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Abstract
Task-oriented dialogue systems guide users to accomplish their goals with respect to

specific tasks, such as searching for restaurants or booking flight tickets. These systems
need to deal with complex and ambiguous user queries, which cannot be simplified into
a sequence of keywords but are conveyed in natural language and refined through con-
versation. Building such systems requires substantial amounts of example dialogues for
training and evaluation, which means learning and testing from real users is time-consuming
and labour-intensive. As a result, user simulation is essential in developing task-oriented
dialogue systems since it facilitates efficient and cost-effective interactions with such systems.

User simulators can be categorised into two groups: rule-based and data-driven. Rule-
based user simulators are composed of various manually designed rules, while data-driven
user simulators learn user behaviour from data. Rule-based user simulators are highly
interpretable, but their use for complex scenarios is not practicable since the designing of
rules may rapidly become intractable. Data-driven user simulators circumvent the need
for managing complex rules in realistic scenarios but have limited explainability. There
are more challenges in user simulation. Firstly, domain adaptation in user simulation
is not trivial. Adapting rule-based user simulators to new domains requires rewriting
handcrafted rules, which is laborious and costly. Moving data-driven user simulators to
unseen domains requires retraining or even re-engineering models since they may rely on
domain-dependent feature representations. Secondly, existing user models cannot capture
the richness of user behaviour properly, including the user’s intrinsic status, e.g. user persona
and emotions, and extrinsic behaviour, e.g. user actions and utterances. These shortcomings
will cause sub-optimal performance in user simulation. For instance, without considering
user emotions, user models cannot capture diverse human behaviour that is driven by
emotions. Generating user responses in the form of semantic actions will lose the linguistic
variation in natural language, while only generating utterances in natural language may
constrain interpretability.

The main contributions of this thesis are as follows. Firstly, our novel proposed user
simulators are domain-agnostic, overcoming the domain-dependency issue in existing user
simulators and enabling transfer to unseen domains in a zero-shot fashion. Secondly, we
introduce a framework for joint optimisation of user policy, which decides what actions
the user model should take, and natural language generation, resulting in generating more
human-like user utterances based on semantic actions and dialogue context. Thirdly, we
integrate user emotions and personas into user simulation, thereby providing more fine-
grained feedback beyond only task success and probing the impact of system behaviour
on the user’s emotional state. Our experimental results demonstrate that dialogue systems
built with the help of the proposed user simulators improve user experience. In addition,
modelling user behaviour in a wider spectrum, e.g. from external actions to internal status,
not only allows us to explore the effects of system behaviour on the user experience but also
provides a valuable tool for future research addressing ethical considerations.
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Chapter 1

Introduction

1.1 Overview

In the era of information explosion, it is crucial to develop systems that enable users to access
specific information accurately while effectively managing information overload (Fischer,
2001). Task-oriented dialogue systems have emerged as an attractive solution, assisting
users to achieve specific objectives within a particular task through conversations in natural
language, such as finding the most affordable flight ticket or booking a hotel based on specific
constraints.

Before deploying the system to real users, it is paramount to ensure that the system
functions optimally. Testing with real users can be labour-intensive and may not provide
sufficient coverage. Hence, user simulators are invaluable in facilitating comprehensive
dialogue evaluation. User simulation not only plays an important role in evaluations but also
accelerates the development of task-oriented dialogue systems. By reinforcement learning,
the training of task-oriented dialogue systems has necessitated thousands of interactions
to establish a functional policy (Li et al., 2017; Pietquin et al., 2011; Schatzmann et al., 2007;
Shi et al., 2019). However, learning from humans for substantial numbers of conversations
is time-consuming and costly. To address this issue, user simulation has gained significant
attention. By generating a large number of dialogues using a user simulator, the training
process becomes more efficient and cost-effective.

1.2 Task-oriented dialogue systems

Task-oriented dialogue systems are designed to help users accomplish specific goals within
a particular task such as hotel booking or finding a flight. As shown in Figure 1.1, solving
this problem typically requires tracking and planning (Young, 2002). In tracking, the system
keeps track of information of the dialogue from the beginning until the current dialogue
turn. In planning, the dialogue policy makes decisions at each turn and generates responses
which lead the conversation toward the task success (Levin and Pieraccini, 1997). What a
task-oriented dialogue system can understand and talk about is defined by an ontology. As
shown in Figure 1.2, an ontology may include different domains, such as restaurant or hotel.
Domains consist of a set of entities, e.g. the restaurant domain includes different restaurants.
Slots describe the properties that entities can have e.g. area or price and values are specific
values that these slots take e.g. centre or expensive.

The task-oriented dialogue system can be modularised with different components, con-
sisting of a natural language understanding module, a dialogue state tracker, a dialogue
policy, and a natural language generator (Geishauser et al., 2022; Henderson et al., 2013;
Thomson and Young, 2010; Williams and Young, 2007; Young et al., 2010). It can also be
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Real User
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FIGURE 1.1: The overview of task-oriented dialogue systems and environments.
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FIGURE 1.2: The ontology of task-oriented dialogues defines what a dialogue
system can understand and talk about.

modelled as an end-to-end system (Bordes et al., 2017; Lubis et al., 2020; Madotto et al., 2018;
Peng et al., 2021; Wen et al., 2017). These modules can be optimised by supervised learning,
however, given a more complicated ontology introduced intractable possible dialogue paths,
it is more reasonable to optimise planning modules, e.g. dialogue policy, by reinforcement
learning.

Training a dialogue policy by reinforcement learning requires substantial numbers of
interactions. Learning with real users is time-consuming, thus it is appealing to build a
simulated environment, e.g. user simulation, for development and evaluation. In this thesis,
we focus on the user simulation to model human behaviour during conversations. In the
subsequent sections, we will outline the challenges of user simulation for task-oriented
dialogue systems.

1.3 Challenges in user simulation

User simulators are widely used for training and testing task-oriented dialogue systems
and impact the performance of reinforcement learning-based dialogue systems signifi-
cantly (Schatzmann et al., 2005). However, existing user simulators suffer from several
issues, as mentioned in the following subsections.
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1.3.1 Limited scope of user behaviour in user simulation

Existing user simulators do not capture the richness of user behaviour properly. For example,
they only model the extrinsic user behaviour, e.g. semantic actions, but neglect the intrinsic
user status, e.g. user emotions and persona. As a result, these models are not able to capture
diverse user behaviour triggered by different internal states. Optimising dialogue systems
with these generic user policies may result in a high drop-off rate when deployed in the real
world. Thus, it is important to simulate the full spectrum of user behaviour from extrinsic to
intrinsic behaviour in user simulation.

1.3.2 Domain-dependency of user simulation

Adapting user simulators to a new domain is challenging. Rule-based user simulators are
composed of various handcrafted rules, which require intensive expert knowledge and must
be redesigned when adapting to an unseen domain. Conversely, data-driven user simulators
can learn user behaviour from datasets, but they may still have domain-dependent input
feature representation or output targets. As a result, we need to collect and annotate a new
dataset and then retrain or reengineer the user model when moving to a new ontology.

The domain dependency of user simulators will create barriers to building dialogue sys-
tems on a new customised domain. Therefore, it is essential to design a domain-independent
user simulator, which can learn ontology-agnostic user behaviours and generalise to unseen
domains.

1.3.3 Linguistic variation

The user simulators at the semantic level provide dialogue acts as user responses only,
limiting the language diversity of these models. Concatenating a natural language generator
can transform the semantic dialogue acts into natural language utterances. However, if
the generator solely relies on semantic actions as input, the generated results may not be
sufficiently natural within a given context. For example, as shown in Figure 1.3, a natural
language generator may be able to transfer the user semantic action, [Inform, Hotel,
Area, North] to "I want to find a hotel in the north", but in a different context, e.g. the
system informs an incorrect hotel area, the natural language generator may not be able to
transfer the same semantic action to "No, I want one in the north, not south". Furthermore, the
inability to optimise the user policy and the natural language generation jointly can lead
to suboptimal performance. As a result, it is desirable to have a user simulator capable of
generating both semantic actions and natural language utterances.

Usr: [Inform, Hotel, Area, North]

Sys: [Request, Hotel, Area, ?]

I want to find a hotel in the north.

Usr: [Inform, Hotel, Area, North]

Sys: [Inform, Hotel, Area, South]

No, I want to one in the north, not south.?

FIGURE 1.3: An example of the result of a separated natural language generation
model is not natural enough in a given context.
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1.3.4 Interpretability

Although rule-based user policies and template-based natural language generators composed
of handcrafted rules cannot capture the richness of human behaviour, these modules are
fully explainable. On the other hand, data-driven user simulators that rely on deep neural
networks suffer from limited interpretability (Arrieta et al., 2020; Castelvecchi, 2016). It is
hard to improve dialogue systems when training and testing with user simulators which
are difficult to interpret. In addition, it is also difficult to control or change the behaviour of
uninterpretable user simulators for a more diverse environment. As a result, it is crucial to
build an interpretable user simulator.

1.4 Contributions

In this thesis, we focus on the user simulation of task-oriented dialogue systems. The
contributions can be summarised as follows:

• Domain-independent user simulation: a semantic level user simulator, TUS, is pro-
posed that uses domain-independent features and natural language level user simu-
lators, GenTUS and EmoUS, that represent input and output as token sequences. All
user simulators proposed in this thesis are domain-agnostic and are able to adapt to an
unseen domain in a zero-shot fashion.

• Joint optimisation of user policy and language generation: GenTUS and EmoUS
are proposed that are able to generate both semantic actions and natural language
utterances as user responses. By jointly optimising the user policy and language
generation, they are able to generate more natural language responses in a given
context.

• User emotions in user simulation: The user persona and user emotions are included in
EmoUS. By considering the user intrinsic status, EmoUS can capture various behaviour
driven by different emotions and generate more diverse responses. In addition, EmoUS
can be used as a probe to evaluate dialogue systems, especially for how dialogue
systems affect the user’s emotions. Developing such methods is important as the
increasing usage of large language model chat-bots and rising ethical concerns.

1.5 Thesis Structure

This thesis consists of seven chapters. In Chapter 1, a comprehensive overview is provided
to introduce the user simulation, specify the challenges, and outline the contributions of
the thesis. Chapter 2 provides an introduction to deep learning, explaining how to use it in
the downstream tasks. Chapter 3 is the literature review of user simulation, discussing the
strengths and weaknesses of existing methods. In Chapter 4, TUS is introduced, a semantic-
level transformer-based user simulator with domain-independent feature representations.
In Chapter 5, GenTUS is proposed, a user simulator which simulates user behaviour and
language jointly with generative transformers. In Chapter 6, EmoUS, which simulates user
emotions for task-oriented dialogues, is proposed based on GenTUS. Chapter 7 summarises
the results of this thesis and suggests directions for future study.
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Chapter 2

Machine Learning Background

2.1 Neural Networks

Artificial neural networks, usually called neural networks, are inspired by the human brain.
They are composed of a huge amount of interconnected simple processors, usually called
neurons, that can run in parallel (Jain et al., 1996). The inputs and outputs of these neurons
are connected by directed weighted edges, i.e. neural networks are weighted-directed graphs.
In addition, neural networks can be viewed as function approximations, which means neural
networks are used to estimate an unknown function using available observations from the
task-specific domain. For instance, consider there is an unknown function funk that takes
user utterances and predicts the user’s intent, such as searching for a hotel or booking a
restaurant. To approximate this function funk, we train a neural network fNN with a dataset
D = {xi, yi}N

i=1, consisting of N pairs of user utterances x and corresponding intents y. In
addition, this neural network fNN should be able to generalise to user utterances which are
unseen in the dataset.

In this chapter, the structure of feed-forward neural networks is mentioned in Section 2.2,
the structure of recurrent neural networks is described in Section 2.3, the attention mechanism
is discussed in Section 2.4, and the structure of transformers is presented in Section 2.5. The
basic information of neural network optimisation is explained in Section 2.6 and a brief
introduction of reinforcement learning is specified in Section 2.7.

2.2 Feed-forward Neural Networks

A feed-forward neural network, which maps the input x to the output ŷ, can be defined as
ŷ = f (x; θ) where θ is the learnable parameter. The feed-forward neural network can be
formed with multiple layers f1, f2, . . . , fL, as illustrated in Figure 2.1.

Each layer l can be formulated as:

fl(hl−1) = φl(Wlhl−1 + bl), l = 1, . . . , L (2.1)

where its input hl−1 ∈ Rdl−1 is a real number vector with dimension dl−1 ∈ N from the
output of the previous layer l − 1, h0 = x, hL = ŷ and φl is an activation function which can
be linear or nonlinear.

For an input vector x with dimension d, common activation functions are shown as
follows:

φSigmoid(x) =
[︃

1
1 + e−xi

]︃d

i=1
(2.2)
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φReLU(x) = [max(0, xi)]
d
i=1 (2.3)

φsoftmax(x) =

[︄
exi

∑d
j=1 exj

]︄d

i=1

(2.4)

Activation functions are typically nonlinear. According to the Universal Approximation
Theorem (Cybenko, 1989), a two-layer neural network serves as a universal approximator
when its activation functions are nonlinear. On the other hand, if all activation functions
are linear, the entire network is equivalent to a single-layer model. The Sigmoid function
(Equation 2.2) maps real-valued inputs into a value between (0, 1) and was commonly used
as an activation function. However, it suffers from the problem of gradient vanishing (see
Appendix A), which makes training deep networks difficult (Pascanu et al., 2013). In contrast,
the rectified linear unit (ReLU) (Equation 2.3) has fewer gradient vanishing problems and is
more computation efficient, which makes it the most popular activation function (Fukushima,
1969; Glorot et al., 2011). In addition, the softmax function (Equation 2.4) is widely chosen
to be the activate function of the last layer of neural networks because it can normalise a
general vector into a probability distribution over output classes.

As shown in Figure 2.1, the network is parameterised with weights, Wl ∈ Rdl×dl−1 , and
biases, bl ∈ Rdl . These parameters can be optimised based on a dataset by stochastic gradient
descent algorithms, such as adaptive subgradient methods (AdaGrad) (Duchi et al., 2011)
and adaptive moment estimation (Adam) (Kingma and Ba, 2015) (see Section 2.6).

Feed-forward neural networks have impressive generalisation ability and have been
proposed to solve various tasks, such as pattern recognition. However, these networks
are memoryless, which means different inputs are independent, thus it is not suitable for
sequential prediction tasks, such as natural language generation, which should capture the
relationship between various inputs in a sequence.

Input 

output 

 

 

 layers

FIGURE 2.1: An example of a feed-forward neural network.

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are often employed to handle sequential or time series
data, including tasks like language translation and speech recognition. Unlike feed-forward
neural networks, RNNs have internal loops. By introducing connections from the previous
time step, RNNs have "memory", which means they can leverage past inputs to impact the
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present input and output (Dey and Salem, 2017; Elman, 1990; Hochreiter and Schmidhuber,
1997; Jordan, 1997). This process can be formulated as:

ht, ŷt = f (xt, ht−1; θ), t = 1, . . . , N. (2.5)

where the sequential input and output are represented as X = (x0, . . . , xN) and Ŷ =
(y0̂, . . . , yN̂) respectively, ht is the hidden vector output by the RNN at time step t, and
θ is the parameters of the RNN. One example is shown in Figure 2.2.

Input 

Output 

 unfold     

FIGURE 2.2: An example of a recurrent neural network.

Various sequential learning problems may have different structures (Lipton et al., 2015),
as shown in Figure 2.3. The many-to-one structure (Figure 2.3 (A)) maps a sequence into
a fixed-length vector, which can be used for sequence classification, e.g. text classification.
The one-to-many structure (Figure 2.3 (B)) generates sequential outputs based on a single
input vector, which can be used for image caption generation. The many-to-many structure
(Figure 2.3 (C)) can be used for language generation, where the model predicts the next token
at each time step. In the following section, we will describe the encoder-decoder structure,
which is one of the most common structures.

   

 

(A) many-to-one

 

   

(B) one-to-many

   

   

(C) many-to-many

FIGURE 2.3: Various structures of RNNs. Green boxes are inputs and orange
boxes are outputs.

2.3.1 Encoder-decoder in RNNs

The encoder-decoder structure is designed for sequence-to-sequence tasks where the input
sequence and output sequence have varying lengths, such as machine translation (Bahdanau
et al., 2015), speech recognition (Weninger et al., 2015) and user simulation (El Asri et al.,
2016; Kreyssig et al., 2018). This structure consists of two main components, the encoder and
the decoder. The encoder fenc will convert the input sequence X = (xi)

N
i=1 into a fixed-length

vector, also called a context vector c. Then the decoder fdec will generate an output sequence
based on this vector, which means the context vector c is the initial hidden vector for the
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 Decoder  Encoder

 Input    

 Output     

 

   

 context vector  

 

FIGURE 2.4: The encoder-decoder structure in RNNs. [BOS],[EOS] are vectors
that represent the start and the end of a sequence respectively.

decoder. As shown in Figure 2.4, this process can be formulated as:

hi = fenc(xi, hi−1), i = 1, . . . , N
s0 = c = hN

st, ŷt = fdec(ŷt−1, st−1), t = 1, . . . , M
(2.6)

where hi is the hidden vector in the encoder fenc of input token xi, and st is the hidden vector
in the decoder fdec of output ŷt at time step t. N, M are the length of input and out sequences
respectively.

One possible drawback of the encoder-decoder structure in Figure 2.4 is that the encoder
may lose information when compressing whole input sentences into a fixed-length vector,
particularly if the input sequences are longer than the sequences in the training dataset
(Bahdanau et al., 2015). Therefore, it is appealing to introduce the attention mechanism to
help the decoder access the entire input sequence, reducing the risk of information loss.

2.4 Attention Mechanism

The attention mechanism enables models to focus on specific parts of input data when
making predictions or decisions. This mechanism highlights relevant data, functioning like a
spotlight to improve the overall model’s effectiveness, especially for capturing important
information in long sequences.

In general, the input of the attention layer includes three parts, the query, the keys, and
the values. The query specifies what the model is looking for in the input sequence, the keys
represent information about the input sequence, and the values contain the actual information
that the model should use. The similarity or relevance scores between the query and keys are
referred to as the attention weights. The weighted sum of the values based on the attention
weights is often referred to as the context vector, which is used in subsequent computations in
the model. The attention mechanism can be implemented sequentially (Section 2.4.1) or in
parallel (Section 2.4.2).

2.4.1 Attention Mechanism in RNNs

The attention mechanism in RNNs in encoder-decoder architecture proposed by Bahdanau
et al. (2015) is shown in Figure 2.5. The encoder transforms the input sequence X into hidden
vectors H = (h1, h2, . . . , hN) where N is the length of the input sequence. At time step t, the
attention layer takes the hidden vector st−1 from the decoder in the previous time step t− 1
as the query and the hidden vectors H from the encoder as the keys. The relevance scores
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FIGURE 2.5: The attention mechanism in RNNs (Bahdanau et al., 2015)

between the query st−1 and the keys H are the attention weights αt, calculated by a similarity
function sim(·, ·) and normalised by a softmax function (Equation 2.4). This process can be
formulated as:

et
i = sim(hi, st−1), i = 1, . . . , N

αt = φsoftmax(et),
(2.7)

where the similarity function sim(·, ·) can be any distance measurement, such as a cosine
similarity function or a feed-forward layer trained with the other components jointly. The
higher attention weight αt

i means the token xi is more relevant to the output token ŷt. The
context vector ct at time step t is a linear combination of the value vectors, i.e. hidden vectors
H from the encoder, weights by the attention weights αt, which can be formulated as:

ct =
N

∑
i=1

αt
i hi, (2.8)

then this context vector ct is fed into the decoder for the output ŷt = fdec(st−1, ct).

2.4.2 Scaled Dot-Product Attention

The sequential attention mechanism in RNNs processes input sequences one token at a time,
which is computationally inefficient. Therefore, it is appealing to calculate the attention for
all queries, keys and values at the same time.

The scaled dot-product attention proposed by Vaswani et al. (2017) is an attention mech-
anism in parallel and widely used in various transformer-style language models, such as
BERT (Devlin et al., 2019), T5 (Raffel et al., 2020) and GPT (Radford et al., 2018). The three
inputs for the attention layer are the queries Q = (q1, q2, . . . ), keys K = (k1, k2, . . . ), and
values V = (v1, v2, . . . ). The attention weights are the dot products of the query vector with all
keys, divided by the square root of the dimension of the key vector

√
dk, and passed through
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a softmax function. This attention mechanism can be formulated as

Attention(Q, K, V) = φsoftmax

(︃
QKT
√

dk

)︃
V , (2.9)

where all operations are matrix multiplication, which is highly parallelisable.

Why do we need to divide by the scale
√

dk Assume each element of the query vector
q and the key vector k are sampled from a standard normal distribution N (0, 1) and their
dimension is dk, then their dot product q · k = ∑dk

i=1 qiki follows a normal distribution with
mean 0 and variance dk. In other words, the result of the dot product may grow large with a
large value dk, which can cause small gradients in the softmax function. Therefore, scaling
the dot product with 1√︁

dk
results in a variance of 1 and as a result, stabilises the training

process.

2.5 Transformers

The transformer, proposed by Vaswani et al. (2017), is composed purely of attention mecha-
nisms (Section 2.4.2) without recurrent components. With the attention mechanism, trans-
formers are able to capture the global relationship between input and output sequences.
There are four important components in the transformers, the multi-head attention mecha-
nism which is composed of the self-attention mechanism (Section 2.5.1), residual connections
(Section 2.5.2), layer normalisation (Section 2.5.3), and position encodings (Section 2.5.4). The
whole structure of the transformer is shown in Section 2.5.5 and the application of pretrained
transformers is mentioned in Section 2.5.6.

