In silico generation, evaluation and application of
developmental neurotoxicity data derived from high

throughput screening assays

Dissertation to obtain the degree
Doctor Rerum Naturalium (Dr. rer. nat.)
at the Heinrich-Heine-University Dusseldorf

Submitted by

Hagen Eike KeRel

from Bochum

Dusseldorf, April 2023






In silico Generierung, Evaluation und Anwendung von
aus Hochdurchsatzaufnahmen stammenden

entwicklungsneurotoxischen Daten

Inaugural-Dissertation

Zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen
Fakultat der Heinrich-Heine-Universitat Diisseldorf

vorgelegt von

Hagen Eike KeRel

aus Bochum

Dusseldorf, April 2023



Angefertigt am Leibniz Institut fir umweltmedizinische Forschung (IUF) an der Heinrich-Heine
Universitat Diisseldorf.

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultat der Heinrich-
Heine-Universitat Diisseldorf.

Referentin: Prof. Dr. Ellen Fritsche

Korreferent: Prof. Dr. Vlada B. Urlacher

Tag der miindlichen Priifung: 26.01.2024



Table of contents

1

INEFOAUCTION ...ttt e s bt e e st e s b e e e be e e sabeessbeeesnbeesabeeesareenn 6
11 Paradigm shift in tOXICOIOZY ..ovuvviiiiiiiiiicie e s e e e s bee e s 6
1.2 Developmental NEUrotOXiCity tESTING....ccccuuiiiiiiei ettt e e e e e e e earaeas 8
1.3 Computational Bioinformatics for in vitro DNT te€StiNg.....cceeeeeciieeeeiiiee et ereee e eceee e 10

13.1 Data BENEIAtION (oot e e e e st e e e e e e e e enrnee 10

1.3.2 Biostatistical data evaluation ..........cooceiiiiiiniii e 13

1.3.3 DY I o] o] [Tor- ) 4T o NP PP UPP 14
14 ObjJectives Of the TNESIS ......vviiiicieee e et bre e e e e e e e e e e bte e e s ebraeaeeanes 15

LY T LT L ol 4T £ SURRRNt 16

2.1 Reliable identification and quantification of neural cells in microscopic images of
=T Do Ty o] U= T USSR 18

2.2 Biostatistics and its impact on hazard characterization using in vitro developmental
NEUFOTOXICIEY @SSAYS ...eiiiiiiiiiiiiiiiiieie ettt e e e e e st e e e e e s s e sabt b e e e eessesssabtaeeeeesssnssnsenaeeens 32

2.3 Establishment of a human cell-based in vitro battery to assess developmental
neurotoxicity hazard of Chemicals ..o e 79

2.4 Neurodevelopmental toxicity assessment of flame retardants using a human DNT in vitro

BESTING DAtLErY . ...t e e e st e e e e e bteeeesbreeaeenee 107
3 DISCUSSION.....ciiiiiiiiiiiiic e bbb e e sab e st 136
3.1 Data BENEIAtION ... 137
3.2 Data @VAlUBLION ....eeetieiiee ettt h e st et b e 140
33 B I o] o] [ Tor- 1 4 e o HOS PSP UPPRPRPPN 144
3.4 Connecting the dots: How data generation affects the evaluation and what it means for the
application in hazard aSSESSMENT ........cciicciii it e e e bee e e esabee e e eeareeeeennreeas 146
35 CONCIUSION ittt ettt e b e s bt st st et b e e sbeesbeesaeesateebeenbeesbeesaeenas 150
V10 010 =1 V2SSOSR 152
I AT LY [0 0] 0 1T ) £ 1] U =R SPSP 153
List OF @bBreViations ......ooueieiieieeee et e e s 154

2T =T =] o= 155



Introduction

1 Introduction

1.1 Paradigm shift in toxicology

In human toxicology, risk assessment is used to assess the risk of a chemical for human health. For this
purpose, toxicological hazard and human exposure need to be characterized. For the last decades,
hazard characterization of chemicals was primarily done by in vivo testing. However, the use of animals
for toxicity testing is a very resource intensive procedure, comes with ethical concerns and possible
species differences are not considered (Crofton et al., 2012; Krewski et al. 2020). To improve human
risk assessment and address these issues, the national research council (NRC) proposed a new strategy
for toxicity testing in the 21°* century, which is based on a paradigm shift from conventional in vivo
toxicity testing to high throughput, mechanistic in vitro assays by development of so called “new
approach methods” (NAM) (NRC, 2007; Collins et al., 2008) (Fig.1). NAMs are defined as any
technology, methodology, approach, or their combination that can provide information on chemical

hazard and risk assessment to avoid the use of animal testing (USEPA 2021).

Standard rodent Alternative Biochemical- and cell-based
toxicological tests animal models in vitro assays

1-3 studies/year 10-100/year 100-10,000/year >10,000/day

Human experience

Knowledge

Immediate human relevance

Figure 1: Paradigm shift in toxicology

The US-National Research Council (NRC) proposed a new strategy for toxicity testing in the 215t century, Tox21, which is based
on a shift from conventional in vivo toxicity testing in rodents to high content, mechanism-based in vitro assays. The goal is
to increase mechanistic understanding and sample throughput, overcome species differences and reduce animal testing in
line with the 3R principle. The shift proposes the use of high content and high throughput data in combination with
computational toxicology (Collins et al. 2008).
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NAMs can be used for different regulatory scenarios, i.e. hazard characterization as well as screening
and prioritization. To integrate data from in vitro assays into systemic predictions about health-related
consequences on the level of whole organs or individuals, the adverse outcome pathway (AOP)
framework was established. With this framework, available data on molecular initiating events (MIE)
are linked through key event relationships (KER) to biological key events (KE), which result in an
adverse outcome (AO; the human health effect) (OECD (Organization for Economic Co-Operation and
Development), 2013; Villeneuve et al., 2014; Carusi et al., 2018). Within this framework all available
toxicological data (e.g. molecular and cellular data from in vitro assays, animal studies or
epidemiological studies can be combined to enable an understanding of the mode of action (MOA) of
a compound’s toxicity. Furthermore, ‘Integrated Approaches to Testing and Assessment’ (IATA)
frameworks are developed for hazard characterization by relying on integrated analysis of existing
information in combination with legacy data. The goal of IATA frameworks is to answer defined
guestions in a regulatory context and provide sufficient information for confident regulatory decision
making. One IATA approach is to link existing data from in silico methods with experimental data,
enabling informed regulatory decision making on the basis of experimental and in silico data (Bal-Price
et al., 2015b) (Fig.2). For hazard characterization, the future approach incorporates NAMs (e.g. in vitro,
in silico, omics, physiologically based pharmacokinetic (PBPK) modelling, AOPs) into the IATA

framework (Escher et al. 2022).

Prioritization of compounds is determined by the use of systems biology (screening for critical
pathways or cell biological processes in in vitro assays) and subsequent computational toxicology
(evaluation of data obtained by systems biology). This strategy also follows the 3R’s principle (Reduce,
Refine, Replace), as it was introduced by Russell and Burch (Russell and Burch, 1959). For a successful
shift, several requirements need to be met. First, the novel test assays need to be able to mimic
relevant cell, tissue or organ functions. They furthermore need to be capable of generating data in a
medium to high throughput set up to drastically reduce the time and resource intensity of toxicity
testing. As for the generation and evaluation of the data deriving from these assays, biostatistical/-
informatical tools that can handle the broad amount of data and extract relevant information for
toxicological interpretation are necessary. Thus, in the last two decades efforts were made to develop
such assays and tools, marking several milestones in the shift from in vivo to in vitro toxicity testing
(Wheeler et al., 2015; Villeneuve et al., 2019). These advances include development and establishment
of high throughput screening (HTS) assays, as well as biostatistic and bioinformatic tools for data
generation, management and evaluation, subsequently allowing compound prioritization or

supporting regulatory decisions (Leist et al., 2014; Villeneuve et al., 2019; Villeneuve et al., 2019).
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However, there are still challenges to overcome within the use of HTS methods, such as lacking
documentation, expensive licensing, input formats, scalability, operating systems, and reproducibility
(Frommolt and Thomas, 2008; Fourches et al., 2014). Furthermore, there is a disconnect between the
biological events measured by HTS assays (e.g. gene expression, changes in cell morphology) and the

concerns from a risk-management perspective (human health, e.g. IQ rates) (Villeneuve et al., 2019).

(a‘,l. what (b) Is there an AOP that is
existing data applicable to the regulatory
and data types IR application of interest?

e.g. QSARs, Read-across, ITS )

are available?
Is data input adequate to
make regulatory

decision?
Additional Data, h
Method Needs I (c) Regulatory Applications
+ Screening

* Prioritization

= . = Classification & Labeling
Insufficient confidence + Hazard Assessment

What AOP-IATA tools/assays * Risk Assessment
can be applied or need to be
developed to generate data

to make the decision? Regulatory
decisions

Figure 2: The AOP-informed IATA framework

As a first step, the IATA framework regards to three questions: (a) What data is available? (b) Is there an AOP available? (c)
Are regulatory applications involved? With this information, available data is evaluated by non-experimental (e.g. QSARs,
Read-across) and experimental approaches (e.g. ITS). The outcome of these evaluations is used to decide, if there is enough
confidence in the available data to make regulatory decisions based on it. If that is not the case, further data needs to be
collected and/or methods need to be developed to enable confident decision making.

1.2 Developmental neurotoxicity testing

The use of alternative methods within an IATA strategy is of increasing importance for toxicity testing,
as there is a desire to implement faster, yet less cost intensive and more human-relevant test methods.
Within the field toxicity testing, developmental neurotoxicity (DNT) describes the effect of chemical
exposure on the morphology and functionality of the developing nervous system. It has been shown
that the pathological changes resulting from exposure of hazardous chemicals can lead a broad variety
of cognitive impairments or disfunctions such as decrease of the intelligent quotient (IQ), attention
disorders or learning deficits (Grandjean, Landrigan, 2006; Grandjean, Landrigan, 2014; Bennett et al,
2016). Despite the socioeconomic threat that DNT poses, there is a huge knowledge gap on the DNT
potential of chemicals (Sachana et al., 2019) with only 110 to 140 chemicals tested to date in one of

the international DNT guideline studies (Crofton et al., 2020; Makris et al., 2009; OECD 2008). The
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cause of this gap is seen in the unpractical nature of in vivo DNT testing: Conventional in vivo testing
strategies following the EPA (environmental protection agency) and OECD testing guidelines (USEPA
1998; OECD 2007) rely on behavioral endpoints with poor statistical power, show high variability
(Paparella et al., 2020), raise ethical concerns and furthermore are demanding in terms of time and
resources (e.g. animal test subjects, material for animal housing, money, test compounds; Sachana et
al. 2021). In the course of the shift from in vivo to in vitro, human based high content in vitro assays
were developed, which mimic major processes of brain development (Bal-Price et al., 2018). These
methods with appropriate readiness (Bal-Price et al., 2018) were combined in a DNT in vitro battery
(DNT-IVB) to identify the potential of chemicals to trigger DNT by interfering with such key
neurodevelopmental processes (Masjosthusmann et al., 2020). To advance the use of such a battery,
a pilot study was commissioned by the European Food Safety Authority (EFSA) to test 120 chemicals
in a battery of ten in vitro methods (Masjosthusmann et al., 2020; Blum et al. 2022). This DNT-IVB
contains methods that mimic the key neurodevelopmental processes neural progenitor cell (NPC)
proliferation, migration of neural crest and radial glia cells, neurons and oligodendrocytes, neuronal
differentiation, neurite outgrowth of the peripheral and central nervous system, as well as
oligodendrocyte differentiation (Fig. 3). The dataset and the interpretation of the data serves as the
basis for an OECD guidance document on the use and interpretation of the DNT-IVB in a regulatory

context (Crofton and Mundy 2021), which will be released in 2023.
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Figure 3: Key neurodevelopmental processes

Primary human neural progenitor cells (NPC) mimic several key neurodevelopmental processes (KNDP, marked in red), which
are essential for brain development. The figure above gives an overview over the process of cell development from organ
stem cells (left) to neural networks (right) (Bal-Price et al., 2018).
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1.3 Computational Bioinformatics for in vitro DNT testing

One prerequisite for regulatory acceptance of HTS in vitro data is robustness of the data including the
test systems themselves, but also a robust and standardized computational workflow that manages
and evaluates the broad amounts of data generated by different HTS assays. The processes from
generating HTS data to application of this data for regulatory purposes can be divided into three major
steps: 1) data generation from cell system readouts, 2) evaluation of the generated data by

biostatistical tools and 3) application of the evaluated data for regulatory purposes (Fig. 4).

DNT data... Thesis manuscripts

* Image aquisition * Reliable Identification and Quantification
« Extraction of endpoint data of Neural Cells in Microscopic Images of

from images . Neurospheres (Forster et al., 2021)
Generation

* Estimation of benchmark ’ * Biostatistics and its impact on hazard
concentrations and characterization using in vitro
confidence intervals developmental neurotoxicity assays

(KeRel et al., 2022)

* Compound classification

* Neurodevelopmental toxicity assessment
identification of flame retardants using a human DNT in

* Compound prioritization vitro testing battery (Klose et al., 2021)

* |ATA (QSAR, read-across, Application * Establishment of a human cell-based in
etc.) vitro battery (IVB) to assess

developmental neurotoxicity hazard of

chemicals (Blum et al. 2022)

* Potential hazard

Figure 4: Major steps of the next generation risk assessment process using new approach methods (NAM) data and
applying biostatistics and bioinformatics

HTS data can be generated by different NAMs. Here we suggest data generation by high content imaging (HCI) followed by
image analysis as an example (manuscript 2.1). Endpoint data is evaluated by biostatistical methods to gather benchmark
responses, corresponding confidence limits and resulting compound classifications (manuscript 2.2). These are finally applied
to identify potential hazards (manuscript 2.3 and 2.4).

1.3.1 Data generation

Over the last two decades, major advances were made for automated screening of biological samples
(Villeneuve et al., 2019). By today, there is a variety of HTS assays, producing image data with rapid
pace in high quantities. To keep up with the abundance of screening data, automated image analysis
algorithms are needed. High content image analyses (HCIA) tools have been developed and now find
application in a broad variety of applications (cell differentiation, apoptosis, tumor biology,
neurodegenerative disorders or arterial hypertension, to name a few areas of application; Villeneuve

et al., 2019). With HCIA, high levels of information can be extracted from images of biological samples
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and allow the assessment of different biological endpoints. The diversity of testing assays brings along
a variety of different systems for identification of single cells and analysis of cellular responses. There
is an abundance of different approaches for cell identification, with skeletonization, vectorization,
super-ellipsoids (Shariff et al., 2010) and overlap algorithms (Schmuck et al., 2017) being popular
choices. In the skeletonization method, images are segmented (often by the use of thresholds such as
brightness or contrast thresholds). The segments are then further processed by systematically
removing pixels (usually by considering the surrounding neighborhood). In the end, a skeleton
structure of the segment is achieved, which then can be used to assess the features of interest (e.g.
morphological endpoints; Bai, Latecki and Liu, 2007). During vectorization, defined sections of the
image are analyzed stepwise. For this purpose, a “starting point” must be identified either manually or
automatically. Starting from this defined point, vectorization algorithms recursively explore the regions
of interest for feature extraction (Al-Kofahi, Lasek and Szarowski, 2002). Super-ellipsoids algorithms
rely on cylinders with an elliptical cross section as a special model for the regions of interest. With this
approach, structures can be represented with dense special information, which allows fast feature
extraction from the area of interest (Tyrrell et al., 2007). Overlap algorithms compare the pixel-overlap
of two different stainings (usually one for nuclei to identify cells and one specific for a cell type) to
identify certain cell types. A cell is then identified as a certain type, if the type-specific staining showed

enough overlap with an underlying nucleus staining (i.e. if an overlap threshold was reached).

The usage of machine learning (ML) algorithms (often implemented as convolutional neuronal network
models) has become the staple of image analysis in recent years (Shariff et al., 2010). ML algorithms
are able to learn feature differentiation and to extract relevant features from provided training data,
by comparing their own evaluation (e.g. cells detected as neurons) to a ground truth that was set up
by a human experimenter (e.g. cells that were marked as neurons by an experimenter). This approach
is known as “supervised learning”. Alternative approaches are “semi-supervised learning” and
“unsupervised learning”, in which the algorithm is only partially or not guided by a ground truth. ML
approaches offer several advantages over the aforementioned traditional methods of image analysis:
While conventional methods usually rely heavily on the image acquisition tools to have consistent
image properties (e.g. images need to be recorded by the same camera to maintain the same image
brightness and focus) and allow only limited flexibility (usually achieved by hardcoded parameters that
can be adjusted to certain extends by a user), ML models can be trained to extract the relevant
information from a broad variety of images with varying properties (e.g. images acquired by different
cameras). In other words, ML models are able to mimic human evaluation far more accurate than
conventional methods and are able to learn from existing datasets for further improvement of

performance by supervised learning.
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HCIA approaches for identification of neurons in in vitro cultures have been numerous, while other
neural cell types like radial glia, oligodendrocytes or astrocytes have so far been mostly neglected. In
the field of DNT, a DNT in vitro battery (IVB) was set up that allows identification of a large number of
key neurodevelopmental processes such as migration and differentiation of several cell types as well
as neurite outgrowth by novel HCIA approaches (Masjosthusmann et al., 2020). One of such HCIA tools
is Omnisphero (Schmuck et al., 2017; manuscript 2.1 - Forster et al., 2021), a software tool able to
extract information about neural progenitor cell migration and differentiation, as well as information
about morphological aspects such as neurite length or number of branching points in a HCIA manner

(Fig. 5) by analyzing data from the neurosphere model.
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Figure 5: Omnisphero workflow

(a) Neurospheres are plated into 96-well plates and (b) exposed to chemical treatment during incubation. (c) After a 5 day
differentiation time, cells are fixed and stained with specific antibodies, i.e. B-1lI-tubulin for neurons, O4 for oligodendrocytes
and Hoechst for nuclei, and scanned with the ArrayScan VT HCS Reader (Thermofisher Scientific) to (d) get fragmented images
for each staining channel and nuclei coordinates within the images. The fragmented images are then joined together to (e)
get a completed neurosphere image for each staining channel. (f) Nuclei are located within the jointed image and quantified.
Based on the nuclei coordinates, (g) trained ML models identify neurons or oligodendrocytes. (h) Identified corresponding
cell types are then skeletonized and further analyzed for (i) their neurite length and number of branches. Based on the nuclei
coordinates within the completed image and the identified cell types, (f) the migration distance of different corresponding
cell types can be measured.

For this purpose, fluorescence images are acquired and nuclei located by the ArrayScan V" HCS Reader
(Thermofisher Scientific) and vHSC Scan Software. The images are then imported into Omnisphero,
where the nuclei locations are used as reference to identify neurons and oligodendrocytes within the
corresponding staining (commonly B-llI-tubulin for neurons and 04 for oligodendrocytes). Originally,
Omnisphero relied on overlap-algorithms to identify neurons and oligodendrocytes (Schmuck et al.,
2015). However, ML algorithms were implemented and trained by supervised learning to vastly

improve the performance (manuscript 2.1 — Forster et al., 2021). With different cell types identified,
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cell type-specific endpoints such as number of differentiated cells, their migration distance and density
of identified cells can be measured. Identified cells are skeletonized to further analyze morphological

endpoints such as neurite length or branching points (Schmuck et al., 2015).

1.3.2 Biostatistical data evaluation

With the rising usage of HTS and HCIA tools, biostatistical data evaluation tools also emerged and
became publicly available (Villeneuve et al., 2019). Due to the broad variety of in vitro assays, there is
an abundance of different approaches for data evaluation with these tools. Despite many scientific
publications describing biostatistical methods, as well as guidelines for general concentration response
data evaluation, e.g. published by the EFSA Scientific Committee (2016), there is no clear consensus
on the use of biostatistical methods for in vitro toxicity data (Wheeler et al., 2015; Sand et al., 2017).
Furthermore, different assays come with differences in concentration-response behavior (e.g. factors
like variability within and between experiments or possible response levels may vary between assays).
This leads to the challenge of finding one data evaluation protocol which appropriately evaluates all
data deriving from different assays in one automated evaluation pipeline. In previous large-scale
studies examining in vitro data for regulatory purposes, it was already shown that careful statistical
evaluation is important to optimize test systems (Prieto et al., 2013; Kropp-Schneider et al., 2013) and
that differences in statistical approaches can alter the outcome (Jensen et al., 2020; Fischer et al.,

2020).

In order to quantify biological effects, a point-of-departure is estimated for concentration-response
relationships. In recent years, the BMC (benchmark concentration) method introduced by Crump
(1995) became the standard approach of effect readout and is now seen as a superior alternative to
the no-observed-adverse-effect-level (Bokkers and Slob, 2005; Davis et al., 2011). The BMC is defined
as a concentration resulting in an effect at a predefined limit (benchmark response; BMR) below
expected control treatment noise and is thus similar to Effective Concentration (EC) estimations or
Lethal Concentration (LC) estimations (Jensen et al., 2020). The uncertainty of a BMC is estimated by
a confidence interval (Cl), which is defined as the range between lower and upper limits (BMCL and
BMCU respectively) and most commonly the 5% quantiles are used as limits. With the BMC and ClI

readout of single endpoints, the effect of chemical exposure on the cell system behavior is quantified.

This quantification then allows the assessment of potential hazard by classification of the biological
specificity of exposure effects. For this purpose, classification models are applied. Classification models
utilize decision trees and consider the BMC and its uncertainty to characterize potential hazards for

compounds. This is usually done by applying classification categories such as “hit” or “not hit”. These
13
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or similar categorizations then serve as orientation for which compounds might exert hazard and
should thus e.g. be prioritized for further testing. As to identify DNT-specific effects, reference to
general cell health is required. If a toxic effect is observed in an endpoint specific for developmental
neurogenesis (“specific endpoint”; e.g. neuronal differentiation) and the effect is clearly distinct from
an effect or the absence of such on general cell health (“unspecific endpoint”; e.g. viability or
cytotoxicity), it can be considered as a specific DNT effect. In scenarios where there is uncertainty, if a
hit is specific or unspecific, a borderline classification is recommended, to respect estimations with
high uncertainty instead of separating them into either specific or unspecific hit categories
(Leontaridou et al, 2017). In scenarios where there is high uncertainty in the data required for
classification (e.g. large Cl width or missing unspecific endpoint data), a flagging for subsequent expert

judgement can be applied.

1.3.3 Data application

The evaluated data gives insight into the hazard potential of tested compounds and this information
can subsequently be applied for regulatory purposes. Compound classifications give an overview over
the general DNT potential of a compound, while BMCs and uncertainties can be used to narrow down
concentrations causing disturbances of key neurodevelopmental processes (KNDP) and thus may cause
DNT in an in vitro system. Compounds triggering several specific DNT effects or trigger a DNT effect at
relatively low concentration can be prioritized. These metrics can be employed into IATA approaches
and used as point-of-departure for subsequent steps, such as physiology-based kinetic modelling
followed by in vitro-to-in vivo extrapolations (IVIVE) to convert the BMCs to estimated adverse doses.
On the scale of industrial application, support for the approval process of pesticides or registration of
a chemical would be one example of application. For some applications, also non-hits (i.e. compounds
without any observed toxic effects) play an important role as well, e.g. the status of the safety of food
constituents or contaminants. Furthermore, classifications can be used as reference for follow-up
testing with orthogonal assays (assays which tackle the same biological phenomenon). If no or not
sufficient in vivo DNT data is available for a regulatory question, in vitro data can be used to support
the in vivo data and allow a regulatory decision. If available in vivo DNT data is inconclusive, in vitro
testing can be used to inform the assessment based on Weight-of-Evidence (OECD 2019) for DNT
(Crofton and Mundy, 2021).

The traditional method to evaluate DNT hazard potential is based on animal studies following the OECD
test guideline TG426 or the EPA protocol oppts 970.6300. Due to their high demands on time and

resources, only about 140 compounds have DNT guideline data available, revealing a vast gap in
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compound DNT knowledge. In line with the shift from in vivo to in vitro test methods, data derived
from NAMs can be applied to close this gap. Several steps need to be taken as prerequisites, before in
vitro data can be used for regulatory purposes. First, established in vitro assays need to cover the most
relevant biological processes, i.e. most crucial KNDP which may lead to DNT in humans. Second, used
assays need to be validated as sufficiently robust and reliable in terms of DNT predictivity, which

requires sound bioinformatical analysis and biostatistical evaluation.

1.4 Objectives of the thesis

The use of animals for toxicity testing is a very resource- and time-intensive procedure. To improve
human risk assessment and attend these issues, the national research council proposed a new strategy
for toxicity testing in the 21°* century, in which a shift from conventional in vivo toxicity testing to high
throughput but physiologically relevant in vitro assays is proposed. To make this shift possible, new
procedures with novel technologies require novel data acquisition, management and evaluation
software algorithms. Here, plated neurospheres, a secondary 3D highly complex in vitro model, was
used as the basis. Neurospheres contribute to a DNT-IVB that is planned to be implemented into e.g.
pesticide regulation. Due to the primary nature of this cell system, higher variabilities are observed
than e.g. with immortalized tumor cell lines. Hence, a bioinformatics/biostatistics workflow is needed
that accounts for such variabilities. To tackle this challenge, the overall aim of this thesis was to

establish a bioinformatic workflow capable of
1) generating image data from plated neurospheres and analyzing the images for endpoint data,

2) evaluating the endpoint data with adequate statistical methodology and thus

3) enabling informed application of the evaluated data for hazard identification.
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2 Manuscripts

The first manuscript (2.1) ‘Reliable identification and quantification of neural cells in microscopic
images of neurospheres’ (Forster et al., 2021) describes how ML approaches are utilized for HTS data
generation. By analyzing neurosphere images, Omnisphero enables automatic generation of endpoint
data reflecting neurological processes of brain development. CNN models that were developed for
identification and quantification of either neurons and oligodendrocytes are described and validated

for their performance in the context of application for toxicology screening.

The second manuscript (2.2) ‘Biostatistics and its impact on hazard characterization using in vitro
developmental neurotoxicity assays’ explores the different biostatistical approaches and monitors
them for their impact on hazard identification. Five key aspects of biostatistical DNT data evaluation
were identified and monitored: 1) Experiment summary by either median or mean, 2) normalization
by re-normalization or sole control normalization, 3) application of a best-fit algorithm for model fitting
or enforcement of only one fit model, 4) different BMC and Cl estimation approaches such as inverse
regression, delta method, bootstrapping and model averaging and 5) measurement of different BMRs.
The basis for this study is a compound screening project performed on behalf of an EFSA procurement
during the years 2017-2020 (OC/EFSA/PRAS/2017/01). The DNT-IVB described in 1.2 was exposed with
148 compounds from different compound classes including expected positive and negative control
compounds (Masjosthusmann et al., 2020). These controls were used to assess the performance of

the monitored biostatistical approaches to identify hazardous compounds with accuracy.

The third manuscript (2.3) ‘Establishment of a human cell-based in vitro battery to assess
developmental neurotoxicity hazard of chemicals’ explores the feasibility of DNT hazard assessment
based on NAMs. For this purpose, ten NAMs were combined into one DNT-IVB which covers relevant
KNDPs such as proliferation of neuronal progenitor cells (NPCs), migration of several brain cell types,
differentiation of neurons and oligodendrocytes, as well as neurite outgrowth. Additionally, several
cell viability assays (often measuring as cytotoxicity) are included. A set of 120 compounds was
analyzed and evaluated by the bioinformatics workflow presented in this thesis. To validate the
accuracy of the DNT-IVB, pre-defined control compounds that are known to either induce toxic effects
(positive controls) or to have no toxic effects (negative controls) were used as reference. A sensitivity
of 82% and specificity of 100% was reached (manuscript 2.3 — Blum et al., 2022), indicating the

applicability of the DNT-IVB for regulatory purposes.

The fourth manuscript (2.4) ‘Neurodevelopmental toxicity assessment of flame retardants (FRs) using

a human DNT in vitro testing battery’ utilized the bioinformatics workflow presented in this thesis to
16
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identify potential DNT hazards deriving from flame retardants (including phased-out polybrominated
FRs and organophosphorus FRs). For this purpose, the compounds were tested in the DNT-IVB,
resulting in BMCs and classifications for each flame retardant, enabling informed assessment of

potentially DNT-specifically hazardous retardants.
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Reliable identification and quantification of neural cells in microscopic images of
neurospheres

Nils Forster, Joshua Butke, Hagen Eike KeBel, Farina Bendt, Melanie Pahl, Lu Li, Xiaohui Fan, Ping-chung Leung,
Jordis Klose, Stefan Masjosthumann, Ellen Fritsche, Axel Mosig

Cytometry part A

Aus primaren humanen neuralen Stamm-/Vorlauferzellen (hNPC) bestehende Neurosphiren werden
verwendet, um in vitro durch Substanzen induzierte Effekte auf frihe entwicklungsneurologische
Prozesse zu untersuchen. Sobald auf geeigneter extrazelluldrer Matrix ausplattiert, migrieren und
differenzieren hNPCs zu Radialgliazellen, Neuronen, Astrozyten und Oligodendrozyten, und
modellieren somit Prozesse der frithen neuronalen Entwicklung. Um Anderungen der Entwicklung von
hNPCs zu charakterisieren, ist es notwendig den Zelltyp jeder Zelle innerhalb der Migrationsflache zu
identifizieren. Zu diesem Zweck prasentieren und validieren wir ein Ansatz des maschinellen Lernens
zur ldentifizierung und Quantifizierung von Zelltypen in mikroskopischen Bildaufnahmen von
differenzierten hNPCs. Wie hier demonstriert, identifiziert unser Ansatz mit hoher Prazision und ist
robust gegenliber typischen potentiellen Storfaktoren. Wir zeigen, dass unser Ansatz des maschinellen
Lernens die Konzentrationswirkung von gut etablierten entwicklungsneurotoxischen Substanzen und
Kontrollen reproduziert, was sein Potential fir den Einsatz in Medium- bis Hochdurchsatz in vitro
Screening Studien nachweist. Unser Ansatz kann somit fiir die Untersuchung von Substanzeffekten auf
neurale Differenzierungsprozesse in einem automatisierten und unvoreingenommenen Prozess

verwendet werden.
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1 | INTRODUCTION

Neurospheres are spherical cell aggregates consisting of (NPCs) [1]. While
proliferating in 3D floating cultures, upon removal of growth factors and
contact to an extracellular matrix, NPCs radially migrate out of the sphere
and thereby differentiate into the major cell types of the brain, namely
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Abstract

Neurosphere cultures consisting of primary human neural stem/progenitor cells
(hNPC) are used for studying the effects of substances on early neurodevelopmental
processes in vitro. Differentiating hNPCs migrate and differentiate into radial glia,
neurons, astrocytes, and oligodendrocytes upon plating on a suitable extracellular
matrix and thus model processes of early neural development. In order to character-
ize alterations in hNPC development, it is thus an essential task to reliably identify
the cell type of each migrated cell in the migration area of a neurosphere. To this
end, we introduce and validate a deep learning approach for identifying and quantify-
ing cell types in microscopic images of differentiated hNPC. As we demonstrate, our
approach performs with high accuracy and is robust against typical potential con-
founders. We demonstrate that our deep learning approach reproduces the dose
responses of well-established developmental neurotoxic compounds and controls,
indicating its potential in medium or high throughput in vitro screening studies.
Hence, our approach can be used for studying compound effects on neural differenti-
ation processes in an automated and unbiased process.

KEYWORDS
deep learning, high content image analysis, neurospheres, neurotoxicology

radial glia, astrocytes, neurons, and oligodendrocytes [2-4] (Figure 1).
Due to the neurospheres' ability to mimic such early neurodevelopmental
processes, they are by now an established in vitro model for studying
early neural development. In a broader sense, neurospheres as a spheroid
cell culture system have become a popular and versatile tool for cancer
drug research when consisting of tumor cells due to their ability to model

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
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FIGURE 1

Schematic illustration of the neurosphere cell culture system. Free floating 3D neurospheres begin to migrate upon removal of

growth factors and by plating on an extracellular matrix consisting of poly-D-lysine and laminin (see Section 2.1), During migration, they
differentiate into radial glia, astrocytes, neurons, and oligodendrocytes. Following the protocol outlined in that section, this work aims to
automate the quantification of cells differentiated from neurospheres. We aim to automatically identify differentiated neurons and
oligodendrocytes using machine learning (see Section 3) based on morphological features (see Section 2.2) and a large manually annotated data
set (Table 1). Figure created with BioRender.com [Color figure can be viewed at wileyonlinelibrary.com]

tumor architecture more accurately than conventional 2D cell cultures
[5-7]. Furthermore, there are multiple applications for neurospheres in
biomedical research, for example for inter-species comparison in evolu-
tionary developmental biology, [8] for disease modeling, [9-12] as well as
for investigating developmental neurotoxic effects of chemical com-
pounds [13-16]. Thus, the opportunity to model neurodevelopmental
processes in vitro, especially neural migration and differentiation, offers
an elegant possibility to study adverse effects and modes-of-action of
exogenous noxae like environmental chemicals in the developing nervous
system without the use of animals [13, 17-19]. Evaluating (DNT) in vitro
is not only of academic and ethical interest, but also caught attention of
regulatory agencies like the European Food Safety Authority and the
United States Environmental Protection Agency. [20-23]

Thus, capturing a microscopic image using suitable fluorescent
markers (see Section 2.1) facilitates the quantification of differentiation
status of the migrated cells as well as phenotypic features. Therefore, a
core computational challenge addressed in our current contribution is
the development of image processing and machine learning techniques
to identify, classify and characterize the migrated cells in fluorescence
microscopic images of differentiated neurospheres. While systematic
approaches to quantitative image analysis have not yet been exploited
for microscopic images of spheroids, that is, grown in secondary 3D,
[24] our present contribution introduces such approaches for the
neurosphere assay, implemented in a (HCA) fashion.

Image analysis procedures for microscopic imagery of neurospheres
have been investigated previously, [25, 26] yet not by implementing
machine learning. For example in Reference [26], a number of toxicolog-
ical endpoints, such as the relative number of neurons, the integral neu-
rite outgrowth and the migration pattern of cells, are obtained from
microscopic images of differentiated neurospheres with fluorescently
labeled nuclei and neurites. As demonstrated in this work and subse-
quent studies, [2, 13, 16] adversity in these endpoints reflects develop-
mental neurotoxic effects of analyzed chemicals. Hence, automated
image analyses can be considered as the computational core component
of a promising in vitro approach for testing larger numbers of com-
pounds. Yet, there is a remarkable lack of systematic studies of image
processing approaches for the analysis of neurosphere microscopic
imagery. Despite recently proposed methods to identify differentiation

patterns in neurospheres, [27] there is a lack in methods that are vali-
dated towards their robustness when using neurospheres as a screening
assay, in particular in the context of toxicology.

For conventional neuronal 2D cell culture systems, numerous
approaches have been developed for computationally quantifying or clas-
sifying phenotypical features of neurons. Besides elementary approaches
for segmenting nuclei, tracing neurites has attracted major and systematic
attention [28, 29]. Such facilitated the use of in vitro screening for chemi-
cal effects based on microscopic images of neuronal 2D cell cultures,
[30-33] thus paving the way for high-content image analysis for neuro-
toxicity testing [34-36]. While HCA approaches for neurons cultured
in vitro have been numerous, other neural cell types like radial glia, astro-
cytes or oligodendrocytes have so far been neglected.

While a plethora of well-established approaches is available for
analyzing microscopic images of conventional neuronal cell cultures,
especially those using only one cell type and adjustable cell densities,
these approaches do not answer the computational questions arising
from neurosphere image data. Beside the common first step of
segmenting nuclei, most downstream analysis steps tend to be highly
neurosphere-specific. Most notably, nuclei need to be assigned to
either of the cell types that are observable in the mixed cell population
of neurosphere assay. Experimentally, this is commonly accomplished
by immunocytochemical stainings for specific structures, for example,
neurons, in the sample. Computationally, this necessitates dedicated
and well-validated approaches for cell type classification. Classification
models need to be robust against the particularities of neurospheres.
Specifically, compared to conventional neuronal cell culture, cell density
cannot be controlled experimentally as it inherently varies from very
dense areas around the sphere core to sparse cell concentrations in the
periphery of the migration area. In addition, migrated cells differentiate
into a lawn of mixed cell types [2, 26] (Figure 1), reflecting a rather
complex situation for automated image analysis.

11 | Contribution and approach outline

The main goal of this study is to identify minimum standards required
to train robust machine learning procedures that are required to utilize
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differentiated spheroid cell culture models in combination with HCA in
pharmacological or toxicological screening applications involving larger
numbers of samples. Such minimum standards are essential, since train-
ing deep neural networks in biomedical settings involves careful consid-
erations: the quality of deep neural networks relies essentially on the
quality of the training data, which does not only depend on the amount
of training data, but also whether all relevant sources of variance, bias
and confounders are sufficiently covered. For complex spheroid models,
obtaining training data comes at a particular price, since extremely labor
intensive annotations are required. Thus, for bringing differentiated
spheroid models into screening practice, annotation requirements must
be well understood, motivating our effort to identify minimum stan-
dards for the underlying training data sets.

Our approach is outlined in Figure 2. Given an image of a com-
plete neurosphere as an input, we identify nuclei as described in
Section 2.1. A tile covering an area of roughly 56 x 56 ym each
around every nucleus is extracted for each tile. Each tile is then classi-
fied as a neuron, an oligodendrocyte or other cell type using a con-
volutional neural network.

Since cell types in the neurosphere assay occur in unbalanced
ratios, one of the main challenges to overcome is class imbalance
when training and validating our neural networks. Class imbalance is a
notorious problem when training and validating classification models
and has thus been investigated in much detail, in particular in the con-
text of training convolutional neural networks [37, 38]. This imbalance
also requires particular attention during validation, as has been
observed by Reference [39].

FIGURE 2  Approach overview.
Human neural progenitor cell were
treated as described in Section 2.1.
Pseudo-colored composite images were
created by overlapping the Hoechst33258
(nuclei, blue), TUBB3 (neurites, red) and
04 (oligodendrocytes, green) antibody
stainings. For every nucleus within a ROI
(see Section 2.2) contained in the
neurosphere image (A) contained within
the migration area, a 64 x 64 pixel tile is
created with the corresponding nucleus at
the center. Every such tile covers an area
of ~56 x 56 ym. (A) Originally has an
image resolution of 5520 x 5520 pixel,
representing ~4858 x 4858 pm. (B) Two
examples, representing neurites (left) and
oligodendrocytes (right). Every tile (C) has
the unused color channel removed and a
manual color adjustment is applied to
each. (D) Both tiles being loaded into the o :;‘::::‘ed
corresponding CNN. The CNNs were

trained based on annotated subregions
throughout a large number of wells, as

[ ]
exemplified in (E), where also four . Bounding box

mask

Annotated
oligodendrocyte

annotated cells are highlighted [Color of neuron
figure can be viewed at
wileyonlinelibrary.com]

Bounding box

Annotation \

of oligodendrocyte
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2 | DATAAND METHODS

21 | Sample preparation and data acquisition

A detailed description of the experimental procedure can be found in
Reference [3, 13]. Briefly, neurospheres (hNPCs) isolated from whole
brains at GW16-19 (Lonza® Group, Verviers, Belgium) [4]) are grown
as free-floating 3D aggregates under proliferative culture conditions
for up to 7 weeks. Between weeks 3 and 7, the spheres are passaged
every week by mechanical dissociation using a tissue chopper. After
two to 3 days, spheres with a defined size of 0.3 mm are plated for
hNPC migration analyses onto poly-D-lysine/laminin-coated 96-well
plates. Per well, one sphere was plated in 100 pl of differentiation
medium. Spheres settle down and NPCs migrate radially out of the
sphere core and differentiate for 5 days in presence and absence of
compounds. Respective treatment conditions are summarized in
Table S1. As seen in Table 1, plate preparation including compound
dilutions and cell feeding was performed manually (11 plates) or by
using an automated liquid handling system (8 plates).

As outlined in Figure 1, after a 5-day (120 h) differentiation
period, cells were fixed with 4% paraformaldehyde (PFA) for 30 min
at 37°C and labeled by performing immunocytochemical stainings.
Therefore, cells were stained overnight at 4°C with IgM oligodendro-
cyte O4 antibody solution (1:400 in Phosphate-buffered saline [PBS]
with 10% Goat Serum (GS) and 1% bovine serum albumin [BSAI),
followed by secondary antibody solution (1:400 Alexa Fluor 488 anti-
mouse IgM) which was added for 30 min at 37°C. For neuronal

(D)  cnn CNN
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TABLE 1

Data set composition. Neurospheres from 19 different 26-well plates derived from four different individuals (column Individ.) were

stained with antibodies detecting neurons and oligodendrocytes column plating indicates whether plates were prepared manually or by using an
automated liquid handling system. The two columns under developmental neurotoxicity indicate chemical compounds and if the compound
affects differentiation of the respective cell type, as further detailed in Table S1. The compound index in that table matches the index in the
column compound. In general, 40 wells with one neurosphere each, were developed on each plate. The column staining shows the CNN(s) the
plate was used for and the last three columns indicate the respective well distribution sets for the neural network(s)

Index Stainings used Plating Developmental neurotoxicity Number of wells distributed
Plate Individ. Neurons Oligos Automated Compound Effects observed Train Val Test
1 11 v 3 Both 36 4 0
2 11 v 11 36 4 0
3 11 v 11 36 4 o]
4 11 v v 3 Both 36 4 0
5 11 v v 13 Oligodendrocytes 36 3 0
6 11 v v v 4 36 4 0
7 11 v v Both 36 3 0
8 12 v 1 Both 36 & 0
9 13 v 9 Both 36 4 0
10 11 v 13 Oligodendrocytes 36 4 0
11 11 v 6 Both 36 3 0
12 12 v 6 Both 36 3 0
13 12 v v 12 Oligodendrocytes 36 4 0
14 14 v v 2 Oligodendrocytes 36 4 0
15 14 v v 5 Both 36 4 0
16 11 v v v 8 Neurons 35 4 1
17 12 v v v 7 Neurons 35 4 1
18 11 v v v 10 Oligodendrocytes 35 4 1
19 14 v v v 11 35 4 1

staining, cells were incubated for 1 h at 37°C with a conjugated rabbit
TUBB3 antibody (1:400 in PBS with 10% Rabhbit Serum [RS], 1% BSA).
In parallel nuclei were stained with 5% Hoechst33258 [13].

Image acquisition was performed using the high content fluores-
cence imaging microscope Thermo Scientific ArrayScan® VTI (Thermo
Fisher Scientific Inc.). Thereby one sphere and the migration area
within on well were imaged in a 200-fold magnification in 64-100
individual images with an image resolution of 520 x 520 pixel each.
These images were merged using [26] and nucleus identification was
performed by the spot detector BioApplication of the ArrayScan® VTI
scan software (Version 6.6.0; Thermo Fisher Scientific Inc.). Each well
thus vields an image of roughly 5520 x 5520 pixels in size, rep-
resenting an area of roughly 4.9 x 4.9 mm for each well.

2.2 | Data set and ground truth annotations

Altogether, RGB image data from nineteen 96-well plates were used,
where each plate contained roughly 40 wells with one differentiated
and stained neurosphere each. As summarized in Table 1, this data set
represents different sources of variability as they occur in the applica-
tion of the neurosphere assay. First, the neurospheres were obtained
from four different human individuals labeled as 11-/4 throughout the
manuscript, representing inter-individual differences. Furthermore,

plate preparation was performed manually or by using an automated
liquid handling system representing differences in the plate prepara-
tion procedure. Finally, different plates contain different chemical
compounds representing differences in the effect on the cell differen-
tiation, including compound-dependent morphological differences.

In the resulting image, the sphere core was masked out and
nuclei were detected in the remaining migration area as described
previously [26]. For each well, two regions of interest (ROls), each
800 x 600 pixel (~704 x 528 pm) in size, were randomly selected
for annotation. Among nuclei in randomly selected sub-regions,
neurons were manually annotated for 11 out of the 19 plates
(referred to as neuron plates). Correspondingly, oligodendrocytes
were manually annotated in 16 out of the 19 plates (referred to as
oligo plates). For eight plates, both neurons and oligodendrocytes
were annotated. Manual annotations of cell types in the data set
were performed by four annotators and each annotation was con-
trolled by a second annotator. For training and validation in the neu-
ron data set, 32, 414 out of 211, 478 nuclei in the ROIs were
annotated as neurons. In the oligo data set, 21, 929 out of 298, 808
nuclei were annotated as oligodendrocytes.

As indicated in Table 1, we followed a strict separation of our data
set into fixed subsets for training, validation and testing. One well from
the last four plates shown in Table 1 (indices 16-18) was reserved as the
test set. In these wells six to eight ROIs were selected. This resulted in a
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total number of 10, 945 nuclei in the neuron set. Of those, 1, 114 were
annotated as neurons. In the oligodendrocyte set, 718 out of 10, 945
nuclei were annotated correspondingly as oligodendrocytes (Table 2).

2.3 | Preprocessing

For each nucleus within each ROI, a 64 x 64 pixel 8-bit RGB image
tile with the nucleus centered within the tile is generated each
(Figure 2A). The nuclei were identified and segmented using Refer-
ence [26]. Each well contains up to two ROls.

To adjust for global, plate dependent intensity variance among
fluorescence microscopic images of different plates, intensities and
contrast were adjusted manually for each individual plate. Subsequent
to manual adjustment of whole plates, we subsequently conduct nor-
malization at the level of wells and tiles. At this level, we implemented
and compared different procedures to normalize the integer-valued
image intensities to a floating point value between 0.0 and 1.0:

e flat normalization: Each value is divided by 255.

e per tile, separate channels: Each channel in each tile is min-max nor-
malized independently.

e per tile, across channels: Min-max is determined across all color
channels with a tile, so that all three color channels of the tile are
normalized using the same min and max values.

e per well, across channels: Min-max is determined across all color
channels within a complete well, and all tiles in the well are normal-
ized using the same min and max values across the well.

24 | Convolutional neural networks

We established convolutional neural networks to classify 64 x 64
pixel tiles into different cells types as follows: we trained two separate
networks, one for distinguishing neurons from non-neurons, and a

TABLE 2 Nuclei based cell counts in data sets for training,
validation and test. As indicated, roughly 15% of nuclei have been
annotated in the neuron data set; in the oligodendrocyte data set,
roughly 7% of nuclei have been annotated. The annotation quantifies
the imbalance of cell types with less than one out of five cells being a
neuron and less than one out of 11 cells an oligodendrocyte. Numbers
refer to nuclei counts within the ROIs of neurospheres

Neuron set Oligo set
Experiments 11 16
Total nuclei 222,423 309,753
Label annotated Training 28, 548 19, 486
Validation 3,866 2,443
Test 1,114 718
Label not annotated Training 158,932 248,908
Validation 20,132 27,971
Test 9,831 10, 227

Journal of Quantitative Cell Science LN R IFY

second network that was trained to distinguish oligodendrocytes from
non-oligodendrocytes. While both networks technically operate on
images with three channels, the putatively uninformative channel for
each network was masked as plain background, that is, in the neuron
model, the O4-stained oligodendrocyte channel was blackened for all
training, validation, and test data, and the same was done for the
TUBB3-stained neurite channel in the oligodendrocyte neural network
processes. This procedure was motivated by the largely non-
overlapping annotations in the training data (Table 1) and further legit-
imized through a preliminary network trained on the set of plates with
both neuron and oligodendrocytes, which did not achieve the perfor-
mance of separately trained models (see Section 3). This process also
mirrors the manual annotation process in, [26] where plates with only
one label had the unused color channel missing or disabled.

As a topology for both CNNs, we employed a slightly modified
version of the VGG topology [40] summarized in Table 3. The corner-
stone of the employed topology is the repetition of the core con-
volutional feature extraction block. Each of these blocks configured in
exactly the same manner, except for the number of kernels the con-
volutional 2D operation outputs as its feature maps. Typically, this
number increases in modern CNNs applications before the final fea-
ture maps are flattened into a feature vector for subsequent classifica-
tion by a fully connected network. Following common practice, we
used RelLU as an activation function, except for a the last output neu-
ron which uses a sigmoidal activation function in combination with
binary cross-entropy as loss function.

All layers are initialized according to Reference [41]. To prevent
the network from over-fitting, we followed common practice and
introduced dropout [42] within the fully connected layer with a drop-
out rate of 50%. For training each of the resulting models, different
optimizer strategies and settings were tested.

Training was conducted with a batch size of 100 over 5000
epochs. During training the learn rate (initially 0.001) was halved auto-
matically, whenever 100 epochs passed with no improvement to the
validation loss. If the validation loss did not improve further after two
such reductions, the training would stop early.

