

 
E 

ECM   Extracellular matrix 

e.g.   Exempli gratia 
EGFP   Enhanced green fluorescent protein 
EGFR   Epidermal growth factor receptor 

EGFRvIII  EGFR variant III 
EMA   European Medicines Agency 

EpCAM  Epithelial cell adhesion molecule 
ErbB2   Erythroblastic oncogene B2 

 
F 

FcR   Fc receptor 

FDA   Food and Drug Administration 
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FITC   Fluorescein isothiocyanate 
 
G 

GM-CSF   Granulocyte macrophage colony-stimulating factor 

GMP   Good manufacturing practice 
GvHD   Graft versus host disease 
 

H 

HDAC   Histone deacetylase 
HLA   Human leukocyte antigen 
HNSCC  Head and neck squamous cell carcinoma 

 

I 

ICOS   Inducible T-cell costimulator 
IFN-γ   Interferon gamma 

IgG (e.g. IgG1) Immunoglobulin G 
IL (e.g. IL-2)  Interleukin 

IRES   Internal ribosomal entry site 
ITAM   Immunoreceptor tyrosine activation motif 
 
J 

JAK   Janus kinase 
 

M 

mAb   Monoclonal antibody 
MACS   Magnetic-activated cell sorting 

MAGE-A4  Melanoma-associated antigen A4 
MCL   Mantle cell lymphoma 

MDSC   Myeloid-derived suppressor cell 
MHC   Major histocompability complex 
MM   Multiple myeloma 

MPSV   Myeloproliferative sarcoma virus 
mRNA   Messenger RNA 

 

N 

NFAT   Nuclear factor of T-cell activation 
NGFR   Nerve growth factor receptor 
NK cell  Natural killer cell  

NSG   NOD-SCID-gamma 
NY-ESO-1  New York esophageal squamous cell carcinoma-1 (antigen) 
 

P 

PBMC   Peripheral blood mononuclear cells 
PCMA   Prostate stem cell antigen 

PD-L1   Programmed death-ligand 1 
PE   Phycoerithrin 
PMBCL  Primary mediastinal B-cell lymphoma 

PSMA   Prostate-specific membrane antigen 
 
R 

RNA   Ribonucleic acid 

RNP   Ribonucleoprotein 
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ROM   Romidepsin 
ROR1   Receptor tyrosine kinase-like orphan receptor 1 

r/r   refractory/relapsed 

 
S 

SB   Sleeping beauty 

scFv   Single chain fragment of the variable region 
SSX2   Synovial sarcoma, X breakpoint 2 (antigen) 
STAT   Signal transducer and activator of transcription 

synNotch   Synthetic Notch 
 
T 

TAA   Tumor associated antigen 

TCR   T-cell receptor 
TET2   Tet-methylcytosine-dioxygenase 2 

TGF-β   Transforming growth factor beta 
TIM3   T-cell immunoglobulin and mucin-domain containing-3  
TME   Tumor microenvironment 

TNF-α   Tumor necrosis factor alpha 
Treg cell  Regulatory T-cell 

TriKE   Trispecific killer engager 
TRUCK T-cells redirected for antigen-unrestricted cytokine-initiated 

killing 

 

V 

VH   Variable region of the heavy chain 
VL   Variable region of the light chain 

VSV-G  Vesicular stomatitis virus glycoprotein 

 
W 

WT-1   Wilms tumor protein 1 
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