2.5.1 Self-Attention Mechanism

The self-attention mechanism computes a weighted representation of each token by consid-
ering all other tokens in the same sequence by an attention mechanism. Here we take the
scale dot-product attention mechanism (Equation 2.9) as an example. The queries, keys and
values are the projection of the input sequence X with learnable parameters WQ, WK, and
WV , which can be formulated as

SelfAttention(X) = φsoftmax

(︄
XWQ(XWK)

T
√

dk

)︄
XWV , (2.10)

where the representations of the input sequence is X = (x1, x2, . . . ), the learnable parameters
WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , WV ∈ Rdmodel×dv , and dmodel = dk = dv.

A large attention weight αij from token i to token j means token i attends to token j. The
attention relationship can be asymmetric (αij ̸= αji) because the query weights WQ and key
weights WK may be different and the matrix multiplication is not commutative.
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Scaled Dot-Product
Attention

Concat

FIGURE 2.6: Multi-Head Attention

Multi-head attention The multi-head attention, as shown in Figure 2.6, is composed of
multiple attention units, which can attend to different information, e.g. long-term or short-
term relationships. It can be formulated as:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

headi = Attention(QWQi, KWKi, VWVi),
(2.11)

where h is the number of attention units, and WQi, WKi, WVi, and WO are projection matrices,
which are learnable parameters.

2.5.2 Residual Connection

A residual connection (He et al., 2016) is a connection that skips a subnetwork fsub(x),
performing identity mappings and adding to the output of the subnetwork, which can be
formulated as

Res(x) = x + fsub(x). (2.12)

Deep neural networks, which have tens or hundreds of layers, with residual connections are
easier to train and get rid of the problem of gradient vanishing (see Appendix A). Without
the residual connections, very deep transformers cannot be trained (Dong et al., 2021).

2.5.3 Layer Normalisation

During the training of a deep neural network, the distribution of inputs between each layer
may change because the parameters of the model are updated, which is called internal
covariate shift (Ioffe and Szegedy, 2015). This phenomenon may make training a deep neural
network unstable and difficult. The layer normalisation (Ba et al., 2016) is one solution.
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For an input vector x = [xi]
d
i=1 with dimension d, the layer normalisation calculates mean

µ and variance σ as follows:

µ =
1
d

d

∑
i=1

xi

σ =

⌜⃓⃓⎷1
d

d

∑
i=1

(xi − µ)2 + ϵ,

(2.13)

where ϵ is a small value added to the denominator for numerical stability, then the output of
the layer normalisation is

Norm(x) =
w
σ
(x− µ) + b, (2.14)

where w and b are trainable parameters which are set to be 1 and 0 respectively in general.

2.5.4 Positional encoding

As described above, the transformers are composed of pure attention mechanisms without
recurrent units. As a result, they do not have an inherent sense of sequential order. Therefore,
positional encoding is introduced to provide information on the relevant or absolute position
of each token, which can be learned or fixed. The positional encoding method used by
Vaswani et al. (2017) is sine and cosine functions with different frequencies. For token in the
position j represented by d-dimensional xj = [xj,i]

d
i=1, its positional encoding pj = [pj,i]

d
i=1

can be formulated as follows:

pj,i =

{︄
sin(ωk · j), if i = 2k
cos(ωk · j), if i = 2k + 1,

(2.15)

where ωk = 1
100002k/d and k = 0, 1, . . . , ⌈ d

2⌉ − 1. This positional encoding can properly
represent the absolute and relative position information, allowing the model to learn the
sequence order information.

Absolute position information As shown in Equation 2.15, the elements in the positional
encoding p are sine and cosine functions with different periods:

2π, 2π · 10000
2
d , 2π · 10000

4
d , . . . , 2π · 100001− 2

d .

If the sequence length is shorter than 100001− 2
d , the positional encoding of tokens in each

position is unique, giving the model the absolute position information.

Relative position information For any fixed offset δ ∈ N, a linear transformation Tδ ∈
Rd×d exists, such that

Tδ pj = pj+δ. (2.16)

In addition, the length of each positional encoding is the same

∥pj∥2 =

√︃
d
2

(2.17)
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and the distance between two tokens is symmetric (see Appendix B.1).

∥pj − pj+δ∥2 = ∥pj − pj−δ∥2 (2.18)

2.5.5 Encoder-decoder structure of the Transformer

Multi-head attention

Add & Norm

Feed Forward

Add & Norm

(A) The encoder layer

Multi-head attention

Add & Norm

Feed Forward

Add & Norm

Multi-head attention

Add & Norm

(B) The decoder layer

 

 input 

 

positional
encoding

 output  

positional
encoding

Encoder layer

Encoder layer

Encoder layer

Decoder layer

Decoder layer

Decoder layer

Linear
layer

Linear
layer

softmax softmax

(C) The encoder-decoder structure of transformers.
[BOS] is a vector representing the start of a sequence.

FIGURE 2.7: The encoder layer fenc, the decoder layer fdec, and the encoder-
decoder structure of transformers.

The Transformer is composed of the encoder and the decoder (see Figure 2.7 (C)). The
encoder is composed of identical encoder layers fenc and the decoder is also composed of
identical decoder layers.

Encoder layer The encoder layer fenc is composed of two sublayers (see Figure 2.7 (A)). The
first sublayer enc1 takes the input sequence X = (xi)

N
i=1 as the queries, keys and values of a

multi-head attention layer (Equation 2.11), following by a residual connection (Equation 2.12)
and a layer normalisation (Equation 2.14). The second sublayer enc2 consists of a feed-
forward network f f f n with a residual connection and a layer normalisation. The encoder
layer can be formulated as follows:

X ′ = enc1(X) = Norm(X + MultiHead(X, X, X))

Henc = enc2(X ′) = Norm(X ′ + f f f n(X ′))
(2.19)

where X ′ is the output of the first sublayer enc1 and Henc = (hi)
N
i=1 is the output of the

encoder layer fenc.

Decoder layer The decoder layer fdec includes three sublayers (see Figure 2.7 (B)). The first
sublayer dec1 and the second sublayer dec2 are composed of a multi-head attention layer
with a residual connection and layer normalisation. In the first sublayer, the queries, keys
and values are Y = (yi)

M
i=1, but the second sublayer takes the output of the first sublayer as
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queries and the output from the last encoder layer as keys and values. The third sublayer dec3
includes a feed-forward network f f f n with a residual connection and a layer normalisation.
The decoder layer can be formulated as follows:

Y ′ = dec1(Y) = Norm(Y + MultiHead(Y , Y , Y))
Y ′′ = dec2(Y ′) = Norm(Y ′ + MultiHead(Y ′, Henc, Henc))

Hdec = dec3(Y ′′) = Norm(Y ′′ + f f f n(Y ′′))
(2.20)

where Y ′, Y ′′ are the output of the first and second sublayer dec1, dec2 respectively and
Hdec = (hi)

N
i=1 is the output of the decoder layer fdec.

As shown in Figure 2.7 (C), the encoder is composed of Nenc encoder layers and the
decoder includes Ndec decoder layers. The input sequence X = (xi)

N
i=1 with N tokens

added with the positional encoding (Equation 2.15) is fed into the encoder, then the encoder
generates Henc, which represents the input sequence with context information.

In the decoding step t, the decoder takes the encoded feature of the input sequence H
and the generated output sequence Ŷ = (ŷi)

t−1
i=1 added with the positional encoding as input,

where H is fed into each decoder layer directly. The output of the final decoder layer passes
through a linear layer and a softmax function (Equation 2.4), which represents the probability
distribution of output token t over the whole vocabulary.

In summary, the transformer can capture the relationship between two tokens at a long
distance with multi-head attention. Including the residual connection and layer normalisa-
tion, the transformer can be deep and stable for training. Therefore, it can model sequential
tasks properly.

2.5.6 Pre-training and Fine-tuning for Downstream Tasks

Transformer-based language models are trained unsupervisedly or self-supervisedly on
unlabeled corpora as initialisation. The pre-training methods can be divided into three
groups, masked language modelling, next-token prediction, and sequence reconstruction.

• Masked Language Modelling is commonly used to pre-train encoder-only models,
e.g. BERT (Devlin et al., 2019). As shown in Figure 2.8 (A), a portion of the tokens in
the input sequence is randomly masked. The model should learn to predict masked
tokens based on the left and right context information within the sequence, which
means tokens are encoded bi-directionally, i.e. in an input sequence X = (x)N

i=1, which
has N tokens, a token xi can attend to future tokens xj where j > i, and past tokens
xj where j < i. However, without recurrent units, these models cannot be used for
generation easily.

• Next-Token Prediction is often used to pre-train decoder-only models, e.g. GPT (Rad-
ford et al., 2018). As shown in Figure 2.8 (B), the model should learn to predict the next
token according to the given sequence. As a result, the next token prediction is suitable
for pre-training generative models. However, since tokens can only be conditioned on
leftward tokens, the model is not able to learn bi-directional relationships.

• Sequence Reconstruction can be used to pre-train encoder-decoder models, e.g.
BART (Lewis et al., 2020). It combines the concept of masked language modelling
and next-token prediction. As shown in Figure 2.8 (C), an input sequence is masked
partially and compressed by an encoder, and then the decoder should reconstruct the
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input sequence. The input sequence does not need to be aligned with the decoder
outputs, which means arbitrary noise transformation can apply to the input sequence,
e.g. masking or removing certain tokens. By this method, the model can learn both
bi-directional contextual relationships and it is able to generate coherent sequences.

A _ C _ E

B D

Encoder

(A) Masked Language Modelling
for encoder-only models

A B C D

A B C D E

E_C_A Decoder

(B) Next Token Prediction
for decoder-only models

A _ C _ E

Encoder

A B C D

A B C D E

E_C_A Decoder

(C) Sequence reconstruction
for encoder-decoder models

FIGURE 2.8: Different structures and pre-training methods of transformer-
based language models. The example input sequence includes 5 tokens,
A, B, C, D, and E, [BOS] represents the start of a sequence, and "_" stands for

masked tokens.

These language models are built for general purposes and can capture contextual word
representations (Reif et al., 2019) where each layer may learn linguistically founded informa-
tion (Niu et al., 2022; Vries et al., 2020). In addition, transformer-based models pre-trained
on text data also improve their performance on non-text sequential tasks, such as protein
classification or music composer classification (Kao and Lee, 2021). Therefore, fine-tuning
pre-trained transformer-based models for specified downstream tasks is appealing (Chiang
et al., 2022). The pre-trained model can be directly optimised on the target dataset with
a small learning rate, update part of the model by an adaptor (Hu et al., 2022), leverage
prefix-tuning (He et al., 2022) or prompt-tuning (Lester et al., 2021) to modify part of the
hidden layers. In this thesis, user simulators are built on pre-trained large language models,
e.g. BART (Lewis et al., 2020), fine-tuning the language model on dialogue corpora with
different representations of input and output sequences.

Large Language Models Large language models (LLMs) are language models that have
millions to trillions of parameters and are pre-trained on comprehensive corpora by unsu-
pervised or self-supervised learning. LLM-based systems have been quickly deployed to
real users and achieve impressive performance, comparable to or even surpassing humans,
across a wide range of natural language process tasks (Brown et al., 2020). The remarkable
capabilities of LLMs can often be attributed to in-context learning (Brown et al., 2020; Dong
et al., 2023) and reinforcement learning through human feedback (Ouyang et al., 2022). With
in-context learning, users can teach LLMs to perform a specific task by providing some
input-output examples during inference, without optimising any parameters of LLMs. In
addition, reinforcement learning through human feedback (RHLF) improves LLMs to follow
user instructions, achieving better performance on in-context learning.

As shown in Figure 2.8, LLMs can be divided into three groups according to their
structure, encoder-only, e.g. BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019), encoder-
decoder, e.g. Transformer (Vaswani et al., 2017), BART (Lewis et al., 2020), T5 (Raffel et al.,
2020), and AlexaTM (Soltan et al., 2022), and decoder-only, e.g. GPT-family models (Brown
et al., 2020; OpenAI, 2023; Radford et al., 2018; Solaiman et al., 2019; Wang and Komatsuzaki,
2021), Gopher (Rae et al., 2022), LaMDA (Thoppilan et al., 2022), Chinchilla (Hoffmann et al.,
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2022), BLOOM (Scao et al., 2022), PaLM (Chowdhery et al., 2022), and LLaMA (Touvron
et al., 2023).

The model size and the training cost of large language models are growing exponentially
(see Figure 2.9). The training cost C denotes how many floating point operations (FLOP) are
required for training the model, which is commonly approximated as C = 6DΘ where D
represents how many tokens there are in the training corpus and Θ stands for the number
of the parameters of the model (Kaplan et al., 2020). The serving cost and latency time
also increase considerably as the model size grows, therefore it is still very challenging to
properly leverage the power of large language models.
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FIGURE 2.9: The parameters and training cost of various large language models.

2.6 Neural Network Optimisation

2.6.1 Gradient Descent

The optimisation algorithm changes the parameters of the model (e.g. the weights and biases
of a neural network) to minimise the errors based on a loss function (Section 2.6.2) iteratively.
The most basic optimisation algorithm is Gradient Descent, which can be formulated as
follows:

θk+1 = θk − η∇θL(D; θk), (2.21)

where θk is the parameters of the model at epoch k, ∇θL(D; θk) is the gradient of the loss
function L with respect to the parameters θk based on the whole dataset D = {(xi, yi)}N

i=1
which is composed of N pairs of input x and target y, and η is the learning rate which is a
small positive number and controls the step-size of update. The learning rate η should be
selected carefully since a high learning rate can hinder convergence and an excessively small
learning rate can lead to time-consuming training or suboptimal parameters.

The gradient descent algorithm updates parameters based on the whole dataset, also
called Batch Gradient Descent. When dealing with sizable datasets, it can lead to lengthy
training times and memory-intensive computations. In addition, it may be trapped in
local minima. Stochastic Gradient Descent is a variant of the gradient descent. Instead of
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optimising parameters for the whole dataset D, the stochastic gradient descent computes
gradients and updates parameters for each individual data point, Di = (xi, yi), one at a
time. While stochastic gradient descent requires less memory than batch gradient descent,
frequent updates can result in noisy gradients and cannot fully utilise parallel computation
capabilities. Mini-batch Gradient Descent is a compromise, combining the concept of both
batch gradient descent and stochastic gradient descent. It splits the complete dataset into
small batches, i.e. mini-batch, and updates the model on each mini-batch. By selecting an
appropriate batch size, a balance between memory efficiency and computational speed can
be achieved. As shown in Algorithm 1, for a datasetD with N data points, the batch gradient
descent has batch size Nbatch = N, the stochastic gradient descent has batch size Nbatch = 1,
and the batch size of mini-batch gradient descent is 0 < Nbatch < N.

Algorithm 1 Gradient Descent. The batch gradient descent updates parameters based on the
whole dataset, the stochastic gradient descent updates parameters per each data point, and
the mini-batch gradient descent updates parameters per each mini-batch data.

1: Input: Learning rate η, Batch size Nbatch, Number of epochs Nepochs

2: Input: Training dataset D = {(xi, yi)}N
i=1, Model parameters θ

3: Output: Optimised parameters θ
4: Initialise θ = θ0 randomly
5: for k← 1 to Nepochs do
6: Shuffle the training dataset D
7: Initialise j = 0
8: while j < N do
9: Dbatch = {(xi, yi)}

j+Nbatch
i=j (batch data)

10: θk = θk−1 − η∇θL(Dbatch; θk−1) (update parameters)
11: j← j + Nbatch
12: end while
13: end for
14: Return Optimised θ∗

2.6.2 Loss function

The loss function L, also referred to as objective function or cost function, quantifies the
difference between the predicted values generated by a model and the actual ground truth
or target values in a dataset, measuring how well or poorly a model is performing on a given
task. The choice of an appropriate loss function depends on the specific task and the desired
characteristics of the model output. For example, the Mean Squared Error (MSE) is often
used for regression tasks, which can be formulated as:

LMSE(D; θ) =
1
N

N

∑
i=1

(yi − ŷi)
2 , (2.22)

where the dataset D = {xi, yi}N
i=1 includes N pairs of input-output pairs (xi, yi) and the

model parameterised by θ outputs ŷi = f (xi; θ) for the input xi. The mean squared error loss
function encourages the model’s output closer to actual data. For classification problems, the
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Cross-Entropy Loss (CE) is commonly used, which can be formulated as:

LCE(D; θ) = − 1
N

N

∑
i=1

C

∑
j=1

(︂
yij log ŷij

)︂
, (2.23)

where the target y = [yj]
C
j=1 is a one-hot encoding for C classes, i.e. if xi belongs to class c,

then

yi,j =

{︄
1 if j = c
0 otherwise

(2.24)

and ŷ = f (x; θ) represents the probability scores of different classes predicted by the model,
i.e. ŷij = P(xi = j) is the probability of xi belongs to class j. The cross-entropy loss function
encourages the output probability distribution aligned with the target labels.

2.6.3 Adaptive Subgradient Methods

Gradient descent methods have a fixed learning rate, although different parameters may
benefit from varying learning rates. Furthermore, the large gradients in the initial epochs
can detrimentally impact optimisation, emphasising the need for a smaller learning rate for
larger gradients. Adaptive Subgradient methods (AdaGrad) dynamically adjust updates to
each individual parameter, allowing for larger or smaller updates based on their respective
importance (Duchi et al., 2011). Given the parameters of the model θ, the loss function L, the
dataset for optimisation D, AdaGrad can be formulated as follows:

θk+1 = θk −
η√︂

∑k
i=1 g2

i

gk

gk = ∇θL(D; θk),

(2.25)

where the learning rate η is normalised by the summation of history gradients and g2 = g⊙ g
is the element-wise square of gradient g. AdaGrad automatically adjusts the learning rate
for each training parameter, but one drawback is that the learning rate continually decreases
because ∑k

i=1 g2
i is a monotonic increasing function, leading to slower training.

2.6.4 Adaptive Moment Estimation

The adaptive moment estimation (Adam) (Kingma and Ba, 2015) is the most commonly
used optimisation algorithm. Adam is inspired by AdaGrad and RMSProp (Hinton et al.,
2012), computing adaptive learning rates for each parameter and incorporating the concept
of momentum to overcome local minima. Given the parameters of the model θ, the loss
function L and the data for optimisation D, the gradient at epoch k is gk = ∇L(D; θk−1), the
Adam algorithm updates the moving average of the gradients mk and the squared gradients
vk, which can be formulated as follows:

mk = β1 ·mk−1 + (1− β1) · gk

vk = β2 · vk−1 + (1− β2) · g2
k ,

(2.26)
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where g2 is the element-wise square of gradient g and the hyperparameters β1, β2 ∈ (0, 1)
controls the exponential decay of these moving averages. m estimates the mean and v
estimates the uncentered variance of the gradients. However, since m and v are initialised to
0, i.e. m0 = 0, v0 = 0, they are biased to zero, especially during the initial training epochs
with small decay rates, i.e. β1, β2 are close to 1. To overcome this issue, the bias-corrected
estimates m̂k, v̂k are formulated as follows:

m̂k =
mk

1− βk
1

v̂k =
vk

1− βk
2

(2.27)

where βk
1, βk

2 are β1, β2 to the power k. More details for bias correction can be found in
Appendix B.2. The parameters θ are optimised by

θk = θk−1 − η
m̂k√

v̂k + ϵ
(2.28)

where η is the learning rate, ϵ is set to prevent divide by 0. The pseudo-code of Adam is
shown in Algorithm 2, where the default hyperparameters are β1 = 0.9, β2 = 0.999, ϵ = 10−8

and the default learning rate is η = 0.001.

Algorithm 2 Adam

1: Input: Hyperparameters β1, β2, ϵ, Number of epochs Nepochs
2: Input: Learning rate η, Model parameters θ, Dataset D
3: Output: Optimised parameters θ
4: Initialise θ = θ0 randomly
5: Initialise m0 = 0, v0 = 0
6: for k← 1 to Nepochs do
7: gk = ∇θL(D; θk−1) (calculate the gradients)
8: mk = β1 ·mk−1 + (1− β1) · gk (estimates the mean of the gradients )
9: vk = β2 · vk−1 + (1− β2) · g2

k , (estimates the uncentered variance of the gradients )
10: m̂k =

mk
1−βk

1
(bias correction of mk)

11: v̂k =
vk

1−βk
2

(bias correction of vk)

12: θk = θk−1 − η m̂k√
v̂k+ϵ

(update parameters)
13: end for
14: Return Optimised θ∗

2.7 Reinforcement Learning

Reinforcement learning has achieved impressive breakthroughs in various areas, such as
self-driving (Kiran et al., 2022), robot control (Kober et al., 2013), and AlphaGo (Silver
et al., 2016), a computer program that defeated professional human Go players. The key
concept of reinforcement learning is shown in Figure 2.10, where an agent interacts with the
environment in discrete time steps. In each time step t the agent is in the state st, takes an
action at, obtains a reward rt+1 from the environment and makes a transition to the next
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state st+1. The goal of the agent is to maximise the sum of rewards, learning which action to
take through trial and error.

Agent Environment

Action 

State, Reward

FIGURE 2.10: The key concept of reinforcement learning: the agent takes actions
and interacts with the environment, learning from trial and error.

