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Abstract

Record field strengths are expected to be achieved using multi-petawatt femtosecond lasers or high-
current beams of ultrarelativistic particles on the next generation of accelerators in the near future.
This will make it feasible to experimentally investigate interaction of matter and strong fields. The
nonlinear regime of quantum electrodynamics (QED) can be achieved during such an interaction,
leading to manifestation of new effects. These effects, which include, e.g. production of electron-
positron pairs, were theoretically predicted a long time ago, although have not yet been observed
experimentally. Investigation of the impact of nonlinear QED processes on the behavior of matter
is one of the frontiers of theoretical physics nowadays and is far from being complete. In this thesis,
we aim to further extend the understanding of processes in strong fields.

In the first part of the work, general properties of particle motion under effect of extreme radia-
tion reaction are investigated. It is shown that particles are attracted to some asymptotic trajectories,
which can be found from reducedmotion equations. One of the implications of such behavior is the
periodicity of particle trajectories in a large class of field configurations. This can explain an effect
of radiative trapping of particles in a region of strong field. A general method for approximate solu-
tion of the motion equations with account of radiation reaction is proposed. Utilizing this method,
several known solutions are reproduced.

In the second part of the work, a new effect is discovered and described, namely development of
self-sustained QED cascade in field of a single plane wave. It is demonstrated that dense electron-
positron plasma is able to alter propagation of a strong plane wave. This results in a field configu-
ration, which is favorable for production and multiplication of electron-positron pairs. Ultimately,
this leads to a steady expansion of the electron-positron plasma towards the laser radiation until the
latter is completely absorbed. It is shown that dense enough electron-positron plasma can be ini-
tially produced, e.g. during interaction of an extremely intensive plane wave with a thin stationary
solid target.

In the third part of the work, impact of QED processes on interaction of high-current beams
of ultrarelativistic particles with matter is considered. First, a model for calculation of disruption
parameter in beam-beam collisionwith account of beamstrahlung is developed. Second, an efficient
generation of gamma radiation in the interaction of a dense electron beam with a thick plasma
target is demonstrated. A model is developed for calculating the efficiency of conversion of the
beam energy to the energy of gamma radiation. Finally, an alternative numerical scheme for solving
Maxwell’s equations on a rectangular grid is developed, which facilitates to sufficiently suppress
numerical Cherenkov instability, present in the commonly used schemes.
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Zusammenfassung

Es wird erwartet, dass mittels Multi-Petawatt-Femtosekunden-Lasern oder ultrarelativistischen
Teilchenstrahlen hoher Stromstärke Rekord-Feldstärken in der nächsten Generation an Beschleu-
nigern erzielt werden. Dies wird es möglich machen, experimentell die Wechselwirkung von Ma-
terie und starken Feldern zu untersuchen. Das nicht-lineare Regime der Quantenelektrodynamik
(QED) kann durch solche Wechselwirkungen erreicht werden, und führt zur Manifestierung neuer
Effekte. Diese Effekte, welche z.B. die Produktion von Elektronen-Positronen-Paaren einschließen,
wurden vor langer Zeit theoretisch vorhergesagt, aber bislang nicht experimentell beobachtet. Die
Untersuchung des Einflusses nicht-linearer QED-Effekte auf das Verhalten von Materie ist Gegen-
stand aktueller Forschung in der theoretischen Physik und noch lange nicht abgeschlossen. In
dieser Dissertation wollen wir das Verständnis dieser Prozesse in starken Feldern erweitern.

Im ersten Teil der Arbeit werden generelle Eigenschaften der Teilchen-Bewegung unter dem
Einfluss extremer Strahlungsrückwirkung untersucht. Es wird gezeigt, dass die Teilchen sich
auf asymptotische Trajektorien hingezogen werden, welche durch die reduzierten Bewegungsgle-
ichungen gefunden werden können. Eine Konsequenz dieses Verhaltens ist die Periodizität der
Teilchenbahnen für eine große Klasse an Feld-Konfigurationen. Dies erlaubt eine Erklärung des
Strahlungseinfangs von Teilchen in einer Region mit starkem Feld. Eine allgemeine Methode für
eine Näherungs-Lösung der Bewegungsgleichungen unter Berücksichtigung der Strahlungsrück-
wirkung wird vorgestellt. Mithilfe dieser Methode können mehrere bekannte Ergebnisse repro-
duziert werden.

Im zweiten Teil der Arbeit wird ein neuer Effekt entdeckt und beschrieben, nämlich die Entwick-
lung einer selbst-erhaltenden QED-Kaskade im Feld einer einzelnen ebenenWelle. Es wird gezeigt,
dass ein dichtes Elektronen-Positronen-Plasma dazu in der Lage ist, die Propagation einer starken
ebenen Welle zu verändern. Dies resultiert in einer Feldkonfiguration, welche für die Produktion
und Vervielfachung von Elektronen-Positronen-Paaren hilfreich ist. Letztlich führt dies zu einer
stetigen Expansion des Elektronen-Positronen-Plasmas in Richtung der Laser-Strahlung bis letztere
vollständig absorbiert wird. Eswird gezeigt, dass ein Elektronen-Positronen-Plasma vonhinreichen-
der Dichte erzeugt werden kann, z.B. währender der Wechselwirkung einer extrem starken ebene
Welle mit einem dünnen, stationären Festkörper-Target.

Im dritten Teil der Arbeit wird der Einfluss von QED-Prozessen auf die Wechselwirkung von
ultra-relativistischen Teilchenstrahlen hoher Stromstärke mit Materie untersucht. Zunächst wird
ein Modell zur Berechnung des Disruption-Parameters in Beam-Beam-Kollisionen unter Berück-
sichtigung von Beam-Strahlung entwickelt. Zweitens wird gezeigt, dass Gammastrahlung in
der Wechselwirkung eines dichten Elektronenstrahls mit einem dicken Plasma-Target effizient
erzeugt werden kann. Letztlich wird ein alternatives numerisches Schema zur Lösung der
Maxwell-Gleichungen auf einem rechteckigenGitter entwickelt, welches es erlaubt, die numerische
Cherenkov-Instabilität zu unterdrücken, welche in konventionellen Schemata präsent ist.
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Chapter 1

Introduction

1.1 Motivation
Quantum electrodynamics (QED), which describes the interaction of charged particles and electro-
magnetic (EM) field, is currently the most accurate physical theory in terms of experimental confir-
mation of its predictions. However, a number of analytical results of nonlinear QED, the main of
which is the production of electron-positron pairs from vacuum (the Sauter-Schwinger effect) [1, 2]
in a strong constant field, were first made back in the 1930s but have not yet been experimentally
confirmed. With the expected commissioning of a new generation of multipetawatt and subexawatt
laser facilities in the coming years, such as ELI [3], Apollon [4], SULF [5], SEL [6], XCELS [7], etc.,
experimental study of the interaction of radiationwithmatter in the regime of extreme intensity will
become available, which opens up new possibilities for observing the effects of strong-fieldQED. For
determining which field is strong according to QED, four Lorentz-invariant parameters are respon-
sible: 𝑎0,ℱ, 𝒢, 𝜒.

The parameter 𝑎0 — the classical nonlinearity parameter — determines the dimensionless am-
plitude of the external EM field and the significance of relativistic effects

𝑎0 =
𝑒
𝑚𝑐√−𝐴𝜇𝐴𝜇 ≡ 𝑒𝐸0

𝑚𝑐𝜔 ≈ 0.85√𝐼[1018W/cm2]𝜆[µm], (1.1)

where𝑚 and 𝑒 > 0—themass and absolute value of the electron charge, respectively, 𝑐—the speed
of light, 𝐴𝜇 — vector potential of the EM field, 𝐸0 and 𝜔— characteristic magnitude and frequency
of EM field variation, respectively. For 𝑎0 > 1, the motion of charged particles becomes relativistic.
The progress of laser technology in the 20th century made it possible to implement Veksler’s idea of
coherent acceleration of particles [8] by generating high accelerating gradients in plasma during the
propagation of intense laser radiation in it. Currently, laser acceleration of electrons [9–18], ions [19–
27] and even positrons [28–31] is regarded as one of the most promising alternatives to classical
accelerators and one of the most important goals in both experimental and theoretical physics.
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10 CHAPTER 1. INTRODUCTION

The parameters ℱ and 𝒢 determine the interaction of the EM field with the quantum vacuum
and are defined as follows

ℱ = 𝐸2 − 𝐵2
𝐸2S

, (1.2)

𝒢 = E ⋅ B
𝐸2S

, (1.3)

where 𝐸S = 𝑚2𝑐3/𝑒ℏ is a critical field of QED or Sauter-Schwinger field [32, 33], ℏ — Planck’s
constant. Production of electron-positron pairs from vacuum is exponentially suppressed at |ℱ| ≲ 1,
which explains the difficulty of its experimental observation. At the same time, for example, vacuum
birefringence [34–37], which is also one of the earliest predictions of QED, and which is determined
by the quantitiesℱ and𝒢, is confirmed in experiments in the region of |ℱ| ≪ 1 both indirectly [38,
39] and directly [40]. Note that the fields of laser pulses and charged particle beams (see below) are
crossed, so the values of the parameters ℱ and 𝒢 are close to zero in such configurations. In what
follows, it will always be assumed thatℱ = 𝒢 = 0.

Finally, the parameter𝜒 determines the significance of purely quantum effects in the interaction
of the EM field with particles

𝜒 =
𝑒ℏ√−(𝐹𝜇𝜈𝑝𝜈)

2

𝑚3𝑐4 = 1
𝐸S𝑚𝑐√

(𝜀𝑐E + p × B)
2
− (pE)2, (1.4)

where 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 — EM field tensor, 𝜀 and p — energy and momentum of the particle
respectively. This expression can be written for photons in a similar way, taking into account that
𝜀 = ℏ𝜔, 𝑝𝜈 = ℏ𝑘𝜈. Here it is necessary to point out an important distinction between the quantum
description of the EM field as a collection of photons and the classical description in terms of field
strengths. At large occupation numbers, the quantum description coincides with the classical one,
so relatively strong external fields are described classically, and single photons produced as a result
of QED processes are described using the quantum approach itself. Moreover, the interaction of
electrons (and positrons) with a strong classical field (𝑎0 > 1) in QED must be taken into account
nonperturbatively, i.e. in all orders of perturbation theory, which is done using the Furry picture [41]
and the use of Volkov functions to describe the state of electrons [42] (the specifics of this method
is described in more detail, for example, in the recent review [43]). The classical external field also
often differs significantly from the photons produced by the particles radiating in this external field
from the spectral point of view. Thus, extremely strong EM fields are currently available mainly in
the optical range ℏ𝜔𝐿 ∼ 1 eV, while the characteristic frequency of particle radiation in such a field,
which can be estimated from synchrotron formulas as ℏ𝜔 ∼ 𝛾3ℏ𝜔𝐿, usually lies in the X-ray or even
gamma range.

In the 𝜒 > 1 regime, quantum processes leading to the production of electron-positron pairs be-
come probable. These include, for example, the Breit-Wheeler process [44], in which a hard photon
«decays» into an electron-positron pair, and the so-called trident process [45], in which an electron
or positron emits a virtual photon, which decays into an electron-positron pair (see Fig. 1.1). Note
that the probability of the Breit-Wheeler process significantly exceeds the probability of the trident
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process in the region of high intensities [46], so the latter will not be taken into account in this thesis.
These processes are exponentially suppressed at 𝜒 ≲ 1 and are in many respects similar to the pro-

p μ

p` μ

q μ

(a) (b) (c)

k

p μ

μ

1

p μ2 p μ

p μ1

p μ2q μ

p` μ

Figure 1.1: Some QED processes in an external field. (a) Compton scattering, (b) Breit-Wheeler
process, (c) trident process. The double straight line corresponds to the «dressed» state of an electron

in an external field, described by the Volkov function (see text).

cess of formation of electron-positron pairs by the Sauter-Schwinger mechanism. However, even in
this regime, when the production of electron-positron pairs is suppressed, the interaction of charged
particles with the EM field can change significantly due to effect of radiation reaction. The very fact
that charged particles experience a recoil force from their own radiation has been known for more
than a century andwas originally described in the framework of classical electrodynamics. However,
it led to the inconsistency of the concept of an electron as a point object andmarked the applicability
limit of the classical ED, which can be determined by the condition 𝐸cl = 𝑚2𝑐4/𝑒3 = 𝐸S/𝛼. A field
of such intensity is created by an electron at a distance of its classical radius 𝑟𝑒 = 𝑒2/𝑚𝑐2. Note that
it is 1/𝛼 ≈ 137 times greater than the critical field of QED, so quantum effects appear «earlier» than
classical ED becomes self-contradictory. Quantum electrodynamics describes the emission of pho-
tons by electrons in a consistent manner and, as expected, coincides with the results of classical ED
in the classical limit 𝜒 ≪ 1. Of particular interest, however, is the modification of the emission spec-
trum and the significant recoil effect in the 𝜒 ∼ 1 regime, which has not yet been practically studied
experimentally. Until recently, there was only one example from the 1990s, namely the E-144 exper-
iment at the SLAC accelerator, where an electron beam with an energy of 46.6GeV interacted with
a laser pulse with an intensity of 𝐼 ∼ 1018W/cm2 (𝑎0 ≲ 1, 𝜒 ≪ 1), producing high-energy photons
and electron-positron pairs [47, 48]. Recently, conceptually similar experiments were carried out at
the Astra Gemini facility, where one laser pulse was used to accelerate electrons, and the second one
for scattering the accelerated electrons [49, 50]. It is important to note that despite the undeniable
value of these experiments, their results contain a certain level of uncertainty, which does not yet
allow us to confidently confirm the QED predictions in the 𝜒 ∼ 1 regime. Due to the development
of technologies of both laser facilities and accelerators, new experiments in strong field physics are
expected in the near future, in particular, the direct successor of the E-144 experiment — experi-
ment E-320, which is expected to achieve a sufficiently quantum regime of interaction [51] (𝑎0 > 1,
𝜒 > 1). Meanwhile, the number of theoretical studies is rapidly growing, predicting new effects
caused by the effect of radiation reaction on collective processes during the interaction of radiation
of extreme intensity with matter. These effects are extremely various and they include, for example,
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alteration of the particle acceleration mechanisms [52–61], radiative trapping of particles [62–67],
extremely efficient absorption of laser radiation [68], relativistic transparency suppression [69, 70],
inverse Faraday effect [71–74], particle polarization [75–85] andmany others. Strong radiative losses
can also have a significant effect on the dynamics of particles in various astrophysical environments,
and in particular, they can determine the upper limit of the energy of accelerated particles [86–88],
the dynamics of the pulsar magnetosphere [89, 90], the character of magnetic reconnection [91, 92],
etc.

In the 𝜒 ≳ 1 regime, it is assumed that the behavior of matter in extreme EM fields in a vast
number of configurations is largely determined by the development of quantum-electrodynamic cas-
cades [46, 93–105]. The essence of the QED cascade is the emission of hard photons by ultrarelativis-
tic particles as a result of nonlinear Compton scattering and the subsequent «decay» of the former
into electron-positron pairs as a result of the Breit-Wheeler process1. Secondary particles also be-
come involved in the formation of the next generation of pairs, which leads to an avalanche-like
increase in the total number of particles. The development of such cascades is qualitatively similar
to another physical process — avalanche-like ionization during a gas breakdown [106]. An active
study of microwave breakdown in gases revealed a rather complex dynamics of this process, accom-
panied by the formation of plasma and the generation of breakdown waves [107, 108]. The analogy
between pair production in vacuum and gas ionization, or between vacuum breakdown as a result
of the development of a QED cascade and gas breakdown, has a deep physical justification [96, 109,
110]. It is also believed that the development of QED cascades plays an important role in various as-
trophysical phenomena, such as cosmic showers [111], gamma flashes [112], processes in the pulsar
magnetosphere [113–116] and others. The diversity and complexity of the electron-positron plasma
structures formed as a result of QED cascade development explains their active research, which is
far from being completed.

Laboratory modeling of astrophysical processes (laboratory astrophysics) through the use of ex-
tremely intense lasers is one of the most demanded but also extremely non-trivial problems of ex-
perimental physics nowadays [117]. This is largely due to the fact that the key role in such processes
is played by the interaction of particle flows with each other, which must be first created in a con-
trolled way in the interaction of laser radiation and matter. In this regard, alternative possibilities
are also being explored, for example, the use of colliders, which are the main research tool in the
field of elementary particle physics, and which are based on the head-on collision of beams of high-
energy charged particles. Currently, there are several projects aimed at building high-energy lepton
colliders with record parameters, such as ILC [118] and CLIC [119]. Relatively recently, plasma ac-
celeration has been considered as an attractive alternative method for creating linear colliders with
a large acceleration gradient [120]. Strong EM fields can be generated in the interaction region of
such colliders, which makes it possible to manifest such effects as disruption of beams [121–123],
beamstrahlung [124–126], the production of secondary electron-positron pairs [127, 128], and even
the effects of nonperturbative strong-field QED [129, 130]. Since the achievement of ever-increasing

1As noted above, the formation of an electron-positron pair is also possible directly from electrons or positrons in
an external field as a result of the trident process.
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radiation intensities at laser facilities imposes increasingly stringent requirements on contrast, sta-
bility, and beam quality, which have not yet been achieved in practice [131], high-current high-
energy colliders, which are characterized by high beam quality and stability, can become an attrac-
tive «laserless» alternative for experiments in the field of strong-field physics. In this context, the
most actively discussed project is FACET-II, dedicated to the study of plasma acceleration [51, 129,
132, 133].

Thus, the study of the physics of strong fields is of both fundamental interest and practical im-
portance. The aim of the present thesis is to further push understanding of effects of nonlinear QED
on behavior of matter in strong fields by investigating multiple related problems listed below.

1.2 Outline
In chapter 2, a theory of the motion of charged particles in strong fields in the strongly radiation-
dominated regime is developed. The general properties of particle motion are determined according
to the developed theory. A general method for solving motion equations with account of radiation
reaction is proposed based on the developed theory. It is applied to various configurations of the
electromagnetic field. The region of applicability of the method is determined, in particular, by
comparing the results obtained analytically and with numerical methods.

In chapter 3, the interaction of a laser pulse of extreme intensity with a solid target is studied
using numerical simulation. The key features andmechanism of the development of a QED cascade
during such an interaction are determined. An analytical model for the development of such a
cascade is developed. The accuracy of the developed model is determined by comparison with the
results of numerical simulations.

In chapter 4, the influence of the radiation reaction on the process of focusing of ultrarelativistic
particle beams during their head-on collision is studied. A model is developed for calculation of
the disruption parameter with account of radiation reaction. The obtained analytical results are
compared with the results of numerical simulations. Second, the process of generation of gamma
radiation during the interaction of a high-current beam of ultrarelativistic electrons with a plasma
target is studied using numerical simulation. Amodel is developed for calculation of the efficiency of
beam energy conversion into gamma radiation energy. The beam parameters are determined for the
FACET-II facility, which are optimal from the point of view of gamma radiation generation. Finally,
a numerical scheme for solving Maxwell’s equations on a regular grid with suppressed numerical
Cherenkov instability is developed.

An overview of the results of the thesis is given in chapter 5.
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Chapter 2

Properties of charged particles motion in
extremely strong electromagnetic fields

2.1 Introduction
At present, the most complete answer to the question about the nature of radiation reaction is given
by quantum electrodynamics. With the help of this theory, for example, the probability of emission
of a photon with a given energy by an electron can be calculated [32, 33]. Despite the fact that the
description of the radiation process using QED is the most accurate, it most often cannot be ap-
plied directly to practical problems involving complex interaction of radiation with matter. This is
due to the fact that the final analytical expressions in QED can be obtained for the probabilities of
transitions between some quasi-stationary electron states, most often described using Volkov func-
tions [42]. To describe a dynamic problem in which the electron states and the EM field evolve, it
is necessary to self-consistently solve the non-stationary Dirac equation and the Maxwell equations,
which is usually impossible, at least from a practical point of view. However, under certain condi-
tions, this procedure turns out to be redundant and the task is greatly simplified. The first parameter
responsible for the fulfillment of one of these conditions is the dimensionless amplitude of the EM
field 𝑎0

𝑎0 =
𝑒𝐸0
𝑚𝑐𝜔, (2.1)

where 𝑚 and 𝑒 > 0 are the mass and absolute value of the electron charge, respectively, 𝐸0 and 𝜔
are characteristic value and frequency of change of the EM field, respectively.

In the regime 𝑎0 ≫ 1, the characteristic radiation formation length 𝜆𝑓 in most field configura-
tions can be estimated as 𝜆/𝑎0 ≪ 𝜆, where 𝜆 = 2𝜋𝑐/𝜔, i.e. individual acts of emission of a photon by
an electron occur almost instantaneously, compared to the characteristic time of the change of the
EM field. Thus, the EM fields can be considered constant over the radiation formation length. In
the literature, this approximation is often called locally constant field approximation (LCFA) [32, 33,
134, 135]. In this approximation, the probability and emission spectrum depend on a single QED

17
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parameter 𝜒 defined as follows

𝜒 = 𝛾
𝐸S√

(E + v × B)2 − (vE)2, (2.2)

where 𝛾 and v are the Lorentz factor and the electron velocity normalized to 𝑐, respectively, E and
B are the electric and the magnetic fields respectively, 𝐸S = 𝑚2𝑐3/𝑒ℏ is the critical field of QED or
Sauter-Schwinger field [32], ℏ is Planck’s constant. In the classical (𝜒 ≪ 1) or essentially quantum
(𝜒 ≫ 1) regimes, the probability can be approximately calculated as follows

𝑊rad ≈ 𝛼𝑚𝑐
2

𝛾ℏ × {
1.44𝜒, 𝜒 ≪ 1,
1.46𝜒2/3, 𝜒 ≫ 1,

(2.3)

where 𝛼 = 𝑒2/ℏ𝑐 is the fine structure constant. Note that various approaches have been proposed
for calculating the emission probability beyond the LCFA approximation [136–141]. Within the
framework of LCFA, the characteristic distance that an ultrarelativistic electron travels between two
successive emission 𝜆𝑊 can be estimated as 𝑐/𝑊rad, which in both classical and quantum regimes is
at least 1/𝛼 ≈ 137 times greater than the radiation formation length. The ratio of the electron mean
free path 𝜆𝑊 to the characteristic wavelength of the EM field can be estimated as follows

𝜆𝑊
𝜆 ≈ 1

𝛼𝑎0
× {

1, 𝜒 ≪ 1,
𝜒1/3, 𝜒 ≫ 1.

(2.4)

Note, however, that the mean free path actually depends on the energy of the emitted photon [142],
and the given estimate may be inaccurate for 𝜒 ≳ 10. Since the condition 𝜒 ≲ 10 is certainly
satisfied for the experiments expected in the near future, the characteristic scales in the problem
under consideration are in the following hierarchy

𝜆𝑓 ≪ 𝜆𝑊 ≪ 𝜆. (2.5)

This inequality can be interpreted in such a way that the electron moves classically between short
but frequent emission events. In this case, the effect of recoil from radiation can be approximately
taken into account in the form of some additional continuous force acting on the particle, i.e. the
equations of motion can be written in the following form

dp
d𝑡 = −E − v × B − 𝐹rrv, (2.6)
d𝛾
d𝑡 = −vE − 𝐹rr𝑣2, (2.7)
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where the electronmomentump is normalized to𝑚𝑐, time 𝑡—to 1/𝜔, electric andmagnetic fields—
to𝑚𝑐𝜔/𝑒, 𝐹rr — total radiation power normalized by𝑚𝑐2𝜔 and given by

𝐹rr =
𝛼𝑎S
3√3𝜋

∫
∞

0

4𝑢3 + 5𝑢2 + 4𝑢
(1 + 𝑢)4 𝐾2/3 (

2𝑢
3𝜒) d𝑢, (2.8)

where 𝑎S = 𝑒𝐸S/𝑚𝑐𝜔 ≡ 𝑚𝑐2/ℏ𝜔 is normalized Sauter-Schwinger field, 𝐾𝜈 —modified Bessel func-
tion of the second kind. In limiting cases, this expression is greatly simplified

𝐹rr ≈ 𝛼𝑎S × {
0.67𝜒2, 𝜒 ≪ 1,
0.37𝜒2/3, 𝜒 ≫ 1.

(2.9)

Such an approach to describing the dynamics of an electron taking into account radiation reaction
is often called semiclassical in the literature [143–147], because the approximation of a continuous
classical force of radiative friction is used, however, its magnitude is calculated based on the results
of QED. It is important to note that in the essentially quantum regime (𝜒 ≫ 1) a single emitted
photon can take a significant fraction of the electron energy. And since the radiation process is
stochastic by its nature, the electrons located in an infinitely small phase volume at some point in
time, can significantly diverge in the phase space after a finite time. In this case, the equations
written above (2.6)–(2.7) describe the zeroth moment of the electron distribution function, or the
trajectory of their center of mass. Effects caused by the probabilistic nature of radiation, such as
straggling and quenching [147–150], lead to diffusion of the distribution function and, accordingly,
cannot be described in a semiclassical approach. In this case, the dynamics of electrons can be
described using higher moments of the distribution function. Such an approach was, for example,
used to calculate the average value and dispersion of the energy of particles in various configurations
in publications [146, 151, 152]. In the opposite limit, 𝜒 ≲ 1, the recoil from the radiation of a single
photon is small and the continuous force approximation is justified.

Another important consideration in research of effect of radiation reaction is its dependence on
the internal degree of freedom of the electron — spin. Strictly speaking quasi-classical limit of the
Dirac equation leads to motion equations where both orbital motion of the electron and evolution
of its spin are coupled. In particular, one should add the Stern-Gerlach force [153] in the equa-
tion for the electronmomentum and describe spin dynamics via Thomas-Bargmann-Michel-Telegdi
(T-BMT) [154, 155] equation. Note, that although the latter is strictly valid in homogeneous EM
fields, it still can be used in heterogeneous fields if the Stern-Gerlach force can be neglected [156].
One can estimate that the ratio between the Stern-Gerlach force and the Lorentz force is of the or-
der of ℏ𝜔/𝑚𝑐2, thus for optical frequencies (ℏ𝜔 ∼ 1 eV) the former can be neglected with a large
margin of accuracy. In that case spin dynamics is decoupled from the electron orbital motion and
can be calculated after the electron trajectory is found. Radiation reaction can again couple spin
dynamics and electron orbital motion, since radiation probabilities depend on spin of the electron
(and polarization of the emitted photon). Note that an order of magnitude estimates made above
where radiation probabilities are averaged over initial and summed over final polarization states of
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the electron remain valid. Although in a certain scenarios assuming that electrons are generally not
polarized can be invalid, since radiation probabilities of spin up and spin down electron are differ-
ent. Resolving electron polarization can lead to effects such as significant increase of pair produc-
tion during QED cascade development [157], production of polarized high-energy particles [15, 80],
spatially-inhomogeneous polarization [84], etc. In this work, such effects caused by spin dynamics
are not covered.

It turns out that the problem of the dynamics of an electron in an EM field, taking into account
radiation reaction, can be simplified even further. In particular, under certain conditions, the radi-
ation reaction can be taken into account implicitly, i.e. without including additional terms in the
motion equations. To understand the reason for the possibility of such a simplification, let us briefly
consider the well-known problem of the motion of a relativistic electron in a uniform constant EM
field without taking into account radiation reaction [158]. The simplest way to solve this problem
is to transform to the reference frame 𝐾′, where the electric and magnetic fields become parallel or
one of them is absent. Assume for definiteness that in𝐾′ the fields are directed along the 𝑧′ axis. Let
us omit from consideration a particular case of a purely magnetic configuration E ⋅ B = 0, 𝐵 > 𝐸,
in which an electron in 𝐾′ rotates in a magnetic field. In a more general case, when there is an
electric field in 𝐾′, the electron also rotates in the 𝑥′𝑦′ plane (if the magnetic field is nonzero) and
is constantly accelerating along the 𝑧′ axis. Thus, in 𝐾′ the trajectory of an electron is a helix with
a monotonously increasing step and decreasing radius, and a longitudinal velocity approaching the
speed of light. The asymptotic limit of such a trajectory is a straight line along the 𝑧′ axis alongwhich
the electron moves at the speed of light. Accounting for the radiation reaction in this case does not
qualitatively change the result obtained. It is easy to show that the radiation reaction leads to a grad-
ual decrease of the electron momentum in the plane of rotation 𝑥′𝑦′ and slows down the growth
of the longitudinal momentum1. However, the electron trajectory also asymptotically tends to a
straight line along the 𝑧′ axis, i.e. in fact, this statement does not depend on taking into account the
radiation reaction. According to the Lorentz transformation, in the laboratory reference frame the
asymptotic trajectory is also a straight line along some direction v0. The characteristic time 𝜏𝑣, dur-
ing which the electron trajectory approaches the asymptotic, can be estimated as 𝛾0𝑚𝑐/𝑒𝐸, where 𝛾0
is the initial electron energy, and𝐸 is the strength of the electric field. Since this asymptotic direction
v0 is determined only by the relation between the electric and magnetic fields, it can be constructed
at each time instant at each point in space, even if the EM field is inhomogeneous and non-constant.
If the characteristic frequency of the EM field variation is equal to𝜔, then the locally given direction
v0 also changes with the same frequency. Without taking into account the radiation reaction in an
alternating EM field, the characteristic energy of an electron can be estimated as 𝛾 ∼ 𝑒𝐸/𝑚𝑐𝜔 ≡ 𝑎0.
So the timescale at which the electron velocity aligns with the local asymptotic direction v0 is of the
same order of magnitude as the timescale of the EM field variation: 𝜏𝑣 ∼ 1/𝜔. Thus, the relation
between the electron velocity vector and the local asymptotic direction can be arbitrary. However,
in the strongly radiation-dominated regime, the last statement is not accurate. This is due to the fact
that in such a regime the relation between the electron energy and the dimensionless amplitude

1An identical result is predicted by the exact solution of the problem of electron motion in a constant homogeneous
EM field with account of radiation reaction found in Ref. [159].
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of the EM field is determined by the inequality 𝛾 ≪ 𝑎0. Because of this, the EM field orients the
electron velocity vector towards the local asymptotic direction during a time interval much shorter
than the timescale at which EM field varies itself. Thus, for an approximate description of the dy-
namics of an electron in an EM field under conditions of extreme radiation losses, we can assume
that the electron velocity is determined by the asymptotic direction v0, which depends only on the
local configuration of the EM field, and thus reduce the order of the motion equations. In the next
section, the above qualitative procedure is derived mathematically rigorously.

2.2 Asymptotic particle dynamics in strongly
radiation-dominated regime

Let us proceed to the construction of an asymptotic theory of electron motion in the strongly
radiation-dominated regime. To do this, consider the equation of motion of an electron in an ex-
ternal EM field, taking into account radiation reaction using a semiclassical approach, written with
respect to its velocity v and energy 𝛾

d𝛾
d𝑡 = −vE − 𝐹rr𝑣2, (2.10)

dv
d𝑡 = −1𝛾 (E + v × B − v (vE) + 𝐹rrv

𝛾2 ) ≡ −F⟂𝛾 . (2.11)

Since radiation reaction can significantly alter the dynamics of only ultrarelativistic particles (𝛾 ≫ 1),
the last term in (2.11) can be omitted. The equations written above have a formal stationary solution
v0, which corresponds to the vanishing of the transverse force acting on the electron and, correspond-
ingly, to the vanishing of radiation reaction. Because of the latter property, this solution is called
radiation-free direction (RFD). It is found from the following equation

E + v0 × B − v0 (v0E) = 0. (2.12)

Note first that the solution of this equation always exists and it can be either calculated algebraically
or constructed geometrically [160]. Let us construct an algebraic solution of the equation (2.12).

In the special case of the fulfillment of the equalities E ⋅ B = 0 and 𝐵 > 𝐸, according to the
Lorentz transformations, there exists a reference frame 𝐾′ in which the field is purely magnetic.
Moreover, in 𝐾′ the magnetic fieldB′ is parallel to themagnetic fieldB in the laboratory frame 𝐾. In
the reference frame 𝐾′, the electron trajectory is a helix with an axis parallel to the direction of the
magnetic field B′. The corresponding drift velocity of an electron in the laboratory reference frame
is the velocity of 𝐾′ relative to 𝐾 and can be found as follows

E + v0 × B = 0. (2.13)

Note that the equation (2.13) does not depend on the velocity component along the magnetic field,
so it can be chosen arbitrarily, limited only by the condition |v0| < 1. As an example, here is a
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solution that satisfies the condition v0 ⋅ B = 0

v0 =
E × B
𝐵2 . (2.14)

As will be shown in section 2.3.3, the ambiguity of the solution (2.13) can be eliminated based on
additional physical considerations.

In the general case, the solution of the equation (2.12) can be obtained by its sequential scalar
multiplication by the vectors B, E and E × B

v0B = EB
v0E

, (2.15)

v0 ⋅ E × B = 𝐸2 − (v0E)2, (2.16)

v0E = −√
𝐸2 − 𝐵2 +√(𝐸2 − 𝐵2)2 + 4(EB)2

2 , (2.17)

v0 ⋅ E × [E × B] = (v0E)(EB) − (v0B)𝐸2. (2.18)

Note that the right-hand side in the expression (2.17) is a Lorentz invariant. The sign “−” in the
same expression is chosen on the basis of the following reasoning. In the case of E ⋅ B ≠ 0 and/or
𝐸 > 𝐵, according to the Lorentz transformations, there exists a reference frame 𝐾′ in which E′ ∥ B′
and/or 𝐵′ = 0. In this case, the electron trajectory asymptotically tends to a straight line parallel to
the vector E′, and the condition v′ ⋅E′ < 0 is satisfied. Note that the vectors E, E×B and E×[E×B]
form an orthogonal basis, so the expressions (2.16)–(2.18) uniquely define the vector v0.

