
Uncertainty Estimation, Management, and Utilisation in
Human-Computer Dialogue

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Carel van Niekerk
aus Südafrika

Düsseldorf, Oktober 2023

aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. Prof. Dr. Milica Gašić

2. Prof. Dr. Josef van Genabith

Tag der mündlichen Prüfung: 18. März 2024

iii

Declaration of Authorship
I, Carel van Niekerk, declare under oath that I have produced my thesis independently and without

any undue assistance by third parties under consideration of the Principles for the Safeguarding of
Good Scientific Practice at Heinrich Heine University Düsseldorf.

Düsseldorf,

Location, Date Carel van Niekerk

v

Acknowledgements
I would like to start by thanking God, for gifting me with the health, strength, and talents necessary

to undertake and complete this journey.
I would like to extend special thanks to my supervisor, Prof. Dr. Milica Gašić, whose invaluable

support and motivation were pivotal throughout this journey. Her patience, support, positivity, and
insightful feedback have been instrumental in my ability to navigate and surmount the challenges
encountered along the way.

I would also like to thank the Alexander von Humboldt Foundation for their generous financial
support through the Sofja Kovalevskaja Award, funded by the Federal Ministry of Education and
Research.

I also would like to express my thanks to my colleagues and friends in the Dialog Systems and
Machine Learning Group. Their support, collaboration, and the fun moments (and pranks) we shared
have been essential in maintaining my well-being and perspective during this journey.

I cannot overstate my gratitude towards my fiancée, Claudia, for her unwavering love, support,
and encouragement. Her contributions, including language editing of this work, have been invaluable.

Finally, I extend my deepest thanks to my parents, Carel and Celeste, my brother Allan, and the
rest of my family. Their endless support and encouragement have been my foundation throughout
my academic journey.

This journey has been a collective effort, and it is with immense gratitude that I acknowledge the
role each one of you has played in bringing this work to fruition.

vii

Abstract
In the rapidly evolving field of human-computer interaction, there is an increasing demand for

effective and reliable dialogue systems, computer programs engineered to converse with humans.
However, these systems often fall short in unpredictable or ambiguous scenarios, a problem attributed
to the absence of a comprehensive model for handling uncertainty. This limitation impacts the
ability to communicate effectively with human users, thereby diminishing user experience and trust.
Uncertainty is a fundamental aspect of human cognition and everyday decision-making processes,
serving as both an obstacle and an opportunity in our constant pursuit of knowledge and effective
communication. Despite its important role, uncertainty is underrepresented in the development of
machine learning models for dialogue systems.

To address these gaps, this thesis focuses on integrating and leveraging uncertainty within task-
oriented dialogue systems, systems designed to assist users in accomplishing specific tasks. With the
aim of achieving human-level interactive capabilities, we make three substantial contributions to this
area. First, we enhance the system’s language understanding component, improving its accuracy in
evaluating the certainty of its predictions. Secondly, we introduce SetSUMBT (Set Similarity based
Slot Utterance Matching Belief Tracker), a model designed to capture various facets of uncertainty,
bolstering the robustness and adaptability of the dialogue policy models responsible for generating
system responses, as validated through simulated and real-user interactions. Thirdly, we present
CAMELL (Confidence-based Acquisition Model for Efficient self-supervised active Learning with
Label validation), an innovative framework which minimises the reliance of models on labelled data.
By incorporating elements of self-supervision, where models learn from their own predictions, and
label validation, CAMELL automates the rectification of unreliable human annotations, a feature with
extensive applicability in various machine learning domains.

Incorporating insights from psychological theories on human uncertainty management, this thesis
emphasises the importance of integrating such insights into machine learning models for dialogue.
Our methods will advance the field by introducing more reliable, robust, and effective dialogue
systems that better handle uncertainties, ultimately enhancing the quality of human-computer
interaction. Furthermore, this work challenges current limitations associated with data deficiencies,
offering a data-driven approach for improving dataset quality, thereby paving the way for future
research in machine learning and human-computer interaction.

ix

Contents

List of Figures xv

List of Tables xvii

Summary of Notation xix

1 Introduction 1
1.1 Overview . 1

1.1.1 Task-oriented Dialogue Systems . 1
1.2 Challenges in Dialogue Belief Tracking . 3

1.2.1 Calibration and Uncertainty . 5
1.3 Contributions . 5
1.4 Thesis Structure . 6

2 Deep Learning Preliminaries 7
2.1 Overview . 7
2.2 Fundamentals of Neural Networks . 7

2.2.1 Deep Neural Networks . 8
2.2.2 Activation Functions . 8

2.3 Parameter Optimisation . 9
2.3.1 Objective Functions . 10
2.3.2 Optimisation Algorithms . 11

2.4 Sequential Models . 13
2.5 Convolutional Neural Networks . 13
2.6 Recurrent Neural Networks . 14
2.7 The RNN Encoder-Decoder Model . 15

2.7.1 The Encoder . 16
2.7.2 The Decoder . 16

2.8 The Attention Mechanism . 17
2.9 The RNN Encoder-Decoder with Attention . 17

2.9.1 The Decoder with Attention . 18
2.10 The Transformer . 18

2.10.1 Multi-head Attention . 19
2.10.2 Self-attention . 20
2.10.3 Dense Feature Transformation Layers . 20
2.10.4 Positional Encodings . 21
2.10.5 The Transformer Layer . 22

2.11 The Transformer Language Model . 23
2.11.1 Token Embeddings . 23
2.11.2 Transformer Encoder Layer . 24
2.11.3 Transformer Decoder Layer . 24
2.11.4 The Model . 25

2.12 Encoder Language Models . 26
2.13 Decoder Language Models . 26

x

2.14 Conclusion . 27

3 Uncertainty Estimation in Deep Learning 29
3.1 Overview . 29
3.2 What is Uncertainty? . 29
3.3 Types of Uncertainty in Deep Learning . 29
3.4 Calibration Techniques . 30

3.4.1 Objective Functions . 30
3.4.2 Ensembles . 31

3.5 Ensemble Distillation Techniques . 33
3.5.1 Ensemble Distillation . 34

Temperature Scaling . 34
3.5.2 Ensemble Distribution Distillation . 35

The Dirichlet Distribution . 36
Convergence Problems . 37
The Proxy Dirichlet Distribution . 39
Uncertainty Estimation Using the EnD2 Student 40

3.6 Uncertainty-based Active Learning . 41
3.6.1 Acquisition Functions . 41

3.7 Conclusion . 42

4 Dialogue State Tracking 43
4.1 Overview . 43

4.1.1 Generative Approaches to Dialogue Modelling 43
4.1.2 Discriminative Approaches to Tracking . 45

4.2 Integrated Approaches to Tracking . 45
4.2.1 The Role of Word Embeddings . 46
4.2.2 Recent Advances . 46

4.3 The Slot Utterance Matching Approach to Belief Tracking (SUMBT) 48
4.3.1 The Dialogue Belief Tracking Task . 48
4.3.2 Utterance and Ontology Features . 48
4.3.3 Slot Utterance Matching . 49
4.3.4 Context Tracking . 49
4.3.5 User Goal Prediction . 49
4.3.6 Training Objective . 50
4.3.7 Evaluation . 50

4.4 Conclusion . 51

5 Knowing What You Know: Calibrating Dialogue Belief State Distributions
via Ensembles 53
5.1 Summary . 53
5.2 Personal Contributions . 53

6 Uncertainty Measures in Neural Belief Tracking and the Effects on Dialogue Policy Perfor-
mance 61
6.1 Summary . 61
6.2 Personal Contributions . 61

7 CAMELL: Confidence-based Acquisition Model for Efficient Self-supervised Active Learn-
ing with Label Validation 77
7.1 Summary . 77
7.2 Personal Contributions . 77

xi

8 Conclusion 93
8.1 Summary of Key Findings . 93
8.2 Limitations . 94
8.3 Recommendations for Future Research . 94

8.3.1 Uncertainty Estimation . 94
Efficient Uncertainty Estimation . 94
Uncertainty Estimation in Dialogue State Tracking Models 94

8.3.2 Trustworthiness of Large Language Models . 95
8.3.3 Uncertainty Estimation in Large Language Models 95

A Supplementary Proofs 97
A.1 Deep Learning . 97
A.2 Uncertainty Estimation . 99

Bibliography 103

xiii

List of Figures

1.1 Key components of a modular task-oriented dialogue system. The speech recogniser
converts the user’s speech into text, which is then processed by the language un-
derstanding module to identify user acts. Following this, the state tracker extracts
essential information from the user actions, the previous dialogue state and the last
system action and modifies the user’s goal. Using this updated goal, the state tracker
queries an external database for relevant entities and generates the updated dialogue
state. Using this state, the policy determines the optimal next action, and the language
generation module generates the text to be synthesised as a response. 2

1.2 Error propagation poses a significant challenge in dialogue systems, necessitating
mechanisms for estimating and managing uncertainty to rectify misunderstandings.
This figure illustrates a comparison between two dialogue systems. The first system
employs a dialogue state tracker (represented in orange) that disregards uncertainty
information, offering only a single candidate dialogue state to the policy module.
Consequently, this system cannot recover from misunderstandings, leading to inac-
curate or irrelevant responses and a unsatisfactory user experience. Conversely, the
second system incorporates a dialogue belief tracker (depicted in green), equipped
with calibrated confidence estimates that encompass uncertainty information. Unlike
its counterpart, the belief tracker presents a distribution of possible states to the policy
module, reflecting the system’s uncertainty about various aspects of the user’s input,
such as the specified hotel area. By considering this uncertainty, the policy module can
infer that there was a misunderstanding regarding the hotel area and can opt to ask for
confirmation. This allows the system to recover from potential misunderstandings and
provide a better user experience. 4

2.1 A prototypical deep neural network featuring two hidden layers. 8
2.2 Schematic illustration of the convolution operation within a 1D CNN layer. In this

visualisation, a sequence of input data points, ranging from x1 to xt, is processed by
a convolutional filter of width 3. Each group of three adjacent data points (depicted
by the blue, green, and orange outlines) forms a window to which the filter is applied.
As the filter slides over the input sequence one step at a time, it computes a feature
vector hi for each window, resulting in a transformed set of feature vectors capturing
the essential patterns and characteristics inherent in each window of the input sequence. 14

2.3 Illustration of a Recurrent Neural Network (RNN). RNNs are tailored to process
sequences of data, combining inputs at each time step t with the hidden state from the
preceding step to propagate information throughout the sequence. Subsequently, the
model yields an updated hidden state and corresponding output. 15

xiv

2.4 Schematic representation of the Gated Recurrent Unit (GRU). The symbols FF and
φSigmoid represent fully connected neural networks with linear and sigmoid activations,
respectively. The variables rt and zt denote the gating mechanisms crucial for control-
ling information flow. In illustration, a triangle gate followed by a sum indicates a
mechanism where only one input is weighted. In contrast, the half-moon shaped gate
indicates a mechanism where both inputs are weighted. Circles within the schematic
are indicative of auxiliary operations, including summation and the application of the
tanh function. 15

2.5 RNN Encoder-Decoder model: The encoder distils the input sequence into a context
vector, while the decoder, conditioned on this context, generates the corresponding
target sequence. 16

2.6 RNN Encoder-Decoder Featuring Attention. 18
2.7 Illustration of single head and multi-head scaled dot-product attention. This attention

mechanism calculates attention scores using dot-product similarity between query
and key representations. Masking is applied when needed, as in masked language
modelling or to prevent the decoder from peeking into the future. The multi-head
attention comprises several individual attention mechanisms, each acting on a different
projection of the input. The concatenated outcomes of these heads yield the final output
representations. 19

2.8 Visual representation of the sine-cosine positional encodings and their properties. . . . 21
2.9 Transformer Encoder and Decoder Layers . 22
2.10 Illustration of Attention Mechanism in RNN Encoder-Decoder for WMT 17 DE-EN

Translation Task. The figure displays the attention scores generated by the Transformer
Model (Vaswani et al., 2017), showcasing how the attention mechanism aligns each
target word (English) with the relevant source words (German). This visualisation
provides insights into the model’s ability to focus on relevant parts of the input sentence
during translation. 24

2.11 Transformer language model overview. It encompasses an encoder (in green) and
a decoder (in red). The encoder utilises multi-head self-attention blocks to produce
contextual representations of input tokens. The decoder, with its masked multi-head
self-attention, ensures each output token considers all preceding tokens. This masking
prevents the decoder from viewing future tokens during training, ensuring genuine
auto-regressive generation. Additionally, the decoder employs encoder-decoder atten-
tion mechanisms and concludes with a classification layer for token generation. 25

2.12 Illustration of Encoder-Only and Decoder-Only Transformer Models. The encoder-only
models, often referred to as masked language models, are trained to generate rich
contextual representations for text tokens using the masked language modelling task.
In this approach, certain tokens from the input sequence are masked, and the encoder
then predicts these masked tokens based on the surrounding context. Conversely,
decoder-only models engage in auto-regressive sequence generation. While generating
text, the decoder’s input incorporates both the input sequence and any previously
generated tokens. This setup allows the model to attend to the entire input sequence
during generation while masking future text tokens. 27

3.1 Exploring Different Sources of Uncertainty in Ensemble Models. 34
3.2 Comparison of Gradient Norm Ratios Across Loss Functions for Varying Numbers

of Classes in Three Distinct Scenarios: Random Initialisation, Mid-Training Misclas-
sification, and Near-Convergence. The loss functions analysed include Categorical
Cross-Entropy (CE), Dirichlet Negative Log Likelihood (NLL), and both Forward and
Reverse Kullback-Leibler Divergence (KL and RKL). 39

xv

4.1 Components of the Dialogue Belief State in a Task-Oriented Dialogue System. The User
Goal captures the desired criteria set by the user, such as location and price preferences.
The Latest User Actions and System Actions record the recent turn-by-turn history
of the conversation, providing essential context. The system queries the Database
using the User Goal to retrieve relevant information. The returned Database Results
contain matching entities. The Booking Information showcases specific reservations
or bookings made during the dialogue. The Dialogue Belief State consolidates all this
information, summarising the system’s current understanding of the conversation. . . 44

4.2 Graphical model of the conditional dependencies in a task-oriented dialogue system.
The variables st, at, and ot represent the unobserved state of the dialogue (in grey), the
observed system and user actions (in green) at time step t. 44

4.3 Slot utterance matching belief tracker. 48

xvii

List of Tables

1.1 Comparison of the MultiWOZ and Schema guided dialogue (SGD) datasets. 3

xix

Summary of Notation

This chapter summarises the notations used throughout this thesis for quick reference.

General Mathematical Notations

a, b, c Scalars
a, b, c Vectors
ai i-th element of vector a.
A, B, C Matrices
aj j-th row of matrix A.
a = [ai]

I
i=1 Vector a composed of elements ai.

A = [ai]
J
j=1 Matrix A composed of rows ai.

ai,j Element in the i-th row and j-th column of matrix A
A⊺ Transpose of matrix A
A−1 Inverse of matrix A
AB Matrix multiplication of A and B
x1:t = ⟨x1, x2, · · · , xt⟩ Sequence of t vectors.
X ,Y ,Z Sets of elements.
x ∈ X x is an element of set X .
a ⊙ b Element-wise multiplication of vectors a and b.
a · b Dot product of vectors a and b.
a ⊕ b Concatenation of vectors a and b
a2 = a ⊙ a Element-wise square of vector a.
f (x), g(x) Functions dependent on variable x
f (x; θ) Function of x parameterised by θ
f ◦ g(x) = f (g(x)) Composition of functions f and g
f : X → Y Function mapping elements from set X to set Y .∫︁

f (x)dx Integral of f (x)
R The set of real numbers
N The set of natural numbers
Rd d−dimensional Euclidean space
Rd1×d2 Real-valued matrices with d1 rows and d2 columns
Σ Summation symbol
log(x) Natural logarithm of x
ex = exp(x) Exponential function of x
arg maxy f (y) Value of y that maximises the function f (y)
maxy f (y) Maximum value of function f (y) with respect to y
O(n) Big-O notation, indicating the computational complexity of a function

Notations in Deep Learning

xi Input feature vector for the i-th observation
yi Target variable for the i-th observation

xx

(xi, yi) i-th observation consisting of input features and target
D = {(xi, yi)}N

i=1 Dataset of N observations
φ(z) Activation function applied to input z
φ(i)(x) Activation function at the i-th layer of a deep neural network (DNN).
g(x; θ) Neural network layer/module parameterised by θ

g(i)(x; θ) i-th layer of a deep neural network, parameterised by θ

h(i) Output at the i-th layer of a deep neural network
L(D; θ) Loss/objective function for a model with parameters θ
∇θL(D; θ) Gradient of the loss function with respect to θ
η Learning rate
ψ(x, y) Similarity or compatibility measure between x and y
Φ(x) Normalization function applied to x

Notations in Probability and Statistics

X Random variable
x A realisation of the random variable X.
X⃗ Vector of random variables
x Realisation of the random vector X⃗.
X Matrix whose elements are random variables
X Realisation of the random matrix X.
p (Y = y) Probability density function of the discrete random variable Y
p (Y|·) Conditional probability of Y
P (Y) Probability density function of the continuous random variable Y

E
P
(︂
X⃗
)︂ [︂X⃗]︂ Expected value of X⃗ with respect to the distribution P

(︂
X⃗
)︂

var
(︂
X⃗
)︂

Variance of the random variable X⃗

Bias(X) = E[X]− θ Bias of an estimator X with respect to the true parameter θ
H (P (X)) Entropy of the random variable X
I (X,Y) Mutual Information between random variables X and Y
DKL [p∥q] Kullback-Leibler divergence between probability distributions
Dir (α) Dirichlet distribution with parameters α
Cat (π) Categorical distribution with probability vector π
π̂(x) = f (x; θ) Predicted probabilities from model f
Γ(x) =

∫︁ ∞
0 tx−1e−tdt The Gamma function

ψ(x) = d
dx log Γ(x) The Digamma function

Notations in Dialogue Belief/State Tracking

O Ontology of the dialogue system, representing all possible domain-slot pairs
dm domain m in the dialogue ontology
sm domain-slot pair m in the dialogue ontology
Vsm Set of plausible values for domain-slot pair m
t Turn t in the dialogue
vsm

t Value of domain-slot pair sm at turn t
Bt = {(sm, vsm

t)}sm∈O Dialogue state at turn t
uusr

t User utterance at turn t
usys

t System utterance at turn t
at System action (semantic) at turn t
ot User action (semantic) at turn t

1

Chapter 1

Introduction

1.1 Overview

Uncertainty is an inevitable aspect of our daily lives. We are constantly faced with a multitude of
unpredictable situations and must take decisions based on incomplete and/or ambiguous information.
The ability to recognise and handle uncertainty is a vital cognitive skill that plays a critical role in our
decision-making processes (Stanovich, 2009, Chapter 6).

This ability allows us to take informed decisions, weighing the potential risks and rewards
associated with different actions. Moreover, uncertainty serves as a driving force in our pursuit of
knowledge. As we encounter the unknown, we selectively acquire new information, expanding our
understanding and refining our mental models. This continuous process of learning from uncertainty
not only enhances our ability to adapt and succeed, but also underpins the very essence of human
curiosity.

Dialogue plays an integral role in our everyday interactions, where we skilfully navigate uncer-
tainty to enable effective communication. By introducing topics that highlight the unknown or posing
questions that challenge our assumptions, we encourage others to share their knowledge and engage
in more meaningful conversations. Therefore, for software to engage effectively in dialogue with
humans, it’s crucial to recognise and manage uncertainty. By doing so, the system can determine
the appropriate moments to ask questions, acquiring new knowledge and resolving ambiguities to
optimise the efficiency of conversations. However, this is not reflected in current state-of-the-art con-
versational systems. Notably, models based on Large Language Models (LLMs), like ChatGPT, which
are very large models trained to understand and generate human-like text, frequently display over-
confidence in their responses, regardless of their actual accuracy. This overconfidence, as observed in
studies by Chen and Mueller (2023) and Xiong et al. (2023), is a significant pain point, highlighting a
discrepancy between human dialogue norms and the behaviour of advanced conversational agents.

In this thesis, we aim to explore the potential of leveraging uncertainty in deep learning models
to enhance human-computer dialogue, with the aspiration of achieving conversation that closely
resembles human-level interaction. To accomplish this, we introduce techniques for quantifying
uncertainty in task-oriented dialogue systems. By integrating this uncertainty into the decision-
making and the knowledge acquisition processes of our models, we strive to develop more effective
and robust dialogue systems.

1.1.1 Task-oriented Dialogue Systems

Spoken dialogue systems are computer programs designed to engage in conversation with humans.
Task-oriented dialogue systems, in particular, concentrate on providing users with information
related to a specific goal, such as finding a restaurant or booking a flight. This differs from chat-based
dialogue systems, which primarily aim to simulate casual social interactions. As we explore task-
oriented dialogue systems in greater depth, it is important to recognise that some of the concepts and
techniques discussed here may also be adapted for use in chat-based dialogue systems.

Task-oriented dialogue systems are typically modelled using a divide-and-conquer approach,
breaking the problem into smaller, well-defined components. As depicted in Figure 1.1, a standard

2 Chapter 1. Introduction

 Front-end Task-oriented Dialogue Systems

Speech
Recognition

Natural Language
Understanding

Dialogue
State Tracking

Natural Language
Generation

Dialogue
Policy

Speech
Synthesis

User utterance:
I'm an

.

System utterance:
Which area of town do you

have in mind?

Semantic user action:
inform(food = Italian)

Semantic system action:
request(area)

Dialogue state:
Goal: food = Italian
User: inform(food = Italian)
System: greet()
Database: 36 entries
Bookings: None

Speech Waveform

Tracking
Planning

Predict
Update

DecisionGenerate

Database

Query

Ontology

FIGURE 1.1: Key components of a modular task-oriented dialogue system. The speech
recogniser converts the user’s speech into text, which is then processed by the language
understanding module to identify user acts. Following this, the state tracker extracts
essential information from the user actions, the previous dialogue state and the last
system action and modifies the user’s goal. Using this updated goal, the state tracker
queries an external database for relevant entities and generates the updated dialogue
state. Using this state, the policy determines the optimal next action, and the language

generation module generates the text to be synthesised as a response.

pipeline of modules is used to facilitate interactions with the dialogue system. At the front-end,
modules (in blue) convert speech to text and vice versa. Thanks to large amounts of speech transcript
data and recent advancements in speech models (Radford et al., 2023; Xiong et al., 2017), these
modules perform with low error rates under known conditions. Consequently, we focus on text-based
dialogue systems (in green) in this work.

Task-oriented dialogue systems are typically built upon an underlying ontology. This ontology
serves as a structured representation of all potential topics that may arise during a dialogue. It
often includes various domains (e.g., restaurants), categories of interest, also known as slots (such
as price range, area, and cuisine), and their corresponding values (e.g., inexpensive, city centre,
Italian). Furthermore, the ontology encompasses potential user or system intents (e.g., request,
inform, confirm). In addition, the system is linked to a database that contains all possible entities and
their attributes, including, for instance, an exhaustive list of restaurants, each detailed by location,
types of food served, price range, contact information, and more.

In a modular dialogue system, such as the one depicted in Figure 1.1, the utterance of the
user is processed by the natural language understanding (NLU) module, which is tasked with
extracting/identifying the user’s intents and actions. For example, when given the text "I’m looking
for an Italian restaurant.", the NLU would predict the action inform(food = Italian).

The dialogue state tracker (DST) keeps track of the state of the dialogue. This state, at a minimum,
contains the latest user and system actions, the goal of the user, results of a database lookup, and
any information related to bookings made during the dialogue, as seen in Figure 1.1. The goal of the
user is typically represented as the most likely combination of domains, slots and values describing
user needs. An alternative to DST is the dialogue belief tracker (DBT). The DBT is a model, which
represents the users goal as a distribution of all possible goals defined in the ontology. Figure 1.2
depicts the difference between DST and DBT components.

Based on the dialogue state, the dialogue policy determines the optimal system actions to effec-
tively respond to the user’s query or statement. For instance, if the user is inquiring about restaurants,
the policy might employ an action such as request(area), prompting the user to specify the desired

1.2. Challenges in Dialogue Belief Tracking 3

location for restaurant recommendations. This action is subsequently processed by a natural language
generation (NLG) model, which converts it into coherent and human-like text, for example "Which
area of town do you have in mind?". Finally, the text is synthesised into speech, providing an audible
response to the user (illustrated in Figure 1.1).

In modular task-oriented dialogue systems, the selected response is exclusively dependent on
the state predicted by the DST/DBT modules (Young et al., 2010). The accuracy of this prediction,
consequently, is crucial for the success of the dialogue, as its rooted in the systems capability to
accurately interpret and conclude the users stated intentions and provided information. Hence, this
work primarily focuses on the dialogue state/belief tracking and natural language understanding
components of task-oriented dialogue systems. In the subsequent section, we will delve into the
challenges associated with dialogue state/belief tracking.

1.2 Challenges in Dialogue Belief Tracking

Dialogue is the process of interacting using natural language, and forms the core of human-computer
interaction, yet ensuring accurate understanding and tracking of these conversations remains a
complex challenge. The subsequent sections detail these challenges, emphasising the importance of
addressing them for improved communication between humans and machines.

Firstly, there is the issue of inaccurate understanding. In approximately every 2-3 turns in a dia-
logue, the understanding and state tracking models fails to fully understand the user utterances (Heck
et al., 2020b; Kim et al., 2020; Zhang et al., 2020). This frequently results in a discrepancy between
what the user intends and how the system perceives it.

Secondly, data constraints come into play. Even with the existence of comprehensive datasets like
MultiWOZ (Budzianowski et al., 2018; Eric et al., 2020; Han et al., 2021; Ye et al., 2022; Zang et al., 2020)
and the Schema-guided dialogue dataset (SGD) (Rastogi et al., 2020), there is a significant problem
with data sparsity (a situation where datasets, although large, lack diversity and richness in content).
The intricate ontologies underlying these datasets, consists of a vast array of domains, slots, and
values, which give rise to multi-domain dialogues that are challenging to navigate. However, there is
a stark contrast in diversity between the MultiWOZ and SGD datasets, SGD contains considerably
more domains for conversation, in fact, over double compared to MultiWOZ, and around 10, 000
more unique values, but the number of unique tokens (individual units of meaning, such as words or
phrases) in SGD exceeds that of MultiWOZ by merely 7, 000. This demonstrates the limited diversity
in utterances within the SGD dataset despite its broader range of domains. Furthermore, even the
largests of these datasets contains fewer than 20, 000 dialogues, with less than 500, 000 turns, as
depicted in Table 1.1. In contrast, datasets available for other tasks such as machine translation are
much larger. For instance, the German to English WMT17 dataset contains over 5, 000, 000 German to
English sentence pairs, which include more than 30, 000 unique tokens (Bojar et al., 2017).

Dataset
Number

of
dialogues

Average
number of
turns per
dialogue

Average
number of
tokens per

turn

Number
of Unique

tokens

Number
of

Domains

Number
of Slots

Number
of Values

MultiWOZ 8438 13.46 13.13 23689 7 24 4510
SGD 16142 20.44 9.75 30352 16 214 14139

TABLE 1.1: Comparison of the MultiWOZ and Schema guided dialogue (SGD) datasets.

The tracking task is made exceptionally challenging by the sheer number of domains, slots, and
values in their ontologies. This is evidenced by the relatively low accuracies achieved on these
datasets. State-of-the-art dialogue state tracking (DST) performance has stagnated at an accuracy
of approximately 60% on these datasets (Heck et al., 2020a, 2022; Li et al., 2020). Many models
compound this problem by having full confidence in these incorrect predictions, highlighting the
importance of uncertainty estimation in dialogue state tracking. This leads us to the third challenge.

4 Chapter 1. Introduction

Dialogue belief state:
Goal distribution:

User: none
System: request(area)
Database: 28 entries
Bookings: None

Dialogue
State Tracking

User utterance:
A in the

.

Dialogue
Belief Tracking

N
o
n
e

E
a
s
t

W
e
s
t

N
o
r
t
h

S
o
u
t
h

Dialogue state:
Goal: area = none, ...
User: none
System: request(area)
Database: 28 entries
Bookings: None

Dialogue Policy

Semantic system actions:
inform(name = The Inn,

 area = South)

Semantic system action:
request(area)

Dialogue Policy

FIGURE 1.2: Error propagation poses a significant challenge in dialogue systems, ne-
cessitating mechanisms for estimating and managing uncertainty to rectify misunder-
standings. This figure illustrates a comparison between two dialogue systems. The
first system employs a dialogue state tracker (represented in orange) that disregards
uncertainty information, offering only a single candidate dialogue state to the policy
module. Consequently, this system cannot recover from misunderstandings, leading
to inaccurate or irrelevant responses and a unsatisfactory user experience. Conversely,
the second system incorporates a dialogue belief tracker (depicted in green), equipped
with calibrated confidence estimates that encompass uncertainty information. Unlike
its counterpart, the belief tracker presents a distribution of possible states to the policy
module, reflecting the system’s uncertainty about various aspects of the user’s input,
such as the specified hotel area. By considering this uncertainty, the policy module can
infer that there was a misunderstanding regarding the hotel area and can opt to ask for
confirmation. This allows the system to recover from potential misunderstandings and

provide a better user experience.

The third challenge is the overconfidence exhibited by dialogue state tracking models. These
models, on many occasions, exhibit high confidence in their predictions, even when incorrect. This
overconfidence can mislead subsequent modules in the dialogue system, leading to what is also
referred to as the broken telephone problem, where miss-information is transferred from one module
to the next, causing the error to compound. This compounded error is termed as error propagation.
Accurate uncertainty estimation can enhance system decisions and potentially help in recovering from
misunderstandings. It can also improve user experiences by allowing the system to ask clarifying
questions or undertake actions that mitigate the risk of failure due to such misunderstandings. Figure
1.2 provides an illustrative example of a system recovering from a belief tracker’s error.

The fourth challenge is adaptability. Given the dynamic nature of human conversation, it is crucial
for dialogue systems to be adaptable. Yet, a significant portion of existing models demonstrates
inflexibility when introduced to unfamiliar domains, which constrains their applicability in real-
world settings (Ren et al., 2018). Dialogue state/belief tracking models which rely on a fixed ontology
demonstrate strong performance on datasets where the ontology contains a small number of domains
and slots (Henderson et al., 2014b; Mrkšić et al., 2017), but struggle with more complex ontologies.
Promising models that demonstrate generalisability to complex ontologies include discriminative
models based on similarity matching (Lee et al., 2019; Ren et al., 2018; van Niekerk et al., 2021; Zhang
et al., 2020), span prediction models (Heck et al., 2022, 2020b; Zhang et al., 2020), or generative
language models for state tracking (Kim et al., 2020; Lin et al., 2021a; Lin et al., 2021b).

Lastly, the quality of training data is a concern. Training datasets often contain inconsistent
and/or inaccurate labels. Such noise in the data not only pose challenges during the training process
but might also introduce biases within the system. Dialogue datasets such as MultiWOZ contain
significant noise, evident from the large number of annotation correction in the different versions of
the dataset (Budzianowski et al., 2018; Eric et al., 2020; Han et al., 2021; Ye et al., 2022; Zang et al.,
2020).

Striving towards more natural human-computer dialogue necessitates addressing these challenges.

1.3. Contributions 5

Subsequent sections will explore these issues in greater depth, seeking to elucidate them and suggest
viable solutions.

1.2.1 Calibration and Uncertainty

In the context of deep learning, calibration refers to the degree of alignment between a model’s
predicted probabilities and the actual observed outcomes. A well-calibrated model should ideally
match its predicted probabilities with the observed empirical likelihood of a given dataset (Desai and
Durrett, 2020).

However, there is a widespread understanding that deep learning models (complex function
approximation algorithms inspired by the structure and function of the brain) optimised using
maximum likelihood tend to produce overconfident, and hence poorly calibrated, predictions (Gal
and Ghahramani, 2016). In addition to the optimisation objective, another contributing factor to this
issue is the models inherent limitation in estimating knowledge uncertainty. Knowledge uncertainty,
uncertainty arising from the models awareness of its own limitations and gaps in understanding
intricate or unforeseen scenarios, is pivotal in enhancing the calibration of predictive outputs. Since
deep learning models are often not equipped to gauge this form of uncertainty, they lack an intrinsic
self-evaluation mechanism to moderate their confidence levels. This absence of self-regulation and
introspection results in predictions that are not only overconfident but also potentially misleading.
Acknowledging and integrating knowledge uncertainty can facilitate more balanced, reliable, and
trustworthy model predictions, ensuring a closer alignment between the model’s expressed confidence
and its actual predictive accuracy. Techniques such as Bayesian deep learning (Blundell et al., 2015),
dropout as a Bayesian approximation (Gal and Ghahramani, 2016), or ensembles (Lakshminarayanan
et al., 2017) can be used to estimate knowledge uncertainty.

Drawing inspiration from psychological research, it is evident that recognising and managing
uncertainty plays a vital role in human decision-making (Hirsh et al., 2012). The distinction between
knowledge and data uncertainty (uncertainty arising from the variability and noise inherent in the
data generation process) parallels findings from psychological studies that point to ambiguity and
the occurrence of complex or unexpected events as sources of uncertainty (Bland and Schaefer, 2012).
Addressing both data and knowledge uncertainty is crucial for dialogue belief tracking models to
achieve better calibration. By improving calibration, dialogue systems can enhance their decision-
making capabilities.

1.3 Contributions

In this thesis, key challenges in the field of dialogue systems are addressed, with a focus on dialogue
belief tracking and the handling of uncertainty. The contributions can be summarised as follows:

1. Enhanced performance and calibration for multi-domain dialogue belief trackers: We apply
various calibration techniques to a baseline dialogue belief tracker and demonstrate that a label-
smoothed trained ensemble provides state-of-the-art calibration of belief state distributions and
the highest accuracy among available belief trackers. Our proposed model achieves state-of-
the-art performance in estimating well calibrated uncertainty scores. The proposed calibration
methods can be applied to any neural dialogue belief tracking method, highlighting their broad
applicability.

2. Examining the downstream impact of uncertainty measures on policy optimisation: We
propose the use of total and knowledge uncertainties along with confidence scores to form
a dialogue belief state. We further introduce SetSUMBT, a model capable of producing such
belief states and knowledge uncertainty via distillation of ensembles. This tracker is able to
estimate active domains and user requests in a dialogue, enabling more robust downstream

6 Chapter 1. Introduction

dialogue policy performance. Interactions with both simulated and real users confirm that these
uncertainty metrics lead to more robust dialogue policy models.

3. A semi-supervised active learning framework for sequential multi-output label problems
with self-supervision and label validation: We propose CAMELL, an active learning approach
combining self-supervision and human-supervision to reduce the number of labels required
for solving sequential multi-output label problems. Our method includes a label validation
component to reject untrustworthy human annotations, enabling automated dataset annotation
correction. In the context of dialogue belief tracking and machine translation, our approach
outperforms strong baselines in robustness and data-efficiency. Experiments confirm that
our label correction improves annotation quality. It demonstrates the applicability of the
proposed framework to various sequential multi-output label problems, and reveals that dataset
deficiencies can be addressed in a data-driven manner, potentially circumventing manual or
rule-based annotation validation.

These contributions advance the estimation, management and utilisation of uncertainty inside
a dialogue system and open the door to applications from wider domains. Moreover, they can
increase system robustness to misunderstandings and ambiguities by employing uncertainty in
the decision-making process, paving the way for effective human-computer interactions. Drawing
inspiration from psychological findings on human uncertainty management (Hirsh et al., 2012), our
work emphasises the importance of integrating these insights into machine learning models.

1.4 Thesis Structure

This thesis consists of seven chapters:

Chapter 1 presents a general introduction, setting the context and outlining the thesis objectives.

Chapter 2 offers an overview of deep learning, explaining its fundamental concepts, techniques, and
applications.

Chapter 3 offers an overview of uncertainty estimation in deep learning, explaining its fundamental
concepts, techniques, and applications.

Chapter 4 covers the necessary background on dialogue belief tracking, discussing its significance
and the current state of research in the field.

Chapter 5 delves into uncertainty estimation and calibration in dialogue belief tracking and proposes
a well-calibrated dialogue belief tracking model.

Chapter 6 introduces the SetSUMBT model (Set Similarity based Slot Utterance Matching Belief
Tracker), demonstrating how uncertainty can enhance the performance of the downstream
dialogue policy model.

Chapter 7 presents the fundamentals of active learning and label validation, introducing CAMELL,
our Confidence-based Acquisition Model for Efficient self-supervised active Learning with
Label validation.

Chapter 8 summarises the thesis’s key findings, examines the implications of the presented research,
and suggests directions for future investigation.

7

Chapter 2

Deep Learning Preliminaries

2.1 Overview

Deep learning, a branch of machine learning, has significantly impacted various domains ranging
from computer vision to natural language processing. At the heart of deep learning is the deep
neural network (DNN), a sophisticated framework designed for function approximation. Inspired by
biological neural networks, DNNs consist of a hierarchical arrangement of interconnected neurons,
which contribute to the learning and recognition of intricate patterns within data. These networks map
input variables, x, to their respective outcomes, y, through a series of computations and activation
functions.

The primary aim of this chapter is to lay down the foundational deep learning concepts. We
will begin by delving into fully connected deep neural networks, discussing their architecture, and
focusing on the role of activation functions (Section 2.2). We’ll then explore the nuances of parameter
optimisation, specifically emphasising objective functions and optimisation algorithms that refine the
models (Section 2.3).

Sequential data processing using neural network architectures will be our next focus. We will
introduce and explore Convolutional Neural Networks (CNNs) (Section 2.5), Recurrent Neural
Networks (RNNs) (Section 2.6) and Transformers (Section 2.10), each serving specialised roles in
handling different types of sequential data. To round off this chapter, we will explore the concept of
language models (Sections 2.11, 2.12 and 2.13), outlining their tasks and utility in the broader context
of machine learning and artificial intelligence.

By the end of this chapter, the reader will be equipped with the foundational knowledge required
to understand the applications outlined in this thesis.

2.2 Fundamentals of Neural Networks

We begin our discussion by laying the foundation with the fundamentals of neural networks, which
serve as the cornerstone of deep learning. Neural networks can be viewed as function approximators,
denoted by fNN : X → Y , that maps from the input space X to the output space Y .

The most basic and prevalent architecture in the realm of neural networks is the fully connected
neural network, often referred to as a feed forward neural network. This network architecture is
distinguished by its interconnected neurons or nodes. Each neuron in a layer takes a weighted sum of
its inputs and applies an activation function to this sum. The mathematical expression that describes
this operation for a fully connected layer is:

fFC (x; θ) = φ (xW + b) , (2.1)

where x ∈ X represents the input features, φ is the activation function, W is the weight matrix,
and b is the bias vector. Here, θ encompasses all the learnable parameters of the layer, which includes
both the weight matrix and the bias vector.

The predicted outcome ŷ for a given input x is obtained as ŷ = fFC (x; θ).

8 Chapter 2. Deep Learning Preliminaries

2.2.1 Deep Neural Networks

We expand on basic neural networks to introduce deep neural networks (DNNs), distinguished by
their multiple layers. In a fully connected DNN, each layer g(i), is a fully connected layer as defined
in Equation 2.1. Considering a DNN with m > 1 layers and given a set of input features x ∈ Rd0 , the
fully connected DNN (illustrated in Figure 2.1) can be formalised as:

fFC (x; θ) = g(m−1) ◦ g(m−2) ◦ · · · ◦ g(1) ◦ g(0) (x; θ) ,

with θ representing the collective set of learnable parameters and f ◦ g(x) = f (g(x)) representing
a composition of functions. In DNNs, layers 0 to m − 2 are typically referred to as "hidden" layers
and layer m − 1 as the output layer (as seen in Figure 2.1).

Hidden Layer 0:

Hidden Layer 1:

Output:

Input:

FIGURE 2.1: A prototypical deep neural network featuring
two hidden layers.

Having established a foundational understanding of deep neural networks and their basic struc-
ture, a key component integral to their functionality is the activation function, φ. Activation functions
infuse the necessary non-linearities into the model, enabling it to capture complex relationships in
data. Let us delve deeper into the specifics of these functions.

2.2.2 Activation Functions

Activation functions, denoted as φ(·), introduce non-linearities into the output of a neuron or a
layer of neurons. Such non-linear transformations are important in deep learning models, especially
given that without these non-linear transformations, a network, regardless of its depth, would be
equivalent to a single linear layer and only capable of representing linear transformations (Goodfellow
et al., 2016, Chapter 6). This would be restrictive, especially since real-world data often embodies
complex, non-linear relationships between inputs and outputs. Over time, several activation functions
have been proposed, with the sigmoid (Rumelhart and McClelland, 1987), softmax (Narayan, 1997),
Rectified Linear Unit (ReLU) (Nair and Hinton, 2010), and hyperbolic tangent (tanh) (Lecun et al.,
1998) functions being among the most widely used.

The Sigmoid function is characterized by its S-shaped curve and maps real-valued numbers to the
(0, 1) range. Mathematically, the sigmoid function is represented as:

φSigmoid(z) =
1

1 + e−z

For substantial negative values of z, the sigmoid’s output is approximately 0, whereas for large
positive values, it nears 1. This bounded nature renders the sigmoid function especially suitable for
generating probability outputs for binary classification tasks.

2.3. Parameter Optimisation 9

The Softmax function can be thought of as a multivariate extension of the sigmoid function. When
dealing with multi-class classification tasks, the softmax ensures that the sum of all class probabilities
equals 1. It is defined as:

φSoftmax(z) =
ez

∑d
j=1 ezj

,

where z is a d-dimensional input vector.

The ReLU (Rectified Linear Unit) has gained popularity due to its simplicity and its ability to
promote faster convergence during the training of deep networks. It is defined as:

φReLU(z) = max(0, z)

The ReLU function activates a neuron if its input is positive; otherwise, it outputs zero.

The hyperbolic tangent (tanh) function outputs values in the range (−1, 1). This property aids in
efficient learning and provides a measure of control against the exploding gradient phenomenon.
This phenomenon occurs when gradients become too large during parameter optimisation, leading
to numerical instability and poor model performance. It is mathematically represented as:

φtanh(z) =
ez − e−z

ez + e−z

The selection of an appropriate activation function is often problem-dependent. For instance, ReLU
and tanh are commonly employed within the hidden layers of a neural network. This is because of
their roles in promoting efficient learning and in curbing the issues of vanishing or exploding gradients
during parameter optimisation. Conversely, the sigmoid and softmax functions are frequently
reserved for the output layer, converting the DNN’s real-valued output into interpretable probability
distributions (Szandała, 2021).

While the choice of activation function is crucial, ensuring the correct values for the network’s
parameters is equally paramount. A network with poorly optimised parameters, regardless of its
structure and activation functions, would be inefficient. This leads us to the significant aspect of
parameter optimisation in deep learning.

2.3 Parameter Optimisation

Optimisation is key to effective machine learning. This section lays out the techniques for optimising
the parameters of neural networks. Given a training dataset D = {(xi, yi)}N

i=1 consisting of N input-
target pairs. Training a deep learning model essentially involves adjusting its parameters, denoted by
θ, to minimise (or sometimes maximise) an objective function, represented as L (D; θ). The objective
function, commonly referred to as the loss or cost function, serves to quantify the deviation between
the model’s predicted outcomes and the actual observed values. Central to this optimisation process
is the employment of an iterative algorithm known as gradient descent.