Terminology The state s describes the state of the environment. It can be fully observed
without any hidden information, e.g. the state in a Go game, or partially observed, e.g. the
dialogue state where the user goal is unseen. The policy π decides which action at the agent
should take in turn t based on state st:

at ∼ π(·|st) (2.29)

A trajectory τ = (s0, a0, s1, a1, . . . ) is a sequence of states and actions, where the probability
of a T-turn trajectory τ is:

P(τ|π) = P0(s0)
T−1

∏
t=0

P(st+1|st, at)π(at|st), (2.30)

where P0 is the starting state probability of the initial state s0 and P(st+1|st, at) is the
transition probability, representing the probability of moving to state st+1 after taking
action at in state st. The reward function R gives the reward signal based on the state and
the agent’s action, e.g. rt = R(st, at). The return, cumulative rewards over a trajectory τ, is
often modelled as the summation of all rewards with a discounted factor γ ∈ (0, 1)

R(τ) =
∞

∑
t=0

γtrt (2.31)

With the discounted factor, the agent will focus more on the current reward and the sum of
all rewards will converge to a finite value. The goal of reinforcement learning is to maximise
the expected return J(π):

J(π) =
∫︂

τ
P(τ|π)R(τ) = Eτ∼π[R(τ)] (2.32)

with the optimal policy π∗

π∗ = arg max
π

J(π) (2.33)

Value Functions Value functions are used to represent the expected return an agent can
get when it starts in the state s or state-action pair (s, a) and then acts according to its policy.
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The state-value function, which calculates the expected return if the agent starts in state s
and then acts according to its policy π, can be formulated as

Vπ(s) = Eτ∼π[R(τ)|s0 = s], (2.34)

the action-value function, which gives the expected return if the agent starts in state s, takes
the action a, and then acts according to its policy π, can be formulated as

Qπ(s, a) = Eτ∼π[R(τ)|s0 = s, a0 = a], (2.35)

and the advantage function, which estimates how much better an action is than the others
on average, can be formulated as

Aπ(s, a) = Qπ(s, a)−Vπ(s) (2.36)

2.7.1 Policy Gradient Optimisation

In the policy gradient optimisation algorithms, the agent’s policy π is parameterised by θ.
To maximise the expected return J(πθ) = Eτ∼πθ

[R(τ)], the policy πθ can be optimised by
the gradient ascent

θk+1 = θk + η∇θJ(πθk), (2.37)

where η is the learning rate and k is the learning step. We can derive the policy gradient as
follows:

∇θJ(πθ) = ∇θEτ∼πθ
[R(τ)]

= ∇θ

∫︂
τ

P(τ|πθ)R(τ)dτ

=
∫︂

τ
∇θP(τ|πθ)R(τ)dτ

=
∫︂

τ
P(τ|πθ)∇θ log P(τ|πθ)R(τ)dτ

= Eτ∼πθ
[∇θ log P(τ|πθ)R(τ)],

(2.38)

where the gradient of the log-probability of a trajectory τ can be derived as follows:

∇θ log P(τ|πθ) = ˂˂˂˂˂˂˂˂∇θ log P0(s0) +
T

∑
t=0

(
˂˂˂˂˂˂˂˂˂˂˂
∇θ log P(st+1|st, at) +∇θ log πθ(at|st))

=
T

∑
t=0
∇θ log πθ(at|st)

(2.39)

According to Equation 2.38 and Equation 2.39, we can get

∇θJ(πθ) = Eτ∼πθ
[

T

∑
t=0
∇θ log πθ(at|st)R(τ)]. (2.40)
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The reward function can also be replaced by the advantage function (Schulman et al., 2016)

∇θJ(πθ) = Eτ∼πθ
[

T

∑
t=0
∇θ log πθ(at|st)Aπθ] (2.41)

However, without any constraint or penalty, the gradient can be excessively large. It may
cause the training unstable and suboptimal performance (Schulman et al., 2017).

2.7.2 Proximal Policy Optimisation

To get rid of large policy updates which may destroy the optimisation, Schulman et al. (ibid.)
apply a specialised clipping on the loss function

ρ(θ) =
πθ(at|st)

πθ′(at|st)

LCLIP(θ) = Eτ∼πθ
[min(ρ(θ)Aπθ, g(ϵ, Aπθ))]

(2.42)

where ϵ ∈ (0, 1) is a hyperparameter with a small value which constrains how far the new
policy is able to go from the old policy, the parameters of the new and the old policy are θ, θ′

respectively, ρ(θ) is the ratio of the probability of action a given state s for the new and old
policy πθ, πθ′ and

g(ϵ, A) =

{︃
(1 + ϵ)A A ≥ 0
(1− ϵ)A otherwise (2.43)

The behaviour of LCLIP(θ) is summarised in Table 2.1. There is no clipping when ρ(θ) ∈
[1− ϵ, 1 + ϵ]. The clipping happens in two situations, the first one is when Aπθ is negative
and ρ(θ) exceeds the lower boundary, i.e. ρ(θ) < 1− ϵ, and the second one is when Aπθ

is positive and ρ(θ) exceeds the upper boundary, i.e. ρ(θ) > 1 + ϵ. This method prevents
the algorithm from getting too greedy. Taking the first scenario as an example, although
the advantage estimate implies the probability of taking action a given state s should be
decreased (Aπθ < 0), there is still no update since it is already much less likely to take in the
new policy than the old policy (ρ(θ) < 1− ϵ). On the other hand, if ρ(θ) exceeds the lower
boundary, there is no clipping when Aπθ > 0 and vice versa. The gradient is 0 when the loss
function is clipped because the gradient is applied on (1− ϵ)Aπθ or (1 + ϵ)Aπθ instead of
ρ(θ)Aπθ.

In this way, the model can be updated in two situations, the probability ratio ρ(θ) is
in the interval [1− ϵ, 1 + ϵ] or the probability ratio exceeds the interval but the advantage
estimate Aπθ makes it closer to the interval, which can prevent the new policy from going
too far away from the previous step.

The algorithm of PPO is shown in Algorithm 3. There are two neural networks that will
be updated, the policy network πθ and the value network Vυ, where the value network is
parameterised by υ and trained to model the state-value function Vπθ of the policy πθ. Both
networks can be updated by any gradient descent method, e.g. Adam.
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ρ(θ) > 0 Aπθ return of min in LCLIP LCLIP is clipped Gradient

ρ(θ) ∈ [1− ϵ, 1 + ϵ] + ρ(θ)Aπθ no ✓
ρ(θ) ∈ [1− ϵ, 1 + ϵ] − ρ(θ)Aπθ no ✓
ρ(θ) < 1− ϵ + ρ(θ)Aπθ no ✓
ρ(θ) < 1− ϵ − g(ϵ, Aπθ) = (1− ϵ)Aπθ yes 0
ρ(θ) > 1 + ϵ + g(ϵ, Aπθ) = (1 + ϵ)Aπθ yes 0
ρ(θ) > 1 + ϵ − ρ(θ)Aπθ no ✓

TABLE 2.1: The behaviour of the clip loss function LCLIP(θ) summarised by Bick
and Wiering (2021), where the probability ratio ρ(θ) and the advantage estimate
Aπθ are not 0. The first column represents the value of ρ(θ) in which region and
the second column shows Aπθ is positive (+) or negative (−). The third column
is the return of the min function in LCLIP (Equation 2.42), the fourth column
indicates whether the loss function is clipped (yes) or not (no), and the fifth
column mentions whether the gradient of the loss function is zero (0) or not (✓).

Algorithm 3 Proximal Policy Optimisation. The policy network πθ is parameterised by θ,
the value network Vυ is parameterised by υ, and the reward function is R.

1: Input: Policy network parameters θ, Value network parameters υ
2: Input: Number of epochs Nepochs, Number of trajectories per epoch N
3: Output: Optimised Policy network parameters θ
4: Initialise θ = θ0 and υ = υ0
5: for k← 1 to Nepochs do
6: Run policy πθk in the environment and collect a set of trajectories Dk = {τi}N

i=1
7: Compute rewards Rk(τ)
8: Compute advantage estimates Aπθk based on the value network Vυk

9: Update θk based on the loss function LCLIP(θ) (Equation 2.42)
10: Update υk based on mean-squared error: L(υ) = ∑τ∈Dk ∑T

i=0(Vυk(si)− Rk(τ))
2

11: end for
12: Return Optimised θ∗
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Chapter 3

User simulation in task-oriented dialogues

3.1 Overview

The quality of a user simulator significantly impacts the performance of task-oriented
dialogue systems trained by reinforcement learning (Schatzmann et al., 2005). As shown
in Figure 1.1, user simulators should be able to model real users’ behaviour and interact
with dialogue systems following given user goals. User simulators may interact with
the dialogue system on the semantic level, e.g. dialogue actions, or via natural language.
In addition, to fully capture the richness of user behaviour, the user simulation should
not only model user extrinsic behaviour, e.g. actions or utterances, but also the intrinsic
status, e.g. user persona and emotions. Figure 3.1 illustrates the difference among user
simulators, showcasing whether they are data-driven models and their varying levels of
domain dependency, interpretability and capibility to capture diverse aspects of user intrinsic
behaviour. More details are given in the following sections.

D
at
a-
dr
iv
en

Domain-independent

Interpretable

Satisfaction
Emotion

No intrinsic behaviour

JOUST
Seq2Seq
NUS

ABUSGraph-based

SatActUtt

EmoUS
GenTUS

TUS

FIGURE 3.1: The difference between user simulators, comparing to which extent
a model is data-driven, domain-independent and interpretable. Different degrees
of user intrinsic behaviour modelling are also presented. The proposed models

in this thesis are noted as squares.

3.2 Rule-based user simulators

Rule-based user simulators are commonly used in many experiments. These models are
composed of various handcrafted rules, for example, Scheffler and Young (2002) combines all
possible dialogue paths in a graph to build a graph-based user simulator. Despite this model
being able to generate reasonable and consistent behaviour, implementing a graph-based
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user model for more realistic scenarios is impractical due to the extensive domain knowledge
it requires.

inform(type=bar)
inform(drinks=beer)
inform(area=centre)

request(name)
request(phone)

inform(price=cheap)
inform(area=centre)

request(name)
request(phone)

User: I'm looking for a bar serving beer.
inform(type=bar, drink=beer)

System: Okay, a beer bar. What price range?
inform(type=bar, drink=beer),
request(price)

User goal

type=bar
drinks=beer
area=central

name=?
phone=?

pop()

push()

FIGURE 3.2: Sample dialogue and agenda sequence. The agenda is initialised
based on the user goal. At each turn, a certain number of actions will be popped

out from the agenda and new constraints might be pushed into it.

The agenda-based user simulator (ABUS) (Schatzmann et al., 2007) represents the user
state as a stack-like agenda, as shown in Figure 3.2. The order of the agenda follows the
user’s priorities. The probability of updating the agenda and choosing user actions can be
predefined manually or learned from data (Keizer et al., 2010). However, these stacking
and popping rules are domain-dependent and need to be designed carefully. In addition,
these rules are not able to fully capture the richness of real-user behaviour, as they overlook
important aspects such as the user persona and emotions. Real-user behaviour cannot be
represented by rigid rules alone.

3.3 Data-driven user simulators

Learning user behaviour from data is appealing for two reasons. Firstly, it reduces the burden
of managing a considerable set of handcrafted rules, particularly in complicated and realistic
scenarios. Secondly, it enables the modelling of more fine-grained user behaviour, which
manually designed rules may not adequately capture.

The sequence-to-sequence (Seq2Seq) model structure is widely used to build data-driven
models. El Asri et al. (2016) propose a Seq2Seq semantic-level user simulator with an
encoder-decoder structure, as shown in Figure 3.3. Each turn i is represented as a vector vi
and fed into the encoder recurrent neural network (RNN), embedded as a context vector
c. Then this context vector c is passed to the decoder RNN to generate user actions. The
feature representation of each turn is domain-dependent and the action vectors are one-hot
encoding. Therefore, it is necessary to modify the feature representation and retrain the
model when adapting to new domains. In addition, it only operates on the semantic level
without generating natural language utterances.

Instead of generating semantic level output, Kreyssig et al. (2018) proposed the neural
user simulator (NUS), that generates responses in natural language, as shown in Figure 3.4.
At turn t, the feature history V = (vi)

t
i=1, where vi is the feature of turn i, is fed into the

sequence-to-sequence model. Then the model generates user utterances, which are then
communicated to the dialogue system. By generating responses in natural languages instead
of semantic actions, NUS requires less labelling, at the expense of interpretability. In addition,
the feature representation of each turn is still domain-dependent and NUS does not consider
the user intrinsic status, e.g. user persona and emotions.
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FIGURE 3.3: An RNN-based Seq2Seq user simulator. The turn i is represented
as a vector vi. The user model encodes the dialogue history as a vector c and

generates user semantic actions A = (ai)
n
i=1 where n is the action length.

Neural user simulator (NUS)

Ontology

Dialogue
system

User utterance
(Natural language)

System output
(Semantic action)

Goal
Generator

Feature
Extractor

Seq2Seq
model

Feature History 

...

FIGURE 3.4: The architecture of the Neural User Simulator (Kreyssig et al., 2018).
At the beginning of each dialogue, a goal is generated by the goal generator,
which might change during the conversation. At turn t, NUS takes the feature
history V = (vi)

t
i=1, where vi represents information of turn i, as input and

generates the user utterance.

Tseng et al. (2021) proposed an end-to-end user simulator (JOUST) that has the capability
to generate both dialogue acts and natural language utterances. As shown in Figure 3.5, the
user goal is updated by the user actions and the goal at turn i is represented as a binary
vector si, i.e. each dimension corresponds to a specific domain-slot pair in the ontology.
To handle the context information, it has two encoders, i.e. sentence encoder and context
encoder. In each turn t, the sentence encoder embeds the system utterance W sys

t as a vector
esys

t . At turn t, the context encoder compresses vectors of system and user utterances from
previous turns into a context vector ct. The decoder takes the goal state st, the system
utterance embedding esys

t , and the context vector ct as inputs and generates the user action
At = (ai)

N
i=1 and utterance Wusr

t = (wusr
t,i )

N′
i=1, where N and N′ are the length of the user

action and utterance respectively. The one-hot action vector a represents which slot to take in
the ontology. The utterance is delexicalised, where specific words are replaced with special
tokens in the ontology, e.g. "I want to find a cheap hotel in the north." is delexicalised as "I want
to find a [Hotel-Price] hotel in the [Hotel-Area].".

Since delexicalised utterances, the one-hot action vectors, and the binary representation
of the user goal are ontology-dependent, transferring this user simulator to an unseen
ontology requires additional manual effort to create lexicalisation rules and modify the
feature representations of user goals and actions. In addition, the user intrinsic status is not
included.
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Context
encoder

Sentence
encoder

sentence
vector 

context
vector 

User action User utterance 

System utterance 

Goal state
updateUser action 

Goal state 
Goal state 

FIGURE 3.5: The end-to-end user simulator proposed by Tseng et al. (2021).

3.4 Simulating user intrinsic behaviour for task-oriented dia-
logues

The behaviour of human beings is influenced by their emotions (Gross, 1998). Therefore,
it is important to simulate the user emotion or satisfaction level in order to capture user
behaviours triggered by different emotions.

In comparison to generating responses with given emotions (Colombo et al., 2019; Mao
et al., 2022; Song et al., 2019) or recognising user satisfaction after receiving user utter-
ances (Bodigutla et al., 2020; Engelbrecht et al., 2009; Hara et al., 2010; Higashinaka et al.,
2010; Schmitt and Ultes, 2015; Song et al., 2022), user satisfaction modelling should predict
user intrinsic states before generating actions or utterances based on the dialogue context and
user intrinsic status. Sun et al. (2021) and Deng et al. (2022) investigate how user satisfaction
impacts user behaviour on the semantic level. Pan et al. (2022) transfer the emotion from
chit-chat to task-oriented dialogues utilising data augmentation.

SatActUtt

Satisfaction Prediction:

Action Prediction:

UtteranceGeneration:

Dialgoue
history T5

Satisfaction score

Intent+domain

Utterance

FIGURE 3.6: The model structure of SatActUtt (Kim and Lipani, 2022).

Kim and Lipani (2022) introduced a user simulator called SatActUtt based on the T5
model (Raffel et al., 2020), which utilises multi-task learning to generate users’ satisfaction,
action (consisting of intent and domain), and utterance based on the dialogue history with
different prompts, as depicted in Figure 3.6. While SatActUtt demonstrates adequate predic-
tion of user satisfaction scores based on dialogue history, it does not include user goals as its
inputs. A dialogue system however cannot be trained in interaction with the user simulator
if that user simulator does not model the user goal. Additionally, SatActUtt primarily focuses
on satisfaction and dissatisfaction, disregarding other important factors such as diverse
emotion elicitors or distinct user personas.
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3.5 Conclusions

Rule-based user simulators are explainable and efficient for training dialogue systems, but
maintaining substantial rules on more realistic scenarios is impractical and the richness of
human behaviour is difficult to capture solely by certain rules. On the other hand, data-
driven user simulators can learn user behaviour from the data, but collecting and labelling
new datasets for unseen domains is also labour-intensive. Therefore, a user simulator should
be ontology-agnostic to make it more feasible to build dialogue systems on a new domain.

In addition, the user simulator for task-oriented dialogue systems should focus not only
on extrinsic behaviour, e.g. semantic actions and user utterances but also on intrinsic status,
e.g. user persona or emotions. By considering the user intrinsic status, user simulators
could capture diverse user behaviour triggered by different emotions and can provide more
fine-grained feedback beyond task success during interaction with dialogue systems.
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Chapter 4

Domain-independent User Simulation
with Transformers for Task-oriented
Dialogue Systems

This chapter summarises our work on domain-independent user simulation with transform-
ers for task-oriented dialogues systems and gives a verbatim copy of our paper (Lin et al.,
2021):

Hsien-chin Lin et al. (July 2021). “Domain-independent User Simulation with Transformers
for Task-oriented Dialogue Systems”. In: Proceedings of the 22nd Annual Meeting of the Special

Interest Group on Discourse and Dialogue. Singapore and Online: Association for
Computational Linguistics, pp. 445–456. URL:

https://aclanthology.org/2021.sigdial-1.47

4.1 Summary

To remove the need to maintain intractable handcrafted rules of rule-based user simulators
and redesign or retrain data-driven user simulators on new domains, we propose a domain-
independent transformer-based user simulator (TUS). Firstly, we leverage the transformer-
based structure, as a result, our model can capture relationships over long distances between
different slots in different turns. Secondly, the feature representation of the input, e.g.
the dialogue context, and the output, e.g. the value of slots in the user goal, is domain-
independent. For example, we represent the value of a slot as where it comes from, e.g. it is
from the user goal or mentioned by the system, instead of a one-hot representation over all
possible values.

With this domain-agnostic architecture, TUS can generalise to unseen domains and learn
cross-domain user behaviour from data. We compare TUS with a rule-based user simulator,
agenda-based user simulator (ABUS) (Schatzmann et al., 2007), and a data-driven user
simulator, variational hierarchical Seq2Seq user simulator (VHUS) (Gur et al., 2018), through
both automated evaluations and human trails. TUS demonstrates competitive performance
with rule-based simulators on pre-defined domains, and it can generalise to unseen domains
in a zero-shot fashion

4.2 Personal contributions

All writing, implementation, and technical results are my contribution. Co-authors assisted
in writing and proofreading.

https://aclanthology.org/2021.sigdial-1.47
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Abstract

Dialogue policy optimisation via reinforce-
ment learning requires a large number of
training interactions, which makes learning
with real users time consuming and expensive.
Many set-ups therefore rely on a user simula-
tor instead of humans. These user simulators
have their own problems. While hand-coded,
rule-based user simulators have been shown
to be sufficient in small, simple domains, for
complex domains the number of rules quickly
becomes intractable. State-of-the-art data-
driven user simulators, on the other hand, are
still domain-dependent. This means that adap-
tation to each new domain requires redesign-
ing and retraining. In this work, we propose
a domain-independent transformer-based user
simulator (TUS). The structure of our TUS is
not tied to a specific domain, enabling domain
generalisation and learning of cross-domain
user behaviour from data. We compare TUS
with the state of the art using automatic as well
as human evaluations. TUS can compete with
rule-based user simulators on pre-defined do-
mains and is able to generalise to unseen do-
mains in a zero-shot fashion.

1 Introduction

Task-oriented dialogue systems are designed to
help users accomplish specific goals within a partic-
ular task such as hotel booking or finding a flight.
Solving this problem typically requires tracking
and planning (Young, 2002). In tracking, the sys-
tem keeps track of information about the user goal
from the beginning of the dialogue until the cur-
rent dialogue turn. In planning, the dialogue policy
makes decisions at each turn to maximise future re-
wards at the end of the dialogue (Levin and Pierac-
cini, 1997). The system typically needs thousands
of interactions to train a usable policy (Schatzmann
et al., 2007; Pietquin et al., 2011; Li et al., 2016; Shi
et al., 2019). The amount of interactions required

makes learning from real users time-consuming
and costly. It is therefore appealing to automati-
cally generate a large number of dialogues with a
user simulator (US)1(Eckert et al., 1997).

Rule-based USs are interpretable and have
shown success when applied in small, simple do-
mains. However, expert knowledge is required
to design their rules and the number of rules
needed for complex domains quickly becomes
intractable (Schatzmann et al., 2007). In addi-
tion, handcrafted rules are unable to capture hu-
man behaviour to its fullest extent, leading to sub-
optimal performance when interacting with real
users (Schatzmann et al., 2006).