All deep learning computations were implemented in Tensorflow
1.13 with Keras 2.2 [43] running on Python 3.8.2 and performed on a
GPU server running Ubuntu 18.04 LTS with four Nvidia® GeForce® GTX
1080 Ti graphics cards. All other processing and data analysis tasks were

TABLE 3  Overview of the neural network topology used for both
neuron and oligodendrocyte classification

Layer Type

1 Conv2D(3,1,0)-32 + RelLU + BatchNorm

2 Conv2D(3,1,0)-32 + ReLU + BatchNorm

3 MaxPooling2D(2,2)

4..10  Two repetitions of layers 1-3 as blocks with increasing

kernel size 32-64-128
11 FC256 + RelLU + Dropout(0.5)
12 FC1 + Sigmoid classification
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carried out with an extension of the previously published OmniSphero
software, [26] running on MATLAB® 2014b (The MathWorks®, Inc.).

25 | Validation and dealing with class imbalance

As indicated in Table 2, cell identification in the neurosphere model
constitutes a machine learning problem with substantial class imbal-
ance: Only one out of five nuclei is a neuronal nucleus, and only one
out of 12 nuclei belongs to an oligodendrocyte. This imbalance in our
data set, which is in line with figures reported in Reference [13], needs
to be taken into account for both training and validation of machine
learning models.

While under-sampling is prohibitive in our given setting, we
assessed two over-sampling approaches in order to increase the num-
ber of samples in the under-represented classes in the training data
set by introducing randomly rotated and mirrored tiles as further data
points. The second over-sampling approach we assessed is SMOTE
[44] which depends on the k-nearest neighbors principle to find
(in this case) similar tiles and synthesize more, where k is an essential
parameter that influences the characteristics of the over-sampled data
set. As a baseline to test the effectiveness of SMOTE, both data sets
were trained using k = 5. Then, another model was trained and tested,
determining k to be 4% of the size of the minority class, avoiding
over-fitting and resulting in Kneuron = 1142 and Korigodendrocyte = 780.
Lastly, both methods were tried with the original training-data being
over-sampled first,
(PR) curves can be seen in Figure 3.

In order to properly validate the trained CNNs on our class-
imbalanced data sets, we relied on (PR) curves [39] which are not sus-

before being augmented. The respective

ceptible to misleading interpretation in the presence of class-
imbalance as (ROC) curves are. We followed [39] and used the (AUC)
of PR curves as the main indicator of classification strength.

3 | RESULTS
3.1 | Validation and comparison of over-sampling
and normalization approaches

Panels A and B of Figure 3 display PR curves that compare different
over-sampling approaches. While the classification of oligodendro-
cytes is hardly affected by different forms of over-sampling, the classi-
fication of neurons varies greatly. Over-sampling using SMOTE in
either variant is neutral at best or leads to a small decrease in the
AUC. Following this observation, data augmentation was used for
training of any subsequent models. This augmentation was realized in
randomly rotating and mirroring the tiles during training.

A similar pattern emerges for the comparison of normalization
methods (Figure 3C,D). In general, only the classification of neurons,
but not of oligodendrocytes, is affected by normalization techniques.
Per-well normalization performs better than per-tile normalization.
Likely, tile-based normalization is unfavorable in regions highly

overpopulated or highly underpopulated with nuclei, so that the het-
erogeneous structure or exposure within a neurosphere well will be
grasped better by a well-based normalization procedure. This is fur-
ther supported by our observation that there is a significant illumina-
tion bias for each individual slide, as shown and detailed in Figure S1.

3.2 | Robustness under data heterogeneity

To assess the heterogeneity in our data, we specifically investigated
heterogeneity between neurospheres derived from different human
individual donors. We trained a neuron classifier on neurons from
individual 11 and compared performance on an independent test set
containing neurons from one of the remaining individuals. As a base-
line comparison, we predicted on a data set containing all three indi-
viduals. The resulting PR-curves displayed in panel A of Figure 4 show
a strong generalization to individual 14, but a much weaker generaliza-
tion to I2. For the analogous validation of oligodendrocyte generaliza-
tion performance (Panel B), internal validation on I1 yields a very
strong AUC, which drops to levels comparable to neuron identifica-
tion on external validation.

This indicates a significant amount of heterogeneity among differ-
ent individuals for both neurons and oligodendrocytes. In other words,
a network trained on spheres derived from one (or more generally too
few) individuals will not generalize well on test data derived from
other individuals. A network trained on data from more than one indi-
vidual matches the performance of internal validation with a single
individual, illustrating that the network exhibits robust generalization
across individuals when the heterogeneity is represented in the
training data.

3.3 | Assessment of training data composition

In order to assess how the ratio between training and validation data
size affects classification, we varied our default ratio of roughly 10:1
to roughly 4:1 by transferring nuclei from the training to the validation
set. As shown in panel D of Figure 4, this negatively affects classifica-
tion performance, indicating that a small validation set is sufficient for
training robust neural networks.

3.4 | Intersections between the models
Since not all training and validation data sets provide stainings of both
neurons and oligodendrocytes (Table 1), the identification and differ-
entiation of the two cell types cannot be realized in one CNN. To
address this situation, we trained one CNN to distinguish neurons
from non-neurons and a second CNN to distinguish oligodendrocytes
from non-oligodendrocytes.

In practice, developing neurospheres can partly result in dense
nuclei clusters (as seen in Panel E of Figure 2). These clusters can yield
the risk of overlapping classification of the same nuclei by both
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FIGURE 3  Precision-recall (PR)-curves for comparison of computational approaches and training sets. (A,B) PR-curves for different
upsampling approaches. Correspondingly, (C) and (D) compare different normalization approaches. Legend entry values within brackets show the
respective area under curves [Color figure can be viewed at wileyonlinelibrary.com]

models. As a simple policy, we assign nuclei with overlapping classifi-
cation as oligodendrocytes. To assess the effects of intersecting clas-
sifications, we predicted the validation data set (Table 1) with both
models. The resulting PR curves of the neuron model can be seen in
panel C of Figure 4. Afterwards, we removed intersecting predictions
to determine the second PR curve within the same panel. The
resulting AUCs differ only marginally. This shows that intersecting
predictions of our models do not lead to significant misclassifications.

3.5 | Uncovering concentration-response relations
In order to assess whether the precision and recall achieved by the
neural networks is sufficient for compound screening applications, we
used relative frequencies of neuron and oligodendrocyte counts along
a concentration series of chemicals, yielding the concentration-
response curves displayed in Figure 5. As previously outlined in, [13,
19, 26, 45] the compounds methylmercury(ll)chloride and 3,3',5,5'
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Tetrabromobisphenol A are established as known human DNT com-
pounds. Moreover, |buprofen was used as a negative control, as it
provided no DNT effects in hNPCs [46]. Both compounds (see
Table S1) and the respective underlying experiments were not used
during CNN training. By performing the neurosphere assay as
described in Section 2.1 and by replicating these baseline results on
the toxicology spectrum, we validate the performance and robustness
of the presented approach.

4 | DISCUSSION

The use of spheroid cell culture systems in biomedical research has
matured over the past two decades, paving the way for spheroid-
based in vitro screening. Microscopic image analysis for capturing and
quantifying phenotypic features is at the core of corresponding
screening assays, and our present systematic validation study demon-
strates how to approach the challenges arising from the relatively
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FIGURE 5 Concentration-response curves for validation. We followed the protocol outlined in Section 2.1 and treated human neural

progenitor cells ("(NPCs) with the known developmental neurotoxicants methylmercury(ll)chloride and 3,3',5,5' tetrabromobisphenol A and the
negative compound ibuprofen (see Table S1). Quantification of neurons (A) and oligodendrocytes (B) in the migration area was performed using
the CNNs presented in this work. The neuronal and oligodendrocyte differentiation was determined as percent of neurons/oligodendrocytes in
the migration area (acquired via Reference [26]) for each concentration. The concentrations were normalized to the respective solvent controls
for each compound (20 uM for ibuprofen and 3,3',5,5' tetrabromobisphenol A and 2.22 pM for methylmercury(ll)chloride). Each curve was
generated based on three independent experiments (with five replicates for each condition) using hNPC from three different human individuals.
Error bars represent the standard error of the mean [Color figure can be viewed at wileyonlinelibrary.com]

complex and heterogeneous image data obtained from neurospheres.
While our specific in silico classifiers resulting from this study are spe-
cific for the neurosphere assay, we expect that many of our
approaches and observations can be carried from primary human neu-
rospheres to other multicelluar models, in particular tumor spheres or
induced pluripotent stem cell-based models, [47] which have been
recognized as a promising basis for screening assays [48]. Demon-
strating the robustness towards toxicological screening also distin-
guishes our approach from the recent work by Zhu et al. [27].
Annotation is a major obstacle if not the main bottleneck for
training deep learning models that classify image data from models.
Training robust deep learning models requires not just sufficient
amounts of training data, but, as we show, they also need to cover the
variances and heterogeneity encountered when the model is produc-
tively used in larger scale screening studies. A large share of the
robustness of our presented model is certainly due to the effort of
annotating substantial parts of 680 neurospheres covering different
compounds and all ranges of concentrations. Our deep learning
models are naturally limited to classifying cell types in the
neurosphere model, and spheroid systems other than the neurosphere
system will require the training of new deep learning models. Yet, our
study also allows formulating the following specific guidance and min-
imum standards for validation in future studies of similar or even more
complex cell culture or organoid systems and their respective assays:

1. Perform external validation: Over-fitting is an inherent and obvious
danger of CNNs, which can potentially lead to display false posi-
tive or false negative dose-response relationships in compound
screening. The ideal gold standard would be a fully independent
test, that is, a validation on data from a different laboratories using
different devices and a fully independent sample preparation. This
gold standard, however, is impractical in most settings. In larger
scale studies, our validation across neurospehres grown from

different individuals exemplifies this: Networks trained on more
than one single individual are robust across more individuals. It is
thus an essential part of CNNs in screening applications to identify
sources of bias and confounding, and validate against heterogene-
ity under such confounders. For some factors such as fluctuations
in fluorescence intensity, there may be a trade-off between nor-
malizing, that is, aiming to eliminate variance, versus reflecting var-
iance in the training data. As a matter of good validation practice,
aspects of class-imbalance will be commonplace in complex cell
cultures and should be addressed by proper validation measures
such as using PR-curves rather than ROC-curves.

2. Validate end-to-end: Endpoints such as counting cells of certain
types are only intermediate in the sense that they do not immedi-
ately display the effect of a substance or other intervention in a
single neurosphere, but only in relation to other neurospheres. It is
thus essential to validate dose-response relationships for sub-
stances with well-established dose-response in comparison to
control-substances with well-established neutral effect, and assess
whether the expected response can be called from dose-response

curves.

Annotation has been recognized as a major bottleneck in several
other contexts in bioimage analysis. To address the often prohibitive
costs of annotation, some researchers have established crowd-
sourcing resources [49] which facilitate to obtain large amounts of
annotations through volunteers. To deal with the inherent problem of
reliability of such non-expert annotations, the histopathology commu-
nity has developed a hierarchical panel approach that combines large-
scale annotations by volunteers with a systematic review by experts
[50]. Such approaches are certainly conceivable for spheroid models
as well.

Precision and recall of our models reach AUC values around 0.8
for oligodendrocytes and slightly less for neurons, which is clearly
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sufficient for neurotoxicity screening. A limiting factor may be label
noise in the annotations which is an inherent problem with human
annotations. Whether obtained from crowdsourcing or from experts,
large-scale annotations can hardly ever claim 100% accuracy. This
problem has been addressed through computational approaches, and
it is conceivable that approaches based on either weakly supervised
learning [51] or one-shot-learning [52, 53] can be utilized to alleviate
the problem of label noise. Since this will require the integration of
sophisticated machine learning algorithms into interactive annotation
systems, there is an implementation hurdle. In addition, introducing
further semi-automated support into the annotation procedure is in
danger of introducing an annotation bias which would need to be
examined carefully in resulting classifiers. Finally, it can be projected
that the analysis of spheroid microscopic image data will become eas-
ier with pre-trained models, which can be transferred to new tasks or
new cell culture models with comparatively small amounts of
training data.

In summary, carefully validated deep learning are promising
approaches to further advance the use of spheroid models in screen-
ing applications. We suggest that identifying guidelines and minimum
standards in this work is an important contribution for such deep
learning methods to gain acceptance.
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ALTEX

Im Forschungsfeld der Gefdahrdungsbeurteilung von Substanzen sind sogenannte ,Benchmark
concentrations” (BMC) und deren Unsicherheit von besonderem Interesse fiir regulatorische
Entscheidungen. Zur Ermittlung eines BMCs miissen mehrere statistische Entscheidungen getroffen
werden, welche stark von Faktoren wie etwa dem experimentellen Design und Eigenschaften der
erhobenen Endpunkte abhangen. In der aktuell gangigen Praxis ist fir die Datenauswertung oft der
Experimentator verantwortlich, welcher demensprechend auf statistische Software angewiesen ist.
Dabei besteht oft die Gefahr, dass der Experimentator sich nicht Uber die gegebenen
Standardeinstellungen der Software und deren Konsequenz fiir die Datenauswertung bewusst ist. Um
ein besseres Verstiandnis daflir zu schaffen, wie sich statistische Entscheidungen auf die
Datenauswertung auswirken, haben wir Fallstudien auf einen groBen Datensatz angewandt, welcher
durch Entwicklungsneurotoxizitat-Testbatterien produziert wurde.  Wir betrachten dabei auf die
Ermittlung von BMCs, deren Unsicherheit, sowie resultierende Gefahrdungsklassifizierungen. Hier
konnten wir fiinf kritische statistische Entscheidungen identifizieren, mit welchen sich der
Experimentator wihrend der Datenauswertung auseinander setzten muss: i) Wahl der Mittelung von
biologischen Replikaten, ii) Datennormalisierung, iii) Regressionsmodellen, iv) Methode der BMC-
Ermittlung, sowie v) die Wahl sogenannter ,,Benchmark response levels” (BMR). Eine besondere Starke
unserer Datenauswertungssoftware ist dabei die Integration von Endpunkt-spezifischen
Gefahrdungsklassifikationen, einschlieRlich eins Warnsystems fiir unsichere Falle, was bisher keine
andere vergleichbare Software mitbringt. Die in dieser Studie gewonnen Einsichten demonstrieren,
wie wichtig geeignete, aufeinander abgestimmte und regulatorisch akzeptierbare Methoden der

Datenauswertung flir objektive Gefahrdungsbeurteilung sind.
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Abstract

In the field of hazard assessment, Benchmark concentrations (BMC) and their associated uncertainty
are of particular interest for regulatory decision making. The BMC estimation consists of various
statistical decisions to be made, which depend largely on factors such as experimental design and assay
endpoint features. In current data practice, the experimenter is often responsible for the data analysis
and therefore relies on statistical software without being aware about the software default settings
and how they can impact the outputs of data analysis. To provide more insight into how statistical
decision making can influence the outcomes of data analysis and interpretation, we have used case
studies on a large dataset produced by a developmental neurotoxicity (DNT) in vitro battery (DNT IVB).
Here we focused on the BMC and its confidence interval (Cl) estimation, as well as on the final hazard
classification. We identified five crucial statistical decisions experimenter have to face during data
analysis: choice of replicate averaging, response data normalization, regression modelling, BMC and CI
estimation, as well as choice of benchmark response levels. In addition, the strength of our data
evaluation platform is the integration of endpoint-specific hazard classifications, including flagging
systems for uncertain cases, which none of the so far existing statistical data analysis platforms
provide. The insights gained in this study demonstrate how important fit-for-purpose, internationally
harmonized and accepted data evaluation and analysis procedures are for an objective hazard

classification.
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1 Introduction

In 2007, the National Research Council (NRC) of the United States proposed a new strategy for toxicity
testing in the 21 century centering around a shift from in vivo experiments in animals to mechanism-
based in vitro testing (NRC, 2007). Since then, major advances in the field of in vitro toxicology have
been made, including development and establishment of medium and high throughput screening (HTS)
assays, as well as bioinformatics tools for data generation, management and analysis (Leist et al., 2014;
Wheeler et al., 2015; Villeneuve et al., 2019). These efforts are contributing to next generation risk
assessment (NGRA), which aims at using new approach methods (NAMs) for exposure-based,
hypothesis-driven risk assessment without the generation of new animal data (Li et al. 2021; Dent et
al. 2021; Palloca et al. 2022).

Typically, an in vitro HTS test system produces hazard data for a relatively large number of test
concentrations and thus makes it most suitable for concentration-response regression modelling. This
statistical approach allows the interpolative estimation of a concentration value at a given effect level
(effect or inhibitory concentration), and of particular regulatory interest is hereby the benchmark
concentration (BMC) and its associated uncertainty, expressed as lower limit of a one-sided 95%
confidence interval (BLL). A BMC is considered as lowest concentration of the test compound that
produces a pre-defined small “relevant” change to the control reference’s response level, and a
consequence, the benchmark response (BMR) value should be as “close as possible” to the control
response.

In vitro test systems represent a huge variety of different types of assays, from cell-free, cell and tissue-
based methods up to multi-response organoid systems, and as consequence, concentration-response
data between these systems vary enormously with respect to their test-specific experimental designs,

data variability, dynamic ranges and concentration-response pattern. Unique to HTS systems is also
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that assay outputs are produced in microplate multi-well readers, with concentration-response data
from the same concentration and experiment are considered to reflect technical (intra-replicate)
variation and data from repeated experiments more indicative for “biological” (between-study)
variation. These hierarchical data are usually simplified by using an average response value per test
concentration and experiment (replicate average) as statistical unit for the concentration-response
analysis, with the argument that the BMC and BLL estimation should reflect mainly biological and
between-study variability.

The BMC estimation consists of various statistical decisions to be made in the concentration-response
analysis, which dependent largely on the experimental design, the concentration-response data and
assay endpoint features, and which require statistical knowledge that is usually only warranted by
experienced biostatisticians. In current data practice, the experimenter is often responsible for the
data analysis and therefore relies on statistical software without being aware about the software
default settings and how they can impact the outputs of data analysis (Jensen et al., 2020). Existing
guidelines for concentration response data analysis are often too general (OECD, 2006; EFSA, 2016),
and no clear consensus on a common and standardized biostatistical method for in vitro toxicity data
have been achieved (Wheeler et al., 2015; Sand et al., 2017).

To provide more insight into how statistical decision making can influence the outcomes of data
analysis and interpretation, we have used case studies on a large dataset produced by a developmental
neurotoxicity (DNT) in vitro battery (DNT IVB; Masjosthusmann et al. 2020, Crofton and Mundy 2021).
In this DNT IVB, 148 compounds were tested across up to ten test methods representing the
neurodevelopmental key events (KE) of neural progenitor cell (NPC) proliferation, migration of neural
crest and radial glia cells, neurons and oligodendrocytes, neuronal differentiation, neurite outgrowth
of peripheral and central nervous system neurons, as well as oligodendrocyte differentiation, and
accomplished by various endpoints measuring cell viability and cytotoxicity (Masjosthusmann et al.
2020). Some of the DNT-specific endpoints are derived from primary and organotypic cultures, and
thus more prone to a data variability typically observed in animal studies. Here we focused on the BMC
and its confidence interval (Cl) estimation, as well as the final hazard classification. For this purpose,
we identified five crucial statistical decisions the experimenter have to face during the data analysis
(Figure 1):

(i) Statistical unit: shall the median of all replicate responses of an experiment be used, which
makes no assumption to the data and thus reduces the negative impact of potential data
outlier, or the replicate mean, which has a higher certainty but assumes a symmetric
distribution of the replicate responses, and if violated, can lead to a biased estimation of

the replicate mean?
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(ii)

(iii)

(iv)

(v)

-4 -

Response data normalization: shall the responses of an experiment always be normalized
to the control’s response even if the exposure responses provide clear evidence against
the use of control data, or shall in that case the “control reference” be estimated directly
from the responses of the exposures (“re-normalization”, Krebs et al., 2018)?

Regression model: shall the concentration-response data always be described by the same
and supposedly flexible mathematical model, or is it better to use several models and
either subsequently select the best model by means of goodness-of-fit criteria ("best-fit
method”, Scholze et al., 2001) or estimate an average of all model fits (“model averaging”,
Claeskens et a, 2008)?

Uncertainty of a BMC estimation: shall the confidence level of a BMC be calculated by a
simple and commonly used statistical approximation technique (“Delta method”, Cox,
1990) which is known to be inaccurate (Moerbeek, Piersma and Slob, 2004), or by
alternative approaches such as bootstrapping or inverse regression (Jensen, Kluxen and
Ritz, 2019)?

Benchmark response (BMR): shall a response level most close to the control reference be
selected, which might not always be applicable for the statistical concentration-response
analysis and thus might fail to provide a reliable BMC estimation, or a higher BMR, which
guarantees a statistically more robust BMC estimation but might fail for compounds that

has produced weak responses below the intended BMR?

We designed a standard data evaluation protocol (“standard protocol”) which we used as reference to

alternative statistical methods, so that their BMCs and confidence intervals (Cls) estimated to the same

DNT IVB data could be compared. The statistical methods to be changed were chosen along the

questions outlined in (i) to (iv). This was supplemented by measuring their impact on hazard alerts

derived from hit classifications, which separate cytotoxic concentration ranges from the respective

BMC of the specific DNT endpoint, and by measuring their impact on the DNT IVB’s capability on

predicting DNT adversity in terms of specify, sensitivity and accuracy.
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Figure 1: Study Overview

Several biostatistical data analysis and evaluation steps were analysed for their impact on a BMC estimation and subsequent
hazard characterization from developmental neurotoxicity (DNT) data: i) how to average replicate responses from an
experiment, ii) how to normalize concentration-response data, iii) how to describe concentration-response data by regression
modelling, iv) how to estimate a benchmark concentration (BMC) and its uncertainty, and v) which benchmark response
(BMR) level to select. Changes between statistical methods were recorded for 148 compounds tested on up to 22 assay
endpoints, and their impact translated into the compound’s DNT hit classification and the predictivity performance of the
overall assay battery.



Manuscripts

2 Methods

2.1 DNT data

All concentration response data used in this study are from a DNT in vitro battery of 8 assays with 22
endpoints, in which a total of 148 compounds were tested. 120 compounds were tested across all
assays, while 28 compounds were tested in at least 2 assays. Fourteen assay endpoints represent major
key neurodevelopmental processes, and 8 endpoints measure general cell viability and cytotoxicity
(Table 1). This DNT in vitro battery was developed in collaboration with EFSA with the aim to advance
the application of in vitro DNT testing for regulatory purposes. The term “BMC” was used equally for

data from DNT-specific, cytotoxicity and viability endpoints.

Depending on the assay, fluorescent readouts using a multiplate reader or fluorescence and brightfield
imaging with subsequent artificial intelligence-based image analysis (Schmuck et al., 2015; Forster et
al.,, 2021) was performed as endpoint assessment. Each compound was tested in at least three
independent experiments and eight concentrations per experiment, with 5-6 controls and 5-6
replicates per experiment. An overview of the assays, the cell model and the respective endpoints is
given in Table 1, and more detailed information about the assay-specific experimental testing

procedures and test outcomes is provided in Masjosthusmann et al. (2020).

The BMR for each endpoint was derived from the between experimental variability as the coefficient
of variation of median plate medians (after normalization) measured at the lowest test concentration
and across all independent experiments (Masjosthusmann et al, 2020). To achieve a better
comparability across the endpoints, the BMRs were then rounded to the next higher value, resulting
into three BMRs: a 10% change was selected for endpoints from the NPC2a and NPC1-5 cytotoxicity
assay (BMR10), and a 30% change for endpoints from the NPC1, NPC2a, NPC2b, NPC3-5 and NPC1-5
viability assay (BMR30). For all UKN assays a 25% change was decided (BMR25), and for the viability of
the UKN2 a BMR10 was chosen. NPC Assays were conducted with three to five independent
experiments and 5 replicates each, UKN Assays with three independent experiments and 6 replicates

each (Table 1).
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Table 1: Test Assays

An overview over the assays and their key characteristics, including the cell model, assays endpoint and chemical exposure
time (in brackets), the BMR that was used for the classification, the number of independent experiments as well as the
replicates per experiment. Unspecific endpoints (cell toxicity and viability) are highlighted in cursive. Cytotoxicity and cell
viability assay endpoints were used as reference for NPC2, NPC3 and NPC5.

X X BMR Independent #Replicate # of
Assay Cell model Endpoint [exposure time] i | e | srete e
proliferation NPC1 [72h] 30 123
proliferation by area [72h] 30 117
NPC1 neural 3t05 5
progenitor cells viability NPC1 [72h] 30 123
cytotoxicity NPC1 [72h] 10 115
migration distance radial glia NPC2a [72h] 10
neural migration distance radial glia NPC2a [120h] 10
NPC2 progenitor cells ~ Migration distance neurons NPC2b [120h] 30 3to5 5 123
migration distance oligodendrocytes 30
NPC2c [120h]
neuronal differentiation NPC3 [120h] 30
NPC3 neural neurite length NPC4 [120h] 30 3t05 5 123
progenitor cells
neurite area NPC4 [120h] 30
NPCS neural oligodendrocyte differentiation NPC5 30 3t05 5 123
progenitor cells [120h]
cytotoxicity NPC2-5 [72h] 10 123
cell number [120h] 30 123
NPC2-51 neural 3to5 5
progenitor cells cytotoxicity NPC2-5 [120h] 10 122
viability NPC2-5 [120h] 30 123
hiPsC-derived Migration UKN2 [24h] 25
uknz L oeerve 3 6 703
neural crest cells Viability UKN2 [24h] 10
Neurite Area UKN4 [24h] 25
UKN4 Luhmes cells 3 6 753
Viability UKN4 [24h] 25
iPSC-deri Neurite Area UKNS [24h] 25
UKNS hiPSC-derived 3 5 713
sensory neurons Viability UKN5 [24h] 25

ICytotoxicity and cell viability assay endpoints were used as classification reference for NPC2, NPC3 and NPC5.

2Shown here is the number of compounds that have concentration response information with at least 5 concentrations

*A total of 140 compounds were tested in these assays. However, some compounds were only tested in a high concentration. If the high
concentration was negative in the assay, no concentrations response testing was performed.

2.2 Data Evaluation Platform

For data processing and evaluation, the R package drc (R Core Team 2019, Ritz et al. 2019) was
extended and optimized for the use of data from multi-well plate experiments. The biostatistical data

evaluation software is freely available as open source under the name CRStats

(github.com/ArifDoenmez/CRStats), an interactive R Markdown document is available and can freely

be assessed for use. All for the comparative study relevant mayor modules are displayed as workflow
diagram in Figure 2, starting from minimal data requirements for a BMC estimation (2.2.1) up to the
endpoint-specific hazard classification module (2.2.8). The individual modules are explained in more

detail below, with the module number in Figure 2 referring to the number of the subsection. From




Manuscripts

-8-

module 2.2.3 onwards we defined a standard protocol for the evaluation of DNT IVB data, with the
following statistical methods chosen: (i) average replicate per experiment estimated by median (2.2.3),
(i) control-normalization followed by re-normalization (2.2.4), (iii) application of several mathematical
models to find the ‘best fit’ regression model for a BMC estimation (2.2.6), (iv) Cl estimation of the
BMC by inverse regression (2.2.7), and (v) selecting endpoint specific BMRs for the hazard classification
as outlined in Table 1. This standard setup is shown on the left side of the modules (blue), and all
alternative methods that we considered in this study are listed on the right side under “changes”

(orange).

Standard Protocol Changes

2.2.1 Minimal Data Requirements

22 Ot Requiremerts |
W
ey
W
| zzsRedlcamenngng |
(0 median | men
W
[ 224 emcthemonss omslesten |
© re-normalization  control-normalization
W
= o

2.2.2 Pre-processing

2.2.3 Replicate Averaging

2.2.4 Effect Response Normalization

2.2.6 Regression Modelling

W

2.2.7 BMC and Cl Estimation

Figure 2: R Evaluation Pipeline Workflow

The R workflow is depicted with subsequent data evaluation steps from top to bottom. Grey boxes indicated the mayor data
processing and evaluation steps with reference to the material and methods section in which they are described. Mayor key
methods are depicted as coloured boxes below the according step. The blue methods (left) are the ones used for the standard
protocol, while changes of one of the standard protocol methods (depicted in orange, right) are used to create the alternative
protocols (i.e. for one alternative protocol the statistical unit for replicate averaging was changed from median to mean, while
all other key methods remained the same as in the standard protocol, so that only the impact of this particular change can
be monitored).
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2.2.1  Minimal data requirements

Data were accepted for data analysis only if the following three minimal data requirements were
fulfilled: (i) at least two replicas per concentration are available, otherwise all readouts from this
concentration were excluded, (ii) at least five concentrations per experiment have provided readouts
otherwise the whole experiment was excluded, (iii) at least two control readouts are available

otherwise the whole experiment was excluded.

2.2.2  Pre-processing
CRSTATS uses different assay-specific pre-processing steps in order to obtain a single response value
for each well. For example, the neuronal differentiation in the NPC3 assay is calculated as the number

of neurons divided by the total number of cells with a nucleus:

NPC3 number neurons [120h]

(1) NPC3 neuronal dif ferentiation [120h] = NPC3 mumber cells [1207]

All assay specific pre-processing methods that are currently implemented in CRSTATS are listed in Table

S1.

2.2.3 Replicate averaging

The average assay response for controls and treatments from the same experiment was either
estimated by the arithmetic mean or by the median. The variability between replicates was calculated
as standard deviation (SD; for the mean replicate) or as median absolute deviation (MAD; for the
median replicate). Outlier detection procedures were not applied and data points from wells where

technical problems were known or obvious were excluded from the data analysis.

2.2.4 Effect data normalization

CRSTATS offers different normalization methods which allows the translation of pre-processed effect
data into relative values. For this study, we used the following two methods:

(i) Control normalization: effect responses are normalized to the mean or median of the solvent

controls as

replicate response

()

median or mean (solvent control responses)

(i) Control re-normalization: normalized effect responses (Equation 2) are further normalized by a

mean value that has been estimated by regression modelling at the lowest test concentration, i.e.

normalised replicate response

(3) (Krebs et al., 2018).

model estimate of normalised response at lowest test concentration
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2.2.5 Significance analysis

The presence of at least one exposure concentration that had produced an effect response which
differs statistically significantly from the responses of all remaining exposures is a crucial factor in the
hazard classification method (2.2.8). To account for that, significant differences between treatment
means were identified by using the Tukey Honest Significant Differences test (alpha=5%, two-sided)
(Tukey HSD; Yandell, 1997), with hypothesis testing conducted on normalized replicate averages from
at least three independent experiments. As an average control value was always set to 100% (2.2.4),
controls were excluded from the significance analysis. Data provided no evidence against the Gaussian

assumption.

2.2.6  Concentration-response regression analysis

The R packages drc (Ritz et al., 2015) and bmd (Jensen et al., 2020) were used for regression analysis
and the estimation of a BMC and its associated uncertainty. The drm function fits a pre-defined
regression model to the concentration-response data, with several options implemented to provide
more flexibility for the estimation method. A large number of mathematical nonlinear regression
functions was applied to the same data set (Table S2), and the best fitting model then selected on basis
of the Akaike’s Information Criterion (AIC) (“best fit method”, Scholze et al., 2009; Portet, 2020). AIC
is commonly used to compare the relative goodness-of-fit among different models and to then choose
the model of best predictive power by balancing data support against model complexity. As all effect
endpoints in this study are continuous, the estimation method of ordinary least-squares (OLS) was
used. OLS relies on two assumptions, i.e. (i) effect data (here replicate average) follow a symmetrical
distribution, and (ii) variance homogeneity across all treatment groups. Both assumptions were
checked prior to data analysis on basis of pooled endpoint-specific data from all experiments: data
variability differed in average by maximally 20% between the treatment groups, with the highest
variability often occurring at highest test concentration, and no overall clear evidence was detected
that normalized replicate means did not follow a symmetric distribution. These findings were deemed

as acceptable for using the unweighted OLS regression analysis.

2.2.7 BMC and its Uncertainty

In the standard protocol the BMC was estimated directly from the best fit model. We also considered
model averaging as an alternative option where, similar to the previous best fitting method, a number
of suitable concentration—response models were fitted to the same data but in this case all resulting
model fits were combined to provide an weighted average BMC estimates (Ritz, Gerhard and Hothorn,
2013). Uncertainty was always expressed as a=5%, i.e. the lower limit (BLL) corresponds to the 2.5%

limit and upper limit (BUL) to the 97.5% limit. BLL and BUL were derived by three different methods,
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i.e. inverse regression, the delta method and bootstrapping. The estimation of the BMC and its 95% Cl
by model averaging was always performed in combination with bootstrapping. Inverse regression
estimates both BLL and BUL directly from the regression fit around the BMC (Buckley, Piegorsch &
West, 2009; Fang, Piegorsch & Barnes, 2015) and therefore puts high emphasizes on a successful
regression fit in terms of robustness and reliability. The delta method is an asymptotic approach which
combines information of the estimated model parameters to derive a Wald-type interval (Jensen et al.
2020). Bootstrapping uses computer-intensive simulation techniques that resamples the original
dataset to create a huge number of so-called bootstrap samples, with each sample mirroring the
original data set with an identical experimental design but newly simulated effect responses. On each
bootstrap sample the same statistical data analysis was performed, resulting into a distribution of
resampled BMC values around the original BMC estimation. If the median of this distribution equals
the original BMC (unbiased resampling), then the 2.5% and 97.5% quantiles are expected to mirror the
BUL and BLL of the original BMC, respectively. For each bootstrap sample, always the same regression
model was used as part of the best-fit method, or one model-averaged BMC if model averaging was
performed. To simplify the model averaging method, only three regression models were considered
(four-parameter loglogistic, four-parameter Weibull and three-parameter exponential model).
Bootstrapping was always conducted on 1000 resampled datasets, and due to the small sample sizes,
we used always the parametric version (Efron, Bradley and Tibshirani, 1993). All resampling was
performed by the function bmdMA of the R package bmd (lensen et al., 2020). Bootstrapping can
simulate a bootstrap sample which do not allow a BMC estimation or which leads to an unreliable BMC
estimation that is well outside the tested concentration range. Therefore, a resampled BMC was
excluded from the resampling distribution if it was 1.5-times above the highest test concentration or

below the lowest tested concentration.

2.2.8 Hazard Classification

CRSTATS uses a hazard classification approach which judges if data evidence is sufficient to define a
compound as active for the specific DNT endpoint and if this can be distinguished from an activity
observed in cell health related endpoints (viability and cytotoxicity). Accordingly, the endpoint-specific

hazard of a compound is classified into five categories:

¢ No hit: no observed effect on the DNT-specific endpoint or on general cell health.

¢ Unspecific hit: the effect on the DNT-specific endpoint cannot be separated from an effect on the
cell health related endpoint.

e Borderline hit: the separation between the effects on the DNT-specific endpoint and the effect on

cell health related endpoint is statistically not clear (Leontaridou et al, 2017).
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¢ Specific hit: the effect on the DNT-specific endpoint is clearly separated from an effect on the cell
health related endpoint.

¢ Not identified: data are incomplete und do not allow any classification.

If the automatic classification failed due to a high uncertainty of the BMC or a missing BMC for the
cell health related endpoint, the classification was recorded as expert judgement and classification
into one of these five categories was done by manual inspection on the basis of all data evidence. An

overview over all flagging alerts leading to expert judgement are given in Table S4.

The hazard classification approach was operationalized by hazard decision trees which reflect specific
assay features and the directionality of the observed concentration response pattern (i.e. either
reduction or inhibition). Common to all decisions trees is that they compare the BMC of the DNT-
specific endpoints to the respective BMC of the unspecific endpoint (i.e., cytotoxicity or cell viability).
For the NPC and UKN assays slightly different versions were developed, with all NPC assay endpoints
accounting directly for the statistical uncertainties of both BMC estimations by using their
corresponding Cls, and all UKN assay endpoints using pe-defined acceptance ranges instead. The
principles of the hazard decision tree for data sets with decreasing concentration-response pattern
(reduction) measured in NPC assays (NPC1, NPC2, NPC3 and NPC5, Table 1) are shown in Figure 3, and
for increasing concentration-response pattern (induction) in Figure 4. Inductions are handled
separately, because the specific and unspecific endpoints do not have the same relationship during an
induction, compared to a reduction in the endpoint. A loss in general cell viability for example will likely
result in an effect in cell proliferation, while an induction in cell viability does not necessarily increase
cell proliferation. If migration (NPC2a) is affected, only cytotoxicity is used as a reference for all specific
endpoints of NPC2-5. A reduction in migration also reduces cell viability due to the lower number of
cells in the migration area and not necessarily due to cell death. If so, it cannot be used as valid
reference to discriminate between a specific and unspecific effect. The same applies to effects in cell
viability. In these cases, only cytotoxicity is used as general cell health reference for according specific
NPC endpoints. More details can be found in the supplementary material (S1.3) and in table S3, and
details about the classification tree applied to data from the UKN assays can be found in

Masjosthusmann et al. (2020).
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Figure 3: Decision tree for the NPC hazard classification of inhibitory effects

The decision tree shows for NPC1-5 data with decreasing concentration-response pattern how BMC estimations and their
uncertainty (expressed as 95% confidence intervals, Cl) for data from both specific and unspecific endpoints are used to
classify the compound into one of the DNT hit categories (coloured boxes). Hits with the category "expert judgement” (grey
box) will be classified into one of the DNT hit categories by manual inspection on the basis of all data evidence.

. No
BMC = Benchmark concentration BMCs could be estimated — no hit
s = specific eff?dpomt . ‘ Yos
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Figure 4: Decision tree for NPC hazard classification of increasing effects

The decision tree shows for NPC1-5 data with increasing concentration-response pattern (“induction”) how BMC estimations
and their uncertainty (expressed as 95% confidence intervals, Cl) for data from both specific and unspecific endpoints are
used to classify the compound into a specific or no hit (coloured boxes). The presence of a cytotoxic responses can lead to an
artefact in the DNT-specific endpoint and is therefore initially categorized as “expert judgement”. These hits will be classified
into one of the DNT hit categories by manual inspection on the basis of all data evidence.

2.3 Assay Performance
From the 148 compounds tested in the DNT IVB, a set of 45 reference compounds (17 negative
compounds that are known not to cause DNT; 28 positive compounds with proven DNT adversity in

humans or mammals) was used for an evaluation of the DNY IVB predictivity. Hit decisions were
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derived from the hazard decision trees developed in 2.2.8, and the following performance parameters
were used:

# true negative hits
# negative compounds

Specificity =

# true positive hits
# positive compounds

Sensitivity =

# true negative hits + # true positive hits

Accuracy = —
Y # negative compounds + # positive compounds

A negative compound was considered as true negative if it was not classified as specific hit or
borderline in any of the assays. A positive compound was considered as true positive, if it was classified

as specific hit or borderline in at least one assay.
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3 Results

To perform a robust, fast and automated hazard characterization based on high content in vitro toxicity
testing data, we have set up the R-based data evaluation pipeline CRSTATS

(github.com/ArifDoenmez/CRStats), which offers multiple statistical options for the data evaluation of

continuous concentration-response data. Based on these options, we have defined a standard data
evaluation protocol (“standard protocol”) for DNT IVB data (Fig. 2), and by changing statistical methods
as part of the protocol we studied their impact on the BMC estimation of the DNT IVB outcomes and
the subsequent consequences for the hazard classification and overall DNT IVB performance
("alternative protocol”). The following statistical methods were chosen as alternatives to the standard
protocol: 1) average replicate per experiment estimated by the arithmetic mean, 2) control
normalization without re-normalization, 3) using a three-parameter log-logistic regression model
(LL3rm) for the BMC estimation, 4) using model-averaging for the BMC estimation, 5) Cl estimation of
the BMC by the delta method, 6) Cl estimation of the BMC by bootstrapping, 7) Cl estimation of the
BMC by model averaging, and 8) increasing the endpoint specific BMRs by 20%. Differences in the BMC
estimation, the uncertainty of a BMC (expressed as the width of the central 95% confidence interval
of a BMC estimation), the endpoint-specific hazard classification of the compound and the final assay

performance were quantified and compared across the various specific assay endpoints.

In total, 148 compounds were tested on up to 14 DNT-specific and 8 cytotoxicity and viability
endpoints, of which 2385 data sets fulfilled the minimal data requirements of the data evaluation
pipeline. According to the standard protocol, it was possible to perform a regression analysis for 2385
data sets (1953 NPC and 432 UKN) and a hazard hit categorization for 1563 data sets from DNT-specific
endpoints (1347 NPC and 216 UKN). In nearly one third of all best-fit model decisions the simplest
regression model was chosen, i.e. the exponential function with two model parameters, followed by
three-parametric models (55.7%) and by four-parametric models (10.3%). Only in 1.9% of all best-fit
model decisions sufficient data were available to support the most complex regression model (5-

parameter general log-logistic).

3.1 Impact of different data evaluation methods on the BMC estimation
To allow a better comparison of BMCs from different data scenarios, the BMC was transformed to a
relative BMC on a log10 scale by relating the 100-fold BMC estimation to the highest test concentration

of the data set:

100«*BMC
highest test concentration

relative BMC = log10(

).
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A relative BMC of 1 corresponds to a BMC that is tenfold below the highest test concentration of the
data set, and a relative BMC above 2 corresponds to a BMC that has been extrapolated beyond the
highest test concentration. The lower the relative BMC value, the more likely the estimation is

supported by effect data from more concentrations.

The relative BMCs from the standard and alternative statistical protocols are shown in Figures 5 A-E
for five statistical parameters that were changed, which the BMC of the alternative protocol always
referring to the x-axis and the BMC of the standard protocol to the y axis. If a regression analysis could
be performed but a BMC not established due to missing data support for the BMR, the BMC was
flagged as “BMRnr” (BMR not reached) and included in the plot at the end of the BMR axes, i.e. a
BMRnr value on the right side of the plot indicate a BMC estimation which was only possible for the
standard protocol, and similarly, a BMC value on the top of the plot area indicate a BMC estimation
that could only be established for the alternative protocol. Data sets for which none of the protocols
were able to produce a BMC were excluded. Color-coded symbols refer to the 22 bioassay endpoints,
and a data point on (or close to) the solid 45-degree line indicates a perfect agreement between the
BMCs from both protocols. Three-fold BMC differences are highlighted by a belt around the line of
perfect agreement (i.e. values outside of the belt have above three-fold change), and the percentage
number of successful regression fits for the alternative protocol are included on top of each plot, with
reference to the 1953 data sets for which a successful regression modelling was conducted according
to the standard protocol. To identify general deviation patterns, we performed trend regression
analyses between the relative BMCs, and the corresponding value of the goodness-of-fit criterion (R?)
is provided in the plot: the higher the coefficient, the more consistent the results between the two
protocols. For the trend analysis, we set a relative BMC = 2.47 for a BMRnr, i.e. a 3-fold difference
between the highest concentration and a fictional BMC was assumed. Not shown are BMC differences
for the bootstrapping and delta method, as both refer to the same BMC and thus would have resulted

always into identical BMCs in the plot.

We found the most profound BMC differences between the data re-normalization and control
normalization (Fig. 5B), with an R? of 0.3. The main reason for the huge number of BMC disagreements
is due to huge number of BMRnr’s, i.e. regression fits that could establish a reliable BMC for the
endpoint-specific BMR in only one of the protocols. Using the mean as replicate average instead of the
median (Fig. 5A), using a predefined regression model (LL3rm) instead of the best fit method (Fig. 5C),
and using a higher BMR resulted in moderate BMC changes, with R¥s between 0.59-0.61. The best
agreement between relative BMC values was observed for the comparison between the outcomes

from model averaging against the best-fit method (Fig. 5D) with an R? of 0.85.
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The number of datasets for which a regression model could be fitted for the alternative protocol was
related to the number of fits for the standard protocol and expressed as relative “fit success rate”. All
changes of statistical methods lead to similar success rates, with the exception of the sole application
of the three-parameter log-logistic model which led to a noteworthy loss of successful regression fits

(68.55% success rate).

To further explore differences between BMC estimates, the number of BMRnr cases that only occurred
in the alternative protocol (i.e. the standard protocol did result in a BMC while the alternative protocol
did not; Fig. 5F, blue shaded area of bar), the number of BMRnr cases that only turned out in the
standard protocol (Fig. 5F, green shaded area of bar) and large differences outside the belt (“outliers”,
Fig. 5F red shaded area of bar) were compared to the total number of BMCs that were estimated by
the standard protocol. Most protocols that lead to less successful BMCs were caused by the inability
of the data to support the regression modelling for the intended BMR level. All alternative protocols
together led to less BMCs but more BMRnr cases, with protocol changes to control normalization and
higher BMRs resulting into the highest increase towards BMnr cases (i.e. less BMCs), with an increase
of 17.25% and 37.98% of BMRnr cases, respectively. Taking only the cases with huge BMC differences
into account (“outliers”), the number of BMCs that were either lost or gained due to the protocol
change was further quantified: model averaging led to the smallest number of relevant changes
(7.13%), followed by replicate averaging by mean, fixed regression model (LL3rm) and control-
normalization with moderate changes (13.43%-28.86%), up to >40% changes were reached if a higher

BMR was used.

Differences between the relative BMCs were also expressed as fold-change, and the distribution of all
fold changes summarized as median and the interquartile ranges (IQR) (Figure 5G). Here, the BMRnr
cases were excluded from the fold change analysis. In alignment to the previous results, the protocol
change towards higher BMRs led to the most severe fold-change (median = 1.71, IQR = 1.02). The
protocols with mean replicate average, control-normalized data, model averaging and choice of higher
BMRs showed moderate median fold-changes of estimated BMCs ranging from 1.04-1.15 (IQR ranging
from 0.09-0.3).



Manuscripts

18

relative BMC
Repliacte Median

relative BMC
Best Fit Model

a o
8 &8 &8

% of standard method BMC amount
S EETEN

o o

-0 05 00 05 10 1

-10 05 00 05 10 15 20

relative BMC
Replicate Mean

fit success rate: 97.9%
R:085

@

2

o

relative BMC
Model Averaging

V772 BmRnr oni
in
% atternative method

BMRnr only in
standard protocol

Outlier

.

14.43 1343

relative BMC
Re-Normalized

relative BMC

BMR10 and 30

fold change of BMC

B
* € & &
5 >
& & o
& & N
)
&

BMR  fitsuctess rate’99.96% =+ * b
R-03

nr.

20

18]

o
@

10 05 00 05 10

relative BMC
Control Normalized

it success rate: 100%
BMR Re0s9

20

10 05 00 05 10

relative BMC
BMR30 and 50

=

relative BMC
Best Fit Model

10 05 00 05 10 15 20

relative BMC
LL3 Regression Model

BMR30 proliferation NPC1 [72h]

B BMR30 proliferation by area [72h]

A BMR30 viability NPC1 [72h]

# BMR10 cytotoxicity NPC1 [72h]

@ BMR10 migration distance radial glia NPC2a [72h]

® BMR10 migration distance radial glia NPC2a [120h]

M BMR30 migration distance neurans NPC2b [120h]

A BMR30 migration distance oligodendrocytes NPC2c [120h]
4 BMR30 neuronal differentiation NPC3 [120h]

@ BMR30 neurite area NPC4 [120h]

BMR30 neurite length NPC4 [120h]
BMR30 oligodendrocyte differentiation NPCS [120h]

[
A BMR10 cytotoxicity NPC2-5 [72h]
# BMR30 cell number [120h]

L]

BMR10 cytotoxicity NPC2-5 [120h]

BMR30 viability NPC2-5 [120h]
B BMR25 migration UKN2 [24h]
A BMR10 viability UKN2 [24h]

# BMR25 neurite Area UKN4 [24h]
@ BMR25 viability UKN4 [24h]

.

BMR2S5 neurite Area UKNS [24h]
BMR25 viability UKNS [24h]

Figure 5: Impact of methodological changes in the data evaluation on the BMC estimation
BMCs for 148 compounds tested on up to 22 endpoints from 8 assays were estimated using the standard protocol and
opposing alternative methods. A-E): A relative BMC was expressed as the log10-transformed ratio between the 100-fold BMC
and the maximum test concentration, and relative BMCs from all data sets and endpoints but different statistical methods
were plotted against each other. The solid black trend line indicates no differences between the relative BMCs, the grey
interval around the trend line indicates values within a three-fold range. Values outside this interval are considered as
relevantly different between the opposing methods. If a relative BMC could be calculated for only one method, the missing
value of the opposing method is plotted as BMRnr area on the right or upper side of the graph. Relative BMCs are colored
according to their bioassay endpoint. To indicate the strength of agreement between both data evaluation protocol, the
goodness-of-fit coefficient from a trend regression analysis between both relative BMCs is included (R? top left), and the
percentage of successfully applied regression models of the alternative protocol in relation to the standard protocol is shown
top left (“fit success rate”). A) Experimental median replicates versus mean replicates (n = 568). B) Re-normalized data versus
control-normalized data (n = 630). C) Best fit approach versus a predefined three parameter log-logistic regression model (n
=520). D) Inverse regression versus model averaging (n = 604). E) BMR10+30 (BMR10+25 for UKN) versus BMR30+50 (n =
604). F) Percentage of all data sets for which the protocol change lead to a BMC change in terms of BMRnr (i.e. a BMC could
not be determined from the regression fit) or an above three-fold BMC change. G) Distribution of BMC fold-changes in
response to statistical method changes from the standard protocol. Box whisker plot shows the median (horizontal line),
interquartile range (box), 5% and 95% percentile values (whisker), and extreme values (black dots).
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3.2 Impact of different data evaluation methods on the BMC uncertainty

Next, we analyzed how changes to the standard evaluation protocol can influence the overall
uncertainty of the BMC estimation. The uncertainty of a BMC is estimated as central 95% confidence
interval with the BLL corresponding to the lower 2.5% interval section and the BUL to the upper 97.5%
interval section. The width of the interval (i.e. the difference between the BUL and the BLL) is an
essential factor in some of the classification models of the hazard characterization. Similar to the
analysis of BMC changes, a Cl width was transformed to a relative Cl width by fixing it to the maximal

test concentration of the data set:

100«CI width
highest test concentration

relative Cl width = log10(

)

with Cl width = BUL —BLL, where BLL and BUL are the 2.5% and 97.5% confidence interval of the BMC
estimation. A single relative ClI width has no meaningful interpretation, and it was only used in

combination with a second value with reference to the same highest test concentration.