In each iteration of the optimisation process, the model’s parameters are updated in a specific
direction that minimises the objective function. This direction is determined by the gradient of the
objective function with respect to the parameters. The term gradient essentially refers to a vector of
partial derivatives of the objective function, and it points in the direction of the steepest ascent of
the function. To minimise the function, the parameters are moved in the opposite direction of the
gradient. The extent to which the parameters are modified in this direction is controlled by a scalar
factor known as the learning rate, denoted by η. In mathematical terms, a single update step in the
gradient descent algorithm can be formally represented as:

10 Chapter 2. Deep Learning Preliminaries

θnew = θold − η∇θL
(︁
D; θold

)︁
(2.2)

This equation captures the essence of iterative optimisation in deep learning: repetitively adjusting
our model’s parameters in the direction that reduces the error, as quantified by our objective function.

One notable variation of gradient descent is the use of mini-batches, aptly termed mini-batch
gradient descent. Instead of using the entire dataset D to calculate the gradient, a small, random
subset of the data is selected to approximate the gradient. The size of this mini-batch is a hyper-
parameter, typically ranging from tens to hundreds. Mathematically, given a mini-batch Dbatch ⊆ D,
the parameter update becomes:

θnew = θold − η∇θL
(︁
Dbatch; θold

)︁
Mini-batch optimisation brings several advantages. It is computationally more efficient than

batch gradient descent, offers faster convergence in wall-clock time, and can make effective use of
hardware such as GPUs. The stochastic nature of mini-batch selection also introduces variability into
the optimisation process. This randomness can help the model escape local minima in non-convex
loss landscapes, making it potentially more robust in finding better overall solutions.

Having discussed parameter optimisation, we now turn our attention to the different types of
objective functions that can be employed in the training process.

2.3.1 Objective Functions

The objective function, commonly referred to as the loss or cost function, quantifies the discrepancy
between the predictions of the model and the actual outcomes. The choice of the objective function is
pivotal and varies based on the nature of the task at hand. For instance, regression tasks frequently
employ the mean-squared error (MSE) loss, whereas classification tasks often utilise the cross-entropy
loss.

Mean-Squared Error (MSE): This loss function measures the average squared difference between
the model predictions and the actual outcomes. In simple terms, it gauges the model’s accuracy in
terms of how close its numeric predictions are to the ground truth values. Mathematically, the MSE
loss is given by:

LMSE (D; θ) =
1
N

N

∑
i=1

(yi − f (xi; θ))2

where f (xi; θ) is the model’s prediction for the i-th observation.

Cross-entropy Loss: This loss function gauges the model’s ability to assign correct probability
scores to different classes in a classification problem. In essence, it quantifies how well the model’s
estimated probabilities align with the ground truth labels. A lower cross-entropy value indicates
better alignment between predictions and actual outcomes. The mathematical representation of the
cross-entropy loss is:

LCE (D; θ) = − log

(︄
N

∏
i=1

p (Y = yi|xi, θ)

)︄

= −
N

∑
i=1

log p (Y = yi|xi, θ)

In this equation, p (Y = yi|xi, θ) represents the probability of the i-th data point belonging to the
correct class.

2.3. Parameter Optimisation 11

Having established the role of the objective function in training deep learning models, our next
step is to explore the optimisation algorithms employed to find the best possible model parameters, θ,
that minimise the corresponding optimisation function.

2.3.2 Optimisation Algorithms

While the standard gradient descent optimisation, as described by Equation 2.2, has been foundational,
it possesses inherent limitations. Namely, it can become stuck in local optima, preventing it from
pursuing the global optimum, and its dependency on a singular learning rate for all parameters can
impede efficient convergence. Modern optimisation techniques such as Momentum (Qian, 1999),
Root Mean Square Propagation (RMSProp) (Hinton et al., 2012), and Adam (Kingma and Ba, 2017)
have been introduced to address these challenges.

Momentum: Expanding on the principle of gradient descent, the Momentum method utilises a
history of past gradients to hasten convergence. The term momentum refers to the moving average of
the gradients. This technique assists in bypassing potential pitfalls like local minima and facilitates
smoother transitions through saddle points (Qian, 1999). The parameter update rule, given the
gradients gt = ∇θL (D; θt−1) is:

Momentum: mt = β1mt−1 + (1 − β1)gt

Update Rule: θt = θt−1 − ηmt.
(2.3)

Here β1 is a hyper-parameters dictating the influence of the gradient in the moving average.

RMSProp (Root Mean Square Propagation): sets itself apart from traditional optimisation tech-
niques by assigning distinct learning rates to each parameter, which enhances the efficiency of the
training process. The uniqueness of this method lies in adjusting the global learning rate for each
parameter based on the magnitude of its gradient. This individualised approach facilitates balanced
and efficient parameter updates, overcoming the limitations of a uniform learning rate. In RMSProp,
a parameter with a large gradient has a smaller learning rate to avoid large updates that can lead to
instability or oscillation in the learning process. On the contrary, a parameter with a small gradient is
assigned a higher learning rate, ensuring it can still be updated significantly to contribute effectively
to the model’s learning. This dynamic adjustment of learning rates according to gradient magnitudes
ensures that each parameter is updated optimally, promoting faster and more stable convergence
towards the minimum of the loss function (Hinton et al., 2012). The parameter update rule is:

Magnitude: νt = β2νt−1 + (1 − β2)g2
t

Update Rule: θt = θt−1 − η
gt√

νt + ϵ
.

(2.4)

Here, β2 is a hyper-parameter controlling the influence of the gradient magnitude g2
t .

Adam (Adaptive Moment Estimation): The Adam optimiser incorporates the best of both worlds:
the momentum of gradient descent and the adaptive learning rate from RMSProp (Kingma and Ba,
2017). Notably, the Adam optimisation algorithm addresses an inherent bias in the initial updates.
This bias emerges due to the initialisation of the moving averages mt (first moment) and νt (second
moment) as vectors of zeros. The expanded moving average of gradients is:

12 Chapter 2. Deep Learning Preliminaries

mt = β1mt−1 + (1 − β1)gt

= β1 (β1mt−2 + (1 − β1)gt−1) + (1 − β1)gt

= β2
1 (β1mt−3 + (1 − β1)gt−2) + β1(1 − β1)gt−1 + (1 − β1)gt

= βt
1m0 + (1 − β1)

t−1

∑
i=0

βi
1gt−i.

As a result:

EG⃗

[︂
M⃗t

]︂
= βt

1m0 + (1 − β1)
t−1

∑
i=0

βi
1E
[︂
G⃗t−i

]︂
.

Here, M⃗t is the estimator for the gradient G⃗t, with both being vectors of random variables. Under
the assumption that m0 = 0 and G⃗t is stationary:

EG⃗t

[︂
M⃗t

]︂
= (1 − β1)

t−1

∑
i=0

βi
1E
[︂
G⃗t

]︂
= (1 − βt

1)E
[︂
G⃗t

]︂
{Geometric sum}.

Therefore:

Bias
(︂
M⃗t

)︂
= (1 − βt

1)E
[︂
G⃗t

]︂
− E

[︂
G⃗t

]︂
= −βt

1E
[︂
G⃗t

]︂
.

This indicates that M⃗t is as a biased estimator of the gradient. Particularly, when t is small and β1
is close to 1, mt tends to be close to 0, which can undesirably influence the early gradient updates. To
counteract this, Adam incorporates a bias-correction mechanism:

m̂t =
mt

1 − βt
1

(2.5)

Therefore E
[︂
M⃗̂t

]︂
= E

[︂
G⃗t

]︂
and Bias

(︂
M⃗̂t

)︂
= 0. With this correction, M⃗̂t is an unbiased estimator

of the gradient. Hence, for smaller values of t and β1 close to 1, m̂t is approximately gt. As t grows,
m̂t tends towards mt, ensuring that the most recent gradients have a more substantial influence in
the early updates. Similarly, Adam applies a correction for the learning rate adaptation based on the
second moment. By combining momentum (as seen in Equation 2.3), gradient adjustment (refer to
Equation 2.4), and bias correction (detailed in Equation 2.5), we derive the Adam update rule:

Momentum: m̂t =
mt

1 − βt
1

Magnitude: ν̂t =
νt

1 − βt
2

Update Rule: θt = θt−1 − η
m̂t√

ν̂t + ϵ
.

(2.6)

AdamW: AdamW is an extension of the Adam optimiser, specifically addressing its inefficiencies
in weight regularisation (a penalty on the loss function to reduce overfitting by constraining model
weights). The L2 regularisation loss is defined as:

LL2 (D; θt−1) = L (D; θt−1) +
λ

2

J

∑
j=1

θ2
t−1,j

2.4. Sequential Models 13

Therefore the new gradient is given by:

gt = ∇θL (D; θt−1) + λθt−1.

As a result, the regularisation term, λθt−1, gets accumulated into both the momentum and
adaptive gradient calculations. Given that the momentum term is effectively divided by the adaptive
learning rate during the update (Equation 2.6), this leads to the neutralisation of the regularisation
term. Consequently, weight regularisation in Adam often fails to be effective (Loshchilov and Hutter,
2019).

To rectify this, AdamW decouples the regularisation from the gradient. Instead of incorporating
it into the gradient, the regularising term is directly incorporated into the weight update, ensuring
proper and effective regularisation:

Update Rule: θt = θt−1 − ηλθt−1 − η
m̂t√

ν̂t + ϵ
.

Having examined neural networks, including their activation functions, objective functions,
and optimisation techniques, we now turn our attention to those specifically crafted for processing
sequential data. These networks are instrumental in natural language processing tasks, notably in
applications like dialogue state tracking.

2.4 Sequential Models

While DNNs can be applied across various scenarios, certain challenges, especially in domains like
natural language processing and dialogue systems, demand consideration of the temporal sequence
of data. Sequential models are precisely designed to address such needs. They make predictions
based on a series of inputs rather than isolated individual samples. When presented with a sequence
x1:t = ⟨x1, x2, · · · , xt⟩, the model, denoted as f (x1:t; θ), aims to predict the outcome yt. A well known
sequential DNN is the convolutional neural network (CNN).

2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specialised neural networks tailored for processing
structured data. Originating from the study of the animal visual cortex, CNNs have been instrumental
in achieving state-of-the-art performance in tasks like image classification and speech recognition.

The cornerstone of CNNs is the convolutional operation. Unlike fully connected networks which
might process an entire image or sequence as a single entity, the convolutional operation processes
data region-by-region, identifying local patterns. This is done using a filter (or kernel), which slides
across the input data, applying the same learned weights to each region and producing feature maps
(as illustrated in Figure 2.2). These feature maps, consisting of region specific features, retain spatial
hierarchies, making CNNs adept at recognising patterns regardless of their position. As a result,
CNNs possess a unique property: translation invariance. This allows them to recognise patterns
regardless of their position in the input.

Consider a 1−dimensional CNN layer, denoted as fCNN : Rt×d0 → Rt−l+1×d0 . This layer uses a
filter, consisting of learnable parameters F =

[︁
f1 f2 · · · fl

]︁⊺ ∈ Rl×d0 , which can be thought of as
a small window of length l. Figure 2.2 provides a visual representation of this convolution process.

Given an input sequence X ∈ RT×d0 with length T and d0 features, the convolutional operation is
defined as:

ht =
l

∑
j=1

xt+j−1 ⊙ f j for t = 1, 2, .., T − l + 1,

14 Chapter 2. Deep Learning Preliminaries

...

...

FIGURE 2.2: Schematic illustration of the convolution operation within a 1D CNN layer.
In this visualisation, a sequence of input data points, ranging from x1 to xt, is processed
by a convolutional filter of width 3. Each group of three adjacent data points (depicted
by the blue, green, and orange outlines) forms a window to which the filter is applied.
As the filter slides over the input sequence one step at a time, it computes a feature
vector hi for each window, resulting in a transformed set of feature vectors capturing
the essential patterns and characteristics inherent in each window of the input sequence.

where xi and fi is the i-th rows of their respective matrices. The result is a feature matrix,
H =

[︁
h1 h2 · · · hT−l+1

]︁⊺ ∈ RT−l+1×d0 , which encapsulates the local patterns recognised by the
filter. The dimensions of this output matrix depend on the filter’s length, yielding an output length of
T − l + 1.

In mathematical terms, the CNN layer is given by:

fCNN (X; F) =

[︄
l

∑
j=1

xt+j−1 ⊙ f j

]︄T−l+1

t=1

.

Here ⊙ symbolises element-wise multiplication. It is important to note that the dimensions of
the output can change based on stride and padding. The stride is the number of positions the filter
moves after each operation, while padding (often zeroes) is added to fill the spatial dimensions of the
output. However, the above equations consider a stride of 1 and no padding.

Having discussed CNNs, which excel in spatial pattern recognition, let us move to Recurrent
Neural Networks, adept at temporal pattern recognition.

2.6 Recurrent Neural Networks

Recurrent neural networks (RNNs) stand out in the vast landscape of neural networks due to their
inherent ability to recognize and process the temporal nature of data. Unlike traditional DNNs, which
treat each input independently, or CNNs, which treat neighbourhoods of inputs independently, RNNs
establish connections across time steps, allowing them to learn from and reference previous instances
in a sequence. This temporal memory capacity equips RNNs to excel in tasks that involve sequential
data, making them invaluable for applications where understanding the past can influence accurate
predictions about the future.

As visualised in Figure 2.3, a recurrent neural network comprises a deep neural network structure
that is applied repetitively at each time step t. Taking the form of the function fRNN (xt, ht−1; θ), an
RNN accepts the input features at the current time t, xt, and the hidden state from the previous time
step, ht−1. These components, endowed with a set of adjustable parameters θ, permit the RNN to
propagate context from past observations throughout a sequence. Consequently, the refreshed hidden
state and output yt at time t are defined as:

yt, ht = fRNN (xt, ht−1; θ) .

2.7. The RNN Encoder-Decoder Model 15

...

FIGURE 2.3: Illustration of a Recurrent Neural Network (RNN). RNNs are tailored to
process sequences of data, combining inputs at each time step t with the hidden state
from the preceding step to propagate information throughout the sequence. Subse-

quently, the model yields an updated hidden state and corresponding output.

 Gated Recurrent Unit Update

 Reset Gate

FIGURE 2.4: Schematic representation of the Gated Recurrent Unit (GRU). The symbols
FF and φSigmoid represent fully connected neural networks with linear and sigmoid
activations, respectively. The variables rt and zt denote the gating mechanisms crucial
for controlling information flow. In illustration, a triangle gate followed by a sum
indicates a mechanism where only one input is weighted. In contrast, the half-moon
shaped gate indicates a mechanism where both inputs are weighted. Circles within
the schematic are indicative of auxiliary operations, including summation and the

application of the tanh function.

When considering a Gated Recurrent Unit (GRU) (Cho et al., 2014) depicted in Figure 2.4 the
recurrent function fRNN is detailed as:

fRNN (xt, ht−1; θ) = (1 − zt)⊙ h̃t + zt ⊙ ht−1, where

zt = φSigmoid

(︁
xWxz + ht−1Whz + bz

)︁
{Update gate}, and

h̃t = φtanh

(︁
xtWxt + bxt + rt ⊙

(︁
ht−1Wht + bht

)︁)︁
. Where

rt = φSigmoid

(︁
xtWxr + ht−1Whr + br

)︁
{Reset gate}.

With θ representing the assortment of the GRU’s adjustable parameters. The GRU is characterised
by two pivotal gates: the reset gate, which influences the quantity of historical data captured in the
interim state, and the update gate, which steers the integration of past and current states.

To gain a better understanding of the use of RNNs in sequential modelling, we next introduce the
RNN encoder-decoder model.

2.7 The RNN Encoder-Decoder Model

Consider the task of translating an input sequence x = ⟨x1, x2, · · · , xTx⟩ into a target sequence
y = ⟨y1, y2, · · · , yTy⟩. One well known model for such a task is the RNN encoder-decoder model.

16 Chapter 2. Deep Learning Preliminaries

This model consists of two components: the encoder (illustrated in green in Figure 2.5), which
transformers the input sequence into a fixed-length context vector, and the decoder (illustrated in red
in Figure 2.5), tasked with translating this context vector into the desired target sequence.

DecoderEncoder

FIGURE 2.5: RNN Encoder-Decoder model: The encoder distils the input sequence
into a context vector, while the decoder, conditioned on this context, generates the

corresponding target sequence.

2.7.1 The Encoder

The encoder operates as a preliminary conversion module, processing the input sequence x1:Tx and
transforming it into a compressed, fixed-length context vector henc. It can be mathematically described
by:

henc = fEnc(x) = fRNN(x).

This context vector serves as the initial state for the decoder and captures the essence of the input
sequence.

2.7.2 The Decoder

The decoder aims to generate the target sequence based on the received context vector henc. The
decoder is defined as:

y = fDec(yin, henc) = fRNN(yin, henc).

The input to the decoder, denoted as yin, is a sequence starting with a special [START] element
followed by elements of the target sequence, yin = ⟨[START], y1, y2, ..., yTy⟩. The inclusion of the
[START] element indicates the start of the sequence generation.

The decoder, operating in an auto-regressive manner, generates each token of the target sequence
conditioned on the preceding tokens and the context vector. This ensures that the generation is con-
textually anchored. The generation ends when an [END] token is generated, marking the completion
of the target sequence.

The RNN encoder-decoder model can be expressed as:

y = f (x, yin) = fDec(yin, fEnc(x)).

However, such encoder-decoder models sometimes struggle to account for long-range depen-
dencies, which is a critical factor in tasks requiring an understanding of the entire context. This sets
the stage for a more specialised mechanism, the Attention Mechanism, that further improves the
handling of sequential data, especially long-range dependencies within sequential data.

2.8. The Attention Mechanism 17

2.8 The Attention Mechanism

The attention mechanism enhances the capabilities of traditional architectures like RNNs and CNNs
by offering a more context-aware understanding of data. It addresses the issue of long-range depen-
dencies in sequences, enabling models to selectively focus on elements that are highly relevant to a
given task (Bahdanau et al., 2015; Luong et al., 2015; Vaswani et al., 2017).

In the attention mechanism, the inputs are divided into three distinct components: queries, keys,
and values. A query serves as a question, that the model poses, to identify relevant elements in
the input sequence. Keys and values, on the other hand, encapsulate the information within the
input/context data. Specifically, keys help determine which parts of the input the model should
attend to, while values represent the content of these relevant parts.

To gather pertinent information, the model computes a weighted sum of the values. The weights,
or "attention scores", are calculated through a compatibility function, denoted as ψ. Each attention
score signifies the relevance of its corresponding value to the query. Formally:

gAtt (V , K, Q) = ψ (Q, K)V ∈ Rnq×dv ,

where matrices Q ∈ Rnq×dk , K ∈ Rnv×dk , and V ∈ Rnv×dv represent the queries, keys, and values.
Furthermore, nq represents the length of the query sequence, nv denotes the length of the input
sequence, dk signifies the size of the query and key representations, and dv indicates the size of the
value representation. The scaled dot-product compatibility function is given by:

ψSDP (Q, K) = φSoftmax

(︃
QK⊺
√

dk

)︃
∈ Rnq×nv .

This scaling ensures that the softmax activation’s outputs remain within a suitable range. Assum-
ing the vectors’ elements in Q and K have expected value 0 and variance 1, the following relationships
hold:

q · k =
dk

∑
j=1

qiki, therefore

E
[︂
Q⃗ · K⃗

]︂
=

dk

∑
j=1

E [Qi]E [Ki] = 0, and

var
(︂
Q⃗ · K⃗

)︂
=

dk

∑
j=1

(︁
var(Qi)var(Ki) + var(Qi)E[Ki]

2 + var(Ki)E[Qi]
2)︁ = dk.

This indicates that the values of the dot-product typically fall in the range
(︁
−3

√
dk, 3

√
dk
)︁

(the
factor of 3 approximates a 99% confidence interval). However, as noted by Bengio et al. (2003), the
softmax function performs optimally within the (−3, 3) range. Values that fall outside this interval
result in softmax outputs of approximately 0 or 1, leading to slow and unstable training. The scaling
by

√
dk ensures the softmax function’s inputs lie typically in the range (−3, 3), aiding in faster and

more stable training.
Now that we have grasped the concept of attention, let us see how it can be incorporated into

RNNs for enhanced performance.

2.9 The RNN Encoder-Decoder with Attention

Building upon the RNN encoder-decoder model described in Section 2.7, we integrate the attention
mechanism, detailed in Section 2.8, to improve the models ability in managing long-range dependen-
cies. The integration of attention mechanism is instrumental, allowing the model to allocate focused
attention on pertinent segments of the input sequence during the decoding phase, thus enabling a

18 Chapter 2. Deep Learning Preliminaries

more contextually enriched generation of the target sequence. Here the encoder produces a sequence
of contextual vectors Henc:

Henc = fEnc(x) = fRNN(x).

The final element of this sequence serves as the initial state for decoder.

DecoderEncoder

Linear

Attention

Concatenate

Linear

Concatenate

Attention

FIGURE 2.6: RNN Encoder-Decoder Featuring Attention.

2.9.1 The Decoder with Attention

While the foundational structure of the decoder remains the same as the one described in Section 2.7.2,
the incorporation of the attention mechanism in an important improvement. The enhanced decoder
is expressed as:

fDec(yin, Henc) =
[︁
gatt

(︁
Henc, Henc, H̃WQ

)︁
H̃
]︁

Wcomb,
and H̃ = fRNN(yin, henc

Tx
).

In this equation, the attention mechanism, represented by gatt, calculates the weighted context
from all encoder states Henc and the current decoder state H̃WQ. The WQ ∈ Rdmodel×dmodel and Wcomb ∈
R2dmodel×dmodel are transformation matrices that adapt the features for the attention calculation and
combine the attention context with the decoders features, respectively.

This combination of attention and an RNN encoder-decoder results in a model with a dynamic
context for each element generated, rather than a static, fixed-length context vector. It provides a
focused lens, enabling the model to attend to different portions of the input sequence as needed,
enhancing its performance in complex sequence-to-sequence mapping tasks, particularly those
involving long-range dependencies. Having combined attention with RNNs, we are now well-
equipped to understand the Transformer model, which leverages attention in a unique way.

2.10 The Transformer

Building on our understanding of the sequential processing in Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), we now transition to the Transformer model.
Unlike RNNs, which process sequences iteratively, and CNNs that focus on local spatial hierarchies,

2.10. The Transformer 19

Scaled Dot-Product
Attention

Concatenate

Similarity:

Scale:

Mask (opt.)

FIGURE 2.7: Illustration of single head and multi-head scaled dot-product attention. This
attention mechanism calculates attention scores using dot-product similarity between
query and key representations. Masking is applied when needed, as in masked language
modelling or to prevent the decoder from peeking into the future. The multi-head
attention comprises several individual attention mechanisms, each acting on a different
projection of the input. The concatenated outcomes of these heads yield the final output

representations.

Transformers employ a mechanism called self-attention (based on the attention introduced in Sec-
tion 2.8). This mechanism allows them to assign varying degrees of importance to different parts of an
input sequence, regardless of how far apart these parts are. This unique property effectively addresses
the long-range dependency challenge that is sometimes a limiting factor in RNNs. Moreover, the
parallel processing capability of Transformers gives them an edge in computational efficiency.

Delving deeper into its architecture, the Transformer model, introduced by Vaswani et al. (2017),
operates on an encoder-decoder structure. The encoder ingests the input data, x1:Tx , converting it into
hidden representations, Henc. Based on these representations, the decoder subsequently produces the
output, y1:Ty .

Breaking down the Transformer model, we encounter several integral components:

Attention Mechanism: As the cornerstone of the Transformer, this mechanism allows the model to
consider different parts of the input when processing a particular word or token.

Dense Feature Transformation: This component further processes the outputs from the attention
mechanism, ensuring the extracted features are suitable for downstream tasks.

Positional Encodings: This layer is responsible for injecting positional information, important for
processing sequential data.

In subsequent sections, each of these components will be explored in depth, providing a compre-
hensive understanding of their inner workings and significance in the Transformer’s architecture.

2.10.1 Multi-head Attention

The multi-head attention mechanism (illustrated in Figure 2.8) comprises several attention heads,
allowing the model to attend to various parts of the input differently for each head. These distinct
attentions enrich the model’s understanding of the data, which has proven instrumental in the
Transformer’s success in tasks like language modelling. The multi-head attention is formally defined
as:

20 Chapter 2. Deep Learning Preliminaries

gMHA (V , K, Q) =
[︁
H(1) H(2) · · · H(h)

]︁
WO ∈ Rnq×dv ,

where H(i) = gAtt
(︁
VWV

i , KWK
i , QWQ

i

)︁
∈ Rnq×dh

v for i = 1, 2, ..., h.
(2.7)

Here, the matrices WQ
i ∈ Rdk×dh

k , WK
i ∈ Rdk×dh

k , WV
i ∈ Rdv×dh

v , and WO ∈ Rhdh
v×dv are learnable

projection matrices. Employing multiple projections increases the models capacity, allowing it to
capture a diverse and rich set of features from the input. This enhances the ability of the model
to focus on varied sequence elements simultaneously, fostering a more comprehensive and robust
understanding of data patterns.

2.10.2 Self-attention

In contrast to RNN and CNN models, the transformer does not process neighbourhoods of observa-
tions together, but rather considers the full context for each observation in the sequence. Self-attention
is a variation of attention where the query, key and value are all set to the sequence of observations.
This allows this mechanism to create rich contextual representations for each observation by focusing
on the observations most relevant for understanding that specific observations. This means these
mechanisms can easily deal with long term dependencies in sequential data. Mathematically the
self-attention multi-head attention module is represented as:

gSA(X) = gMHA(X, X, X), (2.8)

where X is a sequence of vectors.

2.10.3 Dense Feature Transformation Layers

Dense feature transformation layers, often simply called position-wise feed-forward layers in the con-
text of the Transformer architecture, play a pivotal role in refining feature representations. Comprising
two linear layers connected by a ReLU activation function, these layers are tasked with expanding
and then contracting the feature space.

Let us delve into the mechanics. Given a feature transformation hidden size dFT, the transformation
can be mathematically described as:

gFT(X) = φReLU (XW1 + b1)W2 + b2, (2.9)

where

• W1 ∈ Rdx×dFT and b1 ∈ RdFT are the weight matrix and bias vector for the first layer.

• W2 ∈ RdFT×dx and b2 ∈ Rdx correspond to the second layer.

This large hidden layer gives the model high capacity for learning complex representations. Each
neuron can learn to recognise different features or combinations of features from the input data. When
we have many neurons, the layer can potentially learn a very rich and diverse set of features. Such
feature transformation layers can be seen as a form of "memory" in a neural network allowing the
model to remember information.

While these layers do not hold "memory" in a classical sense, they do facilitate the Transformer in
storing representations or transformations of the input. This storage is implicit: the layer refines input
features, emphasising certain elements, merging others, or even generating new feature combinations
that encapsulate higher-order abstractions.

Empirical studies have shown the setting dFT = 4dx is efficient (Devlin et al., 2019; Radford
et al., 2018; Vaswani et al., 2017). This ratio strikes a balance, offering a comprehensive feature
transformation capability without overfitting to the training dataset.

2.10. The Transformer 21

0 10 20 30 40 50 60
Position

0

10

20

30

40

50

60

D
im

en
si

on

(A) Variation of positional encodings across dif-
ferent positions and dimensions, illustrating the

geometric progression of wavelengths.

0 10 20 30 40 50 60
Position 1

0

10

20

30

40

50

60

Po
si

tio
n

2

0.0

0.2

0.4

0.6

0.8

1.0

(B) Similarity heatmap showing the similarity of
positional encodings for nearby sequence posi-
tions, and how this similarity diminishes as the

distance between positions increases.

FIGURE 2.8: Visual representation of the sine-cosine positional encodings and their
properties.

2.10.4 Positional Encodings

While the transformer architecture’s parallel processing ability is a strength, it comes with an inherent
limitation: the model lacks the ability to inherently discern the order or position of observations in a
sequence. This is crucial, especially for tasks like language understanding, where word order often
dictates meaning.

To address this, Vaswani et al. (2017) introduced the concept of positional encodings. These
are added to the inputs, allowing the model to consider the position in a sequence. The proposed
method uses sinusoidal functions of varying frequencies to compute the positional encodings. These
positional encodings share the same dimension, d, as the input representations. For a token at position
p the encoding is:

gpos(p) =
[︂
sin (λ0 p) cos (λ0 p) sin (λ1 p) cos (λ1 p) · · · sin

(︂
λ d

2−1 p
)︂

cos
(︂

λ d
2−1 p

)︂]︂
,

where λm = 10000
−2m

d .

For a sequence of inputs x of length T, the positional embedding function returns a matrix of
positional embeddings:

gpos(x) =
[︁
gpos(0) gpos(1) · · · gpos(T − 1)

]︁⊺ ∈ RT×d.

The sine-cosine positional encodings exhibit three important properties, each contributing to the
model’s understanding of sequence position. Firstly, the encoding at position t + k can be expressed
as a linear combination of the encoding at position t (See Appendix Theorem 1). This property ensures
that the change in positional encoding between any two positions in the sequence depends solely on
the interval k between them. This leads to a consistent representation of relative positional differences,
irrespective of the absolute location within the sequence.

Secondly, the distance between two observations in terms of the positions is captured. This is
because the encodings are designed such that the similarity between the encodings diminishes as
the distance between the corresponding observations increases (See Figure 2.8 (B) and Appendix
Theorem 2).

22 Chapter 2. Deep Learning Preliminaries

Multi-Head
Attention

Add & Norm

Feature
Transformation

Add & Norm

(A) Transformer Encoder Layer

Masked
Multi-Head
Attention

Add & Norm

Feature
Transformation

Add & Norm

Multi-Head
Attention

Add & Norm

(B) Transformer Decoder Layer

FIGURE 2.9: Transformer Encoder and Decoder Layers

Lastly, the wavelengths of the sine and cosine functions used in the positional encodings vary
according to a geometric progression, ranging from 2π to 10000 · 2π (See Appendix Theorem 3 and
Figure 2.8 (A)). This scaling mechanism allows each dimension in the positional encoding to capture
positional information at significantly different scales. Consequently, the model gains the capacity to
understand a wide variety of positional dependencies and to develop a rich representation of element
positions within a sequence.

2.10.5 The Transformer Layer

As illustrated in Figure 2.9 (A), a standard Transformer layer comprises two main components: a multi-
head self-attention mechanism and a position-wise feature transformation layer. The self-attention
mechanism is designed to recognise dependencies and relationships between tokens, thereby focusing
on relevant parts of the input sequence. This mechanism is enhanced by a residual connection, which
sums the input and output of the self-attention block. The residual connection allows the layer to
learn what can be thought of as ’residuals’ or valuable nuances in representation, aided by its inherent
ability to approximate the identity function.

Layer normalisation is employed to maintain a consistent output distribution across various
inputs, effectively stabilising the learning process. The second main component of the Transformer
layer is the dense feature transformation layer (Section 2.10.3). A typical transformer layer is defined
as:

f (X) = Φ
(︁

H̃ + gFT(H̃)
)︁

, {Equation 2.9} where
H̃ = Φ (X + gSA(X)) {Equation 2.8}.

The layer normalisation function, vital for maintaining consistency in output distribution across
layers, is:

Φ(x) =
x − E[x]√︁
var(x) + ϵ

⊙ γ + β, (2.10)

2.11. The Transformer Language Model 23

where γ and β are learnable parameters and ϵ a small positive constant. This function normalises
the output of the components of the layer such that:

E [Φ(x)] = β

var (Φ(x)) = γ2,
(2.11)

Having explored the intricacies of the attention mechanism, encoder-decoder architecture, and
transformer models, we now turn our attention to the domain of language modelling.

2.11 The Transformer Language Model

Introduced by Vaswani et al. (2017), transformer-based language models leverage attention mecha-
nisms to concurrently process input sequences, a capability contrasting with the inherent sequential
processing of RNNs. This allows transformers to efficiently capture long-range dependencies in text
without the time-step limitations associated with RNNs.

2.11.1 Token Embeddings

The essence of natural language processing using deep learning models lies in the transformation of
words or tokens into numerical representations, commonly referred to as embeddings. Transformer
models employ a specialised tokenisation technique known as "word-piece tokenisation". Instead
of representing each word as a whole, word-piece tokenisation breaks words into sub-tokens. This
segmentation proves beneficial in several ways:

Shared Semantics: Common sub-tokens between words help the model understand shared seman-
tics. For instance, the sub-token "un-" in both "unhappy" and "unfortunate" conveys the idea of
negation.

Handling Rare Words: By decomposing rare or out-of-vocabulary words into familiar sub-tokens,
the model can infer their meanings without having seen the entire word during training.

As a result, the vocabulary of the model consists of a set of tokens and the embedding layer of the
model learns an embedding for tokens rather than words. The token embedding layer transforms
each token in the input text into a continuous vector representation. This continuous form allows the
model to capture semantic nuances between different tokens more effectively than discrete forms,
such as integers or one-hot encoded vectors.

Mathematically, the operations performed by the token embedding layer can be formulated as:

gemb(x) = 1(x)E,

where the element in the i-th row and j-th column of the one-hot matrix is defined as:

1(x)i,j =

{︄
1 if xi = j
0 otherwise

.

Here i ∈ {1, 2, · · · , |x|} and j ∈ {0, 1, ..., vocab_size− 1}, and:

• x is an input vector containing the integer IDs that represent the tokens in the input text. Each
integer ID xi corresponds to a token in the model’s vocabulary.

• 1(x) denotes the one-hot encoded matrix of the input vector x. Each row in this matrix corre-
sponds to a token in the input and contains a single ’1’ at the column index that matches the
token’s integer ID, with all other entries being ’0’.

24 Chapter 2. Deep Learning Preliminaries

• E is a learnable embedding matrix of dimensions vocab_size× dmodel, where vocab_size ∈ N+

is the size of the vocabulary and dmodel is the dimensionality of the embeddings. Each row in E
represents the vector embedding of a unique token in the model’s vocabulary.

By performing the matrix multiplication 1(x)E, each row of one-hot encoded vectors picks out the
corresponding token embedding from E, resulting in a matrix gemb(x) where each row is the vector
embedding of a token in the input text.

2.11.2 Transformer Encoder Layer

A transformer encoder layer can be mathematically represented as:

genc(X; θ) = Φ
(︁

H̃ + gFT
(︁

H̃
)︁)︁

{Equation 2.9}
H̃ = Φ (X + gSA (X)) {Equation 2.8},

where θ is the set of parameters for the self-attention and feature transformation layers.

2.11.3 Transformer Decoder Layer

Distinct from the encoder, the decoder layer, illustrated in Figure 2.9 (B), also incorporates encoder
features, Henc:

gdec(X, Henc; θ) = Φ
(︁

H̃ + gFT
(︁

H̃
)︁)︁

{Equation 2.9} (2.12)

H̃ = Φ
(︁

Ĥ + gMHA
(︁

Henc, Henc, Ĥ
)︁)︁

{Equation 2.7} (2.13)

Ĥ = Φ (X + gSA (X)) {Equation 2.8}. (2.14)

The multi-head attention mechanism (Equation 2.13) dynamically aligns the decoder with relevant
portions of the input text by computing weighted sums of all encoder states. It allows for the handling
of long-range dependencies, ensuring that each generated word is influenced by a customised,
dynamically-created context. Figure 2.10 shows an example of how the attention mechanism aligns
the generated text with the source text, by focusing on the relevant words in the source text.

Resumption of the session.
Target text (English)

Wiederaufnahme

der

Sitzungsperiode.So
ur

ce
 te

xt
 (G

er
m

an
)

0.1

0.2

0.3

0.4

FIGURE 2.10: Illustration of Attention Mechanism in RNN Encoder-Decoder for WMT
17 DE-EN Translation Task. The figure displays the attention scores generated by the
Transformer Model (Vaswani et al., 2017), showcasing how the attention mechanism
aligns each target word (English) with the relevant source words (German). This
visualisation provides insights into the model’s ability to focus on relevant parts of the

input sentence during translation.

2.11. The Transformer Language Model 25

DecoderEncoder

Embedding Embedding Embedding

Positional
Encoding

Encoder Layer

Encoder Layer

Encoder Layer

Embedding Embedding

Positional
Encoding

Decoder Layer

Decoder Layer

Decoder Layer

Linear Linear

FIGURE 2.11: Transformer language model overview. It encompasses an encoder (in
green) and a decoder (in red). The encoder utilises multi-head self-attention blocks
to produce contextual representations of input tokens. The decoder, with its masked
multi-head self-attention, ensures each output token considers all preceding tokens. This
masking prevents the decoder from viewing future tokens during training, ensuring
genuine auto-regressive generation. Additionally, the decoder employs encoder-decoder
attention mechanisms and concludes with a classification layer for token generation.

2.11.4 The Model

The encoder model can be described as:

fEnc(x) = gN
enc ◦ gN−1

enc ◦ · · · ◦ g1
enc(gemb(x) + gpos(x)),

While, given Henc = fEnc(X), the decoder is:

fDec(yin, Henc) = φSoftmax

(︃
Hdec E⊺

d

)︃
Hdec = gN

dec ◦ gN−1
dec ◦ · · · ◦ g1

dec(gemb(yin) + gpos(yin), Henc),

where E is the same embedding matrix used to represent tokens in the input sequence. Crucially,
both the encoder and decoder employ the same embedding matrix, E, for token representation. This
shared representation not only enforces semantic consistency but also serves as a regularisation
technique. It curtails overfitting, speeds up convergence, and might enhance the model’s overall
performance.

This transformer language model (illustrated in Figure 2.11) can be formally defined as:

p
(︁
Y
⃓⃓
x, yin; θ

)︁
= f (x, yin; θ) = fDec

(︁
yin, fEnc(x; θ); θ

)︁
.

This model is trained on a dataset D, consisting of input-target text pairs D = {(xi, yi)}N
i=1. The

learning objective is to minimise the cross-entropy loss between the predicted and target sequences.
During training, the decoder input and target sequences are derived from the original target sequence
yi. Specifically, the decoder inputs are constructed as yin

i = [[BOS], yi,1, yi,2, · · · , yi,Ti] and the tar-
gets are ytarget

i = [yi,1, yi,2, · · · , yi,Ti , [EOS]]. In this context, [BOS] and [EOS] denote ’Beginning Of

26 Chapter 2. Deep Learning Preliminaries

Sequence’ and ’End Of Sequence’ tokens, respectively, which are used to indicate the start and end of
a sequence in the dataset. This objective is mathematically expressed as:

L (D; θ) = − 1
N

N

∑
i=1

1
Ti

Ti

∑
t=1

log p
(︂
Y = ytargeti,t

⃓⃓⃓
xi, yin

i,1:t; θ
)︂

.

During inference, each word in the output sequence is generated auto-regressively, optimising for
the highest probability word at each step, until either a predetermined length, T, or an end-of-string
token [EOS] is encountered. That is given that y0 = [BOS], the next word is generated as:

ŷt = arg max
y

p (Y = y|x, y1:t−1; θ) ,

Such transformer language models could also comprise solely of an encoder or decoder.

2.12 Encoder Language Models

Encoder-only transformer language models utilise the encoder component of the Transformer (see
Figure 2.12 (A)). A prominent representative of this design is BERT (Bidirectional Encoder Represen-
tations from Transformers) (Devlin et al., 2019). Its training procedure involves a masked language
modelling objective, wherein random tokens are masked and the goal becomes predicting the original
token based on the surrounding context. Distinctively, unlike the decoder, BERT integrates both
preceding and subsequent contexts of a token, offering a comprehensive understanding of language
structures.

The model can be represented as:

f (x; θ) = φSoftmax (fEnc(x; θ)W + b) .

In encoder-only models, the training objective is to accurately predict masked tokens using the
surrounding context. Given an input sequence x of length T, we derive xin by replacing random
tokens with the [MASK] token. The desired output for this masked input is the original sequence, x. To
train this model, the cross-entropy loss is employed, formulated as

L(x; θ) = −
T

∑
t=1

δ
(︁
xint
)︁

log p
(︁
Y = xt|xin; θ

)︁
.

Here

δ
(︁

xint
)︁
=

{︄
1 if xint = [MASK]

0 otherwise
,

such that the loss only includes predictions of masked tokens. Unlike auto-regressive models
which aim to generate text, the primary goal of encoder-only models is to learn context-rich word em-
beddings. These embeddings can subsequently be used directly or fine-tuned for various downstream
tasks, including dialogue state tracking.

2.13 Decoder Language Models

Decoder-only transformer language models exclusively harness the decoder section of the Trans-
former, aimed at generating new sequences (see Figure 2.12 (B)). Models under the GPT (Generative
Pre-trained Transformer) umbrella exemplify this architecture (Brown et al., 2020; OpenAI, 2023;
Ouyang et al., 2022; Radford et al., 2018, 2019).

In the GPT framework, the decoder’s masked self-attention ensures that the prediction at position
t is only influenced by positions 1, 2, · · · , t − 1. This auto-regressive characteristic is vital for coherent

2.14. Conclusion 27

Encoder Layer

Embedding Embedding Embedding

Positional
Encoding

Encoder Layer

Linear Linear Linear

Encoder Layer

(A) Transformer Encoder

Decoder Layer

Embedding Embedding

Positional
Encoding

Decoder Layer

Decoder Layer

Embedding Embedding

Linear Linear

(B) Transformer Decoder

FIGURE 2.12: Illustration of Encoder-Only and Decoder-Only Transformer Models.
The encoder-only models, often referred to as masked language models, are trained
to generate rich contextual representations for text tokens using the masked language
modelling task. In this approach, certain tokens from the input sequence are masked,
and the encoder then predicts these masked tokens based on the surrounding context.
Conversely, decoder-only models engage in auto-regressive sequence generation. While
generating text, the decoder’s input incorporates both the input sequence and any
previously generated tokens. This setup allows the model to attend to the entire input

sequence during generation while masking future text tokens.

sequence generation. GPT’s training regime maximises the likelihood of a token given its preceding
tokens (objective is the same as for encoder-decoder language models), rendering it proficient at
generating cohesive and contextually relevant text.

Though named differently, in these models, the decoder fDec essentially functions as an encoder
fEnc with provisions for future masking. Therefore, these models can be mathematically expressed as:

f (yin; θ) = φSoftmax

(︃
fEnc(yin; θ)

E⊺

d

)︃
.

In summary, Transformer language models have catalysed advancements in NLP, both in terms of
research and real-world applications. Encoder models such as BERT (with 110 million parameters for
BERT-Base) excel in tasks necessitating comprehension of the input text, e.g., text classification and
named entity recognition (Devlin et al., 2019; Liu et al., 2019). On the other hand, Encoder-Decoder
and Decoder models like T5 (with up to 11 billion parameters for T5-XXL) and GPT (with 175 billion
parameters for GPT-3), respectively, are highly effective for text generation tasks (Brown et al., 2020;
Raffel et al., 2020).

2.14 Conclusion

The preliminary concepts and techniques in deep learning presented in this chapter, including
neural networks, recurrent neural networks, convolutional neural networks, and the Transformer
architecture, form the foundation for understanding and implementing more advanced models and
applications, such as those discussed in Chapters 4-7.

