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1 Introduction 

1.1 Paradigm shift in toxicology 

In human toxicology, risk assessment is used to assess the risk of a chemical for human health. For this 

purpose, toxicological hazard and human exposure need to be characterized. For the last decades, 

hazard characterization of chemicals was primarily done by in vivo testing. However, the use of animals 

for toxicity testing is a very resource intensive procedure, comes with ethical concerns and possible 

species differences are not considered (Crofton et al., 2012; Krewski et al. 2020). To improve human 

risk assessment and address these issues, the national research council (NRC) proposed a new strategy 

for toxicity testing in the 21st century, which is based on a paradigm shift from conventional in vivo 

toxicity testing to high throughput, mechanistic in vitro assays by development of so called “new 

approach methods” (NAM) (NRC, 2007; Collins et al., 2008) (Fig.1). NAMs are defined as any 

technology, methodology, approach, or their combination that can provide information on chemical 

hazard and risk assessment to avoid the use of animal testing (USEPA 2021). 

 

 

Figure 1: Paradigm shift in toxicology 
The US-National Research Council (NRC) proposed a new strategy for toxicity testing in the 21st century, Tox21, which is based 
on a shift from conventional in vivo toxicity testing in rodents to high content, mechanism-based in vitro assays. The goal is 
to increase mechanistic understanding and sample throughput, overcome species differences and reduce animal testing in 
line with the 3R principle. The shift proposes the use of high content and high throughput data in combination with 
computational toxicology (Collins et al. 2008). 
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NAMs can be used for different regulatory scenarios, i.e. hazard characterization as well as screening 

and prioritization. To integrate data from in vitro assays into systemic predictions about health-related 

consequences on the level of whole organs or individuals, the adverse outcome pathway (AOP) 

framework was established. With this framework, available data on molecular initiating events (MIE) 

are linked through key event relationships (KER) to biological key events (KE), which result in an 

adverse outcome (AO; the human health effect) (OECD (Organization for Economic Co-Operation and 

Development), 2013; Villeneuve et al., 2014; Carusi et al., 2018). Within this framework all available 

toxicological data (e.g. molecular and cellular data from in vitro assays, animal studies or 

epidemiological studies can be combined to enable an understanding of the mode of action (MOA) of 

a compound’s toxicity. Furthermore, ‘Integrated Approaches to Testing and Assessment’ (IATA) 

frameworks are developed for hazard characterization by relying on integrated analysis of existing 

information in combination with legacy data. The goal of IATA frameworks is to answer defined 

questions in a regulatory context and provide sufficient information for confident regulatory decision 

making. One IATA approach is to link existing data from in silico methods with experimental data, 

enabling informed regulatory decision making on the basis of experimental and in silico data (Bal-Price 

et al., 2015b) (Fig.2). For hazard characterization, the future approach incorporates NAMs (e.g. in vitro, 

in silico, omics, physiologically based pharmacokinetic (PBPK) modelling, AOPs) into the IATA 

framework (Escher et al. 2022). 

 

Prioritization of compounds is determined by the use of systems biology (screening for critical 

pathways or cell biological processes in in vitro assays) and subsequent computational toxicology 

(evaluation of data obtained by systems biology). This strategy also follows the 3R´s principle (Reduce, 

Refine, Replace), as it was introduced by Russell and Burch (Russell and Burch, 1959). For a successful 

shift, several requirements need to be met. First, the novel test assays need to be able to mimic 

relevant cell, tissue or organ functions. They furthermore need to be capable of generating data in a 

medium to high throughput set up to drastically reduce the time and resource intensity of toxicity 

testing. As for the generation and evaluation of the data deriving from these assays, biostatistical/-

informatical tools that can handle the broad amount of data and extract relevant information for 

toxicological interpretation are necessary. Thus, in the last two decades efforts were made to develop 

such assays and tools, marking several milestones in the shift from in vivo to in vitro toxicity testing 

(Wheeler et al., 2015; Villeneuve et al., 2019). These advances include development and establishment 

of high throughput screening (HTS) assays, as well as biostatistic and bioinformatic tools for data 

generation, management and evaluation, subsequently allowing compound prioritization or 

supporting regulatory decisions (Leist et al., 2014; Villeneuve et al., 2019; Villeneuve et al., 2019). 
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However, there are still challenges to overcome within the use of HTS methods, such as lacking 

documentation, expensive licensing, input formats, scalability, operating systems, and reproducibility 

(Frommolt and Thomas, 2008; Fourches et al., 2014). Furthermore, there is a disconnect between the 

biological events measured by HTS assays (e.g. gene expression, changes in cell morphology) and the 

concerns from a risk-management perspective (human health, e.g. IQ rates) (Villeneuve et al., 2019).  

 

 

Figure 2: The AOP-informed IATA framework 
As a first step, the IATA framework regards to three questions: (a) What data is available? (b) Is there an AOP available? (c) 
Are regulatory applications involved? With this information, available data is evaluated by non-experimental (e.g. QSARs, 
Read-across) and experimental approaches (e.g. ITS). The outcome of these evaluations is used to decide, if there is enough 
confidence in the available data to make regulatory decisions based on it. If that is not the case, further data needs to be 
collected and/or methods need to be developed to enable confident decision making.   

 

 

1.2 Developmental neurotoxicity testing 

The use of alternative methods within an IATA strategy is of increasing importance for toxicity testing, 

as there is a desire to implement faster, yet less cost intensive and more human-relevant test methods. 

Within the field toxicity testing, developmental neurotoxicity (DNT) describes the effect of chemical 

exposure on the morphology and functionality of the developing nervous system. It has been shown 

that the pathological changes resulting from exposure of hazardous chemicals can lead a broad variety 

of cognitive impairments or disfunctions such as decrease of the intelligent quotient (IQ), attention 

disorders or learning deficits (Grandjean, Landrigan, 2006; Grandjean, Landrigan, 2014; Bennett et al, 

2016). Despite the socioeconomic threat that DNT poses, there is a huge knowledge gap on the DNT 

potential of chemicals (Sachana et al., 2019) with only 110 to 140 chemicals tested to date in one of 

the international DNT guideline studies (Crofton et al., 2020; Makris et al., 2009; OECD 2008). The 
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cause of this gap is seen in the unpractical nature of in vivo DNT testing: Conventional in vivo testing 

strategies following the EPA (environmental protection agency) and OECD testing guidelines (USEPA 

1998; OECD 2007) rely on behavioral endpoints with poor statistical power, show high variability 

(Paparella et al., 2020), raise ethical concerns and furthermore are demanding in terms of time and 

resources (e.g. animal test subjects, material for animal housing, money, test compounds; Sachana et 

al. 2021). In the course of the shift from in vivo to in vitro, human based high content in vitro assays 

were developed, which mimic major processes of brain development (Bal-Price et al., 2018). These 

methods with appropriate readiness (Bal-Price et al., 2018) were combined in a DNT in vitro battery 

(DNT-IVB) to identify the potential of chemicals to trigger DNT by interfering with such key 

neurodevelopmental processes (Masjosthusmann et al., 2020). To advance the use of such a battery, 

a pilot study was commissioned by the European Food Safety Authority (EFSA) to test 120 chemicals 

in a battery of ten in vitro methods (Masjosthusmann et al., 2020; Blum et al. 2022). This DNT-IVB 

contains methods that mimic the key neurodevelopmental processes neural progenitor cell (NPC) 

proliferation, migration of neural crest and radial glia cells, neurons and oligodendrocytes, neuronal 

differentiation, neurite outgrowth of the peripheral and central nervous system, as well as 

oligodendrocyte differentiation (Fig. 3). The dataset and the interpretation of the data serves as the 

basis for an OECD guidance document on the use and interpretation of the DNT-IVB in a regulatory 

context (Crofton and Mundy 2021), which will be released in 2023.  

 

 

Figure 3: Key neurodevelopmental processes  
Primary human neural progenitor cells (NPC) mimic several key neurodevelopmental processes (KNDP, marked in red), which 
are essential for brain development. The figure above gives an overview over the process of cell development from organ 
stem cells (left) to neural networks (right) (Bal-Price et al., 2018).  
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1.3 Computational Bioinformatics for in vitro DNT testing 

One prerequisite for regulatory acceptance of HTS in vitro data is robustness of the data including the 

test systems themselves, but also a robust and standardized computational workflow that manages 

and evaluates the broad amounts of data generated by different HTS assays. The processes from 

generating HTS data to application of this data for regulatory purposes can be divided into three major 

steps: 1) data generation from cell system readouts, 2) evaluation of the generated data by 

biostatistical tools and 3) application of the evaluated data for regulatory purposes (Fig. 4).  

 

 

Figure 4: Major steps of the next generation risk assessment process using new approach methods (NAM) data and 
applying biostatistics and bioinformatics 
HTS data can be generated by different NAMs. Here we suggest data generation by high content imaging (HCI) followed by 
image analysis as an example (manuscript 2.1). Endpoint data is evaluated by biostatistical methods to gather benchmark 
responses, corresponding confidence limits and resulting compound classifications (manuscript 2.2). These are finally applied 
to identify potential hazards (manuscript 2.3 and 2.4).  