Changes to the standard protocol which lead to changes in the relative Cl width were visualized in the
same way as in the previous section, with the relative Cl widths from the standard and alternative
protocol shown as endpoint-specific symbols for all data sets in a common scatter plot, with each plot
referring to a specific method change (Fig. 6A-G). Values below the line of perfect agreement indicate
an increase of the Cl width, i.e. the BMC estimation of the alternative protocol is considered as more
uncertain, and values above the line indicate a more certain BMC estimation than judged by the
standard protocol. Also, a supporting trend analysis was conducted, with the corresponding goodness-
of-fit criterion (R?) provided in the plot, and a belt around the line of perfect agreement between both
relative Cl widths was included, with larger than three-fold changes outside this belt considered as

relevant.

Outcomes of the trend analyses show that protocol changes due to the experimental mean replicate
or the sole application of the LL3rm regression model led to the least impact on the Cl width, with R%s
of 0.9 and 0.88, respectively (Fig. 6A and 6C). All remaining protocol changes led to slightly higher
changes in the BMC uncertainty, with R? between 0.79-0.73 (Fig. 6A-G). The number of increased or
decreased confidence intervals around the BMC was balanced across all protocol changes, with the
exception of the protocol change towards higher BMRs where the BMC uncertainty was increased for
the majority of data sets. The total number of BMC estimations for which a method change led to
changes in the Cl width that we consider as relevant (i.e. values outside belt around the perfect
agreement) was then compared to the total number of BMCs: all method changes directly involved in
the estimation of the BMC uncertainty (delta method, bootstrapping and model averaging) changed

the Cl width of the BMC for ca. 10% of all BMCs, whereat method changes that are expected to impact
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the uncertainty estimation of a BMC only indirectly (mean replicate average, control-normalized data,

sole application of an LL3rm, higher BMRs) had a minor impact on the determination of the BMC

uncertainty (Fig. 6H). The distribution of fold change of Cl widths is shown in Figure 6l.
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Figure 6: Impact of methodological changes in the data evaluation on the uncertainty of a BMC estimation

The BMC uncertainty was expressed as the width of the central 95% confidence interval (Cl) around the BMC estimation, and
Cl widths for 148 compounds tested on up to 22 endpoints from 8 assays were determined using the standard protocol and
opposing alternative methods. A-G): a relative Cl width was calculated as the log10-transformed ratio between a 100-fold CI
width and the highest test concentration, the relative Cl width of the alternative protocol was plotted against the relative Cl
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width of the standard protocol. The solid black trend line indicates identical Cl width’s, the grey interval around the trend line
indicates values below three-fold change. Values outside of this interval are considered as relevantly different between the
opposing methods. Endpoints are indicated by a different color and shape. The goodness-of-fit coefficient from a trend
regression analysis between both relative BMCs was calculated (R?; top left), indicating the strength of agreement between
both data evaluation protocols. A) Experimental median replicates versus mean replicates (n = 517). B) Re-normalized data
versus control-normalized data (n = 502). C) Best fit approach versus a predefined three parameter log-logistic regression
model (n = 499). D) Inverse regression versus delta method (n = 588). E) Inverse regression versus bootstrapping (n = 600). F)
Inverse regression versus model averaging (n = 561). G) BMR10+30 (BMR10+25 for UKN) versus BMR30+50 (n = 359). H)
Percentage of all BMC for which the protocol change lead to a threefold change in the relative Cl in relation to the total
number of BMC estimations. 1) Distribution of Cl width fold changes in response to statistical method changes from the
standard protocol. Box whisker plot shows the median (horizontal line), interquartile range (box), 5% and 95% percentile
values (whisker), and extreme values (black dots).

3.3 Examples

In the following we have selected five data examples which demonstrates the impact of

methodological changes in the standard data evaluation protocol on a BMC estimation (Figure 7).

(i) Replicate median versus replicate mean (Figure 7A, proliferation by BrdU after 72h exposure):
response data were calculated either as the median (blue, standard protocol) or as the arithmetic
mean (red, alternative protocol) of the replicate responses and expressed as mean + SEM (n=5). The
corresponding best-fit regression models are shown as solid (standard protocol) and dashed lines
(alternative protocol), with the horizontal line corresponding to a BMR30. The combination of a large
data variability and presence of individual data outlier led to mean response estimations closer to the
control level, which was reflected by distinct regression curve estimates for both protocols. As
consequence, a 7-fold higher BMC30 value was estimated for the alternative protocol, with a BMC30

of 2.02 uM according to the standard protocol and a 14.3 uM for the alternative protocol.

(i) Re-normalization versus control normalization (Figure 7B, neuronal differentiation after 120h
exposure): response data were either normalized to the average response observed at the lowest test
concentration (blue, standard protocol) or to the controls (red, alternative protocol). The four lowest
test concentrations produced similar control-normalized responses between 60-70%, with no
indications for a trend between them. A regression analysis on all control-normalized responses
suggests that only the highest test concentration produced a response not distinguishable from the
controls, which we deemed as unrealistic, and, as consequence, the data set was not considered for a
reliable BMC estimation. However, data re-normalization led to a more valid induction pattern, and

the BMC estimate from the best-fit regression model was accepted.

(iii) Best-fit model selection versus a pre-defined regression model (Figure 7C, cell viability after 72h
exposure): re-normalized response data are presented in the same way as in the previous examples,
with the blue regression curve corresponding to the best-fit regression model (standard protocol) and

the red curve to the three-parameter log-logistic model (alternative protocol). In this example, the
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four-parameter log-logistic model (Table $2) was selected as best-fit regression model. In addition, the
95% confidence intervals around the entire curve estimates are included for both regression models.
The exposure concentrations produced either no or maximal responses, with no data support for effect
responses between. In a strict statistical sense, this data pattern does not allow the estimation of a
reliable data curve, which is indicated for the three-parameter model (alternative protocol) by its poor
data description and for the four-parameter log-logistic model (standard protocol) by its huge
confidence belt for intermediate effect estimates. Nevertheless, the BMC30 (and its uncertainty)
derived from the four-parameter log-logistic model (0.347 uM, 95% CI: 0.272-0.572 uM) seems
reasonable and it is unlikely that a re-testing of the same compound on a refined concentration range
will contradict this BMC30. This example demonstrates that although a BMC estimation might not fulfill
all criteria according to “best statistical practice” (and be judged as unreliable by statisticians), it still

can provide sufficient information to be assessed by the experimenter as reliable.

(iv) Uncertainty estimation of the BMC by inverse regression versus the delta method (Figure 7D,
neuronal differentiation after 120h exposure): the 95% confidence intervals of the BMC30 estimated
from the same best-fit regression model and data set are shown either by inverse regression, i.e. the
interval along the horizontal 130% response line that intersects with the confidence belt of the
regression curve (blue, standard protocol), or by the delta method (red). The confidence belt of the
BMC30 by inverse regression provides a reliable expectation about where a BMC30 can be expected if
the same experiments would be repeated, whereat the delta method provides a confidence belt which
spans the entire test concentration range and therefore provides the misleading conclusion about a

non-existing data support.

(iv) Uncertainty estimation of the BMC by inverse regression versus bootstrapping (Figure 7E, neuronal
differentiation after 120h exposure): similarly to the previous example, 95% confidence intervals of
the BMC30 estimated from the same best-fit regression model and data set are shown for two
different statistical methods, and similar to the delta method, bootstrapping provides a large 95%
confidence belt of the BMC30 which could be interpreted misleadingly as lacking data support for the
regression modelling. The most likely reason for the poor performance of the bootstrap is the
combination of a relatively large data variability and the responses observed at the second lowest

concentrations which are not well described by the regression model.

Finally, we selected a single data set and analyzed it according to the standard protocol and all the
methodological changes we have conducted to estimate a BMC and its 95% Cl (cell viability, Figure 7F).
It summaries well how the different statistical methods can change a BMC estimation: a control-
normalization of the response data shifted the BMC and its Cl to much lower test concentrations,

application of the delta method led to a drastic increase of the Cl of the BMC30, the sole application
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of the LL3rm regression model failed and did not provide any estimation and increasing the BMR30 to

a BMR50 led to a non-estimable BMC (BMRnr).
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Figure 7: Data set examples and the impact of methodological changes in the data evaluation on the regression
modelling and the BMC estimation and its uncertainty

A)-E) For several different steps of the data analysis and evaluation, the data resulting from the standard protocol (blue) is
compared to the data deriving from the alternative protocol (red). Error bars show the SEM between summarized experiment
data. Horizontal grey lines indicate the BMR. A) Experiment summarization by median and by mean. B) Re-normalized data
and control-normalized data. C) Best fit approach and use of only a LL3 regression model. Cl is displayed as confidence band
around the fit model. Both models are applied to the data shown in blue. D) Inverse regression and delta method. Cl of the
alternative method is shown as red bar and BMC as red square. E) Inverse regression and bootstrapping. F) All method
changes and their resulting BMC (displayed as dots) and Cl values (displayed as bars) are shown for one exemplary dataset.

3.4 Method impact on hazard classification

An important application of the BMC estimation is the endpoint-specific hazard classification of the
test compound into one of five hit categories, i.e. if the compound produced sufficient data evidence
to be judged as a DNT-specific hit, borderline hit, unspecific hit, no hit, or as not identifiable (due to
missing data support). Although all decision trees were setup as automatic systems, some data
scenario provided insufficient data and were flagged for an expert judgement. The number of data
scenarios for which the hazard classification was performed by “expert judgement” are listed in Table
2 for the standard protocol and seven methodological changes, divided according to the main decision
trees developed for data from NPC or UKN assays. In total, 1563 classifications were conducted (NPC:
1347, UKN: 216), of which 68 (NPC: 30, UKN: 38) were flagged for an expert judgement according to
the standard protocol. All protocol changes led to similar numbers, with the exception of the delta

method applied to data outcomes from NPC assay endpoints which required expert input for three-
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times more classifications. A marked difference was observed between the decision trees for NPC and
UKN assay endpoints, with up to 5 times more classifications flagged for expert judgement for UKN
outcomes depending on the statistical method chosen.

Table 2: Number of endpoint-specific DNT hit classifications judged by experts.

The numbers of hit classifications by expert judgement are presented as percentage of all classifications that were

supervised by the hazard decision trees.

Method NPC [%]* UKN [%)?
Standard Protocol 2.23 17.59
Replicate Mean 2.15 16.67
Control-normalized  3.27 15.74
LL3rm 2.23 12.50
Delta Method 8.09 18.52
Bootstrapping 3.12 17.13
Model Averaging 2.90 15.74
BMR30+50 1.93 12.96

INPC = Data outcomes from NPC assays, 2UKN = Data outcomes from UKN assays

Due to the poor performance outcomes of the delta method in judging the uncertainty of a BMC
estimation and the consequence of a more likely expert intervention in the automatic hazard

classification, we judge this method as too unreliable and have excluded it from all remaining analyses.

Exemplary data sets are shown for three different classification scenarios: (i) a specific DNT hit decision
for a significantly inhibited oligodendrocyte differentiation at exposure concentrations above 0.25 uM,
but only a marginally reduced cell viability (marker for cytotoxicity) at 20 fold higher concentrations
(Figure 8A), (ii) an unspecific hit decision for a significantly inhibited oligodendrocyte differentiation
and cytotoxicity observed at same concentration ranges (0.24 to 2.2 pM) (Figure 8B), and (iii) a data
scenario which was flagged for an expert judgement because the highest test concentration (20 uM)
produced a weak but significant effect reduction for the specific endpoint but the regression analysis
estimated a BMC10 (and BLL) that was outside the test concentration range. On closer inspection of
the experimental data (Figure 8C, with each color-coded symbol representing the replicate median
from an independent experiment) it was decided that responses from both the specific and unspecific
endpoint were not distinguishable, and thus the weak response reduction of the specific endpoint was

classified as unspecific.

Figure 8D provides an overview about the total number of hit classifications that changed in response
to changes of the standard protocol. Expressed as percentages and for each methodological change,
the changes of hit classifications are further divided in “gains”, i.e. the percentual increase of hazard
hits in relation to the standard protocol, and “losses”, i.e. the percentual decrease of hazard hits in

relation to the standard protocol. Here a change toward replicate averaging by mean, control



Manuscripts

25

normalization and bootstrapping caused the lowest number of classification changes (<5%), followed
by methodological changes towards model averaging or higher BMR levels which led to almost 7%
different hit classifications. Here, model averaging increased the number of “not identified”
classifications by 2.56%, mostly at the cost of “no hit” classifications, and the higher BMR levels led to
4.86% more “no hit” classifications (in line with the data example of Figure 7G). The by far most severe
changes of hit classifications were observed if only the LL3rm regression model was used to describe
the experimental concentration response data (45.87% total difference), which led to 42.03% more
“not identified” classifications. The latter is most likely the consequence of unsuccessful regression
modelling (and corresponding BMC estimation) due to lack of sufficient data support for this model

(see 3.1 and 3.2).
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Figure 8: Number of endpoint-specific DNT hit classification changes in response to changes in the standard data evaluation
protocol A-C) Exemplary data sets for three different classification scenarios: concentration-response data from the specific
(blue) and unspecific (black) endpoints are from 5 independent experiments, with effect responses re-normalized to the
regression estimate at lowest test concentration and summarized as meanzSEM. Horizontal lines indicate the BMR levels for
the BMC estimation, where straight lines indicate the specific endpoint BMR and dotted lines the unspecific endpoint BMR
(if they differ). Data were always analyzed according to the standard data evaluation protocol A) Specific hit: the specific
endpoint (oligodendrocyte differentiation) is impacted at non-toxic concentrations. B) Unspecific hit: inhibition of
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oligodendrocyte differentiation and cell viability are observed at similar concentration ranges. C) Hit classification by expert
judgement: an automatic hit classification was prevented by ambiguous data, but judged as “unspecific” by experts. D) For
each methodological change to the standard protocol, the number of hit changes is expressed as percentage of the total
number of hit classifications, divided into in “gains” (i.e. the percentual increase of hazard hits in relation to the standard
protocol) and “losses” (i.e. the percentual decrease of hazard hitsin relation to the standard protocol). Different bar segments
represent the different classification categories.

3.5 Assay performance

To assess how changes in the data evaluation protocol might impact the evaluation of the DNT IVB’s
predictivity, 28 reference chemicals of known DNT and 17 negative control chemicals were selected
(Masjosthusmann et al. 2020), with all 45 substances tested in the DNT IVB, and the overall
performance of the DNT IVB was quantified by its specificity, sensitivity and accuracy. Outcomes are
shown for the standard protocol as well as all relevant changes in Figure 9: (i) Specificity (Fig. 9A):
standard protocol and changes of it led always to a specificity between 87.5% and 100%, i.e. a truly
DNT negative substances were almost always also judged as negative by the DNT IVB, and the standard
protocol seems to be robust against methodological changes in judging false-negatives. (ii) Sensitivity
(Fig. 9B): 23 of the 28 DNT substances (82.1 %) were successfully identified by the DNT IVB if the
standard protocol was used, but changes to it led always to a lower sensitivity. (iii) Accuracy (Fig. 9C):
The best performance was achieved for the standard protocol (88.6%), followed by a methodological
change to bootstrapping (86.4%), higher BMR levels (84.1%), mean replicates, control normalization,
pre-defined regression model (all 81.8%) and model averaging (77.3%). The latter performed 11.3%
below the accuracy value of the standard protocol. A detailed overview over the hit definition of all

control compounds is given in supplementary segment 2.1 (Tab. S5-57).
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Figure 9: Evaluation of the predictive performance of the DNT IVB based on the standard data evaluation protocol and
changes Bar graphs show the results of the predictive capability of the DNT IVB for 28 substances of known DNT and 17
negative control substances in terms of specificity, sensitivity and accuracy.
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4 Discussion

The basis for this biostatistical study is a compound screening project performed on behalf of an EFSA
procurement during the years 2017-2020 (OC/EFSA/PRAS/2017/01). Twelve DNT test methods with
accompanying cytotoxicity and viability assays belonging to an OECD DNT IVB (Crofton and Mundy,
2021) were challenged with 124 compounds from different compound classes including expected
negative control compounds (Masjosthusmann et al. 2020). This paper is not about informing on the
compounds’ effects on specific neurodevelopmental key events, which can be found elsewhere
(Masjosthusmann et al. 2020; Blum et al. in revision), but rather analyzes the impact of common
biostatistical concentration-response methods on the overall DNT IVB performance. As in vitro
methods have been gaining complexity over the last decade, i.e. from simple reporter gene assays
towards organotypic cultures, we tested the hypothesis if the selection of a biostatistical method can
affect the performance of the DNT IVB. Specifically in the field of developmental toxicity, where in vitro
test systems can nowadays assess biologically more complex systems, like changes in key
developmental processes over time, such an evaluation seems timely. Hence, a comparative
assessment of different biostatistical methods on the BMC estimation, DNT hit classification and DNT

IVB performance was performed.

4.1 Experimental mean or median replicate

Instead of the individual experimental readouts, we used always their “average” response per test
concentration and experiment (replicate average) as statistical unit in the concentration-response
regression analysis. Our main argument for this data reduction was that the BMC and BLL estimation
should reflect mainly biological and between-study variability, with the advantage that less complex
statistical methods are required, which is a crucial requirement for the robustness of an automatic
data evaluation pipeline. An “average” of the replicate responses can be estimated in various ways,
with the arithmetic mean calculation the most popular and statistically often best option if the
response data follow the rules of a symmetric distribution. However, the presence of an outlier can
violate this assumption, and as a consequence it can lead to a biased estimation of an average that
does not represent the observed data correctly. To protect the mean against an outlier would not only
require outlier detection methods, which are per se problematic for small sample sizes, but also a
decision on how to handle these values in further data analyses (e.g., removing, winsorization,
trimming). A common alternative to the mean is the median which is more robust against outliers, but
also known to be a more uncertain estimate for an average (Maindonald and Brown, 2010). As assay
endpoints of the DNT IVB can produce a relatively high data variability within an experiment, we ruled
out outlier detection methods and considered the median of the replicate responses as default option

for the standard protocol.
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Our study shows that the alternative of using the arithmetic mean led in average only to minor changes
in BMC estimations and hazard classification outcomes, which might refer to those data sets where
either no outliers were present or outliers occurred at concentrations with only little influence on the
regression analysis. Nevertheless, for a few data sets a decision towards the median or mean had a
strong influence on the best-fit regression analysis such that, at worst case, the subsequent BMC
estimation was prevented (“BMRnr”). Although the choice of the average replicate calculation had in
comparison to other methodological protocol changes only a minor impact on the hazard classification,
it still lowered all performance parameters (specificity, sensitivity, accuracy) that we used to assess the
DNT IVB’s predictive power for identifying DNT adversity. Altogether, our study outcomes strengthen

the argument for using the median.

4.2 Data normalization to control and re-normalization

Typically, readouts from in vitro endpoints can substantially vary between experiments and thus
require a normalization to make them comparable across experiments. The classical approach is to
“anchor” all values to the average response of a negative control (and, depending on the assay
endpoint, positive control). The expectation is that an exposure concentration with no impact on the
assay endpoint will produce readouts similar to those from the control reference, which in the
concentration response context means that a regression curve is expected to “equal” the control
responses at zero and non-effective low exposure concentrations. This expectation does not always
hold true in experimental practice, and readouts from concentrations that are expected to show no
exposure activity (on basis of mechanistic reasoning or the entire data pattern) can differ from the
readouts of the control reference. Although a random explanation is theoretically possible, e.g., the
control readouts were not representative and only rare “unlucky” outcomes, the confirmation by
independent experiments points to a non-random cause. However, the reasons for this phenomenon
are usually unclear, with biological effects and technical issues discussed (Krebs et al., 2018). If ignored,
a control normalization can not only suggest false treatment-related effects at non-effective
concentration ranges, but also contradict the meaning of a comparable relative effect scale and
therefore invalidate a BMR: if non-effective concentrations produced normalized effect responses
which are more than 10% different from the negative controls, then a regression modelling cannot
establish a BMC10. To overcome the problem of misleading control data it has been suggested to
estimate the control reference directly from the responses of the test concentrations, assuming that
they can provide sufficient evidence for “non-exposure related endpoint activity”, which is often
translated as equal assay responses at the lowest test concentrations over a sufficient large
concentration range (Krebs et al.,, 2018). A refined control reference can then either be estimated

directly from these data responses or from response estimated by concentration-response regression
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analysis, and then be used to re-normalize the entire data set such that the refined control reference

is set to 100%.

The experimental design for the assays from the DNT IVB was chosen such that the lowest test
concentrations were expected to produce no treatment-related effect responses. For more than 90%
of all data sets the three lowest concentrations provided non-distinguishable effect responses, which
we deemed as sufficient for using the control re-normalization on all data, and it was implemented in
the automatic data evaluation pipeline as part of the standard protocol. This was mainly motivated by
the frequent occurrence of misleading negative control responses observed for some of the assay

endpoints.

On this background it is not very surprising that the choice of the normalization method not only led
to very different BMC estimations but often completely failed, as documented by the number of
BMRnr’s (Figure 5B): the intended BMR was not covered by control-normalized responses, and as
consequence the regression analysis suggested a best fit model that also did not cover the BMR and
therefore could not estimate a BMC. However, a re-normalization of the effect scale guaranteed
coverage of the BMR, and accordingly the regression modelling was able to establish a BMC. Figure 7B
provides another example for a gross data misinterpretation: normalized effect responses suggest a
BMC for inhibition, re-normalized effect data a BMC for induction. Although the majority of data sets
did not necessarily require a control-renormalization, a change to the standard control normalization
still changed the hit category for approx. 5% of all endpoint-specific DNT hazard classifications (Figure

8D), and impacted all performance parameters about the DNT IVB’s predictivity negatively (Figure 9).

A re-normalization should only be applied if sufficient data evidence is provided to do it, otherwise an
existing exposure effect can be judged wrongly as technical or biological artifact and misused as zero
effect response in the statistical concentration-response analysis. This decision making is only difficult
to resolve in an automatized HTS data evaluation and we cannot fully rule out that a re-normalization
was wrongly used for some data sets. Therefore, we recommend for the future a list of criteria such
that those data scenarios can be identified and flagged for an expert decision. Potential criteria for
assuring a successful data re-normalization could be a certain minimum magnitude between the
original and re-defined control references based on statistical reasoning, a minimum number of test
low concentrations for which the effect responses provide no indications for a positive or negative
trend and a minimum concentration range at which no effect can be judged. In case a control
normalization can neither be judged by an automatic ruling system nor by an expert we suggest as last

solution a repetition of the experiment at lower test concentrations.
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4.3 Concentration-response regression model

A BMC is derived from a mathematical function which is fitted as parametric regression model to the
experimental concentration-response data. As no unique mechanistic model exists that would allow a
100% accurate representation of every possible shape of a concentration-response pattern, a
regression model is considered as empirical and judged as suitable only if it describes the data in the
best possible way. Each model is characterized by a limited number of model parameters which
provide the flexibility to fit the model as close as possible to the data: the more model parameters are
considered the better the model will describe the data, and the more complex the observed data
pattern is (e.g. non-monotony) the more model parameters are required to describe the data.
However, the more model parameters are considered the more data evidence are required to support
a reliable regression fit. If a model with too many parameters is chosen that is not supported by a
sufficient amount of data (over-parametrization), the estimation method will result into overinflated
model estimates and therefore in an unreliable BMC estimate with an extremely large CI (high
difference between BLL and BUL). In the concentration-response plot, the latter is usually indicated by
a huge “uneven” confidence belt around the regression fit with extreme peaks at concentrations at
with the highest nonlinearity of the concentration-response pattern occurred. Moreover, two different
models might describe the concentration-response data similarly well with identical BMC estimates,
but the model with the lower number of model parameters will result into smaller confidence interval
around the BMC (and which might therefore influence the hazard classification). Generally, the model
with the lowest number of parameters is favored over a more complex model as long as it can describe
the data almost as accurate as the more complex model (parsimony). The accuracy vs. parsimony

trade-off is utilized by the AIC criterion in the model selection process of the best-fit method.

Data and the experimental design decide on which model can be chosen for a BMC estimation, and
the minimal data requirements can be assigned directly to the model parameters: each parameter
requires a specific data support from effect responses of at least one concentration, i.e. a model with
five parameters would require five concentrations with effect responses that are specifically
addressing the nature of the parameter. For instance, the model parameter describing the upper
control asymptote (d in Table $3) requires that at least one concentration has produced responses that
can be used as average control reference, the parameter describing the lower maximal asymptote (d
in Table S3) requires that at least one concentration has produced responses that can be used as
average control reference, and all other model parameters require data support from concentrations
that neither have produced maximal or minimal responses. If these data requirements are not given,
a BMC estimation should be considered always as unreliable from a strict statistical point of view. For
example, the data example C in Figure 7 provides no effect responses between the minimal and

maximal asymptote, and therefore a priori no regression model can be fitted to the data on sound
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statistical criteria. Nevertheless, the LL4 model (blue line) provides an BMC estimation including an
95% confidence belt which, in this case, appears to be well in line with the experimental data, and can
be considered as sufficiently accurate for regulatory purposes as all three independent experiments

produced nearly identical data outcomes.

A concentration-response function commonly used in pharmacology and toxicology is the Hill function,
which is a reparametrized form of the 3-parameter log-logistic function (LL3, but without the logl0
transformation of the concentration, Table S2). We chose this function as pre-defined model in
comparison to the best-fit model approach since it a popular approach for regression of strict
monotonic concentration-response patterns in comparable software (tcpl, Filer et al. 2016), and since
it is also recommended by the OECD for continuous data (EFSA Scientific Committee, 2017). In line
with theoretical expectations and previously reported simulation studies (Zhu et al., 2007; West et al.,
2012; Piegorsch et al., 2013), the best-fit model approach responded more flexible to data sets and
therefore resulted often to BMC estimations that differed significantly from those derived by the Hill
model (Figure 5C). As a consequence, the sole application of the Hill model occasionally prevented the
estimation of a BMC and its uncertainty, and therefore led to less data sets for which a hazard
identification could be performed. This strongly suggests the use of several regression models in a
best-fit approach, including functions with maximal two model parameters for “data-poor” sets and

more complex functions for “data rich” scenarios.

Model averaging is historically motivated by the typically small number of doses in animal studies that
can provide meaningful data for the regression modeling, and the subsequent problem that different
regression models can describe the observed dose-response data equally well but interpolation in a
dose region with little or no data may result into very different response (and BMD) estimates (EFSA,
2017). A statistical argument in favor of model averaging is that uncertainty of the model selection
process of the best fitting method is not incorporated in the BMD and associated BMDL estimation
(West et al., 2012). Our study shows no big differences between both methods, and we attribute the
higher number of failed BMC estimates for model averaging (Figure 5D) due to the fact that the models
with the lowest number of model parameters were not included in the pool of candidate models for
model averaging: the 2-parameter exponential model (Table S2) was selected as best-fit model in
approx. 33% of all model decisions (standard protocol), indicating that the data sets did not allow the
selection of a more complex model with 3 model parameters, and as consequence model averaging
did fail. It demonstrates that simple regression models are essential for “poor data” scenarios, i.e.,
data sets where maximally two concentrations responded with significant but often weak assay

responses.
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4.4 Uncertainty estimation of the BMC

Not only the BMC estimation is crucial for the hazard classification but also a correct derivation of its
uncertainty, usually expressed as lower and upper confidence interval (Cl). We have used various
statistical methods which are implemented in the drc and bmd R package (delta approximation, inverse
regression, resampling methods), and investigated how they can impact the hazard classification. It
should be noted that these methods do not change the BMC estimation but try to calculate the
uncertainty of the BMC estimation from the estimated regression model and experimental data. All
methods have their pros and cons with different requirements to the data and regression models, and
none of them can a priori be ruled out as inappropriate for the BMC estimation of a DNT IVB data set.
Assuming that the correct regression model was chosen and the estimation method led to only one
reliable BMC estimation, we used the inverse regression as Cl reference for a best-fit model estimated
BMC, and compared it to the ones derived from the delta method and parametric bootstrapping. The
advantage of the inverse regression method is that the confidence of a regression curve can easily be
assessed by a non-statistician by showing the concentration-response data together with the

regression fit and its associated confidence interval in a common plot.

As shown in Figure 6H, different C| methods often resulted in largely different outcomes, with a
moderate impact on the hazard classification (Figure 8D) and corresponding DNT IVB performance
parameters (Figure 9). The delta method provides a means to estimate the approximate variance and
Cl of a model function when the function consists of one or more estimated model parameters, and
where there is an estimate for the variance of each model parameter, with both derived from the
successful fit estimation. The method implemented in the drc package (Ritz et al., 2015) is based on a
first order approximation for the variance of the BMC, and thus expected to be accurate only for
concentration-response pattern that show a minor non-linearity (Zhu, Wang and Jelsovsky, 2007;
Moerbeek, Piersma and Slob, 2004). Higher order approximations of the delta method would be
progressively more flexible and provide a better description of the BMC uncertainty but are currently
not implemented. Therefore, it is not surprising that the delta approximation often failed with an
unreliable Cl spanning the entire range of test concentrations (Figure 7D), especially for the 2-
parameter exponential function with a concentration term that is not log10-transformed. Based on

the study outcome we deem this method as unfit for an automatic HTS data evaluation.

Whereat the delta method is entirely based on the outcomes from the regression fit and therefore
provides a quick and easy way to calculate the IC for a BMC, resampling methods use only the
regression model(s) and BMC estimation and develop the BMC uncertainty entirely from re-doing the
regression analysis and BMC derivations on a huge number of concentration response data resampled

from the original experimental data sets. This method puts strong emphasis on a “representative” data
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set for the resampling, and if violated, it is prone to biased interval estimations (i.e. mode of the
resampled BMC distribution differs from the original BMC estimation) or, in worst-case, the
simulations lead to an interval that hardly mirrors the observed data variability. Typically for DNT IVB,
endpoints often produced responses with a relatively high between-study variability (documented in
the corresponding BMRs, Table 1), with only a small sample size for resampling (3-5 experimental
replicate medians), and with often only two or less test concentrations which provided significant
responses distinguishable from the controls. These data scenarios are not optimal for regression
resampling, and therefore it is not surprising that bootstrapping often resulted in very different, too
wide confidence belts compared to those from inverse regression, or even completely failed (Figure
7E). To some extent this might also explain the different outcomes for model averaging, which was

performed always in combination with bootstrapping.

Until generally applicable decision rules about the minimal data requirements for bootstrapping can
be implemented in an automatic data evaluation platform, itis only difficult for the non-expert to make
decisions about the usefulness of resampling for a particular data scenario. Therefore, our advice is
that the user should have some experience regarding statistical resampling, or, if applicable, use

inverse regression or related methods.

4.5 The choice of the BMR on the Hazard identification

The optimal choice of an endpoint-specific BMR level is always a comprise between “as close as
possible” to the control reference (i.e. a BMC estimation as low as possible) and the statistical demands
for providing a reliable BMC estimation for as many data sets as possible. In principle, each data set
has its own optimal BMR, mainly defined by its between-experimental data variability and how well it
cah support the regression analysis. A BMR which guarantees a BMC for all future data sets would need
to be chosen from the data set with the largest observed between-experimental data variability, and
by this a relatively large BMR would be favored, with response levels around 50% for some of the assay
endpoints (i.e. a BMC would equal an EC50 or IC50). However, a larger BMR leads to a higher BMC,
and the consequence for all data sets which a much lower data variability is that their substance
responses observed at concentration ranges below the BMC are ignored, and therefore contradict the
intended regulatory meaning of a benchmark concentration. But more important, it would also rule
out those data sets for a BMC estimation where the observed maximal responses are below the BMR
(and thus a BMC cannot be established). The latter was decisive for ruling out many sets for a BMC
estimation after we increased the BMRs by 20% in our standard protocol (e.g., changing BMC30 to
BMC50, Figure 5E), and as consequence our simulations resulted into 5% different hazard

classifications, with a change mainly from “hit” to “no hit” (Figure 8D). Therefore, the use of the most
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common descriptor for concentration response data in pharmacology and in vitro toxicology, an IC50

or EC50, cannot be recommend as surrogate for a BMC for endpoints of the DNT IVB.

A critical aspect is how a BMR can be derived: we used the 1.5 sigma rule, with sigma estimated as
standard deviation from the between-experimental variation from a large set of historical data sets
(Masjosthusmann et al., 2020). For a sample size of 3-5 independent experiments, we expected for the
majority of data sets the estimation of a BMC if a true BMC was present in the data, but nevertheless
our standard protocol might have failed to identify a hazard because the BMR was selected as too low
for a particular data set. Our study outcomes do not provide the exact number how often this might
have happened as it would require for each individual data set a statistical power analysis and
corresponding estimation of the detection limit, however, assuming that the scatter between the
experimental replicate medians always followed the Gaussian distribution we expect this to be the

case in less than 1% of all cases.

4.6 Hazard identification and software

A huge number of free software packages for the statistical analysis of dose-response data and dose-
response modelling are available, with PROAST (RIVM National Institute for Public Health and the
Environment), BMDS (US EPA), ToxCast pipeline (tcpl, Filer et al. 2017) or BMCeasy (Krebs et al., 2019)
just to mention a few. Similar to the R packages we use (drc and bmd, Ritz et al., 2015 and Jensen et
al., 2020), most of these software packages provide a variety of options in order to respond as flexible
as possible to the various data scenarios a user can possibly face, and as consequence, always a
minimum of statistical knowledge is demanded from the user. Similar to the tcpl pipeline we became
interested in an automated data evaluation platform with no required user intervention and
addressing the specific features of DNT data or other data from organotypic cultures. To our
experience, the proposed standard protocol is for an automated data evaluation pipeline the best
compromise between the various statistical methods without “overcomplicating” the regression
analysis and the corresponding BMC estimation. The drawback of an automated analysis is always the
danger of not being prepared to deal with an unusual data set, a scenario that most likely can only be
avoided by analysing each data set individually by an expert. The strength of our data evaluation
platform is the integration of endpoint-specific hazard classifications, including flagging systems for
uncertain cases, which none of the software packages mentioned above offer. We consider it crucial

for the hazard assessment to differentiate between general cell toxicity and specific DNT hits.
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4.7 Conclusion
The comparative study between various statistical methods involved in the estimation of a BMC and
its associated uncertainty for a huge number of concentration response data sets from the DNT IVB

revealed the following main conclusions:

1) The normalization of effect data to the outcomes of test concentrations can be a viable option to
safeguard against an ill-defined negative control reference and therefore avoid a biased BMC
estimation and incorrect hazard alerts. This re-normalization of response data should be done
whenever sufficient data evidence is provided for non-exposure related effect responses at lowest
concentrations and which have been confirmed by independent experiments. Optimally it should be
decided on a case-by-case basis by the experimenter, and more efforts are required to integrate

decisions for a re-normalization in automatic data evaluation routines.

2) The pool of candidate models for the parametric regression analysis should include as simple as
possible mathematical functions in order to enable a BMC estimation for data sets which provide only
little data support for the regression modelling. This can be either the exponential or linear function,

with both including maximally only two model parameters.

3) Simple common statistical methods such as the delta method do not necessarily guarantee a reliable
estimation about the uncertainty of a BMC confidence and depend strongly on the chosen regression
model and its non-linearity close to the BMR. In contrast, more sophisticated methods such as
resampling require more data support which is often not given by the experiments. Invers regression

provided the best way to judge a BMC uncertainty.

4) Data sets with only two or less effective concentrations are often borderline to a reliable statistical
analysis, but nevertheless provide sufficient data for a “pragmatic” solution. The BMC for the specific
DNT endpoints of these data sets is usually at high concentrations and within (or close) to the cytotoxic

concentration ranges, and thus are most likely not too be classified as “specific hit”.

5) The BMR level should be chosen as close as possible to the control level without compromising the
statistical concentration-response analysis. Setting it too high (e.g. 50%) involves the danger of

overlooking hazard responses which can lead to erroneous hazard hit classifications.

6) An endpoint-driven hazard classification method is essential for a reliable identification of hazard
alerts, and DNT-specific endpoints should always take general cell health into account. The
automatized data evaluation should include a decision making that pinpoint to data scenarios which

require a manual expert judgment for the hazard classification.
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Although this study was conducted on concentration response data from only the DNT IVB, we think
many of the conclusions can be generalized to data from other specific toxicological endpoints,
especially in the rising field of organotypic/stem cell-based cultures. It demonstrates that statistical
decisions which seem to be of minor importance can become decisive if it comes to the hazard
classification of a test substance. It also demonstrates how important fit-for-purpose, internationally
harmonized and accepted data evaluation and analysis procedures are for an objective hazard

classification.
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Impact of biostatistical data evaluation methods on hazard

characterization using the neurosphere model as case study

Supplementary Data
1 Supplementary material and methods

1.1 Pre-processing of endpoints

Table S1: Pre-processing of endpoints
Pre-processed endpoints (left) are calculated with raw endpoints (right).

Pre-processed endpoint Formular (raw endpoints)

number of neurons

neuronal differentiation [120h] T

number of oligodendrocytes

oligodendrocyte differentiation [120h] T
numbper of all cells

migration distance of neurons

migration distance neurons [120h] tiaration distiee ofall colls

migration distance of oligodendrocytes
migration distance of all cells

migration distance oligodendrocytes [120h)]

number of selected objects

bR number of valid objects

number of selected objects
number of valid objects

Viability UKN5

1.2 Regression models

Table S2 shows all parametric regression functions that defined the pool of candidate models for the
best fit method. All models were applied by the drm function of the drc package with all key parameters
(in the following written in cursive) set as follows: formular was given by a list of averaged replicate
values and corresponding dose values, type was set to “continuous” for continuous data regression,
robust was set to “mean” for least-square-estimation of continuous data, fct was set to one of the

regression models listed in the drc syntax column of Table S2.
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Table 52: Regression models

Model? drc syntax Model equation”
I logisti logistic2() () =c+ -
general logistic ogistic fx)=c T S E0a 0 —TE
3 log-logisti LL3 (x) =0+ =1
-parameter log-logistic 3() flx) = it exp(b(log(x) — log(e)))
log-logisti ) =c+ —
4-parameter log-logistic LL.4() flx)=c¢ e exp(b(log(x) — log(e)))
2-parameter exponential EXD.2() f(x) =04 (d—0)(exp (—g))
3-parameter exponential EXD.3() fx)=c+(d—c)(exp (—g))
3-parameter Weibull wil.3() f(x) =0+ (d— O)exp(—exp(b(log(x) - e)))
4-parameter Weibull wl.4() f(x) = ¢+ (d — 0)exp(—exp(b(log(x) — €)))

Y The parameters b, ¢, d, e of the model equations are estimated by concentration-response analysis:
d is always estimated as model asymptote for the negative control response, ¢ describing maximal

responses at high concentrations (lower model asymptote), ¢ and e provide flexibility in describing the

location and steepness of the concentration-response pattern.

2 Model name and abbreviation from Analysis of Dose-Response Curves (Ritz et al. 2016).
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1.3 Classification model

Table S3: Specific, unspecific and viability-related endpoint correlations for the classification model

Specific endpoints are shown with their affiliated unspecific and viability-related endpoints. To gain DNT specific
classifications, DNT specific endpoints are compared to either one or two unspecific endpoints (measuring
general cell health). If an effect was detected in one of the affiliated viability-related endpoints, only cytotoxicity

endpoints were used as reference.

Specific Endpoint

Unspecific Endpoint 1

Unspecific Endpoint 2

Viability-related
Endpoint 1

Viability-related
Endpoint 2

migration distance radial glia

cytotoxicity (migration) [72h]

[72h]
T s = viability cytotoxicity R 3 W o
migration d[litlaon’::]e radalglld (migration+differentiation) (migration+differentiation) migration dfitzzn;e raclalglia cell number [120h]
[120h] [120h]
viability cytotoxicity y . ” s g
cell number [120h] (migration+differentiation) (migration+differentiation) miggation df;;;‘c]e radial glia cell number [120h]
[120h] [120h]

proliferation by BrdU [72h]

viability (proliferation) [72h]

cytotoxicity (proliferation)
[72h]

proliferation by area [72h]

viability (proliferation) [72h]

cytotoxicity (proliferation)

[72h)
X viability cytotoxicity . 2 & "
| tiat tion dist: dial gl
neuronal differentiation (migration+differentiation) (migration+differentiation) S RO e RISl cell number [120h]
[120h] [120h]
[120h] [120h]
) viability cytotoxicity 5 , i
. ohgud_en_drocvte (migration+differentiation) (migration+differentiation) flgration;clsteree)radialglia cell number [120h]
differentiation [120h] [120h] (120h] [120h]
N n viability cytotoxicity e e
migration ?f;;:]ce neurons (migration+differentiation) (migration+differentiation) migration d[t:sl;aonhc]e radialglia cell number [120h]
[120h] [120h]
. viability cytotoxicity . . ’ "
7 gEEtion distaice (migration+differentiation) (migration+differentiation) Pigration distafice Tadial glia cell number [120h]
oligodendrocytes [120h] [120h] (120h] [120h]
viability cytotoxicity z : 5 i <
neurite length [120h] (migration+differentiation) (migration+differentiation) migration d[s:tza(;«‘:]e radial glia cell number [120h]
[120h] [120h]
viability cytotoxicity 3 . " . .
neurite area [120h] (migration+differentiation) (migration+differentiation) Tt df;tzznae radial glia cell number [120h]
[120h] [120h]

Migration UKN2 [24h]

Viability UKN2 [24h]

Neurite Area UKN4 [24h]

Viability UKN4 [24h]

Neurite Area UKNS [24h]

Viability UKNS5 [24h]
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Table S4: Alerts used to flag classification data for manual evaluation
During endpoint classification, the data is checked for uncertainties and an alert is produced, if the resulting
classification has high uncertainty. The according alerts (left) with reasoning (right) are shown.

Alert Explanation
BMCU above If the upper confidence limit of the BMC is above the tested concentration range, it has a
concentration testrange high uncertainty and automated classification cannot be made.
A high Cl width indicates uncertainty in the BMC estimation and should therefore be
high CI width checked for the final classification. A Cl width was considered as high, if BMCU/BMCL >

(BMC*5)/(BMC/5).
Statistical significance could not be calculated (likely due to sample size of n<=2), but is
needed for classification.
Algorithmic failure did not allow the calculations of the BMC upper or lower limit.
Therefore, no automated classification can be made.

no data for significance

Issues with predict Cl

no data Necessary data for the classification was missing.

2 Supplementary results

2.1 Assay performance of all control compounds

To assess how changes in the data evaluation protocol might impact the evaluation of the DNT IVB’s
predictivity, 28 reference chemicals of known DNT and 17 negative control chemicals were selected
(Masjosthusmann et al. 2020), with all 45 substances tested in the DNT IVB. A negative compound was
considered as true negative (abbreviated as “TN” in the table below) if it was not classified as specific
hit or borderline in any of the assays. Else, it was considered as false positive (FP). A positive compound
was considered as true positive (TP), if it was classified as specific hit or borderline in at least one assay.
Else, it was considered as false negative (FN).

Table S5: Assay performance for negative controls

Negative controls (n=17) used to determine the specificity of different protocols. Negative control compounds
are listed in the first column. Remaining columns represent the compound classifications for each protocol used

in this study. Specificity is given as true negative rate at bottom row and is calculated as the percentage of true
negatives (TN) from all negative controls.

N % | Standard Replicate Control- L Boot- Model BMR30+5
egative controls Protocl Mean Normalized H3rm strapping  Averaging 0
Amoxicillin TN TN TN TN TN TN TN
Aspirin TN TN FP TN TN FP TN
Buspirone TN TN TN TN TN TN TN
Chlorpheniramine maleate TN FP TN TN TN FP TN
D-Glucitol TN TN TN TN TN TN TN
D-Mannitol TN TN TN TN TN TN TN
Diethylene glycol TN TN TN TN TN TN TN
Doxylamine succinate TN TN TN TN TN TN TN
Famotidine TN TN TN TN TN TN TN
Ibuprofen TN TN TN TN TN TN TN
Metformin TN TN TN TN TN TN TN
Metoprolol TN TN TN TN TN TN TN
Penicillin VK TN TN TN TN TN TN TN
Saccharin TN TN TN TN TN TN TN
Sodium benzoate TN FP TN TN TN TN TN
Warfarin TN TN TN TN TN TN TN
Spebcity (e gallny. gy 87.5 93.8 1000  100.0 87.5 100.0
Rate in %)




Manuscripts

Table S6: Assay performance for human positive controls

Human positive controls (n=9) used to determine the sensitivity of different protocols. Human positive control
compounds are listed in the first column. Remaining columns represent the compound classifications for each
protocol used in this study. Sensitivity is given as true positive rate at bottom row and is calculated as the
percentage of true positives (TP) from all human positive controls.

Human positives Standard Replicate Control- S Boot- Model BMR30+5
p Protocol Mean Normalized strapping  Averaging 0
22 A TP TP TP TP TP TP TP
Tetrabromodiphenyl ether
Cadmium chloride P RliE TP TP TP TP TP
Chlorpyrifos TP TP FN TP TP TP, ‘TP
Dexamethasone TP TP TP TP TP TP TP
Hexachlorophene TP TP TP TP TP TP TP
Lead(ll) acetate trihydrate TP TP TP TP TP TP TP
Manganese(ll) chloride TP TP FN TP TP TP FN
Methylmercury(ll) chloride TP TP TP TP TP TP TP
PBDE 99 TP TP TP TP FN FN TP
Sensltiuthy (o Eoste 100.0 100.0 77.8 100.0 88.9 88.9 88.9
Rate in %)

Table 57: Assay performance for in vivo positive controls

In vivo positive controls (n=19) used to determine the sensitivity of different protocols. In vivo positive control
compounds are listed in the first column. Remaining columns represent the compound classifications for each
protocol used in this study. Sensitivity is given as true positive rate at bottom row and is calculated as the
percentage of true positives (TP) from all /n vivo positive controls.

i e Standard Replicate Control- Boot- Model
In vivo positives Protocol Mean Normalized LR strapping Averaging S
(+-)-Ketamine hydrochloride FN FN FN FN FN FN FN
(-)-Nicotine FN FN FN FN FN FN FN
5,5-Diphenylhydantoin FN FN FN FN FN FN FN
Acrylamide TP TP TP TP TP TP TP
Chlorpromazine
hydrachlaride i TP TP e iE TP TP
Deltamethrin TP TP TP TP TP TP TP
Domoic acid FN FN FN FN FN FN FN
Haloperidol TP TP TP TP TP TP TP
Hept.ades:afluorocfctanesulfon o = - . e o -
ic acid potassium salt
Maneb TP FN TP TP 1 FN FN
Methylazoxymethanol P ™ T TP TP T TP
acetate
Paraquat dichloride hydrate TP TP TP TP TP TP TP
Perfluorooctanoic acid FN FN TP FN FN FN FN
Sodium valproate TP TP TP e TP TP TP
Tebuconazole TP TP TP FN TP TP TP
Tributyltin chloride TP TP TP TP TP TP TP
Trichlorfon TP TP TP FN TP TP TP
Triethyltin bromide TP TP FN FN TP FN TP
all-trans-Retinoic acid TP TP TP TP TR TP TP
SISV (Ti:‘;)" OHIDMEE gy 68.4 73.7 57.9 73.7 63.2 68.4
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Establishment of a human cell-based in vitro battery to assess developmental
neurotoxicity hazard of chemicals

Jonathan Blum, Stefan Masjosthusmann, Kristina Bartmann, Farina Bendt, Xenia Dolde, Arif Donmez, Nils
Forster, Anna-Katharina Holzer, Ulrike Hilbenthal, Hagen Eike KeBel, Sadiye Kilic, Jordis Klose, Melanie Pahl,

Lynn-Christin Stirzl, Iris Mangas, Andrea Terron, Kevin M. Crofton, Martin Scholze, Axel Mosig, Marcel Leist,
Ellen Fritsche

Die Entwicklungsneurotoxizitat (DNT) ist ein wesentliches Sicherheitsproblem fiir alle Chemikalien des
menschlichen Exposoms, doch DNT-Daten aus Tierstudien sind nur flir wenige dieser Substanzen
verfligbar. Daher werden dringend Testmethoden mit einem héheren Durchsatz als im Tierversuch
und einer besseren Relevanz flir den Menschen bendtigt. Wir untersuchten daher die Durchfiihrbarkeit
einer DNT-Gefahrdungsbeurteilung auf der Grundlage von sogenannten new approach methods
(NAM). Eine in vitro-Batterie (IVB) wurde aus einzelnen NAMs zusammengestellt, die in den letzten
Jahren entwickelt wurden, um die Auswirkung von Chemikalien auf verschiedene grundlegende
Prozesse der Gehirnentwicklung zu untersuchen. Fir alle Tests wurden menschliche neurale Zellen in
verschiedenen Entwicklungsstadien entweder in 2D, 3D oder sekunddarem 3D verwendet. Auf diese
Weise konnten Stérungen (i) der Proliferation neurale Vorlauferzellen (NPC), (ii) der Migration von
Neuralleistenzellen, radialen Gliazellen, Neuronen und Oligodendrozyten, (iii) der Differenzierung von
NPCs in Neuronen und Oligodendrozyten und (iv) des Neuritenwachstums peripherer und zentraler
Neuronen in Verbindung mit Messungen der Zytotoxizitat/Viabilitdt beurteilt werden. Die
Durchfiihrbarkeit eines konzentrationsabhangigen Screenings und einer zuverlassigen biostatistischen
Verarbeitung der komplexen multidimensionalen Daten wurde mit einer Reihe von 120
Testsubstanzen untersucht, die eine Auswahl von vordefiniert positiven und negativen DNT-
Substanzen enthielten. Die Batterie lieferte Hinweise (Hit oder Borderline) fiir 24 von 28 bekannten
DNTToxika (82% Sensitivitat), und die Spezifizitat lag bei >94%. Auf der Grundlage dieser Daten wurden
Strategien entwickelt, wie die Daten im Rahmen von Risikobewertungsszenarien unter Verwendung

integrierter Ansatze fiir die Priifung und Bewertung verwendet werden kénnen.
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processes. All assays used human neural cells at different developmental stages. This allowed us to assess dis-

DNT turbances of: (i) proliferation of neural progenitor cells (NPC); (ii) migration of neural crest cells, radial glia cells,
neurons and oligodendrocytes; (iii) differentiation of NPC into neurons and oligodendrocytes; and (iv) neurite
outgrowth of peripheral and central neurons. In parallel, eytotoxicity measures were obtained. The feasibility of
concentration-dependent screening and of a reliable biostatistical processing of the complex multi-dimensional
data was explored with a set of 120 test compounds, containing subsets of pre-defined positive and negative
DNT compounds. The battery provided alerts (hit or borderline) for 24 of 28 known toxicants (82% sensitivity),
and for none of the 17 negative controls. Based on the results from this screen project, strategies were developed
on how IVB data may be used in the context of risk assessment scenarios employing integrated approaches for

testing and assessment (IATA).