29

Chapter 3

Uncertainty Estimation in Deep Learning

3.1 Overview

In Chapter 1, we highlighted the profound role that human cognition plays in managing and navi-
gating uncertain terrains, and the foundational necessity for software to echo similar competencies.
Yet, the challenge of uncertainty in deep learning stretches beyond merely achieving better human-
computer interactions. Modern deep learning models, though sophisticated, are often found erring
on the side of overconfidence. This overconfidence holds implications on the model’s adaptability
and relevance in diverse, real-world contexts (Grote and Berens, 2020).

While our understanding of human uncertainty, informed by psychological research, offers
insights into the importance of uncertainty, there exists a pressing need to explore techniques that
allow models to effectively quantify and integrate uncertainty. Such techniques not only promise
to improve the precision and adaptability of our models but also pave the way for more effective,
robust, and nuanced human-computer interactions (Collins et al., 2023).

In this chapter, we will delve into the intricacies of uncertainty estimation in deep learning,
starting with the question: What is uncertainty?

3.2 What is Uncertainty?

Uncertainty, in the context of deep learning models, refers to the amount of doubt or lack of confidence
a model has in its predictions (Gal, 2016). In essence, it captures the ambiguity and or volatility in the
model’s predictions occurring as a result of various internal and external factors.

Estimating uncertainty in deep learning models is important for various reasons. Firstly, it pro-
vides a deeper understanding of the predictions of a model by highlighting potential weaknesses
or areas of low confidence. Secondly, in modular tasks such as medical diagnoses or autonomous
vehicles, where predictions of a model are used in downstream decision making, unreliable predic-
tions can lead to costly mistakes. Thirdly, since uncertainty provides us with an insight into the
shortcomings of a model, uncertainty can aid informed strategies for model improvement, adaptive
learning, and robust real-world deployment.

Importantly, a model capable of accurately estimating its own uncertainty is inherently more
trustworthy. This allows users or downstream applications to gauge the reliability of the model’s
predictions, thereby minimising the risk of costly errors arising from incorrect or misleading outputs.
A nuanced understanding of the types of uncertainty at play can further guide the proper utilisation
and refinement of the model.

3.3 Types of Uncertainty in Deep Learning

Uncertainty in deep learning can be broadly categorised into two types: aleatoric (data-driven) and
epistemic (knowledge-based) uncertainty (ibid.).

30 Chapter 3. Uncertainty Estimation in Deep Learning

Aleatoric Uncertainty, also referred to as data uncertainty, refers to uncertainty that arises due to
inherent variations or noise present in the data used for training a machine learning model. Generally,
aleatoric uncertainty is considered irreducible; it will persist even if more data is gathered or a more
complex model is used.

Epistemic Uncertainty, also known as knowledge uncertainty, refers to the uncertainty in a machine
learning model’s predictions which originates from its incomplete understanding, as a result of a
lack of relevant data during training or the inherent complexity of the problem at hand. Unlike
aleatoric uncertainty, epistemic uncertainty can be mitigated by gathering more data or employing
more sophisticated models (Neal, 2012, Chapter 1).

Understanding these different types of uncertainty is the first step towards developing more
reliable models. The next natural step is to explore how these uncertainties can be accurately estimated,
which is the focus of the subsequent section.

3.4 Calibration Techniques

In the realm of machine learning, a model is deemed well-calibrated if the predicted confidences align
with the empirical likelihood of those predictions. Notably, machine learning models, and particularly
deep learning models, have a tendency to be overconfident in their inaccurate predictions, meaning
they are not well-calibrated (Guo et al., 2017). To address this, this section outlines methods aimed
for improving model calibration, i.e. better aligning the uncertainty of the model with the likelihood
of its predictions. First, we investigate objective functions designed to encourage better-calibrated
predictions. Subsequently, we delve into how ensemble methods can be employed not only to enhance
calibration but also to provide estimates for both aleatoric and epistemic uncertainties (Lakshmi-
narayanan et al., 2017). Finally, we explore the concept of ensemble distillation as a technique for
achieving faster inference while maintaining the calibration (Hinton et al., 2015; Ryabinin et al., 2021).

3.4.1 Objective Functions

The choice of objective function plays a pivotal role in shaping the behaviour of a deep learning model,
essentially guiding what the model learns from the training data. Therefore, objective functions
serve not only as an optimisation tool but also as a mechanism for calibrating the model’s predictive
capabilities. Among the various options, the cross-entropy loss stands out for its ubiquity and efficacy.
As previously introduced in Section 2.3.1, the cross-entropy loss can be mathematically defined for
a training dataset D = {(xi, yi)}N

i=1, comprising N pairs of inputs and corresponding targets, as
follows:

LCE (D; θ) = − 1
N

N

∑
i=1

log p (Y = yi|xi, θ)

= − 1
N

N

∑
i=1

K

∑
c=1

p (Y = c|xi, yi) log p (Y = c|xi, θ) ,

where K is the number of classes in the classification problem and yi ∈ [1, K]. The conditional
probability p (Y = c|xi, yi) is defined as:

p (Y = c|xi, yi) =

{︄
1 if yi = c
0 otherwise

. (3.1)

Given this definition, the cross-entropy loss can also be expressed in terms of the Kullback-Leibler
divergence (KL) as:

3.4. Calibration Techniques 31

LCE (D; θ) = − 1
N

N

∑
i=1

K

∑
c=1

p (Y = c|xi, yi) log
(︃
p (Y = c|xi, θ)

p (Y = c|xi, yi)

)︃
= E

P
(︂
X⃗,Y
⃓⃓
D
)︂ [︂DKL

[︂
p
(︂
Y
⃓⃓
X⃗,Y

)︂ ⃦⃦⃦
p
(︂
Y
⃓⃓
X⃗, θ

)︂]︂]︂
.

The cross-entropy loss effectively encourages the model to approximate the true class distribution,
p
(︂
Y
⃓⃓
X⃗,Y

)︂
, which is a one-hot representation of the correct class (Goodfellow et al., 2016). However,

this might not be ideal in cases where there is inherent uncertainty in the prediction. To address this,
alternative loss functions like label-smoothing can be employed (Szegedy et al., 2016).

Before we introduce label-smoothing loss, we introduce the concept of entropy. The entropy of a
random variable quantifies the average uncertainty or surprise associated with the outcomes that the
variable can take. A higher entropy value indicates that the outcome is less predictable, leading to
greater surprise when an outcome is revealed. On the other hand, a lower entropy implies that the
outcomes are more predictable. Entropy is measured by taking a weighted sum of the log probabilities
of all possible outcomes, scaled by their respective probabilities.

The label-smoothing objective function employs an adapted target distribution, p (Y = c|xi, yi)
(as per Equation 3.1), to encourage the model to produce better-calibrated predictive distributions. In
the label-smoothing objective, the target distribution is redefined as:

p (Y = c|xi, yi; ϵ) =

{︄
1 − ϵ if yi = c

ϵ
K−1 otherwise

.

where ϵ ∈
(︁
0, K−1

K

)︁
serves as a hyper-parameter that controls the entropy level of the target

distribution. Specifically, lower values of ϵ yield target distributions with minimal entropy, whereas
higher ϵ values lead to distributions with increased entropy.

Having explored the role of loss functions in calibrating deep learning models, it is worth men-
tioning that an alternative yet complementary approach to model calibration involves the use of
ensembles. Not only do ensembles offer a method for improving prediction accuracy, but they also
provide valuable insights into model uncertainty, both aleatoric and epistemic (Malinin, 2019).

3.4.2 Ensembles

To estimate the likelihood of a given observation given a dataset D, it is essential to integrate over all
possible parameter values θ. Mathematically, this can be expressed as:

p
(︂
Y|X⃗,D

)︂
=
∫︂

P
(︂
Y, θ|X⃗,D

)︂
dθ

=
∫︂

p
(︂
Y|X⃗, θ

)︂
P (θ|D) dθ {Bayes’s Theorem}

= EP(θ|D)

[︂
p
(︂
Y|X⃗, θ

)︂]︂
.

(3.2)

However, directly calculating this integral is often intractable, necessitating an approximation.
One common approach involves sampling from the posterior distribution p

(︁
θ
⃓⃓
D
)︁
, also known as

Markov Chain Monte Carlo (MCMC) estimation (Robert and Casella, 1999, Chapter 6):

p
(︂
Y|X⃗,D

)︂
≈ 1

M

M

∑
m=1

p
(︂
Y|X⃗, θ(m)

)︂
,

where θ(m) ∼ P (θ|D) .

(3.3)

32 Chapter 3. Uncertainty Estimation in Deep Learning

Ensemble methods offer a practical way to approximate this sampling. Each ensemble member
represents a different sample from the posterior distribution, allowing us to approximate the true
predictive distribution and thereby estimate total uncertainty:

H
(︂
p
(︂
Y|X⃗,D

)︂)︂
= −

K

∑
c=1

p
(︂
Y = c|X⃗,D

)︂
log p

(︂
Y = c|X⃗,D

)︂
≈ − 1

M

K

∑
c=1

M

∑
m=1

p
(︂
Y = c|X⃗, θ(m)

)︂
log

(︄
1
M

M

∑
m=1

p
(︂
Y = c|X⃗, θ(m)

)︂)︄
.

Next, we introduce the concept of mutual information. In the context of information theory,
mutual information serves as a quantitative measure of the information one random variable contains
about another. Specifically, it gauges the extent to which knowing the value of one variable reduces
uncertainty about the value of the other variable. The mutual information between random variables
X and Y is defined as:

I (X,Y) = EP(X,Y)

[︃
log
(︃

P (X,Y)
P (X) P (Y)

)︃]︃
.

In this equation, we calculate the expected value of the logarithm of the ratio between the
joint probability distribution of X and Y and the product of their individual marginal distributions.
When the two variables are independent, this ratio is 1, leading to a logarithm of zero and a mutual
information of zero. This aligns with the intuitive understanding that if two variables are independent,
knowledge of one provides no information about the other. Conversely, if the variables are dependent,
the ratio will be greater than one, as the joint probability will exceed the product of the marginal
probabilities. In such cases, the mutual information will be greater than zero, indicating that one
variable does indeed provide information about the other.

When it comes to model parameters, denoted as θ, and outcomes, Y, a high mutual information
means the outcome is very sensitive to these parameters. This might sound like a good thing, as it
suggests the parameters and the outcome are closely linked. However, it also means uncertainty about
the parameters can lead to inaccuracies in the predictions. This is why high mutual information in this
context indicates a high level of knowledge uncertainty because small uncertainties in the parameters
can lead to big uncertainties in the outcome. Additionally, high mutual information also means that
knowing the outcome Y will provide a lot of information about what θ should be. However, until Y is
observed, this aspect contributes to knowledge uncertainty, the less we know about one, the less certain
we are about the other (Malinin, 2019). In this context we can derive the knowledge uncertainty as:

I
(︂
Y, θ|X⃗,D

)︂
=
∫︂ K

∑
k=1

P
(︂
Y = k, θ

⃓⃓
X⃗,D

)︂
log

⎛⎝ P
(︂
Y = k, θ

⃓⃓
X⃗,D

)︂
p
(︂
Y = k

⃓⃓
X⃗,D

)︂
P
(︁
θ
⃓⃓
D
)︁
⎞⎠ dθ

=
∫︂

P
(︁
θ
⃓⃓
D
)︁ K

∑
k=1

p
(︂
Y = k

⃓⃓
X⃗, θ

)︂
log

⎛⎝ p
(︂
Y = k

⃓⃓
X⃗, θ

)︂
P
(︁
θ
⃓⃓
D
)︁

p
(︂
Y = k

⃓⃓
X⃗,D

)︂
P
(︁
θ
⃓⃓
D
)︁
⎞⎠ dθ

{Bayes’s Theorem}

= E
P
(︂

θ
⃓⃓
D
)︂E

p
(︂
Y
⃓⃓
X⃗,θ
)︂
⎡⎣log

⎛⎝ p
(︂
Y
⃓⃓
X⃗, θ

)︂
p
(︂
Y
⃓⃓
X⃗,D

)︂
⎞⎠⎤⎦

≈ 1
M

M

∑
m=1

DKL

[︄
p
(︂
Y
⃓⃓
X⃗, θ(m)

)︂ ⃦⃦⃦ 1
M

M

∑
m=1

p
(︂
Y
⃓⃓
X⃗, θ(m)

)︂]︄
.

This shows that in the context of an ensemble, mutual information can be interpreted as the degree
of variation in predictions among ensemble members. This observation aligns with the idea that high

3.5. Ensemble Distillation Techniques 33

mutual information suggests that small changes in parameters can result in significant changes in
outcomes. In an ensemble setting we assume that the different members have significantly differing
parameters. In the case that the mutual information between the parameters and the outcome is high,
this would imply that the ensemble members will have significantly differing predictions, resulting
in a high degree of disagreement. Hence this high disagreement can be seen as a indicator of high
knowledge uncertainty.

By subtracting this knowledge uncertainty (mutual information) from the total uncertainty (en-
tropy), we obtain (see Theorem 5):

H
(︂
p
(︂
Y|X⃗,D

)︂)︂
⏞ ⏟⏟ ⏞

Total Uncertainty

− I
(︂
Y, θ|X⃗,D

)︂
⏞ ⏟⏟ ⏞

Knowledge Uncertainty

= EP(θ|D)H
(︂
p
(︂
Y|X⃗, θ

)︂)︂
⏞ ⏟⏟ ⏞

Data Uncertainty

.

This expected remaining uncertainty in Y after taking into account the model parameters θ
encapsulates the irreducible level of uncertainty that is intrinsic to the process that generates the data.
Known as data uncertainty, it represents the portion of uncertainty that persists despite our best efforts
to model or explain it through θ.

In Figure 3.1, we explore three distinct scenarios to understand how uncertainty manifests within
ensemble models.

1. Low Uncertainty Scenario: Figure 3.1 (A) illustrates a case where all ensemble members agree
closely on their predictions, resulting in low uncertainty in the marginal distribution. In this
context, both the total uncertainty, representing the overall unpredictability in the outcome, and
data uncertainty, capturing the irreducible uncertainty intrinsic to the data, are low. Additionally,
knowledge uncertainty is minimal, indicated by the high level of agreement among the ensemble
members.

2. High Data Uncertainty Scenario: In Figure 3.1 (B), all ensemble members exhibit high levels of
uncertainty, which is also mirrored in the marginal distribution. In this situation, both the
total uncertainty and the data uncertainty are high. Interestingly, the knowledge uncertainty
remains low because the ensemble members consistently produce high-uncertainty predictions,
signalling a shared understanding of the underlying data’s unpredictability.

3. High Knowledge Uncertainty Scenario: Figure 3.1 (C) depicts a more intricate case. Here, indi-
vidual ensemble members show a high level of certainty in their predictions, indicating low
data uncertainty. However, the marginal distribution itself displays high total uncertainty.
This heightened level of total uncertainty arises primarily from knowledge uncertainty, which
becomes apparent from the significant disagreement among the ensemble members. In this
case, the model parameters vary enough across ensemble members to introduce a high degree
of variation, or knowledge uncertainty, in the collective output.

While ensemble methods provide the dual advantage of calibrated predictive distributions and un-
certainty estimation, their computational cost is often a limiting factor. The training of multiple models
and the necessity of aggregating their predictions during inference can be both time-consuming and
resource-intensive. It is particularly problematic in scenarios requiring real-time predictions or when
computational resources are limited. To address these challenges without sacrificing the benefits of
ensembles, various techniques have been developed to approximate the performance of an ensemble
with a single, more efficient model.

3.5 Ensemble Distillation Techniques

Ensemble distillation aims to capture the essence of what an ensemble ’knows’ and convey this
knowledge to a solitary ’student’ model. This student model is trained to mimic the ensemble’s

34 Chapter 3. Uncertainty Estimation in Deep Learning

Ens 1

Ens 2

Ens 3

Marginal

(A) Low uncertainty.

Ens 1

Ens 2

Ens 3

Marginal

(B) High data uncertainty.

Ens 1

Ens 2

Ens 3

Marginal

(C) High knowledge uncertainty.

FIGURE 3.1: Exploring Different Sources of Uncertainty in Ensemble Models.

behaviour, effectively serving as a lightweight surrogate that approximates the ensemble’s predictive
distribution. The objective is to retain the calibration and uncertainty estimation capabilities of the
ensemble, while significantly reducing the computational overhead. In the following sections, we
delve into the methodologies and benefits of ensemble distillation, highlighting how it allows for
accurate and computationally efficient model inference. We focus on two primary variants of this
technique: Ensemble Distillation (EnD) and Ensemble Distribution Distillation (EnD2).

3.5.1 Ensemble Distillation

The first approach we will explore is Ensemble Distillation (EnD), which aims to encapsulate the
collective intelligence of an ensemble into a singular, more computationally efficient student model.

The foundational idea behind EnD is to distill knowledge from an ensemble of M models,{︂
θ(1), θ(2), · · · , θ(M)

}︂
, into a single student model. This involves utilising a transfer dataset, de-

noted as Dens, containing predictions from the ensemble. Specifically, the transfer dataset consists
of combinations of input features and predictive distributions, π, from each model in the ensemble.
Formally, it can be represented as:

Dens =
{︂(︂

xi, π
(1)
i , π

(2)
i , · · · , π

(M)
i

)︂}︂N

i=1
.

A widely-used loss function for distillation is the Kullback-Leibler (KL) divergence, which mea-
sures how one probability distribution diverges or is different from a second, reference probability
distribution. The loss function for EnD can be mathematically expressed as:

LEnD (Dens; φ) = E
P
(︂
X⃗|Dens

)︂DKL

[︂
p
(︂
Y|X⃗; θ(1:M)

)︂ ⃦⃦⃦
p
(︂
Y|X⃗; φ

)︂]︂
,

where p
(︂
Y|X⃗ = xi; θ(1:M)

)︂
= 1

M ∑M
m=1 π

(m)
i denotes the marginal predictive distribution of the en-

semble, and p
(︂
Y|X⃗; φ

)︂
is the predictive distribution of the student model, parameterised by φ.

Temperature Scaling

To improve the alignment of the student model’s distribution with the ensemble’s distribution,
temperature scaling is often employed. Temperature scaling is a modification of the softmax activation
function. It introducing a scaling hyper-parameter ,T, for adjusting the entropy in the resulting
categorical distribution:

3.5. Ensemble Distillation Techniques 35

φSoftmax(z; T) =
exp

(︁ z
T

)︁
∑K

k=1 exp
(︁ zk

T

)︁ .

Here, the larger the value of T, the higher the entropy in the resulting distribution. Incorporating
temperature scaling to increase entropy in both the target and predictive distributions of the student,
aligns these distributions in low probability classes. This results in more effective optimisation of the
KL divergence between the two distributions, thereby improving convergence (Hinton et al., 2015).

While ensemble distillation does improve efficiency, it primarily focuses on approximating the
averaged predictions from the ensemble. As a result, EnD captures what could be termed as the ’mean
knowledge’ of the ensemble, but not the variations between ensemble members. These variations are
crucial for a nuanced understanding of model uncertainty, both data and knowledge uncertainties.
For a more comprehensive representation that captures both the mean and variation, we consider
Ensemble Distribution Distillation (EnD2).

3.5.2 Ensemble Distribution Distillation

Unlike traditional ensemble distillation methods where the student model is trained to mimic the
mean of the ensemble’s predictions, Ensemble Distribution Distillation (EnD2) aims to take it a step
further. Here, the student model is trained not just to emulate the ensemble’s average predictive
distribution but to model the entire distribution of predictive distributions among the ensemble
members. By doing so, EnD2 enables the distilled student model to better approximate both data and
knowledge uncertainties, offering a more complete and nuanced uncertainty representation.

Let us first set the scene. The predictive distribution p (Y|·) is a categorical distribution parame-
terised by a vector of probabilities π, that is:

p (Y|π) ∼ Cat (π) .

These probabilities are predicted by a model π(x) = f (x; θ) hence we can state that they have the
distribution:

P
(︂

Π⃗|X⃗; θ
)︂

.

As a result, we can reformulate Equation 3.2 as:

p
(︂
Y|X⃗,D

)︂
=
∫︂

p
(︂
Y|X⃗, θ

)︂
P (θ|D) dθ

=
∫︂ ∫︂

P
(︂
Y, Π⃗|X⃗, θ

)︂
dΠ⃗ P (θ|D) dθ

=
∫︂ ∫︂

p
(︂
Y|Π⃗

)︂
P
(︂

Π⃗|X⃗, θ
)︂

dΠ⃗ P (θ|D) dθ {Bayes’ Theorem}

= EP(θ|D)EP
(︂

Π⃗|X⃗,θ
)︂ [︂p(︂Y|Π⃗)︂]︂ .

As in Equation 3.3 we can sample from the posterior of the model parameters using an ensemble
of models.

p
(︂
Y|X⃗,D

)︂
≈ 1

M

M

∑
m=1

E
P
(︂

Π⃗|X⃗,θ(m)
)︂ [︂p(︂Y|Π⃗)︂]︂ ,

where θ(m) ∼ P (θ|D) .

Since each ensemble member will predict a fixed distribution π(m)(x) = f
(︂

x; θ(m)
)︂

, we can state
that:

36 Chapter 3. Uncertainty Estimation in Deep Learning

π(m)(x) ∼ P
(︂

Π⃗|x,D
)︂

,

is a sample from the posterior of Π⃗(x). In EnD2, the objective of the student model is to estimate
the posterior of Π⃗(x). Before we continue exploring EnD2, let us first introduce an important family of
distributions known as the the Dirichlet distribution.

The Dirichlet Distribution

The Dirichlet distribution is a family of multivariate continuous probability distributions, parame-
terised by a vector of concentration parameters α =

[︁
α1 α2 · · · αK

]︁
. Here α ∈ RK and αk > 0 for

all k ∈ {1, 2, . . . , K}.
Consider a random vector X⃗ =

[︁
X1 X2 · · · XK

]︁
, where each component Xk ∈ [0, 1] and

∑K
k=1 Xk = 1. The random vector X⃗ is said to follow a Dirichlet distribution with parameter vector α,

denoted as X⃗ ∼ Dir (α), if its joint probability density function (pdf) is defined as:

P
(︂
X⃗ = x

⃓⃓
α
)︂
=

Γ(α0)

∏K
j=1 Γ(αj)

K

∏
k=1

xαk−1
k , (3.4)

where α0 = ∑K
k=1 αk is the sum of the concentration parameters, often referred to as the precision

parameter, and Γ(·) the Gamma function.
The Dirichlet distribution exhibits the following properties, which are relevant for subsequent

discussions in this chapter:

1. Expectation: The expected value of each component Xk is given by:

E [Xk] =
αk

α0
. (3.5)

2. Log Expectation: The expected value of the natural logarithm of each component Xk is given by:

E [log (Xk)] = ψ(αk)− ψ(α0). (3.6)

Here ψ(z) = d
dz log Γ(z) is the digamma function.

3. Conjugacy: The Dirichlet distribution is a conjugate prior of the categorical distribution.

4. Marginal: The marginal distribution of each component Xk is a Beta(αk, α0 − αk) distribution. We
do not delve into the details of this distribution, however it is important to note that:

EP(Xk) [Xk logXk] =
αk

α0
[ψ(αk + 1)− ψ(α0 + 1)] (3.7)

Having established the foundational understanding of the Dirichlet distribution, we can now
continue into its application within the framework of ensemble distribution distillation. Specifically,
we configure the student model to predict a Dirichlet distribution, denoted as Dir (α(x)).

In this setting, α(x) is defined as ez, where z represents the real valued output of the student
model for a given input x. The objective function we use is the negative log-likelihood of the transfer
dataset Dens, calculated with respect to the Dirichlet distribution predicted by the student model.
Mathematically, this can be expressed as:

LEnD2 (Dens; φ) = −E
P
(︂

Π⃗,X⃗
⃓⃓
Dens

)︂ log P
(︂

Π⃗
⃓⃓⃓
α
(︂
X⃗; φ

)︂)︂
.

3.5. Ensemble Distillation Techniques 37

Convergence Problems

Despite the theoretical appeal of using negative log-likelihood (NLL) as the optimisation objective
in EnD2, it is empirically found to result in significant convergence issues. To understand why this
happens, we examine the first-order gradients, which are the first derivatives of the loss function with
respect to its input variables. We examine the first order gradients using the gradient norm ratio (ρ).
To better understand these convergence problems, we will consider the first-order gradients of four
different loss functions: Categorical Cross-Entropy, NLL, KL Divergence, and Reverse KL Divergence.

Before diving into the other objectives, let us first establish Categorical Cross-Entropy as a baseline
for efficient convergence. Although efficient, it only focuses on matching the mean of the distribution
to the target, making it unsuitable for ensemble distribution distillation.

For our analysis, we define a target distribution, πtgt, which serves as a comparative benchmark.

πtgt =
[︁
1 − ϵ ϵ

K−1 · · · ϵ
K−1

]︁
, ϵ = 1e − 4.

This results in the categorical cross entropy objective:

LCE (x, π; φ) = −
K

∑
k=1

πtgt
k log p

(︁
Y = k

⃓⃓
x; φ

)︁
= −

K

∑
k=1

πtgt
k log E

P
(︂

Π⃗
⃓⃓

x;φ
)︂ [Πk]

= −
K

∑
k=1

πtgt
k log

(︃
αk

α0

)︃
{Equation 3.5}.

The first-order gradients for this loss function are then given by:

∂LCE (x, π; φ)

∂zc
=

αc

α0
− πtgt

c .

To study the behaviour of the loss functions, we consider three commonly-encountered scenarios
during the training of the student model:

1. Random Initialisation: The student model begins with random initialisation, resulting in a uni-
form Dirichlet distribution, Dir

(︁
αinit = 1

)︁
.

2. Misclassification: At this stage, the student model has not yet fully learned to correctly classify
data.

αmiss = πmissα0 , α0 = 90K

πmiss =
[︁ 5ϵ

K−1 1 − 5ϵ 5ϵ
K−1 · · · 5ϵ

K−1

]︁
.

3. Near-Convergence: The student model has almost converged, displaying a specific distribution of
confidence among the classes.

αconv = πconvα0 , α0 = 90K

πconv =
[︁
1 − 5ϵ 5ϵ

K−1
5ϵ

K−1 · · · 5ϵ
K−1

]︁
.

For these scenarios we set the precision of our student model to α0 = 90K for illustrative purposes,
as in Ryabinin et al. (2021).

We will study the behaviour of three suitable optimisation techniques for ensemble distribution
distillation. For each we will derive the objective function and its first-order gradients.

1. Negative Log Likelihood (NLL) The objective function is given by:

38 Chapter 3. Uncertainty Estimation in Deep Learning

LNLL (x, π; φ) = − log P
(︁
π
⃓⃓
x; φ

)︁
= − log

(︄
Γ(α0)

∏K
j=1 Γ(αj)

K

∏
k=1

παk−1
k

)︄
{Equation 3.4}

=
K

∑
j=1

log Γ(αk)− log Γ(α0)−
K

∑
k=1

(αk − 1) log πk.

The first-order gradients of this objective are:

∂LNLL (x, π; φ)

∂zc
= [ψ(αc)− ψ(α0)− log πc] αc.

2. KL Divergence To employ this objective function, it is essential to first have an estimate of the
target posterior distribution. To tackle this issue, we make use of a proxy Dirichlet distribu-
tion denoted by Dir (β), where β = πtgtβ0 and β0 = 100K (precision of 100K is chosen for
illustrative purposes (Ryabinin et al., 2021)).

The Dirichlet distribution serves as an apt choice for this approximation for several reasons. It
is designed to model the distribution of a vector of random variables that fall within the range
[0, 1] and sum to 1. This makes it both flexible and well-suited for representing probabilities or
proportions, which aligns closely with the characteristics of a posterior distribution of the target.
Once this Dirichlet-approximated posterior is established, the KL divergence objective can then
be derived as:

LKL (x, β; φ) = DKL

[︂
P
(︂

Π⃗
⃓⃓
β
)︂ ⃦⃦⃦

P
(︂

Π⃗
⃓⃓
α(x)

)︂]︂
, where P

(︂
Π⃗
⃓⃓
β
)︂
∼ Dir (β) , P

(︂
Π⃗
⃓⃓
α(x)

)︂
∼ Dir (α(x))

= E
p
(︂

Π⃗
⃓⃓

β
)︂ [︂log P

(︂
Π⃗
⃓⃓
β
)︂]︂

− E
P
(︂

Π⃗
⃓⃓

β
)︂ [︂log P

(︂
Π⃗
⃓⃓
α(x)

)︂]︂
= log Γ(β0)−

K

∑
k=1

log Γ(βk)− log Γ(α0) +
K

∑
k=1

log Γ(αk) +
K

∑
k=1

(βk − αk)EP
(︂

Π⃗
⃓⃓

β
)︂ [︂log

(︂
Π⃗
)︂]︂

= log Γ(β0)−
K

∑
k=1

log Γ(βk)− log Γ(α0) +
K

∑
k=1

log Γ(αk) +
K

∑
k=1

(βk − αk) (ψ(βk)− ψ(β0))

{Equation 3.6}.

The first-order gradients of this objective is:

∂LKL (x, β; φ)

∂zc
= [ψ(αc)− ψ(α0)− ψ(βc) + ψ(β0)] αc.

3. Reverse KL Divergence Similarly to forward KL divergence, the objective function is defined as:

LRKL (x, β; φ) = DKL

[︂
P
(︂

Π⃗
⃓⃓
α(x)

)︂ ⃦⃦⃦
P
(︂

Π⃗
⃓⃓
β
)︂]︂

= log Γ(α0)−
K

∑
k=1

log Γ(αk)− log Γ(β0) +
K

∑
k=1

log Γ(βk) +
K

∑
k=1

(αk − βk) (ψ(αk)− ψ(α0)) .

The first-order gradients of this objective is:

∂LRKL (x, β; φ)

∂zc
=
[︂
(αc − βc)ψ

′
(αc)− (α0 − β0)ψ

′
(α0)

]︂
αc.

3.5. Ensemble Distillation Techniques 39

101 102 103

Number of Classes

10 7

10 5

10 3

10 1

101

G
ra

di
en

t N
or

m
 R

at
io

(A) Random Initialisation.

101 102 103

Number of Classes
(B) Misclassification.

101 102 103

Number of Classes

RKL
RKL(+1)
KL
NLL
CE

(C) Near-Convergence.

FIGURE 3.2: Comparison of Gradient Norm Ratios Across Loss Functions for Varying
Numbers of Classes in Three Distinct Scenarios: Random Initialisation, Mid-Training
Misclassification, and Near-Convergence. The loss functions analysed include Categori-
cal Cross-Entropy (CE), Dirichlet Negative Log Likelihood (NLL), and both Forward

and Reverse Kullback-Leibler Divergence (KL and RKL).

Here, ψ
′
(·) is the derivative of the digamma function.

Directly analysing the first-order gradients may not provide a complete picture of why NLL
suffers from convergence issues. Therefore, we study the gradient norm ratio ρ, to better compare the
behaviour of these different loss functions.

ρ =
K − 1

K

⃓⃓⃓ ∂L
∂z1

⃓⃓⃓/︂ K

∑
k=2

⃓⃓⃓ ∂L
∂zk

⃓⃓⃓
.

A ρ value close to 1 that remains constant or increases with a rise in K suggests that the loss
function effectively guides the model to focus on high-probability classes without getting distracted
by the long tail of of the distribution.

Based on the observations in Figure 3.2, we note that the gradient norm ratio for NLL is sig-
nificantly less than one and decreases as the number of classes increases. This suggests that NLL
focuses first on fitting the tails of the distribution before optimising the target class, resulting in
slow convergence. The KL objective suffers from the same problem as NLL. In contrast, Reverse
KL divergence behaves more like the categorical cross-entropy objective, the gradient norm ratio is
close to one and increases as the number of classes increases. This suggests that they focus on the
target class rather than on the tails of the distribution, and as a result aids faster convergence. We

also observe that the reverse KL objective DKL

[︂
Dir (α + 1)

⃦⃦⃦
Dir (β + 1)

]︂
most closely resembles the

behaviour of categorical cross entropy loss (ibid.).
In summary, while Negative Log Likelihood and Forward KL Divergence may pose challenges

for efficient convergence, Reverse KL Divergence shows promise for fast and effective training. Its
behaviour closely resembles that of the well-understood Categorical Cross-Entropy loss, making it a
promising candidate for further investigation. Having discussed the gradient behaviours of these
loss functions, we now turn our attention to the specifics of implementing Reverse KL Divergence
through the use of a proxy Dirichlet distribution as proposed by Ryabinin et al. (ibid.).

The Proxy Dirichlet Distribution

In the context of the Reverse KL objective, a proxy Dirichlet distribution is required for representing
the ensemble of models. This particular distribution is denoted as P

(︂
Π⃗|β + 1

)︂
∼ Dir (β + 1), where

β = π̂(x) · β0. Here, the ensemble’s marginal predictive distribution can be used to estimate the
mean π̂(x).

40 Chapter 3. Uncertainty Estimation in Deep Learning

Using this estimated mean, we can approximate the precision parameter β0 via maximum likeli-
hood estimation, employing Stirling’s approximation (see Appendix Theorem 5). This is mathemati-
cally expressed as:

β̂0 (x) =
K − 1

2 ∑K
k=1 π̂k(x) (log π̂k(x)− log πk(x))

For the unknown log πk(x), we leverage the ensemble to estimate it as 1
M ∑M

m=1 log π̂
(m)
k (x). The

precision parameter serves to capture the variation within the ensemble, which supplements standard
ensemble distillation techniques.

To maintain numerical stability during training, both the proxy target and the model-predicted
parameters are constrained to be greater than 1. This helps prevent the distribution from becoming
sparse.

Given the formulation of the EnD2 objective, understanding how to estimate the model’s uncer-
tainty is the next step. In the next section we delve into how uncertainties are estimated within this
framework, leveraging the properties of the Dirichlet distribution.

Uncertainty Estimation Using the EnD2 Student

The exploration of uncertainties is a logical next step, given our discussion on the EnD2 loss com-
ponents. To fully utilise EnD2, it is vital to understand three key types of uncertainties: the total
uncertainty, knowledge uncertainty, and data uncertainty.

In this context, the model’s predictions are represented by a Dirichlet distribution, denoted
as P

(︂
Π⃗
⃓⃓
X⃗, φ

)︂
∼ Dir (α). This distribution serves as the backbone for estimating the posterior

P
(︂

Π⃗
⃓⃓
X⃗,D

)︂
. Given this estimation we derive the total uncertainty estimate of the model as:

ˆ︂H
(︂
p
(︂
Y
⃓⃓
X⃗,D

)︂)︂
= H

(︃
E

P
(︂

Π⃗
⃓⃓
X⃗,φ

)︂ [︂p(︂Y⃓⃓Π⃗)︂]︂)︃
= −

K

∑
k=1

E
P
(︂

Π⃗
⃓⃓
X⃗,φ

)︂ [Πk] log
(︃

E
P
(︂

Π⃗
⃓⃓
X⃗,φ

)︂ [Πk]

)︃
= −

K

∑
k=1

αk

α0
log
(︃

αk

α0

)︃
{Equation 3.5}.

Similarly we can also derive the knowledge uncertainty estimate as:

ˆ︂I
(︂
Y, φ

⃓⃓
X⃗,D

)︂
= E

P
(︂

Π⃗
⃓⃓
X⃗,φ

)︂E
p
(︂
Y
⃓⃓
Π⃗
)︂
⎡⎣log

⎛⎝ p
(︂
Y
⃓⃓
Π⃗
)︂

p
(︂
Y
⃓⃓
X⃗,D

)︂
⎞⎠⎤⎦

=
K

∑
k=1

E
P
(︂

Π⃗
⃓⃓
X⃗,φ

)︂ [Πk log Πk]−
K

∑
k=1

E
P
(︂

Π⃗
⃓⃓
X⃗,φ

)︂ [Πk] log
(︃

αk

α0

)︃
=

K

∑
k=1

αk

α0
[ψ(αk + 1)− ψ(α0 + 1)]−

K

∑
k=1

αk

α0
log
(︃

αk

α0

)︃
{Equation 3.7}

= −
K

∑
k=1

αk

α0
log
(︃

αk

α0

)︃
+

K

∑
k=1

αk

α0
[ψ(αk + 1)− ψ(α0 + 1)]

=
ˆ︂H

(︂
p
(︂
Y
⃓⃓
X⃗,D

)︂)︂
+

K

∑
k=1

αk

α0
[ψ(αk + 1)− ψ(α0 + 1)] .

Lastly, we derive the data uncertainty estimate as:

3.6. Uncertainty-based Active Learning 41

ˆ︂
EP(θ|D)H

(︂
p
(︂
Y|X⃗, θ

)︂)︂
=

ˆ︂H
(︂
p
(︂
Y
⃓⃓
X⃗,D

)︂)︂
− ˆ︂I

(︂
Y, φ

⃓⃓
X⃗,D

)︂
= −

K

∑
k=1

αk

α0
[ψ(αk + 1)− ψ(α0 + 1)] .

Here we have meticulously unpacked the formulas for estimating total, knowledge, and data
uncertainties when employing the EnD2 student model. Each of these components of uncertainty
provides a deeper understanding of the models limitations and capabilities.

In conclusion, the Ensemble Distribution Distillation (EnD2) framework, anchored by its Reverse
KL objective and the innovative use of a proxy Dirichlet distribution, has shown itself to be a robust
method for model training. It permits a seamless integration of uncertainty estimations, thereby
enhancing the model’s interpretability and reliability. The treatment of uncertainties, total, knowledge,
and data, yields a multi-faceted view of the model’s predictions, enriching our capacity for decision-
making and risk assessment. In summary, the incorporation of these elements in the EnD2 framework
sets the stage for further exploration and implementation.

3.6 Uncertainty-based Active Learning

Active learning is a machine learning framework that identifies under-represented scenarios in
labelled data and interactively queries an annotator (Cohn et al., 1996). This framework employs an
acquisition function to select the most beneficial data points for querying. This function estimates the
potential improvement in performance resulting from an observed label. These acquisition functions
typically depend on prediction uncertainty (Houlsby et al., 2011), data space coverage (Sener and
Savarese, 2018), variance reduction (Johansson et al., 2007), or topic popularity (Iovine et al., 2022).

Several works, including Freeman (1965), Gal et al. (2017), Houlsby et al. (2011), and Malinin
(2019) highlight the importance of epistemic uncertainty in active learning. This is intuitive because
epistemic uncertainty essentially signals what the model does not know but could potentially learn
from new data. To focus on the most informative data points, uncertainty-based active learning
approaches often rely on uncertainty-based acquisition functions. These functions evaluate the
model’s current understanding (or lack thereof) for each unlabelled data point and decide which ones
should be queried next. We discuss some of the widely-used acquisition functions below.

3.6.1 Acquisition Functions

Consider a classification problem with input features X⃗ and possible outcomes Y ∈ {1, 2, · · · , K}. To
solve this problem we train a classification model using a set of labelled examples, called the training
dataset Dlabelled = {(x1, y1), (x2, y2), ..., (xN , yN)}. The acquisition function for a data point with
input features x is denoted by a(x). In this section we introduce some popular uncertainty based
acquisition functions.

Least confidence The least confidence strategy selects data points where the model is least confident
in its most likely class prediction. For a given data point x:

a(x) = 1 − max
c

p (Y = c|x,Dlabelled)⏞ ⏟⏟ ⏞
Confidence score

.

The instances with the highest acquisition values are considered as candidates for labelling.

Total uncertainty This strategy uses the total uncertainty in the model’s prediction as the acquisition
function. The entropy of the predictive distribution can be used to measure the total uncertainty (Shan-
non, 1948). For a given data point x:

42 Chapter 3. Uncertainty Estimation in Deep Learning

a(x) = H
(︁
p
(︁
Y
⃓⃓
x,Dlabelled

)︁)︁
.

In other words, we query points where to total uncertainty is highest.

Bayesian active learning by disagreement (BALD) aims to select instances with the highest knowl-
edge uncertainty. This is measured by the mutual information between the predictive distribution
and the posterior distribution of the model parameters. In simpler terms, BALD seeks instances that
are not only uncertain in prediction but also highly informative about the model parameters (Houlsby
et al., 2011). Mathematically, the acquisition function is expressed as:

a(x) = I
(︂
Y, θ

⃓⃓
X⃗,Dlabelled

)︂
.

In summary, active learning leverages model uncertainty to make intelligent queries, aiming to
accelerate the learning process and reduce annotation costs. Different acquisition functions serve as
heuristics for selecting the most informative instances, and their effectiveness can vary depending on
the application and nature of the data. Understanding and utilising these uncertainty measures is
crucial for designing effective active learning systems.

3.7 Conclusion

The chapter laid the groundwork for understanding uncertainty estimation in deep learning by
delineating between data-driven (aleatoric) and knowledge-based (epistemic) uncertainties. We
discussed calibration methods like modified objective functions and ensemble techniques to improve
the calibration of uncertainty estimates. The chapter also introduced ensemble distillation as a means
to achieve effective uncertainty estimation while reducing computational overhead. Finally, we
examined the role of uncertainty in active learning, particularly how it can be harnessed through
uncertainty-based acquisition functions to select the most informative data points for labelling.
These foundational concepts and techniques set the stage for deeper exploration into the impact of
uncertainty on downstream tasks and active learning, to be covered in Chapters 5-7.

43

Chapter 4

Dialogue State Tracking

4.1 Overview

In a typical modular task-oriented dialogue system, the role of the dialogue state/belief tracker is
to keep track of the dialogue state. This state consists of the user’s goal, the user’s latest actions as
well as other important features such as completed bookings and database query results. Young
et al. (2007) defined the Hidden Information State (HIS) as the set of minimum requirements for the
dialogue state. In Figure 4.1, we detail the key components of a dialogue belief state:

User Goal: It features distributions that represent the user’s intent and the degree of uncertainty
linked with that intent. This goal evolves with the dialogue, reflecting updates at each conversa-
tional turn and thus serves as a representation of the dialogue context. It is the belief tracker’s
task to update this based on user inputs and system actions.

Latest User and System Actions: These record the most recent interactions and provide essential
context, offering insights into the ongoing flow of the conversation.

Database Queries: The belief tracker, utilising the user’s specified goals or constraints, queries the
database. The retrieved database results contains the number of entities that match with the
user’s requirements.

Booking Information: This section logs all the reservations or bookings initiated by the system
during the conversation. It is a dynamic component, updated by the dialogue belief tracker in
response to system actions, and forms an important part of the dialogue context.

The belief tracker’s primary role, as evident, is to monitor, update, and maintain the dialogue belief
state. The system’s subsequent response is entirely based on this state, highlighting the importance of
the dialogue state tracker’s accuracy for the overall success of the system. In this section, we delve
into the evolution of tracking methodologies, starting with generative approaches.

4.1.1 Generative Approaches to Dialogue Modelling

Early dialogue system models portrayed the interaction using the framework of a Markov Decision
Process (MDP) (Levin et al., 1998). In this framework, the state-space is defined by all dialogue states,
which typically encompass the user’s requests and constraints, outlining the user’s intentions or
goals. The policy aims to identify an optimal strategy for the MDP based on the inferred dialogue
state. This model assumes that the updated state st+1 depends solely on the current state st and the
system action at, leading to the transition probabilities p (st+1|st, at).