Data-driven USs on the other hand can learn
user behaviour directly from a corpus. However,
they are still domain-dependent. This means that
in order to accommodate an unseen domain one
needs to collect and annotate a new dataset, and
retrain or even re-engineer the simulator.

We propose a transformer-based domain-
independent user simulator (TUS). Unlike existing
data-driven simulators, we design the feature repre-
sentation to be domain-independent, allowing the
simulator to easily generalise to new domains with-
out modifying or retraining the model. We utilise a
transformer architecture (Vaswani et al., 2017) so
that the input sequence can have a variable length
and dynamic order. The dynamic order takes into
account the user’s priorities and the varying input
length enables the US to incorporate system ac-
tions in a seamless manner. TUS predicts the value
of each slot and the domains of the current turn,
allowing the model to optimise its performance in
multiple granularities. By disentangling the user
behaviour from the domains, TUS can learn a more
general user policy to train the dialogue policy.

1There are approaches that attempt to learn a dialogue
policy from direct interaction with humans (Gašić et al., 2011).
Even then, USs are essential for development and evaluation.



446

We compare policies trained with our TUS to
policies trained with other USs through indirect and
direct evaluation as well as human evaluation. The
results show that policies trained with TUS outper-
form those that are trained with another data-driven
US and are on par with policies trained with the
agenda-based US (ABUS). Moreover, the policy
generalises better when evaluated with a different
US. Automatic and human evaluations on our zero-
shot study show that leave-one-domain-out TUS is
able to generalise to unseen domains while main-
taining a comparable performance to ABUS and
TUS trained on the full training data.

2 Related Work

The quality of a US has a significant impact on
the performance of a reinforcement-learning based
task-oriented dialogue system (Schatzmann et al.,
2005). One of the early models include an N-gram
user simulator proposed by Eckert et al. (1997).
It uses a 2-gram model P (au|am) to predict the
user action au according to the system action am.
Since it only has access to the latest system action,
its behaviour can be illogical if the goal changes.
Therefore, models which can take into account a
given user goal were introduced (Georgila et al.,
2006; Eshky et al., 2012). The Bayesian model
of Daubigney et al. (2012) predicts the user action
based on the user goal, and hidden Markov models
are used to model the user and the system behaviour
(Cuayáhuitl et al., 2005). The graph-based US of
Scheffler and Young (2002) combines all possible
dialogue paths in a graph. It can generate reason-
able and consistent behaviour, but is impractical to
implement, since extensive domain knowledge is
required.

The agenda-based user simulator (ABUS)
(Schatzmann et al., 2007) models the user state
as a stack-like agenda, ordered according to the
priority of the user actions. The probabilities of
updating the agenda and choosing user actions are
set manually or learned from data (Keizer et al.,
2010). Still, the stacking and popping rules are
domain-dependent and need to be designed care-
fully.

To build a data-driven model, the sequence-to-
sequence (Seq2Seq) model structure is widely used.
El Asri et al. (2016) propose a Seq2Seq semantic
level US with an encoder-decoder structure. Each
turn is fed into the encoder recurrent neural network
(RNN) and embedded as a context vector. Then
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Figure 1: The difference between USs. We com-
pare to which extent a model is data-driven, domain-
independent and interpretable.

this context vector is passed to the decoder RNN
to generate user actions. To add new domains, it is
necessary to modify the domain-dependent feature
representation and retrain the model.

Instead of generating semantic level output, the
neural user simulator (NUS) by Kreyssig et al.
(2018) generates responses in natural language,
thus requiring less labeling, at the expense of inter-
pretability. However, its feature representation is
still domain-dependent.

A variational hierarchical Seq2Seq user simu-
lator (VHUS) is proposed by Gür et al. (2018).
Instead of designing dialogue history features, the
model encodes the user goal and system actions
with a vector using an RNN, which alleviates the
need of heavy feature engineering. However, the
inputs are represented as one-hot encodings, which
are also dependent on the ontology. In addition, the
output generator is not constrained by the ontology
in any way, so it can generate impossible actions.

As shown in Fig. 1, ABUS and graph-based
models are domain-dependent and require signif-
icant design efforts. Data-driven models such as
Seq2Seq, NUS, and VHUS can learn from data, but
are constrained by the underlying domain. NUS
generates natural language responses, which re-
quires less labeling, but comes with reduced inter-
pretability.

Shi et al. (2019) compared different ways to
build a US and indicated that the data-driven mod-
els suffer from bias in the corpus. If some actions
are rare in the corpus, the model cannot capture
them. Thus, the dialogue policy cannot explore all
possible paths during training with the data-driven
USs. It is important to learn more general human
behaviour to reduce the impact of the corpus bias.
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3 Problem Description

Task-oriented dialogue systems are defined by a
given ontology, which specifies the concepts that
the system can handle. The ontology can include
multiple domains. In each domain, there are in-
formable slots, which are the attributes that users
can assign values to, and requestable slots, which
are the attributes that users can query. For example,
in Fig. 2 the user goal has two domains, “hotel” and
“restaurant”. The slot Area is an informable slot
with the value North in domain “hotel” and Addr
is a requestable slot in domain “restaurant”. The
system state records the slots and values mentioned
in the dialogue history. A US for task-oriented dia-
logue systems needs to provide coherent responses
according to a given user goal G = {domain1 :
[(slot1, value1), (slot2, value2), . . . ], . . . }. The
domains, slots and values are selected from the
ontology.

The user action is composed of user in-
tents, domains, slots, and values. We con-
sider user intents that appear in the MultiWOZ
dataset (Budzianowski et al., 2018). It is of course
possible to consider arbitrary intents within the
same model architecture, as long as they are de-
fined a priori2. The two possible user intents we
consider are Inform and Request. With Inform, the
user can provide information, correct the system
or confirm the system’s recommendations. When a
user goal cannot be fulfilled, the user can also ran-
domly select a value from the ontology and change
the goal. With Request, the user can request infor-
mation about certain slots.

The system action is similar to the user action,
but there exist more (system) intents. For example,
the system can provide suggestions to users with
the intent Recommendation and make reservations
for users with the intent Book. More system intents
can be found in Appendix A.

We view user simulation in a task-oriented dia-
logue as a sequence-to-sequence problem. For each
turn t, we extract the input feature vectors V t of the
input list of slots St = [s1, s2, . . . ], which is com-
posed of the slots from the user goal and the system
action. The output sequence Ot = [ot1, o

t
2, . . . ] is

then generated by the model, where oti shows how
the value for slot si is obtained. The input fea-
ture representation and the output target should be

2We note that intents are not normally dependent on the do-
main but rather on the kind of dialogue that is being modeled,
e.g. task-oriented or chit-chat.

User Goal 
Info: Hotel-Area=North, Rest-Area=North
Reqt: Hotel-Name, Rest-Addr
Conversation
Turn 0
USR: I want to find a hotel in the north and a nearby restaurant.
     Inform(Hotel-Area=North, Rest-Area=North)
SYS: There are some good hotels in the south. Which price range do 
     you prefer? Would you mind providing more information?
     Recom(Hotel-Area=South), Request(Hotel-Price),
     general-reqmore()
Turn 1
USR: No, I want one in the north and I don't care about the price range.
     Inform(Hotel-Area=North, Hotel-Price=dontcare)

Figure 2: An example dialogue with a multi-domain
goal.

domain-independent in order to generalise to un-
seen domains without redesigning and retraining.
More details can be found in Sec. 4.

By working on the semantic level during train-
ing, we retain interpretability. To interact with
real users during human evaluation, we rely on
template-based natural language generation to con-
vert the semantic-level actions into utterances, as
language generation is out of the scope of this
work.

4 Transformer-based
Domain-independent User Simulator

The TUS model structure is shown in Fig. 3.
For each turn t, the list of input feature vectors
V t = [vt1, v

t
2 . . . , v

t
nt
] is generated based on the

system actions and the user goal, where vti is the
feature vector of slot si and nt is the length of
the input list in turn t, V t. We explain the feature
representation in detail in Sec. 4.1. Inspired by
ABUS, which models the user state as a stack-like
agenda, the length of input list nt at each turn t
varies by taking into account slots mentioned in
the system’s action. For example, in Fig. 3 the
input list V 0 only contains the slots in the user
goal at the first turn. Then the system mentions a
slot not in the user goal, Hotel-Price. So in
turn 1 the length of input list V 1 is n1 = n0 + 1
because one slot is inserted into the input list
V 1. The whole input sequence to the model is
Vinput = [vCLS , v

t
1, . . . , vSEP , v

t−1
1 , . . . , vSEP ],

where vCLS is the representation of [CLS] and
vSEP is the representation of [SEP].

The user policy network is a transformer
(Vaswani et al., 2017; Devlin et al., 2019). We
choose this structure because transformers are able
to handle input sequences of arbitrary lengths and
to capture the relationship between slots thanks
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Figure 3: The TUS model structure. The input list starts with a special token, [CLS], and comprises slot lists
from previous turns. The slot lists from each turn are separated by a token, [SEP]. The model predicts an output
vector for each slot in the last turn. Note that the order of slots in each turn is independent from each other. The
output for [CLS] represents which domains should be selected in the current turn. The user goal and dialogue
history are shown in Fig. 2 and here we give the example of the input feature vi for slot Hotel-Area.

to self-attention. The model structure includes a
linear layer and position encoding for inputs, two
transformer layers, and one linear layer for outputs.

The output list Ot = [ot1, . . . , o
t
nt
] consists

of one-hot vectors oti which determine the val-
ues of the slots si at turn t. The dimensions of
oti ∈ {0, 1}6 correspond to “none”, “don’t care”,
“?”, “from the user goal”, “from the system state”,
or “randomly selected”. More precisely, “none”
means that this slot is not mentioned in this turn,
“don’t care” signifies that the US does not care
about this slot, “?” means the US wants to request
information about this slot, “from user goal” im-
plies that the value is the same as in the user goal,
“from system state” means that the value is as men-
tioned by the system, and lastly “randomly selected”
indicates that the US wants to change its goal by
randomly selecting a value from the ontology.

The loss function for slots measures the differ-
ence between the predicted output Ot and the target
Y t at each turn t from the dataset as computed by
cross entropy (CE), i.e.,

lossslots =
1

nt

nt∑
i=1

CE(oti, y
t
i), (1)

where nt is the number of slots in the input list, oti

is the output, and yti is the target of slot si in turn t.

4.1 Domain-independent Input Features

We design the input feature representation vti of
each slot si in turn t consisting of a set of sub-
vectors, all of which are domain-independent. For
better readability, we drop the slot index i and the
turn index t, i.e. we write v for vti .

4.1.1 Basic Information Features
Inspired by the feature representation proposed in
El Asri et al. (2016), we use a feature vector vbasic
that is composed of binary sub-vectors to represent
the basic information for each slot. Each slot has
two value vectors: vsysvalue represents the value in the
system state, and vuservalue represents the value in the
user goal. Each value vector is a 4-dimensional one-
hot vector, with coordinates encoding “none”, “?”,
“don’t care” or “other values”, in this order. For ex-
ample, in turn 1 in Fig. 2, for slot Hotel-Price
vuservalue = [1, 0, 0, 0], i.e., “none”, because it is not
in the user goal, and vsysvalue = [0, 1, 0, 0], i.e., “?”,
because the system requests it.

The slot type vector vtype is a 2-dimensional vec-
tor which represents whether a slot is in the user
goal as a constraint or a request. For example,
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in Fig. 2 for Hotel-Area vtype = [1, 0] (con-
straint), while for Hotel-Name vtype = [0, 1]
(request). A value of [0, 0] means that the slot is
not included in the user goal.

The state vector vful encodes whether or not a
constraint or informable slot has been fulfilled. The
value is set to 1 if the constraint has been fulfilled,
and to 0 otherwise. The vector vfirst similarly
encodes whether a slot is mentioned for the first
time.

The basic information feature vector vbasic is the
concatenation of these vectors, i.e.,

vbasic = vuservalue⊕v
sys
value⊕vtype⊕vful⊕vfirst (2)

4.1.2 System Action Features
The system action feature vector vsystemaction encodes
system actions in each turn. There are two kinds
of system actions, general actions and domain-
specific actions. The general actions are com-
posed only with general intents, such as “reqmore”
and “bye”. For example, general-reqmore().
The feature vector of general actions vgen is a multi-
hot encoding of whether or not a general intent
appears in the dialogue. With a total number of
ngen general intents, for each k ∈ {1, . . . , ngen},
the k-th entry of vgen is set to 1 if the k-th general
intent is part of the system act.

On the other hand, domain-specific actions are
composed with domains, slots, values, and domain-
specific intents such as “recommend” and “select”.
For example, Recom(Hotel-Area=South).
Each domain-specific action vector vspecj with the
domain-specific j-th intent, j ∈ {1, . . . , nspec},
where nspec is the total number of domain-specific
intents, is represented by a 3-dimensional one-
hot encoding that describes whether the value is
“none”, “?” or “other values”.

The final action representation vsystemaction is formed
by concatenating nspec domain-specific action rep-
resentations together with the general action repre-
sentation, i.e.,

vsystemaction = vspec0 ⊕ · · · ⊕ vspecnspec
⊕ vgen. (3)

For the slot Hotel-Area in Fig. 3, we have a
vector for each intent. For the intent “recommend”
vspec0 = [0, 0, 1], which means that “other val-
ues” (in this case South) are mentioned. For
all other domain-specific intents, the vectors are
[1, 0, 0] since no value is mentioned. In terms of
the general intents, only “reqmore” is mentioned,
so vgen[1] = 1, as “reqmore” is the first general
intent.

4.1.3 User Action Features
The output vector from the previous turn Ot−1 is
also included in the input features of the next turn
t to take into account what has been mentioned by
the US itself, i.e. for slot si in turn t, the user action
feature vuseraction = ot−1

i .

4.1.4 Domain and Slot Index Features
In some cases, multiple slots may share the same
basic feature vbasic, system action feature vsystemaction

and user action feature vuseraction. This similarity in
features of different slots makes it difficult for the
model to distinguish one slot from another, despite
the positional encoding. In particular, it is challeng-
ing for the model to learn the relationship between
turns for a given slot because the number and the
order of slots vary from one turn to the next. This
may lead to over-generation: the model selects all
slots with the same feature vector.

To counteract this issue, we introduce the index
feature vindex, which consists of the domain index
feature vdomain

index ∈ {0, 1}ld and the slot index fea-
ture vslotindex ∈ {0, 1}ls , where ld is the maximum
number of domains in a user goal and ls is the
maximum number of slots in any given domain3.

To make the index feature ontology-independent,
for a particular slot, vindex remains consistent
throughout a dialogue, but varies between dia-
logues. The order of the index in each dialogue
is determined by the order in the user goal. For
example, the “hotel” domain can be the first do-
main in one user goal of the first dialogue, and the
second domain in the next.

Then for each slot in each turn the input feature
vector v is formed by concatenating all sub-vectors:

v = vbasic ⊕ vsystemaction ⊕ vuseraction ⊕ vindex. (4)

An example of v for slot Hotel-Area is shown
in Fig. 3 based on the dialogue history in Fig. 2.
Examples of how the feature representation is con-
structed can be seen in Appendix D.

4.2 Domain Prediction

Inspired by solving downstream tasks using
BERT (Devlin et al., 2019), we utilise the output
of [CLS], oCLS , to predict which domains are
considered in turn t as a multi-label classification

3This does not need to be dependent on the number of
domains or slots, it can simply be a random identifier assigned
to each slot during one dialogue.
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problem. The domain loss lossdomain measures
the difference between the output oCLS and the
target yCLS for each turn by binary cross entropy
(BCE). The final loss function is defined as

loss = lossslots + lossdomain. (5)

5 Experimental Setup

5.1 Supervised Training for TUS
Our model is implemented in PyTorch (Paszke
et al., 2019) and optimised using the Adam op-
timiser (Kingma and Ba, 2015) with learning rate
5× 10−4. The dimension of the input linear layer
is 100, the number of the transformer layers is 2,
and the dimension of the output linear layer is 6.
The maximum number of domains ld is 6 and the
maximum number of slots in one domain ls is 10.
During training, the dropout rate is 0.1.

We train our model4 on the MultiWOZ 2.1
dataset (Eric et al., 2020), consisting of dialogues
between two humans, one posing as a user and the
other as an operator. The dialogues in the dataset
are complex because there may be more than one
domain involved in one dialogue, even in the same
turn. During training and testing with the dataset,
the order of slots in the input list is derived from
the data, which means slot si is before slot si+1 if
the user mentioned slot si first. For inference with-
out the dataset, such as when using TUS to train
a dialogue policy, the order of slots is randomly
generated.

We measure how well a US can fit the dataset by
precision, recall, F1 score, and turn accuracy. The
turn accuracy measures how many model predic-
tions per turn are identical to the corpus, based on
the oracle dialogue history.

5.2 Training Policies with USs
User simulators are designed to train dialogue sys-
tems, thus a better user simulator should result in
a better dialogue system. We train different di-
alogue policies by proximal policy optimization
(PPO) (Schulman et al., 2017), a simple and sta-
ble reinforcement learning algorithm, with ABUS,
VHUS, and TUS as USs in the ConvLab-2 frame-
work (Zhu et al., 2020). The policies are trained
for 200 epochs, each of which consists of 1000
dialogues. The reward function gives a reward of
80 for a successful dialogue and of -1 for each dia-
logue turn, with the maximum number of dialogue

4https://gitlab.cs.uni-duesseldorf.de/
general/dsml/tus_public

turns set to 40. For failed dialogues, an additional
penalty is set to -40. Each dialogue policy is trained
on 5 random seeds. The dialogue policies are then
evaluated using all USs by cross-model evaluation
(Schatztnann et al., 2005) to demonstrate the gen-
eralisation ability of the policy trained with a par-
ticular US when evaluated with a different US.

5.3 Leave-one-domain-out Training

To evaluate the ability of TUS in handling unseen
domains, we remove one domain during supervised
learning of TUS. The leave-one-domain-out TUSs
are used to train dialogue policies with all possible
domains. For example, TUS-noHotel is trained on
the dataset without the “hotel” domain. During
policy training, the user goal is generated randomly
from all possible domains.

Some domains in MultiWOZ may share the
same slots, such as “restaurant” and “hotel” do-
mains which contain property-related slots, e.g.
“area,” “name,” and “price range.” However, the
corpus also includes domains that are quite differ-
ent from the rest, For example, the “train” domain
which contains many time-related slots such as “ar-
rival time” or “departure time”, as well as unique
slots such as “price” and “duration.” The different
properties of the domains will allow us to study the
zero-shot transfer capability of the model.

5.4 Human Evaluation

Following the setting in Kreyssig et al. (2018), we
select 2 of the 5 trained versions of each dialogue
policy for evaluation in a human trial: the version
performing best on ABUS, and the version perform-
ing best in interaction with TUS. The results of the
two versions are averaged. For each version we
collect 200 dialogues, which means there are 400
dialogues for each policy in total. Dialogue policies
trained with VHUS significantly underperform, so
we only consider policies trained with ABUS or
TUS for the human trial (see Table 1). The best
and the worst policies in the leave-one-domain-out
experiment are also included to see the upper and
lower bound of the zero-shot domain generalisation
performance.

Human evaluation is performed via DialCrowd
(Lee et al., 2018) connected to Amazon Mechanical
Turk5. Users are provided with a randomly gener-
ated user goal and are required to interact with our
systems in natural language.

5https://www.mturk.com/
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US for US for evaluation
training ABUS VHUS TUS avg.

ABUS 0.93 0.09 0.58 0.53
VHUS 0.62 0.11 0.37 0.36
TUS 0.79 0.10 0.69 0.53

Table 1: The success rates of policies trained on ABUS,
VHUS, and TUS when tested on various USs.

6 Experimental Results

6.1 Cross-model Evaluation

The results of our experiments are shown in Table 1.
The policy trained with TUS performs well when
evaluated with ABUS, with 10% absolute improve-
ment in the success rate over its performance on
TUS. On the other hand, while a policy trained with
ABUS performs almost perfectly when evaluated
with ABUS, the performance drops significantly,
by 35% absolute, when this policy interacts with
TUS. This signals that, in the case of ABUS, the
policy overfits to the US used for training, and
is not able to generalise well to the behaviour of
other USs. We found that VHUS is neither able
to train nor to evaluate a multi-domain policy ade-
quately. This was also observed in the experiments
by Takanobu et al. (2019). We suspect that this
is due to the fact that VHUS was designed to op-
erate on a single domain and does not generalise
well to the multi-domain scenario. To the best of
our knowledge, no other data-driven US has been
developed for the multi-domain scenario.

The success rates of policies trained with ABUS
and TUS during training, evaluated with both US,
are shown in Fig. 4. Each of the systems is trained
5 times on different random seeds. We report the
average success rate as well as the standard devia-
tion. Although the policy trained with TUS is more
unstable when evaluated on ABUS, it still shows an
improvement from the initial policy, converging at
around 79%. On the other hand, the policy trained
with ABUS and evaluated with TUS barely show
any improvements.