The second note about the equation (2.12) is that its scalarmultiplication by v0 results in |v0| = 1.
This means that the solution v0 is not strictly physical, and in fact the electron is generally not able
to move in the EM field and not experience transverse acceleration. In order to understand the
connection of the radiation-free solution with the actual solution of the electron motion equations,
let us consider the following. By definition, in the strongly radiation-dominated regime, the energy
of an electron is significantly less than the energy of a certain hypothetical electron moving in the
sameEM field, but not experiencing radiation reaction. The energy of such a hypothetical electron is
usually estimated in order of magnitude by the dimensionless electric field amplitude 𝑎0. Thus, the
energy of an electron experiencing extreme radiation losses satisfies the condition 𝛾 ≪ 𝑎0. When
this condition ismet, it follows from the equation (2.11) that theEM field orients the electron velocity
vector on a time scale much smaller than the characteristic time of change of the EM field itself.
Thus, on the scale of changes in the electron velocity, the EM field can be considered constant and
uniform. And in a constant homogeneous EM field, the electron velocity asymptotically approaches
the radiation-free direction v0. Neglecting the time of such an approach, one can construct the so-
called asymptotic trajectory, which in a sense is an attractor for real electron trajectories

dr
d𝑡 = v0 (E(r, 𝑡),B(r, 𝑡)) , (2.19)

E + v0 × B − v0 (v0E) = 0. (2.20)
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Thus, the order of the electron motion equations is reduced. Here and below, the solution of these
equations r(𝑡)will be called asymptotic trajectory, because firstly, this trajectory locally corresponds
to the electron trajectory in the constant field approximation at asymptotically large times (𝑡 → ∞),
and secondly, it describes the electron trajectory in an asymptotically strong field (𝑎0 →∞).

2.3 Properties and examples of asymptotic trajectories
Let us consider the equations (2.19) and (2.20) and study the general properties of trajectories based
on the known symmetry of Maxwell’s equations. The following transformation

𝑡′ = −𝑡, (2.21)
E′ = −E, (2.22)
B′ = B, (2.23)
𝜌′ = −𝜌, (2.24)
j′ = j. (2.25)

does not change Maxwell’s equations in the sense that it leads to the same equations for primed
variables. In what follows, we denote the quantities E, B, j, which change with time 𝑡, as the initial
system, and E′, B′, j′, changing over time 𝑡′, as the primed system. The above symmetry is the
relation between the systemof currents that emit certain fields and the systemof currents that absorb
fields. This relation states that the Poynting vector, the scalar product j ⋅ E and the direction of time
in the primed system are opposite to those in the initial system. According to the equation (2.20),
in the primed system, the velocity field v′0 is related to the velocity field in the initial system v0 as
follows

v′0(r, 𝑡′) = −v0(r, −𝑡′), (2.26)

That is, in the primed system, the velocity field and the direction of time are opposite to those in the
initial system, which leads to trajectories in the primed system r′(𝑡′) being the same as in the initial
system, but passed by the electron in the opposite direction, dr′/d𝑡′ = v′0(r′, 𝑡′) = −v0(r′, −𝑡′). Note
the fundamental difference between the asymptotic trajectory described by the equations (2.19)–
(2.20) and the ponderomotive description. The ponderomotive force is determined by the distribu-
tion of 𝐸2 and 𝐵2 and is accordingly invariant under the transformation (2.21)–(2.25), while this
transformation reverses the direction of electron motion, described by the equations (2.19) and
(2.20), which are valid in the regime of strong radiation reaction. Let us further demonstrate the
difference between ponderomotive and asymptotic descriptions using the following example. Con-
sider the scattering of an electron by two laser pulses counter propagating each other and located
initially at some distance from each other. Let the first pulse propagate along the 𝑥 axis, and the
second one being obtained from the first one by transformation (2.21)–(2.23) and thus propagate
against the 𝑥 axis. Let the electron be closer to the first pulse. Then, according to the ponderomo-
tive description, the first pulse scatters the electron to the side. In this case, the electron may be
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far from both pulses so that the second pulse will not affect the motion of the electron at all. How-
ever, if the electron radiates abundantly, then the asymptotic description of its motion is valid. In
this case, the trajectory of the electron in the field of the second pulse should be the same as in the
field of the first, but passed in the opposite direction. Therefore, in the strongly radiation-dominated
regime, the electron, after moving in the field of the first pulse, returns to its original position, mov-
ing in the field of the second pulse. This behavior is very different from the behavior according to
the ponderomotive description. Thus, the asymptotic description implies that the electrons do not
scatter, but remain in the field of the laser beam for a long time. This conclusion is in good agree-
ment with the results of theoretical considerations and numerical simulations, which show that the
ponderomotive force can be significantly suppressed by radiation reaction [63, 161].

2.3.1 Asymptotic trajectories in standing waves
In this section, we will show that the equations (2.19) and (2.20) always lead to periodic trajectories
in a wide class of fields, which are generally written in the following form

E = f(r, 𝑡) − f(r, −𝑡), (2.27)
B = g(r, 𝑡) + g(r, −𝑡), (2.28)

where E = f(r, 𝑡), B = g(r, 𝑡) are solutions of Maxwell’s equations in free space (𝜌 = 0 and j = 0).
This representation means that the fields are the sum of the fields in some system and the fields in
the corresponding primed system. In this case, the transformation (2.21)–(2.25) results in the same
fields in the primed system as in the initial system, i.e. E′(r, 𝑡′) = E(r, 𝑡′), B′(r, 𝑡′) = B(r, 𝑡′), which
leads to the same velocity field v′0(r, 𝑡′) = v0(r, 𝑡′). Given the expression (2.26) we have

v0(r, −𝑡) = −v0(r, 𝑡), (2.29)

i.e. the velocity v0 is an odd function of time. If, among other things, the fields (2.27)–(2.28) are
periodic functions of time, then the velocity field is also periodic in time with the same period 𝑇.
Therefore, the average value of the velocity over the period is zero

⟨v0⟩𝑇 = ∫
𝑇

0
v0(𝑡′) 𝑑𝑡′ = ∫

0

−𝑇
v0(−𝑡′) 𝑑𝑡′ = −∫

𝑇

0
v0(𝑡′) 𝑑𝑡′ = −⟨v0⟩𝑇 . (2.30)

Thus,

r(𝑡 + 𝑇) = ∫
𝑡+𝑇

0
v0(𝑡′) 𝑑𝑡′ = ∫

𝑡

0
v0(𝑡′) 𝑑𝑡′ +∫

𝑡+𝑇

𝑡
v0(𝑡′) 𝑑𝑡′ = r(𝑡) + ⟨v0⟩𝑇 = r(𝑡). (2.31)

Therefore, in periodic fields (2.27)–(2.28) within the framework of the asymptotic description, the
electron periodically moves along the same path.

Below, we consider several specific examples of standing wave configurations, in which we com-
pare the asymptotic trajectories and the numerical solution of the non-reduced motion equations.
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2.3.2 Asymptotic trajectories in a linearly-polarized standing wave
The field configuration in a linearly-polarized standing wave is quite simple, so the asymptotic tra-
jectories can be found explicitly. Let E = y0 cos(𝑡) cos(𝑥), B = z0 sin(𝑡) sin(𝑥), then

v0 = {x0 tg(𝑡) tg(𝑥) + y0√1− tg2(𝑡) tg2(𝑥), if 𝐸 > 𝐵;
x0 ctg(𝑡) ctg(𝑥), if 𝐸 < 𝐵.

(2.32)

Since the fields are uniform along the 𝑦 axis, the movement along it is of little interest. The depen-
dence 𝑥(𝑡) is determined from the equations

{
sin(𝑥) cos(𝑡) = sin(𝑥0) cos(𝑡0), if 𝐸 > 𝐵;
cos(𝑥) sin(𝑡) = cos(𝑥0) sin(𝑡0), if 𝐸 < 𝐵.

(2.33)

Let the electron be initially (𝑡 = 0) located at the point 𝑥 = 𝑥0 such that 𝐸 > 𝐵 (otherwise the
electron will be at rest until this condition is met). The electron trajectory is determined by the first
equation in (2.33) until it reaches the point where 𝐸 = 𝐵; after that, the trajectory is determined
by the second equation in (2.33) up to the next point where the condition 𝐸 = 𝐵 is met, and so on.
Such points are determined from the condition tg(𝑥) tg(𝑡) = 1. From here, one can explicitly find
the point of change of the trajectory, which the electron will reach, starting at the moment 𝑡 = 0
from the point 𝑥0

ctg𝑥1 = tg 𝑡1 =√
1

sin(𝑥0)
− 1 (2.34)

It is easy to show that the electron will reach the next closest point of trajectory change at time
𝑡2 = 𝜋−𝑡1 with coordinate 𝑥2 = 𝑥1, and the next one at 𝑡3 = 𝜋+𝑡1 with coordinate 𝑥3 = 𝑥1 and after
that the trajectory will repeat periodically. The trajectories of electrons starting from other points
are found in a similar way. The explicit form of the 𝑥(𝑡) trajectories and their comparison with the
numerical solution of the non-reduced motion equations are shown in Fig. 2.1. According to the
reasoning in section 2.3.1, the asymptotic trajectories of an electron in a standing linearly polarized
wave are periodic. However, it is known that the behavior of electrons in a strong standingwave is ac-
companied by the so-called anomalous radiative trapping [62], i.e. particles approach the magnetic
node of the standing wave, which is an unstable equilibrium position without account of radiation
reaction. The anomalous radiative trapping is caused by the electron drift between different asymp-
totic trajectories (2.33), which takes several field periods [62] and therefore is not described by the
presented asymptotic theory. Note that in the case of 𝑎0 = 105, the electron trajectories calculated
numerically approach the magnetic field node with each successive period, which is exactly the
effect of the anomalous radiative trapping (see Fig. 2.1).



26 CHAPTER 2. PROPERTIES OF CHARGED PARTICLES MOTION IN STRONG FIELDS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5 (a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

0

(b)

0 = 105 (HC+MC)

0 = 105 (HC+MC)
0 = 103 (HC+MC)

0 = 103 (HC+MC)
Asymptotic trajectories

Figure 2.1: Electron dynamics in a linearly polarized standing electromagnetic wave. (a) Solid gray
lines correspond to the asymptotic trajectories calculated from the equation (2.19). The areas of pre-
dominance of the electric (magnetic) fields are marked in light orange (green) colors. Solid colored
lines correspond to the numerical trajectories calculated from the non-reduced motion equations
with account of radiation reaction using the Monte Carlo method (see Appendix A) for 𝑎0 = 103
and 𝑎0 = 105 (starting from 𝑥 < 0 and 𝑥 > 0 respectively). The dashed orange lines correspond
to the magnetic node of the standing wave (𝐵 = 0), the dash-dotted green lines correspond to the
electrical node of the standing wave (𝐸 = 0). (b) Particle energy as a function of time for numerical

trajectories, normalized to 𝑎0.

2.3.3 Asymptotic trajectories in a laser beam of finite diameter
Let us show that a large number of electromagnetic field configurations can be represented as peri-
odic fields with «emission-absorption» symmetry (2.21)–(2.25). Wewill also present one of the ways
to resolve the ambiguity of the velocity field given by the equation (2.14).

Consider the TE11 mode of a rectangular metallic waveguide

𝐸𝑥 = 0, (2.35)
𝐸𝑦 = 𝑎0 cos(𝑘𝑦𝑦) sin(𝑘𝑧𝑧) cos(𝑡 − 𝑘𝑥𝑥), (2.36)

𝐸𝑧 = −
𝑎0𝑘𝑦
𝑘𝑧

sin(𝑘𝑦𝑦) cos(𝑘𝑧𝑧) cos(𝑡 − 𝑘𝑥𝑥), (2.37)

𝐵𝑥 =
𝑎0(𝑘2𝑧 + 𝑘2𝑦)

𝑘𝑧
cos(𝑘𝑦𝑦) cos(𝑘𝑧𝑧) sin(𝑡 − 𝑘𝑥𝑥), (2.38)

𝐵𝑦 = −𝑘𝑥𝐸𝑧, (2.39)
𝐵𝑧 = 𝑘𝑥𝐸𝑦, (2.40)

where the angular frequency of the wave Ω = (𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧)1/2 = 1 (we use the normalization
frequency 𝜔 equal to the frequency of the wave and, as before, the time is normalized to 1/𝜔, coordi-
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nates— to 𝑐/𝜔, k—wave vector normalized to𝜔/𝑐). These fields havemetallic boundary conditions
at 𝑦 = 0, ±ℓ𝑦, ±2ℓ𝑦, ... (𝐸𝑧 = 0) and 𝑧 = 0, ±ℓ𝑧, ±2ℓ𝑧, ... (𝐸𝑦 = 0), where ℓ𝑦 = 𝜋/𝑘𝑦 and ℓ𝑧 = 𝜋/𝑘𝑧
are the waveguide dimensions along the 𝑦 and 𝑧 axes respectively.

The fields (2.35)–(2.40) are solutions of theMaxwell equation not only inside the waveguide, but
also in vacuum, because they can be represented as a sum of plane waves. We will consider these
fields in the region 𝑦 ∈ [−ℓ𝑦/2, ℓ𝑦/2] and 𝑧 ∈ [0, ℓ𝑧] as a model of a laser beam of a finite diameter.
The asymptotic trajectory in such fields is shown in Fig. 2.2 (a), where 𝜉 = 𝑥 − 𝑣𝑔𝑡, 𝑣𝑔 = 𝑘𝑥 is the
group velocity of the TE11 mode. The trajectory starts at 𝑡 = 0 at the point 𝑥 = 0, 𝑦 = 0.2, 𝑧 = 0.55
and ends at 𝑡 = 2𝜏, where 𝜏 is the characteristic timescale of the problem

𝜏 = 2𝜋
𝑘𝑥(𝑣𝜑 − 𝑣𝑔)

= 2𝜋
1 − 𝑘2𝑥

(2.41)

where 𝑣𝜑 = 1/𝑣𝑔 is thewave phase velocity. It can be seen fromFig. 2.2 that the asymptotic trajectory
is quasi-periodic, which agrees quite well with the trajectory of a real electron at 𝑎0 = 4 ⋅ 103, which
remains in the strong field region for a long time. However, as will be shown below, along the
asymptotic trajectories calculated in the laboratory frame of reference, the values of 𝜉 and the period
of the trajectory do not coincide well with those for real electron trajectories. This is due to the fact
that the expression (2.14) is not a Lorentz invariant, therefore, by calculating the speed v0 using this
expression in one frame of reference, in some other frame of reference, we get v0′ = E′ × B′ + 𝑎B′,
where 𝑎 is some constant.
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Figure 2.2: (a) Electromagnetic energy density𝑊 = (𝐸2+𝐵2)/2 of theTE11waveguidemode (2.35)–
(2.40) with dimensions ℓ𝑦 = 2𝜆, ℓ𝑧 = 𝜆 in plane 𝑥 = 0 at 𝑡 = 0 (colormap). Trajectories of electrons
calculated numerically (seeAppendixA) starting from the point 𝑥 = 0, 𝑦 = 0.2 𝜆, 𝑧 = 0.55 𝜆 (marked
with white cross) (𝜆 = 1 µm, 𝑡 ∈ [0, 2𝜏]), for 𝑎0 = 700 (blue line) and 𝑎0 = 4 ⋅ 103 (green line).
Darker colors correspond to later times. Black line corresponds to asymptotic trajectory calculated
from equations (2.14) and (2.15)–(2.18) (b) Asymptotic trajectory in the laboratory reference frame;

𝜉 = 𝑥 − 𝑣𝑔𝑡, where 𝑣𝑔 is the group velocity of the TE11 mode.
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Consider the fields (2.35)–(2.40) in the reference frame 𝐾′moving along axis 𝑥with group veloc-
ity 𝑣𝑔

𝐸′𝑦 = 𝑎0𝑘⟂ cos(𝑘𝑦𝑦) sin(𝑘𝑧𝑧) cos(𝑘⟂𝑡′), (2.42)

𝐸′𝑧 = −
𝑎0𝑘⟂𝑘𝑦
𝑘𝑧

sin(𝑘𝑦𝑦) cos(𝑘𝑧𝑧) cos(𝑘⟂𝑡′), (2.43)

𝐵′𝑥 =
𝑎0(𝑘2𝑧 + 𝑘2𝑦)

𝑘𝑧
cos(𝑘𝑦𝑦) cos(𝑘𝑧𝑧) sin(𝑘⟂𝑡′), (2.44)

𝐸′𝑥 = 𝐵′𝑥 = 𝐵′𝑦 = 𝐵′𝑧 = 0, (2.45)

where 𝑘⟂ = √1 − 𝑘2𝑥. These fields do not depend on 𝑥′ and for all electrons there is no Lorentz
force component along the 𝑥′ axis. Moreover, due to radiation losses, electrons «forget» their initial
direction of motion, so we will assume that in fields (2.42)–(2.45) average electron velocity 𝑣′𝑥 = 0.
Therefore, in the laboratory reference frame 𝐾 the average electron velocity is 𝑣𝑥 = 𝑣𝑔 and hence
𝜉 = const. Note that this statement is not true for asymptotic trajectories calculated in the laboratory
reference frame (see Fig. 2.2 (b)), which in particular leads to a different value of the period of 𝑦 and
𝑧 coordinates.

The substitutions 𝑡′ → 𝑡′ + 𝜋/2𝑘⟂ and 𝑡′ → −𝑡′ indicate that electric field components (2.42)–
(2.43) are odd functions of time, and magnetic field components (2.44) are even functions of time in
𝐾′ and all the fields are periodic. In accordancewith section 2.3.1, in this case, within the framework
of the asymptotic description, the electron trajectories are also periodic with a period of 2𝜋/𝑘⟂ in 𝐾′.
Thus, in the laboratory reference frame, the electrons move along the 𝑥 axis with the group velocity
of the laser and, and since 𝑦′ = 𝑦 and 𝑧′ = 𝑧, electron trajectories are periodic in the 𝑦𝑧 plane with
period

𝑇 = 2𝜋

𝑘⟂√1− 𝑣2𝑔
= 𝜏. (2.46)

Therefore, the ambiguity of the velocity field in the asymptotic approach can be resolved by choosing
the correct frame of reference.

So, we have shown that reduced motion equations (2.19) and (2.20) lead to periodic trajectories
in a wide class of standing waves (for example, formed by laser beams of finite diameter) and the
motion of electrons along the propagation axis of the laser pulse with its group velocity and periodic
transverse motion. The latter can explain the effect of radiative trapping of particles induced by
radiation reaction [63].

2.4 High-order corrections to the asymptotic description
The theory developed abovemakes it possible to describe the dynamics of an electron in the strongly
radiation-dominated regime without specifying the expression for radiation friction force, and thus
is a useful analytical tool with which we have obtained some new results. However, this approach
has two significant limitations. First, as shown above, the real electron trajectories converge to
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the asymptotic ones fast enough only at extreme intensities exceeding 1025W/cm2 (at wavelength
𝜆 = 1 µm). This is due to the fact that for most realistic EM field configurations, the characteristic
time during which the electron velocity vector approaches the radiation-free direction is underes-
timated in our reasoning, which are given for a constant EM field. Secondly, it is impossible to
calculate the energy and radiation losses of an electron when approaching the asymptotic trajectory,
because the electron energy is assumed to be infinitely large, albeit much smaller than the dimen-
sionless amplitude of the EM field. Despite these shortcomings, a similar approach was successfully
applied to describe the dynamics of electrons in some astrophysical problems [89, 162, 163].

To get rid of the above drawbacks, we construct a perturbation theory, assuming that the electron
velocity deviates from the radiation-free direction, but this deviation is small, i.e. we represent the
electron velocity in the following form

v = (1 − 𝛿2
2 ) v0 + v1, (2.47)

where v1 ⟂ v0 and 𝛿 can be found from the relation to the electron energy |v|2 = 1 − 𝛾−2 as follows

𝛿2 ≈ 𝑣21 + 𝛾−2. (2.48)

Let us substitute this velocity representation into the equation (2.11) and expand it up to terms
not higher than the second order in 𝛿. We separately consider the term F⟂ in the rhs of the equa-
tion (2.11)

F⟂ = −𝛿
2

2 [v0 × B] + [v1 × B] + 𝛿2v0(v0E) − v0(v1E) − v1(v0E) − v1(v1E) + 𝒪(𝛿3) (2.49)

Let us transform the term v1 × B

v1 × B = −(v0B)[v0 × v1] + v0(v0[v1 × B]). (2.50)

Let us do a scalar multiplication of the equation (2.12) by v1

(v1E) + v1[v0 × B] = 0. (2.51)

After performing a cyclic permutation in the mixed product, we obtain

v0[v1 × B] = (v1E). (2.52)

Thus,
v1 × B = v0(v1E) − [v0 × v1](v0B). (2.53)

Performing similar actions, we can write the term v0 × B in the following form

v0 × B = −v1
(v1E)
𝑣21

+ [v0 × v1]
(v1B)
𝑣21

(2.54)
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Thus, the transverse force F⟂ can be written as an expansion in the orthogonal basis v0, v1, v0 × v1
as follows

F⟂ =𝛿2(v0E) v0−

− ((v0E) + (v1E)
𝑣21 − 𝛾−2
2𝑣21

) v1−

− ((v0B) + (v1B)
𝑣21 + 𝛾−2
2𝑣21

) [v0 × v1].

(2.55)

Consider the lhs of Eq. (2.11)

dv
d𝑡 = (1 − 𝛿2

2 )
dv0
d𝑡 − v0

2 (d𝑣
2
1

d𝑡 + d𝛾−2
d𝑡 ) + dv1

d𝑡 . (2.56)

To calculate the term d𝑣21/d𝑡, we scalarly multiply the equation (2.11) by v1, taking into account that
v1v0 = 0, and discarding terms of higher orders of smallness

1
2
d𝑣21
d𝑡 = −v1

dv0
d𝑡 + 𝑣21(v0E)

𝛾 . (2.57)

Let us expand the term containing d𝛾−2/d𝑡 using the equation (2.11)

1
2
d𝛾−2
d𝑡 = − 1

𝛾3
d𝛾
d𝑡 ≈

v0E
𝛾3 . (2.58)

Thus,
1
2
d𝛿2
d𝑡 = −v1

dv0
d𝑡 + 𝛿2 (v0E)𝛾 . (2.59)

Substituting the expressions (2.59) and (2.55) back into the equation (2.11), we get

dv1
d𝑡 = F1

𝛾 − (1 − 𝛿2
2 )

dv0
d𝑡 − v0 (v1

dv0
d𝑡 ) , (2.60)

F1 = v1 ((v0E) + (v1E)
𝑣21 − 𝛾−2
2𝑣21

) + [v0 × v1] ((v0B) + (v1B)
𝛿2
2𝑣21

) . (2.61)

Finally, let’s find an expression for the QED parameter 𝜒, based on its definition (2.2) and the above
calculations

𝜒 = 𝛾𝛿
𝑎S√

[(v0E)
2 + (v0E) (v1E) + (v0B) (v1B)] +

𝛿2
4𝑣21

[(v1E)
2 + (v1B)

2]. (2.62)
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As a result, we have obtained the following system of general equations describing the dynamics
of an electron in the strongly radiation-dominated regime

dv1
d𝑡 = F1

𝛾 − (1 − 𝛿2
2 )

dv0
d𝑡 − v0 (v1

dv0
d𝑡 ) , (2.63)

d𝛾
d𝑡 = −v0E (1 −

𝛿2
2 ) − v1E − 𝐹rr(𝜒), (2.64)

F1 = v1 ((v0E) + (v1E)
𝑣21 − 𝛾−2
2𝑣21

) + [v0 × v1] ((v0B) + (v1B)
𝛿2
2𝑣21

) , (2.65)

𝜒 = 𝛾𝛿
𝑎S√

[(v0E)
2 + (v0E) (v1E) + (v0B) (v1B)] +

𝛿2
4𝑣21

[(v1E)
2 + (v1B)

2]. (2.66)

Note that despite the fact that 𝜒 is proportional to the small parameter 𝛿, it can be arbitrarily large
due to the factor 𝛾. Due to this, the term 𝐹rr must be preserved in all expansion orders, which leads
to the fact that the reduced motion equations remain nonlinear. It is also important to note that
the total derivatives in the equations above must be understood in the sense of the derivative of the
vector field v0 along the particle trajectory r(𝑡), i.e.

dv0
d𝑡 = 𝜕v0

𝜕𝑡 + (v, ∇)v0. (2.67)

Consider the equation for the small parameter 𝛿2

1
2
d𝛿2
d𝑡 = −v1

dv0
d𝑡 + 𝛿2(v0E)

𝛾 . (2.68)

From this equation, one can estimate the characteristic time of the electron trajectory approaching
the asymptotic radiation-free trajectory in a constant EM field (dv0/d𝑡 = 0)

𝜏𝑣 =
𝛾

|v0E|
∼ 𝛾
𝑎0
. (2.69)

However, for a general EM field, the sign of the first term in the equation (2.68) can be arbitrary, and
its value can be comparable to 𝑣1, so the 𝛾 ≪ 𝑎0 condition alone is not enough to justify the asymp-
totic description of the electron dynamics in the zeroth order (2.19) in an arbitrary EM field. Thus,
it is necessary to use the system of equations (2.63)–(2.64), which take into account the deviation
of the velocity vector from the radiation-free direction. In addition, using these equations, one can
find the energy of an electron and its radiation losses when moving in an EM field.

Let us explain the procedure carried out to obtain the reduced motion equations using simple
steps. First, it was shown that there is a certain preferred radiation-free direction which the electron
velocity approaches in a constant EM field. Decomposing the velocity vector in a basis in which one
axis coincides with the radiation-free direction, we can split the equations of motion of an electron
into two components. The motion along the radiation-free direction is essentially described by the
energy of the particle, while the equations for the transverse velocity can be expanded into a series
that obviously converges, since the length of the electron velocity vector is strictly less than unity.
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Despite the fact that the resulting system of reduced equations remains non-linear and cannot be
solved in a general form, examples will be considered below that show that this approach can be
more productive than solving non-reduced motion equations. We also note that recently in the
publication [164] a similar expansion was used to find equilibrium solutions to the equations (2.63)–
(2.64).

Let us further consider specific examples of EM field configurations, in which the equations
(2.63)–(2.64) can be explicitly solved in one form or another.

2.4.1 Generalized Zeldovich problem
Motion equations of an electron with account of radiation reaction can be analytically solved in a
uniform rotating electric field, which was first demonstrated by Ya. B. Zeldovich [165]. Recently, in
the Ref. [97], the Zeldovich solution was extended to the case when, in addition to the electric field,
there is a uniformmagnetic field parallel to it and rotating with the same frequency. This configura-
tion of the EM field is of interest primarily because, with the exception of homogeneity, it is formed
by the interference of two circularly polarized waves propagating towards each other. In particular,
one of the first analytical solutions to the problem of QED cascade development was constructed
precisely in this model field configuration [166, 167]. Let us construct a solution to the problem of
the motion of an electron in such an EM field, using the theory we have developed. Let us assume
that the electric and magnetic fields are uniform, parallel and rotate with the angular frequency 𝛀.
The radiation-free direction in this case is opposite to the electric field: v0 = −E/𝐸 ≡ −e. We will
be interested in the stationary solution, in which the electron velocity vector rotates synchronously
with the electric and magnetic fields. In this case, in the equation (2.63) one can replace the time
derivatives with the vector product𝛀×

𝛀× v1 = −𝐸𝛾 v1 +
𝐵
𝛾 e × v1 +𝛀× 𝐞 + 𝑣1e. (2.70)

Using the fact that v1 ⟂ v0, the vector v1 can be decomposed into components as follows

v1 = 𝑣⟂𝛀× e + 𝑣𝑥𝛀. (2.71)

In this case, the equation (2.70) is split into a system of linear equations, the solution of which is
easily found

𝑣𝑥 =
𝛾𝐵

𝐸2 + 𝐵2 , (2.72)

𝑣⟂ =
𝛾𝐸

𝐸2 + 𝐵2 , (2.73)

𝑣1 =
𝛾

√𝐸2 + 𝐵2
. (2.74)

The stationarity of the solution also implies that the energy gain of an electron in an electric field
is exactly compensated for by radiative losses, so d𝛾/d𝑡 = 0. In this case, the relation between the
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electron energy and the amplitude of the electric field is found from the following equation

𝐸 (1 − 𝛿2
2 ) = 𝐹rr (

𝛾𝛿𝐸
𝑎S

) , (2.75)

𝛿 = √𝑣21 + 𝛾−2 =
√

𝛾2
𝐸2 + 𝐵2 +

1
𝛾2 . (2.76)

This result coincide exactly with the result obtained in the Ref. [97]. Let us separately consider the
special case 𝐵 = 0 investigated in the original publication by Zeldovich [165]. In this case, the
solution is written in the following form

𝑣⟂ =
𝛾
𝐸 , (2.77)

𝐸 ≈ 𝐹rr (
𝛾2
𝑎S
) . (2.78)

Let us consider the classical radiation limit 𝜒 ≪ 1, in which the radiation power is given by
𝐹rr = 2/3𝛼𝑎S𝜒2, then

𝐸 = 𝛼23
𝛾4
𝑎S
. (2.79)

In this case, the validity condition of the found solution, 𝑣⟂ ≪ 1, can be rewritten in the following
form

𝐸 ≫ 𝑎∗0 ≡ 3
√

3
2
𝑎S
𝛼 . (2.80)

This condition is often used as a definition of the strongly radiation-dominated regime regardless
of the configuration of the EM field. This, however, is not always accurate, as will be shown below
using the example of the problem of electron motion in plane waves.

Comparison of the obtained solution with the result of the numerical solution of non-reduced
motion equations (2.10)–(2.11) with account the radiation reaction using both semiclassical and
quantum approaches is presented in Fig. 2.3. The parameters of the EM field in this case were cho-
sen so that the average value of the electron QED parameter 𝜒was about 5. This choice wasmade to
demonstrate the limits of applicability of our approach. In our theory, which is based on a semiclas-
sical approach of describing radiation reaction, it is assumed that the value of the QED parameter 𝜒
does not differ significantly for electrons with similar initial conditions. In this case, we can assume
that the radiative friction force averaged over the electron distribution function can be calculated
as the friction force acting on the «average» electron, i.e. ⟨𝐹rr(𝜒)⟩ ≈ 𝐹rr(⟨𝜒⟩), where angle brackets
mean averaging over the electron distribution function. However, as can be seen from Fig. 2.3, the
parameters of electronswith the same initial conditions acquire a significant spread during theirmo-
tion, due to the stochastic nature of the radiation process. In connection with this and the character
of the function 𝐹rr(𝜒) in the essentially quantum regime, the inequality ⟨𝐹rr(𝜒)⟩ < 𝐹rr(⟨𝜒⟩) is valid,
which explains the difference between the values of 𝑣𝑥 and 𝑣⟂ obtained according to the analytical
solution (2.72)–(2.73) and those obtained in the result of averaging over different runs of quantum
numerical solutions, observed in Fig. 2.3 (b).
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Figure 2.3: Dynamics of an electron in an electric field with a dimensionless amplitude
𝑒𝐸/𝑚𝑐Ω = 2500 and a parallel magnetic field with a dimensionless amplitude 𝑒𝐵/𝑚𝑐Ω = 2000, syn-
chronously rotating with an angular frequency Ω corresponding to the wavelength 𝜆 = 2𝜋𝑐/Ω =
1 µm: (a) the electron velocity component across the electric field in the plane of rotation, (b) the
electron velocity component along the angular vector speed𝛀. Green (light blue) lines correspond
to the numerical solution of non-reduced electron motion equations (2.10)–(2.11) with account of
radiation reaction using the semiclassical (quantum) approach (see Appendix A), the dark blue lines
correspond to values averaged over 100 runs of «quantum» solutions. The orange lines correspond

to the analytical solution (2.72)–(2.73).

2.4.2 Model plasma accelerator
Let’s consider a «toy model» of a plasma accelerator and find a known stable quasi-stationary solu-
tion in the radiation-dominated regime [54, 61] using the developed approach. To do this, we assume
that the EM field is the sum of the uniform accelerating electric field z0𝐸acc and the focusing electric
field y𝐸foc linearly dependent on the transverse coordinates, in which the electrons undergo beta-
tron oscillations. To find a solution that corresponds to the constant radiation losses averaged over
the period of betatron oscillations, we assume that an arbitrary function of the QED parameter 𝜒 is
a strictly periodic function of time, i.e. its average value is constant. Mathematically, this condition
is written as follows

d⟨𝜒2⟩
d𝑡 = 0, (2.81)

where the function 𝜒2 is used for the convenience of further reasoning. In the configuration of the
EM field under consideration, it is easy to obtain an expression for 𝜒 from the equation (2.66)

𝜒 = 𝛾𝛿𝐸
𝑎S

. (2.82)

Hereinafter, we will assume that the condition 𝛾 ≈ ⟨𝛾⟩ is satisfied, i.e. the amplitude of oscillations
of the electron energy ismuch less than the value of the energy itself. In this case, the energy 𝛾 can be
taken out of the averaging sign in all calculations. Since we assume that the electron is accelerating,
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i.e. the value of 𝛾 increases with time, but the value of 𝜒 remains constant on average, then from the
expression (2.82) it follows that the amplitude of oscillations of 𝛿 decreases with time. In this case, it
is appropriate to assume that at large times the electron experiences predominantly an accelerating
field, i.e. 𝐸 ≈ 𝐸acc = const. The validity of both these assumptions is reliably confirmed by the
numerical solution of the non-reduced motion equations and the final analytical solution obtained
below. Using these assumptions, the equation (2.81) can be rewritten in the following form

⟨𝐹rr⟩ ⟨𝛿2⟩ + 𝛾 ⟨v1
dv0
d𝑡 ⟩ = 0. (2.83)

Let us differentiate this expression

⟨𝐹rr⟩
𝛾 (3⟨𝐹rr⟩ − 2𝐸acc) ⟨𝛿2⟩ + 𝛾 ⟨v1

d2v0
d𝑡2 − (dv0d𝑡 )

2
⟩ = 0. (2.84)

To calculate the last two terms in the expression above, we write the equations for the electron
trajectory

dr
d𝑡 = v0 + v1, (2.85)

where
v0 = −−z0𝐸acc + y𝐸foc

𝐸 ≈ z0 − y𝐸foc𝐸acc
≡ z0 − 𝜅y. (2.86)

Let us assume that the betatron oscillations are harmonic, i.e.