The limitation of the MDP model is that the dialogue state is not directly observable, which
precludes the use of a fully observable MDP. Statistical dialogue models overcome this limitation by
introducing a belief state, a distribution over all possible dialogue states (Williams and Young, 2007).
A statistical generalisation of the MDP is the partially observable Markov decision process (POMDP),
depicted in Figure 4.2, which models the process of generating the observed user action ot+1 based on

44 Chapter 4. Dialogue State Tracking

Dialogue Belief State

User Goal

Restaurant

Price RangeArea

N
o
n
e

E
a
s
t

W
e
s
t

N
o
r
t
h

S
o
u
t
h

N
o
n
e

C
h
e
a
p

M
o
d
e
r
a
t
e

E
x
p
e
n
s
i
v
e

Hotel

TypeStars

N
o
n
e

1 2 3 4 N
o
n
e

H
o
t
e
l

G
u
e
s
t
h
o
u
s
e

5

Inform - Restaurant - Price Range - Cheap

Latest User Actions

Request - Restaurant - Price Range

Latest System Actions

{Restaurant: 32 Entities, ..., Hotel: 12 Entities}

Database Results

Hotel: {Name: Riverside B&B, Reference: 00036252386}

Booking Information

Database

Query Database
using User Goal

FIGURE 4.1: Components of the Dialogue Belief State in a Task-Oriented Dialogue
System. The User Goal captures the desired criteria set by the user, such as location and
price preferences. The Latest User Actions and System Actions record the recent turn-
by-turn history of the conversation, providing essential context. The system queries the
Database using the User Goal to retrieve relevant information. The returned Database
Results contain matching entities. The Booking Information showcases specific reserva-
tions or bookings made during the dialogue. The Dialogue Belief State consolidates all
this information, summarising the system’s current understanding of the conversation.

FIGURE 4.2: Graphical model of the conditional dependencies in a task-oriented dia-
logue system. The variables st, at, and ot represent the unobserved state of the dialogue

(in grey), the observed system and user actions (in green) at time step t.

the unobserved state st+1. The POMDP model generates a distribution over possible realisations of
the unobserved state, known as the belief state, defined as:

b(st+1) = ∑
st

p (st+1|ot+1, st, at) b(st)

∝ ∑
st

p (st+1, ot+1|st, at) b(st) {Bayes Theorem}

= p (ot+1|st+1)∑
st

p (st+1|st, at) b(st),

The key problem with the POMDP model is that we need to sum over all possible states to update

4.2. Integrated Approaches to Tracking 45

our belief state after each user utterance, which could be an incredibly large number of states. The
"problem of summation over the unobservable state" in a POMDP dialogue belief tracker refers to this
computational complexity of keeping track of such a large number of states. Even slight uncertainty
or ambiguity in user utterances can lead to substantial state space expansion. Considering all possible
interpretations and maintaining a belief state over them quickly becomes intractable as the dialogue
progresses. An alternative to generative models are discriminative models, which are significantly
less computationally complex as they do not need to sum over a large state space (Henderson et al.,
2014a, 2013).

4.1.2 Discriminative Approaches to Tracking

Discriminative approaches aim to model the conditional distribution of the state, p (st+1|ot+1, st, at),
directly. Unlike generative models, these methods often model the marginal distributions of state
subsets independently. For instance, in dialogue state/belief tracking, each domain-slot pair rep-
resenting user preferences in the user goal is modelled independently, as illustrated in Figure 4.1.
Discriminative approaches do not model the underlying process of how states produce observations,
they simply learn a mapping from the input (an observation) to output (state). Therefore, these
methods utilise features associated with the user action, system action, and the previous state. Initial
discriminative approaches to state tracking used features such as word counts or confidence scores
of the language understanding model (Metallinou et al., 2013). Based on these features, models like
ranking algorithms or decision trees were used to predict the belief state probabilities (Metallinou
et al., 2013; Williams, 2014).

Deep neural networks for dialogue state tracking were first introduced by Henderson et al. (2013).
Their method employed a combination of features from the language understanding module, the user
actions, system action, and the state. As anticipated, deep learning approaches outperformed decision
trees and ranking models. These techniques were further improved by incorporating recurrent
neural networks (RNNs), which enabled the model to track information more effectively. The RNN-
based belief tracker proposed by Henderson et al. (2014b) demonstrated that using the current turn
information together with RNN’s internal memory could compete with approaches that combined
features from the entire dialogue history.

Neural network-based approaches hold a significant computational advantage over POMDP-
based methods, which makes them more suitable for complex settings with large ontologies. Addition-
ally, neural network models have the ability to infer the state directly from word-level observations.
This functionality can potentially eliminate the need for a separate Natural Language Understanding
(NLU) module, further simplifying the dialogue system’s architecture. Consequently, these strengths
make neural network approaches particularly valuable for deploying efficient dialogue state trackers.

4.2 Integrated Approaches to Tracking

Integrated approaches unify the tasks of natural language understanding and state tracking into one
model, extracting the dialogue state directly from the word-level features (Henderson et al., 2014b;
Mrkšić et al., 2017). Early approaches consisted of a language understanding component, which
extracted the information mentioned in the current turn of the dialogue, and a belief state update
component, which combines current turn and dialogue context information. Whilst these components
could be jointly trained, they faced an information bottleneck. This bottleneck is particularly apparent
when the prediction of one aspect relied on information from a previous turn, which may not have
been adequately preserved in the belief state (Ren et al., 2018). To overcome this, the language under-
standing component can be conditioned on the current turn as well as the full dialogue context (Heck
et al., 2020b; Kim et al., 2020; Zhang et al., 2020). This is, however, an inefficient solution, especially for
lengthy dialogues, as this requires the model to re-process large amounts of information at each turn.
To overcome this, information tracking can be performed on a latent level (tracking an unobserved

46 Chapter 4. Dialogue State Tracking

internal representation of the information present in a dialogue turn). Using the context conditioned
latent state, unobserved internal representation of the state of the dialogue, the belief state distribution
is predicted (Lee et al., 2019; Ren et al., 2018; Shan et al., 2020). Such latent states allows the model to
be more adaptable and learn complex patterns from the dataset. It facilitates the automatic extraction
of essential features enhancing the model’s performance.

4.2.1 The Role of Word Embeddings

Models which infer the dialogue state directly from word-level utterances relies on word vector
representations which capture the semantic meanings of words. The idea of capturing semantics
through learned representation spaces has been a well-researched area since it was first introduced
by Bengio et al. (2003) and Schütze (1998). The field has transitioned from count-based methods like
Bag of Words (BoW) (Luhn, 1957) and Term Frequency-Inverse Document Frequency (TF-IDF) (Sparck
Jones, 1972) to more advanced learned vector representation techniques. This shift was initiated by
early word representation models such as Word2Vec (Mikolov et al., 2013) and GloVe (Pennington
et al., 2014). DST models then advanced to incorporate complex, contextualised embeddings from
models such as ELMo (Peters et al., 2018), Transformer LM (Vaswani et al., 2017), BERT (Devlin et al.,
2019), T5 (Raffel et al., 2020), and GPT (Radford et al., 2018, 2019). These vector representation-based
methods are commonly referred to as language models, due to their ability to model the nuances of
language. The latter of these models are often referred to as large language models due to the large
number of parameters, large training data sizes and computational complexity.

4.2.2 Recent Advances

Recent advancements in Dialogue State Tracking (DST) largely hinge on the use of large language
models (LLMs). These LLM-based DST models can be broadly classified into three distinct groups:
generation models, span-prediction models and picklist style classification models.

Generation models frame the DST task as a natural language generation problem. The goal of
generation-based DST models is to generate the JSON string representation of the dialogue state,
{domain:{slot:value}}, using the full dialogue history as context. Such generation based DST models
predict the complete state at each turn rather than tracking the dialogue state (Lin et al., 2021a; Lin
et al., 2021b).

One of the main disadvantages of these approaches revolves around the model’s potential to
hallucinate information. Such models are not bound by the constraints of the model ontology or
dialogue utterances. They could incorporate any generated information into the state, even when
this information is never mentioned by the user, a phenomenon known as ’hallucination’. This
unrestrained flexibility can lead to models inventing or misrepresenting information.

Additionally, auto-regressive models, which generate sequences token by token based on pre-
viously generated tokens, introduce a degree of complexity when extracting a belief state. These
models are required to generate characters to yield a valid JSON string output, creating a situation
where the generation probabilities are conditioned on tokens that may not hold relevance for the state
itself. This inherently makes the process of estimating uncertainty challenging for two main reasons:

Dependence on Irrelevant Tokens: When generating a JSON string, the model is required to generate
tokens like punctuation and syntax-specific characters (e.g., "{", "}", ":", etc.) that are necessary for
the JSON format but do not contribute to the semantic meaning of the dialogue state. Thus, the
prediction of subsequent tokens (which could be essential for the dialogue state) becomes conditioned
on these irrelevant tokens. This could potentially introduce noise or distort the probabilities assigned
to important tokens, making the model’s uncertainty estimates less reliable.

Order Dependency: The probability of a given value in the generated state is not only dependent on
the semantics of the dialogue but also on the way the model structures the state. In other words, the
order in which the model decides to generate the components of the state could affect the probabilities

4.2. Integrated Approaches to Tracking 47

associated with each part. This adds another layer of complexity to uncertainty estimation as the
same dialogue state can be represented in multiple ways, depending on the order of the elements.

As a result, deriving a belief state distribution and relevant uncertainty estimates from such
models is an area of future research.

Span-prediction models aim to tackle the value-dependence issue of DST models. Instead of
generating the state in natural language form, these models aim to identify the value within a user’s
utterance (Heck et al., 2020b; Kim et al., 2020). This approach, exemplified by the TripPy model (Heck
et al., 2020b), has proven to be highly effective, earning the model state-of-the-art status in the DST
task.

Despite their value independence, these models do have additional requirements when it comes
to data labeling. Rather than relying on traditional dialogue state labels found in datasets like
MultiWOZ (Budzianowski et al., 2018), they necessitate labels that indicate the start and end positions
of values within the dialogue. This need arises because these models predict the span of words
representing the value.

To partially alleviate this demand for span-labels, Heck et al. (2022) introduced a classification head
based on the weighted sum of representations, the weights being determined by the span prediction
scores. This adaptation allows for fine-tuning of the model on data devoid of span-annotations.

However, this solution is not without its limitations. The classification head is predominantly
used for training, while the value-independent span-prediction mechanism is primarily used for
inference. Consequently, there is a unsolved challenge in deriving a belief state distribution and
relevant uncertainty estimates from span-prediction models.

Picklist models are fundamentally discriminative classification neural networks. They function
by choosing a value for each domain-slot pairing from a pre-existing set of candidates (set of values
defined in the ontology). The prediction is determined by a similarity score that compares the
model’s internal representation with that of a value candidate (Lee et al., 2019; Zhang et al., 2020).
Consequently, these models naturally generate belief state distributions, p (st+1|ot+1, st, at).

However, these models are not without their limitations. They are prone to over fitting to
training-set candidates. Over fitting results in subpar performance, when exposed to candidates
not encountered during training. This issue frequently arises in real-world applications where the
pool of potential values often includes many unseen values during the training phase. The accuracy
of the similarity metric used and the representations of possible value candidates also significantly
influence performance.

Due to their tendency to over fit to the training data, these models often display an overconfidence,
where the predicted probabilities do not reflect the accuracy of their predictions (Gal and Ghahramani,
2016; Guo et al., 2017). The problem of estimating accurate uncertainty estimates using such models
is an open research problem.

The dialogue belief tracking models used in the remainder of this work is based on a picklist style
model, SUMBT (Lee et al., 2019). We chose this model because it serves as an excellent baseline
for dialogue belief tracking, inherently capable of generating belief state distributions. Our goal
is to enhance its calibration, enabling a more refined exploration of calibration techniques and the
significance of uncertainty. This models inherent capabilities allow us to focus on these aspects
without the constraints and complexities introduced by span-prediction or generation-based models.
In the following section we will introduce the mechanics of this model in detail to set the scene for
the works to follow.

48 Chapter 4. Dialogue State Tracking

4.3 The Slot Utterance Matching Approach to Belief Tracking (SUMBT)

The SUMBT model is composed of three critical components: slot utterance matching, context tracking,
and user goal prediction. This section aims to provide a detailed description of each component while
highlighting opportunities for potential improvements. Before introducing the SUMBT model for
dialogue belief tracking, we will formalise the task of dialogue belief tracking.

4.3.1 The Dialogue Belief Tracking Task

To formalise the dialogue belief tracking task, we define the ontology of a task-oriented dialogue sys-
tem (Section 1.1.1). The dialogue ontology O consists of a set of M domain-slot pairs {s1, s2, · · · , sM}
and a set of plausible values Vsm for each sm. The goal of the dialogue belief tracker (DBT) is to infer
the user’s intention for each sm by predicting a probability distribution over the plausible values.
Notably, each set of plausible values, Vsm , includes the not_mentioned value, indicating that a specific
domain-slot pair is not part of the user’s goal. This allows for computing the model’s confidence for
slots not present in the goal.

We also formalise the dialogue state, which contains the value for each domain-slot, in every
dialogue turn. The dialogue state at turn t in dialogue i is represented as:

Bt,i =
{︂(︂

sm, vsm
t,i

)︂}︂
sm∈O

,

where vsm
t,i denotes the value for the domain-slot pair sm at turn t in dialogue i. A resulting dataset

for dialogue belief tracking can be expressed as:

D =

{︃(︂
uusr

t,i , usys
t−1,i,Bt,i

)︂Ti

t=1

}︃D

i=1
.

Each dialogue consists of Ti turns, where user and system utterances at turn t in dialogue i are
denoted as uusr

t,i and usys
t,i , respectively.

... [SEP] ...

Current user utterance Previous system utterance

...

Description of pair

Multi-head Attention

Recurrent Context Tracker

...

Value candidate "val"

User Goal: Similarity Scorer

Slot-utterance matching

Context tracking

User goal prediction

FIGURE 4.3: Slot utterance matching belief tracker.

4.3.2 Utterance and Ontology Features

At the core of the SUMBT model is the transformation of utterances and ontology terms into a
shared representation space. The SUMBT model achieves this through contextual word embeddings

4.3. The Slot Utterance Matching Approach to Belief Tracking (SUMBT) 49

produced by a encoder language model, like BERT (Devlin et al., 2019). It employs two independent
encoders, namely, the utterance encoder, gutt(·) and ontology term encoder, gont(·) (as shown in dark
blue in Figure 4.3). The utterance encoder is fine-tuned during the model training process to extract
and learn essential features of conversational language. Conversely, the ontology encoder remains
fixed during training, ensuring the generalisability of the model to unseen values.

To construct the current turn’s representations, the system utterance is concatenated to the user
response. The utterance encoder generates contextual representations, Ut from the utterance pair.

Ut = gutt
(︁[︁
[CLS] uusr

t [SEP] usys
t−1 [SEP]

]︁)︁
.

Here the [CLS] and [SEP] tokens are the special beginning of sequence and end of sequence
tokens used in the BERT model (see Section 2.11.4 for more information on such tokens). Similarly,
the ontology encoder encodes the domain-slot pairs, and values independently, producing the
pooled representations ssm and yval. Each term’s representation is derived using the [CLS] token
representation, which provides a comprehensive representation of the term.

ssm = h[CLS] = gont
(︁[︁
[CLS] domain-slot pair sm [SEP]

]︁)︁
, and

yval = h[CLS] = gont
(︁[︁
[CLS] value [SEP]

]︁)︁
.

4.3.3 Slot Utterance Matching

The slot-utterance matching component learns to associate relevant information in the utterances
with specific domain-slot pairs through a multi-head attention mechanism, similar to that used for
encoder-decoder attention by Vaswani et al. (2017). It uses the domain-slot representation as a query
and the utterance representations as both the keys and values, producing a turn level representation
for domain-slot pair sm:

hsm
t = gMHA (Ut, Ut, ssm) ,

where gMHA is a multi-head attention layer. This method allows the model to capture complex
dependencies between different parts of the utterance and relate them to the appropriate domain-slot
pair. The shared parameters across all domain-slot pairs from the ontology provide scalability to
the model and allow it to generalise across different slots. For more information on the multi-head
attention mechanism and the meanings of queries, keys and values see Section 2.8.

4.3.4 Context Tracking

The context tracking component of the SUMBT model maintains the conversational context across
multiple turns using a latent state updated by a recurrent neural network (RNN). This latent state,
csm

t , is updated based on the previous latent state csm
t−1 and the current slot-utterance information hsm

t :

csm
t = fRNN

(︁
hsm

t , csm
t−1

)︁
.

The use of a shared RNN across all domain-slot pairs, enables the model to keep track of the
context in a scalable manner. Lee et al. (2019) found that a gated recurrent network (GRU) type RNN
model performed the best in this setting.

4.3.5 User Goal Prediction

In the SUMBT model, the user goal, represented as a collection of domain-slot-value triplets, is
predicted using a matching network approach (Vinyals et al., 2016). The matching network computes
the semantic similarity between a value candidate representations, yval ∈ Vsm , and the current latent
state, csm

t .

50 Chapter 4. Dialogue State Tracking

First, a linear feed-forward network is applied to the latent state csm
t . The output of this transfor-

mation is then normalised, forming the predicted value representation ŷsm
t . The resulting matching

network scoring is expressed as:

zsm,val
t = ψ(ŷsm

t , yval),

where ψ(·, ·) denotes a measure of similarity between two vectors. In this context, cosine similarity
is used, indicated by ψcos.

The softmax function is applied to the scores for different value candidates to generate a belief
state distribution:

p
(︁
Vsm

t = v
⃓⃓
uusr

t , usys
t−1, csm

t
)︁
=

exp (zsm,v
t)

∑v′∈Vsm
exp

(︂
zsm,v′

t

)︂ .

Unlike traditional classification layers that predict labels based on learned weights, the similarity-
based classification layer used here computes the cosine similarity between the transformed latent
state and value candidate representations, making it flexible enough to score unseen values during
training.

In the SUMBT model, the observed user action ot is represented by the word-level user utterance
uusr

t and the system action at−1 by the word-level system utterance usys
t−1. The latent state csm

t is
assumed to satisfy the Markov assumption. The belief state, therefore, is a concatenation of the
distributions over values for each domain-slot pair in the model ontology. Hence, we can rewrite the
belief state as:

b (st) =
[︁
p
(︁
Vsm

t

⃓⃓
uusr

t , usys
t−1, csm

t
)︁]︁

∀sm∈O
,

where st is the complete dialogue state and c a domain-slot pair in the model ontology.

4.3.6 Training Objective

The objective is to generate the correct dialogue state by minimising the distance between the actual
value, vsm

t , and the latent state features, ŷsm
t . This is achieved by maximising the likelihood over all

turns t for every domain-slot pair sm. This objective can be expressed as:

L (D; θ) = − 1
D

D

∑
i=1

M

∑
m=1

Ti

∑
t=1

log p
(︂
Vsm

t = vsm

i,t |uusr
t , usys

t−1, csm

t

)︂
,

In the above equation, θ represents the set of parameters of the model, Ti corresponds to the
number of turns, and Vsm

t denotes the true value for domain, slot pair sm at turn t. The loss is averaged
across all dialogues in a batch during training.

4.3.7 Evaluation

In order to evaluate dialogue belief tracking models, such as SUMBT, we introduce two primary
metrics metrics: (1) joint goal accuracy (JGA) and (2) expected calibration error (ECE). Joint goal
accuracy measures the accuracy of the dialogue states predicted by the model and expected calibration
error measures how well calibrated the uncertainty estimates of the model are. Before we introduce
these models let us define the dialogue belief tracking model fDBT(·|θ), parameterised by θ. For a
given dialogue this model predicts the distribution over possible values for each domain-slot pair sm:

p
(︁
Vsm

t

⃓⃓
uusr

t , usys
t−1, csm

t−1

)︁
= fDBT

(︁
uusr

t , usys
t−1, csm

t−1; θ
)︁

.

4.4. Conclusion 51

Given a set of evaluation dialogues Deval =

{︃(︂
uusr

t,i , usys
t−1,i,Bt,i

)︂Ti

t=1

}︃Deval

i=1
, the joint goal accuracy is

defined as:

JGA (Deval; θ) =
1

∑Deval
i=1 Ti

Deval

∑
i=1

Ti

∑
t=1

M

∏
m=1

δ
(︂
p
(︂
Vsm

t

⃓⃓
uusr

t,i , usys
t−1,i, csm

t−1,i

)︂
, vsm

t,i

)︂
,

where:

δ (p (V) , v) =

{︄
1 if arg max′v p (V = v′) = v
0 otherwise

.

This is called the joint goal accuracy as the model is required to make a correct prediction for
every domain-slot pair, the joint goal, in order for its prediction to count as correct.

Secondly the expected calibration error (ECE) measures how well calibrated a model is. This is
done by measuring the expected error in calibration, i.e. the difference between the model confidence
and the empirical likelihood of the model’s predictions. In this context joint goal accuracy is used to
measure the emperical likelihood of a model’s predictions. ECE is mathematically represented by:

ECE (Deval; θ) =
B

∑
b=1

|Bb|
Deval

⃓⃓
C (Bb)− JGA (Bb)

⃓⃓
.

Here Bb is the set of dialogue turns that fall into bin b, these dialogue turns are sorted by their
confidences and split into B bins. C (Bb) is the average confidence of the model for dialogue turns in
bin Bb.

4.4 Conclusion

This chapter explored the evolution of Dialogue State Tracking (DST) models, their role in task-
oriented dialogue systems, and their transformation from generative models to the present-day large
language models.

Initially, dialogue modelling was envisioned as Markov Decision Processes (MDPs) but faced
limitations due to the unobserved nature of the dialogue state. To tackle this, statistical dialogue mod-
els introduced the belief state, leading to the development of partially observable MDPs (POMDPs).
Despite the improvement, these models grappled with the computational complexity arising from
a large state space. This prompted the development of discriminative models, which modelled the
conditional distribution of the state and bypassed the need for a vast state space.

The move towards integrated approaches streamlined natural language understanding and state
tracking, extracting dialogue state directly from word-level features. Advancements in word vector
representations have been crucial, moving from count-based methods to learned vector representation-
based methods, and then to contextualised embeddings. Recently, large language models have
significantly influenced DST, with generative models, span-prediction models, and picklist style
classification models leading the advancements.

Several important areas have been identified for further exploration and improvement in Dialogue
State Tracking (DST) models:

Handling Uncertainty and Calibration: The overconfidence of models in their predictions is a major
issue that needs addressing. Future work could focus on designing mechanisms to generate
belief state distributions that better mirror the actual uncertainty in the predicted states, leading
to a more accurate and reliable model performance.

Ontology Feature Representation: Current methods often rely on the beginning of sequence ([BOS]
or [CLS]) token to encapsulate the representation of each term in the model ontology. However,

52 Chapter 4. Dialogue State Tracking

this approach might overlook the semantic richness in multi-word terms. Future DST models
could benefit from richer and more comprehensive embeddings based on term descriptions
or sequences of embeddings, enhancing their understanding of nuanced terms and thereby
improving their overall performance.

Efficient Data Usage: DST models currently demand large quantities of annotations due to the need
for value annotation for each domain-slot pair at every dialogue turn. Span-prediction models
require additional data for span annotations. Future research could aim to devise methods to
mitigate these data requirements or enhance the efficiency of data usage.

Evaluation Metrics: Present evaluation metrics such as Joint Goal Accuracy may not sufficiently
capture the entirety of model performance, particularly in terms of calibration. The development
of more comprehensive and nuanced metrics is essential for a holistic evaluation of model
performance. Furthermore, evaluations should also measure the downstream impact of DST
models on the dialogue system’s policy since the primary objective of DST models is to equip
the policy with all the necessary information for effective decision making.

In summary, the pursuit of the optimal DST model remains a continuous process. This endeavour
is propelled by ongoing advancements in NLP, machine learning techniques, and the escalating
complexity of real-world dialogue systems. These areas of improvement signify the future pathways
to refine DST models and enrich the dialogue systems they support.

53

Chapter 5

Knowing What You Know: Calibrating
Dialogue Belief State Distributions
via Ensembles

This chapter summarises our work on the calibration of dialogue belief state distributions using
ensembles and gives a verbatim copy of our paper (van Niekerk et al., 2020):

Carel van Niekerk et al. (2020). “Knowing What You Know: Calibrating Dialogue Belief State
Distributions via Ensembles”. In: Findings of the Association for Computational Linguistics: EMNLP 2020.

Online: Association for Computational Linguistics, pp. 3096–3102. DOI:
10.18653/v1/2020.findings-emnlp.277. URL:

https://www.aclweb.org/anthology/2020.findings-emnlp.277

5.1 Summary

This work introduces the first approach to address the calibration of dialogue belief state distributions.
The proposed method, CE-SUMBT, combines the label smoothed maximum likelihood objective with
an ensemble of models to generate well-calibrated belief state distributions. CE-SUMBT achieves
state-of-the-art calibration performance on the MultiWOZ 2.1 dataset (Eric et al., 2020). Furthermore,
the study demonstrates that in a well-calibrated belief state, the correct dialogue state candidate
ranks among the top three candidates in 84% of turns, indicating that a well-calibrated belief state
potentially provides informative information for decision-making.

5.2 Personal Contributions

The implementation and technical results are my own work, while my co-authors contributed to the
writing and proofreading process.

https://doi.org/10.18653/v1/2020.findings-emnlp.277
https://www.aclweb.org/anthology/2020.findings-emnlp.277

Knowing What You Know: Calibrating Dialogue Belief State
Distributions via Ensembles

Carel van Niekerk, Michael Heck, Christian Geishauser
Hsien-Chin Lin, Nurul Lubis, Marco Moresi, Milica Gašić

Heinrich Heine University Düsseldorf, Germany
niekerk,heckmi,geishaus,linh,lubis,moresi,gasic@hhu.de

Abstract
The ability to accurately track what happens
during a conversation is essential for the per-
formance of a dialogue system. Current state-
of-the-art multi-domain dialogue state trackers
achieve just over 55% accuracy on the current
go-to benchmark, which means that in almost
every second dialogue turn they place full con-
fidence in an incorrect dialogue state. Belief
trackers, on the other hand, maintain a dis-
tribution over possible dialogue states. How-
ever, they lack in performance compared to
dialogue state trackers, and do not produce
well calibrated distributions. In this work we
present state-of-the-art performance in calibra-
tion for multi-domain dialogue belief trackers
using a calibrated ensemble of models. Our
resulting dialogue belief tracker also outper-
forms previous dialogue belief tracking mod-
els in terms of accuracy.

1 Introduction

Task-oriented dialogue systems aim to act as assis-
tants to their users, solving tasks such as finding a
restaurant, booking a train, or providing informa-
tion about a tourist attraction. They have become
very popular with the introduction of virtual assis-
tants such as Siri and Alexa.

Two tasks are fundamental to such a system. The
first is the ability to track what happened in the
conversation, referred to as tracking. Based on the
result of tracking, the system needs to conduct the
conversation towards the fulfilment of the user goal,
referred to as planning. The tracking component
summarises the dialogue history, or the past, while
the planning component manages the dialogue and
concerns the future. In this work we focus on the
first component.

Early approaches to statistical dialogue mod-
elling view dialogue as a Markov decision pro-
cess (Levin et al., 1998) and define a set of dia-
logue states that the conversation can be in at any

given dialogue turn. The tracking component tracks
the dialogue state. In recent years discrimina-
tive models achieve state-of-the-art dialogue state
tracking (DST) results (Kim et al., 2019; Zhang
et al., 2019; Heck et al., 2020). Still, in a multi-
domain setting such as MultiWOZ (Eric et al.,
2019; Budzianowski et al., 2018), they achieve
an accuracy of just over 55%. This means that
in approximately 45% of cases they make a wrong
prediction and, even worse, they have full confi-
dence in that wrong prediction.

In the wake of statistical dialogue modeling, the
use of partially observable Markov decision pro-
cesses has been proposed to address this issue. The
idea is to model the probability over all possible
dialogue states in every dialogue turn (Williams
and Young, 2007). This probability distribution is
referred to as the belief state. The advantages of
belief tracking are probably best illustrated by an
excerpt from a dialogue with a real user in (Met-
allinou et al., 2013): even though the dialogue state
predicted with the highest probability is not the true
one, the system is able to provide a valid response
because the true dialogue state also has assigned a
non-zero probability.

A model is considered well calibrated if
its confidence estimates are aligned with
the empirical likelihood of its predictions
(Desai and Durrett, 2020).

The belief state can be modelled by deep
learning-based approaches such as the neural be-
lief tracker (Mrkšić et al., 2017), the multi-domain
belief tracker (Ramadan et al., 2018), the glob-
ally conditioned encoder belief tracker (Nouri and
Hosseini-Asl, 2018) and the slot utterance match-
ing belief tracker (SUMBT) (Lee et al., 2019) mod-
els. None of these models however address the
issue of calibrating the probability distribution that

they provide, resulting in them being more con-
fident than they should be. In a dialogue setting,
overconfidence can lead to bad decisions and un-
successful dialogues.

In this work, we present methods for learning
well-calibrated belief distributions. Our contribu-
tions are the following:

• We present the state-of-the-art performance in
calibration for dialogue belief trackers using
a calibrated ensemble of models, called the
calibrated ensemble belief state tracker (CE-
BST).

• Our model achieves best overall joint goal ac-
curacy among the state-of-the-art belief track-
ing models.

Such a well-calibrated belief tracking model is es-
sential for the planning component to successfully
conduct dialogue.

2 Related Work

Since no other belief tracking methods that we are
aware of have achieved success in producing well-
calibrated confidence, we look towards methods
used in other language tasks. Natural language in-
ference is a related task that also benefits from well-
calibrated confidence in predictions. Desai and
Durrett (2020) introduce the use of post-processing
techniques such as temperature scaling to produce
better-calibrated confidence estimates.

Additionally, there have been recent advances in
the construction of more adequate loss functions.
These methods, including Bayesian matching and
prior networks, aim to learn well-calibrated models
without the burden of requiring many extra param-
eters. These methods achieve good calibration in
computer vision tasks such as CIFAR (Joo et al.,
2020; Malinin and Gales, 2018; Szegedy et al.,
2016).

When the limitations of a single model still in-
hibit us from producing more accurate and better-
calibrated models, a popular alternative is to use an
ensemble of models. Recently Malinin and Gales
(2020) showed the success of using an ensemble
of models for machine translation, and in partic-
ular utilising accurate confidence predictions for
analysing translation quality.

3 Calibration Techniques

In this section we explain the details of three cali-
bration techniques that we apply to dialogue belief

tracking.

3.1 Loss Functions
The loss function can have a great impact on the
calibration and accuracy of models. The most com-
monly used loss function in belief tracking is the
standard softmax cross entropy loss. However,
it tends to cause overconfident predictions where
most of the probability is placed on the top class.

Label smoothing cross entropy (Szegedy et al.,
2016) aims to resolve this problem by replacing the
one-hot targets of cross entropy with a smoothed
target distribution. That is, for label yi and smooth-
ing parameter α ∈

(
0, 1

K

]
, the target distribution

will be:

t(c|α, yi) =

{
1− (K − 1)α c = yi,

α otherwise,
(1)

where K is the number of possible values of c.
The loss for a model with parameters θ and a set
of N output logits ẑ1, ẑ2, ..., ẑN with true labels
y1, y2, ..., yN is defined as:

L(θ, α) = 1

N

N∑
i=1

KL [Softmax(ẑi)||t(ci|α, yi)] ,

(2)
where KL is the Kullback–Leibler divergence be-
tween two distributions (Kullback and Leibler,
1951).

Alternatively, Bayesian matching loss (Joo et al.,
2020) uses a Dirichlet distribution as the final acti-
vation function. The target is constructed using the
Bayes rule, where we assume the observed label
yi to be an observation from a categorical distribu-
tion yi|πi ∼ Cat(πi) and πi is the true underlying
distribution of the label. To introduce uncertainty
into the target distribution we assume that the prior
of πi is a Dirichlet distribution, Dir(1). In this
way, we have a highly uncertain prior distribution.
From this it can be shown that the posterior will be
πi|yi ∼ Dir(1+ I(yi)), where I(yi) is the one-hot
representation of yi. The loss function is then con-
structed using the negative log likelihood of the true
label given the predicted distribution π̂i ∼ Dir(ẑi),
penalised by the KL divergence from the the uncer-
tain Dir(1) distribution:

L(θ, λ) =
N∑
i=1

{λKL [π̂i||Dir(1)]−

Eπ̂i
[log(p(yi|π̂i))]}, (3)

where λ > 0 is the penalisation parameter.

3.2 Ensemble Distribution Estimation
From a Bayesian viewpoint, the probability of ob-
serving an outcome given the observed examples
can be broken down into two components: the pre-
dictive distribution of the model and the posterior
of the model given the observed examples. The pos-
terior of the model given the data is an unknown
distribution which can be estimated in various ways.
One method is to use an ensemble of models, where
the ensemble acts as an estimator for the posterior
distribution of the parameters, p(θ|D), where D
represents the observed examples. Let q(θ) rep-
resent the distribution over all possible members
of an ensemble. This distribution could be seen
as the ensemble estimate of the posterior, p(θ|D),
(Malinin et al., 2019; Malinin and Gales, 2020).
Hence,

p̂(y|x,D) =
∫
p(y|x,θ)q(θ)dθ. (4)

Since this integral is still intractable we need to
estimate it using Monte Carlo. To sample from
the ensemble distribution q(θ) we consider two ap-
proaches: using dropout during inference to collect
an ensemble of N equally likely models (Gal and
Ghahramani, 2016), or alternatively bootstrap sam-
pling N equally likely subsets of the data to train
N equally likely ensemble members. Let these N
members be {θ(1),θ(2), ...,θ(N)}. The estimated
predictive distribution can then be calculated as
follows:

p̂(y|x,D) = 1

N

N∑
i=1

p(y|x,θ(i)) (5)

3.3 Temperature Scaling
Temperature scaling is a post-processing technique
which scales the logits of the model by a scaling
factor β > 1 (Guo et al., 2017), resulting in better-
calibrated estimates. The temperature scaling pa-
rameter β can be trained on a development set.

4 Experimental Setup

We seek to build a well-calibrated dialogue belief
tracker. For our baseline belief tracker, we use
the SUMBT model architecture (Lee et al., 2019),
which uses BERT (Devlin et al., 2018) as a turn
encoder and multi-head attention for slot candidate
matching. We perform all experiments on the Mul-
tiWOZ 2.1 dataset (Eric et al., 2019), the current
standard dataset for multi-domain dialogue. When

training using Bayesian matching, we use a scaling
coefficient of λ = 0.003, and for label smoothing, a
smoothing coefficient of α = 0.05. For the ensem-
ble belief tracker, we train 10 identical independent
models, each with a sub-sample of 7500 dialogues.
All hyper-parameters are obtained using a parame-
ter search based on validation set performance. For
all training, we use the BERT-base-uncased model
from PyTorch Transformers (Wolf et al., 2019) for
turn embedding. We use a gated recurrent unit
with a hidden dimension 300 for latent tracking
and Euclidean distance for value candidate scoring.
During training, we use a learning rate of 5e− 5 in
combination with a linear learning rate scheduler,
the warm-up proportion is set to 0.1. A dropout
rate of 0.3 is used, and training is performed for
100 epochs.1

5 Evaluation Metrics

5.1 Joint Goal Accuracy
The joint goal accuracy (JGA) is the percentage of
turns for which the model predicts the complete
user goal correctly. We further propose the intro-
duction of an adjusted top 3 JGA, which considers
a user goal prediction correct if the true label for
each slot is among the top 3 predicted candidates
for that slot in the belief state given there are at
least 5 possible candidates.

5.2 L2 Norm Error
The L2 norm error is the L2 norm of the difference
between the true labels and the predicted distribu-
tions. To form the user goals and belief states we
concatenate all the slot labels and slot distributions.
This error measure does not only consider the ac-
curacy of the predictions but also the uncertainty.

5.3 Joint Goal Calibration Error
A well-calibrated model is one where the accuracy
is aligned with the confidence predictions. The
expected calibration error (ECE) evaluates the cal-
ibration by measuring the difference between the
model’s confidence and accuracy (Guo et al., 2017),
meaning a lower ECE indicates better calibration.
Hence:

ECE =
B∑

k=1

bk
N
|acc(k)− conf(k)|, (6)

1Our code will be made available at https://gitlab.
cs.uni-duesseldorf.de/general/dsml/
calibrating-dialogue-belief-state-distributions.

where B is the number of bins, bk are the bin sizes,
N the number of observations, acc(k) and conf(k)
the accuracy and confidence measures of bin k. We
also propose an adapted ECE, called the expected
joint goal calibration error (EJCE), which uses the
joint goal accuracy for bin k as acc(k), and the
following metric as confidence:

conf(k) =
1

bk

bk∑
i=1

min
s∈slots

max
v∈values

p̂i(v|s), (7)

where p̂i(v|s) is the predicted probability of value
v for slot s given the ith observation in bin k.

6 Results

Model JGA Top 3
JGA EJCE

Cross entropy 46.78% 69.97% 1.996

Label smoothing 46.32% 74.57% 1.292

Bayesian matching 31.03% 45.16% 4.922

Temperature scaling

Cross entropy (1.73*) 46.78% 69.97% 4.758

Label smoothing (1.00*) 46.32% 74.57% 1.292

Dropout ensembles

Cross entropy (35**) 47.18% 71.14% 2.909

Label smoothing (35**) 46.36% 76.12% 2.217

Bootstrap model ensembles

Label smoothing (10**) 48.41% 84.08% 0.841

Table 1: Calibration strategy performance. *tempera-
ture scaling coefficient **ensemble size.

Model JGA L2 Norm

SUMBT (Lee et al., 2019) 46.78% 1.1075

CE-BST (ours) 48.41% 1.1041

SOTA DST < 56.0% > 1.2445

Table 2: MultiWOZ 2.1 performance.

Figure 1: Reliability Diagram.

All of the calibration techniques presented above
can be combined. Here, we focus on the most im-
portant combinations and present the results in Ta-
ble 1. We make the following observations. First,
cross entropy on its own leads to a high EJCE,
as expected. Second, label smoothing reduces
EJCE while leading to a negligible drop in accu-
racy. Third, Bayesian matching underperformed in
our experiments, suggesting a difficulty in choos-
ing the right priors. Fourth, temperature scaling
is not an effective way of calibrating uncertainty,
as the same calibration is applied to each observa-
tion. Finally, the ensemble methods produce very
promising results for both accuracy and calibra-
tion of the model. In particular, if we look at the
Top 3 JGA, our method achieves an improvement
of 14.11 percentage points over the baseline, in
the Appendix we include a comprehensive set of
Top n JGA results. In Figure 1 we plot JGA as a
function of confidence. The best calibrated model
is the one that is closest to the diagonal, i.e. the
one whose confidence for each dialogue state is
closest to the achieved accuracy. From this reli-
ability diagram we see that both the dropout and
model ensembles improve model calibration and
do not produce over-confident output as the cross
entropy baseline does. In Table 2 we compare our
model to some of the best performing belief and
state tracking models. Here we see that we out-
perform the best performing belief tracker but the
state-of-the-art (SOTA) state trackers (Heck et al.,
2020; Chen et al., 2020; Hosseini-Asl et al., 2020)
have a significantly higher JGA. However, when
analysing the L2 norm2 we see that the uncertainty
estimates of belief tracking models compensate for
the lower joint goal accuracy. This corroborates our
premise that it is important to have well calibrated
confidence estimates and not just a high JGA.

7 Conclusion

We applied a number of calibration techniques to
a baseline dialogue belief tracker. We showed that
a label smoothed trained ensemble provides state-
of-the-art calibration of the belief state distribu-
tions and has the best accuracy among the avail-
able belief trackers. Although it does not compete
with state trackers in terms of JGA, when consider-
ing top 3 predictions it achieves 84.08% accuracy

2For a model with a given JGA we can calculate the mini-
mum L2 that such a model can possibly achieve by assuming
that it never predicts more than one slot incorrectly.

(Top 3 JGA), almost 30 percentage points above
state-of-the art state trackers. We also find that our
model has the best L2 norm performance, which
suggests that the quality of predicted uncertainty is
as important as the average JGA.

It is important to note that the proposed calibra-
tion methods can be applied to any neural dialogue
belief tracking method. The uncertainty estimates
predicted by this model could improve the success
of dialogue systems because this model can provide
the dialogue manager with a good measure of con-
fidence. This could allow the system to ask ques-
tions in moments of confusion. In the Appendix
we include example dialogues to illustrate this. In
future, we aim to combine the state-of-the-art dia-
logue state tracking and belief tracking methods to
create a method that can achieve both states-of-the-
art joint goal accuracy and well-calibrated belief
states.

Acknowledgements

C. van Niekerk, M. Heck and N. Lubis are sup-
ported by funding provided by the Alexander von
Humboldt Foundation in the framework of the
Sofja Kovalevskaja Award endowed by the Fed-
eral Ministry of Education and Research, while C.
Geishauser, H-C. Lin and M. Moresi are supported
by funds from the European Research Council
(ERC) provided under the Horizon 2020 research
and innovation programme (Grant agreement No.
STG2018 804636).

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os-
man, and Milica Gašić. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Lu Chen, Boer Lv, Chi Wang, Su Zhu, Bowen Tan,
and Kai Yu. 2020. Schema-guided multi-domain di-
alogue state tracking with graph attention neural net-
works. AAAI 2020.

Shrey Desai and Greg Durrett. 2020. Calibra-
tion of pre-trained Transformers. arXiv preprint
arXiv:2003.07892.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani-
Tur. 2019. MultiWOZ 2.1: Multi-domain dialogue
state corrections and state tracking baselines. arXiv
preprint arXiv:1907.01669.

Y Gal and Z Ghahramani. 2016. Dropout as a Bayesian
approximation: Representing model uncertainty in
deep learning. In 33rd International Conference on
Machine Learning, ICML 2016, volume 3, pages
1651–1660.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International Conference on Machine
Learning, pages 1321–1330.

Michael Heck, Carel van Niekerk, Nurul Lubis, Chris-
tian Geishauser, Hsien-Chin Lin, Marco Moresi, and
Milica Gasic. 2020. TripPy: A triple copy strategy
for value independent neural dialog state tracking.
In Proceedings of the 21th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 35–44, 1st virtual meeting. Association for
Computational Linguistics.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. arXiv
preprint arXiv:2005.00796.

Taejong Joo, Uijung Chung, and Min-Gwan Seo. 2020.
Being Bayesian about categorical probability. arXiv
preprint arXiv:2002.07965.

Sungdong Kim, Sohee Yang, Gyuwan Kim, and Sang-
Woo Lee. 2019. Efficient dialogue state tracking
by selectively overwriting memory. arXiv preprint
arXiv:1911.03906.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86.

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019.
SUMBT: slot-utterance matching for universal and
scalable belief tracking. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5478–5483.

Esther Levin, Roberto Pieraccini, and Wieland Eck-
ert. 1998. Using Markov decision process for
learning dialogue strategies. In Proceedings of the
1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181), volume 1, pages 201–204. IEEE.

Andrey Malinin and Mark Gales. 2018. Predictive un-
certainty estimation via prior networks. In Proceed-
ings of the 32nd International Conference on Neural
Information Processing Systems, pages 7047–7058.

Andrey Malinin and Mark Gales. 2020. Uncer-
tainty in structured prediction. arXiv preprint
arXiv:2002.07650.

Andrey Malinin, Bruno Mlodozeniec, and Mark Gales.
2019. Ensemble distribution distillation. arXiv
preprint arXiv:1905.00076.