 
 

1.3.1 Data generation 

Over the last two decades, major advances were made for automated screening of biological samples 

(Villeneuve et al., 2019). By today, there is a variety of HTS assays, producing image data with rapid 

pace in high quantities. To keep up with the abundance of screening data, automated image analysis 

algorithms are needed. High content image analyses (HCIA) tools have been developed and now find 

application in a broad variety of applications (cell differentiation, apoptosis, tumor biology, 

neurodegenerative disorders or arterial hypertension, to name a few areas of application; Villeneuve 

et al., 2019). With HCIA, high levels of information can be extracted from images of biological samples 
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and allow the assessment of different biological endpoints. The diversity of testing assays brings along 

a variety of different systems for identification of single cells and analysis of cellular responses. There 

is an abundance of different approaches for cell identification, with skeletonization, vectorization, 

super-ellipsoids (Shariff et al., 2010) and overlap algorithms (Schmuck et al., 2017) being popular 

choices. In the skeletonization method, images are segmented (often by the use of thresholds such as 

brightness or contrast thresholds). The segments are then further processed by systematically 

removing pixels (usually by considering the surrounding neighborhood). In the end, a skeleton 

structure of the segment is achieved, which then can be used to assess the features of interest (e.g. 

morphological endpoints; Bai, Latecki and Liu, 2007). During vectorization, defined sections of the 

image are analyzed stepwise. For this purpose, a “starting point” must be identified either manually or 

automatically. Starting from this defined point, vectorization algorithms recursively explore the regions 

of interest for feature extraction (Al-Kofahi, Lasek and Szarowski, 2002). Super-ellipsoids algorithms 

rely on cylinders with an elliptical cross section as a special model for the regions of interest. With this 

approach, structures can be represented with dense special information, which allows fast feature 

extraction from the area of interest (Tyrrell et al., 2007). Overlap algorithms compare the pixel-overlap 

of two different stainings (usually one for nuclei to identify cells and one specific for a cell type) to 

identify certain cell types. A cell is then identified as a certain type, if the type-specific staining showed 

enough overlap with an underlying nucleus staining (i.e. if an overlap threshold was reached).   

 

The usage of machine learning (ML) algorithms (often implemented as convolutional neuronal network 

models) has become the staple of image analysis in recent years (Shariff et al., 2010). ML algorithms 

are able to learn feature differentiation and to extract relevant features from provided training data, 

by comparing their own evaluation (e.g. cells detected as neurons) to a ground truth that was set up 

by a human experimenter (e.g. cells that were marked as neurons by an experimenter). This approach 

is known as “supervised learning”. Alternative approaches are “semi-supervised learning” and 

“unsupervised learning”, in which the algorithm is only partially or not guided by a ground truth. ML 

approaches offer several advantages over the aforementioned traditional methods of image analysis: 

While conventional methods usually rely heavily on the image acquisition tools to have consistent 

image properties (e.g. images need to be recorded by the same camera to maintain the same image 

brightness and focus) and allow only limited flexibility (usually achieved by hardcoded parameters that 

can be adjusted to certain extends by a user), ML models can be trained to extract the relevant 

information from a broad variety of images with varying properties (e.g. images acquired by different 

cameras). In other words, ML models are able to mimic human evaluation far more accurate than 

conventional methods and are able to learn from existing datasets for further improvement of 

performance by supervised learning.    
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HCIA approaches for identification of neurons in in vitro cultures have been numerous, while other 

neural cell types like radial glia, oligodendrocytes or astrocytes have so far been mostly neglected. In 

the field of DNT, a DNT in vitro battery (IVB) was set up that allows identification of a large number of 

key neurodevelopmental processes such as migration and differentiation of several cell types as well 

as neurite outgrowth by novel HCIA approaches (Masjosthusmann et al., 2020). One of such HCIA tools 

is Omnisphero (Schmuck et al., 2017; manuscript 2.1 - Förster et al., 2021), a software tool able to 

extract information about neural progenitor cell migration and differentiation, as well as information 

about morphological aspects such as neurite length or number of branching points in a HCIA manner 

(Fig. 5) by analyzing data from the neurosphere model.  

 

 

Figure 5: Omnisphero workflow 
(a) Neurospheres are plated into 96-well plates and (b) exposed to chemical treatment during incubation. (c) After a 5 day 
differentiation time, cells are fixed and stained with specific antibodies, i.e. β-III-tubulin for neurons, O4 for oligodendrocytes 
and Hoechst for nuclei, and scanned with the ArrayScan VTI HCS Reader (Thermofisher Scientific) to (d) get fragmented images 
for each staining channel and nuclei coordinates within the images. The fragmented images are then joined together to (e) 
get a completed neurosphere image for each staining channel. (f) Nuclei are located within the jointed image and quantified. 
Based on the nuclei coordinates, (g) trained ML models identify neurons or oligodendrocytes. (h) Identified corresponding 
cell types are then skeletonized and further analyzed for (i) their neurite length and number of branches. Based on the nuclei 
coordinates within the completed image and the identified cell types, (f) the migration distance of different corresponding 
cell types can be measured. 
 

For this purpose, fluorescence images are acquired and nuclei located by the ArrayScan VTI HCS Reader 

(Thermofisher Scientific) and vHSC Scan Software. The images are then imported into Omnisphero, 

where the nuclei locations are used as reference to identify neurons and oligodendrocytes within the 

corresponding staining (commonly β-III-tubulin for neurons and O4 for oligodendrocytes). Originally, 

Omnisphero relied on overlap-algorithms to identify neurons and oligodendrocytes (Schmuck et al., 

2015). However, ML algorithms were implemented and trained by supervised learning to vastly 

improve the performance (manuscript 2.1 – Förster et al., 2021). With different cell types identified, 
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cell type-specific endpoints such as number of differentiated cells, their migration distance and density 

of identified cells can be measured. Identified cells are skeletonized to further analyze morphological 

endpoints such as neurite length or branching points (Schmuck et al., 2015). 

 

 

1.3.2 Biostatistical data evaluation 

With the rising usage of HTS and HCIA tools, biostatistical data evaluation tools also emerged and 

became publicly available (Villeneuve et al., 2019). Due to the broad variety of in vitro assays, there is 

an abundance of different approaches for data evaluation with these tools. Despite many scientific 

publications describing biostatistical methods, as well as guidelines for general concentration response 

data evaluation, e.g. published by the EFSA Scientific Committee (2016), there is no clear consensus 

on the use of biostatistical methods for in vitro toxicity data (Wheeler et al., 2015; Sand et al., 2017). 

Furthermore, different assays come with differences in concentration-response behavior (e.g. factors 

like variability within and between experiments or possible response levels may vary between assays). 

This leads to the challenge of finding one data evaluation protocol which appropriately evaluates all 

data deriving from different assays in one automated evaluation pipeline. In previous large-scale 

studies examining in vitro data for regulatory purposes, it was already shown that careful statistical 

evaluation is important to optimize test systems (Prieto et al., 2013; Kropp-Schneider et al., 2013) and 

that differences in statistical approaches can alter the outcome (Jensen et al., 2020; Fischer et al., 

2020).  

In order to quantify biological effects, a point-of-departure is estimated for concentration-response 

relationships. In recent years, the BMC (benchmark concentration) method introduced by Crump 

(1995) became the standard approach of effect readout and is now seen as a superior alternative to 

the no-observed-adverse-effect-level (Bokkers and Slob, 2005; Davis et al., 2011). The BMC is defined 

as a concentration resulting in an effect at a predefined limit (benchmark response; BMR) below 

expected control treatment noise and is thus similar to Effective Concentration (EC) estimations or 

Lethal Concentration (LC) estimations (Jensen et al., 2020). The uncertainty of a BMC is estimated by 

a confidence interval (CI), which is defined as the range between lower and upper limits (BMCL and 

BMCU respectively) and most commonly the 5% quantiles are used as limits. With the BMC and CI 

readout of single endpoints, the effect of chemical exposure on the cell system behavior is quantified.  

This quantification then allows the assessment of potential hazard by classification of the biological 

specificity of exposure effects. For this purpose, classification models are applied. Classification models 

utilize decision trees and consider the BMC and its uncertainty to characterize potential hazards for 

compounds. This is usually done by applying classification categories such as “hit” or “not hit”. These 
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or similar categorizations then serve as orientation for which compounds might exert hazard and 

should thus e.g. be prioritized for further testing. As to identify DNT-specific effects, reference to 

general cell health is required. If a toxic effect is observed in an endpoint specific for developmental 

neurogenesis (“specific endpoint”; e.g. neuronal differentiation) and the effect is clearly distinct from 

an effect or the absence of such on general cell health (“unspecific endpoint”; e.g. viability or 

cytotoxicity), it can be considered as a specific DNT effect. In scenarios where there is uncertainty, if a 

hit is specific or unspecific, a borderline classification is recommended, to respect estimations with 

high uncertainty instead of separating them into either specific or unspecific hit categories 

(Leontaridou et al, 2017). In scenarios where there is high uncertainty in the data required for 

classification (e.g. large CI width or missing unspecific endpoint data), a flagging for subsequent expert 

judgement can be applied. 

 

1.3.3 Data application 

The evaluated data gives insight into the hazard potential of tested compounds and this information 

can subsequently be applied for regulatory purposes. Compound classifications give an overview over 

the general DNT potential of a compound, while BMCs and uncertainties can be used to narrow down 

concentrations causing disturbances of key neurodevelopmental processes (KNDP) and thus may cause 

DNT in an in vitro system. Compounds triggering several specific DNT effects or trigger a DNT effect at 

relatively low concentration can be prioritized. These metrics can be employed into IATA approaches 

and used as point-of-departure for subsequent steps, such as physiology-based kinetic modelling 

followed by in vitro-to-in vivo extrapolations (IVIVE) to convert the BMCs to estimated adverse doses. 

On the scale of industrial application, support for the approval process of pesticides or registration of 

a chemical would be one example of application. For some applications, also non-hits (i.e. compounds 

without any observed toxic effects) play an important role as well, e.g. the status of the safety of food 

constituents or contaminants. Furthermore, classifications can be used as reference for follow-up 

testing with orthogonal assays (assays which tackle the same biological phenomenon). If no or not 

sufficient in vivo DNT data is available for a regulatory question, in vitro data can be used to support 

the in vivo data and allow a regulatory decision. If available in vivo DNT data is inconclusive, in vitro 

testing can be used to inform the assessment based on Weight-of-Evidence (OECD 2019) for DNT 

(Crofton and Mundy, 2021). 

The traditional method to evaluate DNT hazard potential is based on animal studies following the OECD 

test guideline TG426 or the EPA protocol oppts 970.6300. Due to their high demands on time and 

resources, only about 140 compounds have DNT guideline data available, revealing a vast gap in 
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compound DNT knowledge. In line with the shift from in vivo to in vitro test methods, data derived 

from NAMs can be applied to close this gap. Several steps need to be taken as prerequisites, before in 

vitro data can be used for regulatory purposes. First, established in vitro assays need to cover the most 

relevant biological processes, i.e. most crucial KNDP which may lead to DNT in humans. Second, used 

assays need to be validated as sufficiently robust and reliable in terms of DNT predictivity, which 

requires sound bioinformatical analysis and biostatistical evaluation. 