𝑦 = 𝑦0 cos𝜔𝑡, (2.87)

then from the projection of the equation (2.85) onto the 𝑦 axis we get

𝑣1,𝑦 = 𝑦0(𝜅 cos𝜔𝑡 − 𝜔 sin𝜔𝑡). (2.88)

To calculate the average value of the sum of the last two terms in the equation (2.84), note that
dv0/d𝑡 = −𝜅dy/d𝑡

⟨v1
d2v0
d𝑡2 − (dv0d𝑡 )

2
⟩ = 𝑦20𝜔2𝜅 (𝜅 ⟨cos2 𝜔𝑡 − sin2 𝜔𝑡⟩ − 𝜔 ⟨sin𝜔𝑡 cos𝜔𝑡⟩) = 0. (2.89)

As a result, we obtain the following relation for the model accelerator

⟨𝐹rr⟩ =
2
3𝐸acc. (2.90)

Thus, in the strongly radiation-dominated regime, the electron accelerates on average three times
slower than in the case without account of radiation reaction, which is a known result [54, 61].
Fig. 2.4 demonstrates a good agreement between the obtained solution and the result of the numeri-
cal solution of non-reducedmotion equations (2.10)–(2.11) . It should be noted that in our reasoning
we did not explicitly use the expression for the power of radiation losses, although a more rigorous
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Figure 2.4: Dynamics of an electron in a model accelerator with an accelerating field
𝐸acc = 30TV/m and a focusing field 𝐸foc linearly growing from 0 to 30TV/m at a transverse dis-
placement of 0.1 µm: (a) average acceleration rate, (b) average value of the QED parameter 𝜒. The
time is normalized to the initial value of the reciprocal frequency of electron betatron oscillations
𝜔𝑏/√𝛾0. The black line corresponds to the solution of the non-reduced motion equations averaged
over the betatron oscillation period (2.10)–(2.11) without taking into account the radiation reaction;
green line — with account of radiation reaction using semi-classical approach (see Appendix A).

The orange line corresponds to the analytical solution (2.90)

derivation of the relation (2.90) shows that the result actually depends on the functional dependence
of the radiation loss power on the parameter 𝜒. In particular, according to the Ref. [61], in the quan-
tum regime 𝜒 ≫ 1, when 𝐹rr ∝ 𝜒2/3, the relation (2.90) is slightly modified

⟨𝐹rr⟩ =
12
19𝐸acc, (2.91)

which differs only by no more than 5% from the ratio (2.90), which is true in the classical 𝜒 ≫ 1
regime when 𝐹rr ∝ 𝜒2. The above reasoning using the approach developed by us cannot accurately
reproduce this insignificant difference due to the approximations used, in particular, neglecting the
terms of the next orders of smallness in 𝛿.

2.5 Motion in plane waves with account of radiation reaction
Let us apply the developed theory to solve the problem of electron motion in a plane EM wave with
account of radiation reaction. For definiteness, consider the following plane wave configuration:

E = y0𝐸𝑦(𝜑) + z0𝐸𝑧(𝜑), (2.92)
B = y0𝐸𝑧(𝜑) − z0𝐸𝑦(𝜑), (2.93)

𝜑 = 𝑡 − 𝑥. (2.94)
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In this field configuration the radiation-free direction coincides with Poynting’s vector and is con-
stant

v0 =
E × B
𝐸2 . (2.95)

Let us write the reduced motion equations (2.63), (2.64)

dv1
d𝑡 = F1

𝛾 , (2.96)

d𝛾
d𝑡 = −v1E − 𝐹rr. (2.97)

Expression for F1 according to Eq. (2.65) is the following

F1 = v(vE)𝑣
2 − 𝛾−2
2𝑣2 + [v0 × v](vB) 𝛿

2

2𝑣2 , (2.98)

where we omitted an index for v1. Note, that in this expression only terms of the second order of
smallness in 𝛿 are present. Let us find an equation for 𝑣 by scalar multiplication of Eq. (2.96) by v

d𝑣
d𝑡 =

𝐸 cos𝜓
2𝛾 (𝑣2 − 1

𝛾2) , (2.99)

where 𝜓 is the angle between vector v and electric field of the plane wave E, counted in such a way
that when 𝜓 = +𝜋/2, velocity v is parallel to magnetic field of the wave B, and thus vB = 𝑣𝐵 sin𝜓.
Let us also write an equation for product vE/𝐸 ≡ ve = 𝑣 cos𝜓

d
d𝑡 (ve) = edvd𝑡 + vded𝑡 . (2.100)

According to (2.98), the first term in the rhs of the above equation can be written as follows

edvd𝑡 =
𝐸 cos2 𝜓

2 (𝑣2 − 1
𝛾2) −

𝐸 sin2 𝜓
2 (𝑣2 + 1

𝛾2) , (2.101)

where we used the fact that E ⟂ B, |𝐸| = |𝐵| in a plane wave. We can rewrite the second term
in (2.100) the following way

vded𝑡 = vded𝜑
d𝜑
d𝑡 = −𝑣 sin𝜓Ωd𝜑d𝑡 , (2.102)

where it was assumed that direction of the electric field rotates with angular frequencyΩv0. In this
case, Ω = 0 corresponds to linearly-polarized plane wave, Ω = ±1— to elliptically- or circularly-
polarized plane wave (given a corresponding dependency 𝐸(𝜑)). Thus, Eq. (2.100) can be rewritten
as follows

d𝑣
d𝑡 cos𝜓 − 𝑣 sin𝜓d𝜓d𝑡 =

𝐸 cos2 𝜓
2 (𝑣2 − 1

𝛾2) −
𝐸 sin2 𝜓

2 (𝑣2 + 1
𝛾2) − 𝑣 sin𝜓Ωd𝜑d𝑡 . (2.103)
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Using Eq. (2.99) we finally obtain

d𝜓
d𝑡 − Ωd𝜑d𝑡 =

𝐸 sin𝜓
2𝑣 (𝑣2 + 1

𝛾2) . (2.104)

Let us introduce a transverse momentum 𝑝 = 𝛾𝑣 and write an equation for it using Eqs. (2.97)
and (2.99)

d𝑝
d𝑡 = 𝛾d𝑣d𝑡 + 𝑣d𝛾d𝑡 = −𝐸 cos𝜓1 + 𝑝2

2𝛾2 − 𝐹rr
𝑝
𝛾 , (2.105)

Let us change the integration variable to 𝜑, considering the following

d𝜑
d𝑡 = 1 − 𝑣𝑥 = 1 − √1 − 𝛿2 ≈ 𝛿2

2 = 1 + 𝑝2
2𝛾2 , (2.106)

and obtain the following system of equations

d𝑝
d𝜑 = −𝐸 cos𝜓 − 𝐹rr

2𝑝𝛾
1 + 𝑝2 , (2.107)

d𝛾
d𝜑 = −𝐸 cos𝜓 2𝑝𝛾

1 + 𝑝2 − 𝐹rr
2𝛾2

1 + 𝑝2 , (2.108)

d𝜓
d𝜑 = 𝐸 sin𝜓

𝑝 + Ω. (2.109)

Note, that

2𝑝𝛾d𝑝d𝜑 − (1 + 𝑝2)d𝛾d𝜑 = −2𝐹rr(𝜒)𝛾2
𝑝2 − 1
𝑝2 + 1. (2.110)

Let us transform the lhs of this equation

2𝑝𝛾d𝑝d𝜑 − (1 + 𝑝2)d𝛾d𝜑 = 𝛾2 (2𝑝𝛾
d𝑝
d𝜑 − (1 + 𝑝2) 1𝛾2

d𝛾
d𝜑) = 𝛾2 dd𝜑 (

1 + 𝑝2
𝛾 ) . (2.111)

Thus,
d
d𝜑 (

1 + 𝑝2
2𝛾 ) = −𝐹rr(𝜒)

𝑝2 − 1
𝑝2 + 1. (2.112)

The rhs of this equations zeros out in classical limit and thus the value 𝑝− ≡ (1+𝑝2)/2𝛾 is a constant
of motion if radiation reaction is not accounted for. It is not difficult to see that 𝑝− is nothing else
that a well-known integral of motion 𝛾 − 𝑝𝑥 commonly called a light-front momentum [158]. No-
tably, without radiation reaction this quantity is conserved exactly even according to approximate
equations. We can find an expression for 𝜒 according to (2.66)

𝜒 = 𝛾|𝐸|
𝑎S

1
2 (𝑣

2 + 1
𝛾2) =

|𝐸|
𝑎S

1 + 𝑝2
2𝛾 = |𝐸|

𝑎S
𝑝−. (2.113)
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Since value of 𝑝− decreases when we account radiation reaction2, so as 𝜒 decreases. Thus, after a
finite time an electron with arbitrary initial conditions will reach the classical regime of radiation
𝜒 ≪ 1. We restrict ourselves to considering this limit case only, then

𝐹rr(𝜒) =
2
3𝛼𝑎S𝜒

2 = 2
3
𝛼
𝑎S
𝐸2𝑝2−. (2.114)

Equation for 𝑝− is written as follows

d𝑝−
d𝜑 = −23

𝛼
𝑎S
|𝐸|2𝑝2−

𝑝2 − 1
𝑝2 + 1. (2.115)

Consider the last factor in the rhs of the equation

𝑝2 − 1
𝑝2 + 1 =

1 − 𝑝−2
1 + 𝑝−2 = 1 − 2𝑝−2 + 𝒪(𝑝−4) ≈ 1, (2.116)

where the last equality is valid if
𝑝2 ≫ 2. (2.117)

If this condition is satisfied, Eq. (2.115) can be solved in quadratures

𝑝− = 𝑝−,0(1 +
2
3
𝛼𝑝−,0𝐸20

𝑎S
∫ 𝐸2

𝐸20
d𝜑)

−1

. (2.118)

Note, that
2
3
𝛼𝑝−,0𝐸20

𝑎S
= 2
3𝛼𝜒0|𝐸0| ≡ 𝒜, (2.119)

and 𝒜 is Lorentz-invariant in virtue of invariance of 𝜒0 and 𝐸0. Let us introduce Φ the following
way

Φ ≡ 1
𝐸20

∫𝐸2d𝜑, (2.120)

then
𝑝−
𝑝−,0

= 1
1 + 𝒜Φ. (2.121)

Note, that both sides of this relation are also Lorentz-invariant. The definition 𝑝− = (1 + 𝑝2)/2𝛾
used above is valid only in limit 𝛾 ≫ 1 + 𝑝2. In general case 𝑝− can be expressed as follows

𝑝− = 𝛾 − 𝑝𝑥 = 𝛾 − √𝛾2 − 1 − 𝑝2. (2.122)

Solving this in terms of 𝛾 we obtain

𝛾 = 1
2 (

1 + 𝑝2
𝑝−

+ 𝑝−) =
1
2 (

(1 + 𝑝2)(1 + 𝒜Φ)
𝑝−,0

+ 𝑝−,0
1 + 𝒜Φ) . (2.123)

2This statement is true if 𝑝 > 1. As will be shown below, the average value of 𝑝 over a wave period can be estimated
as 𝑎0, thus the value 𝑝− strictly decreases during each wave period.
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Analogously, 𝑝𝑥 is found as follows

𝑝𝑥 =
1
2 (

1 + 𝑝2
𝑝−

− 𝑝−) =
1
2 (

(1 + 𝑝2)(1 + 𝒜Φ)
𝑝−,0

− 𝑝−,0
1 + 𝒜Φ) . (2.124)

Let us rewrite equations for 𝑝 and 𝜓 accordingly

d𝑝
d𝜑 = −𝐸 cos𝜓 − 𝒜𝑝

1 + 𝒜Φ
𝐸2
𝐸20
, (2.125)

d𝜓
d𝜑 = 𝐸 sin𝜓

𝑝 + Ω. (2.126)

Let us also introduce variables 𝑝𝑒 = 𝑝 cos𝜓 and 𝑝𝑏 = 𝑝 sin𝜓 corresponding to projections of the
electron momentum to electric and magnetic fields of the wave, respectively. Equations for these
new variable have the following form

d𝑝𝑒
d𝜑 = −𝐸 − Ω𝑝𝑏 −

𝒜
1 + 𝒜Φ

𝐸2
𝐸20
𝑝𝑒, (2.127)

d𝑝𝑏
d𝜑 = Ω𝑝𝑒 −

𝒜
1 + 𝒜Φ

𝐸2
𝐸20
𝑝𝑏. (2.128)

Let us multiply these equations by 1 + 𝒜Φ and note that dΦ/d𝜑 ≡ 𝐸2/𝐸20. Then

(1 + 𝒜Φ)d𝑝𝑒d𝜑 + 𝒜dΦd𝜑𝑝𝑒 = −(𝐸 + Ω𝑝𝑏)(1 + 𝒜Φ), (2.129)

(1 + 𝒜Φ)d𝑝𝑏d𝜑 + 𝒜dΦd𝜑𝑝𝑏 = Ω𝑝𝑒(1 + 𝒜Φ). (2.130)

Introducing 𝜖 = (1 + 𝒜Φ)𝑝𝑒 and 𝛽 = (1 + 𝒜Φ)𝑝𝑏, we finally obtain

d𝜖
d𝜑 = −Ω𝛽 − 𝐸(1 + 𝒜Φ), (2.131)

d𝛽
d𝜑 = Ω𝜖. (2.132)

Thus, Eqs. (2.120), (2.121), and (2.131), (2.132) completely define electronmotion in planewavewith
account of radiation reaction. Note, that Eqs. (2.131), (2.132) is a system of linear differential equa-
tions. Although this system has general solution, it is of little interest. Instead, below we consider
three special cases.
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2.5.1 Constant crossed fields
Let us start by considering constant crossed fields, corresponding toΩ = 0, 𝐸 = 𝑎0 = const. In that
case

Φ = 𝜑, (2.133)

𝑝− =
𝑝−,0

1 + 𝒜𝜑. (2.134)

Let us rewrite Eqs. (2.131), (2.132), which become independent in that case

d𝜖
d𝜑 = −𝑎0(1 + 𝒜𝜑), (2.135)

d𝛽
d𝜑 = 0. (2.136)

Solving these equations and transforming back to variables 𝑝𝑒, 𝑝𝑏, we get

𝑝𝑒 =
𝑝𝑒,0 − 𝑎0𝜑 (1 +

𝒜𝜑
2
)

1 + 𝒜𝜑 , (2.137)

𝑝𝑏 =
𝑝𝑏,0

1 + 𝒜𝜑 (2.138)

Values of 𝛾 and 𝑝𝑥 can be expressed via 𝑝− and 𝑝 = √𝑝2𝑒 + 𝑝2𝑏, according to (2.123), (2.124).
Note, that since the fields are constant, then all the final expressions have to be written using the

combinationswhich donot depend onnominal normalization frequency𝜔. According to definitions
𝒜 ∝ 𝑎0 ∝ 𝜔−1, 𝜑 ∝ 𝜔, thus this requirement is met.

2.5.2 Monochromatic circularly-polarized plane wave
Let us next consider amonochromatic circularly-polarized plane wave, which corresponds toΩ = 1,
𝐸 = 𝑎0 = const, where sign of Ω is chose for definiteness. In that case,

Φ = 𝜑, (2.139)

𝑝− =
𝑝−,0

1 + 𝒜𝜑, (2.140)

thus

d𝜖
d𝜑 = −𝛽 − 𝑎0(1 + 𝒜𝜑), (2.141)

d𝛽
d𝜑 = 𝜖. (2.142)
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The equations above essentially describe a harmonic oscillator under linearly growing force, and
the solution of these equations is known

𝜖 = −𝑎0𝒜 − (𝛽0 + 𝑎0) sin𝜑 + (𝜖0 + 𝑎0𝒜) cos𝜑, (2.143)
𝛽 = −𝑎0(1 + 𝒜𝜑) + (𝛽0 + 𝑎0) cos𝜑 + (𝜖0 + 𝑎0𝒜) sin𝜑. (2.144)

Finally, transforming to variables 𝑝𝑒 and 𝑝𝑏, we get

𝑝𝑒 =
−𝒜𝑎0 − (𝑝𝑏,0 + 𝑎0) sin𝜑 + (𝑝𝑒,0 + 𝑎0𝒜) cos𝜑

1 + 𝒜𝜑 , (2.145)

𝑝𝑏 = −𝑎0 +
(𝑝𝑏,0 + 𝑎0) cos𝜑 + (𝑝𝑒,0 + 𝑎0𝒜) sin𝜑

1 + 𝒜𝜑 (2.146)
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Figure 2.5: Dynamics of an electron with initial momentum 𝑝𝑥,0 = 400, 𝑝𝑦,0 = 𝑝𝑒,0 = 240, 𝑝𝑧,0 =
𝑝𝑏,0 = −320 (𝛾0 ≈ 568) in a monochromatic circularly-polarized plane wave with dimensionless
amplitude 𝑎0 = 500 and wavelength 𝜆 = 1 µm (𝜒0 = 0.2, 𝒜 ≈ 0.5) propagating along the 𝑥 axis: (a)
the electron energy normalized to its initial value, (b) the value of the QED parameter 𝜒 = 𝑎0𝑝−/𝑎S.
The red line corresponds to the classical solution without account of radiation reaction, the green
(blue) line— to the numerical solution of non-reducedmotion equations (2.10)–(2.11) with account
of radiation reaction using the semiclassical (quantum) approach (see Appendix A). The orange

dotted line corresponds to the analytical solution (2.140), (2.145), (2.146).

2.5.3 Monochromatic linearly-polarized plane wave
Finally, let us consider monochromatic linearly-polarized plane wave: 𝐸𝑦 = 𝑎0 cos𝜑, 𝐸𝑧 = 0,Ω = 0.
In that case,

Φ = 1
2 (𝜑 +

sin 2𝜑
2 ) , (2.147)

𝑝− =
𝑝−,0

1 + 𝒜
2
(𝜑 + sin 2𝜑

2
)
, (2.148)
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thus

d𝜖
d𝜑 = −𝑎0 cos𝜑 (1 +

𝒜
2 (𝜑 + sin 2𝜑

2 )) , (2.149)

d𝛽
d𝜑 = 0. (2.150)

Integrating these equations and writing the result in terms of the variables 𝑝𝑒, 𝑝𝑏, we get

𝑝𝑒 =
𝑝𝑒,0 + 𝑎0 sin𝜑 (1 +

𝒜𝜑
2
) − 2𝒜𝑎0

3
(2 + cos𝜑) sin4 𝜑

2

1 + 𝒜
2
(𝜑 + sin 2𝜑

2
)

, (2.151)

𝑝𝑏 =
𝑝𝑏,0

1 + 𝒜
2
(𝜑 + sin 2𝜑

2
)
. (2.152)
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Figure 2.6: Dynamics of an electron with initial momentum 𝑝𝑥,0 = −81, 𝑝𝑦,0 = 𝑝𝑒,0 = −12,
𝑝𝑧,0 = 𝑝𝑏,0 = 16 (𝛾0 ≈ 84) in a monochromatic linearly-polarized plane wave with dimensionless
amplitude 𝑎0 = 500 and wavelength 𝜆 = 1 µm (𝜒0 = 0.2, 𝒜 ≈ 0.5) propagating along the 𝑥 axis: (a)
the electron energy averaged over a wave period normalized to its initial value, (b) the maximum
value of the QED parameter𝜒 = 𝑎0𝑝−/𝑎S on awave period. The red line corresponds to the classical
solution without account of radiation reaction, the green (blue) line — to the numerical solution of
non-reduced motion equations (2.10)–(2.11) with account of radiation reaction using the semiclas-
sical (quantum) approach (see Appendix A). The orange dotted line corresponds to the analytical

solution (2.148), (2.151), (2.152).

2.5.4 Discussion
We note that the exact solution of the non-reduced electron motion equations without account of
radiation reaction in the considered special cases is well-known (see, for example, [158]) and it co-
incides with the solutions we obtained in the limit 𝒜 = 0. Moreover, in the publication [168], an
exact solution of the electron motion equations with account of radiation in the Landau-Lifshitz
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form (which is also used in our solution) was found, but it is written in an implicit form, which is
quite difficult for further analysis. The solution obtained with the help of the theory developed by
us is written in a simple form and coincides with the exact solution in the limit 𝑎0 ≫ 1. We note a
common property of the obtained solutions: the radiation reaction does not significantly change the
transverse dynamics of an electron in a plane wave, but leads to an increase in the electron energy
by a factor of 𝒜𝜑 (up to a numerical factor) compared to the case without the radiation reaction.
This leads to a rather unexpected result, that in a monochromatic plane wave (circularly or linearly
polarized), the average value of the electron energy over the period of the wave, which is associ-
ated mainly with longitudinal motion, grows indefinitely. Despite the fact that this behavior has
been known for quite some time (see [165, 168–173]) and it is confirmed by the numerical solution
of non-reduced motion equations (2.10)–(2.11) (see Figs. 2.5–2.6), it doesn’t seem to be widely ac-
knowledged yet. Rather simple considerations can resolve the apparent inconsistency of this result.
For this, it is more convenient to describe the radiation reaction from the quantum point of view.
Repeating the arguments made in the introduction to this chapter, in a relativistically strong plane
wave (𝑎0 ≫ 1), the radiation formation length can be estimated as 𝜆/𝑎0 ≪ 𝜆, from which it is con-
cluded that the electron moves classically between almost instantaneous acts of radiation. Without
taking into account the radiation reaction, the quantity 𝛾 − 𝑝𝑥 is a well-known constant of motion,
where 𝑝𝑥 is the electron momentum along the wave propagation direction (red line in Fig. 2.6 (b))
The emission probability depends on the value of the QED parameter 𝜒, which in a plane wave can
be expressed as follows

𝜒 = 𝐸(𝜑)
𝑎S

(𝛾 − 𝑝𝑥) . (2.153)

Since the radiation formation length is significantly less than the wavelength, we can assume that
the radiation occurs in constant fields. In this case, it follows from the conservation of momentum
and energy that the value of 𝜒 strictly decreases after radiation. This fact is well demonstrated by
the blue line in Fig. 2.6 (b), which shows characteristic jumps corresponding to the emission of
individual photons. Thus, we can conclude that when the radiation reaction is taken into account,
the quantity 𝛾 − 𝑝𝑥 asymptotically tends to zero, which can be only achieved in the case when the
longitudinal momentum 𝑝𝑥 (and the energy 𝛾, respectively) increase indefinitely.

This example is also very indicative in terms of the domain of applicability of our approach. The
asymptotic theory developed above is initially based on the basic assumption that the electron ve-
locity is «attracted» to the radiation-free direction faster than the EM field changes. This condition
is fulfilled if inequality 𝛾 ≪ 𝑎0 is valid, which, in turn, is implied from an estimate of the charac-
teristic energy of an electron in a plane wave without account of radiation reaction 𝛾 ≈ √1 + 𝑎20.
However, as the solution obtained above shows, the energy of an electron in a plane wave, with
account of radiation reaction, grows indefinitely, while the wave amplitude 𝑎0 obviously remains
constant. Therefore, after a finite time, the condition 𝛾 ≪ 𝑎0 ceases to be satisfied on most of the
parts of the electron trajectory. Nevertheless, the solution we constructed coincides with the nu-
merical solution with surprising accuracy. This disagreement can be resolved only by discarding
the condition 𝛾 ≪ 𝑎0 as determining the applicability of the radiation-free description in the gen-
eral case. Moreover, the only condition necessary for the validity of the resulting solution in a plane
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wave is the condition 𝑎0 ≫ 1, which also differs significantly from the applicability condition of,
for example, the Zeldovich solution (2.80), which is written as 𝑎0 ≫ 𝑎∗0, where 𝑎∗0 ≫ 1 (at least for
optical frequencies). Thus, apparently, the domain of applicability of the developed theory turns
out to be broader than originally assumed and the question of the boundaries of this domain is
still open. Some definiteness is given by the fact that the developed theory is nothing more than
the expansion of the motion equations, written with respect to its velocity, in a series around some
assumption v0. Since the magnitude of the electron velocity vector is strictly less than unity, the
expansion around an arbitrary initial assumption v(r, 𝑡) converges. It turns out that in the strongly
radiation-dominated regime, when the radiation-free direction v0 is chosen as the zeroth approxi-
mation, the series expansion converges most quickly, so in some problems expansion only to linear
or quadratic terms is sufficient. We also note that in recent papers [164, 174] attempts were made to
unify these conditions, but their reliability has not yet been verified on a large number of EM field
configurations, in particular, those considered in this work.

2.6 Summary
To sumup, it was shown that in the strongly radiation-dominated regime, the velocity rather than its
derivative of charged particles is determined by local EM field (2.20). This means that the electron
trajectory can be found from the first order equation (2.19). We call this velocity direction asymptotic,
since it coincides with the asymptotic (𝑡 → ∞) electron velocity in the constant field approximation.
The reason for reducing the order of the equation is that the energy of electrons in the regime of
extreme radiation losses is small (𝛾 ≪ 𝑎0), i.e. the electrons turn out to be «light» and are quickly
turned by a strong field towards the asymptotic direction in a time much shorter than the character-
istic time of the change of the EM field itself. The velocity field v0(r, 𝑡) corresponds to the absence
of the transverse component of the Lorentz force and, accordingly, the force of radiative friction,
therefore v0 is also called the radiation-free direction [175].

In several configurations of the electromagnetic field, numerical solutions of reduced and non-
reduced electron motion equations with account of radiation reaction are found. Comparison of
these solutions shows that the reduced equations can be used for a qualitative description of electron
trajectories at 𝑎0 larger or of the order of a thousand for optical wavelengths. In this regard, the
constructed description is also asymptotic in terms of field strength, i.e. 𝑎0 →∞.

It was also shown that the developed asymptotic theory is a useful analytical tool. For example,
the asymptotic theory predicts periodic electron trajectories in a wide class of standing electromag-
netic fields (including the case of counter-propagating sharply focused laser pulses, see section 2.3),
which is fundamentally different from the results obtained in the ponderomotive approximation.
This result is in good agreement with the work [161], which demonstrates a decrease in the pon-
deromotive force in the radiation-dominated regime. In addition, it was shown that in a certain
configuration of a laser pulse in the radiation-dominated regime, electrons are not scattered, but
trapped and carried away with the group velocity of the pulse. This result can possibly explain the
radiative trapping of particles observed in numerical simulations in various configurations [62–67].
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Thus, the ponderomotive approximation becomes inapplicable in the radiation-dominated regime
and should be replaced by an asymptotic description. The latter also means that the velocities of all
electrons in a small neighborhood practically coincide; therefore, their collective dynamics can be
described in terms of the hydrodynamic approach. Such a hydrodynamic approach will be applied
in the next chapter to describe the development of a QED cascade in the field of a plane wave.

Finally, high-order corrections to the asymptotic theory were found, with the help of which it
is possible to describe dynamics of particles in the strongly radiation-dominated regime more ac-
curately. It is noteworthy that the developed method makes it possible to obtain qualitatively new
results in comparison with the «zeroth order» asymptotic theory. Application of this approach has
been demonstrated in various electromagnetic field configurations. In particular, the solution of the
generalized Zeldovich problem of the electron dynamics in rotating parallel electric and magnetic
fields was reproduced [97, 165], a decrease in the average rate of electron acceleration in a model
plasma accelerator was demonstrated [54, 61], and a little-known feature of the electron motion in
strong plane waves was described, namely unlimited longitudinal acceleration [168–173].

Contributions of the author

The results obtained in this chapter are published in Refs. [176, 177]. In the publication [176]
A. S. and E. N. worked together on the development of the asymptotic theory and obtaining general
properties of the asymptotic trajectories. In publication [176] A. S. carried out the majority of the
work.



Chapter 3

Interaction of extremely intensive laser
radiation with a solid target

3.1 Introduction
In the previous chapter, it was shown that radiation reaction can significantly affect the particle
dynamics in strong EM fields. In addition to radiation reaction, there is another important phenom-
ena that can have a significant effect on the behavior of matter in extreme EM fields— development
of QED cascades [46, 93–97, 105, 113–115, 129, 178]. They arise as a result of the emission of hard
photons by ultrarelativistic particles, and the subsequent decay of the former into electron-positron
pairs as a result of the nonlinear Breit-Wheeler process or the nonlinear trident process. Secondary
particles become also involved in the emission of new generations of photons and photoproduction
of pairs, which leads to an avalanche-like increase in the total number of particles. One of the main
reasons why the development of QED cascades has not yet been experimentally demonstrated is the
fact that this is a threshold phenomenon in terms of the intensity of the EM field. This, in turn, is
due to the exponentially small probability of the Breit-Wheeler process and the trident process in
the parameter range 𝜒 ≲ 1, where 𝜒 is the photon QED parameter defined as follows

𝜒 = 𝜀
𝑎S√

(E + v × B)2 − (vE)2, (3.1)

where 𝜀 and v ≡ k/𝑘 are the energy normalized to𝑚𝑐2 and direction of the photon propagation, re-
spectively, k is the wave vector of a photon. To estimate the parameters of laser radiation required to
observe a QED cascade, it is usually assumed that the characteristic energy of an electron in the laser
field is equal in order of magnitude to 𝑎0. Thus, the condition 𝜒 > 1 required for the development
of a QED cascade can be written in terms of the laser parameters as 𝐼[1023W/cm2]𝜆[µm] ≳ 5. This
estimate is quite optimistic in relation to the new-generation laser systems mentioned in the Intro-
duction, which operate in the optical range 𝜆 ≈ 1 µm and which are expected to have intensities of
the order of 𝐼 ∼ 1024W/cm2. However, due to the threshold nature of the QED cascade, the rough
estimate presented above is impractical, while more accurate estimates depend significantly on the
interaction configuration. In this regard, an active search is currently underway for such optimal
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configurations at which the intensity threshold for the development of a QED cascade would be
minimal [46, 68, 97–104, 179–193]. These configurations can be mainly divided into two groups:
in the first one, the interaction of a laser beam with a preliminarily accelerated seed is considered,
and in the second one, the use of a multi-beam laser configuration and interaction with an initially
stationary seed is suggested. While both these configurations maximize QED parameter 𝜒, there
is a fundamental difference between these two approaches. In the first case, the cascade energy
is limited by the initial energy of the seed, and such a cascade is called a shower or an S-type cas-
cade. Air showers caused by cosmic rays are an example of such cascades [194]. In the second case,
the cascade draws energy from the electromagnetic field, and is called self-sustaining, avalanche
or an A-type cascade. It is important to note, that a single plane wave configuration is considered
to be suboptimal for observing self-sustained QED cascade [96, 144, 186, 195], since the QED pa-
rameter 𝜒 is conserved during particle motion in a plane wave and is reduced at each emission of
gamma photon, so each new generation of particles are less likely to produce the next generation,
i.e. cascade is unable to sustain itself. When several and/or sharply focused laser beams are used,
the configuration of the EM field differs significantly from the field of a single plane wave. This
is also the case, e.g. for the field formed during the interaction of laser radiation with plasmas, in
particular with solid targets. The influence of QED effects on the interaction of a laser with a solid
target is mainly studied in the «hole boring» regime [23, 196], when the target thickness is much
greater than the laser skin-depth. In particular, in numerical simulations, the formation of electron-
positron plasma «cushions» is observed, which, however, do not stop the ion acceleration [57, 95,
97, 102, 197]. This regime of interaction is generally characterized by a significant reflection of the
incident laser radiation, therefore, the development of a QED cascade in this configuration is in
many respects analogous to the configuration with two counter-propagating pulses. If the target
thickness does not exceed the depth of the skin layer, then the «light sail» regime is realized [20, 23,
27]. In this case, the foil is continuously accelerated as a whole, and laser reflection is insignificant.
Although the light sail regime has attracted considerable interest in recent years as one of the most
efficient schemes for laser ion acceleration [24, 27], it has been rather poorly studied in the region
of extremely high laser radiation intensities, when QED effects play a key role.

Because of unstable nature of QED cascade and complex nonlinear interaction between the pro-
duced electron-positron plasma and EM field, analytical models describing the process usually con-
sider significantly simplified EM configurations [166, 180, 187, 198], and its experimental observa-
tion is still impossible. Therefore, the most common tool for studying QED cascades is numerical
simulation, among themethods of which themost fruitful is the particle-in-cells (PIC) method [199]
with inclusion of stochastic QED processes using the Monte-Carlo method (see Ref. [200] and links
therein). PIC modeling serves as the starting point for most of the current research in this area,
and provides valuable information about the nature of QED cascade phenomenon. However, this
method is extremely demanding on computational resources, so obtaining any phenomenological
laws or scalings takes a lot of time, because this usually requires scanning over a multidimensional
parameter space. Nevertheless, such findings are of great importance for designing and guiding
experiments on new generation laser facilities.
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This chapter is devoted to the description of a new discovered effect — propagation of a vacuum
breakdownwave in the form of a self-sustainingQED cascade in an extremely intense planewave, i.e.
in a configuration usually considered unsuitable for the development of a QED cascade. Notably the
wave field strength required to observe this effect turns out to be significantly lower than the Sauter-
Schwinger threshold for pair production from vacuum [1, 2], and slightly higher than the threshold
for the development of a self-sustaining cascade in a standing wave configuration [98]. The effect is
observed in the QED-PIC simulation of the interaction of an extremely intensive laser pulse with a
foil in the light sail regime. As a result of this interaction, the EM field configuration changes, which
leads to the possibility of the development of a self-sustaining QED cascade. Opposite to the case
of the interaction with a thick target, in the presented case, reflection is practically absent and the
development of a QED cascade is possible due to the fact that themagnetic field inside the produced
electron-positron plasma is greater than the electric one. Development of QED cascade ultimately
leads to formation of a superdense electron-positron plasma «cushion» between the laser radiation
and the moving foil. The front of this cushion propagates towards the radiation, which qualita-
tively resembles a breakdown wave propagating towards the microwave radiation source during a
gas discharge [107, 108]. Moreover the produced electron-positron plasma efficiently absorbs laser
radiation and separates it from the foil, thereby interrupting the ion acceleration. However, the
QED cascade continues to develop even after the foil is separated from the laser field, which makes
it possible to classify such a cascade as self-sustaining.