6.2 Impact of features and loss functions

We conduct an ablation study to investigate the
usefulness of the proposed features and loss func-
tions. The result is shown in Table. 2. First, we
measure the performance of the basic model which
uses only the basic information feature vbasic, the
system action feature vsystemaction , and the user action
feature vuseraction as the input. While this model can
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Figure 4: The success rates of policies during training
with TUS and ABUS.

method P R F1 ACC LEN

basic model 0.11 0.71 0.19 0.11 4.51
+ index feature 0.17 0.51 0.26 0.44 1.29

+ domain loss 0.17 0.54 0.26 0.46 1.22

Table 2: The TUS ablation experiments. We analyse
the impact of different settings by measuring precision
P, recall R, F1 score, turn accuracy ACC, and the av-
erage slots mentioned in the first turn user action LEN.
Humans, on average, mention 1.5 slots in the first turn.

have a high recall rate, the precision and the turn
accuracy are fairly low. We deduce that without the
index features the model cannot distinguish the dif-
ference between slots and therefore tends to select
slots of the same slot type in one turn. For example,
it provides all constraints in the first turn, which
leads to high recall and over-generation.

Analysis of the generated user actions shows that
the basic model tends to mention four or more slots
in the first turn. This is unnatural, since human
users tend to only mention one or two slots at the
beginning of a dialogue. More details about the
average slots per turn can be found in Appendix B.

After adding the index feature vindex, the recall
rate is decreased by 17% absolute, but the turn ac-
curacy is increased by 35% absolute, along with
improvements on the precision and the F1 score.
Furthermore, the average number of slots per turn
is closer to that of a real user. Although the re-
call rate with respect to the target in the data is
decreased, this is not necessarily a concern since in
dialogue there are many different plausible actions
for a given context. For example, when searching
for a restaurant, we may provide the information
of the area first, or the food type. The order of
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US for removed ABUS TUS mean
training data(%) Attr. Hotel Rest. Taxi Train all Attr. Hotel Rest. Taxi Train all

TUS-noAttr 32.20 0.69 0.64 0.81 0.65 0.75 0.77 0.71 0.58 0.66 0.61 0.69 0.69 0.73
TUS-noTaxi 19.60 0.63 0.61 0.81 0.61 0.70 0.74 0.69 0.60 0.69 0.64 0.68 0.69 0.72
TUS-noRest 45.21 0.62 0.66 0.80 0.56 0.75 0.76 0.71 0.60 0.64 0.65 0.64 0.68 0.72
TUS-noTrain 36.95 0.64 0.65 0.78 0.67 0.62 0.73 0.67 0.54 0.63 0.64 0.58 0.64 0.68
TUS-noHotel 40.15 0.59 0.59 0.76 0.61 0.54 0.69 0.64 0.52 0.61 0.61 0.55 0.62 0.66

TUS 0 0.69 0.68 0.81 0.66 0.77 0.79 0.73 0.59 0.66 0.68 0.64 0.69 0.74

Table 3: The success rates of dialogue policies trained with leave-one-domain-out TUSs. For example, the TUS-
noAttr model is trained without the “attraction” domain. The sum of all removed data is more than 100% because
some dialogues have multiple domains. We report results on all domains.

communicating these constraints may vary.
When we include the domain loss lossdomain

during training, both the recall rate and the turn ac-
curacy improve while a similar average slot length
per turn is maintained. These results indicate that
the proposed ontology-independent index features
can help the model to distinguish one slot from the
other, which solves the over-generation problem of
the basic model. The domain loss allows for more
accurate prediction of the domain at turn level and
the value for each slot at the same time.

6.3 Zero-shot Transfer

We test the capability of the model to handle unseen
domains in a zero-shot experiment. In a leave-one-
domain-out fashion we remove dialogues involving
one particular domain when training the US. The
share of each domain in the total dialogue data
ranges from 19.60% to 45.21%. During dialogue
policy training we sample the user goal from all
domains. As presented in Table 3, removing one
domain from the training data when training the
US does not dramatically influence the policy on
the corresponding domain. The final performance
of the policies trained with leave-one-domain-out
TUSs is still reasonably comparable to the policy
trained with the full TUS. This is especially note-
worthy considering the substantial amount of data
removed during US training and the difference be-
tween each domain.

We observe that the model is able to learn about
the removed domain from the other domains, al-
though the removed domain is different from the
remaining ones. For example, the “train” domain
is very different from “attraction”, “restaurant”,
and “hotel”, and it is more complex than “taxi”,
but TUS-noTrain still performs reasonably well on
the “train” domain. This signals that the model
can do zero-shot transfer by leveraging other do-

US for success
overall

training Attr. Hotel all

ABUS 0.76 0.70 0.83 3.90
TUS 0.73 0.69 0.83 4.03
TUS-noAttr 0.75 0.54 0.81 4.01
TUS-noHotel 0.73 0.55 0.76 3.86

Table 4: The human evaluation results include success
rate and overall rating as judged by users.

main information. The worst performance on the
“train” domain happens instead when the “hotel”
domain is removed, i.e. the domain with the most
substantial amount of data.

Our results also show that that some domains are
more sensitive to data removal than others, irrespec-
tive of which domain is removed. This indicates
that some domains are more involved and simply re-
quire more training data. This result demonstrates
that TUS has the capability to handle new unseen
domains without modifying the feature representa-
tion or retraining the model. It also shows that our
model is sample-efficient.

6.4 Human Evaluation

The result of the human evaluation is shown in Ta-
ble 4. In total, 156 users participated in the human
evaluation. The number of interactions per user
ranges from 10 to 80. The success rate measures
whether the given goal is fulfilled by the system
and the overall rating grades the system’s perfor-
mance from 1 star (poor) to 5 stars (excellent). TUS
is able to achieve a comparable success rate as
ABUS, without domain-specific information, and
even scores slightly better in terms of overall rating.
We were not able to observe any statistically signif-
icant differences between ABUS and TUS in the
human evaluation. For leave-one-domain-out mod-
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els, the performance of TUS-noAttr is similar to
that one of ABUS and TUS without a statistically
significant difference. We do however observe a sta-
tistically significant decrease in the success rate of
TUS-noHotel when compared to TUS and ABUS
(p < 0.05). This is unsurprising as the hotel do-
main accounts for 40.15% of the training data. For
both TUS-noAttr and TUS-noHotel, the success
rate on the domain “attraction” is comparable to
TUS and ABUS, but the success rate on the do-
main “hotel” is relatively low. As observed in the
simulation, removing a domain does not decrease
the success rate in the corresponding domain as the
feature representation is domain agnostic. Instead,
it impacts domains which need plenty of data to
learn.

7 Conclusion

We propose a domain-independent user simula-
tor with transformers, TUS. We design ontology-
independent input and output feature representa-
tions. TUS outperforms the data-driven VHUS and
it has a comparable performance to the rule-based
ABUS in cross-model evaluation. Human evalua-
tion confirms that TUS can compete with ABUS
even though ABUS is based on carefully designed
domain-dependent rules. Our ablation study shows
that the proposed features and loss functions are
essential to model natural user behavior from data.
Lastly, our zero-shot study shows that TUS can
handle new domains without feature modification
or model retraining, even with substantially fewer
training samples.

In future work, we would like to learn the or-
der of slots and add output language generation to
make the behaviour of TUS more human-like. Ap-
plying reinforcement learning to this model would
also be of interest.
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A All System Intents

All system intents in the MultiWOZ 2.1 dataset are
listed in Table 5, including 5 general intents and 9
domain-specific intents.

type intents

general welcome, reqmore, bye, thank, greet

domain-
specific

recommend, inform, request, select,
book, nobook, offerbook, offerbooked,
nooffer

Table 5: All system intents in the MultiWOZ 2.1

B Average Action Length in Each Turn

The average number of slots mentioned by TUS
in each turn when interacting with the rule-based
dialogue system is shown in Fig. 5. When the index
feature vindex and the domain loss lossdomain are
added, TUS can deal with the over-generation prob-
lem and behave more similarly to what is observed
in the corpus.

C Success Rates of
Leave-one-domain-out Training

The training success rates of dialogue policies
trained with leave-one-domain-out TUSs, which
are evaluated on TUS, are shown in Fig. 6. In com-
parison to the full TUS, the leave-one-domain-out
TUSs are more unstable, but they can achieve a
comparable success rate at the end.

turn
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Figure 5: The average user action length per turn when
interacting with the rule-based dialogue system. The
average action length of real users in the corpus is also
presented.

0 25 50 75 100 125 150 175 200
Epoch

0.5

0.6

0.7

su
cc

es
s_

ra
te

noHotel
noAttraction
noRestaurant
noTaxi
noTrain
all domain

Figure 6: The success rates of dialogue policies
trained with leave-one-domain-out TUSs during train-
ing, when evaluated on TUS.

D An example for the input feature
representation

The list of input feature vectors and output se-
quence are presented on Fig. 7 based on Fig. 2.

For turn 0, V 0 only includes 4 vectors from the
user goal. For turn 1, the system mentions slot
Hotel-Price, which is not in the user goal,
so the feature vector of slot Hotel-Price is
inserted into V 1, where the 1-st dimension of
vdomain
slot is 1 because domain Hotel is the first do-

main in this conversation and the 3-rd dimension
of vslotindex is 1 because it is the third slot in domain
Hotel.

In comparison between the feature vec-
tors of slot Hotel-Area in turn 0, v01 ,
and turn 1, v01 , the vsysvalue and vspec0 are
different because of the system’s domain-
specific action Recom(Hotel-Area=South).
The system also mentioned a general action,
general-reqmore(), thus vgen is changed. In
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Figure 7: The input and feature representation according to Fig. 2. vCLS and vsep are ignored in this graph.

addition, this slot is first mentioned at turn 0, so
vfirst is changed from 0 to 1. Similarly, vuseraction is
also modified according to the user action. On the
other hand, vuservalue is the same because the user does
not update its goal, vtype is not changed because
the slot is still a constraint, and vful is 0 because it
has not been fulfilled yet. vdomain

index and vslotindex are
also the same through the whole conversation.

E Example Dialogue Generated by TUS

An example dialogue with a multi-domain user
goal is shown in Fig. 8. It shows that TUS is able
to switch between different domains (from turn 2 to
6), respond to the system’s requests, and generate
multi-domain actions (in turn 5).

Turn 0
USR: Inform(Hotel-Area=north, Hotel-Stars=0, 
            Hotel-Parking=yes)
SYS: Inform(Hotel-Parking=yes)

Turn 1
USR: Request(Hotel-Type)
SYS: Inform(Hotel-Type=guesthouse)
Turn 2
USR: Inform(Hotel-Stars=0, Hotel-Parking=yes)
SYS: Inform(Hotel-Stars=0, Hotel-Type=guesthouse, 
            Hotel-Area=north, Hotel-Parking=yes, 
            Hotel-Price=cheap)
Turn 3
USR: Inform(Attr-Type=college)
SYS: Inform(Attr-Choice=18),
     Recom(Attr-Name=hughes hall)
Turn 4
USR: Request(Taxi-Phone, Taxi-Car)
SYS: Request(Taxi-Leave)
Turn 5
USR: Inform(Taxi-Leave=dontcare), 
     Request(Taxi-Phone, Taxi-Car, Attr-Fee)
SYS: Inform(Taxi-Car=audi, Taxi-Phone=44162528555, 
            Taxi-Car=honda, Taxi-Phone=46793705737, 
            Attr-Fee=free)
Turn 6
USR: Request(Attr-Post)
SYS: Inform(Attr-Post=cb23bu)
Turn 7
USR: general-bye()
SYS: general-greet()

Figure 8: A dialogue generated by TUS when interact-
ing with the rule-based policy.
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Chapter 5

GenTUS: Simulating User Behaviour and
Language in Task-oriented Dialogues with
Generative Transformers

This chapter summarises our work on simulating user behaviour and language in task-
oriented dialogues with generative transformers and gives a verbatim copy of our paper (Lin
et al., 2022):

Hsien-chin Lin et al. (Sept. 2022). “GenTUS: Simulating User Behaviour and Language in
Task-oriented Dialogues with Generative Transformers”. In: Proceedings of the 23rd Annual
Meeting of the Special Interest Group on Discourse and Dialogue. Edinburgh, UK: Association for

Computational Linguistics, pp. 270–282. URL:
https://aclanthology.org/2022.sigdial-1.28

5.1 Summary

Although it is efficient to train dialogue systems with semantic-level user simulators, ne-
glecting the diversity in the natural language used in real-world deployment will lead to
suboptimal performance.

Therefore, we propose a generative transformer-based user simulator (GenTUS). GenTUS
has an encoder-decoder architecture, jointly optimising the user policy and natural language
generation. By generating semantic actions and natural language utterances, GenTUS main-
tains interpretability while enhancing linguistic variation. Furthermore, GenTUS represents
inputs and outputs as word sequences, thus it can generalise to unseen domains, slots, and
values without modifying the feature representation, and leverage pre-trained language
models, e.g. BART (Lewis et al., 2020), to generate user utterances in natural language.

We evaluate the performance of GenTUS using both automatic metrics and human
evaluation. Our results demonstrate that GenTUS generates more natural language and can
transfer to unseen ontologies in a zero-shot fashion. In addition, the behaviour of GenTUS
can be further refined through reinforcement learning, allowing for the training of specialised
user simulators.

5.2 Personal contributions

All writing, implementation, and technical results are my contribution. Co-authors assisted
in writing and proofreading.

https://aclanthology.org/2022.sigdial-1.28


Proceedings of the SIGdial 2022 Conference, pages 270–282
Heriot-Watt University, Edinburgh, UK. 07-09, September, 2022 ©2022 Association for Computational Linguistics

270

GenTUS: Simulating User Behaviour and Language
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Abstract

User simulators (USs) are commonly used to
train task-oriented dialogue systems (DSs) via
reinforcement learning. The interactions often
take place on semantic level for efficiency, but
there is still a gap from semantic actions to
natural language, which causes a mismatch be-
tween training and deployment environment.
Incorporating a natural language generation
(NLG) module with USs during training can
partly deal with this problem. However, since
the policy and NLG of USs are optimised sep-
arately, these simulated user utterances may
not be natural enough in a given context. In
this work, we propose a generative transformer-
based user simulator (GenTUS). GenTUS con-
sists of an encoder-decoder structure, which
means it can optimise both the user policy and
natural language generation jointly. GenTUS
generates both semantic actions and natural
language utterances, preserving interpretability
and enhancing language variation. In addition,
by representing the inputs and outputs as word
sequences and by using a large pre-trained lan-
guage model we can achieve generalisability
in feature representation. We evaluate Gen-
TUS with automatic metrics and human evalu-
ation. Our results show that GenTUS generates
more natural language and is able to transfer to
an unseen ontology in a zero-shot fashion. In
addition, its behaviour can be further shaped
with reinforcement learning opening the door
to training specialised user simulators.

1 Introduction

Task-oriented dialogue systems (DSs) assist their
users in accomplishing a goal, such as booking a
flight ticket or making a payment. This should be
done through natural language interactions between
the system and the user, whilst the system interacts
with various external databases and API calls in
the background. The core component of such a
DS is the dialogue policy module, which decides
what should be said to the user next. This module

can be trained via interaction with users, through
reinforcement learning (RL). However, this creates
a conflict between the high cost of interacting with
real users and the large amount of interactions re-
quired for RL. As a result, user simulators (USs)
are often utilised instead to train dialogue policies,
as they make it possible for the system to learn
from a large number of interactions in a controlled
environment at a fraction of the cost.

Rule-based USs are widely used both in research
and industry because they are interpretable and can
be built without a labelled dataset. However, de-
signing the rules demands expert knowledge and
creating these rules becomes intractable on com-
plex domains, making them only suitable for small
and simple domains. In addition, human behaviour
is too complex and diverse to be manually de-
scribed by rules, leading to sub-optimal perfor-
mance of DSs in deployment scenarios (Schatz-
mann et al., 2006).

On the other hand, data-driven USs can be built
with less expert involvement. However, these mod-
els are either ontology-dependent (El Asri et al.,
2016; Gür et al., 2018; Kreyssig et al., 2018),
which means adapting to a new domain requires re-
engineering the feature representation or re-training
the model, or they do not model the language of
the user (Lin et al., 2021). Both shortcomings are
serious. The user simulator needs to support zero-
shot transfer across ontologies, as it is difficult to
collect enough labelled data for each new domain.
The ability to produce natural language output is
also critical as it makes the training and testing en-
vironment more challenging and similar to the real
user scenario. Therefore, models that can attain
both properties are much needed.

In this work, we propose a model that has both
desired properties. More specifically, our contribu-
tions are as follows:

• We, propose a generative transformer-based
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user simulator that we call GenTUS1. The re-
sponse of GenTUS includes both semantic ac-
tions and natural language utterances, which
retains interpretability and induces linguistic
variation.

• By optimising the user policy and natural lan-
guage jointly, GenTUS generates more natural
language in the given context.

• GenTUS can adapt to an unseen ontology in a
zero-shot fashion and have its behaviour fur-
ther shaped by reinforcement learning (RL).

The rest of the paper is organised as follows. In
Section 2, we review the related work. Section 3
describes in detail the proposed simulation frame-
work. In Section 4, we present the experimental
set-up, followed by the experimental results in Sec-
tion 5. We conclude with Section 6.

2 Related Work

The performance of a task-oriented dialogue policy
trained by RL is significantly affected by the quality
of the US used to generate the interactions (Schatz-
mann et al., 2005). An N-gram user simulator pro-
posed by Eckert et al. (1997) is one of the earliest
data-driven models. This model predicts the user
action au according to the system action am based
on a bi-gram model P (au|am). Its behaviour is
often unreasonable since it only takes the latest sys-
tem action as input without any information about
the user goal. Therefore, models which can act on
a given user goal were introduced (Georgila et al.,
2006; Eshky et al., 2012). A Bayesian user simu-
lation model which predicts the user action based
on the user goal is proposed by Daubigney et al.
(2012). In Cuayáhuitl et al. (2005), the user and the
system behaviour are modelled by hidden Markov
models. A graph-based US, which constructs a
graph from all possible dialogue paths, is proposed
by Scheffler and Young (2002). This simulator
can act reasonably and consistently, but it is not
practical to implement in a complex scenario, as it
requires extensive domain knowledge.

The agenda-based user simulator (ABUS)
(Schatzmann et al., 2007) is widely used to train
tourist-information DSs. Its behaviour is based on
hand-crafted stacking and popping of rules with
a stack-like agenda user goal, ordered by the pri-
ority of the user actions. It is difficult to transfer

1https://gitlab.cs.uni-duesseldorf.de/
general/dsml/gentus-public.git

this model to a new ontology because the rules
need to be redesigned. Moreover, it only provides
semantic-level dialogue acts.

To reduce the involvement of experts, further
data-driven user simulator approaches have been
proposed. The sequence-to-sequence (Seq2Seq)
model structure is the most common framework.
A semantic level Seq2Seq user simulator with an
encoder-decoder structure is proposed by El Asri
et al. (2016). This model embeds the dialogue
history into a context vector via a recurrent neural
network (RNN) encoder. Its decoder then generates
user actions based on the context embedding vector.

Instead of generating dialogue acts, the neural
user simulator (NUS) of Kreyssig et al. (2018) can
generate responses in natural language. However,
this model has limited interpretability because it
does not provide semantic-level outputs and its
input representation is domain-dependent.

The variational hierarchical Seq2Seq user sim-
ulator (VHUS) proposed by Gür et al. (2018) en-
codes the system actions and the user goal by RNNs
instead of complex dialogue history features and
generates semantic user actions. Its features are
still domain-dependent as system actions and user
goals are represented by domain-dependent one-
hot encodings. As VHUS has no constraints in
the decoding process, it often generates impossible
actions under the given ontology.

A domain-independent transformer-based user
simulator (TUS) is proposed by Lin et al. (2021).
With domain-independent input and output feature
representations, TUS can adapt to an unseen do-
main in a zero-shot fashion. However, it does not
model natural language output. Moreover, all in-
tents are part of the model, which makes transfer to
an unrelated ontology, i.e. the one with a different
sets of intents, difficult.

To convert the dialogue acts from the semantic
level to natural language, a user simulator com-
monly includes an NLG module connected to the
semantic level user policy. Although template-
based NLGs are widely used in research, creating
templates for every dialogue act is labour-intensive
and lacks language variation. Data-driven NLG
models, such as SC-LSTM (Wen et al., 2015) and
SC-GPT (Peng et al., 2020) can generate natural
language utterances conditioned on given semantic
actions. However, taking only semantic actions as
input, their results may not be sufficiently natural
in a given context. In addition, the user policy and
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NLG model cannot be optimised jointly within the
modular architecture.

An end-to-end US which generates both dia-
logue acts and utterances is proposed by Tseng
et al. (2021), although in their evaluation they train
a DS using only the semantic actions from the US.
The NLG of this US is based on a simple delexi-
calised LSTM model. The user goal is represented
as a binary vector, with each dimension represent-
ing a domain-slot pair in the ontology. This creates
several obstacles for transfer to an unseen ontology:
such a transfer would require further hand-coded
lexicalisation rules for the NLG component, modi-
fications of the feature representations and further
fine-tuning of the US policy.

3 Generative Transformer-based User
Simulation

Task-oriented DSs are expected to handle the re-
quests of real users in natural language. Therefore,
when designing USs, it is important to endow them
with the ability to converse with the system via
natural language as well. In this way, we can study,
for example, the robustness of the systems towards
misunderstandings that may occur when convers-
ing with real users. On the other hand, users rarely
misunderstand the DS response. It is hence reason-
able to assume that the input to the US may be on
the semantic level. This is also practical in such
cases as when DSs need to execute API calls, such
as playing a song or turning off the light.