 

1.4 Objectives of the thesis 

The use of animals for toxicity testing is a very resource- and time-intensive procedure. To improve 

human risk assessment and attend these issues, the national research council proposed a new strategy 

for toxicity testing in the 21st century, in which a shift from conventional in vivo toxicity testing to high 

throughput but physiologically relevant in vitro assays is proposed. To make this shift possible, new 

procedures with novel technologies require novel data acquisition, management and evaluation 

software algorithms. Here, plated neurospheres, a secondary 3D highly complex in vitro model, was 

used as the basis. Neurospheres contribute to a DNT-IVB that is planned to be implemented into e.g. 

pesticide regulation. Due to the primary nature of this cell system, higher variabilities are observed 

than e.g. with immortalized tumor cell lines. Hence, a bioinformatics/biostatistics workflow is needed 

that accounts for such variabilities. To tackle this challenge, the overall aim of this thesis was to 

establish a bioinformatic workflow capable of  

 

1) generating image data from plated neurospheres and analyzing the images for endpoint data,  

2) evaluating the endpoint data with adequate statistical methodology and thus  

3) enabling informed application of the evaluated data for hazard identification.  
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2 Manuscripts 

The first manuscript (2.1) ‘Reliable identification and quantification of neural cells in microscopic 

images of neurospheres’ (Förster et al., 2021) describes how ML approaches are utilized for HTS data 

generation. By analyzing neurosphere images, Omnisphero enables automatic generation of endpoint 

data reflecting neurological processes of brain development. CNN models that were developed for 

identification and quantification of either neurons and oligodendrocytes are described and validated 

for their performance in the context of application for toxicology screening.  

 

The second manuscript (2.2) ‘Biostatistics and its impact on hazard characterization using in vitro 

developmental neurotoxicity assays’ explores the different biostatistical approaches and monitors 

them for their impact on hazard identification. Five key aspects of biostatistical DNT data evaluation 

were identified and monitored: 1) Experiment summary by either median or mean, 2) normalization 

by re-normalization or sole control normalization, 3) application of a best-fit algorithm for model fitting 

or enforcement of only one fit model, 4) different BMC and CI estimation approaches such as inverse 

regression, delta method, bootstrapping and model averaging and 5) measurement of different BMRs. 

The basis for this study is a compound screening project performed on behalf of an EFSA procurement 

during the years 2017-2020 (OC/EFSA/PRAS/2017/01). The DNT-IVB described in 1.2 was exposed with 

148 compounds from different compound classes including expected positive and negative control 

compounds (Masjosthusmann et al., 2020). These controls were used to assess the performance of 

the monitored biostatistical approaches to identify hazardous compounds with accuracy.  

 

The third manuscript (2.3) ‘Establishment of a human cell-based in vitro battery to assess 

developmental neurotoxicity hazard of chemicals’ explores the feasibility of DNT hazard assessment 

based on NAMs. For this purpose, ten NAMs were combined into one DNT-IVB which covers relevant 

KNDPs such as proliferation of neuronal progenitor cells (NPCs), migration of several brain cell types, 

differentiation of neurons and oligodendrocytes, as well as neurite outgrowth. Additionally, several 

cell viability assays (often measuring as cytotoxicity) are included. A set of 120 compounds was 

analyzed and evaluated by the bioinformatics workflow presented in this thesis. To validate the 

accuracy of the DNT-IVB, pre-defined control compounds that are known to either induce toxic effects 

(positive controls) or to have no toxic effects (negative controls) were used as reference. A sensitivity 

of 82% and specificity of 100% was reached (manuscript 2.3 – Blum et al., 2022), indicating the 

applicability of the DNT-IVB for regulatory purposes.  

 

The fourth manuscript (2.4) ‘Neurodevelopmental toxicity assessment of flame retardants (FRs) using 

a human DNT in vitro testing battery’ utilized the bioinformatics workflow presented in this thesis to 
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identify potential DNT hazards deriving from flame retardants (including phased-out polybrominated 

FRs and organophosphorus FRs). For this purpose, the compounds were tested in the DNT-IVB, 

resulting in BMCs and classifications for each flame retardant, enabling informed assessment of 

potentially DNT-specifically hazardous retardants.   
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2.1 Reliable identification and quantification of neural cells in microscopic images of 

neurospheres   

Nils Förster, Joshua Butke, Hagen Eike Keßel, Farina Bendt, Melanie Pahl, Lu Li, Xiaohui Fan, Ping-chung Leung, 

Jördis Klose, Stefan Masjosthumann, Ellen Fritsche, Axel Mosig 

Cytometry part A 

 

Aus primären humanen neuralen Stamm-/Vorläuferzellen (hNPC) bestehende Neurosphären werden 

verwendet, um in vitro durch Substanzen induzierte Effekte auf frühe entwicklungsneurologische 

Prozesse zu untersuchen. Sobald auf geeigneter extrazellulärer Matrix ausplattiert, migrieren und 

differenzieren hNPCs zu Radialgliazellen, Neuronen, Astrozyten und Oligodendrozyten, und 

modellieren somit Prozesse der frühen neuronalen Entwicklung. Um Änderungen der Entwicklung von 

hNPCs zu charakterisieren, ist es notwendig den Zelltyp jeder Zelle innerhalb der Migrationsfläche zu 

identifizieren. Zu diesem Zweck präsentieren und validieren wir ein Ansatz des maschinellen Lernens 

zur Identifizierung und Quantifizierung von Zelltypen in mikroskopischen Bildaufnahmen von 

differenzierten hNPCs. Wie hier demonstriert, identifiziert unser Ansatz mit hoher Präzision und ist 

robust gegenüber typischen potentiellen Störfaktoren. Wir zeigen, dass unser Ansatz des maschinellen 

Lernens die Konzentrationswirkung von gut etablierten entwicklungsneurotoxischen Substanzen und 

Kontrollen reproduziert, was sein Potential für den Einsatz in Medium- bis Hochdurchsatz in vitro 

Screening Studien nachweist. Unser Ansatz kann somit für die Untersuchung von Substanzeffekten auf 

neurale Differenzierungsprozesse in einem automatisierten und unvoreingenommenen Prozess 

verwendet werden.      
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2.2 Biostatistics and its impact on hazard characterization using in vitro developmental 

neurotoxicity assays  

Hagen Eike Keßel, Stefan Masjosthusmann, Kristina Bartmann, Jonathan Blum, Arif Dönmez, Nils Förster, Jördis 

Klose, Axel Mosig, Melanie Pahl, Marcel Leist, Martin Scholze, Ellen Fritsche 

ALTEX 

 

Im Forschungsfeld der Gefährdungsbeurteilung von Substanzen sind sogenannte „Benchmark 

concentrations“ (BMC) und deren Unsicherheit von besonderem Interesse für regulatorische 

Entscheidungen. Zur Ermittlung eines BMCs müssen mehrere statistische Entscheidungen getroffen 

werden, welche stark von Faktoren wie etwa dem experimentellen Design und Eigenschaften der 

erhobenen Endpunkte abhängen. In der aktuell gängigen Praxis ist für die Datenauswertung oft der 

Experimentator verantwortlich, welcher demensprechend auf statistische Software angewiesen ist. 

Dabei besteht oft die Gefahr, dass der Experimentator sich nicht über die gegebenen 

Standardeinstellungen der Software und deren Konsequenz für die Datenauswertung bewusst ist. Um 

ein besseres Verständnis dafür zu schaffen, wie sich statistische Entscheidungen auf die 

Datenauswertung auswirken, haben wir Fallstudien auf einen großen Datensatz angewandt, welcher 

durch Entwicklungsneurotoxizität-Testbatterien produziert wurde.    Wir betrachten dabei auf die 

Ermittlung von BMCs, deren Unsicherheit, sowie resultierende Gefährdungsklassifizierungen. Hier 

konnten wir fünf kritische statistische Entscheidungen identifizieren, mit welchen sich der 

Experimentator während der Datenauswertung auseinander setzten muss: i) Wahl der Mittelung von 

biologischen Replikaten, ii) Datennormalisierung, iii) Regressionsmodellen, iv) Methode der BMC-

Ermittlung, sowie v) die Wahl sogenannter „Benchmark response levels“ (BMR). Eine besondere Stärke 

unserer Datenauswertungssoftware ist dabei die Integration von Endpunkt-spezifischen 

Gefährdungsklassifikationen, einschließlich eins Warnsystems für unsichere Fälle, was bisher keine 

andere vergleichbare Software mitbringt. Die in dieser Studie gewonnen Einsichten demonstrieren, 

wie wichtig geeignete, aufeinander abgestimmte und regulatorisch akzeptierbare Methoden der 

Datenauswertung für objektive Gefährdungsbeurteilung sind.  