Angeliki Metallinou, Dan Bohus, and Jason D.
Williams. 2013. Discriminative state tracking for
spoken dialog systems. In Proceedings of An-
nual Meeting of the Association for Computational
Linguistics (ACL), Sofia, Bulgaria. Association for
Computational Linguistics.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017. Neu-
ral belief tracker: Data-driven dialogue state track-
ing. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1777–1788, Vancouver,
Canada. Association for Computational Linguistics.

Elnaz Nouri and Ehsan Hosseini-Asl. 2018. Toward
scalable neural dialogue state tracking model. arXiv
preprint arXiv:1812.00899.

Osman Ramadan, Paweł Budzianowski, and Milica
Gašić. 2018. Large-scale multi-domain belief track-
ing with knowledge sharing. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
432–437.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2818–2826.

Jason D Williams and Steve Young. 2007. Partially
observable Markov decision processes for spoken
dialog systems. Computer Speech & Language,
21(2):393–422.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Jian-Guo Zhang, Kazuma Hashimoto, Chien-Sheng
Wu, Yao Wan, Philip S Yu, Richard Socher, and
Caiming Xiong. 2019. Find or classify? Dual strat-
egy for slot-value predictions on multi-domain dia-
log state tracking. arXiv preprint arXiv:1910.03544.

A Appendices

A.1 Joint Goal Accuracy Analysis

In Table 3 we compare SUMBT and our CE-BST
method using 5 different top n joint goal accuracy’s.

Model Top 1 Top 2 Top 3 Top 4 Top 5

SUMBT 46.78% 64.61% 69.97% 72.10% 73.70%

CE-BST 48.41% 77.25% 84.08% 85.84% 86.93%

Table 3: Top n joint goal accuracy comparison.

A.2 Example Dialogues
In Figures 2 - 9 we present some example dialogues
together with an extract from their belief state dis-
tributions. These examples show situations where
a well-calibrated belief state distribution could be
beneficial for decision making.

User: I need a place to stay.
System: Sure. I’ll need a little more information.
Is there an area you are interested in?
User: No specific area. I would like it to be in
the moderate price range and it should have free
parking. I would also like it to have 4 stars.

Figure 2: Dialogue PMUL3364 from the MultiWOZ
2.1 corpus.

Figure 3: PMUL3364 Hotel - Location belief state dis-
tribution.

User: Can you help me find a place to go in the
centre?
System: I can help you with that. Is there a certain
kind of attraction that you would like to visit?
User: Surprise me! Give me the postcode as well.
System: Would you prefer the castle galleries is a
museum in the centre of town. Their post code is
cb23bj.
User: Great! I am also looking for a place to eat
in the same area. Something not too expensive, but
not cheap.

Figure 4: Dialogue PMUL4258 from the MultiWOZ
2.1 corpus.

Figure 5: PMUL4258 Restaurant - Price Range belief
state distribution.

User: Hi, I am looking for a hotel by the name
of Acorn guest house.
System: Sure, what would you like to know
about it?
User: I would like to know if it is available for
8 people for 4 nights starting Saturday?

Figure 6: Dialogue PMUL4605 from the MultiWOZ
2.1.

Figure 7: PMUL4605 Hotel - Book Day belief state
distribution.

User: I need a train to Stansted airport that
leaves on Sunday.
System: Did you have a time you would like to
arrive or leave?
User: I need to arrive by 14:30.
System: tr1668 will arrive at 14:08, would that
work for you?
User: That is perfect. I would like to make a
booking for 6 people please.
System: Booking was successful, the total fee is
48.48 gbp payable at the station. Your reference
number is hf03ug02. Do you need assistance
with anything else?
User: I need to eat too.
System: What type of restaurant and price range
are you looking for?
User: I would like Catalan food. It needs to be
in the centre and be expensive.

Figure 8: Dialogue PMUL3625 from the MultiWOZ
2.1 corpus.

Figure 9: PMUL3625 Restaurant - Location belief state
distribution.

61

Chapter 6

Uncertainty Measures in Neural Belief
Tracking and the Effects on Dialogue
Policy Performance

This chapter summarises our work on uncertainty estimation in dialogue belief tracking and the
downstream impact on the dialogue policy module and gives a verbatim copy of our paper (van
Niekerk et al., 2021):

Carel van Niekerk et al. (2021). “Uncertainty Measures in Neural Belief Tracking and the Effects on
Dialogue Policy Performance”. In: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Online and Punta Cana, Dominican Republic: Association for Computational

Linguistics. URL: https://aclanthology.org/2021.emnlp-main.623

6.1 Summary

In our previous work van Niekerk et al. (2020), in Chapter 5, we introduced a calibrated ensemble
neural belief tracking framework. This framework not only allowed neural belief trackers to produce
well-calibrated uncertainty measures but also estimate knowledge uncertainty, which arises when
the model lacks sufficient training data to make an accurate prediction. While they may be useful
for crafting robust dialogue policy models, the ensemble framework is computationally demanding
during inference, hindering real-time responses. Moreover, these belief tracking models only track the
user goal component of a dialogue state, not addressing all the requirements of a Markov dialogue
state (Young et al., 2010).

In this paper, we propose an advanced neural belief tracking model employing a novel set-
based similarity approach. The model, in addition to the user goal, predicts critical components of
the dialogue state, such as the user request and current active domains. Through the application
of ensemble distribution distillation (EnD2) (Ryabinin et al., 2021), we distil the ensemble model,
resulting in a well-calibrated model capable of real-time predictions. A human-trial affirms that
incorporating knowledge uncertainty significantly boosts policy robustness against noise compared
to policies that neglect uncertainty. These findings underline both the importance of uncertainty
estimation in neural belief tracking models and the potential of policy models to use this uncertainty
to resolve conversational ambiguities.

6.2 Personal Contributions

The implementation and technical results are my own work, while my co-authors contributed to the
writing and proofreading process.

https://aclanthology.org/2021.emnlp-main.623

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7901–7914
November 7–11, 2021. c©2021 Association for Computational Linguistics

7901

Uncertainty Measures in Neural Belief Tracking and
the Effects on Dialogue Policy Performance

Carel van Niekerk1, Andrey Malinin2, Christian Geishauser1, Michael Heck1

Hsien-chin Lin1, Nurul Lubis1, Shutong Feng1 and Milica Gašić1
1Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany

2Yandex Research and HSE University, Moscow, Russia
1{niekerk,geishaus,heckmi,linh,lubis,shutong.feng,gasic}@hhu.de

2am969@yandex-team.ru

Abstract

The ability to identify and resolve uncertainty
is crucial for the robustness of a dialogue sys-
tem. Indeed, this has been confirmed em-
pirically on systems that utilise Bayesian ap-
proaches to dialogue belief tracking. How-
ever, such systems consider only confidence
estimates and have difficulty scaling to more
complex settings. Neural dialogue systems,
on the other hand, rarely take uncertainties
into account. They are therefore overconfident
in their decisions and less robust. Moreover,
the performance of the tracking task is often
evaluated in isolation, without consideration of
its effect on the downstream policy optimisa-
tion. We propose the use of different uncer-
tainty measures in neural belief tracking. The
effects of these measures on the downstream
task of policy optimisation are evaluated by
adding selected measures of uncertainty to the
feature space of the policy and training poli-
cies through interaction with a user simulator.
Both human and simulated user results show
that incorporating these measures leads to im-
provements both of the performance and of the
robustness of the downstream dialogue policy.
This highlights the importance of developing
neural dialogue belief trackers that take uncer-
tainty into account.

1 Introduction

In task-oriented dialogue, the system aims to assist
the user in obtaining information. This is achieved
through a series of interactions between the user
and the system. As the conversation progresses, it
is the role of the dialogue state tracking module to
track the state of the conversation. For example,
in a restaurant recommendation system, the state
would include the information about the cuisine of
the desired restaurant, its area as well as the price
range that the user has in mind. It is crucial that
this state contains all information necessary for the
dialogue policy to make an informed decision for
the next action (Young et al., 2007). Policy training

optimises decision making in order to complete
dialogues successfully.

It has been proposed within the partially observ-
able Markov decision process (POMDP) approach
to dialogue modelling to track the distribution over
all possible dialogue states, the belief state, instead
of a single most-likely candidate. This approach
successfully integrates uncertainty to achieve ro-
bustness (Williams and Young, 2007; Thomson and
Young, 2010; Young et al., 2016, 2007). However,
such systems do not scale well to complex multi-
domain dialogues. On the other hand, discrimina-
tive neural approaches to dialogue tracking achieve
state-of-the-art performance in the state tracking
task. Nevertheless, the state-of-the-art goal ac-
curacy on the popular MultiWOZ (Budzianowski
et al., 2018) multi-domain benchmark is currently
only at 60% (Heck et al., 2020; Li et al., 2020a).
In other words, even the best neural dialogue state
trackers at present incorrectly predict the state of
the conversation in 40% of the turns. What is par-
ticularly problematic is that these models are fully
confident about their incorrect predictions.

Unlike neural dialogue state trackers, which pre-
dict a single best dialogue state, neural belief track-
ers produce a belief state (Williams and Young,
2007; Henderson et al., 2013). State-of-the-art
neural belief trackers, however, achieve an even
lower goal accuracy of approximately 50% (van
Niekerk et al., 2020; Lee et al., 2019), making the
more accurate state trackers a preferred approach.
High-performing state trackers typically rely on
span-prediction approaches, which are unable to
produce a distribution over all possible states as
they extract information directly from the dialogue.

Ensembles of models are known to yield im-
proved predictive performance as well as a cali-
brated and rich set of uncertainty estimates (Ma-
linin, 2019; Gal, 2016). Unfortunately, ensemble
generation and, especially, inference come at a high
computational and memory cost which may be pro-

7902

hibitive. While standard ensemble distillation (Hin-
ton et al., 2015) can be used to compress an en-
semble into a single model, information about en-
semble diversity, and therefore several uncertainty
measures, is lost. Recently Malinin et al. (2019)
and Ryabinin et al. (2021) proposed ensemble dis-
tribution distillation (EnD2) - an approach to distill
an ensemble into a single model which preserves
both the ensemble’s improved performance and full
set of uncertainty measures at low inference cost.

In this work we use EnD2 to distill an ensemble
of neural belief trackers into a single model and in-
corporate additional uncertainty measures, namely
confidence scores, total uncertainty (entropy) and
knowledge uncertainty (mutual information), into
the belief state of the neural dialogue system. This
yields an uncertainty-aware neural belief tracker
and allows downstream dialogue policy models
to use this information to resolve confusion. To
our knowledge, ensemble distillation, especially
ensemble distribution distillation, and the derived
uncertainty estimates, have not been examined for
belief state estimation or any downstream tasks.

We make the following contributions:
1. We present SetSUMBT, a modified SUMBT

belief tracking model, which incorporates set
similarity for accurate state predictions and
produces components essential for policy op-
timisation.

2. We deploy ensemble distribution distillation
to obtain well-calibrated, rich estimates of un-
certainty in the dialogue belief tracker. The
resulting model produces state-of-the-art re-
sults in terms of calibration measures.

3. We demonstrate the effect of adding addi-
tional uncertainty measures in the belief state
on the downstream dialogue policy models
and confirm the effectiveness of these mea-
sures both in a simulated environment and in
a human trial.

2 Background

2.1 Dialogue Belief Tracking

In statistical approaches to dialogue, one can
view the dialogue as a Markov decision process
(MDP) (Levin et al., 1998). This MDP maintains a
Markov dialogue state in each turn and chooses its
next action based on this state.

Alternatively, we can model the dialogue state as
a latent variable, maintaining a belief state at each
turn, as in partially observable Markov decision

processes (POMDPs) (Williams and Young, 2007;
Thomson and Young, 2010). While attractive in
theory, the POMDP model is computationally ex-
pensive in practice. Although there are practical im-
plementations, they are limited to single-domain di-
alogues and their performance fall short of discrim-
inative statistical belief trackers (Williams, 2012).
The inherent problem lies in the generative nature
of POMDP trackers where the state generates noisy
observations. This becomes an issue for instance
when the user wants to change the goal of a con-
versation, e.g., the user wants an Italian instead of
a French restaurant. Henderson (2015) has shown
empirically that discriminative models model a
change in user goal more accurately.

In discriminative approaches, the state depends
on the observation, making it easier for the sys-
tem to identify a change of the user goal. Tradi-
tional discriminative approaches suffer from low
robustness, as they depend on static semantic dic-
tionaries for feature extraction (Henderson et al.,
2014; Mrkšić et al., 2017b). Integrated approaches
on the other hand utilise learned token vector rep-
resentations, leading to more robust state track-
ers (Mrkšić et al., 2017a; Ramadan et al., 2018; Lee
et al., 2019). However, highly over-parameterised
models, such as neural networks – when trained via
maximum-likelihood on finite data – often yield
miscalibrated, over-confident predictions, placing
all probability mass on a single outcome (Pleiss
et al., 2017). Consequently, belief tracking is re-
duced to state tracking, losing the benefits of un-
certainty management. State-of-the-art approaches
to dialogue state tracking redefine the problem as
a span-prediction task. These models extract the
values directly from the dialogue context (Chao
and Lane, 2019; Zhang et al., 2020; Heck et al.,
2020) and manage to achieve state-of-the-art results
on MultiWOZ (Budzianowski et al., 2018; Eric
et al., 2020). Span-prediction models at present do
not produce probability distributions, so additional
work is needed to apply our proposed uncertainty
framework to them. Neural belief and state trackers
rarely model the correlation between domain-slot
pairs, except for works by Hu et al. (2020) and
Ye et al. (2021). Due to scalability issues we do
not include these approaches in our investigation.
We therefore consider the slot-utterance matching
belief tracker (SUMBT) (Lee et al., 2019) a bet-
ter starting point, as it is readily able to produce a
belief state distribution.

7903

In theory, well-calibrated belief trackers have
an inherent advantage over state tracking, produc-
ing uncertainty estimates that lead to more robust
downstream policy performance. This raises the
question: Is it possible to instil well-calibrated un-
certainty estimates in neural belief trackers? And
if so, do these estimates have a positive effect on
the downstream policy optimisation in practice?

We believe SUMBT is a fitting approach to in-
vestigate these questions, as it has been shown that
an ensemble of SUMBT models can achieve state-
of-the-art goal L2-Error when trained using spe-
cialised loss functions aiming at inducing uncer-
tainty in the output (van Niekerk et al., 2020).

2.2 Ensemble-based Uncertainty Estimation
Consider a classification problem with a set of
features x, and outcomes y ∈ {ω1, ω2, ..., ωK}.
In dialogue state tracking, x would be features
of the input to the tracker and y would be a di-
alogue state. Given an ensemble of M models{
P(y|x,θ(m))

}M
m=1

, the predictive posterior is ob-
tained as follows:

P(y|x,D)=
M∑
m=1

P(y|x,θ(m))

M
=:

M∑
m=1

π(m)

M
(1)

Predictions made using the predictive posterior are
often better than those of individual models. The
entropy H[] of the predictive posterior is an esti-
mate of total uncertainty. Ensembles allow decom-
posing total uncertainty into data and knowledge
uncertainty by considering measures of ensemble
diversity. Data uncertainty is the uncertainty due
to noise, ambiguity and class overlap in the data.
Knowledge uncertainty is uncertainty due to a lack
of knowledge of the model about a test data (Ma-
linin, 2019; Gal, 2016) — ie, uncertainty due to
unfamiliar, anomalous or atypical inputs. Ideally,
ensembles should yield consistent predictions on
data similar to the training data and diverse predic-
tions on data which is significantly different from
the training data. Thus measures of ensemble di-
versity yield estimates of knowledge uncertainty1.
These quantities are obtained via the mutual in-
formation I[y,θ] between predictions and model
parameters. The quantity in the Equation 2 is a mea-
sure of ensemble diversity, and therefore, knowl-
edge uncertainty. This quantity is the difference

1In-depth overviews of ensemble methods are available
in Malinin (2019); Gal and Ghahramani (2016); Ashukha et al.
(2020); Ovadia et al. (2019).

between the entropy of the predictive posterior (to-
tal uncertainty) and the average entropy of each
model in the ensemble (data uncertainty).

I[y,θ|x,D]︸ ︷︷ ︸
Knowledge unc.

=

H
[
P(y|x,D)

]︸ ︷︷ ︸
Total uncertainty

−
M∑

m=1

H
[
P(y|x,θ(m))

]
M︸ ︷︷ ︸

Data uncertainty

(2)

2.3 Ensemble Distillation
While ensembles provide improved predictive
performance and a rich set of uncertainty mea-
sures, their practical application is limited by their
inference-time computational cost. Ensemble dis-
tillation (EnD) (Hinton et al., 2015) can be used to
compress an ensemble into a single student model
(with parameters φ) by minimising the Kullback-
Leibler (KL) divergence between the ensemble pre-
dictive posterior and the distilled model predic-
tive posterior, significantly reducing the inference
cost. Unfortunately, a significant drawback of this
method is that information about ensemble diver-
sity, and therefore knowledge uncertainty, is lost
in the process. Recently, Malinin et al. (2019) pro-
posed ensemble distribution distillation (EnD2) as
an approach to distill an ensemble into a single
prior network model (Malinin and Gales, 2018),
such that the model retains information about en-
semble diversity. Prior networks yield a higher-
order Dirichlet distribution over categorical out-
put distributions π and thereby emulate ensembles,
whose output distributions can be seen as samples
from a higher-order distribution2. Formally, a prior
network is defined as follows:

p(π|x;φ) = Dir(π|α), α = ez

z = f(x;φ), αk > 0, α0 =

K∑
k=1

αk,
(3)

where Dir(·|α) is a Dirichlet distribution with con-
centration parameters α, and f(·;φ) is a learned
function which yields the logits z. The predictive
posterior can be obtained in closed form though
marginalisation over π, thereby emulating (1).
This yields a softmax output function:

P(y = ωk|x;φ) = Ep(π|x;φ)[P(y = ωk|π)]

=
ezk∑K
k=1 e

zk
.

(4)

2π = [P(y = ω1|x), · · · , P(y = ωK |x)]T.

7904

Closed form estimates of all uncertainty mea-
sures are obtained via Eq. (5), which emulates
the same underlying mechanics as Eq. (2), as fol-
lows (Malinin, 2019):

I[y,π|x;φ]︸ ︷︷ ︸
Knowledge unc.

=

H
[
P(y|x;φ)

]︸ ︷︷ ︸
Total uncertainty

− Ep(π|x;φ)
[
H[P(y|π)]

]︸ ︷︷ ︸
Data uncertainty

.
(5)

Originally, Malinin et al. (2019) implemented
EnD2 on the CIFAR10, CIFAR100 and TinyIma-
geNet datasets. However, Ryabinin et al. (2021)
found scaling to tasks with many classes chal-
lenging using the original Dirichlet Negative log-
likelihood criterion. They analysed this scaling
problem and proposed to a new loss function,
which minimises the reverse KL-divergence be-
tween the model and an intermediate proxy Dirich-
let target derived from the ensemble. This loss
function was shown to enable EnD2 on tasks with
arbitrary numbers of classes. In this work we use
this improved loss function, as detailed in the Ap-
pendix Section B.2.

2.4 Policy Optimisation
In each turn of dialogue, the dialogue policy selects
an action to take in order to successfully complete
the dialogue. The input to the policy is constructed
using the output of the belief state tracker, thus
being directly impacted by its richness.

Optimising dialogue policies within the origi-
nal POMDP framework is not practical for most
cases. Therefore, the POMDP is viewed as a con-
tinuous MDP whose state space is the belief space.
This state space can be discretised, so that tabular
reinforcement learning (RL) algorithms can be ap-
plied (Gašić et al., 2008; Thomson et al., 2010).
Gaussian process RL can be applied directly on the
original belief space (Gašić and Young, 2014). This
is also possible using neural approaches with less
computational effort (Jurčíček et al., 2011; Weisz
et al., 2018; Chen et al., 2020). Current state-of-the-
art RL algorithms for multi-domain dialogue man-
agement (Takanobu et al., 2019; Li et al., 2020b)
utilise proximal policy optimisation (Schulman
et al., 2017) operating on single best dialogue state.

3 Effects of Uncertainty on Downstream
Tasks

We take the following steps in order to examine the
effects of the additional uncertainty measures in

the dialogue belief state:
1. Modify the original SUMBT model (Lee et al.,

2019) to arrive at a competitive baseline. We
call this model SetSUMBT.

2. Produce ensembles of SetSUMBT following
the work of van Niekerk et al. (2020).

3. Apply EnD and EnD2 as introduced in Sec-
tion 2.3.

4. Apply policy optimisation that uses belief
states from distilled models.

3.1 Neural Belief Tracking Model

We propose a neural belief tracker which one can
easily incorporate in a full dialogue system pipeline.
We base our tracker on the slot-utterance matching
belief tracker (SUMBT) (Lee et al., 2019), but we
make two important changes. First, we ensure our
tracker is fully in line with the requirements of the
hidden information state (HIS) model for dialogue
management (Young et al., 2007) by adding user
action predictions to our tracker. These are not pro-
duced by the SUMBT model and nor by other avail-
able neural trackers. However, they are essential
for integration into a full dialogue system. Second,
in order to improve the understanding ability of
the model, we utilise a set of concept description
embeddings rather than a single embedding for se-
mantic concepts. We use this set of embeddings
for information extraction and prediction, hence
we call our model SetSUMBT. In this section we
describe each component in detail, also depicted in
Figure 1.

Slot-utterance matching The slot-utterance
matching (SUM) component performs the role
of language understanding in the SUMBT
architecture. The SUM multi-head attention mech-
anism (Vaswani et al., 2017) attends to the relevant
information in the current turn for a specific
domain-slot pair. In the process of slot-utterance
matching, SUMBT utilises BERT’s (Devlin et al.,
2019) [CLS] sequence embedding to represent
the semantic concepts in the model ontology.
Instead of using the single [CLS] embedding, we
make use of the sequence of embeddings for the
domain-slot description. We choose to make this
expansion, as approaches which utilise a sequence
of embeddings outperform approaches based on
a single embedding in various natural language
processing tasks (Poerner et al., 2020; Choi et al.,
2021). We further use RoBERTa as a feature
extractor (Liu et al., 2019).

7905

Dialogue context tracking The first of the three
components of the HIS model is a representation
of the dialogue context (history). In the SUMBT
approach, a gated-recurrent unit mechanism tracks
the most important information during a dialogue.
The resulting context conditioned representations
for the domain-slot pairs contain the relevant infor-
mation from the dialogue history. Similar to the
alteration in the SUM component, we represent the
dialogue context as a sequence of representations.
This sequence, Cs

t , represents the dialogue context
for domain-slot pair s across turns 1 to t, while
it dimension being independent of t. Besides the
above modification, we add a further step where
we reduce this sequence of context representations
to a single representation ŷst . We do this reduction
using a learned convolutional pooler, which we call
the Set Pooler. See Appendix Section C for more
details regarding the implementation.

User goal prediction The second component of
the HIS model is the user goal. This is typically the
only component that neural tracing models explic-
itly model as a set of domain-slot-value pairs. Here,
we follow the matching network approach (Vinyals
et al., 2016) utilised by SUMBT, where the pre-
dictive distribution is based on the similarity be-
tween the dialogue context and the value candi-
dates. To obtain the similarity between the dia-
logue context and a value candidate we make use
of cosine similarity, Scos (·, ·). Based on these sim-
ilarity scores, we produce a predictive distribution,
Equation 6, for the value of domain-slot pair s at
turn t vst , the user and system utterances at turn t,
uusrt and usyst−1, and the dialogue context represen-
tations at turn t− 1Cs

t−1. Contrary to the SUMBT
approach, each value candidate is represented by
the sequence of value description embeddings from
a fixed RoBERTa model. The Set Pooler, with the
same parameters used for pooling context represen-
tations, reduces this sequence of value description
representations to a representation yv, for value v.

P
(
vst = v|uusrt ,usyst−1,C

s
t−1
)
=

exp (Scos (ŷ
s
t ,yv))∑

v′ exp (Scos (ŷ
s
t ,yv′))

,
(6)

User action prediction To be fully in line with
the HIS model, we further require the predicted
user actions. In order to predict the user actions,
we categorise them into general user actions and
user request actions. Further, since our system

is a multi-domain system, we include the current
active domain in the hidden information state of
the system.

General user action includes actions such as the
user thanking or greeting the system, which do not
rely on the dialogue context. Hence, we can infer
general user actions from the current user utterance.
A user request action is an action indicating that the
user is requesting information about an entity. Zhu
et al. (2020) shows that simple rule-based estimates
of these actions lead to poor downstream policy
performance. Hence, we propose predicting this
information within the belief tracking model.

Since we can infer the general actions from the
current user utterance, we use a single turn repre-
sentation x0

t to predict such actions. The single
turn representation, x0

t , is the representation for
the RoBERTa sequence representation <s>, which
is equivalent to the BERT [CLS] representation.
That is:

P
(
agent = a|uusrt ,usyst−1

)
=

softmax
(
W genx0

t + b
gen
)
,

(7)

where a ∈ {none,thank_you,goodbye}.
The more difficult sub-tasks include active user

request and active domain prediction. For user
request prediction we utilise the dialogue context
representation ŷst for a specific domain-slot pair to
predict whether the user has requested information
relating to this slot. That is:

P
(
rst = 1|uusrt ,usyst−1,C

s
t−1
)
=

sigmoid (wreqŷst + breq) ,
(8)

where rst indicates an active request for domain-slot
s by the user in turn t.

Last, to predict active domains in the dialogue,
we incorporate information relating to all slots as-
sociated with a specific domain. We do so by
performing mean reduction across the context rep-
resentations of all the slots associated with a do-
main. The resulting domain representations are
used to predict whether a domain is currently be-
ing discussed in the dialogue. That is, for active
domain dt, Sd the set of slots within domain d, and
Cd
t−1 :=

[
Cs
t−1
]
s∈Sd

the set of context representa-
tions for all domain-slot pairs in Sd at turn t − 1,
we have the active domain distribution:

P
(
dt = d|uusrt ,usyst−1,C

d
t−1

)
=

sigmoid

wdom 1

|Sd|
∑
s∈Sd

ŷst + bdom

 ,
(9)

7906

<s> 𝑢!,#$%& 𝑢!,#$%& … 𝑢!,|(|$%& <\s> 𝑢!)#,#
%*% 𝑢!)#,#

%*% … 𝑢!)#,|+|
%*% <\s>

RoBERTa (Finetuned)

<s> 𝑠#% 𝑠,% … 𝑠|-|% <\s>

RoBERTa (Fixed)

Multi head Attention

Recurrent Context Tracker

Set Pooler

Current user utterance Latest system utterance Description of domain, slot pair 𝑠

𝒙!. 𝒙!# 𝒙!, 𝒙!
|(| 𝒙!

(/# 𝒙!
(/, 𝒙!

(/0 𝒙!
(/ + /# 𝒙!

(/ + /, 𝒔%. 𝒔%# 𝒔%, 𝒔%
- 𝒔%

- /#

𝑪!)#%

𝒛!. 𝒛!, 𝒛!0 𝒛!
|-| 𝒛!

- /#

<s> 𝑣#123 𝑣,123 … 𝑣|4|123 <\s>

RoBERTa (Fixed)

Value candidate 𝑣

𝒗123. 𝒗123# 𝒗123, 𝒗123
4 𝒗123

4 /#

Set Pooler

All slots within a
domain are mean

pooled

𝑪!%

)𝒚!%

𝒚1

𝜃

User action
User goal
Context tracking
Slot-utterance matching

User Goal:
Similarity Scorer

𝑃 𝑣+, = 𝑣|𝒖+-,., 𝒖+/0
,1, , 𝑪+/0,

General Action
Prediction

𝑃 𝑎+
234 = 𝑎|𝒖+-,., 𝒖+/0

,1,

Request Action
Prediction

Active domain
prediction

𝑃 𝑟+, = 1|𝒖+-,., 𝒖+/0
,1, , 𝑪+/0, 𝑃 𝑑+ = 𝑑|𝒖+-,., 𝒖+/0

,1, , 𝑪+/05

Figure 1: Architecture of our SetSUMBT model, which takes as input the current user utterance, the latest system
utterance, and a domain-slot pair description. The model, further, requires a pre-defined set of plausible value
candidates for each domain-slot pair. At each turn, we encode the utterances only once, the Slot-utterance matching
and Context tracking components are utilised once for each domain-slot pair. Further, we use the Set Pooler once
for each domain-slot pair and once for each value candidate. The Set Pooler used for pooling value candidate and
domain-slot context sequences shares the same parameters θ. SetSUMBT outputs a belief state distribution for the
relevant domain-slot pair (User goal), a distribution over general actions, and the probability of a user request for
the domain-slot pair (User action). The model also outputs the probability of an active domain.

Optimisation For each of the four tasks: user
goal prediction, general user action prediction, user
request action prediction and active domain predic-
tion, the aim of the model is to predict the correct
class. To optimise for these objectives, we min-
imise the following classification loss functions:
Lgoal, Lgeneral, Lrequest and Ldomain. During model
training we combine four weighted classification
objectives:

L = αgoalLgoal + αgeneralLgeneral

+αrequestLrequest + αdomainLdomain,
(10)

where αx ∈ (0, 1] is the importance of task x. In
this work, we use the label smoothing classification
loss for all sub-tasks as it results in better calibrated
predictions, as shown by van Niekerk et al. (2020),
see details in Section B.1 of the appendix.

3.2 Uncertainty Estimation in SetSUMBT
Similarly to van Niekerk et al. (2020), we construct
an ensemble of SetSUMBT models by training
each model on one of 10 randomly selected subsets
of data. We then distil this ensemble into a sin-
gle model by adopting ensemble distillation (EnD)

and ensemble distribution distillation (EnD2) as
described in Section 2.3. We refer to these dis-
tilled versions of the SetSUMBT ensemble as EnD-
SetSUMBT and EnD2-SetSUMBT, respectively.

The SetSUMBT belief tracker tracks the pres-
ence and value of each domain-slot pair s as the
dialogue progresses. For the sake of scalability
of the downstream policy, in the user goal g we
do not consider all possible values, but rather the
most likely one vs for every domain-slot pair s
and its associated probability, i.e., the confidence
score given by hgt,s summarised in vector hgt for all
domain-slot pairs:

vs := argmax
v

P
(
vst = v|uusrt ,usyst−1,C

s
t−1
)
,

hgt,s := max
v

P
(
vst = v|uusrt ,usyst−1,C

s
t−1
)
,

hgt := [vs, hgt,s]∀s. (11)

For the EnD-SetSUMBT belief tracker, we can also
calculate the total uncertainty for each domain-slot
given by the entropy, see Section 2.3. We encode
that information in hunct,s for each domain-slot pair

7907

s and summarise in hunct for all domain-slot pairs:

hunct,s := H
[
P
(
vst = v|uusrt ,usyst−1,C

s
t−1
)]
,

hunct := [hunct,s]∀s.

For the EnD2-SetSUMBT belief tracker, can fur-
ther include the knowledge uncertainty for each
domain-slot pair s given by the mutual informa-
tion:

hunct,s := I[vst ,π|uusrt ,usyst−1,C
s
t−1;φ],

as per Eq. (5) where π represents the ensemble
distribution and φ the model parameters.

In addition, all versions of SetSUMBT include
the following vectors/variables:
hgt is the estimate of the user goal from Eq. (11),
husrt is the estimate of user actions from Eq. (7-9),
hdbt is the database search result3,
hsyst−1 is the system action,
hbookt is the set of completed bookings,
htermt indicates the termination of the dialogue.

This results in the following belief state:

bt = {husrt ,hsyst−1,h
g
t ,h

book
t ,hdbt , h

term
t ,hunct }.

For a system without uncertainty, all confidences
would be rounded to either 0 or 1 and the belief
state would not contain the hunct vector.

3.3 Policy Optimisation as Downstream Task

For our experiments we optimise the dialogue pol-
icy operating on the belief state via RL using the
PPO algorithm (Schulman et al., 2017). PPO is an
on-policy actor-critic algorithm that is widely ap-
plied across different reinforcement learning tasks
because of its good performance and simplicity.
Similarly to Takanobu et al. (2019), we use super-
vised learning to pretrain the policy before starting
the RL training phase. In order to perform super-
vised learning we need to map the belief states into
system actions as they occur in the corpus. These
belief states can either be oracle states taken from
the corpus or predictions of our belief tracker that
takes corpus dialogues as input. We investigate
both options for policy training.

3Uncertainty is incorporated in the database query vector
in the form of confidence thresholds. If the confidence score
for a specific constraint is less than a chance prediction then
this constraint is ignored during the database query.

Approach JGA(%) L2-Error ECE(%)
SUMBT 46.78 1.1075 25.46
CE-BST 48.71 1.1042 10.73
SUMBT+LaRL 51.52 - -
SetSUMBT 51.11 1.2386 15.13
EnD2-SetSUMBT 51.22 1.1948 7.09
CE-SetSUMBT 52.04 1.1936 6.84
EnD-SetSUMBT 52.26 1.1782 7.54

Table 1: Comparison of neural belief tracking ap-
proaches on the MultiWOZ 2.1 test set. CE is an en-
semble of calibrated models, EnD is ensemble distilla-
tion and EnD2 is ensemble distribution distillation.

4 Experiments

4.1 Neural Belief Tracking Performance

Overall performance Table 1 compares the
performance of our proposed SetSUMBT belief
tracker to existing approaches, which include
SUMBT, the calibrated ensemble belief state
tracker (CE-BST) (van Niekerk et al., 2020) and the
end to end trained SUMBT+LaRL approach (Lee
et al., 2020). We consider the joint goal accu-
racy (JGA), L2-Error and expected calibration er-
ror (ECE). The JGA of a belief tracking model
is the percentage of turns for which the model
correctly predicted the value for all domain-slot
pairs. The L2-Error is the L2-Norm of the differ-
ence between the predicted user distribution and
the true user goal. Further, the ECE is the average
absolute difference between the accuracy and the
confidence of a model. In this comparison, we do
not consider state tracking approaches, as they do
not yield uncertainty estimates. SetSUMBT out-
performs SUMBT and SUMBT+LaRL in terms of
calibration and accuracy. We name the variants of
SetSUMBT as follows: CE-SetSUMBT is a cali-
brated ensemble of SetSUMBT similar to CE-BST,
EnD-SetSUMBT is the distilled SetSUMBT model,
and EnD2-SetSUMBT is the distribution distilled
SetSUMBT model.

Runtime efficiency The single instance of the
SetSUMBT tracker processes a dialogue turn in
approximately 77.768 ms, whereas an ensemble
of 10 models processes a turn in approximately
768.025 ms. These processing times are averaged
across the 7372 turns in the MultiWOZ test set, see
Appendix Section E for more details. The signifi-
cant increase in processing time for the ensemble
of models makes this approach inappropriate for
real time interaction with users on a private device.

7908

Figure 2: Reliability comparison of a selection of neu-
ral belief tracking models.

Calibration The reliability diagram in Figure 2
illustrates the relationship between the joint goal
accuracy and the model confidence. The best cal-
ibrated model is the one that is closest to the di-
agonal, i.e., the one whose confidence for each
dialogue state is closest to the achieved accuracy.
The best reliability is achieved by CE-BST, and
CE-SetSUMBT comes second. Both distillation
models (EnD-SetSUMBT and EnD2-SetSUMBT)
do not deviate greatly from CE-SetSUMBT.

4.2 Policy Training on User Simulator

We incorporate SetSUMBT, EnD-SetSUMBT and
EnD2-SetSUMBT within the Convlab2 (Zhu et al.,
2020) task-oriented dialogue environment and com-
pare their performance by training policies which
take belief states as inputs4.

To investigate the impact of additional uncer-
tainty measures on the dialogue policy we perform
interactive learning in a more challenging environ-
ment than the original Convlab2 template-based
simulator. We add ambiguity to the simulated user
utterances in the form of value variations that occur
in the MultiWOZ dataset. For example, instead
of the user simulator asking for a hotel for "one
person", it could also say "It will be just me.". For
more information see Appendix Section D.

When policies are trained for large domains, they
are typically first pretrained on the corpus in a
supervised manner, and then improved using re-
inforcement learning. We first investigate which
states to use for the supervised pretraining (Sec-
tion 3.3): oracle states, i.e., the dialogue state labels
from the MultiWOZ corpus, or estimated belief
states, e.g., those predicted by a EnD-SetSUMBT
model. We then evaluate the pretrained policies
with the simulated user. During the evaluation both

4https://gitlab.cs.uni-duesseldorf.de/
general/dsml/setsumbt-public.git

Belief
Tracker

Belief state
uncertainty

Success
Rate

Re-
ward

Turns

SetSUMBT None 78.67 46.51 7.49
Confidence 83.25 52.49 6.80

EnD-
SetSUMBT

None 82.25 51.18 7.52
Confidence 83.75 54.04 6.46
Total 86.83 57.09 7.35

EnD2-
SetSUMBT

None 83.75 53.00 7.50
Confidence 84.08 53.15 7.74
Total 84.83 54.54 7.26
Knowledge 85.17 54.63 7.57

Table 2: Performance of the systems in the simulated
environment. For each setting we have 5 policies initi-
ated with different random seeds, each evaluated with
1000 dialogues and their success rates, reward and num-
ber of turns averaged.

policies use a EnD-SetSUMBT model to provide
belief states. We observe that the policy pretrained
using the oracle state achieves a success rate of
36.50% in the simulated environment compared
to the 46.08% success rate achieved by the policy
pretrained using EnD-SetSUMBT. Thus, all our
following experiments use predicted belief states
of respective tracking models for the pretraining
stage.

For each setting of the belief tracker we have four
possible belief state settings, i.e., the binary state
(no uncertainty), the confidence score state, the con-
fidence score state with additional total uncertainty
features and the confidence score state with addi-
tional knowledge uncertainty features. For each
setting we evaluate the policies through interaction
with the user simulator, results are given in Table 2.

In interaction with the simulator, systems mak-
ing use of confidence outperform the systems with-
out any uncertainty (significance at p < 0.05).
Moreover, the additional total and knowledge un-
certainty features always outperform the systems
which only use a confidence score (significance
at p < 0.05). This indicates that additional mea-
sures of uncertainty improve the robustness of the
downstream dialogue policy in a challenging envi-
ronment.

It is interesting to note that the system which
makes use of total uncertainty appears to outper-
form the system that makes use of knowledge un-
certainty (significance at p < 0.05). We suspect
that this controlled simulated environment has low
data uncertainty, so the total uncertainty is overall
more informative.

7909

4.3 Human Trial

We conduct a human trial, where we compare
SetSUMBT as the baseline with EnD-SetSUMBT
and EnD2-SetSUMBT. For EnD-SetSUMBT, we
consider the model that includes both confidence
scores and entropy features. For EnD2-SetSUMBT,
we investigate the model that includes confidence
scores and knowledge uncertainty features. For
each model we have two variations: one with a
binary state corresponding to the most likely state
(no uncertainty variation), and one with uncertainty
measures (uncertainty variation). For each varia-
tion we chose the policy whose performance on
the simulated user is closest to the average perfor-
mance of its respective setting, see Section 4.2.

Subjects are recruited through the Amazon Me-
chanical Turk platform to interact with our sys-
tems via the DialCrowd platform (Lee et al., 2018).
Each assignment consists of a dialogue task and
two dialogues to perform. The task comprises a set
of constraints and goals, for example finding the
name and phone number of a guest house in the
downtown area. We encourage the subjects to use
variants of labels by introducing random value vari-
ants in the tasks. The two dialogues are performed
in a random order with two variations of the same
model, namely no-uncertainty and uncertainty vari-
ation, as described above. After each dialogue, the
subject rates the system as successful if they think
they received all the information required and all
constraints were met. The subjects rate each sys-
tem on a 5 point Likert scale. In total we collected
approximately 550 dialogues for each of 6 different
systems, 3300 in total. There was a total of 380
subjects who took part in these experiments.

Table 3 shows the performance of the above poli-
cies in the human trial. We confirm that each no
uncertainty system is always worse than its uncer-
tainty counterpart (each significant at p < 0.05). It
is important to emphasise here that in each pairing,
the systems have exactly the same JGA, but their
final performance can be very different in terms of
success and user rating. This empirically demon-
strates the limitations of JGA as a single measure
for dialogue state tracking, urging the modelling
of uncertainty and utilisation of calibration mea-
sures. Finally, we observe that adding additional
uncertainty measures improves the policy (each
significant at p < 0.05) and the best overall per-
formance is achieved by the system that utilises
both knowledge uncertainty and confidence scores

Belief
Tracker

Belief state
uncertainty

Success
Rate

Rating Turns

SetSUMBT None 48.99 2.68 7.28
Confidence 67.05 3.47 6.12

EnD-
SetSUMBT

None 64.09 3.29 6.45
Total 68.25 3.36 6.45

EnD2-
SetSUMBT

None 66.25 3.35 6.25
Knowledge 71.61 3.52 6.31

Table 3: Performance of the systems evaluated with
real users. We have 550 dialogues for each system with
success rates, ratings and the number of turns averaged.

(significant at p < 0.05). This suggests that in
human interaction there is more data uncertainty,
necessitating the knowledge uncertainty to be an
explicit part of the model.

It is important to note here that solely a lower
average number of turns is not necessarily an in-
dicator of the desired behaviour of a system. For
example, a system which says goodbye too early
may never be successful, but will have a low aver-
age number of turns.

5 Conclusion

Whilst neural dialogue state trackers may achieve
state-of-the-art performance in the isolated dia-
logue state tracking task, the absence of uncertainty
estimates may lead to less robust performance of
the downstream dialogue policy. In this work we
propose the use of total and knowledge uncertain-
ties along with confidence scores to form a dialogue
belief state. We moreover describe a model, Set-
SUMBT, that can produce such a belief state via
distillation. Experiments with both simulated and
real users confirm that these uncertainty metrics
can lead to more robust dialogue policy models. In
future, we will investigate modifying span-based
dialogue state trackers to incorporate uncertainty.
We will further investigate the expansion of the Set-
SUMBT model to include the correlation between
different domain-slot pairings.

Acknowledgements

CVN, MH, NL and SF are supported by funding
provided by the Alexander von Humboldt Founda-
tion in the framework of the Sofja Kovalevskaja
Award endowed by the Federal Ministry of Educa-
tion and Research. CG and HCL are supported by
funds from the European Research Council (ERC)
provided under the Horizon 2020 research and inno-
vation programme (Grant agreement No. STG2018
804636). Google Cloud and HHU ZIM provided
computational infrastructure.

7910

References
Arsenii Ashukha, Alexander Lyzhov, Dmitry

Molchanov, and Dmitry Vetrov. 2020. Pitfalls
of in-domain uncertainty estimation and ensembling
in deep learning. In Proceedings of the Interna-
tional Conference on Learning Representations
(ICLR).

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os-
man, and Milica Gašić. 2018. Multiwoz - A Large-
Scale Multi-Domain Wizard-of-Oz Dataset for Task-
Oriented Dialogue Modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for
Computational Linguistics.

Guan-Lin Chao and Ian Lane. 2019. BERT-DST: Scal-
able end-to-end dialogue state tracking with bidirec-
tional encoder representations from transformer. In
Proceedings of Interspeech 2019, pages 1468–1472.

Zhi Chen, Lu Chen, Xiaoyuan Liu, and Kai Yu.
2020. Distributed structured actor-critic reinforce-
ment learning for universal dialogue management.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 28:2400–2411.