Task-oriented DSs are built upon an ontol-
ogy which includes all possible intents that the
user or the system can exhibit in their actions
and domains, which describes the entities the
user or the system can talk about. Domains
are further characterised by a number of slots
and each slot can take a number of values. In
task-oriented DS we assume that the user has
a particular goal they want to achieve. We de-
fine goal as the following set G = {domain1 :
[(slot1, value1), (slot2, value2), . . . ], domain2 :
[(slot3, value3), . . . ], . . . }, where domains, slots
and values are selected from the ontology.

The semantic user action and system action are
composed of several tuples of the following struc-
ture: (intent, domain, slot, value). Users and
systems may have different intents, e.g., systems
can recommend an option and users can negate the
recommended offer. A semantic action can be con-
verted into a natural language utterance, which we

denote with textusr in the case of a user action.
User simulation in a task-oriented dialogue can

be modelled as a sequence-to-sequence problem.
For each turn, GenTUS takes the context infor-
mation as an input sequence, including the system
action, the user history, the user goal, and turn infor-
mation, and generates the semantic action and the
natural language response as the output sequence.
In following sections, we provide more details.

3.1 Model Structure
The backbone of the proposed GenTUS user sim-
ulation model is an encoder-decoder structure as
shown in Fig. 1. In turn t, the user goal is up-
dated by the user action from the previous turn
and the current system action. If the system in-
forms that the user’s request is not possible or fails,
the value of constraint slots will be replaced by a
random value. The encoder takes the system ac-
tion actiont

sys, user actions from previous 3 turns
actiont−1:t−3

usr , the user goal goal, and the turn
number t as input. Then the decoder generates both
the user semantic action actiont

usr conditioned on
the output of the encoder and the associated natu-
ral language response textusr. We initialise Gen-
TUS by BART (Lewis et al., 2020), which is a
transformer-based natural language generator with
a bidirectional encoder and a left-to-right decoder.
BART achieves convincing results on text genera-
tion and comprehension tasks after fine-tuning.

3.2 Input and Output Representation
The system action and user action are semantic
level dialogue acts and are represented by a list
of tuples (intent, domain, slot, value). Note that
the output of this user simulator is a semantic as
well as a natural language representation of the user
action. The natural language action is sent to the
system, while the semantic action is retained by the
user simulator for the next turn. The user goal goal
is represented by a list of tuples,

[(domain1, type1, slot1, value1, status1),

(domain2, type2, slot2, value2, status2), . . . ]
(1)

Following the setting in Lin et al. (2021), the tuples
are ordered by the user preference, which means
one tuple is in front of the others if the user pre-
fer to mention it earlier. The intent, domain, slot,
and value are sampled from the ontology. The
type represents whether a slot in the goal is a con-
straint info, a request reqt, or a booking informa-
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Figure 1: The model structure of GenTUS. Both input and output are JSON-formatted word sequences.

tion book. The status represents the condition
of each domain-slot pair. It can be fulfilled, in
conflict, requested, or not mentioned. The turn in-
formation is the number of the current dialogue
turn. We represent the input to GenTUS as a JSON-
formatted string: "{"system": actiont

sys, "user":
actiont−1:t−3

usr , "goal": goal, "turn": t}".
The output of GenTUS is a set of semantic-level

user sub-actions and the corresponding utterance
in natural language. The output is also easily rep-
resented as a JSON-formatted string: "{"action":
actiont

usr, "text": texttusr}".
As ultimately both input and output contain only

words, we can train GenTUS as a sequence-to-
sequence model. By using a pre-trained language
model for initialisation, we can harness the general-
isation capabilities of these powerful models when
adapting to a new ontology.

3.3 Constrained Semantic Decoding Space

The downside of using a large pre-trained language
model as a generator is that it may suffer from gen-
erating hallucinations. This means that we should
place constraints on the output to prevent generat-
ing illegal semantic actions, which is particularly
problematic for DSs.

In order to only produce valid actions, every
semantic action (intent, domain, slot, value)
is created by following a path in a graph that
defines the valid actions, where the graph is
constructed as follows. The possible intents in
the diagram are derived from the ontology. For
example, the MultiWOZ dataset (Budzianowski
et al., 2018) contains general intents like greeting
and bye, and domain-specific intents like inform

and request. The possible domains, slots and
values are derived from the user goal, and system
actions are used to update the nodes. The possible
paths following intent, domain, slot and value
are constrained by the ontology, which defines
what valid actions are comprised of. Fig. 2 depicts
an example, where GenTUS selected the action
[(Inform, Hotel, Area, North)] in
turn 0 and [(Request, Hotel, Addr,
?), (Inform, Taxi, Leave, 8:00)]
in turn 1 by following the two paths in the diagram.
The graph derived from the user goal is depicted
on the left of Fig. 2 and updated after the system
asked about a cheap hotel. After every decoded
action the model can decide whether to continue
or stop the decoding process. It is important
to highlight that while we use the ontology to
constrain the generation process, no part of the
ontology is ever part of the model, but the model
uses the ontology as one additional input. In that
way it can be transferred to a new ontology in a
purely zero-shot manner.

4 Experimental Setup

The objective of our experiments is four-fold. First,
we want to show that when trained and tested on the
same ontology, the user simulator can adequately
capture the semantics represented in the real user
data. At the same time, we also want to examine its
zero-shot capability by conducting the evaluation
on another unseen ontology. Second, as natural
language output is an important component of the
proposed model, we evaluate it separately using
both automatic measures and a human preference
test. Third, we jointly evaluate the GenTUS dia-
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Figure 2: An example of a constrained semantic decoding space. The intents come from the ontology whereas
domains, slots and values come from the user goal. In addition, system actions can insert new nodes. The user
semantic actions can only contain nodes from the graph. More details are mentioned in section 3.3.

logue policy and its natural language output using
a human trial and compare it to the state of the art.
This aims to show the value of optimising the user
simulator behaviour and language at the same time.
Finally, we show how the behaviour of GenTUS
can be further shaped by RL in interaction with a
DS, with the aim of demonstrating that this model
can yield a number of specialised user simulators.

4.1 Datasets

We conduct our experiments on two corpora,
the Multi-Domain Wizard-of-Oz (MultiWOZ)
(Budzianowski et al., 2018) and Schema-Guided
Dialogue (SGD) (Lee et al., 2022) datasets. Mul-
tiWOZ is a human-to-human conversation dataset
including around 10k dialogues, one person pos-
ing as a user and the other as an operator. In this
dataset, more than one domain may be involved in
one dialogue, even in the same turn. SGD consists
of more than 20k dialogues between humans and
a virtual assistant. The ontology of MultiWOZ in-
cludes 5 intents (3 general intents, e.g., greeting
and bye, and 2 domain-specific intent, i.e., inform
and request) and 7 different domains, e.g. hotel and
attraction. On the other hand, the ontology of SGD
includes 11 intents (2 general intents, i.e., thank-
you and goodbye, and 9 domain-specific intents,
e.g. inform, request, and confirm) and 20 different
domains, e.g., bank and music. More details of
these two datasets are listed in Appendix A.

4.2 Supervised Learning for GenTUS

Our model is inherited from Huggingface’s trans-
formers (Wolf et al., 2020) and trained on both
MultiWOZ and SGD. To measure how well Gen-

TUS can transfer to a new ontology, the model
trained on MultiWOZ is not only tested on the Mul-
tiWOZ test set but also evaluated on the SGD test
set without any further fine-tuning, and vice versa.
To the best of our knowledge, no other data-driven
US has been tested in such a rigorous zero-shot
transfer set-up.

We evaluate NLG performance by automatic
metrics, including slot error rate (SER), sacre-
BLEU score (Post, 2018) and self-BLEU score
(Zhu et al., 2018), and a human preference test.
SER evaluates the exact matching of semantic ac-
tions in the candidate utterance. SER = (m +
h)/N , where N is the total number of slots in se-
mantic actions, m and h stand for the number of
missing and hallucinated slots, respectively. The
self-BLEU is a diversity evaluation metric. For
every data point we generate a sentence. Given
such a sentence, we calculate a BLEU score where
the reference sentences are all other generated sen-
tences. Then we can get the self-BLEU score by
averaging all these results. The lower self-BLEU
score implies the higher diversity. We conduct the
human preference test on the Amazon Mechani-
cal Turk2 platform. Following the setting of Peng
et al. (2021), the workers are requested to rate each
utterance from 1 (bad) to 3 (good) in terms of in-
formativeness and naturalness. Informativeness
measures whether the given utterance contains all
the information specified in the semantic actions.
Naturalness evaluates whether the given utterance
is human-like. A screenshot of this questionnaire
can be found in Appendix C.

In addition, we measure how well GenTUS can
2https://www.mturk.com/
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fit or transfer to a dataset using precision, recall,
F1 score, as well as turn accuracy on the semantic
level and sacre-BLEU on the language level.

4.3 Training the Dialogue System with User
Simulators

USs are designed to simulate the real-world sce-
nario for training DSs, thus USs should respond in
natural language as real users’ utterances. In this
section, we investigate the ability of the proposed
model to train a dialogue policy by interacting on
the natural language level.

The policies of different DSs are trained by prox-
imal policy optimization (PPO) (Schulman et al.,
2017), a simple and stable RL algorithm, with dif-
ferent USs, including the agenda-based US (ABUS)
with template-based NLG (ABUS-T), ABUS with
SC-GPT (ABUS-S), and GenTUS which gener-
ates language. Note that we do not include NLG
modules in evaluation which are based on delex-
icalisation, such as Tseng et al. (2021), as their
performance strongly depends on the amount of
hand-coding invested in defining the delexicali-
sation rules. The downsides of delexicalisation
already became clear in early neural network dia-
logue state trackers (Mrkšić et al., 2017) and are
further exacerbated in natural language genera-
tion (Peng et al., 2020). We do however include a
rule-based user simulator (Schatzmann et al., 2007)
with a template-based NLG, noted as ABUS-T in
our experiments, as the rule-based user simulator
has achieved competitive results in human evalua-
tions (Kreyssig et al., 2018; Lin et al., 2021). Also,
TUS (Lin et al., 2021) did not significantly outper-
form ABUS in the human trial, so we exclude it
from the evaluation here.

To deal with the user response in natural lan-
guage, a natural language understanding mod-
ule composed with BERT (Devlin et al., 2019)
(BERTNLU) is included and a rule-based dia-
logue state tracker (RuleDST) is used to track the
users’ states for each DS. These modules, e.g.,
BERTNLU, RuleDST, ABUS, a template-based
NLG, and SC-GPT, are provided in the ConvLab-2
framework (Zhu et al., 2020).

We train policies for 200 epochs, each of which
consists of 1000 dialogues. The reward function
gives a reward of 80 for a successful dialogue and
−1 for each dialogue turn, with the maximum num-
ber of dialogue turns set to 40. For failed dialogues,
an additional penalty is set to −40. Each dialogue

policy is trained on 5 random seeds.
We apply the cross-model evaluation (Schatzt-

nann et al., 2005) to evaluate these DSs. Different
USs are used to evaluate a DS which is trained
with a particular US to estimate the generalisation
ability. We also conduct an interactive human trial.
For evaluation, we select the DS policy performing
best on the US it was trained on. For each DS we
collected 300 dialogues. The human trial is imple-
mented with DialCrowd (Lee et al., 2018; Huynh
et al., 2022) connected to the Amazon Mechanical
Turk platform. Users are provided with randomly
generated user goals based on the ontology of Mul-
tiWOZ and are required to interact with DSs in
natural language.

4.4 Fine-tuning GenTUS with RL

Simulators purely trained using supervised learn-
ing will learn behaviour that best fits the data and
most likely will result in general behaviour. As
behaviour can be very different from one user
to another, it is important to be able to model
different user behaviours, which will in turn re-
sult in more robust policies. To this end, we fur-
ther fine-tune GenTUS using RL and shape its be-
haviour by deploying different reward functions.
In order to achieve that, for a given user action
{(intenti, domaini, sloti, valuei)}mi=1, we define
the turn level reward r := −ρeff + ρact ·m, where
ρeff and ρact are hyperparameters. In addition, as
for the system reward, we give a reward of 80 for a
successful dialogue and −40 for a failed dialogue
at the very end of the dialogue. We let GenTUS
interact with the rule-based dialogue system both
on semantic level and optimise its behaviour us-
ing PPO. We test two different reward settings
that are distinguished by the turn level reward:
r1 := −5 · m (turn level penalty and low action
reward) and r2 := −10+20 ·m (turn level penalty
and high action reward). The corresponding aver-
age returns and trained user simulators associated
with the rewards are abbreviated with R1, R2 and
User1,User2 respectively. We train each model on
4 different seeds. We then take for every seed the
model with highest average return on its respective
reward and evaluate on the other reward functions
to obtain a cross-reward evaluation.

5 Experimental Results

Our experimental results can be divided into five
parts. In Section 5.1, we analysis the impact of
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different features with an ablation study. In Sec-
tion 5.2, we conduct the direct evaluation by mea-
suring automatic metrics (SER, sacre-BLEU, and
self-BLEU) and human ratings (informativeness
and naturalness) from the preference test. In Sec-
tion 5.3, we focus on the generalisability of Gen-
TUS by a zero-shot ontology transfer experiment,
measured by semantic level and language level met-
rics on two different corpora. The indirect evalua-
tion is in Section 5.4. We compare DSs trained by
different USs with cross-model evaluation. The re-
sult from the interactive human trial is discussed in
Section 5.5. In Section 5.6, we show that it is pos-
sible to further configure the behaviour of GenTUS
via RL.

5.1 Impact of different features
We conduct an ablation study to investigate the
usefulness of our proposed feature representation.
The result is shown in Table 1. First, we measure
the performance of the model which takes the turn
information, the system action actiont

sys and the
user action actiont−1

usr from previous turn. Without
context information, the model can only achieve
0.21 turn accuracy and 0.35 F1-score. After includ-
ing the user goal goal, the F1-score is improved
by 0.30 and the turn accuracy is also improved
by 0.30 absolutely. After adding more user his-
tory actiont−1:t−3

usr , the F1 score is also improved
slightly with the same turn accuracy.

This result indicates that the context information
can improve the performance especially including
the user goal in the input sequence.

Model P R F1 ACC

System and user action only 0.42 0.30 0.35 0.21
+ user goal 0.66 0.64 0.65 0.51

+ history 0.68 0.66 0.66 0.51

Table 1: The GenTUS ablation experiments on Multi-
WOZ. We analyse the impact of different input features
by measuring precision (P), recall (R), F1 score (F1),
and turn accuracy (ACC).

5.2 Natural Language Evaluation
The NLG performance of different models on Mul-
tiWOZ is shown in Table 2. TemplateNLG, SC-
GPT, and GenTUS-golden generate natural lan-
guage responses from golden semantic actions and
their SER is calculated based on these golden se-
mantic actions. On the other hand, the language
of GenTUS is generated based on semantic actions

Model SER ↓ sacre-BLEU ↑ self-BLEU ↓

Human 3.92% - 0.77
TemplateNLG 1.67% 10.46 0.89
SC-GPT 5.33% 10.51 0.79
GenTUS-golden 5.73% 19.61 0.93
GenTUS 3.97% - 0.95

Table 2: The NLG performance on MultiWOZ.
GenTUS-golden is generated based on the golden se-
mantic actions and GenTUS is using its own semantic
action prediction. The arrow direction means which
trend is better.

Model Informativeness Naturalness

SC-GPT 2.50 2.45
GenTUS 2.55 2.58

Table 3: Human preference test for NLG on MultiWOZ.
The naturalness score is statistically significantly differ-
ent (pv < 0.05).

predicted by itself, which means we can directly
measure the agreement between the semantic ac-
tion the simulator indented to produce and the final
natural language content produced by the simulated
user. The sacre-BLEU is calculated with golden
utterances.

Although data-driven NLG models have higher
SER than template-based NLG, these models have
better scores in BLEU. GenTUS-golden outper-
forms SC-GPT by 9.10 points in BLEU because
our model not only takes semantic actions as input
but also context information, e.g., the user goal.
Moreover, there is no statistically significant dif-
ference in SER between SC-GPT and GenTUS-
golden. The human preference test in Table 3 also
shows that GenTUS is more natural than SC-GPT
with similar informativeness. The diversity of the
proposed model is the worst, which is not surpris-
ing as we didn’t include beam-search or sampling
to keep the computational complexity as low as pos-
sible. An investigation of a method which balances
the two we leave for future work.

Without golden dialogue acts in the input, the
SER of GenTUS drops by 1.77% absolute when
GenTUS generates utterances from its prediction
dialogue acts instead of from golden dialogue acts,
which means the language-level and semantic-level
outputs of GenTUS are in agreement. In other
words, with the context information and its pre-
dicted semantic actions, GenTUS can generate
more natural language and have fewer missing and
redundant pieces of information.
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5.3 Zero-shot Ontology Transfer
The results of zero-shot ontology transfer are
shown in Table 4. For the semantic level evalua-
tion, GenTUS has higher precision, recall, F1 score
and turn accuracy on MultiWOZ than SGD when
training and testing on the same corpus. The reason
is the ontology of SGD is more complicated than
MultiWOZ, i.e., contains more intents, domains,
slots and values as shown in Section 4.1.

The performance of GenTUS trained on Multi-
WOZ dropped by 0.39 on F1 score and 0.35 on turn
accuracy when testing on SGD. On the other hand,
GenTUS trained on SGD can still achieve 0.49 on
F1 score and 0.34 turn accuracy when testing on
MultiWOZ without fine-tuning on the unseen Mul-
tiWOZ ontology. In other words, GenTUS trained
on SGD can get a comparable F1 score and turn
accuracy on both known and unknown ontology.

When testing and training on the same corpus,
the BLEU score of GenTUS is 17.84 on MultiWOZ
and 18.30 on SGD. However, when transferring to
another corpus, the BLEU score drops because
users in MultiWOZ and SGD have different vocab-
ulary and language styles.

Train Test Semantic Language
data data P R F1 ACC sacreBLEU

M M 0.68 0.66 0.66 0.51 17.84
S S 0.60 0.58 0.58 0.47 18.30
S M 0.51 0.51 0.49 0.34 2.70
M S 0.30 0.26 0.27 0.16 1.86

Table 4: The cross-dataset evaluation of GenTUS based
on two different corpora, MultiWOZ 2.1 (M) and
Schema-Guided Dialogue dataset (S). The semantic ac-
tions and language responses generated by GenTUS are
evaluated by semantic level metrics, i.e., precision (P),
recall (R), F1 score (F1) and turn accuracy (ACC), and
language level metric, i.e., sacre-BLEU.

5.4 Cross-model Evaluation
The results of cross-model evaluation are presented
in Table 5. The DS trained with GenTUS has the
best performance when interacting with ABUS-T
in a 15% absolute improvement in success rate over
its performance on GenTUS. On the other hand, al-
though the DS trained with ABUS-T achieves 78%
success rate, its performance drops by 28% abso-
lute when evaluated by GenTUS. The DS trained
with ABUS-S also performs best when interacting
with ABUS-T, with 17% absolute improvement
in success rate interacting with ABUS-S. All three
DSs achieve their best performance when evaluated

by ABUS-T, which means ABUS is the easiest set-
ting. This indicates that it may not be sufficient
to simulate real world scenario with only a hand-
crafted policy and a template-based NLG.

On the other hand, the USs with data-driven
NLG are more difficult for the DS to handle. The
DS trained by ABUS-T performs better than the
DS trained by ABUS-S because they learn from the
same policy and SC-GPT has higher SER, making
the DS hard to be fully optimised.

US for US for testing
training ABUS-T ABUS-S GenTUS

ABUS-T 0.78 0.63 0.50
ABUS-S 0.74 0.57 0.45
GenTUS 0.68 0.43 0.53

Table 5: The success rates of policies trained on Gen-
TUS, ABUS with template NLG (ABUS-T), and ABUS
with SC-GPT (ABUS-S) when tested on various USs.
Each pair is evaluated by 400 dialogues on 5 seeds,
which is 2K dialogues in total.

5.5 Interactive Human Trial

US for training Success Overall

ABUS-T 0.75 3.71
ABUS-S 0.79 3.83
GenTUS 0.86 4.08

Table 6: The interactive human trial results include suc-
cess rate and overall rating as judged by users. Each sys-
tem is evaluated by 300 dialogues. The success rate and
overall score of GenTUS are statistically significantly
different from ABUS-S and ABUS-T (pv < 0.05)

The result of the interactive human trial is shown
in Table 6. 155 users were involved in this trial.
The number of interactions per user varies from
1 to 48. A dialogue is rated as successful if the
system fulfils the user’s given goal. The overall
rating ranges from 1 (very poor) to 5 (excellent).

The DS trained by GenTUS outperforms the DS
trained by ABUS-T and the DS trained by ABUS-
S both on success rate and overall rating, which
shows that is beneficial to train a DS with a jointly
optimised user policy and NLG. However, we can-
not observe statistically significant differences be-
tween ABUS-T and ABUS-S on success and over-
all rating, which means including a data-driven
NLG module with the rule-based US is not suffi-
cient to train an optimal DS.
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Models Success Avg Acts Turns R1 R2

User 1 0.84± 0.03 1.33± 0.03 7.01± 0.27 33.5± 3.5 34.2± 3.7
User 2 0.78± 0.04 1.81± 0.04 7.24± 0.33 4.3± 6.2 119.1± 15.5
Supervised 0.76± 0.08 1.39± 0.04 7.38± 0.32 30.9± 8.2 38.6± 10.0

Table 7: Results after fine-tuning GenTUS using RL on three different reward functions. Results show mean and
95% confidence intervals.