  



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 



Manuscripts 
 

 
 

 



Manuscripts 
 

 
 

 



Manuscripts 
 

 
 

 



Manuscripts 
 

 
 

 



Manuscripts 
 

 
 

 



Manuscripts 
 

 
 

  



Manuscripts 
 

 
 

Biostatistics and its impact on hazard characterization using in vitro 

developmental neurotoxicity assays  

 

Hagen Eike Keßel, Stefan Masjosthusmann, Kristina Bartmann, Jonathan Blum, Arif Dönmez, Nils 

Förster, Jördis Klose, Axel Mosig, Melanie Pahl, Marcel Leist, Martin Scholze, Ellen Fritsche 

 

Journal: ALTEX 

Impact factor: 6.250 (2021) 

Contribution to the publication:  85% 

 

Study design, biostatistics and image analysis software 

development, data analysis and evaluation, performance and 

evaluation, writing of manuscript 

Type of authorship: Authorship 

Status of publication: Submitted 17th Oct 2022 

 



Manuscripts 
 

 
 

2.3 Establishment of a human cell-based in vitro battery to assess developmental 

neurotoxicity hazard of chemicals  

Jonathan Blum, Stefan Masjosthusmann, Kristina Bartmann, Farina Bendt, Xenia Dolde, Arif Donmez, Nils 

Forster, Anna-Katharina Holzer, Ulrike Hübenthal, Hagen Eike Keßel, Sadiye Kilic, Jördis Klose, Melanie Pahl, 

Lynn-Christin Stürzl, Iris Mangas, Andrea Terron, Kevin M. Crofton, Martin Scholze, Axel Mosig, Marcel Leist, 

Ellen Fritsche 

 

Die Entwicklungsneurotoxizität (DNT) ist ein wesentliches Sicherheitsproblem für alle Chemikalien des 

menschlichen Exposoms, doch DNT-Daten aus Tierstudien sind nur für wenige dieser Substanzen 

verfügbar. Daher werden dringend Testmethoden mit einem höheren Durchsatz als im Tierversuch 

und einer besseren Relevanz für den Menschen benötigt. Wir untersuchten daher die Durchführbarkeit 

einer DNT-Gefährdungsbeurteilung auf der Grundlage von sogenannten new approach methods 

(NAM). Eine in vitro-Batterie (IVB) wurde aus einzelnen NAMs zusammengestellt, die in den letzten 

Jahren entwickelt wurden, um die Auswirkung von Chemikalien auf verschiedene grundlegende 

Prozesse der Gehirnentwicklung zu untersuchen. Für alle Tests wurden menschliche neurale Zellen in 

verschiedenen Entwicklungsstadien entweder in 2D, 3D oder sekundärem 3D verwendet. Auf diese 

Weise konnten Störungen (i) der Proliferation neurale Vorläuferzellen (NPC), (ii) der Migration von 

Neuralleistenzellen, radialen Gliazellen, Neuronen und Oligodendrozyten, (iii) der Differenzierung von 

NPCs in Neuronen und Oligodendrozyten und (iv) des Neuritenwachstums peripherer und zentraler 

Neuronen in Verbindung mit Messungen der Zytotoxizität/Viabilität beurteilt werden. Die 

Durchführbarkeit eines konzentrationsabhängigen Screenings und einer zuverlässigen biostatistischen 

Verarbeitung der komplexen multidimensionalen Daten wurde mit einer Reihe von 120 

Testsubstanzen untersucht, die eine Auswahl von vordefiniert positiven und negativen DNT-

Substanzen enthielten. Die Batterie lieferte Hinweise (Hit oder Borderline) für 24 von 28 bekannten 

DNTToxika (82% Sensitivität), und die Spezifizität lag bei >94%. Auf der Grundlage dieser Daten wurden 

Strategien entwickelt, wie die Daten im Rahmen von Risikobewertungsszenarien unter Verwendung 

integrierter Ansätze für die Prüfung und Bewertung verwendet werden können. 
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2.4 Neurodevelopmental toxicity assessment of flame retardants using a human DNT 

in vitro testing battery 
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Cell Biology and Toxicology 

 

Aufgrund ihrer neurologischen Entwicklungstoxizität sind Flammschutzmittel (flame retardants; FRs) 

wie z.B. polybromierte Diphenylether verboten und durch alternative FRs wie z.B. Organophosphate 

ersetzt worden, deren toxikologisches Profil jedoch meistens unbekannt ist. Um ihre neurologische 

Entwicklungstoxizität einzuschätzen, haben wir diesbezüglich das Gefährdungspotential mehrerer FRs 

untersucht. Das verwendete Testset umfasste hierbei ausgemusterte polybromierte FRs und 

Organophosphate: 2,2'4,4'-Tetrabromdiphenylether (BDE47), 2,2'4,4',5-Pentabromdiphenylether 

(BDE-99), Tetrabromobisphenol A, Triphenylphosphat, Tris(2-butoxyethyl)phosphat und dessen 

Metabolit Bis-(2-butoxyethyl)phosphat, Isodecyl diphenyl phosphat, Isopropyliertes 

Triphenylphosphat, Trikresylphosphat, Tris(1,3-Dichlor-2- propyl)phosphat, Tert-Butylphenyl diphenyl 

phosphat, 2-Ethylhexyldiphenylphosphat, Tris(1- chlorisopropyl)phosphat und Tris(2-

chlorethyl)phosphat. Hierfür verwendeten wir eine human basierte DNT in vitro Testbatterie, die eine 

Vielzahl von Endpunkten der neurologischen Entwicklung abdeckt. Die Potenz gemäß der jeweils 

empfindlichsten Benchmark-Konzentration (BMC) über die Batterie hinweg lag im Bereich von < 1 µM 

(5 FRs), 1 < 10 µM (7 FRs) bis zum Bereich von > 10 µM (3 FRs). Die Datenauswertung zur Priorisierung 

mit dem ToxPi-Tool ergab eine andere Rangfolge a) als mit den BMC Werten und b) im Vergleich zu 

den ToxCast-Daten, was darauf hindeutet, dass die DNT-Gefahr dieser FRs durch ToxCast-Assays nicht 

gut vorhergesagt wird. Die Extrapolation der BMC Werte ausgehend von der DNT in vitro Batterie auf 

die FRExposition des Menschen lediglich über die Muttermilch deutet auf ein eher geringes Risiko für 

einzelne Verbindungen hin. In Anbetracht der Tatsache, dass der Mensch jedoch Gemischen 

ausgesetzt ist, kann dies dennoch zu einem Risiko führen, insbesondere wenn verschiedene 

Chemikalien durch unterschiedliche Wirkmechanismen an gemeinsamen Endpunkten wie der 

Oligodendrozytendifferenzierung konvergieren. Diese FRs Fallstudie legt nahe, dass eine auf 

menschlichen Zellen basierende DNT in vitro Batterie ein vielversprechender Ansatz für die 

entwicklungsneurologische Gefahreneinschätzung und die Priorisierung von Verbindungen bei der 

Risikobewertung darstellt. 
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3 Discussion 

To improve human risk assessment and reduce animal testing, the US-National Research Council 

proposed a new strategy for toxicity testing in the 21st century, which is based on a shift from 

conventional in vivo toxicity testing to high throughput in vitro assays (NRC, 2007; Collins et al., 2008). 

The assays and bioinformatic tools developed in the context of this shift should also help to close the 

knowledge gap for DNT hazard assessment of a large number of compounds (Crofton and Mundy 2021; 

Grandjean and Landrigan, 2014; Tsuji and Crofton, 2012). To close this gap and gain compound data 

fit for regulatory decision making, a biologically relevant DNT-IVB has been established. An integral 

part of this DNT-IVB is the human neurosphere assay that contributes unique endpoints to the battery 

(Crofton and Mundy 2021). Such neurospheres originate from the correct species for human risk 

assessment, can be grown in 3D (Alépée et al., 2014), differentiate into multiple cell types (Moors et 

al. 2009) and thus allow evaluation of a large variety of endpoints in an organotypic manner (Fritsche 

et al., 2015; Koch et al. 2022). As described in manuscript 2.3 (Blum et al., 2022), the neurosphere 

model based on human neural progenitor cells (NPC) along with human induced pluripotent stem cell 

(hiPSC)-derived neural crest cells and sensory neurons (Nyffeler et al., 2017; Hoelting et al., 2016; 

Holzer et al., 2022) as well as differentiated dopaminergic Luhmes cells (Delp et al., 2018) were 

established as cell models for DNT hazard characterization. However, even the best cell model cannot 

be used for hazard assessment, if the data acquired from this model is not reliable. Bioinformatic tools 

not only need to bring along high-throughput capabilities to reduce time and resources compared to 

in vivo testing, but also to reliably process endpoint data and predict hazard on this basis. This is an 

especially challenging undertaking, since one of the key characteristics of computational high 

throughput workflows poses their ability to function without human supervision (or as minimal 

supervision as possible) for data generation and evaluation. For the workflow presented in this thesis, 

it thus was a demanding task to ensure that the algorithms employed for this purpose were (i) able to 

handle vast amounts of data from different assays, (ii) generate endpoint data while dealing with 

biological and technical aberrations, (iii) evaluate the data with as much certainty as possible while 

taking these aberrations into account and (iv) make precise hazard predictions on this basis, all fully 

automatized with as less human intervention as possible. The workflow we established incorporates 

all steps from image acquisition to hazard predictions (Fig. 6). This thesis aims to explore the different 

steps: It will be discussed, how the use of adequate algorithms and statistical methods can lead to 

robust and reliable data, by comparing the methods we implemented for this purpose with alternative, 

yet popular, approaches. By taking a closer look at employed algorithms and methods of this workflow, 

gained knowledge about their advantages and remaining concerns are discussed, including suggestions 

that we are able to make based on the gained knowledge. Finally, it will be discussed how different 
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parts (e.g. image acquisition as one and BMC estimation as another part) of the workflow are 

interconnected and thus affecting each other. 

 

Figure 6: DNT-IVB workflow 
Primary human neurospheres are exposed towards chemicals when plated into laminin-coated 96-well plates with one sphere 

(0,3 mm ) per well. Cytotoxicity and viability measurements are performed on the cell supernatants after 5 days of exposure 
with the LDH- and Alamar Blue Assays, respectively, using a fluorescence and luminescence multiplate reader. In parallel, 
remaining cells are fixed in paraformaldehyde and stained with the DNA intercalating dye Hoechst for nuclei and 
immunocytochemical reactions using antibodies against βIII-tubulin (neurons) and O4 (oligodendrocytes). Fluorescence 
images are taken with the ArrayScan VTI HCS Reader (Thermofisher Scientific). Neurons and Oligodendrocytes are 
subsequently identified by a CNN. Images and cell identities are imported into Omnisphero and analysed for endpoint data 
generation (discussed in section 3.1). Generated endpoint data is passed down to the data evaluation tool written in R for 
hazard characterization (3.2). Resulting evaluation can be used for QSAR, IATA, read-across approaches, chemical 
prioritization and other fields of application for hazard assessment (3.3). 

 

3.1 Data generation 

In order to extract endpoint data for a certain cell type, cells of this type must first be identified within 

the image. Omnisphero originally relied on overlap algorithms for cell identification and 

skeletonization for assessment of morphological endpoints such as neurite length or number of 

branching points. On the basis of these algorithms, it was already shown that Omnisphero vastly 

outperformed other cell identification tools, such as Neuronal Profiling BioApplication version 4.1 

(Schmuck et al., 2017), which relies on overlap algorithms and superellipsoids for identification and 

morphology analyses.  