Hyunjin Choi, Judong Kim, Seongho Joe, and
Youngjune Gwon. 2021. Evaluation of BERT
and ALBERT sentence embedding performance on
downstream NLP tasks. In Proceedings of the
25th International Conference on Pattern Recogni-
tion (ICPR), pages 5482–5487.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar,
Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020.
MultiWOZ 2.1: A consolidated multi-domain dia-
logue dataset with state corrections and state track-
ing baselines. In Proceedings of The 12th Language
Resources and Evaluation Conference, pages 422–
428.

Yarin Gal. 2016. Uncertainty in Deep Learning. Ph.D.
thesis, University of Cambridge.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In Proceedings of the 33rd
International Conference on Machine Learning, vol-
ume 3, pages 1651–1660.

Milica Gašić, Simon Keizer, Francois Mairesse, Jost
Schatzmann, Blaise Thomson, Kai Yu, and Steve
Young. 2008. Training and evaluation of the HIS

POMDP dialogue system in noise. SIGdial ’08,
page 112–119, USA. Association for Computational
Linguistics.

Milica Gašić and Steve Young. 2014. Gaussian pro-
cesses for POMDP-based dialogue manager op-
timization. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 22(1):28–40.

Michael Heck, Carel van Niekerk, Nurul Lubis, Chris-
tian Geishauser, Hsien-Chin Lin, Marco Moresi, and
Milica Gašić. 2020. Trippy: A triple copy strategy
for value independent neural dialog state tracking.
In Proceedings of the 21th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 35–44, 1st virtual meeting. Association for
Computational Linguistics.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2013. Deep neural network approach for
the dialog state tracking challenge. In Proceedings
of the SIGDIAL 2013 Conference, pages 467–471,
Metz, France. Association for Computational Lin-
guistics.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014. Robust dialog state tracking us-
ing delexicalised recurrent neural networks and
unsupervised adaptation. In Proceedings of the
2014 IEEE Spoken Language Technology Workshop
(SLT), pages 360–365. IEEE.

Matthew S Henderson. 2015. Discriminative methods
for statistical spoken dialogue systems. Ph.D. thesis,
University of Cambridge.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Jiaying Hu, Yan Yang, Chencai Chen, Liang He, and
Zhou Yu. 2020. SAS: Dialogue state tracking via
slot attention and slot information sharing. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6366–
6375.

Filip Jurčíček, Blaise Thomson, and Steve Young.
2011. Natural actor and belief critic: Reinforcement
algorithm for learning parameters of dialogue sys-
tems modelled as pomdps. ACM Transactions on
Speech and Language Processing (TSLP), 7(3):1–
26.

Hwaran Lee, Seokhwan Jo, HyungJun Kim, Sangkeun
Jung, and Tae-Yoon Kim. 2020. SUMBT+LaRL:
End-to-end neural task-oriented dialog system
with reinforcement learning. arXiv preprint
arXiv:2009.10447.

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019.
SUMBT: slot-utterance matching for universal and
scalable belief tracking. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5478–5483.

7911

Kyusong Lee, Tiancheng Zhao, Alan W. Black, and
Maxine Eskenazi. 2018. Dialcrowd: A toolkit for
easy dialog system assessment. In Proceedings of
the 19th Annual SIGdial Meeting on Discourse and
Dialogue, pages 245–248, Melbourne, Australia. As-
sociation for Computational Linguistics.

Esther Levin, Roberto Pieraccini, and Wieland Eck-
ert. 1998. Using markov decision process for learn-
ing dialogue strategies. In Proceedings of the
1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181), volume 1, pages 201–204. IEEE.

Shiyang Li, Semih Yavuz, Kazuma Hashimoto, Jia
Li, Tong Niu, Nazneen Rajani, Xifeng Yan, Yingbo
Zhou, and Caiming Xiong. 2020a. CoCo: Control-
lable counterfactuals for evaluating dialogue state
trackers. arXiv preprint arXiv:2010.12850.

Ziming Li, Sungjin Lee, Baolin Peng, Jinchao Li, Ju-
lia Kiseleva, Maarten de Rijke, Shahin Shayandeh,
and Jianfeng Gao. 2020b. Guided dialogue policy
learning without adversarial learning in the loop. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2308–2317. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Andrey Malinin. 2019. Uncertainty Estimation in
Deep Learning with application to Spoken Language
Assessment. Ph.D. thesis, University of Cambridge.

Andrey Malinin and Mark Gales. 2018. Predictive
uncertainty estimation via prior networks. In Ad-
vances in Neural Information Processing Systems 31
(NeurIPS 2018), pages 7047–7058.

Andrey Malinin, Bruno Mlodozeniec, and Mark Gales.
2019. Ensemble distribution distillation. In Interna-
tional Conference on Learning Representations.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017a.
Neural belief tracker: Data-driven dialogue state
tracking. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1777–1788, Van-
couver, Canada. Association for Computational Lin-
guistics.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017b.
Neural belief tracker: Data-driven dialogue state
tracking. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1777–1788.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,
David Sculley, Sebastian Nowozin, Joshua V Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. 2019.
Can you trust your model’s uncertainty? evaluat-
ing predictive uncertainty under dataset shift. Ad-
vances in Neural Information Processing Systems 32
(NeurIPS 2019).

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Klein-
berg, and Kilian Q Weinberger. 2017. On fairness
and calibration. Advances in Neural Information
Processing Systems, 30:5680–5689.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze.
2020. Sentence meta-embeddings for unsupervised
semantic textual similarity. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7027–7034, Online. As-
sociation for Computational Linguistics.

Osman Ramadan, Paweł Budzianowski, and Milica
Gašić. 2018. Large-scale multi-domain belief track-
ing with knowledge sharing. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
432–437.

Max Ryabinin, Mark Gales, and Andrey Malinin.
2021. Scaling ensemble distribution distillation to
many classes with proxy targets. arXiv preprint
arXiv:2105.06987.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang.
2019. Guided dialog policy learning: Reward es-
timation for multi-domain task-oriented dialog. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 100–
110.

Blaise Thomson, F Jurčíček, M Gašić, Simon Keizer,
François Mairesse, Kai Yu, and Steve Young. 2010.
Parameter learning for POMDP spoken dialogue
models. In Proceedings of the 2010 IEEE Spoken
Language Technology Workshop, pages 271–276.

Blaise Thomson and Steve Young. 2010. Bayesian up-
date of dialogue state: A POMDP framework for
spoken dialogue systems. Computer Speech & Lan-
guage, 24(4):562–588.

Carel van Niekerk, Michael Heck, Christian
Geishauser, Hsien-chin Lin, Nurul Lubis, Marco
Moresi, and Milica Gasic. 2020. Knowing what you
know: Calibrating dialogue belief state distributions
via ensembles. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
3096–3102, Online. Association for Computational
Linguistics.

7912

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Daan Wierstra, et al. 2016. Matching networks for
one shot learning. Advances in neural information
processing systems, 29:3630–3638.

Gellért Weisz, Paweł Budzianowski, Pei-Hao Su, and
Milica Gašić. 2018. Sample efficient deep reinforce-
ment learning for dialogue systems with large action
spaces. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 26(11):2083–2097.

Jason Williams. 2012. A belief tracking challenge task
for spoken dialog systems. In NAACL-HLT Work-
shop on Future directions and needs in the Spo-
ken Dialog Community: Tools and Data (SDCTD
2012), pages 23–24, Montréal, Canada. Association
for Computational Linguistics.

Jason D Williams and Steve Young. 2007. Partially
observable markov decision processes for spoken
dialog systems. Computer Speech & Language,
21(2):393–422.

Fanghua Ye, Jarana Manotumruksa, Qiang Zhang,
Shenghui Li, and Emine Yilmaz. 2021. Slot self-
attentive dialogue state tracking. In Proceedings of
the Web Conference 2021, pages 1598–1608.

Steve Young, Catherine Breslin, Milica Gašić, Matthew
Henderson, Dongho Kim, Martin Szummer, Blaise
Thomson, Pirros Tsiakoulis, and Eli Tzirkel Han-
cock. 2016. Evaluation of statistical POMDP-based
dialogue systems in noisy environments. In Situated
Dialog in Speech-Based Human-Computer Interac-
tion, pages 3–14. Springer.

Steve Young, Jost Schatzmann, Karl Weilhammer, and
Hui Ye. 2007. The hidden information state ap-
proach to dialog management. In 2007 IEEE In-
ternational Conference on Acoustics, Speech and
Signal Processing-ICASSP’07, volume 4, pages IV–
149. IEEE.

Jianguo Zhang, Kazuma Hashimoto, Chien-Sheng Wu,
Yao Wang, S Yu Philip, Richard Socher, and Caim-
ing Xiong. 2020. Find or classify? dual strategy for
slot-value predictions on multi-domain dialog state
tracking. In Proceedings of the Ninth Joint Con-
ference on Lexical and Computational Semantics,
pages 154–167.

Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi
Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao,
Xiaoyan Zhu, and Minlie Huang. 2020. Convlab-
2: An open-source toolkit for building, evaluating,
and diagnosing dialogue systems. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 142–149, Online. Association for Computa-
tional Linguistics.

A Example dialogues

Here we provide two example dialogues from our
human trial, which illustrates the advantage of us-
ing uncertainty. In Figures 3 and 4 we observe that
the system makes a second request to the user to
clarify the intent of the user.

User: I need to book a cheap 4 star hotel.
System: Do you have a area preference?
User: I need the hotel to be eastern.
System: Is there a specific area of town you are
interested in?
User: The east.
Figure 3: Extract from a dialogue with a real user illus-
trating the importance of uncertainty in a dialogue.

User: Find me a hotel in the city centre.
System: Do you have a price range preference?
User: High
System: It is in the centre. What price range
would you like?
User: A highly priced hotel.
System: Everyone seems to enjoy Acorn guest
house. It is an expensive hotel. Is there anything
else I can help you with?
Figure 4: Extract from a dialogue with a real user illus-
trating the importance of uncertainty in a dialogue.

B Loss Functions

Consider the classification problem with input fea-
tures x, oracle class y and training dataset:

Dtrain = {(x(1), y(1)), ..., (x(N), y(N))},
consisting of N labelled examples.

B.1 Label Smoothing Loss Function
The label smoothing loss is a regularised variant of
standard negative log likelihood loss. Here, instead
of considering a 1-hot target yI , some noise is
induced in the target distribution in the form of:

yls = (1− ε)yI +
ε

K
,

where ε is the smoothing parameter, yls the
noisy/smoothed targets and yI the one hot represen-
tation of the target y. The objective is to minimise
the KL divergence between the predictive distri-
bution, P(y|x(i),φ), and the smoothed target yls.
That is

Lls(φ,Dtrain) =
1

N

N∑
i=1

KL
[
y
(i)
ls ||P(y|x

(i),φ)
]

7913

B.2 Distillation Loss Functions
Here we detail the loss functions used for ensem-
ble distillation (EnD) and ensemble distribution
distillation (EnD2) in this work.

Consider an ensemble {θ(1), ...,θ(M)} con-
sisting of M models, with predictive posterior
P(y|x(i),Dtrain).

Standard ensemble distillation (Hinton et al.,
2015) is accomplished by minimising the KL-
divergence between a student model with parame-
ters φ and the ensemble’s predictive posterior:

LEnD(φ,Dtrain) =

1

N

N∑
i=1

KL
[
P(y|x(i),Dtrain) || P(y|x(i),φ)

]
Distribution distillation is accomplished using

the improved loss function proposed by Ryabinin
et al. (2021). Here, we first compute a Proxy Dirich-
let Target with Dirichlet concentration parameters
β from the ensemble:

π̂k(x)=
1

M

M∑
m=1

P(y = ωk|x,θ(m))

β̃0(x)=
K − 1

2
∑K

k=1 π̂k(ln π̂k−
∑M

m=1
lnπ

(m)
k
M)

βk(x)=π̂k(x) · β̃0(x) + 1, β0 =
K∑
k=1

βk.

(12)

Given this Proxy Dirichlet Target, distribution dis-
tillation is done by minimising the following loss:

LEnD2(φ,Dtrain) =

1

N

N∑
i=1

[
−Ep(π|x(i),φ)[

K∑
k=1

π̂
(i)
k lnπk]

+
1

β
(i)
0

KL[p(π|x(i),φ)‖p(π|1)]
]
.

(13)

C SetSUMBT Implementation Details

Here we provide details regarding the SetSUMBT
model configuration and the model training con-
figuration. Table 4 provides details about the con-
figuration of the SetSUMBT model. Tables 5 and
6 provide details regarding the training configu-
rations for both the single model and distillation
(EnD) of SetSUMBT. For all SetSUMBT models
the Set Pooler consists of a single convolutional
layer with padding followed by a mean pooling
layer.

Parameter Value
Roberta pretrained checkpoint roberta-base

Hidden size 768
SUM attention heads 12

Context tracking GRU hidden size 300
Set Pooler CNN filter size 3

Dropout rate 0.3
Maximum turn length 64

Candidate description length 12

Table 4: SetSUMBT model configuration.

Parameter Value
Learning rate (LR) 1e− 5

LR Scheduler warmup proportion 0.1
Batch size 3

Maximum turns per dialogue 12
Epochs 100

Early stopping criteria 25 epochs
Label smoothing ε 0.05

αgoal 1.0
αgeneral 0.2
αrequest 0.2
αdomain 0.2

Table 5: Single model and EnD2 training configura-
tions. EnD2 does utilise the Label smoothing ε.

D Variations in User Simulator Output

The user simulator used in our experiments consists
of a natural language understanding (NLU) module,
a rule based user agent and template based natural
language generation module, all provided in the
ConvLab 2 environment (Zhu et al., 2020). A pre-
defined set of rules simulates the user behaviour
based on the predicted semantic system actions and
the resulting user actions are mapped to natural
language using a pre-defined set of templates. To
induce variation to the user simulator utterances
and thus make understanding more difficult for
the system, we utilise a set of pre-defined value
variations obtained from the MultiWOZ 2.1 value
map (Heck et al., 2020). For example, we can map
the value, expensive, in the user action:

Inform - Restaurant - Price_range
- expensive

to any of the following options:

[high end, high class, high
scale, high price, high priced,
higher price, fancy, upscale,
nice, expensively, luxury].

In our experiments 20% of simulated user actions
contain such variations.

7914

Parameter Value
Learning rate (LR) 1e− 5

LR Scheduler warmup proportion 0.1
Batch size 3

Maximum turns per dialogue 12
Epochs 100

Early stopping criteria 25 epochs
Distribution smoothing 1e− 4

Temperature scaling base temperature 2.5
Temperature scaling annealing cycle 0.1

αgoal 1.0
αgeneral 0.2
αrequest 0.2
αdomain 0.2

Table 6: EnD training configuration.

E System Latencies

In this section we provide the processing times per
turn for our SetSUMBT model as well as the sys-
tems used in this work. These processing times are
averaged across the 7372 turns in the MultiWOZ
2.1 test set. This test is performed on a Google
Cloud virtual machine containing a Nvidia V100
16GB GPU, 8 n1-standard VCPU’s and 30GB
memory. In Table 7 we compare the latencies of a
single instance of SetSUMBT against a 10 model
ensemble. In Table 8 we compare the latencies of
the full dialogue system setups used in this work.

Tracker Latency (ms)
Single instance 77.7680

10 Instance ensemble 768.0256

Table 7: Turn level latency of the SetSUMBT model
and ensemble.

System Latency (ms)
No uncertainty 135.9768

Confidence scores 138.0960
Total uncertainty 147.4574

Knowledge uncertainty 152.5392

Table 8: Turn level latency of the various full dialogue
systems utilised in this work.

77

Chapter 7

CAMELL: Confidence-based Acquisition
Model for Efficient Self-supervised Active
Learning with Label Validation

This chapter summarises our work on uncertainty estimation in dialogue belief tracking and the
downstream impact on the dialogue policy module and gives a verbatim copy of our manuscript (van
Niekerk et al., 2023):

Carel van Niekerk et al. (2023). “CAMELL: Confidence-based Acquisition Model for Efficient
Self-supervised Active Learning with Label Validation”. In: arXiv preprint arXiv:2310.08944 Version 1.

URL: https://arxiv.org/abs/2310.08944

7.1 Summary

In this work, we introduce CAMELL (Confidence-based Acquisition Model for Efficient self-supervised
active Learning with Label validation), a framework designed to mitigate these challenges and en-
hance both data and computational efficiency.

The CAMELL framework offers three major innovations: (1) selective annotation: It reduces the
burden of data labelling by requiring expert annotators to label only a subset of the entire sequence,
as opposed to the conventional approach of labelling every time-step and output category. (2) self-
supervision: For the remaining parts of the sequence, the model employs a self-supervised approach
to generate labels, thereby reducing dependency on human annotators. (3) label validation: Crucially,
CAMELL incorporates a label validation mechanism that screens both expert and self-generated
labels to ensure data quality. This prevents errors and inconsistencies from polluting the training set
and deteriorating model performance.

We rigorously evaluated CAMELL across different tasks, with a special focus on dialogue belief
trackinga task particularly sensitive to the quality and quantity of labeled data. Remarkably, our
results indicate that CAMELL achieves 95% of full-training dataset performance while utilizing
only 16% of expert-provided labels. In terms of efficiency and robustness, CAMELL significantly
outperforms the existing baselines. Moreover, we noted that CAMELL exceeds the performance of
existing active learning baselines in the context of machine translation with a generative language
model. This underscores its potential efficacy for applications involving large language models.
As an additional contribution, we developed a method for automatically detecting and correcting
inaccuracies in human-provided labels, which further improves the overall quality of the dataset.

7.2 Personal Contributions

The implementation and technical results are my own work, while my co-authors contributed to the
writing and proofreading process.

https://arxiv.org/abs/2310.08944

CAMELL: Confidence-based Acquisition Model
for Efficient Self-supervised Active Learning with Label Validation

Carel van Niekerk, Christian Geishauser, Michael Heck, Shutong Feng
Hsien-chin Lin, Nurul Lubis, Benjamin Ruppik and Renato Vukovic and Milica Gašić

Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
{niekerk,geishaus,heckmi,fengs,linh,lubis,ruppik,revuk100,gasic}@hhu.de

Abstract

Supervised neural approaches are hindered
by their dependence on large, meticulously
annotated datasets, a requirement that is par-
ticularly cumbersome for sequential tasks.
The quality of annotations tends to deterio-
rate with the transition from expert-based
to crowd-sourced labelling. To address
these challenges, we present CAMELL
(Confidence-based Acquisition Model for
Efficient self-supervised active Learning
with Label validation), a pool-based active
learning framework tailored for sequential
multi-output problems. CAMELL possesses
three core features: (1) it requires expert an-
notators to label only a fraction of a chosen
sequence, (2) it facilitates self-supervision
for the remainder of the sequence, and (3)
it employs a label validation mechanism to
prevent erroneous labels from contaminating
the dataset and harming model performance.
We evaluate CAMELL on sequential tasks,
with a special emphasis on dialogue belief
tracking, a task plagued by the constraints of
limited and noisy datasets. Our experiments
demonstrate that CAMELL outperforms the
baselines in terms of efficiency. Furthermore,
the data corrections suggested by our method
contribute to an overall improvement in the
quality of the resulting datasets.

1 Introduction

Supervised deep neural networks require large
amounts of accurately annotated data (Russakovsky
et al., 2015; Szegedy et al., 2017; Li et al., 2020b).
Sequential multi-output tasks, in particular, de-
mand that the neural network makes multiple pre-
dictions at each time-step within an input sequence.
Given this requirement, the effort to label data
grows rapidly, exceeding what is practically fea-
sible, as each individual time-step and every out-
put category necessitates precise and consistent

labelling. Therefore, the reliance on purely human-
generated labels establishes a substantial constraint
on the scalability of such systems.

A prominent example of a sequential multi-
output label task for which this bottleneck is evi-
dent is dialogue belief tracking. A dialogue belief
tracker is one of the core components of a dia-
logue system, tasked with inferring the goal of
the user at every turn (Young et al., 2007). Cur-
rent state-of-the-art trackers are based on deep neu-
ral network models (Lin et al., 2021; van Niekerk
et al., 2021; Heck et al., 2022). These models out-
perform traditional Bayesian network-based belief
trackers (Young et al., 2010; Thomson and Young,
2010). However, it is evident that these neural be-
lief trackers are greatly hindered by the lack of
adequate training data. Real-world conversations,
even those pertaining to a specific task-oriented
domain, are extremely diverse. They encompass
a broad spectrum of user objectives, natural lan-
guage variations, and the overall dynamic nature of
human conversation. While there are many sources
for dialogue data, such as call centres or virtual
personal assistants, labelled dialogue data is scarce
and several orders of magnitude smaller than, say,
data for speech recognition (Panayotov et al., 2015)
or translation (Bojar et al., 2017). Although zero-
shot trackers do not require large amounts of la-
belled data, they typically underperform compared
to supervised models that are trained on accurately
labelled datasets (Heck et al., 2023).

One of the largest available labelled datasets for
task-oriented dialogues is MultiWOZ, which is a
multi-domain dialogue dataset annotated via crowd-
sourcing. The challenges in achieving consistent
and precise human annotations are apparent in all
versions of MultiWOZ (Budzianowski et al., 2018;
Eric et al., 2020; Zang et al., 2020; Han et al., 2021;
Ye et al., 2022). Despite manual corrections in
the most recent edition, model performance has

plateaued, not due to limitations in the models, but
as a result of data inconsistencies (Li et al., 2020a).

In this work we present CAMELL, a pool-
based active learning approach for sequential multi-
output tasks. Given an underlying supervised learn-
ing model that can estimate confidence in its predic-
tions, CAMELL substantially reduces the required
labelling effort and is robust to annotation errors.
CAMELL comprises of:

• A selection component that selects a subset
of time-steps and output categories in input
sequences to be labelled by experts rather than
whole sequences, as is normally the case.

• A self-supervision component that uses self-
generated labels for the remaining time-steps
and output categories within selected input
sequences.

• A label validation component which examines
the reliability of the human-provided labels.

We assess the feasibility of CAMELL’s selection
and self-supervision components within an ide-
alised setting for machine translation. Encouraged
by the results of the feasibility study, we then ap-
ply all components of CAMELL to the dialogue
belief tracking task. Notably, we achieve 95% of
a tracker’s full-training dataset performance using
merely 16% of the expert-provided labels.

On top of this framework, we develop a method
for automatically detecting and correcting inaccu-
racies of human labels in existing datasets. We
illustrate that these corrections boost performance
of two distinct tracking models, overcoming the
limitations imposed by labelling inconsistencies.
Having demonstrated its efficacy in machine trans-
lation and dialogue belief tracking, our framework
holds potential for broad applicability across var-
ious sequential multi-output tasks, such as object
tracking, pose detection, and language modelling.

2 Related Work

2.1 Active Learning
Active learning is a machine learning framework
that identifies under-represented scenarios in la-
belled data and interactively queries an annota-
tor (Cohn et al., 1996). This framework employs
an acquisition function to select the most beneficial
data points for querying. This function estimates
the potential improvement in performance resulting
from an observed label. These functions typically

depend on prediction uncertainty (Houlsby et al.,
2011), data space coverage (Sener and Savarese,
2018), variance reduction (Johansson et al., 2007),
or topic popularity (Iovine et al., 2022).

Active learning approaches can be categorised
into stream-based and pool-based (Settles, 2009).
Stream-based setups are usually employed when
data creation and labelling occur simultaneously.
In contrast, pool-based approaches separate these
steps, operating under the assumption that an unla-
belled data pool is available.

Active learning has been frequently employed
in tasks such as image classification (Houlsby
et al., 2011; Gal et al., 2017) and machine trans-
lation (Vashistha et al., 2022; Liu et al., 2018). A
noteworthy example in machine translation is the
work of Hu and Neubig (2021), which enhances
efficiency by applying active learning to datasets
enriched with frequently used phrases. While this
approach reduces the requirement for exhaustive
labelling, it constrains the annotator’s capacity to
produce comprehensive translations of longer sen-
tences.

Conversely, active learning is less prevalent in
dialogue belief tracking, with Xie et al. (2018) be-
ing a notable exception. Their framework involves
querying labels for complete sequences (dialogues)
and bases selection on a single output category,
neglecting any potential correlation between cat-
egories. Furthermore, this approach does not ad-
dress label verification, hence not accounting for
annotation quality problems.

One work that addresses the problem of anno-
tation quality within an active learning framework
is Su et al. (2018). In this work, stream-based ac-
tive learning is deployed for the purpose of learning
whether a dialogue is successful. The user provided
labels are validated using a label confidence score.
This innovative learning strategy is however not
directly applicable to sequential multi-output tasks
as it does not deal with the sequential nature of the
problem.

2.2 Semi-Supervised Learning

In a semi-supervised learning setting, a model
learns from a mixture of labelled and unlabelled
data. This is typically achieved by training an
encoder-decoder type model using a large pool of
unlabelled data. This "pre-trained" encoder model
is then combined with a task-specific architecture
to perform supervised learning during the so called

"fine-tuning" stage. The training of many belief
tracking models is based on fine-tuning transformer
models such as RoBERTa (Liu et al., 2019), being
a prime example of semi-supervised learning (van
Niekerk et al., 2021; Lee et al., 2021; Su et al.,
2022; Heck et al., 2022).

Pseudo labelling (Lee, 2013) and noisy stu-
dent model training (Xie et al., 2020) are alter-
native semi-supervised methodologies where an
initial teacher model, trained using a small labelled
dataset, produces pseudo labels for unlabelled data.
This data is then used to train a student model,
which eventually assumes the teacher role. This
cyclical training procedure can bolster model per-
formance without necessitating extra data.

2.3 Label Validation

The process of manually correcting labels is very
tedious and expensive. As a result, many works
focus on learning from imperfect labels, using loss
functions and/or model architectures adapted for
label noise (Reed et al., 2015; Xiao et al., 2015;
Sukhbaatar et al., 2015). Still these methods have
been unable to match the performance of models
trained on datasets that include manually corrected
labels. However, the alternative of automated label
validation or correction is often overlooked by such
works. It has been shown that learning from auto-
matically corrected labels, e.g. based on confidence
scores, perform better than learning from noisy la-
bels alone (Liu et al., 2017; Jiao et al., 2019). The
major drawback of these approaches is that they
rely on overconfident predictions of neural network
models to correct labels, which can further bias the
model.

3 CAMELL: Confidence-based
Acquisition Model for Efficient
Self-supervised Active Learning with
Label Validation

In this section, we introduce our pool-based active
learning approach, named CAMELL, to address se-
quential multi-output classification problems. Let
us consider a classification problem with input fea-
tures, denoted as x, and output y. According to
Read et al. (2015), this problem can be termed as
a multi-output classification problem if the output
consists of multiple label categories that need to be
predicted simultaneously. Specifically, for a prob-
lem with M categories, the output is represented as
y = ⟨y1, y2, ..., yM ⟩, where each ym,m ∈ [1,M]

can be binary or multivariate. Furthermore, this
problem is characterised as a sequential classifi-
cation problem if the output is dependent on a
sequence of prior inputs. For a sequence with
T time-steps, the input-output pairs can be rep-
resented as ⟨{x1,y1}, {x2,y2}, · · · , {xT ,yT }⟩,
where yt = ⟨y1t , y2t , ..., yMt ⟩ represents the output
labels at time step t ∈ [1, T].

In a conventional setting, for an unlabelled data
sequence Xi = ⟨x1, · · · ,xT ⟩, an annotator would
typically be required to provide labels, ymt , for
each label category m ∈ [1,M] at every time step
t ∈ [1, T].

3.1 Requirements

CAMELL, as a confidence-based active learning
framework, utilises confidence estimates to deter-
mine the data points to be queried for labelling.
Hence, a critical requirement for the learning model
within CAMELL is its ability to estimate the con-
fidence associated with its predictions. More
specifically, for each category m and each value
v ∈ Vm this category can assume, the learning
model should be able to estimate the predictive
probability (an indicator of model confidence),
πm
t (v) = p (ymt = v), as part of the predictive dis-

tribution, πm
t = [πm

t (v)]∀v∈Vm .
The calibration of these confidence estimates is

also critical. Calibration refers to the alignment
between the model’s estimated confidence and the
empirical likelihood of its predictions (Desai and
Durrett, 2020). Should the model’s confidence esti-
mates be poorly calibrated, it may select instances
that are not informative, resulting in an inefficient
allocation of the annotation budget and potentially
sub-optimal performance.

3.2 Active Learning Approach

The approach we propose starts with an initial learn-
ing model, which is trained using a small labelled
seed dataset and iteratively progresses through four
stages: data selection, labelling, label validation,
and semi-supervised learning. These iterations con-
tinue until either a pre-defined performance thresh-
old is achieved or the dataset is fully labelled. The
schematic representation of this approach is illus-
trated in Figure 1.

Stage 1: Data selection In each cycle, we select
a subset of Nsel sequences from the unlabelled pool
of size Nunlb. Selection is based on the model’s
prediction confidence, pmt . Instances in which the

 Stage 3: Label validation

 Stage 1: Data selection Prediction confidence scores

...

 Stage 4: Semi-supervised learning

Label confidence scores

 Stage 2: Labelling

Learning
model

Prediction
confidence
estimation

Unlabelled dataset

...

...

Labelled dataset

...

Label
confidence
estimation

...

Self-labelling

Expert
labelling

...

Certain...

Train

Reliable

...
...

...

...

...
...

... ...

......
...

Newly labelled data

...

Uncertain

Figure 1: CAMELL comprises four stages. Stage 1 involves data selection, choosing instances for labelling where
the model displays uncertainty (confidence below the αsel threshold), as indicated by pink arrows. In Stage 2,
annotators label the selected instances while the model self-labels the remaining ones (dashed green arrows). Stage
3 validates labels using a label confidence estimate, incorporating only those exceeding the αval threshold and the
self-labelled data into the dataset (black arrows). Finally, Stage 4 involves retraining the model for the next cycle.

model displays low confidence (confidence below
the αsel threshold) are selected. More precisely, an
input sequence is selected if the model shows high
uncertainty for at least one time-step t and label
category m instance ymt . The αsel threshold is set
such that Nsel sequences are selected for labelling.

Stage 2: Labelling Expert annotators are respon-
sible for labelling the time-steps and categories se-
lected in Stage 1. These labels are denoted by ṽmt .
Concurrently, the model completes the labelling
for the remaining time-steps and categories, v̂mt ,
where its confidence is always above the threshold
αsel.

Stage 3: Label validation We can consider the
expert labels, ṽmt , with label confidence, p̃mt , below
a threshold αval to be potentially incorrect. To
safeguard the model from being trained with these
potentially erroneous labels, we purposely exclude
them (these labels are masked in the dataset). The
αval threshold can be set using a development set,
which helps maintain the quality of the training
data.

Stage 4: Semi-supervised learning At each it-
eration of the active learning approach the expert
provided labels that passed validation (Stage 3) and
the self-determined labels from Stage 2 are added
to the labelled pool, resulting in Nlab + Nsel data
sequences. Based on these the learning model is
retrained.

3.3 Confidence Estimation

In order to accurately estimate the prediction con-
fidence used in stage 1 of CAMELL and the label
confidence used in stage 3, we propose a confi-
dence estimation model for each. In order for these
models to accurately capture the confidence of a
learning model, we incorporate both the total and
knowledge uncertainty of the learning model. Total
uncertainty captures all uncertainty in the model’s
prediction, irrespective of the source. Conversely,
knowledge uncertainty in a model originates from
its incomplete understanding, which occurs due
to a lack of relevant data during training, or the
inherent complexity of the problem (Gal, 2016).

Both the prediction and label confidence estima-
tion models share the same objective: to estimate
the probability that the value vmt for a specific label
category m at time-step t is correct. To provide
the training data for these models, we assume that
the labels in the labelled pool are correct, as they
have already been validated. Furthermore, we re-
train these models whenever more labelled data is
obtained.

Broadly speaking, both models share the same
structure:

hm
t = EncIntra-Cat(z

m
t)

ht = EncInter-Cat([z
j
t]
M
j=1)

pmt = Conf(hm
t ,ht),

(1)

where zm
t = [πm

t (vmt), T (πm
t),K(πm

t)] is a set of
uncertainty measures for category m. As illustrated
in Figure 2, these measures consist of the predictive
probability specific to πm

t (vmt), along with mea-
sures of total, T (πm

t), and knowledge uncertainty,
K(πm

t), associated with the predictive distribution
πm
t . The intra-category encoder is tasked with ex-

tracting important category specific features, hm
t ,

from these uncertainties. Important features across
categories, ht, are extracted by the inter-category
encoder1. The inter-category encoder allows the
model to take advantage of any correlations be-
tween categories, which was not done by Xie et al.
(2018). Both the inter- and intra-category encoders
are linear fully connected layers. The confidence
estimation component generates a confidence score,
pmt , reflecting the accuracy of a given category’s
value. This component is composed of a linear fea-
ture transformation layer, followed by a prediction
layer with a Sigmoid activation function.

The design choices for the confidence estimation
models were motivated by a desire to capture both
intra- and inter-category uncertainty for reliable
confidence estimation. We observed that exclud-
ing inter-category features degraded performance,
emphasising the importance of incorporating them.

3.3.1 Prediction Confidence Estimation
The objective of the prediction confidence esti-
mation model is to assess whether the value pre-
dicted, v̂mt = argmaxv∈Vm(πm

t (v)), by the learn-
ing model is the "true" value, based on the predic-
tion confidence score pmt . This model, also known
as the confidence-based acquisition model, is used
as the criterion for selecting instances to label in
stage 1.

3.3.2 Label Confidence Estimation
The objective of the label confidence estimation
model is to determine whether an annotator’s label,
ṽmt , is the "true" value, with this decision being
based on the label confidence score p̃mt . Although it
is possible to use a single model for both prediction
and label confidence estimation2, but we believe
it is a sub-optimal strategy. This strategy is sub-
optimal because the model has not been exposed
to instances of "incorrect" labels. To address this,

1During label confidence estimation, for categories not
selected for labelling, self-labels are used to complete the
inter-category features.

2For example, in Su et al. (2018) the confidence score of
the learning model is directly used for both purposes.

Uncertainty
measures

Learning model
predictive distribution

Prediction uncertainty
measures

Probability
of prediction

(a) Prediction

Learning model
predictive distribution

Label uncertainty
measures

Noisy model
predictive distribution

Probability
of label

Uncertainty
measures

Uncertainty
measures

Probability
of label

(b) Label

Figure 2: Category-specific uncertainty measures: (a)
displays prediction uncertainty, including prediction
probability and total and knowledge uncertainty; (b)
depicts label uncertainty, including label probability
and total and knowledge uncertainty from both learning
and noisy models.

we generate a noisy dataset featuring "incorrect"
labels for training purposes.

Further, we extend z̃m
t to include uncertainty

measures drawn from both a noisy model, trained
on the corresponding noisy dataset, and the original
learning model (as depicted in Figure 2b). Given
that the noisy model is conditioned to accept the
"incorrect" labels as correct, the discrepancy in un-
certainty between the noisy model and the learning
model enhances the label confidence estimator’s
ability to identify potentially incorrect labels.

Noisy dataset The creation of a noisy dataset can
be approached in two ways. One method is to ran-
domly replace a portion of labels. However, this
approach may not yield a realistic noisy dataset,
considering human errors are rarely random. A sec-
ond approach, particularly when the learning model
is an ensemble, as is often the case for uncertainty-
endowed deep learning models (Gal and Ghahra-
mani, 2016; Ashukha et al., 2020), is to leverage
individual ensemble members to supply noisy la-
bels. This method may be more effective, given
the individual members’ typical lower accuracy
compared to the ensemble as a whole.

In our proposed approach, we initially select
αnoise percent of the sequences from the training
data at random. For each category m, we choose a
random ensemble member to generate noisy labels.
This ensemble member creates labels at each time
step t by sampling from its predictive probability
distribution. To avoid generating labels from the
clean dataset, the probabilities of these are set to
zero prior to sampling. The noisy dataset is re-
generated after each update of the learning model

using the updated ensemble members, enhancing
diversity of noisy labels.

4 Experiments

4.1 Baselines
Random selection randomly selects sequences
to be annotated. Random selection is often used
as a baseline for active learning approaches as it
allows us to observe the impact of purely adding
more labelled data to our labelled pool without
strategically selecting sequences to be labelled. Its
advantage is that it maintains the full data distri-
bution with every selection, thus not creating a
bias (Dasgupta and Hsu, 2008).

Bayesian Active Learning by Disagreement
(BALD) is an uncertainty-based active learning
method which employs knowledge uncertainty as
the primary metric for selection (Houlsby et al.,
2011). This technique has established itself as a
strong baseline in various applications. For in-
stance, in image classification tasks (Gal et al.,
2017) and named entity recognition (Shen et al.,
2017), BALD has shown notable performance. Its
performance is further enhanced when used in
conjunction with ensemble models (Beluch et al.,
2018). Given its widespread adoption and proven
efficacy, we see BALD as an ideal baseline, as
it is one of the most effective methods for active
learning currently available.

In our study, we incorporate two variants of
BALD. The first, referred to as the baseline BALD,
involves selecting complete sequences for labelling.
We examined two criteria for making the selection
decision: one based on the cumulative uncertainty
across all time-steps and label categories, and an-
other based on the average uncertainty across cat-
egories and time. Upon evaluation, we observed
that the latter criterion yielded superior results, and
therefore, adopted it as our baseline.

We further present an enhanced version of
BALD which consists of stages 1, 2, and 4 of our
approach as outlined in Section 3, utilising knowl-
edge uncertainty as the prediction confidence es-
timate. We call this BALD with self supervision,
BALD+SS. However, knowledge uncertainty is
not suitable for label validation as it cannot provide
candidate level confidence scores.

4.2 Feasibility Study
We conduct a feasibility study in an idealised set-
ting by applying our proposed CAMEL (CAMELL

without label validation) framework to the machine
translation task. Neural machine translation (NMT)
is fundamentally aimed at translating sentences
from a source language to a target language.

4.2.1 Implementation Details
We apply CAMEL to the machine translation task
using the T5 encoder-decoder transformer model
(t5-small) (Raffel et al., 2020). We utilise an
ensemble of 10 models in order to produce a well-
calibrated predictive distribution, which requires
2500 GPU hours to fully train. Approximately 40%
of this time is utilised to train the ensemble, 50%
for the annotation process described below, and
10% for training the confidence estimator. The en-
semble estimates two types of uncertainty. The
first is the total uncertainty, represented by the en-
tropy of the predictive distribution. The second
is knowledge uncertainty, which refers to the mu-
tual information between the predictive distribution
and the ensemble members. The WMT17 DE-EN
dataset, which consists of German to English trans-
lations (Bojar et al., 2017), is used for training, and
METEOR (Banerjee and Lavie, 2005) serves as the
evaluation metric.

As machine translation does not entail a multi-
output task, we employed a simplified version of
the confidence estimation model, introduced in Sec-
tion 3.3, consisting of only the intra-category en-
coder. The latent dimension of the encoder and
feature transformation layer is 16. The parameters
are optimised using the standard binary negative
log likelihood loss (Cox, 1958)3.

It is crucial to address the inherent challenges
in sequential machine translation labelling: (1) fu-
ture sentence structure and labels can change de-
pending on the current label, and (2) for any sen-
tence position there exists multiple valid candidate
words. This complexity hinders seamless integra-
tion of dataset labels with the learning model for
new data labelling. To avoid high translation an-
notation costs, we propose a practical approach:
using an expert translation model, specifically the
MBART-50 multilingual model (Tang et al., 2020),
to simulate a human annotator.

The labelling process we propose, depicted in
Figure 3, is a multi-stage procedure. Initially, the
learning model produces a translation for a selected
source language sentence. As it generates the trans-
lation, it simultaneously estimates its confidence

3https://gitlab.cs.uni-duesseldorf.de/general/
dsml/camell.git

 Expert labelling Self-labelling
Prediction conf.

Learning
model

Prediction
confidence
estimation German text

Die Betrunkenen
haben die

Veranstaltung
unterbrochen.

Label

The drunksExpert translation
modelTh

e

 Self-labelling
Prediction confidence

Learning
model

Prediction
confidence
estimation Th

e
dr

un
ks

in
te

ru
pt

ed th
e

ev
en

t

be
ts

Condition on
Certain Predictions

Condition generation
on annotation

Figure 3: The model-based annotation process for semi-supervised annotation. The learning model initiates the
translation with the word "The", then confidence for the next token generation is below the threshold. The expert
annotation model is prompted and provides the next word, "drunks". The learning model resumes and successfully
generates the remainder of the translation: "interrupted the event".

105.75 105.78 105.80 105.83 105.85 105.88 105.90 105.93

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

M
ET

EO
R

Full dataset
CAML
CAMEL
BALD
Random
BALD+SS

(a) Number of translations

107.40 107.42 107.45 107.47 107.50 107.53 107.55 107.58

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

Full dataset
CAMEL
BALD+SS
Random
CAML
BALD

(b) Number of labels

Figure 4: METEOR score of the T5 translation model using different active learning approaches on the WMT17
DE-EN test set, as a function of (a) the number of translations and (b) the number of labels, with 95% conf. int.

for the subsequent token. Should this confidence
fall below a set threshold αsel, the expert transla-
tion model steps in to supply the next word in the
translation. After the label is provided, the learn-
ing model resumes the translation generation. For
any future token whose confidence drops below the
threshold, the expert translation model re-engages.
This process continues until a complete translation
for the source sentence is realised. The uncertainty
threshold, αsel, is strategically chosen to yield a
maximum of Nann word labels.

4.2.2 Results
We establish that our proposed CAMEL frame-
work, enhanced with self-supervision, is signifi-
cantly more efficient in label acquisition than base-
line models like BALD, BALD+SS, and random
selection. This efficiency is evident in Figure 4b,
which showcases CAMEL’s need for fewer labels
to achieve similar performance levels.

A notable point to observe in Figure 4a is that the
introduction of self-supervision to CAMEL does
not significantly influence its performance in terms
of the number of translations, as evidenced by the
comparison between CAML (CAMEL without the
self-supervised labelling component) and CAMEL.
This implies that self-supervision within CAMEL

is applied predominantly when the model’s pre-
dictions are considered reliable. In contrast, we
observe that BALD+SS, despite its label effi-
ciency shown in Figure 4b, performs poorly in
terms of translations, as demonstrated in Figure 4a.
This drop in performance may be attributed to
BALD+SS’s tendency to incorrectly self-label com-
plex examples. This trend is further validated by
CAML’s lower expected calibration error (ECE) in
Table 1.

In Figure 4 we observe that, CAMEL and its
variant CAML exceed the performance of their
BALD counterparts. This emphasises the value of
our proposed confidence-based acquisition model
in selecting instances for labelling.

Regardless of the methodology used, all models
require roughly the same number of translations,
as shown in Figure 4a. This supports the widely
accepted notion that exposure to large datasets is
vital for training robust natural language processing
(NLP) models.

Encouraged by these results, we adapt CAMEL
to address the dialogue belief tracking problem,
which struggles with significantly noisier datasets.

Confidence Estimator Dataset ECE (%) ↓
CE-SetSUMBT + CAML MultiWOZ 2.1 9.65∗
CE-SetSUMBT + BALD MultiWOZ 2.1 17.21

CE-T5 + CAML WMT17 DE-EN 26.74∗
CE-T5 + BALD WMT17 DE-EN 47.21

Table 1: Comparison of the expected calibration error
(ECE) of confidence estimation approaches. ∗ indicates
significant difference on 95% conf. int.