1. Introduction

Screening of chemicals for a potential neurodevelopmental toxicity
(DNT) hazard has been recognized as a pressing need by several large
governmental and international organizations concerned with consumer
safety. For instance, the US EPA and the European JRC took important
roles in the organisation of a conference series (TestSmart) that was
devoted to the development of a DNT test strategy useful in a regulatory
context (Coecke et al.,, 2007; Lein et al., 2007; Crofton et al., 2011;
Bal-Price et al., 2012). Also EFSA and the OECD embarked on similar
efforts (Fritsche et al., 2017). In this context, several experimental
programs were launched to probe novel approaches and to accelerate
their implementation (Crofton et al., 2012; van Thriel et al., 2012; Krug
et al., 2013b; Bal-Price et al., 2015; Baumann et al., 2016; Fritsche et al.,
2018; Haurill et al., 2018; Behl et al., 2019; Lupu et al., 2020; Pistollato
et al., 2021; Sachana et al., 2021; Vinken et al., 2021; Koch et al., 2022).

DNT is a field of toxicology concerned with effects of chemicals on
the developing nervous system. Several experimental and epidemio-
logical studies (on metals, pesticides and drugs) link compound expo-
sure during early live phases (of the embryo, fetus or child) to functional
alterations of the nervous system in adolescents or adults (Grandjean
and Landrigan, 2014; Smirnova et al., 2014; Bennett et al., 2016). A
particular concern is the possible role of DNT in the increased frequency
of neurodevelopmental disorders, such as autism-spectrum disorders
(Grandjean and Landrigan, 2006, 2014; Bellinger, 2012; Modafferi
et al., 2021). The assessment is particularly challenging due to the
multitude of potential toxicity manifestations (structural and func-
tional). Moreover, there may be a time offset between toxicant exposure
(before or after birth) and manifestation of effects (Grandjean et al.,
2019).

The traditional methods to evaluate DNT hazard potential are based
on animal studies following the OECD (OECD, 2007) or U.S. EPA
(USEPA, 1998) test guidelines. To date only about 180 compounds
world-wide have been tested using these guidelines (Crofton and
Mundy, 2021). Several factors contribute to the limited availability of
such studies: extensive time (e.g. 1-2 years) and resource requirement;
limited triggered testing by chemical alerts; the need to reduce animal
use; and the limited regulatory requirement for DNT testing as compared
to some other test guidelines (e.g., carcinogenicity). The data available
suffer from many uncertainties, and they require species extrapolation
from rodents to humans. Moreover, they provide limited information on
toxicity mechanisms. This can make them difficult to use in human risk
assessments (Makris et al.,, 2009; Tsuji and Crofton, 2012; Tohyama,
2016; Paparella et al., 2020).

The strategic concepts of next generation risk assessment and of
“toxicology for the 21st century” (Leist et al., 2008; Thomas et al., 2018;
Pallocea et al., 2022a) suggest reductions in use of animal studies and
development of new approach methods (NAMs) for toxicity assessment.
The non-animal test methods should ideally be based on human-relevant
test systems, reduce costs, allow a high throughput of test chemicals, and
provide information on the toxicity mechanisms of toxicants. Many
recent activities on scientific and regulatory levels have been under-
taken to apply this strategy to the field of DNT (Sachana et al., 2019).

The establishment of DNT NAMs followed two major principles

(Bal-Price et al., 2015; Aschner et al., 2017). First, a concept was
developed on how complex in vivo events and their disturbances could
be modeled by simplified in vitro systems. It was found that the bio-
logical process of nervous system development can be broken down to
less complex key neurodevelopmental processes (KNDP). Moreover, it
was assumed that the disturbance of any KNDP may lead to DNT in
humans. On this basis, NAMs were developed for most of the crucial
KNDP. The second principle was that the performance and robustness of
the NAMs should be at a high level, so that data could be used with high
confidence. The concept of test readiness was developed to provide a
measure of the NAM validation status (Bal-Price et al., 2018; Krebs et al.,
2019, 2020b), and several assays were deemed ready and suitable for
use in chemical screening. They include: proliferation, migration and
differentiation assays based on neurospheres (NPC1-5 test methods); the
neurite growth assays NeuriTox and PeriTox; the neural crest migration
assay (cMINC); and an assays for neural network formation and syn-
aptogenesis (Masjosthusmann et al., 2020; Crofton and Mundy, 2021;
Carstens et al., 2022). Instead of a formal OECD-type validation (e.g.
skin sensitization NAMs (OECD, 2021; Strickland et al.,, 2022)), the
concept of a fit-for-purpose biological validation based on regulatory
needs has been suggested (Leist et al., 2012; Hartung et al., 2013; Judson
et al., 2013; Cote et al., 2016; Griesinger et al., 2016; Bal-Price et al.,
2018; Andersen et al., 2019; Masjosthusmann et al., 2020). Its applica-
tion to DNT NAM involved: understanding of all technologies related to
test systems and endpoint assessment; a comparison of pivotal in vitro
signaling pathways to those relevant in vivo; and an assessment of the
cellular presence of toxicity targets known to play a role for human DNT
(Aschner et al., 2017; Bal-Price et al., 2018; Koch et al., 2022).

No individual NAM covers all key aspects of neurodevelopmental
biology. Thus no single test will detect effects on all KNDP. Therefore, a
battery of assays is needed, to sufficiently cover all DNT toxicants. In
2016, participants of a meeting jointly organized by the European Food
Safety Autority (EFSA) and the organisation for Economic Co-operation
and Development (OECD) agreed that “an in vitro testing battery (based
on available DNT NAM) could be used immediately to screen and pri-
oritize chemicals” (Fritsche et al., 2017). A test run for such a battery
was planned, in order to evaluate the technical feasibility, to identify
potential gaps and to provide data and experience for setting up a draft
guidance on how to run battery testing, and how to interpret data
therefrom (Crofton and Mundy, 2021). The purpose of this manuscript is
to describe the first test run of a DNT in vitro test battery based on
methods available in European laboratories (IVB-EU). Extensive raw
data and method documentations can be found in a report by EFSA
(Masjosthusmann et al., 2020), and the experience and learnings from
the IVB-EU have led to the preparation of the draft of an OECD guidance
document, which is currently (July 2022) under revision in member
countries (Crofton and Mundy, 2021). However, the data from 10 assays
on 120 compounds (including 28 positive and 17 negative controls)
have not been made available to academia and the interested public in a
peer-reviewed publication. The same applies to the preliminary per-
formance evaluation of the IVB-EU as a whole and the considerations
concerning further use. The purpose of this manuscript is to make this
important information available, and to provide a basis for further de-
velopments in academia, industty and by regulatory institutions
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concerned with NAM-based DNT testing.
2. Materials and methods

2.1. Chemicals

A list of screen compounds (n = 120) was assembled by a working
group, using the member’s experience as members/employees at the US
EPA, EFSA or in OECD working groups. Compounds were selected to be
chemically and biologically somewhat diverse and to reflect groups of
compounds with concern for a potential DNT hazard. For instance, flame
retardants and pesticides were included, as some compounds in these
groups are known for biological properties of relevance to DNT. One
aspect of the selection process was also to allow for diversity of effects on
different fundamental neurodevelopmental processes (and respective
assays), and it was important to cover the full spectrum from compounds
with no or low evidence for DNT liability to compounds with rich
background data to allow for a wide spread of screen results. A subset of
compounds (n = 28) were included as positive controls for DNT hazard,
based on human data or robust animal data (Grandjean and Landrigan,
2006, 2014; Mundy et al., 2015; Ryan et al., 2016; Aschner et al., 2017)
(Fig. S1). Another subset (n = 17) were compounds considered as
negative controls. They were selected for their safe use during human
pregnancy or because the available extensive data on their toxicity gave
no evidence (by observation or mechanism) of any effects related to DNT
(at the test concentrations used) (Fig. S2). A description of chemicals,
including exact chemical identity and suppliers is found in the suppl. file
2 - sheet 1.

2.2. Test methods

All test methods used for screening were selected based on their high
readiness level (Bal-Price et al., 2018), as well as a very comprehensive
test description compatible with the OECD Guidance Document GD211
for in vitro test method descriptions. These ToxTemp files ([{rebs et al.,
2019) are included in suppl. file 1. Below, only brief descriptions are
given for a quick overview. Notably, most assays had at least two end-
points, and some assays were run in more than one version, e.g. mea-
surement after 72 and 120 h.

UKN2 Assay (cMINC): The assay, is based on neural crest cells
differentiated from hiPSC (Nvffeler et al., 2017). Cells were seeded into
96-well plates around a stopper. The stopper was removed after 24 h to
allow migration into the cell free area. Cells were exposed to the test
compound for 24 h, and then stained with calcein-AM and Hoechst
H-33342. The number of migrated double positive cells was quantified
independent of an observer by high content imaging and image analysis
(RingAssay software; http://invitro-tox.uni-konstanz.de). The cell
viability was also determined by an automated imaging algorithm.
Concentration-response curves from this test were based on six test
compound concentrations (plus solvent control).

UKN4 assay (NeuriTox): The assay is based on LUHMES cells that
were cultured and handled as previously described (Lotharius et al.,
2005; Scholz et al., 2011; Krug et al., 2013a). It assesses neurite
outgrowth in central nervous system neurons (Delp et al., 2018). Cells
were pre-differentiated for two days to commit them towards the
neuronal fate. They were then re-seeded in 96-well plates and exposed to
the chemical for 24 h. Viability and neurite area were determined by
high-content imaging after staining with calcein-AM and H-33342. The
neurite area was defined by a fully automated algorithm as the area of
calcein-positive pixels minus the area of all cell soma (Stiegler et al.,
2011). Concentration-response curves from this test were based on ten
test compound concentrations (plus solvent control).

UKNS5 Assay (PeriTox): The assay is based on immature sensory
neurons differentiated from hiPSC as previously described (Hoelting
etal., 2016; Holzer et al., 2022). The test measures neurite outgrowth in
peripheral neurons. Frozen lots of peripheral neuron precursors were
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thawed and seeded into 96-well plates. After 1 h, the cells were exposed
to test chemicals for 24 h. Testing and endpoint measurements were
exactly as for the UKN4 assay (despite 6 instead of 10 compound con-
centrations tested).

NPC1-5 Assays: The neurosphere assays (NPC1-5) are based on pri-
mary human neural progenitor cells (hNPCs; gestational week 16-19),
that are grown as floating 3D neurospheres. Their growth and viability is
assessed in the 3D neurospheres (NPC1). Alternatively, spheres can be
plated onto a laminin-coated matrix, where the cells start migration and
differentiation to form a secondary 3D co-culture. The latter approach
allows the simultaneous assessment of radial glia migration (NPC2a),
neuronal differentiation (NPC3), neuronal migration (NPC2b) and
neurite outgrowth (NPC4) as well as oligodendrocyte differentiation
(NPC5) and their migration (NPC2c) by fully automated high content
imaging. Data were obtained and analyzed from recorded microscope
images by a dedicated image processing software, trained on positive
and negative control images, as described earlier in detail (Forster et al,,
2022; Koch et al., 2022).

For the NPC1 assay, spheres (0.3 mm) were plated in 96-well plates
(U-bottom; 1 sphere/well) and directly exposed to the test compound (in
proliferation medium). DNA synthesis was assessed as functional
endpoint after 3 days in vitro (DIV), using a luminescence-based bro-
modeoxyuridine (BrdU) ELISA (Nimtz et al., 2019). Cytotoxicity was
assessed as a membrane integrity assay (CytoTox-ONE Assay) measuring
the LDH release into the supernatant.

For the NPC2-5 assays, spheres (0.3 mm) were plated in poly-p-
lysine/laminin-coated 96-well plates (F-bottom; 1 sphere/well) and
directly exposed to the test compounds (in differentiation medium).
Under control conditions, NPCs migrate radially out of the attached
sphere and differentiate into radial glia, neurons and oligodendrocytes.
Data were obtained after 72 h and 120 h, After 72 h (3 DIV), bright field
images were taken of live cell cultures, and radial glia migration (NPC2a
[72 h]) was assessed using ImageJ software. The medium was partially
removed (50%) and used to assess cytotoxicity (CytoTox-ONE Assay). To
continue the assay, the medium was replenished and cells were allowed
to further differentiate and migrate for 48 h. At 5 DIV, cells were fixated
and stained for TUBB3 (neuronal marker), 04 (oligodendrocyte marker)
and Hoechst H-33258 (nuclear marker). The endpoint assessment was
done by high content imaging followed by different image analysis al-
gorithms. Neuronal and oligodendrocyte differentiation (NPC3 and
NPC5) was assessed as the number of all TUBB3-positive and O4-positive
cells in percent of the total number of nuclei in the migration area.
Neurons and oligodendrocytes were automatically recognized by a
machine learning software based on convolutional neural networks
(Forster et al., 2022). The high-content image analysis software
Omnishpero was used to determine radial glia migration (NPC2a [120
h]), neuronal migration (NPC2b) and oligodendrocyte migration
(NPC2c¢) as well as neuronal morphology (NPC4a: neurite length;
NPC4b: neurite area) (Schmuck et al., 2017). Cytotoxicity was assessed
from samples of medium removed before the fixation by the
CytoTox-ONE LDH Assay. Some additional cell viability data were ob-
tained by using a resazurin reduction assay (CellTiter-Blue Assay).
Concentration-response curves from all these tests were based on seven
test compound concentrations.

2.3. Screen sirategy

Most of the compounds (n = 75) were provided by EPA’s ToxCast
chemical contractor (Evotec, South San Francisco, CA) in v-bottom 96
well plates. Separate plates were provided for different assays, and
volumes shipped ranged from 50 to 300 pl as DMSO stock solutions
(always 20 mM). Other compounds were obtained from commercial
sources (indicated in the suppl. 2 Excel file). In some of these cases stock
solution was higher than 20 mM and compounds were dissolved in water
if they were highly water-soluble (e.g. valproic acid). The University of
Konstanz robotics platform was used to either produce replicates of the



Manuscripts

J. Blum et al.

master plate for different screening runs and different assays (UKN as-
says) or to directly prepare the compound dilutions (1:3 steps) in the
media in 96-well pates (NPC assays). Operators were blinded to the
compound identity. For the UKN assays serial dilutions (1:3 steps) were
prepared from the cloned master plates for each compound in DMSO on
96-well plates, and each of these stocks was transferred to a pre-dilution
plate. On these plates compounds were diluted 1:3 in medium plus 1%
DMSO to have constant levels of DMSO among all concentrations.
Finally, pre-dilutions were transferred to assay plates with cells (e.g. 20
pl transfer to 180 pl cells corresponding to 1:10) in medium to a
maximum DMSO level of 0.1% in each assay. Exact volumes and pre-
dilutions were assay-dependent and are detailed in ToxTemps; suppl.
file 1. Some compounds were tested in an adapted concentration range
(e.g. it is known that valproic acid is a human teratogen and DNT
toxicant at clinically used concentrations of 0.5-1 mM. Therefore,
higher concentrations were also tested, and master stocks were prepared
accordingly).

For some assays (e.g. UKN2), a pre-screening step was included, in
which only 1-2 (highest) test compound concentrations were run. When
they showed no effect, screening was ended. When there was an effect
(at least 20% change of endpoint), a full concentration-response was
obtained. Pre-screen and full concentration-response screen were per-
formed three times independently for all assays. For the UKN assays this
meant the use of different cell lots for each run, for the NPC assays it
meant the use of cells from different donors and/or passages for each
run. Each screen run contained 2-6 technical replicates (details in
ToxTemps; suppl. file 1). In some cases, follow-up tests were run, when
e.g. only the highest concentration showed a response. Then new stocks
were produced, and the concentration range was extended to 60 or 100
uM, depending on the solubility of the compound.

2.4. Data analysis

A fully automated data analysis workflow was implemented on the
programming platform R (Keliel, 2022). Original code and source files
are available on GitHub at (https://github.com/iuf-duesseldorf/fritsche
-lab-CRStats). It included the following steps and outputs: (1)
Pre-processing of data, where required by the definitions of the assay
endpoints (see ToxTemps; suppl. file 1). For instance, the background
signal was subtracted from all data points for the BrdU fluorescence
readings. (2) Normalization of test compound data to the median of
solvent controls. (3) Calculation of the median of the replicates for each
experimental condition. (4) Concentration response fitting of the data
for each compound. The best-fitting model (general logistic, 3-param-
eter log-logistic, 4-parameter log-logistic, 2-parameter exponential,
3-parameter exponential, 3-parameter Weibull, 4-parameter Weibull)
was selected by the AKAIKE information criteria (Ritz et al., 2015;
Jensen et al., 2020). (5) Re-normalization of the data, so that the upper
asymptote of the selected curve fit was at 100% (lrebs et al., 2018;
Kappenberg et al., 2020). (6) Calculation of the mean re-normalized
values for each condition across independent test runs. (7) Concentra-
tion response fitting of the data for each compound. The best-fitting
model (general logistic, 3-parameter log-logistic, 4-parameter
log-logistic, 2-parameter exponential, 3-parameter exponential,
3-parameter Weibull, 4-parameter Weibull) was selected by the AKAIKE
information criteria. (8) Determination of the benchmark concentration
(BMC) as the point of the concentration-response curve that intersected
with the benchmark response level (BMR). The BMR was determined
and described for each assay (see ToxTemp; suppl. file 1), based on a
biological and statistical rationale. It marked the extent of response
considered to be statistically significant and toxicologically meaningful.
It thus depended on the endpoint and on the base line noise. For most
functional endpoints it was set at 75% (= 25% reduced normal func-
tion). For some assays it was set at 70% (higher baseline noise). For some
viability measures it was set at 90% (a deviation of >>10% was consid-
ered to potentially influence the functional endpoint). (9) After
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determination of the BMC, the upper (BMCU) and lower limit (BMCL) of
its 95% confidence interval were calculated (Krebs et al., 2020a).

2.5. Hit definitions and prediction models

The prediction models (Worth and Balls, 2001; Leist et al., 2010;
Griesinger et al., 2016; Schmidt et al., 2017; Bal-Price etal., 2018; Krebs
et al., 2020b) of the NAM used in the IVB-EU had been defined during
the original test setup, as documented in the literature and the ToxTemp
files. A key feature of all assays was that they had a specific functional
endpoint (related to a KNDP) and an endpoint characterizing compound
effects on cell viability. Within each NAM, a compound was considered a
specific hit (toxicant), when it affected the functional endpoint at least at
one concentration that did not affect viability (Fig. $3). Notably, this
does not mean that specific cytotoxicity of a given cell population (e.g.
neural crest cells) would not lead to DNT. However, specific toxicity toa
subpopulation can only be determined across assays, not within one
assay. At present, a procedure for such a cross-IVB interpretation has not
been established. Within a given assay, cytotoxicity makes the inter-
pretation of the functional endpoint difficult. Therefore, (i) functional
endpoint data were only used for concentrations that were
non-cytotoxic, and (ii) specific cytotoxicity to subpopulations was not
considered in this first application of the IVB-EU. For the UKN assays,
specific effects were determined by the ratio of benchmark concentra-
tions for the functional endpoint (e.g. neurite growth in UKN4) and
cytotoxicity (e.g. a 4-fold offset for UKN4). For the NPC assays, specific
toxicity was assumed when the 95% confidence intervals of the func-
tional endpoint and the viability endpoint did not overlap. As the sep-
aration between “hit” and “non-hit” leads to binary data with high
uncertainties at the hit/non-hit boundary (Leontaridou et al., 2017; Delp
et al., 2018), we introduced a borderline category for transition com-
pounds (e.g. when confidence intervals in NPC assays overlapped by >
10%). Thus, a given compound was classified in each assay as “no hit”,
“unspecific hit”, “specific hit” or “borderline hit” (Fig. $3).

2.6. Performance parameters

A set of 45 reference compounds (28 DNT positives; 17 DNT nega-
tives) was used for a preliminary evaluation of the IVB-EU predictivity
(more may be added in the future). Various hit definitions were used (e.
g. only specific hits, or specific + borderline hits). If a positive control
was a hit, it was considered true positive (TP), if it was not a hit, it was
considered a false negative (FN). If a negative control was a hit, it was
considered a false positive (FP) and if it was not a hit, it was considered a
true negative (TN). Using these four numbers (FP, FN, TP, TN), the
following performance parameters were defined:

. TP
sensitivity [%] :m * 100
™N
specificity (%] = m # 100

(TP + IN)

T 4100
(TP + TN + FP + FN)

accuracy =

sensitivity + specificity

balanced accuracy = >
ositive predictive value (PPV) = o 100
P predic cPPV)=Tp 1 Fm) "
2 1 oy
Fl secore =— = * (sensitivity + PPV)
+ oy 2 %
sensitivity PPV




Manuscripts

J. Blum et al. Chemosphere 311 (2023) 137035

(TP + TN) — (FP + FN)
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2.7. Data accessibility

The full raw data set from the IVB-EU has been entered into the
ToxCast data base and is available in a machine-readable format used by
many computational toxicologists after the fall 2022 ToxCast release
(US EPA ORD, 2022).

3. Results and discussion
3.1. The DNT in vitro battery (IVB)

A large panel of assays with direct or indirect relevance to DNT can
be found in the literature. Criteria needed to be developed to select a
prototype battery of assays that was large enough for the main objective
of this study, i.e. providing a basis for preparation of a general technical
guidance document on battery testing for regulatory applications. At the
same time, reasons of feasibility and limited resources called for keeping
the number of NAMs included in the test run low. Experts with a regu-
latory background (from the US and Europe) were involved in the se-
lection. The overall plan was to start testing in some European
laboratories on a core battery (IVB-EU) of fully ready NAMs, and then to
combine data on the same set of compounds with tests established at the
US EPA. The three main selection criteria for the DNT NAMs were: (i)
complementarity, (ii) documentation, and (iii) the readiness level
(Fig. 1A). The first point meant that the assays were selected in a way to
fill gaps of knowledge and to cover many KNDPs. It was also considered
here to use assays for overlapping biological functions to learn about
their orthogonality for later designs of tiered testing and sub-batteries.
The second point referred to the availability of method documenta-
tions useful at a regulatory level (i.e. defined by OECD guidance docu-
ment GD211) for the use of NAMs. Linked to this was the third criterion
which referred to the technical performance of the NAMs, and the level
of confidence into their predictivity and relevance. These issues are in
some legislations referred to as validation state (Leist et al., 2012;
Hartung et al., 2013; Judson et al., 2013; Cote et al., 2016; Griesinger
et al, 2016; Bal-Price et al,, 2018; Andersen et al., 2019; Masjos-
thusmann et al., 2020). In the selection of assays for the IVB-EU, we used
a more flexible definition, termed “readiness” (Krebs et al., 2020b;
Patterson et al., 2021). The assays used here all had undergone such an
evaluation (Bal-Price et al., 2018; Klose et al., 2021a; Koch et al., 2022).
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An additional criterion important for development of additional assays,
now recommended in the draft OECD DNT-IVB test guideline is use of a
common pool of test compounds (Fig. 1A). Ten assays fulfilled all
criteria, and they were considered to be suitable for forming the IVB-EU.
In addition to the above points, all selected assays use human cells, cover
four major KNDP, reflect seven different brain cell types and represent
different neurodevelopmental stages (Fig. 1B and C; Fig. 2).

To obtain an overview of test battery relevance and predictivity, a
gap analysis was performed. Comparison of the included tests with the
known neurodevelopmental processes showed that some KNDP are
currently not covered by the IVB-EU. These include very early devel-
opmental processes such as stem cell differentiation into neural pro-
genitor cells and subsequent neural tube construction, as well as
processes necessary for neuronal circuit building, like formation,
maturation and function of neuronal networks. As such gaps may reduce
the sensitivity of DNT predictions, we explored the availability of assays
that fulfill the IVB-EU inclusion criteria and could become part of an
expanded full battery (Fig. 2). Many assays for network formation have
indeed already shown to be at high readiness, yet these are based on rat
cortical cells (Carstens et al., 2022) calling for human cell-based
neuronal network formation assays. The early embryonal stages of
neural development may be covered by the UKN1 assay (Dreser et al.,
2020; Meisig et al., 2020). Some functional endpoints related to
non-neuronal cells are also desirable for the IVB, as these cells (astro-
cytes, microglia, myelinating oligodendrocytes, microvascular endo-
thelial cells) do not only have support and immune function, but rather
participate in multiple neurodevelopmental processes (Allen and Lyons,
2018). Several 3D systems have been described to include the necessary
cell types (Brull et al., 2020; Chesnut et al., 2021; Nunes et al., 2022),
but still need some development to meet basic inclusion criteria (set up
of test methods, throughput, documentation) for the IVB. The same
applies to dedicated assays to investigate neurotransmitter systems (e.g.
glutamate and acetylcholine signaling) (Klima et al., 2021; Loser et al.,
2021b). However, a large part of signaling systems is covered already by
the recent development of neural network formation assays (Frank et al.,
2017; Nimtz et al., 2020). An interesting endpoint to comprehensively
capture neuronal differentiation is transcriptome profiling (Pallocca
et al., 2016; Shinde et al., 2017; Simon et al., 2019; Dreser et al., 2020;
Meisig et al., 2020; Hu et al., 2022). This was exemplified here by the
UKN1 assay. Modern high throughput sequencing techniques (Simon
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et al., 2019; Jaklin et al., 2022; Spreng et al., 2022) now allow sufficient
throughput for screening applications and it is likely that such assays
will add additional information to the IVB in the future.

3.2. Readiness overview

The readiness of the assays of the DNT IVB was assessed on two tiers:
first, the readiness of individual assays, as assessed earlier in individual
publications, was an inclusion criterion (Fig. 1) of the IVB-EU. Second,
the readiness of the overall battery and the performance of the assays
under screening conditions was evaluated.

Concerning the first point, the underlying considerations are briefly
re-iterated here, as they impinge on the interpretation and on the overall
confidence into data from the NAMSs of the IVB-EU. As for all toxico-
logical assays, relevance, predictivity and reliability/robustness were
considered. A major focus was put on the latter point, as suggested
earlier (Leist et al., 2014; Krebs et al., 2019; Pallocca et al., 2022b).
Earlier publications (summarized in Masjosthusmann et al. (2020)), and
the ToxTemp (suppl. file 1) give more background information. One
aspect helping to keep typical sources of variability low is that the
selected IVB-EU assays all used a fully automated data capturing and
evaluation procedure. However, the ultimate proof of the pudding for
robustness, a blinded inter-lab comparison study, still has to be done for
the assays.

When simple methods for 1:1 replacement of acute toxicity end-
points were evaluated, relevance and predictivity have been defined as
separate aspects of NAMs. However, this concept has been modified for
complex endpoints and batteries. In such more complex cases, the pre-
dictivity of a single NAM (for a given regulatory endpoint derived from
animal studies) cannot be calculated, and the aspects of predictivity and
relevance are strongly intertwined (Escher et al., 2022). In such cases, a
scientific validation process is suggested that builds on two pillars: (i)
comparison of the biological basis of the test system to that of the
modeled human biology, and (ii) comparison of pathway modulations
that lead to endpeint changes in the NAM to pathway changes known to
be relevant to the respective human pathophysiology (Hartung, 2007;
Leist et al., 2012; Hartung et al., 2013; Bal-Price et al., 2018; Piersma
et al., 2018; Patterson et al.,, 2021). For the NAMs included in the
IVB-EU, the test systems have been extensively documented and
compared to the respective human developing nervous system coun-
terparts. This involved the levels of cell morphology, cell function, and
cell markers (see ToxTemps; suppl. file 1). Moreover, the relevant sys-
tems were profiled for their respective transcriptomes (lorug et al., 2014,
Hoelting et al., 2016; Palloceca et al., 2017; Gutbier et al., 2018; Mas-
josthusmann et al.,, 2018; Klose et al.,, 2021a, 2021b, 2022). Also, the
responses of the NAMs to modulation of signaling pathways relevant for
brain development have been investigated by the use of compounds
known to specifically affect signaling pathways (for overview: Klose
et al. (2021b); Koch et al. (2022); Krebs et al. (2020b); Masjosthusmann
et al. (2020)). A high-level summary of the responses to such “mecha-
nistic tool compounds” is summarized in Fig. S4. One example is the
Notch pathway, which determines a crucial switch between neuro-
genesis and oligodendrogenesis in vivo. By using the Notch pathway
inhibitor DAPT, we can mimic this differentiation switch also in vivo
with the NPC3/5 tests (Koch et al., 2022). Another illustrative example
is the Rho pathway, which is involved in neurite growth in vivo. Acti-
vation of the RhoA kinase by narciclasine decreases neurite outgrowth in
the NPC4, UKN4 and UKNS assays. This successful characterization of
neurodevelopmentally-relevant signaling in the IVB-EU assays is
considered as the physiological basis and qualitative evidence for rele-
vance and predictivity.

While the above-mentioned steps were important for the selection of
NAMs and for giving confidence into their individual function within the
IVB-EU, we also engaged in an effort to obtain information on the val-
idity of the entire IVB-EU, as a battery. We considered the key param-
eteres robustness, predictivity and relevance (Hartung et al., 2004;

Chemosphere 311 (2023) 137035

Pallocca and Leist, 2022). Concerning relevance, it was mainly consid-
ered how many cell types and how many signaling pathways important
for brain development were covered. A gap analysis showed that there
was a need for few additional cells (e.g. microglia) and for some addi-
tional functions (e.g. neuronal network formation, astrocyte function).
Moreover, more coverage of signaling (e.g. BDNF pathway and nicotinic
signaling pathway) would be desirable. However, most relevant cell
types were already represented, and many pathways known to be
affected by toxicants were shown to be identifiable by at least one assay
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Fig. 3. Baseline noise and signal variation of acceptance controls in the IVB-EU
assays. All tests were performed in a way so that each assay plate or experi-
mental run contained wells with (i) negative controls, and at least one (ii)
positive control. The reading of (ii) vs. (i) was used as acceptance criterion of
the respective plate for UKN2, 4 and 5. If the positive control was not in a pre-
specified range, the plate data were not included in screen results and mea-
surements were repeated. Depending on the assay, plates contained different
numbers of compounds. For some tests, the different concentrations of a given
compound were on different plates. Thus, some plates contained the (iii) lowest
concentration of a compound, and some did not. (A) To obtain a measure of
inter-plate and intra-experimental variability of the baseline signal, the lowest
concentration of each test compound (iif) was compared to the solvent control
(i) on each plate. Altogether >>200 data points were obtained for each IVB-EU
endpoint from the testing campaign. For easier overview, the means + SD are
indicated on top of the data points. (B) For each plate, the reading of the
positive controls (ii) was compared to that of the negative controls (i) and
normalized to negative control readings. The means + SD of data for positive
controls are given for the IVB-EU endpoints. The compounds used to set
acceptance criteria were as follows: w/o GF: without growth factor (omission of
normally present growth factors in the positive control well); PP-2: SRC-kinase
inhibitor; EGF: epidermal growth factor; BMP7: bone morphogenetic protein 7;
CytoD: cytochalasin D; NAR: narciclasine. Details on concentrations are found
in the ToxTemps (suppl. file 1).
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(Fig. 2; Fig. S4).

One estimate for the robustness of screening results from the test
battery is the baseline noise level of the NAM. As the results of all assays
are normalized to solvent control data (which are set to 100%, and
therefore do not vary by default), we used a surrogate baseline data set:
from each concentration-response curve of the screen compounds, we
selected the lowest concentration and assumed that this was in most
cases a no-effect concentration. This assumption was consistent with the
average of all these data points being about 100% for all assays. With
this approach it was possible to visualize the baseline noise (as standard
deviation around the average signal, Fig. 3A). From such data, we also
calculated the assay-specific coefficients of variation (CoVs, see Tox-
Temp; suppl. file 1). As a second measure of robustness, we evaluated
the responses of each test to the concurrent positive technical controls,
which were run along on each plate/for every experiment during the
screen (Fig. 3B). The positive controls were also used to determine
acceptability of the respective plates/experiments for further evalua-
tion. The plates/experiments, for which the acceptance criteria (see
ToxTemp; suppl. file 1) were not met («<10% for all tests), were
discarded.

3.3. Performance analysis

The predictivity of the IVB as a whole is a key feature of its regulatory
applicability. This was examined as follows: First, all of the above dis-
cussed aspects of mechanistic validation were considered: the biology
and pathophysiology covered by the entirety of assays of the IVB-EU
suggested a high, but not perfect, biological applicability domain. This
pointed at a sufficient predictivity for many purposes.

In a second step, we evaluated the capacity of the IVB-EU to correctly
identify negative and positive controls. A list of 45 such calibration
compounds was assembled from various literature references (Kadereit
et al., 2012; Grandjean and Landrigan, 2014; Mundy et al., 2015;
Aschner et al., 2017; Paparella et al., 2020; Crofton and Mundy, 2021).
The challenges and shortcomings of this approach have been widely
discussed (see above references), but our compound selection appeared
to be a good compromise based on the present state of knowledge
(Fig. 4A and B).

Prediction models for test batteries are an active field of research,
and many possibilities exist (tiered approaches, Bayesian models,
Boolean rules and decision trees). The difficulty to agree on the defined
approaches for the small (3 NAM) battery used to predict dermal
sensitization exemplifies these difficulties (Strickland et al., 2022). Here,
we used a simple Boolean rule to define a battery hit as any compound
that was a hit in one of the included DNT IVB-EU NAMs. A negative was
defined as a compound not being a hit in any of the assays. This rule
allows for a high transparence and simplicity. For statistical reasons, this
battery prediction model may be associated with a high false discovery
rate (testing for multiple endpoints considered to be independent). This
was considered to be acceptable for screening and prioritization use.
Moreover, the use of full concentration-response curves (instead of
single data points) for definition of all positive hits reduced this prob-
lem. The false discovery rate was further reduced by our use of data from
three independent experiments.

The 28 positive controls were used to obtain a preliminary measure
of assay sensitivity (to be refined with time and the addition of more
control compounds). We used different stringencies of hit definitions to
obtain an estimate of the IVB-EU performance with respect to detection
of DNT toxicants. When only the specific hits (compounds causing
functional impairment at non-cytotoxic concentrations) were counted,
the sensitivity of the IVB-EU was 68%. When borderline hits were
included, this went up to 82%. When also cytotoxic compounds were
included in the “hits”, a further increase was observed. However,
interpretation of cytotoxic compounds is presently not part of the IVB
prediction model (Fig. 4A,C).

The 17 negative controls were used to obtain data on specificity.
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When specific and borderline hits were counted, a value of 100% was
obtained. Specificity dropped to 94%, when also cytotoxic effects were
counted as “hit” (Fig. 4B,C).

Altogether, these preliminary performance estimates indicate that a
balanced accuracy of about 80% or higher can be reached with the
present IVB-EU. Based on the set of positive/negative control com-
pounds, several additional performance measures were calculated
(Fig. 4C) and it is particularly noteworthy that the IVB-EU had a high
positive predictive value (PPV). This supports the conclusion that
compounds identified as a hit should be prioritized for further evalua-
tion of potential human hazard. Such data would also suggest that such
chemicals better be excluded at early stages from further development
(e.g. as a drug).

Nicotine serves as a good example for gaps in the IVB-EU, identified
by the performance evaluation. It was identified as a false negative in the
battery, and thus is indicative of a shortcoming with respect to sensi-
tivity. The major action of nicotine is the stimulation of ionotropic
acetylcholine receptors, and the IVB-EU does not (yet) include NAMs
that would cover this biological function. This information is important
when it comes to the interpretation of data from compounds that target
nicotinic receptors, like neonicotinoid insecticides (Sheets et al., 2016;
Loser et al., 2021a). Assays that fill these gaps are already under
development (Fig. 2), and inclusion of assays based on zebra fish em-
bryos and other model organisms (e.g. C. elegans) are considered an
additional approach to close battery gaps (Atzei et al., 2021; Dasgupta
et al., 2022).

Another limitation of the DNT IVB-EU is hard to overcome: the
number of control compounds with clearly documented human effects is
very limited, and also the compounds having been tested in DNT
guideline studies in animals is small (Aschner et al., 2017). For this
reason, performance metrics on the basis of currently-available con-
trol-compound predictivity will remain superficial. A way forward is to
focus more on mechanistic validation approaches (Leist et al., 2012;
Judson et al., 2013; Cote et al., 2016; Griesinger et al., 2016; Bal-Price
et al., 2018; Andersen et al., 2019; Masjosthusmann et al., 2020) to gain
further confidence into the predictivity of the battery for human
adversities.

A final, but very important, consideration on predictivity is that this
concept is highly context-dependent. In each sharply-defined use
domain, it seems important to ask how far the battery is fit-for-purpose.
Four issues need to be specified: (i) what regulatory problem is to be
addressed (e.g. risk assessment of a new chemical, or prioritization of
compounds for further testing); (ii) is there a focus on high positive
predictivity or high negative predictivity; (iii) which type of chemicals is
being examined (predictivity may be very high within certain compound
groups, while it may be low for some compound classes); (iv) which
types of biology (targets, pathways) play a role. It is likely that some
adverse outcome pathways (AOP) are covered well, while others not at
all. For example, acetylcholine esterase inhibitors may not be detected
easily by the current IVB-EU, but this gap would be easily filled by an
additional enzymatic assay (Li et al., 2017).

3.4. Compound testing and hit identification

In addition to the 45 compounds tested for the IVB-EU performance
analyses, all 10 assays were challenged with additional 75 test com-
pounds, so that the total screen comprised 120 chemicals (suppl. file 2).
The result of the screen were benchmark concentrations (BMC) of effect
(or no effect data within the used concentration range) for 120 com-
pounds on ten functional and six viability endpoints, i.e. 1920 concen-
tration response curves. A matrix including 405 BMCs for the IVB hits
(with measures of uncertainty) was generated. To allow a better over-
view and focus, all compounds were compiled that affected at least one
functional endpoint at a non-cytotoxic concentration (n = 59). To better
visualize the activity profile of compounds, the endpoints for which
toxicants had the highest potency (most sensitive endpoint(s)) were
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Fig. 4. Performance overview of the test battery (IVB-EU). A set of predefined
negative (n = 17) and positive (n = 28) control compounds was included in the
set of screening compounds (n = 120). The rationale for their selection is given
in Fig. 81 and §2. Note that the controls were randomly included in the overall
sereening workflow without being given any preferences or special treatment.
This means that the standard prediction models of the assays were applied to
them, so that they were classified as “no hit”, “cytotoxic”, “borderline (brdl)” or
“specific hit” in individual NAM (see Fig. 83). A reference compound was
considered to be a “positive” on the level of the overall IVB-EU, when it was an
“alert™ in at least one of the individual assays. The tabular display of the figure
uses three definitions for an alert: anything that is not a “no hit” (first column),
anything that was a specific hit or brdl (second column) or only specific hits
(third column). (A) Alerts were considered true positives (TP), non-alerts were
considered false negatives (FN). (B) Non-alerts were considered true negatives
(TN), alerts were considered false positives (FP). (C) Performance parameters of
the current DNT IVB-EU in percent. All parameters were calculated based on the
TP, FN, TN, FP as indicated in (A) and (B). PPV: positive predictive value; MCC:
Matthews correlation coefficient.

highlighted (Fig. 5). Compounds were considered to be about equally
potent across test endpoints, when their activity did not differ by more
than a factor of three. This is due to technical issues (the test concen-
trations were separated by a factor of three in the concentration-
response curves), but also due to statistical considerations (the confi-
dence intervals of BMCs separated by factor 3 overlapped in 85% of all
cases).

Besides the 59 compounds that produced at least one specific hit
(comprising 23 positive controls and 36 other compounds), there were
also 61 compounds that had no specific hit in any of the 10 functional
endpoints. Ten of these compounds were cytotoxic to one or more cell
populations (Fig. S5A), while 51 compounds (including 16 negative
controls) had no effect at all (Fig. S5B). This finding of 35 fully negatives
(excluding the known negative controls) extends observations from the
preliminary predictivity evaluation (using known negative control
compounds) that showed that the IVB-EU, despite its large number of
tests and endpoints, is not highly unspecific.

3.5. Hit patterns in the DNT IVB screen

Concerning the further analysis of battery hits, several strategies
were followed. One approach was to select some individual hit com-
pounds or groups of compounds for further toxicological evaluation. For
instance, an expert group of EFSA and the OECD used IVB-EU data on
deltamethrine and flufenacet for a case study within the OECD IATA
program (EFSA PPR Panel, 2021). Another example is the group of flame
retardants, for which the battery data were used to support a compre-
hensive hazard assessment (IClose et al., 2021a), Such specific toxico-
logical follow-ups were beyond the scope of the present study. Instead,
we analyzed general hit patterns of the screen to learn more about the
relationship (complementarity/necessity) of the various assays and
endpoints.

The first question was, how functional endpoints and specific hits
related to the viability endpoints and cytotoxicity hits. To understand
the overall data structure, we generated an overview, comparing for
each specific hit compound the potency for the most sensitive functional
endpoint in the battery (MSE) with the potencies for all cytotoxic effects
across the battery test systems (cytotoxicity hits). There were 57 specific
hits, plus two compounds (maneb and clorpyrifos), which were classi-
fied as borderline hits, and are being included here in the group of
functional hits. Altogether 17 of the 59 compounds (29%) did not affect
any of the battery’s viability endpoints. For this subgroup, the functional
endpoint provided a definite gain in sensitivity, compared to cytotox-
icity assays. It is also very likely that the functional endpoint was
directly affected by the test compounds, i.e. it was not an indirect effect
of unspecific cytotoxicity.

As an alternative approach to understand the role of cytotoxicity, we
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additional 36 hits amongst the screened compounds. Within the groups, the compounds are ranked based on potency (indicated in units of - log [M]). The table
includes all hits of the screen. For each compound, the most sensitive endpoint (MSE) is highlighted. In addition, hits of the respective chemical in other assays, which
were of similar potency as in the MSE assay (within a 3-fold range), are also highlighted. The compounds that affected only viability endpoints in the IVB-EU are
listed in Fig. S5A. The compounds that affected no endpoint at all are listed in Fig. $5B. Exact and complete screen data (including the uncertainties assessed as 95%
confidence interval) are included in a suppl. file 2 — sheet 2 & 3.
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Fig. 6. Contribution of individual NAM to the overall IVB-EU. The screen was performed, hits were identified and the most sensitive endpoint (MSE) was defined for
each compound as detailed in Fig. 5 (A). A potency overview of all hit compounds (see Fig. 5 for abbreviation) is displayed: The compounds are sorted according to
the potency of their MSE. Note that all MSE data refer to a specific test endpoint (i.e. migration, differentiation, proliferation, neurite growth). In addition, the
concentrations at which compounds were detected to be cytotoxic are indicated. Compounds that were not cytotoxic in any assay are indicated by a dot right of the
dashed line, The cytotoxic concentration measured in the same assay as the MSE is given a separate symbol (filled circle) to allow an easy overview. Note that for
many compounds, no cytotoxicity was measured in the assay that produced the MSE. For design reasons, three low potency compounds were not included in the
figure: MAM (MSE = —3.8) orange point at x, 3 additional cytotoxic hits; VPA (MSE = —3.3) orange point at —2.7, four other cytotoxicity hits; AAM (MSE = —2.9) no
other eytotoxic hit. All data are given in log(M). (B) The number of hits (out of 120 screen compounds) is indicated for each assay of the battery, and for the total IVB-
EU (most leftward bar). The number of specific hits and of borderline hits can both be seen within one bar. The respective set of data for cytotoxic compounds in
visualized in Fig. 87. (C) The number of compounds that were a hit in only one assay is displayed for all assays, e.g. 10 compounds were detected only in NPC5, but no
other assay; one compound was detected only in UKN4 and no other assay. (D) The number of hits (separated in specific hits, borderline hits and cytotoxic-only
compounds) was compared for the full IVB-EU and a hypethetical mini-battery consisting of 3 assays (UKN2, NPC1, NPC5). (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

asked, how the MSE concentration related to the cytotoxic potency in comparison, we also checked how the functional hits of the IVB-EU
the same or in any other assay. There were only five compounds (8%) for compared to the cytotoxicity lower bound. In general, the cytotoxicity
which a cytotoxic endpoint was observed at higher (> factor 2) potency threshold in ToxCast was often in the range of 5-20 pM. Thus, the 17 IVB
than the functional MSE (Fig. 6A). One example is carbaryl (CBR), which screen hits with MSEs <1 pM (for which the cytotoxicity lower bound

specifically inhibited neurite growth in the UKN4 assay (functional was available), seemed to separate clearly from general cytotoxicity
endpoint). It was particularly potent as cytotoxicant for peripheral except for TETB. The situation is complex for compounds with higher
neurons and mixed NPC cultures. This may indicate that CBR exerts a MSE potency in the IVB-EU. The data set is too small and compound
cell type-specific cytotoxicity for such neural cell populations. Such behaviour is very heterogeneous. However, it is plausible, that speci-
viability effects may be relevant for neurodevelopment, but further in- ficity may be reduced (or lost) at higher screen concentrations (>20
vestigations would be required to allow clear conclusions. pM). It has been shown that unspecific baseline toxicity increases from

We used a comparison to published data as one preliminary this threshold on, due to membrane incorporation and alterations of

approach to test whether cytotoxicity hits of the IVB-EU are specific for protein conformations (Escher et al., 2019; Lee et al., 2021, 2022).
neurodevelopmental cell types. We hypothesized that we may see a Therefore, hits in a higher concentration range (e.g. MAM, VPA, AAM)

difference between cytotoxic potencies on conventional cell lines need good justifications (e.g. clinically-observed plasma levels at hit
(HepG2, HEK293, etc.) and on the test systems used here, if a compound concentration levels) and/or a detailed mechanistic follow-up providing
shows a developmental-stage specific cytotoxicity. Information on un- a rationale for specific functional effects in the observed concentration
specific toxicity (called: cytotoxicity lower bound) was obtained from range (Fig. S6B).

the ToxCast data base (Judson et al., 2016). For the 41 compounds, for All these potency comparisons have an important caveat: the data we
which sufficient data was available, we found that cytotoxicity hit po- obtained are based on nominal concentrations, and these might differ
tency in the IVB-EU was at least 10-fold below the cytotoxicity lower from the free effective concentrations in the medium, and especially at
bound for 7 compounds; 34 compounds showed no particular sensitivity the target sites (Kisitu et al., 2020). Especially, for comparisons to assays
in IVB-EU test systems compared to cell lines used for ToxCast screening with tumor cell lines, it needs to be considered, that such systems usually
(Fig. 56A). This may indicate that some, but not all cytotoxicity hits may use serum supplements containing protein and lipids, while most stem
be specific for neurodevelopmental cell types. To complete this cell culture media used here had a low protein and lipid content. Under
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the conditions used for the IVB-EU, the free concentrations are very
close to the total concentrations in medium (Krebs et al., 2020b), while
this is not necessarily the case for serum-containing media.