5.6 Fine-tuning GenTUS with RL

The results of RL training are depicted in Table 7.
We can observe that both users obtain the high-
est return on the respective reward function. The
success rate of both user 1 and user 2 are higher
than supervised model because of the success re-
ward signal in RL. User 1, which tries to lower its
number of actions, has a similar average number
of actions compared to supervised model, suggest-
ing that paid users from the corpus do not want to
say more than is necessary to achieve a success-
ful dialogue. User 2, which is rewarded for taking
many actions in a turn, shows a much higher aver-
age number of actions compared to the other users,
reflecting a different user behaviour – a chatty user.

6 Conclusion

We propose a generative transformer-based user
simulator (GenTUS), which achieves high inter-
pretability and linguistic variation by generating
both semantic actions and natural language utter-
ances. Moreover, it produces generalisable feature
representation by treating the inputs and outputs as
word sequences and leveraging a large pre-trained
language model. Our results show that GenTUS
generates more natural language than SC-GPT in a
given context and it can transfer to an unseen on-
tology in a zero-shot fashion. We consolidate our
findings by a number of automatic as well as human
evaluations. In addition, the GenTUS behaviour
can be further configured by RL with different re-
ward functions, providing an opportunity to build
specialised USs. In future work, we hope to modify
also the NLG of GenTUS via RL in order to model
user sentiment or personality.
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A Intents and domains in MultiWOZ and
SGD

type system user

general welcome, reqmore,
bye, thank, greet bye, thank, greet

domain-
specific

recommend, inform,
request, select, book,
nobook, offerbook,
offerbooked, nooffer

inform, request

Table 8: Al intents in the MultiWOZ dataset.

All intents in the MultiWOZ dataset are listed in
Table 8 and all intents in SGD dataset are listed in
Table 9. The domains in SGD follow the form of
<domain_name>_<number> and the number
is used to disambiguate services from the same
domain (Lee et al., 2022). We normalize them to
domain name only. All domains in MultiWOZ and
SGD and listed in Table 10.

type system user

general goodbye, req_more thank_you, goodbye

domain-
specific

inform, notify_success,
request, notify_failure,
confirm, offer_intent,
offer, inform_count

inform_intent, inform
negate_intent, negate
affirm_intent, affirm,
request_alts, request,
select

Table 9: All intents in the SGD dataset.

dataset domains

MultiWOZ attraction, hospital, hotel, police, restaurant,
taxi, train

SGD

alarm, banks, bus, calendar, events, flights,
homes, hotels, media, messaging, movies,
music, payment, rental_cars, restaurants,
ride_sharing, servies, train, travel, weather

Table 10: All domains in MultiWOZ and SGD. The
names of domains in SGD are normalized.

B A generated dialogue example

Here we show a dialogue example of GenTUS in-
teracting with a rule-based DS in Table 11. The
system’s semantic actions are converted to natural
language by a template-based NLG.

We can notice that GenTUS provides a natural
response in turn 5. This utterance is difficult for
the natural language understanding model and the
system is not capable to handle it. As a result,
GenTUS mentions the departure and destination
explicitly in turn 8.

C An example of human preference test

The dialogue history, semantic actions, and utter-
ances generated by two different systems are pre-
sented to workers on AMT platform. They are re-
quired to rate the informativeness and naturalness
of these utterances respectively.
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User goal

attraction: {info: {type: college}, reqt: {postcode: ?, entrance fee: ?}},
hotel: {info: {area: north, star:0}, reqt: {parking:?},
taxi: {arriveby:13:00}, reqt:{phone:?, car type:?}}

Dialogue

0-sys Welcome to the dialogue system. How can I help you?
0-usr I’m looking for a college to visit in town.

1-sys
There ’s 18 college in the centre , anything in mind ?
What area would you like this in ?

1-usr No, but I would like the postcode and entrance fee.

2-sys

We have christ’s college. Its postcode is cb23bu .
Would you be interested in visiting a college?
The entry fee is free. The postcode is cb23bu.
Did you need any further assistance today?

2-usr Yes, I’m also looking for a place to stay in the north.

3-sys
I have 13 moderate guesthouse that fit your criteria.
Want one of those? I ’d be happy to help.
May I ask what price range and area of town you are looking for?

3-usr I would like a 0 star rating.

4-sys
I have 1 option for you. It’s listed as cheap. It is a guesthouse.
Would city centre north b and b work for you?

4-usr Does it have free parking?

5-sys
City centre north b and b is available would you like to try that ?
There is wifi available at the hotel . The parking is free .
The hotel is 0 stars . It is a guesthouse .

5-usr Great. I also need a taxi to commute between the two places.

6-sys
Okay, I can help with that.
What are your departure site and destination?
Also, when would you like to leave or arrive by?

6-usr I need to arrive by 13:00.
7-sys There are 18. Would you like me to recommend one for you?
7-usr I ’d like the car type and contact number please.

8-sys
There are 18 entries found for "college" in the centre of town.
Would you like the first listing? How about the christ’s college?
Glad I could be of assistance! If you need anything else, let me know.

8-usr Yes, I need a taxi to get me from the college to the hotel by 13:00.
...

Table 11: A dialogue example of GenTUS interacting with rule-based dialogue system. GenTUS responds in a
natural way utilising anaphora in turn 5. After it finds out the system is not capable to understand, GenTUS provides
the departure and destination explicitly in turn 8.
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Figure 3: An example of human preference test.
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Chapter 6

EmoUS: Simulating User Emotions in
Task-Oriented Dialogues

This chapter summarises our work on simulating user emotions in task-oriented dialogues
and gives a verbatim copy of our paper (Lin et al., 2023):

Hsien-Chin Lin et al. (2023). “EmoUS: Simulating User Emotions in Task-Oriented
Dialogues”. In: Proceedings of the 46th International ACM SIGIR Conference on Research and

Development in Information Retrieval. SIGIR ’23. Taipei, Taiwan: Association for Computing
Machinery, pp. 25262531. ISBN: 9781450394086. DOI: 10.1145/3539618.3592092. URL:

https://doi.org/10.1145/3539618.3592092

6.1 Summary

State-of-the-art user simulators in task-oriented dialogues only simulate extrinsic user be-
haviour, e.g. user semantic actions or user utterances in natural language. Without mod-
elling user personas or emotions, user simulators cannot capture the diverse range of user
behaviour influenced by user intrinsic states, resulting in emotionless natural language
responses with limited linguistic diversity. In addition, dialogue systems optimised on
interactions with these neutral user simulators tend to focus only on transactional aspects
driven by task success, neglecting the user’s emotional state. This limitation may lead to a
high drop-off rate when deployed to real customers.

To effectively address this issue, we introduce EmoUS, a user simulator for task-oriented
dialogue systems that learns to simulate user emotions with user behaviour. EmoUS gener-
ates user emotions based on the dialogue context, e.g. user goals, system actions from the
previous turn, the user history, and the user persona. After generating the user emotion,
EmoUS generates semantic actions and utterances in natural language. In other words, the
behaviour of EmoUS is not only conditioned on the dialogue context but also on the user
emotion and persona.

Our experimental results demonstrate that EmoUS can properly predict user emotions
and generate more diverse natural language responses. Additionally, we analyse how
different system behaviour elicit specific user emotions, showing that our user simulator can
be used to evaluate dialogue systems in addition to task success and probe their impact on
the user’s emotional state. The development of such methods is crucial to the increasing
usage of large language model chatbots and the growing ethical concerns surrounding them.

https://doi.org/10.1145/3539618.3592092
https://doi.org/10.1145/3539618.3592092
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6.2 Personal contributions

All writing, implementation, and technical results are my contribution. Co-authors assisted
in writing and proofreading.
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ABSTRACT
Existing user simulators (USs) for task-oriented dialogue systems
only model user behaviour on semantic and natural language levels
without considering the user persona and emotions. Optimising
dialogue systems with generic user policies, which cannot model
diverse user behaviour driven by different emotional states, may
result in a high drop-off rate when deployed in the real world.
Thus, we present EmoUS, a user simulator that learns to simulate
user emotions alongside user behaviour. EmoUS generates user
emotions, semantic actions, and natural language responses based
on the user goal, the dialogue history, and the user persona. By
analysing what kind of system behaviour elicits what kind of user
emotions, we show that EmoUS can be used as a probe to evaluate
a variety of dialogue systems and in particular their effect on the
user’s emotional state. Developing such methods is important in the
age of large language model chat-bots and rising ethical concerns.
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1 INTRODUCTION
Task-oriented dialogue systems (DSs) help users accomplish their
goals, such as searching for nearby restaurants or booking a hotel.
Proficient DSs are often trained via reinforcement learning (RL),
which demands a large number of interactions between the system
and users, making training with real users expensive and time-
consuming. Therefore, utilizing user simulators (USs) to build a
controlled interactive environment becomes attractive [6].

This work is licensed under a Creative Commons Attribution
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© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9408-6/23/07.
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Despite recent USs in task-oriented dialogues properly modelling
user extrinsic behaviour in terms of semantic actions and natural
language [17, 36], a crucial aspect is still lacking: the user intrinsic
state such as user persona and the emotional state. A generic user
policy may lead to limited linguistic diversity and fails to capture
diverse actions driven by varying user emotions. Adjusting the
probability distribution of user actions in rule-based USs is a popular
method to address diversity [13], but real users differ in more ways
than just action preferences. Training USs by supervised learning
with different initialisation [35] or by RL with varying reward
functions can also form various user policies [17], but that can only
provide diverse extrinsic behaviour, e.g. the action length in each
turn or the semantic content.

In this work, we propose a user simulator that models the user
emotional state conditioned on the dialogue context and the user
persona. More specifically, our contributions are as follows:

• Wepropose an emotionaluser simulator that we call EmoUS1.
The EmoUS response includes the user emotion, semantic
actions, and natural language utterances. To the best of our
knowledge, this is the first user simulator with user emotion
for task-oriented dialogue systems.

• EmoUS exhibits an increased linguistic diversity for the same
context by modelling the user policy and emotion jointly,

• The user emotion of EmoUS provides valuable insights for
evaluating DSs, offering a more subtle and detailed under-
standing beyond a simple measure of task success.

2 RELATEDWORK
The effectiveness of a task-oriented dialogue policy trained by RL
with a US is greatly affected by the quality of the US [27]. Rule-based
USs are commonly used to train DSs, such as the agenda-based US
(ABUS) [28]. ABUS models the user goal as a stack-like agenda,
ordered by the priority of the user actions updated by hand-crafted
stacking and popping rules. While its action probability distribution
can be manipulated to simulate different user behaviour [13], it only
generates semantic actions without natural language generation or
emotion prediction. Moreover, designing rules for complex scenar-
ios is labour-intensive and transferring these rules to new domains
can be challenging. To address these limitations, data-driven USs
have been developed, which learn user policy directly from data.
The sequence-to-sequence (Seq2Seq) model structure is the most
common framework. The input sequence may include the dialogue
history and user goal as a list of features or plain text. The output
sequence can be semantic actions or natural language utterances
[7, 10, 15, 17, 18, 37, 38]. Tang et al. [35] train USs by supervised

1https://gitlab.cs.uni-duesseldorf.de/general/dsml/emous-public
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learning with different initialisation to create different user poli-
cies. Lin et al. [17] proposed GenTUS, an ontology-independent
US which generates natural language utterances as well as the un-
derlying semantic actions for interpretability. Its behaviour can
be configured by RL with different reward functions. These USs
can simulate extrinsic user behaviour, e.g. actions and utterances,
but intrinsic user states are neglected, e.g. satisfaction level and
emotional status [24].

In comparison to generating responses with given emotions [3,
21, 33] or recognising user satisfaction classification after receiving
user utterances [1, 8, 11, 12, 30, 32], the user satisfaction modelling
should predict intrinsic user states first then generates actions or
utterances. Sun et al. [34] and Deng et al. [4] investigate how user
satisfaction impacts user behaviour on the semantic level. Pan et al.
[23] transfer the emotion from chit-chat to task-oriented dialogues
utilising data augmentation. Kim and Lipani [14] proposed SatAc-
tUtt, which generates users’ satisfaction, action (only with intent
and domain), and utterance based on dialogue history as multi-task
learning. We consider SatActUtt as our baseline as it is the first
US modelling both intrinsic and extrinsic user behaviour. While
SatActUtt can predict user satisfaction scores adequately based on
dialogue history, it does not include the user goal. This makes it
difficult to train a dialogue system. In addition, it only considers
satisfaction and dissatisfaction, disregarding aspects such as dif-
ferent emotion elicitors or user personas [19, 22]. Feng et al. [9]
annotated a task-oriented dialogue dataset with 7 user emotions
inspired by Ortony, Clore and Collins (OCC) emotion model [22].
It considers user conduct and emotion elicitors for human-human
and human-machine task-oriented dialogues, representing a more
fine-grained user intrinsic state for task-oriented dialogues.

3 SIMULATING USER EMOTION IN
TASK-ORIENTED DIALOGUES

Task-oriented DSs are underpinned by an ontology which is typ-
ically composed of intents, domains, slots, and values. Intents de-
fine user or system global intentions of their respective actions
in each turn. Users and systems may have different intents, e.g.,
systems can confirm user’s request and users can negate system’s
proposal. Domains are the topics that can be discussed in the con-
versation. They can be further specified by slots and each can take
a number of values. We assume that the users of task-oriented
dialogues have a goal they want to achieve, which is defined as
𝐺 = {𝑑1 : [(𝑠1, 𝑣1), (𝑠2, 𝑣2), . . . ], 𝑑2 : [(𝑠3, 𝑣3), . . . ], . . . }, where do-
main 𝑑𝑖 , slot 𝑠𝑖 and value 𝑣𝑖 are selected from the ontology.

Semantic user actions and system actions are composed of tuples,
(𝑖𝑛𝑡𝑒𝑛𝑡, 𝑑𝑜𝑚𝑎𝑖𝑛, 𝑠𝑙𝑜𝑡, 𝑣𝑎𝑙𝑢𝑒). Semantic actions can be transformed
into natural language utterances. User emotion in task-oriented dia-
logues may be triggered by different elicitors, or related to different
user personas. For example, the system not responding adequately
may lead to the user being dissatisfied [9]. A user persona represents
users’ attitudes and feelings towards certain events, such as feeling
fearful after a robbery [20] or includes users’ conduct, i.e. how users
behave when communicating, e.g. are they polite or impolite. For
example, the persona of a polite user who is feeling excited to visit
a museum is 𝑝𝑒𝑟𝑠𝑜𝑛𝑎 = {user: polite, attraction: excited}. The user

persona can be derived from dialogue history during training and
sampled from a distribution for inference.

User simulation with emotion can be viewed as a Seq2Seq prob-
lem. For each turn, EmoUS predicts the user emotion based on the
context information, e.g. the dialogue history, the user goal, and the
user persona, and generates semantic actions and natural language
responses based as follows.

3.1 Model structure

Elicitor

  EmoUS  

User persona

User goal
Attraction Area North

?

Taxi Leave 8:00

Info

reqt

Info

Addr Bidirectional
Encoder

Left-to-right
Decoder

Valence
Neutral Positive Negative

Conduct
Event SystemUserPolite Impolite

Attraction ExcitedUser Polite

Emotions: Neutral Fearful Dissatisfied Apologetic Abusive Satisfied Excited

Sentiments: Neutral Negative Positive

Figure 1: The model structure of EmoUS

EmoUS builds upon GenTUS and additionally incorporates user
persona and emotion prediction. More specifically, EmoUS takes
the system action 𝑎𝑐𝑡𝑖𝑜𝑛𝑡𝑠𝑦𝑠 , user history 𝑎𝑐𝑡𝑖𝑜𝑛𝑡−1:𝑡−3𝑢𝑠𝑟 , user goal
𝑔𝑜𝑎𝑙 , turn information 𝑡𝑢𝑟𝑛 and the user persona 𝑝𝑒𝑟𝑠𝑜𝑛𝑎 as input
and generates user emotion 𝑒𝑚𝑜𝑡𝑖𝑜𝑛, semantic actions 𝑎𝑐𝑡𝑖𝑜𝑛𝑡𝑢𝑠𝑟 ,
and an utterance 𝑡𝑒𝑥𝑡𝑡𝑢𝑠𝑟 as output at turn 𝑡 (as shown in Fig. 1).
By introducing different user personas and emotions, more diverse
user behaviours on both semantic and linguistic aspects can be
simulated even in the same context.

EmoUS considers the three aspects of user emotions in task-
oriented dialogues according to EmoWOZ [9], namely elicitor, con-
duct, and valence. The emotion elicitor can be an event, the system,
or the user. Their respective information can be captured from the
event 𝑝𝑒𝑟𝑠𝑜𝑛𝑎 attribute, system 𝑎𝑐𝑡𝑖𝑜𝑛𝑡𝑠𝑦𝑠 , and user 𝑎𝑐𝑡𝑖𝑜𝑛𝑡−1:𝑡−3𝑢𝑠𝑟 .
The user conduct, whether polite or impolite, is recorded as a user
persona. The valence aspect, or the sentiment polarity of each
emotion, is informed intrinsically in the emotion prediction.

Following the setting in Lin et al. [17], the input and output
sequences are represented as JSON-formatted strings, composed
of natural language tokens. In this way, EmoUS achieves ontology
independence and can transfer to unseen domains.2 Then we train
EmoUS as a Seq2Seq model and leverage BART [16], a transformer-
based natural language generator with a bidirectional encoder and a
left-to-right decoder. BART demonstrates impressive performance
in a range of language-related tasks.

4 EXPERIMENTAL SETUP
The aim of our experiments is to demonstrate that EmoUS is able to
generate user emotion, semantic actions, and utterances based on
the context of the conversation and the user persona. Furthermore,
we show that the emotion prediction of EmoUS is a valuable tool
2As this property is directly inherited from GenTUS, we do not examine it in our
experiments.
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for evaluating DSs. We conduct our experiments on EmoWOZ [9].
It contains user emotion annotations for human-human dialogues
from MultiWOZ [2] and 1𝑘 human-machine dialogues between vol-
unteers and an RNN-based dialogue policy trained on MultiWOZ.

4.1 Supervised learning for emotion simulation
Our model is inherited from Huggingface’s transformers [39] and
trained on EmoWOZ. To measure the emotion prediction perfor-
mance, we calculate the macro-F1 score of sentiments and emotions.
We compare sentiment prediction against SatActUtt [14], a user
model which predicts sentiment, user action (composed with intent
and domain only), and utterances based on the dialogue history.

Following the setting of Lin et al. [17], we evaluate the perfor-
mance of modelling user semantic actions by F1 score and turn
accuracy and the natural language generation (NLG) performance
by slot error rate (SER), sacre-BLEU score [25] and self-BLEU score
[41]. SER measures the agreement between the semantic actions
and the corresponding utterance. 𝑆𝐸𝑅 = (𝑚 + ℎ)/𝑁 , where 𝑁 is
the total number of slots in semantic actions,𝑚 and ℎ stand for the
number of missing and hallucinated slots. The self-BLEU evaluates
the diversity of generated utterances in the following way. After
generating a sentence for every data point, we calculate a BLEU
score by treating all other generated sentences as references. By
averaging these scores, we get the self-BLEU score where the lower
score implies a higher diversity.

4.2 Interacting with DS
We estimate the generalisation ability of a US by cross-model eval-
uation, where a DS trained with a particular US is evaluated by
different USs [29]. Policies of different DSs are trained with various
USs, including the agenda-based US (ABUS) with T5 [26] natural
language generator (ABUS-T5), GenTUS, and EmoUS, by proximal
policy optimisation (PPO) [31], a simple and stable RL algorithm, for
200 epochs, each of which consists of 1000 dialogue turns. Each pol-
icy is trained on 5 random seeds and the performance is averaged.
The DSs also include a natural language understanding module
composed with BERT [5] for understanding users’ utterances and
a rule-based dialogue state tracker for tracking the users’ states
under the ConvLab-3 framework [40].

We also analyse how different system behaviour elicit user emo-
tions. For this purpose, we used 1𝑘 dialogues between EmoUS and a
DS trained by EmoUS. We categorised various system behaviour in
the following groups: confirm - the system repeats the slots and val-
ues informed by the user, no_confirm - the system does not repeat
this information, miss_info - the system requests the information
just mentioned by the user, neglect - the system does not respond
to the user request, reply - the system responds to the user request,
and loop - the system takes identical actions for two turns in a row.

5 EXPERIMENTAL RESULTS
5.1 User emotion modelling
As shown in Table 1, EmoUS outperforms SatActUtt on sentiment
prediction by 0.314 on macro-F1 score. This is not unexpected as
EmoUS includes the user goal in inputs and the user sentiment in
task-oriented dialogues is centred around the user goal [9]. In addi-
tion, the performance of sentiment prediction between EmoUS and

EmoUS𝑛𝑜𝑃𝑒𝑟𝑠𝑜𝑛𝑎 is similar, but the emotion prediction improves
by 0.202 on the macro-F1 score when including the user persona.
This indicates that considering the user persona improves the per-
formance of user emotions triggered by different elicitors.