3.2 Effect of QED processes on interaction of laser radiation
with foil

3.2.1 QED-PIC simulations
The interaction of laser radiationwith a target is simulated using theQUILL code [201], which imple-
ments the particle-in-cell method and the Monte-Carlo method1 for simulating probabilistic QED
processes: nonlinear Compton scattering and the nonlinear Breit-Wheeler process. In simulations
a circularly polarized laser pulse with wavelength 𝜆 = 2𝜋𝑐/𝜔𝐿 = 1 µm, dimensionless amplitude
𝑎0 = 𝑒𝐸/𝑚𝑒𝑐𝜔𝐿 propagated along the 𝑥 axis and had the following field initial distribution

E(𝑥, 𝑦, 𝑧, 𝑡 = 0) = 𝑎0 cos2 (
𝜋
2
𝑥4
𝜎4𝑥
) cos2 (𝜋2

𝑦4
𝜎4𝑦
) cos2 (𝜋2

𝑧4
𝜎4𝑧
) × (0, cos (𝑥𝜔L𝑐 ) , sin (𝑥𝜔L𝑐 )) , (3.2)

where the coordinates 𝑥, 𝑦, 𝑧 are measured from the center of the laser pulse. The transverse dimen-
sions of the pulse were 2𝜎𝑦 = 2𝜎𝑧 = 10.4 µm and pulse duration was 45 fs (2𝜎𝑥 = 13.4 µm). Since
the laser pulse is quite wide, the field configuration is close to a plane wave. The target with thick-
ness 𝑑 and initial electron density 𝑛𝑒 had transverse dimensions slightly larger than the transverse
dimensions of the laser pulse. The simulation box with the size 20𝜆×30𝜆×30𝜆was divided into the
2000×300×300 grid (along the 𝑥, 𝑦 and 𝑧 axes, respectively). A series of numerical simulations was

1See Ref. [167] for description of the event generator used in the code.
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Figure 3.1: Density distribution of the electrons (green), ions (blue), positrons (red) and EM en-
ergy (black) along the 𝑥 axis at different time instances in QED-PIC simulation with parameters
𝑛𝑒 = 5.9 × 1023 cm−3, 𝑑 = 1 µm, 𝑎0 = 2500. The values are normalized to its initial maxima. The

vertical axis scale is linear in range [−1, 1] and logarithmic outside this range.

carried out with different parameters 𝑎0, 𝑛𝑒 and 𝑑, satisfying the relation 𝑎0 = 𝜂𝑛𝑒𝑑𝜆𝑟𝑒 , which is nec-
essary for ion acceleration in the «light sail» regime (see for example [23]). Here, 𝑟𝑒 = 𝑒2/𝑚𝑒𝑐2 is the
classical electron radius, 𝜂 is a numerical coefficient of the order of unity (in all simulations 𝜂 = 1.5).
Since the characteristic values of 𝑎0 in our simulations are about 103, the characteristic value of the
target electron density is 𝑛𝑒 ∼ 1023 cm−3, which corresponds to the characteristic density of solid
material.

The temporal evolution of the particle density and electromagnetic energy is shown in Fig. 3.1 for
the simulation with parameters: 𝑛𝑒 = 5.9 × 1023 cm−3 ≈ 530 𝑛cr (𝑛cr = 𝑚𝑒𝜔2𝐿/4𝜋𝑒2 ≈ 1021 cm−3 is
the critical density), 𝑑 = 1 µm, 𝑎0 = 2500. It follows from the analysis of the results of the numerical
simulation that during an interval 𝑐𝑡/𝜆 ≲ 8 the target is compressed into a thin layer and accelerated
in the longitudinal direction to a speed close to the speed of light, i.e. there is a typical acceleration
of ions in the «light sail» regime (see blue line in Fig. 3.2). The number of electron-positron pairs
formed during this time is insignificant. During the time interval 8 ≲ 𝑐𝑡/𝜆 ≲ 14, an inhomogeneous
electron-positron plasma starts to form, which partially absorbs radiation, which leads to a decrease
in the efficiency of ion acceleration (see Fig. 3.2). During the time interval 14 ≲ 𝑐𝑡/𝜆 ≲ 28, the QED
cascade develops in a self-sustaining regime, i.e. without the participation of initial seed particles.
In this case, the leading (with respect to the laser pulse) front of the electron-positron plasmamoves
with a speed 𝑣fr less than the speed of light, while the trailing front moves ballistically together with
the target at almost the speed of light.

Two series of numerical simulations were carried out: first with different values of 𝑎0, equal to
1500, 2000, 2500, 3000, and a target with a fixed thickness of 𝑑 = 1 µm, and second with different
values of 𝑑, equal to 0.5 µm, 1 µm, and 2 µm and with a fixed value of 𝑎0 = 2500. It can be seen
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Figure 3.2: Distribution of the energy between EM field and particles as a function of time in
QED-PIC simulation. The simulation parameters are the same as in Fig. 3.1. The right figure is a

zoomed-in version of the left figure.

from Fig. 3.3 that the cascade front velocity weakly depends on the time and target thickness, while
it strongly depends on the intensity of the laser pulse, decreasing (in the laboratory reference frame)
with its growth. It is also worth noting that at the late stages of the interaction, the density of the
electron-positron plasma is several times higher than the value of the relativistic critical concentra-
tion 𝑎0𝑛cr. In all the calculations performed, the cascade develops efficiently, however, at 𝑎0 = 1500,
the plasma density reaches 0.6𝑎0𝑛cr by the end of the simulation (𝑡 = 30𝜆/𝑐). Therefore, we assume
that the value 𝑎0 = 1500 is a rough threshold value for the development of a self-sustaining cascade
in a plane wave.

In order to determine the role of the ions of the initial target in the formation of a QED cascade,
we simulated the interaction of a laser pulse with a supercritical electron-positron target. The geom-
etry of the target and the pulse is the same as described above. The target thickness was 𝑑 = 1 µm,
the electron density was 𝑛𝑒 = 0.7𝑎0𝑛cr, 𝑎0 = 2500. An analysis of the simulation results shows
that the self-sustaining QED cascade develops in the same way as in the case of a seed in form of an
electron-ion target. Moreover, the speed of the front of the cascade also coincides. From this, we can
conclude that, with a certain choice of the seed and a sufficiently high intensity of the laser pulse,
the development of an A-type QED cascade in a field with a configuration close to a plane wave is
possible.
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Figure 3.3: Positron distribution in 𝑥 − 𝑡 plane (colormap, brighter color correspond to larger
density). White dashed lines correspond to linear fit of the location of the distribution leading front
𝑥 = 𝑥0 + 𝑣fr(𝑡 − 𝑡𝑓), where 𝑡𝑓 is an approximate time of the cushion formation. 𝑐𝑡𝑓/𝜆 ≈ 17.5 for

𝑎0 = 2000, 𝑐𝑡𝑓/𝜆 ≈ 15.0 for 𝑎0 = 2500, 𝑐𝑡𝑓/𝜆 ≈ 12.5 for 𝑎0 = 3000.

3.2.2 Key features and mechanism of QED cascade development
Let us investigate in more detail the distribution of the electromagnetic field and the dynamics of
particles inside the electron-positron plasma in order to determine the mechanism of the cascade
development. It follows from Fig. 3.4 (a) that the field structure is close to a circularly polarized
wave with perpendicular electric and magnetic components, E ⟂ B, and the field decays in plasma
on a scale of several wavelengths. The key feature of the field configuration is predominance of the
magnetic field over the electric one,𝐵 > 𝐸. In such a field, electrons and positrons donot gain energy
(see the 𝛾/𝑎0 line in Fig. 3.4 (b)), so the development of the cascade inside the plasma is suppressed.
Moreover, in such a field the particle trajectories are helical (see Fig. 3.5 (a)). This is easily explained
if we transform to a reference framemoving with the drift velocity 𝑣drift = [E × B]𝑥/𝐵2, in which the
electric field is parallel to the magnetic field and less than it. In such a field, the particles rotate in
a plane perpendicular to the magnetic field and may have a velocity component along the magnetic
field. In a laboratory reference frame, electrons and positrons on average move along the 𝑥 axis
with the drift velocity 𝑣drift. Since the cascade front always consists of new particles which are being
constantly produced, it can propagate significantly slower than the particles comprising the plasma
bulk. At the same time, due to the rotation of the particles, their instantaneous velocity along the 𝑥
axis can occasionally be less than the front velocity (see Fig. 3.4 (b) and Fig. 3.5 (b)). At such time
instants, particles can emit gamma quanta, which will reach the vacuum region (a large number of
gamma quanta propagating slower than the front of the cascade and even directly towards the laser
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Figure 3.4: Results of QED-PIC simulations at 𝑡 = 20𝜆/𝑐. (а) Distribution of the magnitude of the
electric field 𝐸, magnetic field 𝐵, angle 𝜑 between the latter and positron density 𝑁𝑝. Distribution
of (b) positrons and (с) gamma-quanta in a phasespace 𝑥 − 𝑣𝑥. White dash-dotted line correspond
to average longitudinal velocity 𝑣𝑥, white dotted line — to average Lorentz-factor 𝛾. White dashed

line correspond to the cascade front velocity 𝑣fr, equal to 0.27 in this simulation.

radiation is observed in numerical simulation, which is shown in Fig. 3.4 (c)) and formnew electron-
positron pairs in a strong laser field. These pairs are then accelerated by a laser field back into the
plasma, where the magnetic field is greater than the electric field, and the process is repeated. Thus,
the self-sustaining development of the cascade occurs at the interface between the vacuum and the
electron-positron plasma. It is important to emphasize the fundamental difference between the
vacuum and the plasma regions: in the former, electromagnetic energy is transferred to the cascade
particles, while in the latter, particles are not accelerated, but they «release» the gained energy in the
form of gamma radiation. Some of this radiation returns back to the vacuum region and provides
the positive feedback necessary to maintain the cascade development. The mechanism for the QED
cascade self-sustenance in a plane wave is schematically shown in Fig. 3.6.
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Figure 3.5: Dynamics of three electrons located inside the dense electron-positron plasma. (a)
Electron trajectories in the 𝑥𝑦 plane in a reference frame moving with velocity 0.7𝑐 along the 𝑥 axis
with respect to the laboratory reference frame. Particle location at later time is marked with darker
color; initial location is marked with a circle. (b) Longitudinal velocity in a laboratory reference
frame as a function of time. Black dashed line correspond to the cascade front velocity 𝑣fr = 0.27.

Figure 3.6: Schemeof theQEDcascade self-sustenance. (a), (f), (g) Emission of an active (see below)
gamma-quantum in the plasma region, (b) decay of an active gamma-quantum into an electron-
positron pair in the vacuum region, (c) acceleration of the electron and the positron in the vacuum
region, (d) emission of a passive gamma-quantum in the vacuum region, (e) positron motion along

the helical trajectory in the plasma region.
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3.3 Analytical model of self-sustaining QED cascade in a
plane wave

Let us proceed to the analytical description of the processes considered above. Similarly to the
Refs. [167, 180], we start from the kinetic equations for the electrons, the positrons, and the gamma
quanta, assuming that the QED cascade is at the self-sustaining stage, so the seed particles, for exam-
ple, the electrons and the ions of the initial target, do not affect its development. Kinetic equations
together with Maxwell’s equations (in the form of Poynting’s theorem) are written in the following
form

𝜕𝑓𝑒±
𝜕𝑡 + v𝑒±∇𝑓𝑒± ± (E + [v𝑒± × B]) 𝜕𝑓𝑒±𝜕p =∫𝑓𝛾(p′)𝑤pair(p′,p)dp′+

+∫𝑓𝑒±(p′)𝑤rad(p′,p)dp′−

−∫𝑓𝑒±(p)𝑤rad(p,p′)dp′,

(3.3)

𝜕𝑓𝛾
𝜕𝑡 + v𝛾∇𝑓𝛾 =∫𝑓𝑒±(p′)𝑤rad(p′,p′ − p)dp′−

+∫𝑓𝛾(p)𝑤pair(p,p′)dp′,

(3.4)

𝜕
𝜕𝑡 (

𝐸2 + 𝐵2
2 ) + ∇[E × B] = ∫𝑓𝑒−(p)(v𝑒−E)dp− (3.5)

−∫𝑓𝑒+(p)(v𝑒+E)dp, (3.6)

where 𝑓𝑒±,𝛾(𝑡, r,p) are the distribution functions of the electrons, the positrons and the gamma
quanta, respectively, v is the particle velocity equal to p/√1 + 𝑝2 for electrons and positrons and
equal to p/𝑝 for gamma quanta, 𝑤rad(p′,p)dp′ is the probability of emission of a gamma quantum
withmomentump′ − p by an electron or a positronwithmomentump′ per time unit,𝑤pair(p′,p)dp′
is a probability of decay of a gamma quantumwith momentum p′ into an electron with momentum
p and a positron with momentum p′ − p per time unit. Here we also use the relativistic normaliza-
tion, in which the electric and magnetic fields are normalized to𝑚𝑒𝑐𝜔L/𝑒, the particle density — to
the critical density 𝑛cr = 𝑚𝑒𝜔2L/4𝜋𝑒2, energy and momentum— to𝑚𝑒𝑐2 and𝑚𝑒𝑐 respectively, coor-
dinates and time — to 𝑐/𝜔L and 1/𝜔L respectively.

3.3.1 General model assumptions
Let us apply a number of simplifications to the equations written above. First, since the interaction
with a plane EMwave is studied, we assume the problem to be spatially one-dimensional. Moreover,
we will consider the interaction with a circularly polarized wave and assume that the problem is
symmetric with respect to rotation around the wave propagation axis (hereinafter, the 𝑥 axis). These
assumptions lead to the fact that the particle distribution functions become functions of only three
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variables (excluding time) instead of six, i.e. 𝑓(𝑡; r,p) = 𝑓(𝑡; 𝑥, 𝑝, 𝜃)/2𝜋, where 𝑝 is the particle
momentum, 𝜃 is the angle between the particle momentum and the 𝑥-axis.

Second, we suppose that the distribution functions are locally monoenergetic, i.e.
𝑓 ∝ 𝛿(𝑝 − 𝑝(𝑥))/𝑝2, where 𝑝(𝑥) is the average momentum of particles located in a small vicin-
ity of 𝑥. Let us denote the average energy of gamma quanta as 𝜀𝛾, and the average energy of
electron-positron pairs as 𝜀𝑝, assuming that they are ultrarelativistic, therefore 𝜀2𝑝 = 1 + 𝑝2𝑝 ≈ 𝑝2𝑝.
Despite the fact that the monoenergetic approximation is quite a strong assumption, we argue
that the mechanism of QED cascade development described above is fundamentally independent
of any specific features of the particle spectrum. Therefore, taking into account the evolution of
energy spectra in our model will cause only quantitative rather than qualitative changes, while
greatly complicating the equations. For gamma quanta, we also use a two-stream approximation,
separating them into two groups: gamma quanta of the first group are emitted in the vacuum region
and propagate mainly along the direction of the laser pulse propagation and thus do not contribute
to the development of the cascade (we will denote them as passive gamma quanta), and gamma
quanta of the second group are emitted in the plasma region in different directions and provide the
positive feedback necessary for the development of the cascade (we designate them as active gamma
quanta). As can be seen from Fig. 3.7, the energy spectrum of all gamma quanta is quite wide,
but if passive gamma quanta are excluded, then the spectrum width decreases significantly, which
justifies our assumption. Since passive gamma quanta affect the development of the cascade only
by taking away a portion of the total energy, their spatial distribution is irrelevant for the cascade
development.
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Figure 3.7: The average energy 𝜀𝛾 of gamma quanta as a function of the coordinate 𝑥, calculated
for all particles (red line) and only for particles with a velocity along the 𝑥 axis not exceeding 0.5,
which, according to our assumptions, includes only active gamma-quanta (green line). The filled
colored areas represent the standard deviation of the energy. The black line corresponds to the
electron-positron plasma density distribution. Data taken from PIC simulation results at 𝑐𝑡/𝜆 = 18.
Simulation parameters are discussed in sec. 3.4.2. The initial conditions are the same as in Fig. 3.14.
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In order to omit the integration over the energies and the azimuth angle 𝜑 (in the 𝑦𝑧 plane), we
redefine the distribution functions 𝑓 as follows

𝑓(𝑥, 𝜀, 𝜃, 𝜑) →
∞

∫
0

2𝜋

∫
0

𝑓(𝑥, 𝜀, 𝜃, 𝜑)2𝜋𝜀2d𝜑d𝜀 = 𝑛(𝑥)Φ(𝜃), (3.7)

where 𝑛(𝑥) is the particle density, Φ(𝜃) is the particle momentum distribution function over the
angle 𝜃, and

+∞

∫
−∞

𝑛(𝑥)d𝑥 = 𝑁, (3.8)

𝜋

∫
0

Φ(𝜃) sin 𝜃d𝜃 = 1, (3.9)

where 𝑁 is the total number of particles.
Assumption of monoenergeticity corresponds to the transition from the kinetic to the hydrody-

namic description, i.e. writing equations for themoments of the distribution functions. To write the
hydrodynamic equations, we first introduce several additional quantities

𝑊pair(𝜒𝛾, 𝜀𝛾) = ∫𝑤pair(p,p′)dp′, (3.10)

𝑊rad(𝜒𝑝, 𝜀𝑝) = ∫𝑤rad(p,p′)dp′, (3.11)

𝐼rad(𝜒𝑝) = ∫𝑤rad(p,p′)(𝜀𝑝 − 𝜀′𝑝)dp′, (3.12)

where 𝑊pair,𝑊rad, 𝐼rad are total probability of photoproduction of electron-positron pairs and total
probability and radiation power of gamma quanta, respectively [33]. As mentioned above, these
quantities depend on the Lorentz-invariant QED parameter 𝜒

𝜒 = 𝜀
𝑎S√

(E + v × B)2 − (v ⋅ E)2, (3.13)

where 𝜀 is the particle energy, 𝑎S = 𝑒𝐸S/𝑚𝑒𝑐𝜔L = 𝑚𝑒𝑐2/ℏ𝜔L and 𝐸S = 𝑚2
𝑒𝑐3/ℏ𝑒 is the Sauter-

Schwinger field [32]. Generally, the hydrodynamic equations have a form of a continuity equation

𝜕𝐷𝛼
𝜕𝑡 + 𝜕𝐹𝛼

𝜕𝑥 = ∑
𝛽
𝑆[𝛼, 𝛽], (3.14)

where 𝐷𝛼 and 𝐹𝛼 are the density and the flux of some physical quantity 𝛼, 𝑆[𝛼, 𝛽] is the source
leading to a change in the quantity 𝛼 as a result of the process 𝛽. Note that despite the fact that
we have determined the particle energy distribution function, to calculate the sources 𝑆[𝛼, 𝛽] it is
also necessary to know the particle angular distribution, which is discussed below. Based on the
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qualitative explanation of the mechanism for the development and sustenance of the QED cascade,
described in section 3.2.2, we assume that the following system of equations describes this process
quite fully

𝜕
𝜕𝑡𝑛𝑝 + 𝜕

𝜕𝑥 (𝑣𝑥𝑛𝑝) = 𝑆[𝑛, pp], (3.15)
𝜕
𝜕𝑡 (𝜀𝑝𝑛𝑝) +

𝜕
𝜕𝑥 (𝑣𝑥𝜀𝑝𝑛𝑝) = 𝑆[𝜀, pp] + 𝑆[𝜀, acc]𝜓vac−

− 𝑆[𝜀, rada]𝜓pl − 𝑆[𝜀, radp]𝜓vac,
(3.16)

𝜕
𝜕𝑡𝑛𝛾 + 𝜕

𝜕𝑥 (𝑣𝛾∥𝑛𝛾) = −𝑆[𝑛, pp] + 2𝑆[𝑛, rada]𝜓pl, (3.17)
𝜕
𝜕𝑡 (𝑣𝛾∥𝑛𝛾) +

𝜕
𝜕𝑥 (𝑣

2
𝛾∥𝑛𝛾) = −𝑆[𝑣, pp] + 2𝑆[𝑣, rada]𝜓pl, (3.18)

𝜕
𝜕𝑡 (𝜀𝛾𝑛𝛾) +

𝜕
𝜕𝑥 (𝑣𝛾∥𝜀𝛾𝑛𝛾) = −𝑆[𝜀, pp] + 2𝑆[𝜀, rada]𝜓pl, (3.19)

𝜕
𝜕𝑡 (

𝐸2 + 𝐵2
2 ) + 𝜕

𝜕𝑥 [E × B]𝑥 = −2𝑆[𝜀, acc]𝜓vac ≡ −jE, (3.20)

𝜕Σ𝛾
𝜕𝑡 = 2

∞

∫
0

𝑆[𝜀, radp]𝜓vac𝑑𝑥, (3.21)

where 𝑛𝑝 = 𝑛𝑒+ = 𝑛𝑒− is half the density of the electron-positron plasma under the assumption of
its quasi-neutrality, 𝑣𝑥 is the average longitudinal velocity of pairs, calculated in subsection 3.3.2,
𝑣𝛾∥ and 𝑣2𝛾∥ are mean and mean square of the longitudinal velocity of gamma quanta. The latter are
calculated from the angular distribution as follows

𝑣𝛾∥ = ∫
𝜋

0
Φ(𝜃) cos 𝜃 sin 𝜃𝑑𝜃, (3.22)

𝑣2𝛾∥ = ∫
𝜋

0
Φ(𝜃) cos2 𝜃 sin 𝜃𝑑𝜃. (3.23)

The equation (3.20) is basically the Poynting theorem, which describes transfer of the electromag-
netic energy density. The sources 𝑆[𝑛, 𝛽], 𝑆[𝑣, 𝛽], and 𝑆[𝜀, 𝛽] correspond to changes in density, lon-
gitudinal velocity, and energy of the particles, respectively; the sources 𝑆[𝛼, pp], 𝑆[𝛼, acc], 𝑆[𝛼, rada]
and 𝑆[𝛼, radp] correspond to processes of pair photoproduction, acceleration of pairs in a planewave,
emission of active gamma quanta by pairs in the plasma region, and emission of passive gamma
quanta by pairs in the vacuum region, respectively (marked respectively by letters (b), (c), (d) and
(f) in Fig. 3.6), Σ𝛾 is the total energy of passive gamma quanta. The factor 𝜓vac(𝜓pl) is considered to
be equal to 1 in the vacuum (plasma) region and 0 in the plasma (vacuum) region. The calculation
of these factors will be given below. Note that 𝜓vac + 𝜓pl = 1. For convenience, we will omit these
factors when the region under consideration is obvious.
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3.3.2 Electromagnetic field configuration
According to the results of the 3D QED-PIC simulation, the electric and magnetic fields in the
plasma region remain almost perpendicular to each other, and the magnitude of the magnetic field
everywhere exceeds the electric one: 𝐵 > 𝐸. The spatial distribution of the EM field has a charac-
teristic scale 𝜆 both in the vacuum and plasma regions. In such a field, charged particles drift in the
direction perpendicular to both the electric and magnetic fields, i.e. along the 𝑥 axis with the speed

𝑣𝑥 ≈ 𝐸/𝐵. (3.24)

In the vacuum region, the EM field corresponds to the field of an incident plane wave. In this case,
the electric and magnetic fields are mutually perpendicular and equal in magnitude. If the energy
𝜀 of a particle entering the vacuum region is less than the dimensionless field amplitude 𝐸, then,
according to the asymptotic theory constructed in the previous chapter, on a timescalemuch shorter
than the wave period, such a particle will be accelerated in the longitudinal direction almost to the
speed of light. Thus, we can assume that the relation 𝑣𝑥 ≈ 1 = 𝐸/𝐵 is satisfied in the vacuum region,
i.e. the equation (3.24) is actually valid both in the plasma and the vacuum regions.

In this reasoning, we do not take into account the wave reflected from the 𝑒−𝑒+ plasma boundary
for several reasons. First, in the 3D QED-PIC simulation, there is no significant reflection during
the development of the cascade at the stage of its self-sustenance. Second, the reflection that occurs
at the initial stage of laser interaction with a thin solid target, according to the theory of relativity, is
rapidly depleted as particles accelerate in the direction of laser pulse propagation and, thus, becomes
insignificant for the later stages of cascade development. However, our model does not describe an
electron-ion plasma, so we study the interaction of a laser pulse with a seed in the form of a counter-
propagating gamma bunch (see Sec. 3.4.2), where reflection does not occur even at the initial stage
of the interaction. In addition, reflection would slightly change the process of photoproduction
of pairs due to the fact that gamma quanta counter-propagating the laser pulse have the highest
probability of decay. So the fields of the co-propagating reflected wave do not increase the value of
theQED-parameter𝜒 of gamma quanta responsible for the development of QED cascade. Finally, in
the vacuum region, where the laser field is strongest, there are mainly ultrarelativistic electrons and
positrons produced from photons with the highest energy. Scattering of a relativistically strong laser
field (𝑎0 ≫ 1) by ultrarelativistic electrons and positrons (𝛾 ≫ 1) occurs both in the nonlinear and
quantum regimes. Because of this, and also because the positions of the particles are uncorrelated,
the resulting scattered radiation is incoherent and its frequency is strongly upshifted. Such radiation
is best described by individual photons, as implemented in the QUILL code. Some of these photons
propagating towards the laser pulse can indeed be considered as a reflection. Although such photons
can increase the overall yield of electron-positron pairs and gamma quanta through higher-order
QED processes, they are significantly less probable than non-linear Compton scattering and the
Breit-Wheeler process, and therefore are not taken into account neither in QED-PIC simulations
nor in our model. Note, however, that our model takes into account energy losses due to incoherent
gamma radiation in both the vacuum and plasma regions.
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3.3.3 Distribution function of active gamma-quanta
As described in section 3.2.2, active gamma quanta are emitted by pairs as they move along helical
trajectories in the plasma region. Accordingly, their angular distribution is wide. We also assume
that this distribution is smooth and can be described by a single parameter. This parameter is the
velocity 𝑣 of the instantaneous reference frame 𝐾′, in which the angular distribution of photons
located in a small vicinity of the coordinate 𝑥 is practically isotropic, i.e.

Φ′(𝜃′) ≡ d𝑁′

d cos 𝜃′ =
1
2, (3.25)

where d𝑁′ = d𝑁 is the number of particles with longitudinal velocity in the range [cos 𝜃′,
cos 𝜃′ + d cos 𝜃′] and

cos 𝜃′ = cos 𝜃 − 𝑣
1 − 𝑣 cos 𝜃 . (3.26)

In the laboratory reference system, such a distribution looks like this [158]

Φ(𝜃, 𝑣) = d𝑁
d cos 𝜃 = d𝑁′

d cos 𝜃′
d cos 𝜃′
d cos 𝜃 = 1 − 𝑣2

2 (1 − 𝑣 cos 𝜃)2
. (3.27)

Thus, the distribution function of active gamma quanta has the following form

𝑓𝛾(𝑡; 𝑥, 𝜃) = Φ (𝜃, 𝑣𝛾∥(𝑥, 𝑡)) 𝑛𝛾(𝑥, 𝑡). (3.28)

The mean value 𝑣𝛾∥ and the mean square value 𝑣2𝛾∥ of longitudinal velocity are calculated as follows

𝑣𝛾∥ = ∫
𝜋

0
Φ(𝜃, 𝑣) cos 𝜃 sin 𝜃d𝜃 = 1

𝑣𝛾∥
−
1 − 𝑣2𝛾∥
𝑣2𝛾∥

atanh(𝑣𝛾∥), (3.29)

𝑣2𝛾∥ = ∫
𝜋

0
Φ(𝜃, 𝑣) cos2 𝜃 sin 𝜃d𝜃 =

2𝑣𝛾∥
𝑣𝛾∥

− 1, (3.30)

where atanh(𝑥) is the inverse function of the hyperbolic tangent. Note that, according to the Lorentz
transformations, the average velocity of gamma quanta 𝑣𝛾∥ differs slightly from the velocity 𝑣𝛾∥ of
the reference frame 𝐾′, in which their distribution is isotropic. The results of QED-PIC simulations
show that the expression (3.27) is a fairly good approximation of the angular distribution of active
gamma quanta (see Fig. 3.8 (a), (b)).

The value of the QED parameter 𝜒 for gamma quanta in crossed electric and magnetic fields,
which is true for both the vacuum and plasma regions, is calculated as follows

𝜒𝛾 =
𝜀𝛾 |𝐵 − 𝐸 cos 𝜃|

𝑎S
=
𝜀𝛾𝐸
𝑎S

1 − 𝑣𝑥 cos 𝜃
𝑣𝑥

, (3.31)

where the expression (3.24) was used.
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Figure 3.8: Verification of the approximation used to describe the angular distribution of parti-
cles. Angular distribution of (a) gamma quanta and (c) 𝑒−𝑒+ pairs located in a small vicinity of the
𝑥 coordinate (color map) and their average longitudinal velocity calculated from this distribution
(white line) according to the results of numerical QED-PIC simulation at different time instances.
(b), (d) — model angular distribution of gamma quanta and 𝑒−𝑒+ pairs, respectively, reconstructed

from the average longitudinal velocity using the expression (3.27).

Having completely determined the distribution function of gamma quanta, the sources 𝑆[𝛼, pp]
corresponding to the process of pair photoproduction can be calculated

𝑆[𝑛, pp] = 𝑛𝛾

𝜋

∫
0

Φ(𝜃, 𝑣𝛾∥)𝑊pair(𝜒𝛾, 𝜀𝛾) sin 𝜃d𝜃 ≡ 𝑊pair𝑛𝛾, (3.32)

𝑆[𝜀, pp] = 𝜀𝛾𝑛𝛾

𝜋

∫
0

Φ(𝜃, 𝑣𝛾∥)𝑊pair(𝜒𝛾, 𝜀𝛾) sin 𝜃d𝜃 ≡ 𝑊pair𝜀𝛾𝑛𝛾, (3.33)

𝑆[𝑣, pp] = 𝑛𝛾

𝜋

∫
0

Φ(𝜃, 𝑣𝛾∥)𝑊pair(𝜒𝛾, 𝜀𝛾) cos 𝜃 sin 𝜃d𝜃 ≡ 𝑉pair𝑛𝛾. (3.34)
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3.3.4 Dynamics of 𝒆−𝒆+ pairs in the vacuum region
Let us consider electrons and positrons produced in the vacuum region, where their number is so
small that the collective plasma effects can be neglected, and thus the EM field in this region is the
field of an incident planewave. The dynamics of a single electron in the field of an extremely intense
plane wave is considered in detail in section 2.5.2 of this work. As mentioned above, to calculate the
sources of 𝑆[𝛼, 𝛽] in the rhs of the equations (3.15)–(3.20), it is necessary to know the angular distri-
bution of particles. Despite the fact that the trajectories of electrons in a plane wave can be found
analytically, the explicit calculation of the distribution function from these trajectories is practically
infeasible, because particles are produced in this region at random times with different initial con-
ditions. However, the following reasoning allows us to calculate the sources of 𝑆[𝛼, 𝛽] based on a
different approach. First, we note once again that a relativistically strong plane wave «pushes» par-
ticles in the direction of its propagation, i.e. in our case along the 𝑥 axis. Therefore, regardless of
the initial conditions, in a short period of time, the momentum of the particle is oriented almost
along the 𝑥 axis, and in the vacuum region we can assume 𝑣𝑥 ≈ 1. Neglecting the time of such an
orientation, one can approximately calculate the flux of particles and energy simply by multiplying
the density of these quantities by the velocity 𝑣𝑥 ≈ 1. Since by definition there are no collective ef-
fects in the vacuum region and QED cascade does not develop in it, the continuity equations in this
region serve only to calculate the fluxes of particles and energy (including electromagnetic) at the
cascade front. Thus, we only need to know the total contribution to these fluxes from each particle
over the time interval from the moment of its production in the vacuum region up to the instance
of it reaching the plasma edge. Thus we calculate the sources of 𝑆[𝜀, 𝛽] as follows

𝑆[𝜀, 𝛽] = ∫
𝜋

0
𝑓𝛾(𝑥, 𝜃)𝑊pair(𝜒𝛾, 𝜀𝛾)Δ𝜀𝛽 sin 𝜃𝑑𝜃, (3.35)

whereΔ𝜀𝛽 is the total energy change in the process 𝛽 of a particle produced at a pointwith coordinate
𝑥 at time 𝑡, for the entire time it spent in the vacuum region. Defining the source 𝑆[𝜀, 𝛽] in this way is
the same as assuming that the particle acquires a change in energy Δ𝜀𝛽 immediately at the moment
of its birth, and then, without further change in energy, moves at the speed of light to the boundary
with the plasma region.

To calculate the change in particle energy whenmoving in a circularly polarized plane wave, we
use the results of section 2.5.2.