The second question we asked was, how the hits distributed over the
different assays of the battery. Altogether 67 compounds affected at least
one test endpoint: 57 specific, 2 borderline, 10 cytotoxic and 51 com-
pounds affected no endpoint at concentrations up to 20 uM (Fig. 6B,
Fig. S5&S87). All cytotoxic compounds had potencies of >8 pM
(Fig. SS5A). The number of hits obtained in each assay was also compiled.
For instance, the NPC5 assay (examining the KNDP oligodendrocyte
differentiation) identified the highest number (n = 34) of specific hits
(Fig. 6B). Moreover, 10 compounds were hits only in this assay and
would have been missed as potential toxicants without the NPC5 test as
part of the IVB-EU (Fig. 6C). The second highest hit rate (n = 30) was
found for the UKN2 assay (represents the KNDP of neural crest cell
migration). Three compounds were unique hits in this test, i.e. not
identified by another endpoint. Most other assays (UKN4, UKN5, NPC1,
NPC2a, NPC3 and NPC4) identified 8-15 specific hits, and each of the
assay identified at least one test compound that would have been missed
by the other tests of the battery (Fig. 6C). This illustrates that the cell

A Screening & exploration

Problem

Risk assessment

Chemosphere 311 (2023) 137035

types and endpoints assembled in the IVB-EU all differ in the pattern of
toxicity pathways and targets they represent. This analysis also showed
that the test methods are not redundant, even with this small number (n
= 120) of screened chemicals. We anticipate that the broad coverage of
cell types, developmental stages and endpoints of the IVB-EU will be
even more required to ensure maximal sensitivity, when the chemical
space is enlarged by broader test campaigns and a more-wide spread use
of the battery.

A third question we asked dealt with resource optimization. Some
assays, such as NPC2b/c (migration of neurons and oligodendrocytes) or
UKN4 (neurite outgrowth) contributed relatively little to the overall hit
rate, and one may consider them to be deleted from the battery or
replaced. This would be a step towards a faster, more economical “mini-
battery”, which would be expected to have a slightly reduced sensitivity,
but not greatly reduced overall performance (accuracy; Matthews co-
efficient). However, in case of the neurosphere assay, individual read-
outs are multiplexed, meaning that omission of one endpoint will not
lead to saving resources, e.g. NPC2b/c are automatically assessed when
NPC3/5 are evaluated. As NPC3 is multiplexed with NPC2 and 5, also
this assay adds negligible extra time and costs to the overall assays

Fig. 7. Outlook on further uses and extensions of the
IVB. (A) Incorporation of the IVB into an integrated
approach to testing and assessment (IATA): Two
different scenarios are depicted. In the first (1) the IVB
will be used for screening of compound groups to
generate hazard alerts (IVB hits). One way to follow
up on these would be in the context of an IATA. In the
second scenario (2), risk assessment of single chem-
icals would be performed in an IATA. This approach
starts with a problem formulation (considering or not
considering particular exposure situations). In this
context all available data on hazard identification and
characterization are collected. These may be extended
via data of scenario (1). Quantitative structure activ-
ity relationships (QSAR) and in vitro-to-in vivo
extrapolation (IVIVE) are shown as exemplary ele-
ments of the IATA framework. Further elements could
include absorption, distribution, metabolism and
excretion data (ADME) or an exposure assessment. If
the hazard data of the assessed compound are
considered not sufficient to derive a robust point of

Regulatory decision; prioritisation

departure (PoD), further information could be ob-
tained from the IVB. (3) In some cases, IVB extensions

w

IVB hit

False
POS

IVB

1. ADME, with focus on D/E
2. Battery specificity

*

IVB non-hit

1. ADME, with focus on M

2. KNDP not assessed in IVB

would be needed to fill data gaps and to reduce un-
certainties, until sufficient information is available for
regulatory action. (B) Each test method or battery has
some uncertainties. The level of uncertainties that can
be accepted depends on the problem formulation. For
IVB hits and non-hits, one needs to consider that these
may be either false positives/negatives, or compounds
with a correctly identified hazard (“true” positives/
negatives). One potential reason for misidentification
is a lack of ADME features represented in the in vitro
test systems. For example in vivo distribution and
elimination (D/E) features may be misrepresented in
the in vitro system. As a result, a compound never

[ Confirmatory assays ]

[ Testing of metabolites ]

reaching the fetal brain because of the placental bar-
rier may show effects on neurons in vitro. In contrast,

Increase
confidence: uncertainties

[ Structure/other info; Complex ADME models; Extend battery ]

some false negatives can be explained by a lack of
metabolism (M) i.e. in vivo toxic metabolites which

are not present in the IVB. Another reason is that a
toxicant affects a key neurodevelopmental process
(KNDP) that is not included in the IVB. In order to
reduce the level of uncertainties and gain confidence
into the results, further information can be added
(low, white boxes). This includes information transfer

across tested compounds (grouping and readacross (RAx)), complex ADME models, confirmatory assays (battery extension), and direct testing of potential me-
tabolites. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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NPC2-5. Hence, a mini-battery should only omit assays that practically
save resources, i.e. individual assays. If one continues this line of
thought, a minimal DNT IVB may consist of NPC1 (NPC proliferation),
NPC2-5 and UKN2 (NCC migration) test methods (Fig. 6D). In our
screen, this mini-battery would have identified 52 compounds (88% of
all specific and borderline hits) of the 59 hits covered by the whole IVB-
EU. Such a reduced approach may be used e.g. for quick/inexpensive
pre-screens, e.g. in situations where sensitivity is of low importance, but
compounds are to be ranked according to their priority for further
testing. However, one may also consider adding an assay to a mini-
battery that is not yet included in the IVB-EU. The gap analysis
(Fig. 2) suggested that some biological domains are still poorly covered,
and that an important gap would be filled by a neural network formation
assay (Carstens et al., 2022). Thus, future batteries would need to
consider the assays presented here, in addition to other established and
emerging DNT NAM.

4, Conclusions and outlook

We have demonstrated here how NAMs with endpoints related to
KNDP can be selected and assembled to an in vitro battery to screen for
DNT hazard of chemicals. The technical feasibility and the imple-
mentation of solid reporting standards have been demonstrated by the
use of 120 test compounds in a battery test-run that produced close to
2000 BMCs. These were used to provide battery performance estimates
and to classify test compounds as specific hits, cytotoxicants or non-hits.
The pattern of results was used to discuss the contribution of the assays
and their endpoints to the overall IVB-EU and to define gaps still to be
filled.

Pivotal questions for the future are (i) how battery hits would be
further used and (ii) how the IVB-EU (or its future expanded version =
1VB) could be implemented in a regulatory context (Fig. 7A and B). We
anticipate that the first application of the IVB will be for screening of
data-poor compounds to explore their DNT liabilities. As the over-
whelming majority of chemicals lacks data on DNT hazard, compounds
of particular concern (because of high exposure or structural alerts) may
be screened first. The IVB would produce alerts for further testing. The
underlying toxicological rationale is that disturbance of any KNDP
covered by the IVB has the potential to lead to DNT. In a regulatory
environment, the IVB data would provide a hazard characterization, and
could be used as point-of-departure for further steps. In this context,
physiology-based kinetic modelling (PBK) followed by in vitro-to-in vivo
extrapolations (IVIVE) could be applied to convert the BMCs to esti-
mated adverse doses (AEDs). These would be used to perform a risk
assessment.

With growing experience and confidence into the IVB, its output
could become a pivotal element of DNT risk assessment. Such a devel-
opment is supported by the guidance document on the generation and
use of the NAM-based DNT data (Crofton and Mundy, 2021). In a risk
assessment situation with a defined problem formulation (e.g. for
pesticide marketing re-approval in the EU, or during registration of a
chemical in Japan) the compound to be evaluated would be run through
the battery to provide hazard data. These might be clear and unam-
biguous. Or they may need to be complemented by additional rounds of
testing in battery extensions. Together with the use of ADME data or
other information (such as QSAR) and an IVIVE procedure, sufficient
information for risk assessment would be generated (Fig. 7A).

One important aspect of using the battery data as hazard charac-
terization is the interpretation and follow-up of hits. It is at present
unclear, whether the number of positive battery endpoints correlates
with the strength of DNT hazard. Hence, in the hazard characterization
scenario one would be equally concerned if a compound produced one
or several hits. However, the BMCs producing the hits have to be
considered as multiple hits in the same order of magnitude suggest a
higher concern than hits that only produce one low BMC. In the
screening and prioritization scenario concern could be based on a
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combination of BMC magnitude and number of hits similar to the
approach practiced in Klose et al. (2021a) in the flame retardant case
study. However, singleton-hit chemicals can be of high concern as
exemplified by the illustrative example lead, which is one of the
best-proven human DNT toxicants and only affected one functional
endpoint of the [VB-EU.

For each battery hit, there is always the uncertainty, that it is either a
true positive, i.e. that the battery results reflect real DNT hazard for
humans, or that it is a false positive (FP). A reasons for the latter scenario
may be toxicokinetic (ADME) properties. E.g. a compound may never
reach the foetal or child brain because of barrier funetions, but there is
no such barrier in vitro. Some FP will also arise from test classification
uncertainties (alpha error) and the IVB false discovery rate (FDR) due to
the combination of a large number of assays. Fortunately, there are also
ways to build confidence into the hit pattern and to reduce the uncer-
tainty of a hit being a FP. The assays and their prediction models can be
trimmed for high specificity (multiple test runs, full concentration-
response curves, conservative thresholds for hit definition). Another
powerful approach is to functionally group hit compounds and to use
information on one compound to read across to others. This way, con-
sistency and plausibility can be established and/or strengthened.

For some applications, also non-hits play an important role, e.g. for
providing confidence to consumers on the safety of food constituents or
contaminants. Non-hits may either be true (no hazard) or be false neg-
atives (FN), i.e. have non-discovered toxic properties. The main sources
of uncertainty on negatives are the gaps in the battery (KNDP or specific
signaling pathway not covered) and toxicokinetic aspects. For instance,
a tested parent compound may not be toxic, but a metabolite generated
only in vivo may be a DNT toxicant. Fortunately, there are also strategies
available to increase confidence in negative hits. If this is of particular
importance, the sensitivity of assays can be increased by running a
higher number of replicates. Also, a less conservative prediction model
may be applied. This strategy is demonstrated here by the introduction
of a borderline category, to capture toxic compounds that would
otherwise have dropped out of the hit definition. Another major
approach is the extension of the battery, e.g. by combination with the US
EPA assays (Carstens et al., 2022). Last, but not least, grouping, and
other information from data bases and the literature could be used for
further evaluation of negative hits and decisions on potential extended
testing (Fig. 7A).
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BMCU - upper limit of 95% confidence interval of BMC

DIV - days in vitro

DNT - developmental neurotoxicity

EFSA - European Food Safety Authority

FDR — false discovery rate

hNPC — human neural progenitor cell

hiPSC - human induced pluripotent stem cell
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KNDP - key neurodevelopmental process

MSE - most sensitive endpoint

NAM - new approach methods
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IATA - integrated approaches for testing and assessment

OECD - Organisation for Economic Co-operation and Development

TN - true negative
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UKN — University of Konstanz

14

Chemosphere 311 (2023) 137035

US EPA - United States Environmental Protection Agency

References

Allen, N.J., Lyons, D.A., 2018, Glia as architects of central nervous system formation and
function. Science 362, 181-185.

Andersen, M.E., McMullen, P.D., Phillips, M.B., Yoon, M., Pendse, S.N., Clewell, H.J.,
Hartman, J.K., Moreau, M., Becker, R.A., Clewell, R.A., 2019. Developing context
appropriate toxicity testing approaches using new alternative methods (NAMs).
ALTEX 36, 523

Aschner, M., Cecc "
Hogberg, H.T., Leist, M.

Daneshian, M., Fritsche, E., Hasiwa, N., Hartung, T.,

Li, A., Mundi, W.R., Padilla, S., Piersma, A.H., Bal-Price, A.,
Seiler, A., Westerink, R. immer, B., Lein, P.J., 2017. Reference compounds for
alternative test methods to indicate developmental neurotoxicity (DNT) potential of
chemicals: example lists and criteria for their selection and use. ALTEX 34, 49-74.

Atzei, A., Jense, L., Zwart, E.P., Legradi, J., Venhuis, B.J., van der Ven, L.T.M.,
Heusinkveld, H.J., Hessel, E.V.S,, 2021. Developmental neurotoxi of
environmentally ||~]|~\ ant phar ma:('mu als and mixtures thereof in a zebrafish
embryo behavioural test. Int. J. Environ. Res. Publ. Health 18.

Bal-Price, A., Crofton, K.M., Leist, M., Allen, S., Arand, M., Buetler, T., Delrue, N.,
FitzGerald, R.E., Hartung, T., Heinonen, T., Hogberg, H., Bennek S.H.,
Lichtensteiger, W., Oggier, D., Paparella, M., Axelstad, M., Piersma, A., Rached, E.,
Schilter, B., Schmuck, toppini, L., Tongiorgi Tiramani, M., Monnet
Tschudi, F., Wilks, M.F., Ylikomi, T., Fritsche, E., 2015. International STakeholder
NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map
for regulatory purposes. Arch. Toxicol. 89, 269-287,

e, A., Hogberg, H.T., Crofton, K.M., Daneshian, M.,
onen, T., Hougaard Bennekou, S., Klima, 8 !
Shafer, T.J., leuon A., Monnet-T K ani, B., Wdldmdnu, Wsslﬂmk R.
H.S., Wilks, M.F., Witters, H., Zurich, M.G., Leist, M., 2018. Recomme ndannn on test
readiness criteria for new approach methods in toxicology: exemplified for
developmental neurotoxicity. ALTEX 35, 306-352.

Bal Price, A.K., Coecke, 8., Costa, L., Crofton, K.M., Fritsche, E., (vuldberg, A,
Grandjean, P., Lein, P 3 Li, A., Lucchini, R., Mundy, W.R., Padilla, S., Persico, A.M.,
Seiler, A.E., Kreysa, J., 2012. Advancing |In' science of d(‘\n']upmvnra] neurotoxic 113
(DNT): testing for better safety evaluation. ALTEX 29, 202-215.

Baumann, J., Gassmann, K., Masjosthusmann, DeBoer, D., Bendt, F., Giersiefer, S
Fritsche, E., 2016. Comparative human and rat neurospheres reveal species
differences in chemical effects on neurodevelopmental key events. Arch. Toxicol. 90,
1415-1427.

Behl, M., Ryan, K., Hsieh, J.H., Parham, F., Shapiro, A.J., Collins, B.J., Sipes, N.S.,
Birnbaum, L.S., Bucher, J.R., Foster, P.M.D., Walker, N.J., Paules, R.S., Tice, R.R.,
2019. Screening for developmental neurotoxicity at the national toxicology program:
the future is here. Toxicol. Sci. 167, (3—]4

Bellinger, D.C., 2012. A strategy for comparing the contributions of environmental
chemicals and other risk factors to neurodevelopment of children. Environ. Health
Perspect. 120, 501-507.

5 6 Bl llinger, D.C., Bimbaum, L.S., Bradman, A., Chen, A., Cory-Slechta, D.A.,

allin, M.D., Halladay, A., Hauser, R., Hertz-Picciotto, L.,

C.F., Lanphear, B.P., Marquez, E., Marty, M., McPartland, J.,

Newschaffer, C.J., Payne-Sturges, D., Patisaul, H.B., Perera, F.P., Rilz B., Sass, J.,

Schantz, S.L., Webster, T.F., Whyatt, R.M., Woodruff, T.J., Zoeller, R.T., Anderko, L.,

Campbell, Conry, J.A., DeNicola, N., Gould, R.M., Hirtz, D., Huiﬂlns_,, K

Landrigan, P.J., Lavin, A., Miller, M., Mitchell, M.A., Rubin, L., Schettler, T., Tran, H.

L., Acosta, A., Brody, Miller, E., Miller, P., Swanson, M., Witherspoon, N.O.,

American College of, 0., , Gynecologists, Child Neurology, S., Endocrine, S.,

Internationa rotoxicology, A., International Society for Children’s, H., the, E

llm I'llrtll()llzll Society for Env 1|u|u|1t‘n!.|l B nal, 2016. Council of asian pacific

slander, tional hispar al, A., udlwlml meclu ,+ In: Project TENDR:
Targeting anuunmem(ﬂ Neuro-Developmental Risks the TENDR Consensus
Statement. Environ Health Perspect, vol. 124, pp. A118-A122.

Brull, M., ‘xpun;, A.S., Gutbier, S., Loser, D., Krebs, A., Reich, M., Kraushaar, U.,
Hlll>t]l Pdl‘st]l, 23 Lmat M., 2020. lmulpomllunul :lem cell-derived
astrocytes into neurnnal muanmds to allow neuro-glial interactions in toxicological
studies, ALTE , 409-428,

Carstens, K.E., Carpe A.F., Martin, M.M., Harrill, J.A., Shafer, T.I.,
Friedman, K., 2022, Integrating data from in vitro new approach methodologies for
developmental neurotoxicity. Toxicol. Sci. 187, 62-79.

Chesnut, M., Paschoud, H., Repond, C., Smirnova, L., Hartung, T., Zurich, M.G.,
Hogberg, H.T., Pamies, D., 2021. Human [PSC-derived model to study myelin
disruption. Inl J. Mol. Sci. 22.

Coecke, S., Goldberg, A.M., Allen, S., Buzanska, L., Calamandrei, G., Crofton, K.,
Hareng, I., Hartung, T., Knaut, Il Honegger, P., Jacobs, M., Lein, P., Li, A.,
Mundy, W., Owen, D., Schneider, S., Silbergeld, E., Reum, T., Trnovec, T., Monnet-
Tschudi, k.. Bal-Price, A., 2007. Wurk;,lunpwpult. incorporating in vitro alternative
methods for developmental neurotoxicity into international hazard and risk
assessment strategies, Environ. Health Perspect. 115, 924-931,

Cote, L., Andersen, M.E., Ankley, G.T., Barone, S., Birnbaum, L.S., Boekelheide, K.,
Bois, F.Y., Burgoon, L.D., Chiu, W.A., Crawford Brown, [ fton, K.M.,

DeVito, M., Devlin, R.B., Edwards, S.W., Guyton, K.Z., Hattis, D., Judson, R.S.,
Knight, D., Krewski, D., Lambert, J., Maull, E.A., Mendrick, D., Paoli, G.M., Patel, C.
J., Perkins, E.J., Poje, G., Portier, C.J., Rusyn, L, Schulte, P.A., Simeonov, A.,
Smith, M.T., Thayer, K.A., Themas, R.S., Thomas, R., Tice, R.R., Vandenberg, J.J.,
Villeneuve, D.L., Wesselkamper, S., Whelan, M., Whittaker, C., White, R., Xia, M.,

Yauk, C., Zeise, L., Zhao, J., DeWoskin, R.S., 2016. The next generation of risk

FitzGerald, R.
Piersma, A.H., Sacha

Bermett

ter, Paul




Manuscripts

J. Blum et al.

assessment multi-year study-highlights of findings, applications to risk assessment,
and future directions. Environ. Health Perspect. 124, 1671-1682.

Crofton, K.M., Mundy, W.R., 2021. External scientific report on the interpretation of data
from the developmental neurotoxicity in vitro testing assays for use in integrated
approaches for testing and assessment. EFSA Support. Pub. 18, 6924E,

Crofton, K.M., Mundy, W.R., Lein, P.J., Bal-Price, A., Coecke, 5., Seiler, A.E., Knaut, H.,
Buzanska, L., Goldberg, A., 2011. Developmental neurotoxicity testing:
recommendations for developing alternative methods for the screening and
prioritization of chemicals. ALTEX 28, 9-15,

Crofton, K.M., Mundy, W.R., Shafer, T.J., 2012. Developmental neurotoxicity testing: a
path forward. Congenital. Anom. 52, 140-146.

Dasgupta, 5., Simonich, M.T., Tanguay, R.L., 2022. Zebrafish behavioral assays in
toxicology. Methods Mol. Biol. 2474, 109-122.

Delp, J., Gutbier, §., Klima, S., Hoelting, L., Pinto-Gil, K., Hsieh, J.H., Aichem, M.,
Klein, K., Schreiber, F., Tice, R.R., Pastor, M., Behl, M., Leist, M., 2018. A high
throughput approach to identify specific neurotoxicants/developmental toxicants in
human neuronal cell function assays. ALTEX 35, 235-253.

Dreser, N., Madjar, K., Holzer, A.K., Kapitza, M., Scholz, C., Kranaster, P., Gutbier, S.,
Klima, S., Kolb, D., Dietz, C., Trefzer, T., Meisig, J., van Thriel, C., Henry, M.,
Berthold, M.R., Bluthgen, N., Sachinidis, A., Rahnenfulrer, J., Hengstler, J.G.,
Waldmann, T., Leist, M., 2020. Development of a neural rosette formation assay
(RoFA) to identify neurodevelopmental toxicants and to characterize their
transcriptome disturbances. Arch. Toxicol. 94, 151-171.

Escher, B.L, Glauch, L., Konig, M., Mayer, P., Schlichting, R., 2019. Baseline toxicity and
volatility eutoff in reporter gene assays used for high-throughput screening. Chem.
Res. Toxicol. 32, 1646-1655.

Escher, S.E., Partosch, F., Konzok, S., Jennings, P., Luijten, M., Kienhuis, A., de
Leeuw, V., Reuss, R., Lindemann, K.-M., Bennekou, S.H., 2022. Development of a
roadmap for action on new approach methodologies in risk assessment. EFSA
Support. Pub. 19, 7341E.

Forster, N., Butke, J., Kessel, H.E., Bendt, F., Pahl, M., Li, L., Fan, X., Leung, P.C.,
Klose, J., Masjosthusmann, S., Fritsche, E., Mosig, A., 2022. Reliable identification
and quantification of neural cells in microscopic images of neurospheres. Cytonietry
101, 411-422.

Frank, C.L., Brown, J.P., Wallace, K., Mundy, W.R., Shafer, T.J., 2017, From the cover:
developmental neurotoxicants disrupt activity in cortical networks on
microelectrode arrays: results of screening 86 compounds during neural network
formation. Toxicol. Sci. 160, 121-135.

Fritsche, E., Crofton, K.M., Hernandez, A.F., Hougaard Bennekou, S., Leist, M., Bal-
Price, A., Reaves, E., Wilks, M.F., Terron, A., Solecki, R., Sachana, M.,

Gourmelon, A., 2017. OECD/EFSA workshop on developmental neurotoxicity
(DNT): the use of non-animal test methods for regulatory purposes. ALTEX 34,
311-315.

Fritsche, E., Grandjean, P., Crofton, K.M., Aschner, M., Goldberg, A., Heinonen, T.,
Hessel, E.V.S., Hogberg, H.T., Bennekou, S.H., Lein, P.J., Leist, M., Mundy, W.R.,
Paparella, M., Piersma, A.H., Sachana, M., Schmuck, G., Solecki, R., Terron, A.,
Monnet-Tschudi, F., Wilks, M.F., Witters, H., Zurich, M.G., Bal Price, A., 2018,
Consensus statement on the need for innovation, transition and implementation of
developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicol. Appl.
Pharmacol. 354, 3-6.

Grandjean, P., Abdennebi-Najar, L., Barouki, R., Cranor, C.F., Etzel, R.A., Gee, D.,
Heindel, J.J., Hougaard, K.S., Hunt, P., Nawrot, T.S., Prins, G.S., Ritz, B,,

Soffritti, M., Sunyer, J., Weihe, P., 2019. Timescales of developmental toxicity
impaeting on research and needs for intervention. Basic Clin. Pharmacol. Toxicol.
125 (Suppl. 3), 70-80.

Grandjean, P., Landrigan, P.J., 2006. Developmental neurotoxicity of industrial
chemicals. Lancet 368, 2167-2178.

Grandjean, P., Landrigan, P.J., 2014. Neurobehavioural effects of developmental
toxicity. Lancet Neurol. 13, 330-338,

Griesinger, C., Desprez, B., Coecke, S., Casey, W., Zuang, V., 2016. Validation of
alternative in vitro methods to animal testing: concepts, challenges, processes and
tools. Adv. Exp. Med. Biol. 856, 65-132.

Gutbier, S., May, P., Berthelot, S., Krishna, A., Trefzer, T., Behbehani, M., Efremova, L.,
Delp, J., Gstraunthaler, G., Waldmann, T., Leist, M., 2018. Major changes of cell
function and toxicant sensitivity in cultured cells undergoing mild, quasi-natural
genetic drift. Arch. Toxicol. 92, 3487-3503.

Harrill, J.A., Freudenrich, T., Wallace, K., Ball, K., Shafer, T.J., Mundy, W.R., 2018.
Testing for developmental neurotoxicity using a bartery of in vitro assays for key
cellular events in neurodevelopment. Toxicol. Appl. Pharmacol. 354, 24-39,

Hartung, T., 2007. Food for thought ... on validation. ALTEX 24, 67-80.

Hartung, T., Bremer, S., Casati, S., Coecke, S., Corvi, R., Fortaner, S., Gribaldo, L.,
Halder, M., Hoffmann, S., Roi, A.J., Prieto, P., Sabbioni, E., Scott, L., Worth, A.,
Zuang, V., 2004, A modular approach to the ECVAM principles on test validity.
Altern Lab Anim 32, 467-472.

Hartung, T., Hoffmann, S., Stephens, M., 2013. Mechanistic validation. ALTEX 30,
119-130.

Hoelting, L., Klima, S., Karreman, C., Grinberg, M., Meisig, J., Henry, M., Rotshteyn, T.,
Rahnenfuhrer, J., Bluthgen, N., Sachinidis, A., Waldmann, T., Leist, M., 2016. Stem
cell-derived immature human dorsal root ganglia neurons to identify peripheral
neurotoxicants. Stem Cells Transl Med 5, 476-487.

Holzer, A.K., Suciu, 1., Karreman, C., Goj, T., Leist, M., 2022, Specific attenuation of
purinergic signaling during bortezomib-induced peripheral neuropathy in vitro. Int.
J. Mol. Sci. 23,

Hu, W., Lin, C.W., Jimenez, J.A., McCoy, E.S., Hsiao, Y.C., Lin, W., Engel, §.M,, Lu, K.,
Zylka, M.J., 2022, Detection of azoxystrobin fungicide and metabolite azoxystrobin-

15

Chemosphere 311 (2023) 137035

acid in pregnant women and children, estimation of daily intake, and evaluation of
placental and lactational transfer in mice. Environ. Health Perspect. 130, 27013,

Jaklin, M., Zhang, J.D., Schafer, N., Clemann, N., Barrow, P., Kung, E., Sach-Peltason, L.,
McGinnis, C., Leist, M., Kustermann, S., 2022. Optimization of the TeraTox assay for
preclinical teratogenicity assessment. Toxicol. Sci. 188, 17-33,

Jensen, S.M., Kluxen, F.M,, Streibig, J.C., Cedergreen, N., Ritz, C., 2020. bmd: an R
package for benchmark dose estimation. PeerJ 8, e10557.

Judson, R., Houck, K., Martin, M., Richard, A.M., Knudsen, T.B., Shah, L, Little, S.,
Wambaugh, J., Woodrow Setzer, R., Kothiya, P., Phuong, J., Filer, D., Smith, D.,
Reif, D., Rotroff, D., Kleinstreuer, N., Sipes, N., Xia, M., Huang, R., Crofton, K.,
Thomas, R.S., 2016. Editor's highlight: analysis of the effects of cell stress and
cytotoxicity on in vitro assay activity across a diverse chemical and assay space.
Toxicol. Sci. 152, 323-339,

Judson, R., Kavlock, R., Martin, M., Reif, D., Houck, K., Knudsen, T., Richard, A., Tice, R.
R., Whelan, M., Xia, M., Huang, R., Austin, C., Daston, G., Hartung, T., Fowle 3rd, J.
R., Wooge, W., Tong, W., Dix, D., 2013. Perspectives on validation of high-
throughput assays supporting 21st century toxicity testing. ALTEX 30, 51-56.

Kadereit, S., Zimmer, B., van Thriel, C., Hengstler, J.G., Leist, M., 2012. Compound
selection for in vitro modeling of developmental neurotoxicity. Front Biosci
(Landmark Ed) 17, 2442-2460.

Kappenberg, F., Brecklinghaus, T., Albrechr, W., Blum, J., van der Wurp, C., Leist, M.,
Hengstler, J.G., Rahnenfuhrer, J., 2020. Handling deviating control values in
concentration-response curves. Arch. Toxicol. 94, 3787-3798.

Kefiel, 2022, Biostatistics and its impact on hazard characterization using in vitro
developmental neurotoxicity assays. ALTEX. hitps://doi.org/10.1101/
2022.10.18.512648. Submitted for publication.

Kisitu, J., Hollert, H., Fisher, C., Leist, M., 2020. Chemical concentrations in cell culture
compartments (C5) - free concentrations. ALTEX 37, 693-708.

Klima, S., Brull, M., Spreng, A.S., Suciu, L, Falt, T., Schwamborn, J.C., Waldmann, T.,
Karreman, C., Leist, M., 2021. A human stem cell-derived test system for agents
modifying neuronal N-methyl-D-aspartate-type glutamate receptor Ca(2+)-
signalling. Arch. Toxicol. 95, 1703-1722.

Klose, J., Li, L., Pahl, M., Bendt, F., Hubenthal, U., Jungst, C., Petzsch, P., Schauss, A.,
Kohrer, K., Leung, P.C., Wang, C.C., Koch, K., Tigges, J., Fan, X., Fritsche, E., 2022.
Application of the adverse outcome pathway concept for investigating
developmental neurotoxicity potential of Chinese herbal medicines by using human
neural progenitor cells in vitro. Cell Biol. Toxicol.

Klose, J., Pahl, M., Bartmann, K., Bendt, F., Blum, J., Dolde, X., Forster, N., Holzer, A.K.,
Hubenthal, U., Kessel, H.E., Koch, K., Masjosthusmann, S., Schneider, S., Sturzl, L.C.,
Woeste, S., Rossi, A., Covaci, A., Behl, M., Leist, M., Tigges, J., Fritsche, E., 2021a.
Neurodevelopmental toxicity assessment of flame retardants using a human DNT in
vitro testing battery. Cell Biol. Toxicol.

Klose, J., Tigges, J., Masjosthusmann, S., Schmuck, K., Bendt, F., Hubenthal, U.,
Petzsch, P., Kohrer, K., Koch, K., Fritsche, E., 2021h. TBBPA targets converging key
events of human oligodendrocyte development resulting in two novel AOPs. ALTEX
38, 215-234.

Koch, K., Bartmann, K., Hartmann, J., Kapr, J., Klose, J., Kuchovska, E., Pahl, M.,
Schluppmann, K., Zuhr, E., Fritsche, E., 2022. Scientific validation of human
neurosphere assays for developmental neurotoxicity evaluation. Front Toxicol 4,
816370.

Krebs, A., Nyffeler, J., Karreman, C., Schmidt, B.Z., Kappenberg, F., Mellert, J.,
Pallocea, G., Pastor, M., Rahnenfuhrer, J., Leist, M., 2020a. Determination of
benchmark concentrations and their statistical uncertainty for cytotoxicity test data
and functional in vitro assays. ALTEX 37, 155-163.

Krebs, A, Nyffeler, J., Rahnenfuhrer, J., Leist, M., 2018. Normalization of data for
viability and relative cell function curves. ALTEX 35, 268-271.

Krebs, A,, van Vugt Lussenburg, B.M.A., Waldmann, T., Albrecht, W., Boei, J., Ter
Braak, B., Brajnik, M., Braunbeck, T., Brecklinghaus, T., Busquet, F., Dinnyes, A.,
Dokler, J., Dolde, X., Exner, T.E., Fisher, C., Fluri, D., Forsby, A., Hengstler, J.G.,
Holzer, A.K., Janstova, Z., Jennings, P., Kisitu, J., Kobolak, J., Kumar, M.,
Limonciel, A., Lundqvist, J., Mihalik, B., Moritz, W., Pallocca, G., Ulloa, A.P.C.,
Pastor, M., Rovida, C., Sarkans, U., Schimming, J.P., Schmidt, B.Z., Stober, R.,
Strassfeld, T., van de Water, B., Wilmes, A., van der Burg, B., Verfaillie, C.M., von
Hellfeld, R., Vrieling, H., Vrijenhoek, N.G., Leist, M., 2020b. The EU-ToxRisk method
documentation, data processing and chemical testing pipeline for the regulatory use
of new approach methods. Arch. Toxicol. 94, 2435-2461.

Krebs, A., Waldmann, T., Wilks, M.F., Van Vugt-Lussenburg, B.M.A., Van der Burg, B.,
Terron, A., Steger-Hartmann, T., Ruegg, J., Rovida, C., Pedersen, E., Pallocca, G.,
Luijten, M., Leite, S.B., Kustermann, 8., Kamp, H., Hoeng, J., Hewitt, P., Herzler, M.,
Hengstler, J.G., Heinonen, T., Hartung, T., Hardy, B., Gantner, F., Fritsche, E.,
Fant, K., Ezendam, J., Exner, T., Dunkern, T., Dietrich, D.R., Coecke, S., Busquet, F.,
Braeuning, A., Bondarenko, O., Bennekou, S.H., Beilmann, M., Leist, M., 2019.
Template for the description of cell based toxicological test methods to allow
evaluation and regulatory use of the data. ALTEX 36, 682-699.

Krug, A.K., Balmer, N.V., Matt, F., Schonenberger, F., Merhof, D., Leist, M., 2013a.
Evaluation of a human neurite growth assay as specific screen for developmental
neurotoxicants. Arch. Toxicol. 87, 2215-2231,

Krug, A.K., Gutbier, S., Zhao, L., Poltl, D., Kullmann, C., Ivanova, V., Forster, S.,
Jagtap, S., Meiser, J., Leparc, G., Schildknecht, S., Adam, M., Hiller, K., Farhan, H.,
Brunner, T., Hartung, T., Sachinidis, A., Leist, M., 2014. Transcriptional and
metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell
Death Dis. 5, €1222.

Krug, A.K., Kolde, R., Gaspar, J.A., Rempel, E., Balmer, N.V., Meganathan, K., Vojnits, K.,
Baquie, M., Waldmann, T., Ensenat-Waser, R., Jagtap, §., Evans, R.M., Julien, §.,
Peterson, H., Zagoura, D., Kadereit, S., Gerhard, D., Sotiriadou, 1., Heke, M.,
Natarajan, K., Henry, M., Winkler, J., Marchan, R., Stoppini, L., Bosgra, S.,



Manuscripts

J. Blum et al.

Westerhout, J., Verwei, M., Vilo, J., Kortenkamp, A., Hescheler, J., Hothorn, L.,
Bremer, 8., van Thriel, C., Krause, K.H., Hengstler, J.G., Rahnenfuhrer, J., Leist, M.,
Sachinidis, A., 2013b. Human embryonic stem cell derived test systems for
developmental neurotoxicity: a transcriptomies approach. Arch. Toxicol. 87,
123-143.

Lee, J., Braun, G., Henneberger, L., Konig, M., Schlichting, R., Scholz, S., Escher, B.L,
2021. Critical membrane concentration and mass-balance model to identify baseline
cytotoxicity of hydrophobic and ionizable organic chemicals in mammalian cell
lines. Chenw. Res. Toxicol. 34, 2100-2109.

Lee, J., Escher, B.L, Scholg, 8., Schlichting, R., 2022. Inhibition of neurite outgrowth and
enhanced effects compared to baseline toxicity in SH-SY5Y cells. Arch. Toxicol. 96,
1039-1053,

Lein, P., Locke, P., Goldberg, A., 2007. Meeting report: alternatives for developmental
neurotoxicity testing. Environ. Health Perspect. 115, 764-768.

Leist, M., Efremova, L., Karreman, C., 2010. Food for thought ... considerations and
guidelines for basic test method deseriptions in toxicology. ALTEX 27, 309-317.

Leist, M., Hartung, T., Nicotera, P., 2008, The dawning of a new age of toxicology.
ALTEX 25, 103-114.

Leist, M., Hasiwa, N., Daneshian, M., Hartung, T., 2012. Validation and quality control of
replacement alternatives — current status and future challenges. Toxicology Research
1, 8-22.

Leist, M., Hasiwa, N., Rovida, C., Daneshian, M., Basketter, D., Kimber, I., Clewell, H.,
Gocht, T., Goldberg, A., Busquet, F., Rossi, A.M., Schwarz, M., Stephens, M.,
Taalman, R., Knudsen, T.B., McKim, J., Harris, G., Pamies, D., Hartung, T., 2014.
Consensus report on the future of animal-free systemic toxicity testing. ALTEX 31,
341-356.

Leontaridou, M., Urbisch, D., Kolle, S.N., Ott, K., Mulliner, D.S., Gabbert, S.,
Landsiedel, R., 2017. The borderline range of toxicological methods: quantification
and implications for evaluating precision. ALTEX 34, 525-538,

Li, S., Huang, R., Solomon, §., Liu, Y., Zhao, B., Santillo, M.F., Xia, M., 2017.
Identification of acetylcholinesterase inhibitors using homogenous cell based assays
in quantitative high-throughput screening platforms. Biotechnol. J. 12.

Loser, D., Hinojosa, M.G., Blum, J., Schaefer, J., Brull, M., Johansson, Y., Suciu, I.,
Grillberger, K., Danker, T., Moller, C., Gardner, L., Ecker, G.F., Bennekou, S.H.,
Forsby, A., Kraushaar, U., Leist, M., 2021a. Functional alterations by a subgroup of
neonicotinoid pesticides in human dopaminergic neurons. Arch. Toxicol. 95,
2081-2107.

Loser, D., Schaefer, J., Danker, T., Moller, C., Brull, M., Suciu, I., Uckert, A.K., Klima, §.,
Leist, M., Kraushaar, U., 2021b. Human neuronal signaling and communication
assays ro assess functional neurotoxicity. Arch. Toxicol. 95, 229-252.

Lotharius, J., Falsig, J., van Beek, J., Payne, S., Dringen, R., Brundin, P., Leist, M., 2005.
Progressive degeneration of human mesencephalic neuron-derived cells triggered by
dopamine-dependent oxidative stress is dependent on the mixed lineage kinase
pathway. J. Neurosci. 25, 6329-6342,

Lupu, D., Andersson, P., Bornehag, C.G., Demeneix, B., Fritsche, E., Gennings, C.,
Lichtensteiger, W., Leist, M., Leonards, P.E.G., Ponsonby, A.L., Scholze, M., Testa, G.,
Tresguerres, J.A.F., Westerink, R.H.S., Zalc, B., Ruegg, J., 2020. The ENDpoiNTs
project: novel testing strategies for endocrine disruptors linked to developmental
neurotoxicity. Int, J. Mol. Sci. 21.

Makris, S.L., Raffaele, K., Allen, S., Bowers, W.J., Hass, U., Alleva, E., Calamandrei, G.,
Sheets, L., Amcoff, P., Delrue, N., Crofton, K.M., 2009. A retrospective performance
assessment of the developmental neurotoxicity study in support of OECD test
guideline 426. Environ. Health Perspect. 117, 17-25.

Masjosthusmann, S., Becker, D., Petzuch, B., Klose, J., Siebert, C., Deenen, R.,

Barenys, M., Baumann, J., Dach, K., Tigges, J., Hubenthal, U., Kohrer, K.,

Fritsche, E., 2018. A transcriptome comparison of time-matched developing human,
mouse and rat neural progenitor cells reveals human uniqueness. Toxicol. Appl.
Pharmacol. 354, 40-55.

Masjosthusmann, S., Blum, J., Bartmann, K., Dolde, X., Holzer, A. K., Stiirzl, L.-C.,
Kebel, E.H., Forster, N., Donmez, A., Klose, J., Pahl, M., Waldmann, T., Bendt, F.,
Kisitu, J., Suciu, 1., Hitbenthal, U., Mosig, A., Leist, M., Fritsche, E., 2020.
Establishment of an a priori protocol for the implementation and interpretation of an
in-vitro testing battery for the assessment of developmental neurotoxicity. EFSA
Support. Pub. 17, 1938E.

Meisig, J., Dreser, N,, Kapitza, M., Henry, M., Rotshteyn, T., Rahnenfuhrer, J.,
Hengstler, J.G., Sachinidis, A., Waldmann, T., Leist, M., Bluthgen, N., 2020. Kinetic
modeling of stem cell transcriptome dynamics to identify regulatory modules of
normal and disturbed neuroectodermal differentiation. Nueleic Acids Res. 48,
12577-12592.

Modafferi, S., Zhong, X., Kleensang, A., Murata, Y., Fagiani, F., Pamies, D., Hogberg, H.
T., Calabrese, V., Lachman, H., Hartung, T., Smimova, L., 2021. Gene-environment
interactions in developmental neurotoxicity: a case study of synergy between
chlorpyrifos and CHD8 knockout in human BrainSpheres, Environ. Health Perspect.
129, 77001.

Mundy, W.R., Padilla, S., Breier, J.M., Crofton, K.M., Gilbert, M.E., Herr, D.W., Jensen, K.
F., Radio, N.M., Raffaele, K.C., Schumacher, K., Shafer, T.J., Cowden, J., 2015.
Expanding the test set: chemicals with potential to disrupt mammalian brain
development. Neurotoxicol. Teratol. 52, 25-35.

Nimtz, L., Hartmann, J., Tigges, J., Masjosthusmann, S., Schmuck, M., Kessel, E.,
Theiss, S., Kohrer, K., Petzsch, P., Adjaye, J., Wigmann, C., Wieczorek, D.,
Hildebrandt, B., Bendt, F., Hubenthal, U., Brockerhoff, G., Fritsche, E., 2020.
Characterization and application of electrically active neuronal networks established
from human induced pluripotent stem cell-derived neural progenitor cells for
neurotoxicity evaluation. Stem Cell Res. 45, 101761.

Nimtz, L., Klose, J., Masjosthusmann, S., Barenys, M., Fritsche, E., 2019, The
neurosphere assay as an in vitro method for developmental neurotoxicity (DNT)

16

Chemosphere 311 (2023) 137035

evaluation. In: Aschner, M., Costa, L. (Eds.), Cell Culture Techniques. Springer New
York, New York, NY, pp. 141-168.

Nunes, C., Singh, P., Mazidi, Z., Murphy, C., Bourguignon, A., Wellens, S.,
Chandrasekaran, V., Ghosh, S., Zana, M., Pamies, D., Thomas, A., Verfaillie, C.,
Culot, M., Dinnyes, A., Hardy, B., Wilmes, A., Jennings, P., Grillari, R., Grillari, J.,
Zurich, M.G., Exner, T., 2022. An in vitro strategy using multiple human induced
pluripotent stem cell-derived models to assess the toxicity of chemicals: a case study
on paraquat. Toxicol. Vitro 81, 105333.

Nyffeler, J., Karreman, C., Leisner, H., Kim, Y.J., Lee, G., Waldmann, T., Leist, M., 2017.
Design of a high-throughput human neural erest cell migration assay to indicate
potential developmental toxicants. ALTEX 34, 75-94,

OECD, 2007. Test No. 426. Developmental Neurotoxicity Study.

OECD, 2021. Guideline No. 497: Defined Approaches on Skin Sensitisation.

Pallocca, G., Grinberg, M., Henry, M., Frickey, T., Hengstler, J.G., Waldmann, T.,
Sachinidis, A., Rahnenfuhrer, J., Leist, M., 2016. Identification of transcriptome
signatures and biomarkers specific for potential developmental roxicants inhibiting
human neural crest cell migration. Arch. Toxicol. 90, 159-180,

Pallocca, G., Leist, M., 2022, On the usefulness of animals as a model system (part II):
considering benefits within distinet use domains. ALTEX 39, 531-539.

Pallocca, G., Mone, M.J., Kamp, H., Luijten, M., Van de Water, B., Leist, M., 2022a. Next-
generation Risk Assessment of Chemicals - Rolling Out a Human-Centric Testing
Strategy to Drive 3R Implementation: the RISK-Hunt3r Project Perspective. ALTEX.

Pallocca, G., Nyffeler, J., Dolde, X., Grinberg, M., Gstraunthaler, G., Waldmann, T.,
Rahnenfuhrer, J., Sachinidis, A., Leist, M., 2017. Impairment of human neural crest
cell migration by prolonged exposure to interferon-beta. Arch. Toxicol. 91,
3385-3402.

Pallocca, G., Rovida, C., Leist, M., 2022b. On the usefulness of animals as a model system
(part I): overview of criteria and focus on robustness. ALTEX 39, 347-353.

Paparella, M., Bennekou, S.H., Bal Price, A., 2020. An analysis of the limitations and
uncertainties of in vivo developmental neurotoxicity testing and assessment to
identify the potential for alternative approaches. Reprod. Toxicol. 96, 327-336.,

Patterson, E.A., Whelan, M.P., Worth, A.P., 2021. The role of validation in establishing
the scientific credibility of predictive toxicology approaches intended for regulatory
application. Comput Toxicol 17, 100144,

Piersma, A.H., van Benthem, J., Ezendam, J., Kienhuis, A.S., 2018. Validation redefined.
Toxicol. Vitro 46, 163-165.

Pistollato, F., Carpi, D., Mendoza de Gyves, E., Paini, A., Bopp, S.K., Worth, A., Bal-
Price, A., 2021. Combining in vitro assays and mathematical modelling to study
developmental neurotoxicity induced by chemical mixtures. Reprod, Toxicol, 105,
101-119.

Products, E.Panel 0.P.P., Residues, t., Hernandez Jerez, A., Adriaanse, P., Aldrich, A.,
Berny, P., Coja, T., Duquesne, S., Focks, A., Marinovich, M., Millet, M., Pelkonen, 0.,
Pieper, S., Tiktak, A., Topping, C., Widenfalk, A., Wilks, M., Wolterink, G.,
Crofton, K., Hougaard Bennekou, S., Paparella, M., Tzoulaki, 1., 2021. Development
of Integrated Approaches to Testing and Assessment (IATA) case studies on
developmental neurotoxicity (DNT) risk assessment. EFSA J. 19, e06599.

Ritz, C., Baty, F., Streibig, J.C., Gerhard, D., 2015. Dose-response analysis using R. PLoS
One 10, e0146021.

Ryan, K.R., Sirenko, O., Parham, F., Hsieh, J.H., Cromwell, E.F., Tice, R.R., Behl, M.,
2016. Neurite outgrowth in human induced pluripotent stem cell-derived neurons as
a high-throughput screen for developmental neurotoxicity or neurotoxicity.
Neurotoxicology 53, 271-281.

Sachana, M., Bal Price, A., Crofton, K.M., Bennekou, S.H., Shafer, T.J., Behl, M.,
Terron, A., 2019, International regulatory and scientific effort for improved
developmental neurotoxicity testing. Toxicol. Sci. 167, 45-57.

Sachana, M., Willett, C., Pistollato, F., Bal-Price, A,, 2021. The potential of mechanistic
information organised within the AOP framework to increase regulatory uptake of
the developmental neurotoxicity (DNT) in vitro battery of assays. Reprod. Toxicol.
103, 159-170.

Schmidt, B.Z., Lehmann, M., Gutbier, S., Nembo, E., Neel, ., Smimova, L., Forsby, A.,
Hescheler, J., Avei, H.X., Hartung, T., Leist, M., Kobolak, J., Dinnyes, A., 2017. In
vitro acute and developmental neurotoxicity screening: an overview of cellular
platforms and high-throughput technical possibilities. Arch. Toxicol. 91, 1-33.

Schmuck, M.R., Temme, T., Dach, K., de Boer, D., Barenys, M., Bendt, F., Mosig, A.,
Fritsche, E., 2017, Omnisphero: a high-content image analysis (HCA) approach for
phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere
cultures in vitro. Arch. Toxicol. 91, 20172028,

Scholz, D., Poltl, D., Genewsky, A., Weng, M., Waldmann, T., Schildknecht, §., Leist, M.,
2011. Rapid, complete and large scale generation of post-mitotic neurons from the
human LUHMES cell line. J. Neurochem. 119, 957-971.

Sheets, L.P., Li, A.A., Minnema, D.J., Collier, R.H., Creek, M.R., Peffer, R.C., 2016.

A critical review of neonicotinoid insecticides for developmental neurotoxicity. Crit.
Rev. Toxicol. 46, 153-190.

Shinde, V., Hoelting, L., Srinivasan, S.P., Meisig, J., Meganathan, K., Jagtap, S.,
Grinberg, M., Liebing, J., Bluethgen, N., Rahnenfuhrer, J., Rempel, E., Stoeber, R,
Schildknecht, S., Forster, S., Godoy, P., van Thriel, C., Gaspar, J.A., Hescheler, J.,
Waldmann, T., Hengstler, J.G., Leist, M., Sachinidis, A., 2017. Definition of
transeriptome-based indices for quantitative characterization of chemically
disturbed stem cell development: introduction of the STOP-Toxukn and STOP-
Toxukk tests. Arch. Toxicol. 91, 839-864.