4.3 Dialogue Belief Tracking Task

In task-oriented dialogue, the dialogue ontol-
ogy O contains a set of M domain-slot pairs
{s1, s2, ..., sM} and a set of plausible values Vsm

for each sm. The goal of the dialogue belief tracker
is to infer the user’s intention for each sm by pre-
dicting a probability distribution over the plausible
values. Notably, each set of plausible values, Vsm ,
includes the not_mentioned value, indicating that
a specific domain-slot pair is not part of the user’s
goal. This allows for computing the model’s confi-
dence for slots not present in the goal.

To train a belief tracking model, we require the
dialogue state, which includes the value for each
domain-slot, in every dialogue turn. The dia-
logue state at turn t in dialogue i is represented
as Bt,i = {(sm, vs

m

t,i)}sm∈O, where vs
m

t,i denotes
the value for the domain-slot pair sm at turn t
in dialogue i. Consequently, we obtain a dataset
D = {(uusr

i,1:t,u
sys
i,1:t−1,Bt,i)

Ti
t=1}Di=1, consisting of

D dialogues, each comprising Ti turns, where user
and system utterances at turn t in dialogue i are
denoted as uusr

i,t and u
sys
i,t , respectively.

To create dataset D, annotators usually provide
relevant values for the domain-slot pairs they be-
lieve are present in the user’s utterance at every turn
t. Subsequently, a handcrafted rule-based tracker
considers the previous state Bt−1, the semantic ac-
tions present in the system utterance and the values
provided by the annotator to generate complete di-
alogue states for each turn (Budzianowski et al.,
2018). However, this approach has several draw-
backs. Firstly, rule-based trackers tend to be impre-
cise and necessitate redevelopment for each new ap-
plication, making it less versatile. Secondly, it may
not use the time of human annotators efficiently
as the learning model could potentially predict the
state for a substantial part of the dialogue accu-
rately. Lastly, there is the risk of human annotators
inadvertently overlooking some slots in the user
input, which could result in missing or incomplete
data.

4.3.1 Learning Model

To apply CAMELL (CAMEL with Label valida-
tion) to the dialogue belief tracking problem, we
use the CE-SetSUMBT (Calibrated Ensemble -
SetSUMBT) model (van Niekerk et al., 2021).
We use CE-SetSUMBT because it produces well-
calibrated uncertainty estimates, which is important
for CAMELL. The CE-SetSUMBT model consists
of 10 ensemble members, requiring 1000 GPU
hours to fully train. Approximately 45% of this
time is utilised for training the ensemble, 45% for
training the noisy model, and 10% for training the
confidence estimators.

The CE-SetSUMBT model employs an ensem-
ble of models to generate uncertainty estimates. By
utilising marginal distributions, it provides well-
calibrated probability distributions of values that
each domain-slot pair sm can take: p(vs

m

t =
v|uusr

t ,u
sys
t−1, c

sm
t−1), where cs

m

t−1 represents the dia-
logue context. It also estimates the total and knowl-
edge uncertainty present in the belief state distribu-
tion.

4.3.2 Datasets

In order to test our proposed approach we utilise
the multi-domain task-oriented dialogue dataset
MultiWOZ 2.1 (Eric et al., 2020; Budzianowski
et al., 2018) and its manually corrected test set
provided in version 2.4 (Ye et al., 2022). Therefore,
in our experiments, we regard MultiWOZ 2.1 as a
dataset with substantial label noise, and the test set
of MultiWOZ 2.4 a dataset with accurate labels.

4.3.3 Implementation Details

The latent dimension of the intra- and inter-
category encoders and feature transformation layer
is 16. During training of the label confidence esti-
mation model (Section 3.3.2), to avoid overfitting,
we deploy techniques to improve the calibration of
this model. These include binary label smoothing
loss (Szegedy et al., 2016), temperature scaling and
noisy training using Gaussian noise (An, 1996).

For the seed dataset (Section 3) we randomly
select 5% of dialogues on which we train the initial
CE-SetSUMBT model. The other dialogues in the
dataset are treated as the unlabelled pool. At each
update step another 5% of the data are selected to
be labelled. At each point where we require expert
labels, we take the original labels provided in the
dataset.

102.60 102.80 103.00 103.20 103.40 103.60 103.80

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Jo
in

t G
oa

l A
cc

ur
ac

y

Full dataset
CAMELL
BALD
CAMEL
Random
BALD+SS
Diversity

(a) Number of dialogues

103.60 103.80 104.00 104.20 104.40 104.60 104.80

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Full dataset
CAMELL
CAMEL
BALD+SS
Diversity
Random
BALD

(b) Number of labels

Figure 5: Joint goal accuracy of the CE-SetSUMBT model using different active learning approaches, on the
MultiWOZ 2.1 test set, as a function of (a) the number of dialogues and (b) the number of labels, with 95% conf.
int.

4.3.4 Evaluation
As the main metric for our experiments we use joint
goal accuracy (JGA) (Henderson et al., 2014). We
further include the joint goal expected calibration
error (ECE) (Guo et al., 2017; van Niekerk et al.,
2020), which measures the calibration of the model.
In terms of measuring efficiency of each method,
we examine JGA as a function of the number of
expert provided labels. In order to assess the quality
of the corrected dataset, we measure the JGA of
the methods trained on a noisy dataset, with and
without the proposed label correction.

4.3.5 Dialogue Diversity Baseline
We include an additional dialogue diversity base-
line, aiming to obtain labels for dialogues geomet-
rically dissimilar from those in the labelled pool,
thus ensuring data space coverage. This diversity
strategy proposed by Xie et al. (2018) assesses sim-
ilarity based on vector embeddings of the candidate
dialogue versus labelled dialogues. We adapt this
approach by employing RoBERTa model embed-
dings (Liu et al., 2019), fine-tuned unsupervisedly
on the MultiWOZ dialogues for masked language
modeling tasks.

4.3.6 Results
As shown in Figure 5b, our proposed CAMELL
framework, along with CAMEL, requires signif-
icantly fewer labels to reach performance levels
comparable to those of the baseline methods. This
indicates that CAMELL is more efficient in dia-
logue belief tracking than the baseline strategies, a
finding that aligns with our observations in trans-
lation tasks. It also highlights the vital role played
by CAMELL’s confidence estimates in guiding the
active learning process. This conclusion is fur-

ther supported by the lower calibration error of
CAMELL’s confidence estimates, as demonstrated
in Table 1.

Another key observation, evident in Figure 5, is
that CAMELL requires fewer dialogues and labels
than CAMEL to achieve comparable performance.
This showcases the effectiveness of label validation
in CAMELL, allowing the model to discard labels
that may otherwise hinder its learning.

It is important to reiterate, paralleling our find-
ings in machine translation, that regardless of the
framework, all models necessitate approximately
the same number of dialogues for training, as de-
picted in Figure 5a.

4.3.7 Label Correction
Using CAMELL’s label validation scheme (Sec-
tion 3.3.2), we automatically correct labels in the
MultiWOZ 2.1 training set. This process involves:
(1) training a CE-SetSUMBT belief tracker on Mul-
tiWOZ 2.1, (2) identifying potentially incorrect
labels through label validation, and (3) replacing
these labels with predictions of CE-SetSUMBT (la-
bels are only replaced if the prediction confidence
is higher than label confidence). The quality of
the cleaned dataset is evaluated using two distinct
trackers.

We retrain the CE-SetSUMBT belief tracker
from scratch on this cleaned dataset (CE-
SetSUMBT+LC) for the first evaluation. In Table 2,
we present the JGA of the two CE-SetSUMBT
trackers on two test sets: the (noisy) MultiWOZ
2.1 test-set and the (manually corrected) Multi-
WOZ 2.4 test-set4. On the MultiWOZ 2.1 test-
set, the model trained using label correction shows

4We never use the MultiWOZ 2.4 validation-set during
training.

Model Setup MultiWOZ 2.1 MultiWOZ 2.4
JGA (%) ↑ ECE (%) ↓ JGA (%) ↑ ECE (%) ↓

CE-SetSUMBT 51.79 10.09 61.63 7.27
CE-SetSUMBT + LC 52.83 11.58 63.32∗ 6.33

TripPy 55.28 − 64.45 −
TripPy + LC 56.11 − 66.02∗ −

Table 2: Comparison of joint goal accuracy (JGA) and
expected calibration error (ECE), of trackers trained
with and without label corrections (LC). ∗ indicates
significant difference on 95% conf. int.

marginal improvements, which is not surprising
as the MultiWOZ 2.1 test-set contains errors, and
hence cannot be used to adequately assess the ef-
fect of label correction. In contrast, on the Mul-
tiWOZ 2.4 test-set, the model trained using label
correction shows statistically significant improve-
ments. To further substantiate the effectiveness
of our label correction, we train the TripPy state
tracker (Heck et al., 2020) using the MultiWOZ 2.1
training dataset with and without the label correc-
tions. We again observe a significant improvement
in performance on the MultiWOZ 2.4 test-set. This
demonstrates that the dataset resulting from label
correction is of significantly higher quality.

In our investigation of the improved dataset, we
identified three prevalent label errors, which our
approach successfully rectifies, as demonstrated in
Table 3. (I) Hallucinated annotations, where the
annotator assigns labels not present in the dialogue
context, (II) Multi-annotation, the case of assigning
multiple labels to the same piece of information,
and (III) Erroneous annotation, the situation where
an incorrect label is assigned based on the context.
These instances underscore the efficacy of our label
validation model in minimising the propagation of
errors into the dataset.

5 Conclusion

We propose CAMELL, a novel active learn-
ing approach that incorporates elements of self-
supervision and label validation, aimed at minimis-
ing the dependency on labelled data for tackling se-
quential multi-output labelling problems, while si-
multaneously filtering out untrustworthy labels. We
have demonstrated the feasibility of our framework
in an idealised setting, applying it to the machine
translation task to showcase its potential. Through
extensive experimentation in the more realistic set-
ting for the dialogue belief tracking task, we have
shown that our approach significantly outperforms
baselines in robustness and data efficiency. As a
spin-off, we present a methodology for automated

Error
Type

Conversation
MultiWOZ 2.1 Labels and

Corrections

I
User: I would like to find a
place that serves moderately
priced Chinese food.

{Restaurant:
{Food: Chinese, (95%)
Price: Moderate, (94%)
Day: Tuesday, (11%)
Day: not_mentioned}} (72%)

II

User: I feel like going to a
nightclub.
System: Okay, the Soul Tree
Nightclub is a popular place.
Would you like the address
or phone number?
User: I will appreciate that.

{Attraction:
{Type: Night club, (94%)
Name: Soul Tree}, (53%)

Hotel:
{Name: Sou, (14%)
Name: not_mentioned}} (34%)

III

User: I need a train leaving
on Friday and I want to get
there by 21 : 30. Leaving
Broxbourne.

{Train:
{Dept.: Broxbourne, (94%)
Day: Friday, (95%)
Arrive by: 21:20, (1%)
Arrive by: 21:30}} (83%)

Table 3: Examples of three common types of annotation
errors in the MultiWOZ 2.1 dataset detected and cor-
rected by CAMELL, (I) hallucinated annotations, (II)
multi-annotation and (III) erroneous annotation. For
each we provide the confidence scores of the labels and
the corrections proposed by the model. Incorrect labels
are marked in red and the proposed corrections in blue.

dataset correction, and our experiments confirm
that our label correction method enhances the over-
all quality of a dataset.

We believe that this work has far reaching im-
plications. Firstly, it underscores the indispensable
role of uncertainty estimation in learning models,
advocating for the development of more efficient
computational methods in deep learning. This is
particularly important given the computational cost
of ensemble models, which is a significant lim-
itation in works relying on accurate uncertainty
estimation. Secondly, the versatility of CAMELL
opens up possibilities for its application across di-
verse sequential multi-output labelling problems.
Thirdly, it demonstrates that, in principle, dataset
deficiencies can be addressed via data-driven ap-
proaches, circumventing the need for extensive
manual or rule-based curation. This is particularly
pertinent considering the prevailing belief that un-
desirable outcomes produced by NLP models are
inherently linked to the training datasets and can-
not be rectified algorithmically (Eisenstein, 2019,
14.6.3).

Looking ahead, we anticipate that refining the
process of generating noisy datasets could result
in a model capable of not only identifying label
noise but also filtering out biases, false premises,
and misinformation. Further, investigating more
efficient methods for uncertainty estimation will be
pivotal in minimising the computational costs of
CAMELL in large-scale applications.

Acknowledgements

C. van Niekerk, M. Heck, S. Feng and N. Lubis are
supported by funding provided by the Alexander
von Humboldt Foundation in the framework of the
Sofja Kovalevskaja Award endowed by the Fed-
eral Ministry of Education and Research, while C.
Geishauser, H-C. Lin, B. Ruppik and R. Vukovic
are supported by funds from the European Research
Council (ERC) provided under the Horizon 2020
research and innovation programme (Grant agree-
ment No. STG2018804636). We thank Andrey
Malinin for his valuable inputs in the work.

References

Guozhong An. 1996. The Effects of Adding Noise
During Backpropagation Training on a Gener-
alization Performance. Neural Computation,
8(3):643–674.

Arsenii Ashukha, Alexander Lyzhov, Dmitry
Molchanov, and Dmitry Vetrov. 2020. Pitfalls of
In-Domain Uncertainty Estimation and Ensem-
bling in Deep Learning. In Proceedings of the
International Conference on Learning Represen-
tations (ICLR).

Satanjeev Banerjee and Alon Lavie. 2005. ME-
TEOR: An Automatic Metric for MT Evaluation
with Improved Correlation with Human Judg-
ments. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization,
Ann Arbor, Michigan. Association for Computa-
tional Linguistics.

W. H. Beluch, T. Genewein, A. Nurnberger, and
J. M. Kohler. 2018. The Power of Ensembles
for Active Learning in Image Classification. In
2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Los Alamitos,
CA, USA. IEEE Computer Society.

Ondřej Bojar, Rajen Chatterjee, Christian Feder-
mann, Yvette Graham, Barry Haddow, Shujian
Huang, Matthias Huck, Philipp Koehn, Qun Liu,
Varvara Logacheva, Christof Monz, Matteo Ne-
gri, Matt Post, Raphael Rubino, Lucia Specia,
and Marco Turchi. 2017. Findings of the 2017
Conference on Machine Translation (WMT17).
In Proceedings of the Second Conference on
Machine Translation. Association for Compu-
tational Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-
Hsiang Tseng, Iñigo Casanueva, Stefan Ultes,
Osman Ramadan, and Milica Gašić. 2018. Mul-
tiWOZ - A Large-Scale Multi-Domain Wizard-
of-Oz Dataset for Task-Oriented Dialogue Mod-
elling. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 5016–5026. Association for Com-
putational Linguistics.

David A Cohn, Zoubin Ghahramani, and Michael I
Jordan. 1996. Active Learning with Statistical
Models. Journal of Artificial Intelligence Re-
search (JAIR), 4:129–145.

David R Cox. 1958. The Regression Analysis
of Binary Sequences. Journal of the Royal
Statistical Society: Series B (Methodological),
20(2):215–232.

Sanjoy Dasgupta and Daniel Hsu. 2008. Hierar-
chical Sampling for Active Learning. In Pro-
ceedings of the 25th International Conference
on Machine Learning, page 208–215. Associa-
tion for Computing Machinery.

Shrey Desai and Greg Durrett. 2020. Calibration
of Pre-trained Transformers. In Proceedings of
the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
295–302.

Jacob Eisenstein. 2019. Introduction to Natural
Language Processing. MIT Press.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek
Sethi, Sanchit Agarwal, Shuyang Gao, Adarsh
Kumar, Anuj Goyal, Peter Ku, and Dilek
Hakkani-Tur. 2020. MultiWOZ 2.1: A Con-
solidated Multi-Domain Dialogue Dataset with
State Corrections and State Tracking Base-
lines. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages
422–428, Marseille, France. European Language
Resources Association.

Yarin Gal. 2016. Uncertainty in Deep Learning.
Ph.D. thesis, University of Cambridge.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout
as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning. In Pro-
ceedings of the 33rd International Conference on
International Conference on Machine Learning,
volume 3, pages 1651–1660.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani.
2017. Deep Bayesian Active Learning with Im-
age Data. In International Conference on Ma-
chine Learning, pages 1183–1192. PMLR.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q
Weinberger. 2017. On Calibration of Modern
Neural Networks. In Proceedings of the 34th
International Conference on Machine Learning,
pages 1321–1330.

Ting Han, Ximing Liu, Ryuichi Takanabu, Yixin
Lian, Chongxuan Huang, Dazhen Wan, Wei
Peng, and Minlie Huang. 2021. MultiWOZ
2.3: A Multi-domain Task-Oriented Dialogue
Dataset Enhanced with Annotation Corrections
and Co-Reference Annotation. In CCF Inter-
national Conference on Natural Language Pro-
cessing and Chinese Computing, pages 206–218.
Springer.

Michael Heck, Nurul Lubis, Benjamin Rup-
pik, Renato Vukovic, Shutong Feng, Christian
Geishauser, Hsien-chin Lin, Carel van Niekerk,
and Milica Gasic. 2023. ChatGPT for Zero-shot
Dialogue State Tracking: A Solution or an Op-
portunity? In Proceedings of the 61st Annual
Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 936–
950, Toronto, Canada. Association for Computa-
tional Linguistics.

Michael Heck, Nurul Lubis, Carel van Niekerk,
Shutong Feng, Christian Geishauser, Hsien-Chin
Lin, and Milica Gašić. 2022. Robust Dia-
logue State Tracking with Weak Supervision and
Sparse Data. Transactions of the Association for
Computational Linguistics, 10:1175–1192.

Michael Heck, Carel van Niekerk, Nurul Lubis,
Christian Geishauser, Hsien-Chin Lin, Marco
Moresi, and Milica Gašić. 2020. TripPy: A
Triple Copy Strategy for Value Independent Neu-
ral Dialog State Tracking. In Proceedings of
the 21th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 35–44.
Association for Computational Linguistics.

Matthew Henderson, Blaise Thomson, and Jason D.
Williams. 2014. The Second Dialog State Track-
ing Challenge. In Proceedings of the 15th An-
nual Meeting of the Special Interest Group on
Discourse and Dialogue (SIGDIAL), pages 263–

272, Philadelphia, PA, U.S.A. Association for
Computational Linguistics.

Neil Houlsby, Ferenc Huszar, Zoubin Ghahra-
mani, and Máté Lengyel. 2011. Bayesian Ac-
tive Learning for Classification and Preference
Learning. arXiv preprint arXiv:1112.5745 Ver-
sion 1.

Junjie Hu and Graham Neubig. 2021. Phrase-level
Active Learning for Neural Machine Transla-
tion. In Proceedings of the Sixth Conference on
Machine Translation, pages 1087–1099, Online.
Association for Computational Linguistics.

Andrea Iovine, Pasquale Lops, Fedelucio Narducci,
Marco de Gemmis, and Giovanni Semeraro.
2022. An empirical evaluation of active learning
strategies for profile elicitation in a conversa-
tional recommender system. Journal of Intelli-
gent Information Systems, 58(2):337–362.

Yang Jiao, Shahram Latifi, and Mei Yang. 2019.
Self Error Detection and Correction for Noisy
Labels Based on Error Correcting Output Code
in Convolutional Neural Networks. In 2019
IEEE 9th Annual Computing and Communica-
tion Workshop and Conference (CCWC), pages
0311–0316.

Ulf Johansson, Tuve Lofstrom, and Lars Niklasson.
2007. The Importance of Diversity in Neural
Network Ensembles - An Empirical Investiga-
tion. In 2007 International Joint Conference on
Neural Networks, pages 661–666.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf.
2021. Dialogue State Tracking with a Language
Model using Schema-Driven Prompting. In Pro-
ceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
4937–4949, Online and Punta Cana, Dominican
Republic. Association for Computational Lin-
guistics.

Dong-Hyun Lee. 2013. Pseudo-Label : The Simple
and Efficient Semi-Supervised Learning Method
for Deep Neural Networks. In International
Conference on Machine Learning (ICML) 2013
Workshop : Challenges in Representation Learn-
ing (WREPL).

Shiyang Li, Semih Yavuz, Kazuma Hashimoto,
Jia Li, Tong Niu, Nazneen Rajani, Xifeng

Yan, Yingbo Zhou, and Caiming Xiong. 2020a.
CoCo: Controllable Counterfactuals for Eval-
uating Dialogue State Trackers. In Interna-
tional Conference on Learning Representations
(ICLR).

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020b. A Unified
MRC Framework for Named Entity Recogni-
tion. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguis-
tics, pages 5849–5859. Association for Compu-
tational Linguistics.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul
Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou
Yu, Andrea Madotto, Eunjoon Cho, and Rajen
Subba. 2021. Leveraging Slot Descriptions for
Zero-Shot Cross-Domain Dialogue State Track-
ing. In Proceedings of the 2021 Conference
of the North American Chapter of the Associ-
ation for Computational Linguistics: Human
Language Technologies. Association for Compu-
tational Linguistics.

Ming Liu, Wray Buntine, and Gholamreza Haffari.
2018. Learning to actively learn neural machine
translation. In Proceedings of the 22nd Con-
ference on Computational Natural Language
Learning, pages 334–344, Brussels, Belgium.
Association for Computational Linguistics.

Xin Liu, Shaoxin Li, Meina Kan, Shiguang Shan,
and Xilin Chen. 2017. Self-Error-Correcting
Convolutional Neural Network for Learning
with Noisy Labels. In 2017 12th IEEE Interna-
tional Conference on Automatic Face & Gesture
Recognition (FG 2017), pages 111–117.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. 2019. RoBERTa: A Robustly Optimized
BERT Pretraining Approach. arXiv preprint
arXiv:1907.11692 Version 1.

Carel van Niekerk, Michael Heck, Christian
Geishauser, Hsien-chin Lin, Nurul Lubis, Marco
Moresi, and Milica Gašić. 2020. Knowing What
You Know: Calibrating Dialogue Belief State
Distributions via Ensembles. In Findings of
the Association for Computational Linguistics:
EMNLP 2020, pages 3096–3102, Online. Asso-
ciation for Computational Linguistics.

Carel van Niekerk, Andrey Malinin, Christian
Geishauser, Michael Heck, Hsien-chin Lin, Nu-
rul Lubis, Shutong Feng, and Milica Gašić. 2021.
Uncertainty Measures in Neural Belief Tracking
and the Effects on Dialogue Policy Performance.
In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing,
Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Vassil Panayotov, Guoguo Chen, Daniel Povey,
and Sanjeev Khudanpur. 2015. Librispeech:
An ASR corpus based on public domain au-
dio books. In 2015 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5206–5210.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Ex-
ploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer. The Journal
of Machine Learning Research, 21(1).

Jesse Read, Luca Martino, Pablo M. Olmos, and
David Luengo. 2015. Scalable multi-output la-
bel prediction: From classifier chains to classi-
fier trellises. Pattern Recognition, 48(6):2096–
2109.

Scott E Reed, Honglak Lee, Dragomir Anguelov,
Christian Szegedy, Dumitru Erhan, and Andrew
Rabinovich. 2015. Training Deep Neural Net-
works on Noisy Labels with Bootstrapping.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. 2015. ImageNet Large Scale Visual
Recognition Challenge. International Journal
of Computer Vision, 115(3):211–252.

Ozan Sener and Silvio Savarese. 2018. Active
Learning for Convolutional Neural Networks: A
Core-Set Approach. In International Conference
on Learning Representations.

Burr Settles. 2009. Active Learning Literature Sur-
vey. Technical report, University of Wisconsin-
Madison, Department of Computer Sciences.

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017.

Deep Active Learning for Named Entity Recog-
nition. In Proceedings of the 2nd Workshop on
Representation Learning for NLP, Vancouver,
Canada. Association for Computational Linguis-
tics.

Pei-Hao Su, Milica Gašić, and Steve Young. 2018.
Reward estimation for dialogue policy optimi-
sation. Computer Speech and Language, 51:24–
43.

Yixuan Su, Lei Shu, Elman Mansimov, Arshit
Gupta, Deng Cai, Yi-An Lai, and Yi Zhang.
2022. Multi-Task Pre-Training for Plug-and-
Play Task-Oriented Dialogue System. In Pro-
ceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers), pages 4661–4676, Dublin, Ireland.
Association for Computational Linguistics.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,
Lubomir Bourdev, and Rob Fergus. 2015. Train-
ing Convolutional Networks with Noisy Labels.
In 3rd International Conference on Learning
Representations, ICLR 2015 (Workshop).

Christian Szegedy, Sergey Ioffe, Vincent Van-
houcke, and Alexander A. Alemi. 2017.
Inception-v4, Inception-ResNet and the Im-
pact of Residual Connections on Learning. In
Proceedings of the Thirty-First AAAI Confer-
ence on Artificial Intelligence, AAAI’17, page
4278–4284. AAAI Press.

Christian Szegedy, Vincent Vanhoucke, Sergey
Ioffe, Jon Shlens, and Zbigniew Wojna. 2016.
Rethinking the Inception Architecture for Com-
puter Vision. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recog-
nition, pages 2818–2826.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen,
Naman Goyal, Vishrav Chaudhary, Jiatao Gu,
and Angela Fan. 2020. Multilingual Translation
with Extensible Multilingual Pretraining and
Finetuning. arXiv preprint arXiv:2008.00401
Version 1.

Blaise Thomson and Steve Young. 2010. Bayesian
update of dialogue state: A POMDP framework
for spoken dialogue systems. Computer Speech
and Language, 24(4):562–588.

Neeraj Vashistha, Kriti Singh, and Ramakant
Shakya. 2022. Active Learning for Neu-
ral Machine Translation. arXiv preprint
arXiv:2301.00688 Version 1.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and
Xiaogang Wang. 2015. Learning from Massive
Noisy Labeled Data for Image Classification. In
2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2691–2699.

Kaige Xie, Cheng Chang, Liliang Ren, Lu Chen,
and Kai Yu. 2018. Cost-Sensitive Active Learn-
ing for Dialogue State Tracking. In Proceed-
ings of the 19th Annual SIGdial Meeting on
Discourse and Dialogue, pages 209–213, Mel-
bourne, Australia. Association for Computa-
tional Linguistics.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and
Quoc V. Le. 2020. Self-Training With Noisy
Student Improves ImageNet Classification. In
2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10684–
10695.

Fanghua Ye, Jarana Manotumruksa, and Emine Yil-
maz. 2022. MultiWOZ 2.4: A Multi-Domain
Task-Oriented Dialogue Dataset with Essential
Annotation Corrections to Improve State Track-
ing Evaluation. In Proceedings of the 23rd An-
nual Meeting of the Special Interest Group on
Discourse and Dialogue, pages 351–360, Edin-
burgh, UK. Association for Computational Lin-
guistics.

Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson,
and Kai Yu. 2010. The Hidden Information
State model: A practical framework for POMDP-
based spoken dialogue management. Computer
Speech & Language, 24(2):150–174.

Steve Young, Jost Schatzmann, Karl Weilhammer,
and Hui Ye. 2007. The Hidden Information State
Approach to Dialog Management. In 2007 IEEE
International Conference on Acoustics, Speech
and Signal Processing - ICASSP ’07, volume 4,
pages IV–149–IV–152.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,
Raghav Gupta, Jianguo Zhang, and Jindong
Chen. 2020. MultiWOZ 2.2 : A Dialogue
Dataset with Additional Annotation Corrections

and State Tracking Baselines. In Proceedings
of the 2nd Workshop on Natural Language Pro-
cessing for Conversational AI, pages 109–117,
Online. Association for Computational Linguis-
tics.

93

Chapter 8

Conclusion

The objective of this thesis was to address the lack of uncertainty estimation in dialogue belief tracking,
whilst also illustrating the importance of uncertainty in this task. In this final chapter, the aim is to
summarise the contributions, discuss their implications, highlight some limitations of this work, and
suggest avenues for future research.

8.1 Summary of Key Findings

In this thesis, three works are presented which address the issues of uncertainty estimation in dialogue
belief tracking. By integrating uncertainty into the decision-making and the knowledge acquisition
processes of our models, the role of uncertainty in developing more effective and robust dialogue
systems is illustrated.

In Chapter 5 we enhanced a baseline dialogue belief tracker using the label-smoothing objective
trained ensemble. This model achieves state-of-the-art calibration and exceptional top-3 predic-
tion accuracy of 84.08%. Furthermore, our model showcases the best L2-norm performance,
indicating that the quality of predicted uncertainty is as crucial as the average JGA. Notably,
our calibration techniques are broadly applicable to any neural dialogue belief tracking method.

In Chapter 6 we tackled the absence of uncertainty estimates in state-of-the-art neural dialogue
state trackers, which can hinder downstream dialogue policy performance. We introduced the
concept of using total and knowledge uncertainties along with confidence scores to form a more
comprehensive dialogue belief state. Our model, SetSUMBT, employs distillation techniques
to effectively capture these elements of uncertainty. Experiments with both simulated and
real users validated that incorporating these uncertainty metrics significantly improves the
robustness of downstream dialogue policy models.

In Chapter 7 we introduce CAMELL, an active learning framework designed to minimise depen-
dency on labelled data in sequential multi-output problems. CAMELL incorporates elements
of both self-supervision and label validation, effectively filtering out untrustworthy annota-
tions. This innovation was validated in two distinct applications: machine translation, where it
showcased its potential, and more crucially, in dialogue belief tracking, where it significantly
outperformed existing baselines in terms of both robustness and data efficiency.

Moreover, CAMELL offers an automated method for dataset correction, a notable spin-off that
promises to improve the quality of labelled data, as confirmed by our experiments. This work
carries three far-reaching implications. First, it elevates the role of uncertainty estimation in
machine learning models, calling for more computational efficiency in deep learning, especially
considering the often prohibitive costs of ensemble models. Second, the versatility of CAMELL
presents a broad spectrum of applications across various sequential multi-output labeling
problems. Third, and perhaps most importantly, our work challenges the prevailing notion
that deficiencies in datasets are irreparable algorithmically, offering a data-driven alternative to
labor-intensive manual or rule-based correction.

94 Chapter 8. Conclusion

8.2 Limitations

We identified a couple of important limitations related to the work presented. By highlighting these
limitations, we aim to provide a balanced perspective on our contributions and to guide future work
in addressing these challenges. First, while our techniques have demonstrated effectiveness in certain
dialogue state tracking architectures, they have yet to be adapted and tested for span-prediction
based state trackers, a dominant paradigm in dialogue state tracking (DST).

Further, all three contributions, ranging from the calibration techniques in multi-domain dialogue
belief trackers to the CAMELL framework, come with a significant computational overhead, primarily
due to ensemble-based modelling. This computational burden poses challenges for scalability and
real-world implementation, particularly for larger scale systems and more complex models.

8.3 Recommendations for Future Research

Despite advances in uncertainty estimation, such as Bayesian neural network, ensembles, etc., achiev-
ing accurate and efficient uncertainty estimation remains an elusive goal. We identify important
directions for future work including efficient uncertainty estimation, enhancing the trustworthiness
of Large Language Models (LLMs), and innovative applications of uncertainty estimates in LLMs’
learning processes.

8.3.1 Uncertainty Estimation

Efficient Uncertainty Estimation

Existing state-of-the-art techniques for uncertainty estimation, particularly ensemble methods, are
computationally expensive, especially when scaled to larger applications. Emerging approaches such
as Neural Processes, MOPED Bayesian Neural Networks, and Epistemic Neural Networks could
potentially bridge this gap, ensuring reliable uncertainty estimation without the computational cost
of ensemble methods (Garnelo et al., 2018; Krishnan et al., 2020; Osband et al., 2023). An investigation
into the adaptability and performance of such methods in complex NLP tasks could potentially
transform uncertainty estimation in this domain.

Uncertainty Estimation in Dialogue State Tracking Models

In this thesis, we applied uncertainty estimation techniques to picklist-style dialogue belief tracking
models. These models, however, are overshadowed by the superior performance of more advanced
span-prediction and generation model-based dialogue state trackers (Heck et al., 2022; Lin et al.,
2021b). Despite their proficiency, these advanced models have a significant limitation, their inability
to generate uncertainty estimates.

Our findings emphasise the important role of reliable confidence estimates. They are instrumental
not only for enhancing the performance of downstream modules within a dialogue system but also for
improving the label-efficiency and adaptability of DST models. This revelation illuminates a crucial
gap in DST models and calls for the incorporation of uncertainty estimation into span-prediction and
generation model based DSTs.

One promising approach could involve the fusion of predictive distributions from various predic-
tion mechanisms within span-prediction based DST models. When combined with strategic sampling
methods, such models could be empowered to offer dependable confidence estimates (Shelmanov
et al., 2021).

Regarding generation model-based DSTs, transforming token distributions into dialogue belief
states presents a complex, unsolved challenge. Nevertheless, our experiments with the CAMELL
active learning framework demonstrate that incorporating uncertainty estimation into such models is
feasible. In light of these findings, extending the CAMELL framework to cater to generation models

8.3. Recommendations for Future Research 95

or span-prediction based models for dialogue state tracking emerges as a promising avenue for future
research.

8.3.2 Trustworthiness of Large Language Models

As Large Language Models (LLMs) like ChatGPT become increasingly woven into diverse facets
of society, the quest for reliability and trustworthiness gains urgency. One major problem of such
models is their tendency to generate incorrect or made up information, referred to as hallucination.
Further, these models are unable to produce reliable confidence scores for the text they generate, and
are often overconfident in such hallucinations (Xiong et al., 2023). This makes it difficult for users to
know when they can trust model predictions. Improved uncertainty quantification in deep learning
models can yield dual benefits: it enhances AI accountability and serves as a crucial tool for flagging
generated text that may contain hallucinations or false premises.

The label validation technique of CAMELL (outlined in Chapter 7) utilises model uncertainty to
validate user labels. While this technique is effective for current applications, it relies on the accurate
measurement of uncertainties, a feature that current LLMs are yet unable to provide. If this hurdle is
overcome, the mechanism could be adapted to automatically trigger regeneration of low-confidence
responses, offering a potential avenue for identifying and correcting inaccuracies in text generated by
LLMs.

8.3.3 Uncertainty Estimation in Large Language Models

The complexity and enormity of current Large Language Models (LLMs) like ChatGPT and LLama
are both a blessing and a curse (Touvron et al., 2023). Boasting more than 50 billion parameters, these
models are computationally expensive to use. Further these models generally, do not produce well
calibrated confidence scores for the text they generate (Xiong et al., 2023). Due to their computational
complexity, it is not practically possible to apply uncertainty estimation techniques which require
ensembling, or even complete model retraining. Future research should focus on innovative and
scalable methods for uncertainty estimation in such LLMs (Chen and Mueller, 2023).

Opportunities arising from reliable uncertainty estimates in LLMs are:

Active Learning: Utilising uncertainty estimates for active learning could optimise the selection
process of examples for both fine-tuning and in-context learning (a powerful capability of LLMs
where models can incorporate new knowledge without fine-tuning of their parameters (Brown et
al., 2020)), ensuring that the models’ evolution is not just rapid but also directed and meaningful.
This could significantly reduce the training time needed to update such large models, lowering
both the cost and, more importantly, the environmental footprint.

Rating Reliability: Integrating uncertainty estimates into Large Language Models (LLMs) can signif-
icantly enhance the evaluation of the reliability of both the content generated by these models
and the feedback they receive from users. This integration is crucial because there have been
instances where human feedback has actually impaired the performance of models like Chat-
GPT. This is often due to the integration of poor-quality feedback into the model’s fine-tuning
process (Casper et al., 2023; Chen et al., 2023). With access to uncertainty estimates, a label
validation approach like the one proposed in CAMELL (see Chapter 7) could filter out harmful
feedback and potentially prevent the deterioration of the model’s abilities.

Moreover, when models are not corrected, they can "learn" from their own mistakes or "hallu-
cinations," leading to the repeated generation of incorrect information. In contrast, receiving
feedback from other LLMs has been shown to be an effective method for improving model
performance (Lee et al., 2023). When coupled with reliable uncertainty estimates, this approach
could become even more powerful, ensuring that the models are refined and enhanced with
high-quality, reliable information, reducing the risk of amplifying errors or biases.

96 Chapter 8. Conclusion

Model Collapse Prevention: Research indicates that Large Language Models (LLMs) can deviate
from producing natural language when continually learning from their own outputs, a phe-
nomenon known as model collapse (Shumailov et al., 2023). Data and knowledge uncertainties
could be pivotal in taking on this challenge. Data uncertainty, stemming from the inherent ambi-
guities and variations in the source data, mirrors the natural diversity in language. Knowledge
uncertainty, on the other hand, reflects the model’s informational gaps.

A promising avenue for future exploration involves developing active learning and training
approaches that maintain data uncertainty, preserving the richness and diversity of language,
while reducing knowledge uncertainty. This balanced approach could bolster the model’s
informational depth and accuracy without compromising the natural fluidity and diversity of
language expression.

In the short term, research efforts should concentrate on developing scalable, computationally-
efficient uncertainty estimation methods for both classification and generative models. These methods
must also be woven into accountable AI frameworks and be capable of real-time label validation
to safeguard against misinformation and hallucinations. Long-term objectives should position
uncertainty as an integral feature of LLMs and other large-scale neural networks. Such integrated
uncertainty could not only bolster the trustworthiness of large-scale systems but also enhance their
ability to interact with humans in a more natural manner.

97

Appendix A

Supplementary Proofs

A.1 Deep Learning

Theorem 1 (Linear Transformation of Positional Encodings). Let et ∈ Rd be a positional encoding vector
defined as:

et =
[︂
sin (λ0t) cos (λ0t) sin (λ1t) cos (λ1t) · · · sin

(︂
λ d

2−1t
)︂

cos
(︂

λ d
2−1t

)︂]︂
where λm = 10000

−2m
d for m = 0, 1, . . . , d

2 − 1. Then there exists a linear transformation T(k) ∈ Rd×d:

T(k) =

⎡⎢⎢⎢⎢⎣
Φ(k)

0 0 · · · 0
0 Φ(k)

1 · · · 0
· · · · · · · · · · · ·
0 0 · · · Φ(k)

d
2−1

⎤⎥⎥⎥⎥⎦ ,

Φ(k)
m =

[︃
cos (λmk) sin (λmk)
− sin (λmk) cos (λmk) ,

]︃
such that:

T(k)et = et+k,

for all k ∈ [1 − t, N − t] and t ∈ [1, N] where N is the length of the sequence of observations.

Proof. We start from the trigonometric angle sum identities for sine and cosine:

sin (λm(t + k)) = sin (λmt + λmk)
= sin (λmt) cos (λmk) + cos (λmt) sin (λmk)

cos (λm(t + k)) = cos (λmt + λmk)
= cos (λmt) cos (λmk)− sin (λmt) sin (λmk) .

This implies that we can rewrite each element in the positional encoding et+k in terms of elements
in et and fixed trigonometric constants as follows:[︃

sin (λm(t + k))
cos (λm(t + k))

]︃
=

[︃
cos (λmk) sin (λmk)
− sin (λmk) cos (λmk)

]︃ [︃
sin (λmt)
cos (λmt)

]︃
.

This defines a rotation matrix Φ(k)
m to capture this linear relationship:

Φ(k)
m

[︃
sin(λmt)
cos(λmt)

]︃
=

[︃
sin(λm(t + k))
cos(λm(t + k)).

]︃
.

For each frequency component m = 0, 1, . . . , d
2 − 1, we can then stack these individual rotation

matrices Φ(k)
m into a global transformation matrix T(k):

98 Appendix A. Supplementary Proofs

T(k) =

⎡⎢⎢⎢⎢⎣
Φ(k)

0 0 · · · 0
0 Φ(k)

1 · · · 0
· · · · · · · · · · · ·
0 0 · · · Φ(k)

d
2−1

⎤⎥⎥⎥⎥⎦ .

In conclusion, we have shown that a linear transformation matrix T(k) exists, which satisfies
T(k)et = et+k for all k ∈ [1 − t, N − t] and t ∈ [1, N] where N is the length of the sequence of
observations.

Theorem 2 (Similarity between positional encodings). Consider a positional encoding vector et of dimen-
sion d, defined as:

et =
[︂
sin (λ0t) cos (λ0t) sin (λ1t) cos (λ1t) · · · sin

(︂
λ d

2−1t
)︂

cos
(︂

λ d
2−1t

)︂]︂
,

where λm = 10000
−2m

d . The dot-product similarity between the positional encoding vectors et and et+k is
given by:

et · et+k =

d
2−1

∑
m=0

cos (λmk) ,

for all k ∈ [1 − t, N − t] and t ∈ [1, N] where N is the length of the sequence of observations. Further
et · et+k = et · et−k for all k ∈ [0, N − t] and t ∈ [1, N].

Proof. Let us first consider a 2-dimensional positional encoding:

et =
[︁
sin (λ0t) cos (λ0t)

]︁
.

We can use the angle sum equations for sine and cosine to find the dot-product similarity for the
2-dimensional case:

et · et+k = sin (λ0t) sin (λ0(t + k)) + cos (λ0t) cos (λ0(t + k))
= sin (λ0t) [sin (λ0t) cos (λ0k) + cos (λ0t) sin (λ0k)]

+ cos (λ0t) [cos (λ0t) cos (λ0k)− sin (λ0t) sin (λ0k)]

= sin2 (λ0t) cos (λ0k) + sin (λ0t) cos (λ0t) sin (λ0k)

+ cos2 (λ0t) cos (λ0k)− sin (λ0t) cos (λ0t) sin (λ0k)

= cos (λ0k)
[︁
sin2 (λ0t) + cos2 (λ0t)

]︁
= cos (λ0k) ,

for all k ∈ [1 − t, N − t] and t ∈ [1, N] where N is the length of the sequence of observations.
Now, let us extend this to a d-dimensional positional encoding et:

et · et+k =

d
2−1

∑
m=0

sin (λmt) sin (λm(t + k)) + cos (λmt) cos (λm(t + k)) .

Using the same logic as in the 2-dimensional case, we find:

et · et+k =

d
2−1

∑
m=0

cos (λmk) ,

for all k ∈ [1 − t, N − t] and t ∈ [1, N] where N is the length of the sequence of observations.

A.2. Uncertainty Estimation 99

Further:

et · et−k =
d/2−1

∑
m=0

cos (−λmk) .

Since cosine is symmetric around 0:

et · et−k =
d/2−1

∑
m=0

cos (−λmk)

=
d/2−1

∑
m=0

cos (λmk)

= et · et+k.

for all k ∈ [0, N − t] and t ∈ [1, N].

Theorem 3 (Geometric progression of the wavelengths of encoding dimensions). Consider a positional
encoding vector et of dimension d, defined as:

et =
[︂
sin (λ0t) cos (λ0t) sin (λ1t) cos (λ1t) · · · sin

(︂
λ d

2−1t
)︂

cos
(︂

λ d
2−1t

)︂]︂
,

where λm = 10000
−2m

d . The wavelengths form a geometric progression from 2π to 10000 · 2π.

Proof. Let wm denote the wavelength of the term sin (λmt) in the positional encoding. The wavelength
is given by wm = λ−1

m 2π.
For λm = 10000

−2m
d , we have:

wm = 10000
2m
d · 2π.