Δ𝜀acc =
2𝐸𝑝0
𝑝−,0

sin Δ𝜑2 ( 𝐸𝑝0
sin Δ𝜑2 − sin 𝜃 sin 𝜑 + 𝜑0

2 ) , (3.36)

where we do not take into account the corrections associated with radiation reaction, which take
effect at a large number of wave periods. Since particles are produced at arbitrary time instances
and we consider the distribution of particles over the azimuthal angle to be isotropic, the expres-
sion (3.36) should be averaged over 𝜑0. In this case, we get

Δ𝜀acc =
2𝐸2
𝑝−,0

sin2 Δ𝜑2 . (3.37)
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To determine the value ofΔ𝜀acc, it is necessary to calculate the time the particles spend in the vacuum
region. To do this, let us find the value of Δ𝜑 corresponding to the condition that the longitudinal
velocity of particles 𝑣𝑥 reaches a certain threshold value 𝑣th close to 1. In this case, after this threshold
value is reached, the value of Δ𝜑 and, accordingly, Δ𝜀acc practically do not change. We write this
condition as follows

𝑣th = 𝑣𝑥 =
𝑝𝑥
𝛾 = 𝛾 − 𝑝−

𝛾0 + Δ𝜀acc
≈ 𝑝𝑥,0 + Δ𝜀acc

𝛾0 + Δ𝜀acc
≈ 𝛾0 cos 𝜃 + Δ𝜀acc

𝛾0 + Δ𝜀acc
, (3.38)

where the penultimate equality used the fact that𝑝− = const = 𝛾0−𝑝𝑥,0without taking into account
radiation reaction, and in the last it was assumed that 𝛾0 ≫ 1, so 𝑝0 = √𝛾20 − 1 ≈ 𝛾0. Considering
this expression as an equation for Δ𝜀acc, we get

Δ𝜀acc = 2𝛾0𝛾2th(1 − cos 𝜃), (3.39)

where 𝛾th = 1/√1 − 𝑣2th is a sufficiently large number, so 𝑣th = 1 is assumed in the final expression.
Note that during the photoproduction of an electron-positron pair, their average energy is equal to
half the energy of the parent photon 𝜀𝛾, therefore 𝛾0 = 𝜀𝛾/2. Strictly speaking, the time the particle
spends in the vacuum region is determined by its initial position and the dynamics of the cascade
front. However, the velocity and position of the front cannot be calculated from the quantities our
model operates with. Thus, to determine the dynamics of the front, either the construction of a
separate independent model or the use of some heuristic approximation is required. Despite the
fact that in section 3.4.1 we construct a simplified analytical solution of the model equations, from
which we can determine the cascade front velocity, the use of this solution to determine the time the
particles spend in the vacuum region is impractical. Moreover, the found solution was obtained in
approximations, which in fact are rather poorly satisfied. Thus, we will assume that the change in
the energy of a particle while in the vacuum region is described quite well by the expression (3.39),
where the quantity 𝛾2th is a free parameter of our model, which we will denote as 𝜇. The determina-
tion of the value of 𝜇 in this way is based on a comparison of the solution of the equations of our
model with the results of a full-scale three-dimensional QED-PIC simulation. Moreover, it follows
from the definition that 𝜇 ∼ 1−10. So,

Δ𝜀acc = 𝜀𝛾𝜇(1 − cos 𝜃), (3.40)

and thw final expression for 𝑆[𝜀, acc] takes the following form

𝑆[𝜀, acc] = 𝜀𝛾𝜇𝑛𝛾∫
𝜋

0
Φ(𝜃, 𝑣𝛾∥)𝑊pair(𝜒𝛾, 𝜀𝛾)(1 − cos 𝜃) sin 𝜃𝑑𝜃 ≡ 𝜀𝛾𝜇𝐺rad𝑛𝛾. (3.41)

Validation of the correctness of this approximate expression is shown in Fig. 3.9 (a). Note that the
absorption of laser radiation is significant at the vacuum-plasma interface, and quite small in the
dense plasma region, as discussed in section 3.2.2. Also note that the explicit form of the expres-
sion (3.41) is in fact not really significant for our model. This is due to the fact that in the vacuum
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region the unknown quantities are practically independent of the coordinate and time. Thus, the
expression (3.41) can be completely denoted as a certain constant — free parameter of our model.
In this regard, the accuracy of the assumptions used to determine the form of the expression (3.41)
is also not essential. Indirect confirmation of this statement is also the fact that in the original pub-
lication [202], in which this model was developed, other expressions were used to calculate Δ𝜀acc,
however, the solutions of the model equations are practically identical to those presented in this the-
sis. The main reason for refining this expression is only that the free parameter 𝜇 has the meaning
of a number independent of the initial parameters of the problem, such as the amplitude of the laser
field, the energy of the photon beam, etc.
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Figure 3.9: Validation of the model approximations. (a), (b) The value of jE and the average ve-
locity of pairs 𝑣𝑥, calculated from the expressions (3.41) and (3.54), respectively (orange lines), and
taken directly from the results of QED-PIC simulations (green lines) at various points in time. (c)
Distribution of the amplitude of the electric (green lines) and magnetic (blue lines) fields and the

𝑒−𝑒+ plasma density (red lines).

Assuming that the time the particle stays in the vacuum region is sufficiently short, so that radi-
ation reaction does not significantly affect the dynamics of the particle, we assume that 𝜒 ≈ 𝜒0 =
const. Then

Δ𝜀rad = 𝐼rad(𝜒0)Δ𝜑. (3.42)
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To calculate the value of Δ𝜑, we use the expressions (3.37) and (3.40)

𝜇𝜀𝛾(1 − cos 𝜃) = 𝐸2
𝜀𝛾(1 − cos 𝜃) sin

2 Δ𝜑
2 , (3.43)

from where we get

Δ𝜑 =
2𝜀𝛾(1 − cos 𝜃)

𝐸 √𝜇. (3.44)

Considering that 𝜒0 = 𝜒𝛾/2, the expression for the source 𝑆[𝜀𝑝, rad] is written as follows

𝑆[𝜀, rad] =
2𝜀𝛾𝑛𝛾√𝜇

𝐸 ∫
𝜋

0
Φ(𝜃, 𝑣𝛾∥)𝑊pair(𝜒𝛾, 𝜀𝛾)𝐼rad (

𝜒𝛾
2 ) (1 − cos 𝜃) sin 𝜃𝑑𝜃 ≡ 𝐼vac

𝜀𝛾𝑛𝛾√𝜇
𝐸 . (3.45)

3.3.5 Dynamics of 𝒆−𝒆+ pairs in the plasma region
According to the reasoning in section 3.2.2, in the region of dense 𝑒−𝑒+ plasma, at each point in
space there exists an instantaneous reference frame 𝐾′ moving with the speed 𝑣𝑥(𝑥, 𝑡) ≈ 𝐸/𝐵, in
which only the magnetic field is present. Due to the simplicity of the configuration of the EM field
in𝐾′, it is convenient to carry out calculations in this reference frame. In𝐾′, electrons and positrons
move along the magnetic field with the speed 𝑣′𝐵 and also rotate in the plane perpendicular to the
magnetic field with the speed 𝑣′⟂ (see Fig. 3.10). Assume that the particles remain ultrarelativistic
in the given reference frame (which is confirmed by the results of QED-PIC simulations), then the
equality 𝑣′⟂

2 + 𝑣′𝐵
2 ≈ 1 is valid. Note that the movement of charged particles along a magnetic field

can lead to the generation of a nonzero current, which must be taken into account in Maxwell’s
equations, while their rotation in amagnetic field does not, on average, create a current, but leads to
the generation of copious gamma quanta. Let us calculate the QED value of the parameter 𝜒, which
is a Lorentz invariant, in 𝐾′

𝜒𝑝 =
𝑣′⟂𝜀′𝑝𝐵′
𝑎S

. (3.46)

The quantities in 𝐾′ can be calculated from the corresponding quantities in the laboratory frame as
follows: 𝐵′ = 𝐵√1 − (𝐸/𝐵)2, 𝜀′𝑝 = 𝜀𝑝√1 − (𝐸/𝐵)2, where we used the fact that the average particle
momentum along the 𝑥 axis is equal to 𝛾𝑣𝑥 and 𝑣𝑥 = 𝐸/𝐵. Thus the value of 𝜒 can be calculated as
follows

𝜒𝑝 =
𝑣′⟂𝜀𝑝𝐸
𝑎S

1 − 𝑣2𝑥
𝑣𝑥

. (3.47)

Due to the rotation of particles in a magnetic field, it can be assumed that their angular distribution
in 𝐾′ is close to isotropic. In this case, similarly to the procedure with gamma quanta in Sec. 3.3.3,
the distribution function of pairs in the laboratory frame of reference is written in the following form

𝑓𝑝(𝑡, 𝑥, 𝜃) = Φ (𝜃, 𝑣𝑥(𝑥, 𝑡)) 𝑛𝑝(𝑥, 𝑡). (3.48)
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Figure 3.10: Geometric relation between the velocity and magnetic field in the reference frame 𝐾′

moving with the speed 𝑣𝑥 = 𝐸/𝐵.

where Φ is defined in the same way as in equation (3.27)

Φ(𝜃, 𝑣) = 1 − 𝑣2

2 (1 − 𝑣 cos 𝜃)2
.

The results of the QED-PIC simulations presented in Fig. 3.8 (c), (d) demonstrate that the expres-
sion (3.48) is a good approximation for calculating the angular distribution of the pairs. It will be
shown below that the value of 𝑣𝑥 can be approximately calculated from the local values of the elec-
tric field and the plasma density. Thus, we do not write the continuity equation for the quantity 𝑣𝑥,
like the equation (3.18). Note also, that in the case of pairs, we neglect the difference between the
velocity 𝑣 of the reference frame in which the distribution of particles is isotropic and the average
particle velocity 𝑣 calculated from such a distribution, because their maximum difference does not
exceed 0.2 according to the expression (3.29).

Since the value of 𝜒𝑝 does not depend on the angle 𝜃, the sources of 𝑆[𝛼, rada] are calculated as
follows

𝑆[𝑛, rada] = 𝑛𝑝

𝜋

∫
0

Φ(𝜃, 𝑣𝑥)𝑊rad(𝜒𝑝, 𝜀𝑝) sin 𝜃𝑑𝜃 ≡ 𝑊pl𝑛𝑝, (3.49)

𝑆[𝜀, rada] = 𝑛𝑝

𝜋

∫
0

Φ(𝜃, 𝑣𝑥)𝐼rad(𝜒𝑝) sin 𝜃𝑑𝜃 ≡ 𝐼pl𝑛𝑝, (3.50)

𝑆[𝑣, rada] = 𝑛𝑝

𝜋

∫
0

Φ(𝜃, 𝑣𝑥) cos 𝜃𝑊rad(𝜒𝑝, 𝜀𝑝) sin 𝜃𝑑𝜃 ≡ 𝑊pl𝑣𝑥𝑛𝑝. (3.51)
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The total current density of the particles averaged over the characteristic Larmor rotation period
𝜏𝐵 = 𝜀𝑝/𝐵 is calculated as follows

j = 2𝑛𝑝
B
𝐵𝑣𝐵√1− 𝑣2𝑥, (3.52)

𝑣𝐵 = 𝑣′𝐵
2
𝜋
arccos (𝑣𝑥√1 − 𝑣2𝑥)

√1 − 𝑣2𝑥(1 − 𝑣2𝑥)
≡ 𝜈. (3.53)

The factor 2 takes into account the fact that the currents of electrons and positrons are codirectional.
This, in turn, is explained by the observation that in the laboratory reference frame, the electric and
magnetic fields are not strictly perpendicular. Thus, in the reference frame𝐾′ there is a small electric
field directed along or against the magnetic field (depending on the sign of the product E ⋅ B). The
presence of this field leads to the fact that the average velocity of electrons is opposite to it, and the
average speed of positrons is co-directed to it. At the same time, the longitudinal drift of particles
does not depend on the sign of the charge; therefore, the currents of electrons and positrons along
the 𝑥 axis compensate each other, and in the 𝑦𝑧 plane they are summed up. This fact also indicates
that the electron-positron plasma is a conductive medium, so some absorption of electromagnetic
energy also occurs in this region, although it is much less than the absorption in the vacuum region
observed in QED-PIC simulations (see Fig. 3.9 (a)) and thus we don’t include it in our model. The
value of 𝑣𝐵 averaged over particles, which we denoted as 𝜈2, is the second free parameter of our
model. It can be roughly estimated by noting that for a single particle the value of 𝑣′𝐵 can only slightly
diverge from its initial value due to the presence of a weak electric field in𝐾′. The particles enter the
plasma region after being accelerated by a laser pulse with a predominantly longitudinal velocity, i.e.
velocity along the 𝑥 axis, so the initial projection of the particle velocity onto themagnetic field lying
in the 𝑦𝑧 plane is a small value. Thus, we can expect that our model should give reliable results for
smaller values of 𝜈.

Calculation of the electrodynamic properties of a medium which response to a plane circularly-
polarized EM wave consists in generating a current along the magnetic field is considered in the
next section. The main conclusion is that the relationship between the electric and magnetic fields
in such a medium can be expressed in terms of the density and amplitude of the electric field as
follows

𝐸
𝐵 = 𝑣𝑥 =

√√√
√

2

1 +√1 + (4𝑛𝑝𝜈/𝐸)
2
. (3.54)

The validity of the expression (3.54) is also confirmed by direct comparison with the results of the
QED-PIC simulation shown in Fig. 3.9 (b).

2The value of the factor after 𝑣′𝐵 in Eq. (3.53) is in the range 0.77−1.
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3.3.6 Electrodynamical properties of 𝒆−𝒆+ plasma
Let us consider the propagation of a plane circularly polarized EMwave along the 𝑥 axis in a weakly
inhomogeneous (also along the 𝑥 axis) medium, the response of which to this wave consists in gen-
erating a current j = 2𝑛𝑝v, along the magnetic field of the wave. To do this, we write Maxwell’s
equations

𝜕𝐸𝑧
𝜕𝑥 =

𝜕𝐵𝑦
𝜕𝑡 , (3.55)

𝜕𝐸𝑦
𝜕𝑥 = −𝜕𝐵𝑧𝜕𝑡 , (3.56)

𝜕𝐵𝑧
𝜕𝑥 = −

𝜕𝐸𝑦
𝜕𝑡 − 2𝑛𝑝𝑣𝑦, (3.57)

𝜕𝐵𝑦
𝜕𝑥 = 𝜕𝐸𝑧

𝜕𝑡 + 2𝑛𝑝𝑣𝑧. (3.58)

Let us switch to the following complex variables

𝜖 = 𝐸𝑦 + 𝑖𝐸𝑧, (3.59)
𝛽 = 𝐵𝑧 − 𝑖𝐵𝑦, (3.60)

𝑣𝑦 + 𝑖𝑣𝑧 =
𝜖
|𝜖| 𝑖𝑣⟂, (3.61)

and introduce a vector potential 𝑎 the following way

𝜖 = −𝜕𝑎𝜕𝑡 , (3.62)

𝛽 = 𝜕𝑎
𝜕𝑥. (3.63)

In the new variables, the equations (3.55)–(3.58) are rewritten as follows

𝜕2𝑎
𝜕𝑥2 =

𝜕2𝑎
𝜕𝑡2 − 2𝑛𝑝

𝜕𝑎
𝜕𝑡

|||
𝜕𝑎
𝜕𝑡
|||
−1
𝑖𝑣⟂. (3.64)

We will look for a solution to this equation in the form of a quasi-monochromatic plane wave with
an amplitude depending on the coordinate 𝑥

𝑎 = 𝐸(𝑥) exp{𝑖∫
𝑥
𝜅(𝑥′)d𝑥′ − 𝑖𝑡}, (3.65)

where𝐸(𝑥) and 𝜅(𝑥) are real functions of the coordinate 𝑥, designating the amplitude andwavenum-
ber of the wave, respectively. As a result, the equations have the following form

𝜕2𝐸
𝜕𝑥2 + 𝐸(1 − 𝜅2) + 2𝑛𝑝𝑣⟂ = 0, (3.66)

𝐸𝜕𝜅𝜕𝑥 + 2𝜅𝜕𝐸𝜕𝑥 = 0. (3.67)
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If the plasma is weakly inhomogeneous, then the WKB approximation can be applied to solve this
equation. Assuming that the plasma inhomogeneity scale 𝐿 significantly exceeds the wavelength 𝜆,
we can neglect the terms with the second derivative: 𝜕2𝐸/𝜕𝑥2 ∼ 𝐸/𝐿2 ≪ 𝜅2𝐸 = (2𝜋)2𝐸/𝜆2. In that
case we have

𝐸(1 − 𝜅2) + 2𝑛𝑝𝑣⟂ = 0. (3.68)

Solving this equation, we get

𝜅 ≡ 𝐵
𝐸 = √1 +

2𝑛𝑝𝑣⟂
𝐸 , (3.69)

Let’s use the expression (3.52) for 𝑣⟂, i.e.

𝑣⟂ = 𝜈√1 − 𝑣2𝑥. (3.70)

Note that for 𝜈 > 0, 𝐵 > 𝐸 according to (3.69), and therefore 1/𝜅 has themeaning of the drift velocity
𝑣𝑥. Thus,

1
𝑣𝑥

=√1 +
2𝑛𝑝𝜈
𝐸 √1 − 𝑣2𝑥. (3.71)

The solution of this equation has the following form

𝑣𝑥 = ( 2
1 + √1 + 𝑆2

)
1/2

, (3.72)

𝑆 =
4𝑛𝑝𝜈
𝐸 . (3.73)

The comparison of the obtained solution with the numerical solution of the equations (3.66)–(3.67)
is shown inFig. 3.11 in both cases of either applicability or inapplicability of theWKBapproximation.
The solution (3.72) is obtained under the assumption that 𝑣2 = 1, so it is valid in a reference frame
where the particles are ultrarelativistic, in particular in the laboratory reference frame.
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Figure 3.11: Drift velocity 𝑣𝑥 = 𝐸/𝐵 calculated from the numerical solution of the equations (3.66)–
(3.67) (green line) and using the analytical expression (3.72) (orange line) for a randomly inhomo-
geneous plasma distribution (black line). The inhomogeneity scale exceeds the wavelength in sub-

figure (a), which makes the WKB approximation valid, and less than it in subfigure (b).
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3.4 The model finalization and comparison with QED-PIC
simulations

The last quantities left undefined are the factors 𝜓vac and 𝜓pl, which serve to separate the vacuum
and plasma regions in space. Note that the longitudinal velocity of pairs 𝑣𝑥, determined according
to the equation (3.54), makes it easy to distinguish between these regions: in vacuum 𝑣𝑥 ≈ 1, while
in the plasma region 𝑣𝑥 < 1 . Therefore, 𝜓vac and 𝜓pl can be chosen as follows

𝜓vac = 𝑣𝑀𝑥 , (3.74)
𝜓pl = 1 − 𝑣𝑀𝑥 , (3.75)

where𝑀 ∼ 10 is a fairly large constant. The value of this constant is selected on the basis of a certain
threshold for 𝑣𝑥, above which it can be assumed that the plasma is quite rare and collective effects
can be neglected. Further, we will assume that this threshold corresponds to 0.7, and𝑀 = 8.

Thus, the equations describing the development of a QED cascade in a plane wave have the
following final form

𝜕
𝜕𝑡𝑛𝑝 +

𝜕
𝜕𝑥 (𝑣𝑥𝑛𝑝) = 𝑊pair𝑛𝛾, (3.76)

𝜕
𝜕𝑡 (𝜀𝑝𝑛𝑝) +

𝜕
𝜕𝑥 (𝑣𝑥𝜀𝑝𝑛𝑝) = 𝑊pair𝑛𝛾

𝜀𝛾
2 + 𝜇𝐺rad𝑛𝛾𝜀𝛾𝜓vac−

− √𝜇
𝐸 𝐼vac𝑛𝛾𝜀𝛾𝜓vac − 𝐼pl𝑛𝑝𝜓pl,

(3.77)

𝜕
𝜕𝑡𝑛𝛾 +

𝜕
𝜕𝑥 (𝑣𝛾∥𝑛𝛾) = −𝑊pair𝑛𝛾 + 2𝑊rad𝑛𝑝𝜓pl, (3.78)

𝜕
𝜕𝑡 (𝑣𝛾∥𝑛𝛾) +

𝜕
𝜕𝑥 (𝑣

2
𝛾∥𝑛𝛾) = −𝑉pair𝑛𝛾 + 2𝑉rad𝑛𝑝𝜓pl, (3.79)

𝜕
𝜕𝑡 (𝜀𝛾𝑛𝛾) +

𝜕
𝜕𝑥 (𝑣𝛾∥𝜀𝛾𝑛𝛾) = −𝑊pair𝑛𝛾𝜀𝛾 + 2𝐼pl𝑛𝑝𝜓pl, (3.80)

𝜕
𝜕𝑡 (

𝐸2 + 𝐸2/𝑣2𝑥
2 ) + 𝜕

𝜕𝑥 (
𝐸2
𝑣𝑥
) = −2𝜇𝐺rad𝑛𝛾𝜀𝛾𝜓vac, (3.81)

𝜕
𝜕𝑡Σ𝛾 =

2√𝜇
𝐸 𝐼vac𝑛𝛾𝜀𝛾𝜓vac. (3.82)

Note that the total energy is conserved in our model, i.e.,

∫(2𝑛𝑝𝜀𝑝 + 𝑛𝛾𝜀𝛾 +
𝐸2 + 𝐵2

2 ) 𝑑𝑥 + Σ𝛾 = const. (3.83)

3.4.1 Analytical estimates
Before proceeding to the numerical solution of these equations and comparing it with the results
of QED-PIC simulations, we will make some very rough, but analytical estimates. To do this, we
will assume that electrons and positrons emit gamma quanta strictly opposite to the 𝑥 axis. The
distribution of laser intensity will be considered constant and uniform. In connection with the last
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assumption, the probabilities𝑊pair and𝑊rad will also be considered constant. In this case, the con-
tinuity equations for the plasma density 𝑛𝑝 and photons 𝑛𝛾 are written as follows in the reference
frame moving with the average plasma velocity 𝑣𝑥

𝜕𝑛𝑝
𝜕𝑡 = 𝑊pair𝑛𝛾, (3.84)

𝜕𝑛𝛾
𝜕𝑡 −

𝜕𝑛𝛾
𝜕𝑥 = −𝑊pair𝑛𝛾 + 2𝑊rad𝑛𝑝. (3.85)

If we neglect the term with 𝜕𝑥 in (3.85), which characterizes the spatial dispersion, then the conti-
nuity equations turn into equations describing the QED cascade in a rotating electric field without
spatial dynamics [98, 183]. The equations (3.84)–(3.85) can be solved using the one-sided Fourier
transform [203], i.e. expanding of the solution into a sum of exponentials with real values 𝑘 and
complex values 𝜔

𝑛𝑝,𝛾 (𝑡, 𝑥) =
+∞+𝑖𝜎

∫
−∞+𝑖𝜎

e−𝑖𝜔𝑡𝑑𝜔2𝜋

+∞

∫
−∞

e𝑖𝑘𝑥𝑛𝑝,𝛾 (𝜔, 𝑘)
d𝑘
2𝜋. (3.86)

where

𝑛𝑝,𝛾 (𝜔, 𝑘) =
+∞

∫
0

e𝑖𝜔𝑡𝑑𝑡
+∞

∫
−∞

e−𝑖𝑘𝑥𝑛𝑝,𝛾 (𝑡, 𝑥) d𝑥, (3.87)

and 𝜎 is a real number such that the integration contour lies in the analyticity domain of 𝑛𝑝,𝛾. For
initial density distributions of plasma and gamma quanta equal to 𝑛𝑝 (0, 𝑥) and 𝑛𝛾 (0, 𝑥) respectively,
the solution is found as follows

𝑛𝑝 (𝑡, 𝑥) =
+∞+𝑖𝜎

∫
−∞+𝑖𝜎

d𝜔
2𝜋

+∞

∫
−∞

d𝑘
2𝜋

+∞

∫
−∞

𝑑𝑥′
𝑊pair𝑛𝑝(0, 𝑥′) + 𝑖 (𝜔 + 𝑘) 𝑛𝛾(0, 𝑥′)

Δ (𝜔, 𝑘) e𝑖𝑘(𝑥−𝑥′)−𝑖𝜔𝑡, (3.88)

where Δ (𝜔, 𝑘) = 𝜔2+𝜔(𝑘+ 𝑖𝑊pair)+ 2𝑊pair𝑊rad. Perturbations of the initial distribution propagate
along the characteristics defined by the dispersion equation Δ (𝜔, 𝑘) = 0, which has the following
solution

𝜔 =
−𝑘 − 𝑖𝑊pair ±√(𝑘 + 𝑖𝑊pair)2 − 8𝑊pair𝑊rad

2 . (3.89)

The group velocity of these perturbations is equal to 𝑣gr = 𝜕Re[𝜔]/𝜕𝑘. Analysis of the dispersion
relation shows that perturbations with small wave numbers (𝑘 ≪ 𝑊pair) are the most unstable and
have the following instability increment

Γ ≡ Im [𝜔] =
𝑊pair
2 (

√
1 + 8𝑊rad

𝑊pair
− 1) , (3.90)
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which coincides with the QED cascade growth rate in a rotating electric field [98, 183]. From (3.89)
we obtain the dispersion relation for unstable perturbations

𝜔 ≈ 𝜇 − 1
2 𝑘 + 𝑖Γ, (3.91)

𝜇 = 1

√1 + 8𝑊rad/𝑊pair

. (3.92)

In the limit 𝑎0 → ∞, 𝑊rad/𝑊pair ≈ 4 and 𝜇 ≈ 0.17 [32]. Therefore, perturbations with small
wave numbers propagate at a speed of 𝑣gr ≈ −0.41. This value coincides with the results of the
numerical solution of the equations (3.84)–(3.85) with different forms of initial distributions of pairs
and gamma quanta (see an example of such a solution in Fig. 3.12). In the frame of referencemoving
with the average longitudinal velocity of the plasma, the velocity of the cascade front 𝑣fr coincides
with the found group velocity 𝑣gr ≈ −0.41. The transformation to the laboratory reference frame
makes it possible to find the relation between the average longitudinal velocity of plasma particles
and the velocity of the cascade front

𝑣fr =
𝑣𝑥 + 𝑣gr

1 + 𝑣𝑥𝑣gr/𝑐2
. (3.93)

Solving this equation for 𝑣𝑥 we get:
𝑣𝑥 =

𝑣fr − 𝑣gr
1 − 𝑣gr𝑣fr/𝑐2

. (3.94)

This reasoning predicts 𝑣𝑥 = 0.61 for 𝑣fr = 0.27 (𝑎0 = 2500, see Fig. 3.3), which is close enough to
the average positron velocity ≈ 0.75 obtained from numerical simulations (see Fig. 3.4 (b)).
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Figure 3.12: Numerical solution of Eqs.(3.84)–(3.85): (a) Density distribution of positrons 𝑛𝑝 (green
line) and gamma quanta 𝑛𝛾 (orange line) at different times. The scale of the vertical axis is linear in
range [−1, 1] and logarithmic outside this range. Coordinates, time and densities are normalized so
that𝑊rad = 1.0,𝑊pair = 0.25. (b) The velocity of the density distribution front 𝑛𝑝, determined from

the threshold 𝑛𝑝 = 0.1, as a function of time.
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3.4.2 Numerical solution
Thenumerical solution of the Eqs. (3.76)–(3.81) is foundusing themethod of lines: the partial deriva-
tives 𝜕/𝜕𝑥 are approximated by finite differences to obtain anODE system,which is solvedwith using
the explicit Runge-Kuttamethod. Since the Runge-Kuttamethod is not symplectic, the conservation
of energy at each integration step is forced by manually clamping the derivative 𝜕𝑛𝛾/𝜕𝑡 so that the
total energy does not increase. The relative error obtained as a result of this procedure turns out to
be acceptably small. The free parameters were estimated manually by comparing the solution with
the results of a 3D QED-PIC simulation based on two macroscopic parameters: the cascade front
speed and the energy balance in the system. Model testing shows that there is a positive correlation
between the parameter 𝜈 and the cascade front velocity. The parameter 𝜇 mainly determines the
energy transfer from the laser to the cascade particles, therefore, by changing this parameter, one
can control the characteristic laser energy absorption time. We have found the values of the free pa-
rameters of the model, at which there is good agreement with the simulation results with different
initial conditions (see Figs. 3.13–3.15).

The 3D QED-PIC simulations were performed using the QUILL code [201], which allows the
simulation of QED effects using the Monte-Carlo method. The initial distribution of EM fields has
the form of a plane wave with a wavelength 𝜆 = 2𝜋𝑐/𝜔𝐿 = 1 µm and an amplitude 𝑎0, propagating
along the 𝑥 axis with spatio-temporal envelope given by the following expression

𝑎(𝑥, 𝑦, 𝑧) = cos2 (𝜋2
𝑥4
𝜎4𝑥
) cos2 (𝜋2

(𝑦2 + 𝑧2)2

𝜎4𝑟
) . (3.95)

The transverse spatial size of the laser pulse was 2𝜎𝑟 = 18 µm, and the pulse duration was 60.5 fs
(2𝜎𝑥 = 18.15 µm). The size of the simulation box was 30𝜆 × 30𝜆 × 30𝜆, the number of cells was
3000 × 300 × 300. As was discussed in section 3.2.2, the final stage of the development of the
QED cascade in a single laser pulse is practically independent of the initial seed; therefore, a short
gamma bunch propagating towards the laser pulse was set as the seed in the simulations in order
not to take into account the interaction with the electron-ion plasma, which differs significantly
from the interaction with produced electron-positron plasma. The initial seed in this form in our
model can be specified by initializing 𝑣𝛾∥(𝑡 = 0) ≈ −1. The initial density distributions of gamma
quanta in our model and PIC simulations coincide and are expressed by the following expression:
𝑛𝛾(𝑡 = 0) = 𝑛0max {0, 1 − (𝑥 − 𝑥0)2/𝑤2

𝛾}, where 𝑤𝛾 is the half-width of the bunch, and 𝑥0 is the po-
sition of its center. The initial energy of gamma quanta was set equal to 200𝑚𝑒𝑐2.

A direct comparison between the solutions of the equations (3.76)–(3.81) and the results of the
QED-PIC simulation is shown in Figs. 3.13–3.15. Our model qualitatively agrees with the results of
QED-PIC simulations in terms of particle distribution and electromagnetic field, as well as energy
balance. The regimes of cascade development are also clearly distinguished both in our model and
in the QED-PIC simulation.

The first regime (see Fig. 3.13) occurs when the value of 𝑎0 of the laser pulse is not large enough
or the gamma bunch is not dense enough. In this case, the density of the resulting electron-positron
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Figure 3.13: Comparison between (a, c, e) solution of Eqs. (3.76)–(3.81) and (b, d, f) QED-PIC
simulation results for initial parameters 𝑎0 = 1000, 𝑛𝛾,0 = 𝑎0𝑛cr. (a, b) Distributions of gamma
quanta density 𝑛𝛾 (orange line), EM energy density (𝐸2 + 𝐵2)/2 (black line) and plasma density 𝑛𝑝
(green line) at various points in time. The vertical scale is linear in the range [0, 1] and logarithmic in
the range [1, +∞]. (c, d) Energy balance in the system: total energy 𝑒−𝑒+ of pairs Σ𝑝 (green line), Σ𝛾
gamma quanta (orange line) and EM energy Σ𝐸𝑀 (black line) normalized to the total initial energy
of the system Σ𝑡𝑜𝑡; cascade front velocity 𝑣fr (dashed blue line). (e, f) Distribution of 𝑒−𝑒+ pairs in
the 𝑥 − 𝑡 plane and position of the cascade front 𝑥fr (dashed white line). Values of free parameters:

𝜈 = 0.35, 𝜇 = 10.

plasma does not reach the relativistic critical density, so that 𝑣𝑥 ≈ 1, i.e. there are no collective
plasma effects. In this case, there is no plasma region at all, and newly born particles move in a laser
pulse field close to a plane wave. As discussed in the papers [96, 144, 186, 195] and the chapter 2
of this work, in this case the value of the 𝜒 parameter does not increase. Since after each act of
gamma-quantumemission, the value of𝜒 is split between the parent and child particles, after several
generations its value for all the particles becomes sufficiently smaller than 1 and the development
of the cascade stops. Thus, at sufficiently small 𝑎0, the gamma quanta of the bunch decay into pairs,
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leaving a «trail» of electrons and positrons, which accelerate in a forward direction and propagate
alongwith the laser pulse. Although the plasma density is low, the total number of pairs can be large
enough to transfer a significant portion of the laser energy to them (see Fig. 3.13 (c), (d)). Since in
this regime all particles propagate independently of each other, the cascade front propagates with
an almost constant velocity 𝑣fr ≈ −0.5.
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Figure 3.14: Same as in Fig. 3.13 for initial parameters 𝑎0 = 2500, 𝑛𝛾,0 = 0.5 𝑎0𝑛cr.

In the second regime (see Fig. 3.14), the cascade develops as discussed in Sec. 3.2.2. The peak
of the pair density propagates towards the laser at a much lower speed (relative to the front edge
of the laser pulse) than in the first regime. In this case, the plasma density increases with time, in
contrast to the first regime, when the plasma density at each point remains practically unchanged
after the initial gamma bunch passes through this point. As was mentioned in section 3.3.5, the
dense electron-positron plasma practically does not absorb the laser energy, therefore, despite the
fact that in this regime the total number of pairs is much higher than in the first regime, the energy
transfer rates from the EM fields to the pairs are close to each other in both regimes.
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Figure 3.15: Same as in Fig. 3.13 for initial parameters 𝑎0 = 1500, 𝑛𝛾,0 = 𝑎0𝑛cr.

If 𝑎0 lays in-between the values at which either the first or the second regimes are realized, at
the initial stage the cascade resembles the S-type cascade which is clearly indicated by the negative
value of the velocity of the cascade front (see blue dashed line in Fig. 3.15 (c), (d)). At some point
the density of the pairs becomes large enough to alter the laser propagation and to shift the cascade
dynamics to the self-sustained regime. The change between these two regimes is indicated by abrupt
change in the velocity of the cascade front. The initial stage (stage of the S-type cascade) can also
be seen for larger values of 𝑎0 (see Fig. 3.14), though it is much shorter and is hardly pronounced in
the results of the QED-PIC simulations.