Simon, J.M., Paranjape, S.R., Wolter, J.M., Salazar, G., Zylka, M.J., 2019. High-
throughput screening and classification of chemicals and their effects on neuronal
gene expression using RASL-seq. Sci. Rep. 9, 4529,

Smirnova, L., Hogberg, H.T., Leist, M., Hartung, T., 2014. Developmental neurotoxicity -
challenges in the 21st century and in vitro opportunities. ALTEX 31, 129-156.



Manuscripts

J. Blum et al.

Spreng, A.S., Brull, M., Leisner, H., Suciu, L, Leist, M., 2022. Distinct and dynamic
transcriptome adaptations of iPSC-generated astrocytes after cytokine stimulation.
In: Cells 11.

Stiegler, N.V., Krug, A.K., Matt, F., Leist, M., 2011. Assessment of chemical-induced
impairment of human neurite outgrowth by multiparametric live cell imaging in
high-density cultures, Toxicol. Sci. 121, 73-87.

Strickland, J., Truax, J., Corvaro, M., Settivari, R., Henriquez, J., McFadden, J.,
Gulledge, T., Johnson, V., Gehen, 8., Germolec, D., Allen, D.G., Kleinstreuer, N.,
2022. Application of defined approaches for skin sensitization to agrochemical
produets. Front Toxicol 4, 852856.

Thomas, R.S., Paules, R.S., Simeonov, A., Fitzpatrick, S.C., Crofton, K.M., Casey, W.M.,
Mendrick, D.L., 2018. The US Federal Tox21 Program: a strategic and operational
plan for continued leadership. ALTEX 35, 163-168.

Tohyama, C., 2016. Developmental neurotoxicity test guidelines: problems and
perspectives. J. Toxicol. Sci. 41, SP69-SP79.

Tsuji, R., Crofton, K.M., 2012, Developmental neurotoxicity guideline study: issues with
methodology, evaluation and regulation. Congenital. Anom. 52, 122-128.

17

Chemosphere 311 (2023) 137035

Us Epa Ord, C.f.C.T., 2022. ToxCast Database: Invitrodb Version 3.5. The United States
Environmental Protection Agency’s Center for Computational Toxicology and
Exposure.

USEPA, 1998. Health Effects Test Guidelines OCSPP 870.6300 Developmental
Neurotoxicity Study. Washington, DC.

van Thriel, C., Westerink, R.H., Beste, C., Bale, A.S., Lein, P.J., Leist, M., 2012.
Translating neurobehavioural endpoints of developmental neurotoxicity tests into in
vitro assays and readouts. Neurotoxicology 33, 911-924.

Vinken, M., Benfenati, E., Busquet, F., Castell, J., Clevert, D.A., de Kok, T.M., Dirven, H.,
Fritsche, E., Geris, L., Gozalbes, R., Hartung, T., Jennen, D., Jover, R., Kandarova, H.,
Kramer, N., Krul, C., Luechtefeld, T., Masereeuw, R., Roggen, E., Schaller, §.,
Vanhaecke, T., Yang, C., Piersma, A.H., 2021. Safer chemicals using less animals:
kick-off of the European ONTOX project. Toxicology 458, 152846.

Worth, A.P., Balls, M., 2001. The importance of the prediction model in the validation of
alternative tests. Altern Lab Anim 29, 135-144.



Manuscripts

Blum & Masjosthusmann et al. (2022): In vitro battery for DNT testing

Supplementary information for

Establishment of a human cell-based in vitro battery
to assess developmental neurotoxicity hazard of

chemicals

Jonathan Blum"" Siefan Masjosthusmann®’, Kristina Bartmann’, Farina Bendl’, Xenia

Dolde’, Arif Dénmez?, Nils Forster?, Anna-Katharina Holzer!, Ulrike Hiibenthal?, Hagen Eike

Kefel?, Sadiye Kilic!, Jordis Klose?, Melanie Pahl?, Lynn-Christin Stiirzl?, Iris Mangas®,

Andrea Terron’, Martin Scholze®, Axel Mosig?, Marcel Leist"”", Ellen Fritsche®?”

“these authors contributed equally; °these authors contributed equally

Table of Contents

Fig. S1 Commented list of positive controls used in the [VB-EU

Fig. S2 Commented list of negative controls used in the IVB-EU

Fig. S3 Classifications of test compounds as hits and alerts

Fig. S4 Overview of biological pathways known to contribute to the
readouts of NAM used in the IVB-EU

Fig. S5 List of compounds that had only cytotoxic or no effects

Fig. S6 Screen hits of IVB-EU in comparison to ToxCast cytotoxicity
assays

Fig. S7 Numbers of compounds detected by each assay of the [IVB-EU
as being cytotoxic

References

Annex I ToxTemp NPC1

Annex I1 ToxTemp NPC2-5

AnnexIII  ToxTemp UKN2

Annex IV  ToxTemp UKN4

Annex V ToxTemp UKNS

page 2
page 3
page 4
page 5
page 6
page 7
page 8
page 9
page 10
page 39
page 70
page 91

page 119

page 1 (of 9)



Manuscripts

Blum & Masjosthusmann et al. (2022): In vitro battery for DNT testing

Positive controls (28) Group Reference Comments
1 |5,5-Diphenylhydantoin pharmaceutical drug [1] Anti-seizure medication.
2 |Acrylamide industrial chemical [2], [6] Generated also in processed food; known neurotaxicant.
3 |all-trans Retinoic acid signalling molecule [1] Morphogen involved in brain development. Human evidence. Vitamin A metabolite.
4 |Cadmium chloride heavy metal 1], 3] DNT evidence based on animal and human data.
5 |Chlorpromazine pharmaceutical drug [1] First generation neuroleptic; multiple receptor inhibitions
6 [Chlorpyrifos pesticide [1], [8] Inhibitor of AChE. Evidence for DNT in humans.
7 |Deltamethrin pesticide 4], [6] DNT evidence (including gical human ies) summarized by EFSA panel 2021.
8 |Dexamethasone pharmaceutical drug [1] Glucocorticoid
9 |Damoic acid environmental 1], [7] ‘Causes shellfish poisoning. DNT evidence from animal studies.

10|Haloperidol pharmaceutical drug [1] First generation neuroleptic; multiple receptor inhibitions
11|Hexachlorophene industrial/pesticide [1] Human evidence. Disinfectant.

12|() Ketamine pharmaceutical drug [1] NMDA receptor antagonist.

13 |Lead (Il) acetate heavy metal [1], [5] Human evidence.

14|Maneb pesticide [1] Thiourea fungicide containing manganese.

15|Manganese (ll) chloride metal 1], [8] Human evidence.

16 |Methylazoxymethanol environmental [1] Targets neuroblasts in CNS. Used in animal models to induce disease phenotypes.
17 |Methylmercury chloride metals 1], [5] Human evidence.

18 |Nicotine environmental 111, [9]

Agonist of nAChRs. Human evidence.

19|Paraquat dichloride hydrate |pesticide [1] Herbicide. Linked to development of Parkinson's disease.

20|PBDE 47 industrial chemical [1], [8] Bromoaromatic flame retardant.

21|PBDE 99 industrial chemical 1], [8] icflame d;

22|PFOA industrial chemical [1] Used as industrial surfactant. Perfluorinated carboxylic acid.

23 (PFOSK industrial chemical [1] Used as industrial surfactant. Perfluorinated sulfonic acid.

24|Sodium valproate pharmaceutical drug [1] Human evidence. Used to treat epilepy and bipolar disorders.

25 |Tebucaonazole pesticide [6] Triazole fungicide.

26 | Tributyltin chloride industrial chemical 61 ‘Organotin compound. Inhibitor of mitochondrial ATP synthase.

27 |Trichlorfon pesticide [6] Inhibitor of AChE. Pradrug, which is activated non-enzymatically into dichlorvos (DDVP).
28|Triethyltin b id. i [1] Neurotoxic organotin. Toxic to myelin.

Fig. S1: Commented list of positive controls used in the IVB-EU

A rough functional grouping of the 28 chemicals used as positive controls is provided. Details
on the compounds (CAS-number, full name, abbreviation, etc.) are provided in the suppl. Excel
sheet. The reference column indicates the source of information used for classification of the
compounds as positive controls. [l1] Aschner et al. (2017); [2] Chain (2015);
[3] Chandravanshi et al. (2021); [4] EFSA PPR Panel (2021); [5] Grandjean and Landrigan
(2014); [6] Mundy et al. (2015); [7] Costa et al. (2010); [8] Grandjean and Landrigan (2006);
[9] LeSage et al. (2006). Full citations are found in the references chapter of this suppl.
document.
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Negative controls (17) Group Comments
1 |Acetaminophen* drug Pain medication during pregnancy.
2 |Amoxicillin* antibiotic Used to treat infections during pregnancy.
3 |Aspirin drug Prescribed against pre-eclampsia.
4 |Buspirone drug Anxiolytic
5 |Chlorpheniramine drug Antihistamine
6 |D-Glucitol* sugar derivative |Converted in body to fructose.
7 |Diethylene glycol* solvent Metabolite ethylen glycol is toxic at high conc.
8 |D-Mannitol* sugar derivative |Sweetener
9 |Doxylamine drug Antihistamine
10 |[Famotidine drug Histamine H2-receptor antagonist (anti-ulcer).
11 |Ibuprofen® drug Pain medication; COX-inhibitor.
12 |Metformin drug Type 2 diabetes medication.
13 |Metoprolol* drug B-receptor blocker
14 |Penicillin antibiotic Used to treat bacterial infections.
15 |Saccharin* food additive Sweetener
16 |Sodium benzoate food additive Antioxidant
17 |Warfarin* drug Reproductive toxicant, but not DNT.

Fig. S2: Commented list of negative controls used in the IVB-EU

A rough functional grouping of the 17 chemicals used as negative controls is provided. Details
on the compounds (CAS-number, full name, abbreviation, etc. ) are provided in the suppl. Excel
sheet. Note that the negative classification refers not only to the compounds as such, but to the
compounds used in a concentration range of up to 20 puM. In this range, literature data, and
often clinical use suggest the absence of effects or of mechanisms relevant to DNT. *: suggested
as negative control in Aschner et al. (2017).
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Fig. S3: Classifications of test compounds as hits and alerts

For each compound and each assay, two sets of concentration-response data were produced,
one for the main functional endpoint of the NAM (e.g. migration, proliferation, neurite growth
or differentiation) and one for the viability of the test system used. Summary data (e.g. the
benchmark concentration (BMC) and its confidence interval) were produced from both data
sets and used for classification of compounds. (A) Example of a data set on a functional
endpoint. In each assay, a benchmark response (BMR) was defined (see ToxTemps annexes)
as threshold between effect and no effect. The intersection of the BMR with the concentration-
response curve defined the BMC. The uncertainty of the BMC was expressed by a confidence
interval with the BMCL as lower limit and the BMCU as upper limit,, BMC (A), BMCL(A)
and BMCU(A) are the specific values of the example curve A. (B) Example of a data set on a
viability endpoint. In each assay, a benchmark response (BMR) was defined as threshold
between effect and no effect. Note that BMRs are assay-specific. BMC(B), BMCL(B) and
BMCU(B) are the specific values of the example curve B. (C) An example is given for a data
set for a compound that would be considered a screen hit: the BMC(A) and BMC(B) are
separated by a large extent. For compounds with less separation, a borderline classification
would result. Cytotoxic compounds would show no separation. Inactive compounds would have
no responses. (D) Quantitative classification scheme according to the principle described
qualitatively in (C): specific hits (hits), borderline hits (brdl) and cytotoxic hits (cytotoxic)
would all be considered as “alerts”. They can be grouped in different ways for hit definitions
and statistics (Fig. 4). The definitions are given for all assays (UKN = UKN2, UKN4, UKNS5;
NPC = NPC1-5) according to the respective assays’ ToxTemp description. *UKN assays are
defined by ratios between summary data for functional endpoint and viability. A ratio of three
is indicated here exemplarily and applies to the UKNS test. Other ratios are part of the prediction
models of UKN2 and UKN4.
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Fig. S4: Overview of biological pathways known to contribute to the readouts of NAM
used in the IVB-EU

During the setup and readiness evaluation of the assays, pathway specific “tool compounds”
were tested and evaluated for their effect on the test endpoint. These compounds are mostly
pharmacological inhibitors or activators of enzymes/receptors/transporters with high specificity
for their target. When they effected the test endpoint, it was assumed that the pathway or
biochemical mechanism affected by these compounds played a role in the test system, so that
it affected the overall readout. For instance, if modulators of the Rho/ROCK signaling cascade
affected a test endpoint, it was concluded that toxicants that regulate this pathway would also
be detected (displayed by bars on top of the assay name). If modulators of a pathway/target did
not affect a test endpoint, it was concluded that a toxicant affecting the respective target or
pathway would not be detected by the test (bars below the assay name). In many cases, pathway
modulation was only tested in one direction (e.g. only inhibitors of the electron transport chain
or only activators of the wnt pathway). This leaves open whether opposite modulator would
also have an effect. For such details, original publications, (IKoch et al., 2022) and
(Masjosthusmann et al_, 2020) give more details. Abbreviations of receptors are given in the
figure. Notch: notch signalling pathway; COX-2: cyclooxygenase-2; CREB: cAMP response
element-binding protein; mTOR: mammalian target of rapamycin; AKT: protein kinase B;
ETC: electron transport chain; PKC: protein kinase C; HDAC: histone deacetylase;
SRC: proto-oncogene tryosin-protein kinase Src; NO-cGMP: nitric oxide-cGMP sensitive
kinase; ROCK: Rho-associated protein kinase; JNK: c-Jun N-terminal kinases; shh: sonic
hedgehoc protein; AChE: acetylcholinesterase; PARP: Poly (ADP-ribose) polymerase;
MAPK; mitogen-activated protein kinase; DA: dopamine; NAv: voltage gated sodium channel;
WNT: wnt signaling; JAK-STAT: JAK-STAT signaling pathway; cGMP: cGMP-related signal
transduction; cAMP: cAMP- related signal transduction
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A

Viability assays
NPC2a [NPC2-5

Compound UKN2 | UKN4 | UKN5 | NPC1 | [72 h] [[120 h]

Buspirone BMR nr*

Ethylene Thiourea J

Flufenacet

Glycerol BMR nr*

Malaoxon

Mancozeb BMR nr*

Omethoate

Parathion-methyl :—

Perfluorooctanoic acid

Tri-allate
B compound category compound category
1 |(-)-Nicotine positive control 27 |Famotidine negative control
2 |(+)-Ketamine hydrochloride positive control 28 id screening compound
3 |5,5-Diphenylhydantoin positive control 129 |lbuprofen negative control
4 |Acephate screening compound 30 [imidacloprid screening compound
5 |Acetaminophen negative control 31 |Mepiquat chloride screening compound
6 |Acetamiprid screening compound 32 |Metformin inegative control
7 |Aldicarb screening compound 33 |Methamidoph screening compound
18 |Amoxicillin negative control 34 |Methi I screening compound
[9 |Aspirin negative control 35 |Metoprolol inegative control
10 [Bis-(2-butoxyethyl)phosphate |screening compound 36 [Octamethylcyclotetrasiloxane screening compound
11 |Boscalid screening compound 37 |Penicillin VK inegative control
12 |Captopril screening compound 38 |Pymetrozine screening compound
13 |[Chlorpheniramine maleate negative control 39 [Saccharin negative control
14 |[Chlorpyrifos-methyl screening compound | |40 iSodium benzoate negative control
15 |Cymoxanil screening compound 141 ISodium chlorite screening compound
16 |Cypermethrin screening compound | [42 [Sodium L-glu hydrate screening compound
17 |D-Glucitol negative control 43 [sodium perchlorate screening compound
18 |Diazinon screening compound 144 [Spirodiclofen screening compound
19 |Diethylene glycol negative control 145 [Tembotrione screening compound
20 |Dimethoate screening compound 146 [Terbutaline hemisulfate screening compound
21 |Dinotefuran screening compound 147 [Thi h screening compound
22 |Disulfoton screening compound 148 [Topramezone screening compound
23 |D-Mannitol negative control 149 [Tris(2-Chloroisopropyl)phosphate |screening compound
24 |Domoic acid positive control 50 [Tris(chloroethyl)phosphate screening compound
25 |Doxylamine succinate negative control 51 [Warfarin inegative control
26 |Etofenprox screening compound

Fig. S5: List of compounds that had only cytotoxic or no effects

Based on the screen results, all 61 compounds were selected that produced no specific hit on
any of the assays (no functional endpoint affected at non-cytotoxic concentrations). (A) Ten
compounds were found to be cytotoxic in at least one assay. The table lists the viability
assessment belonging to the mentioned functional assays (e.g. UKN2 means the viability assay
run within the functional testing of UKN2 and thus assessing effects on neural crest cells as test
system). The cytotoxic potency is given in units of —log(M). BMR nr*: the concentration-
response curve did not cross the BMR (defined in this assay at 75% for hit classification). But
compounds reduced viability by more than 10%, which is defined in this assay as cytotoxicity
alert. Therefore, compounds have no BMC value according to the classification scheme, but
are still cytotoxic according to the assays own prediction model (at the highest screen
concentration). (B) List of all 51 compounds that were neither cytotoxic nor produced any other
alert across the [IVB-EU.
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Fig. S6: Screen hits of IVB-EU in comparison to ToxCast cytotoxicity assays

Screen hits (see Fig. 5 for all screen hits and abbreviations) are compared to the cytotox lower
bound (CBL) across all ToxCast cytotoxicity assays extracted from the EPA ToxCast Screening
Library (https://comptox.epa.gov/dashboard/chemical-lists/toxcast). The CBL is calculated as
3-times the median absolut deviation below the median of all hits across the set of ToxCast
cytotoxicity assays for each compounds with at least 2 cytotoxicity hits (Judson et al., 2016).
Compound with less than 2 hits are left out. (A) Cytotoxic concentrations of all screen hits
across the IVB-EU are compared to the CBL. Compounds are sorted by their cytotoxicity
potency in the IVB-EU. The lower eight compounds have no cytotoxicity hit in the [VB-EU.
(B) Screen hits of specific test endpoints (i.e. migration, differentiation, proliferation, neurite
outgrowth) across the IVB-EU are compared to the CLB. Compounds are sorted according to
the potency of their most sensitive endpoint. All data is given in log(M).
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Fig. S7: Numbers of compounds detected by each assay of the IVB-EU as being cytotoxic

The screen was performed and hits were identified as detailed in Fig. S3. The number of
cytotoxic hits (out of 120 screen compounds) is indicated for each assay of the battery, and for
the total IVB-EU (most leftward bar). The number of specific hits and of borderline hits can be
seen in Fig. 6.
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Aufgrund ihrer neurologischen Entwicklungstoxizitat sind Flammschutzmittel (flame retardants; FRs)
wie z.B. polybromierte Diphenylether verboten und durch alternative FRs wie z.B. Organophosphate
ersetzt worden, deren toxikologisches Profil jedoch meistens unbekannt ist. Um ihre neurologische
Entwicklungstoxizitat einzuschatzen, haben wir diesbeziglich das Gefahrdungspotential mehrerer FRs
untersucht. Das verwendete Testset umfasste hierbei ausgemusterte polybromierte FRs und
Organophosphate: 2,2'4,4'-Tetrabromdiphenylether (BDE47), 2,2'4,4',5-Pentabromdiphenylether
(BDE-99), Tetrabromobisphenol A, Triphenylphosphat, Tris(2-butoxyethyl)phosphat und dessen
Metabolit Bis-(2-butoxyethyl)phosphat, Isodecyl diphenyl phosphat, Isopropyliertes
Triphenylphosphat, Trikresylphosphat, Tris(1,3-Dichlor-2- propyl)phosphat, Tert-Butylphenyl diphenyl
phosphat,  2-Ethylhexyldiphenylphosphat,  Tris(1- chlorisopropyl)phosphat  und  Tris(2-
chlorethyl)phosphat. Hierflir verwendeten wir eine human basierte DNT in vitro Testbatterie, die eine
Vielzahl von Endpunkten der neurologischen Entwicklung abdeckt. Die Potenz gemaR der jeweils
empfindlichsten Benchmark-Konzentration (BMC) {iber die Batterie hinweg lag im Bereich von <1 pM
(5 FRs), 1 < 10 uM (7 FRs) bis zum Bereich von > 10 uM (3 FRs). Die Datenauswertung zur Priorisierung
mit dem ToxPi-Tool ergab eine andere Rangfolge a) als mit den BMC Werten und b) im Vergleich zu
den ToxCast-Daten, was darauf hindeutet, dass die DNT-Gefahr dieser FRs durch ToxCast-Assays nicht
gut vorhergesagt wird. Die Extrapolation der BMC Werte ausgehend von der DNT in vitro Batterie auf
die FRExposition des Menschen lediglich tber die Muttermilch deutet auf ein eher geringes Risiko fiir
einzelne Verbindungen hin. In Anbetracht der Tatsache, dass der Mensch jedoch Gemischen
ausgesetzt ist, kann dies dennoch zu einem Risiko flihren, insbesondere wenn verschiedene
Chemikalien durch unterschiedliche Wirkmechanismen an gemeinsamen Endpunkten wie der
Oligodendrozytendifferenzierung konvergieren. Diese FRs Fallstudie legt nahe, dass eine auf
menschlichen Zellen basierende DNT in vitro Batterie ein vielversprechender Ansatz fiir die
entwicklungsneurologische Gefahreneinschatzung und die Priorisierung von Verbindungen bei der

Risikobewertung darstellt.
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Abstract Due to their neurodevelopmental toxicity,
flame retardants (FRs) like polybrominated diphenyl ethers
are banned from the market and replaced by altemative
FRs, like organophosphorus FRs, that have mostly un-
known toxicological profiles. To study their
neurodevelopmental toxicity, we evaluated the hazard of
several FRs including phased-out polybrominated FRs and
organophosphorus FRs: 2,2 4.4"-tetrabromodiphenylether

Highlights

+ A human DNT in vitro testing battery was applied for assessing
hazards of phased-out and alternative flame retardants (FR) for
prioritization.

* Oligodendrocyte development was identified as a common key
event for FR-induced DNT in vitro.

* Multiple modes-of-action seem to contribute to oligodendrocyte
toxicity.

« Prioritization of FRs according to the DNT in vitro battery differs
from FRs ranking using ToxCast assays.
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phosphate. Therefore, we used a human cell-based devel-
opmental neurotoxicity (DNT) in vitro battery covering a
large variety of neurodevelopmental endpoints. Potency
according to the respective most sensitive benchmark con-
centration (BMC) across the battery ranked from <1 pM (5
FRs), 1<10 uM (7 FRs) to the >10 uM range (3 FRs).
Evaluation of the data with the ToxPi tool revealed a
distinct ranking (a) than with the BMC and (b) compared
to the ToxCast data, suggesting that DNT hazard of these
FRs is not well predicted by ToxCast assays. Extrapolating
the DNT in vitro battery BMCs to human FR exposure via
breast milk suggests low risk for individual compounds.
However, it raises a potential concern for real-life mixture
exposure, especially when different compounds converge
through diverse modes-of-action on common endpoints,
like oligodendrocyte differentiation in this study. This case
study using FRs suggests that human cell-based DNT
in vitro battery is a promising approach for
neurodevelopmental hazard assessment and compound
prioritization in risk assessment.

Keywords Developmental neurotoxicity - Flame
retardants - Human cell-based testing battery - 3D in vitro
model - New approach methodologies - Hazard
assessment

Introduction

Flame retardants (FRs) inhibit or delay the spread of fire by
suppressing chemical reactions in the flame or by forming
a protective layer on the material surface (Damerud et al.
2001). They are used in commercial products, such as
electronics, furniture, and textiles. Since the 1970s,
polybrominated diphenyl ether (PBDEs) had been in use
as FRs. However, due to their accumulation in environ-
mental samples, house dust, food, animal and human
tissues (Damnerud et al. 2001; De Wit 2002; Law et al.
2014) and their adversity for human health, particularly
neurodevelopment (Chao et al. 2007; Roze et al. 2009; Shy
et al. 2011; Eskenazi et al. 2013), the European Commis-
sion and the U.S. Environmental Protection Agency (US
EPA) caused a phase out of PBDEs in 2004 (Blum et al.
2019). Despite their market ban, they are still present in the
environment (Yogui and Sericano 2009; Ma et al. 2013;
Law et al. 2014). With the phasing out, PBDEs were
replaced by presumably safer and less persistent alterna-
tive FRs (aFRs), including organophosphorus FRs
(OPFRs). Several aFRs were released onto the market,

@ Springer

although their kinetics and toxicities, specifically their
neurodevelopmental hazards, have not been sufficiently
investigated. Available data on the physico-chemical
properties, environmental persistence, bioaccumulation,
and toxicity of a subset of aFRs recently displayed large
data gaps (van der Veen and de Boer 2012; Bergman
et al. 2012; Waaijers et al. 2013). Similar to PBDEs,
there has been growing evidence of widespread exposure
to aFRs, as they were found in house dust, furniture
foam, and baby articles (Stapleton et al. 2009; Sugeng
et al. 2017), as well as in hand wipes and urine samples
of children (Stapleton et al. 2014; Mizouchi et al. 2015;
He et al. 2018a, b; Bastiaensen et al. 2019a). In general,
children and especially toddlers are highly exposed to-
wards FRs as they frequently spend their time close to
the floor and exercise children-specific mouthing behav-
ior (Fischer et al. 2006; Toms et al. 2009; Sugeng et al.
2017). Due to this high exposure and the fact that the
developmental nervous system is a sensitive target organ
for many FRs and organophosphorus pesticides (Muiioz-
Quezada et al. 2013), which are structurally similar to
OPFRs, it is essential to assess the developmental neu-
rotoxicity (DNT) potential of aFRs (Hirsch et al. 2017).

Current DNT testing follows the in vivo guideline
studies OECD 426 (OECD 2007) or EPA 870.6300
(EPA 1998) performed with rats. These studies are highly
demanding with regard to time, money, and animals (Lein
et al. 2005; Crofton et al. 2012) and are not suited for large
scale DNT testing. Further limitations include their high
variability and lack of reproducibility, as well as the un-
certainty of extrapolation from animals to humans (Tsuji
and Crofton 2012; Terron and Bennekou Hougaard 2018;
Sachana et al. 2019). Therefore, regulators, academic, and
industrial scientists recently agreed on a need for a new
testing strategy to assess the DNT potential of chemicals
(Crofton et al. 2014; Bal-Price et al. 2015; Fritsche et al.
2018b). A mechanistically informed, fit-for-purpose,
human-relevant in vitro DNT test battery was suggested
that covers different neurodevelopmental processes and
stages (Andersen 2003; Bal-Price et al. 2018) and allows
a faster and cheaper evaluation of substances for their DNT
potential (EFSA 2013; Bal-Price et al. 2015, 2018; Fritsche
et al. 2015, 2017, 2018a).

In this study, human-induced pluripotent stem cell
(hiPSC)—derived neural crest cells (NCC), lund human
mesencephalic cells (LUHMES), 3D human primary
neural progenitor cell (NPC)-based neurospheres, as
well as hiPSC-derived peripheral neurons were applied
to study distinct neurodevelopmental key events (KEs)
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in vitro. These KEs include NPC proliferation
(NPC1), NCC (¢cMINC/UKN2), radial glia (NPC2a),
neuronal (NPC2b) and oligodendrocyte (NPC2c) mi-
gration, differentiation into neurons (NPC3), neurite
morphology (NPC4, NeuriTox/UKN4, PeriTox/
UKNS), and oligodendrocyte differentiation (NPCS5;
Baumann et al. 2016; Barenys et al. 2017; Schmidt
et al. 2017; Fritsche et al. 2018a; Masjosthusmann
et al. 2018; Nimtz et al. 2019; Krebs et al. 2020b).
These assays comprise a current DNT in vitro testing
battery that was recently assembled to test 119 com-
pounds (e.g., carbamates, metals, neonicotinoids, or-
ganochlorines/fluorines, and organophosphates pyre-
throids) for regulatory purposes. Using selected
known human DNT positive and negative com-
pounds as benchmark, this battery performed with a
sensitivity of 100% and a specificity of 88%
(Masjosthusmann et al. 2020).

To study the neurodevelopmental hazard of FRs,
we analyzed their adverse effects on the endpoints of
this battery of human neurodevelopmental assays.
FRs used include a set of phased-out and currently
in use compounds. The phased-out FRs are PBDEs
2,2',4,4'-tetrabromodiphenylether (BDE-47) and
2,2'4,4',5-pentabromodiphenylether (BDE-99), while
the current-use FRs include the organophosphorus
FRs (OPFRs), such as triphenyl phosphate (TPHP),
tris (2-butoxyethyl) phosphate (TBOEP) and its me-
tabolite bis-(2-butoxyethyl) phosphate (BBOEP),
isodecyl diphenyl phosphate (IDDPHP), triphenyl
isopropylated phosphate (IPPHP), tricresyl phosphate
(TCP), tris (1,3-dichloro-isopropyl) phosphate
(TDCIPP), tert-butylphenyl diphenyl phosphate (t-
BPDPHP), tri-O-cresyl phosphate (TOCP), 2-
ethylhexyl diphenyl phosphate (EHDPHP), tris (1-
chloro-isopropyl) phosphate (TCIPP), and tris (2-
chloroethyl) phosphate (TCEP), as well as the bromi-
nated FR Tetrabromobisphenol A (TBBPA)
(Table S1). The in vitro data were related to hazard-
ous doses by toxicokinetic considerations. Moreover,
such data were compared to potential exposure situa-
tions. Relating the phenomics of the in vitro methods
to molecular signatures, we performed RNA sequenc-
ing analyses. This approach represents a case study
for a new risk assessment paradigm for DNT by
using phenotypic readouts of human cell-based as-
says that cover a variety of neurodevelopmental end-
points and studying their molecular signatures in re-
sponse to different FRs.

Material and methods
Chemicals

TBBPA, BDE-99, TCEP, TPHP, TOCP, and TBOEP
(for NPC assays) were purchased from Sigma-Aldrich
and were dissolved as 50 mM and 20 mM stocks in
dimethyl sulfoxide (DMSO; Carl Roth GmbH). The
metabolite BBOEP (1500 ng/uL in Methanol) was cus-
tom synthesized by Dr. Vladimir Belov (Max Planck
Institute, Gottingen, Germany) with a purity > 98% as
measured by MS and NMR techniques. The FRs
TCIPP, t-BPDPHP, and EHDPHP were obtained from
ToxCast and are diluted in DMSO with stock concen-
tration of 20 mM. All other flame retardants IDDPHP,
IPPHP, TCP, TDCIPP, BDE-47 (for NPC assays) as
well as TBBPA, BDE-47, BDE-99, TCEP, TPHP,
IDDPHP, IPPHP, EHDPHP, t-BPDPHP, and TCP (for
UKN assays) were provided by M. Behl from the Na-
tional Toxicology Program, and stock solutions of
20 mM in DMSO were prepared. Solvent concentra-
tions were 0.1% DMSO and 0.4% MeOH for BBOEP in
dose-response experiments.

Cell culture

Human NPCs (hNPCs) from three different individuals
(gestational week 16-19) were purchased from Lonza
Verviers SPRL, Belgium. They were thawed and isolat-
ed as previously described (Baumann et al. 2016).
hNPCs were cultured as free floating neurospheres in
proliferation medium consisting of DMEM (Life Tech-
nologies) and Hams F12 (Life Technologies) (3:1) sup-
plemented with 2% B27 (Life Technologies), 20 ng/mL
EGF (Thermo Fisher), FGF (R&D Systems), and 1%
penicillin and streptomycin (Pan-Biotech).
Neurospheres were cultivated at 37 °C with 5% CO,,
passaged mechanically with a tissue chopper
(MclIwain) once a week and thrice a week half of the
medium was replaced.

For the cMINC assay (UKN2), NCCs are differenti-
ated from the hiPSC line IMR90 clone #4 (WiCell,
Wisconsin) by plating cells on Matrigel-coated 6-well
plates (Falcon) at a density of 50000 cells/cm?. One day
prior differentiation, cells are cultivated in essential &
(E8) medium (DMEM/F12 supplemented with 15 mM
Hepes, 16 mg/mL L-ascorbic-acid, 0.7 mg/mL sodium
selenite, 20 pg/mL insulin, 10 pg/mL holo-transferrin,
100 ng/mL bFGF, 1.74 ng/mL TGFb) containing
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10 pM Rock inhibitor. Until 11 days in vitro (DIV),
cells receive KSR medium (knock out DMEM, 15%
knock out serum replacement, 1% GlutaMax, 1% MEM
NEAA solution, 50 uM 2-mercaptoethanol) which is
gradually replaced by 25% increments of N2-§ medium
(DMEM/F12, 1.55 mg/mL glucose, 1% GlutaMax, 0.1
mg/mL apotransferrin, 25 pg/mL insulin, 20 nM pro-
gesterone, 100 uM putrescine, 30 nM selenium). From
—1 DIV to 11 DIV, cells are cultured at 37 °C with 5%
CO; and a daily medium change was performed. From 0
DIV to 2 DIV, medium is supplemented with 20 ng/mL
Noggin. From 0 DIV to 3 DIV, it is supplemented with
10 uM SB431542 and from 2 DIV to 11 DIV with 3 uM
CHIR 99021. After 11 DIV, cells are detached and
resuspended in N2-S medium supplemented with 20
ng/mL EGF and 20 ng/mL FGF2 and seeded as droplets
(10 pL) on poly-L-ornithine (PLO)/laminin/fibronectin-
coated 10-cm dishes. Until 39 DIV, cells are expanded
by weekly splitting in N2-S medium supplied with EGF
and FGF2 and a medium change is performed every
other day. On 39 DIV, cells are detached, resuspended
in freeze medium (FBS with 10% DMSQ), and frozen at
a concentration of 4x10° cells per mL at —80 °C over-
night. After 24 h, cells are stored in liquid nitrogen until
further use.

For the NeuriTox assay (UKN4), LUHMES cells are
cultured and handled as described before (Lotharius et al.
2005; Scholz et al. 2011; Krug et al. 2013a). They are
maintained in proliferation medium (PMed; AdvDMEM/
F12 supplemented with 2 mM glutamine, 1 x N2 sup-
plement and 40 ng/mL FGF) at 37 °C with 5% CO,. Cells
are passaged every second or third day when reaching
approximately 80% confluency. For pre-differentiation,
8x10° (45000 cells/cmz) cells are seeded one day before
in PMed. Differentiation is started by switching to differ-
entiation medium (DMed; AdvDMEM/F12 supplement-
ed with 2 mM glutamine, 1 x N2 supplement, 2.25 pM
tetracycline, 1 mM dibutyryl cAMP and 2 ng/mL
GDNF).

For the PeriTox assay (UKNS), sensory neurons are
differentiated from the hiPSC line SBAD2, which was
derived and characterized at the University of Newcastle
from Lonza fibroblasts CC-2511, Lot 293971 with the
tissue acquisition number 24245 (Baud et al. 2017).
Culturing, handling, and differentiation are performed
according to standard protocols (Thomson et al. 1998;
Chambers et al. 2013; Hoelting et al. 2016). Generation
of sensory neurons is started on —2 DIV by
resuspending hiPSCs in E8 medium containing 10 uM

@ Springer

Rock inhibitor Y-27632. After replating cells at a den-
sity of 55000 cells/cm® on Matrigel coated 6-well plates
(Falcon), a daily medium change is performed from —1
DIV until 10 DIV. E8 medium supplemented with rock
inhibitor (10 pM) is refreshed on —1 DIV. On 0 DIV,
neural differentiation is initiated and until 10 DIV cells
receive KSR medium which is, from 4 DIV onward,
gradually replaced by 25% increments of N2-S medium.
Until 4 DIV medium is supplied with 35 ng/mL Noggin,
600 nM dorsomorphin and 10 pM SB431542 to initiate
neutralization via dual-SMAD inhibition. From 2 DIV
to 10 DIV, three further pathway inhibitors are added
(1.5 uM CHIR99021, 5 uM SUS5402, and 5 pM
DAPT). On 10 DIV, cells are detached, resuspended in
freeze medium (FBS with 10% DMSQ) and frozen at a
concentration of 8x10° cells per mL at —80 °C over-
night. After 24 h, cells are stored in liquid nitrogen until
further use.

The “neurosphere assay”™—NPC1-5

hNPCs were chopped to 0.2 mm 2-3 days before plating
to reach a defined size of 0.3 mm. Each compound was
tested in serial dilution (1:3) with 7 concentrations and a
solvent control (SC) plated in five replicate wells per
condition in 96-well plates (proliferation U-bottom, Fal-
con; differentiation flat bottom, Greiner). Each well
contained one sphere in 100 uL of the respective medi-
um and FR/solvent(s) (proliferation medium (descrip-
tion in “Cell culture”); differentiation medium
consisting of DMEM (Life Technologies), Hams F12
(Life Technologies) 3:1 supplemented with 1% of N2
(Life Technologies) and 1% penicillin and streptomycin
(Pan-Biotech)). The 1:3 solution series and plate filling,
LDH, CTB, and feeding step were performed automat-
ically by STARIlet 8 ML pipette robot system
(MICROLAB STAR® M; Hamilton).

Proliferation

The proliferation by area (NPC1a) was assessed as slope
of the increase in sphere size up to 3 DIV (0 h, 24 h, 48
h, and 72 h) measured by brightfield microscopy and
using high content imaging (Cellomics Scan software,
Version 6.6.0; Thermo Fisher Scientific). Proliferation
by bromodeoxyuridine (BrdU; NPC1b) was analyzed
after 3 DIV via a luminescence-based BrdU Assay
(Roche) as previously published in Nimtz et al. (2019).
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Immunocytochemical stainings

By plating neurospheres into 100 uL differentiation me-
dium on a poly-D-lysine (0.1 mg/mL, Sigma-Aldrich) and
laminin (12.5 pg/mL, Sigma-Aldrich)-coated 96-well
plate (flat bottom, Greiner), spheres settle down and NPCs
migrate radially out of the sphere core concurrently differ-
entiating, into radial glia, neurons, and oligodendrocytes.
After 5 days of migration and differentiation, human
neurospheres were fixed with 4% paraformaldehyde
(PFA, Merck) for 30 min at 37 °C and directly afterwards
washed three times for 3 min with 250 pL. PBS
(Biochrom) before stored at 4 °C until staining. Cells were
always covered with 40 uL PBS, and for staining, 10 uL
blocking solution (PBS, 50% Goat Serum (GS, Sigma-
Aldrich) and 5% Bovines Serum Albumin (BSA, Serva
Electrophoresis)) per well was added and incubated for
15 min at 37 °C. After removal of 10 pL, cells were
stained overnight at 4 °C with 10 pL mouse IgM oligo-
dendrocyte O4 antibody solution 1:400 (in PBS with 10%
GS and 1% BSA; R&D System) followed by three 3-min
washing steps by addition and removal of 250 uL PBS.
After the last washing step, 260 uL was removed and 10
pL secondary antibody solution in PBS (1:400 Alexa
Fluor 488 anti-mouse IgM (Life Technologies), 10%
GS, 5% BSA) was added for 30 min at 37 °C. After
washing steps as previously described, cells were fixed a
second time for 30 min at 37 °C in 4% PFA, followed by
three 3-min washing steps and permeabilization in 0.5%
PBS-T for 5 min at room temperature. Afterwards, cells
were blocked for 15 min at 37 °C with 10 uL. PBS, 50%
Rabbit Serum (RS, Sigma-Aldrich), and 5% BSA. For
neuronal staining, neurospheres were incubated for 1 h at
37 °C with 10 pL conjugated rabbit TUBB3 674 antibody
(Abcam) 1:400 (in PBS with 10% RS, 1% BSA, and 5%
Hoechst 33258 (Sigma-Aldrich)). After three additional 3-
min washing steps, 250 uL PBS was added to each well
and the plates were stored in the dark at 4 °C. Images of
immunochemical stainings of three channels (386 nm for
Hoechst stained nuclei, 647 nm for B(IIDtubulin stained
neurons, 488 nm for O4 stained oligodendrocytes) were
acquired with a 200-fold magnification and a resolution of
552552 pixel using the HCS Studio Cellomics software
(version 6.6.0; Thermo Fisher Scientific).

Migration and differentiation

Radial glia migration distance (72 h, NPC2a) was ana-
lyzed by manual measurement of the radial migration

from the sphere core on brightfield images as number of
pixels which is converted to micrometers. After 120 h, it
is assessed by automatically identifying (Schmuck et al.
2016) the migration area of each sphere of Hoechst
stained nuclei on fluorescence images. The migration
distance of neurons (NPC2b) and oligodendrocytes
(NPC2c¢) is defined as mean distance of all neurons/
oligodendrocytes within the migrations area divided by
radial glia migration distance after 120 h. The differen-
tiation into neurons (NPC3) and oligodendrocytes
(NPC5) is determined as number of all B(III)tubulin
and O4-positive cells in percent of the total amount of
Hoechst-positive nuclei in the migration area and is
performed automatically using two convolutional neural
networks (CNN) based on the Keras architecture imple-
mented in Python 3, which were trained to identify both
cell types. All neurons that were identified in NPC3 are
analyzed for their morphology (NPC4) by characteriz-
ing the neurite length (in um) and area (amount of
pixel). Detection of migration (120 h, NPC2) and mor-
phological analysis (NPC4) is calculated automatically
by high-content image analysis (HCA) tool Omnisphero
(Schmuck et al. 2016). Migrating/differentiating
neurospheres were exposed to FRs/solvent(s) for 5 days.
On day 3, half of the exposure/solvent medium was
exchanged and the supernatant was used to detect cyto-
toxicity by measuring lactate dehydrogenase (LDH)
leakage.

“cMINC assay” UKN2

NCCs were thawed and seeded into 96-well plates in
N2-S medium containing FGF2 and EGF according to
the previously published protocol (Nyffeler et al. 2017).
Cells were seeded around stoppers to create a circular
cell-free area and after 24 h stoppers were removed to
allow cell migration. One day later, cells were exposed
to FRs/solvent(s) for 24 h. The number of migrated cells
into the cell free zone was quantified 48 h after stopper
removal and 24 h after treatment. Cells were stained
with Calcein-AM and Hoechst-33342 (H-33342), and
high content imaging was performed. Four images for
migration were taken to cover the region of interest
(ROI) using a high content imaging microscope
(Cellomics ArrayScanVTI), and Calcein and H-33342
double-positive cell numbers were determined by an
automated algorithm (RingAssay software;
http://invitro-tox.uni-konstanz.de). For viability, four
fields close to the well borders, i.e., outside the ROI,
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were imaged. Viable cells were defined by double-
positivity for H-33342 and calcein and determined by
an automated algorithm as described before (Nyffeler
et al. 2017). TBBPA, BDE-47, BDE-99, IDDPHP,
TCP, t+-BPDPHP, and EHDPHP were tested in serial
dilution (1:2) with 6 concentrations and SC, while
TPHP and IPPHP were tested with 5 concentrations
(Nyffeler et al. 2017). TCEP, TDCIPP, and TCIPP were
negative within a 20-uM pre-screening and therefore
not tested further (data not shown). TBOEP, BBOEP,
and TOCP were tested 1:3 with 6 concentrations and SC
based on the method described in this study. Each
compound concentration was plated in 4 replicate wells
per condition.

“NeuriTox assay” UKN4

After 2 days of differentiation, 30000 LUHMES cells
were reseeded into each well of a 96-well plate in DMed
containing only tetracycline. After cells’ attachment for
1 h, they were exposed to FRs/solvent(s) for 24 h. One
hour before read-out, cells were stained with Calcein-
AM and H-33342 and imaged via a high-content imag-
ing microscope (Cellomics ArrayScanVTI, Thermo
Fisher Scientific) to assess neurite area. For neurite area
determination, an automated algorithm was used, which
calculates the area of the cell soma and subtracts this
area from all calcein-positive pixels imaged (Stiegler
et al. 2011; Krug et al. 2013a). To assess viability, all
stained nuclei (H-33342 positive) are used to determine
total cell number and H-33342 and calcein double-
positive cells are defined as viable cells (Stiegler et al.
2011; Krug et al. 2013a). Each compound was tested in
serial dilutions (1:3) with 10 concentrations starting at
20 uM and SC plated in three replica wells per condi-
tion. Effects of TBBPA, BDE-47, BDE-99, IDDPHP,
TCP, t-BPDPHP, EHDPHP, TPHP, and IPPHP were
assessed in a previous screening (Delp et al. 2018).
TDCIPP, TOCP, and TCIPP were negative in a pre-
screening at 20 uM and therefore not tested any further
(data not shown).

“PeriTox assay” UKNS

Differentiated sensory neurons were thawed and seeded
in 25% KSR/75% N2-S medium supplemented with
1.5 uM CHIR99021, 5 uM SU5402, and 5 uM DAPT
into 96-well plates at a density of 100000 cells per cm?.
After cells’ attachment for 1 h, they were exposed to
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FRs/solvent(s) for 24 h. Assessments of neurite area and
viability of the cells were performed as described above
for the UKN4 assay. Each compound concentration was
tested in three wells per plate (technical replicates) in a
serial dilution (1:3) with 6 concentrations starting at
20 puM and SC. Effects of TBBPA, BDE-47, BDE-99,
IDDPHP, TCP, t-BPDPHP, EHDPHP, TPHP, and
IPPHP were assessed in a previous screening (Delp
et al. 2018). TDCIPP, TOCP, and TCIPP were negative
in a pre-screening at 20 pM and therefore not tested any
further (data not shown).

Viability and cytotoxicity

To distinguish compound effects from secondary effects
due to loss of viability and cytotoxicity, respective as-
says were performed in parallel. Thereby, all viability
and cytotoxicity assays are multiplexed within the re-
spective assay. hNPC viability was assessed as mito-
chondrial activity by using an Alamar blue assay
(CellTiter-Blue Assay (CTB); Promega) in the last 2 h
of'the respective compound treatment period (NPC1 at 3
DIV; NPC2-5 at 5 DIV). Cytotoxicity of treated hNPCs
was detected by measuring LDH (CytoTox-ONE
membrane integrity Assay; Promega) after 3 (NPCl;
NPC2-5) and 5 (NPC2-5) DIV. It is of note that a
reduced radial glia migration area causes a reduction in
the CTB readout due to a diminished cell number with-
out necessarily affecting cell viability (Fritsche et al.
2018a). Thus, when radial glia migration is inhibited
by a compound, the LDH assay is solely the reference
for DNT specificity of NPC2-5. Assessment of viability
within the UKN assays was performed as described
above.

RNA sequencing and RT-qPCR

For RNA sequencing (RNASeq) experiments, 1000
neurospheres per well with a defined size of 0.1 mm were
plated onto PDL/laminin-coated 6-well plates and culti-
vated for 60 h in the presence and absence of selected
FRs. The RNA isolation was performed using the
RNeasy Mini Kit (Qiagen) according to the manufac-
turer’s protocol. Total RNA was analyzed for high qual-
ity using the Agilent High Sensitivity RNA ScreenTape
System for Agilent 4150 TapeStation Bioanalyzer
(Agilent Technologies) for human samples with an
RNA integrity number (RIN) > 8. All samples in this
study showed high-quality RINs > 8.5. For RNASeq,
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1.0 pg total RNA was used for library preparation using
the TruSeq RNA Sample Prep Kit v2 according to the
manufacturer’s protocol (Illumina). All steps of the pro-
tocol were performed as described in the [llumina kit.
DNA library templates were quantified using the
Qubit™ 4 Fluorometer and the Qubit 1x dsDNA HS
Assay Kit (Thermo Fisher Scientific). Quality control
and fragment size analysis were performed on Agilent
4150 TapeStation System and the Agilent D1000 Screen
Tape System (Agilent Technologies). Sequencing was
performed on a MiSeq instrument (Illumina) using v3
chemistry, resulting in an average of 50 million reads per
library with 1x76 bp paired end setup.

Raw data were uploaded on BaseSpace Sequence Hub
(Mlumina) for FastQ generation. RNAseq analysis was
performed using the Illumina pipeline (Illumina Annota-
tion Engine 2.0.10.0). The resulting raw reads were
assessed for quality, adapter content and duplication rates
with the Illumina FASTQ file generation pipeline.
Trimmed and filtered reads were aligned versus the Ho-
mo sapiens reference genome (UCSC hgl9) using STAR
Aligner (STAR 2.6.1a). Total number of reads was
quantified using both TopHat2 and Salmon Quantifica-
tion (0.11.2). Strelka Variant Caller (2.9.9) was used to
detect somatic single nucleotide variants (SNVs).

Quantitative real-time polymerase chain reaction (RT-
gPCR) was performed with the QuantiFast SYBR Green
PCR Kit (Qiagen) within the Rotor Gene Q Cycler
(Qiagen). Therefore, 250 ng RNA was transcribed into
cDNA using the QuantiTect Reverse Transcription Kit
(Qiagen) according to manufacturer’s instructions. Anal-
ysis was performed using the software Rotor-Gene Q
Series version 2.3.4 (Qiagen). Copy numbers (CN) of
the genes of interest were calculated by using gene-
specific copy number standards as described previously
in detail (Walter et al. 2019) and normalized to the
housekeeping gene beta-actin. Gene CN of solvent con-
trol and FR treated differentiated spheres were normal-
ized to proliferative spheres, which are thought to express
very low numbers of oligodendrocyte-specific mRNA.
Here, the solvent control visualizes oligodendrocyte-
related gene expression as a function of normal NPC
development that can directly be compared to sphere
development in presence of FRs.