Evaluation of additional cell donors, changes in image acquisition (new device, different camera) and 

staining protocols since the set-up of Omnisphero indicated that cell identification software tools are 

required, which go beyond the before developed algorithms. Therefore, the decision was made to 

replace Omnisphero´s overlap algorithms with ML approaches for cell identification. ML approaches 

(often implemented as deep learning models) have already been used for a variety of applications in 
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life science. Some examples are the use of ML approaches for classification of disease, localization of 

organs and lesions, or segmentation of organic structures (Litjens et al., 2017; Shen et al., 2017), 

rendering ML technology as a promising approach for cell-type classification within the neurosphere 

model. Two supervised learning models were implemented as convolutional neuronal network (CNN) 

models to identify neurons and oligodendrocytes, respectively, within neurosphere fluorescence 

images. With these CNN models, a performance of a precision and recall with area-under-curve (AUC) 

values around 0.8 for both oligodendrocytes and neurons was achieved for the validation dataset and 

deemed as accurate enough to be applied for image analyses (manuscript 2.1 – Förster et al., 2021). A 

direct comparison with the outdated overlap-algorithm (Figure 7) clearly reveals the superiority of the 

new approach, as it is able to handle confounders such as luminosity (7B), staining artifacts (7C) and 

overlapping cells (7D). This finding is in line with recent development in the field of life science, were 

ML based technology is often seen as a superior alternative to other algorithms in a variety of different 

in vitro studies (Shariff et al., 2010; Ching et al., 2018). So far, only neurons and oligodendrocytes are 

identified with our CNN models. However, as they show promising performance, more CNN models 

can be employed for other cell types in the future. 

As the employment of ML approaches for in vitro studies is gaining increasing attention (Ching et al., 

2018; Villeneuve et al., 2019), identifying guidelines and minimum standards for application of ML 

approaches is an important contribution for such ML methods to gain acceptance. With the knowledge 

gained by establishment of the novel algorithms for cell identification within the neurosphere model 

(manuscript 2.1 – Förster et al., 2021), we are able to formulate guidelines for validation of employed 

algorithms. These do not only apply for the establishment of ML approaches for analysis within the 

neurosphere model, but are rather applicable for the development of ML approaches for in vitro 

studies in general.  

We recommend external validation of CNN data, as over-fitting is an inherent danger of CNN models 

(Choi et al., 2020) and can potentially lead to false positive or false negative concentration–response 

relationships in compound screening (manuscript 2.1 – Förster et al., 2021). To counteract this, 

external validation can be done. A fully independent comparison (e.g. validation on data from different 

laboratories using different devices and a fully independent sample preparation) would be the ideal 

way to validate. If a CNN is only trained with data deriving from one laboratory, but subsequently is 

also able to perform correctly on the data of the same assay derived from other laboratories, it thus is 

validated as robust against differences in data origin. Welch et al. (2020) were already able to 

demonstrate this, as they trained a CNN model for classification of dental artifacts and successfully 

validated it by application on external datasets. We were able to show the benefit of such validation, 

by training our CNN models with cells from different individuals, which in a validation step led the 

models to be more robust against inter-individual differences (manuscript 2.1 – Förster et al., 2021). 
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These findings indicate that a crucial part of CNNs in screening applications is the identification of 

sources of bias and confounding, in order to systematically validate against these confounders. 

Furthermore, to ensure reliability of CNN model predictions used for studying the effects of substances 

on neurospheres, it is important to validate the resulting concentration-response relationship of these 

substances. To do this, it is necessary to compare the concentration-response pattern gained by the 

CNN to the expected pattern of a substances with known toxicity behavior, which is very similar to the 

concept of assay performance discussed in manuscript 2.2 (Keßel et al., 2022, preprint). 

Data annotation is often seen as the bottleneck of ML based approaches (Shariff et al., 2010) and often 

a major issue for employment of ML approaches in life science, as it is a time- and sometimes even 

resource-consuming procedure (Zheng et al., 2017). It is because of this, that ML approaches are often 

considered with skepticism by regulatory decision makers, as many ML models lack sufficient training 

data (Ching et al., 2018). We therefore trained the models with a set of 10,945 cells (containing 1,114 

annotated neurons and 718 annotated oligodendrocytes) of different chemical treatment and added 

augmented data (Dhungel et al., 2015), ensuring well trained models fit for regulatory purposes 

(manuscript 2.1 – Förster et al., 2021). 

As ML approaches consistently improved over the last years (Ching et al., 2018), the question arises, 

how well they perform compared to true human evaluation. Our experience (gained by visual 

assessment of random samples) has shown, that the employed CNN models matched human  

 

 

Figure 7: Oligodendrocyte identification with different bioinformatical approaches 
Staining of nuclei (Hoechst, blue) and oligodendrocytes (O4, green) are depicted as displayed in Omnisphero. Two algorithms 

are compared for their performance of identifying oligodendrocytes. Four cells are picked as examples (A-D). The overlap 

algorithm binarizes the staining images, where every pixel with brightness values above a set threshold is translated into a 

binarized signal. This is done for both staining channels, resulting in a binarized image with both channels overlapping. Several 

parameters define how much overlap the oligodendrocyte pixels (green) must have with the according nuclei pixels (blue) so 

that the according nuclei is identified as an oligodendrocyte. For the CNN, both channels are merged into one image and 

contrast-normalized image tiles (one tile is corresponding to one nucleus) are evaluated for oligodendrocytes.     
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evaluation and sometimes even outperformed it. This is in line with a study from Kooi et al., (2017), 

where they found no significant differences between the performance of a network model and 

certified screening radiologists detecting mammographic lesions. 

3.2 Data evaluation 

To translate the generated endpoint data deriving from image analyses tools into evaluations which 

enable statements about the potential toxicity, i.e. hazard, of tested compounds, biostatistical 

processing and evaluation of the endpoint data is required. In the course of a compound screening 

project performed on behalf of an EFSA procurement during the years 2017-2020 

(OC/EFSA/PRAS/2017/01), a bioinformatics workflow was developed which enables processing and 

subsequent DNT evaluation of NPC and UKN assay data (manuscript 2.2 – Keßel et al., 2022, preprint), 

which is the basis of an OECD guidance document on use and interpretation of the DNT-IVB (Crofton 

and Mundy, 2021). As part of the workflow, a biostatistics pipeline was employed and also used for a 

study analyzing the impact of common biostatistical concentration-response methods on the overall 

DNT-IVB performance. As in vitro methods have been gaining complexity over the last decade, i.e. from 

reporter gene assays towards organotypic cultures, the hypothesis if the selection of a biostatistical 

method can affect the performance of the DNT-IVB was tested. Therefore, a comparative assessment 

of different biostatistical methods on the BMC estimation, DNT hit classification and DNT-IVB 

performance was performed (manuscript 2.2 - Keßel et al., 2022, preprint). A standard data evaluation 

protocol for DNT-IVB data was defined and by changing statistical methods as part of the protocol, the 

impact on BMC estimation, the uncertainty of a BMC (expressed as the width of the central 95% 

confidence interval of a BMC estimation), the endpoint-specific hazard classification of the compound 

and the final assay performance were quantified and compared across the various specific assay 

endpoints. Five key aspects of HTS data evaluation were identified and evaluated for their impact on 

hazard identification: i) The impact of different methods for experimental data averaging. Only minor 

differences in BMC estimations (Fig. 8A and B) and hazard classification outcomes (Fig. 8I-K) were 

observed by comparing the two approaches, with relatively few data sets, where a strong difference 

on the estimated BMC (Fig. 8C) was observed. ii) The impact of different data normalization 

approaches. Very different BMC estimations (Fig. 8A) were often observed for the both methods and 

furthermore, where the BMC is not supported by the data in extreme cases (Fig. 8D). Although the 

majority of data sets did not necessarily require a control-renormalization, a change to the standard 

control normalization still changed the hit category for approx. 5% of all endpoint-specific DNT hazard 

classifications and reduced the performance of the DNT-IVB’s predictivity (Fig. 8I-K). iii) The impact of 

different approaches for concentration-response regression modelling. The best-fit model approach 

responded more flexible to data sets and therefore resulted often to BMC estimations that differed 
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significantly from those derived by the sole application of one predefined three-parameter log-logistic 

model (Figure 8E). Furthermore, the sole application of the Hill model occasionally prevented the 

estimation of a BMC and its uncertainty, leading to less data sets for which a hazard identification could 

be performed. Comparison between inverse regression and model averaging for BMC estimation 

showed no big differences between both methods (Fig. 8A). iv) The impact of different approaches for 

estimation of BMCs and their uncertainty. There are three general types of BMCs and uncertainty 

estimation methods: inverse regression, asymptotic approaches and bootstrapping approaches. 

Inverse regression estimates the uncertainty directly from the regression fit around the BMC (Buckley, 

Piegorsch & West, 2009; Fang, Piegorsch & Barnes, 2015) and was found to be the most reliable 

method. The delta method is an asymptotic approach which combines information of the estimated 

model parameters to derive a Wald-type interval (Jensen et al., 2020). This approach often led to an 

unreliable CI spanning the entire range of test concentrations or failed entirely (Fig. 8F). Based on the 

study outcome, this method is deemed as unfit for an automatic HTS data evaluation. Both 

bootstrapping and model averaging are based on computer-intensive statistical resampling techniques 

that resample the original dataset to create a huge number of simulated samples (Jensen et al.,2019). 

These methods put strong emphasis on the given data for the resampling and are thus vulnerable to 

biased interval estimations if the data shows high variability between tested concentrations, i.e. mode 

of the resampled BMC distribution differs from the original BMC estimation. Furthermore, due to the 

small number of biological replicates, given assay designs are not optimal for regression resampling. 