We also validated the analytical estimate (3.94) developed above, from which the relation be-
tween the average longitudinal velocity of the cascade particles and the velocity of the cascade front
was obtained. As shown in Fig. 3.16, the cascade front velocity calculated from this estimate based
on the average particle velocity approximately coincides with the real front velocity observed in the
model solution at the cascade self-sustaining stage. Since, as noted above, this stage never starts in
the simulation at 𝑎0 = 1000, this simplified model cannot be applied in this case.
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Figure 3.16: The cascade front velocity observed in the model solution (green line) and obtained
from the analytical estimate (3.94) (orange line), calculated from the average velocity of particles

located inside the electron-positron plasma at a depth of 2𝜆 from the cascade front.

There are some features that are not captured by our model which are worth noting. For exam-
ple, in the PIC simulation there is a distinct tail of the gamma-quanta spatial distribution counter-
propagating to the laser pulse. These gamma-quanta have relatively low energy and thus are unable
to photoproduce pairs. Our model predicts that the edge of the plasma and gamma-quanta distri-
butions almost completely coincide. The total energy carried away by this sort of gamma-quanta is
insignificant so this feature is not crucial for the cascade development. The reason that our model
cannot capture this feature is the fact that we assume the distribution functions to bemonoenergetic.
Higher accuracy can be obtained if we would split the gamma-quanta into several groups with dif-
ferent energies and describe them separately; then this feature would be present in our solutions.
But as already mentioned in Sec. 3.3.1 it would greatly complicate the model but will not lead to
significant qualitative changes in the solutions.

3.5 Summary
To summarize, we have shown that a self-sustaining QED cascade can develop in a plane wave, con-
trary to a fairly common reasoning that such a field configuration is unsuitable for observing QED
cascades [96, 144, 186]. Indeed, to observe such an effect, a sufficiently dense seed is required that
can alter the propagation of this plane wave. The development of the QED cascade leads to the
formation of a dense electron-positron «cushion», the front of which moves much slower than the
speed of light, and which efficiently absorbs laser radiation. By analogy with ionization waves in gas
discharge physics [107, 108], the propagation of the cascade QED front can be considered as a «vac-
uum breakdown» wave. It is important to note that for the development of such a QED cascade, the
presence of a reflected wave is not fundamental, which makes it significantly different from a QED
cascade in a standing wave, which is quite an actively studied configuration due to the relatively
simple field configuration. In particular, the threshold value of the wave amplitude 𝑎0, necessary
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for the development of a QED cascade in a standing wave, was calculated numerically in the publi-
cation [98], based on the condition of doubling the number of particles during a single laser period,
and at a wavelength of 1 µm amounted to about 103. It follows from our calculations that the thresh-
old for the development of a QED cascade in a plane wave corresponds approximately to 𝑎0 ∼ 1500,
which is just a bit higher than the threshold for the development of a cascade in a standing wave,
but still significantly below the Sauter-Schwinger critical field 𝑎S = 𝑚𝑐2/ℏ𝜔L ≃ 4 × 105 [1, 2]. The
value 𝑎0 = 1500 corresponds to an intensity near 6 × 1024W/cm2 at a wavelength 1 µm, which, as
mentioned above, can potentially be achieve at future laser systems, albeit at the expense of suffi-
ciently sharp focusing of the radiation. Nevertheless, the appearance of a vacuum breakdown wave
and subsequent absorption of laser radiation can be considered as another fundamental limitation
on the attainable intensity of laser radiation, first studied in publications [46, 166], for the case of
weak focusing.

We also developed an analytical self-consistent model for the development of such a QED cas-
cade. To obtain model equations for a computationally light model, a number of assumptions were
made, the main of which are the transition to a quasi-one-dimensional hydrodynamic description,
the use of locally monoenergetic particle distribution functions, and the plane wave approximation
for laser radiation. The resulting system of equations is written in closed form and is also solved
numerically. Despite the complexity and nonlinearity of the cascade dynamics, it turned out that a
relatively simple one-dimensional model makes it possible to qualitatively predict its development,
for example, the macroscopic space-time distribution of particles and the energy balance in the sys-
tem. This justifies the analytical reasoning behind the model and hence our understanding of the
phenomena involved. The methods used to develop this model can probably be used to build sim-
ilar models that describe astrophysical phenomena, such as the development of QED cascades in
the magnetospheres of neutron stars, also characterized by complex spatiotemporal dynamics and
accompanied by the generation of vacuum breakdown waves [204].
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the manuscript.



Chapter 4

Interaction of high-current beams of
ultrarelativistic particles with matter

4.1 Introduction
Interaction of particle flows is a fundamental problem of plasma physics and high energy physics.
On the one hand, it plays a key role inmany astrophysical processes, for example, relativistic jets are
associated with gamma ray bursts, tidal disruptions, active galactic nuclei and blazars. In the col-
lapsar model of gamma ray bursts [206, 207], the jet interacts with the shell of the star formed after
the collapse of the star. With the development of quantum electrodynamic (QED) cascades near the
polar caps of neutron stars [113], the fluxes of generated electrons and positrons can interact with
each other in the magnetosphere of a neutron star and significantly determine its dynamics [116].
On the other hand, colliders, which are the main research tool in the field of elementary particle
physics, are based on the head-on collision of high-energy charged particle beams. Currently, there
are several projects aimed at building high-energy lepton colliders with record parameters, such as
ILC [118] and CLIC [119]. In the interaction region of such colliders, strong EM fields can be gen-
erated, thereby making possible manifestation of some strong-field phenomena such as disruption
of beams [121–123], beamstrahlung [124–126], production of secondary electron-positron pairs [127,
128], and even effects of nonperturbativeQED [129, 130]. As noted in the Introduction, it is expected
that in the near future the main tool for studying the strong-field physics will be multi-PW laser fa-
cilities, such as ELI [3], SULF [5], Apollon [4], and in the future also 100-PW level facilities such as
XCELS [7], SEL [6], etc. However, reaching ever-increasing laser intensities imposes increasingly
stringent requirements on contrast, stability, and beam quality, which have not yet been achieved in
practice [131]. In this regard, high-current high-energy colliders, which are distinguished by high
beam quality and stability, can become an attractive «laserless» alternative for experiments in the
strong-field physics. We note that relatively recently plasma acceleration has been considered as a
promising alternative method for creating linear colliders with a large accelerating gradients [120].
The most actively discussed project in this context is FACET-II [129, 132, 133]. It is expected that
this accelerator will make it possible to operate with electron (or positron) beams which own field
amplitude is comparable to the field amplitude at the focus of an extremely intense multi-PW laser,
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i.e., only a few orders of magnitude less than the critical Schwinger field 𝐸S. This chapter is devoted
to the study of QED effects accompanying interaction of high-current beams of ultrarelativistic par-
ticles with each other and with plasma targets.

4.2 Effect of radiation reaction on disruption in beam-beam
collision

When considering a head-on collision of beams in the ultrarelativistic regime, the dynamics of par-
ticles of each beam is predominantly determined by the EM fields of the counter-propagating beam,
while the force from the own fields is negligible [208, 209]. In this approximation, the Lorentz force
acting on a particle can be written in the following form

F = 𝑞E + (𝑞/𝑐) [v × B] ≃ ±𝑚𝜔2br, (4.1)

where v is the particle velocity, E and B are electric and magnetic fields of the counter-propagating
beam, respectively, 𝑞 = ±𝑒 is the particle charge, 𝜔2b = 4𝜋𝑒2𝑛b/𝑚 is the electron (positron) plasma
frequency squared, 𝑛b is the particle density of the counter-propagating beam, 𝑟 is the particle dis-
tance from the beam axis. The positive sign in the equation (4.1) refers to the case of electron-
electron or positron-positron collisions, when the resulting force causes defocusing of both beams.
On the other hand, during electron-positron collisions, the beam particles perform transverse be-
tatron oscillations with a frequency of 𝜔b/√𝛾 [123, 210], where 𝛾 is the Lorentz factor of a beam
particle. In this case, the beam focusing time can be introduced as the time it takes for the particle
to reach the beam axis, which is estimated up to a numerical factor as follows

𝑇𝐷 = √2𝛾
𝜔b

. (4.2)

If the beam length 𝜎𝑧 satisfies the condition 𝜎𝑧/𝑐 > 𝑇𝐷, then the beam radii change substantially
during the interaction. Beam distortion in the interaction region can be quantified using the so-
called disruption parameter, which is defined as follows

𝐷0 =
𝜎2𝑧
𝑐2𝑇2𝐷

= 𝜔2b𝜎2𝑧
2𝛾𝑐2 , (4.3)

for a beam with a uniform charge distribution of length 𝜎𝑧 and radius 𝑟b [121]. Note that this ex-
pression gives a 𝜋−1/223/2 ≈ 1.6 times larger value than the disruption parameter for a beam with
a Gaussian charge distribution having the same total charge, the root-mean-square length equal to
𝜎𝑧 and root-mean-square radius equal to 𝑟b [121, 210]. The expression for 𝐷0 can be generalized for
other charge distributions and can also be used to characterize the interaction of beams of the same
charge. Although a large value of the disruption parameter may be desirable to increase the bright-
ness [211], at the same time it can lead to an increase in background noise and hinder precision
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measurements. For this reason, the condition 𝐷0 ≪ 1 is desirable for, e.g. the experimental study
of nonperturbative QED [129].

Curvature of the particle trajectory at the interaction point is accompanied by synchrotron radi-
ation, known in the community of collider physicists under the term beamstrahlung [125, 210]. The
total power of losses due to photon emission depends on the QED parameter 𝜒 [32, 33, 135]

𝑃rad =
𝛼𝑚2𝑐4

3√3𝜋ℏ
∫

∞

0

4𝑢3 + 5𝑢2 + 4𝑢
(1 + 𝑢)4 𝐾2/3 (

2𝑢
3𝜒) d𝑢, (4.4)

𝜒 = 𝛾
𝐸S√

(E + v × B)2 − (v ⋅ E)2, (4.5)

where 𝛼 = 𝑒2/ℏ𝑐 is the fine structure constant, ℏ is the Planck’s constant, 𝐸S = 𝑚2𝑐3/𝑒ℏ is Sauter-
Schwinger critical field [32], 𝐾𝜈(𝑧) is a modified Bessel function of the second kind [212]. In the
classical (𝜒 ≪ 1) and sufficiently quantum (𝜒 ≫ 1) limits, the expression (4.4) can be reduced to
simple power expressions

𝑃rad(𝜒 ≪ 1) ≡ 𝑃𝐶 = 2
3
𝛼𝑚2𝑐4
ℏ 𝜒2, (4.6)

𝑃rad(𝜒 ≫ 1) ≡ 𝑃𝑄 = 0.37 𝛼𝑚
2𝑐4
ℏ 𝜒2/3. (4.7)

If the beam length is so small that during the interaction a particle emits only a few photons, then it
is also necessary to take into account the quantum (i.e. stochastic) nature of synchrotron radiation
even in the 𝜒 ≪ 1 limit.

In addition to beamstrahlung, other quantum effects are possible in the interaction region, such
as the photoproduction of electron-positron pairs in strong electromagnetic fields, the trident pro-
cess, etc. [127, 213]. Synergy between the emission of hard photons and the formation of pairs can
lead to a very rapid increase of the total number of particles — an effect known as the QED cascade,
which has attracted much attention lately (see Chapter 3). Thus, beamstrahlung and the formation
of secondary particles as a result of QED processes can cause significant beam distortion due to en-
ergy depletion and, in general, play a negative role in the operation of the collider. Therefore, in the
context of particle physics, colliders are usually designed to minimize these effects as much as possi-
ble. However, understanding the collective effects in the interaction region is critical not only for the
optimal operation of the collider, but also in consideration of the experiments in strong-field physics.
Thus, the regime of interaction of beams with strong beamstrahlung can be used, for example, to
create bright sources of gamma radiation or to experimentally study QED [83, 130, 133]. Until now,
analytical models of beam interactions have taken into account disruption and beamstrahlung inde-
pendently of each other. In this section, we investigate the relationship between these two processes
in order to findmodified expressions for the disruption parameter that take into account radiation re-
action in both the classical (𝜒 ≪ 1) and quantum (𝜒 ≫ 1) limits. The connection between these two
processes is substantiated by the fact that beamstrahlung causes a loss of particle energy and, since
the focusing time is proportional to√𝛾 (see equation (4.2)), leads to a decrease in the focusing time
and, consequently, an increase of disruption parameter 𝐷. It is important to evaluate the strength
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of this effect not only qualitatively, but also quantitatively, regardless of whether the application of
interest requires a small or large value of disruption parameter.

Further, the equations will be written in normalized quantities, where the plasma frequency
(nonrelativistic) corresponding to the initial maximum density of beam particles 𝜔b is chosen as the
normalization frequency. In this case, time is normalized to 1/𝜔b, coordinates — to 𝑐/𝜔b, momen-
tum— to𝑚𝑐, EM fields — to𝑚𝑐𝜔b/𝑒.

4.2.1 Formulation of the problem
Let uswrite themotion equations of ultra-relativistic particles taking into account radiation reaction

𝑑p
𝑑𝜏 = −E − p

𝛾 × B − 𝑃(𝜒) p𝛾 , (4.8)

𝑑r
𝑑𝜏 =

p
𝛾 , (4.9)

where 𝑃 refers to the total radiation power in normalized units. These equations describe the clas-
sical motion of an electron in an electromagnetic field, taking into account the effect of radiation
reaction in the semiclassical approximation (with QED corrections that reduce the total radiation
power at large values of 𝜒) (see section 2.1). Although the stochastic nature of the radiation causes
individual particles to focus differently, the disruption effect applies to the beam as a whole and
therefore must be calculated by averaging the distance from the axis over all particles. Such aver-
aging even in the quantum regime essentially leads to the motion equations in the semiclassical
approximation. It will be shown below that the results of QED-PIC simulations, in which the beam
collision is modeled in a self-consistent way, taking into account the stochastic nature of quantum
processes, agree quite well with the results of our analytical model, which also justifies the applica-
tion of this approach.

For an analytical study of the effect of disruption in a head-on collision of electron and positron
beams, wemake additional assumptions. First, as mentioned in section 4.1, the self-force generated
by the ultrarelativistic beam can be neglected in the equation (4.8), since it is proportional to the
small value of 𝛾−2 [208, 209]. Secondly, it is sufficient to study the transverse dynamics of particles
located in the beam front, since they begin to experience the force from the counter-propagating
beam earlier than others. And third, we further restrict our analysis to the particles at the periphery
of the beam, that is, particles that experience the largest force and are therefore more likely to emit
photons. Since radiation leads to a decrease in energy and, consequently, a decrease in the inertia
of the particles, it is expected that it is the particles at the periphery and front of the beams that will
experience the greatest focusing. The analysis of the motion of such particles is greatly simplified
due to the fact that only the unperturbed part of the counter-propagating beam affects their dynam-
ics. Finally, we assume that the electron and positron beams have the same initial parameters, in
which case the beams develop symmetrically. In addition, beams are considered to have cylindrical
symmetry. In this case, the beam density distribution can be written as 𝑛(𝜉±, 𝑟) = 𝑛0𝜂𝑧(𝜉±)𝜂𝑟(𝑟),
where 𝑛0 is the maximum density of the beam, 𝜉± = 𝑧 ± 𝜏 describes the longitudinal coordinate
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for beams moving at the speed of light, and the functions 𝜂𝑟,𝑧 (0 ≤ 𝜂𝑟,𝑧 ≤ 1) determine the density
distribution profile. The electric field created by such a beam is mainly transverse and can be found
using the Gauss’s law in the reference frame co-moving with the beam and the subsequent Lorentz
transformation to the laboratory reference frame

𝐸𝑟 =
𝜂𝑧(𝜉±)
𝑟

𝑟

∫
0

𝜂𝑟(𝑟′)𝑟′d𝑟′ =
𝑟b𝜂𝑧(𝜉±)

2 ℰ(𝜌), (4.10)

ℰ(𝜌) ≡ 2
𝜌

𝜌

∫
0

𝜂𝑟(𝑟b𝜌′)𝜌′d𝜌′, (4.11)

where 𝜌 = 𝑟/𝑟b is the transverse coordinate, measured in units of the distance 𝑟b, at which the
electric field reaches its maximum. For electrons with 𝑣𝑧 = const = 𝑐 we get 𝜉+ = 2𝜏. Given the
above assumptions and redefining 𝜂(𝜏) ≡ 𝜂𝑧(2𝜏), the motion equations are rewritten as follows

𝑑2𝜌
𝑑𝜏2 = −ℰ(𝜌)𝛾 𝜂(𝜏), (4.12)

𝑑𝛾
𝑑𝜏 = −𝑃(𝜒), (4.13)

𝜒 = 𝛾 ℰ(𝜌)𝑎S
𝑟b𝜂(𝜏). (4.14)

Here 𝑎S = 𝑒𝐸S/𝑚𝑐𝜔b = 𝑚𝑐2/ℏ𝜔b is the normalized Sauter-Schwinger field. When deriving these
equations, it was assumed that the electric and magnetic components of the Lorentz force acting on
the particle are almost equal to each other (hence the factor 1/2 in the equation (4.10) disappears),
which is true if 𝑣𝑧 ≃ 𝑐 ≫ 𝑣𝑟 and 𝛾 ≫ 1. This also suggests that the radiation friction force acts
predominantly along the 𝑧 axis. Thus, it is not explicitly present in the equation for the transverse
coordinate 𝜌. As mentioned above, we will be interested in particles experiencing the largest fields,
i.e. particles which initial displacement 𝑟0 from the beam axis is 𝑟b and, therefore, 𝜌0 ≡ 𝜌(𝜏 = 0) = 1.

Before solving the equations (4.12)–(4.13) it is useful to estimate the characteristic time scales
present in the problem, namely, the time scale of the change in the electron trajectory 𝜏𝐷0 and the
time scale of energy losses due to radiation 𝜏BS which are defined as follows

𝜏𝐷0 = √2𝛾0, (4.15)

𝜏BS =
𝛾0

𝑃(𝜒0)
, (4.16)

where 𝜒0 = 𝑟b𝛾0ℰ (𝜌0) /𝑎S and 𝛾0 = 𝛾(𝜏 = 0) are the initial values of the parameter 𝜒 and the
Lorentz factor of the particles, respectively. We also introduce the parameter 𝜘 as follows

𝜘 =
𝜏𝐷0

𝜏BS
=
√

2
𝛾0
𝑃(𝜒0). (4.17)
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This parameter determines the regime of the collision. In the case of 𝜘 ≫ 1, considered in sec-
tion 4.2.2, significant energy losses due to radiation occur on a timescale much shorter than the
time required for the particle to reach the beam axis. In the opposite limit 𝜘 ≪ 1, considered in
section 4.2.3, the beam energy changes significantly over a large number of betatron periods.

Using the relationship between 𝛾0 and 𝜒0 and given that 𝑃(𝜒) ≡ 𝛼𝑎S𝜑(𝜒), the 𝜘 parameter can
also be expressed as follows

𝜘 = 𝛼√2𝑟b𝑎S
𝜑(𝜒0)
√𝜒0

. (4.18)

This shows that the effect of beamstrahlung is determined by two initial parameters of the inter-
action: the absolute value of the beam radius 𝑟b1 and the parameter 𝜒0. It will be shown below
that these two parameters are sufficient to calculate the relative change in the disruption parameter
caused by radiation. In classic and quantum regimes, definition (4.18) can be rewritten as follows

𝜘 ≈ 𝛼√2𝑟b𝑎S × {
0.67𝜒3/20 , 𝜒0 ≪ 1,
0.37𝜒1/60 , 𝜒0 ≫ 1.

(4.19)

4.2.2 Radiation-dominated regime

Constant force approximation

It is not possible to obtain a solution of the equations (4.12)–(4.13) in an explicit analytical form,
therefore, first we will make some analytical estimates, resorting to the constant force approxima-
tion, which corresponds to the substitution of the coordinate 𝜌 in the rhs of the equation (4.12) with
its initial value 𝜌0 = 1. In this case, the equations (4.12)–(4.13) become

𝑑2𝜌
𝑑𝜏2 = −ℰ (𝜌0)

𝛾 𝜂(𝜏), (4.20)

𝑑𝛾
𝑑𝜏 = −𝑃 (𝜒) , (4.21)

𝜒 = 𝜒0
𝛾
𝛾0
𝜂(𝜏). (4.22)

According to the equations (4.6)–(4.7) both in the classical (𝜒 ≪ 1) and quantum (𝜒 ≫ 1) limits,
the function 𝑃 can be approximated as power function of 𝜒

𝑃(𝜒) = {
𝑃𝐶(𝜒) ≈ 0.67𝛼𝑎S𝜒2, 𝜒 ≪ 1,
𝑃𝑄(𝜒) ≈ 0.37𝛼𝑎S𝜒2/3, 𝜒 ≫ 1.

(4.23)

1In dimensional terms, the product 𝑟b𝑎S is equal to the ratio of the beam radius to the Compton wavelength.



4.2. EFFECT OF RADIATION REACTION ON DISRUPTION IN BEAM-BEAM COLLISION 85

In this case, we can get the solution in quadratures

𝛾 = 𝛾0 (1 −
𝑃0(1 − 𝜈)

𝛾0

𝜏

∫
0

𝜂𝜈(𝜏′)d𝜏′)

1
1−𝜈

, (4.24)

𝜌(𝜏) = 𝜌0 + ̇𝜌0𝜏 − ℰ (𝜌0)
𝜏

∫
0

d𝜏′
𝜏′

∫
0

𝜂(𝜏″)
𝛾(𝜏″)d𝜏

″, (4.25)

where 𝜈 = 2 for the classical regime and 𝜈 = 2/3 for the quantum regime, 𝑃0 = 𝑃 (𝜒0), ̇𝜌0 = ̇𝜌(𝜏 = 0).
Let us analyze the obtained solution for the homogeneous beam 𝜂𝑧 = 𝜂𝑟 = 𝜂 = 1, for which
ℰ(𝜌) = 𝜌. In this case, all the integrals can be calculated explicitly. In particular, the solutions for 𝛾
and 𝜌 have the following form

𝛾(𝜏) = 𝛾0 ×
⎧⎪
⎨⎪
⎩

(1 + 𝜘 𝜏
𝜏𝐷0

)
−1
, 𝜒 ≪ 1,

(1 − 𝜘
3

𝜏
𝜏𝐷0

)
3
, 𝜒 ≫ 1,

(4.26)

𝜌(𝜏) = 1 − 𝜏2
𝜏2𝐷0

×
⎧⎪
⎨⎪
⎩

1 + 𝜘
3

𝜏
𝜏𝐷0

, 𝜒 ≪ 1,

(1 − 𝜘
3

𝜏
𝜏𝐷0

)
−1
, 𝜒 ≫ 1,

(4.27)

where ̇𝜌0 = 0 is assumed.
It is interesting to note that at the beginning of the interaction (0 < 𝜏 ≪ 𝜏𝐷0) the dependence of

the electron energy on time is the same for both the classical and quantum regimes

𝛾(𝜏) ≈ 𝛾0 (1 − 𝜘 𝜏
𝜏𝐷0

) . (4.28)

If we introduce the time 𝜏𝛾 after which the electron energy is halved due to radiation, then this time
in the classical limit is about 1.6 times less than in the QED limit

𝜏𝛾(𝜒 ≪ 1) = 𝜏BS, (4.29)
𝜏𝛾(𝜒 ≫ 1) = 3 (1 − 2−1/3) 𝜏BS. (4.30)

This is an expected result, since the radiation losses according to the classical expression are greater
than according to the quantum one. This fact shows that the collision of beams in the quantum
regime can be preferable if it is necessary to reduce energy losses due to radiation [214].

The focusing time can be found from the condition 𝜌(𝜏 = 𝜏𝐷) = 0. Utilizing that 𝐷 ∝ 𝜏−2𝐷 ,
the expression for the disruption parameter with account of radiation reaction can be written in the
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Figure 4.1: Comparison of an approximate solution (4.26)–(4.27) (orange line) with numerical
solution of equations (4.12)–(4.13) (green line) (see Appendix A) with 𝜘0 = 5. For the left column
𝜒0 = 0.01, for the right one — 𝜒0 = 150. The black dashed line corresponds to the solution of the

equation (4.12) with constant particle energy 𝛾.

following form

𝐷 ≈ 𝐷0 {
(𝜘/3)2/3 , 𝜒 ≪ 1,
(𝜘/3)2 , 𝜒 ≫ 1.

(4.31)

By virtue of the equation (4.18), we can rewrite the equation (4.3) in the variables 𝑟b and𝜒0 as follows

𝐷 ≈ 𝐷0 {
2.43√𝑟b[µm] 𝜒0, 𝜒 ≪ 1,
4.2 𝑟b[µm] 𝜒1/30 , 𝜒 ≫ 1.

(4.32)

Fig. 4.1 shows that, although both solutions in the quantum and classical regimes describe energy
losses quite well, the particle trajectory according to this solution differs quite strongly from the real
trajectory, which overestimates the disruption parameter, so this simple model can only serve for
rough estimates of the disruption parameter, which may be sufficient in cases where only its order
of magnitude is of interest.

Corrections to the model

The accuracy of the analytical model can be significantly improved by two changes. First, we will
use the average transverse coordinate of the particle 𝜇 in the rhs of the equation (4.12) instead of its
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initial value 𝜌0,

𝑑2𝜌
𝑑𝜏2 = −𝜇𝛾 , (4.33)

𝑑𝛾
𝑑𝜏 = −𝑃 (𝜇𝜒0

𝛾
𝛾0
) , (4.34)

𝜇 ≡ 1
𝜏𝐷

∫
𝜏𝐷

0
𝜌 (𝜏′) d𝜏′ < 1. (4.35)

Second, we «stich» solutions in quantum and classical regimes at the time instance 𝜏1, at which the
particle parameter 𝜒 reaches a certain threshold value 𝜒1 ∼ 1, if its initial value was sufficiently
large, i.e. 𝜒0 > 𝜒1. Then for 𝜏 < 𝜏1 the motion equations have the following solution

𝛾𝑄(𝜏) = 𝛾0 (1 − ̃𝜘0
𝜏
𝜏𝐷0

)
3
, (4.36)

𝜌𝑄(𝜏) = 1 − 𝜏2
𝜏2𝐷0

(1 − ̃𝜘0
𝜏
𝜏𝐷0

)
−1
, (4.37)

̃𝜘0 =√
2

9𝛾0𝜇
𝑃𝑄(𝜇𝜒0). (4.38)

Note that the variable ̃𝜘0 (and also ̃𝜘1 below) includes an additional factor 1/3 compared to the 𝜘
definition in equation (4.17), which slightly shortens the following expressions. Time 𝜏1 is found
from the condition

𝜒 = 𝜒0
𝛾𝑄(𝜏1)𝜌𝑄(𝜏1)

𝛾0
≡ 𝜒0

𝛾1𝜌1
𝛾0

= 𝜒1. (4.39)

To find an approximate solution to this equation, consider the following auxiliary equation for 𝑥

𝑘1 = (1 − 𝑥2
1 − 𝑘2𝑥

) (1 − 𝑘2𝑥)
3 . (4.40)

Since both factors in the rhs decrease as 𝑥 increases, it is obvious that 𝑥 < 𝑥1,2, where 𝑥1,2 satisfy the
following equations

𝑘1 = (1 − 𝑘2𝑥1)
3, (4.41)

𝑘1 = 1 − 𝑥22
1 − 𝑘2𝑥2

. (4.42)

These equations have the following solutions

𝑥1 =
1 − 3√𝑘1

𝑘2
, (4.43)

𝑥2 =
𝑘2(1 − 𝑘1)

2 (
√
1 + 4

𝑘22(1 − 𝑘1)
− 1) . (4.44)
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Thus, the approximate solution of the equation (4.40) can be found as 𝑥 = min{𝑥1, 𝑥2}. Finally, 𝜏1 is
found by performing a substitution

𝑥 → 𝜏1
𝜏𝐷0

, 𝑘1 →
𝜒1
𝜒0

= 𝜁, 𝑘2 → ̃𝜘0. (4.45)

From the equation (4.39), the ratio 𝛾1/𝛾0 can be found as follows

𝛾1
𝛾0

= 𝜒1
𝜒0

1
𝜌1

≡ 𝜁
𝜌1
, (4.46)

where we introduced 𝜁 = 𝜒1/𝜒0.
For 𝜏 > 𝜏1, by definition, it is necessary to use the classical formulas for the radiation power, so

that the solution of the motion equations has the form

𝛾𝐶(𝜏) = 𝛾1 (1 + 3 ̃𝜘1
𝜏 − 𝜏1
𝜏𝐷1

)
−1
, (4.47)

𝜌𝐶(𝜏) = 𝜌1 + ̇𝜌1
𝜏 − 𝜏1
𝜏𝐷1

− (𝜏 − 𝜏1)2
𝜏2𝐷1

(1 + ̃𝜘1
𝜏 − 𝜏1
𝜏𝐷1

) , (4.48)

where

𝜏𝐷1 = √2𝛾1, (4.49)

̃𝜘1 =√
2

9𝛾1𝜇
𝑃𝐶(𝜇𝜒1), (4.50)

̇𝜌1 = 𝜏𝐷1 ̇𝜌𝑄(𝜏 = 𝜏1) = −
√

𝜁
𝜌1

𝜏1
𝜏𝐷0

2 − ̃𝜘0
𝜏1
𝜏𝐷0

(1 − ̃𝜘0
𝜏1
𝜏𝐷0

)
2 . (4.51)

The focusing time can be calculated from the equation 𝜌𝐶(𝜏𝐷) = 0, which has an explicit but too
cumbersome solution. Let us find an approximate solution of this equation. To do this, consider
another auxiliary equation for 𝑥

0 = 𝑘1 + 𝑘2𝑥 − 𝑥2 (1 + 𝑘3𝑥) . (4.52)

For large values of 𝑘3, the solutions of this equation can be roughly estimated as follows

𝑥1 = 3

√
𝑘1
𝑘3
. (4.53)

For smaller values of 𝑘3, we can first find a solution by setting 𝑘3 = 0, i.e.

0 = 𝑘1 + 𝑘2𝑥′ − 𝑥′2. (4.54)
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The above equation has a solution

𝑥′ = 𝑘2
2 +√𝑘1 +

𝑘22
4 . (4.55)

Assuming that the solution of (4.52) is only slightly different from 𝑥′, i.e. 𝑥 = 𝑥′+𝑥″, we can expand
this equation in 𝑥″ and leave only linear terms

𝑘2𝑥″ + 2𝑥″𝑥′(1 + 𝑘3𝑥′) − 𝑘3𝑥′3 = 0. (4.56)

From here we get that 𝑥 can be approximately calculated as follows

𝑥2 = 𝑥′ − 𝑘3𝑥′3
𝑘2 + 2𝑥′(1 + 𝑘3𝑥′)

. (4.57)

Finally, the smallest of 𝑥1,2 is chosen, i.e. 𝑥 = min{𝑥1, 𝑥2}. To find 𝜏2, we perform the following
substitution

𝑥 → 𝜏2
𝜏𝐷1

, 𝑘1 → 𝜌1, 𝑘2 → ̇𝜌1, 𝑘3 → ̃𝜘1. (4.58)

Thus,

𝜏𝐷
𝜏𝐷0

= 𝜏1 + 𝜏2√
𝜁
𝜌1
, (4.59)

𝜏1 = min {1 − 𝜁1/3
̃𝜘0

̃𝜘0 (1 − 𝜁)
2 (

√
1 + 4

̃𝜘20 (1 − 𝜁)
− 1)} , (4.60)

𝜏2 = min {3√
𝜌1
̃𝜘1
, 𝜏′ − ̃𝜘1𝜏′3

̇𝜌1 + 2𝜏′ (1 + ̃𝜘1𝜏′)
} , (4.61)

𝜏′ =√𝜌1 +
̇𝜌21
4 − ̇𝜌1

2 . (4.62)

In the case of 𝜒0 < 𝜒1, 𝜏1 ≡ 0 and 𝜒1 must be replaced by 𝜒0 in expression for 𝜏2.
Analogously to the equation (4.18), the parameter that determines the significance of radiation

can be expressed as follows

̃𝜘 = 𝛼√
2
9𝑟b𝑎S × {

(𝜇𝜒0)
2/3, 𝜒0 < 𝜒1,

(𝜇𝜒0)
1/6, 𝜒0 > 𝜒1,

(4.63)

and it is easy to show that ̃𝜘1 can be expressed in terms of ̃𝜘. Thus, the disruption parameter with
account of radiation reaction in the corrected model, is equal to

𝐷 = 𝐷0 (
𝜏𝐷0

𝜏𝐷
)
2
. (4.64)

The figure 4.2 shows that calculating the disruption parameter using this corrected model is sig-
nificantly superior to using simple limit expressions (4.31). Note that although 𝜇 should be self-
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Figure 4.2: Comparison of the 𝐷/𝐷0 ratio calculated using the limit expression (4.31) (red line
corresponds to the classical limit, blue— to the quantum), the correctedmodel (orange dash-dotted
line) and fromnumerically solving themotion equations (4.12)–(4.13) (green line) (see Appendix A),

as a function of 𝜒 for a fixed value 𝑟b = 10 µm.

consistently calculated from the solution obtained above, numerical analysis shows that the value
of 𝜇 is close to 0.5. Thus, to find an analytical solution, we treat 𝜇 as a free parameter, which we
set to 0.5. This is also confirmed by the fact that the variation of 𝜇 in the range 0.3–0.7 does not
lead to a significant change in the final value of the disruption parameter. According to the equa-
tions (4.60)–(4.61), the ratio 𝐷/𝐷0 can be expressed as a function of only two initial parameters: the
beam radius 𝑟b and 𝜒0 values. This fact allows us to perform a parameter scan in a reasonable time
using a full-scale 3D QED-PIC simulation and calculate the value of 𝐷/𝐷0 based on the results of
such simulation (see Sec. 4.2.4).