The sequence of wavelengths w1, w2, . . . , w d
2−1 is:

2π, 10000
2
d · 2π, 10000

4
d · 2π, . . . , 100001− 2

d · 2π.

This sequence can be rewritten as:

2π,
(︂

10000
2
d

)︂1
· 2π,

(︂
10000

2
d

)︂2
· 2π, . . . ,

(︂
10000

2
d

)︂ d
2−1

· 2π,

which is a geometric progression with a common ratio of 10000
2
d .

For large d, 1 − 2
d ≈ 1, confirming that the wavelengths range form a geometric progression from

2π to 10000 · 2π. This holds true for both sine and cosine terms.

A.2 Uncertainty Estimation

Theorem 4 (Relationship between Entropy and Mutual Information). Given a random variable Y ∈
{1, 2, · · · , K} representing the outcome, X⃗ representing the input features, D a dataset with observations of X⃗
and Y and θ the parameters of a model estimating the relationship between X⃗ and Y. Then we have that:

H
(︂
p
(︂
Y|X⃗,D

)︂)︂
− I

(︂
Y, θ|X⃗,D

)︂
= EP(θ|D)H

(︂
p
(︂
Y|X⃗, θ

)︂)︂
,

where H is the entropy of a distribution and I the mutual information between two random variables.

100 Appendix A. Supplementary Proofs

Proof.
H
(︂
p
(︂
Y|X⃗,D

)︂)︂
− I

(︂
Y, θ|X⃗,D

)︂
= E

p
(︂
Y|X⃗,D

)︂ [︂− log p
(︂
Y|X⃗,D

)︂]︂
− EP(θ|D)Ep

(︂
Y|X⃗,θ

)︂
⎡⎣log

⎛⎝ p
(︂
Y|X⃗, θ

)︂
p
(︂
Y|X⃗,D

)︂
⎞⎠⎤⎦

= E
p
(︂
Y|X⃗,D

)︂ [︂− log p
(︂
Y|X⃗,D

)︂]︂
− EP(θ|D)Ep

(︂
Y|X⃗,θ

)︂ [︂log p
(︂
Y|X⃗, θ

)︂]︂
+ EP(θ|D)Ep

(︂
Y|X⃗,θ

)︂ [︂log p
(︂
Y|X⃗,D

)︂]︂
= EP(θ|D)Ep

(︂
Y|X⃗,θ

)︂ [︂− log p
(︂
Y|X⃗, θ

)︂]︂
− E

p
(︂
Y|X⃗,D

)︂ [︂log p
(︂
Y|X⃗,D

)︂]︂
+

K

∑
k=1

EP(θ|D)

[︂
p
(︂
Y = k|X⃗, θ

)︂]︂
log p

(︂
Y = k|X⃗,D

)︂
= EP(θ|D)Ep

(︂
Y|X⃗,θ

)︂ [︂− log p
(︂
Y|X⃗, θ

)︂]︂
− E

p
(︂
Y|X⃗,D

)︂ [︂log p
(︂
Y|X⃗,D

)︂]︂
+

K

∑
k=1

p
(︂
Y = k|X⃗,D

)︂
log p

(︂
Y = k|X⃗,D

)︂
= EP(θ|D)Ep

(︂
Y|X⃗,θ

)︂ [︂− log p
(︂
Y|X⃗, θ

)︂]︂
− E

p
(︂
Y|X⃗,D

)︂ [︂log p
(︂
Y|X⃗,D

)︂]︂
+ E

p
(︂
Y|X⃗,D

)︂ [︂log p
(︂
Y|X⃗,D

)︂]︂
= EP(θ|D)H

(︂
p
(︂
Y|X⃗, θ

)︂)︂
.

Theorem 5 (Approximate maximum likelihood estimate of the precision parameters of a Dirichlet
distribution). Given a random variable Π⃗ which follows a Dirichlet distribution parameterised by the mean m
and precision s, we can define its distribution as Dir (sm). Given the estimates for the mean m̂ and the observed
π, the maximum likelihood estimate of the precision can be approximated using Stirling’s approximation as:

ŝ =
K − 1

2 ∑K
k=1 m̂k (log m̂k − log πk)

.

Proof. The log likelihood of the parameter s is given by:

L(s|π) = log P
(︂

Π⃗ = π
⃓⃓
m̂, s

)︂
= log

(︄
Γ(s)

∏K
j=1 Γ(smj)

K

∏
k=1

πsmk−1
k

)︄
(Equation 3.4)

= log Γ(s)−
K

∑
k=1

log Γ(smk) +
K

∑
k=1

(smk − 1) log πk

≈ log

(︄√︃
2π

s

(︂ s
e

)︂s
)︄
−

K

∑
k=1

log

(︄√︄
2π

smk

(︂ smk

e

)︂smk

)︄
+

K

∑
k=1

(smk − 1) log πk

(Stirling’s Approximation)

A.2. Uncertainty Estimation 101

=
1
2

log(2π)− 1
2

log(s) + s log(s)− s − 1
2

K

∑
k=1

log(2π) +
1
2

K

∑
k=1

log(s) +
1
2

K

∑
k=1

log(mk)

−
K

∑
k=1

smk log smk + s
K

∑
k=1

mk +
K

∑
k=1

(smk − 1) log πk

∝
K − 1

2
log(s) + s log(s)−

K

∑
k=1

smk log smk +
K

∑
k=1

smk log πk

Then:

∂L(s|π)

∂s
≈ K − 1

2s
+

s
s
+ log s −

K

∑
k=1

mk log(s)−
K

∑
k=1

mk log(mk)−
K

∑
k=1

smk

smk
mk

+
K

∑
k=1

mk log πk

=
K − 1

2s
−

K

∑
k=1

mk log(mk) +
K

∑
k=1

mk log πk

We know that the ŝ which maximises this likelihood will be the ŝ such that the derivative is equal
to zero. Hence:

0 =
K − 1

2ŝ
−

K

∑
k=1

mk log(mk) +
K

∑
k=1

mk log πk

∴
K − 1

2ŝ
=

K

∑
k=1

mk (log(mk) + log πk)

∴ ŝ =
K − 1

2 ∑K
k=1 m̂k (log m̂k − log πk)

.

103

Bibliography

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine Translation by
Jointly Learning to Align and Translate”. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. URL: http://arxiv.
org/abs/1409.0473.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jauvin (2003). “A Neural Probabilistic
Language Model”. In: Journal of Machine Learning Research 3.Feb, pp. 1137–1155. URL: https:
//dl.acm.org/doi/10.5555/944919.944966.

Bland, Amy and Alexandre Schaefer (2012). “Different Varieties of Uncertainty in Human Decision-
Making”. In: Frontiers in Neuroscience 6, p. 85. DOI: 10.3389/fnins.2012.00085.

Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra (2015). “Weight Uncer-
tainty in Neural Networks”. In: Proceedings of the 32nd International Conference on Machine Learning
(ICML) Volume 37, pp. 1613–1622. URL: https://dl.acm.org/doi/abs/10.5555/3045118.3045290.

Bojar, Ondřej et al. (2017). “Findings of the 2017 Conference on Machine Translation (WMT17)”.
In: Proceedings of the Second Conference on Machine Translation. Association for Computational
Linguistics. DOI: 10.18653/v1/W17-4717. URL: https://aclanthology.org/W17-4717.

Brown, Tom et al. (2020). “Language Models are Few-shot Learners”. In: Advances in Neural Information
Processing Systems. Vol. 33, pp. 1877–1901. URL: https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Budzianowski, Paweł, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman
Ramadan, and Milica Gašić (2018). “MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz
Dataset for Task-Oriented Dialogue Modelling”. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics, pp. 5016–5026.
DOI: 10.18653/v1/D18-1547. URL: https://aclanthology.org/D18-1547.

Casper, Stephen et al. (2023). “Open Problems and Fundamental Limitations of Reinforcement
Learning from Human Feedback”. In: arXiv preprint arXiv:2307.15217. URL: https://arxiv.org/
abs/2307.15217.

Chen, Jiuhai and Jonas Mueller (2023). “Quantifying Uncertainty in Answers from any Language
Model via Intrinsic and Extrinsic Confidence Assessment”. In: arXiv preprint arXiv:2308.16175.
URL: https://arxiv.org/abs/2308.16175.

Chen, Lingjiao, Matei Zaharia, and James Zou (2023). “How is ChatGPT’s Behavior Changing Over
Time?” In: arXiv preprint arXiv:2307.09009. URL: https://arxiv.org/abs/2307.09009.

Cho, Kyunghyun, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio (2014). “On the
Properties of Neural Machine Translation: Encoder–Decoder Approaches”. In: Proceedings of
SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. Doha, Qatar:
Association for Computational Linguistics, pp. 103–111. DOI: 10.3115/v1/W14-4012. URL: https:
//aclanthology.org/W14-4012.

Cohn, David A, Zoubin Ghahramani, and Michael I Jordan (1996). “Active Learning with Statistical
Models”. In: Journal of Artificial Intelligence Research (JAIR) 4, pp. 129–145. URL: http://mlg.eng.
cam.ac.uk/pub/pdf/CohGhaJor94a.pdf.

Collins, Katherine Maeve, Matthew Barker, Mateo Espinosa Zarlenga, Naveen Raman, Umang Bhatt,
Mateja Jamnik, Ilia Sucholutsky, Adrian Weller, and Krishnamurthy Dvijotham (2023). “Human
Uncertainty in Concept-Based AI Systems”. In: Proceedings of the 2023 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 869–889. URL: https://dl.acm.org/doi/abs/10.1145/3600211.3604692.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://dl.acm.org/doi/10.5555/944919.944966
https://dl.acm.org/doi/10.5555/944919.944966
https://doi.org/10.3389/fnins.2012.00085
https://dl.acm.org/doi/abs/10.5555/3045118.3045290
https://doi.org/10.18653/v1/W17-4717
https://aclanthology.org/W17-4717
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/D18-1547
https://aclanthology.org/D18-1547
https://arxiv.org/abs/2307.15217
https://arxiv.org/abs/2307.15217
https://arxiv.org/abs/2308.16175
https://arxiv.org/abs/2307.09009
https://doi.org/10.3115/v1/W14-4012
https://aclanthology.org/W14-4012
https://aclanthology.org/W14-4012
http://mlg.eng.cam.ac.uk/pub/pdf/CohGhaJor94a.pdf
http://mlg.eng.cam.ac.uk/pub/pdf/CohGhaJor94a.pdf
https://dl.acm.org/doi/abs/10.1145/3600211.3604692

104 Bibliography

Desai, Shrey and Greg Durrett (2020). “Calibration of Pre-trained Transformers”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 295–302. URL:
https://aclanthology.org/2020.emnlp-main.21.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019). “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association
for Computational Linguistics, pp. 4171–4186. DOI: 10.18653/v1/N19-1423. URL: https://
aclanthology.org/N19-1423.

Eric, Mihail et al. (2020). “MultiWOZ 2.1: A Consolidated Multi-Domain Dialogue Dataset with
State Corrections and State Tracking Baselines”. In: Proceedings of the 12th Language Resources and
Evaluation Conference. Marseille, France: European Language Resources Association, pp. 422–428.
ISBN: 979-10-95546-34-4. URL: https://aclanthology.org/2020.lrec-1.53.

Freeman, Linton C (1965). Elementary Applied Statistics: For Students in Behavioural Science. Wiley.
Gal, Yarin (2016). “Uncertainty in Deep Learning”. PhD thesis. University of Cambridge. URL: https:

//mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf.
Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a Bayesian Approximation: Representing

Model Uncertainty in Deep Learning”. In: Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning. Vol. 3, pp. 1651–1660. URL: https://proceedings.mlr.
press/v48/gal16.

Gal, Yarin, Riashat Islam, and Zoubin Ghahramani (2017). “Deep Bayesian Active Learning with
Image Data”. In: International Conference on Machine Learning. PMLR, pp. 1183–1192. URL: https:
//proceedings.mlr.press/v70/gal17a.

Garnelo, Marta, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and S. M. Ali Eslami (2018). “Conditional Neural
Processes”. In: Proceedings of the 35th International Conference on Machine Learning. Ed. by Jennifer Dy
and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 1704–1713.
URL: https://proceedings.mlr.press/v80/garnelo18a.html.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press. URL: http:
//www.deeplearningbook.org.

Grote, Thomas and Philipp Berens (2020). “On the Ethics of Algorithmic Decision-Making in Health-
care”. In: Journal of Medical Ethics 46.3, pp. 205–211. URL: https://jme.bmj.com/content/46/3/
205.abstract.

Guo, Chuan, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger (2017). “On Calibration of Modern Neural
Networks”. In: Proceedings of the 34th International Conference on Machine Learning, pp. 1321–1330.
URL: https://proceedings.mlr.press/v70/guo17a.html.

Han, Ting, Ximing Liu, Ryuichi Takanabu, Yixin Lian, Chongxuan Huang, Dazhen Wan, Wei Peng,
and Minlie Huang (2021). “MultiWOZ 2.3: A Multi-domain Task-Oriented Dialogue Dataset
Enhanced with Annotation Corrections and Co-Reference Annotation”. In: CCF International
Conference on Natural Language Processing and Chinese Computing. Springer, pp. 206–218. URL:
https://www.springerprofessional.de/en/multiwoz-2-3-a-multi-domain-task-oriented-
dialogue-dataset-enhan/19743634.

Heck, Michael, Christian Geishauser, Hsien-chin Lin, Nurul Lubis, Marco Moresi, Carel van Niekerk,
and Milica Gašić (Dec. 2020a). “Out-of-Task Training for Dialog State Tracking Models”. In:
Proceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain (Online):
International Committee on Computational Linguistics, pp. 6767–6774. DOI: 10.18653/v1/2020.
coling-main.596. URL: https://aclanthology.org/2020.coling-main.596.

Heck, Michael, Nurul Lubis, Carel van Niekerk, Shutong Feng, Christian Geishauser, Hsien-Chin Lin,
and Milica Gašić (2022). “Robust Dialogue State Tracking with Weak Supervision and Sparse
Data”. In: Transactions of the Association for Computational Linguistics 10, pp. 1175–1192. DOI: 10.
1162/tacl_a_00513. URL: https://aclanthology.org/2022.tacl-1.68.

https://aclanthology.org/2020.emnlp-main.21
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2020.lrec-1.53
https://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf
https://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf
https://proceedings.mlr.press/v48/gal16
https://proceedings.mlr.press/v48/gal16
https://proceedings.mlr.press/v70/gal17a
https://proceedings.mlr.press/v70/gal17a
https://proceedings.mlr.press/v80/garnelo18a.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://jme.bmj.com/content/46/3/205.abstract
https://jme.bmj.com/content/46/3/205.abstract
https://proceedings.mlr.press/v70/guo17a.html
https://www.springerprofessional.de/en/multiwoz-2-3-a-multi-domain-task-oriented-dialogue-dataset-enhan/19743634
https://www.springerprofessional.de/en/multiwoz-2-3-a-multi-domain-task-oriented-dialogue-dataset-enhan/19743634
https://doi.org/10.18653/v1/2020.coling-main.596
https://doi.org/10.18653/v1/2020.coling-main.596
https://aclanthology.org/2020.coling-main.596
https://doi.org/10.1162/tacl_a_00513
https://doi.org/10.1162/tacl_a_00513
https://aclanthology.org/2022.tacl-1.68

Bibliography 105

Heck, Michael, Carel van Niekerk, Nurul Lubis, Christian Geishauser, Hsien-Chin Lin, Marco Moresi,
and Milica Gašić (2020b). “TripPy: A Triple Copy Strategy for Value Independent Neural Dialog
State Tracking”. In: Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse
and Dialogue. Association for Computational Linguistics, pp. 35–44. URL: https://www.aclweb.
org/anthology/2020.sigdial-1.4.

Henderson, Matthew, Blaise Thomson, and Jason D. Williams (2014a). “The Second Dialog State Track-
ing Challenge”. In: Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse
and Dialogue (SIGDIAL). Philadelphia, PA, U.S.A.: Association for Computational Linguistics,
pp. 263–272. DOI: 10.3115/v1/W14-4337. URL: https://aclanthology.org/W14-4337.

Henderson, Matthew, Blaise Thomson, and Steve Young (2013). “Deep Neural Network Approach
for the Dialog State Tracking Challenge”. In: Proceedings of the SIGDIAL 2013 Conference. Metz,
France: Association for Computational Linguistics, pp. 467–471. URL: https://www.aclweb.org/
anthology/W13-4073.

Henderson, Matthew, Blaise Thomson, and Steve Young (2014b). “Robust Dialog State Tracking using
Delexicalised Recurrent Neural Networks and Unsupervised Adaptation”. In: Proceedings of the
2014 IEEE Spoken Language Technology Workshop (SLT). IEEE, pp. 360–365. DOI: 10.1109/SLT.2014.
7078601.

Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky (2012). Neural Networks for Machine Learning.
Lecture 6A: Overview of Mini-Batch Gradient Descent. URL: http://www.cs.toronto.edu/~hinton/
coursera/lecture6/lec6.pdf.

Hinton, Geoffrey, Oriol Vinyals, and Jeffrey Dean (2015). “Distilling the Knowledge in a Neural
Network”. In: Conference on Neural Information Processing Systems (NIPS) - Deep Learning and
Representation Learning Workshop. URL: http://arxiv.org/abs/1503.02531.

Hirsh, Jacob B, Raymond A Mar, and Jordan B Peterson (2012). “Psychological Entropy: A Framework
for Understanding Uncertainty-Related Anxiety.” In: Psychological Review 119.2, p. 304. URL:
https://psycnet.apa.org/record/2012-00550-001.

Houlsby, Neil, Ferenc Huszar, Zoubin Ghahramani, and Máté Lengyel (2011). “Bayesian Active
Learning for Classification and Preference Learning”. In: arXiv preprint arXiv:1112.5745 Version 1.
URL: http://arxiv.org/abs/1112.5745v1.

Iovine, Andrea, Pasquale Lops, Fedelucio Narducci, Marco de Gemmis, and Giovanni Semeraro (2022).
“An Empirical Evaluation of Active Learning Strategies for Profile Elicitation in a Conversational
Recommender System”. In: Journal of Intelligent Information Systems 58.2, pp. 337–362. ISSN: 1573-
7675. DOI: 10.1007/s10844-021-00683-4.

Johansson, Ulf, Tuve Lofstrom, and Lars Niklasson (2007). “The Importance of Diversity in Neural
Network Ensembles - An Empirical Investigation”. In: 2007 International Joint Conference on Neural
Networks, pp. 661–666. DOI: 10.1109/IJCNN.2007.4371035.

Kim, Sungdong, Sohee Yang, Gyuwan Kim, and Sang-Woo Lee (2020). “Efficient Dialogue State
Tracking by Selectively Overwriting Memory”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 567–582.

Kingma, Diederik P and Jimmy Ba (2017). “Adam: A Method for Stochastic Optimization”. In: arXiv
preprint arXiv:1412.6980 Version 9. URL: https://arxiv.org/abs/1412.6980v9.

Krishnan, Ranganath, Mahesh Subedar, and Omesh Tickoo (2020). “Specifying Weight Priors in
Bayesian Deep Neural Networks with Empirical Bayes”. In: Proceedings of the AAAI Conference
on Artificial Intelligence 34.04, pp. 4477–4484. DOI: 10.1609/aaai.v34i04.5875. URL: https:
//ojs.aaai.org/index.php/AAAI/article/view/5875.

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell (2017). “Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles”. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, California, USA.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-Based Learning Applied to Document
Recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324. DOI: 10.1109/5.726791.

https://www.aclweb.org/anthology/2020.sigdial-1.4
https://www.aclweb.org/anthology/2020.sigdial-1.4
https://doi.org/10.3115/v1/W14-4337
https://aclanthology.org/W14-4337
https://www.aclweb.org/anthology/W13-4073
https://www.aclweb.org/anthology/W13-4073
https://doi.org/10.1109/SLT.2014.7078601
https://doi.org/10.1109/SLT.2014.7078601
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://arxiv.org/abs/1503.02531
https://psycnet.apa.org/record/2012-00550-001
http://arxiv.org/abs/1112.5745v1
https://doi.org/10.1007/s10844-021-00683-4
https://doi.org/10.1109/IJCNN.2007.4371035
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.1609/aaai.v34i04.5875
https://ojs.aaai.org/index.php/AAAI/article/view/5875
https://ojs.aaai.org/index.php/AAAI/article/view/5875
https://doi.org/10.1109/5.726791

106 Bibliography

Lee, Harrison, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi (2023). “RLAIF: Scaling Reinforcement Learning from Human
Deedback with AI Feedback”. In: arXiv preprint arXiv:2309.00267. URL: https://arxiv.org/pdf/
2309.00267.pdf.

Lee, Hwaran, Jinsik Lee, and Tae-Yoon Kim (2019). “SUMBT: Slot-Utterance Matching for Universal
and Scalable Belief Tracking”. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for Computational Linguistics, pp. 5478–
5483. DOI: 10.18653/v1/P19-1546. URL: https://aclanthology.org/P19-1546.

Levin, Esther, Roberto Pieraccini, and Wieland Eckert (1998). “Using Markov Decision Process for
Learning Dialogue Strategies”. In: Proceedings of the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181). Vol. 1. IEEE, pp. 201–204. URL:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=674402.

Li, Shiyang, Semih Yavuz, Kazuma Hashimoto, Jia Li, Tong Niu, Nazneen Rajani, Xifeng Yan, Yingbo
Zhou, and Caiming Xiong (2020). “CoCo: Controllable Counterfactuals for Evaluating Dialogue
State Trackers”. In: International Conference on Learning Representations (ICLR). URL: https://arxiv.
org/abs/2010.12850.

Lin, Weizhe, Bo-Hsiang Tseng, and Bill Byrne (2021a). “Knowledge-Aware Graph-Enhanced GPT-2
for Dialogue State Tracking”. In: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Online and Punta Cana, Dominican Republic: Association for Computational
Linguistics. DOI: 10.18653/v1/2021.emnlp-main.620. URL: https://aclanthology.org/2021.
emnlp-main.620.

Lin, Zhaojiang et al. (2021b). “Leveraging Slot Descriptions for Zero-Shot Cross-Domain Dialogue
State Tracking”. In: Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for Computational Lin-
guistics. DOI: 10.18653/v1/2021.naacl-main.448. URL: https://aclanthology.org/2021.naacl-
main.448.

Liu, Yinhan et al. (2019). “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In: arXiv
preprint arXiv:1907.11692 Version 1. URL: https://arxiv.org/abs/1907.11692v1.

Loshchilov, Ilya and Frank Hutter (2019). “Decoupled Weight Decay Regularization”. In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. URL:
https://openreview.net/forum?id=Bkg6RiCqY7.

Luhn, H. P. (1957). “A Statistical Approach to Mechanized Encoding and Searching of Literary
Information”. In: IBM Journal of Research and Development 1.4, pp. 309–317. DOI: 10.1147/rd.14.
0309. URL: https://ieeexplore.ieee.org/abstract/document/5392697.

Luong, Thang, Hieu Pham, and Christopher D. Manning (Sept. 2015). “Effective Approaches to
Attention-based Neural Machine Translation”. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Lisbon, Portugal: Association for Computational Linguis-
tics, pp. 1412–1421. DOI: 10.18653/v1/D15-1166. URL: https://aclanthology.org/D15-1166.

Malinin, Andrey (2019). “Uncertainty Estimation in Deep Learning with application to Spoken
Language Assessment”. PhD thesis. University of Cambridge. URL: https://www.repository.
cam.ac.uk/handle/1810/298857.

Metallinou, Angeliki, Dan Bohus, and Jason D. Williams (2013). “Discriminative state tracking for
spoken dialog systems”. In: Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics. URL: http://
research.microsoft.com/apps/pubs/default.aspx?id=192335.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). “Efficient estimation of word
representations in vector space”. In: arXiv preprint arXiv:1301.3781. URL: https://arxiv.org/abs/
1301.3781.

Mrkšić, Nikola, Diarmuid Ó Séaghdha, Tsung-Hsien Wen, Blaise Thomson, and Steve Young (2017).
“Neural Belief Tracker: Data-Driven Dialogue State Tracking”. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada:

https://arxiv.org/pdf/2309.00267.pdf
https://arxiv.org/pdf/2309.00267.pdf
https://doi.org/10.18653/v1/P19-1546
https://aclanthology.org/P19-1546
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=674402
https://arxiv.org/abs/2010.12850
https://arxiv.org/abs/2010.12850
https://doi.org/10.18653/v1/2021.emnlp-main.620
https://aclanthology.org/2021.emnlp-main.620
https://aclanthology.org/2021.emnlp-main.620
https://doi.org/10.18653/v1/2021.naacl-main.448
https://aclanthology.org/2021.naacl-main.448
https://aclanthology.org/2021.naacl-main.448
https://arxiv.org/abs/1907.11692v1
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1147/rd.14.0309
https://doi.org/10.1147/rd.14.0309
https://ieeexplore.ieee.org/abstract/document/5392697
https://doi.org/10.18653/v1/D15-1166
https://aclanthology.org/D15-1166
https://www.repository.cam.ac.uk/handle/1810/298857
https://www.repository.cam.ac.uk/handle/1810/298857
http://research.microsoft.com/apps/pubs/default.aspx?id=192335
http://research.microsoft.com/apps/pubs/default.aspx?id=192335
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

Bibliography 107

Association for Computational Linguistics, pp. 1777–1788. DOI: 10.18653/v1/P17-1163. URL:
https://www.aclweb.org/anthology/P17-1163.

Nair, Vinod and Geoffrey E Hinton (2010). “Rectified Linear Units Improve Restricted Boltzmann
Machines”. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pp. 807–814. DOI: 10.5555/3104322.3104425.

Narayan, Sridhar (1997). “The Generalized Sigmoid Activation Function: Competitive Supervised
Learning”. In: Information Sciences 99.1, pp. 69–82. ISSN: 0020-0255. DOI: 10.1016/S0020-0255(96)
00200-9. URL: https://doi.org/10.1016/S0020-0255(96)00200-9.

Neal, Radford M (2012). Bayesian Learning for Neural Networks. Vol. 118. Springer Science & Business
Media. URL: https://link.springer.com/book/10.1007/978-1-4612-0745-0.

OpenAI (2023). GPT-4 Technical Report. Tech. rep. URL: https://arxiv.org/abs/2303.08774.
Osband, Ian, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,

Xiuyuan Lu, and Benjamin Van Roy (2023). “Epistemic Neural Networks”. In: arXiv preprint
arXiv:2107.08924. URL: https://arxiv.org/abs/2107.08924.

Ouyang, Long et al. (2022). “Training Language Models to Follow Instructions with Human Feedback”.
In: vol. 35, pp. 27730–27744. URL: https://proceedings.neurips.cc/paper_files/paper/2022/
hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Pennington, Jeffrey, Richard Socher, and Christopher Manning (2014). “GloVe: Global Vectors for Word
Representation”. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, pp. 1532–1543. DOI: 10.3115/v1/
D14-1162. URL: https://aclanthology.org/D14-1162.

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer (2018). “Deep Contextualized Word Representations”. In: Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics,
pp. 2227–2237. DOI: 10.18653/v1/N18-1202. URL: https://aclanthology.org/N18-1202.

Qian, Ning (1999). “On the Momentum Term in Gradient Descent Learning Algorithms”. In: Neural
Networks 12.1, pp. 145–151. ISSN: 0893-6080. DOI: https://doi.org/10.1016/S0893-6080(98)
00116-6. URL: https://www.sciencedirect.com/science/article/pii/S0893608098001166.

Radford, Alec, Jong Wook Kim, Tao Xu, Greg Brockman, Christine Mcleavey, and Ilya Sutskever
(2023). “Robust Speech Recognition via Large-Scale Weak Supervision”. In: Proceedings of the 40th
International Conference on Machine Learning. Ed. by Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett. Vol. 202. Proceedings of Machine
Learning Research. PMLR, pp. 28492–28518. URL: https : / / proceedings . mlr . press / v202 /
radford23a.html.

Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever (2018). “Improving Language
Understanding by Generative Pre-Training”. In: URL: http://openai-assets.s3.amazonaws.com/
research-covers/language-unsupervised/language_understanding_paper.pdf.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever (2019).
“Language Models are Unsupervised Multitask Learners”. In: URL: https://cdn.openai.com/
better-language-models/language_models_are_unsupervised_multitask_learners.pdf.

Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu (2020). “Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer”. In: The Journal of Machine Learning Research 21.1. ISSN: 1532-4435. URL:
https://dl.acm.org/doi/abs/10.5555/3455716.3455856.

Rastogi, Abhinav, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan (2020). “To-
wards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 05, pp. 8689–8696. URL:
https://ojs.aaai.org/index.php/AAAI/article/view/6394.

Ren, Liliang, Kaige Xie, Lu Chen, and Kai Yu (2018). “Towards Universal Dialogue State Tracking”.
In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels,

https://doi.org/10.18653/v1/P17-1163
https://www.aclweb.org/anthology/P17-1163
https://doi.org/10.5555/3104322.3104425
https://doi.org/10.1016/S0020-0255(96)00200-9
https://doi.org/10.1016/S0020-0255(96)00200-9
https://doi.org/10.1016/S0020-0255(96)00200-9
https://link.springer.com/book/10.1007/978-1-4612-0745-0
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2107.08924
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/N18-1202
https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://proceedings.mlr.press/v202/radford23a.html
https://proceedings.mlr.press/v202/radford23a.html
http://openai-assets.s3.amazonaws.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://openai-assets.s3.amazonaws.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://ojs.aaai.org/index.php/AAAI/article/view/6394

108 Bibliography

Belgium: Association for Computational Linguistics, pp. 2780–2786. DOI: 10.18653/v1/D18-1299.
URL: https://aclanthology.org/D18-1299.

Robert, Christian P and George Casella (1999). Monte Carlo Statistical Methods. Vol. 2. Springer. URL:
https://link.springer.com/book/10.1007/978-1-4757-4145-2.

Rumelhart, David E. and James L. McClelland (1987). “Learning Internal Representations by Error
Propagation”. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition:
Foundations, pp. 318–362. URL: https://ieeexplore.ieee.org/document/6302929.

Ryabinin, Max, Andrey Malinin, and Mark Gales (2021). “Scaling Ensemble Distribution Distillation
to Many Classes with Proxy Targets”. In: Advances in Neural Information Processing Systems 34,
pp. 6023–6035. URL: https://proceedings.neurips.cc/paper/2021/file/2f4ccb0f7a84f335affb
418aee08a6df-Paper.pdf.

Schütze, Hinrich (1998). “Automatic Word Sense Discrimination”. In: Computational Linguistics 24.1,
pp. 97–123. URL: https://www.aclweb.org/anthology/J98-1004.

Sener, Ozan and Silvio Savarese (2018). “Active Learning for Convolutional Neural Networks: A
Core-Set Approach”. In: International Conference on Learning Representations. URL: https://arxiv.
org/abs/1708.00489.

Shan, Yong, Zekang Li, Jinchao Zhang, Fandong Meng, Yang Feng, Cheng Niu, and Jie Zhou (2020). “A
Contextual Hierarchical Attention Network with Adaptive Objective for Dialogue State Tracking”.
In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, pp. 6322–6333. DOI: 10.18653/v1/2020.acl-main.563.
URL: https://www.aclweb.org/anthology/2020.acl-main.563.

Shannon, Claude E (1948). “A Mathematical Theory of Communication”. In: The Bell System Technical
Journal 27.3, pp. 379–423.

Shelmanov, Artem et al. (Apr. 2021). “Active Learning for Sequence Tagging with Deep Pre-trained
Models and Bayesian Uncertainty Estimates”. In: Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics: Main Volume. Online: Association
for Computational Linguistics, pp. 1698–1712. DOI: 10.18653/v1/2021.eacl-main.145. URL:
https://aclanthology.org/2021.eacl-main.145.

Shumailov, Ilia, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson
(2023). “The Curse of Recursion: Training on Generated Data Makes Models Forget”. In: arXiv
preprint arxiv:2305.17493. URL: https://arxiv.org/abs/2305.17493.

Sparck Jones, Karen (1972). “A Statistical Interpretation of Term Specificity and its application in
Retrieval”. In: Journal of Documentation 28.1, pp. 11–21. ISSN: 0022-0418. DOI: 10.1108/eb026526.
URL: https://doi.org/10.1108/eb026526.

Stanovich, Keith E (2009). What Intelligence Tests Miss: The Psychology of Rational Thought. Yale Univer-
sity Press. URL: https://psycnet.apa.org/record/2010-12180-012.

Szandała, Tomasz (2021). “Review and Comparison of Commonly Used Activation Functions for
Deep Neural Networks”. In: Bio-inspired Neurocomputing, p. 203. URL: https://link.springer.
com/content/pdf/10.1007/978-981-15-5495-7.pdf#page=208.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna (2016). “Re-
thinking the Inception Architecture for Computer Vision”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826. DOI: 10.1109/CVPR.2016.308.

Touvron, Hugo et al. (2023). “LLaMA: Open and Efficient Foundation Language Models”. In: arXiv
preprint arXiv:2302.13971. URL: https://arxiv.org/abs/2302.13971.

van Niekerk, Carel, Christian Geishauser, Michael Heck, Shutong Feng, Hsien-chin Lin, Nurul
Lubis, Benjamin Ruppik, Renato Vukovic, and Milica Gašić (2023). “CAMELL: Confidence-based
Acquisition Model for Efficient Self-supervised Active Learning with Label Validation”. In: arXiv
preprint arXiv:2310.08944 Version 1. URL: https://arxiv.org/abs/2310.08944.

https://doi.org/10.18653/v1/D18-1299
https://aclanthology.org/D18-1299
https://link.springer.com/book/10.1007/978-1-4757-4145-2
https://ieeexplore.ieee.org/document/6302929
https://proceedings.neurips.cc/paper/2021/file/2f4ccb0f7a84f335affb418aee08a6df-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2f4ccb0f7a84f335affb418aee08a6df-Paper.pdf
https://www.aclweb.org/anthology/J98-1004
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/1708.00489
https://doi.org/10.18653/v1/2020.acl-main.563
https://www.aclweb.org/anthology/2020.acl-main.563
https://doi.org/10.18653/v1/2021.eacl-main.145
https://aclanthology.org/2021.eacl-main.145
https://arxiv.org/abs/2305.17493
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://psycnet.apa.org/record/2010-12180-012
https://link.springer.com/content/pdf/10.1007/978-981-15-5495-7.pdf#page=208
https://link.springer.com/content/pdf/10.1007/978-981-15-5495-7.pdf#page=208
https://doi.org/10.1109/CVPR.2016.308
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.08944

Bibliography 109

van Niekerk, Carel, Michael Heck, Christian Geishauser, Hsien-chin Lin, Nurul Lubis, Marco Moresi,
and Milica Gašić (2020). “Knowing What You Know: Calibrating Dialogue Belief State Distribu-
tions via Ensembles”. In: Findings of the Association for Computational Linguistics: EMNLP 2020. On-
line: Association for Computational Linguistics, pp. 3096–3102. DOI: 10.18653/v1/2020.findings-
emnlp.277. URL: https://www.aclweb.org/anthology/2020.findings-emnlp.277.

van Niekerk, Carel, Andrey Malinin, Christian Geishauser, Michael Heck, Hsien-chin Lin, Nurul
Lubis, Shutong Feng, and Milica Gašić (2021). “Uncertainty Measures in Neural Belief Tracking
and the Effects on Dialogue Policy Performance”. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Online and Punta Cana, Dominican Republic: Association
for Computational Linguistics. URL: https://aclanthology.org/2021.emnlp-main.623.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin (2017). “Attention Is All You Need”. In: Advances in neural information
processing systems, pp. 5998–6008. URL: https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Vinyals, Oriol, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. (2016). “Matching Networks
For One Shot Learning”. In: Advances in neural information processing systems 29, pp. 3630–3638.
URL: https://proceedings.neurips.cc/paper_files/paper/2016/file/90e1357833654983612fb
05e3ec9148c-Paper.pdf.

Williams, Jason D. (June 2014). “Web-style Ranking and SLU Combination for Dialog State Tracking”.
In: Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue
(SIGDIAL). Philadelphia, PA, U.S.A.: Association for Computational Linguistics, pp. 282–291. DOI:
10.3115/v1/W14-4339. URL: https://aclanthology.org/W14-4339.

Williams, Jason D. and Steve Young (2007). “Partially observable Markov decision processes for
spoken dialog systems”. In: Computer Speech & Language 21.2, pp. 393–422. ISSN: 0885-2308. DOI:
https://doi.org/10.1016/j.csl.2006.06.008. URL: https://www.sciencedirect.com/science/
article/pii/S0885230806000283.

Xiong, Miao, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi (2023). “Can
LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs”. In:
arXiv preprint arXiv:2306.13063. URL: https://arxiv.org/abs/2306.13063.

Xiong, Wayne, Jasha Droppo, Xuedong Huang, Frank Seide, Michael L. Seltzer, Andreas Stolcke, Dong
Yu, and Geoffrey Zweig (2017). “Toward Human Parity in Conversational Speech Recognition”.
In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 25.12, pp. 2410–2423. DOI:
10.1109/TASLP.2017.2756440.

Ye, Fanghua, Jarana Manotumruksa, and Emine Yilmaz (Sept. 2022). “MultiWOZ 2.4: A Multi-Domain
Task-Oriented Dialogue Dataset with Essential Annotation Corrections to Improve State Tracking
Evaluation”. In: Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and
Dialogue. Edinburgh, UK: Association for Computational Linguistics, pp. 351–360. URL: https:
//aclanthology.org/2022.sigdial-1.34.

Young, Steve, Milica Gai, Simon Keizer, François Mairesse, Jost Schatzmann, Blaise Thomson, and
Kai Yu (2010). “The Hidden Information State model: A practical framework for POMDP-based
spoken dialogue management”. In: Computer Speech & Language 24.2, pp. 150–174. ISSN: 0885-2308.
DOI: https://doi.org/10.1016/j.csl.2009.04.001. URL: https://www.sciencedirect.com/
science/article/pii/S0885230809000230.

Young, Steve, Jost Schatzmann, Karl Weilhammer, and Hui Ye (2007). “The Hidden Information State
Approach to Dialog Management”. In: 2007 IEEE International Conference on Acoustics, Speech and
Signal Processing - ICASSP ’07. Vol. 4, pp. IV–149–IV–152. DOI: 10.1109/ICASSP.2007.367185.

Zang, Xiaoxue, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang, and Jindong
Chen (2020). “MultiWOZ 2.2 : A Dialogue Dataset with Additional Annotation Corrections and
State Tracking Baselines”. In: Proceedings of the 2nd Workshop on Natural Language Processing for
Conversational AI. Online: Association for Computational Linguistics, pp. 109–117. DOI: 10.18653/
v1/2020.nlp4convai-1.13. URL: https://aclanthology.org/2020.nlp4convai-1.13.

https://doi.org/10.18653/v1/2020.findings-emnlp.277
https://doi.org/10.18653/v1/2020.findings-emnlp.277
https://www.aclweb.org/anthology/2020.findings-emnlp.277
https://aclanthology.org/2021.emnlp-main.623
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://doi.org/10.3115/v1/W14-4339
https://aclanthology.org/W14-4339
https://doi.org/https://doi.org/10.1016/j.csl.2006.06.008
https://www.sciencedirect.com/science/article/pii/S0885230806000283
https://www.sciencedirect.com/science/article/pii/S0885230806000283
https://arxiv.org/abs/2306.13063
https://doi.org/10.1109/TASLP.2017.2756440
https://aclanthology.org/2022.sigdial-1.34
https://aclanthology.org/2022.sigdial-1.34
https://doi.org/https://doi.org/10.1016/j.csl.2009.04.001
https://www.sciencedirect.com/science/article/pii/S0885230809000230
https://www.sciencedirect.com/science/article/pii/S0885230809000230
https://doi.org/10.1109/ICASSP.2007.367185
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://aclanthology.org/2020.nlp4convai-1.13

110 Bibliography

Zhang, Jianguo, Kazuma Hashimoto, Chien-Sheng Wu, Yao Wang, Philip Yu, Richard Socher, and
Caiming Xiong (Dec. 2020). “Find or Classify? Dual Strategy for Slot-Value Predictions on Multi-
Domain Dialog State Tracking”. In: Proceedings of the Ninth Joint Conference on Lexical and Computa-
tional Semantics. Barcelona, Spain (Online): Association for Computational Linguistics, pp. 154–167.
URL: https://aclanthology.org/2020.starsem-1.17.

https://aclanthology.org/2020.starsem-1.17

	List of Figures
	List of Tables
	Summary of Notation
	Introduction
	Overview
	Task-oriented Dialogue Systems

	Challenges in Dialogue Belief Tracking
	Calibration and Uncertainty

	Contributions
	Thesis Structure

	Deep Learning Preliminaries
	Overview
	Fundamentals of Neural Networks
	Deep Neural Networks
	Activation Functions

	Parameter Optimisation
	Objective Functions
	Optimisation Algorithms

	Sequential Models
	Convolutional Neural Networks
	Recurrent Neural Networks
	The RNN Encoder-Decoder Model
	The Encoder
	The Decoder

	The Attention Mechanism
	The RNN Encoder-Decoder with Attention
	The Decoder with Attention

	The Transformer
	Multi-head Attention
	Self-attention
	Dense Feature Transformation Layers
	Positional Encodings
	The Transformer Layer

	The Transformer Language Model
	Token Embeddings
	Transformer Encoder Layer
	Transformer Decoder Layer
	The Model

	Encoder Language Models
	Decoder Language Models
	Conclusion

	Uncertainty Estimation in Deep Learning
	Overview
	What is Uncertainty?
	Types of Uncertainty in Deep Learning
	Calibration Techniques
	Objective Functions
	Ensembles

	Ensemble Distillation Techniques
	Ensemble Distillation
	Temperature Scaling

	Ensemble Distribution Distillation
	The Dirichlet Distribution
	Convergence Problems
	The Proxy Dirichlet Distribution
	Uncertainty Estimation Using the EnD2 Student

	Uncertainty-based Active Learning
	Acquisition Functions

	Conclusion

	Dialogue State Tracking
	Overview
	Generative Approaches to Dialogue Modelling
	Discriminative Approaches to Tracking

	Integrated Approaches to Tracking
	The Role of Word Embeddings
	Recent Advances

	The Slot Utterance Matching Approach to Belief Tracking (SUMBT)
	The Dialogue Belief Tracking Task
	Utterance and Ontology Features
	Slot Utterance Matching
	Context Tracking
	User Goal Prediction
	Training Objective
	Evaluation

	Conclusion

	Knowing What You Know: Calibrating Dialogue Belief State Distributions via Ensembles
	Summary
	Personal Contributions

	Uncertainty Measures in Neural Belief Tracking and the Effects on Dialogue Policy Performance
	Summary
	Personal Contributions

	CAMELL: Confidence-based Acquisition Model for Efficient Self-supervised Active Learning with Label Validation
	Summary
	Personal Contributions

	Conclusion
	Summary of Key Findings
	Limitations
	Recommendations for Future Research
	Uncertainty Estimation
	Efficient Uncertainty Estimation
	Uncertainty Estimation in Dialogue State Tracking Models

	Trustworthiness of Large Language Models
	Uncertainty Estimation in Large Language Models

	Supplementary Proofs
	Deep Learning
	Uncertainty Estimation

	Bibliography