Thus it is not surprising that bootstrapping often resulted in very different estimations compared to 

inverse regression. The CI was often vastly wider and sometimes even failed to produce an estimation 

(Fig. 8G). v) The impact of measured BMRs. The use of BMR50 (BMR set at 50% response) has been a 

common practice for years and is still used in recent publications, despite not having any biological 

reasoning. As an alternative, an endpoint-specific BMR that is adjusted to the baseline noise of the 

according endpoint can be used. A larger BMR leads to a higher BMC and the consequence for all data 

sets with a much lower data variability is that their substance responses observed at concentration 

ranges below the BMC are ignored. In a hazard identification context, this is problematic, since it 

contradicts the intended regulatory meaning of a benchmark concentration. Furthermore, it would 

also rule out those data sets for a BMC estimation where the observed maximal responses are below 

the BMR and thus a BMC cannot be established. As a consequence, hazard classifications change, with 

a change mainly from specific DNT hit classifications to no hit classifications, which lastly affects the 

assay performance as well (Fig. 8I-K). Thus, the use of the most common descriptor for concentration 

response data in pharmacology and in vitro toxicology, an IC50 or EC50, cannot be recommend as 

surrogate for a BMC for endpoints of the DNT-IVB.  
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A broad variety of free software packages for the statistical analysis of dose-response data and dose-

response modelling are available, with PROAST (RIVM National Institute for Public Health and the 

Environment), BMDS (US EPA), ToxCast pipeline (tcpl, Filer et al. 2017) or BMCeasy (Krebs et al., 2019) 

posing some of the many options. Similar to the R packages we use (drc and bmd, Ritz et al., 2015 and 

Jensen et al., 2020), most of these software packages provide a variety of options in order to respond 

as flexible as possible to the various data scenarios a user can possibly face, yet always require a certain 

degree of statistical (and sometimes also coding) knowledge from the user. Similar to the tcpl pipeline 

we became interested in an automated data evaluation platform with no required user intervention 

and addressing the specific features of DNT data or other data from organotypic cultures. The standout 

feature of our data evaluation platform is the integration of a sophisticated endpoint-specific hazard 

classification model, including flagging systems for uncertain cases, which none of the software 

packages mentioned above offer. Rather than just relying on one benchmark value (or the lower limit 

of such; Filer et al. 2017, Jensen et al., 2020), our classification model involves confidence intervals for 

different hazard classifications. We consider it crucial for the hazard assessment to differentiate 

between general cell toxicity and specific DNT hits. None of the aforementioned software programs 

do inherit any classification model and require the data to be exported into another software to gain 

classifications. This poses another barrier and potential pitfall to overcome to gain reliable 

classifications, as the experimenter needs to operate a separate software which is not guaranteed to 

handle the data derived from external software appropriately (again, statistical and coding knowledge 

is required). With the classification model integrated into our pipeline, all classifications are fully 

automated, appropriate for the data format and require no prior statistical or coding knowledge, thus 

reducing the human handling error and making it a reliable and accessible option for experimenters. 

These findings point out the relevance of careful employment of statistical approaches in DNT data 

evaluation. Each method and software comes with its own advantages and disadvantages, where 

finding the method and software that is best suited for the given data and purpose is key. 
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Figure 8: Methodological changes in the data evaluation on BMC estimation and assay performance 

A)-B) Distribution of (A) BMC fold-changes and (B) CI width fold-changes in response to statistical method changes from the 
standard protocol. Box whisker plot show the median (horizontal line), interquartile range (box), 5% and 95% percentile 
values (whisker), and extreme values (black dots). C)-H) For several different steps of the data analysis and evaluation, the 
data resulting from the standard protocol (blue) is compared to the data deriving from the alternative protocol (red). Error 
bars show the SEM between summarized experiment data. Horizontal grey lines indicate the BMR. C) Experiment 
summarization by median and by mean. D) Re-normalized data and control-normalized data. E) Best fit approach and use of 
only a LL3 regression model. CI is displayed as confidence band around the fit model. Both models are applied to the data 
shown in blue. F) Inverse regression and delta method. CI of the alternative method is shown as red bar and BMC as red 
square. G) Inverse regression and bootstrapping. H) All method changes and their resulting BMC (displayed as dots) and CI 
values (displayed as bars) are shown for one exemplary dataset. I)-K) Bar graphs show the results of the predictive capability 
of the DNT-IVB for 28 substances of known DNT and 17 negative control substances in terms of specificity, sensitivity and 
accuracy. 
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3.3 Data application 

While data support for alternative testing approaches are given, regulatory jurisdictions are lacking 

behind. Thus, creating a framework that is fit-for-purpose to incorporate the DNT-IVB into regulatory 

processes attending regulatory questions is recommended. Yet, it was already shown to be applicable 

for several hazard and risk decisions (Crofton and Mundy, 2021). One example poses the case study of 

manuscript 2.4 (Klose et al., 2021), in which the DNT-IVB was used as a first case study for screening 

and prioritization of 15 data-poor compounds belonging to the class of flame retardants including 

phased out and alternative flame retardants, further closing the gap of data knowledge. By estimating 

BMCs and CIs, as well as subsequent classification, specific DNT hits were identified across the 

endpoints of the battery, giving information about potential hazard deriving from these flame 

retardants and enabling compound prioritization. For instance, triphenyl isopropylated phosphate and 

tert-butylphenyl diphenyl phosphate both were identified as toxciants affecting the migration of 

neural crest cells. This finding is in line with observations that were made with other models such as 

zebrafish or rat cortical neurons (Behl et al., 2015), revealing the capability of the DNT-IVB to replicate 

known DNT effects. However, results from this study also revealed new phenomena: For the first time, 

specific toxic effects on proliferation were shown for tricresyl phosphate and 2- ethylhexyl diphenyl 

phosphate in human cells, hinting at the possibility of the DNT-IVB to uncover new knowledge about 

DNT attributes of compounds. These results are of great relevance for human risk assessment, 

considering that this finding was made with complex 3D human cell models rather reflecting the 

human system than 2D animal cell models. It furthermore is to note that the DNT-IVB was not able to 

replicate all observations made for other models. For example, none of the 15 FRs tested in the study 

showed any effect on human neuronal differentiation, while all 5 FRs tested in rat neurospheres 

affected neuronal differentiation (Hogberg et al., 2020).  

With the BMC and uncertainty values at hand, compounds can be prioritized, for example by ranking 

the magnitude of compound effect (BMCs, “ToxPi Scores”, manuscript 2.4 – Klose et al., 2021). Another 

extrapolation that can be done with BMC data is the transition from in vitro systems to in vivo risk 

estimations. This is done by converting a given compound concentration from an in vitro system into 

an estimated internal concentration. Due to their low demand on time and resources, the DNT-IVB can 

also be applied for screening of data-poor compounds for DNT. It is recommended to prioritize 

compounds with high human exposure or have structural similarities to known DNT compounds. If any 

KNDP is affected by a compound, this could be taken as a point-of-departure for further steps such as 

kinetic modelling, QSAR, IVIVE and estimation of adverse doses. Another example for the use of NAMs 

for regulatory purposes is the use of data from multiple DNT-IVB assays for weight-of-evidence 

estimation for organophosphates (USEPA 2020b). Furthermore, in vitro data was used by EFSA to 
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develop IATA case studies for deltamethrin and flufenacet (EFSA et al. 2021), which resulted in an AOP-

informed DNT risk assessment, comprehending available information from a broad variety of DNT 

assays (e.g. in vitro, in vivo, toxicokinetics and epidemiology).  

While the DNT-IVB shows promising results for application in regulatory decision making (manuscript 

2.3 – Blum et al., 2022), there are remaining concerns about its predictivity for human hazard. The 

assay performance analysis has shown 82.1% sensitivity for the standard protocol (Fig. 8J). It thus is 

clear that not every compound inducing human DNT hazard is also evaluated as a DNT hazard by the 

DNT-IVB resulting in a false negative classification. This can be due to the lack of important KNDP like 

neuronal network formation in the evaluated data set, and the discussed differences between in vitro 

systems and the far more complex biology of the human body. However, it can also go in the other 

direction: a specific DNT hit in the DNT-IVB is not necessary reflecting a real DNT hazard for humans 

resulting in a false positive classification. Both of these circumstances further point to the relevance of 

incorporating data from multiple test systems covering a large variety of KNDP to gain as much 

information about potential hazards as possible for save decision making. A similar concern exists for 

no hits, since they may either be true (no hazard) or false negatives (compound has toxic properties 

but they were not detected by the DNT-IVB). The main sources of uncertainty on negatives are the 

gaps in the battery, i.e. KNDP or specific signalling pathways not covered, and toxicokinetic aspects.  

Estimations of assay performance with control compounds is an instrument for DNT-IVB validation, 

where there is a trade-off between sensitivity and specificity. If the DNT-IVB is very specific, but not 

very sensitive, the positive hit calls have high certainty. This is because the high specificity showed that 

compounds not inducing any DNT effects are reliably detected as negatives. It thus is less likely, that 

unknown DNT negatives are considered as (false) positive by the DNT-IVB. The opposite case would be 

a DNT-IVB with a high sensitivity, but lower specificity. Here, it would be more likely for the DNT-IVB 

to cover more DNT hazards, on the cost of producing more false positives. Putting this trade-off in the 

context of hazard assessment, both options come with their advantages in disadvantages: A higher 

specificity would mean more confident hit calls, resulting in more relevance for hazard assessment, i.e. 

the hit calls have a higher precision and are more reliable to predict potential human hazard. Yet, more 

additional information from other assays would be needed to be incorporated to cover the DNT 

positives not detected by the very specific DNT-IVB. A higher sensitivity would mean that more 

potential DNTs are detected, i.e. the DNT-IVB expresses more sources of potential human hazard. For 

hazard assessment in the regulatory context, this is the more desirable option, since it is more 

favourable for human health to identify harmless substances as harmful rather than identifying 

harmful substances as harmless. Yet, it comes with less certainty, reducing the relevance of hit calls 
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and also increasing the number of follow-up testing required to separate false positives from true 

positives.  