Toxicological Priority Index

For relative toxicological ranking and hierarchical clus-
tering, the BMC values of the tested FRs were integrated

and visualized by using the Toxicological Priority Index
Graphical User Interface (ToxPi GUI) version 2.3
(Gangwal et al. 2012). In ToxPi, the BMC values across
the data set of each endpoint were scaled with the
formula —log10(x)+6 from 0 to 1, while 1 represents
the lowest BMC and therefore the most potent com-
pound. If BMC was not reached, a concentration of 10°
was applied before, which became 0 upon scaling. Data
are visualized in a pie chart, where every slice represents
one DNT endpoint (Fig. 7). The farther the slice extends
from its origin, the more potent the compound in this
endpoint. In comparison, ToxCast data was used to give
an initial idea on the general toxicity of these FRs across
a variety of assays. Regarding ToxCast ACs, (half-
maximal activity concentration), values below a given
cytotoxicity limit were used and scaled as described
above. Each slide was assigned as one intended target
family and contains several assays for respective
endpoints.

Data analysis and statistics

All neurosphere experiments were performed with at
least two different individuals. Experiments were de-
fined as independent if they were generated with NPCs
from different individuals or from a different passage of
cells. For cMINC, NeuriTox, and PeriTox assays, bio-
logical replicates represent an independent experiment
on another day with a different batch of NCCs,
LUHMES cells, or 10 DIV sensory neurons thawed. If
not otherwise indicated, results are presented as mean +
SEM. For dose-response curves, a sigmoidal (variable
slope) or bell-shaped curve fit was applied using
GraphPad Prism 8.2.1. Statistical significance was cal-
culated using the same software and one-way ANOVA
with Bonferroni’s post hoc tests (p < 0.05 was termed
significant).

BMC as well as upper and lower confidence intervals
(CI) were calculated with GraphPad Prism 8.2.1. Based
on overlap of confidence intervals of the BMCs calcu-
lated for the DNT-specific endpoints and the endpoints
related to cytotoxicity/viability, NPC endpoints were
classified as DNT-specific (no CI overlap), unspecific
(CI overlap > 10%), or borderline (0 > CI < 10%;
Masjosthusmann et al. 2020). The classification model
applied for UKN assays is based on a ratio cutoff for the
ratio between the BMC for cell viability and the specific
endpoints (ratio BMC,, viability/BMC,5 migration >
1.3 in UKN2 assay; ratio BMC,5 viability/BMC;5
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neurite area > 4 in UKN4 assay or > 3 in UKNS assay).
This is in line with the respective classification models
suggested in previous publications (Krug et al. 2013b;
Hoelting et al. 2016; Nyffeler et al. 2017).

Results
Experimental design of the human DNT testing battery

We assessed the neurodevelopmental hazard of 15 FRs
(Table S1) and analyzed their adverse effects using a
battery of human-based neurodevelopmental in vitro
assays (Fig. 1). Within NPC assays, proliferation
(NPC1), migration (NPC2), and differentiation into the
main effector cells of the human brain, i.e., radial glia,
neurons (NPC3), and oligodendrocytes (NPCS5), were
evaluated. NPC3 was multiplexed with NPC4, which
quantifies neurite morphology by analyzing their length
and area. The cMINC (UKN2) assay measures neural
crest cell (NCC) migration and viability, while
NeuriTox (UKN4) and PeriTox (UKNS5) assays assess
neurite morphology and viability of LUHMES cells and
hiPSC-derived peripheral neurons, respectively. Finally,
cytotoxicity was assessed after 3 (NPC1) and 5 (NPC2-
5) DIV and cell viability was detected at the end of each
assay. Additionally, RNA sequencing analyses provide
further insight into the modes-of-action of FR toxicity.

Three out of the 15 analyzed FRs (BBOEP, TCIPP,
and TCEP) did not produce significant effects in any of
the tested endpoints up to a concentration of 20 pM.
Therefore, the respective graphs are shown in supple-
mentary Figs. S1-3.

hNPC proliferation is exclusively disturbed
by alternative flame retardants

A fundamental neurodevelopmental KE is NPC pro-
liferation. The analyzed PBDEs and aFRs did not
affect sphere area increase over time (NPCla; Fig.
2(a)). BrdU incorporation (NPC1b), however, as a
direct measure of DNA synthesis has a higher sensi-
tivity than NPCla and EHDPHP and TCP reduced
BrdU incorporation significantly (Fig. 2(b)) with
EHDPHP being the more potent one with significant
diminution of proliferation at 0.25 uM and 20 uM to
70.5 + 4.3% and 37.4 + 2.7% of the controls, respec-
tively. TCP inhibited proliferation to 65.9 + 8.3% and
58.5 + 6.8% of controls at 6.6 uM and 20 uM,
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respectively. Neither viability nor cytotoxicity were
altered by any of the analyzed FRs at the employed
concentration levels, with the exception of IPPHP,
which induced the mitochondrial activity at the
highest concentration up to 121.1 + 4.9% of control.
The endpoint-specific control for NPC1 was hNPC
cultivation in absence of growth factors causing sig-
nificantly reduced proliferation (Suppl. Fig. 4(a, b)).

FRs affect migration in a cell type-specific manner

Next, we analyzed NCC (UKN2), radial glia (NPC2a),
neuronal (NPC2b), and oligodendrocyte (NPC2c) mi-
gration in the presence and absence of FRs. NCC mi-
gration was affected by PBDEs, as well as organophos-
phorus aFRs and was significantly inhibited by 9 out of
the 15 FRs tested (Fig. 3(a)). TBBPA reduced NCC
migration to 52.6 = 9.2% and 31.3 = 3.5% of control
at 2.5 uM and 5 uM, respectively (Fig. 3(a, ¢)). BDE-
47, t-BPDPHP, and TCP (= 5 uM) significantly reduced
the number of migrating NCCs to 37.1 £ 9.6%, 53.5 =
4.8%, and 56.6 + 4.4% of controls, respectively. TOCP
(6.67 uM) and BDE-99 (10 pM) significantly inhibited
NCC migration to 43.2 = 7.6% and 69.5 = 6.7% of
controls, respectively, while EHDPHP, IDDPHP, and
TPHP disturbed NCC migration at the highest concen-
tration to 31.8 £23.1%, 52.7+£10.6%, and 65.3 £ 10.2%
of respective controls. NCC viability was significantly
affected by 5 uM TBBPA (81.1 = 1.7%); by > 10 uM
EHDPHP (< 93.8 + 2.7%), TCP (< 90.9 £ 1.0%), and
IPPHP (< 93.1 + 1.2%); and by 20 uM BDE-47 (86.6 +
5.5%) and TOCP (63.3 = 10.2%; Fig. 3(b)). Cytochala-
sin D (200 nM) served as an endpoint specific control
for UKN2 (data not shown). Similar to NCC migration,
TBBPA is the most potent FR for hNPC migration
mhibition, significantly disturbing radial glia (NPC2a),
neuron (NPC2b), and oligodendrocyte (NPC2c) migra-
tion at concentrations > 2.2 uM (Fig. 3(d, g)). Conse-
quently, TBBPA decreased respective CTB values at
concentrations > 2.2 uM to < 64.8 + 2.7% of controls.
However, also cytotoxicity was induced to 25.1 +3.3%
(72 h) and 25.4 + 2.0% (120 h) of the lysis control at
concentrations > 2.2 uM TBBPA (Fig. 3(e)).

The phased-out PBDEs did not affect migration be-
havior of differentiating hNPCs, while some OPFRs
(TPHP, TDCIPP, IPPHP, and t-BPDPHP) disturbed
radial glia and oligodendrocyte migration selectively at
the highest concentration of 20 pM. After 72 h, TPHP
and TDCIPP inhibited radial glia migration to 86.3 +
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Fig. 1 Schematic overview of the battery of human-based
neurodevelopmental in vitro assays. Experimental procedures for
single assays are depicted schematically. Single endpoints

2.9% and 90.5 = 2.5% of controls, respectively (Fig.
3(f)). After 120 h, the influence of TPHP was reversed
demonstrating the adaptive capabilities of the system.
[PPHP, TDCIPP, and t-BPDPHP inhibited radial glia
migration (120 h) decreasing the distance to 85.6 £
8.1%, 82.2 £ 3.8%, and 71.5 = 14.0% of respective
controls (Fig. 3(h)). None of the tested FRs altered
neuronal migration distance (Fig. 3(i)), while oligoden-
drocyte migration was significantly shortened at 20 M
of EHDPHP, IPPHP, and t-BPDPHP to 83.6 + 3.5%,

investigated by the battery assays are listed in gray boxes with
their respective readout approach. PDL, poly-D-lysine; BrdU,
bromodeoxyuridine; LDH, lactate dehydrogenase

83.0 £ 7.2%, and 73.1 % 8.3% of respective controls
(Fig. 3(j)). Both phased-out PBDEs and OPFRs did not
impact cell viability/cytotoxicity at the conditions test-
ed, except for TDCIPP (20 uM) reducing mitochondrial
activity (Fig. 3(k)). Strikingly, 6.6 uM and 20 pM
IDDPHP increased cell viability to 133.2 £ 49% and
151.4 = 13.0% of control, respectively, without affect-
ing migration distance. The same effect was caused by
20 uM EHDPHP (Fig. 3(h, k)). The endpoint-specific
control for NPC2 was the src-kinase inhibitor PP2
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Fig. 2. Influence of FRs on proliferative hNPCs (NPC1). Spheres
were plated in 96-well U-bottom plates and exposed to increasing
FRs concentration over 72 h. Proliferation was studied by mea-
suring the increase of sphere area (NPCla) (a) and by quantifying
BrdU incorporation (NPC1b) (b) into the DNA. In parallel, via-
bility and cytotoxicity (c) were assessed by performing Alamar
Blue Assay and LDH Assay. Data are represented as means =

significantly reducing migration to 36.9 + 29.9% of
control (Suppl. Fig. 4(c)).

Phased-out PBDEs and OPFRs do not interfere
with neuronal differentiation and hardly affect neurite
morphology

Within the migration area, hNPCs differentiate into
different effector cells. In this study, 9.8% of the cells
differentiated into neurons (Suppl. Fig. 4d). To analyze
the influences of FRs on hNPC neuronal differentiation
and neuronal morphology, NPC3 and NPC4 were per-
formed. TBBPA (2.2 uM) reduced the total number of
nuclei significantly to 60.8 + 7.0% of control (Fig. 4(a,
e)), which agrees with inhibition of radial glia migration
(Fig. 3(d)). At higher TBBPA concentrations (6.6 M
and 20 uM), no nuclei and neurons were present (Fig.
4(a)) because migration was completely inhibited (Fig.
3(d)). The organophosphate-based IDDPHP (6.6 pM
and 20 uM) increased the number of nuclei to 122.7 +
7.9% and 133.4 + 6.2% of controls, respectively (Fig.
4(c, e)) explaining the increased cell viability measures
(Fig. 3(k)). All other FRs tested did not influence neu-
ronal differentiation at concentrations up to 20 uM (Fig.
4(b, e)). For NPC3, the endpoint-specific control EGF
significantly inhibited the total number of neurons to 1.0
+ 0.2% of total cell number (Suppl. Fig. 4(d)). The
neurite length (NPC4) was significantly inhibited to
30.4 + 13.8% of control by 20 uM TOCP only (Fig.
4(d)), while neurite area was not affected by any FR
analyzed (Suppl. Fig. 3(f)). Additionally, LUHMES
cells (UKN4) and hiPSC-derived peripheral neurons
(UKNS) were used to analyze neurite morphology based
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SEM (except EHDPHP in NPCla and CTB »=2 mean + SD).
Highest concentrations (> 2.2 pM) of t-BPDPHP are not shown as
spheres attached and differentiated. Statistical significance was
calculated using one-way ANOVA followed by Bonferroni’s post
hoc tests (p = 0.05 was considered significant). BrdU,
bromodeoxyuridine

on two different cell types. Neurite outgrowth of both
neuronal cell types (Fig. 4(f-h)) as well as their corre-
sponding viability measures (Suppl. Fig. 3(i-j)) were not
affected significantly by any of the FRs tested. As an
endpoint-specific control for UKN4/5, cells were treated
with 50 nM narciclasine which significantly reduced
neurite outgrowth (data not shown).

Alteration of oligodendrocyte differentiation by all FR
classes

Under differentiating conditions, 4.4% of the cells with-
in the migration area differentiated into oligodendro-
cytes in this study (Suppl. Fig. 5¢). Under the influence
of TBBPA, differentiation into oligodendrocytes was
specifically and significantly reduced starting from a
concentration of 0.25 uM (to 66.2 = 8.9% of control;
Fig. 5(a, e)), as it was below the induction of cytotoxic-
ity (Fig. 3(e)). BDE-47 significantly increased oligoden-
drocyte differentiation at low concentrations (0.03 uM
to 147.4 +4.1%; 0.08 uM to 172.5 + 6.4% of control),
whereas the highest concentration (20 uM) reduced
their number to 10.9 + 5.9% of control (Fig. 5(b, e)).
Also, BDE-99 disturbed oligodendrocyte differentiation
significantly at 2.5 uM t0 35.2+11.7%, at 5 uM to 10.4
+ 7.1%, and at 10 uM to 0.4 + 0.2% (data taken from
(Dach et al. 2017); Fig. 5(c, e)). The OPFR TDCIPP
reduced the number of oligodendrocytes at 2.2 uM to
52.5 + 5.6% of control (Fig. 5(d, )). IDDPHP, TPHP,
IPPHP, TOCP, and t-BPDPHP produced similar re-
sults as they significantly affected oligodendrocyte
differentiation at the two highest concentrations of
6.6 uM and 20 uM (Fig. 5(f, g, h, i, j, k, 0)).
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Fig. 3 Effects of FRs on different migration endpoints (NPC2,
UKN2). NCCs were seeded around a stopper into 96-well plates.
After stopper removal cells begin to migrate and were exposed to
FRs/solvent(s) for 24 h. Cells were stained with Calcein-AM and
H-33342, and the number of migrated cells (a) into the cell free
zone was quantified using Cellomics ArrayScanVTIL. Double-
positive cell numbers were determined by an automated algorithm

(marked with red dots, ¢). Viability was defined as the number of
double-positive cells outside the ROI (b). Spheres were plated for

hNPC migration analyses onto poly-D-lysine/laminin-coated 96-
well plates in presence and absence of FRs for 120 h. Radial glia

Despite the fact that IDDPHP caused an increase in
the number of nuclei (Fig. 4(c)), there were still less
oligodendrocytes differentiated (Fig. 5(f, j)).
EHDPHP, TCP, and TBOEP significantly reduced
oligodendrocyte differentiation only at 20 uM to

migration (72 h) was determined by manually measuring the radial
migration from the sphere core (d; ). After 120 h, the radial glia
(d; h), neuronal (d; i), and oligodendrocyte migration (d; j) were
assessed by automatically identifying (Omnisphero) the migration
area of Hoechst stained nuclei, B(III)tubulin-stained neurons, and
04" oligodendrocytes (g). In parallel, viability and cytotoxicity (e;
f, k) were assessed by the Alamar Blue and the LDH Assay. Data
are represented as means + SEM (except BDE-99 NPC2b; TOCP
LDH 120 h, n=2, means + SD). Statistical significance was calcu-
lated using one-way ANOVA followed by Bonferroni’s post hoc
tests (p < 0.05 was considered significant). ROI, region of interest

36.5 + 8.3%, 31.1 + 7.4%, and 24.8 + 9.0% of
controls, respectively (Fig. 5(1, m, n, o)). The
endpoint-specific control BMP7 significantly re-
duced total number of oligodendrocytes to 0.4 +
0.1% (Suppl. Fig. 4(e)).
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Fig. 4 Neuronal differentiation and morphology (NPC3, NPC4,
UKN4, UKN35) in the presence and absence of FRs. Spheres were
plated onto poly-D-lysine/laminin-coated 96-well plates in the
presence and absence of FRs. Differentiation into neurons (a, b)
was determined automatically by using a convolutional neural
network (CNN) running on Keras implemented in Python 3. The
number of all B(IINtubulin-positive cells (red) in percent of
Hoechst positive nuclei (blue) in the migration area after 120 h
of differentiation was calculated (¢, e). Morphology (d) was de-
termined automatically by using the software Omnisphero.

Transcriptome changes in hNPCs

Since we identified 12 out of 15 FRs as disruptors of
oligodendrocyte differentiation and for most of these com-
pounds this endpoint was the only neurodevelopmental
process disturbed in differentiating NPCs at these concen-
trations, we performed RNASeq analyses of neurospheres
exposed to BMC s, concentrations of selected FRs for 60 h.
FR selection was based on DNTP1 clustering choosing at
least one FR from each DNTPi cluster (Fig. 7). For BDE-
47, which produced a bell-shaped concentration-response
curve, the highest significant concentration for the oligo-
dendrocyte inducing effect was studied in addition. These
experiments aimed at gaining understanding about similar
or different modes-of-actions (MoA) underlying the ob-
served endophenotype. The PCA analysis was based on
18941 genes and indicates the differences of individual
FRs to the controls (Fig. 6(a)). The plot shows the highest
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LUHMES cells and hiPSC derived sensory neurons were treated
for 24 h in presence or absence of FRs and stained with Calcein-
AM and H-33342 (g, LUHMES cells). An automated algorithm
calculates the neurite area via subtraction of a calculated soma area
from all calcein positive pixels (f, h). Data are represented as
means + SEM (except BDE-99 NPC3, n=2, means + SD). Statis-
tical significance was calculated using one-way ANOVA followed
by Bonferroni’s post hoc tests (p < 0.05 was considered
significant)

transcriptional variation in cells treated with EHDPHP
compared to the controls. Both phased-out PBDEs (higher
concentration for BDE-47), TOCP and IDDPHP, and t-
BPDPHP, TDCIPP, and TBBPA clearly separated from
the controls, while the low BDE-47 concentration did not
lead to a separation from the controls. A hierarchical
clustering of FRs based on their different gene expression
levels was generated with Minkowski distance analyses
(Fig. 6(b)). Similar to the PCA plot, EHDPHP was the
most distanced FR to control and IDDPHP, TOCP, as well
as BDE-99 and the higher concentration of BDE-47 form
two clusters in an independent manner to the control.
BDE-47 (0.08 pM), TDCIPP, TBBPA, and +-BPDPHP
also form a cluster away from the controls, yet with less
distance than the other compounds. This clustering is also
reflected in the heatmap shown in Fig. 6(c). Here, the Z-
score of up- and downregulated genes visually demon-
strates that the pattern of BDE-47 (low), TDCIPP,
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Fig. 5 Differentiation into oligodendrocytes (NPC5) in the pres-
ence and absence of FRs. Spheres were plated onto poly-D-lysine/
laminin-coated 96-well plates in the presence and absence of FRs.
Differentiation into oligodendrocytes was determined automatical-
ly based on immunocytochemical stainings (e, j, 0) and by using a
convolutional neural network (CNN) running on Keras

TBBPA, and t-BPDPHP is similar to the pattern of con-
trols. Equally to the PCA variance and Minkowski cluster,
the patterns of IDDPHP and TOCP, as well as of both
phased-out PBDEs, are visually similar to each other.
Again, EHDPHP was clearly different from the controls
and the other FRs.

To understand qualitative changes in gene expression
related to FR effects on oligodendrocytes, we analyzed
genes involved in selected pathways that relate to

implemented in Python 3. The number of all O4-positive cells
(green) in percent of Hoechst positive nuclei (blue) in the migra-
tion area after 120 h of differentiation was calculated (a, b, ¢, d, f,
g, h, i, k.1, m, n). Data are represented as means + SEM. Statistical
significance was calculated using one-way ANOVA followed by
Bonferroni’s post hoe tests (p < 0.05 was considered significant)

toxicity of the oligodendrocyte lineage (Simons and
Trajkovic 2006; Karadottir et al. 2008; Volpe et al.
2011; Marinelli et al. 2016) listed in Fig. 6(d) and
visualized those in respective heatmaps (Suppl. Fig. 6).
Heatmap hierarchical clusters were used for classifica-
tion into several levels. Level 1 (dark blue) describes the
most distanced cluster from control, while the separation
between samples and controls decreases in hierarchy up
to > level 4 (white). In all pathways analyzed except for
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NOTCHI1 signaling (level 3), EHDPHP reached level 1
suggesting that EHDPHP interfered with a wide variety
of oligodendrocyte-relevant cell signaling. Similarly,
the phased-out PBDEs affected a broad variety of genes
belonging to these pathway gene clusters. Here it is of
interest that BDE-99 did not affect genes involved in
cholesterol biosynthesis or mitochondrial calcium trans-
port. TOCP and IDDPHP, which clustered in the previ-
ous analyses (Fig. 6(a, b)), also displayed a similar
pattern in the pathway analyses. Both most strongly
influenced NOTCHI signaling and at a lower level
affected almost all other pathways except for ROS de-
toxification. TDCIPP and t-BPDPHP both exerted the
least effects on the pathways as they disturb multiple
pathways at level 4 without pathway overlap.

A special case in MoA seems to be TBBPA as it
strongly and selectively affected cholesterol biosynthesis
at level 2 and endoplasmic reticulum stress at level 4,
while all other pathways are unaffected. These RNASeq
data confirm previous Affymetrix microarray data iden-
tifying altered cholesterol metabolism as the predominant
non-endocrine pathway affected by TBBPA in differen-
tiating neurospheres (Klose et al. 2020). These data indi-
cate that the studied FRs disturb a variety of pathways
that influence amongst others oligodendrocyte differenti-
ation. As this is a nuxed culture, we cannot exclude that
the signals produced by FRs are also derived from the
other cell types in differentiated neurospheres, i.e., radial
glia and neurons. It is to note that these RNASeq results
are based on an n=1 each that give an orientation on
similar or distinct MoA of the individual FR but need to
be substantiated by more in-depth work in the future.

Due to the low percentage of oligodendrocytes (4.4%)
within the migration area, the depth of RNASeq was not
sufficient to detect transcription of oligodendrocyte-
related genes in detail. Therefore, we performed RT-
gPCR analyses of five oligodendrocyte-specific tran-
scripts representing their different maturation stages (Fig.
6(c)). Gene expression data of the solvent control of
differentiated spheres normalized to proliferating spheres
reveal “normal” neurosphere development over a time
course of 60 h (gray bars). These can be directly compared
to the FR-treated samples (blue bars). Gene products
chosen are representative for increasing oligodendrocyte
maturation stages (PDGFR« < PLP < CNP < GALC <
MBP; Baumann and Pham-Dinh 2001; Kuhn et al. 2019),
although these are an onsets of expression and the markers
show considerable overlaps. All gene products were
expressed at least twofold higher in differentiating versus

@ Springer

proliferating spheres supporting oligodendrocyte forma-
tion in the neurosphere system (Dach et al. 2017). FR
exposure altered developmental gene expression changes
from proliferating to 60 h differentiating neurospheres.
Only t-BPDPHP induced a twofold expression induction
of PDGFRey mRNA, a gene expressed in oligodendrocyte
progenitor cells (OPCs) and pre-oligodendrocytes (pre-
OLs), but not in immature and mature oligodendrocytes
(OLs), suggesting a delay in oligodendrocyte maturation.
PLP is expressed in OPCs, pre-OLs, and OLs and was
strongly reduced by TBBPA, BDE-99, TOCP, IDDPHP,
BDE-47, and EHDPHP mirroring general reduction of
OLs across maturation stages. In contrast, CNP and
GALC mRNA, which are expressed in all oligodendrocyte
stages but the OPCs, were not affected by any of the
compounds. MBP gene expression, one of the latest oli-
godendrocyte maturation markers, was reduced by BDE-
47 (low concentration), TOCP, and EHDPHP (Fig. 6(e)).
Interestingly, BDE-47 induced oligodendrocyte forma-
tion. These data demonstrate that despite the common
phenotypical result of reduction in oligodendrocyte differ-
entiation (besides BDE-47 low concentration), FRs’ mo-
lecular effects on oligodendrocyte marker expression pat-
terns are compound-specific.

Compound classification based on BMC calculation

In order to provide a common metric of comparison
across the different assays and substances, the benchmark
dose (BMD) approach, which is recommended by the
EFSA Scientific Committee (Hardy et al. 2017), was used.
For in vitro toxicity testing, benchmark concentration
(BMC) is comparable to the BMD (Krebs et al. 2020a)
and derived from concentration-response information.
The benchmark response (BMR) value was defined based
on the variability of the respective endpoints (NPCI1-5,
Suppl. Fig. 4; UKN, Masjosthusmann et al. 2020). All
BMCs calculated from all data points of the fitted
concentration-response curves are listed in Table 1, with
the respective upper and lower confidence intervals given
in supplementary Table 2. From the FRs, which achieved
BMCs, several questions can be drawn: (i) Are the ob-
served effects DNT-specific or unspecific hits according
to the classification models (Masjosthusmann et al.
2020)? (ii) What is the most sensitive endpoint (MSE)
for each FR? And (iii) what is the potency ranking of the
FRs? Most compound effects assessed by the battery are
DNT-specific (Table 1), yet BBOEP, TCEP, and TCIPP
did not reach DNT-specificity according to the
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Fig. 6 RNA sequencing and RT-gPCR. Human NPCs differentiated
for 60 h in the presence of 0.6 pM TBBPA, 2 uM BDE-99, 3 uM
TDCIPP, 3.5 uM +BPDPHP, 4.5 uM TOCP, 6.5 uM IDDPHP, 8 uM
BDE47, and 13 uM EHDPHP. These concentrations represent the
BMCs values of oligodendrocyte differentiation inhibition. 0.08 uM
BDE-47 induced oligodendrocyte differentiation. Controls 1-3 repre-
sent spheres plated in solvent control 0.1% DMSO. PCA (a) and
Minkowski distance plot (b) analyses were performed using the
PCAGO online software (https://pcago.bioinf.uni-jena.de/) as
previously described (Gerst and Holzer 2019). Both plots were gener-
ated by normalizing the total number of reads of different samples to
the Transcript per Kilobase Million (TPM) count. The heatmap (¢) was
generated using Perseus Version 1.6.2.2 (https://www.maxquant.

org/perseus/). Therefore, the Z-scores of TPM values were used with
a cut-off of one valid value per condition. Classification of impact on
oligodendrocyte differentiation-relevant pathways (d) was performed
by expert judgment based on hierarchical clustering of pathway-related
genes (Suppl. Fig. 6) and was categorized into four levels (level 1 as
most and level 4 as least distanced to one merged control). Gene
expression (e) of platelet-derived growth factor receptor A (PDGFRay),
proteolipid protein (PLP), cyclic-nucleotide-phosphodiesterase (CNP),
galactosylceramidase (GALC) and myelin basic protein (MBP) was
assessed via RT-qPCR and normalized to the housekeeping gene beta
actin (ACTB). In addition to solvent control (gray bars), proliferative
spheres (black bars) were used as an internal control. Data are repre-
sented as mean = SD from 1 to 3 biological replicates

@ Springer



Manuscripts

Cell Biol Toxicol

Table 1 Summary of BMCs across the DNT in vitro testing
battery. Specific hits are highlighted bold and borderline hits are

(MSEs). *Induced effects. Numbers are given in uM. No value
assumes BMCs > 20 uM

marked cursive. Red colored specifies most sensitive endpoints
Brominated (BFRs) or hosphates (OPFRs)
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Sensory N. neurite area BMCzs - - - - -
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classification models. For TBBPA, most endpoints were
affected at concentrations also inducing cytotoxicity.
Based on specific DNT hits, the MSE for each compound
across the DNT battery was assessed. In most cases
(7/12), it was oligodendrocyte differentiation (NPC5),
followed by NCC migration (UKN2; 2/12), NPC prolif-
eration (NPC1; 2/12), and neurite morphology (NPC4;
1/12). The other assays did not provide MSE. Potency
ranking was as follows: EHDPHP > BDE-47 > TOCP >
TBBPA > TCP > BDE-99 > IDDPHP > TDCCP > t-
BPDPHP > TPHP > IPPHP > TBOEP (Fig. 7).

Compound prioritization: ToxPi vs. DNTPi

Another currently propagated compound prioritization
instrument is the Toxicological Prioritization Index
(ToxPi) tool introduced by the US EPA (Reif et al.
2010; Marvel et al. 2018). Using this tool, FR testing
results were visualized and prioritized according to their
DNT profiles generated in this study by producing
DNTPis (Fig. 7(b)), which are then compared to their
toxicological profiles of the existing ToxCast data
(ToxPis; Fig. 7(a); https://www.epa.gov/chemical-
research/toxicity-forecasting). Here, the whole
toxicological profiles are taken into account, i.e., also FR.
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effects on cell viability, and specific and non-specific hits
are not distinguished. In general, the size of the Pi pieces
does not reflect the actual BMC values but relates the
BMCs for the studied compound to the BMCs of this
endpoint across the highest and lowest values of the whole
endpoint data set across all compounds irrespective of the
values by distributing them between 0 and 1. Hence, itisa
relative, not an absolute value. The ToxPi tool then hier-
archically clusters the FRs within the ToxPis and the
DNTPis according to their potency and assay hit patterns.
Producing ToxPi information on compound clustering
and ranking of a compound class for “general” (ToxPis)
and “specific” toxicity, here DNT (DNTPis) gives infor-
mation on the specificity of the compound effects.

Our ToxPi evaluation of the compound class of FRs
clearly indicates that the Pi clustering is very different
between the ToxPis and the DNTPis. For example, the
two phased-out PBDEs are almost negative in the
ToxCast assays and cluster collectively, while they evoke
multiple responses in the DNT assays resulting in separate
clusters. Similarly, e.g., TCIPP gives alerts in the ToxPi,
while there is no effect in the DNTPis. Additionally, the
program creates toxicity rankings and, in both rankings,
TBBPA was classified as the most potent one. However,
the overall ranking differs from each other, for example, t-



Manuscripts

Cell Biol Toxicol
Cell adhesion molecules| a) ToxPi Ranking FR ToxPi Score
Toce TCEP
el holoey t-BPDPHP . 1 TBBPA 0.4671
BBOEP* 2 EHDPHP 0.4129
Cytokine dependend IPPHP 3 TDCIPP 0.3546
4 IDDPHP 0.3501
GPCR BDE-99
> 5 TPHP 0.2947
lon channel ee P 6 TBOEP 0.2476
- BDE-47| 7 TCIPP 0.2014
TCIPP,JA:' 8 IPPHP 0.1948
9 ToCcP 0.1721
Phosphatase TBOEP 10 TCP 0.1315
11 t-BPDPHP 0.1138
P— TDCIPP
Protease inhibitor 12 BDE-99 0.0093
EHDPHP
13 BDE-47 0.0092
Transporter
Background measure. 14 TCEP 0.0075
BBOEP
s *not tested in ToxCast v
Proliferation area b) DNTPi Ranking DNTPi MSE  DNTPi & MSE
BBOEP TDCIPP FR Pi Score FR FR
TCEP -~ 1 TBBPA  0.5625 EHDPHP  EHDPHP
Proliferation CTB P ~ IPPHP
“ | 4 _ 2 t-BPDPHP 0.3208 BDE-47  BDE-47
Glia migration 72h TCIPP. 1 3 IDDPHP  0.1768  TOCP ToCP
Glia migration 120h . |DDPHP 4 TDCIPP  0.1703  TBBPA TBBPA
- — TP i 5 EHDPHP 0.1680  TCP t-BPDPHP
Oligoden. migration ‘;J
LDH diff. 72 h koBDE—QQ 6 TOCP  0.1492 BDE-99  IDDPHP
"~ 7 BDE-47 0.1134 IDDPHP  TDCIPP
TBOEP | i 8 TCP  0.0980 TDCIPP TCP
ﬁft‘BPDPHP 9 BBOEP 0.0623 tBPDPHP  BBOEP
Neurite length -
TPHP | 10 BDE-99 0.0571  TPHP BDE-99
é“! appay 11 TPHP  0.0519 IPPHP  TPHP
Number of nuclei A -~ &= 12 IPPHP  0.0515 TBOEP  IPPHP
TN —" TBBPA 7 1
Al e E e EHDPHP Tocp 13 TBOEP  0.0511 BBOEP  TBOEP
Number of neurons T
NCC migration IUHMESEGFtERred 14 TCEP  0.0383  TCEP TCEP
NCC viability  LUHMES viability Sensory neurons viability 15 TCIpP 0 TCIPP TCIPP

Fig. 7 Visualization and prioritization of FRs generated with
ToxPi. ToxPis for general (a) and DNT-specific (b) toxicities
using the ToxCast data and the results of the DNT in vitro battery,
respectively. Graphs were produced with the Toxicological Prior-
itization Index (ToxPi) and Graphical User Interface (GUI) tool
version 2.3. Size of pie slices represents relative strength of effect

BPDPHP ranks on number 2 in the DNTPis and on
number 11 in the ToxPis. Similarly, TCIPP ranks on
number 15 in the DNTPis and on number 7 in the ToxPis
suggesting that general toxicity is not a good predictor for
DNT. As the ToxPi tool does not distinguish between
DNT-specific and non-DNT-specific effects and the rank-
ing takes rather the number of modified endpoints than the
effective concentrations, which relate to potency, into

on respective endpoint. For DNTPi and MSE ranking, first priority
was given to MSE (Table 1); in the second line, ToxPi ranking was
considered, e.g., for compounds with similar MSEs (starting from
number 4 in the MSE analysis (Table 1; Suppl. Fig. 5a), due to
overlapping 3-fold ranges for the MSE). *BBOEP was not tested
in ToxCast

account, we next combined the MSE-based (Table 1;
Fig. 7; Suppl. Fig. 5(a)) with the ToxPi (Fig. 7) ranking.
Therefore, the MSE with DNT-specific hits (Table 1;
Suppl. Fig. 5(a)) was set to the first priority and, in the
second line, DNTPi ranking was considered, e.g., for
compounds with similar MSEs (starting from number 4
in the MSE analysis (Table 1; Suppl. Fig. 5(a)) due to
overlapping 3-fold ranges for the MSE (Masjosthusmann
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et al. 2020). Merging the two ranking strategies changes
some of the FR ranking, yet not the four most potent
compounds EHDPHP, BDE-47, TOCP, and TBBPA
and results in the final ranking of FRs due to the data of
this study (DNTPi and MSE; Fig. 7).

Discussion

In this study, we applied a human-based DNT in vitro
battery of tests as a first case study for screening and
prioritization of 15 data-poor compounds belonging to
the class of FRs including phased out and alternative
FRs. By using the BMC concept, specific DNT hits and
most sensitive endpoints were identified across the end-
points of the battery. These scatter across the broad
variety of neurodevelopmental processes investigated
in this study.

TCP and EHDPHP

Two FRs, TCP, and EHDPHP inhibited NPC prolifera-
tion (NPC1) as the MSE at fairly low concentrations
(BMC;4 0.86 and 0.02 uM, respectively). Proliferation
is a fundamental neurodevelopmental KE that, when
altered, might cause microcephaly (Tang et al. 2016).
This is the first time that the specific impact of TCP and
EHDPHP on cell proliferation was shown in human
cells. Previous work demonstrated neurodevelopmental
behavioral adversities in a zebrafish model of these
compounds at concentrations of 4 and 5 pM lowest
nominal effect levels, respectively (Alzualde et al.
2018). This model is well suited for informing on ad-
verse outcomes but does not provide mechanistic infor-
mation. A strong DNT potential for TCP was also
identified in a recent study using a rat primary cell-
based spheroid model. Concentrations as low as
0.1 uM decreased the neurotransmitter content and af-
fected genes related to neurotransmitter production after
an exposure period of 14 days (Hogberg et al. 2020).

TOCP

TOCP was the only FR altering neurite length of young,
primary fetal neurons as the MSE (BMC,; 0.12 pM).
Neurotoxicity of TOCP was previously observed in
ferret (Stumpf et al. 1989) and in the hen sciatic nerve
accompanied by a reduction in nerve calcium (Luttrell
et al. 1993). Interference with neuronal calcium levels
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could hint to a potential TOCP developmental MoA as
calcium signaling is crucial for neurite outgrowth via
regulating growth cone motility (Gasperini et al. 2017).
TOCP was also identified as a neurotoxicant, as it
disturbed the neural network activity in rat cortical
neurons (Behl et al. 2015). Yet, these studies did not
investigate neurodevelopment, but adult neurotoxicity.

IDDPHP

Interestingly, the OPFR IDDPHP induced the number
of nuclei in the migration area as the MSE, probably due
to excessive migration or proliferation of radial glia
cells, the major and still proliferative cell type in the
migration area. As IDDPHP did not alter radial glia
migration distance, the action of IDDPHP on their pro-
liferation seems to be the more probable explanation.
However, this has to be substantiated by further exper-
iments in the future. When it comes to radial glia,
species specificities become crucial, as this cell type
regulates evolutionary specificities of cortex formation
(Zilles et al. 2013). Their proliferation and migration are
tightly regulated processes orchestrating species-
specific development of the cortex, with a special role
in its folding in gyrencephalic species, like humans
(Borrell and G6tz 2014). Hence, interference with radial
glia neural progenitors underlie a number of cortical
malformations and cause mental retardation in genetic
and infectious diseases (Guerrini and Dobyns 2014; Hu
et al. 2014; Juric-Sekhar and Hevner 2019). In a recent
study, IDDPHP triggered an increase of nestin expres-
sion, and this was interpreted as evidence of reactive
astrogliosis (Hogberg et al. 2020). However, there may
be alternative explanations, as changes in nestin may
also point to effects on the radial glia and neural stem
cell compartments. Zebrafish behavior was also affected
by IDDPHP, yet at fairly high nominal lowest effect
levels (40 uM) with no knowledge on the underlying
mechanisms (Alzualde et al. 2018).

IPPHP and t-BPDPHP

NCC migration was the most sensitive endpoint (togeth-
er with oligodendrocyte differentiation) upon IPPHP
(BMC5p 6.66 pM) and t-BPDPHP (BMC;, 4.05) expo-
sure. Disturbance of NCC migration causes, e.g., cleft
palate or loss of functional hearing (Mayor and
Theveneau 2013). Our data from human cells are in
good agreement with model systems from other species:
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micromolar concentrations of IPPHP and t-BPDPHP
were also toxic for zebrafish (Behl et al. 2015;
Alzualde et al. 2018), Caenorhabditis elegans (Behl
et al. 2015; Boyd et al. 2016), rat cortical neurons
(Behl et al. 2015), and 3D rat brain spheres (Hogberg
et al. 2020). t-BPDPHP specifically inhibits neurite
outgrowth of rat cortical neurons at 14.9 uM (Behl
et al. 2015), an effect that we observe at similar concen-
trations in the NPC4, but not in the UKN4/5 assays.
Similarly, IPPHP solely inhibits NCC, but not radial
glia, neuronal or oligodendrocyte migration, while t-
BPDPHP does alter other cell type migration at higher
concentrations. Why different migration or neurite out-
growth assays yield different hits and are thus comple-
mentary to each other is probably due to different cell
types, species, and neurodevelopmental timing repre-
sented in the assays. Hence, toxicity patterns across the
battery reflect compounds different MoA by specifically
altering certain targets.

Oligodendrocyte differentiation

Oligodendrocyte differentiation was the endpoint most
frequently altered as the MSE upon cellular FR exposure
with the following compound potency ranking: BDE-47
(low) > TBBPA > BDE-99 > TDCCP > t-BPDPHP >
TPHP > IPPHP > TBOEP. Oligodendrocytes are neces-
sary for proper brain functioning as they form and keep
myelin sheaths around axons, thereby allowing rapid
saltatory conduction of neuronal action potentials
(Baumann and Pham-Dinh 2001; Kuhn et al. 2019).
Hence, impaired oligodendrogenesis and resulting
hypomyelination due to genetic disorders or severe brain
injury contribute to functional adverse outcomes mani-
festing in neurological disorders such as the Alan-
Herndon-Dudley Syndrome (Lopez-Espindola et al.
2014; Tonduti et al. 2014) or periventricular
leukomalacia (Back et al. 2001). Developing oligoden-
drocytes also exert a high susceptibility to stressors like
reactive oxygen species and are sensitive to excitotoxicity
and endoplasmatic reticulum stress. They have a high
energy and iron demand, are dependent on functional
lipid metabolism, and their development and function
are highly regulated by different hormones and growth
factors (Bradl and Lassmann 2010; Volpe et al. 2011;
Marinelli et al. 2016). Hence, developing oligodendro-
cytes can be concemed by a large variety of substances
through a broad spectrum of MoA.

BDE-47 and oligodendrocyte differentiation

Since deviation from normal development into both direc-
tions, i.e., increase or decrease of a neurodevelopmental
process, is considered adverse (Foti et al. 2013), the in-
crease in oligodendrocyte differentiation by BDE-47 in the
low nanomolar range needs attention. Consequences of
increased oligodendrocyte differentiation are
hypermyelination, an outcome observed for example in
individuals with autism spectrum disorder (Ben Bashat
et al. 2007; Wolff et al. 2013; Razek et al. 2014). So far,
BDE-47 was found to reduce mouse and human oligoden-
drocyte differentiation similar to the effects observed in
this study at higher concentrations (Schreiber et al. 2010;
Li et al. 2013). Li et al. (2013) did not test with BDE-47
concentrations that induced oligodendrocytes here (< 0.3
M), whereas Schreiber et al. (2010) used concentrations
as low as 0.1 uM. Here, inter-individual differences could
explain the missing inducing oligodendrocyte effect as
neurospheres used were generated from a different donor.
Thus, it is increasing confidence that the data produced in
this paper represents data from three different individuals.
In addition, Schreiber et al. (2010) quantified oligodendro-
cytes by manual counting, while cells in this work here
were identified using a convolutional neuronal network
(CNN), which is more reliable, reproducible, and free of
human counting bias. The induction mechanism of oligo-
dendrocyte differentiation by BDE-47 is so far unknown.
The performed RNASeq analyses did not reach a sufficient
depth for such a cell type-specific molecular clarification.
Interestingly, oligodendrocyte toxicity pathways are al-
ready triggered at 80 nM BDE-47 (Fig. 6(d)), probably
resulting in loss of MBP-expressing more mature oligo-
dendrocytes that is overridden by an unknown,
oligodendrocyte-inducing trigger. In rat brain spheres,
BDE-47 (0.1-5 uM) did not appear to affect mbp gene
expression, but it caused a transient increase in myelin-
associated glycoprotein (mag) transcript at 5 uM (Hogberg
et al. 2020). Our previous species comparison of in vitro
oligodendrogenesis found significant differences in timing,
regulation of gene expression and response to toxicants
between human and mouse oligodendrocytes (Dach et al.
2017; Klose et al. 2020). On the basis of these observa-
tions, it 18 likely that human neurospheres (as used here)
will show differences to rat spheres. The difference in
exposure schemes and readouts further complicates direct
comparisons. A striking difference is for instance that none
of the 15 FRs had any effect on human neuronal differen-
tiation, while all 5 FRs tested in rat spheres reduced
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neurofilament and other specifically neuronal markers
(Hogberg et al. 2020).

TBBPA and oligodendrocyte differentiation

Similarly, TBBPA reduces oligodendrocyte differentia-
tion. From the toxicity pathways analyzed by RNASeq,
mainly genes relating to cholesterol biosynthesis were
deregulated by TBBPA. This MoA was previously de-
scribed as a putative adverse outcome pathway (Klose
etal. 2020). TBBPA did not affect the number of corpus
callosum CNP" oligodendrocytes (Saegusa et al. 2009)
or Ret" oligodendrocytes (Fujimoto et al. 2013) in de-
velopmental rat studies. This might be due to the
markers used in the in vivo study, as e.g., CNP expres-
sion did not, but only PLP expression changed upon
TBBPA treatment in this study. Also, species (Dach
et al. 2017) or brain regions with heterogeneous oligo-
dendrocyte populations (Hayashi and Suzuki 2019)
might have affected the results.

RNASeq analyses

In the Minkowski distance cluster and gene heatmap
(Fig. 6(b, ¢)), the low concentration BDE-47, TBBPA,
TDCIPP, and t-BPDPHP clustered together close to the
controls. Different from TBBPA, the latter two change
gene expression in variable oligodendrocyte toxicity
pathways. These data suggest that either one specific
pathway, like cholesterol metabolism for TBBPA, or
multiple hits across distinct converging pathways like
in the case of TDCIPP or t-BPDPHP, can summit in the
same endophenotype. Minkowski cluster further dem-
onstrates that TOCP, IDDPHP, PBDEs, and EHDPHP
differ most from the controls and they strongly affect a
large variety of oligodendrocyte toxicity pathways. Be-
cause oligodendrocytes provide just around 4% of the
cells in the migration area, it is highly unlikely that these
strong alterations in mRNA expression profiles can be
attributed to oligodendrocytes only, but probably also
derive from radial glia and/or neurons in the migration
area. Because all other phenotypic endpoints of the
neurosphere assay were not affected, these data clearly
show the high susceptibility of oligodendrocytes to-
wards alterations of these pathways and thus supports
the notion of “just being an oligodendrocyte seems
enough to put these cells at greater risk of damage”
(Bradl and Lassmann 2010).
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Compound prioritization

Such DNT in vitro battery data can be used for
compound prioritization. Here, different methods
are at hand. For one, BMC values with CI allow
distinguishing between DNT-specific and DNT-
unspecific hits (Masjosthusmann et al. 2020) giving
objective potency ranking measures. However, this
method takes only the MSE and not, e.g., the num-
ber of affected endpoints into consideration. To ac-
count for both, we merged the MSE method with the
ToxPi approach by prioritizing for BMCs first and
secondly adding the ToxPi ranking when BMCs of
MSE of different compounds were located within
their 3-fold ranges. In our opinion, prioritization
for DNT only by ToxPi might include high uncer-
tainty, because altering only one DNT endpoint can
have detrimental effects on neurodevelopment, es-
pecially when it happens at low concentrations.
Using this merged approach, our study revealed that
BDE-47 and BDE-99, which are already banned due
to their neurodevelopmental toxicity, rank as 2nd
and 10th out of the 15 FRs investigated. Of the
currently used aFRs, only TCIPP did not produce a
hit in the battery according to the BMCs. However,
also TCEP and BBOEP did not yield statistically
significant hits, but just reached their BMC,, values.
Therefore, these three aFRs are rated as the least
toxic with the DNT in vitro battery, while EHDPHP
together with BDE-47 summit at the top as the most
hazardous FR. These data indicate that the DNT
in vitro battery is a useful tool for prioritizing com-
pounds for their DNT hazard potential. It has to be
noted that the battery applied here still has known
gaps that need to be closed in the future. These
include test methods for neuronal network formation
(Frank et al. 2017; Shafer et al. 2019; Nimtz et al.
2020) including synaptogenesis (Pistollato et al.
2020), astrocyte, and microglia performance.

One question that arises is if such a DNT in vitro
battery is at all necessary or if DNT might as well be
predicted by the general ToxCast assays. To answer
this question, FR DNT in vitro battery is compared to
ToxCast data by ToxPi versus DNTPi assessment.
The results demonstrate the uniqueness of the DNT
in vitro battery for DNT hazard assessment. Such an
approach has never been executed before and was
shown here to be very helpful for assays’ specificity
analyses.
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Moving from hazard to risk

When moving from hazard characterization to risk as-
sessment, exposure data is crucial. Biomonitoring data
for parent compounds currently available (Table 2;
Cariou et al. 2008; Sundkvist et al. 2010; Kim et al.
2014; Tang and Zhai 2017; Beser et al. 2019; Ma et al.
2019; Chupeau et al. 2020) reveal a gap on human FR
exposure data, especially for OPFRs. While phased-out
PBDEs and TBPPA can be measured in human sam-
ples, most OPFRs metabolize fast and parent com-
pounds cannot be detected, e.g., in cord blood or breast
milk. Therefore, the occurrence of OPFR metabolites is
measured in urinary samples of adults (Bastiaensen et al.
2019b; Gibson et al. 2019; Chupeau et al. 2020; Li et al.
2020) and children (He et al. 2018a, b; Bastiaensen et al.
2019a; Gibson et al. 2019; Chupeau et al. 2020) or in

hair (Kucharska et al. 2015; Chupeau et al. 2020). These
studies clearly demonstrate the existence of OPFR me-
tabolites in human samples, especially in children.

For relating such biomonitoring data to the studied
in vitro hazards, we converted the internal FR concen-
trations from cord blood or breast milk given in nano-
grams per gram of fat to molarity by using a fat content
of 5.8 g/L for serum (Akins et al. 1989; Phillips et al.
1989; Covaci et al. 2006; Rylander et al. 2006) and 33 g/
L for breast milk (Kent et al. 2006; Prentice et al. 2016).
Such in vitro—in vivo comparisons are very crude and do
not account for in vitro kinetics or for actual fetal brain
concentrations in vivo.