4.2.3 Interaction of long beams
This section discusses the interaction of long uniform beams of oppositely charged particles when
the number of betatron oscillations is large 𝜎𝑧/𝑐𝜏𝐷0 ≫ 1 and radiation losses are insignificant during
a single period, which corresponds to the limit 𝜘 ≪ 1. Such a configuration may correspond to the
interaction of beams with significantly different energy densities in the center-of-mass reference
frame, which may arise due to the greater mass, Lorentz factor, or particle density of one beam
compared to another in the laboratory reference frame. A characteristic example of such a scenario is
the collision of electron and proton beams. In this case, the characteristic time scale of the evolution
of a more energetic beam is much larger than that of the colliding beam; therefore, all particles of
the colliding beam experience an almost unperturbed field, in contrast to the case considered in the
previous section, when this statement is true only for particles at the beam front. For simplicity, we
consider the interaction of homogeneous beams 𝜂𝑧 = 𝜂𝑟 = 𝜂 = 1, for which ℰ(𝜌) = 𝜌. In that case,
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it is convenient to introduce the following variables

𝑎2 = 𝜌2 + 𝛾 (d𝜌d𝜏 )
2
, (4.65)

𝜑 = arctan(d𝜌d𝜏
√𝛾
𝜌 ), (4.66)

where 𝑎 and 𝜑 are the amplitude and phase of betatron oscillations (𝜌 = 𝑎 cos𝜑), respectively. In
the new variables, the equation (4.21) becomes

d𝑎
d𝜏 = − 𝑎

2𝛾 sin
2 𝜑 𝑃 (𝜒0𝛾0

𝑎𝛾|cos𝜑|) . (4.67)

To calculate the slowly varying amplitude of betatron oscillations, 𝐴 = ⟨𝑎⟩, we average the equa-
tion (4.67) over 𝜑 and neglect the fast components of the amplitude 𝑎 and the energy 𝛾

d𝐴
d𝜏 = − 𝐴

2𝛾𝑓1 (
𝜒0
𝛾0
𝐴𝛾) , (4.68)

d𝛾
d𝜏 = −𝑓2 (

𝜒0
𝛾0
𝐴𝛾) , (4.69)

where

𝑓1(𝑣) =
1
2𝜋

2𝜋

∫
0

sin2 𝜑 𝑃 (𝑣|cos𝜑|) d𝜑, (4.70)

𝑓2(𝑣) =
1
2𝜋

2𝜋

∫
0

𝑃 (𝑣|cos𝜑|) d𝜑, (4.71)

and 𝛾 = ⟨𝛾⟩. Introducing 𝜒 = ⟨𝜒⟩ = 𝜒0𝐴𝛾/𝛾0, we obtain a system describing the electron dynamics
averaged over betatron oscillations

𝑑𝜒
𝑑𝜏 = − 𝜒

2𝛾 [𝑓1 (𝜒) + 2𝑓2 (𝜒)] , (4.72)

𝑑𝛾
𝑑𝜏 = −𝑓2 (𝜒) . (4.73)

This system has the following constant of motion

ln 𝛾 − 𝑔(𝜒) = const, (4.74)

𝑔(𝑣) = ∫ 2𝑓2(𝑣)d𝑣
𝑣𝑓1 (𝑣) + 2𝑣𝑓2 (𝑣)

. (4.75)

In the classical limit (𝜒 ≪ 1) we have 𝑓2(𝑣) = 4𝑓1(𝑣) = 𝑃𝐶(𝑣)/2 and the constant of motion takes
form

𝛾−9/8𝜒 = const. (4.76)
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Figure 4.3: Comparison of the analytical solution (4.77)–(4.78) and (4.82)–(4.83) (orange dashed
dotted line) and numerical solution of equations (4.12)–(4.13) (green line) (see Appendix A) with

𝜘0 =0.005. In the left column 𝜒0 = 0.01, in the right one 𝜒0 = 150.

It follows from Eqs. (4.73) and (4.76) that

𝛾 = 𝛾0𝑆(𝜏)−4/5, (4.77)
𝜌 = 𝜌0𝑆(𝜏)−1/10, (4.78)

𝑆(𝜏) = 1 + 5
8 (𝜘

𝜏
𝜏𝐷0

) . (4.79)

In a quantum limit (𝜒 ≫ 1) we have

𝑓2(𝑣) =
8
3𝑓1(𝑣) =

Γ (5/6)
Γ (4/3)√𝜋

𝑃𝑄(𝑣), (4.80)

and constant of motion takes form
𝛾−19/16𝜒 = const. (4.81)

Eqs. (4.73) and (4.81) have the following solutions

𝛾 = 𝛾0𝑆(𝜏)24/5, (4.82)
𝜌 = 𝜌0𝑆(𝜏)9/5, (4.83)

𝑆(𝜏) = 1 − 5
24√𝜋

Γ(5/6)
Γ(4/3) (𝜘

𝜏
𝜏𝐷0

) ≈ 1 − 0.149 (𝜘 𝜏
𝜏𝐷0

) . (4.84)
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The figure 4.3 demonstrates good agreement between the numerical solution of the equations (4.12)–
(4.14) and the analytical solution (4.77) and (4.82).

4.2.4 QED-PIC simulations
To confirm the predictions of the model developed in section 4.2.2, a full-scale three-dimensional
QED-PIC simulations were performed using the code QUILL [201], which simulates QED processes
taking into account their stochasticity via the Monte-Carlo method. Taking 𝑧 as the beam propaga-
tion axis, the simulation parameters were Δ𝑡 = 0.6Δ𝑧, Δ𝑥 = Δ𝑦 = 2.5Δ𝑧, Δ𝑧 = 𝑟b/20. For all
simulations performed, the time step Δ𝑡 was much less than the average delay between successive
QED processes (gamma quanta emission or electron-positron pair production). For the numerical
solution of the Maxwell equations, a hybrid FDTD scheme was used, which is described in detail in
section 4.4.1. Simulations were also performed using the VLPL [215–217] code in combination with
a dispersionless scheme for solving the Maxwell equations — Rhombi in Plane (RIP) [218]. Differ-
ences between simulation results using two different codes were insignificant. Figure 4.4, which
shows an example of simulation results, shows that at 𝜒0 = 10 (see Figure 4.4 (c)) abundant pro-
duction of secondary electrons and positrons occurs. Since this process does not affect the motion
of beam particles at the front, the formation and development of such a cascade is not discussed in
detail. We also note the development of the transverse kink instability in simulations taking into
account QED processes, which will be described below.

We carried out a series of simulations with different values of the initial beam radius 𝑟b and the
value of 𝜒0. The beam length was chosen in such a way that for each simulation the disruption
parameter without taking into account radiation reaction, i.e. 𝐷0, was equal to 10. This was done
in order to have a clear way to determine the focus time used in the calculation of the disruption
parameter. In this regard, our QED-PIC simulations do not correspond to any specific experiment,
which is possible, for example, at the FACET-II facility, since the latter requires a very short inter-
action time to suppress radiation losses [129]. Instead, QED-PIC simulation was used as a means
to solve the equations of particle motion in a self-consistently calculated electromagnetic field and
taking into account the stochastic nature of QED processes. For each simulation, we tracked several
hundred particles located at the front and periphery of the electron beam, using their trajectories
to calculate the average time of crossing the beam axis. Examples of such trajectories, numerical
solution of equations (4.12)–(4.13) and approximate analytical solution are shown in Fig. 4.5. For
each pair of 𝑟b and 𝜒0 values, two simulations were carried out: with and without account of QED
processes. Comparing the average focusing time in these two simulations, the ratio 𝐷/𝐷0 was cal-
culated over a wide range of initial parameters, which is shown in Fig. 4.6 along with an estimate
from the equations (4.59)–(4.61) (in which the free parameters 𝜇 = 0.5, 𝜒1 = 1 were used) and the
result of the numerical solution of single-particle motion equations (4.12)–(4.13).

It is important to note that for large values of 𝑟b and 𝜒0 (the area marked with a red frame in
Fig. 4.6), an alternative criterion was used to calculate the disruption parameter. This is due to the
fact that at such parameters, the energy losses due to radiation are so large that after some time the
beamparticles cease to be relativistic, and their longitudinal velocity becomes comparablewith their
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Figure 4.4: Electron density distribution at different time points in PIC simulations (a) without
radiation reaction, and (b, c) with radiation reaction. The initial beam parameters are (b) 𝑟 = 10 µm,
𝜒 = 1 (c) 𝑟 = 1 µm, 𝜒 = 10. The density and duration of the beams correspond to the value of the
disruption parameter 𝐷0 equal to 10. The white dashed line corresponds to the position of the front

of the counter-propagating positron beam.

transverse velocity, so that eventually the particles stop their directed motion and begin to rotate
without crossing the beam axis. In such cases, to calculate the disruption parameter, instead of the
time at which the particle reaches the beam axis, we used the time at which the longitudinal velocity
of the particle reached 0.5𝑐. Since our analytical model assumes that the longitudinal velocity is
always greater than the transverse velocity, it cannot be applied in these cases.

Asmentioned above, our analyticalmodel predicts that the ratio𝐷/𝐷0 does not explicitly depend
on the particle energy. To confirm this, we performed several QED-PIC simulations with different
initial particle energies, but with the same values of 𝜒0 and 𝑟b. The simulation results show that as
long as the particle energy is high enough for the particles to remain ultrarelativistic until reaching
the beam axis, the resulting ratio 𝐷/𝐷0 is independent of the particle energy.

Comparison of the predictions of the beam interaction model in the weak beamstrahlung limit
(𝜘 ≪ 1) with the results of QED-PIC simulation is not presented in this section, because this regime
is largely associated with the interaction of beams with significantly different energy densities (in
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Figure 4.5: Dynamics of electrons in the field of a counter-propagating positron beam. (a) Elec-
tron energy, (b) displacement from the beam axis, and (c) value of the parameter 𝜒 as functions
of time. The thin blue lines correspond to the trajectories of individual particles in the QED-PIC
simulation, the solid blue line— to the values averaged over these particles, the green line— to the
numerical solution of equations (4.12)–(4.13) (see Appendix A), orange line — to the analytic solu-
tion (4.36)–(4.37), (4.47)–(4.48), black dashed line — to the solution of the equation (4.12) without
beamstrahlung taken into account, i.e. with constant energy 𝛾. Different columns correspond to

different initial parameters 𝑟b and 𝜒0.

the center-of-mass system), in which the more energetic of them is practically not deformed, so
this interaction can be quite accurately described by considering dynamics of a single particle in
an unperturbed field. Nevertheless, in section 4.3 it will be shown that this model can be applied
practically without changes to the problem of the interaction of a high-current beam of ultrarela-
tivistic particles with plasma target. Comparison of the predictions of this model with the results of
QED-PIC simulations is also presented in that section.

4.2.5 Discussion
The scheme discussed in the publication [129] for observing the effects of nonperturbative QED us-
ing a head-on collision of electron and positron beams requires collisionwith a very small disruption
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Figure 4.6: Ratio 𝐷/𝐷0 calculated (left column) from analytical solution (4.59)–(4.60), (middle
column) from numerical solution of equations (4.12)–(4.13), (right column) derived from QED-PIC
simulations. The red box indicates the area where the alternative disruption criterion was used (see

text).

parameter. This requirement imposes severe restrictions on the length and diameter of the beam.
However, as shown above, the disruption parameter is also affected by radiation reaction, which
is not taken into account in the usual way of calculating the disruption parameter. Our analytical
model shows that, for the beam parameters required to reach 𝜒 ∼ 1600 at the beam energy 125GeV,
the total charge 3nC and radius 10nm, the enhancement of the disruption parameter due beam-
strahlung reaches 60%. For the future CLIC and ILC colliders, on the contrary, radiation reaction
may somewhat relax the requirements on the beam parameters to achieve the desired brightness in
the interaction region, which is partly achieved through the use of flat beams. Although we consid-
ered cylindrical beams when deriving the analytical estimate of the 𝐷/𝐷0 ratio, the results obtained
can be applied to the flat beam configurations proposed for use in the CLIC and ILC facilities. For
particles with an initial displacement lying along one of the beam main axes, the motion remains
flat, and therefore the equations (4.12)–(4.13) remain valid. Thus, by calculating the values of𝜒0 and
𝑟b with respect to the beam charge distribution (see e.g. [219] for the distribution of electromagnetic
fields for an elliptical Gaussian charge distribution), the disruption parameter can be calculated for
a specific axis using our analytical model. Performing this procedure leads to the conclusion that
for the expected beam parameters at the CLIC facility, the increase in the disruption parameter is
approximately 35% for the longer axis and only 5% for the shorter one. For a round beam with the
same total charge and cross-sectional area, the increase in the disruption parameter is about 35% in
both axes, which confirms the fact that the use of flat beams reduces the influence of radiation reac-
tion on beam collisions. For the parameters expected at the ILC facility, the increase in disruption
does not exceed 5% in both axes due to the rather low value of 𝜒.

Fig. 4.7 shows how radiation reaction affects beam disruption for various parameters. In par-
ticular, it is shown that the collision of beams with a sufficiently large total charge (> 10nC) and
small radii can be significantly affected by beamstrahlung. Another interesting relationship is that
although increasing the particle energy and/or decreasing the beam length (while maintaining the
same total charge) reduces the disruption parameter, it at the same time leads to an increase in the
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Figure 4.7: Disruption parameter calculated with (solid lines) and without (dashed lines) beam-
strahlung taken into account for various beam parameters.

significance of the beamstrahlung. Thus, the ratio𝐷/𝐷0 can be used to determine whether the effect
of radiation radiation is significant for beam collision or not.

Collision of beams of the same charge sign

The model developed above, which describes the increase in the disruption parameter due to radia-
tion reaction, can also be extended to the case of collision of beamswith the same charge sign. In this
case, the disruption parameter is the square of the ratio of the time duringwhich the displacement of
particles from the beam axis doubles to the time of interaction of the beams. The calculation of this
parameter, taking into account radiation reaction, can be carried out using a similar method that
was used above, i.e. by substituting in the rhs of the particle motion equations the instantaneous
value of the force acting on the particle by its average value. Just as in the case of collision of oppo-
sitely charged beams, in this case the transverse displacement of the particle varies in a limited range
from 𝑟0 to 2𝑟0, so this approximation is justified. This procedure also makes it possible to implicitly
take into account the fact that the force acting on a particle outside the beam falls off according to
the 1/𝑟 law. We note that when beams of the same charge sign interact, the particles move infinitely
and do not oscillate; therefore, both regime of interaction, corresponding to the collision of either
short or long beams, can be described by a single analytical model. Thus, it turns out that despite
the different nature of particle motion in the case of collisions of identically or oppositely charged
beams, the final expressions for calculating the disruption parameter, taking into account radiation
reaction, are identical in both of these cases. Thus, the range of applicability of the proposedmethod
for calculating the beam disruption parameter with account of radiation reaction extends to the case
of interaction of beams of the same charge sign. We note that the experimental realization of the
collision of, for example, two electron beams is a simpler task than the collision of an electron and
positron beams; however, for example, from the point of view of achieving a nonperturbative regime
of QED, such configurations are equivalent.
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Enhancement of the yield of the secondary particles

The publication [220] studied the possibility of significantly increasing the yield of secondary par-
ticles during the collision of high-current beams due to the relative shift of their axes. The shift is
determined in such a way that the axis of one beam is in the region of the maximum field of the
counter-propagating beam. We have shown that in such a configuration, despite the smaller area of
geometric overlap of the beams, the fraction of particles reaching the non-perturbative QED regime
(𝛼𝜒2/3 > 1) [129, 130] does not differ from that in the non-shifted configuration. The advantage of
the shifted configuration is a more uniform distribution of secondary particles, since in this case all
particles of the beam experience approximately the same field strength of the counter-propagating
beam. In the case of the non-shifted configuration, the maximum field is experienced by particles at
the periphery of the beam, which leads to a ring-shaped distribution of secondary particles. Numeri-
cal simulations also show an increase in the yield of the number of secondary particles in a displaced
configuration up to 5-10%. A similar result is obtained when calculating the number of secondary
particles using analytical estimates presented in publications [122, 127]. Since the implementation
of such a configuration does not require any additional complications from an experimental point
of view, its advantage over the unbiased configuration is obvious.

Kink instability

In addition to the emission of hard photons by particles in the collision of high-current beams, an
important QED effect is the decay of emitted photons into secondary electron-positron pairs. Our
full-scale QED-PIC simulation shows that in a sufficiently large range of initial parameters (the
maximum initial value of the 𝜒 parameter for particles exceeds 1), the electron-positron plasma
formed in this way has a significantly higher density than the density of initial particles. In such
a plasma, due to the small spatial separation of the electron and positron components, the electric
field of the initial beams is efficiently screened. Thus, the dynamics of the electron-positron plasma
can be reduced to dynamics of neutral flows in an external magnetic field of the initial beams, which
is one of the most common problems in astrophysics. It is known that a number of instabilities can
develop in such case. Numerical simulation shows that the most pronounced is the kink instability
of the plasma flow in an azimuthal magnetic field, which is the deviation of the center of mass of
the beam from its average axis of symmetry (see Fig. 4.4 (b, c)).

We have determined the influence of secondary electron-positron pairs, formed as a result of
the decay of hard photons emitted by the initial particles of the beam, on the development of this
instability. The results of the full-scale 3D QED-PIC simulation show that production of secondary
pairs does not significantly change the characteristic spatial scale of the instability and its growth
rate. This result is explained by the fact that such particles do not lead to the generation of both
magnetic fields, since the total current of the formed electron-positron pair is zero, and electrostatic
ones, since they are compensated on average due to the symmetrical formation of a pair from the
counter-propagating beam, creating the opposite field. Thus, secondary electron-positron pairs cre-
ate a quasi-neutral background of a sufficiently high density. The simulation results with artificially
disabled electron-positron pair production show that the seed for the kink instability is created as
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a result of the violation of the symmetry of the beam charge distribution caused by the stochastic
emission of photons by the beam particles. The latter also leads to a significant broadening of the
beam energy spectrum. Since particles with lower energy aremore rapidly focused in the field of the
colliding beam, this ultimately leads to the fact that the charge distribution in the beams acquires a
random component.

We also estimated the characteristic temporal and spatial scales of the observed instability. For
this, the long-developed theory of its linear stage was modified [122, 221]. According to this the-
ory, these scales coincide in order of magnitude with the relativistic plasma frequency√4𝜋𝑒2𝑛b/𝑚𝛾,
where 𝑛b and 𝛾 are the density and Lorentz factor of the beam particles, respectively. An important
difference between the problem we are studying and the model problem, which is used to describe
the kink instability, is that the latter assumes the constancy of the particle energy and the beam
charge distribution. Both of these assumptions turn out to be wrong in our case. The energy vari-
ability can be taken into account using the theory developed in section 4.2.2 which describes the
increase in the beam disruption parameter when radiation reaction is taken into account. Since the
relativistic plasma frequency is proportional to the square root of the disruption parameter, the ratio
of the characteristic wavelength of the kink instability with radiation reaction taken into account to
thatwithout radiation reaction is equal to the square root of the ratio of the corresponding disruption
parameters calculated using our theory, i.e.

𝜆kink ∼√
𝑚𝑐2𝛾0
𝜋𝑒2𝑛b√

𝐷0
𝐷 , (4.85)

where 𝛾0 is the initial Lorentz factor of beam particles. Focusing and the corresponding increase
in the beam density leads to an additional increase in the plasma frequency. Due to the stochastic
nature of the radiation, the maximum density of the focused beam is significantly less than in the
case without taking into account radiation reaction. According to the simulation results, the ratio of
the maximum beam density to the initial 𝜈 reaches values of the order of 10–100 (see Fig. 4.4 (b, c)).
Thus, the characteristic scale of kink instability can be estimated in order of magnitude as follows

𝜆kink ∼√
𝑚𝑐2𝛾0
𝜋𝑒2𝑛𝑏,0√

𝐷0
𝐷
1
𝜈 = 𝜆kink,0√

𝐷0
𝐷
1
𝜈. (4.86)

This estimate coincides in order of magnitude with the results of the full-scale QED-PIC simulation.
We also note that, according to the theory of the linear stage of kink instability, it is considered that
the threshold of its observation corresponds to a value of the disruption parameter of the order of 50.
According to the theory developed above, due to an increase in the disruption parameter due to ra-
diation reaction, the condition for the absence of kink instability obviously becomes more stringent.
The QED-PIC simulation results are in good agreement with the corrected estimate. Such a large
value of the disruption parameter is usually not achieved in colliders; nevertheless, further study
of the kink instability in the collision of particle beams as a result of QED processes can probably
be important from the point of view of astrophysical processes, which, however, lay outside of the
scope of the present thesis.
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4.3 Gamma radiation generation in beam-plasma interaction
Besides a technically difficult to implement configuration of a head-on collision of two high-current
beams of ultrarelativistic particles, the observation of QED effects is possible in the configuration
of the interaction of one such beam with a homogeneous plasma target. It is expected that the
FACET-II facility will produce beams with an electron density above 1023 cm−3, which corresponds
to the characteristic electron density in solids. When such a beam propagates in a solid body, a
strongly nonlinear wake wave, bubble, can be excited, formation of which is usually considered in
much less dense media, for example, gas [10, 222]. In this section, using a full-scale 3D PIC sim-
ulation, we study the generation of gamma photons during the interaction of an ultrarelativistic
electron beam with a thick plasma target. Numerical simulations were performed using the PIC
code QUILL [201], in which the formation of secondary particles is taken into account using the
Monte Carlo method. For the numerical solution of the Maxwell equations, a hybrid scheme was
used, described in the section 4.4.1, which allows one to significantly reduce the increment of the
numerical Cherenkov instability [199, 223, 224]. The beam parameters were chosen close to those
expected at the FACET-II facility at the final stage of the project: the beam charge was equal to
3nC, the rms beam diameter and length were 400nm and 1 µm, respectively, the particle energy —
10GeV. In the first series of simulations, the target density varied from 1021 cm−3 to 5 × 1023 cm−3,
thickness — from 1 to 100 µm. The maximum thickness of 100 µm is chosen based on the consid-
eration that collisional processes, which lead to additional energy losses, should be insignificant
(these processes are also not taken into account in the QUILL code, which was used for numerical
simulation).

The simulation results show that beam propagation in the target is accompanied by the forma-
tion of a cavity that is almost completely devoid of electrons and propagates synchronously with
the beam (Fig. 4.8). In such a strongly nonlinear wake wave, quasi-static radial electric and az-
imuthal magnetic fields are formed, in which the beam particles perform betatron oscillations with
a frequency of 𝜔pl/√2𝛾, where the plasma frequency is 𝜔pl corresponds to the unperturbed target
electron density, and 𝛾 is an instantaneous value of the Lorentz factor of the particle [225]. With
such amotion, the radiation of electrons is incoherent and has a synchrotron nature. The generated
beam of gamma quanta repeats the spatial distribution of electrons and has a fairly small divergence.
Gamma radiation has a wide spectrum with a cutoff at the initial electron energy, 10GeV, which
practically does not change during the interaction. In addition to energy losses due to radiation,
beam electrons are also slowed down due to the longitudinal field generated in the plasma cavity.
However, for sufficiently dense targets, this effect is much less significant compared to radiation
losses. It should be noted that as a result of the formation of a bubble, a secondary electron beam is
formed in its rear part, similar to how it occurs in a rarefied plasma. The electrons of this secondary
beam are in the accelerating longitudinal field and also perform betatron oscillations and radiate.
The simulation results show that the cutoff energy of the secondary beam does not exceed 5GeV,
and the fraction of the total energy relative to the energy of the entire gamma radiation does not
exceed 15%.



4.3. GAMMA RADIATION GENERATION IN BEAM-PLASMA INTERACTION 101

4.5 5.0 5.5

−0.5

0.0

0.5

µm
(a)

4.5 5.0 5.5

(b)

20.5 21.0 21.5
µm

−0.5

0.0

0.5

µm

20.5 21.0 21.5
µm

4.5 5.0 5.5

(c)

20.5 21.0 21.5
µm

1022 1023 1024 1025 1026

, cm−3

−20 0 20

Figure 4.8: (a) Electron density distribution, (b) gamma photon density and (c) transverse force
𝐸𝑦 − 𝐵𝑧 acting on beam electrons in simulation of high-current electron beam propagation in a solid
target with density 𝑛𝑒 = 1023 cm−3 and thickness 10 µm. The top row corresponds to the penetration
of the beam into the target to a depth of 5 µm, the bottom row corresponds to the moment the beam

exits the target. The 𝑥 coordinate is measured from the front boundary of the target.

Note that a similar scheme has recently been proposed for generating bright gamma beams,
based on the collision of a high-current beam of ultrarelativistic particles with a sequence of thin
metal films [226]. In this configuration, the effective field acting on beamelectrons is associatedwith
«reflection» of the beam’s own field from a thin plasma layer, and is, in its meaning, a transition ra-
diation field. Despite the differences in the physical mechanism of gamma radiation generation, the
efficiency and the final spectrum are very similar in the configuration [226] and in the configuration
under consideration.

As described above, the beam electrons perform betatron oscillations in the field of a strongly
nonlinear wake wave, the structure of which is described, for example, in the publication [225]. It
is important to note, that the focusing field depends linearly on the transverse coordinate. Thus,
the configuration of the EM field inside the bubble coincides with the configuration of the field the
particle experiences during a collision with a counter-propagating beam, considered in the previous
section, except for the presence of a decelerating longitudinal field. Therefore, for an analytical
description of the process of conversion of the beam energy into the gamma radiation energy, we



102 CHAPTER 4. INTERACTION OF HIGH-CURRENT BEAMSWITHMATTER

can apply the theory developed in section 4.2.3. In that case, one can write

d𝜌
d𝑡 = −𝜌Γ

1
4𝜋 ∫

2𝜋

0
𝑃 ( 𝜌Γ2𝑎S

| cos𝜑|) sin2 𝜑d𝜑, (4.87)

dΓ
d𝑡 = − 1

2𝜋 ∫
2𝜋

0
𝑃 ( 𝜌Γ2𝑎S

| cos𝜑|) d𝜑, (4.88)

where 𝜌 is the betatron oscillation amplitude, Γ is the electron energy, 𝑎S = 𝑚𝑐2/ℏ𝜔pl. These equa-
tions use normalization to the plasma frequency 𝜔pl, corresponding to the unperturbed target elec-
tron density 𝑛𝑒: time is normalized to 1/𝜔pl, coordinates — to 𝑐/𝜔pl, momentum — to 𝑚𝑐, electro-
magnetic field strength — to𝑚𝑐𝜔pl/𝑒, power — to𝑚𝑐2𝜔pl. In the classical (𝜒0 ≪ 1) and essentially
quantum (𝜒0 ≫ 1) cases, when the radiation loss power 𝑃(𝜒) is a power function of 𝜒, these equa-
tions are solved analytically:

Γ(𝑡)
𝛾0

≈ {
(1 + 0.625𝑃(𝜒0)𝑡/𝛾0)

−4/5, 𝜒 ≪ 1
(1 − 0.149𝑃(𝜒0)𝑡/𝛾0)

24/5, 𝜒 ≫ 1
(4.89)

where 𝜒0 = 𝑟0𝛾0/2𝑎S, 𝑟0 is the initial displacement of the electron from the beam axis. Taking into
account the number of particles located inside the target, we can finally determine the dependence
of the total beam energy on time

Σ𝑒(𝑡) = Σ0 −
0

∫
−2𝜎𝑥

𝑟b

∫
0

(𝛾0 − 𝛾(𝑥 + 𝑐𝑡)) 𝜂(𝑟, 𝑥)Θ(𝑥 + 𝑐𝑡)2𝜋𝑟d𝑟d𝑥, (4.90)

where Σ0 = 𝑁𝛾0, 𝑁 is the number of electrons in the beam, the function 𝜂(𝑥, 𝑟) = 𝑛b(𝑥, 𝑡)/𝑁 defines
the charge distribution in a beam, Θ(𝑥) is Heaviside step function. An example of comparing such
an estimate with the results of QED-PIC simulation is shown in Fig. 4.9, 4.10.

Note, that thismodel does not take into account the presence of a longitudinal field in the plasma
cavity, which additionally slows down the beam electrons. This partially explains the difference
between the estimated beam energy (4.90) and its value in numerical simulations. Moreover, for
the used beam parameters, even in a collision with a dense target, the efficiency of generation of
electron-positron pairs fromgammaquanta is low enough to significantly affect the collision process.
This is why the formation of electron-positron pairs is not considered in detail.
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In addition to the influence of the target parameters, the influence of the geometrical dimensions
of the beam on the efficiency of the conversion of the electron energy into the energy of gamma radi-
ation was also studied. As the reference beam parameters, we chose the parameters implemented at
the FACET-II facility to date, namely: beam charge from 0.5 to 3nC, particle energy of 10GeV, beam
length 𝑙b from 1 to 100 µm, beam radius 𝑟b from 2.5 to 100 µm. As demonstrated above, the efficiency
of beam energy conversion into gamma radiation energy increases with increasing target concentra-
tion and length. In this regard, the target density was chosen to be equal to 0.6 of the maximum
electron density reached at the center of the beam. This choice is justified by the fact that at a given
density ratio, the electron beam creates a cavity in the target that is free from electrons, i.e. bubble,
in which a transverse charge separation field is created. In this case, the maximum target thickness
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was limited by the characteristic mean free path with respect to collisional processes, which lead
to additional energy losses and are not studied in this work, in particular, bremsstrahlung of elec-
trons on nuclei, the formation of electron-positron pairs from photons near nuclei, electron-electron
scattering, etc., and was calculated from the relation

𝑙max = 10−3𝜆𝜎 = 10−3 (𝜎max𝑛)
−1 , (4.91)

where 𝜆𝜎 = (𝜎max𝑛)−1 is the mean free path with respect to the process with cross section 𝜎max,
𝑛 is the density of scatterers (nuclei, electrons), which was considered equal to the target electron
density 𝑛𝑒. The characteristic maximum cross section 𝜎max was estimated by us as 10−22 cm2, which
corresponds, for example, to the bremsstrahlung cross section of electrons with energy 10GeV on
nuclei with charge number 𝑍 ∼ 50 [32]. When the relation (4.91) holds, collisional processes can
be considered insignificant. As demonstrated above, the energy loss of an electron beam due to
the emission of hard photons depends on two dimensionless parameters: the initial value of the
QED parameter 𝜒0 and the duration of interaction of the beam with the target in plasma periods
𝑇 = 𝜔pl𝑙/𝑐. In this case, the value of 𝜒0 can be calculated as follows

𝜒0 = 𝛾0𝑛𝑒𝑟0𝑟𝑒𝜆𝐶 , (4.92)

where 𝛾0 is initial Lorentz factor of electrons, 𝑟0 is beam diameter, 𝑟𝑒 is classical electron radius, 𝜆𝐶 is
Compton wavelength. Due to the fact that at the beam parameters achievable at the current stage of
development of the FACET-II facility, the value of the parameter 𝜒0 does not exceed a value of about
0.2, radiation losses can be estimated using formulas corresponding to the classical radiation limit
(𝜒0 ≪ 1). In this case, according to (4.89), the efficiency of converting the energy of the electron
beam into gamma radiation can be estimated as follows

𝜅 =
Σ𝛾
Σ𝑒,0

≈ 1 − (1 + 0.625𝑃(𝜒0)𝑇/𝛾0)
−4/5, (4.93)

where Σ𝛾 is total energy of gamma radiation, Σ𝑒,0 is initial energy of electron beam,
𝑃(𝜒0) = 2/3𝛼𝑎S𝜒20 is total radiation power normalized to 𝑚𝑐2𝜔pl, 𝛼 = 𝑒2/ℏ𝑐, 𝑎S = 𝑚𝑐2/ℏ𝜔pl.
Substituting into (4.93) the values of 𝑇 and 𝜒0, expressed in terms of the maximum beam density,
one can show that the value of 𝜅 is proportional to the maximum beam density 𝑛b, as well as the
value of 𝜒0, according to (4.92). Thus, from the estimate (4.93) it follows that in order to achieve
the maximum conversion of the beam energy into the energy of gamma radiation, as well as the
generation of radiation with the highest cutoff energy (since the maximum energy of the emitted
the more photons, the larger the 𝜒 value), it is necessary to use the densest beam. For a fixed beam
charge this corresponds to the minimum geometric dimensions of the beam. Since our estimate
is quite simple and was obtained taking into account a number of assumptions, in order to more
accurately determine the optimal geometric dimensions of the beam, we carried out a series of
full-scale three-dimensional numerical simulations of the interaction of an electron beam with a
homogeneous target using the particle-in-cell method with quantum electrodynamic effects taken
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Figure 4.11: (a) Efficiency of the conversion of the electron beam energy into gamma radiation
energy and (b) the cutoff energy in the gamma radiation spectrum on as function of the beam length
and radius. The color map is obtained by linear interpolation between the values obtained from the
PIC simulation (marked with blue crosses). The white dotted line corresponds to the ratio 𝑙b = 𝑟b,
the white solid lines denote the levels of the constant value of 𝜒0, according to the estimate (4.92).

into account, implemented in the QUILL code [201]. The charge and energy were 3nC and 10GeV
respectively. The results of the numerical simulation in the range of beam lengths from 1 to 30 µm
and beam radii from 2.5 to 7.5 µm are shown in Fig. 4.11. According to the simulation results, the
maximum conversion of beam energy into gamma radiation energy is achieved at the minimum
beam radius (2.5 µm), but at a beam length greater than the minimum (6 µm) , and is about 12%. In
this case, the maximum photon energy is 4.7GeV.