 

3.4 Connecting the dots: How data generation affects the evaluation and what it 

means for the application in hazard assessment 

As depicted in Figure 6, the process from cell model exposure to hazard assessment is a chain of 

subsequent steps, where each step depends on the outcome of the last. It thus is obvious that changes 

in one of the steps affects all the subsequent ones. Consequently, for reliable information on potential 

DNT hazard, each step must be carefully established and validated. This is even the more crucial for an 

automatized workflow, since the experimenter is supposed to give the biological material (cell 

cultures) as input and receives the evaluated hazard data as output – rendering the entire process in 

between as a “black box”. This black box must be trusted to fulfil each function with precision and 

robustness against data variability, which neurosphere assay readouts are susceptible to. It therefore 

is a very insightful case study to examine how changes of not only in one, but several of the different 

workflow steps (in our case employment of a new algorithm for cell identification and application of 

different biostatistical methods for hazard characterization) impact all subsequent steps. In section 3.2 

it was already discussed, how changes in biostatistics impact the outcome of hazard characterization. 

This section takes the same principle of action and consequence, but with the entire DNT-IVB workflow 

as scope. More precisely, it will be explored how the changes of image analysis algorithms for cell 

identification impacts the data that is evaluated and thus also the hazard assessment. For illustrative 

purposes, the assessment of oligodendrocyte differentiation for a positive control compound is taken 

as an example to follow along (Fig. 9). Three scenarios are displayed for demonstration. In terms of 

data generation, Omnisphero originally relied on overlap algorithms to identify neurons. This principle 

transferred to oligodendrocyte identification is depicted in scenario A. As discussed in 3.1.1, the 

overlap algorithm is prone to misclassification: It misidentifies both nuclei with O4 staining artefacts 

and nuclei overlapping with branches from an oligodendrocyte as positives, while misidentifying cells 

as negatives where the marker expression value was too low for the set binarization-threshold. If the 

acquired neurosphere images have many artefacts and/or varying staining brightness, counted 

oligodendrocytes (i.e. the measured response for oligodendrocyte differentiation) per well have high 

abbreviations and are not in line of what a human experimenter would observe. In this example, the 

algorithm did clearly fail at reaching the human ground truth of manual annotation and the response 

readouts are fairly scattered over the test concentration range. While evaluating the data, the 

employed regression model does not support any effects, a BMR is not reached. This leads to a “no 

hit” classification and, if no other endpoint is classified as “borderline” or “specific hit”, to a false 
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negative call for the compound. This demonstrates how employment of suboptimal image analysis 

algorithms impairs the sensitivity, since toxic effects are not assessed correctly by the image analysis 

resulting in false negative classifications. With a weak sensitivity, the DNT-IVB is not able to reliably 

detect DNT effects. There are ways to retroactively counteract the high data variability caused by 

flawed image analysis. Different BMR levels could be chosen, for example a BMR50. This would ensure 

that the BMR is not measuring the fluctuations given by the suboptimal image analysis. However, a 

larger BMR leads to a higher BMC to be estimated (manuscript 2.2 – Keßel et al., 2022, preprint). 

Another retrospective counteract would be the employment of replicate outlier criteria e.g. with 

truncated outlier filtering (Costa, 2014). This, however, is problematic for the small sample size given 

in the DNT-IVB and would also raise the follow-up-question on how to deal appropriately with outlier 

values (e.g., removing, winsorization, trimming). As a last retrospective counteract, a less conservative 

classification model could be used. However, all of these countermeasures would rather cure the 

symptom and not the cause.  

 

As a flawed image analysis is identified as the cause of misclassification in scenario A, in scenario B a 

well-trained CNN model is employed for identification of oligodendrocytes. It mimics human 

evaluation well and the generated endpoint data shows clear toxic effects on oligodendrocyte 

differentiation, as the applied regression model reaches the BMR. In scenario B, bootstrapping is 

chosen for BMC uncertainty estimation. Compared to inverse regression, bootstrapping often results 

in wider CIs for the given DNT-IVB experiment design (manuscript 2.2 – Keßel et al., 2022, preprint). 

The classification model relates to BMC uncertainty and the high uncertainty led to a “unspecific hit” 

classification. Consequently, the compound is possibly identified as a false negative again. A similar 

result would be expected, if a poor regression model is chosen and over-parametrization leads to a 

wider CI. In scenario C, the BMC uncertainty of the CNN-generated data is estimated by inverse 

regression. Inverse regression by trend results in narrower CI widths for the DNT-IVB experiment 

design (manuscript 2.2 – Keßel et al., 2022, preprint). With less uncertainty in the data, the 

classification model identifies the endpoint as “specific hit” and the compound consequently as a true 

positive. The different outcome between scenario B and C illustrates how statistical methods and the 

logic of a classification model need to be established with regard to the experimental design: Most of 

the DNT-IVB assays from our lab are prone to higher data variability than conventional cell systems, 

which renders bootstrapping as a less optimal choice to get reliable hazard hit calls, as it produces very 

large CIs, leading up to false negatives and thus a poor sensitivity. The illustrated example only shows 

how differences in bioinformatical and -statistical methodology impacts sensitivity. However, the same 

principle can be applied to specificity as well: If cells are not identified correctly, a control compound 

with no toxicity can misclassified as a toxicity hit compound (e.g. if the algorithm failed to detect 
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neurons in higher test-concentrations and thus a reduction of neuronal differentiation is falsely 

identified). And if a poor statistical method is chosen (e.g. leading to a reached BMC for data that does 

not support hints for toxic effects in the concentration-response pattern), the classification model 

might identify the compound as toxic as well, thus also leading to a poor specificity. In the examples 

above, only the BMC uncertainty estimation step is discussed as a critical point where hit calls can 

depend on. But as discovered in manuscript 2.2 (Keßel et al., 2022, preprint), all choices in biostatistical 

methodology can impact the subsequent hit calls, hazard characterization and assay performance. 

Because of this, the choice of data evaluation software and choice of software parameters are another 

concern to be taken into account for hazard identification (Jensen et al., 2020; manuscript 2.2 – Keßel 

et al., 2022, preprint). In the common practice of in vitro testing, these software packages are often 

used by non-statisticians and inexperienced experimenters often rely on the default settings of given 

software to perform data analysis and evaluation. It therefore should be given that the default settings 

are the ones that can be applied to most data scenarios for sound evaluation. I.e., the default settings 

should be a good compromise between robustness against different data scenarios from the 

abundance of different assays, while still maintaining precision in their estimations. One example for 

challenges deriving from software choice poses our experience with the ToxCast pipeline (tcpl, Filer et 

al., 2017), a software package able to evaluate data from a broad variety of different assays due to 

flexible algorithms and options. While being a capable software tool for data evaluation that is a good 

fit for many in vitro assays, our experience has shown that the data derived from it did not match the 

requirements for regulatory acceptance of our assays. This is because the neurosphere assay data 

comes with individual requirements such as assay-specific pre-processing (Schmuck et al., 2017; 

Manuscript 2.2 – Keßel et al., 2022, preprint) or characteristics such as high fluctuation in response 

data (Manuscript 2.2 – Keßel et al., 2022, preprint), which all need to be considered carefully during 

statistical data evaluation and require more options as provided by tcpl. Furthermore, tcpl does not 

provide a classification model, which is mandatory for hazard assessment. Thus, a sufficient data 

analysis with the tcpl software would require several additional algorithms, both up- and downstream, 

overcomplicating the entire process and making one comprehensive software tool (as presented in 

this work) a far more desirable solution. In the end, there is always the danger of an automatized data 

analysis and evaluation workflow not being prepared to deal with an unusual data set. These are 

scenarios that most likely can only be avoided by either analyzing each data set individually by an 

expert (which is very counterintuitive for high content analysis and evaluation, especially in an 

automated format), or implementation of flagging systems that are able to detect “problematic” data 

samples. This approach was taken for the 
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Figure 9: Consequences of change in methodology within the DNT-IVB bioinformatics workflow 
Schematic overview showing the aftermath of methodology change in either the image analysis and biostatistics for hazard 
characterization and assessment. In an example, oligodendrocyte and nuclei stainings were exposed with different 
concentrations of a known DNT toxicant. The stainings are analyzed in Omnisphero for oligodendrocyte identification. In 
scenario A, the overlap algorithm is used for oligodendrocyte identification. Due to the proneness of the overlap algorithm 
to misclassifications of cells, the data has very high uncertainty. The employed regression model did not reach a BMR, thus 
no effect on oligodendrocyte differentiation is observed. Consequently, the endpoint was classified as a “no hit”, which in 
this example is a false negative for the DNT toxicant. This leads to a poor sensitivity. In this scenario, the data shows high 
uncertainties and can be seen as unreliable. This would raise the question if the DNT-IVB is adequate for the use for regulatory 
purposes. In a different scenario, oligodendrocytes are reliably identified by a well-trained CNN model. The resulting data 
shows clear effects, a BMC was estimated. In scenario B, bootstrapping was employed for uncertainty estimation, resulting 
in a wide CI. This high uncertainty of BMC leads to a “unspecific hit” classification and thus is also a false negative. Despite 
having sound image analysis and data support for a DNT toxic effect, employed biostatistics were chosen poorly and result in 
misleading statements about potential hazard. In scenario C, inverse regression is employed for BMC uncertainty estimations 
and leads to a narrower CI. With higher certainty in the data, the endpoint is evaluated as a “specific hit” and thus validates 
the chosen methodology. With enough validation, this methodology can then be employed for more compound testing and 
hazard characterization. Data shown in this figure were artificially created for demonstration purposes. 
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classification model in which an elaborate flagging system was implemented, as described in 

manuscript 2.2 (Keßel et al., 2022, preprint). With this flagging system, problematic cases were 

identified and classification of these was done based on expert judgement for reliable hazard 

identification of such cases.  

 

3.5 Conclusion 

In this thesis, the progression of DNT data from data generation by image acquisition to application of 

evaluated data for regulatory purposes was observed. This progression can be divided into several 

individual, yet interconnected steps (generation, evaluation, application). Each step was described and 

thoroughly discussed, where it also was pointed out, how the steps are interconnected with each 

other. It has become apparent, that there is a strong dependency between them. Methodological 

changes in one step always affect subsequent ones – sometimes to a drastic degree. By taking the 

insights gained form manuscript 2.2 and 2.4 into consideration, it was clearly demonstrated, how the 

method of BMC estimation can decide the fate of compound hit calls and what consequences that 

might have for regulatory acceptance of the DNT-IVB. For example, a compound’s toxicity can either 

be not detected or falsely identified, if the methods are chosen poorly.   