Hence, advanced kinetic modelling would be eventual-
ly needed to perform proper in vitro to in vivo extrapola-
tion (IVIVE). Nevertheless, our crude evaluations revealed
cord blood values for BDE-99, BDE-47, and TBBPA of

Table 2 Exposure data collected from published FR measurements in human breast milk and cord blood samples (Cariou et al. 2008;
Sundkvist et al. 2010; Kim et al. 2014; Tang and Zhai 2017; Beser et al. 2019; Ma et al. 2019; Chupeau et al. 2020)

Breast milk Cord blood

BDE-99 BDE-47 TBBPA BDE-99 BDE-47 TBBPA

ng/glw  uM ng/glw  uM ng/g lw ng/glw  uM ng/g lw  uM ng/glw  uM
Korea 54.0 0.0316 31.0 0.0211 - 19.0 0.0020 36.0 0.0044 - -
China 10.8 0.0063 27.5 0.0187 - 345 0.0004 8.49 0.0010 - -
Japan 320 0.0019 490 00033 - - - 0.12  0.00001 - -
Philippines  0.82  0.0005  3.60  0.0024 - - - - - - -
Vietnam 0.38 0.0002 0.40 0.0003 - - - - - - -
USA 640  0.0037 297  0.0202 - 233 0.0024 4.60 0.0006 - -
France 0.53  0.0003 1.15  0.0008 4.1 0.0025 743 0.0008 - - 103 0.0111
Germany 0.18 0.0001 0.45 0.0003 - - - - - - -
UK 0.80  0.0005 270  0.0018 - - - - - - -
Sweden 048  0.0003 228  0.0015 - 022 0.00002 34 0.0004 - -
Spain 0.51 0.0003 0.54 0.0004 - - 4.3 0.0004 33 0.0004 - -

Breast milk

TPHP TBOEP TCEP TCIPP EHDPHP TCP

ng/glw  uM  ng/glw  uM  ng/glw ng/g lw uM ng/g Iw uM ng/g lw uM
Japan 140 00014 024 00002 0.14  0.0002 - - - - - -
Philippines  19.0  0.0192  22.0  0.0182 420  0.0554 - - - - 230 0.0021
Vietnam 4.90 0.0050 - - - - - - - - 0.28 0.0003
Sweden 8.50 0.0086 4.70 0.0039 4.90 0.0065 45.0 0.0453 6.50 0.0059 0.80 0.0007
Spain 9.90  0.0100 148 00123 - - 12.5 0.0126 - - 19.0 0.0170

TPHP TBOEP TCEP TCIPP EHDPHP IDDPHP

ng/mL uM ng/mL uM ng/mL ng/mL uM ng/mL uM ng/mL uM
USA 0.15  0.0005 144 00036  0.04  0.0001 0.22 0.0005 0.02 0.00006  0.01 0.00003
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0.002, 0.004, and 0.011 uM in a Korean (PBDEs) and
French (TBBPA) cohort, respectively (Table 2). Breast
milk concentrations calculated to 0.032 and 0.021 uM
for BDE-99 and BDE-47 in Korea and 0.003 for TBBPA
in France. OPFRs in breast milk occur with the highest
measured values across all FRs with TCEP 0.055 uM,
TPHP 0.019 puM, and TBOEP 0.018 uM (Philippines) and
TCIPP 0.045 puM (Sweden). Assuming a breast milk
intake of 1 L/day, exposure to these FRs approximates to
32 nmol/day BDE-99, 21 nmol/day BDE-47, 3 nmol/day
TBBPA, 55 nmol/day TCEP, 19 nmol/day TPHP, 18
nmol/day TBOEP, and 45 nmol/day TCIPP. While the
BMCs calculated for DNT in vitro hazard for BDE-99 and
OPFRs are more than one order of magnitude lower than
the estimated daily intake and cord blood concentrations,
the BDE-47 BMC for the MSE is just one order of
magnitude higher than the estimated exposure (suggesting
a bioavailability of 100%, slow/no liver metabolism, per-
fect blood-brain-barrier (BBB) passage (1:1), and protein
binding according to logP prediction model).

However, humans are generally exposed to com-
pound mixtures including FRs, pesticides, pharmaceu-
ticals, toxic metals, and other environmental contami-
nants. Therefore, individual compound exposure easily
adds up to mixtures at relevant concentrations that might
exert additive, synergistic, or antagonistic effects, espe-
cially when the same converging endpoint is affected.
This is likely the case for oligodendrocytes because they
seem to be the most susceptible cell type of the brain.
Mixture experiments as well as sophisticated IVIVE are
needed to substantiate these concerns.

Summary and conclusion

In summary, we tested 15 FRs including phased-out
PBDEs, TBBPA and OPFRs for their neurodevelopmental
toxicity in a human cell-based DNT in vitro battery. FR
hazards across different neurodevelopmental endpoints
were used for calculating BMC and CI leading to a poten-
cy ranking. Evaluation of the data with the ToxPi tool
revealed a distinct ranking that we combined with the
BMC ordering for final prioritization. In addition, compar-
ison of DNT hazard ranking according to the ToxPi tool
with the ToxCast data revealed DNT-specific hazard for
this group of FRs that is not well predicted by ToxCast
assays. Extrapolating DNT battery BMC to human FR
exposure via breast milk suggests low risk for individual
compounds but raises concern for mixture exposure, which
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is the real-life situation. This is especially of apprehension
when different compounds converge through diverse
MoA on common endpoints like oligodendrocyte differ-
entiation in this study.

This case study using FRs contextualized with the
performance characteristics of the battery using diverse
compound classes (Masjosthusmann et al. 2020) suggests
that using a human cell-based DNT in vitro battery for
hazard assessment for compound prioritization is a prom-
ising approach for future risk assessment procedures.
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3 Discussion

To improve human risk assessment and reduce animal testing, the US-National Research Council
proposed a new strategy for toxicity testing in the 21 century, which is based on a shift from
conventional in vivo toxicity testing to high throughput in vitro assays (NRC, 2007; Collins et al., 2008).
The assays and bioinformatic tools developed in the context of this shift should also help to close the
knowledge gap for DNT hazard assessment of a large number of compounds (Crofton and Mundy 2021;
Grandjean and Landrigan, 2014; Tsuji and Crofton, 2012). To close this gap and gain compound data
fit for regulatory decision making, a biologically relevant DNT-IVB has been established. An integral
part of this DNT-IVB is the human neurosphere assay that contributes unique endpoints to the battery
(Crofton and Mundy 2021). Such neurospheres originate from the correct species for human risk
assessment, can be grown in 3D (Alépée et al., 2014), differentiate into multiple cell types (Moors et
al. 2009) and thus allow evaluation of a large variety of endpoints in an organotypic manner (Fritsche
et al., 2015; Koch et al. 2022). As described in manuscript 2.3 (Blum et al., 2022), the neurosphere
model based on human neural progenitor cells (NPC) along with human induced pluripotent stem cell
(hiPSC)-derived neural crest cells and sensory neurons (Nyffeler et al., 2017; Hoelting et al., 2016;
Holzer et al., 2022) as well as differentiated dopaminergic Luhmes cells (Delp et al., 2018) were
established as cell models for DNT hazard characterization. However, even the best cell model cannot
be used for hazard assessment, if the data acquired from this model is not reliable. Bioinformatic tools
not only need to bring along high-throughput capabilities to reduce time and resources compared to
in vivo testing, but also to reliably process endpoint data and predict hazard on this basis. This is an
especially challenging undertaking, since one of the key characteristics of computational high
throughput workflows poses their ability to function without human supervision (or as minimal
supervision as possible) for data generation and evaluation. For the workflow presented in this thesis,
it thus was a demanding task to ensure that the algorithms employed for this purpose were (i) able to
handle vast amounts of data from different assays, (ii) generate endpoint data while dealing with
biological and technical aberrations, (iii) evaluate the data with as much certainty as possible while
taking these aberrations into account and (iv) make precise hazard predictions on this basis, all fully
automatized with as less human intervention as possible. The workflow we established incorporates
all steps from image acquisition to hazard predictions (Fig. 6). This thesis aims to explore the different
steps: It will be discussed, how the use of adequate algorithms and statistical methods can lead to
robust and reliable data, by comparing the methods we implemented for this purpose with alternative,
yet popular, approaches. By taking a closer look at employed algorithms and methods of this workflow,
gained knowledge about their advantages and remaining concerns are discussed, including suggestions

that we are able to make based on the gained knowledge. Finally, it will be discussed how different
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parts (e.g. image acquisition as one and BMC estimation as another part) of the workflow are

interconnected and thus affecting each other.
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Figure 6: DNT-IVB workflow

Primary human neurospheres are exposed towards chemicals when plated into laminin-coated 96-well plates with one sphere
(0,3 mm ) per well. Cytotoxicity and viability measurements are performed on the cell supernatants after 5 days of exposure
with the LDH- and Alamar Blue Assays, respectively, using a fluorescence and luminescence multiplate reader. In parallel,
remaining cells are fixed in paraformaldehyde and stained with the DNA intercalating dye Hoechst for nuclei and
immunocytochemical reactions using antibodies against Blll-tubulin (neurons) and 04 (oligodendrocytes). Fluorescence
images are taken with the ArrayScan VT HCS Reader (Thermofisher Scientific). Neurons and Oligodendrocytes are
subsequently identified by a CNN. Images and cell identities are imported into Omnisphero and analysed for endpoint data
generation (discussed in section 3.1). Generated endpoint data is passed down to the data evaluation tool written in R for
hazard characterization (3.2). Resulting evaluation can be used for QSAR, IATA, read-across approaches, chemical
prioritization and other fields of application for hazard assessment (3.3).

3.1 Data generation

In order to extract endpoint data for a certain cell type, cells of this type must first be identified within
the image. Omnisphero originally relied on overlap algorithms for cell identification and
skeletonization for assessment of morphological endpoints such as neurite length or number of
branching points. On the basis of these algorithms, it was already shown that Omnisphero vastly
outperformed other cell identification tools, such as Neuronal Profiling BioApplication version 4.1
(Schmuck et al., 2017), which relies on overlap algorithms and superellipsoids for identification and
morphology analyses.

Evaluation of additional cell donors, changes in image acquisition (new device, different camera) and
staining protocols since the set-up of Omnisphero indicated that cell identification software tools are
required, which go beyond the before developed algorithms. Therefore, the decision was made to
replace Omnisphero’s overlap algorithms with ML approaches for cell identification. ML approaches

(often implemented as deep learning models) have already been used for a variety of applications in
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life science. Some examples are the use of ML approaches for classification of disease, localization of
organs and lesions, or segmentation of organic structures (Litjens et al., 2017; Shen et al., 2017),
rendering ML technology as a promising approach for cell-type classification within the neurosphere
model. Two supervised learning models were implemented as convolutional neuronal network (CNN)
models to identify neurons and oligodendrocytes, respectively, within neurosphere fluorescence
images. With these CNN models, a performance of a precision and recall with area-under-curve (AUC)
values around 0.8 for both oligodendrocytes and neurons was achieved for the validation dataset and
deemed as accurate enough to be applied for image analyses (manuscript 2.1 — Forster et al., 2021). A
direct comparison with the outdated overlap-algorithm (Figure 7) clearly reveals the superiority of the
new approach, as it is able to handle confounders such as luminosity (7B), staining artifacts (7C) and
overlapping cells (7D). This finding is in line with recent development in the field of life science, were
ML based technology is often seen as a superior alternative to other algorithms in a variety of different
in vitro studies (Shariff et al., 2010; Ching et al., 2018). So far, only neurons and oligodendrocytes are
identified with our CNN models. However, as they show promising performance, more CNN models
can be employed for other cell types in the future.

As the employment of ML approaches for in vitro studies is gaining increasing attention (Ching et al.,
2018; Villeneuve et al., 2019), identifying guidelines and minimum standards for application of ML
approaches is an important contribution for such ML methods to gain acceptance. With the knowledge
gained by establishment of the novel algorithms for cell identification within the neurosphere model
(manuscript 2.1 — Forster et al., 2021), we are able to formulate guidelines for validation of employed
algorithms. These do not only apply for the establishment of ML approaches for analysis within the
neurosphere model, but are rather applicable for the development of ML approaches for in vitro
studies in general.

We recommend external validation of CNN data, as over-fitting is an inherent danger of CNN models
(Choi et al., 2020) and can potentially lead to false positive or false negative concentration-response
relationships in compound screening (manuscript 2.1 — Forster et al., 2021). To counteract this,
external validation can be done. A fully independent comparison (e.g. validation on data from different
laboratories using different devices and a fully independent sample preparation) would be the ideal
way to validate. If a CNN is only trained with data deriving from one laboratory, but subsequently is
also able to perform correctly on the data of the same assay derived from other laboratories, it thus is
validated as robust against differences in data origin. Welch et al. (2020) were already able to
demonstrate this, as they trained a CNN model for classification of dental artifacts and successfully
validated it by application on external datasets. We were able to show the benefit of such validation,
by training our CNN models with cells from different individuals, which in a validation step led the

models to be more robust against inter-individual differences (manuscript 2.1 — Forster et al., 2021).
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These findings indicate that a crucial part of CNNs in screening applications is the identification of
sources of bias and confounding, in order to systematically validate against these confounders.
Furthermore, to ensure reliability of CNN model predictions used for studying the effects of substances
on neurospheres, it is important to validate the resulting concentration-response relationship of these
substances. To do this, it is necessary to compare the concentration-response pattern gained by the
CNN to the expected pattern of a substances with known toxicity behavior, which is very similar to the

concept of assay performance discussed in manuscript 2.2 (KeRBel et al., 2022, preprint).

Data annotation is often seen as the bottleneck of ML based approaches (Shariff et al., 2010) and often
a major issue for employment of ML approaches in life science, as it is a time- and sometimes even
resource-consuming procedure (Zheng et al., 2017). It is because of this, that ML approaches are often
considered with skepticism by regulatory decision makers, as many ML models lack sufficient training
data (Ching et al., 2018). We therefore trained the models with a set of 10,945 cells (containing 1,114
annotated neurons and 718 annotated oligodendrocytes) of different chemical treatment and added
augmented data (Dhungel et al., 2015), ensuring well trained models fit for regulatory purposes

(manuscript 2.1 — Forster et al., 2021).

As ML approaches consistently improved over the last years (Ching et al., 2018), the question arises,
how well they perform compared to true human evaluation. Our experience (gained by visual

assessment of random samples) has shown, that the employed CNN models matched human
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Figure 7: Oligodendrocyte identification with different bioinformatical approaches

Staining of nuclei (Hoechst, blue) and oligodendrocytes (O4, green) are depicted as displayed in Omnisphero. Two algorithms
are compared for their performance of identifying oligodendrocytes. Four cells are picked as examples (A-D). The overlap
algorithm binarizes the staining images, where every pixel with brightness values above a set threshold is translated into a
binarized signal. This is done for both staining channels, resulting in a binarized image with both channels overlapping. Several
parameters define how much overlap the oligodendrocyte pixels (green) must have with the according nuclei pixels (blue) so
that the according nuclei is identified as an oligodendrocyte. For the CNN, both channels are merged into one image and
contrast-normalized image tiles (one tile is corresponding to one nucleus) are evaluated for oligodendrocytes.
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evaluation and sometimes even outperformed it. This is in line with a study from Kooi et al., (2017),
where they found no significant differences between the performance of a network model and

certified screening radiologists detecting mammographic lesions.

3.2 Data evaluation

To translate the generated endpoint data deriving from image analyses tools into evaluations which
enable statements about the potential toxicity, i.e. hazard, of tested compounds, biostatistical
processing and evaluation of the endpoint data is required. In the course of a compound screening
project performed on behalf of an EFSA procurement during the years 2017-2020
(OC/EFSA/PRAS/2017/01), a bioinformatics workflow was developed which enables processing and
subsequent DNT evaluation of NPC and UKN assay data (manuscript 2.2 — KeRRel et al., 2022, preprint),
which is the basis of an OECD guidance document on use and interpretation of the DNT-IVB (Crofton
and Mundy, 2021). As part of the workflow, a biostatistics pipeline was employed and also used for a
study analyzing the impact of common biostatistical concentration-response methods on the overall
DNT-IVB performance. As in vitro methods have been gaining complexity over the last decade, i.e. from
reporter gene assays towards organotypic cultures, the hypothesis if the selection of a biostatistical
method can affect the performance of the DNT-IVB was tested. Therefore, a comparative assessment
of different biostatistical methods on the BMC estimation, DNT hit classification and DNT-IVB
performance was performed (manuscript 2.2 - KeRel et al., 2022, preprint). A standard data evaluation
protocol for DNT-IVB data was defined and by changing statistical methods as part of the protocol, the
impact on BMC estimation, the uncertainty of a BMC (expressed as the width of the central 95%
confidence interval of a BMC estimation), the endpoint-specific hazard classification of the compound
and the final assay performance were quantified and compared across the various specific assay
endpoints. Five key aspects of HTS data evaluation were identified and evaluated for their impact on
hazard identification: i) The impact of different methods for experimental data averaging. Only minor
differences in BMC estimations (Fig. 8A and B) and hazard classification outcomes (Fig. 8I-K) were
observed by comparing the two approaches, with relatively few data sets, where a strong difference
on the estimated BMC (Fig. 8C) was observed. ii) The impact of different data normalization
approaches. Very different BMC estimations (Fig. 8A) were often observed for the both methods and
furthermore, where the BMC is not supported by the data in extreme cases (Fig. 8D). Although the
majority of data sets did not necessarily require a control-renormalization, a change to the standard
control normalization still changed the hit category for approx. 5% of all endpoint-specific DNT hazard
classifications and reduced the performance of the DNT-IVB’s predictivity (Fig. 8I-K). iii) The impact of
different approaches for concentration-response regression modelling. The best-fit model approach

responded more flexible to data sets and therefore resulted often to BMC estimations that differed
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significantly from those derived by the sole application of one predefined three-parameter log-logistic
model (Figure 8E). Furthermore, the sole application of the Hill model occasionally prevented the
estimation of a BMC and its uncertainty, leading to less data sets for which a hazard identification could
be performed. Comparison between inverse regression and model averaging for BMC estimation
showed no big differences between both methods (Fig. 8A). iv) The impact of different approaches for
estimation of BMCs and their uncertainty. There are three general types of BMCs and uncertainty
estimation methods: inverse regression, asymptotic approaches and bootstrapping approaches.
Inverse regression estimates the uncertainty directly from the regression fit around the BMC (Buckley,
Piegorsch & West, 2009; Fang, Piegorsch & Barnes, 2015) and was found to be the most reliable
method. The delta method is an asymptotic approach which combines information of the estimated
model parameters to derive a Wald-type interval (Jensen et al., 2020). This approach often led to an
unreliable Cl spanning the entire range of test concentrations or failed entirely (Fig. 8F). Based on the
study outcome, this method is deemed as unfit for an automatic HTS data evaluation. Both
bootstrapping and model averaging are based on computer-intensive statistical resampling techniques
that resample the original dataset to create a huge number of simulated samples (Jensen et al.,2019).
These methods put strong emphasis on the given data for the resampling and are thus vulnerable to
biased interval estimations if the data shows high variability between tested concentrations, i.e. mode
of the resampled BMC distribution differs from the original BMC estimation. Furthermore, due to the
small number of biological replicates, given assay designs are not optimal for regression resampling.
Thus it is not surprising that bootstrapping often resulted in very different estimations compared to
inverse regression. The Cl was often vastly wider and sometimes even failed to produce an estimation
(Fig. 8G). v) The impact of measured BMRs. The use of BMR50 (BMR set at 50% response) has been a
common practice for years and is still used in recent publications, despite not having any biological
reasoning. As an alternative, an endpoint-specific BMR that is adjusted to the baseline noise of the
according endpoint can be used. A larger BMR leads to a higher BMC and the consequence for all data
sets with a much lower data variability is that their substance responses observed at concentration
ranges below the BMC are ignored. In a hazard identification context, this is problematic, since it
contradicts the intended regulatory meaning of a benchmark concentration. Furthermore, it would
also rule out those data sets for a BMC estimation where the observed maximal responses are below
the BMR and thus a BMC cannot be established. As a consequence, hazard classifications change, with
a change mainly from specific DNT hit classifications to no hit classifications, which lastly affects the
assay performance as well (Fig. 8I-K). Thus, the use of the most common descriptor for concentration
response data in pharmacology and in vitro toxicology, an IC50 or EC50, cannot be recommend as

surrogate for a BMC for endpoints of the DNT-IVB.
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A broad variety of free software packages for the statistical analysis of dose-response data and dose-
response modelling are available, with PROAST (RIVM National Institute for Public Health and the
Environment), BMDS (US EPA), ToxCast pipeline (tcpl, Filer et al. 2017) or BMCeasy (Krebs et al., 2019)
posing some of the many options. Similar to the R packages we use (drc and bmd, Ritz et al., 2015 and
Jensen et al., 2020), most of these software packages provide a variety of options in order to respond
as flexible as possible to the various data scenarios a user can possibly face, yet always require a certain
degree of statistical (and sometimes also coding) knowledge from the user. Similar to the tcpl pipeline
we became interested in an automated data evaluation platform with no required user intervention
and addressing the specific features of DNT data or other data from organotypic cultures. The standout
feature of our data evaluation platform is the integration of a sophisticated endpoint-specific hazard
classification model, including flagging systems for uncertain cases, which none of the software
packages mentioned above offer. Rather than just relying on one benchmark value (or the lower limit
of such; Filer et al. 2017, Jensen et al., 2020), our classification model involves confidence intervals for
different hazard classifications. We consider it crucial for the hazard assessment to differentiate
between general cell toxicity and specific DNT hits. None of the aforementioned software programs
do inherit any classification model and require the data to be exported into another software to gain
classifications. This poses another barrier and potential pitfall to overcome to gain reliable
classifications, as the experimenter needs to operate a separate software which is not guaranteed to
handle the data derived from external software appropriately (again, statistical and coding knowledge
is required). With the classification model integrated into our pipeline, all classifications are fully
automated, appropriate for the data format and require no prior statistical or coding knowledge, thus
reducing the human handling error and making it a reliable and accessible option for experimenters.
These findings point out the relevance of careful employment of statistical approaches in DNT data
evaluation. Each method and software comes with its own advantages and disadvantages, where

finding the method and software that is best suited for the given data and purpose is key.
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Figure 8: Methodological changes in the data evaluation on BMC estimation and assay performance

A)-B) Distribution of (A) BMC fold-changes and (B) Cl width fold-changes in response to statistical method changes from the
standard protocol. Box whisker plot show the median (horizontal line), interquartile range (box), 5% and 95% percentile
values (whisker), and extreme values (black dots). C)-H) For several different steps of the data analysis and evaluation, the
data resulting from the standard protocol (blue) is compared to the data deriving from the alternative protocol (red). Error
bars show the SEM between summarized experiment data. Horizontal grey lines indicate the BMR. C) Experiment
summarization by median and by mean. D) Re-normalized data and control-normalized data. E) Best fit approach and use of
only a LL3 regression model. Cl is displayed as confidence band around the fit model. Both models are applied to the data
shown in blue. F) Inverse regression and delta method. Cl of the alternative method is shown as red bar and BMC as red
square. G) Inverse regression and bootstrapping. H) All method changes and their resulting BMC (displayed as dots) and ClI
values (displayed as bars) are shown for one exemplary dataset. 1)-K) Bar graphs show the results of the predictive capability
of the DNT-IVB for 28 substances of known DNT and 17 negative control substances in terms of specificity, sensitivity and

accuracy.
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3.3 Data application

While data support for alternative testing approaches are given, regulatory jurisdictions are lacking
behind. Thus, creating a framework that is fit-for-purpose to incorporate the DNT-IVB into regulatory
processes attending regulatory questions is recommended. Yet, it was already shown to be applicable
for several hazard and risk decisions (Crofton and Mundy, 2021). One example poses the case study of
manuscript 2.4 (Klose et al., 2021), in which the DNT-IVB was used as a first case study for screening
and prioritization of 15 data-poor compounds belonging to the class of flame retardants including
phased out and alternative flame retardants, further closing the gap of data knowledge. By estimating
BMCs and Cls, as well as subsequent classification, specific DNT hits were identified across the
endpoints of the battery, giving information about potential hazard deriving from these flame
retardants and enabling compound prioritization. For instance, triphenyl isopropylated phosphate and
tert-butylphenyl diphenyl phosphate both were identified as toxciants affecting the migration of
neural crest cells. This finding is in line with observations that were made with other models such as
zebrafish or rat cortical neurons (Behl et al., 2015), revealing the capability of the DNT-IVB to replicate
known DNT effects. However, results from this study also revealed new phenomena: For the first time,
specific toxic effects on proliferation were shown for tricresyl phosphate and 2- ethylhexyl diphenyl
phosphate in human cells, hinting at the possibility of the DNT-IVB to uncover new knowledge about
DNT attributes of compounds. These results are of great relevance for human risk assessment,
considering that this finding was made with complex 3D human cell models rather reflecting the
human system than 2D animal cell models. It furthermore is to note that the DNT-IVB was not able to
replicate all observations made for other models. For example, none of the 15 FRs tested in the study
showed any effect on human neuronal differentiation, while all 5 FRs tested in rat neurospheres

affected neuronal differentiation (Hogberg et al., 2020).

With the BMC and uncertainty values at hand, compounds can be prioritized, for example by ranking
the magnitude of compound effect (BMCs, “ToxPi Scores”, manuscript 2.4 —Klose et al., 2021). Another
extrapolation that can be done with BMC data is the transition from in vitro systems to in vivo risk
estimations. This is done by converting a given compound concentration from an in vitro system into
an estimated internal concentration. Due to their low demand on time and resources, the DNT-IVB can
also be applied for screening of data-poor compounds for DNT. It is recommended to prioritize
compounds with high human exposure or have structural similarities to known DNT compounds. If any
KNDP is affected by a compound, this could be taken as a point-of-departure for further steps such as
kinetic modelling, QSAR, IVIVE and estimation of adverse doses. Another example for the use of NAMs
for regulatory purposes is the use of data from multiple DNT-IVB assays for weight-of-evidence

estimation for organophosphates (USEPA 2020b). Furthermore, in vitro data was used by EFSA to
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develop IATA case studies for deltamethrin and flufenacet (EFSA et al. 2021), which resulted in an AOP-
informed DNT risk assessment, comprehending available information from a broad variety of DNT

assays (e.g. in vitro, in vivo, toxicokinetics and epidemiology).

While the DNT-IVB shows promising results for application in regulatory decision making (manuscript
2.3 — Blum et al., 2022), there are remaining concerns about its predictivity for human hazard. The
assay performance analysis has shown 82.1% sensitivity for the standard protocol (Fig. 8J). It thus is
clear that not every compound inducing human DNT hazard is also evaluated as a DNT hazard by the
DNT-IVB resulting in a false negative classification. This can be due to the lack of important KNDP like
neuronal network formation in the evaluated data set, and the discussed differences between in vitro
systems and the far more complex biology of the human body. However, it can also go in the other
direction: a specific DNT hit in the DNT-IVB is not necessary reflecting a real DNT hazard for humans
resulting in a false positive classification. Both of these circumstances further point to the relevance of
incorporating data from multiple test systems covering a large variety of KNDP to gain as much
information about potential hazards as possible for save decision making. A similar concern exists for
no hits, since they may either be true (no hazard) or false negatives (compound has toxic properties
but they were not detected by the DNT-IVB). The main sources of uncertainty on negatives are the

gaps in the battery, i.e. KNDP or specific signalling pathways not covered, and toxicokinetic aspects.

Estimations of assay performance with control compounds is an instrument for DNT-IVB validation,
where there is a trade-off between sensitivity and specificity. If the DNT-IVB is very specific, but not
very sensitive, the positive hit calls have high certainty. This is because the high specificity showed that
compounds not inducing any DNT effects are reliably detected as negatives. It thus is less likely, that
unknown DNT negatives are considered as (false) positive by the DNT-IVB. The opposite case would be
a DNT-IVB with a high sensitivity, but lower specificity. Here, it would be more likely for the DNT-IVB
to cover more DNT hazards, on the cost of producing more false positives. Putting this trade-off in the
context of hazard assessment, both options come with their advantages in disadvantages: A higher
specificity would mean more confident hit calls, resulting in more relevance for hazard assessment, i.e.
the hit calls have a higher precision and are more reliable to predict potential human hazard. Yet, more
additional information from other assays would be needed to be incorporated to cover the DNT
positives not detected by the very specific DNT-IVB. A higher sensitivity would mean that more
potential DNTs are detected, i.e. the DNT-IVB expresses more sources of potential human hazard. For
hazard assessment in the regulatory context, this is the more desirable option, since it is more
favourable for human health to identify harmless substances as harmful rather than identifying

harmful substances as harmless. Yet, it comes with less certainty, reducing the relevance of hit calls
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and also increasing the number of follow-up testing required to separate false positives from true

positives.

3.4 Connecting the dots: How data generation affects the evaluation and what it

means for the application in hazard assessment

As depicted in Figure 6, the process from cell model exposure to hazard assessment is a chain of
subsequent steps, where each step depends on the outcome of the last. It thus is obvious that changes
in one of the steps affects all the subsequent ones. Consequently, for reliable information on potential
DNT hazard, each step must be carefully established and validated. This is even the more crucial for an
automatized workflow, since the experimenter is supposed to give the biological material (cell
cultures) as input and receives the evaluated hazard data as output — rendering the entire process in
between as a “black box”. This black box must be trusted to fulfil each function with precision and
robustness against data variability, which neurosphere assay readouts are susceptible to. It therefore
is a very insightful case study to examine how changes of not only in one, but several of the different
workflow steps (in our case employment of a new algorithm for cell identification and application of
different biostatistical methods for hazard characterization) impact all subsequent steps. In section 3.2
it was already discussed, how changes in biostatistics impact the outcome of hazard characterization.
This section takes the same principle of action and consequence, but with the entire DNT-IVB workflow
as scope. More precisely, it will be explored how the changes of image analysis algorithms for cell
identification impacts the data that is evaluated and thus also the hazard assessment. For illustrative
purposes, the assessment of oligodendrocyte differentiation for a positive control compound is taken
as an example to follow along (Fig. 9). Three scenarios are displayed for demonstration. In terms of
data generation, Omnisphero originally relied on overlap algorithms to identify neurons. This principle
transferred to oligodendrocyte identification is depicted in scenario A. As discussed in 3.1.1, the
overlap algorithm is prone to misclassification: It misidentifies both nuclei with O4 staining artefacts
and nuclei overlapping with branches from an oligodendrocyte as positives, while misidentifying cells
as negatives where the marker expression value was too low for the set binarization-threshold. If the
acquired neurosphere images have many artefacts and/or varying staining brightness, counted
oligodendrocytes (i.e. the measured response for oligodendrocyte differentiation) per well have high
abbreviations and are not in line of what a human experimenter would observe. In this example, the
algorithm did clearly fail at reaching the human ground truth of manual annotation and the response
readouts are fairly scattered over the test concentration range. While evaluating the data, the
employed regression model does not support any effects, a BMR is not reached. This leads to a “no
hit” classification and, if no other endpoint is classified as “borderline” or “specific hit”, to a false
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negative call for the compound. This demonstrates how employment of suboptimal image analysis
algorithms impairs the sensitivity, since toxic effects are not assessed correctly by the image analysis
resulting in false negative classifications. With a weak sensitivity, the DNT-IVB is not able to reliably
detect DNT effects. There are ways to retroactively counteract the high data variability caused by
flawed image analysis. Different BMR levels could be chosen, for example a BMR50. This would ensure
that the BMR is not measuring the fluctuations given by the suboptimal image analysis. However, a
larger BMR leads to a higher BMC to be estimated (manuscript 2.2 — KeRel et al., 2022, preprint).
Another retrospective counteract would be the employment of replicate outlier criteria e.g. with
truncated outlier filtering (Costa, 2014). This, however, is problematic for the small sample size given
in the DNT-IVB and would also raise the follow-up-question on how to deal appropriately with outlier
values (e.g., removing, winsorization, trimming). As a last retrospective counteract, a less conservative
classification model could be used. However, all of these countermeasures would rather cure the

symptom and not the cause.

As a flawed image analysis is identified as the cause of misclassification in scenario A, in scenario B a
well-trained CNN model is employed for identification of oligodendrocytes. It mimics human
evaluation well and the generated endpoint data shows clear toxic effects on oligodendrocyte
differentiation, as the applied regression model reaches the BMR. In scenario B, bootstrapping is
chosen for BMC uncertainty estimation. Compared to inverse regression, bootstrapping often results
in wider Cls for the given DNT-IVB experiment design (manuscript 2.2 — Kelel et al., 2022, preprint).
The classification model relates to BMC uncertainty and the high uncertainty led to a “unspecific hit”
classification. Consequently, the compound is possibly identified as a false negative again. A similar
result would be expected, if a poor regression model is chosen and over-parametrization leads to a
wider Cl. In scenario C, the BMC uncertainty of the CNN-generated data is estimated by inverse
regression. Inverse regression by trend results in narrower Cl widths for the DNT-IVB experiment
design (manuscript 2.2 — KeRel et al., 2022, preprint). With less uncertainty in the data, the
classification model identifies the endpoint as “specific hit” and the compound consequently as a true
positive. The different outcome between scenario B and C illustrates how statistical methods and the
logic of a classification model need to be established with regard to the experimental design: Most of
the DNT-IVB assays from our lab are prone to higher data variability than conventional cell systems,
which renders bootstrapping as a less optimal choice to get reliable hazard hit calls, as it produces very
large Cls, leading up to false negatives and thus a poor sensitivity. The illustrated example only shows
how differences in bioinformatical and -statistical methodology impacts sensitivity. However, the same
principle can be applied to specificity as well: If cells are not identified correctly, a control compound

with no toxicity can misclassified as a toxicity hit compound (e.g. if the algorithm failed to detect
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neurons in higher test-concentrations and thus a reduction of neuronal differentiation is falsely
identified). And if a poor statistical method is chosen (e.g. leading to a reached BMC for data that does
not support hints for toxic effects in the concentration-response pattern), the classification model
might identify the compound as toxic as well, thus also leading to a poor specificity. In the examples
above, only the BMC uncertainty estimation step is discussed as a critical point where hit calls can
depend on. But as discovered in manuscript 2.2 (KeRel et al., 2022, preprint), all choices in biostatistical
methodology can impact the subsequent hit calls, hazard characterization and assay performance.
Because of this, the choice of data evaluation software and choice of software parameters are another
concern to be taken into account for hazard identification (Jensen et al., 2020; manuscript 2.2 — Kelel
et al., 2022, preprint). In the common practice of in vitro testing, these software packages are often
used by non-statisticians and inexperienced experimenters often rely on the default settings of given
software to perform data analysis and evaluation. It therefore should be given that the default settings
are the ones that can be applied to most data scenarios for sound evaluation. l.e., the default settings
should be a good compromise between robustness against different data scenarios from the
abundance of different assays, while still maintaining precision in their estimations. One example for
challenges deriving from software choice poses our experience with the ToxCast pipeline (tcpl, Filer et
al., 2017), a software package able to evaluate data from a broad variety of different assays due to
flexible algorithms and options. While being a capable software tool for data evaluation that is a good
fit for many in vitro assays, our experience has shown that the data derived from it did not match the
requirements for regulatory acceptance of our assays. This is because the neurosphere assay data
comes with individual requirements such as assay-specific pre-processing (Schmuck et al., 2017,
Manuscript 2.2 — KeRel et al., 2022, preprint) or characteristics such as high fluctuation in response
data (Manuscript 2.2 — KeRel et al., 2022, preprint), which all need to be considered carefully during
statistical data evaluation and require more options as provided by tcpl. Furthermore, tcpl does not
provide a classification model, which is mandatory for hazard assessment. Thus, a sufficient data
analysis with the tcpl software would require several additional algorithms, both up- and downstream,
overcomplicating the entire process and making one comprehensive software tool (as presented in
this work) a far more desirable solution. In the end, there is always the danger of an automatized data
analysis and evaluation workflow not being prepared to deal with an unusual data set. These are
scenarios that most likely can only be avoided by either analyzing each data set individually by an
expert (which is very counterintuitive for high content analysis and evaluation, especially in an
automated format), or implementation of flagging systems that are able to detect “problematic” data

samples. This approach was taken for the
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Figure 9: Consequences of change in methodology within the DNT-IVB bioinformatics workflow

Schematic overview showing the aftermath of methodology change in either the image analysis and biostatistics for hazard
characterization and assessment. In an example, oligodendrocyte and nuclei stainings were exposed with different
concentrations of a known DNT toxicant. The stainings are analyzed in Omnisphero for oligodendrocyte identification. In
scenario A, the overlap algorithm is used for oligodendrocyte identification. Due to the proneness of the overlap algorithm
to misclassifications of cells, the data has very high uncertainty. The employed regression model did not reach a BMR, thus
no effect on oligodendrocyte differentiation is observed. Consequently, the endpoint was classified as a “no hit”, which in
this example is a false negative for the DNT toxicant. This leads to a poor sensitivity. In this scenario, the data shows high
uncertainties and can be seen as unreliable. This would raise the question if the DNT-IVB is adequate for the use for regulatory
purposes. In a different scenario, oligodendrocytes are reliably identified by a well-trained CNN model. The resulting data
shows clear effects, a BMC was estimated. In scenario B, bootstrapping was employed for uncertainty estimation, resulting
in a wide CI. This high uncertainty of BMC leads to a “unspecific hit” classification and thus is also a false negative. Despite
having sound image analysis and data support for a DNT toxic effect, employed biostatistics were chosen poorly and result in
misleading statements about potential hazard. In scenario C, inverse regression is employed for BMC uncertainty estimations
and leads to a narrower Cl. With higher certainty in the data, the endpoint is evaluated as a “specific hit” and thus validates
the chosen methodology. With enough validation, this methodology can then be employed for more compound testing and
hazard characterization. Data shown in this figure were artificially created for demonstration purposes.
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classification model in which an elaborate flagging system was implemented, as described in
manuscript 2.2 (KeRel et al., 2022, preprint). With this flagging system, problematic cases were
identified and classification of these was done based on expert judgement for reliable hazard

identification of such cases.

3.5 Conclusion

In this thesis, the progression of DNT data from data generation by image acquisition to application of
evaluated data for regulatory purposes was observed. This progression can be divided into several
individual, yet interconnected steps (generation, evaluation, application). Each step was described and
thoroughly discussed, where it also was pointed out, how the steps are interconnected with each
other. It has become apparent, that there is a strong dependency between them. Methodological
changes in one step always affect subsequent ones — sometimes to a drastic degree. By taking the
insights gained form manuscript 2.2 and 2.4 into consideration, it was clearly demonstrated, how the
method of BMC estimation can decide the fate of compound hit calls and what consequences that
might have for regulatory acceptance of the DNT-IVB. For example, a compound’s toxicity can either

be not detected or falsely identified, if the methods are chosen poorly.

With constant improvement of existing and development of novel technologies, conventional
approaches can become redundant and sometimes even outright negligent to be kept in use (Ching et
al., 2017; Judson et al. 2017; Jensen et al.,2019; Villeneuve et al., 2019). The change of technology for
cell type identification showed how much improvement can be achieved by application of a novel
technology, where cells were identified with significantly higher precision. Reliable generation of data
is a mandatory basis, since the data evaluation that follows the generation happens under the
assumption that given data reliably reflects the biological phenomena. As for the evaluation, there is
no simple way to tell which methods are the best for concentration-response data evaluation in
general. Rather, there is a strong need to choose the methods which fit the given data
structure/experimental design best. Otherwise, misinterpretation of data is an adherent danger.
Comparison of performance, measured by control compounds, can be a feasible way to quantify the
adequacy of different approaches for their purpose. Furthermore, it has been become clear that a
hazard classification method with focus on endpoint relationships is essential for a reliable
identification of hazard alerts. DNT-specific endpoints should always take general cell health into
account to enable distinction between general and DNT-specific effects. With precisely generated data
reflecting biological phenomena well and biostatistical approaches being fit-for-purpose, reliable

assumptions and predictions can be made on the basis of that data.
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Although this study was conducted with data from the DNT-IVB, we assume many of the conclusions
can be generalized to data from other assays and even fields in life science. It demonstrates how novel
technology can better reflect biological phenomena, that statistical decisions which seem to be of
minor importance can become impactful, how the precision of different approaches can be quantified
and how the data can finally be used for regulatory decision making. At this point, the DNT-IVB testing
cannot replace the use of the OECD TG426 for hazard-based decisions. Yet, it has the potential to be a

powerful tool for regulatory needs using an IATA framework.
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4 Summary

Neurodevelopmental toxicants can affect early brain development and therefore present a long-
underestimated health risk to our society. Conventional in vivo developmental neurotoxicity (DNT)
testing methods are very resource- and time-intensive and were only performed for a limited amount
of chemicals. This leaves a data gap concerning the DNT potential of most chemicals. In general, there
is consensus that more chemicals need to be tested for their potential to induce DNT. A promising
approach is the use of new approach methods (NAMs), set up in a DNT in vitro battery (IVB) that can
evaluate chemical effects on major neurodevelopmental key events and overcome several limitations
of in vivo testing. Neural progenitor cells (NPCs) cultivated as 3D neurospheres are one promising NAM
used in the current DNT-IVB, since they mimic key processes of brain development such as cell
proliferation, migration and differentiation in a 3D context.

To extract relevant and reliable information on the DNT of many chemicals from 3D neurospheres, an
automatized workflow containing bioinformatic and -statistical medium-throughput pipelines was
developed. This allows image analysis for cell biological endpoints and facilitates a biostatistical data
analysis for DNT hazard classification of chemicals in a regulatory context. In this thesis, the process
from generation to evaluation and finally application of in vitro DNT testing data is explored. It is
furthermore demonstrated how the application of different data analysis methods affects the final
DNT hazard classification of a chemical.

To generate endpoint data, the high content image analysis software ‘Omisphero’ was developed
previously. Omnisphero uses fluorescence-based images acquired with a high content imaging device
for quantification of cell type-specific endpoints such as migration or neuronal and oligodendrocyte
differentiation. Originally, Omnisphero relied on overlap-algorithms for cell-type identification.
However, these algorithms did not meet the cell type identification accuracy required for regulatory
application. As part of this thesis machine learning (ML) approaches were developed, which strongly
outperform the overlap algorithm in terms of accuracy and flexibility. The endpoint data deriving from
image analysis need to be further analyzed and evaluated, to enable DNT classification of chemicals.
For this purpose, in this thesis a biostatistical software tool was developed in R, which transforms data
from different assays into a uniform format and applies several statistical methods relevant for final
data interpretation. For this evaluation, a variety of biostatistical approaches are employed, which are
all interconnected. The choice of which methods to employ has been shown to be impactful for the
final hazard classifications. It thus became a necessity to carefully evaluate a multitude of different
biostatistical approaches with regard to their application in DNT hazard identification. Depending on
which approach is employed, the data evaluation accuracy, measured by expected behavior of control
chemicals, varied between 77.3% and 88.6%. Statements on DNT deriving from the data evaluation
methods developed in this thesis can subsequently be used in combination with other data. Examples
are the discovery of a potential DNT hazard, prioritization of compound testing or integration into the
Adverse Outcome Pathway concept.

In summary, significant progress was made in both development and application of DNT NAM
approaches. Attention was raised on how important the choice of bioinformatical and -statistical
methodology can be for DNT classification of chemicals, as well as how mandatory careful selection
and validation of these methods is to gain reliable information.
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5 Zusammenfassung

Entwicklungsneurotoxische Chemikalien kénnen die friihe Gehirnentwicklung in utero beeintrachtigen
und stellen daher ein Gesundheitsrisiko fiir unsere Gesellschaft dar. Herkémmliche in vivo Methoden
zur Testung von Entwicklungsneurotoxizitdt (developmental neurotoxicity, DNT) sind sehr ressourcen-
und zeitintensiv und wurden nur fiir eine begrenzte Anzahl von Chemikalien durchgefiihrt. Es besteht
internationaler Konsens dariber, dass mehr Chemikalien auf ihr DNT-Potenzial getestet werden
missen. Ein vielversprechender Ansatz ist die Verwendung neuartiger Test-Methoden (NAMs) im
Rahmen einer DNT in vitro Batterie (IVB), mit welcher die Auswirkungen von Chemikalien auf wichtige
Schllsselereignisse der Gehirnentwicklung bewertet und mehrere Einschrankungen von in vivo Tests
Uberwunden werden kénnen. Neurale Vorlduferzellen (NPCs), welche als 3D-Neurospharen kultiviert
werden, sind vielversprechende NAMs, da sie Schlisselprozesse der Gehirnentwicklung wie
Zelldifferenzierung und Migration in einem 3D-Kontext nachahmen.
Um relevante und zuverldssige Informationen Uber das DNT Potential vieler Chemikalien aus 3D-
Neurosphdren zu extrahieren, wurde ein automatisierter bioinformatischer und biostatistischer
Workflow entwickelt. Dieser Workflow ermoglicht eine Bildanalyse fiir zellbiologische Endpunkte
sowie biostatistische Datenanalyse fiir die DNT-Gefahrdungsklassifizierung von Chemikalien in einem
regulatorischen Kontext. In dieser Arbeit wird der Prozess von der Generierung lber die Auswertung
bis hin zur Anwendung von in vitro DNT-Testdaten untersucht. Dariliber hinaus wird gezeigt, wie sich
die  Anwendung verschiedener Datenanalysemethoden auf die endgiiltige  DNT-
Gefahrenklassifizierung von Chemikalien auswirkt.
Zur Generierung von Endpunktdaten wurde vormals die Bildanalysesoftware ,,Omisphero” entwickelt.
Omnisphero verwendet fluoreszenzbasierte Bilder, um zelltypspezifische Endpunkte wie Migration
oder Differenzierung von Neuronen und Oligodendrozyten zu quantifizieren. Urspriinglich stiitzte sich
Omnisphero zur ldentifizierung von Zelltypen auf Uberlappungsalgorithmen. Diese Algorithmen
erreichten jedoch nicht die flr regulatorische Anwendungen erforderliche Genauigkeit. Im Rahmen
dieser Arbeit wurden mithilfe des maschinellen Lernens (ML) neue Ansitze entwickelt, welche die
Uberlappungsalgorithmen in Bezug auf Genauigkeit und Flexibilitit deutlich bertreffen. Die so
gewonnenen Daten zur Zellidentifizierung missen weiter prozessiert werden, um eine DNT-
Klassifizierung von Chemikalien zu ermdglichen. Zu diesem Zweck wurde eine biostatistische Software
in R entwickelt, welche Daten aus verschiedenen Assays in ein einheitliches Format umwandelt und
mehrere biostatistische Methoden anwendet, die fiir die endgliltige Datenauswertung relevant sind.
Die Methoden sind dabei alle miteinander verknlipft. Es hat sich gezeigt, dass die Wahl der
anzuwendenden Methoden einen Einfluss auf die endgiiltigen Gefahrenklassifizierungen hat. Daher
wurde es notwendig, eine Vielzahl verschiedener biostatistischer Ansatze im Hinblick auf ihre
Anwendung bei der Identifizierung von DNT-Gefahren sorgfaltig zu bewerten. Die Genauigkeit der
Datenauswertung, gemessen am erwarteten Verhalten von Kontrollchemikalien, lag je nach Ansatz
zwischen 77,3 % und 88,6 %. Aussagen zu ENT, welche sich aus den in dieser Arbeit entwickelten
Datenauswertungsmethoden ergeben, kdnnen anschlieBend in Kombination mit anderen Daten
verwendet werden. Beispiele hierfiir sind die Entdeckung eines DNT-Gefdhrdungspotentials, die
Priorisierung von Substanztests oder die Integration in das Adverse Outcome Pathway Konzept.
Zusammenfassend kann gesagt werden, dass sowohl bei der Entwicklung als auch bei der Anwendung
von DNT NAM Ansatzen erhebliche Fortschritte erzielt wurden. Es konnte gezeigt werden, wie wichtig
die Wahl der bioinformatischen und -statistischen Methoden fiir die DNT-Klassifizierung von
Chemikalien sein kann und wie wichtig eine sorgfiltige Auswahl und Validierung dieser Methoden ist,
um zuverlassige Informationen zu erhalten.
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List of abbreviations

2D Two-dimensional

3D Three-dimensional

AOP Adverse outcome pathway

AUC Area-under-curve

BMC Benchmark concentration

BMCL Lower benchmerk response confidence limit
BMCU Upper benchmerk response confidence limit
BMR Benchmerk reponse

cl Confidence interval

CNN Convolutional Neural Network

DNT Developmental neurotoxicity

EC Effective Concentration

EFSA European Food Safety Authority

ENT Entwicklungsneurotoxizitat

EPA Environmental Protection Agency

FN False negative

FP False positive

FR Flame retardants

HCI High content imaging

HCIA High content image analyses

HTS High throughput screening

IATA Integrated Approaches to Testing and Assessment
IVB IVB in vitro battery

KNDP Key neurodevelopmental process

LC Lethal Concentration

MIE Molecular iniating event

ML Machine learning

MOA Mode of action

NAM New approach method

NPC Neural progenitor cell

NPC Neural progenitor cells

NRC National research council

OECD Organisation for Economic Co-Operation and Development
QSAR Quantitative structure—activity relationship
TN True negative

TP True positive

UKN University of Konstanz
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