To explain the reason for the discrepancy between the simulation results and our estimate, we
have considered in detail the bubble formation process (see Fig. 4.12). In simulations with the small-
est possible beam size (radius 𝑟b = 2.5 µm, length 𝑙b = 1 µm), its maximumdensity is 2.8×1021 cm–3,
and the target density is 1.7 × 1021 cm–3. With these parameters, the estimate of the bubble radius
according to the model developed in the publication [227] gives the value of 2.8 µm. Despite the
fact that the transverse charge separation field inside the bubble is practically independent of the
longitudinal coordinate [225], it obviously sharply decreases to zero when passing through the bub-
ble boundary (see Fig. 4.12 (b)). Since the beam length is sufficiently less than the bubble radius,
and the beam radius practically coincides with the latter, the beam electrons are located in the re-
gion where the transverse field strength is significantly less than in the main part of the bubble
(see Fig. 4.12 (b)). This leads to the fact that the real value of the parameter 𝜒 of electrons turns
out to be noticeably smaller than according to the estimate (4.92). In this regard, the emission of
photons by electrons becomes inefficient. The simulation results show that, in general, during the
interaction of an electron beamwith a radius exceeding its length, the efficiency of gamma radiation
generation is significantly reduced due to the effect described above (see dashed line in Fig. 4.11 (a)).
When using a longer beam, a significant part of it is in the region of a strong transverse field, and
the estimate (4.93) describes the energy conversion into gamma radiation pretty well.
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Figure 4.12: Peculiarities of the bubble generation by an electron beam with a diameter greater
than its length (𝑙b = 1 µm, 𝑟b = 2.5 µm). (a) Electron density distribution and (b) 𝛾0 (𝐸𝑦 − 𝐵𝑧) /𝑎S
equal to the value of the electron parameter 𝜒. The 𝑥 coordinate is measured from the beginning of

the target. Dashed lines indicate the location of the electron beam.

It should be noted that despite the achievement of themaximum conversion efficiency at a beam
length of 6 µm, from the point of view of applications of the resulting radiation, its spectral character-
istics are also important. The simulation results show (see Fig. 4.11 (b)) thatwhen using a beamwith
minimal geometric dimensions, by increasing the value of the parameter 𝜒0, the maximum energy
of gamma photons is higher, than in the case of using a beam with optimal parameters, and reaches
7.5GeV. However, the generation efficiency in this case turns out to be significantly lower — 3%.

4.4 Numerical simulation of ultrarelativistic beams using the
PIC method

As described above, the development of charged particle accelerator technologies will make it pos-
sible in the foreseeable future to conduct unprecedented experiments on the interaction of high-
current charged particle beams with matter to generate gamma radiation, study of strong-field QED
processes, elementary particle physics, and even astrophysical processes. Due to the technical com-
plexity of such experiments, an extremely important part of their planning is the search for optimal
interaction configurations and obtaining various qualitative and quantitative estimates using nu-
merical simulation. Themost modernmethod for self-consistent modeling of plasma dynamics and
electromagnetic fields is the particles-in-cells or PICmethod. Despite the advantages of this method,
it is not free from disadvantages, one of which is the dispersion of waves in vacuum, which occurs
when using the standard scheme for solving Maxwell’s equations — Finite Differences in the Time
Domain, or FDTD. The dispersion of EM waves in vacuum, in particular, leads to the existence of
waves which phase velocity is less than the speed of light. Thus, ultrarelativistic charged particles
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Figure 4.13: The location of the grid nodes of the electric and magnetic fields and the indices used
in the QUILL code.

can satisfy the Cherenkov synchronism condition and resonantly excite such waves in vacuum —
the effect known as numerical Cherenkov instability (NCI) [199, 223, 224], which may significantly
reduce the reliability of the results obtained using numerical simulations.

Let us present a simplified analysis that indicates the cause of the appearance of the numerical
Cherenkov instability (more rigorous reasoning, taking into account the interpolation of fields into
particles, can be found, for example, in the papers [228, 229]). To do this, we will use the arrange-
ment and indexing of fields on the grid, which is used in the QUILL code (see Fig. 4.13). The most
common scheme for the numerical solution of Maxwell’s equations is the FDTD scheme, in which
the grids of the magnetic and electric fields are shifted by half a step in each direction of space and
time, and the derivatives are replaced by finite differences. Thus, Maxwell’s equations are written
in the following form

̂𝛿𝑡𝐵𝑥 = ̂𝛿𝑧𝐸𝑦 − ̂𝛿𝑦𝐸𝑧, (4.94)
̂𝛿𝑡𝐵𝑦 = ̂𝛿𝑥𝐸𝑧 − ̂𝛿𝑧𝐸𝑥, (4.95)
̂𝛿𝑡𝐵𝑧 = ̂𝛿𝑦𝐸𝑥 − ̂𝛿𝑥𝐸𝑦, (4.96)
̂𝛿𝑡𝐸𝑥 = ̂𝛿𝑦𝐵𝑧 − ̂𝛿𝑧𝐵𝑦 + 𝑗𝑥, (4.97)
̂𝛿𝑡𝐸𝑦 = ̂𝛿𝑥𝐵𝑥 − ̂𝛿𝑥𝐵𝑧 + 𝑗𝑦, (4.98)
̂𝛿𝑡𝐸𝑧 = ̂𝛿𝑧𝐵𝑦 − ̂𝛿𝑦𝐵𝑥 + 𝑗𝑧, (4.99)

where the finite difference operator ̂𝛿 is used

̂𝛿𝑥𝐹𝑖+1/2,𝑗,𝑘 =
𝐹𝑖+1,𝑗,𝑘 − 𝐹𝑖,𝑗,𝑘

Δ𝑥 , (4.100)

which approximates the derivative up to terms of order Δ𝑥2. The operators ̂𝛿𝑦, ̂𝛿𝑧, ̂𝛿𝑡 are defined
similarly. Let us find the dispersion relation for waves in vacuum (j = 0). To do this, we will look
for solutions of the equations (4.94)–(4.99) in the form of plane waves, i.e. E, B ∝ exp(−𝑖𝜔𝑡 + 𝑖kr).
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To do this, it suffices to define the action of the operator ̂𝛿 on the expression exp(−𝑖𝜔𝑡 + 𝑖kr)

̂𝛿𝛼𝑒−𝑖𝜔𝑡+𝑖kr =
1
Δ𝛼 (𝑒

𝑖𝑘𝛼Δ𝛼/2 − 𝑒−𝑖𝑘𝛼Δ𝛼/2) 𝑒−𝑖𝜔𝑡+𝑖kr = 2𝑖
Δ𝛼 sin

𝑘𝛼Δ𝛼
2 𝑒−𝑖𝜔𝑡+𝑖kr, (4.101)

̂𝛿𝑡𝑒−𝑖𝜔𝑡+𝑖kr =
1
Δ𝑡 (𝑒

−𝑖𝜔Δ𝑡/2 + 𝑒−𝑖𝜔Δ𝑡/2) 𝑒−𝑖𝜔𝑡+𝑖kr = − 2𝑖
Δ𝑡 sin

𝜔Δ𝑡
2 𝑒−𝑖𝜔𝑡+𝑖kr, (4.102)

where 𝛼 = 𝑥, 𝑦, 𝑧. Thus, the equations (4.94)–(4.99) in vacuum for plane waves are rewritten in the
following form

𝐴𝑡𝐵𝑥0 = 𝐴𝑦𝐸𝑧0 − 𝐴𝑧𝐸𝑦0, (4.103)

𝐴𝑡𝐵𝑦0 = 𝐴𝑧𝐸𝑥0 − 𝐴𝑥𝐸𝑧0, (4.104)

𝐴𝑡𝐵𝑧0 = 𝐴𝑥𝐸𝑦0 − 𝐴𝑦𝐸𝑥0, (4.105)

𝐴𝑡𝐸𝑥0 = 𝐴𝑧𝐵𝑦0 − 𝐴𝑦𝐵𝑧0, (4.106)

𝐴𝑡𝐸𝑦0 = 𝐴𝑥𝐵𝑧0 − 𝐴𝑧𝐵𝑥0, (4.107)

𝐴𝑡𝐸𝑧0 = 𝐴𝑦𝐵𝑥0 − 𝐴𝑥𝐵𝑦0, (4.108)

where

𝐴𝛼 =
1
Δ𝛼 sin

𝑘𝛼Δ𝛼
2 , 𝛼 = 𝑥, 𝑦, 𝑧, (4.109)

𝐴𝑡 =
1
Δ𝑡 sin

𝜔Δ𝑡
2 . (4.110)

Equating the determinant of the system (4.103)–(4.108) to zero and performing simple algebraic
transformations, we obtain the following dispersion relation

𝐴𝑡
2 = 𝐴𝑥2 + 𝐴𝑦2 + 𝐴𝑧

2, (4.111)

𝜔 = ± 2
Δ𝑡 arcsin (Δ𝑡√𝐴𝑥2 + 𝐴𝑦2 + 𝐴𝑧

2). (4.112)

This numerical scheme is stable (𝜔 has no complex part) under the condition

1
Δ𝑡2

> 1
Δ𝑥2

+ 1
Δ𝑦2

+ 1
Δ𝑧2

. (4.113)

The phase and group wave velocities in the FDTD scheme are shown in Fig. 4.15 (b), (e). It can
be seen that indeed all waves propagate with a phase velocity less than the speed of light. This
means that particles propagating at near-light speeds canmove synchronously with such waves and
generate them. The generation of such waves is also observed in numerical simulations of electron
beam propagation in vacuum. Figure 4.14 shows the results of such a simulation with the following
parameters: Δ𝑡 = 0.025𝜆/𝑐, Δ𝑥 = 0.05𝜆, Δ𝑦 = Δ𝑧 = 0.25𝜆, where 𝜆 is a normalization wavelength
equal to 1/15 of the beam length, beam electron energy 𝐸b = 10GeV. The Fourier spectrum of the
𝑦 component of the electric field (see Fig. 4.14 (d)) shows that the most pronounced harmonic is
indeed in Cherenkov resonance with beam particles 𝜔/𝑘𝑥 = 𝑣b = √1 − 𝛾−2.
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In the next section, we propose a scheme for the numerical solution of Maxwell’s equations, in
which the phase velocity of the waves is strictly greater (but insignificantly) than the speed of light,
which makes it possible to effectively eliminate the numerical Cherenkov instability.

0

5

10

15

20

𝑦/
𝜆

(a)
𝐸𝑦

0

1

2

3

𝑘 𝑦
Δ𝑦

/𝜋

(b)
| ̂𝐸𝑦|

0 5 10
(𝑥 − 𝑐𝑡)/𝜆

0

5

10

15

20

𝑦/
𝜆

(c)

0 1 2 3
𝑘𝑥Δ𝑥/𝜋

0

1

2

3
𝑘 𝑦
Δ𝑦

/𝜋
(d)

−5.0

−2.5

0.0

2.5

5.0

10−2

10−1

100

101

−4

−2

0

2

4

10−2

10−1

100

101

Figure 4.14: Results of numerical simulation of propagation of an ultrarelativistic (𝛾 = 103) elec-
tron beam in vacuum using the FDTD scheme. (a) Distribution of the 𝑦 component of the electric
field, and (b) its Fourier spectrum at the initial time. (c), (d) — the same after 3 × 104 simulation

steps. The white dashed line corresponds to the Cherenkov resonance 𝑣ph,𝑥 = √1 − 𝛾−2.
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4.4.1 Mitigating numerical Cherenkov instability
There are several ways to suppress NCI, for example, using higher-order approximations for spatial
derivatives [230–232], applying filters to fields and currents on a grid [233], or using a spectral ap-
proach to solving Maxwell’s equations in Fourier space [234], each with its own advantages and use
cases. We propose an NCI reduction scheme that can be easily implemented in existing PIC codes
and is based on the following modification of the FDTD scheme stencil

̂𝛿𝑡𝐵𝑥 = (𝑎0,𝑧 + 𝑎1,𝑧�̂�𝑧) ̂𝛿𝑧𝐸𝑦 − (𝑎0,𝑦 + 𝑎1,𝑦�̂�𝑦) ̂𝛿𝑦𝐸𝑧, (4.114)
̂𝛿𝑡𝐵𝑦 = (𝑎0,𝑥 + 𝑎1,𝑥�̂�𝑥) ̂𝛿𝑥𝐸𝑧 − (𝑎0,𝑧 + 𝑎1,𝑧�̂�𝑧) ̂𝛿𝑧𝐸𝑥, (4.115)
̂𝛿𝑡𝐵𝑧 = (𝑎0,𝑦 + 𝑎1,𝑦�̂�𝑦) ̂𝛿𝑦𝐸𝑥 − (𝑎0,𝑥 + 𝑎1,𝑥�̂�𝑥) ̂𝛿𝑥𝐸𝑦, (4.116)
̂𝛿𝑡𝐸𝑥 = (𝑎0,𝑦 + 𝑎1,𝑦�̂�𝑦) ̂𝛿𝑦𝐵𝑧 − (𝑎0,𝑧 + 𝑎1,𝑧�̂�𝑧) ̂𝛿𝑧𝐵𝑦 − 𝑗𝑥, (4.117)
̂𝛿𝑡𝐸𝑦 = (𝑎0,𝑧 + 𝑎1,𝑧�̂�𝑧) ̂𝛿𝑧𝐵𝑥 − (𝑎0,𝑥 + 𝑎1,𝑥�̂�𝑥) ̂𝛿𝑥𝐵𝑧 − 𝑗𝑦, (4.118)
̂𝛿𝑡𝐸𝑧 = (𝑎0,𝑥 + 𝑎1,𝑥�̂�𝑥) ̂𝛿𝑥𝐵𝑦 − (𝑎0,𝑦 + 𝑎1,𝑦�̂�𝑦) ̂𝛿𝑦𝐵𝑥 − 𝑗𝑧, (4.119)

𝑎0,𝛼 + 𝑎1,𝛼 = 1, 𝛼 = 𝑥, 𝑦, 𝑧, (4.120)

where

�̂�𝛼𝐹𝑗𝛼 =
𝐹𝑗𝛼+1 + 𝐹𝑗𝛼−1

2 . (4.121)

The operator �̂�𝛼 is essentially an averaging operator along the 𝛼 axis. It is easy to show that the
operator �̂�𝛼 ̂𝛿𝛼 approximates the derivative of 𝜕/𝜕𝛼 with quadratic accuracy, thus under the condi-
tion (4.120) (𝑎0,𝛼 + 𝑎1,𝛼�̂�𝛼) ̂𝛿𝛼 → 𝜕/𝜕𝛼 for Δ𝛼 → 0. Solutions in vacuum in the form of plane waves
of the equations (4.114)–(4.119) are written in the same form as the equations (4.103)–(4.108) , but
the coefficients 𝐴𝛼 have a different form

𝐴𝛼 =
1
Δ𝛼 sin

𝑘𝛼Δ𝛼
2 (𝑎0,𝛼 + 𝑎1,𝛼 cos (𝑘𝛼Δ𝛼)) . (4.122)

The dispersion of waves in such a scheme already depends on the parameters 𝑎1,𝛼. Consider the
expression for the phase velocity of waves propagating strictly along the 𝛼 coordinate axis

𝑣ph,𝛼 = 2Δ𝛼Δ𝑡
1

𝑘𝛼Δ𝛼
arcsin [ Δ𝑡Δ𝛼 sin

𝑘𝛼Δ𝛼
2 (𝑎0,𝛼 + 𝑎1,𝛼 cos (𝑘𝛼Δ𝛼))]. (4.123)

From the analysis of this function, it can be established that an increase in the coefficient 𝑎1,𝛼 leads
to an increase in the modulus 𝑣ph,𝛼 for all values of 𝑘𝛼Δ𝛼 in the first Brillouin zone (|𝑘𝛼Δ𝛼| ≤ 𝜋).
Therefore, we can find the coefficients 𝑎1,𝛼, for example, based on the requirement that the phase
velocity in the entire first Brillouin zone be greater than the speed of light and be equal to it at the
boundaries, then

1 = Δ𝛼
Δ𝑡

2
𝜋 arcsin [

Δ𝑡
Δ𝛼 (1 − 2𝑎1,𝛼)]. (4.124)



4.4. SIMULATION OF ULTRARELATIVISTIC BEAMS USING THE PIC METHOD 111

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1 (a)(a)(a)
New scheme

0.05

0.01

0.05 0.
05

0 0.25 0.5 0.75 1

(b)

0.0
0

(b)(b)
FDTD

0.2
0

0.1
0
0.0
5

0.0
1

0.0
1

0.
05

0.
10

0 0.25 0.5 0.75 1

(c)(c)(c)
NDFX

0.01

0.05
0.10

0.20

0 0.25 0.5 0.75 1
0.00
0.25
0.50
0.75
1.00
1.25
1.50 (d)(d)(d)

0 0.25 0.5 0.75 1

(e)(e)(e)

0 0.25 0.5 0.75 1

(f)(f)(f)

−0.2

0.0

0.2

ph
|−

1

ph

ph

gr

gr

Figure 4.15: (a)–(c)Magnitude of phase velocity ofwaveswith 𝑘𝑧 = 0 as a function ofwave numbers
𝑘𝑥 and 𝑘𝑦, (d)–(f) dependence of phase and group velocity of waves with 𝑘𝑧 = 𝑘𝑦(𝑘𝑥) = 0 on the

wave number 𝑘𝑥(𝑘𝑦) in various numerical schemes.

The solution of this equation is written in the following form

𝑎1,𝛼 =
1
2 (1 −

Δ𝛼
Δ𝑡 sin [

𝜋
2
Δ𝑡
Δ𝛼]) . (4.125)

Let us calculate the maximum possible value of the coefficients 𝐴𝛼 in this case

𝐴𝛼max =
1
Δ𝑡 sin (

𝜋
2
Δ𝑡
Δ𝛼). (4.126)

Then the scheme is certainly stable under the condition

sin2 (𝜋2
Δ𝑡
Δ𝑥) + sin2 (𝜋2

Δ𝑡
Δ𝑦) + sin2 (𝜋2

Δ𝑡
Δ𝑧) < 1. (4.127)

A comparison of the dependencies of the phase and group velocities of waves in various numer-
ical schemes is shown in Fig. 4.15, from which it can be seen that, indeed, in the proposed scheme,
waves propagate at a speed greater than the speed of light, so we can expect a decrease in the numer-
ical Cherenkov instability. In addition to the comparison with the standard FDTD scheme, a com-
parison with the NDFX scheme (Numerical Dispersion Free in X direction) [216] is also presented,
which is also based on an extension of the FDTD scheme stencil, but such a selection of coefficients
that the phase velocity is precisely equal to the speed of light for all waves propagating along a single
coordinate axis. Note, that the most significant deviation of the phase and group wave velocities
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Figure 4.16: Results of numerical simulation of ultrarelativistic electron beam propagation in vac-
uum using various numerical schemes. (a) Initial distribution of the 𝑦-component of the electric
field, (b)–(d) distribution of the 𝑦-component of the electric field after 3 × 104 simulation steps, (e)
initial distribution of the electron density, (f)–(h) relative deviation of the electron density from the

initial density after 3 × 104 simulation steps.

from the speed of light in all the schemes is present in the high-frequency range, i.e. for waves that
are poorly resolved on the grid. Since the waves in the frequency range of interest must be resolved
with a large number of grid steps for the simulation results to be reliable, the dispersion deviation
can be small enough, for example, to correctly simulate laser radiation. The deviation of the dis-
persion in the proposed scheme coincides in order of magnitude with the FDTD or NDFX schemes
and is also most significant in the high frequency region, so the accuracy of the simulation results
obtained using this scheme is at least as good as that for other schemes. We also compared the re-
sults of identical numerical simulations of the propagation of an ultrarelativistic electron beam in
vacuum using different schemes. The simulation was carried out using the QUILL [201] code, the
cell sizes were 0.003 µm, 0.01 µm, 0.01 µm at coordinates 𝑥, 𝑦 and 𝑧 respectively. The time step Δ𝑡
was set to 0.6Δ𝑥/𝑐 for the proposed scheme and the FDTD scheme and Δ𝑥/𝑐 for the NDFX scheme.
The comparison of the results are shown in Fig. 4.16. As expected, the Cherenkov instability grows
most rapidly in the FDTD scheme. In the NDFX scheme, despite the exact vacuum dispersion of the
waves propagating along the beam propagation axis, there is also instability. This happens, firstly,
due to the generation of waves propagating at a small angle to the axis, having a phase velocity less
than the speed of light, and, secondly, due to the effect of frequency aliasing [199]. This effect comes
from the fact that schemes for the numerical solution of Maxwell’s equations based on difference
schemes always operate with a limited volume in space, so the dependence 𝜔(k) for the waves in
such schemes is always periodic, i.e. 𝜔(k+ x𝛼𝑁𝛼2𝜋/Δ𝛼) = 𝜔(k), where 𝑁𝛼 is an integer, x𝛼 is a unit
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vector in the direction 𝑘𝛼, 𝛼 = 𝑥, 𝑦, 𝑧. This means that even if in the first Brillouin zone (|𝑘𝛼Δ𝛼| ≤ 𝜋)
the phase velocity of waves is equal to or slightly greater than the speed of light, then there will al-
ways be such a Brillouin zone in which the phase velocity will certainly be less than the speed of
light. An analysis of this effect shows that the interaction of particles and waves in the first Brillouin
zone is a linear effect, while the effects associated with resonance in more distant zones is nonlin-
ear and depend not only on the scheme used for solving the Maxwell equations, but also on the
shape of particles, the method of interpolation of fields on particles, the method of calculating the
current in the grid nodes, etc. [228, 229]. Despite the fact that the Cherenkov resonance in higher
Brillouin zones cannot be completely eliminated in schemes based on the finite differences, it is
much less noticeable than in the fundamental Brillouin zone, and therefore it affects the simulation
only at a sufficiently large number of simulation steps. It follows from Fig. 4.16 that in our proposed
scheme, there is no numerical Cherenkov instability for a sufficiently large number of simulation
steps (𝑁 = 3 × 104).

Since the proposed scheme onlymodifies the FDTD scheme stencil, it can be easily implemented
in the existing PIC code, compared to, for example, the recently proposed RIP scheme [218], which
requires quite a significant restructuring of the code. Thus, it can be argued that the proposed
scheme is well suited for simulating the interaction of dense charged beams with stationary tar-
gets, laser pulses, or other beams, the experimental implementation of which is expected at the
FACET-II facility in the future, as well as for modeling laser-plasma interaction, in which beam of
relativistic charged particles are formed. The PIC simulation results presented in sections 4.2 and 4.3
and obtained using the developed scheme do not have signs of the presence of numerical Cherenkov
instability and agree with the analytical results, which also confirms the reliability of this scheme.

4.5 Summary
Thus, in the configuration of a head-on collision of two beams, the interrelation between the process
of focusing (or defocusing) of beams and beamstrahlung was considered. An analytical model was
developed that allows calculating the disruption parameter taking into account radiation reaction.
It was shown that the increase in disruption due to beam radiation for the future CLIC and ILC
colliders can reach several tens of percent and lead to an additional increase in brightness. In the
application to the FACET-II accelerator, whose prospects for studying the effects of nonperturbative
QED due to beam collisions are discussed in the paper [129], an increase in the disruption parame-
ter leads to even more stringent requirements on the beam parameters for precision measurements.
It was shown that the region of applicability of the constructed model also extends to the case of
collision of beams of the same charge. An analytical model has also been developed that describes
the interaction of long oppositely charged beams in the weak beamstrahlung regime, when beam
particles perform a large number of betatron oscillations during the interaction time. The depen-
dencies of the energy and amplitude of the betatron oscillations of the particle are calculated both
in the classical regime and in essentially quantum regimes.
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Apart from collision of beams with each other, a more technically simple alternative for observ-
ing QED effects on the FACET-II facility is the collision of a single beam with a thick target. With
the help of full-scale three-dimensional numerical simulation, we found that when a high-current
beam of ultrarelativistic electrons collides with a plasma target, two short bunches of gamma quanta
photons are generated. The first of them corresponds to the radiation by the electrons of the initial
beam, and the second one corresponds to the radiation by the electrons injected into the plasma
cavity created by the initial beam. The efficiency of conversion of the energy of the electron beam
into the energy of gamma photons can reach 90%. The studied scheme for obtaining gamma radi-
ation is promising in terms of ease of experimental implementation and extremely high efficiency.
Simulations and analytical estimates carried out for the currently achieved beam parameters at the
FACET-II facility show that the actually achievable conversion efficiency turns out to be significantly
lower, however, it still reaches more than ten percent. It has also been demonstrated that using a
beam in the form of a disk, i.e. with a beam diameter exceeding its length is inefficient even when a
higher beam density is reached, which is due to the fact that in this case only a small fraction of the
particles is located in the region of a strong plasma field.

We also developed and implemented in the QUILL code an alternative scheme for the nu-
merical solution of Maxwell’s equations on a rectangular grid with sufficiently reduced numerical
Cherenkov instability. The above numerical simulations of the interaction of high-current beams
of ultrarelativistic particles with each other and with a plasma target were carried out using this
scheme.

Contributions of the author

The results obtained in this chapter are published in Refs. [235–237]. In the publication [235]
A. S. and A. P. worked together on the idea of the alternative scheme. A. S. implemented the scheme
in the code QUILL. In the publication [236] A. S. and I. Yu. worked together on the development of
the model for the calculation of disruption parameter and obtaining solution of averaged equations.
A. S. and M. F. conducted PIC simulations using codes QUILL and VLPL, respectively. In the publi-
cation [220] A. S. discussed the idea of shifting beams for increased yield of the secondary particles,
helped with the analytical estimates and writing the manuscript. In the publication [237] A. S. did
most of the work.



Chapter 5

Conclusion

In this work we investigated effects of nonlinear quantum electrodynamics, such as Compton scat-
tering and the Breit-Wheeler process, on interaction of strong electron-magnetic fields with matter
in several configurations. In the first chapter a brief introduction was given to parameters determin-
ing regimes of QED. A qualitative description of processes in the nonlinear regime of QED and a
brief literature overview on their effect on interaction of strong fields with matter were given. The
aims of the current work were established.

In chapter 2, a so-called asymptotic theory of a charged particle motion in the strongly radiation-
dominated regime was developed. The theory is based on an observation that a particle velocity is
quickly oriented along a certain direction by EM field if its strength is sufficiently larger than the
particle energy, which is the case in radiation-dominated regime, in which particle losses a lot of
energy due to abundant radiation. This direction coincides with the direction of the electric field in
an instant reference frame where the electric and the magnetic fields are parallel and corresponds
to vanishing of both transverse Lorentz-force and radiation friction force acting on the particle and
is thus called radiation-free. Since particle velocity can be approximately determined by local EM
field, the order of the motion equation reduces by one. An interesting general property of a parti-
cle motion according to this asymptotic radiation-free description was discovered, namely, periodic
trajectories in periodic EM fields. It was demonstrated that this seemingly simple discovery might
explain a known effect of radiative trapping of particles in the region of strong field, which cannot
be interpreted in the framework of ponderomotive description, which is widely used when strong
EM fields are considered. Further, based on this asymptotic theory a general method of obtaining
approximate solution of the motion equations with account of radiation reaction was developed.
Utilizing this approach several known solutions were reproduced, such as solution of the so-called
Zeldovich problem of an electron dynamics in the uniform rotating parallel electric and magnetic
fields, a quasi-stationary solution in the model fields of a linear accelerator and solution of the elec-
tron motion equations in plane waves. In the latter case a peculiar feature of the solution — unlim-
ited longitudinal acceleration — is revealed.

In chapter 3, effects of nonlinear QED processes on collective dynamics of particles in configu-
ration of interaction of extremely intensive laser pulse with thin solid target was studied. An effect
of development of a self-sustained QED cascade was discovered and qualitatively explained. It was
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shown that due to dielectric properties of electron-positron plasma, propagation of a laser pulse
through such plasma is altered in such a way that the resulting configuration of the electromagnetic
field is sufficiently different from the configuration of a single traveling plane wave and is favorable
for production of electron-positron pairs. Development of thq QED cascade leads to an avalanche-
like multiplication of the particles and expansion of the electron-positron plasma towards the laser
radiation, which ceases only after the laser pulse is completely depleted. Further, a relatively sim-
ple one-dimensional hydrodynamical analytical model of the development of a QED cascade in a
plane wave was proposed which is able to reproduce the behavior observed in the full-scale three-
dimensional QED-PIC simulations.

In chapter 4, interaction of high-current beams of ultrarelativistic particles, which field strength
is high enough to the reach nonlinear regime ofQED,withmatterwas considered. First, the head-on
collision of identical electron and positron beams was studied and a model was developed for calcu-
lating disruption parameterwhich accounts beamstrahlung. The results of themodel were validated
through comparison with the results of full-scale three-dimensional QED-PIC simulations. Impli-
cations of the enhancement of disruption due to radiation reaction were discussed with regard to
projects of the next generation colliders, such as ILC, CLIC and FACET-II. Next, an efficient gener-
ation of gamma radiation was demonstrated in the interaction of a high-current beam of ultrarela-
tivistic electrons with a thick plasma target. A model was developed for calculating the conversion
efficiency of the beam energy to the energy of gamma radiation. Beamparameters optimal at the cur-
rent state of FACET-II facility for generation of gamma radiation were found. Finally, an alternative
numerical scheme for solving Maxwell’s equations on a rectangular grid was developed and imple-
mented in PIC code QUILL, which is distinguished by sufficiently mitigated numerical Cherenkov
instability, present in the commonly used schemes. This scheme allows to simulate interaction of
ultrarelativistic particle flows with matter accurately for large amount of numerical steps.

A particular aspect was intentionally left outside the scope of this work, namely dependence of
the probabilities of QED processes on polarization state of either leptons or photons, although it is
worth noting that research is currently being actively conducted on, e.g., obtaining highly-polarized
particle beams as a result of QED processes [75–85]. Since a few very promising results have already
been obtained, it makes it possible to assume that this still infant topic will receive a special attention
in further research of the strong field physics.



Appendix A

Numerical solution of relativistic motion
equations of a charged particle

The relativisticmotion equations of an electron in an external EM fieldwith radiation reaction taken
into account, are written in the following form

d𝛾
d𝑡 = −vE − 𝐹rr𝑣2, (A.1)

dp
d𝑡 = −E − v × B − 𝐹rrv, (A.2)

where the electronmomentump is normalized to𝑚𝑐, time 𝑡—to 1/𝜔, electric andmagnetic fields—
to𝑚𝑐𝜔/𝑒, 𝐹rr — total radiation power normalized to𝑚𝑐2𝜔. For the numerical solution of the equa-
tions (A.1)–(A.2) without taking into account radiation reaction (𝐹rr = 0), there are several methods,
such as the Boris scheme [238], Vay scheme [239], and Higuera-Cary (HC) scheme [240]. The last
of these schemes most accurately preserves the Hamiltonian of the system (and hence the phase
volume), so this scheme is used in this work to solve the equations of motion of a single particle in
given fields. The numerical algorithm corresponding to the scheme is explicitly written as follows

r𝑖+1 = r𝑖 + Δ𝑡p𝑖+1/2𝛾𝑖+1/2
, (A.3)

p𝑖+1/2 = 2 (p̃ + p̃ × 𝜷
̂𝛾 + 𝜷 p̃ ⋅ 𝜷̂𝛾2 ) (1 + 𝛽2

̂𝛾2 )
−1
− p𝑖−1/2, (A.4)

̂𝛾2 = ̃𝛾2 − 𝛽2
2 +√

( ̃𝛾2 + 𝛽2)2
4 + (p̃ ⋅ 𝜷)2, (A.5)

where p̃ = p𝑖−1/2 + 𝝐, ̃𝛾 = √1 + p̃ ⋅ p̃, 𝝐 = −EΔ𝑡/2, 𝜷 = −BΔ𝑡/2 (the sign “−” corresponds to the
electron). Note that the coordinates (and the EM field) andmomenta of the electron are determined
at time moments shifted by half the step Δ𝑡 relative to each other, which explains the half-integer
indices of the momenta.

Two different approaches are used to take into account effect of radiation reaction. In the first,
semiclassical approach (denoted in the figures by the abbreviation LL), radiative friction is consid-
ered a continuous force, which is added to the numerical scheme using the Euler method as follows:
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first, a step is taken according to the Higuera-Cary scheme to calculate the momentum pHC,𝑖+1/2,
then the final momentum of the electron is determined as follows

p𝑖+1/2 = pHC,𝑖+1/2 − Δ𝑡𝐹rr( ̄𝜒) p̄ ̄𝛾 , (A.6)

̄𝜒 = 1
𝑎S√

( ̄𝛾E + p̄ × B)2 − (p̄ ⋅ 𝐸)2, (A.7)

p̄ = p𝑖−1/2 + pHC,𝑖+1/2
2 , (A.8)

̄𝛾 = √1 + p̄ ⋅ p̄, (A.9)

where 𝑎S = 𝑚𝑐2/ℏ𝜔 is a normalized Sauter-Schwinger critical field. The second approach (denoted
in the figures by the abbreviation MC) takes into account the quantum (stochastic) nature of radi-
ation using the Monte Carlo method in a similar way to the method implemented in the QUILL
code [167, 201]: at each step, two uniformly distributed in the interval [0, 1] random numbers 𝑟0
and 𝑟1 are generated; then the probability𝑊 of an electron emitting a photon with energy 𝑟0 ̄𝛾 over
a time interval Δ𝑡 is calculated; if the inequality 𝑟1 < 𝑊 is satisfied, then the value 𝑟0p̄ is subtracted
from the final electron momentum pHC,𝑖+1/2, otherwise, the final momentum of the electron does
not change. The value of𝑊 is calculated as follows [33]

𝑊 = Δ𝑡 𝛼𝑎S
√3𝜋 ̄𝛾

⎛
⎜⎜
⎝

𝑟20 − 2𝑟0 + 2
1 − 𝑟0

𝐾2/3(𝑦) −
+∞

∫
𝑦

𝐾1/3(𝑥)d𝑥
⎞
⎟⎟
⎠
, (A.10)

𝑦 = 2
3 ̄𝜒

𝑟0
1 − 𝑟0

, (A.11)

where 𝐾𝜈(𝑥) is the modified Bessel function of the second kind.
Other various differential equations in this work are solved using the 8th order adaptive Runge-

Kutta method (DOP853 [241]), unless otherwise is stated.
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