With constant improvement of existing and development of novel technologies, conventional 

approaches can become redundant and sometimes even outright negligent to be kept in use (Ching et 

al., 2017; Judson et al. 2017; Jensen et al.,2019; Villeneuve et al., 2019). The change of technology for 

cell type identification showed how much improvement can be achieved by application of a novel 

technology, where cells were identified with significantly higher precision. Reliable generation of data 

is a mandatory basis, since the data evaluation that follows the generation happens under the 

assumption that given data reliably reflects the biological phenomena. As for the evaluation, there is 

no simple way to tell which methods are the best for concentration-response data evaluation in 

general. Rather, there is a strong need to choose the methods which fit the given data 

structure/experimental design best. Otherwise, misinterpretation of data is an adherent danger. 

Comparison of performance, measured by control compounds, can be a feasible way to quantify the 

adequacy of different approaches for their purpose. Furthermore, it has been become clear that a 

hazard classification method with focus on endpoint relationships is essential for a reliable 

identification of hazard alerts. DNT-specific endpoints should always take general cell health into 

account to enable distinction between general and DNT-specific effects. With precisely generated data 

reflecting biological phenomena well and biostatistical approaches being fit-for-purpose, reliable 

assumptions and predictions can be made on the basis of that data.  
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Although this study was conducted with data from the DNT-IVB, we assume many of the conclusions 

can be generalized to data from other assays and even fields in life science. It demonstrates how novel 

technology can better reflect biological phenomena, that statistical decisions which seem to be of 

minor importance can become impactful, how the precision of different approaches can be quantified 

and how the data can finally be used for regulatory decision making. At this point, the DNT-IVB testing 

cannot replace the use of the OECD TG426 for hazard-based decisions. Yet, it has the potential to be a 

powerful tool for regulatory needs using an IATA framework.  
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4 Summary 

Neurodevelopmental toxicants can affect early brain development and therefore present a long-

underestimated health risk to our society. Conventional in vivo developmental neurotoxicity (DNT) 

testing methods are very resource- and time-intensive and were only performed for a limited amount 

of chemicals. This leaves a data gap concerning the DNT potential of most chemicals. In general, there 

is consensus that more chemicals need to be tested for their potential to induce DNT. A promising 

approach is the use of new approach methods (NAMs), set up in a DNT in vitro battery (IVB) that can 

evaluate chemical effects on major neurodevelopmental key events and overcome several limitations 

of in vivo testing. Neural progenitor cells (NPCs) cultivated as 3D neurospheres are one promising NAM 

used in the current DNT-IVB, since they mimic key processes of brain development such as cell 

proliferation, migration and differentiation in a 3D context.  

To extract relevant and reliable information on the DNT of many chemicals from 3D neurospheres, an 

automatized workflow containing bioinformatic and -statistical medium-throughput pipelines was 

developed. This allows image analysis for cell biological endpoints and facilitates a biostatistical data 

analysis for DNT hazard classification of chemicals in a regulatory context. In this thesis, the process 

from generation to evaluation and finally application of in vitro DNT testing data is explored. It is 

furthermore demonstrated how the application of different data analysis methods affects the final 

DNT hazard classification of a chemical. 

To generate endpoint data, the high content image analysis software ‘Omisphero’ was developed 

previously. Omnisphero uses fluorescence-based images acquired with a high content imaging device 

for quantification of cell type-specific endpoints such as migration or neuronal and oligodendrocyte 

differentiation. Originally, Omnisphero relied on overlap-algorithms for cell-type identification. 

However, these algorithms did not meet the cell type identification accuracy required for regulatory 

application. As part of this thesis machine learning (ML) approaches were developed, which strongly 

outperform the overlap algorithm in terms of accuracy and flexibility. The endpoint data deriving from 

image analysis need to be further analyzed and evaluated, to enable DNT classification of chemicals. 

For this purpose, in this thesis a biostatistical software tool was developed in R, which transforms data 

from different assays into a uniform format and applies several statistical methods relevant for final 

data interpretation. For this evaluation, a variety of biostatistical approaches are employed, which are 

all interconnected. The choice of which methods to employ has been shown to be impactful for the 

final hazard classifications. It thus became a necessity to carefully evaluate a multitude of different 

biostatistical approaches with regard to their application in DNT hazard identification. Depending on 

which approach is employed, the data evaluation accuracy, measured by expected behavior of control 

chemicals, varied between 77.3% and 88.6%. Statements on DNT deriving from the data evaluation 

methods developed in this thesis can subsequently be used in combination with other data. Examples 

are the discovery of a potential DNT hazard, prioritization of compound testing or integration into the 

Adverse Outcome Pathway concept. 

In summary, significant progress was made in both development and application of DNT NAM 

approaches. Attention was raised on how important the choice of bioinformatical and -statistical 

methodology can be for DNT classification of chemicals, as well as how mandatory careful selection 

and validation of these methods is to gain reliable information. 
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5 Zusammenfassung 

Entwicklungsneurotoxische Chemikalien können die frühe Gehirnentwicklung in utero beeinträchtigen 

und stellen daher ein Gesundheitsrisiko für unsere Gesellschaft dar. Herkömmliche in vivo Methoden 

zur Testung von Entwicklungsneurotoxizität (developmental neurotoxicity, DNT) sind sehr ressourcen- 

und zeitintensiv und wurden nur für eine begrenzte Anzahl von Chemikalien durchgeführt. Es besteht 

internationaler Konsens darüber, dass mehr Chemikalien auf ihr DNT-Potenzial getestet werden 

müssen. Ein vielversprechender Ansatz ist die Verwendung neuartiger Test-Methoden (NAMs)  im 

Rahmen einer DNT in vitro Batterie (IVB), mit welcher die Auswirkungen von Chemikalien auf wichtige 

Schlüsselereignisse der Gehirnentwicklung bewertet und mehrere Einschränkungen von in vivo Tests 

überwunden werden können. Neurale Vorläuferzellen (NPCs), welche als 3D-Neurosphären kultiviert 

werden, sind vielversprechende NAMs, da sie Schlüsselprozesse der Gehirnentwicklung wie 

Zelldifferenzierung und Migration in einem 3D-Kontext nachahmen.  

Um relevante und zuverlässige Informationen über das DNT Potential vieler Chemikalien aus 3D-

Neurosphären zu extrahieren, wurde ein automatisierter bioinformatischer und biostatistischer 

Workflow entwickelt. Dieser Workflow ermöglicht eine Bildanalyse für zellbiologische Endpunkte 

sowie biostatistische Datenanalyse für die DNT-Gefährdungsklassifizierung von Chemikalien in einem 

regulatorischen Kontext. In dieser Arbeit wird der Prozess von der Generierung über die Auswertung 

bis hin zur Anwendung von in vitro DNT-Testdaten untersucht. Darüber hinaus wird gezeigt, wie sich 

die Anwendung verschiedener Datenanalysemethoden auf die endgültige DNT-

Gefahrenklassifizierung von Chemikalien auswirkt. 

Zur Generierung von Endpunktdaten wurde vormals die Bildanalysesoftware „Omisphero“ entwickelt. 

Omnisphero verwendet fluoreszenzbasierte Bilder, um zelltypspezifische Endpunkte wie Migration 

oder Differenzierung von Neuronen und Oligodendrozyten zu quantifizieren. Ursprünglich stützte sich 

Omnisphero zur Identifizierung von Zelltypen auf Überlappungsalgorithmen. Diese Algorithmen 

erreichten jedoch nicht die für regulatorische Anwendungen erforderliche Genauigkeit. Im Rahmen 

dieser Arbeit wurden mithilfe des maschinellen Lernens (ML) neue Ansätze entwickelt, welche die 

Überlappungsalgorithmen in Bezug auf Genauigkeit und Flexibilität deutlich übertreffen. Die so 

gewonnenen Daten zur Zellidentifizierung müssen weiter prozessiert werden, um eine DNT-

Klassifizierung von Chemikalien zu ermöglichen. Zu diesem Zweck wurde eine biostatistische Software 

in R entwickelt, welche Daten aus verschiedenen Assays in ein einheitliches Format umwandelt und 

mehrere biostatistische Methoden anwendet, die für die endgültige Datenauswertung relevant sind. 

Die Methoden sind dabei alle miteinander verknüpft. Es hat sich gezeigt, dass die Wahl der 

anzuwendenden Methoden einen Einfluss auf die endgültigen Gefahrenklassifizierungen hat. Daher 

wurde es notwendig, eine Vielzahl verschiedener biostatistischer Ansätze im Hinblick auf ihre 

Anwendung bei der Identifizierung von DNT-Gefahren sorgfältig zu bewerten. Die Genauigkeit der 

Datenauswertung, gemessen am erwarteten Verhalten von Kontrollchemikalien, lag je nach Ansatz 

zwischen 77,3 % und 88,6 %. Aussagen zu ENT, welche sich aus den in dieser Arbeit entwickelten 

Datenauswertungsmethoden ergeben, können anschließend in Kombination mit anderen Daten 

verwendet werden. Beispiele hierfür sind die Entdeckung eines DNT-Gefährdungspotentials, die 

Priorisierung von Substanztests oder die Integration in das Adverse Outcome Pathway Konzept. 

Zusammenfassend kann gesagt werden, dass sowohl bei der Entwicklung als auch bei der Anwendung 

von DNT NAM Ansätzen erhebliche Fortschritte erzielt wurden. Es konnte gezeigt werden, wie wichtig 

die Wahl der bioinformatischen und -statistischen Methoden für die DNT-Klassifizierung von 

Chemikalien sein kann und wie wichtig eine sorgfältige Auswahl und Validierung dieser Methoden ist, 

um zuverlässige Informationen zu erhalten.  
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3D Three-dimensional 

AOP Adverse outcome pathway 

AUC Area-under-curve 

BMC Benchmark concentration 
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ML Machine learning 
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