Table 1: Performance for emotion and sentiment prediction
of different models by measuring macro-F1 score.

model sentiment emotion

SatActUtt 0.379 -
EmoUS𝑛𝑜𝑃𝑒𝑟𝑠𝑜𝑛𝑎 0.673 0.299
EmoUS 0.693 0.501

We demonstrate that user emotion simulation can be further
configured by multiplying different weights𝑤 on the probability
of neutral, i.e. neutral is more likely to be selected with a higher
weight. As shown in Fig. 2, EmoUS is purely neutral without any
emotion as 𝑤 = 1.5. As the weight decreases, EmoUS achieves
the best performance on fearful as𝑤 = 0.95, best on dissatisfied as
𝑤 = 0.9, and best on apologetic as𝑤 = 0.85. Thus, we can change the
probability distribution of emotions in the user response, inducing
different user behaviour, by modifying the weight of emotions.

Figure 2: Different weights of the neutral emotion will have
different F1-score on each user emotion.

5.2 User action prediction
The results of user action prediction are shown in Table 2, where
EmoUS𝑒𝑚𝑜 generates semantic actions based on golden emotions.
EmoUS is superior to SatActUtt because EmoUS can generate se-
mantic actions following the user goal, whereas SatActUtt does
not consider the user goal. Additionally, EmoUS is still compara-
ble to GenTUS despite it models a more complex task, simulating
user emotions and semantic actions jointly. Moreover, EmoUS𝑒𝑚𝑜

surpasses GenTUS since EmoUS𝑒𝑚𝑜 generates semantic actions
utilising more information then GenTUS, such as the user persona
and golden emotions.

5.3 Natural language evaluation
The NLG results are shown in Table 3, where GenTUS𝑎𝑐𝑡 generates
utterances based on golden semantic actions and EmoUS𝑒𝑚𝑜+𝑎𝑐𝑡 is
based on golden emotion and semantic actions. On the other hand,
GenTUS and EmoUS are generated based on their prediction. The
Sacre-BLEU is calculated with golden utterances.

Although SatActUtt generates the most diverse utterances with
the lowest Self-BLEU score, it also has the lowest Sacre-BLEU score,
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Table 2: Performance for user action prediction.

Intents+domains Full action
model F1 ACC F1 ACC

GenTUS 0.890 0.854 0.762 0.600
SatActUtt 0.317 0.221 - -
EmoUS 0.892 0.857 0.764 0.603
EmoUS𝑒𝑚𝑜 0.904 0.867 0.775 0.611

which means it by and large generates random responses irrelevant
to the user goal. On the other hand, EmoUS𝑒𝑚𝑜+𝑎𝑐𝑡 has a com-
parable Sacre-BLEU and SER with GenTUS𝑎𝑐𝑡 and a much lower
Self-BLEU score, which means EmoUS is able to generate more
diverse responses than GenTUS but still follows the user goal and
maintains the agreement between the semantics and the language.

Table 3: The NLG performance on EmoWOZ of different mod-
els. The arrow directions represent which trend is better.

model SER↓ Sacre-BLEU↑ Self-BLEU↓

Human 0.054 - 0.770
GenTUS 0.116 - 0.950
GenTUS𝑎𝑐𝑡 0.092 19.61 0.930
SatActUtt - 2.90 0.433
EmoUS 0.118 - 0.715
EmoUS𝑒𝑚𝑜+𝑎𝑐𝑡 0.096 16.91 0.708

5.4 Cross-model evaluation
As shown in Table 4, the DS trained with EmoUS performs com-
parably to the DS trained with ABUS-T5 when evaluating with
ABUS-T5 (0.62 vs 0.63 success rate), and similarly to the DS trained
with GenTUS when evaluating with GenTUS (both at 0.53 success
rate). However, the DS trained with EmoUS outperforms the DS
trained with ABUS-T5 by 7% absolute and the DS trained with
GenTUS 5% absolute on success rate when evaluating with EmoUS
(success rates of 0.52 vs 0.45 and 0.47 respectively). This indicates
that EmoUS provides a better learning environment and makes DSs
trained with it perform well when evaluated on diverse USs.

Table 4: The success rates of policies trained on EmoUS, Gen-
TUS, and ABUS with T5 NLG (ABUS-T5) when tested on vari-
ous USs. Each pair is evaluated by 400 dialogues on 5 seeds,
which is 2K dialogues in total.

US for US for evaluation
training ABUS-T5 GenTUS EmoUS

ABUS-T5 0.63 0.48 0.45
GenTUS 0.60 0.53 0.47
EmoUS 0.62 0.53 0.52

5.5 System behaviour with the user emotions
In 1𝑘 dialogues between EmoUS and a DS trained by it, the system
behaviour 𝑐𝑜𝑛𝑓 𝑖𝑟𝑚, 𝑛𝑜_𝑐𝑜𝑛𝑓 𝑖𝑟𝑚, and𝑚𝑖𝑠𝑠_𝑖𝑛𝑓 𝑜 elicit neutral emo-
tion. As systems respond properly, e.g. 𝑟𝑒𝑝𝑙𝑦, users are likely to feel
satisfied, but when systems behave unprofessionally, e.g. 𝑛𝑒𝑔𝑙𝑒𝑐𝑡
and 𝑙𝑜𝑜𝑝 , users may feel dissatisfied (see Table 5). This observation
is in line with the user study conducted by Sun et al. [34].

Furthermore, we plot the average user sentiment per turn where
positive = +1, neutral = 0, and negative = −1, for each dialogue
outcome. As expected, users are more positive in successful dia-
logues and more negative in failed dialogues on average (see Fig. 3).
In addition, we also notice a drop in sentiment around turn 6, which
suggests the user may feel impatience after that.

Table 5: Proportion of neutral and system-eliciting emotions
triggered by various system behaviour.

System User emotion
behaviour Neutral Dissatisfied Satisfied

confirm 86.00% 2.20% 11.80%
no_confirm 71.80% 16.60% 11.60%
miss_info 79.20% 11.10% 9.70%
neglect 27.10% 65.00% 7.90%
reply 51.50% 4.10% 44.40%
loop 28.60% 65.90% 5.50%

Figure 3: The average user sentiment in different turns.

6 CONCLUSION
We present EmoUS, a simulated user that generates emotional
and thus more diverse output in task-oriented dialogues. It can
be further configured by manipulating different weights for each
emotion or different user personas. Our results show that EmoUS
is useful to examine the impact of dialogue systems on the user’s
emotional state. Developing such probes is of particular importance
with the increasing usage of dialogue systems and the rising ethical
concerns of large language model chat-bots.

In future, the correlations between personas and emotions should
be investigated, e.g. whether polite users show more satisfaction
even though system responses are inadequate. Human evaluation
should also be conducted to address the validity of our simulation.
Furthermore, we plan to utilise EmoUS for the development of
emotion-sensitive DSs.
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Chapter 7

Conclusions and Future Work

In this chapter, an overview of the key contributions made within this thesis is provided and
potential research directions are pointed out. The research presented in this thesis aimed
to improve user modelling in task-oriented dialogues, generating user responses in natural
language and incorporating the simulation of user emotions with a domain-independent
structure.

7.1 Results

Previous user simulators are domain-dependent, which means adapting a user model to an
unseen domain is challenging. In addition, the user policy and natural language generation
are optimised separately, which causes a suboptimal performance. Furthermore, simulating
user extrinsic behaviour only, e.g. user actions and utterances, without user intrinsic status,
e.g. the satisfaction level and user emotions, limits the diversity of the user behaviour.

In Chapter 4, a domain-independent transformer-based user simulator (TUS) is proposed
to address the challenges of adapting user simulators for new domains. Unlike rule-based
user simulators that demand manual rule rewriting, and domain-dependent simulators
that necessitate feature representation redesign or complete model retraining, TUS employs
a domain-independent feature representation, allowing it to adapt to a new domain in a
zero-shot fashion. However, TUS generates user responses in semantic actions, not able to
generate utterances in natural language.

In Chapter 5, a generative transformer-based user simulator (GenTUS) is proposed,
jointly optimising the user policy and natural language generation. GenTUS maintains its
interpretability by generating user semantic actions and enriches linguistic diversity through
utterance generation. Furthermore, the inputs and outputs of GenTUS are represented as
word sequences, enabling it to adapt to a new ontology without feature modification and
model fine-tuning. In addition, GenTUS generates user utterances conditioned not only on
semantic actions but also on the dialogue context, resulting in more natural responses in
comparison to a separated natural language generation module. Moreover, the behaviour
of GenTUS can be further fine-tuned through reinforcement learning with different reward
functions, allowing for the development of specific user simulators. Although GenTUS can
generate natural user utterances, its diversity is limited and it only considers user extrinsic
behaviour, e.g. semantic actions and utterances, without the user intrinsic states, e.g. user
emotions.

In Chapter 6, a user simulator that learns to simulate user emotions with user extrinsic
behaviour, EmoUS, is introduced. EmoUS predicts user emotions according to the dialogue
context and the user persona, then it generates semantic actions and utterances based on the
emotion, persona, and dialogue context, which means EmoUS considers the dialogue context
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as well as the user intrinsic status for modelling the extrinsic behaviour. The experimental re-
sults demonstrate that EmoUS can properly predict user emotions and produce more diverse
natural language responses. Furthermore, according to how different system behaviour can
trigger varying user emotions, EmoUS does not only evaluate dialogue system task success
but also probes their influence on the user’s emotional experience, which is important due to
the growing demand for large language model chatbots and the ethical concerns associated
with their usage.

In this thesis, the user simulation of task-oriented dialogues can capture a broader
spectrum of human behaviour, including not only extrinsic user behaviour but also intrinsic
user status, ranging from neutral semantic actions to emotional natural language utterances.
A more human-like user modelling should encourage researchers to leverage user simulators
for developing dialogue systems, improving the coverage rate of training and evaluation,
and resolving ethical considerations.

7.2 Future work

Developing an appropriate user simulation for interactive systems is still an unsolved
question. Here are some possible research topics:

Safety of interactive systems. With the increasing integration of dialogue systems into
our daily lives, the concern of ethical issues is on the rise. If the development of dialogue
systems only focuses on technical aspects while overlooking ethical considerations, people
might avoid using these systems, or even start protesting against them (Kimon Kieslich and
Došenović, 2023). However, detecting problematic system behaviours, e.g. abusive language,
misleading suggestion, and biased information, by human annotators is not trivial, since
offensive words may harm people (Jay, 2009). The results obtained in this thesis open the
door to investigating the use of a user simulator to assert safety of a dialogue system. Namely,
a user simulation, which models user intrinsic behaviour, would be capable of detecting
and evaluating unfavourable system responses, indicating when and why people experience
dissatisfaction or frustration while interacting with the system. As a result, enhancing the
modelling of negative emotions such as "abusive" and "dissatisfied" in user simulation is
essential to build a safe and well-behaved ethical system.

What influence does the internal state have on external behaviour? In Chapter 6, different
system behaviour elicit diverse user emotions. However, how user intrinsic status impacts
external behaviour is not clear, e.g. will patient users still be satisfied even when the system
behaves unprofessionally? It is also useful to integrate user emotions in addition to reward
signals or conditions for utterance generation, since a desirable user experience is not only
about the task success but also about the language style and the system conduct, e.g. the
politeness of task-oriented dialogue systems is emphasised to prevent users from getting
annoyed, especially when systems frequently request users’ personal information to complete
tasks (Kurz et al., 2021; Mishra et al., 2022).

How to incorporate various sources of data? In this thesis, user simulators are trained
on dialogue corpora, e.g. MultiWOZ (Budzianowski et al., 2018) and schema-guided di-
alogues (Rastogi et al., 2020). These datasets come with detailed labels, such as system
actions, user actions, and dialogue states, where manual annotation of these datasets is a
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time-consuming and labour-intensive process. Conversely, there exists a vast amount of
unstructured data on the internet, e.g. restaurant reviews or travel blogs, which are rich
in content but unstructured and lack annotations. Therefore, it is appealing to investigate
how to learn user behaviour not only from well-annotated datasets, which are structured
but limited and potentially outdated, but also from diverse sources of data that are noisy,
unstructured, yet more current and comprehensive. In addition, considering multi-modal
user behaviour is important, e.g. clicks during browsing, speech with emotional expressions,
and facial expressions, for modelling a more human-like behaviour.

Large language model in user simulation. Large language models (LLMs) achieve im-
pressive results on various natural language processing tasks (Brown et al., 2020). However,
there are several issues when including LLMs in user simulation, which means LLMs are not
a solution but rather an opportunity (Heck et al., 2023). The challenges are as follows:

• Training and serving an LLM are extremely costly. The considerable computational
demands arising from the extensive scale of LLMs can lead to substantial latency and
various related issues due to the numerous parameters involved (Ma et al., 2023).
Therefore, it is challenging to fine-tune an LLM as a user simulator and to train a
dialogue system with LLM-based user simulators by reinforcement learning.

• Hallucination in response. Although LLMs produce impressive responses, they still
generate unexpected content, referred to as a hallucination (Bang et al., 2023). In other
words, it is not trivial to properly control an LLM to follow given user goals.

• Diverstion from natural language. While LLMs are valuable for data augmentation
when resources are scarce or unavailable (Bayer et al., 2022; Huang et al., 2022; Yoo et al.,
2021), training LLMs on machine-generated text can introduce challenges, e.g. model
collapse, referring to the model begins to forget the true underlying distribution of real-
world data and becomes poisoned by machine-generated synthetic data (Shumailov
et al., 2023). In addition, although learning from machine-to-machine interaction has
demonstrated impressive breakthroughs, it may cause un-humanlike behaviour. For
example, AlphaGo, optimised by self-play, has established strategies which profes-
sional players would never adopt (Bory, 2019). These moves are creative and intriguing,
but it is crucial to prevent dialogue systems from generating machine-style language
that deviates from natural language during training with an LLM-based user simulator.

As a result, it is essential to investigate how and when to use LLMs in user simulation, find
a balance between performance, latency, and cost, and set up a mechanism to check the
response of user simulators is correct and natural, without hallucination and machine-style
utterances.

7.2.1 Bridging the gap between humans and machines

User simulation can do more than train dialogue systems or provide quantitative evaluation
such as task success rate or satisfaction scores. By leveraging LLMs, user simulators may
generate qualitative feedback, helping refine the user journey and improve the design of
the system. With proper prompting or fine-tuning on specific datasets, user simulation may
represent various users’ backgrounds, e.g. people who are not familiar with technology
or from different cultures, for addressing diverse user needs and developing user-centred
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systems. In addition, we can introduce different guidelines or regulations in user simulation,
e.g. General Data Protection Regulation1, to avoid any violation in the system since the early
development process.

User simulation is not only essential in the development of dialogue systems but can also
play an important role during serving. User simulators can be viewed as an experienced user
since they have interacted with systems countless times. Therefore, they can help cold-start
users get familiar with the system or simplify the user’s complex requests. Furthermore,
individuals can have their personalised simulator, which learns from their daily routines
and can proactively request dialogue systems for them. Through future research in user
simulation, human-computer interaction can be reformulated, shifting from a two-agent
paradigm, consisting of just the system and user, to a multi-agent framework. The gap
between humans and machines can be bridged in more than one way but with numerous
possibilities and opportunities.

1https://gdpr-info.eu/

https://gdpr-info.eu/
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Appendix A

Gradient Vanishing

Gradient Vanishing is one challenge for optimising deep neural networks. Given a loss
function L, a deep neural network with L layers and the lth layer fl can be formulated as:

hl = fl(hl−1) = φ(Wlhl−1 + bl), (A.1)

where φ is the activation function, zl = Wlhl−1 + bl is the linear sum of the layer input, Wl
and bl are the weights and bias, the gradient of the first layer weight can be calculated by
chain rule:

∂L
∂W1

=
∂L
∂hL

∂hL

∂zL

∂zL

∂hL−1

∂hL−1

∂zL−1
. . .

∂z1

∂W1
(A.2)

For simplicity, the bias b for each layer is set to 0. The gradient includes three parts, the
derivative of the loss function ∂L

∂hL
, the derivatives of the activation functions, e.g. φ′ = ∂hL

∂zL
,

and the weights of layers, e.g. WL = ∂zL
∂hL−1

. The gradient vanishing problem is caused by
these repeated multiplications, which means if these values are very small, the gradient will
quickly reach 0. For example, the derivative of the Sigmoid function (Equation 2.2) is

φ′Sigmoid(x) = φSigmoid(xi) (1− φSigmoid(xi)) (A.3)

As shown in Figure A.1, the Sigmoid function suffers from gradient vanishing problem
because of φ′Sigmoid(x) < 1.
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FIGURE A.1: The derivative of the Sigmoid function.
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Appendix B

Supplementary Proofs

B.1 Positional Encoding

Theorem 1. In the position j, the d-dimensional positional encoding pj ∈ Rd is defined as

pj,i =

{︄
sin(ωk · j), if i = 2k
cos(ωk · j), if i = 2k + 1,

(B.1)

where ωk =
1

100002k/d and k = 0, 1, . . . , ⌈ d
2⌉ − 1. For any fixed offset δ ∈N, a linear transformation

Tδ ∈ Rd×d exists, such that
Tδ pj = pj+δ. (B.2)

Proof. According to the addition theorems of sine and cosine functions, for every ωk

sin(ωk · (j + δ)) = cos(ωk · δ) sin(ωk · j) + sin(ωk · δ) cos(ωk · j)
cos(ωk · (j + δ)) = − sin(ωk · δ) sin(ωk · j) + cos(ωk · δ) cos(ωk · j),

(B.3)

which can be reformulated as[︃
cos(ωk · δ) sin(ωk · δ)
− sin(ωk · δ) cos(ωk · δ)

]︃ [︃
sin(ωk · j)
cos(ωk · j)

]︃
=

[︃
sin(ωk · (j + δ))
cos(ωk · (j + δ))

]︃
(B.4)

If we define a projection matrix Φδ
k ∈ R

2×2 as

Φδ
k =

[︃
cos(ωk · δ) sin(ωk · δ)
− sin(ωk · δ) cos(ωk · δ)

]︃
(B.5)

where the projection matrix does not depend on any position index j, then the Equation B.4
can be reformulated as

Φδ
k

[︃
pj,2k

pj,2k+1

]︃
=

[︃
pj+δ,2k

pj+δ,2k+1

]︃
(B.6)

which means the linear transformation Tδ in Equation B.2 is

Tδ =

⎡⎢⎢⎢⎣
Φδ

0 0 . . . 0
0 Φδ

1 . . . 0
. . . . . . . . . . . .
0 0 . . . Φδ

⌈ d
2 ⌉−1

⎤⎥⎥⎥⎦ (B.7)
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Theorem 2. In the position j, the norm of the d-dimensional positional encoding pj ∈ Rd is

∥pj∥2 =

√︃
d
2

(B.8)

Proof. According to sin2(x) + cos2(x) = 1, the norm of the positional encoding is

∥pj∥2 =
√︂

sin2(ω0 · j) + cos2(ω0 · j) + · · ·+ sin2(ω⌈ d
2 ⌉−1 · j) + cos2(ω⌈ d

2 ⌉−1 · j)

=

√︃
d
2

(B.9)

Theorem 3. The distance between two positional encodings is symmetric. For any fixed offset δ ∈N,

∥pj − pj+δ∥2 = ∥pj − pj−δ∥2 (B.10)

Proof. According to the addition theorem cos(x − y) = cos(x) cos(y) + sin(x) sin(y) and
cos(x) = cos(−x), we can find out

∥pj − pj+δ∥2
2

= ∥pj∥2
2 + ∥pj+δ∥2

2 − 2
⌈ d

2 ⌉−1

∑
k=0

(cos(ωk · j) cos(ωk · (j + δ)) + sin(ωk · j) sin(ωk · (j + δ)))

= d− 2
⌈ d

2 ⌉−1

∑
k=0

cos(ωk · j−ωk · (j + δ))

= d− 2
⌈ d

2 ⌉−1

∑
k=0

cos(−ωk · j + ωk · (j + δ))

= d− 2
⌈ d

2 ⌉−1

∑
k=0

cos(ωk · j−ωk · (j− δ))

= ∥pj∥2
2 + ∥pj−δ∥2

2 − 2
⌈ d

2 ⌉−1

∑
k=0

(cos(ωk · j) cos(ωk · (j− δ)) + sin(ωk · j) sin(ωk · (j− δ)))

= ∥pj − pj−δ∥2
2

(B.11)

B.2 Bias Correction for adaptive moment estimation

The moving average of gradients m and the squared gradients v in the adaptive moment
estimation (Adam) is initialised to 0, i.e. m0 = 0, v0 = 0, which makes m and v bias on zero
during the initial epochs. Therefore, the bias correction is introduced. The bias correction of
v is explained as an example.
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Let g be the gradient of a loss function L, i.e. g = ∇L, and g1, . . . , gk are the gradients in
epoch 1 to k, each of them is from distribution p(gk), i.e. gk ∼ p(gk). The moving average of
the squared gradients vk = β2 · vt−1 + (1− β2) · g2

k , where β2 ∈ [0, 1) is the decay rate and
g2

k = g ⊙ g is the elementwise square, can be formulated as:

vk = (1− β2)
k

∑
i=1

βk−i
2 · g2

i (B.12)

where βk
2 is the β2 in the power of k. The relationship of the expected value of vk and the

expected value of gk at epoch k is

E[vk] = E

[︄
(1− β2)

k

∑
i=1

βk−i
2 · g2

i

]︄

= E
[︂

g2
i

]︂
· (1− β2)

k

∑
i=1

βk−i
2 + ζ

= E
[︂

g2
i

]︂
· (1− βk

2) + ζ

(B.13)

where ζ = 0 if E
[︁
g2

i
]︁

is stationary, or the β2 can be chosen small to keep ζ small. Then the
normalised moving average of the squared gradients is

v̂k =
vk

1− βk
2

(B.14)
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